
Journal 7

Learn the discipline,
pursue the art, and
contribute ideas at
www.ArchitectureJournal.net
Resources you can
build on.

®

Build Applications on
a Workflow Platform

The Amazing
Race Metaphor

Explore Human
Workflow Architectures

Workflow in
Application Integration

Simplify Designing
Complex Workflows

Enable the Service-
Oriented Enterprise

Service-Oriented
Modeling for
Connected Systems

Generation Workflow

Foreword	 1
by Simon Guest

Build Applications on a Workflow Platform	 2
by David Green
A workflow is important for resolving business problems. Examine a range of applications that
demonstrate the decisions and reasoning architects face when building a workflow platform.

The Amazing Race Metaphor	 9
by Vignesh Swaminathan
Today’s enterprises realize the potential of automating their business processes. Find out about
managing high-level business processes through an analogy to a reality-based television game show.

Explore Human Workflow Architectures	 16

by Jesus Rodriguez and Javier Mariscal
There are two components of human workflow systems and representative patterns of human-to-
business processes interactions. Discover how to apply these components to implement these processes.

Workflow in Application Integration	 19
by Kevin Francis
The integration of applications is one of the greatest challenges architects face today. Take a look at a
framework for application integration through the use of tools such as workflow technologies.

Simplify Designing Complex Workflows	 24
by Andrew Needleman
Solid workflow design requires many skills that make workflow a challenge to even experienced architects.
Learn an approach for simplifying the design process of complex systems using a new kind of diagram.

Enable the Service-Oriented Enterprise	 27
by William Oellermann
Though building lots of Web services can be difficult, managing them can be really difficult. Explore
using a model that can assist you with planning capabilities for a service-enabled enterprise.

Service-Oriented Modeling for Connected Systems – Part 1	 33
by Arvindra Sehmi and Beat Schwegler
Architects want to identify artifacts correctly and at the right abstraction level. Check out an approach
to model connected, service-oriented systems that promotes close alignment between IT solutions and
business needs in Part 1 of a two-part series.

Journal 7

Contents

Resources you can build on. www.architecturejournal.net

Dear Architect,
I remember the morning well. The day was clear and cold, and I was in the
Microsoft office in London sitting with Arvindra Sehmi as he explained his vi-
sion and showed me one of the first exciting prototypes of the Journal. As you
may know, from that morning onward the Journal has gone from strength
to strength. You are reading the 7th issue of the Journal, which reaches over
30,000 subscribers worldwide—both in printed and online format through
our new site, ArchitectureJournal.net, that launched last month. As I was chat-
ting with Vin, little did I know that three years later I would have the honor of
taking over as editor of the magazine.
	 Although there are no major changes to the format, as editor I do plan to
introduce a couple of new directions for The Architecture Journal. First, given the
growing subscription base we will be localizing it into eight languages worldwide.
If you are reading this issue in a language other than English, I’d like to be first to
welcome you to this new format and hope that it sets a continuing trend.
	 Second, from this issue we are moving toward a themed approach, where
the majority of the articles in each issue fit a common theme or pattern. As
you may have seen from the cover, the theme for this issue is “Generation
Workflow.” To kick off the theme we start with an article by Dave Green, an
architect for our Windows Workflow Foundation (WF) product. Dave will be
sharing the decisions and reasoning his team faced while building a workflow
platform, which ultimately shaped the product they are developing.
	 Next we have Vignesh Swaminathan, a product manager from Cordys R&D.
In his article Vignesh will be taking you on an “Amazing Race” and will be
looking at the similarities between workflow decision matrices in enterprises
and a popular television show. To add more of a human touch to the Journal,
Jesus Rodriguez and Javier Mariscal will be covering the main components of
a human workflow system and describing patterns that can be used to model
human-related tasks.
	 To hook these pieces together, Kevin Francis will be discussing integrating
applications with workflow in his article, “Workflow in Application Integra-
tion.” And to complete the set of workflow articles in this issue, Andrew
Needleman will be showing a technique he uses called “dots and lines” to sim-
plify the process of communicating complex workflows with business experts.
	 Following the articles on workflow we are lucky enough to have William
Oellermann’s article on the Enterprise Service Orientation Maturity Model
(ESOMM), a maturity model that looks at service management in the enter-
prise. Finally, to wrap this issue, we have decided not to let Arvindra off the
hook completely, and he’ll be returning with Beat Schwegler to deliver Part 1
of an excellent overview of “Service-Oriented Modeling for Connected Sys-
tems.” Part 2 will appear in the Journal’s 8th issue.
	 Overall, it’s been a great ride putting my first issue together, and I hope
you’ll find the articles useful and thought provoking. As the new editor I
would like to welcome you again, and look forward to hearing from many of
you in the near future.

Simon Guest

Founder
Arvindra Sehmi
Microsoft Corporation

Editor-in-Chief
Simon Guest
Microsoft Corporation

Microsoft Editorial Board
Gianpaolo Carraro
John deVadoss
Neil Hutson
Eugenio Pace
Javed Sikander
Philip Teale
Jon Tobey

Publisher
Marty Collins
Microsoft Corporation

Design, Print, and Distribution
Fawcette Technical Publications
Jeff Hadfield, VP of Publishing
Terrence O’Donnell, Managing Editor
Michael Hollister, VP of Art and
Production
Karen Koenen, Circulation Director
Brian Rogers, Art Director
Kathleen Sweeney Cygnarowicz,
Production Manager

The information contained in this Best of the Microsoft

Architecture Journal (“Journal”) is for information purposes

only. The material in the Journal does not constitute the

opinion of Microsoft or Microsoft’s advice and you should

not rely on any material in this Journal without seeking

independent advice. Microsoft does not make any warranty

or representation as to the accuracy or fitness for purpose of

any material in this Journal and in no event does Microsoft

accept liability of any description, including liability for

negligence (except for personal injury or death), for any

damages or losses (including, without limitation, loss of

business, revenue, profits, or consequential loss) whatsoever

resulting from use of this Journal. The Journal may contain

technical inaccuracies and typographical errors. The Journal

may be updated from time to time and may at times be

out of date. Microsoft accepts no responsibility for keeping

the information in this Journal up to date or liability for any

failure to do so. This Journal contains material submitted and

created by third parties. To the maximum extent permitted

by applicable law, Microsoft excludes all liability for any

illegality arising from or error, omission or inaccuracy in this

Journal and Microsoft takes no responsibility for such third

party material.

All copyright, trademarks and other intellectual property

rights in the material contained in the Journal belong, or are

licensed to, Microsoft Corporation. You may not copy, repro-

duce, transmit, store, adapt or modify the layout or content

of this Journal without the prior written consent of Microsoft

Corporation and the individual authors.

© 2006 Microsoft Corporation. All rights reserved.

®

� • Journal 7 • www.architecturejournal.net

Foreword

� www.architecturejournal.net • Journal 7 •

Build Applications on a
Workflow Platform
by David Green

The idea of workflow has been around for a long time, and it has

been consistently attractive as a way to attack business prob-

lems. The problems to which a workflow approach has been applied

often display three characteristics: The key business value delivered is

coordination, for instance, in organizing multiple contributions to the

preparation of a quote or driving a document review. Each instance of

the business process concerned is of long duration, measured often in

days, weeks, or months rather than minutes. The business process has

human participants, who usually contribute most of the work product.

	 However, only a small proportion of the business problems with

these characteristics are solved using a workflow approach. Most

commonly, the business process is not recorded as machine-read-

able information at all. Rather, each of the humans participating in the

business process interacts with business systems that are not aware of

the semantics of the process as a whole, such as a customer informa-

tion system, and with other human participants through content-neu-

tral communications channels such as e-mail. Each human participant

uses a mental model of their part in the overall business process to

determine their behavior.

	 The attractions of creating a machine-readable model of the

business process, that is, a workflow, are not difficult to envisage.

Three key benefits that a workflow model can bring are insight,

monitoring, and optimization. A set of related workflow models can

be used to gain insight into the flow of work through an organiza-

tion. For monitoring, knowing which individuals are contributing

work to which business process is very useful when trying to under-

stand costs and workloads. For optimization, having a model of the

work being undertaken, and being able to use the model to inter-

pret behavior, together make it possible to reason about how to

optimize the business process.

A Workflow Model
Given these compelling benefits, why haven’t workflow models been

used more widely? The most likely answer is that the cost of using

them has been too high. These costs include product costs, that is, the

direct cost of purchasing a workflow product; integration costs, where

processes modeled as workflows need to be integrated as part of a

larger business system; and standardization costs, where it is difficult

for a large organization to standardize on a single workflow technol-

ogy. Variations in workflow products also mean that skills and model

portability are issues.

	 Let’s look at the possibility of addressing these blocking issues by

building applications on a workflow platform that is low cost, ubiq-

uitous, uniform, and easily integrated in applications. To be clear, the

idea is not to replace workflow products. Rather, the hypothesis is

that it is useful to factor out support for some core workflow concepts

into a platform on which both workflow products and other applica-

tions can be built (see Figure 1).

	 A workflow is a model, which means it is a machine-readable

description of business behavior that is not code. The meaning and

benefits of this concept in the context of the value of a workflow plat-

form will be discussed later.

	 A workflow model describes an organization of work units. For

instance, suppose that a document review process specifies that Joe

writes the document and then Fred reviews it. Here, the work units are

first writing and second reviewing the document, and the organiza-

tion is that one task must follow the other. This concept is not a radi-

cal idea. Code that makes successive calls to two subroutines is a valid

example of the concept. The interest lies rather in the forms that this

organization takes.

	 To test the workflow platform hypothesis, we will consider a range

of real-world applications and explore the characteristics that a work-

flow platform should have if it is to prove useful.

	 A document review process takes as an input parameter a set

of [reviewer, role] pairs that describe which humans are involved

in the workflow in which roles. Possible values for the role are

required, optional, final approver, and owner. The review process

then proceeds until all reviewers have performed their assigned roles

and notifies the owner of the outcome.

Summary

A workflow can be useful for resolving business issues.
Here we’ll get acquainted with and investigate the
idea of building applications on a workflow platform.
A workflow platform supports key workflow con-
cepts and provides a basis for building applications
structured using these concepts, including workflow
products as hitherto understood. We’ll survey a range
of applications to explore the necessary characteristics
of a workflow platform, which leads to a discussion
of the potential benefits of building applications on
a workflow platform. We’ll also discuss the Windows
Workflow Foundation as a means of realizing these
benefits in practice.

Workflow Platform Applications

� • Journal 7 • www.architecturejournal.net

	 Here, the work items are the document reviews organized by the

review process. There are three interesting characteristics to call out,

namely, multiple points of interaction, human and automated activity,

and the need to handle dynamic change.

Workflow Contracts
The workflow has multiple points of interaction, or contracts. First,

there is a contract with a reviewer. This contract involves asking a

reviewer to review a document, accepting the verdict and any review

comments, and also telling a reviewer that his or her input is no lon-

ger required (if the review is canceled, or perhaps if enough review-

ers have voted yes). The contract might also allow a reviewer to dele-

gate a review. Then there is a second contract with the final approver,

which is a specialization of the reviewer contract. Third, there is a con-

tract with the owner of the review that allows the owner to cancel the

review and be notified of the outcome of the review. Finally, there is a

contract with the initiator of the review process, who instantiates the

review and supplies the required parameters.

	 It is typical of workflows that they connect multiple parties

through a variety of contracts (see Figure 2). The document review

workflow is essentially a coordinator, initiated through one contract,

that is coordinating a variety of participants through one or more

additional contracts.

	 The document review workflow drives human activity. However, it

might also drive automated activities, such as storing versions of the

document in a repository as the review progresses. From the point of

view of the workflow, there is no essential difference. A workflow can

be thought of as communicating, in general, with services through

contracts. One special case of a service is another workflow. Another

special case is a human. In many ways, a human is the original asyn-

chronous service: one never knows when or if it is going to respond.

	 A characteristic of this type of workflow is that the participants

will ask for changes to the workflow as it executes. For example, a

reviewer might delegate a review task to a colleague or share the

work involved in a review task with a subordinate.

	 There are two ways of addressing this requirement. One is to build

an understanding of all the possible changes into the workflow. Then,

a delegation request becomes just another function of the contract

between the workflow and the reviewer. The other possibility is to

see change as something separate from the workflow, where change

is implemented as an external function that changes the workflow

model. In this approach, the result of delegation is a new workflow

model identical to one in which the review task was assigned to the

delegate from the beginning.

	 Requesting an additional approval step would add a new

approval task to the workflow model, which might well have con-

tained no approval steps at all in its original form. The workflow no

longer has to anticipate all possible modifications; at the most it will

be concerned with restricting the areas of the model that are subject

to change.

	 Both approaches are useful. Building understanding into a work-

flow is simple to model and understand. Generalizing operations is

more complex to model, but more powerful and agile.

	 In an extreme but interesting case of the latter approach, the

workflow begins execution with little or no content, and the required

behavior is added dynamically by the participants in the workflow.

Here, the available operations for modifying the workflow become a

vocabulary that a user can use to construct the desired behavior as

the workflow progresses.

Problem-Resolution Collaboration
To look at a specific example of a problem-resolution collaboration

application, consider an inventory shortfall. An assembly line is mak-

ing a gadget, and the computer indicated that there were enough

widgets in stock for the purpose. However, when the stockroom man-

ager went to fetch the widgets for delivery to the assembly line, a

shortfall of 10 widgets was discovered.

	 Collaboration among the stockroom manager, the customer’s

account manager, the supplies department, and the production man-

ager is required to resolve the problem. Each role in the collaboration

may take characteristic actions. The supplies department could order

more widgets, perhaps using a different supplier or paying an existing

supplier more money for faster delivery. The account manager could

go to the customer and request deferred delivery or split the deliv-

ery into two parts and bear the extra shipping cost. The production

manager could divert assembled gadgets from an order for another

customer. The stockroom manager could search his or her physi-

cal stock in an attempt to find the missing widgets. Any given action

might be performed multiple times.

	 One obvious constraint is that the collaboration is not completed

until the shortfall is resolved by some combination of the previous

actions. There will often also be business constraints. For instance,

there might be a rule that says deferral of delivery to gold custom-

ers is never permitted. Also, the actions will affect each other. For

instance, there might be a policy that states that total added cost

from corrective action may not exceed 5 percent of original factory

cost. Thus, placing an order for accelerated supplies at a higher price

might prevent a shipment from being split.

Workflow
product

Workflow
product 1

Workflow
product 2 Application 1 Application 2

...

Workflow platform

Figure 1 A monolithic workflow to stack

“In many ways, a human is the original

asynchronous service: one never knows

when or if it is going to respond”

Workflow Platform Applications

� www.architecturejournal.net • Journal 7 •

	 In this case the work items are the actions that the various par-

ticipants can take as they seek to resolve the inventory shortfall. The

organization, however, is not the same as that required in document

review. The participants are not dictated to; instead, they choose

which actions to perform and when to perform them. However, these

choices are constrained by the organization of the workflow, which

has two aspects: 1) The actions are focused on achieving a goal; in this

case, resolving the inventory shortfall. A bounded collaboration space

is created when the problem resolution starts, and is not closed until

the goal has been reached. 2) The participants are not free to perform

arbitrary actions. Instead, the available actions are determined by the

role the participant is performing and the state of the collaboration.

The set of actions available is determined by policies related to the

goal and global policies such as the restriction on shorting gold cus-

tomers. The actions available vary as the collaboration progresses.

	 The experience of the participant is no longer that of performing

assigned tasks. Instead, a participant queries for the actions currently

available to him or her, performs none or one of these actions, and

then repeats the cycle.

	 The main new requirement here, therefore, is for a form of orga-

nization of work items that is essentially data state and goal driven.

There is also a requirement to support a query/act-style of contract

with a workflow participant.

Scripted Operations
Scripted operations are simply a set of operations that are composed

using a script. An example might be a desktop tool that allows a user

to define and execute a series of common tasks, such as copying files

and annotating them.

	 It would be unusual to consider using a typical workflow product

for this purpose. However, it does fit the workflow platform pattern

of a set of work units organized by a model. In this case the model is

a sequence, perhaps with support for looping and conditional execu-

tion. Therefore, if a workflow platform were sufficiently low cost and

ubiquitous, it would be possible to consider applying it to this sort of

problem. Would doing so add any value?

	 One feature of scripted operations that is not addressed by

their typical implementations today is the question of data flow. It

is common for the data required by one operation to be the out-

put of some previous operation, but this information is not typi-

cally modeled in the script. Thus, a user assembling tasks using a

desktop tool might not be told when creating a script that the pre-

requisite data for a task hasn’t been supplied, and would only dis-

cover the error when running the script. A workflow model that can

describe these data dependencies would add clear value for script

authors.

	 One approach is simply to include data flow constructs in the

workflow model. It is highly arguable that the basic workflow model

needs to include basic structural features such as sequences, condi-

tions, and loops; but it is not clear that data flow is sufficiently univer-

sal to be represented by first-class elements of the model.

	 An alternative approach is to layer support for data flow on top of

an extensible, basic workflow. A workflow model that can be enriched

with abstractions appropriate to a variety of problem domains fits well

with the notion of a workflow platform. This approach avoids both the

complexity created by including in the base model a large variety of

semantic constructs specialized for different problems and also the

limitations imposed by limiting the workflow model to a fixed set of

constructs.

	 Now let’s look at a guided user application. One example is an

interactive voice response (IVR) system, and another is a call center

system guiding telephone operators through support or sales scripts.

The essence of these applications is to guide users through the series

of operations needed to achieve their goal. The organization of these

operations is typically used to drive the presentation to the user,

whether this is generated speech or a set of enabled and disabled

command buttons on a form.

	 A characteristic of this type of application is that the workflow is

the most frequently changed part of the application. Also, the busi-

ness sponsors of the system are often heavily involved in specify-

ing the changes, making it important to provide a way for IT staff and

business personnel to communicate clearly and efficiently about the

changes. A workflow model that expresses the core business purpose

of the application, stripped of any irrelevant technical material, is an

effective way to achieve this communication.

	 These applications also require flexibility within the workflow

structure. In an IVR application the user will typically be heavily con-

strained, moving through a hierarchically structured set of menus.

However, there will also be escape commands—for example, “return

to root menu” or “skip out of current subtree.”

	 A call center application will have more flexibility than an IVR

application, changing the options offered to the user in response to

“A workflow model that expresses

the core business purpose of the

application, stripped of any irrelevant

technical material, is an effective way

to achieve communication between IT

staff and business personnel”

Initiate Own Owner

Document review

Review Approve

Reviewer Final approver

Figure 2 A contract diagram for the document review application

Workflow Platform Applications

� • Journal 7 • www.architecturejournal.net

the state of an order or in response to the input from a customer, such

as skipping sales prompts if the customer starts to react negatively.

	 This sort of application requires support for a mix of organizations

of work items, combining sequences, loops, and conditions with jumps

from one state to another, and also the kind of data-driven behavior

seen in problem-resolution collaboration.

Rule and Policy
As discussed previously, one way in which the workflow approach

can deliver value is by isolating the focus of change in an application.

Often, this focus is on the way in which the work items are structured,

but in some applications the focus of change is on expressions tied to

a relatively slow-changing structure.

	 An example of this focus is an insurance policy quotation system,

where a set of frequently changing calculations is used to drive deci-

sion making in the quotation process. The requirement is for the work-

flow to model these expressions, which has two key benefits: First, the

testing and deployment costs are much lower than those that would

typically be incurred if the expressions were written as code, since the

model provides a strong sandbox restricting the scope of possible

changes. Second, the changes can be made by personnel who under-

stand the business significance of the expressions but do not have the

skills to understand the technical code in which expressions written as

code would inevitably need to be embedded.

	 The Model-View-Controller (MVC) pattern often is used to wire a

UI to an underlying object model (see Figure 3). The model represents

the behavior of the system, independent of any particular UI represen-

tation. The controller is a part of the UI layer that is used to map the

events generated by the UI into the method invocations required to

drive the model. The UI itself is thus not polluted by any assumptions

about the underlying model.

	 The workflows considered so far, viewed from this standpoint, all

fall into the category of Models in the MVC sense. However, the con-

troller can also be seen as a workflow. The work items it organizes are

the methods provided by Model objects. The controller also interacts

with the UI and the model through well-defined contracts. A model of

this kind is often termed a page flow.

	 As with scripted operations, page flow would not today be imple-

mented using a typical workflow product. There are two reasons

to consider building a page flow using a workflow platform. First, a

model readily can be represented visually, helping developers and

analysts to express and communicate the required behavior. Second, if

the page flow is frequently changing, then the abstraction of the page

flow as a model improves agility.

	 There are two main requirements if this problem is to be addressed

using a workflow platform. The workflow runtime must be lightweight,

since a page flow may be running within a small application on a desk-

top, and the contracts supported must include the event-based con-

tract characteristic of UIs, as well as the object-method contracts

exposed by the Model.

	 Now let’s look at a test record/replay application example. The

intent of this final example is to test the limits of the applicability of

the workflow platform hypothesis.

	 The application here is a tool for testing applications built as a set

of services. The tool uses an interception mechanism to record all the

interaction between services that occur during manual performance

of a test case for the application. This recording can then be replayed.

During replay, externally sourced messages are generated with-

out manual intervention, and messages between the set of services

that make up the application are checked for sequence and content

against the original recording.

	 The workflow is the test case, organizing the work units that are

the participating services. The workflow is both active, in that it simu-

lates the behavior of externally sourced messages, and passive, in that

it monitors the interactions between services.

	 A unique feature of this application is that the workflow is writ-

ten, not by a developer or a user, but by a program, as part of the

act of recording a test case. Workflow model creation must be fully

programmable. There are also requirements for extensibility and

dynamic update.

	 Extensibility is required because the structural semantics are rich.

For instance, just because two messages arrived at a service one

after the other in the recording, there is no necessary implication

that this order needs to be preserved in a replay. If there is no causal

dependency between the messages, then a replay that reverses the

order of the messages is correct. So the semantics of sequence in the

model used to record the test cases need to include a notion of cau-

sality, which is not likely to be a feature of the core workflow model

of sequence.

	 Dynamic update is required because human interaction with

the model will occur during replay. Discrepancies discovered during

replay between recorded and observed behavior are popped up to a

tester. If the discrepancy is because a message includes a timestamp

that varies from run to run, then the tester would update the model

to mark the field “don’t care.” If the discrepancy occurs in a regression

test because the software has changed, then the tester might approve

the change and update the test to expect the new behavior in all sub-

sequent runs.

Workflow Platform Value
A workflow platform does not, by definition, have the full set of fea-

tures offered by today’s typical workflow products. Rather, the work-

flow platform considered here focuses on supporting the concept of

a workflow as a model of the organization of work items. We have

seen that this idea of an organization of work items is indeed applica-

ble across a broad range of applications, but the fact that a workflow

platform can be used doesn’t mean that it should be used.

Controller
Events

Data Method calls

Model

View

Figure 3 An MVC application

Workflow Platform Applications

� www.architecturejournal.net • Journal 7 •

	 Two questions must be asked: What additional value is

derived from the workflow platform approach? And, is this

approach practical? This value of the workflow platform

approach must come from the expression of the organization of

work as a model, which we’ll discuss later. Let’s summarize the

characteristics that a practical and effective workflow platform

must display.

	 To demonstrate how a model differs from code, this code snippet

is a valid workflow by the definition used here, that is, an organization

of work units:

public void HandleLoanRequest (
	 string customerID,
	 Application app)
{
	 if (CheckCredit(
		 customerId, app.Amount))
	 {
		 MakeOffer (customerId, app);
	 }
}

	 And, in a sense, it is a model. It is possible to parse this code and

build a CodeDOM tree that represents it.

	 However, the semantics of the resulting model are so general as

to be opaque. It is possible to tell that the code contains function

invocations, but it isn’t too easy to distinguish a function that rep-

resents the invocation of a work item from a function that converts

integers to strings. A workflow model explicitly distinguishes these

ideas. Typically, a specialized model element is used to represent

the invocation of a work item, and conversion functions cannot be

expressed directly in the model at all. A workflow model, then, is

one in which its graph is built from elements that are meaningful

in the workflow domain. The semantic richness of such a model can

be exploited in several ways.

	 Visualization. Visual representation of the model—typically in

graphical form—is useful for the developer, during both development

and maintenance, and also for workflow users who want to know why

they have been assigned a given task or the IT operations worker who

wants to understand what a misbehaving application should be doing.

	 Insight. The workflow model is amenable to programmatic access

for a variety of purposes. An examples is static analysis to determine

dependencies and flow of work across a set of cooperating workflows

or using the model to drive a simulation that predicts the workloads

that will be generated by a new version of a process.

	 Expressiveness. The specialization of the workflow model to

the workflow domain means that characteristic problems can be

expressed more quickly and compactly. It is a domain-specific lan-

guage (DSL), specialized to support characteristic problems. Con-

sider a document review process where three positive votes out of

five reviews mean that the document is good, and any outstanding

reviews can be canceled. This process is quite difficult to code, but a

workflow model can supply out-of-the-box constructions that address

such problems.

More Semantic Exploitation
As we have seen in the scripted operations application discussion,

extending the workflow model to further specialize the out-of-the-

box model language is a very powerful technique for delivered addi-

tional value. An example is the creation of a language intended for

end users, as in the document review conducted using an improvised

definition of the review process that was discussed previously.

	 Execution. The specialization of the model makes it possible to add

run-time support for common problems. A good example is long-run-

ning state. Of the applications discussed here, management of long-

running state is required for the document review process, problem-

resolution collaboration, and guided user applications. The workflow

platform runtime can solve such difficult problems once, using simple

expressive model elements to control a common capability and free-

ing up the developer to focus on the business problem.

	 Monitoring. The existence of a model makes it possible to pro-

duce an event stream with a meaningful semantic without any ad-

ditional developer effort. Of the applications described here, this

event stream is useful in the document review, problem-resolu-

tion collaboration, test record/replay, and guided user applications.

The event stream can be used to monitor instances of workflows or

build aggregate views of the state of a large number of workflow

instances. The standardization of the event stream makes it much

easier to build such aggregate views across workflows that were

developed independently of each other.

	 Another powerful idea is the presentation of errors using a busi-

ness semantic. Often, a technical failure such as the nondelivery of a

Workflow designer

Windows Workflow Foundation

Sharepoint workflow host

Document review workflow

Runtime

Sharepoint
activities

Standard
activities

Custom
activities

Scheduling

Persistence Communications

Figure 4 The document review implementation schematic

“WF implements the idea of workflow

as an organization of work items,

abstracted away from the related

ideas with which it has been coupled in

traditional workflow products”

Workflow Platform Applications

� • Journal 7 • www.architecturejournal.net

message leads to escalation to a technical expert because the signif-

icance of the failure is unclear without specialist investigation. If the

error can be mapped to a workflow model—so that it is clear that the

error concerns a noncritical change notification, for instance—then

escalation can be restricted to cases where it is necessary.

	 Composition. If an application is factored into work units, then

these work units, with their well-understood interfaces, can be reused

by other workflows. Workflows themselves also define work units that

can also be used by other workflows.

	 Customization. Suppose that an ISV ships a workflow, which is cus-

tomized by a VAR, and then again by a customer. Reapplying these

customizations when the ISV ships a new base version is a challenging

maintenance problem. The use of a shared, well-understood model

for the workflow makes the consequent three-way merges much more

tractable. Customization and composition together enable ecosys-

tems where definitions of work and flow become shared or traded

artifacts.

	 Manipulation. As we have seen in the discussions of the document

review and test record/replay applications, there are often require-

ments to invent or modify workflows on the fly. This modification can-

not be done securely if changing code is required. Using a model

makes possible dynamic manipulation that is both controllable and

comprehensible.

	 These benefits make a compelling list, and it demonstrates clearly

that the description of an organization of work items as a model has a

lot to offer.

Platform Characteristics
There must be support for basic structural concepts like sequences,

conditions, and loops. However, there also needs to be support for

data-driven approaches to deal with the less-structured organizations

that appear in applications like problem-resolution collaboration and

guided user.

	 It is also important to allow new semantic elements to be added to

create rich, specialized languages such as the data flow-aware com-

position in scripted operations. Adding new semantic elements might

go so far as to require the redefinition of such fundamental ideas as

sequence—for example, in the test record/replay application.

	 The workflow must also be able to communicate in a rich variety of

ways. Workflows respond to UI events, drive different types of services

(human, programmatic, other workflows), and support queries over

the current state of their contracts—for instance, when determining

the actions available to an actor in a problem-resolution collaboration

application.

	 If the workflow platform is to be used in all the applications where

it adds value, such as MVC, then it must be lightweight. Equally, it

needs to address the scale and performance requirements implied by

applications such as document review.

	 In addition, the workflow model itself must be fully programma-

ble, which includes model creation—such as in the test record/replay

application—and dynamic model update to support unanticipated

change, as in both the document review and test record/replay

applications.

	 Now let’s look at the realization of these required characteristics in

the Windows Workflow Foundation (WF). Thus far we have effectively

recapitulated the thinking that drove the development of WF. WF as a

realization of these concepts is the means by which this value can be

translated into delivered solutions.

	 WF implements the idea of workflow as an organization of work

items, abstracted away from the related ideas with which it has been

coupled in traditional workflow products. The abstractions fall under

three main categories: design and visualization, hosting, and seman-

tics.

	 Design and visualization. A workflow in WF is a tree of work

items (called activities). This tree can be manipulated directly as an

object model. A designer is provided, but its use is not mandated.

It is possible to create new designers specialized to particular user

communities or to particular organizations of work items. It is also

possible to specialize the provided designer, which can be used not

only within Visual Studio but from within an arbitrary hosting appli-

cation.

	 Hosting. The WF runtime is sufficiently lightweight to be hosted in

a client context such as a controller in a rich-client application shell. It

is also performant enough to scale when embedded in a server host,

such as the Sharepoint Server delivered by Office 2007. The WF run-

time’s expectations of its host are abstracted as provider interfaces for

services such as threading, transactions, persistence, and communi-

cations. Useful provider implementations are supplied out of the box,

but they may be substituted as required.

	 Semantics. Different problems respond to different model seman-

tics. WF supports three main styles of workflow out of the box: flow,

state machine, and data driven. Flow is optimal for applications where

the workflow is in control such as the scripted operations example.

State machine is best when the workflow is driven by external events,

as in the MVC or guided user applications. A data-driven approach is

suited to applications where actions depend on state, as in problem-

resolution collaboration.

	 These semantics can be extended by building custom activities

to create a domain-specific vocabulary for use in any of these styles.

However, since the structure of a workflow is itself expressed as a set

of activities, the same approach can be used to define new styles, and

entirely novel semantics, if required.

A Common Workflow Runtime
The focus of the WF runtime is to deliver facilities required by any

workflow, and therefore avoid the need to re-implement them time

and again in different applications, but without compromising the

flexibility of the workflow abstraction. These common facilities fall into

four main categories: activity scheduling, transactions and long-run-

ning state, exceptions and compensation, and communications. Let’s

look at each in more detail.

“The focus of the WF runtime is to

deliver facilities required by any

workflow, and therefore avoid the need

to re-implement them time and again

in different applications, but without

compromising the flexibility of the

workflow abstraction”

Workflow Platform Applications

� www.architecturejournal.net • Journal 7 •

	 Activity scheduling. The WF runtime defines an activity protocol

that all work items implement. This protocol defines the basic activity

life cycle (initialized, executing, and closed) and the additional states

needed to handle exceptions (faulted, canceling, and compensating).

This definition enables the WF runtime to provide work scheduling for

all workflows.

	 Transactions and long-running state. The WF runtime supports

the execution of ACID transactions. These transactions are particu-

larly useful for maintaining consistency across workflow state and

external state such as application and message state. However,

ACID transactions are not suitable for managing long-running state

because of their resource and locking implications. The WF runtime

implements a broader checkpoint-and-recovery mechanism to han-

dle long-running state. From this point of view, ACID transactions

become units of execution within a larger framework. The developer

needs not do any work to get the benefit of WF’s support for long-

running state, as it is default behavior. However, if more detailed

control is required, a set of simple model elements are supplied for

the purpose.

	 Exceptions and compensation. The familiar idea of throw-try-catch

exceptions is supported by the WF runtime and represented in the

out-of-the-box workflow model. However, the WF runtime also sup-

ports a broader view of fault handling that includes the idea of com-

pensation for successfully completed transactional units.

	 Communications. As we have seen, workflows need to communi-

cate in a variety of ways, which is reflected in the WF, that supports

communication through .NET method, event interfaces, and Web ser-

vice interfaces. Support for Windows Communication Framework will

also be made available in the future. Thus, WF does indeed realize the

workflow-platform approach proposed here.

	 Figure 4 illustrates the high-level implementation schematic of

the document review application and how all of the foregoing comes

together. An implementation uses Sharepoint as the workflow host.

The WF runtime uses the default scheduling service provided out of

the box with WF. However, the default persistence and communica-

tions services are replaced with implementations specialized for the

Sharepoint host. The persistence service stores long-running work-

flow state in the Sharepoint database, and the communications ser-

vice makes the rich-user interaction facilities of Sharepoint available

to the workflow. Both of these services are in fact delivered out of the

box with Microsoft Office 2007.

	 Three sorts of activities are used to define the document review

workflow itself. First, out-of-the-box WF activities are used to pro-

vide structural elements such as If-Else and While. Second, activities

provided as part of Office 2007 are used to access the user commu-

nication services of Sharepoint. Third, custom activities are used to

implement organization-specific semantics for forwarding and del-

egation in a standard and reusable way. The WF designer is used as

a means to define the workflow and also provide diagrammatic rep-

About the Author

David Green joined IBM as a developer in the Hursley labs in 1977.

Since then, he’s moved up and down the software supply chain,

working for a newspaper company, American Express, Siemens Nixdorf,

and a major UK bank in a variety of technical, presales, and post-sales

roles. The theme that runs through all of his experience is building

applications for the day-to-day business world, thinking it was far

more difficult than it should be to create great business solutions,

and trying to create approaches and tools to do something about it.

David has spent the last two years at Microsoft working on Windows

Workflow Foundation, which he believes is a significant addition to the

application builder’s armory.

resentations of the state of a document review workflow instance to

the workflow owner.

Attacking the Problems
In summary, the workflow platform supports an abstraction of the

ideas that have made workflow products an attractive attack on busi-

ness problems. It does not replace today’s workflow products, how-

ever. Rather, it factors them into platform and superstructure.

	 The workflow platform embodies two key ideas: a workflow is

an organization of work units, and a workflow is a model, that is, a

machine-readable description other than code. These ideas are valu-

able in a broad range of applications, both within and beyond the

problem domain addressed by typical workflow products. Such a

workflow platform is most useful if it is low cost and ubiquitous.

	 The principal benefits delivered arise from the expression of an

organization of work items as a model, which has several advantages

over a representation in code:

•	 Transparency. The business purposes of the system are clear, allow-

ing users and IT staff to communicate effectively about the desired

behavior and IT staff coming onto the project to get up to speed

quickly.

•	 Isolation of change. The areas of the application most likely to

change are expressed as workflow rather than code. By isolating the

rapidly moving parts of the application, changes can be made more

reliably.

•	 Agility. The bottom line of all these benefits is business agility. If

business users can understand the system, developers can get up to

speed quickly, and the risks associated with change are minimized.

Then the system may be termed agile.

	 A broadly useful workflow platform must have these character-

istics: define a core workflow model as a standard that is extensible

and fully programmable at design time and runtime, be able to com-

municate in a rich variety of ways, be lightweight and embeddable,

and be able to scale and perform well in high-volume environments.

WF is a product that displays all of these characteristics. As a com-

ponent of WinFx and a part of the Windows platform, WF is also low

cost and ubiquitous.

	 The concept of a workflow platform, as described here, is an

appropriate and customizable model with multiple benefits for a wide

range of applications, and it is fully realized in WF. •

“ACID transactions are particularly useful

for maintaining consistency across

workflow state and external state such

as application and message state”

� • Journal 7 • www.architecturejournal.net

The Amazing
Race Metaphor
by Vignesh Swaminathan

CBS’s The Amazing Race is a reality television show aired in the U.S.

in which participants compete to race around the globe by going

from city to city. To reach one city from another they take a common

means of travel such as a car, train, or plane. The participating teams

have to find a clue in each city to figure out the next city to where they

have to travel. The clues control the choice of the next route map to fol-

low; neither the participant nor the map itself is aware of or contains

these clues. That is, the clues are externalized from the process of get-

ting from one city to another.

	 Using this analogy, the entire process of moving around the globe

(let’s call it the globe process) is achieved by combining smaller pro-

cesses of getting from one city to another (let’s call them the city pro-

cesses), thus creating the game show. The city processes that make up

a particular globe process in turn are determined by the clues. The

participants also decide, for instance, to take a flight if the city is not

approachable by road or rail. These are simple internal rules that are

applied within the city process. The clues on the other hand are entirely

external to the city process and control the globe process.

	 An interesting twist to the game would be if the clues determine

the next city process based on the characteristics of the players, the city

they were previously in, and other relevant parameters. This process

would lead to a richer possibility of cities that the participants can travel

to next, every time they have traveled successfully to one city. Though

this scenario becomes interesting for the participants, it is not a pretty

picture anymore for the game show’s creators. They now have a whole

array of possible city processes that can be combined into the globe

process. The city processes that are combined are dynamic and not pre-

determined (see Figure 1). Since only the choices are predetermined

and not the final city process, the more parameters that go into making

the clue, the higher the complexity of choices in their hand to create a

globe process.

The Amazing Enterprise BPM Race
Now what does The Amazing Race have to do with Business Process

Management (BPM) in the enterprise? Enterprises have a much similar

approach to business processes in their domain. Each enterprise has a

rich repository of business processes that are applicable within a partic-

ular subdomain in the enterprise. These subdomain business processes

are modeled to achieve a particular task or workflow within the context

of that domain. In most of the cases in practice, enterprises start to real-

ize that the business processes applicable in the subdomain are reus-

able in a higher context. The enterprises then end up creating enter-

prise-wide business processes (high level) by reusing the subdomain

business processes (low level).

	 The maturity of the approach to creating a high-level business pro-

cess relates back to the analogy of The Amazing Race. Enterprises real-

ize the efficiency of combining their city processes into making one of

their globe processes (see Figure 2). Then they start to combine their

city processes in more innovative ways by using parameter-based rules.

At this point they also face a dilemma similar to the one faced by the

game show’s creators, which is the dilemma of managing the complex-

ity created by the rich possibilities of using parameter-based rules to

control their globe process.

	 A further dilemma with the game show analogy is that the game

show’s creators have a whole maze of if-then choices to visualize one

single globe process that would make up this season’s episode. Using

this maze they would be able to maintain the globe process for the cur-

rent season.

	 Imagine a situation where because of certain unforeseeable cir-

cumstances such as natural calamities, an outbreak of war, terrorism, or

something that is just outside of their control, the game’s participants

are unable to use a particular city process. In this case they would have

to go back and alter the globe process to ensure that the problematic

city process is removed from the globe process or has an alternative.

As the globe process is now controlled by various parameters and rules

based on these parameters, the entire globe process model has to be

scanned manually to ensure that there is no possibility of reaching the

problematic city process. In addition, the show is already on for the sea-

son, and the globe process is in execution. This example requires that

Summary
Business Process Management (BPM) is buzzing in
everyone’s ears today, and many enterprises realize the
business potential of automating their business pro-
cesses. As the buzz settles down and BPM approaches
the plateau of productivity, there are some practical
offshoots. One of them is a need for better manage-
ment of high-level business processes that are com-
posed from simple, reusable business processes. The
answer, interestingly, is not entirely through graphical
modeling but is the management of high-level busi-
ness processes through externalized, process-definition
rules. We’ll look at the definition, benefits, and imple-
mentation of process definition rules.

Managing Automated Business Processes

10 www.architecturejournal.net • Journal 7 •

even though the show is on, none of the participating teams end up in

the midst of a war-torn city!

	 The dilemma is even more critical in the enterprise. The enterprise

globe process (high level) will be influenced by changes in the enter-

prise city process (low level). The reasons for change can be similarly

unforeseen as in the game show. The business might require that the

enterprise is able to change dynamically in a high-level process to

meet new and unforeseen business demands (see Figure 3). The enter-

prise globe process would also be in execution, and a change would

be mandatory even when in execution so that the enterprise does

not end up in the midst of its equivalent of a war-torn city. Unlike the

game show, parts of the enterprise cannot be just cancelled. The show

must go on!

High-Level Business Processes
As mentioned previously, the globe processes are high-level processes,

and as such are managed entirely by nontechnical users. The game

show’s creators are more skilled in managing a show than they are

experts in broadcast technology. This scenario is true also for the enter-

prise where the high-level business process is managed by executive

managers who are familiar with the task of running their business and

not experts in creating computer models of their business. Thus, the

first and foremost aspect of managing a high-level business process is

the need to abstract the user from technicalities.

	 The second need is to ensure that a globe process in execution

can be altered within given boundaries. This flexibility is an important

requirement for high-level business processes that are subject to more

impact from business change than low-level processes.

	 The third need is to provide a straightforward, easy, and simple

interface for the user to manage the globe process. This management

interface should provide for creating and maintaining a high-level busi-

ness process. The same interface should allow the user to conveniently

alter the globe processes in execution, and it should allow easy search

of parameter-based rules that control the high-level business process.

This search would allow the user to quickly locate the rules that they

want to alter. The interface should be lightweight in nature to allow

users to quickly update the high-level business process without effort.

	 The final requirement is to understand that the globe process is

determined by combining a rich repository of city processes based on

parameter-based rules. The number of parameters is in practice not

limited, but it can exceed 30 parameters in many real-time enterprise

scenarios. We first encountered this practical problem in one of our

customer assignments. The customer, a large European bank based in

The Netherlands, faced this issue in their retail banking arm. They had

an average of 5 defined parameters to handle each step in a loan-appli-

cation process. Each parameter had anywhere from 3 to 100 possible

values that led to a complex business process, deemed unmanageable

through conventional means.

1. Simple globe travel

New York

New York

Travel to
Cairo

Travel to
New York

2. The Amazing Race (static clues)

Get clue Travel to
city

Travel to
New York

Lisbon New York Cairo

Singapore
Clue box

3. The Smart Clue Amazing Race (parameter-based clues)

New York Get clue

Travel to
Singapore

Travel to
Bangalore

Travel to
Cairo

Travel to
Seoul

Travel to
New York

Figure 1 Going global

Managing Automated Business Processes

11 • Journal 7 • www.architecturejournal.net

	 To show this complexity in action, assume that The Amazing Race

always has five competing teams for each new race (globe process).

Each team in any stage of the game would have traveled through a list

of cities before they travel to the next city. For this example there are a

total of ten cities through which the teams can race, which is ten differ-

ent possibilities of the city in which the team is currently in. They would

also have reached the current city using one of three primary modes of

transport such as road, rail, or air.

	 Using this analogy, the job of the game show’s creators would be

to make up the globe process using these three parameters of team

number, previous city list, and transport mode. For a unique combina-

tion of these three parameters a particular city process is to be com-

bined in the globe process. The globe process should ensure that the

participants do not use the same mode of transport more than once

continuously, and also ensure that the participants end up finally in the

city where they started to complete the race.

Applying the Rules
The game show’s creators should also use the team number to deter-

mine certain special conditions randomly to ensure that the game show

has richer content by making sure that the teams travel through differ-

ent cities in different orders and in different modes of transport. Thus,

the next city process to be used in the globe process at any stage is to

be determined by the team involved, the current city, and the mode of

transport last used.

	 This combination translates to roughly 150 different flow paths

that can determine the next city process to be used in the globe pro-

cess. The number of flow paths possible is determined this way: 5

teams×10 possible current cities×3 possible modes of transport just

used=150 unique choices to determine the next city process (see Fig-

ure 4). For example, team number three could have arrived in New

York by rail and then given the next process as “to London by air.”

	 This complexity translates into enterprises as well. Both the finance

and insurance domains provide several scenarios that necessitate high-

level business processes controlled by parameter-based rules. For exam-

ple, an insurance claim to be investigated by a global insurance firm can

necessitate an insurance claim, high-level business process that chooses

a country-specific, claim-investigation process based on other additional

Figure 2 The enterprise

1. Simple business process (redundant steps)

Insurance claim
entry Process claim

Approve/reject
claim

2. High-level business process (static subprocess calls)

Insurance claim
entry

Use claim
subprocess

Approve/reject
claim

Claim process
A

Claim process
A

Claim process
B

Claim process
B

Claim process
C

Claim process
C

Claim process
D

Claim process
D

Process
repository

3. High-level business process (parameter-based subprocess routing)

Insurance claim
entry

Approve/reject
claim

“The first and foremost aspect of

managing a high-level business

process is the need to abstract the

user from technicalities”

Managing Automated Business Processes

12 www.architecturejournal.net • Journal 7 •

parameters. Imagine that the insurance claim is categorized into 5 possi-

ble age groups from 10 different countries of operation and belongs to 3

groups defined by claim-amount ranges: 5 possible age groups×10 pos-

sible countries of operation×3 possible claim amount ranges=150 unique

choices to determine which claim investigation process is to be used.

	 For example, if age group is B (30–45), country is India, and claim-

amount range is greater than $150,000, then use the “High-Value C

Group India claim investigation process.”

	 If we go back to the previous financial example involving The Neth-

erlands-based bank, the math works out this way: 5 possible customer

interaction channels×3 possible user types×4 possible customer seg-

ments×100 possible product offerings×7 possible high-level process

steps=42,000 possible implementations in the process repository.

	 One additional item to consider: In The Amazing Race metaphor

the number of city processes available reduces at each iteration of the

travel-to-city process step. However, in real-time enterprises it is not just

one process step that has a wide array of possible process implemen-

tations, but each and every step of the high-level business process can

have multiple possible implementations. The metaphor has been delib-

erately simplified, and the increase in complexity for every new step

that is dependent on parameter-based rules is shown in Figure 5.

	 How can we manage these scenarios? Do we still want to use graphi-

cal models to manage the high-level business process?

	 The first and immediate notion that strikes the user when we take

a globe process and city processes example is to create the globe pro-

cess with the city processes as subprocesses that are used inside of the

globe process. This notion is not surprising as the use of subprocesses is

the most common way to combine simple processes into more complex

processes. Using subprocesses is a good choice when we are trying to

break down a business process into submodules for better reuse. How-

ever, they are not applicable to high-level business processes that are

controlled by parameter-based rules because when subprocesses are

used the decisions that control the flow of the high-level business pro-

cesses are embedded and internal to the process.

	 This characteristic violates the need for flexibility as stated in the

requirements of high-level business processes. It also does not solve

the problem of managing decisions as the user is left with an ineffi-

cient choice of modeling 150 different flow paths into the high-level

business process and loading the resulting huge graphical model every

time there needs to be a change in the globe process. In addition, this

approach is not in line with the service-oriented tenets of loose-cou-

pling as processes would eventually be exposed as services.

	 Any optimization effort to break down the decision points further

into subprocesses would also be futile because the trade-off is visibility

of the high-level business process, and the user now has the additional

problem of having to drill down to make alterations. Even if the user

Claim process
A

Claim process
B

Claim process
C

Claim process
D

New York New York

New York New York

Complexity is in the number of choices possible in a real-time enterprise, to
choose a particular subprocess implementation. This complexity increases
with the number of parameters involved.

Parameter-independent business process

Parameter-dependent business process

Travel to city

Wide array of possible
city processes

A B C

X Y Z

Figure 3 The complexity

Managing Automated Business Processes

13 • Journal 7 • www.architecturejournal.net

New York New York

Parameter-independent business process

Parameter-dependent business process

Example: three parameters for a globe race can be team, city, and transport.

Team City Transport Possible unique
implementations

5 x 10 x 3 = 150!

5 x 11 x 5 = 275!

Adding one more country of operation and two more claim amount ranges:

Travel to city

Wide array of possible
city processes

A B C

X Y Z

Figure 4 Determining the number of flow paths

Insurance claim
entry

Validation
A

Validation
B

Validation
C

Validation
D

Investigation
A

Investigation
B

Investigation
C

Investigation
A

Investigation
B

Investigation
B

Investigation
C

Investigation
A

Investigation
B

Investigation
C

Approve/reject
claim

Figure 5 One more step

Managing Automated Business Processes

14 www.architecturejournal.net • Journal 7 •

New York Travel to city New York

Parameter-independent business process

Parameter-dependent business process

Wide array of possible
city processes

A B C

X Y Z

Technical user

Rule maintenance
form

Rule
database

Rule engine

BPM engine

Interpretation of rules embedded
in a business process

BPM engine as the control layer

Figure 6 An externalized condition

goes through with the alterations, this approach does not guarantee

that alterations can be made on a globe process in execution. Hence,

using subprocesses in all aspects does not solve the problem of high-

level BPM.

Externalized Condition
One of the primary disadvantages of the subprocess solution was that

the decisions were embedded and static inside the high-level business

process. Some smart BPM tools provide a solution that addresses this

specific issue. They provide capabilities to model business processes that

take up the decision rule from a lookup repository or refer to an incom-

ing message during the execution for the decision rule.

	 The approach here is to have a database store of parameter-based

business rules that control the flow of the high-level business process

(see Figure 6). In the graphical model of the high-level business pro-

cess a simple call is made to a service over the rule store to evaluate the

data in the business process and determine the next logical step. This

approach greatly reduces the complexity of the high-level business pro-

cess in that now the graphical model does not have the flow paths but

just the linear stepping of the high-level business process from one

stage to another. The solution, however, is still not good enough to

solve the primary problem of manageability.

	 The disadvantages of this solution are that the rule store abstracts

the entire logic of the high-level business process, making the model

less transparent to the business users. The rule store and the interaction

possibilities over the data are nonstandard and do not guarantee that

all technical details of conditions would be abstracted from the user. It

fails to leverage existing standard tools and methods that are available.

Thus, the question of a better solution remains.

	 Let’s take a look at another solution. Process definition rules (PDR)

are managed externally from the graphical model, similar to the exter-

nalized-condition approach up until the point of keeping the rules out-

side the high-level business process. The difference is in how these

external rules are managed and how the high-level business process

is controlled. The PDR matrix solution promotes the rule engine as the

control layer and shifts the process engine to an execution layer, mak-

ing the high-level business process flow more visible in the rules rather

than in a graphical model.

	 With this solution there is still a lack of a standard approach to

model and maintain the PDR repository. The critical point here is that

the technical abstractions provided by a graphical, business-process,

“High-level business processes are

created by combining several low-level

business processes, thereby forming

two tiers of BPM”

Managing Automated Business Processes

15 • Journal 7 • www.architecturejournal.net

Figure 7 A PDR matrix solution

New York Travel to city

BPM engine

New York

Parameter-independent business process

Parameter-dependent business process

Wide array of possible
city processes

A B C

X Y Z

Business user

Decision table
UI

PDR
database

Rule
engine Rule engine as the control layer

BPM engine as the execution layer

modeling tool should be intact in the tool to model and maintain the

PDR repository. Since the PDR repository is a rule repository, we need

to look at the available standard tools in the business rule world. Prom-

inent among them that stand out as a good fit for providing a simple,

straightforward, and lightweight tool is the decision table.

	 The decision table is a standard tool to model and manage rule

repositories and is an excellent abstraction to business users that is sim-

ple to use because it is text based. Text-based decision tables are also

good candidates for searching the rule repository and quickly allowing

the user to alter relevant process definition rules.

	 Using this tool we can create a solution that has a graphical, high-

level business process that is simplified by externalizing the rules and

providing a service layer on top of the PDR rule repository (see Figures 7

and 8). The PDR rule repository is then modeled and managed through

decision tables. We call this solution a PDR matrix, and the concept of

globe process and city process can be shown as two tiers. The first tier is

the high-level, enterprise-wide business process, and the second tier is a

reused, low-level business process.

The End Game
We have worked through a very practical problem here with BPM in

enterprises: the complexity in defining and managing high-level busi-

Resource
CBS.com
www.cbs.com/primetime/amazing_race5

About the Author

Vignesh Swaminathan is a product manager at Cordys R&D India (www.

cordys.com), which provides a state-of-the-art application platform suite

going beyond basic EAI and BPM to solve many practical aspects of the

enterprise. He has been working with business-process orchestration,

business rules, data transformation, and other related technologies for the

past five years, and he specializes in data, process, and human integration.

Contact Vignesh at vswamina@cordys.com and vigneshs@hotmail.com.

ness processes. High-level business processes are created by combining

several low-level business processes, thereby forming two tiers of BPM.

The high-level business processes are marked by the need for parame-

ter-based rules to dynamically choose a low-level business process.

	 These parameter-based rules, when employed to manage a high-level

business process, increase the complexity of the graphical model mani-

fold with each new value for each parameter. This increase in complexity

makes the graphical model of a high-level business process unmanage-

able and impractical. The solution to this problem is to use a rule-based

approach to define and manage high-level business processes.

	 You can define and manage such an approach using a decision table-

based PDR matrix. Decision tables are lightweight, nongraphical, business

user-friendly tools to create and manage rules. The PDR matrix abstracts

the complexity of managing a graphical, high-level business process

model. Therefore, employ the PDR matrix to manage two-tier BPM and

put the business user back in the driving seat in your enterprise. •

16 www.architecturejournal.net • Journal 7 •

Explore Human
Workflow Architectures
by Jesus Rodriguez and Javier Mariscal

Total automation of business processes is practically unachievable with-

out considering human interaction, a factor that is tied semanti-

cally to many aspects of process automation and integration. Human

interaction is present in some of the most common business processes

like order approvals and human resources management. Those human

interactions can vary from a simple task-assignment process to a very

complex business process notification and task reassignments.

	 Frameworks for human workflow are present in a variety of popular

integration servers from different vendors. We’ll explore conceptually

some of the main components that are present in those human work-

flow platforms and the interactions among them. We’ll also cover some

of the most common human workflow design patterns and how they

can be implemented using those components.

	 Human workflow systems have to support the communication

between people and systems. To accomplish this support every human

workflow system has to provide basic functions like task assignment,

identity management, notifications, tracking, and interoperation with

business process management (BPM) systems (see Figure 1).

	 Four main components of a human workflow architecture are a task

management service, a tracking service, a notification service, and an

identity service. Before we explore these services in depth, it’s impor-

tant to understand the role of tasks in human workflow systems.

	 Tasks are the main communication unit between business processes

and people. Typically, a task is assigned to a user who needs to perform

some related action. For example, a supervisor might need to approve

the request to purchase some items. Normally, a user has to perform

a series of tasks that are grouped semantically. That is, our supervisor

might group all items to perform each day into a group called “today’s

approvals.” These groups are called task lists.

Task States
During the lifetime of a human workflow system, tasks in task lists are

constantly switching from one state to another. For example, the task

for our supervisor first enters a state of pending; when the supervisor

accepts the task, the state changes to claimed. Finally, when the supervisor

approves the request, the task enters its final state of completed. States are

used conceptually to describe the task life cycle. Some of the most com-

mon states are pending, where the task has been created; claimed, where

a user has claimed the task and has received its input data; completed,

where a user has finished the task and provided its output data; and failed,

where a user has finished the task and provided a fault message.

	 Tasks are normally associated with time frames: expiration, escala-

tion, delegation, and renewal. In our example, the approval task can

expire if the supervisor does not act on it in a specified period of time.

This expired task can be subsequently escalated to another course of

action or assignment. Also, the supervisor can decide to delegate the task

to another person (a manager, for example) to act in his or her place. The

manager can also decide to necessitate another manager to gather addi-

tional insight. If this second manager does not act on the task in a given

time frame, the task will be renewed for another period of time.

	 In other scenarios, tasks are related semantically to each other. The

question, “what’s the next task?” will not always have a trivial answer.

In some cases, this answer has to be determined at runtime. Tasks can

be grouped sequentially within a business process instance so the user

knows the next task(s) to perform after completing the current task.

	 In our example, 20 requests should be approved for the supervisor

in sequence to complete the business process. Each time the supervisor

completes an approval, the engine should be able to identify the next

task. Task chains represent a metadata-driven approach to describe the

relationship between a set of tasks within the scope of a business pro-

cess. Task chains can group tasks semantically to help users achieve

functionalities like sequence execution and failure management.

	 Tasks that have a dependency on a specific business process are

known as inline tasks. Tasks that are totally independent of a particu-

lar business process are stand-alone tasks. Inline tasks typically have

access to data related with a business process and are stored in native,

business-process artifacts like variables or messages. By contrast, stand-

alone tasks interact with business processes through a well-defined

interface without any dependency on the process data itself.

Workflow Services
The architectural component that handles sectional tasks is the task man-

agement service. In a typical scenario, the task management service

Summary
Human workflow systems and some of the most rep-
resentative patterns of human-to-business processes
interactions break down into two major components.
The first is human workflow systems and the interac-
tions among them as they are implemented in inte-
gration platforms. The second component is human
workflow interaction design patterns and how they
are implemented using interactions among the human
workflow systems. This discussion will take a close look
at these processes.

Human Workflow Architectures

17 • Journal 7 • www.architecturejournal.net

receives a request to create a task, interacts with the identity service to

select all people that are eligible for the task, adds the task to the work

lists (to do’s) associated with the selected users, and assigns the specific

timelines and policies. Eventually, one user decides to work with the task

by claiming it. The user can then work with the task or request more data.

	 A key aspect of human workflow systems is the ability to resolve the

set of users allowed to execute a task. This user-resolution process can

be based on interactions with identity management platforms. In our

example, the human workflow services need to identify which users are

able to approve the request—in this case the supervisors. To accom-

plish this identification a human workflow platform has to resolve the

concept supervisor against a set of users and roles traditionally stored in

a user directory.

	 Multiple types of relationships can be established between people

and processes. One of the most common is how people interact with

processes (human roles). People in an organization can be grouped in

roles that are related semantically to some business activity, such as a

process administrator or task owner. Another common relationship is

how processes identify which people to interact with (people links and

queries). Within a business process, certain groups of users are relevant

from the business standpoint. People links are used to represent the dif-

ferent groups of people who participate in the execution of the pro-

cess. A query against an organizational directory is used to determine

the individuals associated with a people link and is bound to the people

link. In our example, the generic human role, finance manager, could

be qualified by the people link supervisor, which is bound to the query

“select head of department, where department name is finance.”

	 The identity service is in charge of the user-related features like

authentication, authorization, or people resolution. User information

is frequently stored in organizational directories (for example, Active

Directory directory services, an LDAP directory, or a relational data-

base). The identity service can work independently of the organizational

directory. Based on the adapter pattern, it is possible to extract the

directory access through the provider, which is able to execute the que-

ries to obtain the information from the directory. This approach extracts

the human workflow functionalities from the user’s store.

	 In our example, let’s assume a manager would like to reconstruct the

execution of the request-approval workflow to check for deficiencies. The

tracking service keeps track of the state changes related with tasks and

task chains. This service should provide the basics of the required func-

tionality to reconstruct the task history changes and perform task analysis.

	 We also need a service that will notify the supervisor by e-mail when

the request-approval task is created. The notification service handles the

notification mechanisms to the user related with the task’s state changes.

	 The four run-time services discussed here provide a good overview

of some of the most common functionalities required for human work-

flow systems. Combining these services addresses some of the most

common human workflow scenarios. Now let’s explore some of the

common human workflow patterns.

Task Assignment Patterns
Workflow-oriented processes have been present in the industry for

years. The knowledge acquired serves as the base for improvements to

build workflow systems. Patterns abstract workflow systems at different

levels such as task approval, task creation, and task state management.

We don’t intend to define a catalog of human workflow patterns here.

Instead, we’ll cover some common patterns in human workflow systems

from the angle of the architecture defined previously.

	 We’ll begin by looking at a single-user workflow example. A task can

be assigned to one user, and only one user can act on it. For example,

an employee, through the employee portal, submits a vacation request.

The portal initiates a business process that includes a user task modeled

using a simple workflow. The task is assigned to the employee’s man-

ager. When the manager approves or rejects the vacation request, the

employee is notified by e-mail of the manager’s decision.

	 For this solution combine the human workflow components through

four interactions. The task is configured using the client applications that

interact with the task management service; the task’s life cycle or task

states are configured. As part of the business process, the task is assigned

to a group of users using the task management service. One of the users

claims the task, and the task management service applies the correct policy

to prevent other users from acting on the same task. The business process

uses the task management service to get the status update of the task.

	 Now let’s consider a sequential workflow example. The sequential work-

flow represents a scenario in which a task must be approved sequentially

by a set of users. For example, when a purchase order approval system

processes a purchase order using a business process, an employee belong-

ing to the group “Supervisor” initially evaluates the purchase order. After

the initial user approves the purchase order, that user’s manager approves

it. After the manager approves the purchase order, it is forwarded to the

billing and shipping departments. This solution has for interactions. Inter-

act with the task management service to configure tasks and set appropri-

ate policies. Define the sequence of users that should act on the task. Start

the task interacting with the task management service. The first user will

claim the task to start working on it, and upon completion the task man-

agement service will route the task to the next user in the group.

	 A parallel workflow pattern represents the scenario in which a task

must be approved by different users at the same time. Each approver

can add comments and attachments that are independent of the oth-

ers. For example, a hiring process is used to hire new employees. Each

interviewer votes in favor of or against a candidate. If 75 percent of the

votes are favorable, the candidate is hired; otherwise, the candidate is

rejected. The process is modeled using the parallel workflow, where

each interviewer can vote independently from the other interviewers.

For implementation this solution has five interactions. Interact with the

task management service to configure tasks and set appropriate poli-

cies. Define the sequence of users that should act on the task. Start the

task interacting with task management service. The task management

Figure 1 The main components of a human workflow architecture

Tracking
repository

Human workflow services

Tracking service

Notification service Identity service

Task management service

BPM systemsClient applications

Directories

Human Workflow Architectures

18 www.architecturejournal.net • Journal 7 •

service routes the task to all users. The task management service will

complete the task only when all users are finished acting on it.

Task Assignment Using Policies
Now let’s take a look at using policies for task assignment in which the

tasks need to be assigned to the user by following specific rules. For

example, the heart-bypass procedure is allocated to the surgeon who

has the least number of operations allocated to him or her. This solution’s

implementation combines the human workflow components through

five interactions. Interact with the task management service to config-

ure tasks and set appropriate policies. Configure the assignment pol-

icy as part of the task definition—for example, select from the available

users the one that has the least number of tasks assigned. As part of the

business process, the task is assigned to a group of users using the task

management service. Start the task interacting with the task manage-

ment service. The task management service will execute the task policies

against the potential users that can act on the task and, in turn, select a

user matching the policy criteria and assign the task to that user.

	 In a single-user workflow with escalation example, a task can be

assigned to multiple users, but only one user can act on it. If the task

expires, the user’s manager has to act on the task. For example, the

help desk service request process allows users to file help desk service

request tickets. If the person who receives the ticket does not act on it

within a specified time period, the ticket is escalated automatically to

that person’s manager. The ticket is escalated automatically three times

if no one has acted on it within a predefined time period, until it gets to

the CEO of the company. If the CEO also doesn’t act on it, it expires.

	 For this solution’s implementation combine the human workflow

components through five interactions. The task is configured using cli-

ent applications that interact with the task management service; prop-

erties such as the task’s life cycle, escalation policy, or task states are

configured in this step. As part of the business process, the task is

assigned to a group of users using the task management service. One

user claims the task, and the task management service applies the cor-

rect policy to prevent other users from acting on the same task. If the

task expires, the task management service applies the escalation poli-

cies to escalate the task to the correct user. If the task expires again, the

task management service cancels it.

	 In a single-user workflow with delegation example, a user who claimed

to act on a task can reassign it to another user. For example, before going

on leave, the chief accountant passed all of his or her outstanding tasks

on to the assistant accountant. For this solution’s implementation com-

bine the human workflow components through four interactions. The

task is configured using client applications that interact with the task

management service; properties such as the task’s life cycle, escalation

policy, or task states are configured. As part of the business process, the

task is assigned to a group of users using the task management service.

One user claims the task and the task management service applies the

correct policy to prevent other users from acting on the same task. Using

the appropriate client applications the user inspects the list of possible

people that are able to act on the task. The user reassigns the task to one

of those people and readjusts the task’s properties.

	 For the task chained pattern example a task needs to start based on

the completion status of another task. For example, immediately com-

mence the next work item(s) in the emergency rescue coordination pro-

cess when the preceding one has completed. To implement this solution

combine the human workflow components through four interactions.

The task is configured using client applications that interact with the task

management service; properties such as the task’s life cycle or states are

configured. The task chain metadata is configured, indicating the second

task will be triggered by the completion of the first task. The task chain

is started through the task management service, causing the start of the

first task. When the first task completes, the task management service will

use the metadata in the task chain to start the second task.

Business Process Integration
Human workflow solutions can be designed using a combination of ser-

vices like task management, identity management, tracking, notification,

and client applications. We’ve explored some of the most common com-

ponents present in human workflow architectures and their implementa-

tion in a series of interactions. Some of the most complex human-systems

interactions can be modeled using a set of human interaction patterns

that are in turn implemented using the human workflow components.

These basic components and patterns of human workflow architec-

ture represent key aspects in the business process integration space, and

when implemented they create a powerful human workflow solution.

	 The concepts and scenarios presented here are intended to assist you

in better understanding the components found in typical human work-

flow platforms. For more information on human workflow concepts con-

sult the listed resources. In addition consult the workflow engine archi-

tectures from some of the major integration server vendors.

	 We would like to thank Kirsti Elliot, Ben Elliott, and the architecture

strategy team at Microsoft for all their feedback and corrections made to

this article. •

Resources

The Workflow Management Coalition

www.wfmc.org

OMG Business Process Initiative

www.bpmi.org

About the Author
Jesus Rodriguez is chief software architect at Two Connect Inc. (www.

twoconnect.com), a Microsoft Gold Partner based in Miami, Florida. He is also

a Microsoft BizTalk Server MVP. Jesus’s extensive experience with business

process integration and human workflow has been derived through multiple

implementations of loosely coupled systems founded on the principles of SOA.

He is an active contributor to the .NET and J2EE communities, focusing on

the interoperability aspects between those two platforms. His contributions

include several articles for different publications such as MSDN, sessions in

Microsoft conferences such as Teched, and Web casts about different Microsoft

technologies. He is a prolific blogger on all subjects related to integration and

has a true passion for the technology. Contact Jesus at jrodriguez@twoconnect.

com or through his blog at http://weblogs.asp.net/gsusx.

Javier Mariscal is president of Two Connect Inc. Javier has dedicated a good

part of his 16-year professional career to designing and deploying data and

application integration solutions, particularly those involving the merger of

mainframe and AS/400 environments with the WinTel platform. He has a

true passion for business process automation and workflow solutions that

implement the service-oriented development of applications (SODA) approach

to globally distributed application development and maintenance. He keeps

quite busy working on just such solutions for Fortune 1000 and upper

midmarket organizations worldwide. Contact Javier at Javier@twoconnect.com.

19 • Journal 7 • www.architecturejournal.net

Workflow in
Application Integration
by Kevin Francis

Integrating applications has continued to become more common, and

the growing availability of tools and standards (such as the WS-I Web

services standards) and service-oriented architecture (SOA) appear to

hold a promise of easier integration. Many articles exist that promote

the simplicity of linking applications using Web services, or even SOA.

Two approaches for integrating applications are commonly used today:

point-to-point and services bus integration (see Figure 1).

	 In the point-to-point scenario direct links are created among appli-

cations through a direct application program interface (API) link, file

transfer protocol (FTP), or batch interfaces. Transformation (translation)

of data may take place as data is transferred across the link. Generally,

point-to-point interfaces are implemented without the use of an inte-

gration product, with translation of data taking place using code at the

point of integration at one or both ends of the interface.

	 Service bus integration makes use of a technology solution to pro-

vide a bus, upon which applications are able to place messages to have

the bus itself manage the routing of messages among applications. The

bus will also generally manage the transformation of message formats

among applications.

	 As organizations strive to bring a greater range of services online,

aim to integrate product lines together, and aim to streamline call

center experiences, an integration solution requires more back-end

Summary
One of the greatest challenges facing the architect
today is the integration of applications. Let’s look at
a framework for application integration that moves
beyond the common, one-off integration approaches
and toward a cohesive structure. The requirements
for successful integration are outlined along with the
presentation of an architectural approach for meeting
these requirements by using tools such as workflow
technologies.

Figure 1 Point-to-point and service bus integration

Point-to-point
integration

Service bus
integration

Service
bus

Table 1 The requirements of an integration layer

Layer Requirement Description

Data Connectivity Basic connectivity in which applications
are able to communicate with each other

Transformation Translation of data format, and so on
among applications

Information Data aggregation Aggregated view of data across multiple
systems

Business rules Development of business rules across
multiple systems

Transaction
management

Ability to perform ACID transactions
across multiple systems

Information model A cohesive data model across all systems
where a common understanding of data
entities and structure is achieved

Reference data
management

Management of commonly used refer-
ence data from multiple systems in a
single location

Session
management

Management of session information
across interactions and across systems

Instrumentation Common point for the logging of opera-
tional information

Error management Consistent approach to error manage-
ment from a single rule set

Configuration
management

Ability to configure the run-time opera-
tion of the entire system, configure its
communication with the various systems
that make up the environment, and
deploy new versions of the various
components

Workflow Workflow processes that cross multiple
systems

Process Complex business
rules

Shared, reusable business rules that cross
multiple systems

Business process
modeling

Modeling of business processes across
systems for optimization and integration

Business activity
monitoring

Monitoring the speed and efficiency of
end-to-end business processes for opti-
mization and issue tracking

Application Integration Framework

20 www.architecturejournal.net • Journal 7 •

Transaction
management

D
at

a
la

ye
r

In
fo

rm
at

io
n

la
ye

r
Pr

oc
es

s
la

ye
r

Workflow
Complex
business

rules
BPM BAM

Users

SOA Business
rules

Information
model

Data
aggregation

Reference
data

management

Session
management Instrumentation Error

management
Configuration
management

Connectivity TransformationTransport 1 Transport 2

Figure 2 Three integration layers

systems. It is not uncommon, for example, for call center operators to

switch among upwards of ten applications in handling customer calls.

The replacement of this type of scenario, where the user is effec-

tively integrating the applications by copying and pasting or retyp-

ing information into various applications to complete a transaction,

is a common driver for the integration of applications.

Enterprise Architecture Backbone
There are a number of methods that can be used to integrate applica-

tions behind a Web site or call center application, and the most com-

mon solution is to construct a number of point-to-point or service bus

interfaces in the first instance.

	 What happens, however, when a call center solution and a Web appli-

cation need to access the same information? The ideal scenario is to reuse

the interfaces, right? Well, in most cases where development teams (and

architects) are disconnected, this is not the common approach, given

the complexities of taking an existing interface with its own complex set

of code and allowing it to be called by something else. This issue grows

exponentially with the number of interfaces that need to exist among sys-

tems and is relative to the size of the organization; the experiences of

larger organizations are obviously worse than smaller organizations.

	 Failure to implement a well-architected, end-to-end solution results

in duplicated code across the enterprise, inconsistent architectural

approaches in each system, and an inability to respond to business

needs in a timely manner. These issues are a by-product of a project-

centric approach to solution architecture.

	 SOA is commonly heralded today as the solution for the integration

issues among applications, but a number of additional capabilities are

required for a truly efficient integration solution. These capabilities are

listed in Table 1 and grouped into three layers of integration:

•	 Data integration – The most basic layer, data integration generally

is achieved in even the most basic integration scenarios. In this layer

data is moved among applications with transformation taking place to

allow data to be translated among applications.

•	 Information integration – In this second layer, data and calls to appli-

cations are aggregated to enable single calls to access multiple appli-

“Failure to implement a well-architected,

end-to-end solution results in duplicated

code across the enterprise”

Application Integration Framework

21 • Journal 7 • www.architecturejournal.net

Table 2 Technical requirements for the data layer

Requirement Description

Connectivity Connectivity is the ability to transfer information using a variety of protocols or methods, and it includes the provision of a
Web services interface. It also includes specific protocols required by specific scenarios, which will change from one orga-
nization to another. For example, many organizations that retain mainframes for core business systems would require IBM
WebSphere MQ and/or SNA connectivity using Microsoft Host Integration Server (HIS). Other systems may require COM+
interfaces or even HTTP, raw sockets, or FTP.

All protocols should be executed through a common interface, with pluggable specific implementations for the specific
scenarios. All specific technical requirements of the particular protocols or methods should be handled by the implementation,
and external systems should not be required to contain any logic to handle specific cases.

Transformation Transformation is the rule-based transformation of data from one structure to another. Once again, the transformation engine
should be contained within the integration layer.

Table 3 Technical requirements for the information layer

Requirement Description

Data aggregation The provision of services that wrap multiple calls brings with it data aggregation. It is important to consider data aggregation
as a separate requirement, as it brings a requirement for greater care on the design of the data and the use of careful data
design and business rules to allow the data to be aggregated rather than simply accumulated.

Business rules It is necessary to be careful in the development of business rules in an integration scenario to ensure that only those rules that
form part of each application reside within the application, and those rules that are related to the integration of the application
are encapsulated within the integration layer. This approach provides the greatest opportunity for reuse, simplifies the mainte-
nance of the applications, and provides a single, centralized point for development and execution of the rules.

Transaction management Transaction management is both a necessary and complex requirement for application integration. It is necessary because
there is a need to commit or roll back transactions across all applications that are being accessed, driven from the calling
application, which is critical. It is complex, however, because rollback for many systems may involve providing reversing entries
or some other code-based method, which is an ideal example of the need to centralize this complex logic.

Reference data
management

Reference data is used commonly by application user interfaces to provide lists of choices or for data validation. It is common
for reference data to be common across applications (such as lists of countries, postal codes, products, office locations, and so
on). Accessing reference data from a shared location in the integration layer provides better performance, consistent results,
and less development effort.

Session management Session management is used to ensure that all systems in the integration scenario have a current understanding of who is
accessing the data, and to ensure that the current actions are synchronized across the systems. A complete use of session man-
agement can be used to allow a session to be captured from one access point, such as a customer accessing an Internet portal,
and reused in another, such as to allow a consultant to fix and complete the order internally.

Instrumentation In a similar way to reference data management, the centralization of instrumentation (logging) into an integration layer is logi-
cal in that it is the point from which the majority of calls with other systems are made, as well as again allowing the instrumen-
tation code to exist in a single location.

Error management Error management is similar to reference data management, in that the use of an integration layer for error management
allows error processing code to be shared and allows a single set of error responses to be used.

Configuration
management

Configuration management of the type of environment outlined here is a complex matter and worthy of its own content.
Configuration management should, however, provide a central point where the addresses of systems can be altered, access to
systems can be controlled (preferably with functionality gracefully deprecated), and where overall configuration settings can be
stored and loaded once by a shared configuration manager.

cations, with the basic business rules in place to allow single calls to

bridge applications. The use of these techniques provides service

aggregation and meets the minimal requirements to achieve an SOA

implementation.

•	 Process integration – The third layer of integration builds on top of

data integration by aggregating and integrating the processes and

data that are involved with executing a business process that operates

across application boundaries.

	 As you move through the three layers of integration, the focus

changes from technology to business. The end result, however, allows

for greater ability to quickly add value to the business.

	 Many views of SOA provide a common connectivity model and

assume to provide transformation, but these views, in reality, only pro-

vide data integration. The challenges faced by an architect in integrat-

ing applications in an efficient and repeatable manner are far more

complex, particularly when an integration scenario includes applications

that are already in existence.

	 Why does all of the foregoing matter? When you build the first

interface between two applications, simple data integration can be suf-

ficient. As you build more interfaces the design becomes more impor-

tant, however. Failure to design and manage a complete integration

scenario leads to an exponential increase in the cost of each interface in

turn. Conversely, as the functionality that is provided in the integration

layer grows, the code that is needed in each layer is able to be reduced.

Integration Layer Components
The components of an integration layer can be split into three layers:

data, information, and process (see Table 1). Furthermore, they can

be separated into components that make-up a technical framework;

Application Integration Framework

22 www.architecturejournal.net • Journal 7 •

Table 5 Business requirements for the process layer

Requirement Description

Workflow Workflow systems can be implemented as user (human) driven or system driven. Both can be utilized in an integration layer;
although, it is important to separate the two. System-driven workflow includes the execution of the steps involved in interacting
with the various systems in the environment.

Complex business rules Complex business rules provide an additional value as the integration layer becomes complete and as it becomes a place where
business rules begin to reside there in their own right. Given the central role that an integration layer begins to provide, it can
become the host for business rules that provide new or extended functionality beyond the integration of applications, which
could be new products, combining products together, additional discounts, better credit check, and so on.

Business Process Modeling Workflow systems can also be used for the execution of human-facing workflows, and this reason is predominant for their
existence. The provision of an integration layer provides the ideal host for a business process modeling environment to exist,
allowing human workflows to be automated. The use of workflow tools allows processes to be documented and executed in
a graphical form. The use of the integration layer behind the workflow tools allows access to multiple applications through
the workflow tool more easily and readily, particularly when the capabilities outlined here, such as the information model and
transactional support, have been implemented. Thus, business process modeling is allowed to facilitate greater improvements
than would otherwise be possible.

Business Activity Monitoring (BAM) Business Activity Monitoring (BAM) is the tracking of each transaction through the end-to-end system to identify roadblocks,
slow performance, issues with particular transactions, and opportunities for overall performance. Based on the instrumentation
capabilities provided by the information layer, the capabilities provided by end-to-end BAM are considerable.

Table 4 Business requirements for the information layer

Requirement Description

Information model As the number of applications that are linked into the integration layer grows the amount of data that is available grows.
This situation provides the ability to begin to build an information model across the systems that are in scope, which can be
closer to building an information model for an organization than most are able to achieve.

When implemented correctly, the information model that sits within the integration layer can provide a single point of
truth for key data entities. An example of the single source of truth is an understanding of a customer that covers all systems
with addresses, products, order history, and support history.

Two commonplace methods of creating a single point of truth are to utilize one key system and attempt to synchronize
across other systems, or to use a database that is updated with changes to multiple systems.

The use of a shared information model in the integration layer is particularly powerful as the result is a shared single
point of truth that is available through the combining of data from multiple sources without impacting data or code in those
sources. Also, given that no synchronization of data is required the data is more likely to be current.

the components appear in blue in Figure 2. The technical framework

provides plumbing and engineering requirements. A business frame-

work provides business enablers, which are shown in gold in Figure

2. Let’s take a closer look at the components that make up the three

layers of an integration layer.

	 Data layer. The two components of the basic data layer are con-

nectivity and transformation, both of which form the foundation of

the technical framework (see Table 2). Single point-to-point inter-

faces using Web services are frequently used as examples of SOA,

but many principles of SOA refer to the provision of services that

wrap multiple calls across systems. As mentioned previously, how-

ever, Web services exist in the data layer, which does not provide for

these principles. In this context, Web services provide for the con-

nectivity, but we need to explore the information layer for service-

related integration.

	 Information layer. The information layer is made up of compo-

nents that build on the technical framework (see Table 3). The busi-

ness framework is built on the base of the information model (see

Table 4).

	 Process layer. As the focus moves from technical requirements to

business value, the focus of the functionality that should be delivered

through the process layer shifts to providing the true value of the

integration layer concept—quickly configurable business processes

(see Table 5).

	 In bringing it all together, there are a number of ways that an inte-

gration layer can be implemented: custom development; the use of

frameworks, toolkits, open source, or operating system-provided com-

ponents; and the use of a more complete integration package. Custom

development could be applied completely to the integration layer but

is not recommended given the availability of toolkits and frameworks.

	 Some frameworks that are available provide an opportunity to

quickly integrate systems at the user interface layer, such as the Cus-

tomer Care Framework from Microsoft. This type of integration

solution provides an excellent solution to the rapid integration of

back-end systems to provide a consolidated user interface, but it is

important to understand the relative merits of this type of solution.

Frameworks that enable the integration of systems at the user inter-

face layer provide rapid solutions for certain issues encountered by

businesses, such as improving call times for call center operators. An

“SOA is commonly heralded today as the

solution for the integration issues

among applications, but a number of

additional capabilities are required for

a truly efficient integration solution”

Application Integration Framework

23 • Journal 7 • www.architecturejournal.net

integration layer can provide further benefits, at an additional initial

implementation cost.

Extending the Integration Scenario
An integration layer allows key functions to be hosted centrally,

shared among applications, allowing more than the integration of

the user interfaces. The range of data, information, and process inte-

gration capabilities can be used across applications to lower the cost

of each development or integration in turn. Experience has shown

that the use of an integration layer as described here produces

growing cost savings across a range of applications over time, with

the range of creating new applications beyond the original integra-

tion scenario.

	 For example, while billing, trouble-ticketing, customer-manage-

ment, and ERP systems may be integrated behind a CRM user inter-

face in the first instance, the fact that these systems are already linked

provides simple solutions for Web self-help, and then extending to

online ordering and a B2B channel. Should there be a purchase of a

new application, such as a supply-chain application, the integration of

that application into the environment is still not a trivial process. How-

ever, the integration is much easier than it would be without an inte-

gration layer because data integration can be achieved more eas-

ily by hooking up a single set of known interfaces into the integra-

tion layer, not into each application. Also, the process of integration

can be added by extending the integration workflows in the work-

flow engine, just as BAM integration, data aggregation, inclusion in

the information model, and so on are more easily achieved by simply

extending that which already exists.

	 The workflow component is a key part of any integration solu-

tion being used to provide both human-focused workflow pro-

cessing through a business process management capability and

in playing the central role of executing the processes involved in

linking systems. These two tasks are quite separate and quite dif-

ferent, but they are both suited perfectly to the use of workflow

tools. A system-integration workflow can include such steps as

retrieving data from each system and aggregating it together, val-

idating user entries, and updating systems in order with entered

or updated data.

	 Workflow tools provide the ideal method of performing these

activities, are vastly superior to using code, and they can therefore

provide a significant business benefit from an integration layer, given

these points:

•	 Working across multiple systems is inherently process driven, exe-

cuting tasks in a step-by-step way with decision points, branching,

and other core workflow steps.

•	 System integration workflows sit centrally among applications and

About the Author

Kevin Francis is an IT professional with 19 years of industry

experience in a range of positions—from CIO in a manufacturing

company, to security consultant, to global architect—and he also

operated his own successful software development organization.

Kevin has been architecting and managing leading-edge, e-

commerce projects since the birth of e-commerce. As an Infosys

principal architect, Kevin is responsible for the success of the

company’s technical implementation for its customers. He consults

to large organizations; works with Infosys’s architects, development

teams, and customers to ensure that each technical solution adds

to the overall quality and strategic direction of the customer; and

is a member of The Infosys Australia Technology Council. Kevin was

awarded a Most Valuable Professional (MVP) award by Microsoft in

July 2005 for his knowledge and experience in the Visual Developer

– Solutions Architect area.

are therefore more often impacted by changes to the entire envi-

ronment, given that each change to each system will be reflected in

changes to the integration layer. The use of workflow tools allows

processes to be more easily understood by a wider group of peo-

ple than the original developers, given the graphical and somewhat

self-documenting nature of the workflows; processes to be more

easily and quickly changed, and more easily debugged than code;

and the use of less code, which results in both greater reliability and

easier debugging.

•	 Given the diagrammatic form that workflow tools provide an eas-

ier understanding of the business processes, ownership can be

extended easily beyond the development teams to business analysts

and even core users in the business community.

A Successful Integration Mindset
Having the tool and using it correctly are two very different things,

and this discussion outlines a mindset that is needed to achieve truly

successful integration. Regardless of the approach that is taken,

remember that an enterprise-wide view of integration will lead to far

greater business benefits; integration itself is nontrivial and should be

considered in an enterprise context; and while considering the enter-

prise context and designing for maximum business benefits it is still

possible—and necessary—to begin to implement the solution with a

single project.

	 The enterprise view of integration should be taken as early as

possible. While there is clearly a place for point-to-point integra-

tion where further integration is unlikely, a more capable integra-

tion environment providing the workflow and other capabilities

outlined here will provide advantages as the number of systems

and integration grows. Assessment outside the scope of each sin-

gle project is therefore needed to uncover whatever opportuni-

ties may exist.

	 As with all architectural decisions there are business drivers,

costs, capabilities, and so on that are taken into account when

making architectural decisions. The approach to integration archi-

tecture recommended here is well suited to the capabilities of

today’s tools and today’s architectural concepts. It will hope-

fully help you in understanding some of the decisions that can be

made in the area. •

“Frameworks that enable the

integration of systems at the

user interface layer provide

rapid solutions for certain issues

encountered by businesses”

24 www.architecturejournal.net • Journal 7 •

Simplify Designing
Complex Workflows
by Andrew Needleman

Good workflow design requires business process analysis, busi-

ness process redesign, usability analysis, and software

design. This daunting list of necessary skills makes workflow a

challenge for the most experienced software architects. How do

you break down the problem into its smallest parts to get you

started in the right direction? We’ll look at how to simplify the

design process of complex systems with multiple user types and

hundreds of potential statuses. In simplifying the process you

can think about the workflow solution rather than the workflow

design process.

	 Each software project has a central process that is the main

reason why the system exists or is being built. For example, the

main goal of an e-commerce site is to make it easy for peo-

ple to buy products. This main process is the one that needs the

most attention during its design and implementation. We’ll show

you the dots-and-lines approach to modeling that will help you

to communicate about complex processes with your business

experts to determine available actions and statuses as you are

creating the workflow.

	 Let’s begin with an overview of the dots-and-lines approach to

creating workflow diagrams. In the dots-and-lines approach each

dot represents a particular status in the process, and each line

corresponds to an action that can be taken from that dot. Dots

and lines are labeled, and a key is made as the workflow is devel-

oped. Dots are labeled with letters, starting with A, and lines are

labeled with numbers, starting with 1. That way dots and lines

won’t get mixed up.

	 The primary goals behind the dots-and-lines approach are to

create a simple visualization tool on paper that can be used with

business users, eliminate the perfectionism caused by diagram-

ming on a computer, make the process as lightweight as possible

to allow concentration on the tough task of designing the work-

flow, and separate the changes in description of actions and sta-

tuses from changes in the process flow (that is, similar to the idea

of a lookup table).

Follow the Rules
In addition to these goals there are five rules that must apply to a

diagram using this approach. Let’s look at the details of each rule.

	 The diagram always goes in one direction. One of the main

ideas of the dots-and-lines approach is that the diagram always

reads forward like a timeline. You may end up at a previous sta-

tus, but your diagram doesn’t have lines going in all four direc-

tions like a maze.

	 Statuses can be discovered as you are building the diagram. In a

simple workflow you know all of the potential statuses before you

start diagramming. However, in a more complex workflow, you

may need to discover the potential statuses by building your dia-

gram. Determine what actions you can take at each point in the

process, and see where that takes you. As you discover the sta-

tuses, you can decide how to label each status for your use. Then,

after the diagram is complete you can decide how to present the

statuses to each user type and whether to combine them into

more easily understood statuses.

	

The labels of statuses and actions are kept off the diagram. When

you have descriptions of each action and status, it makes the dia-

gram cluttered and hard to understand. By putting the labels

for the statuses and actions in a key, you make it easier to see a

larger process flow in a smaller space, which is almost like nor-

malizing your diagram. You can change the labels of the points

without having to change the diagram. This makes it easier to

view and diagram complex processes.

	 Layout is simple and flexible, allowing everyone to focus on the

content. Layout is a large problem in traditional process flows.

Summary
Several factors go into good workflow design. In
simplifying the process it’s important to focus on
diagramming the necessary steps of a particular key
transaction such as an e-commerce order or a medi-
cal consultation. In this discussion we’ll look at rep-
resenting workflow in a new type of diagram, called
a “dots-and-lines process” diagram. We’ll begin by
diagramming the possible steps that can be taken at
each point of the workflow, and then we’ll indicate
where that diagram takes us in this workflow process.
We’ll also ensure that we don’t miss any of the poten-
tial steps or status points along the way.

“Each software project has a central

process that is the main reason why the

system exists or is being built”

Dots-and-Lines Approach to Simple Workflows

25 • Journal 7 • www.architecturejournal.net

A lot of effort goes into connecting and fitting in the different

items within the diagram. If you leave out a potential action in

a process flow, then the entire diagram might have to be rear-

ranged. In the dots-and-lines approach you just have to fit in a

line for the action and a dot for the status of the result. If you

need to change an action or status, you can change its number or

letter, respectively. If you want to change the name of a status or

an action, you can just change the key rather than the diagram.

The simplicity of adding, changing, and viewing dots and lines to

your diagram makes it easy to stay focused on the process itself.

	 Statuses can be “torn off” the main diagram. Since you are

always going forward with your diagram, you can tear off sections

of the diagram without worrying about how they connect to previ-

ous statuses in the workflow. For example, A connects to B, and we

want to tear off B onto its own diagram because it has too many

children to fit on the existing diagram. We don’t have to worry if B

has an action that goes to C and C has an action that sends its sta-

tus back to A. By labeling the status with A, they are connected,

rather than having to get a line back to the original A status. Our

diagram only moves forward, not backward, so we don’t have to

connect back with the original A dot. This rule allows for great flex-

ibility when you are running out of room on a diagram.

	

Actions and Statuses for Workflows
Now that we’ve covered some of the advantages of the dots-and-

lines approach, let’s look at how you can determine if an action

or status should be on your diagram. Statuses and actions have to

be included if they are required to complete the process that is

being studied. For example, even though logging on or register-

ing on an e-commerce system does not change the status of an

order object, it is required to complete a purchase. Therefore, it

should be included as an action on the system, and the statuses

that these actions create should be studied and differentiated if

we are examining the ordering process.

	 Statuses and actions do not have to be included if they are not

required to complete the process that is being studied and do not

change the steps needed to complete the process that is being

modeled. In other words, an action that sets you back a step in

the process is something that should be modeled. On the other

hand, an action that isn’t related to your process does not have to

be modeled.

	 Of course, there is definitely a lot of room for interpretation

as to what should be placed on a process diagram; because turn-

ing on a computer is required to perform any computer process,

it is probably a bit silly to include this action as part of a process

diagram. Now we’ll use an example to try to clear up what should

and what should not be on your dots-and-lines diagram.

	 Let’s look at a familiar example of a workflow to examine with

this process—the purchase of item(s) through an e-commerce

Web site. We’re going to examine the necessary steps to take for

purchasing a product.

	 When we’re beginning to design a purchasing workflow, we’ll

ignore steps that don’t change the status of the purchasing trans-

action. For example, the process of browsing for the product does

not change the status of the order process in any way. It really

doesn’t matter to us how the user gets around the site unless they

do one of three things that change their current status. These

three steps that can move the status of purchasing the product

forward are adding a product to the shopping cart, registering

for the site, and logging on to the site.

	 For example, pretend you go to the “books” section and click

back to the home page. Has this action changed your status in

any way in terms of purchasing a product? No. Pretend you

search the site for “.NET books,” and you receive a list of them.

Then you click back to the home page. You still haven’t moved

forward in the purchasing process.

	 Even if you pretend that you have an engine that matches

product suggestions to your browsing history, it still doesn’t

move the purchasing process forward until you add a product to

your shopping cart. It is very important to keep this step out of

your diagram because it will unnecessarily complicate it. We can

combine the browsing and then adding a product to the shop-

ping cart into one action in the purchasing-process diagram,

called “find and add product.” If we wanted to diagram the pro-

“Statuses and actions have to be

included if they are required to

complete the process that is being

studied”

Table 1 A key for the e-commerce order diagram (see Figure 1)

Actions

 1 Find and add a product to the shopping cart.

 2 Register.

 3 Log on.

 4 Remove all products from the shopping cart.

 5 Log out.

 6 Begin the checkout process.

 7 Add/select shipping information.

 8 Add/select billing information.

 9 Billing processing succeeded.

10 Billing processing failed.

11 Confirm order.

12 Exit the checkout process.

Status
Descriptions

A No products are in the shopping cart, not logged on.

B Product is in the shopping cart, not logged on.

C No products are in the shopping cart, logged on.

D Product is in the shopping cart, logged on.

E Begin checkout process, not logged on, no shipping or billing.

F Begin checkout process, logged on, no shipping or billing.

G Checkout process, logged on, shipping, no billing.

H Checkout process, logged on, billing and shipping.

I Checkout confirmed, logged on, temp status (square).

J Order processing succeeded, logged on.

Dots-and-Lines Approach to Simple Workflows

26 www.architecturejournal.net • Journal 7 •

“When we’re beginning to design a

purchasing workflow, we’ll ignore

steps that don’t change the status of

the purchasing transaction”

About the Author

Andrew Needleman is the managing partner of Claricode (www.

claricode.com), developers of custom solutions exclusively for the

health care industry. He has written articles focusing on software

development for many publications in the IT and health care

industries. His workflow design experience includes architecting

an application with hundreds of distinct states, multiple actions

at each state, and nine distinct user types. This application was

recognized as an Intel Solution Blueprint for best practices in

health care with Microsoft technologies. Contact Andrew at

andrew@claricode.com.

cess of finding a product, then we would be interested in how

the user selected the products to view and add them to his or

her shopping cart. For now, we’ll focus on diagramming the pur-

chasing process.

Roles in the Purchasing Process
First, we’ll start with someone who has just gone to our e-com-

merce site’s home page. We look to see what comes next in our

process. The three possibilities in terms of behavior that moves

the purchasing process forward are adding a product to the shop-

ping cart, registering a user, and logging on to the site. You can

view the dots-and-lines diagram for this entire process in Figure 1

and its key in Table 1.

	 It is important to understand the impact multiple roles on

the site has on our statuses and viewable permissions. For exam-

ple, assume that our e-commerce site has roles for both shop-

pers and an administrator. The shoppers are the people who pur-

chase the product, while the administrator makes sure that they

get the product. Our dots-and-lines diagram helps us deter-

mine what to show the administrator by providing a comprehen-

Figure 1 A dots-and-lines diagram for an e-commerce, product-or-

der process (see Table 1 for the key)

1

1
2 3 4

6

2
3

A

C

D

1

1
4 5 6

D

D
C

B F

5

A

C
B C

B
D D A E

B

F

12

D

5

B G

8

7
5

12

D B H

12

B

11

IB

5

D

9

J

10

G

12
3

2

F F

sive list of statuses that an order is in during the buying process.

We can then take these statuses and run down the list to find

out which orders should be seen by the administrator and which

should not. For example, one potential business rule may be that

the administrator can see order transactions that are abandoned

at the billing prompt, to allow the administrator to follow up with

those customers.

	 For more complex sites with hundreds of potential statuses

for each transaction going through the site, we’ll need to roll up

multiple statuses into single-status descriptions. For example,

statuses E–G can be grouped as an “incomplete” status for the

administrator. It is unlikely the administrator will need to know

more than that, except for aggregate statistics that would be pro-

vided in a report rather than the daily work screen. Plus, if the

administrator goes into one of those orders, he or she can pro-

vide the status details at that point.

	 One of the easiest ways to roll up status for each user is to use

the “who has the ball?” method. In other words, which user is sup-

posed to do something to advance the workflow? The user(s) that

fit this description should see this item grouped with other items

that are waiting for their action. Then you can group the other

open items in another category and finally the completed/can-

celed items in a third category.

	 One final recommendation regarding the dots-and-lines

approach is to use a very large piece of paper and a pen to create

the diagrams. Another large piece of paper should have the names

of the statuses on it, and a final one should have the names of the

actions. Using large, separate sheets of paper in this manner allows

everyone to get a good bird’s-eye view of the entire process rather

than having it broken up on multiple screens.

	 Using paper also focuses everyone on the problem at hand,

instead of making it look good. If you are using paper, there is

no easy way to put a gradient on each dot or shuffle the items

around to fit better. You should find the dots-and-lines approach

as helpful as I have in discovering all of the potential actions and

statuses with your business experts. •

27 • Journal 7 • www.architecturejournal.net

Enable the Service-
Oriented Enterprise
by William Oellermann

When talking with customers and colleagues about Web services,

you’ll find that much of the excitement and interest is focused

on the specifications that have helped this technology quickly become

a de facto standard: SOAP, WSDL, XML, WS-Security, and so forth. While

this standardization is critical, it often distracts us from the next level

of discussions about how to really take full advantage of this common

stack. These protocols give us greater reach and reuse than we have

ever previously achieved with software, but their use alone will not ful-

fill that potential.

	 All the work invested in standards and consortiums allows us to

develop services that can interoperate with other applications and sys-

tems, but it doesn’t necessarily buy us reuse. Even more importantly, it

doesn’t buy us manageability. If you happen to work in or with an orga-

nization that has attained some success with Web services, you have no

doubt encountered the need to address, if not the pain of not address-

ing, service testing, deployment, versioning, and management. These

areas become very problematic when they are not identified prior to

building a portfolio of services.

	 This condition has already made some organizations victims of

their own success. Approaches that work with a handful of services

often falter as the number of services and their usage increase. If you

don’t have the principles and practices in place to promote reuse and

provide manageability as your use of services grow, you will hit the

“scalability ceiling.” (See the sidebar, “A Word on Maturity Models.”)

	 Discussing this issue is very difficult, even among the savviest and

most experienced of architects, much less other less-technical partici-

pants that play a role in the services ecosystem. Some of this difficulty

stems from the use of overloaded terms such as service, but much of it

comes from the sheer complexity involved with a massively distributed

architecture that touches many areas of an organization. If something is

difficult to discuss, just think of how difficult it can be to define a strat-

egy or plan for it.

	 These challenges led us to look at the use of a model to help facili-

tate the discussion of service enablement and the planning of a service-

enabled enterprise. With the contributions and feedback of many orga-

nizations and thoughtful contributors over the last two years, we have

developed the Enterprise Service Orientation Maturity Model (ESOMM).

A Capability-Driven Maturity Model
All 4 layers, 3 perspectives, and 27 capabilities defined in the ESOMM

are designed as a road map to support services—not any specific ser-

vice with any specific use, implementation, or application, but any ser-

vice, or more specifically, any set of services. If you intend to develop

only one service, the value this model provides will be limited. The

objective of ESOMM is to help you overcome the problem of scalabil-

ity at a group, department, division, or enterprise level. This objective

means it can be applied as part of a grassroots initiative or an enterprise

strategy. Your ability to provide certain capabilities might be limited

by the extent of your overall organizational alignment, but that fac-

tor should not impede your ability to start building and implementing a

plan leveraging ESOMM.

	 Developing a service-enablement strategy is not a trivial under-

taking and should not be treated as a short-term or one-time effort.

At its apex, service orientation is intended to enable a higher level of

agility for an organization, so it can provide an expedient response

to the needs of the business and its customers. Successfully achiev-

ing this agility means providing a plan that is both extensible and dura-

ble. By focusing on the service, and not the message, implementation,

or usage, ESOMM can help you to build such a plan that can be applied

broadly by any organization. As the preferred service implementations,

technology choices, and usage patterns change, the model should pro-

vide a durable road map that can endure those changes.

	 ESOMM consists of four layers, each containing a set of capabilities

that as a whole establish a solid level of accomplishment and value to

the organization for that layer (see Figure 1). This value should be fully

realized if all the attached capabilities are provided. It is possible, and

certainly likely, that an organization may address parts of multiple lay-

Summary
Building Web services is pretty easy today. Building lots
of Web services is a little more difficult, and managing
those Web services is really difficult. As the number of
services and service consumers grow, the fundamen-
tal benefits of service orientation diminish if certain
IT capabilities are not provided. Let’s look at a model
that can facilitate the identification and prioritization of
these capabilities for the service-enabled enterprise.

“All the work invested in standards

and consortiums allows us to develop

services that can interoperate with

other applications and systems, but it

doesn’t necessarily buy us reuse”

Enterprise Ser vice Orientation Maturity Model

28 www.architecturejournal.net • Journal 7 •

ers; the objective is not to satisfy a layer so much as it is to identify the

level of value an organization desires.

	 The first layer of maturity in ESOMM, called usable, consists of the

appropriate use of standards and protocols to design and develop ser-

vices that are usable across an organization’s platforms and technolo-

gies. Building services correctly is absolutely critical before you can suc-

cessfully establish many of the higher-order capabilities up the SOA

stack. The true test of how well your services are built is how much

commonality and consistency is present across all of your services,

regardless of the tools and technologies used.

	 The repeatable layer addresses many of the capabilities that make

services efficient to develop, deploy, and maintain across your organi-

zation. Without addressing key capabilities in this area, it will be very

difficult to successfully scale your use of Web services.

	 The supportable layer encapsulates many of the capabilities necessary

to reliably provide services for mission-critical applications that are sup-

portable. These capabilities include the operational support of services,

but just as important, the self-service capabilities provided to consumers.

Self service is an important tool to enable your services to scale by keep-

ing your developers and architects from spending an inordinate amount

of time in correspondence with potential consumers of their services. This

layer is very difficult to approach successfully without some success in

making services repeatable in their deployment and management.

	 The extensible layer represents the pinnacle of realizing the busi-

ness agility promised by services and the reuse of services as the build-

ing blocks of other services, or service aggregation. This notion usu-

ally involves providing capabilities direct to customers and/or partners

through services that generate new revenue channels, if not new busi-

ness models. There are several capabilities required to make this realiza-

tion possible, and they make up the majority of the focus at this exten-

sible layer.

Road Map Perspectives
Through engagements and interaction with customers over the last

couple of years, we recognized a need to address different perspectives

through this model. As we discussed the capabilities in each layer of the

model, it became apparent that there were varying levels of apprecia-

tion or consideration for them, depending on the audience’s role and

challenges. For instance, one organization had a hard time appreciating

the need for contract-driven interface design. They were quite content

using tools to dynamically generate service contracts and felt they were

very successful with that approach.

	 When talking with the users of the group’s services, however, we

got an entirely different perspective by learning that the use of specific

data types and element patterns caused a lot of difficulty during imple-

mentation. By recognizing that not all capabilities are driven by the ser-

vice owners or providers, stakeholders are able to have greater appre-

ciation for some of the capabilities and make more informed decisions

about approaching and prioritizing them.

	 The capabilities in each layer of the ESOMM are categorized into

one of the three perspectives: implementation, consumption, and

administration (see Figure 2). Implementation capabilities target the

development and deployment of Web services from the provider’s per-

spective. This perspective is the one most organizations appreciate by

default and requires the least amount of clarification. Consumption

capabilities are those that cater to the consumers of your services, mak-

ing them easier to implement and therefore more widely and success-

fully adopted. We believe this is the most neglected perspective, yet it

can be the most critical in determining your success with service orien-

tation. If it is difficult to leverage your services, your success will be lim-

ited, no matter what other areas you have optimized. Administration

capabilities use the operational and governance aspects of Web ser-

vices across the organization. This perspective is becoming more rec-

ognized and appreciated, but there is still more that needs to be under-

stood about its value and impact.

	 The additional value of perspectives is the aid they provide in pri-

oritizing the implementation of specific capabilities in the model. While

there is an ability to ignore certain capabilities while progressing up

the model, it is fairly risky to skip capabilities at a lower layer within the

same perspective. Those prerequisites are intended to not only help

you grow your system logically, but also to help you learn how services

are utilized and supported across your organization because this infor-

mation will impact the design of certain capabilities at higher layers.

	 It is also important to realize that an organization can choose to

focus on one or two of the perspectives, but the overall maturity, and,

hence, the overall value of your services, depends on the appropri-

ate level of attention to all three. Neglecting any of the three will have

consequences—some more readily apparent than others. Such conse-

quences would be akin to ignoring one of the food groups; you can do

it, but it would limit some of the meals you could enjoy and not be ideal

for your overall health.

ESOMM Capabilities
There are 27 capabilities outlined in the ESOMM model, and each could

easily take an article to explain in full detail (see Figure 3). Here, we’ll

look at a brief overview of them to help articulate the premise of each

capability and its alignment to the associated perspective and layer.

Extensible
An enterprise is capable of aggregating services
and extending their use beyond its own borders.

Supportable
An enterprise can effectively manage increasing
numbers of services to guaranteed SLAs.

Repeatable
An enterprise implements, consumes, and reuses
services efficiently and consistently.

Usable
An enterprise is capable of writing and consuming
standards-conformant services with excellent reach.

Figure 1 The four maturity layers of ESOMM

“The extensible layer represents the

pinnacle of realizing the business agility

promised by services and the reuse of

services as the building blocks of other

services, or service aggregation”

Enterprise Ser vice Orientation Maturity Model

29 • Journal 7 • www.architecturejournal.net

	 The implementation perspective includes the development pro-

cesses and design patterns capabilities in the usable layer (1):

	 Development processes. Like design patterns, development pro-

cesses speak to a concept with which development teams are very

familiar, but is focused specifically on the implementation of services. At

a basic level, this concept would generally consist of the use of common

standards supported across the most common platforms and tools,

including SOAP, WSDL, WSA protocols, and the WS-I Profiles. At a more

advanced level, the capability would include the definition of repeat-

able processes for the design of service interfaces, the deployment of

services, and the publication of services. Again, the objective is to make

these processes broadly available across platform boundaries.

	 Design patterns. Whenever you develop software, it is good to

take advantage of proven design patterns that are appropriate for that

implementation. This particular capability speaks to the design patterns

that are appropriate and necessary, specifically for use with services.

We have good information available in this space, starting with the four

tenets of service orientation (see Resources). Other examples of rele-

vant patterns include asynchronous execution, callback support, excep-

tion handling, and the use of custom SOAP header data. The key to ful-

filling this capability is defining patterns that can be used by developers

across all the appropriate tools and platforms.

	 From the consumption perspective of the usable level there are the

explicit contracts and testability capabilities:

	 Explicit contracts. The most basic information you should provide to

consumers of your services is explicit contracts, which includes not only

richly detailed schemas (leveraging the power of XSD), but rich pol-

icy data that shares appropriate context information. This information

allows them to know not only the makeup of the body of the message

payload, but the header elements that are supported and required. The

difficulty of this capability is that there is very little support for some

of the standards emerging around the sharing of policy, so it requires

some thought and effort to address sufficiently.

	 Testability. This capability provides consumers with a mechanism to

test the invocation of a service to support implementation and trou-

bleshooting from their side. One of the most challenging aspects of

implementing distributed systems is integration testing. With so many

dependencies, it can take a lot of coordination to simply complete a call

through the entire chain, even for a null operation or an invalid request.

Web services are in a unique position to abstract applications from the

back-end systems performing the processing; a testing environment,

either physical or virtual, can be a strategic tool in improving imple-

mentation efficiency and reducing the need for manual support.

	 The administration perspective of the usable layer contains the basic

monitoring and security model capabilities:

	 Basic monitoring. The support of Web services starts with support

for the basic infrastructure hosting and providing those services. This

support includes the basics of operational excellence, which includes

the monitoring of key counters and logs that could indicate processing

issues and provide alerts on the triggers indicating outages for critical

services. This capability does not include service-level visibility or mon-

itoring, as that is not a trivial undertaking and will come further up the

model’s stack.

	 Security model. Once the adoption of services takes hold, organi-

zations will find them used in a multitude of applications—both exter-

nal and internal applications. It is important to have a standard secu-

rity model that can support each of the primary scenarios to meet busi-

ness requirements. This model involves creating one or more credential

stores that can be managed and supported as part of your services eco-

system. Examples of these credential stores include certificate author-

ities, an LDAP directory, Active Directory directory services, and data-

bases. While credentials make up a critical component of your service-

security model, fully addressing this capability also means support-

ing the requirements around access, authentication, authorization, and

encryption. These approaches don’t necessarily need to be implemented

as features, if they are not required at the time, but a complete security

model needs to be defined for when the time comes. This implementa-

tion will likely be the first step in defining your service policy.

Repeatable Layer Capabilities
The implementation perspective includes the service blocks and com-

mon schema capabilities in the repeatable layer (2):

	 Service blocks. A key to reducing the amount of “routine” logic

pushed down to each and every service is the use of a concept called

service blocks. This capability is an architecture model that provides

common routines that should be leveraged broadly such as transforma-

tions, point-data lookups, and utility processes. One example of a ser-

vice block would be a logging service, and in fact our logging applica-

tion block could be service-enabled to meet this need. For this model

to be successful, these service blocks should be available to any and all

services across your organization.

	 Common schema. When providing services that work with com-

mon entities, it is very helpful to have a common definition for those

entities to minimize the amount of effort necessary to provide and

consume those services. Because of the multiple systems typically

involved in providing the business logic and data for services, this

definition is usually an ongoing effort that will not necessarily ever

be considered complete. However, even establishing common defini-

tions for a handful of core entities can reap tremendous benefits for

service-enablement efforts.

	 The consumption perspective for the repeatable layer includes the

service discoverability and self provisioning capabilities:

“One of the most challenging aspects

of implementing distributed systems is

integration testing”

Extensible

Supportable

Repeatable

Usable

Implementation

Strengthens and
optimizes the
design and

development of
your services

Consumption

Supports and
enhances the

consumption of
your services by

others

Administration

Supports the
operational and

governance
needs of your

services

Figure 2 Three perspectives on the maturity layers

Enterprise Ser vice Orientation Maturity Model

30 www.architecturejournal.net • Journal 7 •

	 Service discoverability. Once you start to provide more than a hand-

ful of services, discoverability becomes a key capability to help effi-

ciently guide consumers in the identification of the appropriate service

to use. This guidance can be accomplished manually or programmati-

cally with tools (for example, through UDDI). Unfortunately, just provid-

ing a list of services on a Web page doesn’t prove sufficient at this level,

so one of the keys to guiding the discovery process is intelligent catego-

rization. One or more well thought out taxonomies can help potential

consumers look intuitively in the correct places for services based on a

domain or specific implementation.

	 Self provisioning. As you develop more services, it will become

more challenging for consumers to request access to them. While you,

as a provider, might be interested in automating the back end of the

user-provisioning process, it is more important early on to allow con-

sumers to quickly identify and leverage the tools available to request

access. If this process is too difficult or problematic, your adoption rate

will likely suffer, limiting your overall success. This capability can be

achieved with a wide range of solutions ranging from very simple to

very complex.

	 The administration perspective of the repeatable level includes the

enterprise policies and deployment management capabilities:

	 Enterprise policies. Service policies are important to define, sup-

port, and enforce as you grow your organization’s use of services. The

starting point for this effort was developing a security model, but at this

level it is necessary to broaden the policy to support a set of possible

options available depending on the different criteria of a given scenario.

For example, a service used within a department will likely have a very

different set of policies from the same service used by partners. At this

level, the definition of internal categorization(s) becomes important as

it can help you to define baseline templates aligned with some of your

most common scenarios to promote consistency and efficiency. Suc-

cess in this area isn’t driven as much by the choices made as it is by the

establishment, use, and distribution of policies to those impacted.

	 Deployment management. The best way to promote and enforce

a consistent governance model for your organization is to define a

common deployment process for services that provides real value. For

instance, if your deployment process automatically provides services

with operational support, it will quickly become widely adopted. To fur-

ther strengthen its role, it is also important that this process is flexi-

ble and easy to use, so that developers, architects, testers, and opera-

tors across the organization will buy into and adhere to the established

model.

Supportable Layer Capabilities
The implementation perspective of the supportable level (3) contains

the schema bank, executable policy, and versioning capabilities. Let’s

look at them in more detail:

	 Schema bank. Creating and supporting a schema bank is the next

step in leveraging a common schema. Doing so allows developers to

leverage and reuse existing entity definitions to build messages that are

able to adapt automatically to schema extensions through includes and

imports. This leverage is a very challenging area that very few custom-

ers are successfully tackling today, but will quickly become an invalu-

able tool as your services start to evolve.

	 Executable policy. While the request message initiates the invocation

of a service, you will often want to leverage policy information to deter-

mine exactly what should be executed under certain conditions. Policies

are often thought of as a tool for external use, but policies can also be

a powerful tool for providing context internally. If you need to change

the execution process or behavior based on who is making the request,

what format the data takes, or what time of day it is, executable policy

will play an important role in service enablement.

	 Versioning. The versioning of Web services is something that can

and should be handled differently from the typical approaches for

other software because of its complexity and extensibility. For instance,

the versioning of a service needs to be treated separately from the ver-

sioning of the messages involved in the service. Fortunately, with the

inherent flexibility of XML and XML schemas, there is an ability to sup-

port this complexity through both implicit and explicit versioning meth-

A Word on Maturity Models

Like other maturity models, ESOMM was derived from Carnegie
Mellon’s Capability Maturity Model (CMM, see Resources). However,
we borrowed the notion of a capability-driven maturity model and
stopped there. Instead of applying service orientation to the CMM,
we took those principles and applied them to the service-orienta-
tion paradigm, essentially building the road map from scratch.
This model does not focus on processes because the focus is on IT
capabilities, not organizational readiness or adoption. While you
will recognize some conceptual similarities with CMM, you can also
see that ESOMM is a decidedly different application of the maturity
model concept.
	 Although there can be value realized through some of the other
service-related maturity models out there, be aware of how much
of the CMM implementation it subsumes. CMM was designed to

address an organization’s processes related to software engineer-
ing, which is a decidedly different problem from defining an IT plan
for service orientation. If you adopt a model that blends these two,
it could be overwhelming and counterproductive for the organiza-
tion. Even worse, if you adopt a model that simply renamed some
of the CMM levels and capabilities, you could be going in the wrong
direction. That would be like taking a map of England with the name
London replaced by Paris and trying to go to the Eiffel Tower—it
simply isn’t going to work!
	 Buying into the capability-driven maturity model is one decision.
Choosing the appropriate road map is another. Make sure you are
picking a map that applies to your objectives. No maturity model
applies to everyone in all circumstances; make sure you choose one
that takes you to your destination.

“To make your service consumers

more self-sufficient, provide them

ample visibility into their use of your

services”

Enterprise Ser vice Orientation Maturity Model

31 • Journal 7 • www.architecturejournal.net

ods. However, this ability is a feature that the typical service develop-

ment tools do not take advantage of out of the box and requires some

planning and support to execute consistently.

	 The consumption perspective of the supportable layer is where we

find the execution visibility, service portal, and explicit SLAs capabilities:

	 Execution visibility. Perhaps the single, biggest factor in your abil-

ity to scale your use of Web services is your ability to support increas-

ing service consumption by providing rich self-service capabilities to

potential and existing consumers. If every implementation of a service

requires a series of phone calls or e-mails, some simple math will show

you that your team’s ability to develop services will quickly be con-

sumed by support needs. A single portal that provides access to the

right information can be a huge factor in reducing the demand on your

development and support teams.

	 Service portal. This capability speaks to a specific resource that

could be accessed through the self-service portal. To make your ser-

vice consumers more self-sufficient, provide them ample visibil-

ity into their use of your services. More visibility builds on the abil-

ity to test services by providing a level of partitioned access that helps

them to understand what is occurring during execution to use trou-

bleshooting and also deduce whether something is failing to meet

their expectations. This capability would also share historical activity

to help consumers track how often the service is consumed by their

application(s).

	 Explicit SLAs. To effectively set expectations for your services to con-

sumers, you must provide explicit service-level agreements (SLAs). Pro-

viding SLAs is a very challenging capability because there is not a stan-

dard available to communicate this information for Web services. How-

ever, various forms of documentation or communication can be used

to effectively share important information in this area including the

expected lifespan, the anticipated processing time for requests, and any

planned downtime. It is important to note that without a sufficient level

of service visibility and management internally, it will be nearly impossi-

ble to support SLAs.

	 The administration perspective of the supportable level contains the

provisioning model, monitoring, and auditing capabilities:

	 Provisioning model. The next step in making services self sufficient

and supportable is a streamlined process for provisioning new users.

This model would be used to support external and internal users and

would include the handling of requests for access, creating new creden-

tials, and providing alerts notifying consumers of changes to services or

account status. This capability builds on the self-provisioning capability

defined in the repeatable layer (2) to provide an end-to-end provision-

ing process for service consumers.

	 Monitoring. Monitoring and visibility into service execution is one

of the most challenging aspects of supporting services on an enterprise

scale because of the distributed nature of Web services. The only way to

address this support effectively is to embrace your services as a system

because support on a service-by-service basis is an inefficient and frus-

trating endeavor. While there are many ways to establish this system,

we believe that a common execution architecture is the most effective

means.

	 Auditing. The key to truly trusting the services you provide in your

organization is a reliable audit model that can serve as a tracking mech-

anism for who did what and when. This mechanism not only helps to

resolve any disputes that arise, but can also play a strategic rule in an

enterprise-compliance program.

Extensible Layer Capabilities
Now let’s look at the implementation perspective’s capabilities for the

extensible layer (4), service orchestration and service collaboration:

	 Service orchestration. To leverage Web services in well-defined busi-

ness processes, you must have the ability to orchestrate. This ability

involves workflows that may involve manual as well as automated pro-

cesses, but it allows you to define a fairly consistent and repeatable

usage of services that can be changed over time.

	 Service collaboration. Once you’ve established services as autono-

mous functions that are maintainable and supportable, you can start to

aggregate them to provide more sophisticated and complex services.

We refer to this aggregation as service collaboration. Through collabora-

tion, you can define synchronous and asynchronous execution patterns

that allow you to support entire processes consisting of existing services.

As an example, you could take a service that sends an e-mail and a ser-

vice that retrieves all schedule changes and expose a new service that

sends an e-mail to customers notifying them of schedule changes.

	 The consumption perspective of the extensible layer includes the

external policy and service SDKs capabilities:

	 External policy. To establish a secure infrastructure for providing

services to external consumers and partners, you must establish exter-

nal policies, which include not only externally supportable security pol-

icies, but the policies you have defined for how your services can be

bundled with other third-party services. Such policies include branding,

payment, and usage terms that are important for protecting your busi-

ness interests.

Extensible

Supportable

Repeatable

Usable

Consumption AdministrationImplementation

Service
collaboration

Service
orchestration

Versioning
Executable policy

Schema bank

Common
schema

Service blocks

Design patterns
Development

processes

Service SDKs
External policy

Explicit SLAs
Service portal

Execution visibility

Self provisioning
Service

discoverability

Testability
Explicit contracts

Business
analytics

Automated policy
management

Auditing
Monitoring

Provisioning
model

Deployment
management

Enterprise policies

Security model
Basic

monitoring

Figure 3 Capabilities of the maturity layers

“While it is important to know where you

are, getting an exact bearing is less

important than identifying the capabilities

you need to address to continue advancing

the value of service enablement in your

organization”

Enterprise Ser vice Orientation Maturity Model

32 www.architecturejournal.net • Journal 7 •

Resources

Carnegie Mellon Software Engineering Institute

Capability Maturity Model for Software (SW-CMM)

www.sei.cmu.edu/cmm/

Microsoft Developer’s Network

“Architecting Industry Standards for Service Orientation,” Josh Lee

(Microsoft Corporation, 2005)

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnbda/html/aisforsoa.asp

About the Author

William Oellermann is a solutions architect with Microsoft Consulting

Services, who is focused on driving and supporting strategic service

enablement opportunities in the communications sector. William

came to Microsoft in February 2004 and has spent over ten years as a

software architect, spanning consulting and corporate roles at Avanade,

Ericsson, and Micrografx. He has been a thought leader in the Web

services space for over six years as a frequent speaker at industry

conferences, author of multiple articles in trade magazines, and author

of Architecting Web Services (APress, 2001). When not keeping up with

the latest service enablement trends and developments, William enjoys

helping his wife keep up with their two very active daughters.

	 Service SDKs. Building a business model or channel through Web

services requires taking the level of support for service consumers to

the next level. This advance to the next level could include develop-

ing and providing prepackaged software development kits (SDKs) that

allow developers to quickly provision and implement your services.

These SDKs potentially include UI components for direct use in the

developer’s application(s) and would be tailored to target development

environments, as there is no standard for cross-platform development

tools today.

	 Finally, the administration perspective of the extensible level

includes the automated policy management and business analytics

capabilities:

	 Automated policy management: Once you start exposing services

to a very broad audience and using policies to define your interoper-

ability support, you will start to get requests for changes in policy—

for example, changes to SLAs or security requirements. These requests

should be processed in an automated fashion. That way they don’t cre-

ate significant overhead in scaling your interaction with a broad cus-

tomer base.

	 Business analytics. The pinnacle of visibility across a system of

enterprise services is what we refer to as service analytics. This visibil-

ity combines the technical data from service metadata, activity logs,

and events and allows you to cross reference it with policy information,

business data, and user data to provide rich views into every dimension

of your services. This information can be used to determine what ser-

vices are making money or what user tendencies are present between

internal and external consumers of your services.

Applying the Model
Now that we’ve had a chance to briefly review the components of

ESOMM, you are hopefully already thinking about how it can be

applied to your organization. To be clear, applying this model should

not be looked at as a one-time activity or short-term process. Instead,

the model is best leveraged as a working plan that can be modified

over time as the usage of services and your experience grows.

	 Unfortunately, the downside of using the term maturity with a

model is that people will immediately want to know what layer their

organization is at to get a sense of their status or identity. As it happens,

there is no appropriate way to answer the question, “what layer is my

organization?” Instead of giving an overall grade based on one of the

layers, we take the approach of giving each layer its own level of matu-

rity, ranging from one to five, based on half-point increments.

	 A maturity level of one means you haven’t had the opportunity to

address the capabilities at that layer, while five means you have mas-

tered all of the capabilities defined at that layer. A typical result is

provided in Table 1. This rating for each layer is determined by the

strength of the corresponding capabilities, ranging from one to five,

with a strength rated as a five and a weakness of one. The average of

these qualities will give you an overall grading for the layer, rounded

to the nearest half point. For example, looking at layer 1, if you have

three of the six capabilities gauged as a strength, two gauged as ade-

quate, and one gauged as a weakness, the overall maturity of the level

would be 3.5.

	 What shouldn’t be lost in this rating discussion is the fact that

ESOMM is intended to be leveraged as a road map, more so than as

an assessment tool. While it is important to know where you are, get-

ting an exact bearing is less important than identifying the capabil-

ities you need to address to continue advancing the value of service

enablement in your organization. As long as you are willing to ask your-

self some hard questions in an objective manner across all the relevant

groups, you should be able to get a good understanding for your cur-

rent challenges. If you apply the strategy and objectives of your organi-

zation, you should be able to identify which capabilities you will need to

address in the near, short, and long term.

	 It is terribly difficult to have a concise, constructive conversation

about the service-enabled enterprise. The goal here is to empower

you as a software architect with some tools and some of the infor-

mation necessary to address the right questions in helping your

organization achieve real value through this very powerful enable-

ment technology.

	 Hopefully this brief overview of ESOMM has provided you with

enough information to start applying some of the concepts in your ser-

vice enablement efforts. Each capability could easily fill an entire article,

so your feedback of any specific area is welcome.

	 Many people have contributed to ESOMM and the concepts pre-

sented here, but I would like to thank especially Wolf Gilbert, Scott Beau-

dreau, Michel Burger, and Byron Howard for their contributions. •

Services layer Maturity level

4 Extensible 1

3 Supportable 1

2 Repeatable 2

1 Usable 3.5

Table 1 A sample ESOMM rating

33 • Journal 7 • www.architecturejournal.net

Service-Oriented
Modeling for Connected
Systems – Part 1
by Arvindra Sehmi and Beat Schwegler

Service orientation is high on the agenda for many organizations.

The goal is generally to embrace service orientation to enable

better alignment between the requirements of the business and the IT

services within the organization and ultimately to enable and support

more agile businesses. Today, however, many organizations are fail-

ing to align IT services closely enough with the business requirements,

and as a result they are failing to see the return on investment that

service orientation was expected to deliver.

	 In addressing service orientation, organizations are attempting to

answer these questions: How do we avoid making the same mistakes

with service-oriented architectures (SOAs) that previous, hopeful ini-

tiatives have resulted in? How do we ensure that the chosen imple-

mentation architecture relates to the actual or desired state of the

business? How do we ensure a sustainable solution that can react to

the dynamically changing nature of the business? In other words, how

can we enable and sustain an agile business? How can we migrate to

this new model elegantly and at a pace that we can control? How can

we make this change with good insight into where we can add the

greatest value to the business from the outset?

	 A key premise we promote here is that to build successful service-

oriented systems you need to modify the way you think about ser-

vice orientation and ultimately about SOA and the way you build your

systems. Failing to approach the problem in the right way and get-

ting the thinking wrong up front is arguably the cause of many prob-

lems. Without the right thinking, service orientation as an approach is

unlikely to deliver the expected benefits.

	 An essential part of the thinking is about being able to conceptual-

ize your business in the right way, and by doing so you can arrive at solid,

well-aligned services that map well onto the capabilities required by your

business processes. Having identified the right services, you can go on to

implement those services by using your choice of technologies such as

those provided by the Microsoft application platform. We’ll now look at a

model that can be applied to connected, service-oriented systems to pro-

mote close alignment between IT solutions and the needs of the business.

Five Pillars of Connected Systems
Messaging is important for service orientation, but it is not the only

aspect required to model services, and a number of other pillars exist

too. While messaging enables you to connect disparate systems and

supplies the underlying connection fabric, there are a number of other

important issues that need to be addressed, and additional pillars are

required to complement messaging. Let’s take a closer look at the five

core pillars of connected systems (see Figure 1):

•	 Identity and access. This pillar is concerned with the notion of feder-

ated identity (Web single sign on) and policy-based authorization. It

addresses trust relationship management and how access to the sys-

tems now connected should be controlled. Governance and compli-

ance regulations are other important factors that need to be given

proper consideration under this pillar.

Summary
As architects, we can adopt a new kind of thinking
to essentially force explicit consideration of service
model artifacts into our design processes, which helps
us identify the artifacts correctly and at the right level
of abstraction to satisfy and align with the business
needs of our organizations. Here we offer a three-part
approach for modeling connected, service-oriented
systems in a way that promotes close alignment
between the IT solution and the needs of the busi-
ness. We’ll start by examining the current perspective
of service-orientated thinking and explain how the
current thinking and poor conceptualization of service
orientation has resulted in many failures and gener-
ally poor levels of return on investment. Then we’ll
examine the benefits of inserting a service model in
between the conventional business and technology
models that are familiar to most architects, and we’ll
discuss the Microsoft Motion methodology and capa-
bility mapping to identify business capabilities that can
be mapped to services. Part 2 of this discussion will
appear in Journal 8, and it will show you how to imple-
ment these mapped services.

Figure 1 The five pillars of connected systems

Abilities (scalability, availability, securability, manageability, ...)

Programming model and tools

Identity
and

access
Data Interaction Messaging Workflow

Ser vice-Oriented Modeling

34 www.architecturejournal.net • Journal 7 •

•	 Data. This pillar addresses entity aggregation and is concerned with

providing a single, coherent view of a particular business entity such

as a customer, even though the customer data might be duplicated

many times across multiple systems.

•	 Interaction. This pillar is dedicated to the human consumption of

services—for example, through the provision of rich, composite user

interfaces with online and offline capabilities. Interaction on the

edge of networks through the Web, peer-to-peer mechanisms, and

mobile devices is also included here.

•	 Messaging. This pillar provides the underlying fabric of con-

nected systems and needs to support secure, reliable, transacted

messaging.

•	 Workflow. This pillar addresses business process workflow or auto-

mation, external to the services themselves. Workflow is concerned

with the orchestration of business processes but also with other

aspects such as managing user interaction, ad hoc processes, and

exception management.

	 While the three-part model discussed here is largely concerned

with the messaging pillar, consideration is also given to certain

aspects of the other pillars. Before examining a new approach to con-

nected-systems modeling, it is important to recognize that many

of today’s problems stem from conventional thinking that needs to

change to realize the true benefits of service orientation.

The Old Perspective of Service Orientation
The traditional approach for architecting and building solutions is to

take a set of business requirements and from them derive a technol-

ogy model that typically involves object orientation, component tech-

nology, and perhaps mainframe systems. By failing to work closely

enough with the business, there is often a large disconnect between

the business and the IT solutions provided. Instead of being inward

looking, development needs to become an outward-looking engi-

neering discipline.

	 The other big issue is that while business people might be very

good at what they do, it is not their job to describe what they do to

people who are not in their business, which is really what is happen-

ing when they talk with their IT people about requirements. Histori-

cally, business people have not had great tools to help them to create

clear, objective requirements. For example, process maps are subjec-

tive views that fail to expose a lot of objective content and metrics—

and IT needs objective views.

	 Another problem often occurs because of the way IT departments

are organized. Sometimes they are organized according to specific

technologies—for example, mainframe, Internet applications, intranet

applications, and so on—and other times they are organized around

hard human organizational boundaries and departmental boundaries.

With both approaches this organization quickly leads to silos, and the

way in which information is transferred is largely through prescribed

document exchange.

	 This suboptimal organizational structure also makes it very difficult

to create systems that span multiple technologies, and it is very dif-

ficult to determine how expensive a solution really is because of the

involvement of many people from many different departments.

	 To help solve this issue, IT departments need to become more out-

ward looking and more closely connected to the business, and a new

way of thinking about service orientation and of modeling connected

systems is required. Ideally, the IT department should only provide

the infrastructural aspects of the solution, and the solution develop-

ment should be much more strongly aligned with the relevant busi-

ness groups. Service orientation and the associated software devel-

opment process will not on their own enable service-driven organiza-

tions. They need to be part of an overall strategy that maps the transi-

tion toward service-driven IT.

Classic System Modeling
Today’s modeling approaches usually focus on business models and

technology models (see Figure 2). Ideally, there is a close correspon-

dence and alignment between the business model and technology

model, but in practice this relationship is often not the case. Inward-

facing IT departments that do not work closely enough and effec-

tively enough with the business are a key reason. While entity domain

models are often used in a layer above the technology model to

help address this issue, this approach tends not to work well mainly

because they serve two conflicting purposes: internal implementa-

tion and business functional exposure. It is arguable that true align-

ment between the technology and business models is rarely achieved

because the gap between the two perspectives is simply too large. So

what can we do to close the alignment? Consider these four essential

ingredients:

	 Outward-facing IT professionals. IT professionals must become

more outward facing and connect more deeply with the business side

of their organization. While they do not need to become experts in

the business, they need an objective language that allows them to talk

with the business about the business. Architects in particular provide

the communications channel between the business and the IT depart-

ments, and they need to ensure that business requirements and solu-

tions are as tightly interdependent as possible. This interdependence

can be achieved by working very closely with the business to ensure

that the contracts that the IT department offers the business are much

more aligned with the business requirements. In our opinion, taking

this perspective is perhaps the best (if not the only) way to arrive at

the right granularity for the services that you ultimately build with a

service-oriented approach.

	 In our common vernacular today we talk about “exposing the

business architecture.” Since the capabilities of a business in a given

industry are very similar, or even identical, both IT and business

people can use a standard set of questions to elicit relevant infor-

mation about the business architecture for requirements gather-

ing. By using a standard set of questions, even nonexperts in a busi-

Business
model

Technology
model

Figure 2 A classic system model

“To build successful service-oriented

systems you need to modify the way you

think about service orientation”

Ser vice-Oriented Modeling

35 • Journal 7 • www.architecturejournal.net

Figure 3 The three-part model of service orientation

Business
model

Service
model

Technology
model

Business model

SLE

Service model

Service contract

Orchestration

Technology model

Service interface

Service host

Service implementation

Service management

Orchestration engine

1

2

3

What Capabilities

SLA

Business processesHow

Figure 4 1) Business function representation, 2) modeling service levels, and 3) implementing the models at different levels of abstraction

ness domain can facilitate a very useful discussion about business

requirements and expose important information on metrics, perfor-

mance, maturity, interconnectedness, and governance and compli-

ance. Because the businessperson is answering questions from the

architect, the architect in fact helps to expose a view that the busi-

ness may not yet have.

	 Understanding business change. While we don’t suggest that all of

IT becomes “business-driven” it can be of great value for IT to under-

stand how the business evolved in the past. This knowledge will

influence implementation decisions on the provision of extensibil-

ity points, versioning, needed resources, and project management

issues like number and length of iterations and release management

including the major, minor, and delta releases to expect in a given

time frame.

	 A common operational infrastructure. Common infrastructure is

required to support business applications that provide holistic, cross-

organizational business practices. Building health models for how to

operate and manage the infrastructure and deploy applications onto it

is vital to success. Healthy applications allow business decision makers

to gain key insight into the information that is being moved around

among them, which finally enables individuals to collaborate and make

decisions to drive the business more effectively.

	 Web services technology standards. Web services standards enable

applications to be connected. Ultimately, the value of connecting the

systems leads to more efficient and effective business practices.

A New Perspective of Service Orientation
As architects, can we ensure that the contracts the IT department

offers the business are more closely aligned with the requirements

of the business? The introduction of a service model in between

the business model and technology model is a key factor that can

help achieve this goal. The three-part model of service orientation

shown in Figure 3 demonstrates an improvement to the classic sys-

tem model.

	 The three-part model of service orientation interposes a ser-

vice model between the business and technology models of the

classic system model. The introduction of the service model pres-

ents several advantages. The service model is where you can capture

the semantics required to express the services that make your solu-

tion more loosely coupled and more outward or business facing. The

service model provides a logical place to define the contracts that

ensure that the business side of your organization is aligned with

the IT side from a requirements perspective. By inserting the service

model, architects are forced to explicitly consider service-model arti-

facts in the design process.

	 The service model helps architects to discover artifacts at the

right level of abstraction to satisfy and align with business needs.

It also enables the business analyst to have part ownership of the

design process and achieve better business-requirements traceabil-

ity. Lastly, business people already know the word service. For exam-

ple, in the outsourcing context, a service-level agreement (SLA) is

well understood. Internal (not outsourced) functions are similarly

understood, though they’re (usually) associated with a less-formal,

less-contractual service level expectation (SLE). Rather than talking

about services and service orientation, it is much better to talk about

SLEs because business people will understand their value.

	 An interesting aspect of the three-part model is that many

aspects of the four tenets of service orientation, originally devel-

“The service model is where you can

capture the semantics required to

express the services that make your

solution more loosely coupled and

more outward or business facing”

Ser vice-Oriented Modeling

36 www.architecturejournal.net • Journal 7 •

oped at the technology model level, also apply to the service and

business levels.

	 Service-oriented development is based on four fundamen-

tal tenets that were originally derived by the Windows Communica-

tion Foundation (WFC and previously code named “Indigo”) team at

Microsoft. The team originally developed the tenets to describe how

to use the WCF programming model to build predominantly fine-

grained Web services that are more relevant to the technology model

than to the other two models. However, we realized they could lend

an important perspective to the three-part model when viewed as

business service tenets that are applicable at the service- and business-

model levels.

Service Orientation Tenets
The four tenets are: boundaries are explicit; services are auton-

omous; services share schema and contract, not class; and ser-

vice compatibility is determined based on policy. Let’s take a more

detailed look at each.

	 Boundaries are explicit. Service orientation is based on a model of

explicit-message passing, and crossing a boundary is considered an

explicit act. To use the analogy of crossing into a foreign country, the

act of passing from one country to another is an explicit act. From a

business perspective, it is equally important that you understand and

define organizational boundaries and function boundaries within your

own organization to identify clearly demarcated capabilities. From a

service-model perspective, this tenet demands externally consumable

service interfaces.

	 Services are autonomous. Changes made to one service should in

no way impact another service. A service should be able to be rewrit-

ten without negatively impacting the consumers of the service. To

continue the foreign-country analogy, one country is able to intro-

duce a new taxation system independently from another country

because they are autonomous. Similarly, at the business level changes

to what happens internally within a particular business process should

not impact outside parties who are reliant on that particular process

or service. Autonomy at the business level also means that individ-

ual services can be hosted within an organization or outsourced with

no overall impact on the business process. Autonomy at the service-

model level requires interchangeable and loosely coupled services.

Autonomy at the technology model level requires implementation

independence.

	 Services share schema and contract, not class. This tenet is

largely concerned with services not exposing their internals. For

example, countries publish the rules required to complete their

visa forms but do not provide the internal resources to complete

them. As another example consider J2EE and .NET interoperabil-

ity. This interoperability is not possible if you try to interchange

platform-specific types, but rather an intermediate metamodel or

schema is required.

	 Service compatibility is determined based on policy. At the business

model level, this tenet is essentially concerned with governance and

SLAs and their definitions. Policy defined at the meta level describes

the semantic capability of a service based on a set of explicit state-

ments of its capabilities.

	 Each of the tenets plays an important role across the three-part

model and in different ways influences the business, service, and tech-

nology models. Table 1 summarizes the needs and artifacts within

each model in relation to the four tenets. Let’s see what each model

defines and how you should approach their creation.

Models Definition
The three-part model of service orientation must be able to rep-

resent what a particular business is capable of—its key func-

tional capabilities—rather than how the capability is performed.

We’ll discuss what a business capability is shortly. The way in

which the business function within an organization is repre-

sented at different levels of abstraction by the three models is

shown in Figure 4.

	 Business function. From the perspective of the business model,

what a business is capable of is expressed by identifying business

capabilities. Identifying the capabilities of an organization is a crit-

ical task while developing the business model. Capabilities and

Tenet requirement Business model Service model Technology model

Boundary Clearly demarcated functional capabilities

(Capability map in business architecture)

Externally consumable service interfaces

(Service endpoint definition)

Explicit service edge implementation

(Concrete hosted service endpoint)

Autonomy Outsourcing and insourcing capability (Core,

operational, and environmental capability

definitions)

Interchangeable and loosely coupled

services (Spatial, temporal, technical, and

operational design considerations)

Implementation independence

(Independence of data and behavior imple-

mentations)

Contract Task and process descriptions (Logical units

of work and workflow definitions)

Data, interface, and orchestration definitions

(message and data XSD, WSDL, and service

interaction protocols)

Shareable data, interface, and orchestration

implementations (WSDL, XSD, and BPEL)

Policy Governance, SLE, and SLA definitions

(Needs, preferences, expectations, and

agreements)

Externally consumable SLA (Compatibility

definitions: “I can,” “I need,” and “I prefer”

assertions)

Decoupled operational concerns

(Crosscutting concerns security, reliability,

transactions, and WSI-Profile)

Table 1 The four tenets’ requirements and model artifacts

“A key benefit in focusing on business

capability is that while organizational

structures and process flows come

and go the essential capabilities of

businesses tend to remain constant

over time”

Ser vice-Oriented Modeling

37 • Journal 7 • www.architecturejournal.net

approaches for determining capabilities within an organization will be

discussed later.

	 The functional capabilities have a close relationship with the ser-

vice contract description defined within the service model. Further

down the abstraction level this relationship translates to a descrip-

tion of the service interfaces and ultimately the service implementa-

tions within the technology model. (Note that while there is a strong

correlation between a capability and a service, it is not necessarily

one to one.)

	 Service levels. To ensure compatibility and consistency across the

models, the notion of service levels is introduced. At the business-

model level, SLEs define the expected levels of service. These are busi-

ness expectations. When you subsequently build a software system to

provide the service, the SLE is translated into an SLA. At the technol-

ogy-model level the SLAs impact how you host the service and how

you manage the service.

	 For example, if your business expectations or SLAs are very

demanding, then it would be inappropriate to host your service on a

single processor server offering no redundancy. The expectations and

agreements drive the availability, reliability, security, and manage-

ability requirements of your solution. Similarly, if the business views

the system as mission critical, this status places additional onus on the

management capabilities that you put in place for your solution. The

way in which service levels are represented within each of the three

models is shown in Figure 4.

	 At the business model perspective the expectation can be pro-

vided with both qualitative and quantitative information. The

fidelity from qualitative to quantitative information becomes

more specific as you move toward the technology model. You

effectively lose information as part of your descriptions. However,

the benefit of having a set of connected models, particularly if

they can be described at the meta level, means that you still have

the capability to understand where requirements originate and

what is related to what.

	 Implementation. You need to be able to describe how you

are going to implement the models and express them in detail.

Within the business model you need to express the externalized

business processes that you have identified, and then you need

an orchestration mechanism to describe the business processes in

the service model. When you then implement the orchestrations

you need some form of technology workflow implementation or

orchestration engine. For example, on the Microsoft platform, you

could use the orchestration services provided by Microsoft Biz-

Talk Server (see Figure 4). Though we may imply automated work-

flows by talking about orchestration, we do not exclude manual or

human workflows as a form of implementation in the technology

model, which becomes obvious during the business model pro-

cess definition.

Creating Business Models
To create an effective business model, you need to be able to concep-

tualize the business and identify its core business functions. Doing so

enables you to arrive at well-aligned services that map closely to your

business requirements.

	 Capability mapping. This technique was developed and refined

by Microsoft to help conceptualize the way a business works and

to help create business models. A business capability models what

an individual business function does. It is not concerned with how

the business function is achieved, but rather with its externally visi-

ble behavior and its expected level of performance (that is, its out-

comes). A key benefit in focusing on business capability is that while

organizational structures and process flows come and go the essen-

tial capabilities of businesses tend to remain constant over time. A

business capability abstracts and encapsulates the people, process,

procedures, and technology associated with a given business func-

tion into a simple building block. The decomposition of the business

into capabilities provides the top-level decoupling for the underly-

ing service contracts.

	 Pay supplier, dispatch product, and generate invoice are examples

of business capabilities. At a high level of abstraction a business capa-

bility is essentially a black box with certain parallels to services. For

example, both have connections that are important and related to,

but separate from, their inner workings.

	 Developing capability models. A capability model is a nested hier-

archy of business capabilities that enables you to model the busi-

ness as a structured network of capabilities, as opposed to a physically

integrated network. A business capability model is a diagram that

describes the network of capabilities used by the business. The frame-

work used to construct a capability model at varying levels of abstrac-

tion is shown in Figure 5.

	 The level of abstraction with which you can view a business capa-

bility varies. Level 1 capabilities are the foundation capabilities com-

mon to most organizations, regardless of industry sector. Levels 2 and

3 (and beyond) provide additional levels of detail on business capa-

bilities. Before examining each level in more detail, note that it is not

necessary to decompose all capabilities to the same level of refine-

ment; rather, it’s necessary to focus on those most relevant to the

problem or area of business that’s under consideration.

	 Level 1 foundation capabilities. Having studied business across many

industries, Microsoft has found that at a high level of abstraction busi-

nesses within most industries exhibit five core capabilities together

Level 1
Foundation capabilities

Level 2
Capability groups

Level 3
Business capabilities

Figure 5 The base framework for constructing a capability model

“Motion describes how you extract and

document structural and process-

oriented information alongside

individual capabilities”

Ser vice-Oriented Modeling

38 www.architecturejournal.net • Journal 7 •

Figure 6 Foundation capabilities common to most businesses

Customer facing
Channel partners

Governments
(regulations and infrastructure)Financial providers

Customers

1. Develop
 products and
 services

3. Deliver
 products and
 services

2. Generate
 demand

4. Plan and
 manage the
 business

Su
p

p
lie

rs

Lo
g

is
tic

s
p

ro
vi

d
er

s

5. Collaborate

with a set of operational and environmental capabilities, collectively

referred to as foundation capabilities (see Figure 6).

	 The five foundation capabilities common to most businesses are

develop products and services, generate demand, deliver products

and services, plan and manage the business, and collaboration. The

fifth capability, collaboration is the process that orchestrates and coor-

dinates all of the other business capabilities. It is called collabora-

tion because the process can be automated or manual. The process is

essentially an orchestration over capabilities.

	 The foundation capabilities also include operational capabili-

ties, which are the things inside of the physical business bound-

ary of the organization, and environmental capabilities, which are

all of the other people and companies who interact with the busi-

ness that are outside of the physical boundary of the business.

These entities might include customers, partners, service provid-

ers, and regulatory authorities. They are significant because they

all have capabilities that influence the way in which you conduct

your business.

	 Note that the business boundary is not the same as the physi-

cal boundary of the corporate entity. For example, if something is

outsourced it is still part of your business architecture; although,

the work is performed by someone outside of your company.

There are some interesting examples of work being moved to

the other side of the business boundary such as airport check-

in, a function that is now performed frequently by the customer;

it is the same capability and has the same SLE. However, there

is now different technology and that has allowed different peo-

ple to perform the work, in this case the customer. This holistic

view of the entire ecosystem of capabilities empowers organiza-

tions to see a much wider range of options that can inform spe-

cific changes they make to their business.

	 Level 2 capability groups. Capability groups provide the next level of

detail in the capability model. Level 2 is where initial analysis begins

because it is the level that introduces SLE and impediments and con-

straints between one capability and another; organizational owner-

ship; and accountability. You also identify the inputs, outputs, sup-

porting functions, and controlling functions.

	 This example starts with the core capability 3, deliver prod-

ucts and services, and shows a nested hierarchy of capabilities at

level 3…n:

3. Deliver products and services

	 3.1 Provide service

	 3.2 Advanced planning

	 3.3 Procurement

		 3.3.1 Sourcing and supplier contract management

		 3.3.2 Purchasing

			 3.3.2.1 Request resources

			 3.3.2.2 Acquire/purchase resources

			 3.3.2.3 Manage suppliers

		 3.3.3 Receiving of indirect/capital goods

	 3.4 Produce product

	 3.5 Logistics

	 Notice how capabilities are always labeled within their appro-

priate parent grouping. A capability group is often an important

initial level for doing analysis because it is at the capability group

level where SLEs, impediments and constraints, organizational

ownership, and accountability can first be abstracted and made

actionable.

	 Level 3 business capabilities. Capability groups are subsequently

decomposed into business capabilities. By mapping individual busi-

ness capabilities onto a capability model (see Figure 6), you end up

developing a nested hierarchy of business capabilities. Capabilities

that reside at level 3 and below are the building blocks of the model.

	 Business capabilities can be decomposed into more granular

business capabilities—for example, when more detailed attributes

need to be defined. Within the analysis you may decompose some

business capabilities to very detailed levels (level 4 and beyond) and

aggregate other capabilities at level 3. It is not necessary to decom-

pose all capabilities to the same level. Equally, you do not need to

model your entire business. You can pick and choose areas of your

business to model based on current business objectives and project

requirements.

	 For each capability that is ultimately identified, you define a set

of attributes to describe and document the capability. Some of the

key attributes you need to capture for each capability include: Who

owns it? Who is its customer? What are the inputs and outputs?

What are the required exception-handling and exception-notifica-

tion mechanisms? What are the performance requirements (past,

present, and future)? Are there governance and or compliance impli-

cations? Does the performance of the capability impact directly the

performance of its parent capability? Its department? The entire

organization? What causes the capability to perform the way it

does? People? Process? IT? A combination of these causes? And, is

“The five foundation capabilities

common to most businesses are develop

products and services, generate demand,

deliver products and services, plan and

manage the business, and collaboration”

Ser vice-Oriented Modeling

39 • Journal 7 • www.architecturejournal.net

the capability part of why customers, partners, or suppliers do busi-

ness with the organization?

	 Capturing attributes such as these help you to define SLE at the

business level and then SLAs at the service level. This rich description

of the capabilities can be passed to development teams who can use

the information to help select the appropriate implementation tech-

nologies, hosts, and deployment topologies, based on business-

driven SLE.

	 Capabilities to services. One of the key benefits of the capability

modeling approach is that it enables you to identify the stable ele-

ments of your business to model your architecture around, and it

provides a critical layer that closely aligns the definition of services

in your connected systems architecture. You can draw boundaries

around capabilities—for example, at the group level—and express

each capability with contracts. You can then expose these as services

and create an orchestration across those capabilities by using the

service contracts.

	 While capability mapping is an effective way for you to analyze

the current state of your organization, you can also build a capabil-

ity map for a desired future state of your organization, and work out

how to transform your business to improve its agility. As an exam-

ple, consider outsourcing. By dividing the capabilities into those that

are core for your organization and those that are not, through a pro-

cess of re-engineering you can decide to outsource non-core capa-

bilities to other organizations. The important thing from an organi-

zation’s perspective is that the architecture supports business pro-

cess change and not capability change. The overall business capabil-

ity remains intact.

Motion Methodology
Microsoft has developed a simple, project-oriented method called

Motion for exposing your business architecture through building

capability maps. Motion is a methodology to organize, measure, and

evaluate business capabilities. The four elements of Motion are tools

and measures, prescriptive methodology, business capability mapping

techniques, and patent-pending model.

	 The methodology describes what the business does in the form of

business capability as opposed to how the business does it in the form

of people, process, and technology. Motion helps expose the busi-

Figure 7 Contract artifacts defined by the service model

Abstract
(technology

independent)

Concrete
(technology
dependent)

SO concepts WSDL

Entity

Message

Interface

Data type

Port type

Transport

Endpoint

Binding

Service

How Does Motion Work?

Microsoft Motion methodology does not encourage

you to focus on factoring organizational structure, tools,

or processes directly into the capability model. Rather, it

provides an effective way to help you arrive at appropri-

ate implementation solutions. The methodology defines

these four steps at the top level:

•	 Establish the project context. You start by documenting

project objectives, then generate a foundational capa-

bility map, and correlate your project objectives with

the foundational map capability.

•	 Understand the business. There are two parallel

efforts. Capture current business views, which nor-

mally involves interaction between the business peo-

ple and IT people. Capture business architecture

detail, which at this stage you start to build your top-

level capability map.

•	 Complete the “as-is” business architecture. At this stage

you add more detail to create a business architecture.

•	 Identify the recommended next steps. You might be

complete at this point, or you might have identified the

need to apply process improvement techniques, busi-

ness process outsourcing analysis, and so on.

	

The methodology is sometimes referred to as a “phase-

gate methodology” because there are distinct criteria that

you must be able to satisfy before proceeding to the next

phase. It is also important to realize that the methodol-

ogy encourages iteration at each of these stages. Having

completed the stages, you then use the information that

you have discovered to construct your subsequent model

(see Resources for further information).

“Business capabilities can be decomposed

into more granular business

capabilities—for example, when more

detailed attributes need to be defined”

Ser vice-Oriented Modeling

40 www.architecturejournal.net • Journal 7 •

ness architecture of an organization and isolate the elements of the

business that define the business model and drive performance and

differentiation. Business model and business architecture are separa-

ble, and Motion helps organizations expose both, letting them better

manage change.

	 For example, consider two companies in the retail industry. They

have the same capabilities, but one might make profits from volume

product sales and the other makes all of its money from a member-

ship fee it charges customers. While the industry is the same, both

companies have very different business models. Applying retail indus-

try best practices to one will create value in one organization, and

destroy it in another. Thus, having a clear and detailed understanding

of the business model is very important.

	 Motion describes how you extract and document structural and

process-oriented information alongside individual capabilities. It pro-

vides the guidance for performing the modeling activity itself and

includes a large number of templates to help you document all of the

required information around each capability (see the sidebar, “How

Does Motion Work?”).

	 The methodology also provides guidance to show how it comple-

ments a number of existing business process improvement frame-

works including business process re-engineering, Six Sigma, Lean,

and the Zachman framework. Not only does Motion do things these

models don’t do, it helps with things those other models were never

intended to do.

	 The key to understanding why Motion is different is in understand-

ing capability mapping and how it differs from process mapping.

Capability architecture, and not process architecture, is at the core of

the Motion methodology. By initially abstracting (even ignoring) pro-

cesses and analyzing business capability, you can derive an inherently

more stable view of your business that is particularly valuable from a

versioning standpoint. Capabilities subsequently become the building

blocks for processes.

	 Looking beyond current practices, many of which do not support

the rapid rate of change inherent within business today, the Motion

methodology was developed as a business architecture methodol-

ogy that could handle the present and coming challenges of the con-

nected economy.

	 The Motion methodology defines approximately 80 attributes to

help document capabilities. Some of the attributes you should doc-

ument for each capability were listed previously in the discussion of

level 3 business capabilities.

	 The primary benefit of documenting capabilities in a detailed

and consistent way is it gives you a solid understanding of the SLE

that the business has for each of the business capabilities. This

understanding subsequently allows you to derive SLAs, which in

turn helps you to determine the most appropriate implementa-

tion technology and deployment topology for the service imple-

mentation. Having the full and detailed description of each capa-

bility allows your technical teams to implement the solution in the

correct way.

Creating Service Models
Given a business model, then, the question now becomes how can

you translate that business model into a service model that you can

ultimately implement? Before examining an approach that enables

you to do this translation, let’s consider what you need to define to

create a service model (see Table 1). The key contract artifacts that are

outputs from service-oriented analysis and design and captured by

the service model are shown in Figure 7. Note that only the abstract

(technology-independent) artifacts need to be captured for the ser-

vice model. The underlying transport and endpoint is defined within

the technology model.

	 At an abstract level you need to understand and identify entities,

messages, and interfaces. What are the entities contained within the

data that is passed as messages during the interaction among busi-

ness capabilities? What are the messages that need to flow among the

different systems? What are the interfaces that business capabilities,

and ultimately services, expose?

	 At the concrete level, the technology model then defines what the

underlying transports are and how you should expose the endpoints

of a particular capability, which ultimately translates to a service.

Within the service model and from a service-definition-language con-

tract perspective, you also need to understand and identify the data

types and port types.

	 To identify and document the preceding items in a service model,

you do not need to use radically new analysis techniques. Rather, you

can use existing skills such as conventional object-oriented analy-

sis and design (OOAD) skills applied at a different abstraction level to

accommodate service orientation rather than object orientation.

	 With pragmatic, service-oriented analysis and design (SOAD), cre-

ating service models does not require completely new methodologies

and new approaches. Rather, you can reuse existing skills, and partic-

ularly those associated with UML and conventional OOAD. A change

of emphasis is required though. You must move away from thinking

about RPC-style method call interactions among objects toward mes-

sage-based interaction among services. By doing so, you can take

classic UML-based OOAD and apply it at the business-abstraction level

to create your service models. The key difference between SOAD and

OOAD is SOAD clearly separates process and entity to decouple ser-

vices. Decoupled services are more agile and reflect the reality of real

business practices.

	 For example, consider how conventional UML models can be

applied to service-oriented analysis and design:

•	 Use cases including activity diagrams are derived easily from the

task and activity descriptions provided by the capability model.

•	 The collaboration model gives you a good understanding of the

process that needs to be enacted between the tasks and activities,

which help you to arrive at your orchestration requirements.

•	 The interaction model or sequence diagram provides informa-

tion about the underlying message-exchange patterns (synchro-

nous request/response, asynchronous duplex, and so on) that need

“The primary benefit of documenting

capabilities in a detailed and consistent

way is it gives you a solid understanding

of the SLE that the business has for

each of the business capabilities”

Ser vice-Oriented Modeling

41 • Journal 7 • www.architecturejournal.net

to occur among the services. It also helps you to start to derive the

externalized canonical domain model, which defines the schema for

the data on the wire that goes into the messages. With this informa-

tion, you can start to define service contracts.

•	 The component model sketched at an early stage helps focus on

operational issues and needs, taking into account the organiza-

tional structure and the capability (service) responsibilities and

owners. It captures important information for availability, reliability,

and scalability from a business perspective and helps to review SLE

and SLAs.

	 By using a pragmatic SOAD approach, you can extract all of the

necessary pieces required to build your service model. This extraction

includes service contracts, SLAs derived from the SLE defined for each

business capability, and the service orchestration requirements. With a

detailed service model closely aligned with and derived from the busi-

ness model, you should now be well placed to map the service model

to a technology model that identifies how each service will be imple-

mented, hosted, and deployed.

	 The second part of this discussion will be published in the next

issue of The Architecture Journal, and it will demonstrate how by using

the preceding approach and by creating the service model, you can

hand over to your IT department data schemas, service contracts, and

SLA requirements to inform the definition and ultimately implementa-

tion of the technology model.

A New Direction
The old way of thinking about service orientation is not working, and a

new way of thinking is required. By adopting this new kind of thinking,

as architects we can force explicit consideration of service model arti-

facts in your design process, which helps you to identify the artifacts

correctly and at the right level of abstraction to satisfy and align with

business needs.

	 From a modeling perspective, the gap between conventional

business and technology models is too large, which is a key con-

tributing factor to the failure of many service-orientation initiatives.

We’ve presented a three-part model with the introduction of a ser-

vice model in between the business and technology models to pro-

mote much closer alignment of your services with the needs of the

business. With a detailed service model closely aligned with and

derived from the business model, you are well placed to map the

service model to a technology model that identifies how each ser-

vice will be implemented, hosted, and deployed. Capability map-

ping and the Motion methodology provide an effective way to

identify business capabilities and ultimately services. The decompo-

sition of the business into capabilities provides the top-level decou-

pling for the underlying service contracts, and not the other way

around as it usually is today.

	 Connected systems are instances of the entire three-part model,

and they respect the four tenets of service orientation. They can be

more completely implemented by using the five pillars of Microsoft’s

platform technologies. Recall that we asked upfront: How do we avoid

making the same mistakes with SOAs that previous, hopeful initiatives

have resulted in? How do we ensure that the chosen implementa-

tion architecture relates to the actual or desired state of the business?

How do we ensure a sustainable solution that can react to the dynam-

ically changing nature of the business—in other words, how can we

enable and sustain an agile business? How can we migrate to this new

model elegantly and at a pace that we can control? And, how can we

make this change with good insight into where we can add the great-

est value to the business from the outset?

	 Service orientation with Web services is only the implementation

of a particular model. It is the quality and foundation of the model

that determines the answers to these questions.

Acknowledgements
The authors would like to thank Ric Merrifield (director, Microsoft Busi-

ness Architecture Consulting Group), David Ing (independent software

architect), Christian Weyer (architect, thinktecture), Andreas Erlacher

(architect, Microsoft Austria), and Sam Chenaur (architect, Microsoft

Corporation) for providing feedback on early drafts of this article. We

would also like to show our appreciation to Alex Mackman (principal

technologist, CM Group Ltd.), an excellent researcher and writer who

helped us enormously. •

About the Author

Arvindra Sehmi is head of enterprise architecture in the Microsoft

EMEA Developer and Platform Evangelism Group. He focuses on

enterprise software engineering best practice adoption throughout

the EMEA developer and architect community and leads architecture

evangelism in EMEA for the financial services industry. Arvindra is

editor emeritus of the The Architecture Journal. He holds a Ph.D. in

biomedical engineering and a Masters degree in business.

Beat Schwegler is an architect in the Microsoft EMEA Developer and

Platform Evangelism Group. He supports and consults to enterprise

companies in software architecture and related topics and is a frequent

speaker at international events and conferences. He has more than 13

years experience in professional software development and architecture

and has been involved in a wide variety of projects, ranging from real-

time building control systems and best-selling shrink-wrapped products

to large-scale CRM and ERP systems. For the past 4 years, Beat’s main

focus has been in the area of service orientation and Web services.

Resources

“Modeling and Messaging for Connected Systems,” Arvindra Sehmi and

Beat Schwegler

A Web cast of a presentation at Enterprise Architect Summit–Barcelona

(FTPOline.com, 2005) www.ftponline.com/channels/arch/reports/

easbarc/2005/video/

Obtain a case study on Microsoft Motion methodology by sending a

request to motion@microsoft.com.

“Motion provides the guidance for

performing modeling activity and

includes a large number of templates

to help document all of the required

information around each capability”

098-105109	 Subscribe at: www.architecturejournal.net

®

	Cover
	TOC
	Foreward
	Build Applications on a Workflow Platform
	The Amazing Race Metaphor
	Explore Human Workflow Architectures
	Workflow in Application Integration
	Simplify Designing Complex Workflows
	Enable the Service-Oriented Enterprise
	Service-Oriented Modeling for Connected Systems – Part 1

