
 

 

 

 

 

Microsoft Dynamics
®

 AX 2012  
 

 

 

Selecting the Best 

Development Technology for 

Your Application 

Development Scenario 
 

White Paper 
 

This white paper provides an overview of the common 
development patterns, programming models, and development 
tool changes in Microsoft Dynamics AX 2012. It provides 

guidelines for selecting the best development technology for 
your business application development scenario. 

 

 

Date: January 2011 
 

http://microsoft.com/dynamics/ax 
 

 
Author: Chandramouli Venkatesh, Principal Program Manager 
Lead 

 
Send suggestions and comments about this document to 

adocs@microsoft.com. Please include the title with your 
feedback. 

 

http://microsoft.com/dynamics/ax
mailto:adocs@microsoft.com?subject=Microsoft%20Dynamics%20AX%202012%20Whitepaper


 

 

2 
 
SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

Table of Contents  

Introduction ................................................................................................ 3 

Development patterns in Microsoft Dynamics AX 2012 ............................... 3 

Programming models in Microsoft Dynamics AX 2012 ................................ 5 

Development framework changes ............................................................... 6 

Selecting the best development technology .............................................. 12 

Development technologies road map ........................................................ 15 

Conclusion ................................................................................................ 16 
  



 

 

3 
 

SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

Introduction 

Microsoft Dynamics® AX 2012 provides business application developers with new choices for 
programming models and developer technologies. This white paper discusses the following topics: 

 Development patterns in Microsoft Dynamics AX 2012 

 Programming models available in Microsoft Dynamics AX 2012 

 Changes to the core development framework in Microsoft Dynamics AX 2012  

 Selecting the appropriate programming model for your development patterns 

 The Microsoft Dynamics AX development technologies road map 

This white paper helps you pick the best programming model for your business application 
development scenario. Each programming model has advantages and disadvantages, and in some 
cases, the models may overlap in functionality. It is important that you choose the right programming 

model for your scenario because the choices you make initially can simplify the development 
experience and improve developer productivity. This can result in faster time to market and better 

supportability of the resulting business application.  

This white paper is intended for anyone involved in developing business applications in the Microsoft 
Dynamics AX environment. Familiarity with Microsoft® Visual Studio®, the .NET Framework, the 
MorphX® development environment, and the Business Connector is assumed. 

Development patterns in Microsoft Dynamics AX 2012 

To choose the appropriate programming model and tools for your business application development, 
you must first identify the basic development patterns that can be combined to create your 
application. Development patterns are the building blocks of any business application, and they fall 
into the following categories: 

 Customization 

 Alteration 

 Extension 

 Enhancement 

 Integration 

 External application module development 

 Custom dedicated applications development 

 Report development 

 Enterprise Portal Web application development 

Although real-life applications rarely fit neatly into a single development pattern, it is possible to 
identify large parts of an application that fit into one of these development patterns. It is important to 
understand these pattern categories, because each of the following programming models in Microsoft 

Dynamics AX is best suited for to one of these development patterns. 

The following sections provide definitions and an example of each development pattern.  

Customization  

Customization is the development pattern in which you create new functionality by altering, 
extending, or enhancing the functionality in the shipped product.  

Alterations to the base functionality are achieved by changing the metadata and source code of the 
base application. This is done through the alteration of artifacts such as X++ classes, tables, and 



 

 

4 
 
SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

Visual Studio projects in a higher layer, such as, for example, the ISV layer or the VAR layer. The 
unique layering feature of Microsoft Dynamics AX enables the system to synthesize the final 
application logic to be executed at run-time by aggregating the metadata and code modifications 
across all the layers. You should be aware that this layer-based customization capability is applicable 

to all artifacts stored in the Microsoft Dynamics AX model store, including the Visual Studio project 
artifacts. 

Extensions to functionality are achieved by incrementally increasing base functionality by adding to 
the source code in the business logic of the base application. 

Enhancements to the application are achieved by adding new functionality originally unavailable in 
the base application. Typically, an enhancement is larger in scope than an alteration or extension. 

An example of customizations would be a scenario in which a new regulation from the government 

requires the existing sales tax computation business logic to reflect the inclusion of an additional 
“environmental sustainability tax” component. If the calculation behind this new component is 
straightforward and simple, you can simply alter the base tax computation logic in a higher layer and 

directly implement the required source code changes. However, if this tax module has business rules 
that are more complex, you should consider enhancing the base product with a new tax engine 
component that implements these requirements. 

Integration 

Integration is the development pattern that involves enabling existing applications (not written 
exclusively for Microsoft Dynamics AX) to interact and work with Microsoft Dynamics AX across 
process boundaries. 

An example of integration is when a value added reseller (VAR) integrates with an existing legacy 
Customer Relationship Management (CRM) system to synchronize the customer list between Microsoft 
Dynamics AX and the legacy CRM system. 

External application module development 

The development pattern for application modules that run out-of-process of the AOS server or 
Microsoft Dynamics AX client processes. 

Custom dedicated application development is the development pattern that builds a new, custom 
external application/client that accesses functionality and data in the Microsoft Dynamics AX system. 
These applications can span multiple platforms and programming languages. 

An example of custom dedicate application development is creating a Windows® Phone 7 application 
to view open sales orders in Microsoft Dynamics AX. 

Report development is the development pattern that creates custom reports and customizes any 
out of the box reports for the Microsoft Dynamics AX platform. 

Enterprise Portal web application development is the development pattern that creates web 
applications specifically built on the Microsoft Dynamics AX Enterprise Portal development framework. 

An example of web application development is creating an Enterprise Portal-based employee self-
service page to enter timesheet data. 

  



 

 

5 
 

SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

Programming models in Microsoft Dynamics AX 2012 

Much of Microsoft Dynamics AX functionality is contained in X++ classes. The programming models 
are how you access that functionality. The following programming models are supported in Microsoft 
Dynamics AX 2012: 

 X++ development 

 .NET languages development with weakly typed .NET interop to X++ 

 .NET languages development with strongly typed .NET interop to X++  

 Services 

The following table provides a brief description of each of the programming models and their 
advantages and disadvantages. 

Programming model Advantages Disadvantages 

X++ development – The 
programming model in which the 
developer directly adds or alters 
Microsoft Dynamics AX metadata 
and/or X++ source code. This 
model provides complete access to 
all the base functionality 
implemented in the lower layers in 
the system. This is the most 
commonly used programming 
model in Microsoft Dynamics AX 
development. 

 The most powerful 
programming model because it 
provides complete access to all 
functionality in the system. 

 Precise and fine-grained 
control over the scope of 
customizations. 

 

 Steeper learning curve for .NET 
developers. 

Weakly typed .NET interop to 
X++ – The Business Connector 
presents a comprehensive but 
weakly typed programming model 
to access all the Microsoft 
Dynamics AX metadata and X++ 
business logic from .NET. This is 
the only mechanism available for 
.NET to X++ interop in Microsoft 
Dynamics AX 2009 and earlier 
versions. This model continues to 
be available and supported in 
Microsoft Dynamics AX 2012. 

 

 Opens up Microsoft Dynamics 
AX development to the .NET 
community. 

 

 Weakly typed programming 
model abstraction results in 
most problems being found at 
run time rather than at design 
time, which can lead to 
increased total cost of 
ownership (TCO). 

 

Strongly typed .NET interop to 
X++ – In Microsoft Dynamics AX 
2012, the Visual Studio Tools 
provides access to a strongly 
typed programming model for 
Microsoft Dynamics AX metadata 
and X++ business logic. This is 
achieved through the generation 
of strongly typed .NET proxies on 
top of the newest version of the 
Business Connector. 

 

 

 Adapts Microsoft Dynamics AX 
development seamlessly into 
the .NET paradigm. 

 Strongly typed programming 
model. 

 Results in more maintainable 
code. 

 Precise and targeted access to 
the Microsoft Dynamics AX 
system functionality needed. 

 Requires redistribution of 
Business Connector assemblies 
with the consuming .NET 
application. 

 Not firewall friendly due to 
underlying dependency on 
Remote procedure call (RPC) 
protocols. 

 

  



 

 

6 
 
SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

Programming model Advantages Disadvantages 

Services – Exposes Microsoft 

Dynamics AX functionality through 
WS-* standards-compliant service 
interfaces. In addition to exposing 
functionality through services that 
ship with Microsoft Dynamics AX 
2012, Microsoft Dynamics AX 2012 
also provides declarative language 
constructs (X++ attributes) and 
development tools so that you can 
quickly expose existing X++ 
business logic as services without 
additional coding.  

 Standards-based service 

interfaces enable widening 
reach to many platforms, such 
as mobile platforms.  

 Strongly typed programming 
model. 

 Firewall friendly. 

 We recommend that you use 
"chunky" interfaces that have 
fewer methods that enable you 
to send the required data in 
fewer, larger, chunks, when 
possible.  

 Typically, coarse-grained 

chunky service interfaces limit 
precision of functionality 
exposure--you may need to 
use a less specific method to 
meet your needs. 

Development framework changes 

In Microsoft Dynamics AX 2012, major changes have been made to the development framework and 
key enabling technologies. It is important that you understand these changes, because they directly 
impact your development experience. You should consider these changes along with the available 
development patterns and programming models when preparing for application development. The key 
framework changes in Microsoft Dynamics AX 2012 include the following: 

 X++ is compiled into Common Intermediate Language (CIL). 

 There is extensive tooling support in Visual Studio through Visual Studio Tools for Microsoft 
Dynamics AX. 

 There is a single repository for .NET and X++ projects. 

 Microsoft Dynamics AX 2012 supports eventing. 

 Access to external systems from X++ has been simplified. 

 Richer program abstractions are available in the data layer in Microsoft Dynamics AX 2012. 

X++ compiled into Common Intermediate Language (CIL) 

In Microsoft Dynamics AX 2012, all of the X++ source code is compiled into CIL. However, this CIL-
compiled X++ is enabled for execution only on the AOS server and only for the following: 

 Business logic that runs within a service 

 Business logic that runs in batch jobs 

 Business logic explicitly tagged to run as CIL on the server 

Although this happens transparently, you will see the change when debugging X++ code that runs in 
services and batch jobs. In Microsoft Dynamics AX 2012, you can use the Visual Studio debugger for 
debugging X++ running as CIL. 

Figure 1 and Figure 2 show you how to trigger CIL generation in the developer workspace. 



 

 

7 
 

SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

 

Figure 1: Menu items in the AOT for CIL generation 

 



 

 

8 
 
SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

 

Figure 2: Buttons in the AOT for CIL generation 

Visual Studio Tools for Microsoft Dynamics AX 

Managed code development in Microsoft Dynamics AX 2012 has extensive tooling support in Visual 
Studio through Visual Studio Tools. The Application Explorer is exposed in the Visual Studio integrated 

development environment (IDE); making it possible to reference Microsoft Dynamics AX artifacts such 
as X++ classes and tables from .NET code by using drag-and-drop functionality (see Figure 3).  

Additional features provide a more seamless interop experience. For example, tightly integrated build 
and deploy actions enable automatic deployment of managed code run-time artifacts to the server and 
client.  

Note: In Microsoft Dynamics AX 2012, certain development tasks, such as report development, 
require Visual Studio as the IDE. 

 



 

 

9 
 

SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

 

Figure 3: Application Explorer in the Visual Studio IDE 

 

Single repository for .NET and X++ projects 

All .NET projects are now stored in and managed out of the same model store that is used for X++ 
projects (see Figure 4). This means that layer-based source code customization is available for .NET 
projects in the same way that it is available for X++ code. 

 



 

 

10 
 
SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

 

Figure 4: Visual Studio Projects in Application Explorer  

Eventing 

Eventing is a new design pattern for customization that is designed to enable non-intrusive, 
maintainable customizations. This technology enables you to customize the system without 

extensively altering source code in the base application. 

Eventing enables customization behaviors to be implemented in event handlers (see Figure 5). The 
event handler code is called in response to an event that is raised in the course of the business logic 
execution on the system.  

There are two types of events: 

 Coded events are events that are explicitly raised in the system because code was explicitly 
written to raise the event. The event handlers for such events are simply registered as 

delegates that are invoked when the coded event is raised.  

 Automatic events are events that are automatically raised by the system because of some 
event occurring in the system. Microsoft Dynamics AX 2012 supports two automatic event 

types: pre and post. Pre and post are predefined events that occur when class methods are 
called. The pre-event handler is called prior to the execution of the designated method, and 
the post-event handler is called after the designated method call has ended.  

 

This pattern reduces TCO related to source code conflicts and code upgrade issues across different 
ISV/partner solutions and versions by moving logic into event handlers. Event handlers can be written 
in either X++ or .NET languages. For more information about eventing, see the "New Eventing 
Concepts" white paper, which is available in the Technical Conference materials.  



 

 

11 
 

SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

 

Figure 5: Delegate and its event handler 

Simplified access to external systems from X++ 

External systems that have a .NET interface or a service interface are accessed from X++ by using the 
X++ Interop to .NET feature. In addition to the ability to add a reference to a .NET assembly (a 

feature that was introduced in Microsoft Dynamics AX 2009), .NET projects that are managed in the 
model store are seamlessly accessible to X++ code. It is not necessary to add explicit assembly 
references or to perform any deployment steps.  

Note: You can no longer add a service reference in MorphX in Microsoft Dynamics AX 2012. To access 
external web services from within X++, you must now first consume the service in a .NET project, and 
then add that project to Microsoft Dynamics AX. After you have added the project to the Microsoft 
Dynamics AX model store, you can access the project as any other .NET project from within the X++ 

code.  

 

Richer programming abstractions 

Richer programming abstractions are now available in the data layer in Microsoft Dynamics AX 2012. 

These high-level abstractions simplify business logic development for many complex, real-world 
scenarios.  

Date effective fields 

Start and end time columns can be used to track the state of an entity over different time periods. For 
example, a table with date effective fields can track the start and end date for each a piece of 
equipment that is rented to a customer. 



 

 

12 
 
SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

Unit of work 

Unit of work is a framework that allows application developers to define a table graph to achieve the 
following four common operations at the server side without a lot of X++ code:   

 Automatic ID (primary and foreign key) allocation 
 Insert/Update/Delete sequence 
 In memory rollback in case of failure during DML at the back end 
 Transaction management 

An example of a table graph is a salesorder graph composed of sales, salesline, inventdim tables 

Table inheritance 

Table inheritance is similar to the concept of object inheritance and polymorphism in object-oriented 
programming languages. Table inheritance brings end-to-end support to the Microsoft Dynamics AX 
tables for the following: 

 Field inheritance 
 Method inheritance 
 Method polymorphism 

 Casting  
 CUD support for the entire graph of tables in the hierarchy 

Selecting the best development technology 

Now that we have looked at the application development patterns, the available programming models, 
and the development framework changes in Microsoft Dynamics AX 2012, we can use this information 
to consider which programming models work best for each of the development patterns. 

Customizations 

Customizations often require source code/business logic customizations in addition to metadata 

changes. You can choose to do business logic customizations in either X++ or in .NET languages. 
However, we strongly recommend that you decouple your layer-based customizations by using events. 
If you opt to develop your event handlers in .NET, you should use the strongly typed .NET interop to 
X++ to gain access to any Microsoft Dynamics AX classes or tables. The weakly typed .NET interop to 
X++ based on Business Connector is supported only for backward compatibility. 

Integrations  

Integrations to external systems are best implemented by using the services programming model. 
Although the weakly typed and strongly typed .NET interop to X++ can be used for the integration 
development pattern, we do not recommend the use of these technologies for integration. Their 
firewall unfriendliness together with their dependencies on Business Connector assemblies make these 

technologies unfit for most integration scenarios. 

If the functionality that you need is not available in a service that ships with Microsoft Dynamics AX 
2012, you can use the declarative attributes to expose existing X++ classes and methods as a service 

interface. 

External application modules  

External application modules that are designed to run only on the AOS server can access Microsoft 
Dynamics AX functionality via the strongly typed .NET interop to X++. Application modules that are 
meant to run on client computers without the AOS server should be developed against the services 
programming model only.  



 

 

13 
 

SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

Report development  

Report development is a common task, and strategic investments have been made in this area to 
align with Microsoft SQL Server® Reporting Services. Report design tasks are performed in Visual 
Studio by using the Reporting Services report designer tools (see Figure 6) and in MorphX.  

 

Figure 6: Report development in Visual Studio 

When you design a new report or customize an existing report, you should evaluate the best data 
source types to fetch the required data. The following data source types are supported:  

 Query 

 Report Data Provider 

 Data Methods 

Query 

Query data sources are modeled Microsoft Dynamics AX query artifacts that are created and managed 

in the Application Object Tree (AOT) using MorphX. They are used to retrieve report data.  

Report Data Provider (RDP) 

RDP data sources are X++ code artifact that are created and managed in the model store using 

MorphX. An RDP is used to generate data for reports in those cases where a query is insufficient to 
model the semantics. For example, you should use an RDP when data must be transformed for use in 
the report, or where the data must be extensively processed before sending it to the report. 

Data Methods 



 

 

14 
 
SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

Reporting Services reports for Microsoft Dynamics AX 2012 provides data methods as a mechanism  to 
enable a report developer to combine data from multiple data sources (such as, for example, Microsoft 
Dynamics AX and an existing legacy ERP system) to be shown in a report. 

Code in data methods can only be written in Microsoft Visual C#®. This code executes on the server 

that is running Reporting Services.  

For performance reasons, use methods and interfaces that minimize the number of round trips 
between Reporting Services and the AOS. We recommend that you ensure that data methods use 
"chunky" web service interfaces. If such a service does not already exist, then you should use the 
declarative attributes to expose the required X++ logic as a service. You should not use .NET interop 
to X++ from within data methods. 

Choosing a reporting data source 

For report development, your first choice for a report data source type should be a query. Your second 
choice should be an RDP. Data methods should be used only for cases where the report mashes up 

data from multiple data sources.  

Enterprise Portal application development 

Enterprise Portal application development is best done in Visual Studio using the Visual Studio Tools 
for Microsoft Dynamics AX. The Enterprise Portal applications that ship with Microsoft Dynamics AX 
rely on the services and the strongly typed .NET interop to X++ programming models to access 
functionality on the AOS server. 

Any UI-specific logic, as before, must be coded in ASP.NET managed code. Access to Microsoft 
Dynamics AX business logic implemented in X++ should be through services or strongly typed .NET 

interop to X++. 

Enterprise Portal provides several ASP.NET user interface controls for common tasks, including data 
binding. Several of these controls, such as the list page, Info Parts, and Cues parts can be reused "as 
is" in Microsoft Dynamics AX 2012 client forms as well. 

Summary of choosing a programming model 

The following table lists which programming model or models are best used in each development 
pattern. 

Design Pattern Programming Model 

 Strongly typed .NET 
interop to X++ 

Services Object-oriented 
development in X++ 

Customization Use to access functionality 
implemented in X++ from 
.NET. Where appropriate, 
you should use eventing to 
decouple customization 
business logic implemented 
in .NET. 

Not recommended Layer-based X++ source 
code customization is 
supported. Where 
appropriate, you should 
use eventing to 
decouple customization 
business logic 
implemented in X++. 

Integration Not recommended Use service interfaces to 
access Microsoft 
Dynamics AX. 

Not recommended 



 

 

15 
 

SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

External  application 
development 

Use if your Windows 
application runs only on the 
AOS server. 

Use service interfaces to 
access Microsoft 
Dynamics AX in all other 
cases, including 
applications that are not 
Windows-based.  

Not recommended 

Report development Not recommended Use service interfaces 
when implementing data 

methods as your report 
data source type. 

Use when developing an 
RDP data source type 

for your reports 

Enterprise Portal 
application 

development 

Use from Enterprise Portal 
applications to access 
business logic that is in 
X++ classes.  

Use services to access 
Microsoft Dynamics AX 
functionality, especially if 
the application is Internet 
facing. 

Not recommended 

Development technologies road map 

This section discusses the future strategic roadmap of Microsoft Dynamics AX development 
technologies and relates how the development technology features in Microsoft Dynamics AX 2012 are 
steps in that direction. The strategic goals of development in Microsoft Dynamics AX 2012 are as 
follows: 

 Continue to innovate and evolve the X++ language to align with and to better leverage the 

larger Microsoft development ecosystem. 

 Bring together the best of Microsoft Dynamics AX model-driven development with the best of 
.NET development. 

 Open up Microsoft Dynamics AX for application development in other platforms, such as 
mobile platforms. 

As mentioned earlier, the X++ business logic in both services and batch jobs is executed as CIL by the 

Common Language Runtime (CLR) instead of being interpreted by the X++ interpreter. To support 
this compilation into CIL, the X++ compiler has been updated to enable the successful compilation of 
X++ as a fully Common Language Specification (CLS)-compliant language. These changes help 
position the X++ language to be able to seamlessly leverage improvements in the CLR, such as 
optimizations for multi-core and parallel execution environments. 

For application scenarios that require interop between X++ and .NET, the strongly typed .NET interop 
to X++ automatically handles all the underlying marshaling and unmarshaling of data types across the 

X++/.NET boundary, further blurring the line between the two environments. Additionally, X++/.NET 
interop supports idempotency of objects across the interop boundary, making the development 
experience more seamless. 

Visual Studio Tools for Microsoft Dynamics AX will continue to evolve and enable even more of the 
development for Microsoft Dynamics AX to be done in the Visual Studio IDE. The unified model store 
for X++ and .NET projects together with cross-reference support for .NET projects further unifies the 
.NET and X++ development experience for Microsoft Dynamics AX developers. 

The WS-* standards-based services strategy is geared towards opening up Microsoft Dynamics AX 
development to a wide variety of platforms, including the mobile application platforms. The ability to 
create data and service contracts enables you to expose your existing investments in X++ business 
logic as services. Going forward, more and more of the surface area of the product will be exposed via 
services. 



 

 

16 
 
SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

Conclusion 

This white paper provided an overview of the development patterns, the programming models, and 
the development framework changes in Microsoft Dynamics AX 2012. It also discussed the 
applicability of each of the programming models to the various business application development 
patterns to help you determine which development technologies to use in your development scenario. 
Finally, this white paper provided information about the future of the Microsoft Dynamics AX 

development technologies. We hope that you will find this information useful in selecting the best 
development technology for your application development scenario in Microsoft Dynamics AX 2012. 



 

 

17 
 

SELECTING THE BEST DEVELOPMENT TECHNOLOGY FOR YOUR APPLICATION DEVELOPMENT SCENARIO 

 

This document is provided “as-is.” Information and views expressed in this document, including URL and other 
Internet Web site references, may change without notice. You bear the risk of using it.  

Some examples depicted herein are provided for illustration only and are fictitious.  No real association or 
connection is intended or should be inferred. 

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You 
may copy and use this document for your internal, reference purposes. You may modify this document for your 
internal, reference purposes.  

© 2011 Microsoft Corporation.  All rights reserved. 

Microsoft, the Microsoft Dynamics Logo, Microsoft Dynamics, MorphX, SQL Server, Visual C#, Visual Studio, and 
Windows are trademarks of the Microsoft group of companies. 

All other trademarks are property of their respective owners. 

 

 

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your 
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar Microsoft 
software, automating and streamlining financial, customer relationship and supply chain processes in a way that 
helps you drive business success.   

 

 

U.S. and Canada Toll Free 1-888-477-7989 

Worldwide +1-701-281-6500 

www.microsoft.com/dynamics 

http://www.microsoft.com/dynamics

