
183

Chapter 8

Using TableAdapters

After completing this chapter, you will be able to:

■ Create a TableAdapter class with the TableAdapter Configuration Wizard and the
Server Explorer.

■ Create a TableAdapter object in Visual Studio and at run time.

■ Configure a TableAdapter class.

■ Add a query to a TableAdapter.

■ Configure a TableAdapter object.

■ Execute the query methods of a TableAdapter.

In earlier chapters, you’ve seen the TableAdapters created by the Data Source Configuration
Wizard. If you’ve examined the scaffolding code in some of the exercises, you’ve even seen
them instantiated and used. In this chapter, we’ll examine this new class of objects in detail.

Understanding TableAdapters
The TableAdapter is new to Microsoft ADO.NET 2.0, or more properly, to Microsoft Visual
Studio 2005, because the TableAdapter class isn’t technically part of ADO.NET or the
Microsoft .NET Framework. Instead, TableAdapters classes are created by Visual Studio at
design time as part of Typed DataSets.

TableAdapters combine the functionality of the Command and DataAdapter objects and link
that functionality to the structure of a Typed DataSet. As we’ll see, the link is reciprocal: When
you change the SQL query that defines a TableAdapter’s Fill method, the DataSet Designer
alters the DataTable definition, and vice versa.

Tip To see the files generated by Visual Studio for a Typed DataSet, click the Show All Files
button on the Solution Explorer toolbar.

Like a DataAdapter, the primary purpose of a TableAdapter is to synchronize the data con-
tained in a DataSet with the data in the data source. It provides one or more methods to fill the
DataSet from the data source and to update the data source with changes made to the DataSet.

c08621640.fm Page 183 Friday, October 14, 2005 12:47 PM

Microsoft Press
Note
Microsoft® ADO.NET 2.0 Step by Step (ISBN 0-7356-2164-0) by Rebecca M. Riordan. Published by Microsoft Press. Copyright © 2006 by Rebecca M. Riordan.

184 Part III: Data Objects

The class is defined inside the <DataSetName>.Designer.vb file, where <DataSetName> is, of
course, the name of the Typed DataSet. TableAdapters are defined as a separate
<DataSet>TableAdapters namespace at the end of the file.

Note Partial class declarations, new to Microsoft .NET Framework 2.0, allow you to split the
definition of a class across multiple files. The most immediate effect of this split is that the code
generated by Visual Studio can be separated from user-written code.

Each TableAdapter is defined as a separate partial class within the TableAdapters namespace.
The Partial declaration means that you can easily extend the class definition in a separate code
file, insulating your extensions from the actions of the DataSet Designer.

At the simplest level, you can think of TableAdapters as sophisticated DataAdapters. Because
they encapsulate the Connection object, they save you a few lines of code for instantiating,
opening and closing a Connection object, and their syntax is simpler. But that’s only the
beginning.

As we’ve seen, the DataAdapter exposes only four commands, Select, Update, Insert and
Delete, each of which corresponds to a single SQL command. Because the TableAdapter class
is generated at design time, it can support any number of SQL statements, each exposed in a
simple method call, and the DataSet Designer provides a simple interactive interface for add-
ing queries at design time.

Furthermore, because you can extend the class definition of a TableAdapter, you can add any
functionality you require. In fact, TableAdapters are the first step toward turning a Typed
DataSet into a complete object that combines data and functionality.

Strict object-oriented programming (OOP) methodology defines an object as a single entity,
so the DataSet/TableAdapter combination doesn’t quite fit the definition. However, the two
object types are much more closely linked than is typical with the .NET Framework. Remem-
ber that changes made to the DataSet will update the Fill method of the TableAdapter and vice
versa.

Creating TableAdapters
There are two steps to creating a TableAdapter: First, you must create the class itself (or, more
often, have Visual Studio create it for you), and then you must instantiate it, as with any .NET
Framework object.

c08621640.fm Page 184 Friday, October 14, 2005 12:47 PM

Chapter 8: Using TableAdapters 185

Creating TableAdapter Classes

TableAdapter classes are defined by default whenever you use the Data Source Configuration
Wizard to define a Typed DataSet. They can also be defined in the DataSet Designer.

Like Typed DataSets, it is theoretically possible to code a TableAdapter class from scratch, but
again, it’s difficult to imagine a situation in which this would be a sensible action.

Create a TableAdapter by Using the TableAdapter Configuration Wizard

1. Open the Chapter 08 – Start project in Visual Studio, and double-click AdoSbs-
DataSet.xsd in the Solution Explorer.

Visual Studio opens the DataSet in the DataSet Designer.

2. Drag a TableAdapter from the Toolbox onto the DataSet Designer.

The DataSet Designer opens the TableAdapter Configuration Wizard.

c08621640.fm Page 185 Friday, October 14, 2005 12:47 PM

186 Part III: Data Objects

3. Make sure that the connection suggested by the wizard points to the AdoStepByStep
sample database. If it doesn’t, click the New Connection button, and create a new con-
nection as described in Chapter 1, “Getting Started with ADO.Net.” When you are fin-
ished, click Next.

The wizard suggests saving the connection string to the application configuration file.

4. Clear the check box, if necessary, and then Click Next.

The wizard displays a page requesting the command type.

5. Accept the default Use SQL Statements option, and click Next.

The wizard displays a page requesting the SQL statement to be used to fill the table.

6. Enter the following SQL statement:

SELECT * FROM [Order Details]

c08621640.fm Page 186 Friday, October 14, 2005 12:47 PM

Chapter 8: Using TableAdapters 187

7. Click Finish.

The TableAdapter Configuration Wizard adds the DataTable and its TableAdapter to the
DataSet. Notice that it also creates the Relation between Order Details and Orders.

8. Save the DataSet.

9. Double-click TableAdapters.vb (or TableAdapters.cs if you’re using C#) in the Solution
Explorer.

c08621640.fm Page 187 Friday, October 14, 2005 12:47 PM

188 Part III: Data Objects

Visual Studio opens the form in the Form Designer.

10. Press F5 to run the application.

11. Click the Show TableAdapters button.

The application displays the defined TableAdapters.

12. Select one of the TableAdapters to see the methods defined for that TableAdapter.

13. Close the application.

c08621640.fm Page 188 Friday, October 14, 2005 12:47 PM

Chapter 8: Using TableAdapters 189

Create a TableAdapter from the Server Explorer

1. With the AdoSbsDataSet still open in the DataSet Designer (it should still be open from
the last exercise), open the Server Explorer by choosing Server Explorer from the View
menu.

2. Verify that the connection to the AdoStepByStep database is displayed. If it isn’t, click
the Connect To Database toolbar button on the Server Explorer tab, and create a con-
nection to the AdoStepByStep SQL Server database as described in Chapter 6, “Model-
ing a Database by Using DataSets and DataRelations.”

3. Expand the connection to the AdoStepByStep sample database, and then expand the
Tables node.

4. Drag the Customers table onto the DataSet designer.

The DataSet Designer creates the DataTable and TableAdapter and adds them to the
DataSet.

c08621640.fm Page 189 Friday, October 14, 2005 12:47 PM

190 Part III: Data Objects

5. Save the DataSet.

6. Press F5 to run the application.

7. Click the Show TableAdapters button.

The application shows the defined TableAdapters, including the new Customers Table-
Adapter.

8. Select CustomersTableAdapters to see the defined methods.

9. Close the application.

c08621640.fm Page 190 Friday, October 14, 2005 12:47 PM

Chapter 8: Using TableAdapters 191

Creating TableAdapter Objects

Like any other classes in the .NET Framework, TableAdapter classes must be instantiated
before use. You can create objects at design time by dragging a DataTable from the Data
Sources window, or at run time by using the New constructor.

Create a TableAdapter in Visual Studio

1. Display the Form Designer, and then open the Toolbox.

2. Drag the CustomersTableAdapter from the Chapter 08 Components section onto the
Form Designer.

Visual Studio adds an instance of the TableAdapter to the components tray.

c08621640.fm Page 191 Friday, October 14, 2005 12:47 PM

192 Part III: Data Objects

3. In the Properties window, change the name of CustomersTableAdapter1 to
taCustomers.

Create a TableAdapter in Code: Visual Basic

1. Press F7 to display the Code Editor.

2. Add the following line to the class declaration, above the New constructor:

Dim taEmployees As AdoSbsDataSetTableAdapters.EmployeesTableAdapter

3. Add the following line where indicated at the end of New constructor:

taEmployees = New AdoSbsDataSetTableAdapters.EmployeesTableAdapter()

The beginning of your class file should now be:

Imports System.Data

Imports System.Data.SqlClient

Imports System.Reflection

Public Class TableAdapters

 Dim taEmployees As AdoSbsDataSetTableAdapters.EmployeesTableAdapter

 Public Sub New()

 ' This call is required by the Windows Form Designer.

 InitializeComponent()

 ' Add exercise code here:

 taEmployees = New AdoSbsDataSetTableAdapters.EmployeesTableAdapter()

 End Sub

Create a TableAdapter in Code: Visual C#

1. Press F7 to display the Code Editor.

2. Add the following line to the class declaration, above the Chapter_08 constructor:

AdoSbsDataSetTableAdapters.EmployeesTableAdapter taEmployees;

3. Add the following line to the end of the constructor where indicated:

taEmployees = new AdoSbsDataSetTableAdapters.EmployeesTableAdapter();

The beginning of your class file should now be:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Data.SqlClient;

using System.Drawing;

using System.Reflection;

c08621640.fm Page 192 Friday, October 14, 2005 12:47 PM

Chapter 8: Using TableAdapters 193

using System.Text;

using System.Windows.Forms;

namespace Chapter_08

{

 public partial class TableAdapters : Form

 {

 AdoSbsDataSetTableAdapters.EmployeesTableAdapter taEmployees;

 public TableAdapters()

 {

 InitializeComponent();

 //Add exercise code here:

 taEmployees = new AdoSbsDataSetTableAdapters.EmployeesTableAdapter();

 }

Configuring TableAdapters
Because the TableAdapter exposes only two simple properties, the majority of its configura-
tion occurs at design time, when you configure the class itself.

Configuring TableAdapter Classes

The TableAdapter class properties are shown in Table 8-1. The properties fall into two catego-
ries: those that determine how the class will be defined, and those that determine how data
will be manipulated by the TableAdapter.

You can make the TableAdapter class properties visible in the DataSet Designer by selecting a
TableAdapter at the bottom of a DataTable and then viewing the Properties window.

Table 8-1 TableAdapter Class Properties

Property Description

BaseClass The class from which the TableAdapter inherits its functionality.

ConnectionModifier Determines the visibility of the encapsulated Connection.

Modifier Determines the visibility of the TableAdapter.

Name The name of the TableAdapter.

GenerateDBDirectMethods Determines whether the TableAdapter exposes Insert, Update and
Delete methods that are sent directly to the database.

DeleteCommand The SQL statement used to delete rows.

InsertCommand The SQL statement used to insert rows.

SelectCommand The SQL statement used to fill the DataTable.

UpdateCommand The SQL statement used to update rows.

c08621640.fm Page 193 Friday, October 14, 2005 12:47 PM

194 Part III: Data Objects

The BaseClass property determines the .NET Framework class from which the TableAdapter
is derived. By default, this property is set to System.ComponentModel.Component. You can
change this setting to simply extended the TableAdapter, but there is rarely a need to do so.

The ConnectionModifier property determines the visibility of the encapsulated Connection
object. All of the standard visibility modifiers are available, with Friend being the default.

The Modifier property determines whether the TableAdapter exposes the DataTable itself
through its GetData method. The options are Public and Friend, with Public being the default.

The Name property, as you might expect, determines the name by which the TableAdapter is
referred to in code. The default is <DataTable>TableAdapter, but you can change it to any
string that conforms to the rules for naming objects in the .NET Framework.

The GenerateDBDirectMethods property determines whether the TableAdapter generates
Insert, Update and Delete commands that are executed directly against the Data Source, by-
passing the DataTable. This property is True by default.

Finally, the four Command properties determine the SQL statements to be executed by the
TableAdapter. These are similar to the corresponding Command properties in a DataAdapter,
but they expose fewer Command properties. The TableAdapter commands expose only
CommandText, CommandType and Parameters properties, while the commands encapsu-
lated by a DataAdapter expose additional properties such as the CommandTimeout.

Important The smaller property set of the TableAdapter is something you need to consider
when you decide whether to use a TableAdapter. If you need finer control over command
behavior than is available in a TableAdapter, you must use a DataAdapter instead.

c08621640.fm Page 194 Friday, October 14, 2005 12:47 PM

Chapter 8: Using TableAdapters 195

By default, a TableAdapter created by Visual Studio or the DataSet Designer exposes a single
query that corresponds to the Fill and GetData methods. (We’ll examine TableAdapter meth-
ods later in this chapter.) You can add additional queries by using the TableAdapter Query
Configuration Wizard.

Each TableAdapter query exposes the properties shown in Table 8-2.

You can make the TableAdapter query properties visible in the DataSet Designer by selecting
a TableAdapter at the bottom of a DataTable, selecting the TableAdapter query, and then view-
ing the Properties window.

The GenerateMethods property, which can be set to Fill, Get or Both, determines what
methods will be defined in the TableAdapter class. The default is Both.

For each method selected, the <method>MethodModifier property allows you to set the
visibility, while the <method>MethodName property determines the method name. The Prop-
erties window exposes only the applicable properties, based on the setting of the Generate-
Methods property.

Table 8-2 TableAdapter Query Properties

Property Description

FillMethodModifier Determines the visibility of the Fill method.

FillMethodName The name of the method.

GenerateMethods Determines whether the TableAdapter generates Fill or GetData
methods, or both.

GetMethodModifier Determines the visibility of the GetData method.

GetMethodName The name of the method.

CommandText The SQL statement executed by the methods.

CommandType The command type of the SQL statement.

ExecuteMode The return type of the SQL statement.

Parameters The Parameters collection of the SQL statement.

c08621640.fm Page 195 Friday, October 14, 2005 12:47 PM

196 Part III: Data Objects

The CommandText, CommandType and Parameters properties are common to all data com-
mands in the .NET Framework.

The ExecuteMode property specifies the return type of the SQL statement. This property can
be set to Reader, indicating that the statement returns DataRows; Scalar, indicating that the
query returns a single value; or NonQuery, indicating that the query returns no values.

Edit the Fill Method of a TableAdapter

1. Display the DataSet Designer, and select the Fill,GetData() method of the Employees
TableAdapter.

2. In the Properties window, click the ellipsis button next to the CommandText property.

The DataSet Designer opens the Query Builder.

c08621640.fm Page 196 Friday, October 14, 2005 12:47 PM

Chapter 8: Using TableAdapters 197

3. Change the SQL statement to:

SELECT EmployeeID, LastName, FirstName

FROM Employees

4. Click OK.

The DataSet Designer displays a message box asking whether to regenerate updating
commands.

5. Click Yes.

The DataSet Designer updates the Fill method and the DataTable column list.

6. Save the DataSet.

Add a Query to a TableAdapter

1. In the DataSet Designer, right-click the EmployeesTableAdapter and choose Add Query.

The DataSet Designer opens the TableAdapter Query Configuration Wizard.

c08621640.fm Page 197 Friday, October 14, 2005 12:47 PM

198 Part III: Data Objects

2. Accept the default command type, Use SQL Statements, and then click Next.

The TableAdapter Query Configuration Wizard displays a page requesting the type of
query.

c08621640.fm Page 198 Friday, October 14, 2005 12:47 PM

Chapter 8: Using TableAdapters 199

3. Accept the default of SELECT Which Returns Rows, and then click Next.

The TableAdapter Query Configuration Wizard displays a page requesting the SQL
statement.

4. Add a WHERE clause to the statement:

SELECT EmployeeID, LastName, FirstName

FROM Employees

WHERE LastName = @LastName

5. Click Next.

The TableAdapter Query Configuration Wizard displays a page requesting the methods
to be added.

6. Change the name of the Fill A DataTable method to FillByLastName, and clear the
Return A DataTable check box.

c08621640.fm Page 199 Friday, October 14, 2005 12:47 PM

200 Part III: Data Objects

7. Click Next.

The TableAdapter Query Configuration Wizard displays a results page indicating that
the SELECT statement and the Fill method were generated.

8. Click Finish.

The TableAdapter Query Configuration Wizard adds the new query to the Table-
Adapter.

9. Save and close the DataSet.

10. Press F5 to run the application.

11. Click the Show TableAdapters button.

The application displays the defined TableAdapter.

c08621640.fm Page 200 Friday, October 14, 2005 12:47 PM

Chapter 8: Using TableAdapters 201

12. Select EmployeesTableAdapter in the list box.

The application displays the query functions, which include FillByLastName.

13. Close the application.

Configuring TableAdapter Objects

After the TableAdapter class is defined, the TableAdapter object itself is very simple, exposing
only the two properties shown in Table 8-3. (You can, of course, add additional properties by
extending the class definition.)

The ClearBeforeFill property determines whether a DataTable will be emptied of DataRows
before data is loaded into it.

The Connection property returns the Connection object encapsulated by the DataAdapter,
allowing you to fine-tune its behavior. The visibility of this property is, however, controlled
by the value of the ConnectionModifier property of the TableAdapter (set in the DataSet
Designer). If the ConnectionModifier property is set to Private, for example, the Connection
will not be exposed by the TableAdapter.

Table 8-3 TableAdapter Properties

Property Description

ClearBeforeFill Determines whether a DataTable is emptied before data is
loaded.

Connection Returns the encapsulated Connection object.

c08621640.fm Page 201 Friday, October 14, 2005 12:47 PM

202 Part III: Data Objects

Using TableAdapter Methods
By default, the TableAdapter exposes the methods shown in Table 8-4. As we’ve seen, you can
change the names of each of these methods in the DataSet Designer.

The Delete, Insert and Update(col0…colN) methods are only available if the GenerateDB
DirectMethods property of the DataAdapter class is True. They operate directly on the data
source, by-passing the DataSet.

The Fill method corresponds to the Fill method of the DataAdapter, but supports only one
version, Fill(dataTable).

The GetData method returns a new copy of the DataTable. Internally, this method creates the
DataTable and calls the Fill method.

The FillBy and GetDataBy methods are generated only if the SELECT query has parameters.
They will have a signature matching the query parameter list specified in the DataSet
Designer.

Finally, the Update(dataTable) method is identical to the Update(dataTable) method of the
DataAdapter.

Table 8-4 Default TableAdapter Methods

Method Description

Delete(col0…colN) Deletes rows in the data source.

Fill(dataTable) Loads data into the specified DataTable.

FillBy(dataTable, param0…paramN) Loads data into the specified DataTable based on the
specified parameters.

GetData Returns a DataTable.

GetDataBy(dataTable, param0…paramN) Returns a DataTable based on the specified
parameters.

Insert(col0…colN) Inserts rows in the data source.

Update(dataTable) Synchronizes the specified DataTable with a data
source.

Update(dataSet) Synchronizes the DataTable in the specified DataSet
with the data source.

Update(dataRow) Synchronizes the specified DataRow with the data
source.

Update(dataRows()) Synchronizes the specified array of DataRows with the
data source.

Update(col0…colN) Updates the rows in the data source.

c08621640.fm Page 202 Friday, October 14, 2005 12:47 PM

Chapter 8: Using TableAdapters 203

Executing Query Methods

As we’ve seen, the queries that you add to the TableAdapter in the DataSet Designer are
exposed as methods of the TableAdapter class. For each query, you can choose to expose a Fill
method that receives a DataTable as a parameter and fills it with data (optionally clearing it
first), or a Get method that returns a new DataTable, or both.

This is one of the primary advantages of the TableAdapter over the earlier Connection/Data-
Adapter object combination. The TableAdapter is extensible—you can add additional queries
to the TableAdapter in the DataSet Designer and expose them as methods of the TableAdapter
class.

Execute a Default Query Method: Visual Basic

1. In the Code Editor, add the following line to the btnFill_Click event handler:

taEmployees.Fill(dsAdoSbs.Employees)

This line calls the default Fill method of the taEmployees TableAdapter we created
earlier.

2. Press F5 to run the application.

3. Click the Fill button.

The application fills the DataGridView.

4. Close the application.

c08621640.fm Page 203 Friday, October 14, 2005 12:47 PM

204 Part III: Data Objects

Execute a Default Query Method: Visual C#

1. In the Code Editor, add the following line to the btnFill_Click event handler:

taEmployees.Fill(dsAdoSbs.Employees);

This line calls the default Fill method of the taEmployees TableAdapter we created
earlier.

2. Press F5 to run the application.

3. Click the Fill button.

The application fills the DataGridView.

4. Close the application.

Execute a Parameterized Query Method: Visual Basic

1. In the Code Editor, add the following line to the btnGet_Click event handler:

taEmployees.FillByLastName(dsAdoSbs.Employees, "Davolio")

This line calls the default FillByLastName method of the taEmployees TableAdapter.

2. Press F5 to run the application.

3. Click the FillByLastName button.

The application fills the DataGridView with the matching record.

c08621640.fm Page 204 Friday, October 14, 2005 12:47 PM

Chapter 8: Using TableAdapters 205

4. Close the application.

Execute a Parameterized Query Method:Visual C#

1. In the Code Editor, add the following line to the btnGet_Click event handler:

taEmployees.FillByLastName(dsAdoSbs.Employees, "Davolio");

This line calls the default FillByLastName method of the taEmployees TableAdapter.

2. Press F5 to run the application.

3. Click the FillByLastName button.

The application fills the DataGridView with the matching record.

4. Close the application.

c08621640.fm Page 205 Friday, October 14, 2005 12:47 PM

206 Part III: Data Objects

Summary
In this chapter we examined TableAdapters, which combine and extend the functionality of a
DataAdapter and a Connection. TableAdapters are specific to a DataTable and are generated at
design time by Visual Studio 2005.

We examined the technique for creating a TableAdapter class in the DataSet Designer and saw
an example of adding a parameterized query to the TableAdapter class. We then looked at the
straight-forward process of instantiating a TableAdapter at run time and calling its methods.
Along the way, we examined the properties exposed by both the TableAdapter class and the
instantiated TableAdapter object, which are closely related to the properties exposed by the
DataAdapter and Connection objects that the TableAdapter encapsulates.

c08621640.fm Page 206 Friday, October 14, 2005 12:47 PM

