

What is LightSwitch?

Visual Studio LightSwitch Technical White Paper

Author: Andrew Brust, Blue Badge Insights

Published: August, 2011

Applies to: Visual Studio LightSwitch 2011

Summary: This is the first in a series of white papers about Microsoft® Visual Studio® LightSwitch™

2011, Microsoft’s new streamlined development environment for designing data-centric business

applications. We’ll provide an overview of the product that includes analysis of the market need it

meets, examination of the way it meets that need relative to comparable products in the software

industry, concrete examples of how it works, and discussion of why it’s so important.

2

Copyright

The information contained in this document represents the current view of Microsoft Corporation

on the issues discussed as of the date of publication. Because Microsoft must respond to

changing market conditions, it should not be interpreted to be a commitment on the part of

Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the

date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES,

EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the

rights under copyright, no part of this document may be reproduced, stored in, or introduced into

a retrieval system, or transmitted in any form or by any means (electronic, mechanical,

photocopying, recording, or otherwise), or for any purpose, without the express written

permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual

property rights covering subject matter in this document. Except as expressly provided in any

written license agreement from Microsoft, the furnishing of this document does not give you any

license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-

mail addresses, logos, people, places, and events depicted herein are fictitious, and no

association with any real company, organization, product, domain name, e-mail address, logo,

person, place, or event is intended or should be inferred.

© 2011 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft® LightSwitch® 2011, Microsoft® Excel, Microsoft® SQL Server®, Visual

FoxPro®, Visual Basic®, Microsoft® Windows® Azure™, are trademarks of the Microsoft group

of companies.

All other trademarks are property of their respective owners.

3

White Papers in this Series

1. What is LightSwitch?

2. Quickly Build Business Apps

3. Get More from Your Data

4. Wow Your End Users

5. Make Your Apps Do More with Less Work

http://go.microsoft.com/?linkid=9780076
http://go.microsoft.com/?linkid=9780078
http://go.microsoft.com/?linkid=9780080
http://go.microsoft.com/?linkid=9780082
http://go.microsoft.com/?linkid=9780084

4

Contents

Introduction .. 5

What is LightSwitch and Why is it Here? .. 5

Going Deeper .. 5

A Fresh Approach .. 6

Customize What You Want ... 7

LightSwitch’s Importance .. 7

Modeling the Application ... 8

A Show-and-Tell LightSwitch Overview .. 8

Business Types and Generated UI ... 9

Iterative Screen Design ... 10

Design-While-Executing .. 11

Business Rules and Validation... 12

Flexibility ... 13

Extensibility ... 14

Deployment .. 14

Conclusion ... 15

5

Introduction
This is the first in a series of white papers about Microsoft® Visual Studio® LightSwitch™ 2011,

Microsoft’s new streamlined development environment for designing data-centric business applications.

In this first paper, we’ll provide an overview of the product that includes:

 analysis of the market need it meets

 examination of the way it meets that need relative to comparable products in the software

industry

 concrete examples of how it works

 discussion of why it’s so important

LightSwitch is a very exciting project, and it’s easy enough to use that you might wish to dive right in.

However, some background and context on the product may help you use it more effectively. So let’s

take a look at the need LightSwitch solves, and how it does so differently from other business

application development tools.

What is LightSwitch and Why is it Here?
When it comes to custom business software, virtually all applications are data-centric applications.

Successive generations of software development tools, including dBase, Visual FoxPro® and Visual

Basic® have sought to make data-centric application development easier. Within the nearly 10-year

history of .NET this is also true. Considering the range of technology from Windows Forms and ASP.NET

to WPF and Silverlight, each .NET UI technology has offered its own data binding technology. Visual

Studio has offered important tooling including the various wizards, the Dataset designer, the Data

Sources window, and the Entity Data Model designer to provide assistance in the rapid development of

data-centric applications.

Complexity has become unavoidable because of these designers, wizards, data access technologies, and

data binding conventions. Also, general purpose software development platforms are not, and perhaps

should not be, data-centric in approach. Ironically, the multitude of data tools and technologies at our

disposal makes it hard to develop data-centric applications in a quick and easy manner.

To address the need for streamlined development of data-centric business applications, Microsoft has

introduced Visual Studio LightSwitch. LightSwitch applications use the modern .NET stack of

technologies, and wrap them in an abstraction layer optimized for data management and maintenance.

LightSwitch makes it possible to build data-centric applications quickly, through visual means. With

LightSwitch, you won’t be writing the same code repeatedly to provide data access functionality or the

user interface needed around it. You can write no code, a little code, or a significant amount – and you

can rest assured that it will be high-value code, rather than mere “plumbing. “

Going Deeper
In broad strokes, LightSwitch is a new edition of Visual Studio, which includes special Visual C# and

Visual Basic .NET project types, and unique designers. LightSwitch allows developers to design

6

databases, screens around the tables in those databases, and the logic and rules that bind all of it

together.

Screen designs can be inferred and generated from table schemas, or can be built using a hybrid

approach where the screens are generated and then lightly or heavily customized. Data rules can be

specified declaratively in property windows, or they can be expressed imperatively through code.

Coding can be invoked on a sliding scale of complexity. VB .NET and C# can be used as if they were

merely expression languages, or complete methods and classes can be developed and integrated into

the application.

LightSwitch business applications are multi-tiered, featuring a client application and a combination of

LINQ, WCF RIA Services and the Entity Framework to implement the application services tier. Unlike

other tools that provide their own application environments, LightSwitch produces applications based

on standard components from the .NET stack. In effect, it provides an abstraction layer over application

development best practices, yet it eliminates laborious and repetitive plumbing code required to

construct a properly architected database, data access tier, and user interface (UI) framework.

LightSwitch has an extensions model that is simultaneously attractive to advanced developers and to

Independent Software Vendors (ISVs). Advanced developers can extend the product’s basic functionality

using their .NET development skills. ISVs can offer their extensions to a market of business application

developers eager to integrate advanced functionality into their LightSwitch applications, but who may

lack the skills or time to implement such functionality on their own.

A Fresh Approach
LightSwitch works on the familiar principle of helping developers specify a data model and the build

screens around it. Within that widely accepted paradigm, LightSwitch works in an innovative manner,

allowing so much detail to be expressed within the data model itself that a fully functional UI can be

interpreted and generated automatically. But unlike various other tools and frameworks which do this,

LightSwitch also allows for customizations by the developer, over a custom code event model and a

wide range of extensibility points.

LightSwitch’s screen design is hierarchical and declarative, rather than physical and imperative. Instead

of working in a WYSIWYG form designer wherein controls are physically placed, LightSwitch developers

specify what data should be displayed and edited, how the controls that manage that data are to be

configured, and then how the general layout scheme should be applied within and between sections of

the screen. LightSwitch ably takes care of the rest, lifting the developer out of the minutiae of screen

design, but without the typical accompanying sacrifice of precision control and customization.

7

Customize What You Want
LightSwitch offers a spectrum of customization to the developer on the coding side as well. Entire

LightSwitch applications can be created that:

 have no code at all

 have code in their data models but not in their screens

 have substantial code within all parts of the application

Code can be inserted to handle specific events, but standalone methods and classes can also be created

and called from event handling code.

Screens can have their own parameters (values that drive data queries) and can override the basic

queries in the data model with extra selection criteria and sorting specifications. Security permissions,

roles and users can be configured without any programming. Simple, single lines of code can be used to

enable or disable whole screens, specific options within screens or user interface behaviors, based on a

user’s identity and corresponding role membership.

For some, the mere ability to write code within the context of the application is not enough, and access

to the full .NET Framework is required. LightSwitch keeps these options open to those developers who

wish to explore them. Through a robust extensions model, LightSwitch applications can use custom

controls, business types, data sources, screen templates, themes and shells authored by internal IT

and/or commercial component vendors.

We’ll discuss all of these LightSwitch capabilities in this 5-part white paper series but for now, let’s take

a quick look at why the product is so important, and explore, at a high level, how it works.

LightSwitch’s Importance
While the operating system and database technology underlying most business applications has

changed quite a bit since the first generation of PCs became prevalent in the workplace, the

requirements of these applications remain stunningly similar. To a great extent, most business

applications are oriented around structured data (customers and orders, portfolios, or securities and

trades for example) and must accommodate the creation, updating, inter-relating, querying and

reporting of that data. These business application scenarios must typically serve a few related, but

distinct audiences:

 end-users who need to view and edit the data pertinent to them and their business units

 administrative users who need to establish and maintain certain master data (customer

information, transaction types, trading partners, and so forth)

 Super-users who must be granted access to most or all of the data and functionality in the

system

This basic business application scenario need has stayed with us no matter how many operating

systems, Graphical User Interfaces, development platforms, desktop, web, or service-oriented

8

architectures have come along. As software platforms mature, they service these scenarios more

capably. Then as the technology churns, the scenarios are accommodated less directly, leaving

productivity to suffer.

The phenomenon of consistent business application scenario needs accompanied by the cycle of

technology churn and the resulting ebb and flow of platforms accommodating the need productively

constitutes a real sore spot in software development. The phenomenon has created a challenging

environment for companies’ personnel and consultants to implement business applications in an

economically feasible manner. This has turned business application development work and its fees into

a tax (of sorts) for business users everywhere, and has driven work away from the customer to markets

with lower development costs. That in turn, has made the premise of developing business applications

more complex and risky for the business units that need them. This is not a good situation for the

industry, or its customers.

Modeling the Application
Two solutions are needed to contend with this situation. First, we need a good business application

development tool for the current popular platform. Second, we need that tool to use an approach that

transcends the platform for which it was designed, making it portable to new platforms or platform

versions. LightSwitch tackles the current platform challenge admirably, but what about platform

independence?

As developers use LightSwitch to design an application, the product codifies the design in a technology-

independent manner by capturing the model in a special ApplicationDefinition file that stores details of

the application’s tables and screens. Using a technology-agnostic model as part of the LightSwitch

approach lays encouraging groundwork for adapting to new technologies.

A Show-and-Tell LightSwitch Overview
We’ve had a lot of contextual discussion and analysis at this point, so let’s now take a quick look at how

easy LightSwitch makes the basics of data-centric application development. We’ll demonstrate a

scenario where we create a budgeting application. Our database and application would need to track

expenses and budgets as well as master data like expense categories and payment methods. We might

start by designing our Expense data entity, which would be used as the basis for both a database table

and a data maintenance screen. Figure 1 shows what the properties of that entity might look like in

LightSwitch’s Data Designer.

9

Figure 1: The LightSwitch Data Designer

Notice the highlighted thumbnail depictions of the related ExpenseCategory and PaymentMethod

entities in the upper-left- and lower-right-hand corners, respectively. (Don’t worry about those for now;

we’ll explain them in more detail in the next paper in this series.) The Expense entity has properties

pointing to each of these related entities and an automatically-generated ID field. The ExpenseDate,

Merchant, and Amount properties are created simply by entering their names in the left-most column of

the property grid. For ExpenseDate and Amount, data types of Date and Money are selected. The

Merchant property’s type was left at the default setting of String.

Business Types and Generated UI
If the LightSwitch developer automatically generated a screen from this entity and then opened the

screen in design view, he’d see something similar to what’s shown in Figure 2.

Before we discuss how this schematic, hierarchical view of the screen works and is used, let’s talk a bit

more about the Amount field. As we mentioned, its data type is Money, which is a business-oriented

categorization. If LightSwitch were less business application development-oriented, we might have had

to set the data type to something like Double or Float. The reason we didn’t have to do so is because

LightSwitch supports the notion of Business Types. Other built-in Business Types include Email and

PhoneNumber, and partners can create new Business Types, packaged as LightSwitch extensions.

10

Figure 2: The LightSwitch Screen Designer

Business Types allow LightSwitch developers to specify, in an implicit, declarative fashion, important

data entry and/or business rules around their data. For example, typing a field as Email or

PhoneNumber instead of String immediately implies specific input masks and does so more naturally

than a more technological approach such as specifying a regular expression.

It’s not that regular expressions are bad, or that they are too difficult for business application

developers, but they do require a change of context and mindset from the application domain to the

programming domain. That shift can disrupt the business application developer’s train of thought,

separate him from the business problem and impede productivity and time-to-market for the

application.

User interface behavior and requirements are also implied by Business Type designation. For example,

in the screen in Figure 2, the control type associated with the Amount field is a Money Editor, which is a

specialized control for displaying, entering and editing currency data. The developer doesn’t have to

change to that control type from a more naïve default (such as a generic textbox). LightSwitch observes

the business type selected and acts on it. This further removes friction from the business application

development process.

Iterative Screen Design
Let’s review how the other fields are mapped to UI elements:

 date time editor is used for ExpenseDate

 a text box is used for Merchant

 auto-complete boxes are used for PaymentMethod and ExpenseCategory.

In Figure 2, notice the highlighted ExpenseItems query on the left that represents a database query

against the corresponding table and the standard Close, Refresh, and Save methods beneath it.

11

Figure 3 shows what the screen looks like when fully rendered in the application.

Figure 3: A running screen

Design-While-Executing

The separation between configuring a screen at design time and executing it to confirm proper

rendering needn’t be a hard dichotomy. See the highlighted Design Screen button on the far-right of

the application’s ribbon in Figure3? It appears only when the application is executed in Debug mode,

and it allows the screen to be edited interactively while the application is running. Interactive editing is

shown in Figure 4.

In this live customization mode, the control tree appears on the left, the Properties window on the

bottom, and the remainder of the screen is occupied by a live, running copy of the screen, which will

update to reflect changes made in either of the other two panes. For demonstration’s sake, Figure 4

shows the control type for the Amount field changed from Money Editor to Text Box. In the preview

pane, the Amount data (highlighted by LightSwitch in orange outline) is no longer currency-formatted,

appearing without a dollar sign. Clicking the Save button on the upper-right-hand corner would exit the

live design mode and make the control type change permanent. Clicking the Cancel button to its left

would discard the change and revert to the original screen design with a Money Editor control being

used to maintain the Amount field data.

12

Figure 4: Screen design during application execution

Business Rules and Validation
Not only is this intellectually straightforward, it’s just plain fast. The number of clicks and typed

characters used to generate this functionality is minimal. However, even though LightSwitch achieves a

large amount of code reduction, some coding, albeit extremely streamlined, will be necessary.

For example, imagine a business rule in our application that says an expense entry’s ExpenseDate cannot

be in the future, nor can it be more than 90 days old. We’d need to make certain that rule were

enforced in our data layer and implemented in our UI in such a way that a warning message were

displayed in any screen that allowed expense entries to be added or edited. LightSwitch makes this

surprisingly simple to do. The ExpenseDate field in the Expense data entity has a Validate event that we

can code to. Listing 1 shows the code necessary to implement the rule.

13

Listing 1: A validation rule for the Expense Date field

partial void ExpenseDate_Validate(EntityValidationResultsBuilder results)
{
 if (!((ExpenseDate <= DateTime.Now) && (ExpenseDate >= DateTime.Now.AddDays(-90))))
 {
 results.AddPropertyError("Expense Date must be no later than today and no more
than 90 days in the past.");
 }
}

Not only is the code terse and straightforward to write, but it covers both the data layer and UI

validation requirements that we outlined above. Figure 5 demonstrates this by depicting the error

message displayed (automatically) when the rule is broken.

Figure 5: Error message display, caused by our validation rule

It is impressive and convenient that a couple lines of code are all that’s required to get this working.

Ironically though, LightSwitch’s real value is almost obfuscated by this kind of functionality. Because it

handles certain things so easily, LightSwitch can appear to developers as yet another tool that forces

tradeoffs that invalidate its value proposition. Despite appearances though, that is not the case at all.

Flexibility
LightSwitch doesn’t dumb things down. Instead, it speeds them up. As such, it helps business users

build their own applications while letting highly-trained developers build these same types of

applications very quickly. LightSwitch also lets IT organizations augment the standard capabilities of the

product with their own set of extensions that assure compliance with corporate standards, while still

allowing LightSwitch to function as users expect:

 You can custom-code the UI if you want.

 You can add code in the screen to augment what’s in the data entity definition.

14

 You can validate using simple expressions, or the full power of the Visual Basic .NET or C#

programming languages.

 You can create custom controls and embed sophisticated behaviors there.

A good productivity tool is one that eliminates common, time-consuming coding tasks, but that gives

you power to do specialized development when that is required. When a tool has a layered set of

advanced capabilities that you can iteratively explore and master, it becomes truly useful in an

enterprise setting, and not just in the business unit shadows.

Extensibility
We mentioned LightSwitch’s extensions model, but let’s address it more directly as it is a very important

part of what makes LightSwitch special. Many business application development tools provide

productivity, but do so at the cost of functionality. Although many tools accommodate the basic

“CRUD” (create, read, update and delete) data maintenance use case well, they don’t go far beyond

that. That may be understandable, but it also imposes a real blocker on users of those tools.

What Microsoft has done with LightSwitch, conversely, is to achieve reasonably ambitious goals in

provision of built-in functionality and then engineer a complete and well-documented framework for

other parties to extend that functionality. This lets domain experts implement functionality specific to

their industry or specialty, and it lets others in that community avail themselves of that functionality for

their own applications.

Any company in the developer component space is familiar with this model. Because LightSwitch

developers will be so focused on productivity they are likely to be more appreciative consumers of

LightSwitch extensions than enterprise developers are of developer component libraries. Ironically, the

.NET component market has its roots in the Visual Basic (VB) custom controls space. The VB control

market had the same productivity-centric underpinnings as those of LightSwitch and it gave birth to the

developer component industry. VB custom controls had a file extension of .VBX, which stood for Visual

Basic eXtensions; the fact that LightSwitch’s add-ons share the “extensions” designation is a good omen

for the value and potential of the business opportunity.

LightSwitch takes the component industry back to the core fundamental value of empowerment –

where the extension takes the developer from nowhere to done. This brings a compelling value

proposition to the end user, and thus to the component vendor as well.

Deployment
We’ve seen so far that LightSwitch adds a lot of value, and does so while allowing graduated levels of

customization with good old-fashioned programming. It is useful, nuanced, and will solve many issues.

From the screenshots we have seen so far, you might suspect that LightSwitch produces desktop

applications exclusively. However, LightSwitch offers a much more versatile set of deployment options

and application types than the Windows Office-like UI portrayed in the screenshots.

15

LightSwitch works in sync with .NET and the entire Microsoft stack so that it can produce desktop

applications easily. And because these desktop applications’ entire installation packages can be pulled

down and executed implicitly by navigating to a URL, they deploy with minimal friction.

In addition to running as desktop applications that execute with significant permissions and desktop

integration, LightSwitch can also produce applications that run entirely in the browser, and in the

browser’s security sandbox. The options don’t end there. Beyond applications which run completely on

the desktop, LightSwitch can also produce multi-tier, distributed applications whose application services

execute on a central server.

Perhaps LightSwitch applications’ most exciting deployment scenario is that of running in the cloud,

using the Microsoft® Windows® Azure™ Platform as a Service (PaaS) cloud environment and its SQL

Azure Database as a Service environment. The excitement stems not just from the power of running as

a cloud-deployed application, but also because LightSwitch allows developers to take advantage of the

cloud with fewer barriers and greater simplicity than other Microsoft application development

environments. As long as you have your Azure subscription ID and storage account information handy

and have met a few other setup prerequisites, deploying your LightSwitch is as simple as running a

wizard. This effectively creates a feedback mechanism where LightSwitch amplifies the value of the

cloud and Azure amplifies the value of LightSwitch.

LightSwitch’s range of deployment options means you have choice and you have portability. The

application that you run on a few desktops today is one you could re-deploy to the cloud next month.

And since LightSwitch applications are built on the most modern components of the Microsoft stack

(including the ADO.NET Entity Framework, WCF RIA Services, and SQL Server™/SQL Azure), the

scalability is in the technology to make such migrations realistic. LightSwitch deployment doesn’t just

give you options, it gives you assurance that each option will work and that LightSwitch applications can

scale up and down to conform to each deployment target.

Conclusion
We’ve seen in this overview that LightSwitch has brought to the .NET stack time-tested approaches to

meeting the timeless requirements of data-centric business applications. But LightSwitch goes further,

by lifting the customizability ceiling typically imposed by business application development products,

and allowing a complete spectrum of custom coding. LightSwitch has also modernized the business

application development paradigm to accommodate layered/distributed application architectures, cloud

computing, and Rich Internet Application (RIA) technology.

In the remaining papers in this series, we’ll go through each of these points in more depth. In the next

paper, we’ll take a more complete look at developing a LightSwitch application. Subsequent papers will

examine advanced data techniques; customizing your applications’ look and feel, and mastering their

deployment; and taking advantage of LightSwitch extensions to give your applications industrial-

strength power.

16

Even if you were to stop reading here, you would have enough information – and hopefully more than

enough motivation – to start building LightSwitch applications for your own business application needs.

You can get productive with LightSwitch very quickly and there’s no penalty for experimentation early in

the learning process. In fact, readers may wish to build a simple LightSwitch application right now and

then continue with the next paper. Either way, we’re now ready to delve further into LightSwitch’s

features and capabilities.

For more information:

Visual Studio LightSwitch Website: http://www.microsoft.com/lightswitch

Visual Studio LightSwitch Dev Center: http://msdn.microsoft.com/lightswitch

http://www.microsoft.com/lightswitch
http://msdn.microsoft.com/lightswitch

