
 

 
 

 

 

Building Workflow enabled End-to-End 
Applications using Microsoft .NET Frame-
work 3.0 and SAP Enterprise Services 
over Web Services 
White Paper 

Authors:  
Lei Liu, Spell GmbH, lei.liu@spell-gmbh.com 
Tilo Böttcher, Microsoft Corp, tiloboet@microsoft.com 
Jürgen Daiberl, Microsoft Corp, jdaiberl@microsoft.com 

 
Summary: 
This whitepaper reviews the next generation of Windows managed 
programming APIs - .NET Framework 3.0 (formerly codenamed “WinFX”) 
and demonstrates how the core parts of the .NET Framework 3.0 
technologies, namely Windows Communication Foundation (WCF) and 
Windows Workflow Foundation (WF), can be used in combination with 
SAP’s Enterprise Services via Web Services to build workflow enabled 
end-to-end enterprise applications. Furthermore, this whitepaper 
explains how Office applications can be used as the front-end UI for 
such business workflow by means of Visual Studio Tools for Office. 
 

Applies to: 
 Microsoft .NET Framework 3.0 Runtime Components - Beta 2 
 Microsoft® Windows® Software Development Kit (SDK) for Windows 

Vista and .NET Framework 3.0 Runtime Components - Beta 2 
 Microsoft Visual Studio 2005 Team Suite 
 Microsoft Visual Studio 2005 Tools for Office (VSTO) 
 Microsoft Visual Studio Development Tools for .NET Framework 3.0 

Codename “Orcas”  
 Microsoft Visual Studio 2005 Extensions for Windows Workflow 

Foundation Beta 2 
 Microsoft Office 2003 Professional 
 SAP NetWeaver 2004s ABAP Edition 

 
Keywords: 
.NET Framework 3.0, WinFX, WCF, WF, Visual Studio, Office, SAP ECC, 
SAP NetWeaver, Service-oriented Architecture 
 
Audience: 
Technical consultants, Architects, Developers, IT Managers 

For the latest information, please visit http://www.microsoft-sap.com   

June 2006 



 

 
 

Contact 
 
This document is provided to you by the Collaboration Technology Support Center 
Microsoft. For feedback or questions, you can contact the CTSC at 
ctsc@microsoft.com. 
 
The information contained in this document represents the current view of the Editors 
on the issues discussed as of the date of publication.  Because the Editors must 
respond to changing market conditions, it should not be interpreted to be a 
commitment on the part of the Editors, and the Editors cannot guarantee the 
accuracy of any information presented after the date of publication. 
 
This document is for informational purposes only. NEITHER OF THE EDITORS MAKES ANY 
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS 
DOCUMENT. 
 
Complying with all applicable copyright laws is the responsibility of the user.  Without 
limiting the rights under copyright, no part of this document may be reproduced, 
stored in or introduced into a retrieval system, or transmitted in any form or by any 
means (electronic, mechanical, photocopying, recording, or otherwise), or for any 
purpose, without the express written permission of the Editors. 
 
Either Editor may have patents, patent applications, trademarks, copyrights, or other 
intellectual property rights covering subject matter in this document. Except as 
expressly provided in any written license agreement from the respective Editor(s), the 
furnishing of this document does not give you any license to these patents, 
trademarks, copyrights, or other intellectual property. 
 
Unless otherwise noted, any example companies, organizations, products, domain 
names, e-mail addresses, logos, people, places and events depicted herein are 
fictitious, and no association with any real company, organization, product, domain 
name, email address, logo, person, place or event is intended or should be inferred. 
 
 2006 Microsoft© Corporation.  All rights reserved. 
Microsoft, Windows, Outlook, and PowerPoint and other Microsoft products and 
services mentioned herein as well as their respective logos are trademarks or 
registered trademarks of Microsoft Corporation.  
 
SAP, R/3, mySAP, mySAP.com, xApps, xApp, SAP NetWeaver, and other SAP products 
and services mentioned herein as well as their respective logos are trademarks or 
registered trademarks of SAP AG in Germany and in several other countries all over 
the world. All other product and service names mentioned are the trademarks of their 
respective companies. Data contained in this document serves informational 
purposes only. National product specifications may vary. 
 
The names of actual companies and products mentioned herein may be the 
trademarks of their respective owners. 
 
 



 

 
 

Executive Summary 
As two leading companies in the new era of service-oriented 
development, Microsoft and SAP make incessantly efforts to embed 
their architectural best practices for building highly adaptable software 
and services in their products, which can help customers to design, 
develop and manage their service-oriented architecture using Web 
Services as their key technology. In this whitepaper, we introduce 
Microsoft’s next generation managed programming model - .NET 
Framework 3.0 (formerly codenamed “WinFX”) - and outline how it can 
be applied to build reliable, secure, robust and effective end-to-end 
solutions based upon SAP Web services. 
 
Using the existing .NET Framework 2.0 components at the core, .NET 
Framework 3.0 introduces a set of developer-focused innovative 
technologies in terms of Windows Presentation Foundation (WPF, 
formerly codenamed “Avalon”), Windows Communication Foundation 
(WCF, formerly codenamed “Indigo”), Windows Workflow Foundation 
(WF), , and the new Windows CardSpace (WCS, formerly known as 
“InfoCard”) for workling with and managing digital identities. For 
building enterprise end-to-end applications with workflow support, WCF 
and WF are the fundamental parts for developers to facilitate the 
development process. WCF provides secure, reliable, and transacted 
interoperability through the build-in support for WS-* specifications, 
which dramatically reduces the overhead to archive the 
heterogeneous interoperability. Furthermore, WF delivers the common 
framework for building workflows into client and server side Windows 
applications that coordinate interactions among software or/and 
people. Utilizing WCF and WF together with SAP’s Enterprise Service 
exposed through Web services, every business can build processes 
today directly from within their Windows applications to interact with 
customers, partners and suppliers, both within and beyond the walls of 
the organizations, in spite of the platforms they use. 
In this whitepaper, we explain how a business can utilize these products 
to facilitate their interoperable IT infrastructure that is resilient to 
inevitable change and is easy to manage over time by means of the 
common flight-booking scenario from SAP’s basis training. Driven by the 
user interaction through smart clients in Microsoft Word 2003 and 
Microsoft Outlook 2003 as well, even casual users can search for flight 
connections to various destinations and make a booking request 
directly from Office UI. Managers can deny or approve the booking 
request from their Office UI as the case may be. Furthermore, we will 
outline the impact of the new programming model in terms of security 
and transactional behavior of activities in the business process. With 
many practical step-by-step instructions for building Web service-based 
applications as well as configuring SAP web services, one can use this 
whitepaper as a hands-on paper to develop WinFX-based Smart Client 
applications using Web services from SAP backend ECC system. 



 

 

Table of Contents 
Introduction ............................................................................................................ 1 

Intended Audience...................................................................................... 2 
The Ideal World of Service-oriented Computing..................................... 2 
The Computing Infrastructure in the Pre-WinFX Era................................. 5 
The Service-oriented Computing Infrastructure with .NET Framework 
3.0 .................................................................................................................... 6 
The Flight-booking Scenario........................................................................ 8 
Prerequisites ................................................................................................. 10 

Installation of the Development Environment for WinFX & Office .. 10 
Installing SAP NetWeaver 04s (ABAP) Sneak Preview........................ 12 
Configuring SAP NetWeaver 04s for the flight-booking scenario.... 13 

Accessing SAP BAPI/RFC using Web Services ................................................. 19 
Overview Web Services on SAP NetWeaver .......................................... 19 
Accessing Web Services from SOAP Processor in SAP NetWeaver 6.20
....................................................................................................................... 21 
Accessing Web Services from SOAP Runtime in SAP NetWeaver 6.40
....................................................................................................................... 23 

Building Business Processes using WF® .............................................................. 28 
Windows Workflow Foundation ................................................................ 28 

The Concept of Windows Workflow Foundation ............................... 29 
Exposing Workflow as Web Services .................................................... 38 
Using Custom Workflow Activity............................................................ 42 
Interacting with external Process.......................................................... 44 
Hosting Workflow in your Application .................................................. 47 

Windows Communication Foundation ................................................... 48 
The Concept of Windows Communication Foundation .................. 49 
Providing Services with Windows Communication Foundation ...... 50 
Accessing WCF Services from your Application ................................ 54 

Smart Clients......................................................................................................... 57 
What is behind “Smart Clients”?............................................................... 57 
Building Word Application using VSTO 2005........................................... 61 

Developing Customized ActionPane .................................................. 61 
Accessing Word Document Programmatically ................................. 62 

Summary ............................................................................................................... 64 
Consideration concerning Security ......................................................... 64 
Consideration concerning Transaction................................................... 65 



 

Page 1 
 

Introduction 
In today’s world of globalization, enterprises are always looking for 
competitive advantages to deliver agile IT solutions to support business. 
With the help with Web services, enterprise can build dynamic and 
effective computing infrastructure within and beyond the boundaries 
of the organizations. A flexible and reliable framework for building 
service-oriented and workflow-enabled applications is crucial for the 
success of enterprise computing. The forthcoming Windows .NET 
Framework 3.0, formerly called WinFX, is comprised of .NET managed 
APIs based on the core runtime components of .NET Framework 2.0 for 
a set of new technologies, among other things, the Windows Workflow 
Foundation (WF) and the Windows Communication Foundation (WCF, 
former code-named “Indigo”) together with the Windows Presentation 
Foundation (WPF, former code-named “Avalon”) and Windows 
CardSpace (WCS, formerly known under the codename “InfoCard”) – 
the next generate solution for working with and managing diverse 
digital identities. Together with Visual Studio 2005, the integrated 
development environment from Microsoft, .NET Framework 3.0 provides 
the robust foundation for building agile network enabled end-to-end 
server and client applications. 
 
As two leading companies in the technology revolution towards 
service-oriented enterprise computing, Microsoft and SAP work closely 
to help customer to design, develop, deploy and use highly adaptable 
software using the advantage of Web services. Based upon the Web 
services interoperability profiles defined by the open industry 
organization WS-I1, both companies provide all the necessary technical 
platforms to transport business data from as well as into SAP. Since SAP 
Web Application Server 6.20, SAP began to open to the outside world. 
For the ABAP business functionalities, which were only accessible via 
various connector products (Java Connector, .NET Connector, etc) 
based on the SAP’s proprietary ABAP-based communication protocols 
(RFC, IDoc), customers have the possibility now to expose both built-in 
and customized RFC-enabled function module as Web services. 
 
In this whitepaper, we will introduce the capabilities of the forward-
looking technologies from Microsoft and SAP based on a sample 
scenario and outlines how the technologies can be combined with 
one another to realize the maximal value out of them. The sample 
scenario reproduces the common flight-booking process and 
demonstrates how to build an inter-organizational workflow upon the 
.NET Framework 3.0 technologies and SAP Enterprise services. 

                                             
1 Web Services Interoperability (WS-I) Organization, http://www.ws-i.org 



 

Page 2 
 

Intended Audience 
This whitepaper aims at the technical decision makers and architects. 
With detailed but concise technical overviews, this whitepaper helps 
them to understand the technical concept, the functionalities and the 
use of the aforementioned technologies and products. With detailed 
step-by-step development instructions for the flight-booking scenario, 
this whitepaper is also useful for developers and technical consultants 
who work with IDES or SAP NetWeaver AS Sneak Preview editions. 
Because the solutions are developed in Visual C#, it is assumed that 
the readers have fundamental understanding about Visual C# 
programming with .NET framework. Furthermore, the readers should 
have basic understanding about the concept of Web services and 
service-oriented enterprise computing. 

The Ideal World of Service-oriented Computing 
The reference model for SOA from OASIS2 defines the service-oriented 
architecture as a paradigm for organizing and utilizing distributed 
capabilities that may be under the control of different ownership 
domains. An SOA provides the necessary capabilities to integrate, 
publish, discover and manage services. The central concept in an 
SOA-based enterprise computing is services, which are means that 
meet the needs of service consumers with the capabilities brought by 
service providers. A service in an SOA can be any possible functionality 
that exposes its capability using a prescribed interface in compliance 
with the SOA standards and acts consistently with the constraints and 
policies defined in the service contract. The actual implementation of 
the respective service is therefore not the concern of SOA. This “black 
box” approach allows changing the service’s implementation details 
on the provider side without impact upon the service consumer, as 
long as the prescribed interface being exposed remains unchanged. 
Furthermore, it allows the integration of legacy applications that are 
either not network-enabled or not standard compatible with SOA. 
 
The SOA-based computing infrastructure is a completely XML-driven 
architecture. The Web service framework defined by W3C 3 builds on 
top of three core specifications: Web Services Description Language 
(WSDL4) for service description, Universal Description, Discovery, and 
Integration (UDDI5) for service discovery and Simple Object Access 
Protocol (SOAP6) for message transmission. This basic Web service 
architecture establishes the foundation for creating loosely coupled 
                                             
2 OASIS, Reference Model for Service Oriented Architecture, http://www.oasis-
open.org/committees/download.php/16587/wd-soa-rm-cd1ED.pdf 
3 W3C, Web Services Architecture, 2004, http://www.w3.org/TR/ws-arch/ 
4 W3C, Web Services Description Language, http://www.w3.org/TR/wsdl 
5 OASIS, Universal Description, Discovery, and Integration, 
http://www.uddi.org/specification.html 
6 W3C, Simple Object Access Protocol, http://www.w3.org/TR/soap/ 



 

Page 3 
 

Web services that encapsulate isolated business functionality. Based on 
these core specifications, businesses can build service-oriented 
applications within or beyond the boundaries of organizations. 
However, these specifications are not sufficient for building 
applications in the real world, because they do not address most of the 
problem domains that distributed systems have to face, such as 
reliable messaging, security, context, and transaction based on the 
stateless connections between services. The goal to empower the 
service-oriented architecture to meet the real world’s requirements 
drive the Web services community to extend the capabilities of the 
Web services architecture based on the W3C Web service framework. 
In the following, some of the major emerging Web services 
specifications are listed: 
• Messaging: a challenge for distributed computing platforms is 

reliable messaging between both communication partners. To 
make Web services capable of enterprise level applications, BEA, 
IBM, Microsoft and TIBCO have jointly published the WS-
ReliableMessaging specification7 to allow messages to be delivered 
between distributed applications even in presence of software, 
system or network failures. 

• Transaction: the initial set of Web services specifications lacks 
support for maintaining context across several loosely coupled Web 
services because the Web services work independently and 
stateless from each other. To enable distributed transactions across 
several Web services, further Web services specifications are 
proposed, such as WS-BusinessActivity, WS-AtomicTransaction and 
WS-Coordination that are currently hosted by OASIS Web Services 
Transaction TC8. 

• Security: To well-established service-oriented enterprise applications 
belongs a well-secured communication framework. Diverse 
specifications have been proposed by industry and standardization 
organizations. The foundations for the Web service security 
framework are XML Signature, XML Encryption from W3C and WS-
Security from OASIS9. They establish the security measures along the 
message transport way and protect the SOAP messages from 
unauthorized actions.  

 

                                             
7 BEA, IBM, Microsoft and TIBCO, WS-ReliableMessaging Specification: 
http://msdn.microsoft.com/webservices/webservices/understanding/specs/default.a
spx?pull=/library/en-us/dnglobspec/html/wsrmspecindex.asp 
8 Microsoft, Web Services Transaction Specifications Index Page: 
http://msdn.microsoft.com/webservices/webservices/understanding/specs/default.a
spx?pull=/library/en-us/dnglobspec/html/wsatspecindex.asp 
9 Microsoft, Web Services Security Specifications Index Page: 
http://msdn.microsoft.com/webservices/webservices/understanding/specs/default.a
spx?pull=/library/en-us/dnglobspec/html/wssecurspecindex.asp 



 

Page 4 
 

 

Figure 1: The ideal World of Service-oriented Computing Infrastructure 

Figure 1 shows an ideal world of enterprise computing based on 
service-oriented architecture. The lowest layer, the Technology layer, 
contains the enabling technologies for the enterprise computing and 
builds so that the foundation for the applications in the Application 
layer. The enterprise applications, including the legacy systems, expose 
their unit of business functionalities as services in the Service layer. The 
business processes in the Process layer compose the services into 
processes with composite capabilities. The Process layer separates the 
service provider from the service consumer, where the client 
applications consume the services as well as the business processes 
provided by the server applications. As shown in Figure 1, an ideal 
service-oriented enterprise-computing infrastructure maximizes the 
reusability of the software adopted in the infrastructure by 
encapsulating the software capabilities into standard-based services. It 
enables the consumption of services across the organizational 
boundaries and facilitates cross-organizational business processes. The 
clear separation between the layers in the service-oriented computing 
infrastructure simplifies the development for enterprise-level 
applications and provides the foundation for agile development of 
such applications. 
 
MSDN provides a set of good articles at all levels for understanding 
Web services and service-oriented architecture. You can visit the 



 

Page 5 
 

MSDN’s Web services column http://msdn.microsoft.com/webservices/ 
for more information. 

The Computing Infrastructure in the Pre-WinFX Era 
In the last section, we have reviewed the concept of the service-
oriented computing and benefits of adopting service-orientation into 
the enterprise-computing infrastructure. However, it depicts only an 
ideal world with the perfect encapsulation of business functionalities as 
Web services. In this section, let us simply go back to the real world and 
check up the reality in the enterprise IT.  
 
Figure 2 illustrates the heterogeneous computing infrastructure with the 
end-to-end applications in the today’s IT. At first glance, the situation 
differs strongly from the ideal SOA-world in the roles of the service 
provider and the service consumer. The service provider provides its 
services not only in the Service- and the Process layer, but also directly 
in the Application layer. Analogically, the service consumer has to work 
even till down to the Application layer to get the capability that it 
needs to fulfill its functional requirement. This unclearly defined concept 
between applications, services and processes causes enterprise 
applications that operate throughout nearly the whole technology 
stack in the enterprise. Such enterprise applications are vulnerable to 
changes in the technology stack and require high maintenance efforts 
in case of changes. 

 
Figure 2: Heterogeneous Computing Infrastructure with SAP 



 

Page 6 
 

Among other things, there are the following two challenges to build a 
workflow-enabled end-to-end application for enterprise: 
• Building Workflows to reflect the business processes: in an enterprise 

application, it is normally a functional requirement to build 
workflows into the application. There are several common 
workflows in daily business, for instance, workflows within line-of-
business (LOB) applications, such as SAP; document-centric 
workflow, where the workflow is driven by some document(s); 
human workflow, where several roles in the enterprise are involved 
in the workflow. Without the adoption of external business process 
management applications, such as Microsoft BizTalk Server or SAP 
XI, the application has to model workflows by itself-such as the 
example case 1 in Figure 2-where the workflow is built directly hard-
coded into the application. The design and implementation of the 
underlying workflow framework for modeling and hosting workflows 
is quite a challenge for the software developers. Furthermore, the 
necessary utility functions for workflow runtime management, such 
as state tracking, persistency of state information for long-running 
processes, etc, complicate the application development process 
additionally. What’s more, non-functional requirements on the 
workflow framework, such as flexibility in case of changes, 
scalability regarding number of the activities in the workflow and 
security in the workflow makes the development even more 
challenging for developers. 

• Accessing Functionalities in a unified manner: An enterprise 
application needs to access business capabilities from various 
applications and backend systems. Just like the example case 2 in 
Figure 2, to access the functionalities exposed by the SAP system, 
the application has to use an external framework, such as the SAP 
Connector for Microsoft .NET, to call the BAPIs. The execution is 
carried out through the SAP’s proprietary RFC protocol. Therefore, 
an enterprise application must have the necessary components to 
communicate with backend systems through different 
communication protocols, which makes the development process 
more complex and complicates the administration of such 
enterprise applications. 

The Service-oriented Computing Infrastructure with .NET 
Framework 3.0 
With the introduction of .NET Framework 3.0, developing workflow-
enabled enterprise applications enters a new generation. With WCF 
and WF as two of the core technologies of .NET Framework 3.0, building 
service-oriented applications on the Windows platforms gets more 
simplified than ever. Among other things, the new technologies in .NET 
Framework 3.0 bring the following improvement for the software 
development: 



 

Page 7 
 

• .NET Framework 3.0 introduces the Workflow foundation, which is a 
framework for building workflows into Windows applications. The 
developers can use the WF APIs to build both human and system 
workflow scenarios on the .NET platform, and mostly on the server 
side. For application developers, WF provides the necessary 
abstractions of the artifacts of a workflow, which make it easy to 
describe the real world workflows using the integrated 
development tools in Visual Studio 2005. All workflows, including the 
long-running ones, can be hosted directly in the WF due to the 
throughout maintenance of workflow state in the framework at 
runtime. In addition, the ability for developers to override or skip the 
steps in the workflow at runtime gives the workflow the necessary 
flexibility. All these capabilities make WF to be an excellent 
environment for building and hosting business processes in the 
Process layer for the service-oriented enterprise computing. 

• Another upcoming improvement with .NET Framework 3.0 is the 
Windows Communication Foundation, which is a unification of 
today’s distributed technology stack on machine, cross machine, 
and cross Internet. As the Microsoft’s next-generation programming 
platform for building, configuring and deploying over the network 
distributed services, WCF enables developers to build enterprise 
services with reliable communications that support sessions and 
transaction flow without deep system-level background knowledge 
about the distributed technologies being adopted, such as ASMX, 
WSE, MSMQ, .NET Remoting etc. Therefore, WCF makes developers 
more productive, because they only have to master a single 
programming model to build distributed application and services. 
Furthermore, with the support of the WS-* standards that Microsoft 
has developed jointly with its industry partners, WCF also ensures the 
broad interoperability with other technology platforms. Together 
with Web Services that are exposed by SAP NetWeaver Application 
Server, WCF provides all the necessary functionalities to build the 
Service layer in service-oriented enterprise computing. 

 



 

Page 8 
 

 
Figure 3: The Service-oriented Enterprise Computing with WinFX 

Comparing to the heterogeneous computing infrastructure as shown in 
Figure 2, .NET Framework 3.0 provides a unified platform for building 
workflow-enabled distributed applications in compliance to service-
oriented enterprise computing. As depicted in Figure 3, the WF 
provides the foundation for integrating workflows into client 
applications and workflow-enabled server applications on the 
Windows platforms. And the WCF together with SAP NetWeaver forms a 
unified service layer based on the WS-* standards in the service-
oriented enterprise computing. 

The Flight-booking Scenario 
To demonstrate the capabilities of .NET Framework 3.0 and the new 
Web services platform of SAP NetWeaver, we use WCF, WF, and the 
integrated development tools to implement the flight-booking scenario 
from the SAP basic training. The flight-booking scenario itself is simple, 
as depicted in Figure 4. In the scenario, an employee can look for flight 
connections to some given arrival airport and submit booking request 
for the selected flight trip to his manager. A manager will be notified by 
emails if there is any booking request ready for review. He can approve 
or deny such booking requests, as the case may be. And in case that 
the submitted booking request is approved by a manager, the 
corresponding flight booking will be created in the travel agency’s SAP 
system. The functionalities dealing with the flight-related operations, 
such as searching flight connections or creating flight trips, are 



 

Page 9 
 

available in SAP ECC as BAPI functions. And the most important 
business objects in SAP ECC are flight connections (SFLCONN) and 
flight trips (SFLTRIP). 
 

 
Figure 4: The Flight-booking Scenario 

The implementation of the flight-booking scenario aims at 
demonstrating the following technologies or tools: 
• Use Windows Workflow Foundation to model the booking-request 

process: the booking-request workflow contains activities from 
submission to approval/denial of booking requests will be modeled 
as a WF workflow. In this sample case, we demonstrate how to build 
an event-driven workflow with human intervention. We will also 
introduce how to extend the capabilities of WF by designing and 
implementing customized activities for the workflow. We 
demonstrate the way to combine external business functionalities 
into the workflow by consuming Web services from SAP. The 
workflow developed will be exposed as a Web service, too.  

• Use Windows Communication Foundation to provide enterprise 
service: the booking-request workflow will be offered as enterprise 
service for demonstrating the capabilities of WCF to provide 
interoperable enterprise service. This demo case outlines the 
concept of WCF and shows how to combine WCF and WF together 
to build workflow-enabled enterprise services. 

• Use Visual Studio Tools for Office to develop Office-based 
applications: Comparing to the VSTO 2003, the new VSTO 2005 
provides further possibility to develop customized solutions with 
Windows Form controls for InfoPath and Outlook in addition to the 
improved programming APIs. In the flight-booking scenario, we use 
VSTO to implement Smart Document with Office Word 2003, which 
should demonstrates how to build customized ActionPane for 
Office Word and how to manipulate the content of a Word 
document from the custom ActionPane. Furthermore, we use VSTO 
to implement an Outlook-Plug-in and show how to bind external 



 

Page 10 
 

functionalities as plug-in into Outlook and how the interaction 
between the external plug-in and Outlook works. 

• Use Visual Studio 2005 to consume SAP Web services: all the flight-
related operations provided by SAP ECC are accessible over Web 
services. In this flight-booking scenario, we demonstrate how to use 
Visual Studio 2005 to bind SAP Web services into the Visual Studio 
solutions and how to call these Web services from inside of the 
solutions, for instance, from a Workflow or from a Smart Document.  

Prerequisites 
In this whitepaper, we use the most recent software that are available 
at the moment as this whitepaper being written to develop the 
applications. As we already mentioned before, the .NET Framework 3.0 
runtime environment is used in the demo scenario to host part of the 
implementation. In the following sections, we describe the software 
prerequisites for developing and running the demo scenario, so that 
you can easily reproduce the same environment as we have. The 
installation contains mainly two parts: the first part is the installation of 
development environment for .NET Framework 3.0 and Office 
applications; the second part is the installation of the SAP ECC 5.0 test 
system with a SAP NetWeaver 2004s ABAP Edition. It is recommended 
that you build the first part of the demo environment in one Windows 
environment and the SAP ECC 5.0 in another one, since we intend to 
construct a distributed flight-booking scenario over the Internet. You 
can use hardware virtualization software, such as Microsoft Virtual 
Server 2005 R2, to build the demo environment. You can download the 
software from 
http://www.microsoft.com/windowsserversystem/virtualserver/ 
default.mspx free of charge. The implementation of the flight-booking 
scenario described in the remainder of this whitepaper is based on the 
two aforementioned Windows environments. In the following text, the 
Windows environment with the .NET Framework 3.0 & Office 
development environment is referred to as the “WinFX” environment 
and the other environment with the SAP installation is referred to as the 
“SAP ECC” environment. 
 
Before we go on setting up the development environments, please 
note that, some of software being used are still under beta status by 
the time we wrote the whitepaper, and may cause occasionally 
application crash. Therefore, do not install these builds on the machine 
you operational depend on. However, the application crashes does 
not interfere with your development experience to get to know the 
functionality of the software being adopted. 

Installation of the Development Environment for WinFX & Office 
For developing .NET Framework 3.0 applications, you need the 
following components: 



 

Page 11 
 

• Development Environment: you can use the Visual Studio 2005 full 
retail version as your development environment. In this whitepaper, 
the whole demo scenario is built using Visual Studio 2005 Team 
Suite, which is available to MSDN subscribers. As an alternative 
development environment, you can use the Visual Studio 2005 
Express Editions with limitation, too. The free Visual Studio 2005 
Express Editions can be downloaded from 
http://msdn.microsoft.com/vstudio/express/ 
default.aspx. The Express Edition supports the development of WCF- 
and WPF-based applications. However, it does NOT support in 
developing Windows Workflow Foundation (WF) applications, since 
the current Visual Studio 2005 Extensions for Workflow Foundation 
beta is not compatible with the Visual Studio 2005 Express Editions. 

• .NET Framework 3.0 Runtime Environment: for running .NET 
Framework 3.0 applications you developed, you need the .NET 
Framework 3.0 runtime components. It is currently a pre-beta 
release and is available as Beta 2 under 
http://www.microsoft.com/downloads/details.aspx? 
FamilyId=4A96661C-05FD-430C-BB52-
2BA86F02F595&displaylang=en. 

• Windows SDK: The compatible Windows Software Development Kit 
(SDK) for the .NET Framework 3.0 runtime components Beta 2 is 
required for developing .NET Framework 3.0 applications. In 
addition to the APIs for the .NET Framework 3.0 technologies, the 
Windows SDK contains helpful documentation and code samples 
that you can consult during development. The compatible 
Windows SDK version is available under 
http://www.microsoft.com/downloads/details.aspx? 
FamilyId=13F8E273-F5EA-4B7B-B022-97755838DB94&displaylang=en   

• .NET Framework 3.0 Development Tools: for integrated 
development of .NET Framework 3.0 applications in Visual Studio 
2005, you need the Visual Studio Development Tools for .NET 
Framework 3.0, which install the design tools, the project templates 
and the .NET Framework 3.0 SDK documents into the final release of 
Visual Studio 2005. The .NET Framework 3.0 Development Tools that 
are compatible with the aforementioned runtime components can 
be downloaded from 
http://www.microsoft.com/downloads/details.aspx?FamilyId=31F9F
15D-00E0-4241-8014-2F12679119AA&displaylang=en  

• Development Tools for Workflow Foundation: the aforementioned 
.NET Framework 3.0 Development Tools do not contains 
development extensions for WF. To develop workflow-enabled 
applications using WF, you need a separate Visual Studio 2005 
Extensions for Windows Workflow Foundation, which are available 
as Release Candidate 2 (RC2) under 
http://www.microsoft.com/downloads/details.aspx? 



 

Page 12 
 

FamilyId=63A80A4B-BD27-4124-A2A5-
61786ADB626E&displaylang=en 

• SQL Server 2005 Express Edition: the Windows WF needs storage for 
saving tracking and state information at runtime. There are several 
options that one can use to serve as runtime storage for WF. In our 
flight-booking scenario, we will use the free available SQL Server 
2005 Express Edition to save the runtime information of WF. The 
installation kit for SQL Server 2005 Express can be downloaded from 
http://msdn.microsoft.com/vstudio/express/sql/download/  

• Visual Studio Tools for Office 2005: for developing managed 
solutions hosted in Office applications, such as Word, Excel, Outlook 
and InfoPath, Microsoft provides the Visual Studio Tools for Office 
(VSTO) 2005. Comparing to its predecessor, the VSTO 2005 provides 
improved developer tools and programming models. Furthermore, 
it enables usage of rich office UI and intuitive windows controls 
directly in the office applications. MSDN provides a good article 
about the improvements of VSTO 2005 in comparison to VSTO 2003. 
Visit 
http://msdn.microsoft.com/office/understanding/vsto/default.aspx
?pull=/library/en-us/odc_vsto2005_ta/html/ 
officewhatsnewinvsto2005.asp for more information. 

 
After the steps listed above, you should have installed and configured 
the complete development environment for building .NET Framework 
3.0 applications as well as Office-based applications. From now on, 
you can begin to build applications using WCF, WPF and WF 
technologies. In the following sections, we outline the installation of the 
backend SAP system and the necessary configuration to be made in 
the SAP system for the flight-booking scenario. 

Installing SAP NetWeaver 04s (ABAP) Sneak Preview 
For our flight-booking scenario, we use the SAP NetWeaver 2004s ABAP 
Edition with flight data application to serve as the backend SAP ECC 
system. The flight data application available in each SAP NetWeaver 
ABAP installation is intended for use in training and demos to 
demonstrate the SAP’s integration technologies, especially the 
interface concept BAPI and IDoc. SAP provides the NetWeaver 2004s 
ABAP Sneak Preview Edition on the SDN for free download. You can 
find the installation kit on the SDN under 
https://www.sdn.sap.com/irj/sdn/downloaditem?rid=/library/uuid/ 
cfc19866-0401-0010-35b2-dc8158247fb6. The installation of the 
NetWeaver 04s ABAP Edition is somewhat straightforward. SAP provides 
a detailed guide for downloading and installing the NetWeaver 04s 
ABAP Edition, which you can find on the same download page for the 
installation kit, too. After walking through the steps outlined in the 
guide, you should have a new SAP system with the ID “NSP” on your 
local PC installed. To access the SAP system you need the SAPGUI 



 

Page 13 
 

installed on your local PC. You can download the software from 
https://www.sdn.sap.com/irj/sdn/ 
softwaredownload?download=ftp://ftp.sap.com/pub/sdn/devkits/net
weaver/abap/50072743_4.zip&df=0.  
 
In order to start the SAP system, use the “SAP Management Console” 
that you can find either directly on your desktop or from the program 
list in the “Start”-menu of your Windows. Select in the management 
console the SAP system – in our case the “NSP” System, right click it and 
select “Start” from the context menu shown. Follow instructions given in 
the installation guide to log on to the SAP system using the SAPGUI. 
 
Another issue that has to be figured out is the validity of the license key 
in the SAP system being installed. The standard installation includes only 
a 30-days license key for evaluation. However, you can request 
another 90-days license key for your SAP NetWeaver 2004s ABAP 
installation from SAP. SAP provides a license key guide that documents 
the procedure you have to make to get a further license key on the 
SAP web site. You can download the guide from 
https://www.sdn.sap.com/irj/servlet/prt/portal/ 
prtroot/docs/library/uuid/bb493f34-0801-0010-a3bc-ce2821492490.  

Configuring SAP NetWeaver 04s for the flight-booking scenario 
Each SAP NetWeaver 04s ABAP Edition contains the flight data 
application to demonstrate the integration technologies from SAP, 
especially the interface concept of BAPI and IDoc. The example flight 
data application supports several business processes around the 
artifacts of flight booking, such as flights, flight trips, flight connections 
and flight customers. The standard installation of SAP NetWeaver 04s 
contains all the business objects and the BAPI interfaces that you need 
to deal with the various flight-booking artifacts. Simply start the 
transaction “BAPI” in the SAPGUI and navigate in the standard 
hierarchical view to the node “Basic Components” -> “ABAP 
Workbench, Java IDE and Infrastructure”. There you can find all the 
business objects and BAPIs for the flight data application.  
 
However, the initial installation of SAP NetWeaver 04s does not 
generate the flight data that are compatible with the corresponding 
business objects and the BAPIs. To make sure that the necessary flight 
data for the scenario is available in your system, you can use the Data 
Browser (Transaction SE16) in the SAP system to check if the following 
tables are filled with test data: SCARR (airlines), SPFLI (flight schedules), 
SFLIGHT (flights), SBOOK (flight bookings), SCUSTOM (flight customers), 
SFLCONN (flight connections), SFLCONNPOS (route segments of flight 
connections), SFLTRIP (flight trips), SFLTRIPPOS (flight trip passengers), 
and SFLTRIPBOK (booking numbers for flight trips). If any data is missing 



 

Page 14 
 

in the table(s), you can set up the demo flight data application as 
follows: 
1. Start the application ABAP Editor (Transaction SE38) in your SAP 

system 
2. Execute the program SAPBC_DATA_GENERATOR in the editor 
3. In the following dialog windows, select “Standard Data Record” 

from the configuration list and select “Generate Log List”, if you 
want to see the log information during the generation process, as 
shown in the following figure. After that, start the generation 
process. 

4. After the generation process has completed, you can check the 
data generated using the Data Browser again. 
 

 
 
Till now, you have set up the development environment for the flight-
booking scenario. The following configuration is optional and is of 
interest for those, who want to reproduce the exact demo environment 
as we have for this whitepaper. To support the business processes in the 
flight-booking scenario, we need an Email-server to support the email 
interactions between the employee and his manager. Furthermore, we 
need two active users in our scenario, one as the employee and the 
other one as his manager. In the following section, we will configure the 
“SAP ECC” Windows environment to support the demo scenario: 
1. Set up a Domain Controller: use the server configuration wizard to 

add a domain controller to the “SAP ECC” environment.  
a. In the “SAP ECC” environment, go to “Start” -> “All Programs” -> 

“Administrative Tools” and click “Configure Your Server Wizard” 
to start the server configuration wizard. 



 

Page 15 
 

b. In the “Server Role” Dialog window, select the server role 
“Domain Controller (Active Directory)” from the list and click 
“Next”, as shown in the following figure. 

 
 

c. In the following dialog window shown, specify the name of the 
new domain as “CTSC.org” and click “Next” to continue the 
configuration. In the following dialogs, always use the standard 
configuration as given in the dialog and click “Next”. 

d. Restart the “SAP ECC” environment after the installation has 
completed. 

2. Set up the active users in the Active Directory 
a. Set up the manager with the name “Bill Hillman” in the Active 

Directory 
i. Start the “Active Directory Users and Computers” 

management console (navigate in “SAP ECC” environment 
to “Start” –> “All Programs” -> “Administrative Tools” and click 
there “Active Directory Users and Computers”) 

ii. Navigate in the menu “Action” –> “New” -> “User” to add a 
new user 

iii. In the “New Object – User” dialog, fill the text boxes for “Bill 
Hillman”. Specify the logon name as “hillman” and click 
“Next” to continue. 

iv. Specify a password for Bill Hillman and select “Password 
never expires”. Click “Next” to create the new user object in 
Active Directory. 

b. Set up the employee with the name “Leo Simpsons” in the Active 
Directory 
i. Repeat the steps i ~ iv as given in the last point a and create 

a new user “Leo Simpsons” with the logon name “simpsons” 
in the Active Directory. 

ii. Right-click the user object “Leo Simpsons” in the console and 
select “Properties” in the context menu to show the user 
properties. 



 

Page 16 
 

iii. Switch to the register tab “Organization” in the properties 
window. 

iv. Change the value of the property “Manager” to “Bill Hillman” 
by click the “Change” button and specify the value “Bill 
Hillman” in the popup dialog window, as shown in the 
following figure 

 

 
 

3. Set up the mail servers: use the server configuration wizard to add a 
domain controller to the “SAP ECC” environment.  
a. In the “SAP ECC” environment, go to “Start” -> “All Program” -> 

“Administrative Tools” and click “Configure Your Server Wizard” 
to start the server configuration wizard. 

b. In the “Server Role” Dialog window, select the server role “Mail 
Server (POP3, SMTP)” from the list and click “Next”. 

c. Select in the following dialog “Active Directory-Integrated” as 
the Authentication method and set the Email domain name as 
“ctsc.org”. 

 
d. In the following dialogs, always use the standard configuration as 

given and click “Next” to complete the wizard. 
4. Set up the mailbox for the demo users 



 

Page 17 
 

a. In the “SAP ECC” environment, go to “Start” -> “All Programs” -> 
“Administrative Tools” and click “POP3 Service” to start the server 
configuration wizard. 

b. In the console, select the mail domain that you have created 
before. In our case, it is the “CTSC.org”.  

 

 
 

c. In the console menu, select “Action” -> “New” -> “Mailbox…” to 
create a new mailbox for Bill Hillman 

d. In the popup dialog, enter “hillman” as Mailbox Name, and 
unselect the check-box “Create associated user for this 
mailbox”, see the following figure. If the mailbox has been 
created successfully, a message box with the new account 
name and the corresponding mail server will be shown. Repeat 
this step to create a mailbox for Leo Simpsons with the mailbox 
name “simpsons”. 

 

 
 

5. Add the “WinFX” Environment to the Domain Controller “CTSC.org” 
a. In the “WinFX” environment, go to “Start” -> “Control Panel” and 

click “System” to open the System Properties dialog. 
b. Change to the register tab “Computer Name” 
c. Click the Button “Change” to open the “Computer Name 

Changes” dialog 



 

Page 18 
 

d. In the dialog, change the value of the text box “Domain” to 
“CTSC.org”, so that the “WinFX” Environment will be a domain 
member in “CTSC.org” in the future, see the following figure. 

 

 
 

e. Click “OK” to close the dialog 
f. You may want to restart the “WinFX” environment after having 

changed the system properties. 
 
Until now, you have completely installed and configured the demo 
environments for the flight-booking scenario. In the following sections, 
we will introduce the implementation of the flight-booking scenario 
bottom-up systematically. We begin with the backend SAP ECC system 
and describe how to expose BAPI/RFC as Web services for external 
access. Afterwards, we look at the service as well as process layer, and 
discuss how to use WCF and WF to build workflow-enabled 
middleware. At last, we work on the client applications with Office 2003 
and show, how to integrate Office client applications into the workflow 
to drive human-centric business processes. 

 



 

Page 19 
 

Accessing SAP BAPI/RFC using Web Services 
Since the release of SAP Web Application Server 6.20, SAP has made 
instant efforts to offer its business functionalities via the standard-based 
Web services interface. SAP Web Application Server allows customers 
to expose their business capabilities via Web services to integrate 
enterprise applications and to drive collaborative business processes 
across organizational boundaries. In the following, we review the SAP’s 
Web service technology stack with SAP NetWeaver and demonstrate 
how to expose SAP business functionalities as Web services.  

Overview Web Services on SAP NetWeaver 
SAP NetWeaver Application Server provides both a development and 
runtime environment for Web services, as depicted in Figure 5.  
 

 
Figure 5: Web Services on SAP NetWeaver Application Server10 

The implementation of business capabilities for Web services is taken 
place in the normal SAP business applications with a corresponding 
development environment, such as ABAP Workbench or Java 
Developer Studio. It is the same approach as developing normal 
business applications and no Web service specific implementation or 
configuration is required at this point, apart from a well-defined 
interface. The business capabilities being built in the business 
applications are exposed for external access via the standard 
application interfaces, among other things, the BAPI, RFC, IDoc 
interfaces.  
 
                                             
10 Karl Kessler, Web Service Technology for SAP NetWeaver,  
https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/library/uuid/f65ecf90-
0201-0010-94b0-c9983be54c67 



 

Page 20 
 

The encapsulation from normal business capabilities to Web services 
takes place in the Web service development environment, which is 
normally the same development environment as for business 
applications, namely ABAP Workbench for ABAP Web services or Java 
Developer Studio for Java Web services. Each SAP Web service always 
has the following three functional parts:  

• Virtual Interface: each virtual interface defines the selected 
business capabilities that the Web service encapsulates and the 
customization of the interface parameters 

• Web Service Definition: a Web service definition defines a Web 
service and the mapping between the Web service and the 
virtual interface. Furthermore, a Web service definition defines a 
set of Web service-related features, such as authentication, 
session management, etc. 

• Web Service Configuration: the Web service configuration 
controls the behavior of the SAP Web services, e.g., the transport 
way or the security profile of the Web services 

 
The Development Environment maintains all the functional parts of the 
Web service. Furthermore, the Development Environment is responsible 
for the generation of the WSDL documents, which are shared with the 
Web service clients to retrieve detailed information about the target 
Web service. The Web Service Runtime in SAP NetWeaver Application 
Server manages the SAP Web services by reading configuration 
information from the Web Service Configuration and provides the 
runtime environment that complies to the configuration settings. At 
runtime, the Web Service Runtime receives SOAP request and forwards 
the request via the standard application interface to the desired 
business capability. After the request has been processed by the 
business functionality, it gets the result of the execution returned by the 
business functionality and forwards the result back to the Web service 
client.  
 
Currently, SAP provides native support for both Java-based and ABAP-
based Web services. For more information about developing Web 
services on the top of SAP NetWeaver as well as the other topics about 
SAP Web services, for instance, security or interoperability with other 
Web services platforms, you can visit the Web service column at SAP 
Developer Network under: 
https://www.sdn.sap.com/irj/sdn/developerareas/esa/webservices   
 
In the following sections, we demonstrate two different ways to expose 
SAP business functionalities via Web services.  



 

Page 21 
 

Accessing Web Services from SOAP Processor in SAP 
NetWeaver 6.20 
Since the release of 6.20, SAP NetWeaver Application Server provides a 
set of out-of-box Web services via the SOAP processor. However, the 
SOAP processor is nothing else as a SOAP message translator and 
forwarder. Besides the standard Web services protocols, it does not 
provide further support for additional Web services standards for e.g. 
security or transport. In the 6.40 release, this interface remains 
unchanged and exposes all the RFC-enables function modules (BAPIs) 
as Web services. To get a list of Web services for the BAPIs, navigate to 
the following web address in a browser: 
http://[domain]:[port]/sap/bc/bsp/sap/WebServiceBrowser/search.ht
ml  
In the web page shown, you can search for the Web services by using 
the BAPI name and get the list of Web services that matches the name 
you entered. It may look like Figure 6. With the links “wsdl” and “?” 
shown next to the Web services found in the result, you can get either 
the WSDL document or the detailed documentation for the 
corresponding Web services. 
 

 
Figure 6: Web Service Repository for BAPIs (since SAP WAS 6.20) 

To access BAPI functions via Web services in this way, both the Business 
Server Pages Runtime and the ICF Service for SOAP Handler must be 
activated. If you cannot access the list of out-of-box Web services 
under the URL listed above, you have to check up, if all the services 
necessary are enabled in ICF. To do it, follow the following instructions: 

1. Start the application “Maintain Service” (Transaction SICF) in your 
SAP system 

2. Navigate to the service “default_host->sap->bc->bsp” and 
check up if the service Business Server Pages Runtime is enabled. 



 

Page 22 
 

If not, right click the node “bsp” and select “Activate Service” 
from the context menu, as shown in the following figure. 

 

 
 

3. Repeat the last step to check, if the service for SOAP HTTP 
Handler (default_host->sap->bc->soap) is enabled. If not, 
activate it, too. 

4. Now you should be able to access the Web service repository via 
browser. 

 
In this way, you can access all the BAPI functions via Web services calls. 
It is convenient for people to call SAP business functionalities without 
using the proprietary RFC protocols. However, this way is only valid for 
built-in BAPI functions in the SAP system. Customized BAPI functions 
cannot be accessed in this way. Furthermore, this approach does only 
support the basic Web services standards with basic authentication. In 
other words, the client can only authenticate itself against the SAP 
Web services using a username/password credential. Other advanced 
client authentication mechanisms like X.509 certificates are not 
supported. If there is no security support from the transport layer in the 
network stack, the SOAP messages transferred between the client and 
the Web service are in plain text, which is not the best way to transfer 
sensible data across the Internet. Although one can use transport layer 
encryption, such as Secure Sockets Layer (SSL), to secure the message 
throughout the transport way, this method is still limited, because we 
need a secure end-to-end connection between the client and the 
Web service and the transport layer encryption provides only a point-
to-point connection. Moreover, this approach does not support 
customization of the Web service interface or the parameters. This 
limitation is solved with the new approach for exposing Web services in 
the SAP NetWeaver Application Server 6.40, which we introduce in the 
next section. 



 

Page 23 
 

Accessing Web Services from SOAP Runtime in SAP 
NetWeaver 6.40 
The new Web service approach of the SAP NetWeaver Application 
Server 6.40 provides more possibilities to create customized Web 
service from each BAPI functions that are available in the SAP ECC. The 
Web services created with the new approach contain exactly the 
three parts that we discussed in the introduction section: Virtual 
Interface, Web Service Definition, and Web Service Configuration. In 
the following, we demonstrate this new Web service concept by 
creating a Web service that expose the BAPI function 
BAPI_FLTRIP_CREATE for creating flight trip as Web services. To facilitate 
the task of exposing functionalities as Web services, SAP provides a 
Web service creation wizard for use. There are several ways to initialize 
the wizard. Since we have determined the BAPI function to expose, we 
will start the wizard through the BAPI Explorer. It is e.g. also possible to 
start the wizard through the application Object Navigator or the 
transaction WS_WZD_START. 

1. Start the application BAPI Explorer (transaction BAPI) in your SAP 
system 

2. Navigate in the hierarchical view to Basic Components -> ABAP 
Workbench, Java IDE and Infrastructure -> Flight Trip and select 
the method “Create” 

3. In the workbench, switch to the tab “Tools”, as shown in the 
following figure. 

 

 
 

4. Select the tool “Create Web Service” and click “Start Wizard” to 
continue. The Web service creation wizard will be shown in a 
new window, as illustrated in the following figure. Click 
“Continue” to start the wizard. 

 



 

Page 24 
 

 
 

5. In the following dialog, you are asked to create a new Virtual 
Interface for the Web service. Enter a meaningful name for the 
virtual interface, e.g. “ZWS_FlightTrip” and write some short 
declarative description for the interface. Leave the “Business 
Object” unchanged as the Endpoint Type. 

 

 
 

6. In the next screen, the endpoint for the new Web services will be 
specified. This information will be used later by the Web service 
runtime to determine which BAPI should be called to process the 
request. In the screen, enter the application “BC-DWB” as the 
Application, which represents the ABAP application “ABAP 
Workbench, Java IDE and Infrastructure”. Click “Continue” to 
switch to next screen. 

 



 

Page 25 
 

 
 

7. Now you are asked to choose the Operations, which are 
available later as Web methods in the new Web service. In our 
case, we want to make the operation “Create” later via Web 
service available. Select the Method “Create” from the list and 
click “Continue” to go on. If you want to make some other BAPI 
functions available via the same Web service, you can add the 
corresponding method into the list in this step. To do it, click 
“Other Method” and add the corresponding business object and 
its method to the list. 

 

 
8. In this step, the wizard creates the corresponding Web Service 

Definition for the new Web service. Enter a name and a 
declarative description for the new Web Service Definition. You 
can also specify the security profile for the new Web service in 
this step. You can either choose the basic authorization profile 
“Basic Authorization: SOAP Pro” with authentication through 
username and password or choose the advanced authorization 
profile “Secure SOAP Profile” with authentication through client 



 

Page 26 
 

certificate and secured transport using Secure Socket Layer (SSL) 
protocol. In our demo, we only use the basic authorization profile 
to keep the scenario simple. 

 

 
 

9. In the last step, click “Complete” to release the new Web service. 
10. To verify that the Web service has been successfully created and 

released, you can check the new Web service in the 
administration tool for SOAP runtime. Start the application “Web 
Service Administration for SOAP Runtime” (transaction WSADMIN) 
in your SAP system 

11. Expand the node “SOAP Application for BAPIs” in the 
administration tool 

12. You should be able to see the new Web service “ZWS_FlightTrip” 
in the list. Expand the node and you find there the Web Service 
Definition for “ZWS_FlightTrip” together with the access address 
for the new Web service.  

13. To get the WSDL document for the new Web service, go to the 
menu “Web Service” -> “WSDL” and click it. The WSDL document 
is displayed in a new window of your default Web browser. 



 

Page 27 
 

 
 
Now you have finished creating a new Web service from the BAPI for 
flight trip. Besides the administration tool introduced above, you can 
use a set of other tools for maintaining as well as modifying your Web 
services. For example, you can check all the Web service definitions 
and virtual interfaces directly in the Object Navigator (transaction 
SE80). You can specify there other features for your Web services. 
Because this is out-of-scope of this whitepaper, please refer to the SAP 
documentation  
http://help.sap.com/saphelp_erp2004/helpdata/en/e5/a68d10f4eb89
4087fc9c1c3f9ae433/frameset.htm for more information. 
 
With the Web services exposed by SAP NetWeaver, we can realize a 
set of business functionalities. However, to support an active business 
process in the enterprise, one needs more than the business 
functionalities in the backend system. One needs something that can 
integrate all the business functionalities to build collaborative business 
processes. In the next section, we check out how to create 
collaborative business processes based on the SAP Web services and 
.NET Framework 3.0. 
 



 

Page 28 
 

Building Business Processes using WF® 

In the keynote at this year’s Microsoft CEO Summit, Microsoft’s 
chairman Bill Gates has outlined the current problem for enterprise 
information workers as a twofold problem: information 
overload/underload. Cited from his Email after the keynote, “Faced 
with the endless deluge of data that is generated every second of 
every day, how can we hope to keep up? And in the struggle to keep 
up, how can we stay focused on the tasks that are most important and 
deliver the greatest value?”11. The way out of this situation is more than 
just better search tools. It requires a comprehensive approach to 
“enterprise information management that spans information creation, 
collection and use”. One of the biggest challenges for information 
workers is the fact that the enterprise data is often distributed in the 
different backend systems. In order to complete a single task, an 
information worker has to access several data sources in the enterprise 
manually using different client applications as UI. With the new 
programming model .NET Framework 3.0, Microsoft tries to deliver the 
basis for building enterprise information access solutions that give the 
information workers to access the information in a unified way and 
increase so that the productivity of them. As two of the new 
technologies that Microsoft intends to roll out in the next few months to 
solve the problem of enterprise information access, Windows 
Communication Foundation and Windows Workflow Foundation 
provide the basis for unified information access across the enterprise 
and across the partners along the business process. In this section, we 
introduce the concept and the characteristics of both WWF and WCF 
by walking through the implementation of the flight-booking scenario 
and explain how they can help to build enterprise applications with 
different backend systems for application workers. 

Windows Workflow Foundation 
Windows Workflow Foundation (WF) provides a rich programming 
model for building the semantics of processes in terms of activities into 
an application. The set of Activities that coordinate people and 
software, for instance, the activities GetFlightList or BookFlightTrip in our 
flight-booking scenario, are organized into a Workflow. WF provides a 
way for organizing activities into a workflow with additional support for 
program control flow, transactions, synchronization, exception 
handling and interactions with other applications. Furthermore, it 
provides a set of services for advanced workflow management, 
including workflow persistence, compensating transaction, activity 
tracking, runtime tracing etc. All these services are controlled by the 

                                             
11 You can read the full text of this email at Microsoft’s web site: 
 http://www.microsoft.com/mscorp/execmail/ 



 

Page 29 
 

workflow runtime, which can be hosted in any CLR application 
domains and so that can be embedded into any .NET applications.  
 
In this section, we address the following topics: 
• The basic concept of WF: the architecture and the components of 

WF 
• The Extensibility of WF: how to extend WF by developing customized 

workflow activity 
• Interaction with external application/person: how a workflow can 

be controlled by external application/person 
• Hosting workflows in .NET application: how to build workflows into 

your applications 
 
We only covered the key part of the WF in this whitepaper. Meanwhile, 
there are several great information sources for getting started with the 
WF technology. Besides the .NET Framework 3.0 developer center for 
Workflow Foundation on MSDN (available under 
http://msdn.microsoft.com/winfx/technologies/workflow/default.aspx), 
Paul Andrew et al., who are the key members of the Microsoft Team 
responsible for developing WF, have written a book “Presenting 
Windows Workflow Foundation” that covers WF at an introductory level 
for .NET developers. Furthermore, you can download all the sample 
codes of the book from its web site, which are a good start point for 
getting familiar with the concepts of WF. Among other things, the 
following sites may also be of interest to you: 
• http://www.windowsworkflow.net 
• http://msdn.microsoft.com/workflow  

The Concept of Windows Workflow Foundation 
The key concept in the WF is the workflows, which are a set of activities. 
The activities are the building blocks of workflows and enable reuse of 
the unit of functionalities. The activities can be composed to 
Composite Activities, which can be built into a workflow as a unit. 
Figure 7 illustrates the architecture and the components of WF. The 
workflows run in a hosting environment at runtime, which can be any 
.NET applications. The basis for operating workflows at runtime is the 
workflow foundation that consists of the following components: 
• Runtime Service provides the necessary foundational services for 

the workflows at runtime, such as persistence service. 
• Runtime Engine is responsible for workflow execution and state 

management at runtime. It consumes the Runtime Service to save 
serialized workflow instance to the disk or restore saved workflow 
instance from disk. In addition, the Runtime Engine schedules the 
execution of the activities based on event being caught or 
sequence defined in the workflow. 



 

Page 30 
 

• Basic Activity Library contains a set of out-of-box basic activities 
and the base for the custom activities. The basic activities are the 
steps within a workflow. 

 
Based on the Basic Activity Library, developers can build their own 
Custom Activity Library to extend the WF for matching domain specific 
purpose requirements. For building workflows from activities in the 
Base/Custom Activity Libraries, WF provides also a Visual Designer that 
is integrated in Visual Studio for designing and debugging workflows. 
 

 
Figure 7: Architecture and Components of Windows Workflow Foundation 

After having installed the Visual Studio Extension for Workflow 
Foundation, the Visual Designer and a set of project templates are 
added to Visual Studio 2005. To create a WF project in Visual Studio, 
navigate to “File”-> “New”-> “Project…” to start the “New Project” 
dialog. In the dialog, select “Workflow” in the Project types to get all 
the project templates available for workflow projects, as shown in the 
following figure:  
 

 
In the dialog, you can create various workflow projects from the 
templates: 



 

Page 31 
 

• Sequential Workflow Console Application: this template creates a 
workflow project that contains a default sequential workflow and a 
test console application for hosting the workflow 

• Sequential Workflow Library: this template creates a project for 
building sequential workflow in a library that can be referenced by 
other applications 

• Workflow Activity Library: this template creates a project that 
creates a library of activities for re-use later in workflow projects 

• State Machine Workflow Console Application: this templates 
creates a workflow project that contains a default state machine 
workflow and a test console application for hosting the workflow 

• State Machine Workflow Library: this template creates a project for 
building state machine workflow in a library that can be referenced 
by other applications  

• Empty Workflow Project: this template creates an empty project 
that can contain workflow and hosting applications later at design 
time. 

 
There are two workflows types to create workflow projects through the 
templates. The sequential workflow is a set of activities that can be 
expressed using a process pipeline and the execution of the workflow 
acts in accordance with the sequence in the process. The order of the 
execution can be affected by external events. The state machine 
workflow is totally event-driven. It contains a set of states, transitions 
between states and actions. Starting with an initial state, a transition 
can be made to another state based on an event being caught. And 
the end of the workflow is defined by a final state. 
 
For our flight-booking scenario, we need a workflow that returns a set 
of flight connections to the desired airport. The result is not only a list of 
flight connections. It contains also the details of the flight connections. 
To achieve this functionality, we implement a sequential workflow that 
consumes BAPI functions from SAP to create the flight connections. 
Therefore, we need to create a Visual Studio project by using the 
“Sequential Workflow Library” template and call the new Visual Studio 
project “GetConnectionDetailWorkflow”, as shown in the following 
figure: 
 



 

Page 32 
 

 
 
The project being created contains initially two files: workflow1.cs and 
workflow1.designer.cs. The workflow1.cs is the code file that you can 
use to build in your own business logic. The other file, 
workflow1.designer.cs, is generated by the WF Visual Designer and 
contains the description of the workflow. As an alternative, you can 
also use a XML-based declarative Extensible Application Markup 
Language (XAML) to describe the workflow. To add a XML-based 
workflow file, simply add a new item to the workflow project we 
created before. In the dialog, you can see a file template “Sequential 
Workflow (with code separation)”, as shown in the following figure. If 
you create a new code file based on this template, two new files are 
added to the project: workflow2.xoml and workflow2.xoml.cs. The first 
file describes the workflow model in XML and the second file is 
generated by Visual Designer. Both options for creating workflows in 
the project are equivalent to each other, once the source for the 
workflow, either in programming language or in markup language, is 
compiled into .NET assembly. In our scenario, we simply use the first 
option to describe a workflow.  
 

 
 
To open the visual workflow designer, simply double-click the file 
workflow1.cs. The initial workflow contains only start and end activities. 
To add new activities to the workflow, you can simply drag-and-drop 



 

Page 33 
 

the appropriate activity from the Toolbox onto the design surface. In 
our scenario, we have to make two BAPI function calls one after 
another. The first call gets all the flight connections returned in a list and 
the second call gets the details of each flight connection in the list, as 
illustrated in the following flow chart. 
 

 
Figure 8: Illustration of the GetFlightConnectionDetails Process 

To model this workflow in WF and fill the workflow with activities, please 
follow the instructions here: 
1. In the first step, we need to get a list of flight connections. This can 

be done by calling the BAPI function BAPI_FLCONN_GETLIST from 
SAP. Therefore, we need an activity to make a Web service call. To 
do it, simply drag the activity “InvokeWebService” from the Toolbox 
onto the design surface of the workflow to add it to the workflow, 
as shown in the following figure. 

 

 
 

2. A new dialog is shown for adding the corresponding Web 
Reference to the project. In the URL text field, enter the URL to the 
WSDL document of the BAPI_FLCONN_GETLIST Web service. It may 
looks like 
http://jdaiberl69.ctsc.org:8000/sap/bc/soap/wsdl11?services=BAPI_
FLCONN_GETLIST&sap-client=000 . After that, click “Go” to 
continue. 



 

Page 34 
 

 
 

3. You may be required to enter the authentication data for the SAP 
ECC system. For the SAP ECC system that we use, use the username 
“BCUSER” and the password “minisap” as the login data. 

 

   
 

4. After the successful authentication, the Web service description 
with the available Web methods is shown in the dialog. Give the 
new Web reference a meaningful name like 
“SAP.BAPI.FlightConnection.GetList” and click “Add Reference” to 
add it to the project. This adds a new Web reference node in your 
project, which you can find in the Web References folder within the 
Solution Explorer. All the programming code you need to call the 
BAPI Web service is generated for you. 

 

 
5. In this step, we configure the InvokeWebService activity that we 

added before to call the BAPI Web service BAPI_FLCONN_GETLIST. 



 

Page 35 
 

Right-click the activity and select “Properties” from the context 
menu to show the “Properties Window”. Then in the “Properties 
Window”, select from the drop-down menu of “ProxyClass” the 
value 
“GetConnectionDetailWorkflow.SAP.BAPI.FlightConnection.GetList.B
API_FLCONN_GETLISTService”. Afterwards, select from the drop-
down menu of “MethodName” the value “BAPI_FLCONN_GETLIST”. 
Now you have set up the activity so that it will invoke the BAPI 
function “BAPI_FLCONN_GETLIST” at runtime. 

 

 
 
6. After the value of the property “MethodName” is set, the Visual 

Designer automatically added a set of parameters, which are 
required for the Web service invocation, to the properties of the 
activity. All these new properties have to be set, before the 
workflow can execute this activity at runtime. There are generally 
two ways to set a property for an activity. The first one is to use the 
parameter promotion functionality offered by the Visual Designer to 
automatically declare a new property of the same type in the 
source code and assign the property to the parameter. The other 
one is to do this all by you manually. We choose to use the first 
option with automatic promotion here. To promote a new property 
for the parameter, simply select “<Promote…>” from the drop-
down menu of the parameter. In the new dialog, specify the name 
for the new activity property like “GETLIST_AIRLINE” for the 
parameter “AIRLINE” and click “OK” to continue. The Visual 
Designer declares the necessary activity property of the type 
“System.String” and assigns it to the parameter AIRLINE, as shown in 
the following figure. Repeat this step for all other parameters for this 
activity: DATE_RANGE, DESTINATION_FROM, DESTINATION_TO, 
EXTENSION_IN, EXTENSION_OUT, FLIGHT_CONNECTION_LIST, 
MAX_ROWS, MAX_ROWSSpecified, RETURN, and TRAVELAGENCY.  



 

Page 36 
 

 
 

7. After the last step, the activity invokeWebServiceActivity1 is 
configured to call the BAPI Web service at runtime. However, this 
activity needs a set of input parameters and the necessary 
credential to invoke the BAPI Web service in SAP ECC. The following 
figure illustrates how an InvokeWebService activity makes a Web 
service call at runtime. Before the activity makes the actual Web 
service call, it raises an “Invoking” event. You can catch this event 
by assigning an EventHandler to it. In the EventHandler, you can do 
some task before the actual Web service call, e.g. initializing the 
input parameters for the Web services or specifying the 
authentication credentials for the backend system. After that, the 
activity goes on making the Web service call. Once the server, in 
our case the SAP ECC, has returned the result of the Web service 
call, the activity raises an “Invoked” event again. By subscribing to 
this event using an EventHandler, you can handle the result of the 
invocation. 

 

 
Figure 9: The Lifecycle of the InvokeWebService Activity at Runtime 

Let us go back to our scenario to explain how it works. Right-click 
on any blank space of the design surface and select “View Code” 
to switch to the Code-View of the workflow. At first, we need an 
EventHandler for the Invoking event. The EventHandler should at 
first set up the network credential for the SAP BAPI Web service call 
and it has to initialize the input parameters for the Web service call, 
too. Analogously, we need an EventHandler for the Invoked event 



 

Page 37 
 

that handle the result returned by the Web service. The source 
code for these both EventHandlers is as follows: 
 
private void OnGetListWebServiceInvoking(object sender, InvokeWebServiceEventArgs e) 
{ 
            // set the network credential for SAP BAPI call 
            System.Web.Services.Protocols.SoapHttpClientProtocol client =    
                                                                            
(System.Web.Services.Protocols.SoapHttpClientProtocol)e.WebServiceProxy; 
            System.Net.NetworkCredential credential = new System.Net.NetworkCredential(); 
            credential.UserName = "bcuser"; 
            credential.Password = "minisap"; 
            client.Credentials = credential; 
 
            // initialize the parameters 
            this.GETLIST_DATE_RANGE = new BAPISCODRA[] { }; 
            this.GETLIST_DESTINATION_FROM = new BAPISCODST(); 
            this.GETLIST_DESTINATION_TO = new BAPISCODST(); 
            this.GETLIST_EXTENSION_IN = new BAPIPAREX[] { }; 
            this.GETLIST_EXTENSION_OUT = new BAPIPAREX[] { }; 
            this.GETLIST_FLIGHT_CONNECTION_LIST = new BAPISCODAT[] { }; 
            this.GETLIST_RETURN = new BAPIRET2[] { }; 
 
            return; 
} 
 
private void OnGetListWebServiceInvoked(object sender, InvokeWebServiceEventArgs e) 
{ 
            // do something with the Web service call result here. 
} 
 
Now we have declared two EventHandlers, one for the Invoking 
event, and the other for the Invoked event. Both these 
EventHandlers have to subscribe to the corresponding events that 
activity will fire at runtime. To do it, open the properties of the 
activity in the Properties Window. Find the event “Invoking” and 
“Invoked” in the section “Handlers”. Then select from the drop-
down list of both events the appropriate EventHandler: 
OnGetListWebServiceInvoking for the Invoking event and 
OnGetListWebServiceInvoked for the Invoked event. Now we have 
finished setting up the activity with all the parameters and event 
handlers. 
 



 

Page 38 
 

 
 
8. To complete the workflow, we need a While activity to go through 

all the flight connections in the list and make in each loop a Web 
service call using the InvokeWebService activity. The procedure is 
similar to the activity that we created in the last steps. For the 
further implementation details, please refer to the sample Visual 
Studio project for the flight-booking scenario to this whitepaper. 

Exposing Workflow as Web Services 
Windows Workflow Foundation provides the possibility to expose a 
workflow as an ASP.NET Web service to .NET client applications or other 
workflows. There are two prerequisites for exposing workflows as Web 
services: the first, there must be a declaration of an Interface that the 
Web service exposes; the second, the workflow must use the 
WebServiceInput activity. The idea is that the workflow has-at least-a 
single pair of WebServiceInput and WebServiceOutput activities that 
implement the methods declared in the interface. In common case, 
the workflow is activated by calling a web method exposed by the 
Web service. Then it proceeds to the end of the workflow and returns 
the output values via the WebServiceOutput activity. 
 
For our flight-booking scenario, we expect a Web service that takes the 
search criteria for the flight connections, such as airline, departure 
airport and arrival airport, and return the detailed information of all 
flight connections matching the search criteria. To expose the workflow 
that we created in last section as a Web service, please follow the 
instructions here: 
1. Add a new file IGetFlightConnectionDetails.cs to the project and 

double-click it to open it in the source code editor. 
2. Declare the interface with the method 

GetFlightConnectionDetails(…), as follows: 
 



 

Page 39 
 

using System; 
using System.Collections.Generic; 
using System.Text; 
using CTSC.Whitepaper.WinFX.Workflow.DataModel; 
 
namespace CTSC.Whitepaper.WinFX.Workflow.Interface 
{ 
        interface IGetFlightConnectionDetails 
        { 
        /// <summary> 
        /// this method defines the single web method exported by the workflow later 
        /// </summary> 
        /// <param name="Agency">the travel agency number</param> 
        /// <param name="Airline">the airline, which will be used later to restrict the search 
result</param> 
        /// <param name="From">the departure airport</param> 
        /// <param name="To">the arrival airport</param> 
        /// <returns></returns> 
        FlightConnectionDetails GetFlightConnectionDetails( 
            string Agency,  
            string Airline, 
            string From,  
            string To); 
       } 
} 
 
3. Add a WebServiceInput activity as the initial activity to the workflow 

created in the last section. And add a WebServiceOutput activity 
as the last activity to the workflow. Afterwards, the workflow should 
look like this: 

 

 
 

4. In the following steps, we will assign the interface to the 
WebServiceInput/WebServiceOutput activities in the workflow. At 
first, right-click the activity WS_GetInput and select “Properties” from 
the context menu to display the activity properties in the Properties 
Window. Then select the property InterfaceType and click the 
button  to open the dialog for selecting the corresponding 
interface. In the dialog “Browse and Select a .NET Type”, select the 



 

Page 40 
 

type “IGetFlightConnectionDetails” from the list and click “OK” to 
confirm. 

 

 
 

5. Switch back to the Properties Window of the activity WS_GetInput, 
select the property “MethodName” and choose 
“GetFlightConnectionDetails” from the list (as shown in the figure 
below). Now you have assigned the method to the new Web 
service. In other words, the new Web service provides a Web 
method that complies with the signature as defined in the 
interface. The Visual Designer reads the method signature from the 
interface and adds automatically all the input parameters as the 
activity parameters for the activity WS_GetInput to the properties 
list. In the next step, we have to set up the parameters. 

 

 
 

6. To set up the parameters, please consult the instruction from the 
last section. Please note that you have to change the value of the 
property “IsActivating” from “false” to “true”. This ensures that this 
activity WS_GetInput will activate the corresponding workflow 
instance at runtime. 



 

Page 41 
 

7. Now we have configured the activity WS_GetInput to get Web 
service request from client at runtime. To teach the WF that the 
activity WS_GetInput correlates with the activity WS_ReturnOutput 
for returning output values, we have to get the activity 
WS_ReturnOutput know that it should returns output for the input 
activity WS_GetInput. To do it, change the activity property 
“InputActivityName” of the activity WS_ReturnOutput to 
“WS_GetInput”, as follows. 

 

 
 
8. Before you can expose the workflow as a Web service, please 

make sure that you have set all the activity properties in the 
workflow. And in case that you need to add your custom code to 
control the WebServiceInput/WebServiceOutput activities, you can 
subscribe to the events raised by these activities at runtime. To 
generate handlers that manage input and output data, you simply 
right-click the input/output activities and click Generate Handlers 
from the context menu. Add all your custom code to the handlers 
being generated. After you are done with the code, you can 
expose the workflow as a Web service by right-clicking the project 
and selecting “Publish as Web Service” from the menu (as shown in 
the figure below). The Visual Designer creates a new ASP.NET Web 
service project with a corresponding Web.config file, an .asmx file 
and an assembly that contains the workflow code. You can then 
deploy this Web service e.g. to IIS and execute the workflow by 
invoking the workflow Web service. 

 



 

Page 42 
 

 
 

Using Custom Workflow Activity 
Another highlight of WF is the extensibility through custom workflow 
activities. WF delivers a set of out-of-box activities to help you get 
started with WF. However, it does not cover all the functional 
requirements that you may have in real business scenarios, where it is 
often required to model advanced control flows or to integrate with 
proprietary technologies. In this case, you can author domain-specific 
reusable custom activities to build workflow models. For instance, for 
our flight-booking scenario, we have to send emails to notify the person 
who is involved in the process. Therefore, we can define this activity as 
a custom workflow activity SendingEmail and encapsulating all the 
properties (like mail server (POP/SMTP server), sender address, receiver 
address, etc) and the events (like “sending email” or “email has been 
sent”) in the activity.  
 
Before we go on with the implementation of the activity SendingEmail, 
let us examine at first the lifecycle of an activity at runtime, as depicted 
in Figure 10 . 
 

 
Figure 10: The Lifecycle of a Workflow Activity at Runtime 

Each activity implements the methods Initialize(), Execute(), Cancel() 
and optionally Compensate(). The lifecycle of the activity begins with 



 

Page 43 
 

the invocation of the method Initialize() by the workflow runtime. After 
the initialization, the workflow runtime call the Execute() method to 
start the actual procedure defined by the activity. The runtime can call 
the Cancel() method to break the execution. Otherwise, after the 
activity has finished executing the predefined procedure, it returns a 
status code that indicates the execution status back to the runtime. 
Depending on the status code being returned, the runtime can either 
terminate the activity or call the optional Compensate() method for 
compensation.  
 
To create a new custom activity, you can use the WF project template 
“Workflow Activity Library”. The template creates a C# file that 
contains the code for the new activity. An activity can inherit from any 
built-in activity defined in the WF or if you want to create a complete 
new activity from scratch, you can inherit the new class from the base 
class System.Workflow.ComponentModel.Activity, which is the base 
class for all activities for WF, including the out-of-box ones. The following 
code sample shows the new class: 
 
namespace SendingEmail 
{ 
       public partial class SendingEmailActivity: Activity 
      { 
                public SendingEmailActivity() 
            { 
         InitializeComponent(); 
                } 
 
                protected override ActivityExecutionStatus Execute(ActivityExecutionContext context) 
                { 
                          // writing code for sending email here 
                          return ActivityExecutionStatus.Closed; 
                } 
        } 
} 
 
The next task for creating new custom activity is to add a list of 
properties and event handlers to the activity. It s recommended to use 
the dependency properties rather than the standard .NET properties. 
Dependency properties allow binding their value to underlying data 
source or to other properties of other activities in the same workflow. 
You can use the built-in code snippets to generate the dependency 
properties and event handlers, as follows: 
 

 
 



 

Page 44 
 

The code snippet creates a static instance of the type 
DependencyProperty and a wrapper property for this instance. The 
following code sample shows the definition of such a 
DependencyProperty. The wrapper property contains a set of attributes 
that are used by the Visual Designer at design time. In the similar way, 
you can generate all the necessary properties and event handlers for 
your custom activity. 
 
public static DependencyProperty FromProperty =                     
         System.Workflow.ComponentModel.DependencyProperty.Register("From", 
typeof(string),         
                    typeof(SendingEmailActivity)); 
 
[Description("This is the description which appears in the Property Browser")] 
[Category("This is the category which will be displayed in the Property Browser")] 
[Browsable(true)] 
[DesignerSerializationVisibility(DesignerSerializationVisibility.Visible)] 
public string From 
{ 
       get 
       { 
             return ((string)(base.GetValue(SendingEmailActivity.FromProperty))); 
       } 
       set 
       { 
             base.SetValue(SendingEmailActivity.FromProperty, value); 
     } 
} 
 
To finish creating the custom activity, you have to implement the 
Execute() method in the source code and optionally the other 
methods Initialize(), Cancel() or Compensate(), according to the 
business logic that you want to realize through the activity. After you 
have implemented all the necessary methods and compiled it 
successfully, the Visual Designer will automatically list this new activity in 
the toolbox, so that you can add the custom activity to the workflow at 
design time.  
 

 
You can find the full source code for the SendingEmail activity either in 
the Visual Studio solutions for the flight-booking scenario to this 
whitepaper or in the sample codes contained in the WF 
documentation. 

Interacting with external Process 
At runtime, a real-world workflow has to interact with external world to 
complete its tasks. WF supports this approach through a dedicated 



 

Page 45 
 

service with specific attribute. The service enables a bi-directional 
communication between the workflow and the external world. On one 
side, the service raises events at runtime that event-driven activities in 
the workflow can subscribe to. In this way, WF provides an information 
flow from external world into the workflow. On the other side, the 
service provides a set of public methods that the workflow can call at 
runtime. This mechanism provides an information flow from the 
workflow to the external process.  
 
The events and the public methods are defined in a .NET interface, 
which is explicitly marked  as data exchange service for WF-based 
workflow by using the class attribute “ExternalDataExchange” (as 
shown in the code sample below). Each data exchange service 
contains an interface declaration and a .NET class that implements the 
interface. In the following sample interface, we have defined a data 
exchange service FlightBookingRequestExternalService that contains 
three public methods and two events. 
 
/// <summary> 
/// External Data Service Interface for the booking request workflow, which is used by the 
workflow to  
/// communicate with external source 
/// </summary> 
[ExternalDataExchange] 
public interface IFlightBookingRequestExternalService 
{ 
        void ApproveExpenseReport(BookingRequest request); 
 
        void RejectExpenseReport(BookingRequest request); 
 
        void SubmitBookingRequest(BookingRequest request); 
 
        event EventHandler<RequestSubmittedEventArgs> BookingRequestSubmitted; 
 
        event EventHandler<RequestReviewedEventArgs> BookingRequestReviewed; 
} 
 
The [ExternalDataExchange] class-attribute marks this service interface 
definition as an external data exchange service so that the workflow 
runtime knows to use this service to interact with external process. WF 
delivers two out-of-box activities to consume the external data 
exchange service. The HandleExternalEvent activity can subscribe to 
the events that the data exchange service may rise at runtime. And 
the public methods exposed by the data exchange service can be 
called from within the workflow by using the CallExternalMethod 
activity, as follows: 
 



 

Page 46 
 

     
 
The event passes external data into a workflow instance through the 
EventArgs parameter in the event. The EventArgs parameter derives 
from the ExternalDataEventArgs class defined the WF. As you can see in 
the following code sample, via the EventArgs parameter you can pass 
nearly every (serializable) data to the workflow instance that subscribes 
to the event. 
 
[Serializable] 
public class RequestReviewedEventArgs : ExternalDataEventArgs 
{ 
        public RequestReviewedEventArgs(System.Guid instanceID, BookingRequest request, 
ReviewStatus status) 
            : base(instanceID) 
        { 
            this.BookingRequest = request; 
            this.ReviewStatus = status; 
        } 
 
        private BookingRequest _request; 
 
        public BookingRequest BookingRequest 
        { 
            get { return _request; } 
            set { _request = value; } 
        } 
 
        private ReviewStatus _status; 
 
        public ReviewStatus ReviewStatus 
        { 
            get { return _status; } 
            set { _status = value; } 
        } 
} 
 
The next step to create the data exchange service is to implement a 
.NET class that implement the interface. This task is quite 
straightforward, so that we skip over the details of its implementation. 
As usual, you can find the full implementation for this class in the 
sample Visual Studio solution for the flight-booking scenario. 



 

Page 47 
 

Hosting Workflow in your Application 
The goal of WF is to make the development of workflow-enabled 
applications easier than ever. In the last sections, we have outlined 
how to develop a WF-based workflow and how it works at runtime. A 
workflow requires the WF workflow runtime as the running environment, 
and the workflow runtime requires an external application/service to 
host it. At runtime, the hosting application interacts with WF through the 
WorkflowRuntime or a custom class that inherits from it. Here is a list of 
host responsibilities that the host application must provide for hosting 
the workflow: 

- Initialize the workflow runtime 
- Create custom and local workflow services, such as persistence 

service, tracking service, etc. 
- Start new workflow instance at runtime 
- Monitor the specific events on the workflow instance 
- Configure the workflow instance for debugging, diagnostic, etc. 

The initialization of the workflow runtime is straightforward, as follows: 
 
// Get a new workflow runtime 
WorkflowRuntime wr = new WorkflowRuntime(); 
// do something to configure the runtime here 
// start the runtime 
wr.StartRuntime();  
 
Before you start the workflow runtime, you have to add all the 
necessary services to the runtime that your workflow instance may use 
at runtime, for instance, the external data exchange service or the 
persistency service for the workflow runtime. There are two possible 
ways to configure the services for the workflow runtime. The first one is 
to add the corresponding service(s) directly in the source code, as 
shown below: 
 
// Add the external data service 
ExternalDataExchangeService dataExchangeService = new ExternalDataExchangeService(); 
wr.AddService(dataExchangeService); 
FlightBookingRequestExternalService  externalDataService = new 
FlightBookingRequestExternalService(); 
dataExchangeService.AddService(this.externalDataService); 
// Add system SQL state service 
SqlWorkflowPersistenceService stateService = new SqlWorkflowPersistenceService( 
            "Initial Catalog=WorkflowPersistence;Data Source=.\SQLEXPRESS;Integrated 
Security=SSPI; "); 
wr.AddService(stateService); 
 
The other way to add runtime services to the workflow runtime is to use 
the configuration file, which gives you more flexibility because you can 
change the settings anytime directly in the configuration xml file, as 
follows: 
 
<?xml version="1.0" encoding="utf-8" ?> 
<configuration> 
  <configSections> 



 

Page 48 
 

    <section name="BookingRequestWorkflowRuntimeConfig" 
type="System.Workflow.Runtime.Configuration.WorkflowRuntimeSection, 
System.Workflow.Runtime, Version=3.0.0.0, Culture=neutral, 
PublicKeyToken=31bf3856ad364e35"/> 
  </configSections> 
 
  <BookingRequestWorkflowRuntimeConfig> 
    <Services> 
      <add type="System.Workflow.Runtime.Hosting.SqlWorkflowPersistenceService, 
System.Workflow.Runtime, Version=3.0.0.0, Culture=neutral, 
PublicKeyToken=31bf3856ad364e35" ConnectionString="Initial 
Catalog=WorkflowPersistence;Data Source=.\SQLEXPRESS;Integrated Security=SSPI;"/> 
      <add type="System.Workflow.Runtime.Tracking.SqlTrackingService, 
System.Workflow.Runtime, Version=3.0.0.0, Culture=neutral, 
PublicKeyToken=31bf3856ad364e35" ConnectionString="Initial Catalog=WorkflowTracking;Data 
Source=.\SQLEXPRESS;Integrated Security=SSPI;" IsTransactional="false" UseDefaultProfile="true" 
TrackXomlDocument="True"/> 
    </Services> 
  </BookingRequestWorkflowRuntimeConfig> 
</configuration> 
 
To create a specific workflow instance, you have to pass necessary 
information about the new workflow instance to the workflow runtime. 
Among other things, the workflow runtime needs to know the .NET CLR 
type of the workflow, for which a new instance to should be created. 
The following code demonstrates how to create the workflow instance 
for our flight-booking scenario. As usual, you can find the full source 
code in the Visual Studio solutions for the scenario. 
 
//create workflow instance id 
System.Guid workflowInstanceId = System.Guid.NewGuid(); 
 
// Load the CTSC.Whitepaper.WinFX.Workflow.FlightBookingRequestWorkflow workflow through 
reflection 
Type wType = typeof(CTSC.Whitepaper.WinFX.Workflow.FlightBookingRequestWorkflow); 
 
// prepare the parameter for the workflow instance 
Dictionary<string, object> parameters = new Dictionary<string, object>(); 
 
parameters.Add("WS_BOOKING_REQUEST", request); 
parameters.Add("APPROVAL_TIMEOUT", this.Timeout); 
 
// start the workflow instance 
WorkflowInstance wInstance = this.runtime.CreateWorkflow(wType, parameters, 
workflowInstanceId); 
wInstance.Start(); 
 

Windows Communication Foundation 
The idea behind Windows Communication Foundation is to provide a 
unified communication programming model that satisfies diverse 
communication requirements for distributed applications, such as 
security, interoperability, or transaction. On top of the .NET framework 
Common Language Runtime (CLR), WCF provides a set of APIs that 
allows developers building distributed applications in a familiar way as 



 

Page 49 
 

they do for object-oriented applications. The APIs in WCF exhibit the 
following three most important aspects: 
• Unification: WCF unified the programming models of .NET 

framework for building distributed applications. And they are 
ASP.NET Web services (ASMX), .NET Remoting, Enterprise Services, 
Web Services Enhancements (WSE) that implements the WS-* 
specifications in addition to the standard SOAP protocol stack and 
the Microsoft Message Queuing (MSMQ). 

• Service Orientation: WCF codifies best practice for building 
distributed application by encapsulating functionalities as WCF 
services, which can be accessed via different accessing channel 

• Integration: WCF interoperates with applications running on other 
platforms and ensures reliability, security and transactions during 
the communication process. 

 
In this section, we cover the following topics about WCF: 

• The key concepts of WCF: the architecture and the components 
in WCF 

• Providing services using WCF: we explain how to applying the 
concept of WCF to providing services 

• Accessing WCF services: we explain how a WCF client 
application is constructed and how to develop it 

 
WCF is a powerful technology platform with a lot of customizing options 
to control the behaviors of the distributed applications being built with 
it. In this regard, we can only cover the basic part of WCF in this 
whitepaper. For those, who want to know more about WCF, here is a 
list of good information sources to start with: 

• http://www.windowscommunication.net: the information portal 
for WCF hosted by Microsoft. Particularly, you can find there a lot 
of technical articles as well as sample applications for WCF. 

• http://msdn.microsoft.com/webservices/indigo/: The WCF 
developer center at MSDN 

• http://msdn.microsoft.com/webservices/: the Web services 
developer center at MSDN 

• The book “Programming Indigo” by David Pallmann published by 
Microsoft Press 

The Concept of Windows Communication Foundation 
The key concept of WCF is Endpoint. Each WCF-based service exposes 
a set of endpoints, through which the service communicates with the 
external world. Figure 11 illustrates the structure of WCF-based service. 
Each endpoint is composed of three parts: Address, Binding, Contract, 
or simply “ABC” of WCF. Address explains the question “Where is the 
service?” and provides the network address where the service resides. 
Binding addresses the question “How to communicate with the 
service?” and specifies things like transport protocol of the messages 



 

Page 50 
 

(e.g. HTTP or TCP), security requirements (e.g. WS-Security or SSL), etc. 
Contract explains the question “What does the service do?” and 
specifies things like the interface of the service, the data exposed by 
the service, etc.  
 

 
Figure 11: The Key Concepts of Windows Communication Foundation 

The term “ABC” of WCF indicates that there are three tasks to 
complete in order to create a WCF-based service: 

- Contract-related task: you specify the contract of the service 
and implement it to the service. 

- Binding-related task: you specify the service binding along with 
the transport protocol and other service-level parameters, such 
as security, reliable messaging, etc. 

- Address-related task: you specify the network address of the 
service and deploy the service to the specified network address. 

 
In the following sections, we demonstrate this approach by 
implementing a WCF-based service for our flight-booking scenario. In 
our scenario, we need a service where all the booking requests run 
together. Using the service, we can submit a new request, change the 
status of a request or get a list of all submitted requests.  

Providing Services with Windows Communication Foundation 
In this section, we follow the aforementioned “ABC” task list to create 
the booking-request service.  
 
At first, we need to define the contracts for the new service, as 
described in the task list. WCF uses a set of contracts to control the 
behavior of the WCF-based services. The most important contracts are 
ServiceContract, OperationContract, DataContract and 
MessageContract. Those people, who have ever implemented an 
ASP.NET Web service, may still remember the code-first approach to 
implement a .NET Web service. There, developers can simply 
implement a normal .NET class in their preferred programming 
language. Afterwards, they can use the class attribute [WebService] to 
mark a class definition as a Web service and use the method attribute 



 

Page 51 
 

[WebMethod] to mark a public method definition as a Web method. 
These attributes give the .NET Framework the necessary information 
about the properties and the behaviors of such classes/methods. WCF 
follows the similar way to let developers to define contracts for the 
WCF-based services. In the following, we explain what these particular 
contracts affect for our booking-request service. 
 
The following code sample shows the ServiceContract definition for the 
booking-request service. 
 
//This interface definition serves as the service contract for the FlightBookingRequestService 
[ServiceContract(Namespace = "urn:microsoft-sap:ctsc:whitepaper:winfx:wcf")] 
[XmlSerializerFormat] 
public interface IFlightBookingRequestService 
{ 
        // submit a new flight booking request to the service 
        [OperationContract] 
        System.Guid SubmitFlightBookingRequest(BookingRequest request); 
 
        // approve or reject an existing flight booking request 
        [OperationContract] 
        System.Guid ReviewFlightBookingRequest(BookingRequest request, bool approved); 
 
        // return all the booking requests as a list 
        [OperationContract] 
        List<BookingRequest> GetBookingRequestList(); 
} 
 
In the sample code, the interface declaration is explicitly marked as a 
Service Contract by the [ServiceContract(…)] attribute. The attribute 
tells the WCF runtime environment that this interface definition carries 
contract metadata for the WCF service. Each method in the interface 
is also explicitly labeled with the [OperationContract] attribute, which is 
equivalent to the [WebMethod] attribute of an ASP.NET Web service.  
The attribute [XmlSerializerFormat] is the key between the new WCF 
service and the existing ASMX services. This attribute tells the WCF 
runtime explicitly that the runtime should use the XmlSerializer from the 
namespace System.Xml.Serialization for all types in the current 
ServiceContract at runtime. This attribute makes it possible to move 
existing ASMX services to the new WCF platform. 
 
Now the methods exposed by the booking-request service have been 
determined through the ServiceContract and the OperationContract 
attributes. The booking-request service exchanges data with its client 
at runtime through input/output XML messages. Therefore, in the next 
step, we have to specify the data exchanged between the service 
and its client at runtime, so that the WCF runtime can serialize the data 
properly into XML message as well as de-serialize XML messages into 
data. In WCF, this can be done by using the [DataContract] attribute, 
as follows: 
 
 [DataContract] 



 

Page 52 
 

public class BookingRequest 
{ 
        [DataMember] 
        public System.Guid RequestID; 
 
        // other data member definition 
        ….. 
} 
 
The next attribute to control the messages exchanged between WCF-
based services and their clients are the MessageContract attribute. 
Using this attribute, WCF allows you to control the structure of the SOAP 
messages. You can explicitly specify which fields in your class should be 
mapped to the SOAP headers and which field to the SOAP body. For 
more information for using this attribute, please consult the WCF 
document. 
 
After having defined all the contracts necessary, you have to 
implement the interface by building all your custom business logics into 
the public methods of the service. Because this task is straightforward 
and varies from case to case, we skip over the implementation details 
for our booking-request service. You can find the full source code in the 
sample Visual Studio solutions for the scenario. 
 
Now we have finished defining the contracts for our booking-request 
service. According to the task list that we defined before, the next step 
is to configure the binding settings for the new service. The binding 
settings contain three aspects that control how messages are 
transported between the service and the client: the transport protocol, 
including HTTP, TCP and MSMQ; the message encoding like XML 1.0, 
binary, or Message Transmission Optimization Mechanism (MTOM) for 
attachments; and the service-level agreements, including WS-Security, 
WS-Reliability, etc. Based on these three aspects, you can create any 
possible binding settings for your WCF-based service. This task may 
have some overhead due to the complexity of the transport aspects; 
therefore, WCF provides a set of predefined bindings for the most 
common use cases, as shown in the following table (excerpt from the 
WCF document): 
 

Binding  Description  

BasicHttpBinding  This binding uses HTTP as the transport and Text/XML as the 
default message encoding. 

WSHttpBinding  A secure and interoperable binding that is suitable for non-
duplex service contracts. 

WSDualHttpBinding  
A secure and interoperable binding that is suitable for duplex 
service contracts or communication through SOAP 
intermediaries. 

WSFederationBinding 
A secure and interoperable binding that supports the WS-
Federation protocol, enabling organizations that are in a 
federation to efficiently authenticate and authorize users. 



 

Page 53 
 

NetTcpBinding  A secure and optimized binding suitable for cross-machine 
communication between WCF applications.  

 
For our booking-request service, we only need the basic Web service 
binding, because our service is only available in intranet via HTTP. For 
configuring the binding setting for the service, you can either do it in 
the source code or in the configuration file, as shown below. Both 
options are equivalent respecting the impact. However, the approach 
with the configuration file is much more flexible for you, if the use case 
changes later. 
 
WSHttpBinding binding = new WSHttpBinding(); 
// 1 minute send timeout 
binding.SendTimeout = new TimeSpan(0, 1, 0); 
// basic authentication 
binding.Security.Transport.ClientCredentialType = 
System.ServiceModel.Channels.HttpClientCredentialType.Basic; 
 
<system.serviceModel> 
    <services> 
      <service name="CTSC.Whitepaper.WinFX.WCF.Service.FlightBookingRequestService"> 
        <endpoint address="http://localhost:8080/CTSC/BookingRequestService" 
          binding="wsHttpBinding" 
contract="CTSC.Whitepaper.WinFX.WCF.Service.IFlightBookingRequestService" /> 
      </service> 
    </services> 
    <bindings> 
      <wsHttpBinding> 
        <binding sendTimeout="60"> 
          <security> 
            <transport clientCredentialType="Basic"/> 
          </security> 
        </binding> 
      </wsHttpBinding> 
    </bindings> 
</system.serviceModel> 
 
The last step in the task list is Addressing, which specifies the network 
address of the new WCF service. It can be done in combination with 
the ServiceHost. Each WCF service needs a .NET-based application for 
hosting. You can instantiate a new ServiceHost by passing the service 
type and the URI of the new service (Address in our task list) to the 
ServiceHost instance, just as in the following sample code: 
 
Uri uri = new Uri("http://localhost:8080/CTSC/BookingRequestService"); 
 
if (this.flightBookingServiceHost == null) 
{ 
      this.flightBookingServiceHost = new  
              ServiceHost(typeof(CTSC.Whitepaper.WinFX.WCF.Service.FlightBookingRequestService), 
uri); 
} 
 
// start the service 
this.flightBookingServiceHost.Open(); 
 



 

Page 54 
 

At runtime, the service is accessible under the address 
“http://localhost:8080/CTSC/BookingRequestService” and this service 
allows consumers to communicate with it through the HTTP protocol. 
 
Now we have gone through all the implementation details on the 
server side. In the next section, we will look at the client side and 
explain how to develop client application for WCF services. 

Accessing WCF Services from your Application 
The key for accessing WCF services is the metadata - the meta-
information about the WCF services. In fact, WCF services use WSDL to 
describe their metadata. For our booking-request service, you can get 
the WSDL document for the service via the URL 
“http://localhost:8080/CTSC/BookingRequestService?WSDL”, as follows: 
 

 
 
The WSDL document describes the interfaces (corresponding to 
ServiceContract), the messages (corresponding to 
Data/MessageContract), the binding information (corresponding to 
Binding) and the network address (corresponding to Addressing), 
which correspond to the building elements of a WCF-based service. 
This document gives client applications the necessary knowledge to 
invoke the desired WCF service, like where to access the WCF service, 
which methods the WCF service provides and how to invoke the 
methods (by knowing how to serialize and de-serialize messages it 
passes to and receives from the WCF service.). To consume the desired 
WCF service, WCF adopts the same approach as consuming a .NET 
Web service, namely accessing the WCF service through a proxy that 
encapsulates all the complexity associated with the service invocation 
in the underlying layers, like (de-)serializing, invoking, data transport, 
etc. To build the WCF service proxy for your client application, you can 
use either the Service Model Metadata Tool SvcUtil.exe or the build-in 



 

Page 55 
 

Proxy Generator for Visual Studio 2005. Both tools are capable of 
importing metadata information from the desired WCF service to 
generate the appropriate proxies. Furthermore, they modify the 
application configuration file to embed the appropriate binding 
information for the client application in compliance with the WCF 
service binding settings. 
 
To run SvcUtil.exe, you have to specify the URL pointing to the WCF 
service’s WSDL document. With the /config switch, the tool generates 
the compatible configuration file with the necessary endpoint 
information, which you have to merge manually with your client 
application configuration file. The following figure illustrates the output 
of SvcUtil.exe for the booking-request service. This tool creates two files: 
proxy.cs, which contains an equivalent interface with the identical 
signature as the WCF service; app.config, which contains the binding 
information for the client to access the WCF service.  
 

 
 
If you open the file proxy.cs, you can see the following class definition 
in the source code: 
 

 
 

With the help of the proxy file, you only need to create an instance of 
the proxy class and call the corresponding methods directly from the 
proxy instance. For our booking-request service, the corresponding 
code block may look like: 
 
// set the binding information 
System.ServiceModel.WSHttpBinding binding = new System.ServiceModel.WSHttpBinding(); 
System.ServiceModel.EndpointAddress endpoint = new   
                            
System.ServiceModel.EndpointAddress("http://localhost:8080/CTSC/BookingRequestService"); 



 

Page 56 
 

 
// create the proxy using the binding information 
FlightBookingRequestServiceProxy proxy = new FlightBookingRequestServiceProxy(binding, 
endpoint); 
 
// call the WCF service method, e.g. get all booking requests for our scenario 
BindingList<localhost.BookingRequest> requests = proxy.GetBookingRequestList() 
 
The Proxy wizard integrated in the Visual Studio for WCF services works 
in a similar manner. The only difference between it and SvcUtil.exe is 
that, the proxy wizard integrates the generated files directly into your 
VS projects, so that you can use the generated proxy classes directly in 
your project. 
 



 

Page 57 
 

Smart Clients 
In the last two chapters, we have discussed how to exposing business 
capabilities via Web services and how to build composite business 
capabilities from existing ones, e.g. SAP Web services. By using Web 
services to provide access to the actual business data across disparate 
backend systems, today’s business can build end-to-end applications 
involving partners, customers and employees. Just as Bill Gates has 
addressed in his executive email, the largest challenge to avoid the 
information overload/underload is to create software that streamlines 
how to find, use and share business information. In today’s business 
computing landscape, business information are often stored and 
managed by a set of separate LOB applications with separate client 
applications. Information workers need access to such business data 
anywhere and anytime to get their work done. Therefore, the software 
has to be integrated into the information worker’s normal working 
workflow and it should hide the complexity of the data through 
powerful data analysis, collaboration, reporting and representation 
features to turn business data exposed by Web services into high-level 
information and even business opportunities. 
 
Smart Clients can address such challenges. Smart Clients are 
“intelligent” client applications that can adapt to various clients 
runtime environments. Through unified front-end integrated with 
desktop applications or environment, smart clients enable bidirectional 
connections between the front-ends and the backend LOB 
applications: smart clients deliver transparently business data from 
various systems via Web services to the users and push user 
modifications on the data back to the systems. With smart clients 
designed for user-specific activities, e.g. based on either the “Role” or 
the “Task” of the information workers, the clients only display data 
relevant to the current activities. This property of smart client can 
efficiently reduce the effect of information overload and makes the 
information worker more productive with the business data. 
 
In the following sections, we explain the characteristics of Smart Clients 
by introducing Office Smart Clients together with Visual Studio Tools for 
the Microsoft Office Systems (VSTO) and our flight-booking scenarios. 

What is behind “Smart Clients”? 
In order to fully understand the idea behind “smart clients”, it is useful to 
shortly review the concepts and the underlying characteristics behind 
“thin client”- and “rich client” applications. 
 
Thin client applications are normally browser-based applications that 
are deployed on Web servers and expose business functionalities to 



 

Page 58 
 

broad audiences, including diverse external audiences. Thin clients are 
easily to deploy and maintain, because they can centrally managed 
directly on the Web servers. In addition, thin clients have only minimal 
software and hardware requirements on client computers, because 
the most computation takes place on the server side. Nevertheless, thin 
clients have also some disadvantages. Thin clients are heavily network-
dependent; the browser requires network connection to interact with 
the web server. Also, common application features that we know from 
desktop applications such as drag&drop, undo/redo, etc, are difficult 
to implement for thin clients. This reduces the usability of the 
application considerably. 
 
Rich client applications are designed to take advantage of the local 
hardware resources and the features provided by the operating system 
platforms, such as the Microsoft Office client applications. Comparing 
to thin client applications, rich client applications show better usability 
and are more responsive to the user actions. Despite of the 
advantages of rich client application, they have limitations, too. Rich 
client applications have to be completely deployed to each client 
computer and are difficult to deploy and maintain. Moreover, the fact 
that many client applications share components/libraries makes the 
deployment even more complicates, since any incompatible share 
component/library can easily break another application that depends 
on it (so called “DLL Hell”).  
 
Smart clients are applications designed to combine the advantages of 
rich client application, namely the usability, together with the ones of 
thin client applications, namely the easy deployment and 
manageability. Smart clients may have very diverse functional 
requirements depending on the particular business scenario; however, 
all the smart clients should have some or all of the following 
characteristics: 
• Have a rich user interface: smart client should have rich user 

interface that fully utilizes the advantages of Windows operation 
systems. A rich user interface ensures a responsive user experience 
and therefore a better usability of the application. 

• Make use of network resources: smart client should be network 
enabled and can consume diverse services and data over the 
network, including Web services.  

• Support occasionally connected users: for users who are 
occasionally connected to the network, smart client should provide 
such users support to continue to work efficiently when they are 
offline or when the connectivity is intermittent. 

• Support easy deployment and maintenance: smart client should be 
designed to manage their deployment and maintenance in a 
much more easy and flexible way like the thin client applications. 



 

Page 59 
 

Figure 12 illustrates the relationship between the Smart Clients, Thin 
Clients and Rich Clients again. 
 

 
Figure 12: Smart Clients in Comparison with Thin Clients and Rich Clients 

As aforementioned, smart clients may vary strongly in design and 
implementation due to different functional requirements based on the 
particular business scenarios. Therefore, smart clients may take different 
forms, which can be broadly classified into three categories: 
• Windows Smart Client Applications target the desktop platform and 

are desktop applications that fully utilize the available system 
resources to provide rich user interfaces. Such smart clients may 
range from applications deployed via HTTP to very sophisticated 
applications. With windows smart clients, business can build 
applications that run on desktop, laptop or tablet PCs and provides 
functionalities adapting to particular tasks with domain specific 
capabilities. In general, such smart clients are not associated with 
particular document type and are suitable to be used as front-end 
for LOB, financial, or collaborative applications. If you would like to 
know more about windows smart clients application based on 
Windows Forms, MSDN provides a specific column on this topic: 
http://msdn.microsoft.com/netframework/windowsforms/  

• Office Smart Client Applications target the Microsoft Office System 
2003 as platform. With Office smart clients, you can integrate 
business data exposed by e.g. Web services with the features of 
Word 2003, Excel 2003, etc. Comparing to the Windows smart 
clients, Office smart clients are normally document specific and 
provide context sensitive data as the user works within a document. 
Furthermore, they provide further features, such as data analysis, 
collaboration, reporting and presentation features for the business 
data exposed by Web services. There are a set of key features of 
Microsoft Office 2003 for building office smart clients: Smart Tags, 
Smart Documents, and Microsoft Visual Studio Tools for Office 
(VSTO). In the next section, we will demonstrate how to use VSTO to 
build context-sensitive Smart Document. For those, who need more 



 

Page 60 
 

detailed information about VSTO and other office smart clients 
related topics, they can visit the Office Developer Center on MSDN: 
http://msdn.microsoft.com/ 
office/tool/vsto/default.aspx  

• Mobile Smart Client Applications target the smart devices – Pocket 
PCs, Smartphone, etc. – as the platform. Such smart clients are built 
upon the .NET Compact Framework, which is a subset of the normal 
.NET Framework and is optimized for use on the smart devices. With 
the appropriate tools integrated in Visual Studio, you can develop, 
debug and deploy mobile smart clients on an emulator or directly 
on a real device. Mobile smart clients provide typically mobile 
access to business data and capabilities offered by Web services. 
On the other hand, it is also suited as front-end to collect data with 
extended support for offline use. The .NET Compact Framework 
developer center on MSDN 
http://msdn.microsoft.com/netframework/ 
programming/netcf/default.aspx provides a comprehensive 
overview about the development of mobile smart clients. 

 
The most prominent examples for Smart Client applications are the 
Information Bridge Framework12 (IBF) and Duet13 (formerly codenamed 
“Mendocino”) as a joint product of SAP and Microsoft. Both products 
enable the usage of the Office applications as the front-end for the 
business processes based on a set of Web services, which enables the 
direct integration of business data from the backend system into the 
familiar working tools for information workers.  
 
In this section, we have addressed the main characteristics of smart 
clients. Smart clients are a comprehensive approach to turn business 
data into more expressive business information via domain specific 
capabilities for data analysis and representation. Since we can only 
cover a very small part of the concept behind “Smart Clients” in this 
whitepaper, it is recommended to read the following literatures to get 
further information about Smart Clients: 
• http://msdn.microsoft.com/smartclient/ : the entrance portal for 

Smart Clients at MSDN 
• http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/dnpag/html/scag-ch01.asp: the Smart Client Architecture and 
Design Guide that covers the architectural challenges for domain 
specific business scenarios and how to overcome them when 
building smart clients applications. 

• http://msdn.microsoft.com/library/?url=/library/en-
us/dnpag2/html/scbatlp.asp: the Smart Client Baseline Architecture 

                                             
12 Information Bridge Framework: 
http://msdn.microsoft.com/office/tool/ibf/default.aspx 
13 Duet: http://www.duet.com 



 

Page 61 
 

Toolkit provides a set of guidance to help create Smart Client 
applications. 

Building Word Application using VSTO 2005 
In this section, we demonstrate the capabilities of VSTO 2005 by 
implementing a Smart Document for our flight-booking scenario. In our 
scenario, a user has to submit a booking request for the flight(s). To 
assist him in filling the formula directly in Word 2003, we implement a 
smart document that performs all the actions, such as searching flight 
connections or submitting the request, directly from inside of the Word 
document. 
 
After the installation of VSTO 2005, it adds a set of predefined project 
templates to Visual Studio 2005. Using the project templates, you can 
create Word Document/Template, Excel Workbook/Template and 
Outlook Add-in. For our scenario, we use the “Word Template” project 
template to create the corresponding project. The project template 
adds a new word template document “.dot” and the code-behind 
class file into your Smart Document project. The next step is to create a 
new XSD schema and reference the XSD schema with the word 
template. The XSD schema is used to markup the word template with 
the elements from the XSD schema. Please consult the VSTO 
documentation for how to do it. The result after mark-up looks like the 
following: 

 
 
In the following sections, we demonstrate how to create customized 
action pane in Word 2003 and how to manipulate the content of the 
word document programmatically. 

Developing Customized ActionPane 
A significant improvement of VSTO 2005 comparing to the older version 
is that, VSTO 2005 supports customized ActionPane in 



 

Page 62 
 

Word/Excel/Outlook. The way to create customized ActionPane is also 
very straightforward and is similar with the initialization of a WinForm-
container. You only need to instantiate the customized user controls 
and add them to the ActionPane container, just as the following code 
does: 
 
/// <summary> 
/// Initializes user controls, adds them to the Actions Pane.   
/// </summary> 
private void CreateActionsPane() 
{ 
            // Create all of the user controls used in the Actions Pane. 
            helpCtrl = new HelpControl(ThisApplication.ActiveDocument); 
            planCtrl = new FlightPlanControl(this); 
            // Add user controls to the ActionsPane. 
            ActionsPane.Controls.Add(helpCtrl); 
            ActionsPane.Controls.Add(queryCtrl); 
            …… 
} 

Accessing Word Document Programmatically  
In General, there are two ways to access the content in a Word 
document. After marking-up the Word document with an XSD schema, 
the text segments in the word document are marked-up with some 
XML elements from the XSD schema. VSTO 2005 has built-in support for 
Word document marked-up with XSD schema. For each XML elements 
defined in the XSD schema, you can directly access them 
programmatically, just as the following code shows: 
 
private void PopulateFlightHop(int rowId, localhost.BAPISCOHOP hop) 
{ 
            // select the xml node 
            // VSTO generate for each XML element in the schema a correpsonding class property 
with the same name 
            Word.XMLNode airlineNode = 
               Globals.ThisDocument.FlightHopeAirlineNodes[rowId]; 
            // change the content of the XML node 
            airlineNode.Text = hop.AIRLINE; 
 
            Word.XMLNode planeNode = Globals.ThisDocument.FlightHopePlaneTypeNodes[rowId]; 
            planeNode.Text = hop.PLANETYPE; 
 
            Word.XMLNode fromAirportNode = 
Globals.ThisDocument.FlightHopeFromAirportNodes[rowId]; 
            fromAirportNode.Text = hop.AIRPORTFR + ",\n" + hop.CITYFROM + ",\n" + hop.CTRYFR; 
            …… 
} 
 
Another way to access the content in a Word document is to use 
Bookmark in the Word document. With VSTO 2005, you can directly 
create a Bookmark in your Word document by dragging a Bookmark 
item from the toolbox onto the design surface, as follows: 
 



 

Page 63 
 

 
 
To access a predefined bookmark in a Word document, you can 
directly access the bookmark variable in your code. For example, we 
have defined a bookmark “bookingData” in the Word document, and 
then the corresponding bookmark can be accessed in the code-
behind class as follows: 
 
this.doc.bookingDate.Text = System.DateTime.Today.ToLongDateString(); 
 
In this section, we have briefly introduced some features of VSTO 2005 
and how to use it to create an Office smart client application - in our 
case a smart document for Word. The full implementation of the smart 
document is available in the Visual Studio solutions for the flight-
booking scenario.  



 

Page 64 
 

Summary 
Using the next-generation technologies from .NET Framework 3.0, 
especially Windows Communication Foundation and Windows 
Workflow Foundation, together with the enterprise services exposed by 
SAP NetWeaver and the Smart Clients technologies, customers can 
build domain specific applications that fit the individual functional 
requirements of diverse scenarios in the daily business. Since SAP 
NetWeaver Application Server 6.40, customers can expose each ABAP-
based functional module, including the customized ones, via standard-
based Web services. Based on the enterprise services offered by SAP 
NetWeaver, WF lets you to create workflows that coordinate the 
execution of various activities either as a sequential workflow or a 
state-machine workflow. WF allows you to integrate the functionality of 
workflow into every possible Windows applications, e.g. Windows 
services, desktop application or even Web services. WCF provides a 
robust but flexible basis for creating as well as consuming services with 
different accessing channels in a unified manner. Moreover, with Smart 
Clients technologies, especially the development tools integrated in 
Visual Studio 2005, e.g. VSTO 2005, you can build domain-specific 
applications for your business that fulfill the functional requirements of 
the specific scenarios. 
 
In this whitepaper, we have implemented a flight-booking scenario to 
demonstrate how to utilize the new technologies from the backend 
SAP NetWeaver via the middleware with .NET Framework 3.0 
technologies, especially WCF and WF, to the front-end with Smart 
Clients technologies to demonstrate how the new techniques can work 
together to provide workflow enabled capabilities for your business. 
The full implementation is done with Visual Studio 2005 and is available 
for downloading on http://www.microsoft-sap.com. Since the 
implementation is a Proof-of-Concept implementation and has its 
focus on the feasibility of the workflow-based end-to-end applications 
using the newest technologies, we have not taken security and 
transaction into account in our implementation. Therefore, we give 
some considerations to these two aspects here. 

Consideration concerning Security 
In an SOA-based world of enterprise computing, the most 
communication between the service provider and the service 
consumer take place via Internet or intranet. Therefore, security plays 
an important role in the service-level agreements between various 
parts in the computing infrastructure. For our flight-booking scenario, 
two security-related aspects are of special interest: authentication and 
message integrity.  
 



 

Page 65 
 

SAP NetWeaver AS provides different security features to secure Web 
services. As authentication mechanisms, SAP NetWeaver supports 
basic authentication with username and password, authentication 
using certificates and SAP specific authentication with SAP Logon 
Ticket for Single Sign On. WCF has also built-in support for basic 
authentication using username and password as well as certificate-
based authentication. However, WCF has no native support for SAP 
Logon Ticket. Instead, WCF follows another more generic way for SSO, 
namely federated security. It allows for separating the implementation 
of a service with its authentication procedures for clients consuming 
the service. In addition, based on the industry standard WS-
Federation14, federated security creates a federated security realm 
across several systems, networks and organizations with different 
security realms. WCF provides out-of-box support building and 
consuming applications that employ federated security. 
 
The other security-related aspect is message integrity. To ensure the 
transport level security, SAP NetWeaver AS uses HTTPs with SSL, which is 
supported by WCF, too. However, this mechanism is not flexible and 
can only be used to create point-to-point transport security for SOAP 
messages. A much-secured way is to use XML Signature and XML 
Encryption defined in WS-Security to ensure end-to-end security that 
may span several hops across the network. Both SAP NetWeaver AS 
and WCF have out-of-box support for this security feature. 
 
One issue that has to be figured out is the extensibility of both SAP 
NetWeaver AS and WCF regarding security features. SAP NetWeaver 
AS supports the adoption of plug-ins for additional transport protocols, 
Web service specifications and other message-level features. WCF has 
also an extensible programming model, which allows you to modify 
and extends its runtime components to precisely control and extend 
the capabilities of the services, e.g. customized binding, channels or 
security components. Please consult the documentation of both 
products to get more information about this feature. 

Consideration concerning Transaction 
Another crucial aspect of enterprise business applications is the 
transactional behaviors of the solutions. In general, we can distinguish 
between transactional behaviors in the backend systems, in our case, 
the SAP ECC, and the transactional behaviors in the middleware, 
namely the workflows based on WF, although both are related to one 
another at runtime and contribute together to the transactional 
behaviors of the entire business application. 

                                             
14 IBM & Microsoft, Federation of Identities in a Web Services World, 
http://msdn.microsoft.com/webservices/webservices/understanding/advancedwebs
ervices/default.aspx?pull=/library/en-us/dnglobspec/html/ws-federation-strategy.asp 



 

Page 66 
 

 
For BAPI functions that provide writing operations on SAP data, such as 
creating a new flight connection or updating an existing flight booking, 
SAP provides the necessary support for either committing the result or 
canceling the operation being performed. However, this mechanism is 
no longer valid for Web services-based processes. Because Web 
services are stateless and each BAPI Web service invocation takes 
place in a separate context, the invocation of the BAPI function 
BAPI_TRANSACTION_COMMIT or BAPI_TRANSACTION_ROLLBACK has no 
impact on the transactional behavior of the BAPI call via Web services. 
To resolve this side effect due to the adoption of Web services, you 
have to activate the session-oriented communication between the 
SAP NetWeaver AS and your client applications. The session-oriented 
communication works with the help of HTTP sessions. The basic idea is to 
announce explicitly the start and the end of a HTTP session through the 
URL string. The following code demonstrates how it works and has been 
successfully tested for Web services that are exposed via the SOAP 
Processor (the approach used since SAP WAS 6.20). The key step in the 
sample code is to define a common-used CookingContainer for all the 
Web services proxies.  
 
// CreateTrip is the proxy class for creating the Flight trip 
// CommitTransaction is the proxy class for commiting the transaction 
 
// ensure that the both proxies use the same CookingContainer, which is used by the SAP  
// Web services to hold the session state 
System.Net.CookieContainer cookiesContainer = new System.Net.CookieContainer(); 
CreateTrip.CookieContainer = cookiesContainer; 
CommitTransaction.CookieContainer = cookiesContainer; 
 
// get the original URL without session parameter 
string tmpUrl = CreateTrip.Url; 
// indicate explicitly the start of the current session 
// this must happen before the first Web service call 
CreateTrip.Url = tmpUrl + "&session_mode=1"; 
// execute writing operations on the SAP ECC via BAPI Web services 
FlightTrip.BAPIPAREX[] ext = CreateTrip.FlightTripCreate(extensionIn, trip, ref passengers, ref 
results, out price, out agency, out tripnumber); 
// indicate explicitly the end of the current session 
CommitTransaction.Url = tmpUrl + "&session_mode=2"; 
// make the last Web service call 
Commit.BAPIRET2 re = CommitTransaction.BapiServiceTransactionCommit(""); 
 
However, the same code snippet does not work with the 6.40 Web 
services in our test environments, which are created using the Create 
Web Service Wizard in SAP ECC (cf. the section “Accessing Web 
Services from SOAP Runtime in SAP NetWeaver 6.40” in this 
whitepaper). For committing Web services that are created by the 
wizard on SAP NetWeaver AS 6.40, you can e.g. create a new BAPI 
function that combines several BAPI functions one after another and 
call at the end either directly the BAPI_TRANSACTION_COMMIT BAPI 
function or commit directly the transaction with “COMMIT WORK”. 



 

Page 67 
 

 
The transactional behavior of a WF-based workflow is compensation-
based. Compensation defines the execution of business logic that 
results from a business exception. For WF-based workflows, WF provides 
several out-of-box activities to define the compensation of the 
workflow. At runtime, WF uses the methods defined in the interface 
ICompensatableActivity of a completed activity to perform the 
compensation. Currently, the only activity that implements this 
interface is the TransactionScopeActivity. However, you can write 
custom activities that support compensation using this interface. By 
default, the compensation code of any nested transaction runs 
automatically by invoking compensation of all nested children in the 
reverse order of their completion. If you need to invoke selectively 
compensation among the completed activities, then you can use 
explicitly the out-of-box activity CompensateActivity to do it. For more 
information about how to control the compensating behavior of your 
workflow, please consult the WF documentation. 
 
 


