
Forms Authentication, Authorization, User
Accounts, and Roles :: Creating and
Managing Roles

Introduction
In the User-Based Authorization tutorial we looked at using URL authorization to

restrict certain users from a set of pages and explored declarative and programmatic

techniques for adjusting an ASP.NET page’s functionality based on the visiting user.

Granting permission for page access or functionality on a user-by-user basis,

however, can become a maintenance nightmare in scenarios where there are many

user accounts or when users’ privileges change often. Any time a user gains or loses

authorization to perform a particular task, the administrator needs to update the

appropriate URL authorization rules, declarative markup, and code.

It usually helps to classify users into groups or roles and then to apply permissions

on a role-by-role basis. For example, most web applications have a certain set of

pages or tasks that are reserved only for administrative users. Using the techniques

learned in the User-Based Authorization tutorial, we would add the appropriate URL

authorization rules, declarative markup, and code to allow the specified user

accounts to perform administrative tasks. But if a new administrator was added or if

an existing administrator needed to have her administration rights revoked, we

would have to return and update the configuration files and web pages. With roles,

however, we could create a role called Administrators and assign those trusted users

to the Administrators role. Next, we would add the appropriate URL authorization

rules, declarative markup, and code to allow the Administrators role to perform the

various administrative tasks. With this infrastructure in place, adding new

administrators to the site or removing existing ones is as simple as including or

removing the user from the Administrators role. No configuration, declarative

markup, or code changes are necessary.

ASP.NET offers a Roles framework for defining roles and associating them with user

accounts. With the Roles framework we can create and delete roles, add users to or

remove users from a role, determine the set of users that belong to a particular role,

and tell whether a user belongs to a particular role. Once the Roles framework has

been configured, we can limit access to pages on a role-by-role basis through URL

authorization rules and show or hide additional information or functionality on a page

based on the currently logged on user’s roles.

This tutorial examines the steps necessary for configuring the Roles framework.

Following that, we will build web pages to create and delete roles. In the Assigning

Roles to Users tutorial we will look at how to add and remove users from roles. And

in the Role-Based Authorization tutorial we will see how to limit access to pages on a

role-by-role basis along with how to adjust page functionality depending on the

visiting user’s role. Let’s get started!

http://www.asp.net/learn/security/tutorial-07-cs.aspx
http://www.asp.net/learn/security/tutorial-10-cs.aspx
http://www.asp.net/learn/security/tutorial-10-cs.aspx
http://www.asp.net/learn/security/tutorial-10-cs.aspx
http://www.asp.net/learn/security/tutorial-11-cs.aspx

Step 1: Adding New ASP.NET Pages
In this tutorial and the next two we will be examining various roles-related functions

and capabilities. We will need a series of ASP.NET pages to implement the topics

examined throughout these tutorials. Let’s create these pages and update the site

map.

Start by creating a new folder in the project named Roles. Next, add four new

ASP.NET pages to the Roles folder, linking each page with the Site.master master

page. Name the pages:

 ManageRoles.aspx

 UsersAndRoles.aspx

 CreateUserWizardWithRoles.aspx

 RoleBasedAuthorization.aspx

At this point your project’s Solution Explorer should look similar to the screen shot

shown in Figure 1.

Figure 1: Four New Pages Have Been Added to the Roles Folder

Each page should, at this point, have the two Content controls, one for each of the

master page’s ContentPlaceHolders: MainContent and LoginContent.

<asp:Content ID="Content1" ContentPlaceHolderID="MainContent"

Runat="Server">

</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="LoginContent"

Runat="Server">

</asp:Content>

Recall that the LoginContent ContentPlaceHolder’s default markup displays a link to

log on or log off the site, depending on whether the user is authenticated. The

presence of the Content2 Content control in the ASP.NET page, however, overrides

the master page’s default markup. As we discussed in An Overview of Forms

Authentication tutorial, overriding the default markup is useful in pages where we do

not want to display login-related options in the left column.

For these four pages, however, we want to show the master page’s default markup

for the LoginContent ContentPlaceHolder. Therefore, remove the declarative markup

for the Content2 Content control. After doing so, each of the four page’s markup

should contain just one Content control.

Finally, let’s update the site map (Web.sitemap) to include these new web pages.

Add the following XML after the <siteMapNode> we added for the Membership

tutorials.

<siteMapNode title="Roles">

 <siteMapNode url="~/Roles/ManageRoles.aspx" title="Manage Roles" />

 <siteMapNode url="~/Roles/UsersAndRoles.aspx" title="Users and

Roles" />

 <siteMapNode url="~/Roles/CreateUserWizardWithRoles.aspx"

title="Create Account (with Roles)" />

 <siteMapNode url="~/Roles/RoleBasedAuthorization.aspx" title="Role-

Based Authorization" />

</siteMapNode>

With the site map updated, visit the site through a browser. As Figure 2 shows, the

navigation on the left now includes items for the Roles tutorials.

http://www.asp.net/learn/security/tutorial-02-cs.aspx
http://www.asp.net/learn/security/tutorial-02-cs.aspx
http://www.asp.net/learn/security/tutorial-02-cs.aspx

Figure 2: Four New Pages Have Been Added to the Roles Folder

Step 2: Specifying and Configuring the
Roles Framework Provider
Like the Membership framework, the Roles framework is built atop the provider

model. As discussed in the Security Basics and ASP.NET Support tutorial, the .NET

Framework ships with three built-in Roles providers:

AuthorizationStoreRoleProvider, WindowsTokenRoleProvider, and

SqlRoleProvider. This tutorial series focuses on the SqlRoleProvider, which uses a

Microsoft SQL Server database as the role store.

Underneath the covers the Roles framework and SqlRoleProvider work just like the

Membership framework and SqlMembershipProvider. The .NET Framework contains

a Roles class that serves as the API to the Roles framework. The Roles class has

static methods like CreateRole, DeleteRole, GetAllRoles, AddUserToRole,

IsUserInRole, and so forth. When one of these methods is invoked, the Roles class

delegates the call to the configured provider. The SqlRoleProvider works with the

role-specific tables (aspnet_Roles and aspnet_UsersInRoles) in response.

In order to use the SqlRoleProvider provider in our application, we need to specify

what database to use as the store. The SqlRoleProvider expects the specified role

store to have certain database tables, views, and stored procedures. These requisite

database objects can be added using the aspnet_regsql.exe tool. At this point we

already have a database with the schema necessary for the SqlRoleProvider. Back

http://www.asp.net/learn/security/tutorial-01-cs.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.authorizationstoreroleprovider.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.windowstokenroleprovider.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.sqlroleprovider.aspx
http://msdn2.microsoft.com/en-us/library/ms229862.aspx

in the Creating the Membership Schema in SQL Server tutorial we created a

database named SecurityTutorials.mdf and used aspnet_regsql.exe to add the

application services, which included the database objects required by the

SqlRoleProvider. Therefore we just need to tell the Roles framework to enable role

support and to use the SqlRoleProvider with the SecurityTutorials.mdf database

as the role store.

The Roles framework is configured via the <roleManager> element in the

application’s Web.config file. By default, role support is disabled. To enable it, you

must set the <roleManager> element’s enabled attribute to true like so:

<?xml version="1.0"?>

<configuration>

 <system.web>

 ... Additional configuration markup removed for brevity ...

 <roleManager enabled="true" />

 <system.web>

</configuration>

By default, all web applications have a Roles provider named

AspNetSqlRoleProvider of type SqlRoleProvider. This default provider is

registered in machine.config (located at

%WINDIR%\Microsoft.Net\Framework\v2.0.50727\CONFIG):

<roleManager>

 <providers>

 <add name="AspNetSqlRoleProvider"

 connectionStringName="LocalSqlServer"

 applicationName="/"

 type="System.Web.Security.SqlRoleProvider, System.Web,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"/>

 </providers>

</roleManager>

The provider’s connectionStringName attribute specifies the role store that is used.

The AspNetSqlRoleProvider provider sets this attribute to LocalSqlServer, which

is also defined in machine.config and points, by default, to a SQL Server 2005

Express Edition database in the App_Data folder named aspnet.mdf.

Consequently, if we simply enable the Roles framework without specifying any

provider information in our application’s Web.config file, the application uses the

default registered Roles provider, AspNetSqlRoleProvider. If the

http://www.asp.net/learn/security/tutorial-04-cs.aspx
http://msdn2.microsoft.com/en-us/library/ms164660.aspx

~/App_Data/aspnet.mdf database does not exist, the ASP.NET runtime will

automatically create it and add the application services schema. However, we don’t

want to use the aspnet.mdf database; rather, we want to use the

SecurityTutorials.mdf database that we have already created and added the

application services schema to. This modification can be accomplished in one of two

ways:

 Specify a value for the LocalSqlServer connection string name in

Web.config. By overwriting the LocalSqlServer connection string name

value in Web.config, we can use the default registered Roles provider

(AspNetSqlRoleProvider) and have it correctly work with the

SecurityTutorials.mdf database. For more information on this technique,

see Scott Guthrie’s blog post, Configuring ASP.NET 2.0 Application Services to

Use SQL Server 2000 or SQL Server 2005.

 Add a new registered provider of type SqlRoleProvider and configure

its connectionStringName setting to point to the SecurityTutorials.mdf

database. This is the approach I recommended and used in the Creating the

Membership Schema in SQL Server tutorial, and it is the approach I will use in

this tutorial as well.

Add the following Roles configuration markup to the Web.config file. This markup

registers a new provider named SecurityTutorialsSqlRoleProvider.

<?xml version="1.0"?>

<configuration>

 <connectionStrings>

 <add name="SecurityTutorialsConnectionString"

 connectionString="..."/>

 </connectionStrings>

 <system.web>

 ... Additional configuration markup removed for brevity ...

 <roleManager enabled="true"

defaultProvider="SecurityTutorialsSqlRoleProvider">

 <providers>

 <add name="SecurityTutorialsSqlRoleProvider"

 type="System.Web.Security.SqlRoleProvider"

 applicationName="SecurityTutorials"

connectionStringName="SecurityTutorialsConnectionString" />

 </providers>

 </roleManager>

http://weblogs.asp.net/scottgu/
http://weblogs.asp.net/scottgu/archive/2005/08/25/423703.aspx
http://weblogs.asp.net/scottgu/archive/2005/08/25/423703.aspx
http://weblogs.asp.net/scottgu/archive/2005/08/25/423703.aspx
http://www.asp.net/learn/security/tutorial-04-cs.aspx
http://www.asp.net/learn/security/tutorial-04-cs.aspx
http://www.asp.net/learn/security/tutorial-04-cs.aspx

 <system.web>

</configuration>

The above markup defines the SecurityTutorialsSqlRoleProvider as the default

provider (via the defaultProvider attribute in the <roleManager> element). It also

sets the SecurityTutorialsSqlRoleProvider’s applicationName setting to

SecurityTutorials, which is the same applicationName setting used by the

Membership provider (SecurityTutorialsSqlMembershipProvider). While not

shown here, the <add> element for the SqlRoleProvider may also contain a

commandTimeout attribute to specify the database timeout duration, in seconds. The

default value is 30.

With this configuration markup in place, we are ready to start using role functionality

within our application.

Note: The above configuration markup illustrates using the <roleManager>

element’s enabled and defaultProvider attributes. There are a number of

other attributes that affect how the Roles framework associates role

information on a user-by-user basis. We will examine these settings in the

Role-Based Authorization tutorial.

Step 3: Examining the Roles API
The Roles framework’s functionality is exposed via the Roles class, which contains

thirteen static methods for performing role-based operations. When we look at

creating and deleting roles in Steps 4 and 6 we will use the CreateRole and

DeleteRole methods, which add or remove a role from the system.

To get a list of all of the roles in the system, use the GetAllRoles method (see Step

5). The RoleExists method returns a Boolean value indicating whether a specified

role exists.

In the next tutorial we will examine how to associate users with roles. The Roles

class’s AddUserToRole, AddUserToRoles, AddUsersToRole, and AddUsersToRoles

methods add one or more users to one or more roles. To remove users from roles,

use the RemoveUserFromRole, RemoveUserFromRoles, RemoveUsersFromRole, or

RemoveUsersFromRoles methods.

In the Role-Based Authorization tutorial we will look at ways to programmatically

show or hide functionality based on the currently logged in user’s role. To accomplish

this, we can use the Role class’s FindUsersInRole, GetRolesForUser,

GetUsersInRole, or IsUserInRole methods.

http://msdn2.microsoft.com/en-us/library/ms164662.aspx
http://www.asp.net/learn/security/tutorial-11-cs.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.createrole.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.deleterole.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.getallroles.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.roleexists.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.addusertorole.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.addusertoroles.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.adduserstorole.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.adduserstoroles.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.removeuserfromrole.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.removeuserfromroles.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.removeusersfromrole.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.removeusersfromroles.aspx
http://www.asp.net/learn/security/tutorial-11-cs.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.findusersinrole.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.getrolesforuser.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.getusersinrole.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.roles.isuserinrole.aspx

Note: Keep in mind that any time one of these methods is invoked, the Roles

class delegates the call to the configured provider. In our case, this means

that the call is being sent to the SqlRoleProvider. The SqlRoleProvider

then performs the appropriate database operation based on the invoked

method. For example, the code Roles.CreateRole("Administrators")

results in the SqlRoleProvider executing the aspnet_Roles_CreateRole

stored procedure, which inserts a new record into the aspnet_Roles table

named “Administrators”.

The remainder of this tutorial looks at using the Roles class’s CreateRole,

GetAllRoles, and DeleteRole methods to manage the roles in the system.

Step 4: Creating New Roles
Roles offer a way to arbitrarily group users, and most commonly this grouping is

used for a more convenient way to apply authorization rules. But in order to use

roles as an authorization mechanism we first need to define what roles exist in the

application. Unfortunately, ASP.NET does not include a CreateRoleWizard control. In

order to add new roles we need to create a suitable user interface and invoke the

Roles API ourselves. The good news is that this is very easy to accomplish.

Note: While there is no CreateRoleWizard Web control, there is the ASP.NET

Web Site Administration Tool, which is a local ASP.NET application designed

to assist with viewing and managing your web application’s configuration.

However, I am not a big fan of the ASP.NET Web Site Administration Tool for

two reasons. First, it is a bit buggy and the user experience leaves a lot to be

desired. Second, the ASP.NET Web Site Administration Tool is designed to

only work locally, meaning that you will have to build your own role

management web pages if you need to manage roles on a live site remotely.

For these two reasons, this tutorial and the next will focus on building the

necessary role management tools in a web page rather than relying on the

ASP.NET Web Site Administration Tool.

Open the ManageRoles.aspx page in the Roles folder and add a TextBox and a

Button Web control to the page. Set the TextBox control’s ID property to RoleName

and the Button’s ID and Text properties to CreateRoleButton and “Create Role”,

respectively. At this point, your page’s declarative markup should look similar to the

following:

Create a New Role:

<asp:TextBox ID="RoleName" runat="server"></asp:TextBox>

<asp:Button ID="CreateRoleButton" runat="server" Text="Create Role" />

http://msdn2.microsoft.com/en-us/library/ms228053.aspx
http://msdn2.microsoft.com/en-us/library/ms228053.aspx
http://msdn2.microsoft.com/en-us/library/ms228053.aspx

Next, double-click the CreateRoleButton Button control in the Designer to create a

Click event handler and then add the following code:

protected void CreateRoleButton_Click(object sender, EventArgs e)

{

 string newRoleName = RoleName.Text.Trim();

 if (!Roles.RoleExists(newRoleName))

 // Create the role

 Roles.CreateRole(newRoleName);

 RoleName.Text = string.Empty;

}

The above code starts by assigning the trimmed role name entered in the RoleName

TextBox to the newRoleName variable. Next, the Roles class’s RoleExists method is

called to determine if the role newRoleName already exists in the system. If the role

does not exist, it is created via a call to the CreateRole method. If the CreateRole

method is passed a role name that already exists in the system, a

ProviderException exception is thrown. This is why the code first checks to ensure

that the role does not already exist in the system before calling CreateRole. The

Click event handler concludes by clearing out the RoleName TextBox’s Text

property.

Note: You may be wondering what will happen if the user doesn’t enter any

value into the RoleName TextBox. If the value passed into the CreateRole

method is null or an empty string, an exception is raised. Likewise, if the

role name contains a comma an exception is raised. Consequently, the page

should contain validation controls to ensure that the user enters a role and

that it does not contain any commas. I leave as an exercise for the reader.

Let’s create a role named “Administrators”. Visit the ManageRoles.aspx page

through a browser, type in “Administrators” into the textbox (see Figure 3), and then

click the “Create Role” button.

Figure 3: Create an “Administrators” Role

What happens? A postback occurs, but there’s no visual cue that the role has

actually been added to the system. We will update this page in Step 5 to include

visual feedback. For now, however, you can verify that the role was created by going

to the SecurityTutorials.mdf database and displaying the data from the

aspnet_Roles table. As Figure 4 shows, the aspnet_Roles table contains a record

for the just-added Administrators roles.

Figure 4: The aspnet_Roles Table has a Row for the “Administrators” Role

Step 5: Displaying the Roles in the System
Let’s augment the ManageRoles.aspx page to include a list of the current roles in the

system. To accomplish this, add a GridView control to the page and set its ID

property to RoleList. Next, add a method to the page’s code-behind class named

DisplayRolesInGrid using the following code:

private void DisplayRolesInGrid()

{

 RoleList.DataSource = Roles.GetAllRoles();

 RoleList.DataBind();

}

The Roles class’s GetAllRoles method returns all of the roles in the system as an

array of strings. This string array is then bound to the GridView. In order to bind the

list of roles to the GridView when the page is first loaded, we need to call the

DisplayRolesInGrid method from the page’s Page_Load event handler. The

following code calls this method when the page is first visited, but not on subsequent

postbacks.

protected void Page_Load(object sender, EventArgs e)

{

 if (!Page.IsPostBack)

 DisplayRolesInGrid();

}

With this code in place, visit the page through a browser. As Figure 5 shows, you

should see a grid with a single column labeled “Item”. The grid includes a row for the

Administrators role we added in Step 4.

Figure 5: The GridView Displays the Roles in a Single Column

The GridView displays a lone column labeled “Item” because the GridView’s

AutoGenerateColumns property is set to True (the default), which causes the

GridView to automatically create a column for each property in its DataSource. An

array has a single property that represents the elements in the array, hence the

single column in the GridView.

When displaying data with a GridView, I prefer to explicitly define my columns rather

than have them implicitly generated by the GridView. By explicitly defining the

columns it is much easier to format the data, rearrange the columns, and perform

other common tasks. Therefore, let’s update the GridView’s declarative markup so

that its columns are explicitly defined.

Start by setting the GridView’s AutoGenerateColumns property to False. Next, add a

TemplateField to the grid, set its HeaderText property to “Roles”, and configure its

ItemTemplate so that it displays the contents of the array. To accomplish this, add a

Label Web control named RoleNameLabel to the ItemTemplate and bind its Text

property to Container.DataItem.

These properties and the ItemTemplate’s contents can be set declaratively or

through the GridView’s Fields dialog box and Edit Templates interface. To reach the

Fields dialog box, click the “Edit Columns” link in the GridView’s Smart Tag. Next,

uncheck the “Auto-generate fields” checkbox to set the AutoGenerateColumns

property to False, and add a TemplateField to the GridView, setting its HeaderText

property to “Role”. To define the ItemTemplate’s contents, choose the “Edit

Templates” option from the GridView’s Smart Tag. Drag a Label Web control onto the

ItemTemplate, set its ID property to RoleNameLabel, and configure its databinding

settings so that its Text property is bound to Container.DataItem.

Regardless of what approach you use, the GridView’s resulting declarative markup

should look similar to the following when you are done.

<asp:GridView ID="RoleList" runat="server" AutoGenerateColumns="false">

 <Columns>

 <asp:TemplateField HeaderText="Role">

 <ItemTemplate>

 <asp:Label runat="server" ID="RoleNameLabel" Text='<%#

Container.DataItem %>' />

 </ItemTemplate>

 </asp:TemplateField>

 </Columns>

</asp:GridView>

Note: The array’s contents are displayed using the databinding syntax <%#

Container.DataItem %>. A thorough description of why this syntax is used

when displaying the contents of an array bound to the GridView is beyond the

scope of this tutorial. For more information on this matter, refer to Binding a

Scalar Array to a Data Web Control.

Currently, the RoleList GridView is only bound to the list of roles when the page is

first visited. We need to refresh the grid whenever a new role is added. To

accomplish this, update the CreateRoleButton Button’s Click event handler so that

it calls the DisplayRolesInGrid method if a new role is created.

protected void CreateRoleButton_Click(object sender, EventArgs e)

{

 string newRoleName = RoleName.Text.Trim();

 if (!Roles.RoleExists(newRoleName))

 {

 // Create the role

 Roles.CreateRole(newRoleName);

 // Refresh the RoleList Grid

 DisplayRolesInGrid();

 }

http://aspnet.4guysfromrolla.com/articles/082504-1.aspx
http://aspnet.4guysfromrolla.com/articles/082504-1.aspx
http://aspnet.4guysfromrolla.com/articles/082504-1.aspx

 RoleName.Text = string.Empty;

}

Now when the user adds a new role the RoleList GridView shows the just-added

role on postback, providing visual feedback that the role was successfully created. To

illustrate this, visit the ManageRoles.aspx page through a browser and add a role

named “Supervisors”. Upon clicking the “Create Role” button, a postback will ensue

and the grid will update to include Administrators as well as the new role,

Supervisors.

Figure 6: The Supervisors Role has Been Added

Step 6: Deleting Roles
At this point a user can create a new role and view all existing roles from the

ManageRoles.aspx page. Let’s allow users to also delete roles. The

Roles.DeleteRole method has two overloads:

 DeleteRole(roleName) – deletes the role roleName. An exception is thrown if

the role contains one or more members.

 DeleteRole(roleName, throwOnPopulatedRole) – deletes the role

roleName. If throwOnPopulateRole is true, then an exception is thrown if the

http://msdn2.microsoft.com/en-us/library/ek4sywc0.aspx
http://msdn2.microsoft.com/en-us/library/38h6wf59.aspx

role contains one or more members. If throwOnPopulateRole is false, then

the role is deleted whether it contains any members or not. Internally, the

DeleteRole(roleName) method calls DeleteRole(roleName, true).

The DeleteRole method will also throw an exception if roleName is null or an

empty string or if roleName contains a comma. If roleName does not exist in the

system, DeleteRole fails silently, without raising an exception.

Let’s augment the GridView in ManageRoles.aspx to include a Delete button that,

when clicked, deletes the selected role. Start by adding a Delete button to the
GridView by going to the Fields dialog box and adding a Delete button, which is
located under the CommandField option. Make the Delete button the far left column
and set its DeleteText property to “Delete Role”.

Figure 7: Add a Delete Button to the RoleList GridView

After adding the Delete button, your GridView’s declarative markup should look

similar to the following:

<asp:GridView ID="RoleList" runat="server" AutoGenerateColumns="False">

 <Columns>

 <asp:CommandField DeleteText="Delete Role"

ShowDeleteButton="True" />

 <asp:TemplateField HeaderText="Role">

 <ItemTemplate>

 <asp:Label runat="server" ID="RoleNameLabel" Text='<%#

Container.DataItem %>' />

 </ItemTemplate>

 </asp:TemplateField>

 </Columns>

</asp:GridView>

Next, create an event handler for the GridView’s RowDeleting event. This is the

event that is raised on postback when the “Delete Role” button is clicked. Add the

following code to the event handler.

protected void RoleList_RowDeleting(object sender,

GridViewDeleteEventArgs e)

{

 // Get the RoleNameLabel

 Label RoleNameLabel =

RoleList.Rows[e.RowIndex].FindControl("RoleNameLabel") as Label;

 // Delete the role

 Roles.DeleteRole(RoleNameLabel.Text, false);

 // Rebind the data to the RoleList grid

 DisplayRolesInGrid();

}

The code starts by programmatically referencing the RoleNameLabel Web control in

the row whose “Delete Role” button was clicked. The Roles.DeleteRole method is

then invoked, passing in the Text of the RoleNameLabel and false, thereby deleting

the role regardless of whether there are any users associated with the role. Finally,

the RoleList GridView is refreshed so that the just-deleted role no longer appears in

the grid.

Note: The “Delete Role” button does not require any sort of confirmation

from the user before deleting the role. One of the easiest ways to confirm an

action is through a client-side confirm dialog box. For more information on

this technique, see Adding Client-Side Confirmation When Deleting.

http://asp.net/learn/data-access/tutorial-42-cs.aspx

Summary
Many web applications have certain authorization rules or page-level functionality

that is only available to certain classes of users. For example, there may be a set of

web pages that only administrators can access. Rather than defining these

authorization rules on a user-by-user basis, oftentimes it is more useful to define the

rules based on a role. That is, rather than explicitly allowing users Scott and Jisun to

access the administrative web pages, a more maintainable approach is to permit

members of the Administrators role to access these pages, and then to denote Scott

and Jisun as users belonging to the Administrators role.

The Roles framework makes it easy to create and manage roles. In this tutorial we

examined how to configure the Roles framework to use the SqlRoleProvider, which

uses a Microsoft SQL Server database as the role store. We also created a web page

that lists the existing roles in the system and allows for new roles to be created and

existing ones to be deleted. In subsequent tutorials we will see how to assign users

to roles and how to apply role-based authorization.

Happy Programming!

Further Reading
For more information on the topics discussed in this tutorial, refer to the following

resources:

 Examining ASP.NET 2.0’s Membership, Roles, and Profile

 How To: Use Role Manager in ASP.NET 2.0

 Role Providers

 Rolling Your Own Website Administration Tool

 Technical documentation for the <roleManager> Element

 Using the Membership and Role Manager APIs

About the Author
Scott Mitchell, author of multiple ASP/ASP.NET books and founder of

4GuysFromRolla.com, has been working with Microsoft Web technologies since 1998.

Scott works as an independent consultant, trainer, and writer. His latest book is

Sams Teach Yourself ASP.NET 2.0 in 24 Hours. Scott can be reached at

mitchell@4guysfromrolla.com or via his blog at http://ScottOnWriting.NET.

Special Thanks To…
This tutorial series was reviewed by many helpful reviewers. Lead reviewers for this
tutorial include Alicja Maziarz, Suchi Banerjee, and Teresa Murphy. Interested in

http://aspnet.4guysfromrolla.com/articles/120705-1.aspx
http://msdn2.microsoft.com/en-us/library/ms998314.aspx
http://msdn2.microsoft.com/en-us/library/aa478950.aspx
http://aspnet.4guysfromrolla.com/articles/052307-1.aspx
http://msdn2.microsoft.com/en-us/library/ms164660.aspx
http://quickstarts.asp.net/QuickStartv20/aspnet/doc/security/membership.aspx
http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
mailto:mitchell@4guysfromrolla.com
http://scottonwriting.net/

reviewing my upcoming MSDN articles? If so, drop me a line at
mitchell@4GuysFromRolla.com

file:///D:\Comminity%20Server\mitchell@4GuysFromRolla.com

