

DirectX Video Acceleration

Specification for H.264/AVC Decoding

Gary J. Sullivan
Microsoft Corporation
December 2007
Updated December 2010

Applies to:

 DirectX Video Acceleration

Summary: Defines extensions to DirectX Video Acceleration (DXVA) to support decoding of
H.264/AVC video.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed
as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted
to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented
after the date of publication.

MICROSOFT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AS TO THE INFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright,
no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or
by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the
furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual
property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people,
places and events depicted herein are fictitious, and no association with any real company, organization, product, domain
name, e-mail address, logo, person, place or event is intended or should be inferred.

Microsoft does not make any representation or warranty regarding specifications in this document or any product or item
developed based on these specifications. Microsoft disclaims all express and implied warranties, including but not limited
to the implied warranties or merchantability, fitness for a particular purpose and freedom from infringement. Without
limiting the generality of the foregoing, Microsoft does not make any warranty of any kind that any item developed based
on these specifications, or any portion of a specification, will not infringe any copyright, patent, trade secret or other
intellectual property right of any person or entity in any country. It is your responsibility to seek licenses for such
intellectual property rights where appropriate. Microsoft shall not be liable for any damages arising out of or in
connection with the use of these specifications, including liability for lost profit, business interruption, or any other
damages whatsoever. Some states do not allow the exclusion or limitation of liability or consequential or incidental
damages; the above limitation may not apply to you.

© 2007 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Windows, Windows Media, Windows NT, Windows Server, Windows Vista, Active
Directory, ActiveSync, ActiveX, Direct3D, DirectDraw, DirectInput, DirectMusic, DirectPlay, DirectShow,
DirectSound, DirectX, Expression, FrontPage, HighMAT, Internet Explorer, JScript, Microsoft Press, MSN,
NetShow, Outlook, PlaysForSure logo, PowerPoint, SideShow, Visual Basic, Visual C++, Visual InterDev, Visual
J++, Visual Studio, WebTV, Win32, and Win32s are either registered trademarks or trademarks of Microsoft Corporation
in the U.S.A. and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents
Contents ... Error! Bookmark not defined.

Introduction ... 5

1.0 General Design Considerations ... 5

1.1 Picture Data ... 7

1.2 Slice Data .. 8

1.3 Macroblock Data ... 9

1.4 Buffer Types ... 10

1.5 DXVA Decoding Operations .. 11

1.5.1 Status Reporting ... 13

1.6 Accelerator Internal Information Storage.. 14

2.0 Configuration Parameters ... 15

2.1 Syntax ... 15

2.2 Semantics .. 15

2.3 Accelerator Decoder Specific Support .. 17

3.0 DXVA_PicEntry_H264 Structure ... 19

3.1 Syntax ... 19

3.2 Semantics .. 19

4.0 Picture Parameters Data Structure .. 20

4.1 Syntax ... 20

4.2 Semantics .. 21

5.0 Quantization Matrix Data Structure .. 29

5.1 Syntax ... 29

5.2 Semantics .. 29

6.0 Slice Control Data Structure ... 30

6.1 Syntax ... 30

6.2 Semantics .. 31

7.0 Macroblock Control Data Structure .. 35

7. 1 Syntax .. 36

7.2 Semantics .. 37

8.0 Residual Difference Data Buffers ... 45

8.1 Ordering of Residual Blocks within Macroblocks .. 45

8.1.1 Ordering of Luma Residual Blocks within Macroblocks ... 46

8.1.2 Ordering of Chroma Residual Blocks within Macroblocks ... 47

8.2 Transform Coefficients ... 48

8.3 I_PCM Residuals .. 50

8.4 Transform-Bypass Residuals .. 50

8.5 Other Spatial-Domain Residuals ... 50

9.0 Deblocking Filter Control Data Structure ... 50

9.1 IndexA and IndexB Data Structure ... 51

9.1.1 Syntax .. 51

9.1.2 Semantics ... 51

9.2 Deblocking Control Data Structure ... 52

9.2.1 Syntax .. 52

9.2.2 Semantics ... 52

10.0 Motion Vector Data Structure and Ordering ... 59

10.1 Motion Vector Data Structure ... 59

10.1.1 Sytax .. 59

10.1.2 Semantics ... 59

10.2 Ordering of Motion Vectors .. 60

10.2.1 Ordering of Motion Partitions for 16x16 Macroblock Motion or 8x8 Sub-macroblock
Motion... 60

10.2.2 Ordering of Motion Partitions for 16x8 Macroblock Motion or 8x4 Sub-macroblock
Motion... 60

10.2.3 Ordering of Motion Partitions for 8x16 Macroblock Motion or 4x8 Sub-macroblock
Motion... 61

10.2.4 Ordering of Motion Partitions for 8x8 Sub-macroblocks ... 61

11.0 Film-Grain Synthesis Data Structure .. 61

11.1 Syntax ... 62

11.2 Semantics .. 62

12.0 Status Report Data Structure ... 64

12.1 Syntax ... 64

12.2 Semantics .. 64

13.0 Restricted-Mode Profiles .. 66

13.1 DXVA_ModeH264_MoComp_NoFGT Profile .. 66

13.2 DXVA_ModeH264_MoComp_FGT Profile .. 68

13.3 DXVA_ModeH264_IDCT_NoFGT Profile.. 68

13.4 DXVA_ModeH264_IDCT_FGT Profile .. 69

13.5 DXVA_ModeH264_VLD_NoFGT Profile ... 70

13.6 DXVA_ModeH264_VLD_FGT Profile.. 70

13.7 DXVA_ModeH264_VLD_WithFMOASO_NoFGT Profile .. 71

For More Information ... 72

© 2007 Microsoft Corporation. All rights reserved.

Introduction
This specification defines extensions to DirectX® Video Acceleration (DXVA) to support
decoding of H.264/AVC video, a video compression standard published jointly as ITU-T
Recommendation H.264 and ISO/IEC 14496 (MPEG-4) Part 10.

This specification assumes that you are familiar with the H.264/AVC specification and with the
basic design of DXVA.

DXVA consists of a DDI for display drivers and an API for software decoders. Version
1.0 of DXVA is supported in Windows 2000 or later. Version 2.0 is available starting in
Windows Vista. The data structures used for decoding are the same in both versions, and the
information in this specification applies to both. Any relevant differences between the two
versions are noted.

In DXVA, some decoding operations are implemented by the graphics hardware driver. This set
of functionality is termed the accelerator. Other decoding operations are implemented by user-
mode application software, called the host decoder or software decoder. Processing performed by
the accelerator is called off-host processing. Typically the accelerator uses the GPU to speed up
some operations. Whenever the accelerator performs a decoding operation, the host decoder must
convey to the accelerator buffers containing the information needed to perform the operation.

Note In this document, the term shall describes behavior that is required by the specification.
The term should describes behavior that is encouraged but not required. The term note refers to
observations about implications of the specification.

Note In this version of document, section 2.3 accelerator decoder specific support about format
change and surface allocation is added to optimize video decoding latency and performance
according to different accelerator capabilities. Display information about which field should be
displayed first in the compressed picture is also specified in Reserved8BitsA of
DXVA_PicParams_H264 for the scenario where downsampling of uncompressed picture
happens right after decoding. Information to indicate whether the display information is set
properly by the host decoder or should be ignored is specified in the section entitled "Accelerator
Decoder Specific Support".

Send questions or comments about this specification to askdxva@microsoft.com.

1.0 General Design Considerations
This section provides an overview of the design for DXVA decoding of H.264/AVC video. It is
intended as background information, and might be helpful in understanding the sections that
follow. In the case of conflicts, later sections of this document override this section. Unless
otherwise noted, all references to the H.264/AVC specification are to the 2010 edition published

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding

© 2007 Microsoft Corporation. All rights reserved.

by the ITU-T, dated March 2010. This specification is available at http://www.itu.int/rec/T-REC-
H.264.

The initial design is intended to be sufficient for decoding the High, Main, and Baseline profiles.
To support other profiles would require incorporating some additional features into the design:

• SP and SI slices. SP slices can be handled at the picture level, with the exception of
slice_qs_delta.

• More than 8 bits per sample. This could be accomplished by increasing the precision of
transform coefficients and I_PCM macroblock samples.

• Chroma sampling schemes other than 4:2:0. This could be accomplished by increasing the
number of chroma blocks in a macroblock and indicating the format at the picture level.

6

• Transform-bypass mode. This could be accomplished by sending a flag for each macroblock.
Residual blocks would be sent using 16 bits per sample.

• Residual color transform. This could be accomplished using a flag at the picture level.

Note The use of the residual color transform in H.264/AVC has been deprecated by ITU-T
and ISO/IEC since the 2005 edition of the standard. Therefore, the associated DXVA flag
must equal 0 for uses relating to the current version of the standard.

The critical design considerations for DXVA decoding of H.264/AVC video include the
following:

• Which basic modes of operation to support. The estimated order of priority, from highest to
lowest, is:

1. Off-host inverse transform with host-based entropy decoding.

2. Raw bitstream format.

3. Host-based inverse transform with off-host motion compensation and spatial
prediction.

• How to incorporate the loop filter: Whether to put the loop filter control data in the same
buffer as the macroblock control commands, or put them in a separate buffer. The current
design supports both methods.

• How to handle slice-level data (for explicit weighted prediction, for example).

• The structure of macroblock control commands. Unlike MPEG-2, H.264/AVC requires
supporting a highly variable number of motion vectors—in principle, up to 32 motion
vectors per macroblock. This factor means the design must use either variable-length
macroblock control commands, or separate motion vector buffers. The current design uses
separate motion vector buffers. (Hypothetically, motion vector buffers could also be placed
in the same buffer as the residual data.)

• How to perform macroblock skipping. Unlike MPEG-2, the motion for skipped macroblocks
is not simple to infer. (It is not just the same as the macroblock to the left.) In the current
design, every macroblock requires its own macroblock control command. Hypothetically,
the design could specify an inference rule and allow macroblock skipping if the data fits the
rule. However, the benefit of having a 1:1 correspondence between macroblock control
commands and macroblocks might outweigh the benefits of supporting such an inference
rule.

© 2007 Microsoft Corporation. All rights reserved.

• How to send residual data when using host-based inverse transform or transform bypass.
Considerations include whether to use 16 bits per sample; how to handle 4x4 and 8x8
inverse transforms; and how to handle extra DC transforms for chroma samples and for
Intra_16x16 macroblocks.

• When using off-host inverse transform, how to send coefficients; how to handle 4x4 and 8x8
inverse transforms; how to handle extra DC transforms; whether to send data as levels or as
scaled coefficients; and how to handle I_PCM sample values.

• Whether to support additional post-processing, such as film-grain synthesis.

1.1 Picture Data
The following data must be conveyed for each picture. For details, see section 4.0, Picture
Parameters Data Structure.

• PicWidthInMbs

• PicHeightInMbs. (Useful primarily as a data validation check.)

• IntraPicFlag. (Not essential but possibly helpful.)

• MbaffFrameFlag

• field_pic_flag

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 8

© 2007 Microsoft Corporation. All rights reserved.

• bottom_field_flag

• chroma_format_idc

• BitDepthY and BitDepthC

• residual_colour_transform_flag, if High 4:4:4 Profile is supported.

• qpprime_y_zero_transform_bypass_flag. (Might not be needed.)

• Scaling lists or scaling matrixes. Not required if inverse quantization is performed on the
host CPU. If "flat" scaling lists are used, it might be possible to set a flag and not send the
scaling lists to the accelerator.

• CurrPic. Indicates the current destination surface.

• RefFrameList. Contains a list of 16 reference frame surfaces.

• Flags for long-term reference frames. In the current design, these are included in
RefFrameList.

• weighted_pred_flag

• weighted_bipred_idc

• CurrFieldOrderCnt. Contains the values of TopFieldOrderCnt and BottomFieldOrderCnt.

• FieldOrderCntList. Contains a list of 16 PicOrderCnt pairs for top and bottom fields, each 32
bytes. The accelerator should not assume these values are invariant on each picture, because
random access issues might prevent the decoder from having the correct value. As a result,
the value assigned to a picture might change after the picture has been decoded, especially in
the most-significant bits (MSBs).

• sp_for_switch_flag. Required only if SP and SI slices are supported.

1.2 Slice Data
The following data must be conveyed for slices in predicted (non-intra) pictures. Not all of this
data is required under all circumstances. For more details, see section 6.0, Slice Control Data
Structure.

• slice_type. Identifies I, P, B, SI, and SP slices.

• num_ref_idx_l0_active_minus1

• num_ref_idx_l1_active_minus1

• slice_alpha_c0_offset_div2 or FilterOffsetA. (The current design uses
slice_alpha_c0_offset_div2.)

• slice_beta_offset_div2 or FilterOffsetB. (The current design uses slice_beta_offset_div2.)

• RefPicList. Contains two lists of indexes into the RefFrameList array, with up to 16 valid
indexes for decoding frames, or 32 valid indexes for decoding fields. For decoding fields, an
associated flag identifies the parity of the field within the uncompressed surface identified by
the entry in the RefFrameList array.

• luma_log2_weight_denom

• chroma_log2_weight_denom

• Weights. Contains two lists of weight tables. Each entry in the list contains the weighting
factor and additive offset for Y, Cb, and Cr.

• QSY and QSC values. Required only if SP and SI slices are supported.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 9

© 2007 Microsoft Corporation. All rights reserved.

1.3 Macroblock Data
The following data must be conveyed for each macroblock. For more information, see section
7.0, Macroblock Control Data Structure.

• Macroblock address.

• Macroblock type (mb_type or equivalent). The various macroblock types are listed in tables
7-11 through 7-14 of the H.264/AVC specification. These can be reduced to 30 distinct
types:

• I_NxN, where the prediction mode is either 4x4 or 8x8, depending on the
transform_size_8x8 flag.

• Intra_16x16, with various values of Intra16x16PredMode,
CodedBlockPatternChroma, and CodedBlockPatternLuma treated as a single type.

• I_PCM

• SI

• P_L0_16x16, including P_Skip.

• P_L0_L0_16x8

• P_L0_L0_8x16

• P_8x8, including P_8x8ref0.

• B_xx_16x16, where xx is L0, L1, or Bi (3 types).

• B_xx_yy_16x8, where xx and yy are L0, L1, or Bi (9 types).

• B_xx_yy_8x16 (9 types).

• B_8x8, including B_Skip and B_Direct_16x16.

The list can be further reduced to 26 cases, because the macroblock types for P and SP slices
(those starting with "P_" in the previous list) have equivalents in the "B_" types, so they can
be omitted. In the current design, the macroblock type is defined by a 1-bit intra flag and 5
bits to distinguish the various cases within intra and nonintra types.

• mb_field_decoding_flag or equivalent

• transform_size_8x8_flag or equivalent

• Sub-macroblock partition shape. Needed for P_8x8 and B_8x8 macroblock types. Four sub-
macroblock partitions are defined, requiring 2 bits to specify. For more information, see
subclause 6.4.2 of the H.264/AVC specification.

• Sub-macroblock prediction modes (Pred_L0, Pred_L1, or BiPred). Needed for B_8x8
macroblock types, for each of the four sub-macroblocks.

• Luma intra prediction information, for intra modes. For Intra_4x4 sample prediction, there
are 16 modes of 4 bits each. For Intra_8x8 prediction, there are four modes of 4 bits each.
For Intra16x16 prediction, there is one mode (Intra16x16PredMode), requiring 2 bits.

• Flags to indicate the availability of neighboring macroblocks for intra prediction.

Note Some intra macroblocks must be processed after the left-neighboring and above-
neighboring inter macroblocks in the same slice. Also, within the same row of macroblocks
or macroblock pairs, it is not always possible to process two consecutive intra macroblocks
in parallel. Parallel processing of different rows is feasible if a lag is introduced when
processing lower rows relative to higher rows. Also, note that an entire picture might be
composed of intra macroblocks.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 10

© 2007 Microsoft Corporation. All rights reserved.

• Chroma prediction mode (intra_chroma_pred_mode), requiring 2 bits, for intra prediction
modes.

• Filtering control parameters: QP values, flags indicating which edges to filter, and flags
indicating whether to filter in frame mode or field mode. (For more information, see section
9.0, Deblocking Filter Control Data Structure.)

• Flags indicating which residual blocks contain residual data.

Note The CodedBlockPatternLuma variable in the H.264/AVC specification does not
include a bit flag to indicate the presence or absence of non-zero DC coefficients in an
Intra_16x16 macroblock. Therefore, either an additional bit flag must be defined, or the host
decoder must send a zero-valued coefficient with the endofblock flag set to 1, to indicate the
absence of a luma DC coefficient in the macroblock.

• Flag to specify whether transform bypass mode is used. As an alternative, the host decoder
could provide the value of qpprime_y_zero_transform_bypass_flag at the picture level and
the value of QP'Y at the macroblock level, which is sufficient for the accelerator to infer the
transform bypass mode.

• The values of QPY and QPC, or QP'Y and QP'C, if the accelerator is performing inverse
quantization or needs these values to control the deblocking filter.

• An offset into a slice parameters data buffer, which locates the slice-level data that applies to
the macroblock (for example, for weighted prediction).

• An offset into a motion vector data buffer, which locates the motion vector data for the
macroblock. Motion vector data includes:

• Reference indexes: As many as two reference indexes for each of the four submacroblocks.

• Motion vectors: As many as two motion vectors for each of four sub-macroblock partitions
in each of the four sub-macroblocks. Each motion vector has two components (horizontal
and vertical).

• An offset into a residual difference data buffer, which locates the residual difference data for
the macroblock. Residual difference data may be in the coefficient domain or the spatial
domain.

1.4 Buffer Types
The host decoder will send the following DXVA buffers to the accelerator:

• One picture parameters buffer.

• Zero or one quantization matrix buffer.

• Zero or more slice control buffers. Not required when IntraPicFlag is 1 and the host decoder
parses the bitstream.

• Zero or more macroblock control command buffers. Not required when the accelerator
parses the bitstream.

• Zero or more motion vector buffers, containing motion vectors for inter prediction. Not
required if the macroblock control buffer indicates that all macroblocks are coded in intra
modes, or when the accelerator parses the bitstream.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 11

•

© 2007 Microsoft Corporation. All rights reserved.

Zero or more residual difference data buffers, containing one or more of the following:
transform coefficients, I_PCM macroblock data, or spatial-domain residual difference
blocks. Used for transform-bypass mode or host-based transform. Not required when the
accelerator parses the bitstream.

• Zero or more deblocking filter control data buffers. These control the deblocking filter inside
the decoding feedback loop. In other configurations, this functionality is provided by the
macroblock control command buffer.

• Zero or more bitstream data buffers. Not required when the accelerator parses the bitstream.

• Zero or one film-grain synthesis data buffer. Required only if film-grain synthesis is used.

These buffer types are defined in the DXVA specification, but new data structures have been
defined for H.264/AVC decoding. The sequence of operations is described in section 1.5.

1.5 DXVA Decoding Operations
The basic sequence of operations for DXVA decoding consists of the following calls by the host
decoder. In DXVA 1.0, these methods are part of the IAMVideoAccelerator interface. In DXVA
2.0, they are part of the IDirectXVideoDecoder interface and some parameters are changed.

1. BeginFrame. Signals the start of one or more decoding operations by the accelerator, which
will cause the accelerator to write data into an uncompressed surface buffer.

2. Execute. Sends one or more compressed data buffers to the accelerator and specifies the
operations to perform on the buffers. The accelerator might return status information from
the call.

In DXVA 1.0, the decoder specifies the operations to perform by setting the dwFunction
parameter in IAMVideoAccelerator::Execute. This parameter contains from one to four 8-bit
commands packed into a 32-bit value. If there is only one command, it is placed in the 8
most signigicant bits (MSBs) of dwFunction, and the remaining bytes are set to zero. The 8-
bit command is referred to as bDXVA_Func, although this is not a formal parameter name.

In DXVA 2.0, the command can be specified in the Function member of the optional
DXVA2_DecodeExtensionData structure passed to
IDirectXVideoDecoder::Execute. In most cases, however, the command is implied by the
type of buffer.

3. EndFrame. Signals that the host decoder has sent all of the data needed for this BeginFrame
call. The accelerator can complete the operations.

For H.264/AVC decoding, the data passed to the Execute method includes a destination index to
indicate which uncompressed surface buffer is affected by the operation. Each call to Execute
affects one destination surface. Calling BeginFrame locks the buffer for writing, and calling
EndFrame unlocks the buffer. The host decoder can call Execute more than once between each
BeginFrame/EndFrame pair. The decoder shall not interleave calls to BeginFrame, Execute, and
EndFrame that affect output to different uncompressed surfaces.

During the BeginFrame/EndFrame sequence, the accelerator might read from uncompressed
surfaces other than the surface being written to. For example, decoding a picture might require
data from one or more previously-decoded pictures. If the host decoder issues a command that
requires writing to a buffer, and then issues a command that requires reading from the same
buffer, it is the accelerator's responsibility to serialize the operations. In other words, the
accelerator must complete the write operation before starting a read operation on the same buffer.

The DXVA design for H.264/AVC restricts the sequence of buffer types that can be sent to the
accelerator. The following sets of buffer types are defined:

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 12

© 2007 Microsoft Corporation. All rights reserved.

Type 1: Compressed picture decoded entirely by the host decoder. The host decoder sends the
following buffer:

• One picture parameters data buffer, with IntraPicFlag set to 1.

Type 2: Compressed picture decoding with host-based bitstream parsing. The host decoder sends
the following buffers:

• One picture parameters buffer.

• One quantization matrix buffer.

• One slice control buffer.

• One macroblock control buffer.

• Zero or one motion vector buffer.

• Zero or more residual difference data buffers.

Type 3: Compressed picture decoding with off-host parsing. The host decoder sends the
following buffers:

• One picture parameters buffer.

• One quantization matrix buffer.

• One slice control buffer.

• One bitstream data buffer.

Type 4: Deblocking filter. The host decoder sends the following buffers:

• One picture parameters buffer.

• One deblocking filter control data buffer.

Type 5: Film-grain synthesis. The host decoder sends the following buffers:

• One film-grain synthesis data buffer.

Type 6: Status reporting feedback. The host decoder does not send any buffers.

For these six types, four values of bDXVA_Func are defined:

Value Description

1 Compressed picture decoding, possibly including the deblocking filter (Types 1, 2, and
3).

5 Deblocking filter (Type 4).

6 Film-grain synthesis (Type 5).

7 Request for status reporting (Type 6).

If dwFunction is present, it shall contain exactly one of the values listed here. However, the
correct function can be inferred from the types of buffer passed to the accelerator without
knowing the value of dwFunction, as follows:

If a slice control buffer is present, parts of a compressed picture are to be decoded. The
operation is then controlled by either a macroblock control buffer or a bitstream buffer.

• If a deblocking filter control data buffer is present, the accelerator is to perform some part of
the deblocking filter on the picture.

• If a film-grain synthesis data buffer is present, the accelerator is to perform film-grain
synthesis.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 13

•

© 2007 Microsoft Corporation. All rights reserved.

Function 7 (status reporting) is a special case, described in the next section.

Between a single pair of BeginFrame and EndFrame calls, the host decoder can combine
different sets of buffers in the following combinations:

• One Type 1, or one or more Type 2, with bDXVA_Func = 1.

• One Type 1, or one or more Type 2, with bDXVA_Func = 1; followed by one or more Type
4 with bDXVA_Func = 5.

• One Type 1, or one or more Type 2, with bDXVA_Func = 1; followed by one Type 5 with
bDXVA_Func = 6.

• One Type 1, or one or more Type 2, with bDXVA_Func = 1; followed by one or more Type
4 with bDXVA_Func = 5; followed by one Type 5 with bDXVA_Func = 6.

• One or more Type 3 with bDXVA_Func = 1.

• One or more Type 3 with bDXVA_Func = 1; followed by one Type 5 with bDXVA_Func =
6.

• One or more Type 4 with bDXVA_Func = 5.

• One Type 5 with bDXVA_Func = 6.

Only the combinations listed here are valid. When bitstream data buffers (Type 3) are used, the
total quantity of data in the buffer (and the amount of data reported by the host decoder) shall be
an integer multiple of 128 bytes.

Whenever the host decoder calls Execute to pass a set of compressed buffers to the accelerator,
the private output data pointer shall be NULL, as follows:

• DXVA 1.0: When dwNumBuffers is greater than zero, lpPrivateOutputData shall be NULL
and cbPrivateOutputData shall be zero.

• DXVA 2.0: When the NumCompBuffers member of the DXVA2_DecodeExecuteParams
structure is greater than zero, pPrivateOutputData shall be NULL and PrivateOutputDataSize
shall be zero.
(Alternatively, the pExtensionData member of the
DXVA2_DecodeExecuteParams structure can be NULL.)

1.5.1 Status Reporting
After calling EndFrame for the uncompressed destination surfaces, the host decoder may call
Execute with bDXVA_Func = 7 to get a status report. The host decoder does not pass any
compressed buffers to the accelerator in this call. Instead, the decoder provides a private output
data buffer into which the accelerator will write status information. The decoder provides the
output data buffer as follows:

• DXVA 1.0: The host decoder sets lpPrivateOutputData to point to the buffer. The
cbPrivateOutputData parameter specifies the maximum amount of data that the accelerator
should write to the buffer.

• DXVA 2.0: The host decoder sets the pPrivateOutputData member of the
DXVA2_DecodeExecuteParams structure to point to the buffer. The PrivateOutputDataSize
member specifies the maximum amount of data that the accelerator should write to the
buffer.

The value of cbPrivateOutputData or PrivateOutputDataSize shall be an integer multiple of

sizeof(DXVA_Status_H264).

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 14

© 2007 Microsoft Corporation. All rights reserved.

When the accelerator receives the Execute call for status reporting, it should not stall operation to
wait for any prior operations to complete. Instead, it should immediately provide the available
status information for all operations that have completed since the previous request for a status
report, up to the maximum amount requested. Immediately after the Execute call returns, the host
decoder can read the status report information from the buffer. The status report data structure is
described in section 12.

1.6 Accelerator Internal Information Storage
The H.264/AVC decoding process requires storing some additional information along with the
array of decoded pictures to be used as reference pictures for decoding B slices. Rather than have
the host decoder collect this information and explicitly provide it to the accelerator, the
accelerator must store this information as it decodes each picture, so that the information is
available if the picture is later used as a reference picture.

Because of this requirement, the host decoder must use the DXVA interface to decode any non-
intra pictures that are used as reference pictures for decoding subsequent B slices. For non-intra
pictures, the host decoder cannot simply write a decoded picture into an uncompressed
destination surface and then use that surface as a reference picture for decoding a B slice.

For intra pictures, the host decoder has the option of performing the entire decoding process and
sending the decoded picture to the accelerator. To do so, the decoder calls BeginFrame, then
Execute with a Type 1 buffer as described in section 1.5 (that is, a picture parameters buffer with
the IntraPicFlag flag set to 1), followed by EndFrame. This sequence indicates that the host
decoder has decoded the intra picture, and that the accelerator can use the picture as a reference
for deblocking filter, film-grain synthesis, or decoding subsequent pictures.

The accelerator must store the following information for each macroblock of each decoded
reference picture:

• A flag indicating whether the macroblock was predicted using intra or inter prediction.

• If the value of frame_mbs_only_flag in the picture parameters buffer is 0, a flag indicating
whether the macroblock or macroblock pair was coded in frame or field mode.

• For inter macroblocks, some form of reference picture identifier for each 8x8 region. It is
recommended that accelerators use the combination of CurrPic and field_pic_flag from the
picture parameters data structure for the reference picture.

Note The accelerator should not use the values TopFieldOrderCnt and
BottomFieldOrderCnt as part of the identifier. For more information, see the remarks about
these values that follow.

• For inter macroblocks, the following data:

If direct_8x8_inference_flag in the picture parameters buffer is 0, one motion vector for each
4x4 region; or a representation of the motion segmentation and the motion vector associated
with each segmented region.

• If direct_8x8_inference_flag is 1, one motion vector for each 8x8 region; or a representation
of the motion segmentation and the motion vector associated with each segmented region.

Note The value of direct_8x8_inference_flag must be 1 in all bitstreams of the Baseline and
Extended profiles and in all bitstreams marked as level 3 or higher. This includes all
bitstreams supporting standard definition (SD) picture sizes at SD frame rates (that is, all

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 15

•

© 2007 Microsoft Corporation. All rights reserved.

bitstreams having both 1,620 or more macroblocks per frame and 40,500 or more
macroblocks per second). Nonetheless, it is important to remember that decoders designed
for one level are required by the H.264/AVC specification to decode bitstreams of all lower
levels. Therefore, accelerators must be designed to handle both cases.

The accelerator also needs the values of TopFieldOrderCnt and BottomFieldOrderCnt per
picture, but these are provided by the host decoder in the CurrFieldOrderCnt and
FieldOrderCntList members of the picture parameters data structure. The accelerator should not
store these values on its own, as doing so could interfere with randomaccess functionality.

Note This design is intended to enable features such as random access and "trick mode" (smooth
reverse or fast-forward playback with minimal picture storage).

2.0 Configuration Parameters
This section describes the configuration parameters for H.264/AVC decoding.

2.1 Syntax
The existing DXVA configuration structures are used for configuration:

• DXVA 1.0: Configuration uses the DXVA_ConfigPictureDecode structure.

• DXVA 2.0: Configuration uses the DXVA2_ConfigPictureDecode structure.

2.2 Semantics
The meaning of the structure members is documented in the DXVA 1.0 and 2.0 documentation,
with the following modifications for H.264/AVC decoding.

bConfigBitstreamRaw

May be 0, 1, or 2.

Value Description

0 Picture data will be sent using macroblock control command buffers. The
DXVA_Slice_H264_Long structure is used for slice control data.

1 Picture data will be sent using raw bitstream buffers. The
DXVA_Slice_H264_Long structure is used for slice control data.

2 Same as 1, but the DXVA_Slice_H264_Short structure is used for slice control data.

bConfigMBcontrolRasterOrder May be 0 or

1.

Value Description

0 The order of macroblocks within each macroblock control buffer shall follow
raster order with no gaps, unless the restricted-mode profile specifies otherwise.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 16

© 2007 Microsoft Corporation. All rights reserved.

1 As with 0, the order of macroblocks within each macroblock control buffer shall
follow raster order with no gaps.
In addition, the order in which the decoder sends macroblock control buffers to the
accelerator shall follow raster scan order for the first macroblock of each buffer.
(The host decoder may send more than one macroblock control buffer at a time, but
consecutive calls to send macroblock control buffers must not violate raster scan
order.)

When bConfigBitstreamRaw is 1 or 2, bConfigMBcontrolRasterOrder has no meaning and
shall be 0.

Regardless of the value of bConfigMBcontrolRasterOrder, the order of macroblocks within
each macroblock control buffer shall follow raster order, unless the decoder is using a
restricted-mode profile that specifically includes the ability to remove this restriction. When
bConfigMBcontrolRasterOrder is 0, the host decoder may ignore the second constraint listed
for 1.

bConfigResidDiffHost May be 0
or 1.

bConfigSpatialResid8

Shall be 0. In H.264/AVC, spatial-domain prediction is performed for intra pictures.
Therefore, intra pictures require the same number of bits per sample to represent spatial residual
data as are used for other picture types. The same is true for intra macroblocks of non-intra
pictures. bConfigResid8Subtraction Shall be 0.

bConfigSpatialHost8or9Clipping Shall

be 0. bConfigSpatialResidInterleaved

Shall be 0. bConfigIntraResidUnsigned

Shall be 0.

bConfigResidDiffAccelerator May be 0

or 1.

bConfigHostInverseScan

Shall be 1.

bConfigSpecificIDCT

Shall be 2 when bConfigResidDiffAccelerator is 1. Otherwise, shall be 0.

Value Description

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 17

© 2007 Microsoft Corporation. All rights reserved.

0 Host-based residual difference decoding.

2 Indicates the use of the integer inverse transforms specified by H.264/AVC.

bConfig4GroupedCoefs

May be 0 or 1.

Value Description

0 The host will not send deblocking filter control buffers. Instead, the deblocking filter
process will be controlled by data found in other buffers.

1 The host will send deblocking filter control buffers to control the deblocking filter
process.

If bConfigBitstreamRaw is 1, bConfig4GroupedCoefs shall be 0.

Zero is a higher-performance acceleration capability than 1, because it requires the host
decoder to perform less work and send less data to the accelerator. Decoders should select
this mode if possible.

2.3 Accelerator Decoder Specific Support
The ConfigDecoderSpecific member of the DXVA2_ConfigPictureDecode structure contains
information about some decoder accelerator specific support. ConfigDecoderSpecific has the
type unsigned short, where the least-significant bit is considered bit 0 and the most significant bit
is bit 15.

For purposes specified herein, a "format change" is defined as the detection by the host decoder
that the number of surfaces to be used has increased or that the decoding resolution (picture
width or height) has changed or that the accelerator capability requirements have changed, such
as enabling or disabling downsampling of the output.

The semantics of bit 15 are as follows:

 0b: in the event of a format change, some accelerators indicating this value may not be
capable of continuing operation. The host decoder should therefore create a new video
decoder device and destroy the old video decoder device when a format change occurs.

 1b: in the event of a format change, the accelerator is indicated to be capable of
continuing operation. The host decoder should not create a new video decoder device
and proceed using the existing video decoder device instance.

When bit 15 of ConfigDecoderSpecific is set equal to 1 by the accelerator through the API
GetVideoDecoderConfig(), the video decoder device can be reused after a format change and the
host decoder should not create a new video decoder device in the event of a format change
(thereby reducing latency relative to that experienced by recreating the decoder device).

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 18

© 2007 Microsoft Corporation. All rights reserved.

Note Older accelerators use the value 0 for bit 15 of ConfigDecoderSpecific, as the use of the
value 1 was not defined prior to late 2014.

The semantics of bit 14 are as follows:

 0b: accelerator may only support a texture array, or supports both an array of textures or
a texture array for uncompressed surfaces but the use of a texture array may have better
performance than an array of textures. In this case, the host decoder should create a
texture array for uncompressed surfaces to ensure proper operation.

 1b: accelerator supports both array of textures and texture array for uncompressed
surfaces but an array of textures may have better performance than a texture array. In
this case, the host decoder should create an array of textures for uncompressed surfaces.

The performance of the use of a "texture array" versus an "array of textures" may be different for
different accelerators. Bit 14 of ConfigDecoderSpecific indicates the recommended
configuration for the uncompressed surfaces used for decoding. The recommended value for bit
14 of ConfigDecoderSpecific is set by the accelerator through the API
GetVideoDecoderConfig().

Note Older accelerators use the value 0 for bit 14 of ConfigDecoderSpecific, as the use of the
value 1 was not defined prior to late 2014.

The semantics of bit 13 are as follows:

 0b: the display information about which field of the decoded picture should be displayed
first is not needed for the accelerator. Reserved8BitsA in DXVA_PicParams_H264
structure should be ignored by the accelerator. In this case, the accelerator does not need
to be prepared for the scenario in which downsampling of a decoded picture happens
after decoding as enabled by the new APIs CheckVideoDecoderDownsampling() and
DecoderEnableDownsampling().

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 19

© 2007 Microsoft Corporation. All rights reserved.

 1b: the display information about which field of the decoded picture should be displayed
first is needed. Reserved8BitsA in DXVA_PicParams_H264 structure should be set
properly by the host decoder with the display information accelerator needs for different
scenarios, such as the scenario where downsampling of a decoded picture happens right
after decoding as enabled by the new APIs CheckVideoDecoderDownsampling() and
DecoderEnableDownsampling(). Accelerator should be prepared for the scenario where
downsampling of a decoded picture happens right after decoding as enabled by the new
APIs CheckVideoDecoderDownsampling() and DecoderEnableDownsampling().

Bit 13 of ConfigDecoderSpecific is used to indicate whether host decoder properly sets the
display information about which field of the decoded picture should be displayed first through
Reserved8BitsA or not for various scenarios, and whether Reserved8BitsA in
DXVA_PicParams_H264 structure should be ignored or not. The value for bit 13 of
ConfigDecoderSpecific is set by the host decoder through the API CreateVideoDecoder() as a
hint to the accelerator.

Other bits of ConfigDecoderSpecific are reserved and shall be set to 0.

3.0 DXVA_PicEntry_H264 Structure
The DXVA_PicEntry_H264 structure specifies a reference to an uncompressed surface. It is used
in other data structures described in this document.

3.1 Syntax
typedef struct _DXVA_PicEntry_H264 {
union { struct {
 UCHAR Index7Bits : 7;
 UCHAR AssociatedFlag : 1;
 };
 UCHAR bPicEntry;
 };
} DXVA_PicEntry_H264, *LPDXVA_PicEntry_H264;

3.2 Semantics
Index7Bits

An index that identifies an uncompressed surface for the CurrPic or RefFrameList member
of the picture parameters structure (section 4.0) or the RefPicList member of the slice control
data structure (section 6.0)

When Index7Bits is used in the CurrPic and RefFrameList members of the picture
parameters structure, the value directly specifies the DXVA index of an uncompressed
surface.

When Index7Bits is used in the RefPicList member of the slice control data structure, the
value identifies the surface indirectly, as an index into the RefFrameList array of the
associated picture parameters structure. For more information, see section 6.2.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 20

© 2007 Microsoft Corporation. All rights reserved.

In all cases, when Index7Bits does not contain a valid index, the value is 127.

AssociatedFlag

Optional 1-bit flag associated with the surface. The meaning of the flag depends on the
context. For example, it can specify the top field or bottom field.

bPicEntry

Accesses the entire 8 bits of the union.

Requirements

Header: Include dxva.h.

4.0 Picture Parameters Data Structure
The DXVA_PicParams_H264 structure provides the picture-level parameters of a compressed
picture for H.264/AVC decoding.

This structure is used when bDXVA_Func is 1 and the buffer type is
DXVA_PICTURE_DECODE_BUFFER (DXVA 1.0) or DXVA2_PictureParametersBufferType
(DXVA 2.0).

4.1 Syntax
typedef struct _DXVA_PicParams_H264 { USHORT
wFrameWidthInMbsMinus1;
 USHORT wFrameHeightInMbsMinus1;
 DXVA_PicEntry_H264 CurrPic; UCHAR
num_ref_frames; union { struct {
 USHORT field_pic_flag : 1;
 USHORT MbaffFrameFlag : 1;
 USHORT residual_colour_transform_flag : 1;
 USHORT sp_for_switch_flag : 1;
 USHORT chroma_format_idc : 2;
 USHORT RefPicFlag : 1;
 USHORT constrained_intra_pred_flag : 1;
 USHORT weighted_pred_flag : 1;
 USHORT weighted_bipred_idc : 2;
 USHORT MbsConsecutiveFlag : 1;
 USHORT frame_mbs_only_flag : 1;
 USHORT transform_8x8_mode_flag : 1;
 USHORT MinLumaBipredSize8x8Flag : 1;
 USHORT IntraPicFlag : 1;
 };
 USHORT wBitFields;
 };
 UCHAR bit_depth_luma_minus8;
 UCHAR bit_depth_chroma_minus8;
 USHORT Reserved16Bits;
 UINT StatusReportFeedbackNumber;
 DXVA_PicEntry_H264 RefFrameList[16];
 INT CurrFieldOrderCnt[2];
 INT FieldOrderCntList[16][2]; CHAR
pic_init_qs_minus26;

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 21

© 2007 Microsoft Corporation. All rights reserved.

 CHAR chroma_qp_index_offset;
 CHAR second_chroma_qp_index_offset;
 UCHAR ContinuationFlag;
 CHAR pic_init_qp_minus26;
 UCHAR num_ref_idx_l0_active_minus1;
 UCHAR num_ref_idx_l1_active_minus1;
 UCHAR Reserved8BitsA;
 USHORT FrameNumList[16];
 UINT UsedForReferenceFlags;
 USHORT NonExistingFrameFlags;
 USHORT frame_num;
 UCHAR log2_max_frame_num_minus4;
 UCHAR pic_order_cnt_type;
 UCHAR log2_max_pic_order_cnt_lsb_minus4;
 UCHAR delta_pic_order_always_zero_flag;
 UCHAR direct_8x8_inference_flag;
 UCHAR entropy_coding_mode_flag;
 UCHAR pic_order_present_flag;
 UCHAR num_slice_groups_minus1;
 UCHAR slice_group_map_type;
 UCHAR deblocking_filter_control_present_flag;
 UCHAR redundant_pic_cnt_present_flag;
UCHAR Reserved8BitsB;
 USHORT slice_group_change_rate_minus1;
 UCHAR SliceGroupMap[810];
} DXVA_PicParams_H264, *LPDXVA_PicParams_H264;

4.2 Semantics
wFrameWidthInMbsMinus1

Width of the frame containing this picture, in units of macroblocks, minus 1. (The width in
macroblocks is wFrameWidthInMbsMinus1 plus 1.)

wFrameHeightInMbsMinus1

Height of the frame containing this picture, in units of macroblocks, minus 1. (The height in
macroblocks is wFrameHeightInMbsMinus1 plus 1.) When the picture is a field, the height
of the frame is twice the height of the picture and is an integer multiple of 2 in units of
macroblocks.

CurrPic

Specifies the uncompressed destination surface of the frame for the current decoded picture.
If field_pic_flag is 1, the AssociatedFlag field in CurrPic is interpreted as follows:

Value Description

0 The current picture is the top field of the uncompressed destination frame surface.

1 The current picture is the bottom field of the uncompressed destination frame
surface.

If field_pic_flag is 0, AssociatedFlag has no meaning and shall be 0, and the
accelerator shall ignore the value. num_ref_frames

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 22

© 2007 Microsoft Corporation. All rights reserved.

Corresponds to the H.264/AVC syntax element named either num_ref_frames or
max_num_ref_frames, and affects the decoding process accordingly.

Note Starting in late 2008, the name of the corresponding syntax element has been changed
in the H.264/AVC specification from num_ref_frames to max_num_ref_frames, in order to
clarify its use. The meaning of the syntax element is unchanged.

Note There is no obvious reason why an accelerator requires this information. However, it
might be useful for some accelerator implementations. Regardless, the host decoder shall set
the appropriate value, consistent with the other variables for the coded video sequence.

field_pic_flag

Corresponds to the H.264/AVC syntax element of the same name and affects the decoding
process accordingly.

MbaffFrameFlag

Corresponds to the variable of the same name in the H.264/AVC specification and affects the
decoding process accordingly.

residual_colour_transform_flag

Corresponds to the syntax element of the same name in the H.264/AVC specification and
affects the decoding process accordingly. When chroma_format_idc does not equal 3
(specifying 4:4:4),
residual_colour_transform_flag has no meaning and shall equal 0, and the accelerator shall
ignore the value.

Note The use of the residual color transform in H.264/AVC has been deprecated by ITU-T
and ISO/IEC since the 2005 edition of the standard. Therefore, this flag must equal 0 for
uses relating to the current version of the standard.

sp_for_switch_flag

Corresponds to the H.264/AVC syntax element of the same name and affects the decoding
process accordingly.

chroma_format_idc

Indicates the chroma format for the decoding process. The following values are defined:

Value Description

0 4:0:0 sampling. (Luma-only monochrome.)

1 4:2:0 sampling.

2 4:2:2 sampling

3 4:4:4 sampling.

If the value is 0, the accelerator shall set all Cb and Cr samples to the constant value 128 * (1
<< bit_depth_chroma_minus8).

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 23

© 2007 Microsoft Corporation. All rights reserved.

RefPicFlag

Specifies whether the current picture may be used as a reference picture.

Value Description

0 The current picture will not be used as a reference for decoding any other pictures in
the bitstream.

1 After the current picture is decoded, it may be used as a reference for decoding other
pictures.

A decoder should ordinarily set the value to 0 when the nal_ref_idc syntax elements of the
VCL NAL units are 0, and set the value to 1 otherwise. The accelerator does not have to do
any particular processing in response to this value, but it might be useful information. For
example, the accelerator can use it to determine whether the accelerator can start decoding a
subsequent picture before the current picture has been completely decoded.

constrained_intra_pred_flag

Corresponds to the H.264/AVC syntax element of the same name. If the value is 1
(constrained intra prediction), the results of decoding macroblocks that use inter prediction
modes are not needed for decoding macroblocks that use intra prediction modes.

The accelerator may use this flag to determine whether it can decode intra and inter
macroblocks in parallel. However, an accelerator is not required to use this flag. The
IntraPredAvailFlags field in the macroblock control data structure provides enough
information to determine whether each neighboring macroblock is available for intra
prediction.

weighted_pred_flag

Corresponds to the H.264/AVC syntax element of the same name and affects the decoding
process accordingly.

weighted_bipred_idc

Corresponds to the H.264/AVC syntax element of the same name and affects the decoding
process accordingly.

MbsConsecutiveFlag

Specifies whether the macroblocks of the picture are required to be consecutive without
gaps, in order of CurrMbAddr, within each macroblock control buffer.

If the value is 1, the value of CurrMbAddr for the (i + 1)th macroblock shall equal 1

+ CurrMbAddri, where CurrMbAddri is the value of CurrMbAddr for the ith macroblock, for
all macroblocks present in the macroblock control buffer. If MbsConsecutiveFlag is 0, this
constraint may be disregarded.

The value shall be 1 unless the restricted-mode profile in use explicitly supports the value 0.

This flag corresponds to the need for the accelerator to support the H.264/AVC capabilities
generally known as multiple slice groups or flexible macroblock ordering. frame_mbs_only_flag

Corresponds to the H.264/AVC syntax element of the same name and affects the decoding
process accordingly.

transform_8x8_mode_flag

Corresponds to the H.264/AVC syntax element of the same name and affects the decoding
process accordingly.

MinLumaBipredSize8x8Flag

The value 1 indicates that, within the current picture, the functions

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 24

© 2007 Microsoft Corporation. All rights reserved.

SubMbPartWidth() and SubMbPartHeight() must equal 8 whenever the bSubMbPredModes
flag in the macroblock control buffer indicates a BiPred prediction mode for a sub-
macroblock. (These two functions give the width and height of the sub-macroblock
partitions.) If 0, this constraint does not apply.

An accelerator might operate faster when this flag is set to 1, so the host decoder should set
this flag whenever the stated condition is true—for example, for bitstreams that conform to
the Main, High, High 10, High 4:2:2, or High 4:4:4 profile at level 3.1 or higher.

IntraPicFlag

Specifies whether all macroblocks in the current picture have intra prediction modes.

Value Description

0 Some macroblocks of the current picture might have inter macroblock prediction
modes. (The IntraMbFlag in the macroblock control command

 buffer might be 0 for some macroblocks.)

1 All macroblocks of the current picture have intra macroblock prediction modes. (The
IntraMbFlag is 1 for all macroblocks.)

wBitFields

Provides an alternate way to access the previous bit fields.

bit_depth_luma_minus8

Corresponds to the H.264/AVC syntax element of the same name and affects the decoding
process accordingly.

bit_depth_chroma_minus8

Corresponds to the H.264/AVC syntax element of the same name and affects the decoding
process accordingly.

Reserved16Bits

May be 0, 1, 2, or 3, as follows:

Software decoders should be implemented, as soon as feasible, to set the value of
Reserved16Bits to 3. The value 0 was previously assigned for uses prior to July 20, 2007.
The value 1 was previously assigned for uses prior to October 12, 2007. The value 2 was
previously assigned for uses prior to January 15, 2009. Software decoders shall not set
Reserved16Bits to any value other than those listed here.

Note Software decoders that set Reserved16Bits to 3 should ensure that any aspects of
software decoder operation that were previously not in conformance with this version of the
specification have been corrected in the current implementation.

One particular aspect of conformance that should be checked is the ordering of quantization
scaling list data, as specified in section 5.2. In addition, the ReservedIntraBit flag in the
macroblock control buffer must use the semantics described in section 7.2 (this flag was
previously reserved). The semantics of
Index7Bits and RefPicList have also been clarified in updates to this specification.

The goal of changing the values allowed for Reserved16Bits is to enable accelerators to
detect the value of 3 as an indication of a higher degree of assurance of conformance with
this specification, relative to the previously specified
value 0, and to indicate conformance with the updated semantics of ReservedIntraBit and
RefFrameList.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 25

© 2007 Microsoft Corporation. All rights reserved.

Accelerators may use the four least-significant bits of Reserved16Bits to identify the
software decoder generation, such that a lower value indicates an older generation of
software decoder.

The 12 most-significant bits of Reserved16Bits currently have no specified meaning and
shall be ignored by accelerators.

StatusReportFeedbackNumber

Arbitrary number set by the host decoder to use as a tag in the status report feedback data.
The value should not equal 0, and should be different in each call to Execute. For more
information, see section 12.0, Status Report Data Structure.

RefFrameList

Contains a list of 16 uncompressed frame buffer surfaces. Entries that will not be used for
decoding the current picture, or any subsequent pictures, are indicated by setting bPicEntry
to 0xFF. If bPicEntry is not 0xFF, the entry may be used as a reference surface for decoding
the current picture or a subsequent picture (in decoding order). All uncompressed surfaces
that correspond to pictures currently marked as "used for reference" must appear in the
RefFrameList array. Nonreference surfaces (those which only contain pictures for which the
value of RefPicFlag was 0 when the picture was decoded) shall not appear in RefFrameList
for a subsequent picture. In addition, surfaces that contain only pictures marked as "unused
for reference" shall not appear in RefFrameList for a subsequent picture.

For each entry whose value is not 0xFF, the value of AssociatedFlag is interpreted as
follows:

Value Description

0 Not a long-term reference frame.

1 Long-term reference frame. The uncompressed frame buffer contains a reference
frame or one or more reference fields marked as "used for longterm reference."

If field_pic_flag is 1, the current uncompressed frame surface may appear in the list for the
purpose of decoding the second field of a complementary reference field pair.

CurrFieldOrderCnt

Contains the picture order counts.

If field_pic_flag is 1 and the value of AssociatedFlag for CurrPic is 1,
CurrFieldOrderCnt[1] contains BottomFieldOrderCnt for the current picture;
CurrFieldOrderCnt[0] shall be 0, and its value shall be ignored by the accelerator.

If field_pic_flag is 1 and the value of AssociatedFlag for CurrPic is 0,
CurrFieldOrderCnt[0] contains TopFieldOrderCnt for the current picture;
CurrFieldOrderCnt[1] shall be 0, and its value shall be ignored by the accelerator.

If field_pic_flag is 0, CurrFieldOrderCnt[0] contains TopFieldOrderCnt for the current
picture, and CurrFieldOrderCnt[1] contains BottomFieldOrderCnt for the current picture.

FieldOrderCntList

Contains the picture order counts for the reference frames listed in RefFrameList. For each
entry i in the RefFrameList array, FieldOrderCntList[i][0] contains the value of
TopFieldOrderCnt for entry i, and FieldOrderCntList[i][1] contains the value of
BottomFieldOrderCnt for entry i.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 26

© 2007 Microsoft Corporation. All rights reserved.

Note This section was modified in June, 2007. These values are needed in the derivation
process for co-located 4x4 sub-macroblock partitions, when the current picture has
MbaffFrameFlag equal to 1 and contains B_Skip, B_Direct16x16, or B_Direct8x8
macroblocks in macroblock pairs with mb_field_decoding_flag equal to
0 in B slices for which the first entry in L1 is a complementary field pair marked as
"used for long-term reference." (For details, see subclause 8.4.1.2.1 of the H.264/AVC
specification.)

If an element of the list is not relevent (for example, if the corresponding entry in
RefFrameList is empty or is marked as "not used for reference"), the value of
TopFieldOrderCnt or BottomFieldOrderCnt in FieldOrderCntList shall be 0. Accelerators
can rely on this constraint being fulfilled.

The following structure members correspond to the H.264/AVC syntax elements of the same
name and affect the decoding process accordingly. If the syntax element is not present in the
bitstream and has no inferred value according to the H.264/AVC specification, the host decoder
shall set the value to 0. Accelerators can rely on this constraint being fulfilled:

• pic_init_qs_minus26

• chroma_qp_index_offset

• second_chroma_qp_index_offset

ContinuationFlag

If this flag is 1, the remainder of this structure is present in the buffer and contains valid
values. If this flag is 0, the structure might be truncated at this point in the buffer, or the
remaining fields may be set to 0 and shall be ignored by the accelerator.

The remaining members of this structure are needed only for off-host bitstream parsing. If the
host decoder parses the bitstream, the decoder can truncate the picture parameters data structure
buffer after the ContinuationFlag or set the remaining members to zero.

Reserved8BitsA

The 2 least-significant bits of Reserved8BitsA are used to indicate which field of a decoded
picture should be displayed first when bit 13 of ConfigDecoderSpecific as set by the host
decoder is equal to 1. The 6 most-significant bits of Reserved8BitsA currently have no
specified meaning, shall be set to 0 (always), and their value shall be ignored by accelerators
(so that some backward-compatible use for these bits may be specified in the future).

When bit 13 of ConfigDecoderSpecific as set by the host decoder is equal to 0, the 2 least-
significant bits of Reserved8BitsA shall be set to 0 and any value set should be ignored.

When bit 13 of ConfigDecoderSpecific as set by the host decoder is equal to 1 to indicate
that the display information about which field of the decoded picture should be displayed
first is needed, as in the scenario where downsampling of a decoded picture happens after
decoding as enabled by the new APIs CheckVideoDecoderDownsampling() and
DecoderEnableDownsampling(), the 2 least-significant bits of Reserved8BitsA shall be set
as follows.

 When the compressed picture is a coded field, the 2 least-significant bits of
Reserved8BitsA shall be set to equal to 0. In this case, the accelerator shall

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 27

© 2007 Microsoft Corporation. All rights reserved.

determine which field should be displayed first by using CurrFieldOrderCnt in the
top field and bottom field picture parameters data structures when both fields are
present, or through the CurrFieldOrderCnt in an unpaired field picture parameters
data structure and the CurrFieldOrderCnt in the next picture parameters data
structure in decoding order.

 When the compressed picture is a coded frame and the top field of the coded frame
should be displayed first, the 2 least-significant bits of Reserved8BitsA shall be set
to equal to 1.

 When the compressed picture is a coded frame and the bottom field of the coded
frame should be displayed first, the 2 least-significant bits of Reserved8BitsA shall
be set to equal to 2.

 When the compressed picture is a coded frame and the coded frame should be
displayed as a progressive frame, the 2 least-significant bits of Reserved8BitsA
shall be set to equal to 3.

FrameNumList

For each entry in RefFrameList, the corresponding entry in FrameNumList contains the
value of FrameNum or LongTermFrameIdx, depending on the value of AssociatedFlag in the
RefFrameList entry. (FrameNum is assigned to short-term reference pictures, and
LongTermFrameIdx is assigned to long-term reference pictures.)

If an element in the list of frames is not relevent (for example, if the corresponding entry in
RefFrameList is empty or is marked as "not used for reference"), the value of the
FrameNumList entry shall be 0. Accelerators can rely on this constraint being fulfilled.

UsedForReferenceFlags

Contains two 1-bit flags for each entry in RefFrameList. For the ith entry in RefFrameList,
the two flags are accessed as follows:

• Flag1i = (UsedForReferenceFlags >> (2 * i)) & 1

• Flag2i = (UsedForReferenceFlags >> (2 * i + 1)) & 1

If Flag1i is 1, the top field of frame number i is marked as "used for reference," as defined by

the H.264/AVC specification. If Flag2i is 1, the bottom field of frame number i is marked as
"used for reference." (Otherwise, if either flag is 0, that field is not marked as "used for
reference.")

If an element in the list of frames is not relevent (for example, if the corresponding entry in
RefFrameList is empty), the value of both flags for that entry shall be 0. Accelerators may
rely on this constraint being fulfilled.

NonExistingFrameFlags

Contains a bit flag for each entry in RefFrameList. For the ith entry in RefFrameList, the flag
is accessed as follows:

• Flagi = (NonExistingFrameFlags >> i) & 1

If Flagi is 1, frame number i is marked as "non-existing," as defined by the H.264/AVC
specification. (Otherwise, if the flag is 0, the frame is not marked as "non-existing.")

If an element in the list of frames is not relevant (for example, if the corresponding entry in
RefFrameList is empty or is marked as "not used for reference"), the flag for that entry shall
be 0. Accelerators may rely on this constraint being fulfilled. See Remarks for more
information.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 28

© 2007 Microsoft Corporation. All rights reserved.

The following structure members correspond to the H.264/AVC syntax elements of the same

name and affect the decoding process accordingly. If the syntax element is not present in the

bitstream and has no inferred value according to the H.264/AVC specification, the host decoder

shall set the value to 0. Accelerators can rely on this constraint being fulfilled:

pic_init_qp_minus26 num_ref_idx_l0_active_minus1 num_ref_idx_l1_active_minus1

frame_num log2_max_frame_num_minus4 pic_order_cnt_type

log2_max_pic_order_cnt_lsb_minus4 delta_pic_order_always_zero_flag

direct_8x8_inference_flag entropy_coding_mode_flag pic_order_present_flag

num_slice_groups_minus1 slice_group_map_type deblocking_filter_control_present_flag

redundant_pic_cnt_present_flag slice_group_change_rate_minus1

Note The num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1 members
correspond to variables in the picture parameter set in the H.264/AVC specification, which
may be overridden in the slice-level syntax.

Reserved8BitsB

This structure member has no meaning. The value shall be 0, and accelerators shall ignore
the value.

SliceGroupMap

Contains the mapUnitToSliceGroupMap array defined in the H.264/AVC specification. Each
entry in the array is represented using 4 bits in SliceGroupMap, such that
mapUnitToSliceGroupMap[i] is represented in bits j*4 to j*4+3 of SliceGroupMap[i>>1],
where j = i & 1.

This array is needed only for off-host bitstream parsing where num_slice_groups_minus1 is
not 0. If the host decoder parses the bitstream, or if num_slice_groups_minus1 is 0, the
decoder can truncate the picture parameters data buffer before this array, or else set the array
members to zero, and the accelerator shall ignore the contents of the array.

The DXVA_PicParams_H264 structure prototype defines SliceGroupMap with 810 entries.
This is large enough for pictures up to the size of standard-definition television—that is, up
to 720 x 576 pixels for an ITU-R BT.601 frame coded with MbaffFrameFlag equal to 0. The
actual size of the array provided by the host decoder may differ, as determined by the size of
the coded picture and the definition of the slice group map unit (single-macroblock units or
two-macroblock units) as given in the H.264/AVC specification.

Remarks

The values in RefFrameList and UsedForReferenceFlags are the primary way that the accelerator
can determine whether the entries in RefFrameList, FieldOrderCntList, FrameNumList, and
NonExistingFrameFlags are valid for decoding the current picture. When RefFrameList[i] is
0xFF, the following values must all be zero:

• FieldOrderCntList[i][0]

• FieldOrderCntList[i][1]

• FrameNumList[i]

• (UsedForReferenceFlags >> (2 * i)) & 3

• (NonExistingFrameFlags >> i) & 1

When (UsedForReferenceFlags >> (2 * i)) & 3 equals zero, RefFrameList[i] must be 0xFF.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 29

© 2007 Microsoft Corporation. All rights reserved.

Requirements

Header: Include dxva.h.

5.0 Quantization Matrix Data Structure
The DXVA_Qmatrix_H264 structure contains quantization matrix data, which is sent on a per-
picture basis.

This structure is used when bDXVA_Func is 1 and the buffer type is
DXVA_INVERSE_QUANTIZATION_MATRIX_BUFFER (DXVA 1.0) or
DXVA2_InverseQuantizationMatrixBufferType (DXVA 2.0).

5.1 Syntax
typedef struct _DXVA_Qmatrix_H264 { UCHAR
bScalingLists4x4[6][16];
 UCHAR bScalingLists8x8[2][64];
} DXVA_Qmatrix_H264, *LPDXVA_Qmatrix_H264;

5.2 Semantics
bScalingLists4x4

Contains the scaling lists for the 4x4 scaling process. Each scaling list is ordered in zig-zag
scan order. When applicable, default or "flat" scaling lists are handled by the host decoder
filling in the appropriate values.

bScalingLists8x8

Contains the scaling lists for the 8x8 scaling process. Each scaling list is ordered in zig-zag
scan order. When applicable, default or "flat" scaling lists are handled by the host decoder
filling in the appropriate values.

Note The scaling lists are supplied in zig-zag scan order. This is the same ordering shown
for the default matrix values in tables 7-3 and 7-4 of the H.264/AVC specification. It is the
ordering used prior to the application of the inverse scanning process defined in subclauses
8.5.5 and 8.5.6 of the H.264/AVC specification, which converts the scaling list into a 2-
dimensional weight scale matrix.

Remarks

Hypothetically, this structure could have been included in the picture parameters data structure,
but DXVA already defines a buffer type for quantization matrixes. For consistency with previous
DXVA designs, therefore, a separate quantization matrix data structure is used in H.264/AVC.
Unlike previous DXVA designs, however, the quantization matrix data is required whenever the
accelerator performs the inverse transform process, and not just when the accelerator parses the
slice bitstream. This requirement arises because the accelerator must perform the inverse
quantization scaling process whenever it performs the inverse transform.

Requirements

Header: Include dxva.h.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 30

© 2007 Microsoft Corporation. All rights reserved.

6.0 Slice Control Data Structure
Two structures are defined for slice control data. The choice of structure depends on the value of
bConfigBitstreamRaw in the configuration parameters structure:

bConfigBitstreamRaw Slice control data structure

0 or 1 DXVA_Slice_H264_Long

2 DXVA_Slice_H264_Short

These structures are used when bDXVA_Func is 1 and the buffer type is
DXVA_SLICE_CONTROL_BUFFER (DXVA 1.0) or DXVA2_SliceControlBufferType
(DXVA 2.0).

The DXVA_Slice_H264_Short structure is a subset of the DXVA_Slice_H264_Long structure.

When bConfigBitstreamRaw is 0, the slice control buffer is accompanied by a macroblock
control data buffer, plus zero or more motion vector data buffers and zero or more residual
difference data buffers. Otherwise, when bConfigBitstreamRaw is 1 or 2, the slice control buffer
is accompanied by a raw bitstream data buffer. The total quantity of data in the bitstream buffer
(and the amount of data reported by the host decoder) shall be an integer multiple of 128 bytes.

6.1 Syntax
typedef struct _DXVA_Slice_H264_Long {
 UINT BSNALunitDataLocation;
 UINT SliceBytesInBuffer;
 USHORT wBadSliceChopping;
 USHORT first_mb_in_slice;
 USHORT NumMbsForSlice;
 USHORT BitOffsetToSliceData;
 UCHAR slice_type;
 UCHAR luma_log2_weight_denom;
 UCHAR chroma_log2_weight_denom;
 UCHAR num_ref_idx_l0_active_minus1;
 UCHAR num_ref_idx_l1_active_minus1;
 CHAR slice_alpha_c0_offset_div2;
 CHAR slice_beta_offset_div2;
 UCHAR Reserved8Bits;
 DXVA_PicEntry_H264 RefPicList[2][32];
 SHORT Weights[2][32][3][2];
 CHAR slice_qs_delta;
 CHAR slice_qp_delta;
 UCHAR redundant_pic_cnt;
 UCHAR direct_spatial_mv_pred_flag;
 UCHAR cabac_init_idc;
 UCHAR disable_deblocking_filter_idc;
 USHORT slice_id;
} DXVA_Slice_H264_Long, *LPDXVA_Slice_H264_Long;

typedef struct _DXVA_Slice_H264_Short {
 UINT BSNALunitDataLocation;

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 31

© 2007 Microsoft Corporation. All rights reserved.

 UINT SliceBytesInBuffer;
 USHORT wBadSliceChopping;
} DXVA_Slice_H264_Short, *LPDXVA_Slice_H264_Short;

6.2 Semantics
BSNALunitDataLocation

If wBadSliceChopping is 0 or 1, this member locates the NAL unit with nal_unit_type equal
to 1, 2, or 5 for the current slice. The value is the byte offset, from the start of the bitstream
data buffer, of the first byte of the start code prefix in the byte stream NAL unit that contains
the NAL unit with nal_unit_type equal to 1, 2, or 5. (The start code prefix is the
start_code_prefix_one_3bytes syntax element. The byte stream NAL unit syntax is defined
in Annex B of the H.264/AVC specification. The current slice is the slice associated with
this slice control data structure.)

The bitstream data buffer shall not contain a byte stream NAL unit with nal_unit_type equal
to 2 unless support for this NAL unit type is explicitly required for the DXVA restricted-
mode profile in use. When BSNALunitDataLocation refers to a NAL unit having
nal_unit_type equal to 2, the associated byte stream NAL units having nal_unit_type equal to
3 and 4 (when necessary) shall also be present in the bitstream data. They shall appear after
the byte stream NAL unit whose location is given by BSNALunitDataLocation, and prior to
the location given by the value of BSNALunitDataLocation in the next slice control buffer.
Byte stream NAL units with nal_unit_type equal to 3 or 4 shall not be present unless they are
preceded in the bitstream data by a byte stream NAL unit with nal_unit_type equal to 2.

The bitstream data buffer shall not contain NAL units with values of nal_unit_type outside
the range [1...5]. However, the accelerator shall allow any such NAL units to be present and
should ignore their content if present.

Note The bitstream data buffer might or might not contain leading_zero_8bits, zero_byte,
and trailing_zero_8bits syntax elements. If present, the accelerator shall ignore these
elements.

If wBadSliceChopping is not 0 or 1, BSNALunitDataLocation shall be 0.

SliceBytesInBuffer

Number of bytes in the bitstream data buffer that are associated with this slice control data
structure, starting with the byte at the offset given in
BSNALunitDataLocation. When BSNALunitDataLocation refers to a NAL unit having
nal_unit_type not equal to 2, the bitstream data buffer shall not contain additional byte
stream NAL units in the bytes following BSNALunitDataLocation up to the location
BSNALunitDataLocation + SliceBytesInBuffer.

wBadSliceChopping

When off-host bitstream parsing is used, contains one of the following values:

Value Description

0 All bits for the slice are located within the corresponding bitstream data buffer.

1 The bitstream data buffer contains the start of the slice, but not the entire slice,
because the buffer is full.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 32

© 2007 Microsoft Corporation. All rights reserved.

2 The bitstream data buffer contains the end of the slice. It does not contain the start
of the slice, because the start of the slice was located in the previous bitstream data
buffer.

3 The bitstream data buffer does not contain the start of the slice (because the start of
the slice was located in the previous bitstream data buffer), and it does not contain
the end of the slice (because the current bitstream data buffer is also full).

Generally the host decoder should avoid using values other than 0.

The size of the data in the bitstream data buffer (and the amount of data reported by the host
decoder) shall be an integer multiple of 128 bytes. When wBadSliceChopping is 0 or 2, if the
end of the slice data is not an even multiple of 128 bytes, the decoder should pad the end of
the buffer with zeroes. If off-host bitstream parsing is not used, the value of
wBadSliceChopping shall be 0.

NumMbsForSlice

If wBadSliceChopping is 0, specifies the number of macroblocks in the accompanying
macroblock control buffer or bitstream data buffer that are associated with the current slice
control buffer. If the host decoder cannot readily determine this number, it may set the value
to 0, to indicate that the actual number is unknown (for
example, when the accelerator is parsing the slice bitstream and the
MbsConsecutiveFlag flag in the picture parameters data structure is 0).

If wBadSliceChopping is not 0 and NumMbsForSlice is not 0, NumMbsForSlice specifies
the number of macroblocks the bitstream data buffer would contain if the data buffer
contained the entire slice.

The remaining elements of this structure enable off-host bitstream parsing. When offhost parsing
is used, each slice control buffer is accompanied by one associated bitstream data buffer. The
buffer contains a segment of a valid bitstream in the byte stream format specified in Annex B of
the H.264/AVC specification.

Note In particular, this means that the buffer will contain emulation_prevention_three_byte
syntax elements where those elements are required to be present in a NAL unit, as defined in the
H.264/AVC specification.

BitOffsetToSliceData

When wBadSliceChopping is 0 or 1, specifies a bit offset to the location of the bit specified
as follows:

• If entropy_coding_mode_flag is 0, BitOffsetToSliceData is the bit offset to the first bit
of the slice_data() data structure for the first slice in the bitstream data buffer.

• If entropy_coding_mode_flag is 1, BitOffsetToSliceData is the bit offset to the first bit
following all cabac_alignment_one_bit syntax elements in the slice_data() data structure
for the first slice in the bitstream data buffer. In this case, BitOffsetToSliceData % 8
shall be 0.

If wBadSliceChopping is 1, the referenced bit shall reside in the bitstream data buffer that is
associated with this slice control buffer. (In other words, the decoder must not put the
beginning of the start_code_prefix_one_3bytes syntax element in one bitstream data buffer,
and the bit referenced by BitOffsetToSliceData in the next bitstream data buffer.)

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 33

© 2007 Microsoft Corporation. All rights reserved.

This bit offset is the offset within the RBSP data for the slice, relative to the starting position
of the slice_header() in the RBSP. That is, it represents a bit offset after the removal of any
emulation_prevention_three_byte syntax elements that preceded the start of the slice_data()
in the NAL unit. (For a definition of RBSP, refer to the
H.264/AVC specification.)

When wBadSliceChopping is 2 or 3, the value of BitOffsetToSliceData shall be 0xFFFF.

When the byte that contains the referenced bit resides in the current bitstream data buffer,
this byte shall be at the following location relative to the start of the bitstream data buffer:
BSNALunitDataLocation + (BitOffsetToSliceData >> 3) + 4 + K, where K is the number of
emulation_prevention_three_byte syntax elements that precede the start of the slice_data() in
the NAL unit. The value
BitOffsetToSliceData % 8 specifies the number of most-significant bits (MSBs) of that byte
that precede the referenced bit.

Reserved8Bits

This structure member has no meaning. The value shall be 0, and accelerators shall ignore
the value.

RefPicList

Specifies reference picture list 0 and reference picture list 1, as follows:

• When slice_type does not equal 2, 4, 7, or 9 (I or SI slices), RefPicList[0] specifies
reference picture list 0, as follows:

o For j = 0 through num_ref_idx_l0_active_minus1, entries RefPicList[0][j] shall
contain Index7Bits values that refer to valid entries in the RefFrameList
member of the associated picture parameters structure, except when Index7Bits
equals 127. Valid entries are specified by setting Index7Bits equal to an index
into the RefFrameList array.

o For j = num_ref_idx_l0_active_minus1 + 1 through 31, the bPicEntry member
of RefPicList[0][j] has no meaning and shall be 0xFF, and the accelerator shall
ignore the values of these entries.

• When slice_type does not equal 0, 2, 3, 4, 5, 7, 8, or 9 (I, P, SP, or SI slices),
RefPicList[1] specifies reference picture list 1, as follows:

o For j = 0 through num_ref_idx_l1_active_minus1, entries RefPicList[1][j] shall
contain Index7Bits values that refer to valid entries in the RefFrameList
member of the associated picture parameters structure, except when Index7Bits
equals 127. Valid entries

are specified by setting Index7Bits equal to an index into the RefFrameList
array.

o For j = num_ref_idx_l1_active_minus1 + 1 through 31, the bPicEntry member
of RefPicList[1][j] has no meaning and shall be 0xFF, and the accelerator shall
ignore the values of these entries.

• When slice_type equals 2, 4, 7, or 9 (I or SI slices), all bPicEntry values in RefPicList[0]
shall be 0xFF. The accelerator can rely on this constraint being fulfilled.

• When slice_type equals 0, 2, 3, 4, 5, 7, 8, or 9 (I, P, SP, or SI slices), all bPicEntry
values in RefPicList[1] shall be 0xFF. The accelerator can rely on this constraint being
fulfilled.

For each entry RefPicList[i][j], the index variable i is interpreted as follows:

• If i is 0, i refers to reference picture list 0.

• If i is 1, i refers to reference picture list 1.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 34

© 2007 Microsoft Corporation. All rights reserved.

The index variable j is a reference to entry j in the reference picture list, unless the
value of Index7Bits in the DXVA_PicEntry_H264 structure for RefPicList[i][j]equals 127.

For index variables i and j, the value of RefPicList[i][j] is an index into the RefFrameList
array of the DXVA picture parameters structure, unless the value of Index7Bits in the
DXVA_PicEntry_H264 structure for RefPicList[i][j] equals 127.

For each entry, if Index7Bits does not equal 127, AssociatedFlag is interpreted as follows:

• If the field_pic flag in the picture parameters data structure is 1 and AssociatedFlag is 0,
the entry in the reference picture list is a top field.

• If the field_pic flag in the picture parameters data structure is 1 and AssociatedFlag is 1,
the entry in the reference picture list is a bottom field.

• If field_pic is 0, then AssociatedFlag shall be 0. The accelerator can rely on this
constraint being fulfilled.

The following table shows the interpretaton of AssociatedFlag when Index7Bits does not
equal 127.

field_pic AssociatedFlag Description

0 0 Frame.

1 0 Top field.

1 1 Bottom field.

If Index7Bits is 127, AssociatedFlag is interpreted as follows:

• If AssociatedFlag is 1, the entry in the reference picture list refers to a picture that is
"non-existing," as defined by the H.264/AVC specification.

• If AssociatedFlag is 0, the entry in the reference picture list refers to a picture that is
"not available," in the sense defined by subclause D.2.7 of the H.264/AVC specification
for random access recovery points.

Reference indexes that refer to "non-existing" pictures are prohibited during the inter
prediction process and should be detected as an error by the accelerator. It is recommended,
but not required, that the accelerator resolve any such references in the same way as
references to pictures that are "not available."

Reference indexes that refer to "not available" pictures shall be interpreted as references to
pictures containing the following sample values, in accordance with subclause D.2.7 of the
H.264/AVC specification:

• Luma values equal to (1 << (bit_depth_luma_minus8 + 7))

• Chroma values equal to (1 << (bit_depth_chroma_minus8 + 7))

Weights

Specifies the weights and offsets used in the decoding process. This array is used for explicit
mode weighted prediction.

For each entry Weights[i][j][k][m], the index variable i has range [0...1] and is interpreted as
follows:

• If i is 0, i refers to reference picture list 0.

• If i is 1, i refers to reference picture list 1.

The index variable j has range [0...31] and is a reference to entry j in the reference picture
list.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 35

© 2007 Microsoft Corporation. All rights reserved.

The index variable k has range [0...2], and is interpreted as follows:

Index Description

0 k refers to data for the luma (Y) component.

1 k refers to data for the Cb chroma component.

2 k refers to data for the Cr chroma component.

The index variable m has range [0...1] and is interpreted as follows:

• If m is 0, m refers to a weight used in the weighted prediction process.

• If m is 1, m refers to an offset used in the weighted prediction process.

If the value of bPicEntry for RefPicList[i][j] does not equal 0xFF, Weights[i][j][k][0]
contains a weight and Weights[i][j][k][1] contains an offset, both of which are used in the
explicit weighted prediction process for list i, entry j, and component k.

If the value of bPicEntry for RefPicList[i][j] equals 0xFF, or if explicit mode weighted
prediction is not used for the current slice, Weights[i][j][k][m] has no meaning and shall be
0. Accelerators can rely on this constraint being fulfilled.

When performing implicit mode weighted prediction, the accelerator must compute the
correct weights to apply, based on CurrFieldOrderCnt and FieldOrderCntList in the picture
parameters data structure.

The following members correspond to the H.264/AVC syntax elements of the same name and
affect the decoding process accordingly. If the syntax element is not present in the bitstream and
has no inferred value according to the H.264/AVC spefication, the host decoder shall set the
value to 0. Accelerators can rely on this constraint being fulfilled.

• first_mb_in_slice

• slice_type

• luma_log2_weight_denom

• chroma_log2_weight_denom

• num_ref_idx_l0_active_minus1

• num_ref_idx_l1_active_minus1

• slice_alpha_c0_offset_div2

• slice_beta_offset_div2

• slice_qs_delta

• slice_qp_delta

• redundant_pic_cnt

• direct_spatial_mv_pred_flag

• cabac_init_idc

• disable_deblocking_filter_idc

• slice_id

Requirements

Header: Include dxva.h.

7.0 Macroblock Control Data Structure
The DXVA_MBctrl_H264 structure contains macroblock control command data.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 36

© 2007 Microsoft Corporation. All rights reserved.

This structure is used when bDXVA_Func is 1 and the buffer type is
DXVA_MACROBLOCK_CONTROL_BUFFER (DXVA 1.0) or
DXVA2_MacroBlockControlBufferType (DXVA 2.0).

7. 1 Syntax
typedef struct _DXVA_MBctrl_H264 {
union { struct {
 UINT bSliceID : 8;
 UINT MbType5Bits : 5;
 UINT IntraMbFlag : 1;
 UINT mb_field_decoding_flag : 1;
 UINT transform_size_8x8_flag : 1;
 UINT HostResidDiff : 1;
 UINT DcBlockCodedCrFlag : 1;
 UINT DcBlockCodedCbFlag : 1;
 UINT DcBlockCodedYFlag : 1;
 UINT FilterInternalEdgesFlag : 1;
 UINT FilterLeftMbEdgeFlag : 1;
 UINT FilterTopMbEdgeFlag : 1;
 UINT ReservedBit : 1;
 UINT bMvQuantity : 8;
 };
 UINT dwMBtype;
 };
 USHORT CurrMbAddr;
 USHORT wPatternCode[3];
 UCHAR bQpPrime[3];
 UCHAR bMBresidDataQuantity; ULONG
dwMBdataLocation; union
{
 // Use the following struct when IntraMbFlag is 1.
struct {
 USHORT LumaIntraPredModes[4]; union { struct {
 UCHAR intra_chroma_pred_mode : 2;
 UCHAR IntraPredAvailFlags : 5;
 UCHAR ReservedIntraBit : 1;
 };
 UCHAR bMbIntraStruct;
 };
 UCHAR ReservedIntra24Bits[3];
 };
 // Use the following struct when IntraMbFlag is 0.
struct {
 UCHAR bSubMbShapes;
 UCHAR bSubMbPredModes;
 USHORT wMvBuffOffset;
 UCHAR bRefPicSelect[2][4];
 };
 };
} DXVA_MBctrl_H264, *LPDXVA_MBctrl_H264;

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 37

© 2007 Microsoft Corporation. All rights reserved.

7.2 Semantics
bSliceID

Index into the active array of slice control data structures for decoding the current
macroblock. If the macroblock control command is not the first control command in the data
buffer, the value of bSliceID shall equal the value of bSliceID for the preceding macroblock
control command in the buffer plus p, where p is 0 or 1.

Note Because bSliceID is 8 bits, a single macroblock control buffer can reference at most
256 slices. In the uncommon case that a single picture contains more than 256 slices, the host
decoder must split the picture into multiple macroblock control buffers.

MbType5Bits, IntraMbFlag

These two members specify the type of macroblock:

IntraMbFlag MbType5Bits Macroblock type

0 1 B_L0_16x16

0 2 B_L1_16x16

0 3 B_Bi_16x16

0 4 B_L0_L0_16x8

0 5 B_L0_L0_8x16

0 6 B_L1_L1_16x8

0 7 B_L1_L1_8x16

0 8 B_L0_L1_16x8

0 9 B_L0_L1_8x16

0 10 B_L1_L0_16x8

0 11 B_L1_L0_8x16

0 12 B_L0_Bi_16x8

0 13 B_L0_Bi_8x16

0 14 B_L1_Bi_16x8

0 15 B_L1_Bi_8x16

0 16 B_Bi_L0_16x8

0 17 B_Bi_L0_8x16

0 18 B_Bi_L1_16x8

0 19 B_Bi_L1_8x16

0 20 B_Bi_Bi_16x8

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 38

© 2007 Microsoft Corporation. All rights reserved.

0 21 B_Bi_Bi_8x16

0 22 B_8x8

1 0 I_NxN

1 1–24 Intra_16x16

1 25 I_PCM

1 26 SI

Note These macroblock types are defined in subclause 7.4.5 of the H.264/AVC
specification.

When IntraPicFlag in the picture parameters buffer is 1, IntraMbFlag shall be 1.

Combinations of values that do not appear in this table shall not occur, and accelerators
should indicate a data format error if they encounter invalid combinations.

mb_field_decoding_flag

Corresponds to the H.264/AVC syntax element of the same name and affects the decoding
process accordingly. When MbaffFrameFlag in the picture parameters buffer is 0, this field
shall equal the value of field_pic_flag.

transform_size_8x8_flag

Corresponds to the H.264/AVC syntax element of the same name and affects the decoding
process accordingly.

HostResidDiff

Specifies whether the accelerator performs the inverse transform.

Value Description

0 The inverse transform is not bypassed for the macroblock. The host decoder sends
any associated residual data in the transform (that is, coefficient) domain.

1 The inverse transform is bypassed for the macroblock, and any associated residual
data is sent in the spatial domain.

If bConfigResidDiffHost in the configuration parameters buffer is 0, the value of
HostResidDiff shall be 0. If ConfigResidDiffAccelerator is 0, the value of HostResidDiff
shall be 1. If bConfigResidDiffHost and
ConfigResidDiffAccelerator are both 1, the value of HostResidDiff may be 0 or 1.

DcBlockCodedCrFlag

If 1, the data for the Cr DC residual block is present. If 0, the data for the Cr DC residual
block is not present. If HostResidDiff is 1, DcBlockCodedCrFlag has no meaning and shall
be 0, and accelerators shall ignore the value.

Note DcBlockCodedCrFlag is not needed when the host decoder performs residual
decoding.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 39

© 2007 Microsoft Corporation. All rights reserved.

DcBlockCodedCbFlag

If 1, the data for the Cb DC residual block is present. If 0, the data for the Cb DC residual
block is not present. If HostResidDiff is 1, DcBlockCodedCbFlag has no meaning and shall
be 0, and accelerators shall ignore the value.

Note DcBlockCodedCbFlag is not needed when the host decoder performs residual
decoding.

DcBlockCodedYFlag

If 1, data for the luma DC residual block is present for an Intra_16x16 macroblock. If 0, the
luma DC residual block is not present for an Intra_16x16 macroblock.

If any of the following conditions is true, DcBlockCodedCbFlag has no meaning and shall be
0, and accelerators shall ignore the value: HostResidDiff is 1; IntraMbFlag is 0; or
MbType5Bits falls outside the range 1–24, inclusive.

Note DcBlockCodedYFlag is not needed when the host decoder performs residual
decoding, or when the macroblock type is not Intra_16x16.

FilterInternalEdgesFlag

If 1, the deblocking filter is applied across the internal edges of the luma residual blocks in
the macroblock. If 0, the filter is not applied to the internal edges.

FilterLeftMbEdgeFlag

If 1, the deblocking filter is applied to the left edge of the macroblock. If 0, the filter is not
applied to the left edge.

FilterTopMbEdgeFlag

If 1, the deblocking filter is applied to the top edge of the macroblock. If 0, the filter is not
applied to the top edge.

ReservedBit

This structure member has no meaning. The value shall be 0, and accelerators shall ignore
the value.

bMvQuantity

Size, in units of 4 bytes, of the motion vector data in the motion vector data buffer for the
macroblock. If IntraMbFlag is 1, bMvQuantity has no meaning and shall be 0. Accelerators
can rely on this constraint being fulfilled.

dwMBtype

Provides an alternate way to access the previous bit fields.

CurrMbAddr

Macroblock address of the current macroblock. This member corresponds to the variable of
the same name in the H.264/AVC specification.

Note This member is located in a different place in the structure relative to prior DXVA
decoding designs. The intent of this change was to improve data alignment characteristics.

wPatternCode

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 40

© 2007 Microsoft Corporation. All rights reserved.

Contains bit flags that indicate whether a given residual data block is present. Residual data
is in the transform domain if HostResidDiff is 0, or the spatial domain if HostResidDiff is 1.
The bits of each array element use the numbering convention that the LSB is bit number 0.
wPatternCode[0] contains bit flags for the luma component, specified as follows:

• If transform_size_8x8_flag is 0, bit number (15 − j) corresponds to the 4x4 block
numbered j in the luma macroblock shown in Figure 1. When
HostResidDiff is 0 and the macroblock type is Intra_16x16, the bits refer only to data
for non-DC coefficients, because the DC coefficients are sent separately, and their
presence is indicated by the DcBlockCodedYFlag flag.

• If transform_size_8x8_flag is 1, bit number (3 − j) corresponds to the 8x8 block
numbered j in the luma macroblock shown in Figure 2.

wPatternCode[1] contains bit flags for the Cb component and wPatternCode[2] contains bit
flags for the Cr component. These flags are specified as follows, where i equals 1 or 2 and
"chroma component" refers to the Cb component for i = 1, or the Cr component for i = 2.

• If chroma_format_idc is 0 (monochrome), wPatternCode[i] has no meaning and shall be
0, and accelerators shall ignore the value.

• If chroma_format_idc is 1 (4:2:0), bit number (3 − j) of wPatternCode[i] corresponds to
the 4x4 block numbered j in the chroma component of the macroblock shown in Figure
2. The remaining bits shall have no meaning and shall be 0, and the accelerator shall
ignore their value.

• If chroma_format_idc is 2 (4:2:2), bit number (7 − j) of wPatternCode[i] corresponds to
the 4x4 block numbered j in the chroma component of the macroblock shown in Figure
3. The remaining bits shall have no meaning and shall be 0, and the accelerator shall
ignore their value.

• If chroma_format_idc is 3 (4:4:4), bit number (15 − j) of wPatternCode[i] corresponds
to the 4x4 block numbered j in the chroma component of the macroblock shown in
Figure 1.

Figure 1. Numbering of 4x4 blocks in a 16x16 region

Figure 2. Numbering of blocks or macroblock partitions for 4x4 blocks in an 8x8 region or 8x8
blocks in a 16x16 region

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 41

© 2007 Microsoft Corporation. All rights reserved.

Figure 3. Numbering of blocks for 4x4 blocks in an 8x16 region bQpPrime

Contains the values of QP' for the macroblock:

• bQpPrime[0] contains the value of QP'Y for the luma component.

• bQpPrime[1] contains the value of QP'C for the Cb component.

• bQpPrime[2] contains the value of QP'C for the Cr component.

bMBresidDataQuantity

Total amount of residual difference data in the residual difference data buffer for the
macroblock, in units of 16 bytes, rounded up if the value is not an exact integer.

Note The 16-byte unit was chosen to allow 768 (3 x 256) coefficients per macroblock, at 4
bytes per coefficient. An accelerator must be designed with caution to ensure that it does not
read past the actual end of the residual difference data buffer (for example due to rounding in
bMBresidDataQuantity or bugs in the host decoder).

dwMBdataLocation

Offset of the residual difference data for the macroblock within the residual difference data
buffer, in units of 4 bytes.

The remainder of this structure is a union that contains two anonymous structures. The first
structure is used when IntraMbFlag is 1. It contains the following members:

LumaIntraPredModes

Specifies the intra prediction modes of the luma prediction blocks, for macroblocks having
IntraMbFlag of 1 and MbType5Bits in the range [0...24] (that is, macroblock types I_NxN or
Intra_16x16).

• If MbType5Bits is 0 (I_NxN) and transform_size_8x8_flag is 0, then bits (j * 4) through
(j * 4 + 3) of LumaIntraPredModes[i] contain the prediction mode of block number (i *
4 + j), where i and j have range [0...3]. Luma blocks are numbered as shown in Figure 1,
and the prediction mode is an
Intra4x4PredMode value. (See subclause 8.3.1.1 of the H.264/AVC specification for
more information.)

• If MbType5Bits is 0 (I_NxN) and transform_size_8x8_flag is 1, bits (j * 4) through (j *
4 + 3) of LumaIntraPredModes[0] contain the prediction mode of block j, where j has
range [0...3]. Luma blocks are numbered as shown in Figure
2, and the prediction mode is an Intra8x8PredMode value. (See subclause
8.3.2.1 of the H.264/AVC specification.) The remaining array entries in
LumaIntraPredModes (indexes 1 through 3) are not relevant and shall be 0, and the
values shall be ingored by the accelerator.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 42

© 2007 Microsoft Corporation. All rights reserved.

• If MbType5Bits is in the range [1...24] (Intra_16x16), bits 0–3 of
LumaIntraPredModes[0] contain the prediction mode as an

Intra16x16PredMode value. (See subclause 8.3.3 of the H.264/AVC specification.) The
remaining bits in LumaIntraPredModes[0], as well as the remaining array entries
(indexes 1–3), are not relevant and shall be 0, and the values shall be ingored by the
accelerator.

In all cases, the bits of each array element use the numbering convention that the LSB is bit
number 0.

Note For the case where IntraMbFlag is 1 and MbType5Bits is in the range
[1...24], only 2 bits are actually required to express the value of
Intra16x16PredMode. However, 4 bits are used to make the representation consistent for all
three types of intra spatial prediction.

If IntraMbFlag is 0, LumaIntraPredModes has no meaning.

intra_chroma_pred_mode

Corresponds to the H.264/AVC syntax element of the same name and affects the decoding
process accordingly for macroblocks in which IntraMbFlag is 1. If IntraMbFlag is 0,
intra_chroma_pred_mode has no meaning.

IntraPredAvailFlags

Contains five 1-bit flags that specify whether the values of samples from neighboring
macroblocks can be used in intra prediction, for macroblocks having IntraMbFlag equal to 1.
The bits are interpreted as follows, where sample position p[x,y] is defined relative to the
position of the upper-left sample of the current macroblock, in the sense given in subclauses
6.4.8 and 6.4.9 of the H.264/AVC specification. The LSB of these five bits is bit number 0.

• Bit 4: If 1, the values of all samples p[-1, y] for vertical positions y corresponding to the
top half of the current macroblock can be used. If 0, some or all of them cannot be used.

• Bit 3: If 1, the values of all samples p[-1, y] for vertical positions y corresponding to the
bottom half of the current macroblock can be used. If 0, some or all of them cannot be
used.

• Bit 2: If 1, the values of all samples p[x, -1] for horizontal positions x in the above-
neighboring macroblock can be used. If 0, some or all of them cannot be used.

• Bit 1: If 1, the values of all samples p[x, -1] for horizontal positions x in the above-right
neighboring macroblock can be used. If 0, some or all of them cannot be used.

• Bit 0: If 1, the value of the sample p[-1, -1] in the above-left neighboring macroblock
can be used. If 0, it cannot be used.

If IntraMbFlag is 0 or MbType5Bits is 25 (I_PCM), IntraPredAvailFlags has no meaning.

Note When decoding video that is encoded using the H.264/AVC specification, bits 3 and 4
must have the same value unless all of the following are true: constrained_intra_pred_flag is
1; mb_field_decoding_flag is 1; and mb_field_decoding_flag for the macroblock pair to the
left of the current macroblock is 0 (which can occur only when MbaffFrameFlag is 1).

ReservedIntraBit

This member is used if IntraMbFlag is 1 and all of the following conditions are true:

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 43

© 2007 Microsoft Corporation. All rights reserved.

• MbaffFrameFlag is 1.

• mb_field_decoding_flag is 0.

• transform_size_8x8_flag is 1.

If all of these conditions are true, ReservedIntraBit indicates whether the value of the sample
at position p[-1, 7] in a left-neighboring macroblock can be used. If ReservedIntraBit is 1,
this sample value can be used. Otherwise, this sample value cannot be used when all of these
conditions are true. The sample position [-1, 7] uses the indexing convention such that [0, 0]
is the upper-left sample position in a macroblock.

If IntraMbFlag is 1 but any of the conditions listed previously is not true,
ReservedIntraBit shall be 0 and accelerators shall ignore the value. The value 1 is reserved in
this case. If IntraMbFlag is 0, ReservedIntraBit has no meaning.

Note The value of ReservedIntraBit is needed to determine the filtered value p' of the luma
sample at relative position [0, 7] for some intra prediction modes. For example, when all of
the conditions listed previously are true, if the left neighboring region is in a field
macroblock pair and ((LumaIntraPredModes[0] >> 8) & 0x000F) equals 0 (indicating the
use of Intra_8x8_vertical prediction mode for the lower-left 8x8 luma block of the
macroblock), this flag is needed to determine the prediction value of the left-most column of
the lower half of the macroblock, according to subclauses 8.3.2.2.1 and 8.3.2.2.2 of the
H.264/AVC specification. Specifically, if the value of sample p[-1, 7] can be used, the
samples in the left-most column of the lower half of the macroblock have a predicted value
equal to (p[-1, 7] + p[0, 7] * 2 + p[1, 7] + 2) >> 2. Otherwise, if p[-1, 7] cannot be used, the
predicted value is (p[0, 7] * 3 + p[1, 7] + 2) >> 2. Again, this equation follows the indexing
convention such that
[0, 0] is the upper-left sample position in a macroblock. This is not the indexing convention
used in the referenced sections of the H.264/AVC specification, where indexes are relative to
the prediction block rather than the entire macroblock.

In prior versions of this specification, ReservedIntraBit was always 0, and there was no
indicator for the availability of the sample value at p[-1, 7]. The value of the four least
significat bits of ReservedBits16 in the picture parameters structure was defined to be 0 or 1
in the earlier versions of this specification; in the current version, the four least significant
bits of ReservedBits16 shall be 2.

bMbIntraStruct

Accesses the entire 8 bits of the previous three members.

ReservedIntra24Bits

This structure member has no meaning. When IntraMbFlag is 1, the value shall be 0, and
accelerators shall ignore the value.

The second structure in the union is used when IntraMbFlag is 0. It contains the

following members: bSubMbShapes

If IntraMbFlag is 0 and MbType5Bits is 22 (B_8x8), this member specifies the shape of the
sub-macroblock partitions in each sub-macroblock. Bits (i * 2) and (i * 2 + 1) specify the
values of SubMbPartWidth() and SubMbPartHeight() for submacroblock i, as follows:

Bit (i * 2 + 1) Bit (i * 2) SubMbPartWidth SubMbPartHeight

0 0 8 8

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 44

© 2007 Microsoft Corporation. All rights reserved.

0 1 8 4

1 0 4 8

1 1 4 4

Sub-macroblocks are numbered as shown in Figure 2. The LSB is bit number 0.

If IntraMbFlag is 1 or MbType5Bits is not 22, bSubMbShapes has no meaning. When
MbType5Bits is not 22 and IntraMbFlag is 0, bSubMbShapes shall be 0 and accelerators
shall ignore the value.

bSubMbPredModes

If IntraMbFlag is 0 and MbType5Bits is 22 (B_8x8), this member specifies the
submacroblock prediction mode for each sub-macroblock. Bits (i * 2) and (i * 2 + 1) specify
the sub-macroblock prediction mode of the sub-macroblock partitions in submacroblock i, as
follows:

Bit (i * 2 + 1) Bit (i * 2) Sub-macroblock prediction mode

0 0 Pred_L0

0 1 Pred_L1

1 0 BiPred

Sub-macroblocks are numbered as shown in Figure 2. The LSB is bit number 0.

If IntraMbFlag is 1 or MbType5Bits is not 22, bSubMbPredModes has no meaning. When
MbType5Bits is not 22 and IntraMbFlag is 0, bSubMbPredModes shall be 0, and
accelerators shall ignore the value.

wMvBuffOffset

If IntraMbFlag is 0, specifies the offset within the motion vector data buffer of the motion
vectors for the macroblock, in units of motion vectors (4 bytes per motion vector).

Note The 16-bit size of wMvBuffOffset means that for very large picture sizes (8192 or
more macroblocks—that is, pictures larger than 1920x1080 HDTV), it is theoretically
possible the decoder would need more than one data buffer per picture, because the
H.264/AVC specification allows a worst-case average of 8 motion vectors per macroblock
(8192 x 8 = 65,536).

bRefPicSelect

Specifies the reference indexes into the reference picture list for the inter prediction process
of the macroblock. For i in the range [0...1], and j in the range [0...3], bRefPicSelect[i][j]
specifies the reference index for list i and macroblock partition j or sub-macroblock j, where
the numbering of macroblock partitions and submacroblocks follows the convention shown
in the upper half of Figure 6-9 in the H.264/AVC specification (labeled "Macroblock
partitions" in the figure).

If IntraMbFlag is 0, the value bRefPicSelect[i][j] is valid for all values of i and j that are used
in the inter prediction process of the macroblock. The value determines the referenced frame

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 45

© 2007 Microsoft Corporation. All rights reserved.

or field, as specified by subclause 8.4.2.1 of the H.264/AVC specification, and is interpreted
as follows:

• If MbaffFrameFlag is 0 or mb_field_decoding_flag is 0, bRefPicSelect[i][j] is used
directly as an index into RefPicList[i].

• If MbaffFrameFlag is 1 and mb_field_decoding_flag is 1, the value of
bRefPicSelect[i][j] >> 1 is used as an index into RefPicList[i], and the LSB of
bRefPicSelect[i][j] specfiies whether the field has the same parity as the current
macroblock. If the LSB is 0, the referenced field has the same parity as the current
macroblock; otherwise, it has the opposite parity. The following table shows how to
interpret this bit, given the value of CurrMbAddr.

CurrMbAddr % 2 bRefPicSelect[i][j] % 2 Description

0 0 Top field of the referenced frame.

0 1 Bottom field of the referenced frame.

1 0 Bottom field of the referenced frame.

1 1 Top field of the referenced frame.

Note If CurrMbAddr % 2 is 0, the current macroblock is the top macroblock of a
macroblock pair. If CurrMbAddr % 2 is 1, the current macroblock is the bottom macroblock
of a macroblock pair.

If IntraMbFlag is 0, values of bRefPicSelect[i][j] for values of i and j that are not used in the
inter prediction process of the macroblock shall be 0, and accelerators shall ignore these
values.

If IntraMbFlag is 1, bRefPicSelect has no meaning.

Requirements

Header: Include dxva.h.

8.0 Residual Difference Data Buffers
This section describes the format of the residual difference data buffers.

Residual difference data buffers are used when bDXVA_Func is 1 and the buffer type is
DXVA_RESIDUAL_DIFFERENCE_BUFFER (DXVA 1.0) or
DXVA2_MacroBlockControlBufferType (DXVA 2.0).

8.1 Ordering of Residual Blocks within Macroblocks
Blocks of residual data within a macroblock, including the DC blocks that appear separately in
the bitstream, will appear in the same order in which they appear in the H.264/AVC bitstream.
Within the data for a single macroblock, all luma residual blocks precede all chroma residual
blocks.

If a block contains only zero coefficients, the host decoder does not need to convey that block to
the accelerator, even if the block was present in the bitstream. Instead, the decoder can set the bit

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 46

© 2007 Microsoft Corporation. All rights reserved.

in the indicated coded block pattern to 0. This rule has particular significance for the Intra_16x16
macroblock modes in which the value of
CodedBlockPatternLuma is 15, as derived from the value of mb_type (see Table 7-11 in the
H.264/AVC specification). In that case, zero-valued blocks may be present in the bitstream but
are not required to be present in the DXVA data.

The same rule applies when host-based inverse transform processing is used—that is, when the
host decoder sends residual difference data in the spatial domain. Only nonzero blocks in the
spatial domain need to be sent to the accelerator.

The preceding information should be sufficient to specify the block order. The remainder of this
section provides further detail for clarification.

8.1.1 Ordering of Luma Residual Blocks within Macroblocks
There are three cases to consider for luma residual blocks.

8.1.1.1 Luma Blocks for Intra_16x16 Macroblocks

In this mode, there are 17 luma blocks. If all of them are present in the bitstream, they are
ordered as shown in Figure 4.

When using accelerator-based inverse transform processing—that is, when residual differences
are sent in the coefficient domain—the host decoder sends the luma residual blocks to the
accelerator in the order shown in Figure 4.

When using host-based inverse transform processing—that is, when residual differences are sent
in the spatial domain—the luma DC block is not present. (This block belongs inherently to the
coefficient domain.) Instead, the host decoder incorporates the effects of the luma DC block into
the spatial-domain residual difference data. The resulting residual luma data contains blocks 1–
16 in Figure 4, in the order shown.

Figure 4. Ordering of luma blocks when mb_type is Intra_16x16

8.1.1.2 Luma Blocks for non-Intra_16x16 Macroblocks with 4x4 Transform

In this mode, there are 16 luma blocks. If all of them are present in the bitstream, they are
ordered as shown in Figure 1.

8.1.1.3 Luma Blocks for non-Intra_16x16 Macroblocks with 8x8 Transform

In this mode, there are 4 luma blocks. If all of them are present in the bitstream, they are ordered
as shown in Figure 2.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 47

© 2007 Microsoft Corporation. All rights reserved.

8.1.2 Ordering of Chroma Residual Blocks within Macroblocks
There are four cases to consider for chroma residual blocks.

8.1.2.1 Chroma Blocks for Monochrome Macroblocks

In this mode, there are no chroma blocks.

8.1.2.2 Chroma Blocks for 4:2:0 Macroblocks

In this mode, there are 10 chroma blocks. If all of them are present in the bitstream, they are
ordered as shown in Figure 5. (The DC coefficient blocks are shown as smaller than the AC
coefficient blocks, because they are 2x2 rather than 4x4.)

When using accelerator-based inverse transform processing, the host decoder sends the chroma
residual blocks to the accelerator in the order shown in Figure 5.

When using host-based inverse transform processing, blocks 0 and 1 in Figure 6 are not present.
(These blocks belong inherently to the coefficient domain.) Instead, the host decoder
incorporates the effects of the chroma DC blocks into the spatial-domain residual difference data.
The resulting residual chroma data contains blocks 2–9, in the order shown in Figure 5.

Figure 5. Ordering of chroma blocks for 4:2:0 macroblocks

8.1.2.3 Chroma Blocks for 4:2:2 Macroblocks

In this mode, there are 18 chroma blocks. If all of them are present in the bitstream, they are
ordered as shown in Figure 6. (The DC blocks are shown as narrower than the AC blocks,
because they are 2x4 rather than 4x4.) The highest-priority profiles for DXVA support do not
include 4:2:2 chroma macroblocks.

When using accelerator-based inverse transform processing, the host decoder sends the chroma
residual blocks to the accelerator in the order shown in Figure 6.

When using host-based inverse transform processing, blocks 0 and 1 in Figure 6 are not present.
(These blocks belong inherently to the coefficient domain.) Instead, the host decoder
incorporates the effects of the chroma DC blocks into the spatial-domain residual difference data.
The resulting residual chroma data contains blocks 2–17, in the order shown in Figure 6.

Figure 6. Ordering of chroma blocks for 4:2:2 macroblocks

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 48

© 2007 Microsoft Corporation. All rights reserved.

8.1.2.4 Chroma Blocks for 4:4:4 Macroblocks

In this mode, there are 34 chroma blocks. If all of them are present in the bitstream, they are
ordered as shown in Figure 7. The highest-priority profiles for DXVA support do not include
4:4:4 chroma macroblocks.

When using accelerator-based inverse transform processing, the host decoder sends the chroma
residual blocks to the accelerator in the order shown in Figure 7.

When using host-based inverse transform processing, blocks 0 and 1 in Figure 7 are not present.
(These blocks belong inherently to the coefficient domain.) Instead, the host decoder
incorporates the effects of the chroma DC blocks into the spatial-domain residual difference data.
The resulting residual chroma data contains blocks 2–33, in the order shown in Figure 7.

Figure 7. Ordering of chroma blocks for 4:4:4 macroblocks

8.2 Transform Coefficients
This section describes how transform coefficients are represented in the residual difference data
buffer.

The DXVA_TCoefSingle structure defined in the DXVA 1.0 specification is sufficient for
decoding H.264/AVC video in which BitDepthY and BitDepthC both equal 8 (that is, 8-bit luma
and chroma). Therefore, all of the DXVA decoding profiles that are currently defined use this
structure.

The end-of-block (EOB) flag in the structure is set to 1 for the last coefficient that the host
decoder sends for each transform block. (The EOB flag is the LSB of the wIndexWithEOB
member.) For any frequency indexes of a transform block that are not sent by the host decoder,
the coefficients may be inferred:

• When performing an inverse 4x4 non-Hadamard transform for the luma samples of an
Intra_16x16 macroblock or the chroma samples of a macroblock, the host decoder will not
send the DC coefficient and the value will be inferred as follows:

• If the host decoder has sent DC transform block coefficients, the DC coefficient will be
inferred from the content of that transform block.

• Otherwise, the inferred DC coefficient is 0.

• Otherwise, any missing coefficients are inferred to be 0.

The index in the DXVA_TCoefSingle structure is a frequency index in raster-scan order of the
form u + W * v, where

• u is the horizontal frequency index.

• v is the vertical frequency index.

• W is a constant:

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 49

© 2007 Microsoft Corporation. All rights reserved.

• For the 2x2 or 2x4 chroma Hadamard DC tranform, W = 2.

• For the 4x4 transforms (Hadamard 4x4 DC transform or 4x4 non-Hadamard transform), W
= 4.

• For the 8x8 non-Hadamard transforms, W = 8.

For host-based parsing, the accelerator should not be designed with any dependency on receiving
transform coefficients in either zig-zag or field scan order.

The accelerator performs the inverse quantization scaling process, although this requires
including QP'Y and QP'C in the macroblock control commands.

Support for luma and chroma bit depths greater than 8 is lower priority. In the current
DXVA_TCoefSingle structure, the 16-bit TCoefValue value does not have enough precision for
higher bit depths. Although hypothetically a new structure could have been defined for all
H.264/AVC decoding profiles in DXVA, the current design does not define such a structure. If a
new structure is defined in the future, it is expected to be specified as follows:

typedef union _DXVA_TCoefLong {
struct { UINT EOB :
1;
 UINT Index : 7;
 INT Value : 24;
 };
 INT iValue;
} DXVA_TCoefLong, *LPDXVA_TCoefLong;

This structure is essentially equivalent to the following:

typedef INT32 DXVA_TCoefLong;

#define readDXVA_TCoefLongIDX(tcoef) (((tcoef) >> 1) & 0x7F)
#define readDXVA_TCoefLongEOB(tcoef) ((tcoef) & 1)
#define readDXVA_TCoefLongValue(tcoef) ((tcoef) >> 8)

#define setDXVA_TCoefLongIDX(tcoef, idx) ((tcoef) |= ((idx) << 1))
#define setDXVA_TCoefLongEOB(tcoef, eob) ((tcoef) |= (eob))
#define setDXVA_TCoefLongValue(tceof, val) ((tcoef) |= ((val) << 8))

#define writeDXVA_TCoefLongIDX(tcoef, idx, eob, val) \
 ((tcoef) = (((val) << 8) | ((idx << 1) | eob)))

Some alternatives to this structure are possible as well, and Microsoft solicits feedback on the
following ideas:

• Placing the coefficient values in the 24 LSBs instead of the 24 MSBs.

• Moving the EOB flag to the MSB of the index byte instead of its LSB.

• Moving the EOB flag into the MSB or LSB of the 24-bit coefficient value. (This would
enable support of a hypothetical future 16x16 transform size.)

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 50

© 2007 Microsoft Corporation. All rights reserved.

8.3 I_PCM Residuals
When the decoded video has 8 bits per decoded sample (that is, when the I_PCM residuals are
sent as a string of byte-aligned bytes in the compressed H.264/AVC bitstream), the host decoder
sends I_PCM residuals in the same format and order (8 bits per sample) in which they appear in
the bitstream, which is raster scan order.

There are currently no defined DXVA decoding profiles that use I_PCM samples with bit depth
greater than 8. For future use, Microsoft is considering two alternatives:

• Placing the sample values as tightly-packed strings of bytes containing the raw data from
the bitstream. This design would require the accelerator to unpack the alignment of the
samples within the bytes.

• Having the host decoder unpack the bytes and send samples to the accelerator as 16-bit
samples in raster scan order. This approach would require more processing on the host and
increased bus data flow.

It is possible the design will use the first approach when HostResidDiff is 0 and the second when
HostResidDiff is 1.

8.4 Transform-Bypass Residuals
For transform-bypass residuals (that is, residuals sent when the
qpprime_y_zero_transform_bypass_flag syntax element is 1 and QP'Y is 0), the host decoder
would send residuals to the accelerator as 16-bit signed values for each sample, in raster order
within each residual block.

Currently, however, no defined DXVA decoding profiles support transform-bypass residuals, as
these are found only in the 4:4:4 professional profiles of the H.264/AVC standard.

8.5 Other Spatial-Domain Residuals
When HostResidDiff is 0, for macroblocks that are not I_PCM macroblocks and not transform-
bypass macroblocks, the host decoder sends the residual difference data blocks as 16-bit signed
values for each sample, in raster order within each spatialdomain residual block. These blocks
are 4x4 or 8x8, depending on the value of transform_size_8x8 in the macroblock command data
structure.

9.0 Deblocking Filter Control Data Structure
The macroblock command data structure has all of the information needed to control the
deblocking filter process for macroblocks, provided the accelerator has access to the relevant
macroblock command buffers when it performs the deblocking filter. (The accelerator needs data
from the macroblock command buffer for the current macroblock, as well as the macroblocks to
the left of the current macroblock and above the current macroblock.) Therefore, it is possible for
an accelerator to perform the deblocking filter using only these buffers (or data copied from these
buffers) without receiving any additional data from the host decoder.

This section contains an alternative set of structures for H.264/AVC deblocking filter control.
The intent is for accelerators to indicate whether they can perform the deblocking filter using
only macroblock command buffers. An accelerator that lacks this capability is considered to have
reduced acceleration capabilities and will use the data structures described in this section.

The value of bDXVA_Func is 5 for deblocking filter control buffers. The buffer type is
DXVA_DEBLOCKING_CONTROL_BUFFER (DXVA 1.0) or
DXVA2_DeblockingControlBufferType(DXVA 2.0).

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 51

© 2007 Microsoft Corporation. All rights reserved.

9.1 IndexA and IndexB Data Structure
The DXVA_DeblockIndexAB_H264 structure contains the IndexA and IndexB variables needed
to filter a component (Y, Cb, or Cr) of a macroblock.

The structure contains the values of IndexA and IndexB that control the filtering process for a
macroblock, including the filtering across the left and top edges of the macroblock, but not
including the filtering across the right and bottom edges. The order of the deblocking filter
operations is given in the H.264/AVC specification. Although each of the IndexA and IndexB
values requires only 6 bits of dynamic range, 8 bits are used for each structure member.

9.1.1 Syntax
typedef struct _DXVA_DeblockIndexAB_H264 {
 UCHAR bIndexAinternal;
 UCHAR bIndexBinternal;
 UCHAR bIndexAleft0;
 UCHAR bIndexBleft0;
 UCHAR bIndexAleft1;
 UCHAR bIndexBleft1;
 UCHAR bIndexAtop0;
 UCHAR bIndexBtop0;
 UCHAR bIndexAtop1;
 UCHAR bIndexBtop1;
} DXVA_DeblockIndexAB_H264, *LPDXVA_DeblockIndexAB_H264;

9.1.2 Semantics

bIndexAinternal, bIndexBinternal

Specifies the values of IndexA and IndexB that apply when filtering across the internal edges
of the current macroblock.

bIndexAleft0, bIndexBleft0

Specifies the values of IndexA and IndexB that apply to filtering across the left edge of the
current macroblock when bIndexAleft1 and bIndexBleft1 do not apply.
bIndexAleft1, bIndexBleft1

Specifies the values of IndexA and IndexB that apply when filtering across the left edge of
the current macroblock under either of the following conditions:

• The FieldModeCurrentMbFlag member of the deblocking control data structure
(described in section 9.2) is 0; the FieldModeLeftMbFlag member of that structure is 1;
and filtering across the left edge of the current macroblock is applied along the lines of
the bottom field of the current macroblock. -OR-

• FieldModeCurrentMbFlag is 1; FieldModeLeftMbFlag is 0; and filtering across the left
edge of the current macroblock is applied along the lines of the bottom half of the
current macroblock.

bIndexAtop0, bIndexBtop0

Specifies the values of IndexA and IndexB that apply to filtering across the top edge of the
current macroblock when bIndexAtop1 and bIndexBtop1 do not apply.
bIndexAtop1, bIndexBtop1

Specifies the values of IndexA and IndexB that apply when filtering across the top edge of
the current macroblock under the following condition:

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 52

© 2007 Microsoft Corporation. All rights reserved.

• The FieldModeCurrentMbFlag member of the deblocking control data structure is 0; the
FieldModeAboveMbFlag member of that structure is 1; and filtering across the top edge
of the current macroblock is applied along the lines of the
bottom field of the current macroblock.

Requirements

Header: Include dxva.h.

9.2 Deblocking Control Data Structure
The DXVA_Deblock_H264 structure contains data to control the deblocking filter process for a
macroblock.

9.2.1 Syntax
typedef struct _DXVA_Deblock_H264 { USHORT
CurrMbAddr; union {
struct {
 UCHAR ReservedBit : 1;
 UCHAR FieldModeCurrentMbFlag : 1;
 UCHAR FieldModeLeftMbFlag : 1;
 UCHAR FieldModeAboveMbFlag : 1;
 UCHAR FilterInternal8x8EdgesFlag : 1;
 UCHAR FilterInternal4x4EdgesFlag : 1;
 UCHAR FilterLeftMbEdgeFlag : 1;
 UCHAR FilterTopMbEdgeFlag : 1;
 };
 UCHAR FirstByte;
 };
 UCHAR Reserved8Bits;
 UCHAR bbSinternalLeftVert;
 UCHAR bbSinternalMidVert;
 UCHAR bbSinternalRightVert;
 UCHAR bbSinternalTopHorz;
 UCHAR bbSinternalMidHorz;
 UCHAR bbSinternalBotHorz;
 USHORT wbSLeft0;
 USHORT wbSLeft1;
 USHORT wbSTop0;
 USHORT wbSTop1;
 DXVA_DeblockIndexAB_H264 IndexAB[3];
} DXVA_Deblock_H264, *LPDXVA_Deblock_H264;

9.2.2 Semantics

CurrMbAddr

Macroblock address of the current macroblock. The value corresponds to the variable of the
same name in the H.264/AVC specification.

ReservedBit

This structure member has no meaning. The value shall be 0, and accelerators shall ignore
the value.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 53

© 2007 Microsoft Corporation. All rights reserved.

FieldModeCurrentMbFlag

Specifies whether the current macroblock is considered a field macroblock for purposes of
the deblocking filter.

Value Description

0 The current macroblock is considered a frame macroblock.

1 The current macroblock is considered a field macroblock.

FieldModeLeftMbFlag

Specifies whether the left-neighboring macroblock is considered a field macroblock for
purposes of the deblocking filter.

Value Description

0 The left-neighboring macroblock is considered a frame macroblock.

1 The left-neighboring macroblock is considered a field macroblock.

FieldModeAboveMbFlag

Specifies whether the above-neighboring macroblock is considered a field macroblock for
purposes of the deblocking filter.

Value Description

0 The above-neighboring macroblock is considered a frame macroblock.

1 The above-neighboring macroblock is considered a field macroblock.

FilterInternal8x8EdgesFlag

If 1, the filter shall be applied across the internal luma edges of the macroblock that lie on
8x8 block boundaries. Otherwise, the filter shall not be applied across such edges.

FilterInternal4x4EdgesFlag

If 1, the filter shall be applied across the internal luma edges of the macroblock that lie on
4x4 block boundaries. Otherwise, the filter shall not be applied across such edges.

If FilterInternal4x4EdgesFlag is 1, FilterInternal8x8EdgesFlag shall be 1. If
FilterInternal8x8EdgesFlag is 0, FilterInternal4x4EdgesFlag shall be 0. Accelerators can rely
on this constraint being fulfilled.

FilterLeftMbEdgeFlag

If 1, the filter is applied to the left edge of the macroblock. Otherwise, it is not applied to the
left edge.

FilterTopMbEdgeFlag

If 1, the filter is applied to the top edge of the macroblock. Otherwise, it is not applied to the
top edge.

FirstByte

Accesses the entire 8 bits of the union.

Reserved8Bits

This structure member has no meaning. The value shall be 0, and accelerators shall ignore
the value.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 54

© 2007 Microsoft Corporation. All rights reserved.

bbSinternalLeftVert

Contains boundary strength parameters for the filtering across the left-most internal 4x4
vertical edges in the luma component of the macroblock.

If FilterInternal4x4EdgesFlag is 0, bbSinternalLeftVert shall be 0. Accelerators can rely on
this constraint being fulfilled.

For i in the range [0...3], bits (i * 2) and (i * 2 + 1) contain the boundary strength of the left
edge of block number i shown in Figure 8. The LSB is bit number 0.

Figure 8. Numbering of left-most internal 4x4 vertical edges in the luma component of a

macroblock bbSinternalMidVert

Contains boundary strength parameters for the filtering across the middle internal 4x4
vertical edges in the luma component of the macroblock.

If FilterInternal8x8EdgesFlag is 0, bbSinternalMidVert shall be 0. Accelerators can rely on
this constraint being fulfilled.

For i in the range [0...3], bits (i * 2) and (i * 2 + 1) contain the boundary strength of the left
edge of block number i shown in Figure 9. The LSB is bit number 0.

Figure 9. Numbering of middle internal 4x4 vertical edges in the luma component of a

macroblock bbSinternalRightVert

Contains boundary strength parameters for the filtering across the right-most internal 4x4
vertical edges in the luma component of the macroblock.

If FilterInternal4x4EdgesFlag is 0, bbSinternalRightVert shall be 0. Accelerators can rely on
this constraint being fulfilled.

For i in the range [0...3], bits (i * 2) and (i * 2 + 1) contain the boundary strength of the left
edge of block number i shown in Figure 10. The LSB is bit number 0.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 55

© 2007 Microsoft Corporation. All rights reserved.

Figure 10. Numbering of right-most internal 4x4 vertical edges in the luma component of a

macroblock bbSinternalTopHorz

Contains boundary strength parameters for the filtering across the top-most internal 4x4
horizontal edges in the luma component of the macroblock.

If FilterInternal4x4EdgesFlag is 0, bbSinternalTopHorz shall be 0. Accelerators can rely on
this constraint being fulfilled.

For i in the range [0...3], bits (i * 2) and (i * 2 + 1) contain the boundary strength of the top
edge of block number i shown in Figure 11. The LSB is bit number 0.

Figure 11. Numbering of top-most internal 4x4 horizontal edges in the luma component of a

macroblock bbSinternalMidHorz

Contains boundary strength parameters for the filtering across the middle internal 4x4
horizontal edges in the luma component of the macroblock.

If FilterInternal8x8EdgesFlag is 0, bbSinternalMidHorz shall be 0. Accelerators can rely on
this constraint being fulfilled.

For i in the range [0...3], bits (i * 2) and (i * 2 + 1) contain the boundary strength of the top
edge of block number i shown in Figure 12. The LSB is bit number 0.

Figure 12. Numbering of middle internal 4x4 horizontal edges in the luma component of a
macroblock

bbSinternalBotHorz

Contains boundary strength parameters for the filtering across the bottom-most internal 4x4
horizontal edges in the luma component of the macroblock.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 56

© 2007 Microsoft Corporation. All rights reserved.

If FilterInternal4x4EdgesFlag is 0, bbSinternalBotHorz shall be 0. Accelerators can rely on
this constraint being fulfilled.

For i in the range [0...3], bits (i * 2) and (i * 2 + 1) contain the boundary strength of the top
edge of block number i shown in Figure 13. The LSB is bit number 0.

Figure 13. Numbering of bottom-most internal 4x4 horizontal edges in the luma component

of a macroblock wbSLeft0

Contains boundary strength parameters for the filtering across the left-most 4x4 vertical
edges in the luma component of the macroblock. The value applies to the filtering across the
left edge of the current macroblock for the edges that are not controlled by wbSLeft1.

If FilterLeftMbEdgeFlag is 0, wbSLeft0 shall be 0. Accelerators can rely on this constraint
being fulfilled.

When the boundary strengths in wbSLeft0 are applicable, wbSLeft0 shall be interpreted as
follows. In all cases, the LSB of wbSLeft0 is bit number 0. Let CurrMB be the current
macroblock, and let macroblock A be the top macroblock of the macroblock pair located to
the left of the CurrMB, as shown in Figure 17.

• If FieldModeCurrentMbFlag equals FieldModeLeftMbFlag, bits (i * 4) through (i * 4 +
3) of wbSLeft0 contain the boundary strength for filtering the left edge of block number
i in CurrMB, where blocks are numbered as shown in Figure 14.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 57

•

© 2007 Microsoft Corporation. All rights reserved.

If FieldModeCurrentMbFlag is 0 and FieldModeLeftMbFlag is 1, bits (i * 4) through (i
* 4 + 3) contain the boundary strength for filtering the left edge of block number i in
CurrMB with the right edge of macroblock A. The blocks in CurrMB are numbered as
shown in Figure 14.

• If FieldModeCurrentMbFlag is 1 and FieldModeLeftMbFlag is 0, bits (i * 4) through (i
* 4 + 3) contain the boundary strength for filtering across the left edge of the top half of
CurrMB with the right edge of block number i in macroblock A, where the 4x4 blocks in
macroblock A are shown in Figure 15.

Figure 14. Numbering of left-most 4x4 vertical edges in the luma component of a macroblock

Figure 15. Numbering of right-most vertical edges in the luma component of a macroblock that

neighbors the current macroblock on its left wbSLeft1

Contains boundary strength parameters for the filtering across the left-most 4x4 vertical
edges in the luma component of the macroblock. This structure member applies under the
following conditions:

• FieldModeCurrentMbFlag is 0, FieldModeLeftMbFlag is 1, and filtering across the left
edge of the current macroblock is applied along the lines of the bottom field of the
current macroblock.

-OR-

• FieldModeCurrentMbFlag is 1, FieldModeLeftMbFlag is 0, and filtering across the left
edge of the macroblock is applied along the lines of the bottom half of the current
macroblock.

If FilterLeftMbEdgeFlag is 0, wbSLeft1 shall be 0. Accelerators can rely on this constraint
being fulfilled.

If FieldModeCurrentMbFlag equals FieldModeLeftMbFlag, wbSLeft1 shall be 0.
Accelerators can rely on this constraint being fulfilled.

When the boundary strengths in wbSLeft1 are applicable, wbSLeft1 shall be interpreted as
follows. In all cases, the LSB of wbSLeft1 is bit number 0. Let CurrMB be the current
macroblock, and let macroblock B be the bottom macroblock of the macroblock pair located
to the left of the CurrMB, as shown in Figure 17.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 58

•

© 2007 Microsoft Corporation. All rights reserved.

If FieldModeCurrentMbFlag is 0 and FieldModeLeftMbFlag is 1, bits (i * 4) through (i
* 4 + 3) contain the boundary strength for filtering along the left edge of block number i
in CurrMB with the right edge of macroblock B. The blocks in CurrMB are numbered as
shown in Figure 14.

• If FieldModeCurrentMbFlag is 1 and FieldModeLeftMbFlag is 0, bits (i * 4) through (i
* 4 + 3) contain the boundary strength for filtering across the left edge of the bottom
half of CurrMB with the right edge of block number i in macroblock B. The blocks in B
are numbered as shown in Figure 15.

wbSTop0

Contains boundary strength parameters for the filtering across the top-most 4x4 horizontal
edges in the luma component of the current macroblock. The value applies to the filter across
the top edge of the current macroblock when wbSTop1 does not apply.

If FilterTopMbEdgeFlag is 0, wbSTop0 shall be 0. Accelerators can rely on this constraint
being fulfilled.

Bits (i * 4) through (i * 4 + 3) of wbSTop0 contain the boundary strength for the top edge of
block number i of the current macroblock, where blocks are numbered as shown in Figure
16. The LSB is bit number 0.

Figure 16. Numbering of top-most 4x4 vertical edges in the luma component of a macroblock

wbSTop1

Contains boundary strength parameters for the filter across the top-most 4x4 horizontal edges
in the luma component of the current macroblock.

This structure member applies when FieldModeCurrentMbFlag is 0,
FieldModeAboveMbFlag is 1, and the filtering across the top edge of the current macroblock
is applied across the lines of the bottom field of the current macroblock.

The value of wbSTop1 shall be 0 if any of the following is true:
FilterTopMbEdgeFlag is 0; FieldModeCurrentMbFlag is 1; or
FieldModeAboveMbFlag is 0. Accelerators can rely on this constraint being fulfilled.

Bits (i * 4) through (i * 4 + 3) of wbSTop1 contain the boundary strength for the top edge of
block number i of the current macroblock, where blocks are numbered as shown in Figure
16. The LSB is bit number 0.

IndexAB

An array of DXVA_DeblockIndexAB_H264 structures that contains IndexA and IndexB
values for the sample components:

• IndexAB[0] contains values for the luma (Y) component.

• IndexAB[1] contains values for the Cb chroma component.

IndexAB[2] contains values for the Cr chroma component.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 59

•

© 2007 Microsoft Corporation. All rights reserved.

Figure 17. Relative positioning of neighboring macroblocks

Requirements

Header: Include dxva.h.

10.0 Motion Vector Data Structure and Ordering
This section describes the data structure for motion vectors and the ordering of motion vectors
within the data buffer.

10.1 Motion Vector Data Structure
Motion vectors are specified using the DXVA_MVvalue structure. Motion vectors are sent
whenever the associated macroblock is not an intra macroblock (that is, when IntraMbFlag in the
macroblock control command buffer is 0). Motion vectors are placed in a separate buffer.

Note This design differs from previous DXVA decoding designs, in which motion vectors were
placed in the macroblock control buffer.

The DXVA_MVvalue structure is used when bDXVA_Func is 1 and the buffer type is
DXVA_MOTION_VECTOR_BUFFER (DXVA 1.0) or DXVA2_MotionVectorBuffer (DXVA
2.0).

10.1.1 Sytax
typedef struct _DXVA_MVvalue { SHORT horz, vert;
} DXVA_MVvalue, *LPDXVA_MVvalue;

10.1.2 Semantics

horz

Contains the horizontal component of the motion vector, in units of one fourth of the
horizontal luma-sample frame or field grid position. (In the horizontal direction, the units are the
same for field macroblocks and frame macroblocks.) vert

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 60

© 2007 Microsoft Corporation. All rights reserved.

Contains the horizontal component of the motion vector.

• If mb_field_decoding_flag in the macroblock control buffer is 1, the units are one fourth
of the vertical luma-sample field grid position.

• If mb_field_decoding_flag is 0, the units are one fourth of the vertical lumasample
frame grid position.

Requirements

Header: Include dxva.h.

10.2 Ordering of Motion Vectors
The ordering of the motion vectors is determined by the motion segmentation partitioning. The
following fields in the macroblock command buffer define the number of motion partitions in the
macroblock or sub-macroblock:

• IntraMbFlag and MbType5bits: Together, these fields define the macroblock type.

• bSubMbShapes: Specifies the shape of the sub-macroblock partitions in each
submacroblock, for B_8x8 macroblocks.

For each motion partition, the following applies:

• If the motion partition uses list 0 prediction (that is, inter prediction using only list 0), the
host decoder sends the list 0 motion vector for the partition.

• If the motion partition uses list 1 prediction (inter prediction using only list 1), the host
decoder sends the list 1 motion vector for the partition.

• If the motion partition uses bidirectional prediction, the host decoder sends the list 0 motion
vector for the partition, followed immediately by the list 1 motion vector for the partition.

Note This section was modified in June 2007 to match implementations that had been deployed
using this ordering.

10.2.1 Ordering of Motion Partitions for 16x16 Macroblock Motion or 8x8 Sub-
macroblock Motion
If IntraMbFlag is 0 and MbType5bits is 1, 2, or 3, there is only one motion partition for the
macroblock. If IntraMbFlag is 0 and MbType5bits is 22, then for sub-macroblocks with 8x8
motion, there is only one motion partition for the sub-macroblock.

10.2.2 Ordering of Motion Partitions for 16x8 Macroblock Motion or 8x4 Sub-
macroblock Motion
If IntraMbFlag is 0 and MbType5bits is 4, 6, 8, 10, 12, 14, 16, 18, or 20, there are two motion
partitions for the macroblock. If IntraMbFlag is 0 and MbType5bits is 22, then for sub-
macroblocks with 8x4 motion, there are two motion partitions for the submacroblock. These
motion partitions are sent in the order shown in Figure 18.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 61

© 2007 Microsoft Corporation. All rights reserved.

Figure 18. Ordering of motion partitions for 16x8 motion in a macroblock or 8x4 motion in an
8x8 sub-macroblock

10.2.3 Ordering of Motion Partitions for 8x16 Macroblock Motion or 4x8 Sub-
macroblock Motion
If IntraMbFlag is 0 and MbType5bits is 5, 7, 9, 11, 13, 15, 17, 19, or 21, there are two motion
partitions for the macroblock. If IntraMbFlag is 0 and MbType5bits is 22, then for sub-
macroblocks with 4x8 motion, there are two motion partitions for the submacroblock. These
motion partitions are sent in the order shown in Figure 19.

Figure 19. Ordering of motion partitions for 8x16 motion in a macroblock or 4x8 motion in an
8x8 sub-macroblock

10.2.4 Ordering of Motion Partitions for 8x8 Sub-macroblocks
If IntraMbFlag is 0 and MbType5bits is 22 (B_8x8), the 8x8 sub-macroblocks are scanned in the
order shown in Figure 2. The motion partitions within each submacroblock are sent in the order
specified in 10.2.1, 10.2.2, or 10.2.3, depending on the partitioning of the associated sub-
macroblock.

11.0 Film-Grain Synthesis Data Structure
The DXVA_FilmGrainChar_H264 structure contains information needed for film-grain
synthesis. This data structure has been designed to support the full capabilities of the H.264/AVC
film-grain synthesis SEI message, except for the limitation on the size of some arrays in the data
structure.

This structure is used when bDXVA_Func is 6 and the buffer type is
DXVA_FILM_GRAIN_BUFFER (DXVA 1.0) or DXVA2_FilmGrainBuffer (DXVA 2.0).

The host decoder sends the command to perform film-grain synthesis in a separate function call
from those used to decode the compressed picture. This design may allow the decoder to decode
or post-process more pictures ahead of the display process.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 62

© 2007 Microsoft Corporation. All rights reserved.

Unless specified otherwise, the accelerator's action in response to this command is specified in
the Society of Motion Picture and Television Engineers (SMPTE) registered disclosure document
RDD 05-2006, Film Grain Technology - Specifications for H.264 | MPEG-4 AVC Bitstreams,
which can be purchased from SMPTE. That document specifies some constraints on the content
of the film-grain characteristics syntax. In such use, the value of AssociatedFlag shall be 0 for
both InPic and OutPic. Accelerators should verify that these constraints are fulfilled.

At the present time, no alternative uses of this data structure are defined for DXVA.

11.1 Syntax
typedef struct _DXVA_FilmGrainCharacteristics {
 USHORT wFrameWidthInMbsMinus1;
 USHORT wFrameHeightInMbsMinus1;
 DXVA_PicEntry_H264 InPic;
 DXVA_PicEntry_H264 OutPic;
 USHORT PicOrderCnt_offset;
 INT CurrPicOrderCnt;
 UINT StatusReportFeedbackNumber;
 UCHAR model_id;
 UCHAR separate_colour_description_present_flag;
 UCHAR film_grain_bit_depth_luma_minus8;
 UCHAR film_grain_bit_depth_chroma_minus8;
 UCHAR film_grain_full_range_flag;
 UCHAR film_grain_colour_primaries;
 UCHAR film_grain_transfer_characteristics;
 UCHAR film_grain_matrix_coefficients;
 UCHAR blending_mode_id;
 UCHAR log2_scale_factor;
 UCHAR comp_model_present_flag[4];
 UCHAR num_intensity_intervals_minus1[4];
 UCHAR num_model_values_minus1[4];
 UCHAR intensity_interval_lower_bound[3][16];
 UCHAR intensity_interval_upper_bound[3][16];
 SHORT comp_model_value[3][16][8];
} DXVA_FilmGrainChar_H264, *LPDXVA_FilmGrainChar_H264;

11.2 Semantics
wFrameWidthInMbsMinus1

Width of the frame containing this picture, in units of macroblocks, minus 1. (The width in
macroblocks is wFrameWidthInMbsMinus1 plus 1.)

wFrameHeightInMbsMinus1

Height of the frame containing this picture, in units of macroblocks, minus 1. (The height in
macroblocks is wFrameHeightInMbsMinus1 plus 1.) When the picture is a field, the height
of the frame is twice the height of the picture and is an integer multiple of 2 in units of
macroblocks.

InPic

Specifies the uncompressed input frame surface for the picture to which film-grain synthesis
is to be applied. The AssociatedFlag field in InPic is interpreted as follows:

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 63

© 2007 Microsoft Corporation. All rights reserved.

Value Description

1 The input and output pictures are the bottom fields of the uncompressed frame
surfaces.

0 The input and output pictures are either complete frames, or the top fields of the
uncompressed frame surfaces, depending on the value of AssociatedFlag in
OutPic.

OutPic

Specifies the uncompressed output frame surface for the output of the film-grain synthesis
process. The AssociatedFlag field in OutPic is interpreted as follows:

Value Description

1 The input and output pictures are single fields of the uncompressed frame surfaces.

0 The input and output pictures are complete frames.

The value of Index7Bits in OutPic might or might not equal the value of Index7Bits in InPic.
For example, when performing film-grain synthesis on a non-reference picture, the input and
output surfaces may be the same.

PicOrderCnt_offset

Corresponds to the variable of the same name in the SMPTE registered disclosure document.

CurrPicOrderCnt

Specifies the value of the PicOrderCnt() function for the current picture, as defined by the
H.264/AVC specification.

StatusReportFeedbackNumber

Arbitrary number set by the host decoder to use as a tag in the status report feedback data.
The value should not equal 0 and should be different in each call to Execute. For more
information, see section 12.0, Status Report Data Structure.

The remaining members of this structure correspond to elements in the H.264/AVC filmgrain
characteristics SEI message and have the same semantics, except for the following:

• All non-relevant members of the data structure shall be 0. For example, this rule applies to
the values of the six structure members that follow separate_colour_description_present_flag
when that flag is 0.

• Some structure members use more bits than are required to hold the value of the H.264/AVC
syntax element.

• Some arrays that are specified as containing three elements in H.264/AVC are given four
elements in this structure to provide more sensible memory alignment.

• Arrays that could have a dimension as high as 256 in H.264/AVC have been given 16
elements in this structure, which is expected to be sufficient for practical use.

The constraints that are specificed in H.264/AVC on the values of syntax elements shall be
obeyed for the values in this structure.

Requirements

Header: Include dxva.h.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 64

© 2007 Microsoft Corporation. All rights reserved.

12.0 Status Report Data Structure
The DXVA_Status_H264 structure is used to report status information from the accelerator to the
host decoder.

This structure is used when bDXVA_Func is 7. The status reporting command does not use a
compressed buffer. Instead, the host decoder provides a buffer as private output data. For more
information, see section 1.5.1, Status Reporting.

The status information command should be asynchronous to the decoding process. The host
decoder should not wait to receive status information on a process before it proceeds to another
process. After the host decoder has received a status report for a particular operation, the
accelerator shall discard that information and not report it again. (That is, the results of each
particular operation shall not be reported to the host decoder more than once.) Accelerators shall
be capable of providing status information for every buffer for every operation performed.

Accelerators are required to store up to 512 DXVA_Status_H264 structures internally, pending
status requests from the host decoder. An accelerator may exceed this value. If the accelerator
discards reporting information, it should discard the oldest data first.

The accelerator should provide status reports in approximately reverse temporal order of when
the operations were completed. That is, status reports for the most recently completed operations
should appear earlier in the list of status report data structures.

Note As noted previously, the word should describes guidelines that are encouraged but are not
mandatory requirements.

12.1 Syntax
typedef struct _DXVA_Status_H264 { UINT
StatusReportFeedbackNumber;
 DXVA_PicEntry_H264 CurrPic;
 UCHAR field_pic_flag;
 UCHAR bDXVA_Func;
 UCHAR bBufType;
 UCHAR bStatus;
 UCHAR bReserved8Bits;
 USHORT wNumMbsAffected;
} DXVA_Status_H264, *LPDXVA_Status_H264;

12.2 Semantics
StatusReportFeedbackNumber

Contains the value of StatusReportFeedbackNumber set by the host decoder in the picture
parameters data structure or the film-grain synthesis buffer for the associated operation.

CurrPic

Specifies the uncompressed destination surface that was affected by the operation.
If field_pic_flag is 1, the AssociatedFlag field in CurrPic is interpreted as follows:

Value Description

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 65

© 2007 Microsoft Corporation. All rights reserved.

0 The current picture is the bottom field of the uncompressed destination frame
surface.

1 The current picture is the top field of the uncompressed destination frame surface.

If field_pic_flag is 0, AssociatedFlag has no meaning and shall be 0.

field_pic_flag

If 0, the current picture is a frame. If 1, the current picture is a field. bDXVA_Func

Specifies the function associated with the status report information. The value must be one of
the following:

Value Description

1 Compressed picture decoding.

5 Deblocking filter.

6 Film-grain synthesis.

For more information about these function values, see section 1.5.

bBufType

Indicates the type of compressed buffer associated with this status report. If bStatus is 0, the
value of bBufType may be 0xFF. This value indicates that the status report applies to all of
the compressed buffers conveyed in the associated Execute call. Otherwise, if bBufType is
not 0xFF, it must contain one of the following values, defined in dxva.h:

Value Description

DXVA_PICTURE_DECODE_BUFFER (1) Picture decoding parameter buffer.

DXVA_MACROBLOCK_CONTROL_BUFFER
(2)

Macroblock control buffer.

DXVA_RESIDUAL_DIFFERENCE_BUFFER
(3)

Residual difference data buffer.

DXVA_DEBLOCKING_CONTROL_BUFFER
(4)

Deblocking filter control buffer.

DXVA_INVERSE_QUANTIZATION_
MATRIX_BUFFER (5)

Inverse quantization matrix buffer.

DXVA_SLICE_CONTROL_BUFFER (6) Slice control buffer.

DXVA_BITSTREAM_DATA_BUFFER (7) Bitstream data buffer.

DXVA_MOTION_VECTOR_BUFFER (16) Motion vector buffer.

DXVA_FILM_GRAIN_BUFFER (17) Film-grain synthesis buffer.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 66

© 2007 Microsoft Corporation. All rights reserved.

Note These values are the constants used in DXVA 1.0. The equivalent constants in DXVA
2.0 have different numeric values. For status reporting, the DXVA 1.0 constants are used.

bStatus

Indicates the status of the operation.

Value Description

0 The operation succeeded.

1 Minor problem in the data format. The host decoder should continue processing.

2 Significant problem in the data format. The host decoder may continue executing or
skip the display of the output picture.

3 Severe problem in the data format. The host decoder should restart the entire
decoding process, starting at a sequence or random-access entry point.

4 Other severe problem. The host decoder should restart the entire decoding process,
starting at a sequence or random-access entry point.

If the value is 3 or 4, the host decoder should halt the decoding process unless it can take
corrective action.

bReserved8Bits

This structure member has no meaning, and the value shall be 0.

wNumMbsAffected

If bStatus is not 0, this member contains the accelerator's estimate of the number of
macroblocks in the decoded picture that were adversely affected by the reported problem. If
the accelerator does not provide an estimate, the value is 0xFFFF.

If bStatus is 0, the accelerator may set wNumMbsAffected to the number of macroblocks
that were successfully affected by the operation. If the accelerator does not provide an
estimate, it shall set the value either to 0 or to 0xFFFF.

Requirements

Header: Include dxva.h.

13.0 Restricted-Mode Profiles
The following restricted-mode profiles for DXVA operation of H.264/ACV decoding are
defined. The GUIDs that identify these profiles are defined in the header file dxva.h.

13.1 DXVA_ModeH264_MoComp_NoFGT Profile
This profile supports the features necessary for a decoder that conforms to the
H.264/AVC Main and High profiles. In this profile, the host decoder performs bitstream parsing,
inverse quantization scaling, and inverse transform processing. The accelerator performs motion
compensation and deblocking, without film-grain synthesis.

1. Configuration parameters:

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 67

© 2007 Microsoft Corporation. All rights reserved.

• bConfigBitstreamRaw = 0

• bConfigMBcontrolRasterOrder = 1 required, 0 encouraged

• bConfigResidDiffHost = 1

• bConfigSpatialResid8 = 0

• bConfigResid8Subtraction = 0

• bConfigSpatialHost8or9Clipping = 0

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 68

•

•

•

•

•

•

© 2007 Microsoft Corporation. All rights reserved.

bConfigSpatialResidInterleaved = 0
bConfigIntraResidUnsigned = 0
bConfigResidDiffAccelerator = 0
bConfigHostInverseScan = 1 bConfigSpecificIDCT = 0
bConfig4GroupedCoefs = 0 or 1

2. All data buffers shall contain only data that is consistent with the constraints specified for the
High profile of H.264/AVC.

3. Film-grain synthesis is not supported in this profile.

13.2 DXVA_ModeH264_MoComp_FGT Profile
This profile supports the features necessary for a decoder that conforms to the
H.264/AVC Main and High profiles. In this profile, the host decoder performs bitstream parsing,
inverse quantization scaling, and inverse transform processing. The accelerator performs motion
compensation, deblocking, and film-grain synthesis.

1. Configuration parameters:

• bConfigBitstreamRaw = 0

• bConfigMBcontrolRasterOrder = 1 required, 0 encouraged

• bConfigResidDiffHost = 1

• bConfigSpatialResid8 = 0

• bConfigResid8Subtraction = 0

• bConfigSpatialHost8or9Clipping = 0

• bConfigSpatialResidInterleaved = 0

• bConfigIntraResidUnsigned = 0

• bConfigResidDiffAccelerator = 0

• bConfigHostInverseScan = 1

• bConfigSpecificIDCT = 0

• bConfig4GroupedCoefs = 0 or 1

2. All data buffers shall contain only data that is consistent with the constraints specified for the
High profile of H.264/AVC.

3. Support for film-grain synthesis, as specified by the SMPTE registered disclosure document
listed in section 11.0, is required in this profile.

13.3 DXVA_ModeH264_IDCT_NoFGT Profile
This profile supports the features necessary for a decoder that conforms to the
H.264/AVC Main and High profiles. In this profile, the host decoder performs bitstream parsing.
The accelerator performs inverse quantization scaling, inverse transform processing, motion
compensation, and deblocking, without film-grain synthesis.

1. Configuration parameters:

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 69

•

•

•

•

•

•

© 2007 Microsoft Corporation. All rights reserved.

• bConfigBitstreamRaw = 0

• bConfigMBcontrolRasterOrder = 1 required, 0 encouraged

• bConfigResidDiffHost = 0

• bConfigSpatialResid8 = 0

• bConfigResid8Subtraction = 0

bConfigSpatialHost8or9Clipping = 0
bConfigSpatialResidInterleaved = 0
bConfigIntraResidUnsigned = 0
bConfigResidDiffAccelerator = 1 bConfigHostInverseScan
= 1 bConfigSpecificIDCT = 2

• bConfig4GroupedCoefs = 0 or 1

2. All data buffers shall contain only data that is consistent with the constraints specified for the
High profile of H.264/AVC.

3. Film grain synthesis is not supported in this profile.

13.4 DXVA_ModeH264_IDCT_FGT Profile
This profile supports the features necessary for a decoder that conforms to the H.264/AVC Main
and High profiles. In this profile, the host decoder performs bitstream parsing. The accelerator
performs inverse quantization scaling, inverse transform processing, motion compensation,
deblocking, and film-grain synthesis.

1. Configuration parameters:

• bConfigBitstreamRaw = 0

• bConfigMBcontrolRasterOrder = 1 required, 0 encouraged

• bConfigResidDiffHost = 0

• bConfigSpatialResid8 = 0

• bConfigResid8Subtraction = 0

• bConfigSpatialHost8or9Clipping = 0

• bConfigSpatialResidInterleaved = 0

• bConfigIntraResidUnsigned = 0

• bConfigResidDiffAccelerator = 1

• bConfigHostInverseScan = 1

• bConfigSpecificIDCT = 2

• bConfig4GroupedCoefs = 0 or 1

2. All data buffers shall contain only data that is consistent with the constraints specified for the
High profile of H.264/AVC.

3. Support for film-grain synthesis, as specified by the SMPTE registered disclosure document
listed in section 11.0, is required in this profile.

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 70

•

•

•

•

•

•

© 2007 Microsoft Corporation. All rights reserved.

13.5 DXVA_ModeH264_VLD_NoFGT Profile
This profile supports the features necessary for a decoder that conforms to the H.264/AVC Main
and High profiles. In this profile, the accelerator performs bitstream parsing, inverse quantization
scaling, inverse transform processing, motion compensation, and deblocking, without film-grain
synthesis.

1. Configuration parameters:

• bConfigBitstreamRaw = 1 or 2

• bConfigMBcontrolRasterOrder = 0

• bConfigResidDiffHost = 0

• bConfigSpatialResid8 = 0

bConfigResid8Subtraction = 0 bConfigSpatialHost8or9Clipping = 0
bConfigSpatialResidInterleaved = 0 bConfigIntraResidUnsigned = 0
bConfigResidDiffAccelerator = 1 bConfigHostInverseScan = 1

• bConfigSpecificIDCT = 2

• bConfig4GroupedCoefs = 0

2. All data buffers shall contain only data that is consistent with the constraints specified for the
High profile of H.264/AVC.

3. Film-grain synthesis is not supported in this profile.

13.6 DXVA_ModeH264_VLD_FGT Profile
This profile supports the features necessary for a decoder that conforms to the H.264/AVC Main
and High profiles. In this profile, the accelerator performs bitstream parsing, inverse quantization
scaling, inverse transform processing, motion compensation, deblocking, and film-grain
synthesis.

1. Configuration parameters:

• bConfigBitstreamRaw = 1 or 2

• bConfigMBcontrolRasterOrder = 0

• bConfigResidDiffHost = 0

• bConfigSpatialResid8 = 0

• bConfigResid8Subtraction = 0

• bConfigSpatialHost8or9Clipping = 0

• bConfigSpatialResidInterleaved = 0

• bConfigIntraResidUnsigned = 0

• bConfigResidDiffAccelerator = 1

• bConfigHostInverseScan = 1

• bConfigSpecificIDCT = 2

• bConfig4GroupedCoefs = 0

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 71

•

•

•

•

•

•

© 2007 Microsoft Corporation. All rights reserved.

2. All data buffers shall contain only data that is consistent with the constraints specified for the
High profile of H.264/AVC.

3. Support for film grain synthesis, as specified by the SMPTE registered disclosure document
listed in section 11.0, is required in this profile.

13.7 DXVA_ModeH264_VLD_WithFMOASO_NoFGT Profile
This profile supports the features necessary for a decoder that conforms to all of the following
H.264/AVC profiles: Constrained Baseline, Baseline, Main, and High. In this profile, the
accelerator performs bitstream parsing, inverse quantization scaling, inverse transform
processing, motion compensation, and deblocking, without film-grain synthesis.

Note An accelerator that supports this profile shall support the flexible macroblock order
(num_slice_groups_minus1 > 0) and arbitrary slice order features of the Baseline profile of
H.264/AVC. It shall also allow redundant slices to be present in the H.264/AVC

DirectX Video Acceleration for H.264/MPEG-4 AVC Decoding 72

© 2007 Microsoft Corporation. All rights reserved.

bitstream data, although there is no requirement to process any redundant slices that might be
present.

1. Configuration parameters:

• bConfigBitstreamRaw = 1 or 2

• bConfigMBcontrolRasterOrder = 0 (has no meaning in VLD mode)

• bConfigResidDiffHost = 0

• bConfigSpatialResid8 = 0

• bConfigResid8Subtraction = 0

• bConfigSpatialHost8or9Clipping = 0

• bConfigSpatialResidInterleaved = 0

• bConfigIntraResidUnsigned = 0

• bConfigResidDiffAccelerator = 1

• bConfigHostInverseScan = 1

• bConfigSpecificIDCT = 2

• bConfig4GroupedCoefs = 0

2. All data buffers shall contain only data that is consistent with the constraints specified for the
Constrained Baseline, Baseline, Main, or High profile of H.264/AVC.

3. Film-grain synthesis is not supported in this profile. This profile is identified by the

following GUID value:

{D5F04FF9-3418-45D8-9561-32A76AAE2DDD}

This GUID is currently not defined in the Windows SDK. To use this GUID, add the following
declaration to the dxva.h header file:

// {D5F04FF9-3418-45D8-9561-32A76AAE2DDD}
DEFINE_GUID(DXVA_ModeH264_VLD_WithFMOASO_NoFGT, 0xd5f04ff9, 0x3418,
0x45d8, 0x95, 0x61, 0x32, 0xa7, 0x6a, 0xae, 0x2d, 0xdd);

Hardware accelerators that support the DXVA_ModeH264_VLD_WithFMOASO_NoFGT
profile should also advertise support for the DXVA_ModeH264_VLD_NoFGT profile
(section 13.5) because the capabilities required to support
DXVA_ModeH264_VLD_WithFMOASO_NoFGT are a superset of the capabilities required for
DXVA_ModeH264_VLD_NoFGT.

For More Information
• DXVA 1.0 specification: http://go.microsoft.com/fwlink/?LinkId=93647

• DirectX Video Acceleration 2.0 documentation:
http://go.microsoft.com/fwlink/?LinkId=94771

Web addresses can change, so you might be unable to connect to the Web site or sites mentioned
here.

