

Building Microsoft .NET Applications
using Visual Studio 2005 and
SAP NetWeaver Web Services

Author
Birgit Steiner, Architect, Softlab GmbH, birgit.steiner@softlab.de

Co-Editors
Tilo Böttcher, SAP Program Manager CTSC, Global SAP Alliance, Microsoft,
tiloboet@microsoft.com
Jürgen Daiberl, SAP Program Manager CTSC, Global SAP Alliance, Microsoft,
jdaiberl@microsoft.com

Summary
This paper provides information about how to use the Web Services SAP NetWeaver
Application Server offers with Visual Studio 2005. The paper contains a detailed walk-
through of how to configure SAP NetWeaver for offering Web Services including
screenshots and the necessary SAP transactions and a detailed explanation of how to
write a .NET application using the Web Services from SAP. In addition the author
describes a possible approach for tracing and debugging.

Collaboration Technology Support Center – Microsoft – Collaboration Brief

April 2006

mailto:birgit.steiner@softlab.de
mailto:tiloboet@microsoft.com
mailto:jdaiberl@microsoft.com

Applies to
 Microsoft Visual Studio .NET 2005
 Microsoft .NET Framework 2.0
 SAP NetWeaver 04
 SAP NetWeaver Application Server
 SAP WebAS 6.20 ï 6.40

Keywords
SAP NetWeaver, Web Services, Visual Studio 2005, SAP Integration

Level of difficulty
Technical consultants, Solution Architects, Developers

Contact
This document is provided to you by the Oxford Computer Group Ltd. and the Collaboration Technology
Support Center Microsoft, a joint team from SAP and Microsoft that drives interoperability.
For feedback or questions you can contact the Softlab GmbH at info@softlab.de the CTSC at
ctsc@sap.com or ctsc@microsoft.com. Please check the .NET interoperability area in the SAP Developer
Network (http://sdn.sap.com) and at the Microsoft-SAP Alliance web site (http://www.microsoft-sap.com) for
any updates or further information.

mailto:info@softlab.de
mailto:ctsc@sap.com?subject=Feedback%20%22Template%20collaboration%20brief%22
mailto:ctsc@microsoft.com
http://sdn.sap.com/
http://www.microsoft-sap.com/

This document is a common publication by SAP and Microsoft (ñCo-Editorsò) who have both contributed to
its content and retain respective rights therein.

The information contained in this document represents the current view of the Co-Editors on the issues
discussed as of the date of publication. Because the Co-Editors must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of the Co-Editors, and the Co-Editors
cannot guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. NEITHER OF THE CO-EDITORS MAKES ANY
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under
copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or
for any purpose, without the express written permission of the Co-Editors.

Either Co-Editor may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in this document. Except as expressly provided in any written license
agreement from the respective Co-Editor(s), the furnishing of this document does not give you any license to
these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, any example companies, organizations, products, domain names, e-mail
addresses, logos, people, places and events depicted herein are fictitious, and no association with any real
company, organization, product, domain name, email address, logo, person, place or event is intended or
should be inferred.

 2005 Microsoft Corporation. All rights reserved.

 2005 SAP AG. All rights reserved.Microsoft, Windows, Outlook, and PowerPoint and other Microsoft

products and services mentioned herein as well as their respective logos are trademarks or registered
trademarks of Microsoft Corporation.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products and services
mentioned herein as well as their respective logos are trademarks or registered trademarks of SAP AG in
Germany and in several other countries all over the world. All other product and service names mentioned
are the trademarks of their respective companies. Data contained in this document serves informational
purposes only. National product specifications may vary.

The names of actual companies and products mentioned herein may be the trademarks of their respective
owners.

Contents

Author .. 1
Co-Editors.. 1
Summary ... 1
Applies to... 2
Keywords ... 2
Level of difficulty .. 2
Contact .. 2
Contents .. 4
Introduction ... 5
The Basics ... 5
Make It Work .. 6

Set up SAP Web Service .. 6
Set up .NET Web Service Client .. 15

Do It .. 18
Some Particularities with SAP Web Services ... 19

XxxSpecified ... 19
XSD Data Type Restrictions .. 20
BAPIRET and BAPIRET2 Objects ... 21
Call By Reference Array Parameters .. 23

Tracing ... 25
In SAP .. 25
On the Microsoft Client .. 27

Conclusion .. 28
Step-by-Step Guide ... 28

Prerequisites ... 28
Software .. 28
Permissions ... 28

SAP Web Service .. 29
Check for Package .. 37
Create a Transport Request .. 45

.NET client ... 47
SAP Transactions ... 53

Manage Packages ... 53
Web Service Creation ... 53
Web Service Administration and Configuration ... 53
Web Service Troubleshooting ... 53

Introduction
Using the SAP NetWeaver Application Server Web Services from .NET code is as easy
as using any other Web Service written in Java, .NET or any other programming
language. So, why to write a whitepaper?
It is easy if everything is set up properly. So the first part will show you what you need to
set up a Web Service in SAP and how to create the .NET Web Service client.
It is easy if everything works but as experience shows it often doesnôt. Thatôs why we will
show common issues and how you can troubleshoot errors.
And last but not least we will walk you through the creation of a SAP Web Service using
an existing BAPI1 and a .NET Web Service client step-by-step.

This paper wonôt cover the basic concepts and standards of Web Services, how to write
a Web Service, neither in .NET nor in SAP, how to call Web Services from SAP, and
wonôt discuss architectural topics like ñcontract-firstò, messaging patterns, UDDI, etc.

The Basics
In this whitepaper we use the latest software versions of Microsoft and SAP. Both have a
sound support of Web Service technology and standards - Microsoft with its products
.NET Framework 2.0 and Visual Studio 2005 and SAP with the NetWeaver Application
Server 6.40.

Microsoft .NET supports Web Services since the advent of the .NET Framework 1.0.
Since Visual Studio .NET the IDE comes with built in support for Web Service. On the
service side we have ASP.NET Web Service project template. On the client side we
have the Add Web Reference wizard that creates the Web Service proxy classes from a
WSDL. Generating Web Service and Web Service client classes from a WSDL can also

1 BAPI is a Business Application Programming Interface to existing object orientated methods,
used for synchronous communication, implemented as Remote Function Call

be achieved by the tool wsdl.exe that comes with Visual Studio. In the core product the
standards SOAP 1.1 and 1.2, WSDL, UDDI and WS-I BP 1.0 are integrated. With WSE
(Web Service Enhancements) Microsoft provides a tool kit that supports and eases the
implementation of the WS-* standards support, for instance WS-Security, in Web
Services.

The SAP NetWeaver Application Server 6.40 comes with an infrastructure for Web
Services that implements the basic Web Services standards like SOAP 1.1, WSDL,
UDDI and WS-I BP 1.0. From the WS-* standards it currently supports WS-Security only.
On top of this infrastructure the Web Service Toolset offers wizard driven configuration of
Web Service interfaces, WSDs, security and technical communication features. It also
supports publishing of Web Services in UDDI registries.

In both technologies there are frameworks that hide the raw SOAP message from the
developer, i.e. the developer can write a BAPI in SAP or a method in .NET as usual
without having knowledge of the format of a SOAP message. In the clients you can even
call a Web Service method like any other method of an object. The environments (SAP
NetWeaver Application Server and .NET Framework) handle the transformation from
ñnormalò code into SOAP messages for the developer. This is done in the underlying
infrastructure by serializing the call into the SOAP message and by deserializing
incoming calls for instance into an instance of a .NET object. This applies for both
directions, i.e. SOAP requests and SOAP responses. In .NET this works not only with
ñgoodò messages, also exceptions thrown in the code are transformed into SOAP faults.
In SAP error handling looks a little bit different, since there is a return structure that holds
error messages for ñlogicalò errors, BAPIRET or BAPIRET2, these are returned to the
caller as any other SOAP response. Only errors in the infrastructure are returned as
SOAP faults, e.g. if a Web Service does not support the called method.
Before any system can communicate with your Web Service you have to provide the
interface description in form of a WSDL. This is also created automatically by both
technologies.

Make It Work
What do we want to achieve? We want to call a SAP Web Service from .NET.
Technically speaking this means there must be a SAP Web Service and then we have to
build a .NET client that is able to communicate with this Web Service.

Set up SAP Web Service
To create a Web Service in SAP you do not have to write ABAP 2or Java code, you can
just configure an existing BAPI or RFC3.
For this you must start the Web Service Creation Wizard. There are three different entry
points to the wizard. You can select a BAPI or a remote function module in transaction
SE37 or SE80 and start the Web Service Creation Wizard for it.

2 ABAP (Advanced Business Application Programming) is the object-oriented programming
language for SAP
3 RFC (Remote Function Call) is a application program interface for SAP applications and is used
for synchronous and asynchronous communication

Another way is to launch the wizard directly with the transaction code
WS_WZD_START.

The wizard guides you through the steps of creating a virtual interface, choosing the
endpoint and operation, creating the Web Service definition and releasing the Web
Service.

Before you start you should check if you have a package for storing your Web Service.
You can check this in the ABAP Development Workbench (transaction code SE80) in the
Repository Browser. How you can check and create a package is described in Check for
Package.

Stepping through the Web Service Wizard is quite straight forward. For your first Web
Service we would suggest that you stick to the default settings and do not configure
name mapping or WS-Security for instance. You, especially .NET developers, have to
pay attention to use a Virtual Interface name and a Web Service Definition name from
the same namespace as your package, i.e. in our case both have to start with Z.

When you finish the wizard SAP creates all objects and their corresponding transport
requests for you. That is the point where you need a package for your Web Services.

Instead of using the Web Service Creation Wizard you could have created the Virtual
Interface and the Web Service Definition manually using the transaction SE80.

So the Web Service was created, but where is it? There are multiple transactions to view
the Web Service:

¶ SE80
beneath your package you find the settings for the Web Service Definition and
the Virtual Interface. Here you can for instance configure security settings for the
definition or change the Web Serviceôs parameter names in the interface.

¶ WSCONFIG
here you can release your Web Service definition for the SOAP runtime,
configure the address or a security profile for your Web Service. It also offers a
consistency check for your Web Service configuration.

¶ WSADMIN
In this transaction you can view and change the logging and tracing settings of
the Web Service.

Info: In SAP you can switch between display and change mode with the icon .

From within the WSADMIN transaction you can also test the Web Service or view
the Web Serviceôs WSDL.
Testing can be started either via the Web Service Homepage entry in the Web
Service menu or with the icon .

It can happen that you get the following error message

. For our scenario this is not a problem, since
the Web Service will work nonetheless.

Apart from testing you can also display the WSDL either with the menu or with
the icon .

¶ SICF
In the transaction SICF you can display and change the Web server settings for
your Web Service. You will find your Web Service beneath
default_host/sap/bc/srt/rfc/sap.

When you display your serviceôs settings you see for instance that standard
authentication and Basic Authentication with Standard R/3 User are selected. For
the client calling the Web Service this means that Basic Authentication is used
and the SAP credentials are sent over the wire in clear text. This is one of the
easiest security configurations, but SAP supports also SSO, X.509 tickets or WS-
Security for handling authentication.

To enable any client to call your Web Service you must provide the WSDL to the client
programmer. You can do this either by downloading the WSDL from transaction
WSADMIN and hand over the file or you go to the SICF transaction, navigate to your
Web Service and select Test service. This opens the browser with the URL of your Web
Service in the address bar, e.g. http://localhost/sap/bc/srt/rfc/sap/z_getflightlistwsd?sap-
client=000. When you now replace sap-client=000 with wsdl and browse to this address
(http://localhost/sap/bc/srt/rfc/sap/z_getflightlistwsd?wsdl) you can view the WSDL from
remote via the browser. This way of accessing a Web Serviceôs WSDL looks very
familiar to .NET developers as you can access the WSDL of Web Service written in
ASP.NET the same way.

http://localhost/sap/bc/srt/rfc/sap/z_getflightlistwsd?sap-client=000
http://localhost/sap/bc/srt/rfc/sap/z_getflightlistwsd?sap-client=000
http://localhost/sap/bc/srt/rfc/sap/z_getflightlistwsd?wsdl

Set up .NET Web Service Client
When you have the WSDL as a file or the address of the WSDL you can start creating
the Web Service client in .NET.
First you must create a new project in Visual Studio 2005. We will use a Console
Application for our samples in this whitepaper.
The next step is to make the SAP Web Service visible and callable in the project, as we
do not want to create and parse the SOAP messages manually. In Visual Studio 2005
you can use the Add Web Reference wizard to create so called proxy classes for the
Web Service.

Here we used the address to the WSDL. As Basic Authentication is configured for the
Web Service in SAP we had to enter a SAP user name and password to get access to
the WSDL.

Executing the wizard creates the proxy classes in the Web References sub folder in the
project.

To view the proxy classes you must switch on óShow all filesô in the Solution Explorer by

clicking the icon . Now you can see that for each SAP data type a class was created
from the WSDL.

Another way to create the proxy classes is to use the wsdl.exe tool that comes with
Visual Studio 2005.

Having the proxy classes created we have to create a proxy object and set the
credentials for the Web Service call.

// create a proxy object
GetFlightListService.Z_GetFlightListService myProxy = new
GetFlightListService.Z_GetFlightListService();

// set SAP credentials
myProxy.Credentials = new System.Net.NetworkCredential("myuser",
"mypassword");

Up to this point calling a SAP Web Service was like calling any other Web Service.
But when you look at the methods signature you see that there are a lot of parameters
that are passed by reference.

This is quite typical when calling SAP Web Service that base on BAPIs or remote
function modules due to the SAP programming model.

So for us this means we have to define and create each of those parameters and pass
them by adding them to the method call. This can actually become very cumbersome. In
one of our projects we had to do this for about 96 parameters.

// define parameters
GetFlightListService.BAPISFLDRA[] dateRange = new

GetFlightListService.BAPISFLDRA[0];
GetFlightListService.BAPISFLDST destinationFrom = new

GetFlightListService.BAPISFLDST();
GetFlightListService.BAPISFLDST destinationTo = new

GetFlightListService.BAPISFLDST();
GetFlightListService.BAPIPAREX[] extensionIn = new

GetFlightListService.BAPIPAREX[0];
GetFlightListService.BAPIPAREX[] extensionOut = new

GetFlightListService.BAPIPAREX[0];
GetFlightListService.BAPISFLDAT[] flightList = new

GetFlightListService.BAPISFLDAT[0];
GetFlightListService.BAPIRET2[] bapiReturn = new

GetFlightListService.BAPIRET2[0];

// initialize parameters
destinationFrom.AIRPORTID = "";
destinationFrom.CITY = "San Francisco";
destinationFrom.COUNTR = "";
destinationFrom.COUNTR_ISO = "";

destinationTo.AIRPORTID = "";
destinationTo.CITY = "Frankfurt";
destinationTo.COUNTR = "";
destinationTo.COUNTR_ISO = "";

// call SAP Web Service
myProxy.BAPI_FLIGHT_GETLIST("LH",

ref dateRange,
destinationFrom,
destinationTo,
ref extensionIn,
ref extensionOut,
ref flightList,
20,
true,
ref bapiReturn);

Do It
Now that we have set up both ends of our scenario we can call the SAP Web Service
from .NET.

In the .NET Web Service client you can just start debugging and then look at the
returned objects.
We got 2 matching flights as result.

We also got a BAPIRET2 object. This is object contains very important information for
the calling application when working with SAP Web Services based on BAPIs or remote
function modules.

In this case it tells us that everything worked fine, but as you will see in the next chapter
SAP uses this kind of objects to tell you also about errors.

So everything worked fine. Sure, we coded this sample around the common issues.
If we just wouldnôt set the destinationFrom value we wonôt get any results, but why? How
you can find out the reason we will explain in the chapter óSolve Issuesô.

Some Particularities with SAP Web Services
XxxSpecified
Now have a look at the request message in the WSDL.

<xsd:element name="BAPI_FLIGHT_GETLIST">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element minOccurs="0" name="AIRLINE" type="tns:char3" />
 <xsd:element minOccurs="0" name="DATE_RANGE"

type="tns:TableOfBAPISFLDRA" />
 <xsd:element minOccurs="0" name="DESTINATION_FROM"

type="tns:BAPISFLDST" />
 <xsd:element minOccurs="0" name="DESTINATION_TO"

type="tns:BAPISFLDST" />
 <xsd:element minOccurs="0" name="EXTENSION_IN"

type="tns:TableOfBAPIPAREX" />
 <xsd:element minOccurs="0" name="EXTENSION_OUT"

type="tns:TableOfBAPIPAREX" />
 <xsd:element minOccurs="0" name="FLIGHT_LIST"

type="tns:TableOfBAPISFLDAT" />
 <xsd:element minOccurs="0" name="MAX_ROWS"

type="xsd:int" />
 <xsd:element minOccurs="0" name="RETURN"

type="tns:TableOfBAPIRET2" />
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

And compare this with the proxy classôs method signature.

Can you find the MAX_ROWSpecified parameter in the WSDL?

The .NET Add Web Reference wizard creates ñXxxSpecifiedò parameters for parameters
and attributes that have minOccurs=ò0ò set in the WSDL but the according data type in
.NET is a value type, e.g. boolean, int, decimal or DateTime, that cannot be become null.
When working with SAP Web Services we came across such attributes and parameters
quite often.
By default the attributeôs value is false and this means that the according attributeôs (Xxx)
value wonôt be set in the SOAP request. So to get your attribute value transferred to SAP
you must explicitly set the XxxSpecified attribute to true. In the .NET Framework 1.1
XxxSpecified parameters or attributes were also created if the element was nillable, but
the .NET Framework 2.0 introduced the new generic System.Nullable<T> that is used for
these cases now.

XSD Data Type Restrictions
Or look at the type of the AIRLINE element ï char3, this is defined in the WSDL as
simpleType of type string with a maximum length of 3.

<xsd:simpleType name="char3">
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="3" />
 </xsd:restriction>
</xsd:simpleType>

Can you find this restriction in the methodôs signature or the proxy class? SAP uses the
XSD to define the data types of the elements in the Web Service message so that they
match the definition in SAP. But in the .NET Web Service these data types are not
represented in that precision. The basic data type is used but without length, or pattern
restrictions. This can lead to issues due to the fact that you can set values in the Web
Service client that do not match the WSDL. In previous SAP WebAS version SAP tried to
process those values, SAP even cut off strings that were too long instead of returning an
error. Since SAP NetWeaver Application Server 6.40 SAP checks the SOAP message
and returns a SOAP fault that tells you what is wrong.

For example if we use a value for the AIRLINE parameter that has more than three
characters, e.g.

myProxy.BAPI_FLIGHT_GETLIST("Lufthansa",
 ref dateRange,
 destinationFrom,
 destinationTo,
 ref extensionIn,
 ref extensionOut,
 ref flightList,
 20,
 false,
 ref bapiReturn);

You will get a SoapException with the message ñDeserialisation failedò.
This doesnôt tell very detailed whatôs wrong. But SOAP faults have an element called
ñDetailò for this purpose. The content of this element gives a hint about the error.

<n0:SimpleTransformationFault
xmlns:n0=\"http://www.sap.com/transformation-templates\">
<MainName>/1BCDWB/WSS0060228220403177000</MainName>
<ProgName>/1BCDWB/WSS0060228220403177000</ProgName>
<Line>28 </Line>
<Valid>X</Valid>
<DeserialisationFault>
<DescriptionText>An error occurred when deserializing in the simple
transformation program /1BCDWB/WSS0060228220403177000
</DescriptionText>
<DescriptionDetailText>Data loss occurred when converting
Lufthansa¬ã<H—ã<</DescriptionDetailText>
<TreePosition></TreePosition>
<ClassName>CX_SY_CONVERSION_DATA_LOSS</ClassName>
</DeserialisationFault>
<Caller><Class>CL_SRG_RFC_PROXY_CONTEXT</Class>
<Method>IF_SXML_PART~DECODE</Method>
<Positions>1 </Positions>
</Caller></n0:SimpleTransformationFault>

BAPIRET and BAPIRET2 Objects
Above we showed you how SAP reports errors that occur in the SOAP infrastructure, i.e.
before the BAPI can be called internally. All errors that occur in a BAPI are returned in
the parameter of type BAPIRET or BAPIRET2.
As .NET developer you should always evaluate the returned BAPIRET objects to know if
the BAPI execution was really successful.

For example if you use a City from which no flights exist in the database. SAP reports an
error by returning 2 BAPIRET2 objects:

One with a general error message

And a further object with detailed error information

In the .NET client you should check the TYPE attribute of the BAPIRET2 object for the
value E that indicates that an error occurred.

Call By Reference Array Parameters
As you might have noticed we initialized all array parameters that are passed by
reference with an object array with dimension 0. Actually it does not matter what
dimension you set, but it is important that you initialize the array otherwise the parameter
wonôt be filled.

It is quite easy to test this. We use the client as in our successful example but we do not
initialize the flightList array.

// define and initialize parameters
GetFlightListService.BAPISFLDRA[] dateRange = new

GetFlightListService.BAPISFLDRA[0];
GetFlightListService.BAPISFLDST destinationFrom = new

GetFlightListService.BAPISFLDST();
destinationFrom.AIRPORTID = "";

destinationFrom.CITY = "San Francisco";

destinationFrom.COUNTR = "";
destinationFrom.COUNTR_ISO = "";
GetFlightListService.BAPISFLDST destinationTo = new

GetFlightListService.BAPISFLDST();
destinationTo.AIRPORTID = "";
destinationTo.CITY = "Frankfurt";
destinationTo.COUNTR = "";
destinationTo.COUNTR_ISO = "";
GetFlightListService.BAPIPAREX[] extensionIn = new

GetFlightListService.BAPIPAREX[0];
GetFlightListService.BAPIPAREX[] extensionOut = new

GetFlightListService.BAPIPAREX[0];
GetFlightListService.BAPISFLDAT[] flightList = null;
GetFlightListService.BAPIRET2[] bapiReturn = new

GetFlightListService.BAPIRET2[0];

// call SAP Web Service
myProxy.BAPI_FLIGHT_GETLIST("LH",

ref dateRange,
 destinationFrom,
 destinationTo,
 ref extensionIn,
 ref extensionOut,
 ref flightList,
 20,
 false,
 ref bapiReturn);

The result of this call is a success message in the BAPIRET2 object but an empty flight
list though we got two flights from San Francisco to Frankfurt when we used an initialized
flightList array.

This is the point where it is interesting to have a closer look at the exchanged messages
to find out if SAP does not fill the flight list or if .NET is not able to map the returned
flights into the flightList object.

Tracing
Tracing is a very good way to troubleshoot problems in the Web Service communication
as you can see the raw SOAP messages that are sent over the wire.

In SAP
For analyzing the above case we can just switch on tracing on the Web Service in SAP
in the transaction WSADMIN.

So when we execute the call with the not-initialized flightList object we can then view the
exchanged SOAP message in the transaction SM59.

At the bottom of the trace file we find the SOAP response. And there we see that SAP
does not return an element called FLIGHT_LIST. This would contain the data for the
flightList object in .NET.

On the Microsoft Client
Sure it is also possible to trace the communication on the Microsoft client. But in contrast
to SAP this functionality is not a built-in feature of the development environment. For this

job we recommend to use Fiddler. This is an http tracing tool you can download for free
from www.fiddlertool.com.

For tracing with fiddler you must set the Proxy attribute of the Web Service to address on
that Fiddler is listening. This is usually localhost:8888.

myProxy.Proxy = new System.Net.WebProxy("localhost:8888");

Additionally you must modify the Reference.cs file and overwrite the method
GetWebRequest to set the request KeepAlive attribute to false.

protected override System.Net.WebRequest GetWebRequest(Uri uri)
 {
 System.Net.HttpWebRequest webRequest =
 (System.Net.HttpWebRequest) base.GetWebRequest(uri);
 webRequest.KeepAlive = false;
 return webRequest;
 }

Without this modification you will encounter a communication problem.

Conclusion
In this whitepaper we showed you that it is not a big issue to establish a Web Service
communication between .NET and SAP. But we really only showed the basics and you
should be aware that for usage in a production environment it might be worth regarding
other Web Service features or standards supported by SAP and .NET, e.g. WS-Security.

Step-by-Step Guide
In this section we will walk you through the creation of a SAP Web Service and a .NET
client that will call the SAP Web Service. We will create a Web Service for the BAPI
BAPI_FLIGHT_GETLIST. This is a BAPI from the standard SAP FLIGHT sample that is
available on every SAP system and comes with some functionality and data in the
database.
The .NET sample code is available for download on
https://secure.softlab.de/fm/243/SAPWSFromVS2005_SampleCode.zip.

Prerequisites
Software

¶ SAP
o Netweaver 04, e.g. Mini SAP installed on your local machine or on a

server on the network.
o SAP Logon 640 on your local machine

¶ .NET

o .NET Framework 2.0 on your local machine
o Visual Studio 2005 on your local machine

Permissions

In SAP your user must be at least assigned to the standard role for Web Service
developers on the ABAP stack SAP_BC_WEBSERVICE_ADMIN. For executing a Web

file:///C:\\Documents%20and%20Settings\\tiloboet\\Local%20Settings\\Temporary%20Internet%20Files\\OLK124\\www.fiddlertool.com
https://secure.softlab.de/fm/243/SAPWSFromVS2005_SampleCode.zip

Service your SAP login must have the authorization object S_SERVICE assigned.
Additionally you need the permission S_FLBOOK for calling the
BAPI_FLIGHT_GETLIST. When you are executing the steps of this guide on a test or
development SAP system the easiest setup is to assign your user to the SAP_ALL and
SAP_NEW profile. If this is not possible ask someone familiar with SAP permissions to
assign the above mentioned permissions to you user.

SAP Web Service
Follow the steps below to create a SAP Web Service for BAPI_FLIGHT_GETLIST.

1. Login to SAP.

2. If you are not sure if you have package that you can use to store the objects
follow the instructions in Check for Package.

3. Enter /nWS_WZD_START into the transaction code field to start the Web Service
Creation Wizard.

4. Click Continue.

5. Enter Z_GetFlightListVI as Virtual Interface name and a short description. Select
Function Module as Endpoint Type and click Continue.

Click Continue.

6. Enter BAPI_FLIGHT_GETLIST into the Function Module text box. Then click
Continue.

7. Enter Z_GetFlightListWSD as Web Service definition name and a short
description. Select Basic Authentication: SOAP Pro as Profile and then click
Continue.

8. Click Complete.

9. Enter Z_MYSERVICES as Package and press Enter.

10. Enter or select your transport request and press Enter. If you do not have a
transport request follow the instructions in section Create a Transport Request to
create a request.

11. The system will prompt you several times to specify a transport request for every
single object that is being created by the wizard. By default the system will
choose the same transport request for all objects. In case that no matching
request exists just create a new one.

12. You successfully created a Web Service in SAP.

13. To view the WSDL enter /nWSADMIN in the transaction code field and press
Enter.

14. Navigate to SOAP Application for RFC-Compliant FMs -> Z_GetFlightListWSD
and select WSD for GetFlightList. Now open the Web Service menu and click
WSDL.

15. Select Document Style and press Enter.

16. Enter your SAP user name and password when prompted and click OK.

17. Now the browser shows the WSDL of your Web Service.

18. Copy the URL from the address bar or save the WSDL as file.

19. Now we are ready to write the .NET client.

Check for Package

1. Enter se80 in the transaction code field and press Enter.

2. Select Repository Browser.

3. Select Package from the drop-down list.

4. Click the icon .

5. In the next pop-up window enter Z* into the Package field and press Enter.

6. Then you will see a list of packages in the customer namespace Z.

If you get the message below you do not have a package in the Z-namespace.
Then repeat the search for X*. If you still get the message below or if you do not
want to use the existing package execute the steps below. Otherwise continue
with SAP Web Service.

7. Close all pop-up windows.

8. If you do not have a package in a customer namespace yet enter a name for your

package.
For this scenario we use the package Z_MYSERVICES. You can actually name

your package as you like, but the name must be compliant with SAPôs Naming
Conventions for Packages
(http://help.sap.com/saphelp_nw04/helpdata/en/ea/c05da6f01011d3964000a0c9
4260a5/content.htm). For testing the $-namespace would be the handiest one as
objects in this namespace cannot be transported. You donôt have to create any
transport requests. In some cases the Web Service Creation Wizard broke when
finishing the setup process, in this case you can use the customer namespace Z
for the sample scenario.

Enter for instance, e.g. Z_MYSERVICES in the text box and press Enter.

http://help.sap.com/saphelp_nw04/helpdata/en/ea/c05da6f01011d3964000a0c94260a5/content.htm
http://help.sap.com/saphelp_nw04/helpdata/en/ea/c05da6f01011d3964000a0c94260a5/content.htm

1. Click Yes.

2. Enter a description in the Short Text field and press Enter.

3. If you have a transport request press Enter, if not follow the instructions in
section Create a Transport Request to create a request.

4. Now you have a package.

5. Continue with SAP Web Service.

Create a Transport Request

1. If you do not have a request, create a new one.

2. Enter a Short description and press Enter.

.NET client
Follow the steps below to create a .NET client for the SAP Web Service created before.

1. Start Visual Studio 2005.

2. Create a Console Application and enter CallGetFlightListWs as Name and click
OK.

3. In the Solution Explorer right-click CallGetFlightListWs and select Add Web
Reference.

4. Enter the path to the previously saved WSDL or the SAP Web Serviceôs URL and
press Enter.

5. Enter GetFlightListService as Web reference name and click Add Reference.

6. Add the code highlighted below to the Main method. This creates a proxy object
for the SAP Web Service.

7. Now add the highlighted code to set the SAP credentials used to call the SAP
Web Service. Replace myuser with your SAP user name and mypassword with
your SAP password.

8. Enter the code highlighted below. This creates all parameters required for calling
the SAP Web Service.

9. Now add the code highlighted to actually call the SAP Web Service.

10. Finally add the highlighted lines to display the number of flights found or a
message that no flight was found.
With Console.ReadKey() your console application waits for a key entered before
it exits. This ensures that you can read the output before the console gets closed.

11. Open the menu Debug and select Start Debugging.

12. You should see an output similar to the following.

SAP Transactions
Manage Packages
Transaction
SE80 Object Navigator, the central development transcation, e.g. to create

new packages

Web Service Creation
Transaction
SE37 Function Builder, e.g. to select a BAPI for Web Service creation
SE80 Object Navigator, e.g. to select a BAPI for Web Service creation
WS_WZD_START Web Service Creation Wizard

Web Service Administration and Configuration
Transaction
WSADMIN Web Service Administration for SOAP Runtime, e.g. to get WSDL or configure

tracing
WSCONFIG Release Web Service for SOAP Runtime, e.g. to change address
SICF Maintain ICF service

Web Service Troubleshooting
Transaction
SM59 Display and Maintain RFC Destinations, e.g. to view trace files
SM21 System Log
SMICM ICM Monitor, e.g. to view log files or to restart ICM
ST01 System Trace, e.g. to trace required permissions
SU53 Display Authorization Data for User, e.g. to see failed authorization attempts

