
 

 

 

 

 

 

 

 

Microsoft Dynamics
®

 AX 2012 
 

Using date effective data 

patterns 
 

White Paper 
 

This white paper describes how to use valid time state tables to store and track 
object history over its lifetime in Microsoft Dynamics AX 2012. Topics include the 
difference between the two date-time entity types for valid time state tables; 
update modes; using the ValidTimeState keyword in queries; runtime behaviors; 
and scenarios that are not supported by the framework. Some date effective data 
design patterns are suggested for forms that use valid time state tables. The 
integration of the security framework and valid time state tables is also discussed.  

 

 

 

Date: July 2011 
 

Author: Xinhua Huang 

 
Send suggestions and comments about this document to 
adocs@microsoft.com. Please include the title with your 

feedback. 
 

 
 



 

 

2 
 
USING DATE EFFECTIVE DATA PATTERNS 

Table of Contents 

Introduction ................................................................................................ 3 
Terminology ......................................................................................................................... 4 

Designing a valid time state table in the AOT .............................................. 4 
Date vs. UtcDateTime ...........................................................................................................10 
Inclusivity of ValidFrom and ValidTo .......................................................................................11 
Overlap and Gap ..................................................................................................................11 
Integration with table inheritance ..........................................................................................11 
Configuration key ................................................................................................................11 
Performance considerations when designing valid time state tables ............................................11 

Programming with valid time state tables................................................. 12 
Inserting data into a valid time state table ..............................................................................12 

Allowed: Insert a new record with a ValidFrom and ValidTo date that precedes the first record ... 12 
Allowed: Insert a new record with a ValidTo date that overlaps the ValidFrom date of the first 

record ............................................................................................................................. 13 
Allowed: Insert a new record with a ValidFrom and ValidTo date that follows the ValidTo date of 
the last record .................................................................................................................. 14 
Not Allowed: A new record is inserted that includes ValidFrom and ValidTo dates that are within 
the date range of an existing record. ................................................................................... 15 
Not Allowed: A new record is inserted that spans the date range of more than one other record. 16 

Update data in a valid time state table ...................................................................................16 
Correction mode examples ................................................................................................. 17 

Delete data from a valid time state table ................................................................................22 
Allowed: Delete a record from a valid time state table ........................................................... 22 
Allowed: Delete the current record from a valid time state table ............................................. 23 

Query data from a valid time state table .................................................................................24 
X++ statement ................................................................................................................ 24 
Query API ........................................................................................................................ 26 
AOT query ....................................................................................................................... 27 
View ............................................................................................................................... 27 
Caching ........................................................................................................................... 27 

Set-based operations ...........................................................................................................28 

Developing forms with valid time state tables .......................................... 29 
AOT properties ....................................................................................................................29 
Records change notification ...................................................................................................32 
Filtering by using the Inquiry form (SysQueryForm) .................................................................33 

Security integration .................................................................................. 35 
X++ behavior ......................................................................................................................36 
Form behavior .....................................................................................................................37 

  



 

 

3 
 

USING DATE EFFECTIVE DATA PATTERNS 

Introduction  

Many business scenarios require tracking object history over its lifetime. For example, a bank provides 
a certificate of deposit with a rate that is effective for a certain time period, student records in a 
university, employee data in company, and other complex business information.  

In previous versions of Microsoft Dynamics AX, various forms of implementing date effectiveness were  
implemented by in application modules, such as Human resources, Procurement and sourcing, and 

across the finance modules. Microsoft Dynamics AX 2012 offers the date effective functionality at the 
kernel to provide the ease, consistency, and scalable behavior of application code for date effective 
scenarios.  

Out-of-the-box, date effective functionality enables the design time, run time, programmability 
aspects, and intuitive user interface concepts for optimal end-to-end scenario development.   

The following are the date effective data modeling patterns that are supported 

 Date Effective Association Collection 

HcmPosition

RecId LONG

PositionId (AK1) TEXT(25)

HcmPositionHierarchy

RecId LONG

Position (FK,AK1) LONG

PositionHierarchyType (FK,AK1) LONG

ValidFrom (AK1) DATETIME

ValidTo (AK1) DATETIME

ParentPosition (FK) LONG

HcmPositionHierarchyType

RecId LONG

Name (AK1) TEXT(60)

HierarchyType LONG

IsImmutable BIT

 

 Date Effective Attributes  

CustInterest

InterestCode TEXT(10)

DataAreaID TEXT(4)

InterestType LONG

Txt (O) TEXT(60)

CustInterestVersion

RecID LONG

CustInterest (FK,AK1) TEXT(10)

ValidFrom (AK1) DATETIME

ValidTo DATETIME

GraceDays LONG
 

 

 Date Effective Attribute Collection 

HcmPosition

RecId LONG

PositionId (AK1) TEXT(25)

HcmPositionDuration

RecId LONG

Position (FK,AK1) LONG

ValidFrom (AK1) DATETIME

ValidTo (AK1) DATETIME
 

  



 

 

4 
 
USING DATE EFFECTIVE DATA PATTERNS 

Terminology  

The following terms are used throughout this white paper. 

Term Definition 

valid time state table 

 

A table that tracks the state of an entity over time using ValidFrom and ValidTo 
columns. 

ValidTimeStateKey The alternate key from the table that is used to enforce the valid time state 
semantics. 

gap A condition in which a particular record does not have any occurrence for a time 
period, but it has some occurrences before and after the gap interval. 

overlap The same record has more than one occurrence over an overlapping time period. 

current record A record that is effective at the present time. 

past record A record that was effective in an earlier time period. 

future record A record that will be effective in a future time period. 

CreateNewTimePeriod An update mode only to date effective tables. When a current record is updated in 
CreateNewTimePeriod mode, the initial record is closed, and a new current record is 
created. 

Correction An update mode that is similar to non-date effective tables.  

EffectiveBased When updating a valid time state table in EffectiveBased mode, if the record being 
updated is a current record, the record is updated in CreateNewTimePeriod mode. If 
the record being updated is a future record, the record is updated in Correction 
mode. If the record is a past record, the record cannot be updated. 

 

Designing a valid time state table in the AOT 

To use the date effective feature, you must create a valid time state table in the Application Object 
Tree (AOT). When you create the table, consider the following two points.  

1. The effective granularity for the ValidFrom and ValidTo fields. You can select one of two date 
effective data patterns: UtcDateTime or Date. 

2. Whether the table allows gap. 

For example, the HcmPositionWorkerAssignment table applies UtcDateTime granularity and allows 
gap, and the CustInterestVersion table, applies Date granularity and does not allow gap. These 
examples will be used throughout this white paper.  

The following UML diagrams define and describe the object structure and behavior for the 
HcmPositionWorkerAssignment and CustInterestVersion tables. 

 

HcmPosition

RecId LONG

PositionId (AK1) TEXT(25)

HcmPositionWorkerAssignment

RecId LONG

Position (FK,AK1) LONG

ValidFrom (AK1) DATETIME

ValidTo (AK1) DATETIME

Worker (FK) LONG

HcmWorker

RecId LONG

 

Figure 1: HcmPositionWorkerAssignment UML 



 

 

5 
 

USING DATE EFFECTIVE DATA PATTERNS 

 

CustInterest

InterestCode TEXT(10)

DataAreaID TEXT(4)

InterestType LONG

Txt (O) TEXT(60)

CustInterestVersion

RecID LONG

CustInterest (FK,AK1) TEXT(10)

ValidFrom (AK1) DATETIME

ValidTo DATETIME

GraceDays LONG
 

Figure 2: CustInterestVersion UML 

The HcmPositionWorkerAssigment table defines the schema for storing positions assigned to workers. 
At a specific time period, each position can only be assigned to only one worker. During a time period, 
a position can have no workers assigned to it. For an example, see the data in the following table. 

Position Worker ValidFrom ValidTo 

Upgrade Anders Jensen 5/30/2000 00:00:00 am 12/31/2002 23:59:59 pm 

Upgrade Emma Baker 1/1/2005 00:00:00am 12/31/2005 23:59:59 pm 

 

  



 

 

6 
 
USING DATE EFFECTIVE DATA PATTERNS 

To enable the HcmPositionWorkerAssignment table to be a valid time state table with a date effective 
data type of UtcDateTime and a table that allows gap, the following properties in the AOT must be set: 

1. Launch the Microsoft Dynamics AX 2012 development workspace. 

2. In the AOT, navigate to Data Dictionary > Tables. 

3. Find the HcmPositionWorkerAssigment table. 

4.  On the Properties tab, ValidTimeStateFieldType should be set to UtcDateTime.   

5. Validate that the ValidFrom and ValidTo fields have the UtcDateTime type. 

 

6.  In the AOT, expand the Indexes node, and then select Position.Idx.  

7. On the Properties tab: 

1. AllowDuplicates should be set to No. AlternateKey should be set to Yes.  

2. ValidTimeStateKey should be set to Yes,  

3. ValidTimeStateMode should be set to Gap.  



 

 

7 
 

USING DATE EFFECTIVE DATA PATTERNS 

The Position and ValidFrom fields should appear under the PositionIdx node. The following 
section discusses the need for ValidTo in the ValidTimeStateKey index and offers a performance 
recommendation.  

For new tables, new development, or major refactoring of a date effective-related feature, it is a 

best practice to add ValidTo to the ValidTimeStateKey index and on the Properties tab to 
select Yes from the Included Column drop-down list. 

 

 

Figure 3: PositionIdx Properties 

  



 

 

8 
 
USING DATE EFFECTIVE DATA PATTERNS 

The CustInterestVersion table defines the schema for storing the interest rates and their effective 
date time periods. This table does not allow gap.  

To enable the CustInterestVersion table to be a valid time state table, the following properties in 
AOT must be set: 

1. Launch the Microsoft Dynamics AX 2012 development workspace. 

2. In the AOT, navigate to Data Dictionary > Tables. 

3. Select the CustInterestVersion table.  

4. On the Properties tab,  ValidTimeStateFieldType should be set to Date.  

5. Validate that the ValidFrom and ValidTo fields added by system have the type of Date. 

 

6. In the AOT, expand the Indexes node, and then select InterestCodeVersion.  

  



 

 

9 
 

USING DATE EFFECTIVE DATA PATTERNS 

7. On the Properties tab:  

1. AllowDuplicates should be set to No.  

2. AlternateKey should be set to Yes.  

3. ValidTimeStateKey should be set to Yes  

4. ValidTimeStateMode should be set to NoGap. 

5. The CustInterest and ValidFrom fields should appear under the InterestCodeVersion node. 

 

 

  



 

 

10 
 
USING DATE EFFECTIVE DATA PATTERNS 

Date vs. UtcDateTime 

For the valid time state tables that have the property ValidTimeStateFieldType set to Date, the 
ValidFrom and ValidTo fields added by the system are type Date. The date value entered by a user 
on a form is stored in the database without any time zone conversion. For example, suppose a user 
enters the data shown on the Interest form in Figure 4. This data is stored in the 
CustInterestVersion table. 

 

Figure 4: Interest form 

The data shown in the form means that if a customer selects the interest “15D-2%”, the interest rate 
2% will be effective on 1/1/2012, no matter where in the world the customer is. 

For the valid time state tables that have the property ValidTimeStateFieldType set to 
UtcDateTime, the ValidFrom and ValidTo fields added by the system are type of UtcDateTime in 
Microsoft Dynamics AX 2012, which has the granularity of a second. The date time value entered by a 

user will be converted to the UTC  time using the user preferred time zone and stored in the database. 
This means that a record will be effective at the same UTC time everywhere in the world, and it will 
expire at the same UTC time.  

When updating records with the CreateNewTimePeriod mode, which is described in the following 
sections, the ValidFrom or ValidTo data for the records are updated with the current time or date by 
the system. The current time and date values are read from the machine clock on the AOS to which 
the user client is connected. 

  



 

 

11 
 

USING DATE EFFECTIVE DATA PATTERNS 

Inclusivity of ValidFrom and ValidTo 

Date effective data records use the value in fields ValidFrom and ValidTo to determine the time 
period that they are effective, and follow the [closed, closed] representation, meaning that both the 
ValidFrom date and ValidTo date are inclusive in the date range. For example, suppose the 
HcmPositionWorkerAssignment table has the following data: 

Position Worker ValidFrom ValidTo 

Upgrade Anders Jensen 5/30/2000 00:00:00 am 12/31/2002 00:00:00am 

Upgrade Emma Baker 1/1/2003   00:00:00 am 12/31/2005 00:00:00 am 

Anders Jensen filled the position Upgrade from 5/30/2000 to 12/31/2002, inclusive. After that, Emma 
Baker filled the position on 1/1/2003, and then left the position on 12/31/2005. 

Overlap and Gap 

Two rows cannot overlap if they have the same alternate key. However, date overlap can occur if the 
alternate keys are different. For example, in the HcmPositionWorkerAssignment table, two workers 
cannot be assigned to one position at the same time, hence the following data is not allowed:  

Position Worker ValidFrom ValidTo 

Upgrade Anders Jensen 5/30/2000 00:00:00 am 12/31/2002 23:59:59 pm 

Upgrade Emma Baker 1/1/2001  00:00:00 am 12/31/2005 23:59:59 pm 

 

Gap exists when date continuum is broken between the ValidTo date and the ValidFrom date on two 
consecutive records. In an HcmPositionWorkerAssignment table that allows gap, the following data can 
exist, but the data cannot exist if the table does not allow gap: 

Position Worker ValidFrom ValidTo 

Upgrade Anders Jensen 5/30/2000 00:00:00 am 12/31/2002 23:59:59 pm 

Upgrade Emma Baker 1/1/2005 00:00:00am 12/31/2005 23:59:59 pm 

Integration with table inheritance 

Valid time state tables support table inheritance. However, the properties that are related to the valid 
time state tables can only be set on the root table.  

Configuration key 

Configuration keys cannot be set on the ValidFrom and ValidTo fields because Microsoft Dynamics AX 

2012 needs them to track the date or date time change in the records. We recommend that you do 
not set configuration keys on any of the ValidTimeStateKey index columns. 

Performance considerations when designing valid time state tables 

To help improve performance of valid time state tables, you should index them correctly. Valid time 

state tables are modeled with an alternate key that includes the ValidFrom column. In some models, 

the ValidTo column may have also be included in the alternate key, but this is not necessary for 

uniqueness, and it should be removed from the alternate key constraint. If the ValidFrom column is a 
key column of the clustered index, the ValidTo column should not also be a key column of the 
clustered index. If the ValidFrom column is a key column of a non-clustered index, the ValidTo 
column should be made an included column in the non-clustered index, which provides coverage for 
range queries that involve both ValidTo and ValidFrom columns.  



 

 

12 
 
USING DATE EFFECTIVE DATA PATTERNS 

Programming with valid time state tables 

Because overlap is not allowed in the valid time state tables, when a record is inserted or updated, 
other records may be automatically adjusted by Microsoft Dynamics AX 2012 to enforce the no overlap 
rule. However, in some cases, errors are issued if the inserts or updates are not allowed.  Specific 
cases are described in the tables in the following sections. 

Inserting data into a valid time state table 

Suppose R1, R2, R3, and R4 are records that exist in a valid time state table. Inserting a new record 
at the beginning or end of the table is allowed. Inserting a new record in the middle of a record or 
inserting a record that overlaps with multiple records is not allowed. For example: 

Allowed: Insert a new record with a ValidFrom and ValidTo date that precedes the 

first record 

 

|---| New record 

        |_____|_____|_____|____| 

            R1        R2      R3         R4    

 

Consequence: Update the ValidFrom date on R1 to match the ValidTo date on the new record. 

 If gap is not allowed: The ValidFrom date on R1 changes to 12/31/1999 to match the ValidTo date 
on the new record. 

 If gap is allowed: The R1 ValidFrom date remains unchanged (01/01/2000). 

 

Before inserting the new record: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

New record: 

 ValidFrom ValidTo 

New  01/01/1999 12/30/1999 

 

  



 

 

13 
 

USING DATE EFFECTIVE DATA PATTERNS 

After inserting the new record (no gap): 

 ValidFrom ValidTo 

New 01/01/1999 12/30/1999 

R1 12/31/1999 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

Allowed: Insert a new record with a ValidTo date that overlaps the ValidFrom date 

of the first record 

 

|---|  

   |_____|_____|_____|____| 

        R1        R2      R3         R4 

 

Consequence: A new record is inserted. The ValidTo date overlaps with the ValidFrom date on R1. 
Update the ValidFrom date on R1 to match the ValidTo date on the new record. 

 

Before inserting the new record: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

New record: 

 ValidFrom ValidTo 

New  01/01/1999 05/01/2000 

 

After inserting the new record: 

 ValidFrom ValidTo 

New  01/01/1999 05/01/2000 

R1 05/02/2000 01/01/2001 

R2 01/01/2001 01/01/2002 

R3 01/01/2002 01/01/2003 

R4 01/01/2003 01/01/2154 

  



 

 

14 
 
USING DATE EFFECTIVE DATA PATTERNS 

Allowed: Insert a new record with a ValidFrom and ValidTo date that follows the 

ValidTo date of the last record 

 

                                  |--|  

|_____|_____|_____|____| 

     R1        R2      R3         R4 

 

Consequence: A new record is inserted following R4. 

 If gap is not allowed: The ValidTo date on R4 changes to 12/31/2008 to match the ValidTo date on 
the new record. 

 If gap is allowed: The ValidTo date on R4 remains unchanged (01/01/2008). 

 

Before inserting the new record: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2008 

 

New record: 

 ValidFrom ValidTo 

New 01/01/2009 01/01/2154 

 

After inserting the new record (no gap): 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 12/31/2008 

New 01/01/2009 01/01/2154 

 

  



 

 

15 
 

USING DATE EFFECTIVE DATA PATTERNS 

Not Allowed: A new record is inserted that includes ValidFrom and ValidTo dates 

that are within the date range of an existing record.  

 

                 |--|  

|_____|_____|_____|____| 

       R1        R2      R3         R4 

 

Consequence: If you attempt to insert a record that has a ValidFrom and ValidTo that are within the 
range of R2, the record is not inserted, and an error message is returned. 

 

Before inserting the new record: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

New record: 

 ValidFrom ValidTo 

New 03/01/2001 06/01/2001 

 

Result: No change. 

 

  



 

 

16 
 
USING DATE EFFECTIVE DATA PATTERNS 

Not Allowed: A new record is inserted that spans the date range of more than one 

other record.  

 

                 |-----------------|  

|_____|_____|_____|____| 

      R1        R2      R3         R4 

 

Consequence: If you attempt to insert a record with a date range that spans R2, R3, and R4, the 
record is not inserted, and an error message is returned. 

 

Before inserting the new record: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

New record: 

 ValidFrom ValidTo 

New 06/01/2001 06/01/2004 

 

Result: No change. 

Update data in a valid time state table 

There are three modes for updating a record in a valid time state table: Correction mode, 
CreateNewTimePeriod mode, and EffectiveBased mode.  

In Correction mode, updating a record in a valid time state table is a similar activity to updating a 
record in a non-valid time state table. Examples are described in the Correction mode section.  

In CreateNewTimePeriod mode, only the records that are currently effective can be updated. Also, 
the existing current record will be expired, and a new record will be created and it will be set to 
effective.  The behavior for expiring and newly inserted a record depends on the 

ValidTimeStateFieldType value: 

 UtcDateTime: The ValidTo date on the expired record will be set to the current time minus 1 
second, and the ValidFrom date on the new record will be set to the current time.   

 Date: The ValidTo date on the expired record will be set to the current date minus 1 day, and 
the ValidFrom date on the new record will be set to the current date. 

 

  



 

 

17 
 

USING DATE EFFECTIVE DATA PATTERNS 

For example, suppose the CustInterestVersion table has the following data: 

Interest code Grace Period ValidFrom ValidTo 

15D2% 0 1/1/2012 12/31/2154 

 

On 5/31/2012, if the grace period is updated to 15, in the CreateNewTimePeriod mode, the table 
will have the following data: 

Interest code Grace Period ValidFrom ValidTo 

15D2% 0 1/1/2012 5/30/2012 

15D2% 15 5/31/2012 12/31/2154 

 

EffectiveBased mode is the combination of CreateNewTimePeriod and Correction modes. If a 
current effective record is updated in EffectiveBased mode, it behaves the same as in 
CreateNewTimePeriod mode. If a record that will be effective in the future is updated in the 
EffectiveBased mode, it  behaves the same as in Correction mode. Updating a record that was 
effective in the past in EffectiveBased mode is not allowed. 

Correction mode examples 

Suppose R1, R2, R3, and R4 are records that exist in a valid time state table. Correction can be used 
for past, current, and future records. 

 

Allowed: Update the ValidFrom date on the second record in a table 

         |--  

 |_____|_____|_____|____| 

       R1        R2      R3         R4 

 

Consequence: Update the ValidTo date on R1 to match the new ValidFrom date on R2. 

 

Before updating R2: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

Update R2: The new ValidFrom date is 06/01/2000. 

 

  



 

 

18 
 
USING DATE EFFECTIVE DATA PATTERNS 

After updating R2: 

 ValidFrom ValidTo 

R1 01/01/2000 05/31/2000 

R2 06/01/2000 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

Allowed: Update the ValidTo date on the first record in a table 

 

      --| 

 |_____|_____|_____|____| 

       R1        R2      R3         R4 

 

Consequence if gap is not allowed:  

Update the ValidFrom date on R2 to match the new ValidTo date on R2. In this example, the new R2 
ValidFrom date is 06/02/2000. 

 

Consequence if gap is allowed:  

No update to R2 because the gap exists.  

 

Before updating R1: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

Update R1:  

The new ValidTo date is  06/01/2000. 

 

After updating R1 (no gap): 

 ValidFrom ValidTo 

R1 01/01/2000 06/01/2000 

R2 06/02/2000 01/01/2002 

R3 01/02/2002 01/01/2003 



 

 

19 
 

USING DATE EFFECTIVE DATA PATTERNS 

R4 01/02/2003 01/01/2154 

 

Allowed: Update the ValidTo date on the last record in a table 

 

                          ---|  

|_____|_____|_____|____| 

    R1        R2      R3         R4 

 

Consequence: The ValidTo date on R4 is changed. No other records are affected.  

 

Before updating R4: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2009 

 

Update R4: The new ValidTo date is 01/01/2010. 

 

After updating R4: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2010 

 

Allowed: Update the ValidFrom date on the first record in a table 

 

 

|---  

     |_____|_____|_____|____| 

           R1        R2      R3         R4  

 

Consequence: Update the ValidFrom date on R1 to a new value. 

 

  



 

 

20 
 
USING DATE EFFECTIVE DATA PATTERNS 

Before updating R1: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

Update R1: The new ValidFrom date is  01/01/1999. 

 

After updating R1: 

 ValidFrom ValidTo 

R1 01/01/1999 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

Not Allowed: Update the ValidFrom date on a record in a table to be earlier 

than the ValidFrom date on an earlier record 

 

          |----------- 

|_____|_____|_____|____|    

     R1        R2      R3         R4  

 

Consequence: If you attempt to update the ValidFrom date on R3 to a value that is earlier than the 
ValidFrom date on R2, the record is not inserted, and an error message is returned. 

 

Before updating R3: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

Update R3: 

The new ValidFrom  date is 06/01/2000. 

 

Result: No change. 



 

 

21 
 

USING DATE EFFECTIVE DATA PATTERNS 

 

Not Allowed: Update the ValidTo date on a record in a table to be later than the 

ValidTo date on a later record 

 

                           ------------|  

 |_____|_____|_____|____| 

        R1        R2      R3         R4 

 

Consequence: If you attempt to update the ValidTo date on R2 to a value that is later than the 

ValidTo date on R3, the record is not updated, and an error message is returned. 

  

Before updating R2: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

UpdateR2: 

The new ValidTo date is  06/01/2003. 

 

Result: No change. 

 

Not Allowed: Update the ValidFrom and ValidTo dates on a record in a single 

operation 

 

                     |---            ----|  

|_____|_____|_____|____| 

     R1        R2      R3         R4 

 

Consequence: If you update the ValidFrom date on R3 to a new value and update the ValidTo date 
on R3 to a new value in a single operation, no changes are made, and an error message is returned 

 

Before updating R3: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 



 

 

22 
 
USING DATE EFFECTIVE DATA PATTERNS 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

Update R3: 

The new ValidFrom date is 06/01/2001. 

The new ValidTo date is 06/01/2003. 

 

Result: No change. 

 

Delete data from a valid time state table 

Suppose R1, R2, R3, and R4 are records that are stored in a valid time state table. When deleting a 

record in a valid time state table that does not allow gaps, the ValidTo field of an earlier record may 
be updated so that a gap does not appear. If the table allows gap, no other records will be adjusted. 
The following table shows the data change. 

Allowed: Delete a record from a valid time state table  

 

                       

|_____|_____|__x___|____|  

       R1        R2      R3         R4 

 

Delete R3. 

 

Consequence if gap is not allowed: Update the ValidTo date on R2 to match the ValidFrom date on 
R4. The new ValidTo date on R2 is 01/01/2003. 

 

Consequence if gap is allowed: No update to R2 because the gap exists. The ValidTo date on R2 
remains 01/01/2002. 

 

Before deleting R3: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

After deleting R3 (no gap): 

 ValidFrom ValidTo 



 

 

23 
 

USING DATE EFFECTIVE DATA PATTERNS 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2003 

R4 01/02/2003 01/01/2154 

 

 

Allowed: Delete the current record from a valid time state table  

 

                                         

|_____|_____|_____|__x__| 

      R1        R2      R3         R4 

 

R4 is the current  record. Delete R4. 

 

Consequence: R4 is deleted. No automatic adjustments are made to the ValidTo date of the 
preceding record. 

 

Before deleting R4: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

R4 01/02/2003 01/01/2154 

 

After deleting R4: 

 ValidFrom ValidTo 

R1 01/01/2000 01/01/2001 

R2 01/02/2001 01/01/2002 

R3 01/02/2002 01/01/2003 

 

 

  



 

 

24 
 
USING DATE EFFECTIVE DATA PATTERNS 

Query data from a valid time state table 

Valid time state tables can be queried through an X++ statement and the Query API. In an X++ 
statement, keyword ValidTimeState is added to query records that are effective at a specific time or 
in a date range. For the Query API, four new methods are added to achieve the same results as an 
X++ statement. The following section demonstrates the usage in more detail. For the purposes of this 
example, we assume that the CustInterestVersion table has the following data: 

Interest code Grace Period ValidFrom ValidTo 

1M-5% 0 1/1/2001 12/31/2002 

1M-5% 0 1/1/2003 12/31/2012 

1M-5% 0 1/1/2013 12/31/2154 

1M-3% 0 1/1/1900 12/31/2154 

15D-2% 0 1/1/1900 12/31/2154 

 

We assume that the HcmPositionWorkerAssignment table has the following data: 

Position Worker ValidFrom ValidTo 

10 AJE 5/31/2000 05:00:00 am 12/31/2154 06:00:00 am 

11 AJE 5/14/1995 05:00:00 am 5/31/2000 05:00:00 am 

12 EPE 12/31/1999 06:00:00 am 12/31/2154 06:00:00 am 

13 EWA 12/31/2000 06:00:00 am 12/31/2154 06:00:00 am 

15 EWA 6/30/2000 05:00:00 am 6/30/2000 05:00:00 am 

16 EWA 4/30/1996 05:00:00 am 6/30/2000 05:00:00 am 

 

X++ statement 

There are three modes to query data effective records: Default mode, AsOfDate mode, and 
AsofDateRange mode. In Default mode, no special keyword is needed for the select statement on a 
valid time state table, and the current records will be returned. This is achieved by the system 
implicitly appending the following to the where clause: 

ValidFrom <= today && ValidTo >= today 

For example, the following code sample returns the records that are currently effective: 

static void QueryCurrent(Args _args) 

{ 

    CustInterestVersion interestVersion; 

    CustInterest        interest; 

     

    while select * from interestVersion join interest 

        where interestVersion.CustInterest == interest.RecId && 

        Interest.InterestCode == "1M-5%" 

    { 

        info(strFmt("%1, %2, %3, %4", interest.InterestCode, interestVersion.GraceDays, 

interestVersion.ValidFrom, interestVersion.ValidTo)); 

    } 

} 

 



 

 

25 
 

USING DATE EFFECTIVE DATA PATTERNS 

The following data is returned if the code is executed on 5/18/2012: 

Interest code Grace Period ValidFrom ValidTo 

1M-5% 0 1/1/2003 12/31/2012 

 

In AsOfDate or AsOfDateRange mode, a new keyword ValidTimeState is introduced. 
ValidTimeState(date1) can be used to query the records that are effective at a specific time. 

ValidTimeState(date1, date2) can be used to query the records that are effective during a time 
period.  Date1 and Date2 can be the type of Date or UtcDateTime, depending on the ValidFrom and 
ValidTo type of the valid time state table. For example, the following code sample returns the records 
that are effective on 1/1/2002: 

static void QueryCurrent(Args _args) 

{ 

    CustInterestVersion interestVersion; 

    CustInterest        interest; 

    Date          asOfDate = 1\1\2002; 

     

    while select validtimestate(asOfDate) * from interestVersion join interest 

        where interestVersion.CustInterest == interest.RecID 

    { 

        info(strFmt("%1, %2, %3, %4", interest.InterestCode, interestVersion.GraceDays, 

interestVersion.ValidFrom, interestVersion.ValidTo)); 

    } 

} 

 

The following data is returned: 

Interest code Grace Period ValidFrom ValidTo 

1M-5% 0 1/1/2001 12/31/2002 

 

 

The following code sample returns the records that are effective during 1/1/2009 and 1/1/2012: 

static void QueryCurrent(Args _args) 

{ 

    CustInterestVersion interestVersion; 

    CustInterest        interest; 

    Date        fromdate = 1\1\2009; 

    Date                todate = 1\1\2012; 

     

    while select validtimestate(fromdate, todate) * from interestVersion join interest 

        where interestVersion.CustInterest == interest.RecID 

    { 

        info(strFmt("%1, %2, %3, %4", interest.InterestCode, interestVersion.GraceDays, 

interestVersion.ValidFrom, interestVersion.ValidTo)); 

    } 

} 

 

  



 

 

26 
 
USING DATE EFFECTIVE DATA PATTERNS 

The following data is returned: 

 

Interest code Grace Period ValidFrom ValidTo 

1M-5% 0 1/1/2003 12/31/2012 

1M-3% 0 1/1/1900 12/31/2154 

15D-2% 0 1/1/1900 12/31/2154 

The date or UtcDateTime value used in the keyword ValidTimeState must match the 
ValidTimeStateFieldType of the valid time state table. If the ValidTimeStateFieldType of a valid 

time state table is Date, the value in the ValidTimeState keyword must be type of Date. The same 
rule applies to the valid time state tables where the ValidTimeStateFieldType is set to 
UtcDateTime. 

Query API 

Just like the query in X++ using the select statement, four new methods have been added to query a 

valid time state table in AsofDate mode or AsofDateRange mode: 

API Description ValidTimeStateFieldType 

Query::ValidTimeStateAsOfDate(asOfDate) Query records that are 
effective at asOfDate 

Date 

Query::ValidTimeStateDateRange(fromdate, 
todate) 

Query records that are 
effective during fromdate 
and todate 

Date 

Query::ValidTimeStateAsOfDatetime(asOfdate
time) 

Query records that are 
effective at asOfdatetime 

UtcDateTime 

Query::ValidTimeStateDateTimeRange(fromda

tetime, todatetime) 

Query records that are 

effective during 
fromdatetime and 
todatetime 

UtcDateTime 

 

The following code samples are used to query the data that is effective on 1/1/2002: 

static void QueryAsOfDateUsingQueryAPI(Args _args) 

{ 

    Query q; 

    QueryBuildDataSource qdbs; 

    QueryRun qr; 

    date asOfDate = 1\1\2002; 

    CustInterestVersion version; 

   

    q = new Query(); 

    qdbs = q.addDataSource(tableName2id("CustInterestVersion")); 

    q.ValidTimeStateAsOfDate(asOfDate); 

    qr = new QueryRun(q); 

     

    while (qr.next()) 

    { 

        version = qr.get(tableName2id("CustInterestVersion")); 

        info(strFmt("%1, %2, %3", version.CustInterest, version.ValidFrom, version.ValidTo)); 

    } 

} 



 

 

27 
 

USING DATE EFFECTIVE DATA PATTERNS 

 

The following code samples are used to query the data that is effective during 1995-01-01T00:00:00 
and 1999-12-31T00:00:00: 

static void QueryRangeUsingQueryApi(Args _args) 

{ 

    Query q; 

    QueryBuildDataSource qdbs; 

    QueryRun qr; 

    UtcDateTime fromdatetime = 1995-01-01T00:00:00; 

    utcDateTime todatetime = 1999-12-31T00:00:00; 

    HcmPositionWorkerAssignment assignment; 

     

   

    q = new Query(); 

    qdbs = q.addDataSource(tableName2id("HcmPositionWorkerAssignment")); 

    q.validTimeStateDateTimeRange(fromdatetime, todatetime); 

    qr = new QueryRun(q); 

     

    while (qr.next()) 

    { 

        assignment = qr.get(tableName2id("HcmPositionWorkerAssignment")); 

        info(strFmt("%1, %2, %3, %4", assignment.Position, assignment.Worker, 

assignment.ValidFrom, assignment.ValidTo)); 

    } 

 

} 

AOT query 

A valid time state table can be one of the data sources of an AOT query. Currently, there are no 
properties in the AOT query to specify the date range or AsOfDate for the records. This can be 
achieved programmatically or through form and SysQueryForm, which is demonstrated in the later 
section   

View 

A valid time state table can be one of the data sources in a view. By default, the view returns all data 
in a valid time state table. If the property ValidTimeStateEnabled is set to Yes, and the view fields 
contain the ValidFrom and ValidTo fields of the valid time state table in the view data source, the 
view returns current records. 

Caching 

Valid time state tables support all of the cache options. However, EntireTableCache is not 

recommended because valid time state tables usually change very frequently.  

If effective valid time state table is queried in the Default mode to return a current record or in 

AsOfDate mode to return a record that is effective at a specific time, the record will be fetched from 
the database for the first time, and fetched from the cache for subsequent queries.  

  



 

 

28 
 
USING DATE EFFECTIVE DATA PATTERNS 

Set-based operations 

Valid time state tables support set-based operations such as Insert_recordset, update_recordset, 
and delete_from by reverting them to record-by-record operations. 

For example, suppose the CustInterestVersion table has the following data: 

Interest code Grace Period ValidFrom ValidTo 

1M-5% 0 1/1/2001 12/31/2002 

1M-3% 0 1/1/1900 12/31/20020 

 

Suppose the SourceTable table has the following data: 

Interest code Grace Period ValidFrom ValidTo 

1M-5% 0 1/1/2004 12/31/2154 

1M-3% 30 1/1/2010 12/31/2154 

 

Run the following code using update_recordset: 
static void Insert_RecordSetPass(Args _args) 

{ 

    CustInterestVersion target; 

    SourceTable        source; 

     

    insert_recordset target (CustInterest, GraceDays, ValidFrom, ValidTo) 

        select CustInterest, GraceDays, ValidFrom, ValidTo from source 

         

} 

 

The CustInterestVersion table contains the following data: 

Interest code Grace Period ValidFrom ValidTo 

1M-5% 0 1/1/2001 12/31/2003 

1M-5% 30 1/1/2004 12/31/2154 

1M-3% 0 1/1/1900 12/31/2009 

1M-3% 30 1/1/2010 12/31/2154 

 

However, if a record is inserted in the middle of another record or causes multiple records to overlap, 
the operation will fail. For example, the preceding code will fail if the SourceTable contains the 

following data: 

Interest code Grace Period ValidFrom ValidTo 

1M-3% 0 1/1/2001 12/31/2002 

 

  



 

 

29 
 

USING DATE EFFECTIVE DATA PATTERNS 

For Update_RecordSet and Delete_from, the system will not append any condition for ValidFrom 
and ValidTo in the where clause. For example, the following code will change the ValidFrom for all 
records: 

static void Update_RecordSetTest(Args _args) 

{ 

    CustInterestVersion target; 

     

    ttsbegin; 

       target.validTimeStateUpdateMode(ValidTimeStateUpdate::Correction); 

    update_recordset target  

        setting ValidFrom = target.ValidFrom + 1 

 

    ttscommit;         

} 

 

The following code will delete all of the records: 

static void Update_RecordSetTest(Args _args) 

{ 

    CustInterestVersion target; 

     

    ttsbegin; 

    delete_from target  

    ttscommit;         

} 

Developing forms with valid time state tables 

AOT properties 

ValidTimeStateAutoQuery and ValidTimeStateUpdate are added to forms. 
ValidTimeStateAutoQuery allows user to access records that are effective at a specific time or 
during a time period.   

ValidTimeStateUpdate allows user to update date effective records with different update modes. 

ValidTimeStateAutoQuery can be set only on the master data source, which is the root table in a 

form or a query. It cannot be set on the inner/outer/exist/notexist joined child table. 
ValidTimeStateUpdate can only be set on data sources that reference a valid time state table. The 
data source could be one or more within a given form or query. 

In HcmPosition form, the worker assignment section only shows the current worker who is assigned 
to the position. When a new worker is assigned to the position, the current worker will be expired from 

the position, which is achieved by using the CreateNewTimePeriod update mode. 

  



 

 

30 
 
USING DATE EFFECTIVE DATA PATTERNS 

The following screen shot shows the properties for the HcmPosition in AOT: 

 

Figure 5: HcmPosition properties 

 

  



 

 

31 
 

USING DATE EFFECTIVE DATA PATTERNS 

When the HcmPosition form is opened, only the current record for a position is shown: 

 

Figure 6: Position form 

  



 

 

32 
 
USING DATE EFFECTIVE DATA PATTERNS 

In the HcmPositionDateManager form, all records are shown. When a record is updated, it is 
updated in Correction mode. Therefore, in this form for the data source 
HcmPositionWorkerAssignment, the ValidTimeStateAutoQuery property is set to DateRange, 
and the ValidTimeStateUpdate property is set to Correction.  

 

Figure 7: HcmPositionWorkerAssignment properties 

Records change notification 

When inserting, updating, and deleting a record in a valid time state table through forms, if adjacent 
records will be adjusted, the following dialog will be displayed. 

 

Figure 8: Effective date warning message 

Click Yes to make the adjustment for the affected records. 

Click No to not make the adjustment.  The user needs to Restore (press Ctrl+F5) to discard the 
changes. 



 

 

33 
 

USING DATE EFFECTIVE DATA PATTERNS 

Filtering by using the Inquiry form (SysQueryForm) 

SysQueryForm can be used to further filter the records in a form, report, or runbase dialog. For forms 
that have valid time state tables as the data source, a Date options tab is added to the 
SysQueryForm so that the records can be filtered by using date effective semantics.  

For example, in the HcmPosition form where the ValidTimeStateAutoQuery is set to AsOfDate, 
the following Inquiry form will be displayed when the user opens the form and presses Ctrl+F3. 

 

Figure 9: Inquiry form from HCMPosition, in which ValidTimeStateAutoQuery is set to AsOfDate 

To display the records that are currently effective, select Show records active now. Otherwise, 
select Show records active as of, and specify a date time. 

  



 

 

34 
 
USING DATE EFFECTIVE DATA PATTERNS 

For the forms in which ValidTimeStateAutoQuery is set to Date Range, pressing Ctrl+F3 will 
display the following Inquiry form. 

 

Figure 9: Inquiry form from Employment data manager, in which ValidTimeStateAutoQuery is set to Date Range 

 

  



 

 

35 
 

USING DATE EFFECTIVE DATA PATTERNS 

 

Security integration 

The security framework in Microsoft Dynamics AX 2012 has been changed to a role-based security 
model. For valid time state tables, a role can be defined to have access to current, past, or future 
records for all data effective tables. 

 

Figure 10: Properties for HcmManager role 

For example, for role HcmManager, PastDataAccess, CurrentDataAccess, and 
FutureDataAccess are used to define the effective access for the past records, the current records, 
and the future records. Each property can have one of the following values: No access, Read, 
Update, Create, Correct, and Delete. Because there are three update modes for valid time state 
tables, Update access is granted for updating records in CreateNewPeriod mode. Correct access is 

granted for updating records in Correction or EffectiveBased mode.  

Valid time state tables can also have effective access set in a permission which is a part of a privilege 
that is assigned to a role. The effective access for a table in a permission also can have one of the 
following values: No access, Read, Update, Create, Correct, and Delete. Permission is granted at 
the minimum level of the effective access on a table and the effective access defined in 

PastDataAccess, CurrentDataAccess, and FutureDataAccess on the role. 

For example, suppose a role has PastDataAccess set to Read, CurrentDataAccess set to Update, 

and FutureDataAccess set to Delete. The role has a privilege that contains a permission that has 
the valid time state table with effective access set to Correct. The role will have Read access on past 
records, Update access on current records, and Correct access on future records. 

If a user has multiple roles, the maximum level of permission granted for all roles that the user has 
will be used. For example, suppose a user has two roles. The first role is described in the previous 
paragraph. The second role has PastDataAccess set to No Access, CurrentDataAccess set to No 
Access, and FutureDataAccess set to No Access. The user will have Read access on past records, 

Update access on current records, and Correct access on future records. 



 

 

36 
 
USING DATE EFFECTIVE DATA PATTERNS 

 

X++ behavior 

The following table defines whether a user action is allowed in X++ when an access right is granted to 
a role: 

Permission on table Create/Read/Update/Delete operations allowed 

No Access No Access 

Read Read (Query the record) 

Update Update in CreateNewTimePeriod mode, Read 

Create Create (Insert record), Update, Read 

Correct Update in Correction mode, Create,  Update, Read 

Delete Delete, Correct, Create, Update, Read 

 

The permissions described in the table combine with the settings in PastDataAccess, 
CurrentDataAccess, and FutureDataAccess to further secure the data at the record level.  

For example, suppose a worker is not allowed to view the positions assigned to her in the future, the 
role that the worker uses should have FutureDataAccess set to No Access, PastDataAccess set to 
Read, and CurrentDataAccess set to Read.  

A Human resources employee should be allowed to update the currently effective positions to a new 
worker and correct a future position, but should not be allowed to change a past position. The role 
that the employee uses can have PastDataAccess set to Read, CurrentDataAccess  set to Update, 
and FutureDataAccess set to Correct. For the HcmManager role, she can access any records. 

When accessing data through X++, table::RecordLevelSecurity() must be used to enforce the 
security check. For example, if a role has the PastDataAccess set to NoAccess, 

CurrentDataAccess set to Update, and FutureDataAccess set to Read, the following code sample 
returns the records that are effective from now to 12/31/2154: 

public static void Main(Args args) 

{ 

    HcmPositionWorkerAssignment assignment; 

    utcDateTime fromtime = 1900-01-01T00:00:00; 

    utcDateTime totime = 2154-12-31T00:00:00; 

     

    assignment.recordLevelSecurity(true); 

    while select validTimeState(fromtime, totime) * from assignment 

    { 

        info(strFmt("%1, %2, %3, %4",  

                     assignment.Position,  

                     assignment.Worker,  

                     assignment.ValidFrom,  

                     assignment.ValidTo)); 

    } 

} 

  



 

 

37 
 

USING DATE EFFECTIVE DATA PATTERNS 

Form behavior 

When accessing records through a form, the Create/Read/Update/Delete operations are allowed.  

Form Mode Permission 
on table 

Create/Read/Update/Delete 
operations allowed 

Comments 

Correction No Access No Access  

Correction Read Read  

Correction Update Read  

Correction Create Read  

Correction Correct Correct (Update in Correction 
mode), Create, Update (Update in 
CreateNewTimePeriod mode), Read 

 

Correction Delete Delete, Correct, Create, Update, 
Read 

 

CreateNewTimePeriod No Access No Access  

CreateNewTimePeriod Read Read  

CreateNewTimePeriod Update Update in CreateNewTimePeriod 
mode, Read 

Only applicable on current records. 

CreateNewTimePeriod Create  Create, Update, Read  

CreateNewTimePeriod Correct Create, Update, Read  

CreateNewTimePeriod Delete Delete, Create, Update, Read  

EffectiveBased No Access No Access  

EffectiveBased Read Read  

EffectiveBased Update Update in CreateNewTimePeriod 
mode, Read 

Only applicable on current records. 

EffectiveBased Create Update, Read  

EffectiveBased Correct Update in Correction mode, 
Update, Read 

Correction mode only applicable on 
future records. Update only 
applicable on current records. 

EffectiveBased Delete Delete, Correct, Create, Update, 
Read 

 

 

  



 

 

38 
 
USING DATE EFFECTIVE DATA PATTERNS 

 

Microsoft Dynamics is a line of integrated, adaptable business management solutions that enables you and your 
people to make business decisions with greater confidence. Microsoft Dynamics works like and with familiar 
Microsoft software, automating and streamlining financial, customer relationship and supply chain processes in a 
way that helps you drive business success. 

 

U.S. and Canada Toll Free 1-888-477-7989 

Worldwide +1-701-281-6500 

www.microsoft.com/dynamics 

This document is provided “as-is.” Information and views expressed in this document, including URL and other 
Internet Web site references, may change without notice. You bear the risk of using it.  

Some examples depicted herein are provided for illustration only and are fictitious.  No real association or 
connection is intended or should be inferred. 

This document does not provide you with any legal rights to any intellectual property in any Microsoft product. You 
may copy and use this document for your internal, reference purposes. You may modify this document for your 
internal, reference purposes.  

 

© 2011 Microsoft Corporation. All rights reserved. 

 

Microsoft, Microsoft Dynamics and the Microsoft Dynamics logo are trademarks of the Microsoft group of 
companies.  

All other trademarks are property of their respective owners. 

 

http://www.microsoft.com/dynamics

