
Journal 6

Learn the discipline,
pursue the art, and
contribute ideas at
www.ArchitectureJournal.net
Resources you can
build on.

®

Taking Governance
to the Edge

Apply Topic Maps to
Applications

Design and Implement
a Software Factory

Service-Oriented
Business Intelligence

Planning Technical
Architecture

Behavioral Software
Architecture Language

Strategies for Design

Foreword	 	 	 	 	 	 	 	 	 	 1

by	Arvindra	Sehmi

Taking	Governance	to	the	Edge	 	 	 	 	 	 2

by	Philip	Boxer	and	Richard	Veryard
Service-oriented	architecture	(SOA)	gives	businesses	a	new	way	of	getting	work	done,	but	SOA	brings	
with	it	the	traditional	problems	of	governance	as	well	as	new	challenges.	Discover	an	approach	to	
asymmetric	forms	of	governance	that	focuses	on	how	businesses	understand	their	risks.

Apply	Topic	Maps	to	Applications	 10

by	Kal	Ahmed	and	Graham	Moore
Topic	maps	provide	a	metamodel	for	representing	knowledge	models	that	are	integrated	with	other	
systems.	See	what	current	and	potential	application	areas	there	are	for	applying	topic	maps	and	how	
to	access	topic	map	information	using	Web	services	architectures.

Design	and	Implement	a	Software	Factory	 18

by	Mauro	Regio	and	Jack	Greenfield
The	health	care	industry	offers	a	representative	environment	for	interoperability	among	organizations.	
Take	a	look	at	designing	and	implementing	a	software	factory	that	is	based	on	the	Health	Level	Seven	
(HL7)	standard	that	also	provides	a	vision	for	supporting	collaboration	in	different	industries.

Service-Oriented	Business	Intelligence	 23

by	Sean	Gordon,	Robert	Grigg,	Michael	Horne,	and	Simon	Thurman
Business	Intelligence	(BI)	and	Service	Orientation	(SO)	are	independently	developed	architectural	
paradigms	that	form	the	synergy	of	the	SoBI	framework.	Find	out	the	similarities	and	differences	
between	them	that	are	leveraged	by	the	SoBI	architectural	framework.

Planning	Technical	Architecture	 33

by	Waleed	Nema
Managers	and	operational	staff	know	the	value	of	technical	architecture	planning	and	its	merits	for	
aligning	IT	with	the	business	and	controlling	service	levels	and	expenses.	Get	insight	on	how	these	
business	drivers	can	impact	creating	a	tactical	plan	for	an	infrastructure	architecture.

Behavioral	Software	Architecture	Language	 36

by	Behzad	Karim
A	tenet	for	architecture	definition	is	to	design	software	structure	and	object	interaction	before	the	
design	phase,	and	architecture	design	and	approval	should	precede	any	software	development	
project.	Learn	how	the	Behavioral	Software	Architecture	Language	unifies	software	architecture	
definition	with	software	implementation.

Journal	6

Resources you can build on. www.architecturejournal.net

Contents

Dear Architect,
In the beginning I wished to publish just six issues of The Architecture
Journal and gather enough evidence to help Microsoft decide whether or
not it was worth keeping. Regular readers know what has happened to
The Architecture Journal; it’s been a marvelous thing for all of us involved,
including our superstars—the authors—to see the interest and subscriptions
grow dramatically worldwide, month after month, for both print and digital
media formats. It has been fantastic!
 Now it’s time to let a professional team at Microsoft Corporate HQ take
over this publication and grow it beyond my initial dreams. As a key compo-
nent of Microsoft’s broad architect outreach program, it makes 100 percent
sense for The Architecture Journal to be given better resources in terms of
people and funding than I can manage with my team in Europe. To this end
I am delighted to introduce Simon Guest, group program manager in the
Microsoft Architecture Strategy Team, as the new editor for The Architecture
Journal. Simon and his team have the vision and passion for this publication,
and I’m confident they’ll remain faithful to its original charter as an indepen-
dent platform for free thinkers and practitioners of IT architecture.
 In this issue we have a number of great articles spanning SOA gover-
nance, practical information modeling using topic maps, software factories
for collaboration protocols in the health care industry, and a service-ori-
ented perspective on business intelligence. We also have two short papers
on software modeling and technical planning. Many of these papers discuss
my favorite subject areas.
 I’ll continue to be involved in The Architecture Journal and look foreword
to seeing Simon and his team realize its full potential, and I wish them every
success in that endeavor.
 I’d like to acknowledge all of you for the great support and encouragement
you have shown me personally. For the pioneering authors of The Architecture
Journal I have nothing but the deepest gratitude and respect. Thank you.
With best wishes!

Arvindra Sehmi

Founder and Editor-in-Chief
Arvindra Sehmi
Microsoft Corporation

Microsoft Editorial Board
Christopher Baldwin
Gianpaolo Carraro
Wilfried Grommen
Simon Guest
Richard Hughes
Neil Hutson
Eugenio Pace
Harry Pierson
Michael Platt
Philip Teale

Publisher
Norman Guadagno
Microsoft Corporation

Associate Publisher
Marty Collins
Microsoft Corporation

Design, Print and Distribution
Fawcette Technical Publications
Jeff Hadfield, VP of Publishing
Terrence O’Donnell, Managing Editor
Michael Hollister, VP of Art and
Production
Karen Koenen, Circulation Director
Brian Rogers, Art Director
Kathleen Sweeney Cygnarowicz,
Production Manager

The information contained in this Best of the Microsoft

Architecture Journal (“Journal”) is for information purposes

only. The material in the Journal does not constitute the

opinion of Microsoft or Microsoft’s advice and you should

not rely on any material in this Journal without seeking

independent advice. Microsoft does not make any warranty

or representation as to the accuracy or fitness for purpose of

any material in this Journal and in no event does Microsoft

accept liability of any description, including liability for

negligence (except for personal injury or death), for any

damages or losses (including, without limitation, loss of

business, revenue, profits, or consequential loss) whatsoever

resulting from use of this Journal. The Journal may contain

technical inaccuracies and typographical errors. The Journal

may be updated from time to time and may at times be

out of date. Microsoft accepts no responsibility for keeping

the information in this Journal up to date or liability for any

failure to do so. This Journal contains material submitted and

created by third parties. To the maximum extent permitted

by applicable law, Microsoft excludes all liability for any

illegality arising from or error, omission or inaccuracy in this

Journal and Microsoft takes no responsibility for such third

party material.

All copyright, trademarks and other intellectual property

rights in the material contained in the Journal belong, or are

licensed to, Microsoft Corporation. You may not copy, repro-

duce, transmit, store, adapt or modify the layout or content

of this Journal without the prior written consent of Microsoft

Corporation and the individual authors.

© 2005 Microsoft Corporation. All rights reserved.

®

� • Journal 6 • www.architecturejournal.net

Foreword

� www.architecturejournal.net • Journal 6 •

Taking Governance
to the Edge
by Philip Boxer and Richard Veryard

There are two competing visions of service-oriented architecture

(SOA) circulating in the software industry, which we can label as

SOA 1.0 and SOA 2.0 (see Table 1). Our approach to governance is tar-

geted at SOA 2.0. One of the central questions raised by Christopher

Alexander in his latest four-volume work, The Nature of Order, is how

to get order without imposing top-down (central) planning, or con-

versely how to permit and encourage bottom-up innovation without

losing order (see Resources). Alexander promotes the concept of struc-

ture-preserving transformations and argues that under certain con-

ditions large-scale order can emerge from an evolutionary process of

small incremental steps, provided that each step is appropriately struc-

ture preserving. However, how (and in whose interests) do we define

the structure that is being conserved, and at what level?

 Note that with this concept of structure preservation, the lead-

ership is not doing the design, but setting the parameters in which

orderly design may take place. This function is very much a governance

role. To answer the question, we need to distinguish governance from

management.

 Loose discussion of governance (both IT governance in general

and SOA governance in particular) can easily spread until it appears to

cover all aspects of management. So where does management stop

and governance begin?

 If we understand management as getting things done, then we can

best understand governance as something like steering (as in steering

committee). In the old days, it was common practice for large develop-

ment projects/programs to have steering committees—often a sepa-

rate one for each project—governing things like funding, scope, direc-

tion, and priorities. The steering committee was the forum to which

the project manager was accountable. It was supposed to maintain a

proper balance between the interests of the project and the interests

of the whole organization, and to resolve conflicts.

 However, there were several problems with this approach. First, the

steering committee typically met infrequently and often only had a

vague idea about what was going on. Second, the steering committees

generally didn’t talk to each other. Third, there were many important IT

functions (such as architecture) and desired outcomes (such as produc-

tivity and reuse) that didn’t have a steering committee. So the steer-

ing committee approach was incomplete, inconsistent, and often pro-

duced suboptimal results.

Real-Time Governance
The fashion shifted away from ad hoc steering committees, and many

large IT organizations began to pay explicit attention to questions of IT

governance. Where significant amounts of IT activity were outsourced,

this governance included questions of procurement and relationships

with key suppliers.

 With SOA, we have a new approach to getting things done. We also

have all the old problems of governance plus some new ones. There is

a complex tapestry of service-oriented activity going on, all of which

needs to be properly coordinated and aligned with business goals,

and the timescale has changed. Instead of steering committees meet-

ing every two months, we have real-time governance, covering both

design governance and run-time governance.

 We know that this cannot simply be reduced to a management

problem. Many organizations experience difficulties in doing SOA

properly, not because of technical problems but because of a lack of

appropriate governance. How do you fund twin-track? How do you

manage twin-track in such a way that the service goals are consistent

with the business goals so that the SOA can be managed in an efficient

way? And what happens when they are not consistent with each other?

 We need to get away from the idea of a committee sitting around

a table listening to progress reports and issue logs from project man-

agers. We need to hold on to the idea that steering involves account-

ability to multiple stakeholders, and this accountability is included in

a notion of governance that is critically about addressing questions of

value, value for whom, and value to what end. These are essentially eth-

ical questions (in the broadest sense of the word ethics—the science of

value). Thus, while management is about getting things done, gover-

nance is about making sure the right things are done in the right way.

Summary

Discover the challenges faced by asymmetric forms
of governance and an approach to working that
focuses particularly on the way a business understands
the risks that arise from how it relates to exogenous
geometries, in addition to the more familiar risks asso-
ciated with managing its endogenous geometry..

“With SOA, We hAve A neW ApprOAch tO

getting thingS dOne. We AlSO hAve All

the Old prOblemS Of gOvernAnce pluS

SOme neW OneS”

Governance

� • Journal 6 • www.architecturejournal.net

sure that attention is complete (at least in the sense that every-

thing important is being attended to), efficient (without unnecessary

duplication of attention), and connected (in the sense that the con-

cerns can be brought together where necessary). It must also make

sure that the conditions of transparency exist within which such

attention is possible.

 Creating these conditions of transparency implies a prior separation

of unconcerns. Separating out what needs to be attended to from that

which can (safely) be ignored brings us to a key governance concern:

the governance of what can be ignored that is prior to the governance

of conflicts of interest between concerns. What is anybody permitted

to ignore? What forms of ignorance are mandated?

 For example, SOA inherits notions of transparency from earlier work

on open distributed processing. You can use a service without knowing

its location; you can use data without knowing its source (provenance).

This “not knowing” is very useful in some ways, but dangerous in oth-

ers. It implies that there is no need for horizontal transparency.

 SOA involves loose coupling (and horizontal coordination) not only

between software artifacts, but also between the organization units

that are responsible for these artifacts. The organization structure typi-

cally (although not always) reflects the software structure.

 What happens to governance when we can no longer rely on a

belief that somebody else is taking care of this risk?

Interoperability
It is sometimes supposed that the SOA agenda is all about decoupling.

Requirements models are used to drive decomposition—the identifica-

tion of separate services that can be used independently of each other

when used. These separate services are then designed for maximum

reuse, producing low-level economies of scale through satisfying an

increased level of demand of any given type than was previously possi-

ble, and economies of scope through satisfying demand from a greater

variety of contexts.

 In a hierarchical IT organization in which “right” is defined at the

top, this distinction might not seem to matter very much. However, if

we are thinking about twin-track development where there are neces-

sary tensions between business goals and service needs, let alone fed-

erated/distributed development where these tensions are replicated

across multiple business entities, then it matters a great deal. As soon

as two parallel activities (for example, service creation and service con-

sumption) aren’t accountable vertically upwards to the same manage-

ment point, governance becomes a question of negotiation between

two separate organizations, rather than simple management resolution

within a single right framework.

 Put another way, hierarchical accountability depends on verti-

cal transparency—what can be seen is what you can be held account-

able for. Vertical transparency does not imply horizontal transparency

across one or more vertically transparent hierarchies. Without horizon-

tal transparency, how can service providers be held accountable to ser-

vice needs and/or other business entities?

 Governance has to determine how conflicts of interest between

stakeholders are represented and contained in the interests of the

whole. Put another way, it has to create a structure within which this

representation is possible. If we understand stakeholders’ interests to

be expressed as value from particular points of view (in a horizontal or

vertical relationship to what is going on), then this question can be for-

mulated in terms of a structure within which to distribute the bene-

fits, costs, and risks between these interests. For example, SOA gover-

nance provides ground rules for interface agreements to be made and

enforced. In the real world, we know that all agreements are subject

to being reneged and renegotiated as requirements and conditions

change. However, who incurs the risk of such changes, and who shall

bear the cost of any change? If you decide you need to change the

interface, am I forced to respond to this change, and if so, how quickly

and who pays?

Structuring Transparency
There is also a conflict of interest between the present (short-term

adaptation) and the future (longer-term adaptability). How shall

adaptability be supported, how shall large complex solutions be per-

mitted (nay encouraged) to evolve, and how shall this evolution be bal-

anced against the need for order and short-term viability?

 These questions can be asked at two levels: first at the manage-

ment level, where there are a series of trade-offs and controls to be

maintained, and second at the governance level, where we need to ask

questions about the structure within which to distribute the benefits,

costs, and risks on an ongoing basis.

 Put another way, it’s a question of how we determine responsibil-

ities and accountabilities, and the processes of negotiation between

them. Ultimately, it’s a question of how to structure transparency:

determining who is enabled to know the what, how, and when of

things getting done in relation to whom. Governance vests author-

ity by creating responsibilities with their associated accountabilities

over the expertise and work mobilized by management (or rather

managements), requiring that the appropriate forms of transparency

be created.

 One of the key principles for the management of complexity in IT

and elsewhere is the separation of concerns. Separation of concerns

implies selective attention: who pays attention to what. There is an

important governance role here. Not only must governance make

SOA 1.0 SOA �.

Supply-side oriented Supply-demand collaboration

Straight-through processing Complex systems of systems

Single directing mind Collaborative composition

Controlled reuse Uncontrolled reuse

Endo-interoperability (within a single enter-
prise or closed collaborative system)

Exo-interoperability

Cost savings Improved user experience

Table 1 Comparing SOA 1.0 and SOA 2.0

Deconfliction Interdependence

“Bush’s gambit—filling the skies with bullets
and bread—is also a gamble, Pentagon
officials concede. The humanitarian mission
will to some degree complicate war planning.
What the brass calls deconfliction—making
sure warplanes and relief planes don’t con-
fuse one another—is now a major focus of
Pentagon strategy. ‘Trying to fight and trying
to feed at the same time is something new
for us,’ said an Air Force general. ‘We’re not
sure precisely how it’s going to work out.’”
 — “Facing the Fury,” Time Magazine,
October 2001

“We’ve gone from deconfliction of joint
capability to interoperability to actually
interdependence where we’ve become more
dependent upon each other’s capabilities to
give us what we need.”
— Interview with General Shoomaker, CSA,
October 2004

Table � From Deconfliction to interdependence

Governance

� www.architecturejournal.net • Journal 6 •

 Clearly there are some systems that are excessively rigid, and will

benefit from a bit of loosening up in such a way that their constitu-

ent services can be used independently of the system as a whole. This

rigidity is only one side of the story, however. While some systems

are excessively rigid, there are many others that are hopelessly frag-

mented: to get effective use from them, the independent services have

to be made to work together. Thus, the full potential of SOA comes

from decomposition and recomposition.

 An important type of decoupling, as practiced by the military, is

known as deconfliction. Deconfliction involves taking a whole mission and

breaking it down into constituent missions that can be undertaken inde-

pendently of each other, which produces a hierarchical chain of com-

mand in which the mission of any constituent component must depend

on the way their mission fits into a larger whole defined by the way the

command has imposed deconfliction. Deconfliction relates particu-

larly to the effects that any mission creates, and the side effects of those

effects on any other missions. Deconfliction therefore requires not only

an understanding of how things work (that is, management), but also

an understanding of how composite effects can be achieved from con-

stituent effects with the minimum of conflict between the constituent

components and the maximum efficiency in the utilization of resources.

Deconfliction is therefore about uncoupling, but crucially about the way

this uncoupling is done in relation to the overall mission. (see Table 2).

 The military take conflicts between the constituent components of a

force very seriously—so-called friendly fire (where we kill our own side

by mistake) is clearly a life and death issue. In our terms, friendly fire is an

extreme example of interoperability failure. Deconfliction means orga-

nizing operations in a way that minimizes the potential risk of this kind

of conflict, so that separate units or activities can be operated indepen-

dently and asynchronously while still contributing to the overall mission.

 But deconfliction often also involves a costly trade-off. Resources

have to be duplicated, and potentially conflicting operations are delib-

erately inhibited. The pressures for more efficient use of resources

forces specialization capable of delivering economies of scale and

scope, combined with increasingly dynamic and political missions, to

confront any chosen approach to deconfliction with increasing levels

of interdependency.

 The response to this issue, as the technologies of communica-

tions and control have become more sophisticated and reliable, is

to increase the degree of coordination possible between the con-

stituent components of a force, to allow units and activities to

be composed in more powerful ways, which is the motivation for

network-centric warfare. Rather than depending on a prior plan

based on a particular deconfliction, the network enables com-

manders to coordinate dynamically the relationships between

force components as the composite effects they need to pro-

duce themselves change. It is this use of the network that makes

it possible to take power to the edge of the force where it meets

the enemy.

Interop Risks
Commercial and administrative organizations typically attempt decon-

fliction through a management hierarchy and through an associated

accounting structure of budgets and cost centers that create verti-

cal transparency consistent with the form of deconfliction. This pro-

cess is known to be inflexible and inefficient, producing silos of activity

that are relatively impervious to demands for different organizations

of their activities. Power to the edge (and, arguably, advanced forms of

SOA) is not compatible with traditional budgeting and cost account-

ing structures.

 Deconfliction leads us toward an arms-length notion of interoper-

ability: X and Y are interoperable if they can operate side by side with-

out mutual interference. This operation is the driver behind the uncou-

pling agendas of SOA, and it does yield improvements in economies of

scale and scope.

 There is also a positive notion of interoperability: X and Y are

interoperable if there can be some active coordination between them.

This notion requires us to go beyond the deconfliction per se, and

not only to consider the assumptions about composition implicit in

the form of deconfliction, but also to consider how they can be made

explicit and dynamic through coordination. However, this is now net-

work (horizontal) coordination rather than hierarchical top-down plan-

ning, which raises the same governance questions we discussed earlier

in the relation between the twin tracks of pursuing business and ser-

vice goals.

In
te

ro
p

er
ab

ili
ty

Exogenous

Endogenous

WHOM WHY

WHAT HOW

Making
things work

Coordination
of the whole

Coordination

Figure 1 Relating the supply side and the demand side

In
te

ro
p

er
ab

ili
ty

Exogenous

Endogenous

WHOM WHY

WHAT HOW

Making
things work

Coordination
of the whole

Coordination

Presenting
symptom

(patient/GP)

The way the patient's
condition will unfold

over time
(Primary Care Trust)

Service
provider

(orthotics)

Senior
management
(Acute Trust)

Figure � Relating the supply and demand sides for a health care example

“implicit in Any fOrm Of decOnflictiOn

iS An ApprOAch tO cOOrdinAting the

decOnflicted ActivitieS thrOugh the WAy

they Will interOperAte”

Governance

� • Journal 6 • www.architecturejournal.net

 Let’s think about interoperability of management spreadsheets in

a large organization. Each manager produces his or her own spread-

sheets in an idiosyncratic way to support a particular set of manage-

ment decisions. Although they all import some data from the corpo-

rate database, they have mostly added data from elsewhere, and they

have all formatted things differently. A senior manager, Joe, gives a

presentation to a board meeting about a major strategic decision,

supporting his recommendations with some charts drawn in Micro-

soft Excel that are derived from a complicated, handcrafted (and com-

pletely undocumented) spreadsheet. Joe’s colleagues find it impossi-

ble to understand his spreadsheet, or to import his analysis into their

own spreadsheets for further analysis. Joe’s successor is more likely to

build a new spreadsheet than try to use the existing one.

 Interoperability fails at two levels here. Not only at the technical

level of sharing the spreadsheet as a user-designed artifact, but it also

fails at the level of meaning. The artifact is an expression of a frame-

work of meaning created by Joe that is not shared by Joe’s colleagues

and successors. Joe is trying to coordinate data in a way that requires

him to make it interoperate in unfamiliar (nonstandard) ways. The very

difficulties for managers collaborating on complex strategic decisions

also reflect their potential value in creating new ways of acting.

Share the Commitment
What does this have to do with ignorance? It’s because of how much

you need to know about Joe and his experience of management (that is,

his framework of meaning) to make sense of his spreadsheet.

The more complex the spreadsheet is, the more it becomes

almost an embodiment of Joe himself and his way of pay-

ing attention to certain details of management. To use the

spreadsheet, you almost need to get inside his skin, see things

through his eyes. If Joe is powerful enough within the orga-

nization, then he can impose his experience of management

on his colleagues and get them to use his spreadsheet, but

that will typically result in interoperability problems elsewhere

when data starts being used in new and unanticipated ways.

A spreadsheet designed for reuse has to assume some level of

shared understanding between the user and the originator.

 For coordination between X and Y, they clearly have to

be able to interoperate in a technical sense—Joe has to be

able to send me his spreadsheet, and I have to have the right

systems installed to be able to run it. But that is not suffi-

cient. Let’s say we have P1 using X and P2 using Y. Coordina-

 We are particularly focused on the risks associated with interoper-

ability, not only because any given geometry is a particular coordina-

tion between its constituent services, but also because these are the

ones that emerge as you coordinate across systems and organizations.

(We have been following the recent developments around Hurricane

Katrina with considerable interest because some of the public criticism

of the Federal Emergency Management Agency [FEMA] clearly exposes

difficulties in managing some of the interoperability risks.) How are we

to think about the nature of these risks?

 Governance here involves setting the terms of reference within

which management is charged with making certain things interopera-

ble. Interoperability risks may be ranked by severity: in this context this

ranking means the extent to which a given risk jeopardizes the way we

want to coordinate things.

 Implicit in any form of deconfliction is an approach to coordi-

nating the deconflicted activities through the way they will inter-

operate. A simple view of interoperability is that it introduces a

form of deliberate and selective ignorance: if you pay attention to

X, you don’t have to pay attention to Y. For example, if you adopt

this open standard, you don’t have to care which of these standard-

compliant platforms may be used. This interoperation is a form of

specialization (or separation of concerns) as described earlier, which

makes this selective ignorance possible. It rests upon an assumption

about what X and Y mean for those trying to use them to produce a

combined effect.

Pattern Description

Comparison
(WHOM-HOW)

The demand is defined in such a way that the context from which it arises is ignored, but the service is coordinated in a way that enables it to respond to that
particular demand. This characteristic corresponds to the “comparison” approach for the patient, who is looking for the best solution offered to his or her
demand. For suppliers, this form of governance allows them to minimize their exposure to exo-risks by limiting the definition of demand that they will respond
to (the user requirement); although, they are still faced by integration risks inside the business.

Cost
(WHOM-WHAT)

Not only is the demand defined in such a way that the context from which it arises is ignored, but the response of the service is proceduralized too, and there
is no need for an explicit coordinating process. In this “cost” approach both the nature of the demands and the responses to them have become standardized.
Now the integration risk is minimized for the supplier and the technology and engineering risks being proscribed.

Custom
(WHY-WHAT)

An implicit form of coordination of how things work, often in the form of a particular budgetary regime, constrains the way the service is able to respond to
the patient’s condition. This characteristic corresponds to the “custom” approach, where the service is standardized but the way it is provided into the patient’s
context can be varied (mass customization). Here the supplier is exposed to integration risks again, as it builds more variability into the way its service works.

Destination
(WHY-HOW)

Each of these three forms treats demand as symmetric to an implicit or explicit form of endogenous coordination. Only in the fourth case do we have asym-
metric governance in which the endogenous and exogenous forms of coordination have to be aligned with each other. This characteristic corresponds to the
“destination” approach, where the patient goes to that place where he or she can get a treatment exactly aligned to the nature of their condition. It is also only
in this case that the supplier takes on the exo-interoperability risks explicitly.

Table � Governance relationship patterns

Standardization of model of
relation to context

Standardization of
model for

coordination of
supply

Customization of service under
standardized model of supply

Customization
of service
under
customized
model of
supply

Requires asymmetric
governance

Comparison Destination

Cost Custom

Figure � The governance cycle

Governance

� www.architecturejournal.net • Journal 6 •

tion has to consider the effects not only of how X and Y interoperate, but

also how P1 and P2 affect the meanings of X and Y. With coordination (or

its lack) comes the risk that the way use is made of X by P1 and of Y by

P2 will not produce the composite behavior expected. We can therefore

understand the risks of coordination in the same way that we understand

the challenges facing twin-track governance. They are created by a failure

to establish a shared framework of meaning within which to act.

 With directed composition (central planning, single design author-

ity), the question of shared meaning and permitted ignorance is dele-

gated vertically, but the resultant business geometry has to be endog-

enous to the interoperations of the activities under the hierarchy. Thus,

A is decomposed into (or composed from) B and C; and if there are

risks associated with the interoperability between B and C, then these

risks are owned by the person in the design hierarchy that owns A. In

an organization the requirement for vertical transparency is therefore

to be able to enforce this shared commitment to vertical coordination.

 In contrast, collaborative composition (planning at the edge

between multiple design authorities) requires that shared meanings

and permitted ignorances have to be negotiated, and that the resultant

business geometry will have exogenous and endogenous elements that

are assumed not all to be under the same hierarchy. Horizontal trans-

parency therefore means being able to work out how all the pieces fit

together as a whole in order that agreement can be negotiated about

how to impose a single, albeit temporary, hierarchy for the particular

purposes of collaboration, that is, horizontal coordination.

 Ultimately there has to be a shared commitment to a single hier-

archy, regardless of whether you are following a top-down (analytic,

directed decomposition) process or a bottom-up (synthetic, collabor-

ative composition) process, so long as there can be a shared commit-

ment ultimately to a single hierarchy. The difference in the approaches

lies in whether or not the resultant hierarchy is static or dynamic.

From the point of view of a business providing services to its custom-

ers, static customization will involve agreeing to the hierarchy before

entering into a business relationship. In contrast, dynamic customiza-

tion implies that the very processes of agreeing appropriate hierarchies

have to be part of the ongoing business relationship.

Risk Analysis
We are back to Alexander’s idea of the level at which we can be

structure preserving: we have to be able to decide how much of the

geometry has to be variable (underdetermining of the ways in which

service users can dynamically customize its uses), and how much of

it has to be fixed (overdetermining of the forms of business relation-

ships that can be supported). Whereas symmetric forms of gover-

nance can impose vertical coordination, asymmetric forms of gov-

ernance have to enable horizontal coordination, which raises new

issues concerning the way trust is shared. Under vertical coordina-

tion it can be guaranteed by the contract with the superior con-

text, whereas under horizontal coordination it has to be negotiated.

This issue presents new challenges for distributed leadership under

asymmetric forms of governance (see Resources by Huffington et al.

and Boxer and Eigen).

 In these terms we can see that vertical coordination is dominant

when the HOW is dominant, whereas horizontal coordination is dom-

inant when the WHY is dominant (see Figure 1). We can also see that

as long as the HOW remains dominant, we are effectively externalizing

the exogenous risks.

 We use methods of organizational analysis to distinguish the

endo-interoperability risks (which come from failures within the

organization) from three types of exo-interoperability risk (where

the source is outside the organization). These exo-interoperabil-

ity risks relate to what happens when a supplier’s systems and ser-

vices are combined with third-party systems and services as part of

a user’s solution. Thus, a supplier’s system may not work as expected

in the new context, it may not interoperate with other systems as

expected, and the whole system of systems may not interact with

the user’s context of use as expected. These results can be thought

of as errors of execution, of planning, and of intention within the

user’s domain.

 We are aware of various analytical techniques for understanding

and managing endo-interoperability risk. We are not aware of analyt-

ical techniques for understanding and managing exo-interoperability

risk. This situation is not surprising in a world that defines its business

as being one of pushing solutions, but in a service-driven world these

risks begin to become the biggest as suppliers encounter the pull of

emancipated users (see Hagel and Brown in Resources).

 The shift from push to a pull is not only a matter of adopting new

forms of governance and horizontal coordination. It also requires

that the supplier adopt a platform mentality in which the platform is

not theirs but the user’s—at best they are providing a platform on

which users can solve their problem. The general inability to manage

exo-interoperability risks is not only a very major problem, but cen-

tral to supporting a pull relationship with the user. Many of the sup-

plier organizations we talk to are still in denial about this concern,

but we are finding more user organizations that recognize the need

for their suppliers to adopt a systematic approach to managing their

exo-interoperability risks. What is at stake is the old arms-length pro-

curement model that assumes that the user requirement can be sep-

arated from the context of use. Instead, users are looking for a col-

laborative approach to managing the risks attendant upon providing

service platforms.

Drives

Satisfies
Constrains Anticipates

Business user /
customer

SOA developer Enterprise architecture

Customer context

Figure � Role structure

“Where in the cycle the buSineSS needS

tO be Will depend On hOW it chOOSeS tO

bAlAnce riSkS And reWArdS”

Governance

� • Journal 6 • www.architecturejournal.net

Supply and Demand
The essential characteristic of this platform approach is that it manages

both the supply side (that is, the endo-interoperability levels), and the

demand side (that is, the exo-interoperability levels). In these terms we will

see that the four positions in the cycle we described in “The Metropolis and

SOA Governance” (The Architecture Journal, Vol. 1, No. 2—see Resources)

are four different patterns of governance relationships between the supply

and demand sides, only one of which requires asymmetric governance. The

other three use variations of vertical coordination (see Table 3).

 If we adopt a platform approach, then we have to hold the four

areas shown in Figure 2 in relation to each other in a way that is

aligned to the WHY—in governance terms, the endogenous coordina-

tion imposed on the service by the trust (the HOW) has to be explicitly

aligned to the particular form of exogenous coordination imposed on

the patient’s demand by his or her condition (the WHY).

 The governance cycle shows how two different kinds of standard-

ization (designed to reduce certain types of risk) have the effect of

rotating a business or system away from asymmetric governance, while

two different kinds of customization (which reintroduces certain types

of risk) may give the business or system access to the potential rewards

of engaging with asymmetry (see Figure 3).

 Where are the rewards commensurate with the risks in each case?

We have to be able to understand how these different forms of gov-

ernance are present or excluded within a supplying organization as

it changes its relationship to demand, in response to changing com-

petitive and demand circumstances. In Figure 3, the four forms are

arranged to show the cycle discussed in our article “The Metropolis

and SOA Governance” (see Resources). This cycle makes clear the tran-

sitions between each form, two of which require standardization, and

two of which require customization:

• The move from destination to product involves reducing the expo-

sure to integration risks by externalizing the exogenous risks.

• The move from product to cost involves reducing the exposure to the

technology and engineering risks by standardizing the business model.

• The move from cost to custom involves increasing the exposure to

integration risks again, but only the endogenous ones.

• Only the move from custom to destination faces the business with

the exo-interoperability risks.

 Where in the cycle the business needs to be will depend on how

it chooses to balance risks and rewards. As Prahalad and Ramaswamy

Team Team style Team focus Interoperation Risk Asymmetry

Blue
(WHAT)

We do the business The capabilities that our side want to use Endogenous I
Behavior of technology

First

What our side is capable of doing II
Engineering of outputs

White
(HOW)

We are the referees of … … what it is in our interests to do III
Integration of business

Second

Red
(WHOM)

We have the demand What the demand side is capable of
demanding of us

Exogenous I
Execution of solution

The way the demand side makes use of what
it demands

II
Planning of demands

Third

Black
(WHY)

We anticipate … … what are all the possible scenarios under
which the red team demands might arise

III
Intentions within context of use

Table � Four workshop roles

argue in “The Future of Competition” (see Resources), as demand has

become increasingly asymmetric, so it has become increasingly criti-

cal for businesses to develop scalable models that can work in the des-

tination quadrant as well. From an understanding of the whole cycle

shown in Figure 3, it can be decided what forms of change are needed

to capture the demands, and therefore what new forms of risk need to

be mitigated in the pursuit of the rewards. While a lot is known about

how to manage three of the forms of governance in this cycle, the dif-

ficulties of being able to transition through the fourth represents a

major obstacle to the continuing growth of a business when faced with

growing demand asymmetry.

In the Workshop
Turning to an orthotics case example, a clinic had been located within

the Acute Trust to provide it with its own orthotics service (compari-

son), enabling the demand to be standardized to just those forms of

demand that came from the consultants. Over time, the service itself

and its budgets were standardized to align them to these forms of

demand (cost). As a result, GPs had to refer patients through consul-

tants, even when there was no real necessity to see the consultant,

just to get access to the service. As a consequence, limited numbers

of referrals were allowed directly to the service where the patient was

known to the trust because of previous appointments (custom). The

Primary Care Trust was responsible for all the patients in the catchment

of the Acute Trust, however, and many of them were not receiving the

service they needed. The challenge, therefore, was to enable the ser-

vice to support these needs directly (destination). The Acute Trust

resisted this support because of the need to fund such a service differ-

ently; and it was difficult for the Primary Care Trust to initiate because

they didn’t have the appropriate means for managing the balancing

of the costs and risks of such a service. Put another way, new forms of

asymmetric governance had to be developed.

 To work with these issues within a supplying organization, we have we have

developed a workshop process that distinguishes four teams: blue,

white, red, and black, and is designed to unpack and articulate the dif-

ferent forms of interoperability risk associated with each of the quad-

“the ASymmetry Of gOvernAnce explAinS A

lOt Of the difficultieS peOple hAve been

experiencing With SOA”

Governance

� www.architecturejournal.net • Journal 6 •

rants. The workshop process is deliberately based on a military meta-

phor, but has been adapted for use by commercial/civilian organiza-

tions as well as military ones.

 The typical objectives of the workshop are to learn collectively how

these roles work in relation to one another in this specific organiza-

tion at this time; to discover the extent to which this organization lacks

capability in respect of these roles, and to start to develop this capa-

bility; and to obtain a snapshot of the current organization of demand

facing this organization.

 Possible uses of this workshop process provide a way of approachingPossible uses of this workshop process provide a way of approaching

a number of issues relating to the impact of asymmetric forms of demand

including: business strategy, organizational redesign, SOA design, SOA

governance, security analysis, and governance (see Figure 4).

 In our example, the blue team was the service, the white team wasIn our example, the blue team was the service, the white team was

the Acute Trust, the red team was the patient and his or her GP, and

the black team was the Primary Care Trust acting in the interests of the

patients within its catchment. Table 4 shows how these teams relate to

the different levels and asymmetries. The workshop works this way: The workshop works this way:

• Facilitating the recognition of the part played by each team, and the

particular forms of risk each faced.

• Understanding the consequences of the presence/absence of cer-

tain colors for the governance process.

• Facilitating the conversations between all four colors in understanding

the system as a whole and their interdependencies in managing risks.

• Using this understanding to develop strategies for managing the risks

and agreeing on the basis on which white must determine what is in

its interests.

Resources

Boxer Research Limited

www.asymmetricdesign.com

“From Push to Pull: Emerging Models for Mobilizing Resources,” John

Hagel and John Seely Brown (October 2005)

“Metropolis and SOA Governance,” The Architecture Journal 5, Richard

Veryard and Philip Boxer, Vol. 1, No. 2, (Microsoft Corporation, 2005)

“Special Issue on SOA Governance,” CBDI Journal (November 2005)

“Taking power to the edge of the organisation: role as praxis,” Philip

Boxer and Carole Eigen, ISPSO 2005 Symposium, (2005)

The Future of Competition: Co-Creating Unique Value with Customers, C.K.

Prahalad and Vebkat Ramaswamy (Harvard Business School Press, 2004)

The Nature of Order, Christopher Alexander (Center for Environmental

Structure, 2003)

The World Is Flat: A Brief History of the Twenty-First Century, Thomas L.

Friedman (Farrar, Straus and Giroux, 2005)

“What is the emotional cost of distributed leadership?” Working Below

the Surface: The Emotional Life of Contemporary Organizations, Clare

Huffington et al., Tavistock Clinic Series, (H. Karnac Ltd., 2004)

About the Authors

Philip Boxer is a strategy consultant based in the UK.

Richard Veryard is a writer, management consultant, and technology

analyst based in London, UK.

Teamwork
The focus of the workshop is ultimately on the particular issues facing

the white team in how it exercises governance:

• White constrains the way blue behaves in white’s interests. Under

conditions of asymmetric demand, white will have to choose to

underdetermine blue and allow blue distributed leadership in the

way blue responds to red within its particular black contexts.

• White therefore has to understand black to grant appropriate under-

determination to blue to enable blue to satisfy red.

• In these terms, the symmetric governance of white becomes asym-

metric as it addresses explicitly the consequences of black for how

blue responds to red.

 In this case the challenge was to make the asymmetric gover-

nance of the relationship between the service and the patients in

the Primary Care Trust’s catchment feasible, which in turn meant

creating horizontal transparency: it had to be possible for the clinic

to give an account of the way it aligned its treatment of a particu-

lar patient to the particular nature of that patient’s condition and

its outcomes. Thus, the Primary Care Trust was buying treatments

of patients, rather than fixed numbers of treatment episodes, which

involved creating a platform that could support this relationship

and changing the procurement protocols to reflect the changed

axis of accountability. In the article “The Metropolis and SOA Gover-

nance” (see Resources) we outlined the role played by this platform

in support of a different form of governance. In an upcoming article

we will address the analytical challenges involved in designing such

a platform so that it is properly aligned to an asymmetric form of

governance.

 The asymmetry of governance explains a lot of the difficulties

people have been experiencing with SOA. Many organizations will

have enough short-term stuff to do anyway, without getting into this

area, but we are starting to see organizations that are willing to take

these challenges on board, and we are enjoying helping them.

 Up to the latter part of the twentieth century, it could be

assumed that the great majority of time spent by a business would

be in the symmetric positions in the cycle. Only the generation of

new business propositions needed to take place in the destina-

tion quadrant. The challenge presented by the twenty-first cen-

tury is that these proportions are being reversed, so that although

the symmetric positions remain important in harvesting the value

of components within users’ platforms, the greatest value will

increasingly be created in the asymmetric part of the cycle. Devel-

oping an asymmetric capability is therefore of great importance

to businesses increasingly competing in a flat world (see Friedman

in Resources), in which component activities are outsourced under

the pressures of globalization, digitization, and intensifying supply-

side competition. •

Come visit the Journal’s new home at

www.ArchitectureJournal.net live

this December. The new site

contains a full library of articles from

previous Journal issues in addition

to upcoming highlights of our next

issue. Browse the content today and

post comments and letters directly to

the editor!

Now live at www.ArchitectureJournal.net!

051212_ARCjournalAD_r4.indd 1051212_ARCjournalAD_r4.indd 1 12/15/05 4:14:38 PM12/15/05 4:14:38 PM

10 www.architecturejournal.net • Journal 6 •

Apply Topic Maps
to Applications
by Kal Ahmed and Graham Moore

The principal purpose of topic maps is to allow the expression of a

domain knowledge model and to enable that knowledge model

to be connected to related resources. Within this broad remit we can

identify several common applications for topic maps in an enterprise.

 Most organizations are now publishers of resources to some

extent. For some, publishing information is the core business, and

for most other organizations the information they publish is a key

part of their communication to their customers and partners. Pub-

lishers of information face a number of challenges that can be

addressed with topic maps.

 For a large corpus, the search engine is often the only way for

newcomers to find what they are looking for. Traditionally, search

has been driven by content keywords or by full-text indexing. Topic

maps offer the alternative of indexing and searching against topic

names, and then using topic occurrences to present links to all con-

tent related to the topics found by the search. Each topic in a topic

map represents a single concept but can be assigned multiple

names, allowing the topic map to store scientific and common-usage

names, common misspellings, or translations for concept names. In

addition, a topic map may also store semantic relationships between

terms that can inform a search in several ways:

1. This semantic information could be used to provide alternate

search term suggestions to a user, or even to transparently expand

the entered search term. For example, with the appropriate associ-

ations a topic map could expand a search term such as “Georgian”

into “17th Century AND England.”

2. Topic typing or topic associations could be used to disambiguate

distinct concepts with the same term (homonyms) based on their

context in the topic map.

3. After executing a search that returns multiple resources, those

resources could then be grouped according to their classification

in the topic map, allowing users to more clearly see the different

ways in which their search phrase has been satisfied.

Benefits for Publishers
One distinct advantage to search optimization is that a search facil-

ity that only queries a topic map is significantly easier to tune. For

example, if an electrical retail site discovers that a new search term

“PVR” has become popular among customers seeking hard disc

video recorders, the topic map that drives site search could be modi-

fied to add the term “PVR” to the topic for “Hard Disc Video Record-

ers.” The content connected to that topic would not have to be mod-

ified at all; the search term “PVR” will now hit the “Hard Disc Video

Recorders” topic and result in the related resources being returned.

 Link management. One of the principal ways of keeping a user

on a site is to present related links that the user can follow to find

more information on a subject. Maintaining such links manually is

error prone and requires a trade-off between constantly updating

the links or accepting that older content will have equally aged links

to related content. The nature of topic maps as an index of resources

enables these sorts of links to be managed almost automatically.

 There are many different approaches to presenting related links

using a topic map, but in essence they all consist of traversing from

the resource to the point(s) in the topic map where that resource

is referenced, and then traversing the topic map in some way and

then extracting the list of resources that are referenced from the

Summary

Topic maps provide a fairly simple but very power-
ful metamodel for the representation of knowledge
models. In “An Introduction to Topic Maps” (The
Architecture Journal, No. 5, 2005), we presented how
a combination of topic maps and architecture design
patterns allow developers to build reusable compo-
nents for applications. Now we’ll take a look at some
of the current and potential application areas for topic
maps. As topic maps are primarily of use when inte-
grated with other systems, we’ll also discuss access to
topic map information using a variety of Web services
architectures from a traditional RPC-like, client/server
interaction to syndication models where either a push
model or pull model can be used to interchange
updates to a topic map..

“The key archiTecTural decision in

implemenTing Topic maps as parT of a

publishing soluTion is how The Topic

map sysTem is inTegraTed wiTh The

conTenT managemenT sysTem”

Topic Maps

11 • Journal 6 • www.architecturejournal.net

end of the traversal. Managing related links in this dynamic manner

has the distinct advantage that related links are always up to date;

that the list of related links can be generated based on the indexing

of previous content; and that the logic for extracting related links

can be modified without the need to modify either the resources or

their indexing.

 Support multiple routes to content. As discussed in our previ-

ous article, topic maps can be used to model many of the tradi-

tional content indexing and finding aids such as hierarchical and fac-

eted classification. In fact, a single topic map can contain many such

indexes. Creative use of multiple indexes can allow a user to find

content from many different entry points. For example, on a site

publishing financial analysis, a user might find a particular report by

a drill down through market sectors to a company and then to the

report, or by geographical region to a country related to the story,

or even by traversing personalized topics that represent his or her

own portfolio or interests.

 Serving multiple audiences. Topic maps provide great flexibility to

those organizations that need to provide access to different levels

of user. In the first instance, the concepts can be given names famil-

iar to each audience. For example, on a site giving information about

drugs, the topic map could provide the clinical name of a drug for

doctors and the trade name for patients as different names on the

same topic. Going further, the topic map can contain both full and

simplified domain models that are combined and can optionally

overlap. The principal feature of topic maps to support this require-

ment is the use of scope to specify the context in which a given

association between topics is to be presented to a user.

Application Architectures
The key architectural decision in implementing topic maps as part of

a publishing solution is how the topic map system is integrated with

the content management system. Integration needs to be considered

from two aspects: integrating content indexing and content creation,

and publishing topic map information with content.

 While the creation of a domain knowledge model might be in the

purview of a librarian or small set of domain experts, the publish-

ing solution should allow for the classification of content against the

domain model to be performed by those responsible for the con-

tent, either authors or content editors. Ideally, classifying and index-

ing the content against the topic map should be made a required

part of the content creation/approval life cycle, with classification

reviewed as part of the editorial process. A well-designed applica-

tion will also make use of patterns such as the patterns we discussed

in “An Introduction to Topic Maps” (see Resources).

 Patterns enable a librarian to make changes to the domain model

that reflect changes in the structure or focus of the content without

requiring any downstream changes to the management or presen-

tation code. For example, the patterns for hierarchical and faceted

classification schemes allow new hierarchies and new classification

facets to be introduced in the topic map and to be recognized and

displayed automatically by the presentation layer.

 Figure 1 shows a simplified block architecture for a Web site that

makes use of a topic map. The topic map is managed by a topic map

engine component that is populated by the information architect

and the content creator roles. When publishing the content there are

two possible approaches to the integration of information from the

topic map. In the first approach, the content management system

(CMS) provides the site structure and one or more regions on a page

into which information from the topic map can be added. In the sec-

ond approach a part of the topic map domain model is used to drive

the site.

 The former approach is most appropriate with CMSs that have

strong site-management features or that make use of site structure

to implement access controls or other features. The latter approach,

however, can be used to create a flexible site structure that can be

modified more easily to take account of changes in the way that

content indexes are organized. In addition to structuring the con-

tent in the CMS, the topic map engine can serve as a useful index of

all content available through the Web site. This index can be made

available through a Web services interface to rich clients such as an

RSS reader or the Research Service in Microsoft Office (see Figure 1).

 Topic maps can support a corporate knowledge management

application principally by providing a repository for capturing the

domain knowledge model. The flexible metamodel provided by

topic maps allows new concept types and relationship types to be

introduced into the knowledge model with minimal effort, enabling

the knowledge model to keep pace with changes in the business.

 In addition to maintaining the knowledge model for the domain,

the topic map can also be used to index resources on the intranet.

In this respect, the topic map provides similar benefits to those

described for general resource publishing, but with the develop-

ment of collaboration systems such as SharePoint, the extent of what

is available through the intranet is rapidly increasing. These systems

Internet server(s)

Internet users

Web serviceWeb server

Rich clientBrowser

Topic map
engine

CMS

Backend servers

Information
architect

Prototyping
tools

Editing
tools

Content
creator

Classification
tools

Editing
tools

Figure 1 Sample architecture for a topic maps-driven Web site

Web services

Intranet users

Intranet server(s)

BrowserMicrosoft Office suite

Collaboration
server/portal

Topic map
engine

Information architect

Prototyping tools

Editing tools

Figure 2 Sample architecture for topic maps on the intranet

Topic Maps

12 www.architecturejournal.net • Journal 6 •

make it very easy for users to create new intranet content and to

share content related to a project, but this sharing can quickly lead

to an intranet overloaded with content in which it is difficult to find

relevant information and almost impossible for a newcomer to get

acquainted with. An index of the intranet content based on topic

maps can not only help experienced users find relevant content

regardless of its location, but the high-level domain model embod-

ied by the topic map can also be useful in giving newcomers an

overview of the activities of the organization.

Content Connections
A significant part of the problem for corporate knowledge manage-

ment is that users have to work with many tasks that do not have a

one-to-one correlation to a piece of content. For example, a user

may work on a case or be part of a project or on a cross-functional

team or take part in a meeting. All of these tasks may have related

content—case notes, project documentation, meeting minutes, and

so on—but very often they have no real identity themselves. While

keywords can be used to connect content items to such concepts,

a simple keyword tells users nothing about what makes the content

relevant to the keyword or about relationships among keywords.

 A topic map provides a model for defining noncontent items

such as people, projects, and places as topics. Once these topics are

created, they can then be connected to content items. Topic maps

provide two ways of connecting to content. The first is by creating a

second topic that represents the content and then using an associa-

tion. The second is by using an occurrence that points directly to the

content items. The model can also be used to lift important relation-

ships among noncontent items out of content into the topic map to

provide an overview of the functions of the organization.

 For example, a project may have many participants and may be

carried out for a particular customer. By making the participants and

the customer into topics in the domain model, it would then be pos-

sible to quickly locate other projects for the same customer, or to list

the products that have been licensed to the customer, or to find the

other project commitments of a team member.

 A topic map can be used as a knowledgebase by itself. A sim-

ple application would be a Web portal with an interface that allows

users to create their own topics and associations and to browse

the topics and associations created by others. Users could also add

links to internal or external resources as occurrences, or the inter-

face could allow users to create or upload content to the portal

itself. Indeed, these are all common features of many generic topic

map editing applications. However, the most benefit comes when

the topic map is integrated into a collaboration system that can pro-

vide content management, event management, discussion forums,

and other features. As with integration for resource publication, a

successful implementation requires that the topic map functionality

should be made part of the normal interaction with the collabora-

tion system.

 Categorizing content is always going to be seen by some users as

an additional burden. This burden can be reduced by using schema-

driven classification to minimize the decisions that users need to

make about the classification of items, and by making use of the

topology of the collaboration system (for example, all documents

placed in the folder “Project X” get tagged automatically as being

related to the project “Project X”). At the other side of the equation,

just a minimal amount of classification can quickly generate bene-

fits for users by bringing otherwise disparate content together, and

just a single person working to categorize the content produced by

their project or department can result in a better knowledgebase for

all users. The inherently flexible nature of ontology based on topic

maps makes it very easy to start small, focus on the core ontology

needed to address the requirements of just that project or depart-

ment, and then to subsequently scale up as the project shows a

return on investment.

Delivering Knowledge
Having created topics and categorized content, the final aspect to the

use of topic maps in a corporate knowledge management scenario is

access to the topic map information. This aspect is the area where a

topic map can really shine. The topic map can provide a structured,

high-level domain model that is easily communicated over a Web ser-

Topic map engine

(a) Centralized push Client application

Data system 2 Data system 3Data system 1

Data push

Topic map engine

(b) Centralized pull Client application

Data system 2 Data system 3Data system 1

Data pull/response

(c) Distributed integration Client application

Data system 2 Data system 3Data system 1

Topic map query/response

Topic map
view 2

Topic map
view 3

Topic map
view 1

Figure 3 Three enterprise information integration architectures

“having creaTed Topics and caTegorized

conTenT, The final aspecT To The use of

Topic maps in a corporaTe knowledge

managemenT scenario is access To The

Topic map informaTion”

Topic Maps

13 • Journal 6 • www.architecturejournal.net

vices interface, giving huge potential for integration into desktop

applications. For example, we have recently developed a Web service

that implements the Microsoft Office Research Service interface to

provide a user with the ability to search and query a topic map from

within Internet Explorer and their Office applications.

 Figure 2 shows a possible architecture for such a knowledgebase

application. The information architect sets up the basic taxonomy

and classification schemes for the knowledgebase. The users then

work with the collaboration server and populate and extend this tax-

onomy through browser or rich-client interfaces.

 Similar integration possibilities are available using Smart Tags and

more detailed service interfaces such as that described later. These

integrations allow the information in a topic map to be delivered

right to the application in which they are most useful. In addition,

the domain model for internal knowledge management can also be

used as the basis for integrating data from other enterprise systems

as we will describe shortly.

 Topic maps are most frequently used as an adjunct to CMSs, which

is not surprising given the features that they bring in terms of content

organization, indexing, and searching. However, topic maps can also be

used as the foundation for integrating all sorts of data sources.

 The key to enterprise information integration using topic maps

is to define a core ontology and then to map data from each data

system into that ontology. For example, an ontology might con-

tain the concepts of a Customer and an Order, but it is the Customer

Relationship Management (CRM) system that contains informa-

tion about the customer’s calls to the help desk and the order-track-

ing system that contains information about the status of the cus-

tomer’s orders. An approach to integrating these systems based on

topic maps could be either centralized or distributed. These different

approaches are shown in Figure 3.

 In a centralized system, each data system provides information

about the entities that it manages to a central topic map. The infor-

mation may be published by a push from the data system (see part

a in Figure 3) or updated using a pull from the central topic map

management application (see part b in Figure 3). Other applications

can then consume that centralized information as topics, associa-

tions, and occurrences, thus shielding consumer applications from

a need to know the interfaces required to communicate with each

external system. In these systems data replication needs to be han-

dled with care to ensure that it is clear where the master for any

data item resides.

A Simple Topic Map Web Service

While it is possible for applications to generate topic map data, the
range of applications that can create or consume this data source is
limited. The idea of the Web service is to open up topic maps to more
applications regardless of whether they are publishing or querying
information. In addition, a well-defined Web service brings a valuable
commonality to the application in which knowledge services interact.
 The Web service presented here is comprised of a small set of
generic methods that ensure that it can be used in a wide variety of
topic map solutions. We briefly describe the Web service methods
and provide commentary on their applicability and intended use.
This interface is implemented by Networked Planet’s Topic Map
Web Service WSDL (see Resources), which also implements two
further methods that allow more direct access to any hierarchies
contained in the topic map.

 GetTopicMapNames() – A topic map system can store and
manage many topic maps. This operation returns a list of names of
the topic maps currently available. In addition, it is possible to have
this service aggregate or act as a broker over multiple distributed
topic maps. This method provides a way to find out which topic
maps are available.

 GetTopic(TopicMapName, TopicId) – This operation returns a
serialization of the specified topic from the named topic map. The
serialization provides the caller with enough information that it can
traverse to related topics.

 GetTopicTypes(TopicMapName) – This operation returns a
serialization of a subgraph of the topic map in which each topic that
serves as a type of one or more topics in the specified topic map is
fully serialized.

 GetTopicBySubjectIdentifier(TopicMapName, Identifier) – This
operation returns a subgraph of the specified topic map, in which the
topic with the specified identifier as its subject identifier is fully serialized.

 GetTopicsByType(TopicMapName, TopicTypeId) – This oper-
ation allows users to fetch a list of all the topics that are instances of
the given type. The return value is a subgraph of the topic map with
each instance topic fully serialized.

 DeleteTopics(TopicMapName, TopicId[]) – This operation
specifies the unique topic identifier of one or more topics to be
deleted from the specified topic map.

 SaveTopic(TopicMapName, TopicMapFragment)
– This operation can be used to both update an existing topic
and add new topics. The topic map data contained in the
TopicMapFragment parameter acts as the definitive version of
topics and associations. To replace an existing topic or associa-
tion, that construct in the TopicMapFragment parameter must
carry the unique identifier of the construct to be replaced. Any
topic or association in the TopicMapFragment parameter that
does not carry a unique identifier is added as new data to the
topic map.

 Query(QueryName, QueryParams[]) – The Web service does
not allow the execution of arbitrary queries against the topic maps.
Instead, the administrator or developer may configure any number
of named queries that are accessible through the Web service API.
This operation invokes the named query, passing in parameters that
are used as direct value replacements in the query string. The struc-
ture of the XML returned from this method depends on the results
table structure returned by the query.
 The key feature of this interface is that it is almost entirely topic
centric. All operations are on and return topics or lists of topics.
Using the serialization techniques described here, it is possible to
implement this Web service using a document-centric approach
with XML data that is easily processed using XML data binding or
XPath toolsets.

Topic Maps

14 www.architecturejournal.net • Journal 6 •

In a distributed system, each data system has an integration compo-

nent that exposes a topic map interface, and consumers contact the

systems through that interface (see part c in Figure 3). Again, con-

sumers are only required to understand one interface, but in this

case calls to the topic map interface could be translated directly

into queries and updates against the underlying information system,

which means that there is no data replication issue but can lead to a

more demanding integration task.

Identification and URIs
In either a centralized or distributed system, there needs to be a

strong emphasis on the identification of the entities that each sys-

tem manages. It is a simple matter to map entity-unique identifi-

ers such as a customer account number or an order-tracking num-

ber into a Uniform Resource Identifier (URI) for the topic that repre-

sents that account or order, and with a little care identifiers can be

constructed such that there is a common algorithm for converting

between the URIs and the entity-specific identifiers.

 The principal benefit of using a topic map for this sort of integra-

tion exercise is the flexibility that it allows for the modeling of the

integrated data. As the model is simply data in a topic map and not

a schema for any underlying system, new types of entities can be

introduced without any need to alter any existing integration inter-

faces. Additionally, by representing core business entities as topics

in a corporate ontology, the way is made clear to perform and inte-

grate data from enterprise information systems into the knowledge

management system or even, where appropriate, out onto the Web.

 All applications that make use of topic maps, including all of

those presented previously, require some method to access the topic

map information. Most applications also require a persistent store

for topic map data and in-process API to access and manipulate that

data, but these are beyond the scope of this discussion. What is of

more interest to the solutions architect is the ability to access topic

map information through Web services calls. Topic maps have sev-

eral properties that make them highly conducive to access through

Web services. Let’s take a look at them.

 Topic addressability. Topics can be assigned server-unique (or if

necessary, globally unique) identifiers. The topic addressability prop-

erty allows us to build client applications that can track the prov-

enance of the topic information they consume. Topic addressabil-

ity also allows us to traverse association or typing information in the

representation of a topic. For example, a query from a client might

retrieve topic A with an occurrence that it is typed by topic T. A sec-

ond query from the client can then retrieve all information about

topic T. In the sample Web service described in the sidebar, “A Sim-

ple Topic Map Web Service,” topics can be retrieved by their unique

identifier using the GetTopic() method.

 Concept addressability. The concepts that topics represent can be

assigned separate unique identifiers, allowing a query against mul-

tiple servers for information relating to a specific concept. Concept

addressability is the key to supporting the distributed creation and

maintenance of topic maps and the subsequent aggregation of the

information in those maps. Because a concept (such as Person, Place,

Fred Jones, or Birmingham) can be assigned its own URI separate

from the system identifier of the topic that represents that concept,

multiple systems can provide information about the same concept

and use the concept identifier as the key used in aggregation.

 For example, a query from a client might return a topic T with a

subject identifier I. The client could then query a second topic map

server for any topic with the subject identifier I to expand the amount

of information known about the concept represented by that identi-

fier. The advantage of concept addressability is that the client appli-

cation does not have to know the system-specific identifier of the

topic with the subject identifier I. In the sample Web service, this form

of addressability is provided by the GetTopicBySubjectIdentifier()

method (see the sidebar, “A Simple Topic Map Web Service”).

 Document-literal topics. Topics can be rendered easily as data

structures that make use of globally unique topic identifiers or hyper-

links to represent the relationships among them. In SOAP terms that

means that we can derive a simple document-literal representation of

a topic. If Representational State Transfer (REST) is your preferred Web

service methodology, it is possible to construct a topic representation

as a hyperlinked document sent in response to a REST-ful query. We

describe the algorithm for producing such a representation shortly.

 Standard merging rules. The merging rules of topic maps can be

used to combine topic information received from multiple separate

sources into a single functioning topic map. For topic map consum-

ers, the merging rules allow consumers to use concept addressability

4

31

2

Client application

Topic map
engine B

Topic map
engine A

Topic map engine B
syndication client

Topic map engine A
syndication server

Figure 5 Example syndication architecture for topic maps

Topic map broker

Client application

Topic map
engine B

Topic map
engine A

Figure 4 Topic map broker architecture

“The concepTs ThaT Topics represenT can

be assigned separaTe unique idenTifiers,

allowing a query againsT mulTiple

servers for informaTion relaTing To a

specific concepT”

Topic Maps

15 • Journal 6 • www.architecturejournal.net

to find all information relating to a concept and then combine that

information into a single topic that is presented to higher levels of

the application. This merging allows a client to aggregate informa-

tion from multiple topic map sources, and to then present an inter-

face that makes it appear that all of this aggregated information has

come from a single source. The merging rules also allow concept

addressability to be taken one step further as it allows a topic map

to declare two concepts to be equivalent by simply including the

address of each concept on a single topic.

 For example, a client could query for any information relating to

a concept with the identifier I, the topic map returns a topic T that

has the identifiers I and I’ as its subject identifiers, which tells the cli-

ent that the source is claiming that the concept identified by I is the

same as the concept identified by I’. If the client trusts the source

to make this sort of claim, it may then proceed by querying for any

information relating to the concept with the identifier I’ and merging

this with the information already received for the concept with the

identifier I.

 Topic maps can be quite easily used with almost any client access

architecture. We will examine three common architectures: client/

server, broker, and syndication architectures.

 The simplest of the topic map access architectures, the cli-

ent/server architecture, makes use of a Web service interface that

exposes operations to browse, query, and update the topic map.

(See the sidebar, “A Simple Topic Map Web Service” for a descrip-

tion of one possible interface that consists of just eight methods.) As

topic maps can be easily serialized as XML, there is no issue in using

SOAP, REST, or even XML-RPC to implement such an interface.

 The broker architecture interposes one or more additional serv-

ers between the source(s) of topic map data and the consumers (see

Figure 4). A broker aggregates results from several servers perform-

ing any necessary merging and responding to a client as if the data

had come from a single topic map. The aggregation performed by

a broker may vary from simply distributing an operation and aggre-

gating the results to more complex aggregation based on the sub-

ject identifiers returned from the various topic map sources.

Syndication Architecture
The syndication architecture makes use of REST to distribute changes

to a topic map model. The server that maintains the model simply

writes changes as transaction documents containing serialized topic

map subgraphs. These transaction documents are then picked up

by consumers and applied to their local cache of the model. Syndi-

cation architectures work particularly well for distributing ontology

topic maps that are relatively stable or for distributing topic maps

that index content that is published to a regular schedule (for exam-

ple, a news Web site’s updates). The XML serialization of topic map

subgraphs means that this architecture can make use of syndication

standards such as ATOM or RSS 2.0 to distribute transaction data.

 Figure 5 shows an example of how a syndication system might

work to keep synchronized two topic maps managed by different

engines:

1. A change made to topic map engine A is written as an XML doc-

ument to the syndication server. The syndication server makes a

feed of recent transaction documents available to syndication cli-

ents.

2. The syndication client checks the feed on the syndication server

and requests the transaction(s) it needs to apply.

3. The syndication client processes the transaction documents

received from the syndication server and applies the changes to

topic map engine B.

4. Clients interact with the updated topic map on topic map engine

B, which is now synchronized to the last known state of the topic

map on topic map engine A.

 Step 2 could also be performed by a push of syndicated transac-

tion information from the syndication server to the client; the mech-

anism used would depend on the application requirements and the

facilities provided by the syndication mechanism used.

 Applications that access topic maps frequently require a result set

that consists of a single topic (or a list of topics) that match a query.

However, the topic map model is essentially a graph model in which

topics are connected either through associations or through typing

relationships, so when returning a topic it is necessary for the server

to provide some context for the client. Essentially a server is required

to extract a subgraph from the topic map graph.

Topic Map Serialization
In our experience the best way to go about serialization is to start

with the concept of two types of topic serialization. A full serializa-

“The Topic map can provide a sTrucTured,

high-level domain model ThaT is easily

communicaTed over a web services

inTerface, giving huge poTenTial for

inTegraTion inTo deskTop applicaTions”

Figure 6 Topic map subgraph serialization

(a) Serialization with breadth = 0

A

E

F G

B

C

D

(b) Serialization with breadth = 1

A

E

F G

B

C

D

Fully serialized
topic

Partially serialized
topic

Unserialized topic

Serialized subgraph
boundary

Topic Maps

16 www.architecturejournal.net • Journal 6 •

About the Authors

Kal Ahmed is cofounder of Networked Planet Limited (www.

networkedplanet.com), a developer of topic map tools and topic maps-

based applications for the .NET platform. He has worked in SGMLhas worked in SGML

and XML information management for 10 years, in both software

development and consultancy, and on the open source Java topic

map toolkit, TM4J, as well as contributed to development of the ISO

standard.

Graham Moore is cofounder of Networked Planet Limited, and he

has worked for eight years in the areas of information, content, and

knowledge management as a developer, researcher, and consultant.

He has been CTO of STEP, vice president research and development at

empolis GmbH, and chief scientist at Ontopia AS.

Resources

“ISO/IEC 13250 Topic Maps,” Second Edition (2002)

www.y12.doe.gov/sgml/sc34/document/0322_files/iso13250-2nd-ed-

v2.pdf

“ISO/IEC JTC1/SC34 Information Technology—Document Description

and Processing Languages”

www.isotopicmaps.org/sam/sam-xtm/

Networked Planet

Topic Map Web Services

www.networkedplanet.com/technology/webservices/intro.html

Topic Map Web Service WSDL www.networkedplanet.com/2005/01/

webservices/tmservice/TMService.wsdl

“White Paper: Topic Maps in Web Site Architecture,” (Networked

Planet Ltd., 2005)

www.networkedplanet.com/download/tm-website-architecture.pdf

Techquilla

“TMShare – Topic Map Fragment Exchange in a Peer-to-Peer

Application,” Kal Ahmed

www.techquila.com/topicmapster.html

XTM TopicMaps.org

XML Topic Maps (XTM) 1.0

www.topicmaps.org/xtm/1.0/

tion presents all of the information directly connected to a topic: its

types, identifiers, names, occurrences, and all of the associations in

which it participates. A partial serialization presents a minimal set of

information that can be used by a client. Exactly what information

is present in a partial serialization may vary from one implementa-

tion to another; for some implementations just a unique topic iden-

tifier might be sufficient, but other implementations may require all

identifiers present on a topic plus a name or occurrence of the topic

chosen according to some algorithm. The principal guide in deter-

mining what is present in a partially serialized topic is that a par-

tial serialization should not contain any references to other topics;

thus, the partially serialized topics form the leaves of the subgraph

returned by a serialization.

 With these two definitions, subgraph extraction is a relatively

straightforward task. To extract a small subgraph centered on

a topic, perform a full serialization of that topic. For each topic

that the fully-serialized topic references, create a stub serializa-

tion of the topic, and replace the reference to it with a reference

to the stub.

 Larger subgraphs can be extracted by specifying a breadth

parameter that defines a maximum number of associations to tra-

verse. Every topic that can be reached by traversing a number of

associations up to the breadth parameter from the starting topic

should be fully serialized, and all other referenced topics serialized

as stubs. Figure 6 shows an example of the serialization of a topic

map subgraph using two different breadths of subgraph.

 Part a in Figure 6 shows that the serialization of topic A is

performed with a breadth of 0, so only topic A is fully serialized.

However, to serialize the associations that topic A participates

in, each of the topics B, C, and D must be partially serialized.

Note that topic C has an association to topic D, but because C is

only partially serialized, that association is not part of the serial-

ized subgraph even though its ends are. Part b in Figure 6 shows

the serialization of topic A with a breadth of 1. In this serializa-

tion, topic A and all topics that can be reached by traversing

one association starting from topic A (that is, topics B, C, and D)

are all fully serialized. To perform the full serialization of topic B,

topic E must be partially serialized, and to perform the full seri-

alization of topic C, topics F and G must be serialized. Topic C

is only connected to topics that are fully serialized, so no addi-

tional information is required to serialize the associations it par-

ticipates in.

 Having identified the subgraph of the topic map to be

extracted, all that remains is to serialize the data in that subgraph

as XML. Although the topic maps standard does define an XML

interchange syntax, it is a syntax better tuned for authoring and

interchange of whole topics and does not provide any syntax for

distinguishing between fully and partially serialized topics. It is

therefore necessary to define a separate schema for serialization

of topic map subgraphs. In designing our own schema (www.net-

workedplanet.com/2005/01/topicmap/data/TopicMapFragment.

xsd) we also took the opportunity to simplify the XTM syntax to

remove authoring convenience features, resulting in a schema

that can be more easily processed by XML data-binding tools and

by XSLT/XPath. •

“in our experience The besT way To go

abouT serializaTion is To sTarT wiTh

The concepT of Two Types of Topic

serializaTion; full serializaTion

presenTs all of The informaTion

direcTly connecTed To a Topic”

Walt Disney World Swan Hotel
May 14-18, 2006

New Date — Same Incredible Content
VSLive! Orlando arrives early this year as weather concerns have moved the
event to May. Microsoft insiders and industry veterans will return to Orlando for
dynamic sessions, keynotes and product demonstrations on the latest innovations
in development.

VSLive! Brings You:
• Informative Keynotes from major industry players
• In-Depth Workshops on essential development topics
• A full slate of Microsoft-led sessions on .NET Day
• ASP Live! - Intensive server-side and Web development techniques for both VB
 and C# practitioners
• Smart Client Live! - Practical advice on smart-client development in VB and C#
• SQL Live! - Valuable tips on optimizing the performance and reliability of
 SQL Server
• An insider’s tour of Windows Communication Foundation (aka Indigo)
• Virtual Tracks on a range of essential programming topics; and more

Save the Dates -
More Upcoming Events
VSLive! Las Vegas
- April
VSLive! Toronto
- April
VSLive! New York
- September
VSLive! Boston
- September
VSLive! Chicago
- September

Call 800-848-5523 today or visit us online at www.vslive.com/orlando

Register by March 8th and SAVE $300

Visual Basic is a registered trademark of Microsoft Corporation in the United States and/or other countries. VSLive! is a registered trademark of Fawcette Technical Publications, Inc.
Visual Studio is used by Fawcette Technical Publications under license from Microsoft. All other trademarks are property of their respective owners.

vsl_or06_v2.indd 1vsl_or06_v2.indd 1 12/14/05 4:25:05 PM12/14/05 4:25:05 PM

18 www.architecturejournal.net • Journal 6 •

Design and Implement
a Software Factory
by Mauro Regio and Jack Greenfield

The objective here is to share the experience gathered in designing

and implementing a software factory based on Health Level Seven

(HL7), a standard for interoperability among health care organizations.

We started the work almost one year ago with the high-level specifica-

tion of the factory, producing a first version of its schema and solution

architecture (see Resources).

In its initial phase, the factory targeted the design of HL7 collabo-

ration ports, which are systems designed to be deployed at the edge

of IT systems of health care organizations, and enable health care

applications to collaborate in conformance with business and technical

protocols standardized in HL7 Version 3, using a Web service-based

communication infrastructure.

In the second phase, we implemented a first—scoped down—ver-

sion of the HL7 factory specified in the first phase. The focus of this

version is the subset of HL7 collaboration port capabilities necessary

to enable communication among health care applications through

Web service adapters, in conformance with HL7 Web service profiles

(see Resources).

The full scope of the factory, as specified, also included develop-

ment of enterprise application integration adapters to connect exist-

ing applications to collaboration ports and orchestration of business

Summary

In this approach to interoperability we share the
experience gathered in designing and implementing
a software factory for health care systems based on
the Health Level Seven (HL7) standard. We discuss the
long-term vision and the scoped-down proof of con-
cept developed so far. We also outline the challenges
encountered in our project and the opportunities to
widen the scope of the approach to different indus-
tries, and, in general, the opportunities to support
business-to-business collaboration.

Standardized Web service
communication infrastructure

Laboratory

Laboratory
information

system

Hospital
information

system

Hospital

Collaboration

C
ollab

oration p
ort

C
ollab

oration p
ort

Laboratory information
system context

Hospital information
system context

Addressing

Reliable messaging

Security

HL7 V2 support

HL7 V3 support

Web service support

File-based communication

Database communication

aa

a

HL7 software factory target

Figure 1 The production context of an HL7 factory

Software Factor y

19 • Journal 6 • www.architecturejournal.net

such as a user interface or database access layer, or perhaps a whole

application in a business domain like health care or homeland secu-

rity. The software factory template is organized by a model called a

software factory schema. The schema defines one or more viewpoints

relevant to stakeholders in the production of the target software solu-

tions. Each viewpoint defines the life-cycle artifacts produced or con-

sumed by its stakeholders, the activities they perform against those

artifacts, and the reusable assets available to support them in per-

forming those activities.

The software factory methodology integrates model-driven devel-

opment (MDD), component-based development (CBD), and agile

development practices, including the use of patterns and pattern lan-

guages with models, frameworks and tools (see Resources).

To leverage models effectively for various forms of automation,

software factories make heavy use of domain-specific languages

(DSLs). DSL technology is much newer than most of the other technol-

ogies used in software factories, and relies on families of extensible

languages. DSL development tools and frameworks have been under

development for some time in academic circles, however, and have

recently started to appear in commercial form (see Resources).

The HL7 factory automates the development of systems called col-

laboration ports, which enable interoperation among systems in the

health care domain. Specifically, the solutions produced by the factory

aim to:

• Realize interactions defined by the HL7 standard as information

exchanges that take place between application roles in response to

trigger events. Collectively, these exchanges support the business

goals of a specific use case, such as performing a laboratory obser-

message exchanges realizing a particular collaboration on behalf of

line-of-business applications that were not designed to collaborate.

Our experience in designing and developing the HL7 factory has

been valuable from two different perspectives. In developing the

HL7 factory we encountered some challenges in developing the fac-

tory schema, managing the factory configuration, understanding how

domain-specific languages would be used, and leveraging the tools

available at the time in the development environment.

At the same time, we realized that the factory’s scope could be

widened from collaboration among health care applications based

on HL7 to a more generic notion of collaboration among applications

based on standardized (or shared) specifications.

Therefore, we are currently in the process of generalizing the

approach proven in the initial implementation of the HL7 factory

to design and build what we have called the business collaboration

factory.

Software Factories
Software factories use specific domain knowledge, solution archi-

tectures, tools, and other reusable assets to help their users produce

specific types of software solutions. A software factory is based on

three key ideas: a software factory schema, a software factory tem-

plate, and an extensible development environment.

A software factory configures an extensible development envi-

ronment, such as Eclipse, Borland JBuilder, or Microsoft Visual Studio

Team System (VSTS), using an installable package called a software

factory template or guidance package. When configured in this way,

the development environment becomes a specialized facility that

accelerates the development of a specific type of software solution,

Figure 2 The development context of an HL7 factory

Platform
capabilities

Solution
reference

architecture

Code
patterns

Solution domain knowledge

Source code Test scripts

Models Other

Collaboration
port

configuration

Run-time
components

Development artifacts

HL7 collaboration port artifacts

Deployment artifacts
Run-time

components

HL7 software factory template

DSLs

Code
templates

Feature
models

Patterns

Process
guidance

Frameworks

Recipes/
Wizards

Tools

HL7 software
factory

development

HL7 collaboration
port development

Input to

Input to

Input to

Feedback

Produces / deploys

Produces

HL7 V3
repository

HL7 V3 Web
service
profiles

Additional
specifications

Problem domain knowledge

Software Factor y

20 www.architecturejournal.net • Journal 6 •

vation. The factory automates the production of code that imple-

ments these interactions by mining information contained in the

HL7 Reference Information Model (HL7 RIM).

• Enable application-to-application business collaboration expressed

in terms of these interactions over an open standards–based Web

service infrastructure that is conformant to a subset of the HL7 V3

Web service profiles, namely the Basic, Addressing, Security, and

Reliable Messaging topics (see Resources).

• Enable integration of new or existing applications that were not

designed: 1) for HL7, version 3; 2) to fulfill a business collaboration;

and 3) to communicate over a Web service infrastructure.

It is important to understand the HL7 factory from two different

perspectives: production and development. In the production con-

text the factory end products are HL7 collaboration ports. These ports

automatically enable disparate health care applications to collabo-

rate behind and across the firewall using Web services, provided that

at least one of the applications participating in the business collabora-

tion will deploy an HL7 collaboration port; the other applications may

participate through other means, and all of the applications partici-

pating in the business collaboration will conform to HL7 V3 standards

for message exchange, either natively, or with the help of an HL7col-

laboration port.

Factory by Template
For a business collaboration between a hospital and a laboratory sys-

tem, Figure 1 shows where HL7 collaboration ports sit in relation to the

systems hosting the interoperating applications. Note that collabora-

tion ports are meant to be highly configurable to enable general dis-

patching, while also allowing complex message-flow orchestration.

Thus, ports like those shown in Figure 1 are configured both in terms of

the technical details for a specific implementation and deployment and

in terms of HL7 domain definitions and conformance levels.

In the context of development, the purpose of the software fac-

tory is to accelerate the specification and implementation of collabo-

ration ports. The factory combines problem domain knowledge sup-

plied by the HL7 Reference Information Model and Web service pro-

files, with knowledge of the platform technology, solution architec-

ture, and development process supplied by platform documentation

and by the factory developers (see Figure 2).

As suggested by the illustration, this knowledge is packaged into

numerous assets, which collectively form the factory template. Sim-

ply stated, the factory template provides everything required to build

an HL7 collaboration port, including reference data and artifacts, such

as message schemas; tools, such as adapters generators; and process

guidance. The factory template must be installed into an integrated

development environment (IDE), namely Microsoft Visual Studio 2005

Team System, before it can be used to produce and deploy HL7 col-

laboration ports.

As noted previously, the purpose here is to describe what we learned

in specifying, designing, and implementing the HL7 factory. We have

grouped the information into two categories. The first classifies lessons

learned about factory development and usage in general; the second

contains insights gained regarding the target domain and with how the

factory might be generalized to address a broader set of target domains.

The development and management of the factory schema were

the most significant challenges from the inception of the project

through to its completion. Producing an initial version of the schema

was relatively easy (see Resources). A grid-based approach can be

effectively used in this phase, organizing relevant viewpoints into a

two-dimensional matrix with level of abstraction on the vertical axis

and life-cycle phase on the horizontal axis.

However, we quickly realized that the two-dimensional matrix was

a fairly inadequate representation of the schema, especially for the

fully scoped version of the factory because a) the schema was natu-

rally multidimensional, b) a matrix representation does not capture

relationships among nonadjacent viewpoints, and c) the graphs of

viewpoints were of different types and depths and unfold into nested

graphs of different types and depths.

Nonetheless, working with an amorphous, graph-based represen-

tation of the schema required tools that were not available. There-

fore, we implemented the factory schema as a set of two-dimensional

projections of the relevant viewpoints. Each of these projections—a

graph in its own right—details a specific aspect of the factory, effec-

tively projecting it from the multidimensional schema in the same way

that a set of tuples is projected from a multidimensional data store to

form a two-dimensional view.

System engineering

Business
requirements

Business
system design

Project
engineering

System
requirements

System
deployment

System
operation

System development

Software
contract design

System
design

Application
development

Figure 3 System production viewpoint

Web services contract design:
Software contract design

System
design

Application
development

XSD design
Web service

protocol design
Web service

contract design

Interaction
infrastructure

Information
infrastructure

Figure 4 Software contract design viewpoint

“We need to provide enterprise

architects With the models and tools

necessary to support the specification

process”

Software Factor y

21 • Journal 6 • www.architecturejournal.net

We also found it quite hard to decide whether or not to pro-

vide a fully fledged domain-specific language (DSL) for the require-

ments-gathering phase of product development, especially given that

Microsoft has published a set of DSL tools under the umbrella of its

Software Factories Initiative.

We knew that a full DSL was not strictly necessary because the rel-

evant use case specifications were already available to us in the HL7

repository. What we really needed was a sophisticated wizard that

would help the user choose specific use cases (see Figure 5), applica-

tion roles, service-interaction patterns (see Figure 6), and other stan-

dard data elements and navigate through the repository.

Also, the DSL designer technology from Microsoft was very imma-

ture when we started the project, and adopting it would have added

significant risk to the project. Although we knew we were missing out

on the opportunity to provide more sophisticated automation, and

that the alternative—a wizard-based user interface—would be not

relevant outside the scope of the factory, we decided not to use the

DSL technology in this phase of the project.

Given that we now have a much more consolidated and robust

technology preview of DSL tools, we may start to experiment with

DSLs in subsequent versions of the factory. Also, even if we did decide

to create another wizard-based user interface, we would very likely

design and implement it using the DSL tools, instead of developing it

from scratch.

The Guidance Automation Toolkit (GAT), another piece of enabling

technology under the umbrella of the Software Factories Initiative at

Microsoft, proved quite useful.

Simply stated, GAT is an extension to the development environ-

ment that makes it easy to create rich, integrated user experiences

around reusable assets like frameworks, components, and patterns.

The resulting guidance packages are composed of templates, wizards,

and recipes, which help users build solutions in keeping with pre-

defined architectural guidance.

Broaden the Scope
In our project, we used GAT as the means of packaging and deliver-

ing the factory template. It provided an underlying model for the tem-

plate that was much richer than what the development environment

itself had to offer.

Recipes have been provided for activities like HL7 Web Ser-

vices Adapter creation, execution of the configuration wizard, cre-

Figure 5 The Configuration wizard’s use case selection

Table 6 The Configuration wizard’s service-interaction patterns specification

For example, Figures 3 and 4 show two viewpoint examples,

namely the System Development viewpoint and one particular aspect

of it: the Software Contract Design—at a lower abstraction level.

Assigning Tasks
This approach allowed us to produce a version of the factory schema

that we deemed complete, that is, it comprehensively specified all the

artifacts and tools required in the factory template to produce the

products of the factory. However, it left verification of the schema to

human inspection and did not allow us to use the schema as metadata

to drive the user experience within the IDE.

Configuration management was another challenging aspect of fac-

tory development, from two different perspectives.

First, we had to create a configuration XML schema, which would

be complete in terms of allowing the expression of all valid combi-

nations of supported features and/or implementation strategies. The

XML schema was handcrafted and quickly became a maintenance bur-

den, as it was highly sensitive to changes in the factory schema and

template. Second, we had no tools within the target development

environment to support the configuration of a specific instance of

the factory, or the validation of such a configuration, during product

development.

Specification of the product development process was also a chal-

lenge in developing the factory. We had no satisfactory way to for-

mally express the process in the factory template, and most impor-

tantly no way to inject the process as prescriptive guidance into the

development environment.

Although the target development environment did support

the creation of tasks, and the assignment of tasks to members of

the development team, we had to rely on natural language doc-

uments to describe the development process because we had

not yet determined how to apply the task-management features

to a factory-based, product-development process. In particular,

we had not yet determined how to associate tasks with specific

assets supplied by the factory template, how to load the tasks

from the factory template, or how to configure the tasks for a

specific product.

Software Factor y

22 www.architecturejournal.net • Journal 6 •

Resources

“A Software Factory Approach to HL7 Version 3 Solutions,” Mauro Regio,

Jack Greenfield, and Bernie Thuman (June 2005)

Domain-Specific Modeling with MetaEdit+

www.metacase.com

Health Level Seven

www.hl7.org

“Advanced Web Service Profiles,” Roberto Ruggeri et al.

www.hl7.org/v3ballot/html/welcome/environment/

Institute for Software Integrated Systems

“Model-Integrated Computing”

www.isis.vanderbilt.edu

MSDN

Visual Studio Team System Developer Center

Microsoft Enterprise Framework and Tools Group

“Domain-Specific Language (DSL) Tools”

http://lab.msdn.microsoft.com/teamsystem/workshop/dsltools/

Microsoft Patterns and Practices Team

“Guidance Automation Toolkit (GAT)”

http://lab.msdn.microsoft.com/teamsystem/workshop/gat/

Software Factories: Assembling Applications with Patterns, Models,

Frameworks, and Tools, Jack Greenfield et al. (Wiley, 2004)

“Web Services Enablement for Healthcare HL7 Applications – Web Services

Basic Profile Reference Implementation,” Mauro Regio (August 2005)

ation of Web services contracts, and automation of the code-cre-

ation process.

Unfortunately, the GAT learning curve is quite steep. Its flexibility

and customization options are limited and its integration with the IDE

could have been better. Nevertheless, we believe that GAT adoption

was a key decision that helped ensure project success and significantly

reduced the factory development time.

Although we developed the factory to enable business-to-business

collaboration among health care applications, it quickly became evi-

dent that we could apply such a factory to similar scenarios in other

industries. We came to understand that the real scope of the fac-

tory should be business collaboration in general, using standardized

or predefined specifications of interactions, application roles, events,

Web service profiles, and other domain elements, not just business

collaboration in the context of HL7.

In retrospect, the reason we initially developed such a factory

for HL7 was that the HL7 standard provided a complete set of easily

accessible and well-defined domain elements. Of course, many other

standards organizations, such as RosettaNet and UNCEFACT have also

invested a great deal of effort in specifying domain elements to be

used by businesses that want to collaborate using standardized pro-

tocols. Interestingly enough, as far as the collaboration protocols and

the information they exchange are concerned, these standards look

very much alike.

We therefore concluded that it would be feasible not only to

build standards-based collaboration systems for other industries,

but also to build a collaboration port factory that can be customized

using business collaboration specifications for other industries. Of

course, there will be a need for various import mechanisms, adapt-

ers, and model conversions to work with the different concepts used

to describe business-to-business collaboration by different standards

bodies. Nevertheless, we think a generic specification could be used

to bridge these differences through configuration in a generic busi-

ness-collaboration factory.

At the same time, we recognize that a more generic factory may

also be quite appealing to corporate developers constructing busi-

ness-collaboration systems inside the firewall, and who want a more

formal approach to specifying and implementing those systems to

guarantee better alignment between business goals and a portfolio of

resulting IT services. However, in this case we would need to provide

enterprise architects with the models and tools necessary to support

the specification process.

We realize that our factory must support the construction of col-

laboration ports for various technology platforms. We suspect that

this could be accomplished using implementation patterns provided

with the factory template to decouple the specification of the collabo-

ration ports from platform-specific implementation details.

Taking the Lead
Our plans are to exploit the opportunity described here to generalize the

HL7 factory to form a business-collaboration factory. We think most of

the work required to achieve this generalization will reside in these areas:

• Provide models and tools to support the specification of business col-

laborations, focusing on information schema, business document/

messages exchange protocols, and possibly business transactions.

• Define mappings between relevant industry standards and our

internal model of business collaboration, and possibly tools for

importing the domain elements they define.

• Introduce another level of configuration in the implementation

of the collaboration port that will enable factory users to target a

wider variety of technology platforms.

Our experience in developing a factory for HL7 collaboration ports

has shown that we need to define better frameworks, tools, and pro-

cesses to specify the factory schema, to manage factory configura-

tion in a flexible and extensible way, and to better understand how

and when domain-specific languages should be used. At the same

time, initial implementations of extension mechanisms like GAT and

DSL have proven their value, filling significant gaps in software factory

infrastructure, and pointing to future innovation in that area.

We intend to continue to use and improve these tools in the next

version of the HL7 Factory, as well as in the more generic, cross indus-

try, version called the business-collaboration factory. •

About the Authors

Mauro Regio is an industry solutions architect in Microsoft’s developer

and partner evangelism architecture strategy team, focusing on large-

scale enterprise integration projects and software factories.

Jack Greenfield is software architect, enterprise tools, Microsoft.

23 • Journal 6 • www.architecturejournal.net

Service-Oriented
Business Intelligence
by Sean Gordon, Robert Grigg, Michael Horne, and Simon Thurman

The noun synergy means the combined action of discrete entities

or conditions such that the total effect is greater than the sum of

their individual effects. Service-Oriented Business Intelligence (SoBI)

is the synergy of the Business Intelligence (BI) and Service Orientation

(SO) paradigms and describes patterns and architecture to accomplish

this synergy by providing a best practice implementation framework;

the ability to integrate at the most appropriate architectural level; the

data modeling of a BI project within the SO strategy of leaving the

source systems in place; and a common implementation for data trans-

formations and data logic: data to data, data to service, service to data,

and service to service.

 BI and SO are broad paradigms. Let’s start by defining BI. Data

warehousing is a broad discipline that allows for the gathering, consol-

idating, and storing data to support BI. The components of a successful

data warehouse can be summarized as data collection, cleansing, and

consolidation (Extract Transform and Load, or ETL) and data storage. BI

is the delivery of information to support the decision-making needs of

the business. It can be described as the process of enhancing data into

information and then into knowledge.

 Every BI system has a specific goal, which is derived from the

requirements of the business.

 For ease of reading, data warehousing and business intelligence will

be consolidated under the single acronym BI throughout this discussion.

 SO is a means of building distributed applications; at its most

abstract, SO views everything as a service provider: from applica-

tions, to companies, to devices. The service providers expose capabil-

ities through interfaces. These interfaces define the contract between

the caller of the service and the service itself. The consumer of a service

does not care how the service is implemented, only what the service

does and how to invoke the service.

 The services themselves are the building blocks of service-oriented

applications. Services encapsulate the fundamental aspects of ser-

vice orientation, namely, the separation between interface and imple-

mentation. SO is essential to delivering the business agility and IT flex-

ibility promised by Web services. These benefits are delivered not just

by viewing service architecture from a technology perspective or by

Summary

This discussion looks at the similarities and differ-
ences between Business Intelligence (BI) and Service
Orientation (SO), two architectural paradigms that
have developed independently. Here we define an
architectural framework that leverages the strengths of
BI and SO while defining guiding principles to ensure
that the fundamental tenets of each of the component
architectures are not broken.

Figure 1 BI and SO views

SO BI

BI seen as a collection of services

SO seen as data sources

Disciplines to
support SO

Architectural
overlap

Disciplines to
support BI

SOBI

SO seen as a collection of data sources

Events

Data
service

Data
source

Figure 2 BI view of SO

Figure 3 SO view of BI

SO BI

BI seen as a collection
of data sources

Transform

Data
services

SoBI Architectural Framework

24 www.architecturejournal.net • Journal 6 •

the detection of a suspect credit card swiped at the checkout based on

historical data mined for fraudulent patterns.

 Organizations are also increasingly keen to unlock this data and make

it widely available to other parts of the organization, to a wider audience

of users and tools. Traditionally, access to BI information has required

access to a specific set of data-manipulation tools. In this current SO envi-

ronment, the goal must be to open up this organizational data to a wider

audience and enable the value of the data to be realized more widely.

A Wider Range
As the variety and number of data sources considered in-scope for BI

increases, so does the potential complexity of the required ETL solu-

tion. For example, Web services, RSS, and unstructured and semistruc-

tured data are sources of data that now fall under the data integration

umbrella, but they are not traditionally associated with ETL. With the

widespread adoption of service-oriented principles and the associated

enabling technologies, access to a greater range of systems has become

possible, unlocking a much greater range of business data.

 Organizations continue to scrutinize the economics of data inte-

gration with every project, affecting the products they select, which is

causing a change in the data-integration landscape and an associated

adopting Web service protocols, but also by requiring the creation of a

service-oriented environment that is based on specific key principles.

 BI has been around for years; its practices are well established, and

people are comfortable with the concepts involved in delivering a BI

solution. To many, BI is simply the presentation of information in a timely

manner through a sophisticated client interface. To those involved with

the delivery of BI solutions, this aspect of the overall BI solution is the

tip of the iceberg. Under the covers is a huge exercise in data quality

improvement and data integration among disparate corporate applica-

tions and systems and the consolidation of that data in a data warehouse.

The integration of data is predominantly the biggest cost on a BI project.

EAI and ETL Convergence
Until recently, SO has had little or no part to play in the world of BI, pri-

marily because the SO approach to data integration seemed laborious

and overly complex to a community used to moving data of any vol-

ume around by connecting directly to the source system at database

level. In BI, data integration is accomplished through the ETL process,

which is the keystone of every BI solution, and BI solutions tend to look

for the most direct and efficient way of accomplishing it.

 Enterprise application integration (EAI), like BI, has been around

for many years. It is a common problem encountered within an enter-

prise where systems have been introduced or grown in an organic man-

ner. EAI itself can be defined as the sharing of both process and data

between applications within the enterprise. Specifically, when we use

the term EAI, we are referring to the integration of systems within the

enterprise—for example, application, data, and process integration.

 Application-to-application integration refers to the exchange of

data and services between applications within the enterprise. Notably,

this form of integration is often between applications that reside on dif-

ferent technology platforms, based on differing architectures. EAI is

often difficult, and typically it requires the connectivity between het-

erogeneous technology platforms; involves complex business rules and

processes; involves long-running business processes where logical units

of work may span days or weeks as they move through different pro-

cesses within the organization; and is generally driven by the need to

extend/enhance an existing automated business and process or intro-

duces an entirely new automated business process.

 Solutions to EAI problems can involve solving the application inte-

gration problem at a number of different architectural levels such as

data, application, process, and so forth. In this way both ETL and SO can

form part of an EAI solution. In many ways, SO grew out of the need to

find common, open, and interoperable solutions to the EAI problem.

 Traditional ETL is a batch-driven process focused on integrating data

during business downtime. In today’s connected marketplace, business

does not have a quiet time for this process to occur. The corporate data

pool has the potential to increase significantly as initiatives such as click-

streams, e-commerce, and RFID are increasingly used, and ETL must be

flexible enough to emerge from its batch-driven roots to deliver data

on an event-driven basis.

 Within an SO solution, these events are readily routed, consumed,

and integrated as part of an event-driven architecture. BI grew out of

the inability of operational systems to efficiently handle analytical capa-

bilities (aggregation, trend, exception, and so on), hence, distinct BI sys-

tems were developed to meet this need. This artificial divide is no lon-

ger acceptable; today’s businesses are increasingly looking to use ana-

lytical capabilities to guide their operational decisions—for example, in

Subscribed
events

Collated
events

Warehouse
event agent

Events

Publish
events

Data
warehouse

Messaging/transport

Business service

Event
cache

Figure 5 BI consuming SO events

Figure 4 SO as a data source to BI

Messaging/transport

GetData
service

call Response

Service façade

Query Response

Business
intelligence

GetData
service

call Response

Business service

1

2

3

4

5

6

SoBI Architectural Framework

25 • Journal 6 • www.architecturejournal.net

change in the functionality provided by the ETL or EAI software. Ven-

dors have to increase the flexibility and functionality offered by their

platforms in response to these new challenges. The net result to the cus-

tomer is a set of tools with an increasingly merged set of functionality.

 Users familiar with Microsoft’s product set cannot fail to have

noticed this pattern. BizTalk was developed in the EAI and business-to-

business (B2B) space but has applicability in some ETL scenarios. Data

Transformation Services (DTS), Microsoft’s ETL tool that forms part of

the SQL Server 2000 platform, grew from an ETL background. It is no

coincidence that the SQL Server 2005 version of this product has been

re-architected to support a wider range of integration scenarios, and

was renamed Integration Services to emphasize this.

 Although service-oriented architectures (SOAs) and BI architectures

have evolved separately and include technologies and disciplines spe-

cific to their own individual architectural aims, many of the technolo-

gies that they utilize overlap. There is also a clear mapping between the

concepts used, with each able to view the other in their own terms. We

have called these “views from the other side,” and the overview can be

seen in Figure 1. Let’s discuss each scenario in more detail.

 From a BI perspective, it is possible to view an SO application as a

collection of data sources and event sources. There are two primary

modes in which a service can operate as a data source in a BI context:

service as the provider of data upon request and service as the pub-

lisher of events that are of interest (see Figure 2). In both scenarios, the

message sizes are small. The solution for large-scale data transfer and

transformation will still be through the normal data warehouse import

techniques such as ETL. Such physically large messages are not the nor-

mal domain of SO.

 From the SO viewpoint, BI can be seen as a collection of services.

From an SO perspective, a data source can readily be exposed as a ser-

vice with the introduction of a simple façade layer that receives the ser-

vice request from the service bus and calls the appropriate query. The

façade then transforms the results of the query (if necessary) into the

data schema and returns the results to the caller (see Figure 3).

 The SoBI architecture makes BI data in the data warehouse available

as a service to other applications within the architecture. This availabil-

ity gives applications a clean way of accessing consolidated data to sup-

port the requirements of BI. In this way, the BI architecture becomes an

integrated component of SO application architecture. Note that there

will be occasions when the type of data that is required from the system

is purely of a BI nature, such as large-scale data export. In these scenar-

ios the service interface approach will not be suitable.

Service-Oriented Data Provision
From a BI perspective, a service can readily be exposed as a data source

with the introduction of a simple façade layer that provides a map-

ping between the BI interface and the interface exposed by the service.

The façade then transforms the results of the call from the data schema

used on the service bus to the data format expected by the BI platform

and returns the results to the caller (see Figure 4).

 Some services expose information through events that are published

when an interesting change occurs in the service. Other services and appli-

cations within the organization can subscribe to the events published

by services. Integrating event-publishing services into a BI platform is

achieved through the use of an agent that collates the subscribed events

and periodically transfers them in bulk to the BI platform (see Figure 5).

 One of the challenges in the development of SoBI was to find an

approach that leveraged the core strengths of each architecture and

identified the area where the integration caused challenges. Let’s look

at some of the main challenges inherent in implementing BI in an

SO manner. These challenges generally arise because of the specific

requirements that each architecture was developed to address.

 Figure 6 shows the differences in data granularity that separates the

BI and SO approaches. At the extreme ends we have small-grain mes-

sages or events, which are naturally in the SO event space. Such small-

grain messages are not readily or efficiently consumed in a BI architec-

ture without the use of event agents to collate the events and import

them into the data warehouse on a regular basis. Large-grain data, the

bulk import or movement of large quantities of data, is most efficiently

handled through data warehouse techniques such as ETL. Services in

an SO system that expose large amounts of data are inefficient to use

and rarely implemented. In the middle ground we have the medium-

grained typical services, defined to consume sufficient data to fulfill a

particular requirement. This middle ground is key to SoBI’s value add.

 Service-oriented applications exhibit loose coupling between their

constituent services. This loose coupling is one of the fundamental

principles of SO and supports the development of agile/flexible appli-

cations that can adapt to business change. See Table 1 for specific SO

and BI benefits.

 BI solutions are tightly coupled to the data sources that feed the

data warehouse and to the applications that use it. BI has evolved from

a batch-centric environment where ETL is used as the means to directly

consume and consolidate large amounts of source system data on a

known schedule for population of the data warehouse.

Figure 6 Message size versus message volume

SO BI

Small-grain SO or
real-time events

Medium-grain
services

Large-grain data
import/ETL

Message volume

Message size

Service Orientation (SO) Business Intelligence (BI)

Best suited to application-to-application
integration and well suited to low-vol-
ume, high-frequency events

Best suited for data-to-data integration and
able to handle large data volumes

Provides an operational platform, tightly
defines data formats and structures, and
encapsulates and abstracts functionality

Provides a combined model of the enterprise
data and provides foundation for business
decisions and the ability to ask any question
of the data

Supports reuse of enterprise components
and allows agile change in business
processes

Good tools and mechanisms for transform-
ing data

Table 1 SO and BI benefits

SoBI Architectural Framework

26 www.architecturejournal.net • Journal 6 •

 SO requires that the message interface and the formats of both the

incoming message and the eventual response to be tightly defined.

When exposing services that describe business capabilities the ques-

tions that can be asked within an SO application are in effect known

in advance. However, there is also an unknown aspect relating to the

exposing of services that are aggregated or orchestrated by another

application. BI is concerned with the ability to allow applications to ask

any question of the data warehouse within the limitations of the data

warehouse data model. The question, or the size; content; and format of

the result are not known until the question is asked.

SoBI Wins
An SO approach is best suited to the exposing of services that encap-

sulate business capabilities or services that publish events of interest to

other systems. BI provides a closed environment for satisfying the infor-

mation requirements of the business. BI enables the consumer of data

to view it in potentially many different new ways. This flexibility provides

the ability to identify trends and relationships that may be overlooked.

 Previously we introduced the core strengths of each of the par-

adigms, each of which can be seen as a fundamental issue if viewed

purely from the stance of the other paradigm. Now let’s revisit these

challenges and see what benefits SoBI can bring.

 Surface warehouse ETL functionality to SoBI enables interesting busi-

ness events caught during the ETL process to be published as events.

Let’s consider some examples.

 Referential integrity. SoBI can provide aggregations of the position

“now.” For example, data not in the source system may be added in the

data warehouse as a placeholder to maintain the integrity of the data

in the database. This placeholder may occur when disparate source sys-

tems provide data at different times (for example, transactional values

supplied before associated reference information has been received).

This data will be stored as private placeholder data within the BI service.

A notification may be sent to the source system to ensure that an error

has not occurred, and when the reference data becomes available the

data warehouse will be brought back in line with the system of record.

 Single-validation service. The functionality required for validation

during the ETL stage can be exposed through the SoBI framework for

use within other parts of the business.

 Timely updates. The key advantage here for BI is that adoption of

ETL from an SO perspective can enable real enough time feeds into the

data warehouse and therefore potentially real-time data warehousing.

In addition, the better support for events and event-driven integration

can provide BI with a much better mechanism for invoking ETL than the

traditional methods, such as timed scheduling or persistent scan of a

known directory for a flag file.

 Common business schema. Within any organization there can be

multiple systems that hold information about the same entities and

that hold this information in different formats. There are clear synergies

between these scenarios:

•	 Building the logical data model for a data warehouse is critical to any

BI initiative. The data model is the end product of the efforts to consoli-

date the data from the disparate source systems. The structure of the data

model drives the transformation exercise that occurs as part of the popu-

lation of the data warehouse and, hence, enables the data warehouse to

provide the single version of the truth for management information.

Presentation services

Operational
reporting

Management
reporting

Management
reporting

Operational services Transformation
services

Service façade
ETL

Operational
platform

Transformation
platform

Business intelligence
services

Data
warehouse

Business intelligence
platform

Rep
orting

 and
 analysis

ap
p

lications

Applications Data sources

Systems of record

Data Warehouse

Figure 7 The SoBI framework

SoBI Architectural Framework

27 • Journal 6 • www.architecturejournal.net

•	 For any entity aggregation service within an SO design it is important to

reach agreement on common meanings for the entities that the services

will operate on. This agreement is referred to as schema consolidation

and is the process of creating master data schemas that contain a super-

set of the information to describe the entities in the system in sufficient

detail that the different services can each locate the data they require.

Another entity service that aligns with this approach is the ability to

expose reference data. According to Easwaran G. Nadhan, Principal,

EDS, “It is clear from the experiences in the (relatively small) number of

organizations that have moved aggressively into SOAs that coordinat-

ing reference data is the required first step toward service orientation”

(see Resources).

One Truth
One version of the truth. By looking at the functionality offered by the

two architectures holistically, SoBI gives us the opportunity to consol-

idate operational and BI data without the need to physically move all

operational data into the BI platform, which is a common approach

to providing the “single version of the truth” in a BI project. By adopt-

ing the most appropriate architectural choice, the operational data can

be left in place but still be available to the SoBI framework as a service,

should the need arise to access or view it.

 For example, in a BI environment interested in the analysis of health

and safety incidents, SoBI would allow factual detail of each incident

to be moved to the data warehouse—that is, the fact that an incident

happened, where it happened, and the classification of that incident—

which would allow all appropriate aggregation and analysis to be per-

formed as expected of the BI platform.

 Where SoBI wins is that it provides a means to still access the trans-

actional detail in the system of record (for example, the free-format text

that accompanies the incident, which describes the circumstances sur-

rounding the event in detail). This access is commonly referred to as

“drill through” or “drill to detail” in BI, and to accomplish it all data rele-

vant to the requirement is traditionally moved into the data warehouse.

 In fact, this may not be allowed (such as for data protection reasons)

or preferred (it increases the ETL burden and the storage requirements

of the data warehouse to hold data, which by definition, is operational

in nature), and it has the potential to add additional pressure on the

BI platform by becoming the de facto source for all incident data even

though it is never up to date.

 Business services. The combination of the enablement of real-

enough-time BI and the ability to leave operational data in place gives

us the opportunity to build a rich service around the SoBI framework

that would not be possible if working within only one of the component

architectures. Consider a system detecting retail fraud. In BI we have

the tools to build an analytical engine capable of mining the potentially

huge amounts of transactional data for patterns resulting in a list of

suspicious credit cards. The adoption of SO principles allows us to offer

a service providing the details of credit cards in use in our store as they

are swiped. The SoBI architecture allows this service to be consumed

by the BI component of the platform and analyze it against the known

list of suspicious cards, and therefore to respond immediately should a

potentially suspicious transaction be detected.

A New Breed of Business Services
Aggregation of transactional and historical data as a service. Given a

service exposed through the SoBI framework that can now seamlessly

aggregate current transactional data and historical warehouse data, a

new breed of business services can be supported. An example would be

slowly changing dimensions, which is where a value such as a customer

name changes over time. Obviously this information is available within

the data warehouse, so if there is a requirement to expose an entity ser-

vice that gives a single view of the customer, this can be achieved more

accurately and easily.

 Brings interface abstraction patterns to BI. The ability to use the

interface abstraction pattern over BI functionality makes the function-

ality and data more accessible to line-of-business applications and pro-

vides the capability to expose complex business rules usually buried in

the ETL layer.

 Cleansing and consolidation. Data will be changed for purposes of

consistency and integrity. Where this change involves a mapping oper-

ation, that mapping will be made available to the architecture as a ser-

vice. Where this change involves a correction to data, details of that

correction will be fed back to the system of record through a request

Figure 8 Ideal scalability and flexibility

Service
calls Events

Strategic services

Service façade

Enterprise
application or
data source

Data
warehouseData

export/
ETL

BI SO

It is… …the single version of the truth for BI data. …the architectural approach for application integration.

It will… …provide open access to data services, support ad hoc analysis,
support precanned management reporting, consolidate data
from disparate source systems, and support reference data.

…provide application-to-application integration, provide some event feeds to the DW,
describe the services provided and the messages passed, fulfill operational requirements, and
povide the infrastructure services for all applications.

It will not… …become a dumping ground for all data, become the data
owner, be the default data source to other applications, and sup-
port operational reporting.

…be used in every circumstance and replace data import interfaces

Table 2 SoBI principles

SoBI Architectural Framework

28 www.architecturejournal.net • Journal 6 •

for change to the owning service, that is, the ETL process cannot

change the data as it is not the owner. In turn, this process obviously

drives improvement in the quality of data.

 Obtain a cross-system, consistent view of the product. During the ETL

stage data of the same product (or entity) may require transforming in

order that it may be stored in a consistent manner. By service enabling

access to the data the organization can expose a single common view

of a product.

 Mappings available as a service. As previously stated, mapping is a

fundamental requirement within the ETL stage. The SoBI framework

enables the mapping functionality to be exposed as a service for other

uses within the organization. Such uses include EAI and enterprise ref-

erence scenarios. This availability of this service can also be used to pro-

mote best of breed transformations.

 Calculation. The data warehouse is often used to store precalculated

values to support the requirements of BI. For instance, sales and fore-

casting data may be held in different physical systems. The consolida-

tion of the data from these systems into the data warehouse allows us

to calculate and store actual versus forecast figures to support more

performant analysis and reporting. The business logic used to define

such calculations is often interesting to other parts of the business so

the calculation to support this invention of data in the data warehouse

will be made available to the SoBI architecture as a service.

 Provides a road map for integration. It is believed that one of the

outcomes for the SoBI framework is an ability, at an architectural level,

to provide a framework for future integration scenarios.

 Compliance/audit. Application of the SoBI framework requires

adherence to a formal governance process. Examples include the

identification of the system of record or operational data owner, and

the definition of the messages that describe the data and functional

requirements. Given only the owner of the data can make a change to

that data, other systems simply make a request for change, and audit-

ing can be carried out at a single point.

 Aggregation. To support fast response times, data in the data ware-

house is often preaggregated. For instance, the data warehouse may

contain data relating to sales at an individual transaction level, but the

majority of management reporting may require seeing the totals at the

month level. In this case, it is cost effective to roll the (potentially mil-

lions of) individual transactions up to a level more appropriate for the

known queries and to store the results in an aggregation, avoiding the

need for known queries to perform the aggregation action at query

time. Where such aggregations are created, they will be made available

to the architecture as a service.

Enterprise Data Quality
Most organizations suffer from the issue of compatibility between

their IT systems. This issue is even more apparent where mergers have

occurred. No reason exists why systems from completely different

enterprises should be consistent, aligned, or satisfy a unified design. A

BI initiative has to address the problems of disparate systems, data silos,

and data incompatibility through data quality initiatives. If the business

users do not ultimately trust the information they are presented, they

will not use the system.

 Improving data quality is not simply a process of fixing problems

with individual data elements; it is about designing a business process

that improves the management and quality of data as an enterprise

resource. In an SO application the data provided by a service is con-

trolled through encapsulation by that service and only published in a

specific form that matches the data schema defined for the service.

 Access to the data is achieved through the messages that the service

publishes. The service is solely responsible for maintaining data integ-

rity since it is the only mechanism that directly manipulates the data.

The schema that defines entities in the service messages and the defi-

nition of these messages themselves strongly enhances the data qual-

ity aspect of any solution because of the capability to automatically test

messages for compliance to the message schema or contract supported

by a service.

 Let’s take a look at a SoBI framework example. It is important that

the SoBI framework clearly defines and distinguishes between differ-

ent types of data and the associated owners of this data, which ensures

integrity as the data can be amended only in one place. It also enables

the data to be shaped for its appropriate use. Figure 7 shows the high-

level data architecture for the SoBI framework. The purpose of this

architecture is to highlight how the different types of data will be han-

dled in the solution.

 As you can see, the systems of record are integrated into the data

warehouse through traditional ETL methods, with the exception that

the transformation services normally contained within the ETL process

are exposed for reuse by the operational services. This reuse enables

information to be integrated into the data warehouse and exposed

Messaging/transport

Service façade

Event-oriented
application
(near real-time
data, but not
the same as
time-series
P1 data)

Events

Warehouse
event agent

Events

Event
cache

Collated
events

Data
warehouse

Service
calls Events

Strategic services

Figure 9 Collating events for integration

Figure 10 Upgrading nonenterprise data sources

Unstructured
data

Unstructured
data

Transformation
process

Structured
data

Apply structure
to data store

Structured
data

Structured
data

SoBI Architectural Framework

29 • Journal 6 • www.architecturejournal.net

through service façades in a common schema as the transformation

services are shared by both mechanisms.

 It is also recognized that not all information within the data

warehouse can be exposed through the service interface and that

there may still be a small population of users within the organiza-

tion who will require direct access to the data warehouse to carry

out complex or ad hoc analysis. Let’s take a look in greater detail at

the factors influencing the successful implementation of the SoBI

framework.

 At a high level, the architectural guidance for the application of the

constituent parts of SoBI can be summarized as shown in Table 2. Suc-

cess factors for the SoBI project include:

•	 Governance. An SoBI project is unlikely to be successful without an

associated organizational change management process in place to

support it.

•	 Enterprise data and SOA strategy. SoBI relies on the existence of a

strategic plan for SO applications within the organization and on

the recognition of the importance of storing system of record data

in enterprise-class stores or applications. For example, the organiza-

tion doesn’t store the master of key business information in spread-

sheets.

•	 Operational versus management reporting. Clear delineation must

be made between the operational and management types of report-

ing that will be required within the SoBI framework. SoBI BI will be

the single version of the truth for management reporting. It will be

scoped to meet the specific requirements of the business for BI. The

supporting data warehouse will contain only the data necessary to

support those requirements.

•	 Data ownership. Although the data warehouse will contain the data

gathered from multiple data sources and systems, from a service-ori-

ented perspective the data warehouse should not be considered as

the master version or the default store for all data requirements. The

owner of this data remains the system of record.

Success Factors
Let’s look at these success factors in more detail. Governance is a key

success factor in the development of a successful service-oriented solu-

tion. It is important that an organization can control and publicize the

services, message formats, and structures that are supported to pre-

vent an uncontrolled proliferation of services, messages, and entity def-

initions in the environment. This is closely tied to the schema definition

activities and requires active management by a governance body to

ensure that the system adheres to the service-oriented principles.

 The key is finding a balance in the level of governance and having

enough control to provide a framework for the successful development

and deployment of services, but not to the extent of crippling the sys-

tem’s ability to respond in an agile manner to the needs of the business.

 In any BI project, a lack of clarity on the role of the data warehouse

and the scope of the data to be contained within it can lead to prob-

lems. In an ever-lasting design exercise, if the scope of the data ware-

house is not managed, the design exercise grows as potential data

sources are discovered and the data within those sources has to be con-

solidated within the data warehouse data model.

 The data warehouse model needs to be designed to be extensible

to ensure that the data from different assets can be added as a business

case can be made for the data. It is not practical to assume that data

from every application in the organizational landscape can be included

in the design of the first data model. An incremental approach to the

design and build of the warehouse is more likely to prove successful.

 For enterprise SOA and data strategy the successful application

of SoBI relies on the existence of an organizational strategic plan for

SO applications and for system of record data to be held in enterprise

stores or applications. Where systems and data don’t have the capa-

bility to support direct integration into the SOA proposed by the SoBI

framework, it is assumed that the eventual plan of the enterprise is to

migrate these systems and data sources to a platform that would sup-

port this level of integration. Examples of the types of systems referred

to in this assumption are systems that are heavily loaded and cannot

Service
calls

Events

Tactical services

Service adapter

Data
cache

Office
document
as master
source

Data
warehouse

Migration in line with strategic direction

Office
document
as view
on data

Service
calls

Events

Strategic services

Service façade

Enterprise
application or
data source

Export/
ETL

Data
warehouseImport

Figure 11 Views on information

SoBI Architectural Framework

30 www.architecturejournal.net • Journal 6 •

handle the extra burden of exposing services and systems that do not

support online querying and rely on periodic batch export.

 Some of the business-critical information is held in stores or appli-

cations that are not appropriate for data of this commercial value—for

example, Microsoft Excel spreadsheets that hold master versions of data

making the spreadsheet the system of record. There must be a strategic

direction to move toward the point where such data is held in an enter-

prise-strength store or application and for the documents to become

views to this data rather than the master sources. The goal is to move

from documents as systems of record to documents as views on data

held in systems of record.

Maintain Integrity
Clear delineation must be made between the operational and man-

agement types of reporting that will be required within the SoBI

framework. The traditional view of the data warehouse as the single

source for all corporate information needs does not hold within the

SoBI framework. The objective of the SoBI framework is to uphold

the principal of BI as the “single version of the truth” but also to

maintain the integrity of the systems of record as owners of the cor-

porate data.

 An operational report is likely to meet one of these criteria: requires

live access to data; is required for the operational management of the

business (for example, information on an individual transaction); doesn’t

require historical data for comparisons; and doesn’t require summarized

data (aggregated data except for the basic total). A management report

is usually defined as:

•	 Requiring access to timely but not immediate data and typically

requires summarized data to be presented over a predetermined his-

torical time frame (for example, month on month metric comparisons

by asset)

•	 Presenting the user with the capability to explore the presented data

at will to quickly research potential performance problems (for exam-

ple, drilling into the data). The report can highlight areas of failure

based on conditional formatting.

•	 Being defined to only notify the user when a problem occurs (excep-

tion reporting).

•	 Assisting in the forecasting of business performance.

•	 Assisting in the underlying goals of the individual and company

(for example, production efficiency, up selling, and product profit

maximization).

 Although the data warehouse will contain the data gathered from

multiple data sources and systems, from a service-oriented perspective

the data warehouse should not be considered as the master version.

The owner of this data remains the system of record.

 SO clearly discriminates between two different types of data,

namely, the data that is held within the service and the data that the

service exposes to the applications or other services. Data inside is the

data that the service utilizes to perform the operations that it provides.

This information is entirely private to the service and is never exposed

directly. Data outside is the data that is published by the service and

used to exchange information and requests with the clients of the ser-

vice. This data is defined explicitly in terms of an organizational schema.

 The application that is the owner of the data (also referred to as the

system of record) is ultimately responsible for maintaining its own data;

therefore, to enable other applications to request changes to the data

the owning application has to expose the request update functional-

ity through its service interface. (See resources for more information on

these two types of data.)

 When working with data integration, SoBI will be flexible enough to

work with these key integration scenarios.

•	 Data volumes, which are ad hoc single transactions or large-volume,

bulk data loads.

•	 Integration with third-party packaged applications and proprietary

database schemas.

•	 Database consolidation.

•	 Integration of legacy systems, relational, nonrelational, structured,

and semistructured data sources.

•	 Support for Web services and integration with messaging mid-

dleware.

 When working with BI, SoBI will aim to satisfy several require-

ments. Businesses need to collect and aggregate information from

disparate sources within the organization and to be able to share this

information in an open manner with a diverse estate of applications

in different parts of the organization, without first knowing in detail

how the information will be consumed. Businesses also need to isolate

users from the underlying data format and structure, instead focusing

on the business meaning of the data within the organization. The con-

sumers of the information are concerned primarily with the semantics

of the data rather than the syntax of the data. Different parts of the

business need to be able to share a common language when describ-

ing themselves, and businesses need to publish data more widely

within the organization, differentiating between data publication and

data for analysis.

 The publication of defined pieces of information such as KPIs, or

metrics through open mechanisms such as Web services, enables this

information to be consumable easily within the organization without

recourse to specialized applications. The publication of data for anal-

ysis will still be a key part of the services provided by the data ware-

house, but this tends to target a more limited audience in the organiza-

tion with access to the specialized applications necessary for data anal-

ysis. One of the goals of SoBI is to enable the open publication of infor-

mation to a wider audience of users, applications, and other services in

the organization.

SoBI Integration Patterns
Another goal for the SoBI framework is to take a pragmatic

approach to working with systems that cannot be integrated

directly into the architecture—for example, those that cannot sup-

port extra load or those that are not scalable enough to support

direct integration.

 With this in mind, the framework defines a set of scenarios (or

patterns) describing categories of typical source systems that the

authors have encountered, along with a recommended outline

approach for integrating each category of system. It is envisaged

that this collection of integration patterns will evolve and grow as

more diverse systems are integrated into a SoBI solution. These pat-

terns help address one of the key service-oriented priorities, namely,

the ability to be able to support replacement of applications with

minimal impact to the enterprise. The SoBI framework describes how

SoBI Architectural Framework

31 • Journal 6 • www.architecturejournal.net

these systems can be abstracted in a way that ensures that there is

minimum disruption when the systems are finally replaced.

 We’ve so far framed SoBI in terms of an ideal world scenario in

which the various systems of record are able to participate in the SoBI

architecture in a service-oriented manner. In a real project environ-

ment, it is likely that there will be a number of constraints that impact

our ability to implement pure SoBI. We have identified several catego-

ries of constraint, which will be discussed shortly, and for examples in

each case we identified a pattern, which, when used in conjunction with

the SoBI principal of enterprise SOA and data strategy, ensures that the

pragmatic SoBI implementation stays within the guiding principles of

the SoBI framework.

Pure SoBI
An ideal situation is one in which the application is scalable and flexible

enough to support the exposing of services and events to the service

bus, either directly or through a thin service façade (see Figure 8). This

category of application is also capable of supporting the export of data

to the data warehouse, as required.

 One source system-type constraint is real-time/transactional pro-

cessing. Some applications will contain information that is interesting

from an analysis perspective and from a real-time perspective. Such

an application can be service enabled by creating a service façade that

exposes the services of the application to the organization, and that

fires events when “interesting” changes or updates are made. In this

Service
calls

Events

Tactical services

Service adapter

Data
cache

Heavily loaded/
nonscalable system

Data
warehouse

Migration in line with strategic direction
Service

calls
Events

Strategic services

Service façade

Enterprise
application or
data source

Data
export/

ETL

Data
warehouse

Data
export/

ETL

Figure 12 Unsuitable service-interface approach

Service
calls

Events

Tactical services

Service adapter and aggregation

Data
cache

System(s) replaced with strategic system

Service
calls

Events

Strategic services

Service façade

Enterprise
application or
data source

System 1

System 3

System 2

Figure 13 BI implementation replacement

SoBI Architectural Framework

32 www.architecturejournal.net • Journal 6 •

scenario, the applications that are interested in the events from this

application can subscribe to the published events. The subscribers will

include a data warehouse agent that collates the events for integration

with the data warehouse (see Figure 9).

 Non- and semistructured systems are another constraint. In any com-

plex environment there are likely to be a number of data sources that

contain information that must be consumed by the solution but that are

held in semistructured or unstructured formats, such as spreadsheets and

document-management systems. With these kinds of systems it is impor-

tant to structure the information prior to integration into the data ware-

house, which will be achieved in one of several ways. One way is to apply

structure to the data store. For example, the provision of structured and

change-controlled templates for spreadsheets and documents, such that

the information can be accurately and reliably extracted from the doc-

ument, will involve business process change. Another way is to impose

structure on the data read from the store, which is inherently difficult as

it relies on making assumptions about the semantics of the existing struc-

ture of the data source and relying on this never changing. If this assump-

tion holds, programmatic extraction can be achieved.

 We are assuming that nonenterprise data sources will eventually

be upgraded to more directly support the services that they provide

(see Figure 10). It is important to change documents from information

sources into views on information (see Figure 11).

 Now let’s look at source system limitation constraints. For heav-

ily loaded systems there will be occasions when there are data sources

or systems that contain data that cannot be interrogated in real time

because of operational or technology constraints. Consider these exam-

ples: a heavily utilized system may not be able to support the addition

of a service interface that processes a new set of queries on a frequent

basis; an information source that does not support concurrent access,

such as data held in a spreadsheet; and ad hoc or real-time access to

data within a production system is considered to be a risk to the effec-

tive day-to-day running of the business-critical system.

 In these scenarios the tactical solution is to cache the data in a sys-

tem that can then provide a defined and published interface to the data

or service. This cache allows applications and services to have access to the

most up-to-date information possible through an exposed service. This

approach provides a means of scaling a data source or application to meet

the requirements of the business in a way that gives a clear decoupling

between the data or application and the service provided. This decoupling

is important for future development when the application or data can

be moved to a more scalable solution and provide the service directly, or

when the application can be enhanced to support the service directly. One

caveat is there will be occasions when the type of data that is required from

the system is purely of a BI nature, such as large-scale data export. In these

scenarios the service-interface approach will not be suitable (see Figure 12).

 We are assuming that the heavily loaded systems will eventually be

upgraded to more directly support the services that they provide.

Short Life Expectancy
One of the principles of SoBI is that the organization must put in place a

strategic plan for service-oriented applications and for system of record

data to be held in enterprise stores or applications. This plan will inev-

itably mean the replacement of some of the systems of record in the

existing landscape, and in some cases these are likely to be replaced

after the implementation of the BI project. Therefore, it is vital that an

approach is defined that can support these systems in the twilight years

of their lives and ease the process of replacement when the successor

system goes live (see Figure 13). This approach will need to produce an

architecture that gives balance between enabling an easy transition to

the new data source while not committing the project team to a large

development effort that is ultimately thrown away. •

Resources

“Data on the Outside vs. Data on the Inside,” Microsoft Developer

Network (MSDN) Whitepaper, Pat Helland, Microsoft Corporation

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

dnbda/html/dataoutsideinside.asp

“Data Warehousing Lessons Learned: Trends in Data Quality,” Lou

Agosta, Column published in DM Review Magazine (February 2005)

“Information as a Service: Service-Oriented Information Integration,”

Ronald Schmelzer, Zapthink

www.zapthink.com/report.html?id=WP-0125

“Information Bridge Framework: Bringing SOA to the Desktop in

Office Applications,” Ricard Roma i Dalfo, The Architecture Journal 4,

(Microsoft Corporation, 2004)

http://msdn.microsoft.com/architecture/default.aspx?pull=/library/en-

us/dnmaj/html/ibf-J4.asp

“Over half of data warehouse projects doomed” Robert Jaques, Gartner,

(February 2005)

“Service Orientation and Its Role in Your Connected Systems Strategy,” A

paper providing an overview of Microsoft’s vision for service orientation

and service-oriented architecture in enterprise computing. (Microsoft, 2005)

http://msdn.microsoft.com/architecture/soa/default.aspx?pull=/library/

en-us/dnbda/html/srorientwp.asp

 “Service-Oriented Architecture: Considerations for Agile Systems,”

Lawrence Wilkes and Richard Veryard, CBDI Forum, The Architecture

Journal 2 (Microsoft, 2004)

http://msdn.microsoft.com/architecture/journal/default.aspx?pull=/

library/en-us/dnmaj/html/aj2service.asp

 “Service-Oriented Architecture: Implementation Challenges,” Easwaran

G. Nadhan, Principal, EDS The Architecture Journal 2, (Microsoft, 2004)

http://msdn.microsoft.com/architecture/journal/default.aspx?pull=/

library/en-us/dnmaj/html/aj2soaimpc.asp

About the Authors

Sean Gordon is an architect in Microsoft’s enterprise systems strategy

and architecture consulting practice and is based in the company’s

Scotland office.

Robert Grigg is a managing consultant and enterprise architect at

Conchango, UK.

Michael Horne is a managing consultant and business intelligence

architect at Conchango, UK.

Simon Thurman is an architect evangelist in the developer group at

Microsoft Developer Network, UK.

33 • Journal 6 • www.architecturejournal.net

Planning Technical
Architecture
by Waleed S. Nema

The discipline of planning technical architecture has only become

more popular recently. Therefore, it is not well understood

because of lack of experience, training, and even literature. Technical

architecture planning, when done correctly, tries to open all aspects

of the existing environment and map them to a business-consistent

desired state. It tends to create a wide range of questions and issues

some never thought of before: some political, some business, and oth-

ers. As you try to clarify the vision and scope of architecture planning,

you may find resistance because of unclear understanding or hidden

agendas. You may even have resistance because of who you are or

where you’re coming from.

 Assuming the vision and scope of architecture planning are

agreed upon is no guarantee for keen, open, and full participation

on the part of operations staff. The benefits of disclosing information

must outweigh the cost of revealing soft spots and vulnerabilities

that only operational staff know about. Once the planning cycle is

over and it is proven that participation is rewarded by allocating bud-

get and resources, only then can you expect more participation in

subsequent cycles. Being at the disadvantage of the first one, you’re

going to have to make the message very loud and clearly stated by

management. To be successful, management must clearly outline the

benefits to architecture planning from the start.

 As you see, you have your fair share of challenges just getting

the architecture planning process started, more challenges main-

taining participation from operational staff, and challenges obtain-

ing support from management. And if you follow the model of

supervising follow-up action plans, as described later, you may

appear as a cop or auditor.

 The only way for this effort to be successful is to show and prove

good intentions. Management, which usually gives the directive for

this activity, along with the architecture team must convince staff

that this activity isn’t about exposing them but rather about creating

a better, more efficient operating environment that better serves the

business. In the end, everyone wins but at the expense of accepting

change and letting down defenses and barriers.

Giving It Life
Above all, architecture team members are facilitators. They must work

with operational staff to understand the existing environment. As a

matter of fact, operational staff should be the architects for the exist-

ing environment because they know it better than anyone else. The

architecture team must work with business and other corporate plan-

ners to bring in the business strategy and direction that IT should be

aligned with. The team must work with management to understand

tactics, constraints, and gain support. They must also bring in the

industry best practice perspective covering framework, technology,

process, and people. The architecture team needs to bring all of that

together in a workable, realistic plan.

 Architecture and planning generally give a view of a future state

that translates some kind of need or wish. If we’re talking about a

house, for example, an architect develops a detailed plan that meets

the guidelines of the owner. If we’re talking about a model to be used

in a development community, then we’re also talking about a stan-

dard to be followed to maintain a specific budget and general look.

The owner’s guidelines and requirements in this sense could also be

thought of as a standard for the builder. To bring an architecture

blueprint to life, a rather complex construction project plan must be

devised and followed. The beauty of the house on paper means noth-

ing until the owner can see it in real life.

 Therefore, it makes sense to think of architecture planning as a

process that translates a set of guidelines and requirements into stan-

Summary

The need for technical architecture planning is well
known to managers, auditors, and operational staff
in this highly demanding and changing information
age. Business drivers for this need include aligning IT
with the business and controlling service levels and
expenses. This discussion summarizes the first experi-
ence of creating an infrastructure Windows Server
Architecture (WSA) two-year tactical plan for a com-
puter operations department. Technical architecture is
defined in addition to coverage of the deliverables and
challenges involved.

“Assuming the vision And scope of

Architecture plAnning Are Agreed

upon is no guArAntee for keen, open,

And full pArticipAtion on the pArt of

operAtions stAff”

Technical Architecture Plan

34 www.architecturejournal.net • Journal 6 •

dards that builders can implement. If a building already exists, archi-

tecture means projecting new requirements and enhancements to the

existing structure.

 The technical world has not learned enough from the well-estab-

lished construction industry. The roles of owner, architect, builder,

and inspector are well known in the construction field but not equally

so for the technical field, particularly the inspector’s role. In the con-

struction industry, the builder is almost always a different entity than

the architect. The inspector could also be an independent entity but

is frequently the same as the architect, both of whom act on behalf of

the owner and must approve the builder’s work.

 We technical people need to empower and enable architects to

take on the role of inspecting and supervising the implementation of

architecture plans. In IT, project sponsors frequently are the owners.

Architects should act on their behalf and assume whatever author-

ity is required. With this new twist, not only is architecture planning

responsible for producing blueprints and standards but it also must

be responsible for overseeing the implementation of the architec-

ture plans.

 Since architects represent executive sponsors in this model, they

need to be aware of the business case and must identify action item

recommendations and set priorities accordingly. The executive spon-

sor is ultimately responsible for the architectural process and its suc-

cessful implementation.

 To summarize, architecture planning must address these five

aspects: standardization, enhancements, implementation supervi-

sion, business-driven priorities, and management follow-up; and

we can define it this way: technical architecture planning is a pro-

cess sponsored by executive management that translates existing

business needs, challenges, and wishes into a prioritized set of stan-

dards, plans, and action items, which recommend and oversee ser-

vice enhancements leading to better customer experience and oper-

ational excellence.

What It Is and Isn’t
Technical architecture aims to raise the capability and maturity of

service. It is about models, standards, and action (enhancements).

It is a high-level solution specification but is not a design specifica-

tion. Solution specifications are like setting the budget and lot size

of a house model in a development community rather than getting

into its layout specifics. Once approved, follow-up design and imple-

mentation projects are usually born for new services or large-scale

enhancements.

 Technical architecture is not simply a Visio diagram of file server

configurations. Architecture is, whether a logical file server name

space (such as Distributed File System) is used; whether a central-

ized or distributed management model is followed; or whether a free-

access, shared-hosting model is used for databases or Web sites.

Tactical Plan for the Windows
Server Architecture

This outline is a partial table of contents for the Windows
Server Architecture (WSA) tactical plan.

Introduction
Disciplines
 Web hosting services
 Executive summary
 Introduction
 Background
 Business drivers
 Objectives
 Scope
 Solution concept
 Service architecture
 MOF optimizing
 Service model
 Service offerings
 Service/operational-level commitments
 Service requests
 Quality assurance
 Team model
 Support services
 Technology architecture
 General
 Corporate application strategy
 Definitions
 Trust zones
 Hosting profiles (deployment patterns)
 Architectural guidelines
 MOF changing
 Dependencies management
 Production control
 MOF operating
 Monitoring
 MOF supporting
 Incident/problem management
 Problem isolation
 Enhanced error reporting
 MOF optimizing
 Security strategies
 Business continuity strategies
 Action plan recommendations
 Appendix
 References
 Diagrams
 Other services (file and print, directory, data)
Server road map
Consolidated deliverables
 Infrastructure
 Development
 Policies and processes

“since Architects represent eXecutive

sponsors in this model, theY need to

Be AWAre of the Business cAse And must

identifY Action item recommendAtions

And set priorities AccordinglY”

Technical Architecture Plan

35 • Journal 6 • www.architecturejournal.net

About the Author

Waleed Nema is the team lead for Windows technical architecture

planning, computer operations department at Saudi Aramco. For

the great success of this project, Waleed would like to thank his

management, operational staff, and architecture team.

Section
Priority/

deadline
Objective

Resources/

skills
Work estimate Success metric

3.x

Service model

Priority A
Q4 2005

Publicize the Internet
Service Provider (ISP)
hosting model

WHG Publish document in SLC, OLC, and new service request terms and conditions

3.y

Monitoring

Priority A
Q2 2006

Monitor web sites/
servers for down-
time, performance,
and optimization

 WHG Assign a monitoring attendant role to a named person who will be account-
able for attending to all monitoring console events.

Explore MOM 2005 new features including IIS Management Pack, and Web
sites and Services MP.

Enable text-messaging and escalation for critical errors such as server-down.

3.z

Production control

Priority B
Q4 2006

Build a Web site
publishing tool

Consulting
assignment

Engage in a development contract that will build a Web site Publishing Tool
as defined in the existing prototype.

Table 1 Sample of action plan recommendations

Those types of decisions have far-reaching consequences and thus are

architecture-level decisions.

 Technical Architecture is most certainly about process. As a matter

of fact, it is frequently the process, not the technology that can make or

break a service. Processes often involve people issues that imply politics

and sometimes are the most dangerous aspect of all! Worse yet is when

the system doesn’t have checks and balances for working with such issues.

 Technical architecture is about measurement. People must feel that

measurements are created to help them, not to expose them. Management

must make their intentions crystal clear to gain the trust and full buy-in from

staff. Only then do we have a chance for anything to work. Management

must communicate the reasons for measurement, which include realization,

or the awareness of how far off we are, improvement to reach targets, and

estimation of what’s required. Management must also avoid public embar-

rassment by putting a positive spin on public reporting such as “percentage

improvement over last period,” while keeping absolute reporting internal

until the numbers are close to the Key Performance Indicator (KPI) targets.

Management must prove good intentions either by getting the required

resources or by accepting slower progress and less-impressive results.

 Technical architecture is about automation. That’s the key to effi-

ciency, deterministic processes, and stability. Automation gives opera-

tions staff more time to focus on analysis and optimization, which are

the basis for service enhancement.

 Technical architecture is also about monitoring. The only way to be

in control is to constantly look at the road and the gauges. Architec-

ture gives you a road map and makes sure you see the right gauges.

It also helps you create an alert and escalation system—possibly an

automated corrective reaction.

 Architecture is a continuous cycle as assured by many frameworks

such as Microsoft Operations Framework, Deming’s cycle, and the

COBIT/Management cycle. It is basically a planning phase followed by

monitored operations, the learning of which feeds optimization and

enhancements into a new cycle.

Documenting the Plan
The main body of the Windows Server Architecture (WSA) tactical

plan is in the functional area disciplines such as Web hosting services,

directory services, and so on (see the sidebar, “Tactical Plan for the

Windows Server Architecture”). The server road map applies to spe-

cific technology changes in the tactical period. The last section, con-

solidation deliverables, collects action plan recommendations from all

sections and categorizes them in three areas to help follow-up proj-

ects: infrastructure, development, and policies and processes.

 The architecture’s main body of each discipline service—Web

hosting services, directory services, and so on—is in the solution con-

cept section, which is divided into service and technology architec-

tures that are in turn based on the Microsoft Operations Framework

(MOF). The introduction includes the background, business drivers,

objectives, and scope sections, and it sets objectives such as the num-

ber of 9s for high availability, among others.

 The executive summary is a one-page summary of as-is, to-be

benefits, goals, and approach in addition to the most significant

action plan recommendations.

 Action plan recommendations are probably the most impor-

tant summary of all the solution specifications and success metrics

because operating staff set priorities and deadlines and indicate in the

resources/skills column if they can do it themselves or they need it to

be contracted out (see Table 1). Establishing architecture planning as

a discipline and a role has paid off even before finishing the first tacti-

cal cycle. It is a delight to see the completion of the plan and the start

of action. This result does not happen without cost or effort and is

dependent on teamwork among all players. •

“Architecture is A continuous cYcle

As Assured BY mAnY frAmeWorks such

As microsoft operAtions frAmeWork,

deming’s cYcle, And the coBit/

mAnAgement cYcle”

36 www.architecturejournal.net • Journal 6 •

Behavioral Software
Architecture Language
by Behzad Karim

One might rightly argue that there are at least a dozen well-

defined standards and tools that can be used for defining soft-

ware architecture. We do have standards and tools to define, com-

municate, and even generate templates for software design. Some of

these tools can even work two ways by translating code to an archi-

tecture model and vice versa. Why then is there a need for another

language or programming model?

 Although there are plenty of ways to define the software architecture

in terms of packages, components, and connectors (that is, the struc-

ture of software), when it comes to defining dynamic software behavior,

we are unable to provide a definition for, communicate, or even clearly

design them. However, the dynamic behavior of software is really what

our software does after it rolls out into the production environment.

 Most current, well-known (and established) techniques used

for software architecture definition are from an era when soft-

ware architecture was still a myth. While these techniques (and

tools) do a great job defining the structure and components of

software systems, they lack the ability to encapsulate and define

the software behavior and various interactions with the environ-

ment against the dimension of time. Arguably these tools were

not meant for the software architect as much as they were meant

for the software engineer.

 The basic need of the architect to define the essence of a software

system in an abstract manner while providing the picture of the living

system remains unanswered. We are either going too much into the

implementation details or merely communicating the outer surface

of the system. In both cases we are leaving out the most fundamen-

tal ingredient of software character: the dynamic behavioral aspects

of the system. In too many projects these aspects of the system are

being discovered in the detailed design or coding phase by the devel-

opment team.

Facing Reality
Another dilemma is the ever-growing gap between the code and the

original architecture of the system. We are using different tools and

languages in the process of software construction. The software archi-

tect is using some kind of a modeling language while the developer is

using a programming language. As a result, especially after the system

rolls into production, documents, diagrams, and code get out of sync.

Have you ever had to come back to revise a system you had designed

in the past, only to discover that the architecture has no resemblance

to the original design?

 This analogy holds true for class diagrams, use cases, and test sce-

narios. The usual problem with these documents is that they all seem

to become obsolete after the software rolls into production. These

problems arise from the lack of a shared medium or a singular point

of reference for the architecture an d physical solution. Ideally, archi-

tecture and code are inseparable faces of the very same reality: the

software system.

 The software-engineering discipline has come a long way since

the early days of its existence. Through its journey, ideas from other

engineering professions have been utilized. One fundamental factor

that differentiates our profession from other engineering fields is the

nature of our labor, and more specifically, the outcome of our work.

We start with thoughts, ideas, and basic visions and develop them into

realities that can change the lives of millions. The end result of our

labor is not merely a static product or commodity but rather a living,

responding organism.

 Software engineering as a discipline will continue to work with

more complexity in building software systems. As if this were

Summary

Software architecture is a hot keyword these days for
people in our profession. It seems everyone is out to
discover the true potential of the software architecture
and what it can bring into play for them. The basic
idea of architecture definition is to design software
structure and object interaction before the detailed
design phase. Although serious architecture definition
is being suggested for large projects only, arguably
any software construction or implementation work
must be preceded by an architectural design and
approval phase. Get acquainted with BASL, a language
that unifies software architecture definition with soft-
ware implementation (coding).

“The end resulT of our labor is noT

merely a sTaTic producT or commodiTy

buT raTher a living, responding

organism”

BSAL

37 • Journal 6 • www.architecturejournal.net

• Facilitate a unified platform for software architecture definition

(both structure and behavior) and software implementation (cod-

ing). BSAL is meant to be the common language of the architect

and the developer.

• Enable the architecture design of the system (including behavior) to

be enforced in the implementation level. This enforcement can be

achieved by the aid of the interactive development environments

(IDEs). Separation of roles and authorization mechanisms can be

clearly implemented in a BSAL development environment.

• Use a platform that can be changed and enhanced easily by further

contributions in the future (BSAL is based on the OOD-OOP model).

Why “Behavioral”?
To better understand the importance of behavior and why it has

been magnified at the architecture design phase of BSAL, let’s con-

sider a real-world scenario. We have been given a task to design major

enhancements on the membership system of a comprehensible busi-

ness-to-consumer (B2C) Web site. To make the situation more crit-

ical, assume that the system has been built by a couple of previous

employees who are not currently readily available to help us. Such a

system would normally have features to facilitate creating new mem-

bers, update member information, manipulate member rights, per-

form authentication and authorization, and provide member wallets

(credit card, address, and invoice information).

 Since our job is to be responsible to technically lead a major revi-

sion to the core membership system, our first priority would be to try

not enough, the users of these systems will require more intelli-

gent systems, simpler interfaces, and richer functionalities. Soft-

ware builders will need to handle greater amounts of detail to

meet more sophisticated user requirements. Though not statisti-

cally proven, experience shows that as the scope, size, and depen-

dencies of software systems rise, complexity rises exponentially. It

is evident that complexity is a key concern that we would like soft-

ware architecture to be able to address.

 There are many approaches to software architecture published

by respected authors in the discipline. While I respect and enjoy all

research documents published on this topic, I would like to keep my

list of key points in handling complexity to only two factors:

• The top-down approach in software design. This factor emphasizes

a top-to-bottom approach in designing the software architecture,

starting from the top-most system (product or the big solution) and

dividing it into subsystems that can be designed independently, and

then approaching each subsystem iteratively in a similar manner to

divide it into independent components.

• Decomposition or breakdown of the system. This factor means

designing components that are loosely coupled and have clear and

intuitive interfaces. The precondition of building suitable compo-

nents is having a clear idea of the dynamic behavior of the system

and subsystems. Components should address the functional require-

ments of the encompassing subsystem while harmoniously fitting

together with other components.

These requirements have fuelled the research and the creation of the

Behavioral Software Architecture Language (BSAL). The main purpose

of BSAL is to:

• Provide an implementation model that can start at the system-

architecture level, allowing the architect to define the system, sub-

systems, states, and dynamic behavior of the system and all the

subsystems.

System

-initial : State
-final : State

1 1 1

-State

-StateState

+entry()
+exit()

-Behavior

-Behavior

Behavior

- Message

Message

*

* *

**

Figure 1 The basic foundation of systems

“an experienced archiTecT would seek

To undersTand The dynamic behavior of

The sysTem as iT inTeracTs wiTh oTher

sysTems and responds To user requesTs,

before considering The changes or new

feaTures”

BSAL

38 www.architecturejournal.net • Journal 6 •

to understand this system in its totality. Hence, after examining the

working solution we would look for documents and blueprints regard-

ing the architecture of the system. Assuming we are lucky enough to

find some class diagrams of the system, we may initially feel relieved.

However, upon further investigation and analysis, we would likely find

the diagrams themselves to be incomplete and out of date. As frustra-

tion builds, in our search of understanding the overall architecture of

the system, we would eventually conclude that nothing but the code

itself can reveal the architecture of this system. We would have to

roll up our sleeves and start reading the code line by line. The code is

always the definite source of information that could reveal (although

not easily) to us the architecture of the system.

 What piece of information would help us most in visualizing and

understanding a software system? Although discovering the interac-

tion rules and interfaces of the system, obtaining the business analy-

sis documents of the system, having up-to-date class diagram blue-

prints, and getting up-to-date technical design and requirements

documents would help, having the original developer of the sys-

tem explain the behavior of the system and explain the event-condi-

tioning and state-change sequence of the system would be the most

favorable choice.

 This choice is favorable because software behavior and event/

state changes are very difficult to be grasped without the direct

help of previous designers of the system. Although the lack of

up-to-date information is a definite disadvantage in this situa-

tion, being confronted with too much information can also lead to

a disaster. Both ends of the information-availability spectrum are

unfavorable situations.

 An experienced architect would seek to understand the dynamic

behavior of the system as it interacts and responds to other systems

and user requests before even considering the changes or new fea-

tures. In this particular situation, the dynamic behavior of the system

would be deeply embedded in the physical structure of the solution

(the source code).

 It’s important to stress that the behavioral aspects of a software

system play a key role in revealing the true nature of it, which is why

BSAL starts the definition of a software system by outlining the sub-

systems, states, and behavioral patterns.

Get to Know BSAL
Let’s get acquainted with the simple and yet effective language for

defining software architecture (and coding). While BSAL is an architec-

ture definition language, it is also a programming language. Although

there are other aspects of software architecture that could have been

emphasized, the focus in BSAL has been on providing a generally sim-

plified model of architecture definition while facilitating a flexible pro-

gramming model.

 Considering the behavioral aspects of the software systems to

be most important, BASL emphasizes the definition of behavior pat-

terns in the architecture definition phase. In fact, without defining the

behavioral patterns of the system you cannot proceed to implementa-

tion of lower models in the system. The programming language syn-

tax of BSAL could be any modern object-oriented programming lan-

guage. While the principles of the language can be applied to any

modern OOP language (and I certainly hope to see that in the future),

C#.NET was used here to convey the BSAL ideas discussed. Before pro-

ceeding any further, it may be helpful to provide a role-based usage

scenario for BSAL:

• The software architect uses the language to define the major char-

acteristics of the software system. Namely, system, subsystem, state,

behavior, and message objects are defined by the architect. These

are the high-level component definitions for any software solution.

• The software engineer uses the direct output of the architect’s work

(the high-level BSAL source code) as the input to his or her work,

provides detailed design, and starts implementing states, messages,

components, and classes inside subsystems.

• The test engineer uses the BSAL source code to analyze system

behavior and create black-and-white box test scenarios.

• The analyst uses the BSAL source code to analyze high-level system

breakdown and component definitions and understand the system

behavior before proposing further enhancements to the system.

 BSAL is based on the object-oriented paradigm. The important

addition that BSAL brings into play is the common, standard usage

of a few building blocks in software definition. These building

blocks can themselves be created using a modern OOP language.

The basic rule of BSAL is that every piece of code must be inside a

system object. A system object itself can encapsulate smaller sys-

tems or subsystems. The system object can contain fields (attri-

butes), must have at least two state objects, and can have behavior

and message objects. Executable code can only be written inside

state objects of the system, meaning that the system object (or

subsystem object for that matter), behavior object, and message

objects solely define the behavior and structure of the system (the

architecture). However, almost all of the programmer’s executable

code will reside inside the state objects, which greatly simplifies the

task of architecture design and carries the architecture down into

the programmer’s code.

Component Breakdown
Low-level components of BSAL could be implemented in any mod-

ern object-oriented programming language such as C#.NET, Java, or

C++ (the details of these components are beyond the scope of this

discussion). Presentation of a full working model of BSAL will be left

as the main theme of a future discussion. The basic high-level compo-

nents of BSAL are system, state, behavior, and message objects. These

are the objects that the architects of the system usually define. These

objects draw and define the basic boundaries and foundations of the

system (see Figure 1).

 The system object is the top-most BSAL component. It is the

object that encapsulates all other components of the system. It can

be spread across multiple files, modules, and/or packages. A sys-

tem can be composed of one or more subsystems. A system can

encapsulate subsystems, states, behaviors, messages, and cus-

tom fields and attributes. The system must have at least two states,

“bsal merges The archiTecTure

(sTrucTure and behavior) and The

execuTable code inTo a single source”

BSAL

39 • Journal 6 • www.architecturejournal.net

namely, initial state and final state. When the system is started, it

immediately goes into the initial state; when the system is signaled

to shut down, it goes into the final state. A system can have unlim-

ited custom states.

 A system has an initial state and a final state; can receive mes-

sages (input to the system); can check behavioral conditions so that it

can change and manage states accordingly; can implement behavioral

patterns by activating and finalizing states; and can send messages to

other systems (output from the system):

public class member : System
{
protected State
createMember;
public member(
State istate, State
fstate) : base(
istate, fstate)
{
}
}

 The state object defines a stage that the system can go through to

perform a specific task. State definitions organize work units in a cer-

tain logical order. States implement the primary functionality of the

system.

 A state object has two required methods named entry() and exit().

The entry() method is called when the state is activated; the exit()

method is called when the state is signaled for completion. A state

object can have unlimited custom methods.

 A system can change states internally, or it can change state in

response to an outside interaction with other systems or environ-

ments. (For example, receiving a message from another system can

trigger a change of state in a system.) The common place where a

state change is implemented inside a behavior object or another

state’s exit() method.

 A state object has an entry() and an exit() method, can be acti-

vated through a behavior object or another state object, can complete

itself, must check the behavior objects related to it when completed,

can have custom properties and methods, and can run as a separate

thread of execution (parallel states):

public class MyInitState :
State
{
public MyInitState(
string sn, int sid) :
base(sn, sid)
{
}
public override int entry()
{
// do some stuff
return 0;
}
public override int exit()

{
// do some stuff
return 0;
}
}

 The behavior object is where the behavioral patterns of the sys-

tem are defined. Behavior definition is the heart of the state manage-

ment of a software system. Typically, a behavior definition contains

one or more conditions-related method calls to complete and/or acti-

vate certain states of the system. Behavior definitions should not con-

tain any executable code other than those resulting in change of state,

setting a field or attribute, or sending a message to other systems. The

sole purpose here is to define the behavior of the system under certain

conditions or circumstances. A behavior object basically encapsulates

conditions, changes in attributes, sending messages, and completing

and activating states.

Good for the Profession
A message object encapsulates the synchronous/asynchronous infor-

mation flow between different systems. A system object can only

receive message objects that have been defined for it. A message

definition typically contains a message ID, a message header, and a

message body. The underlying implementation of messages could be

left to the specific environment and framework in use. The behavioral

pattern of the system is checked either when the system receives any

new messages or (alternatively) when any state inside the system is

being completed.

 As information technology problems continue to get more com-

plex, software engineers need languages (and programming models)

that can hide and encapsulate greater levels of detail. As we discussed

here, the traditional OOP development analogy backed up with soft-

ware modeling notations can be limiting and at times cumbersome.

BSAL merges the architecture (structure and behavior) and the execut-

able code into a single source. Architects and software engineers need

to communicate, share, and build ideas. To come up with alternative

or improved solutions for live systems, they need to quickly grasp the

essence of software systems. Being able to understand quickly and

precisely a software system is a great virtue. BSAL is a possible answer

to these needs and hopefully a positive step in opening up new hori-

zons in the future of the software-engineering profession. •

About the Author

Behzad Karim (MCSD.NET, MCT) is a software project manager at

TEPUM SIGMA Consulting and Development Center (www.sigma.net.tr) in

Istanbul, Turkey, where he leads software development teams delivering

EAI projects. Behzad has been a software developer and software architect

for nearly 18 years. Contact Behzad at bkarim@sigma.net.tr.

“as informaTion Technology problems

conTinue To geT more complex, sofTware

engineers need languages (and

programming models) ThaT can hide and

encapsulaTe greaTer levels of deTail”

149761mea01L fp

C M Y K

New Visual Studio 2005.
The difference is obvious.

N
O

 P
U

RC
H

A
SE

 N
EC

ES
SA

RY
. S

PO
TT

IN
G

 T
H

E
D

IF
FE

R
EN

C
ES

 N
O

T
R

EQ
U

IR
ED

 T
O

 E
N

TE
R

. V
o

id
 w

he
re

 p
ro

hi
b

it
ed

. M
us

t
b

e
U

.S
. r

es
id

en
t

ag
e

18
 o

r
o

ld
er

 t
o

en
te

r.
D

ea
d

lin
e

fo
r

en
tr

y
is

 1
/3

1/
06

. S
ee

 c
o

m
p

le
te

 r
ul

es
 a

t
w

w
w

.th
ed

if
fe

re
nc

ei
so

b
vi

o
us

.c
o

m
. ©

 2
00

5
M

ic
ro

so
ft

 C
o

rp
o

ra
ti

o
n.

 A
ll

ri
g

ht
s

re
se

rv
ed

. M
ic

ro
so

ft
, V

is
ua

l S
tu

d
io

, t
he

 V
is

ua
l S

tu
d

io

lo
g

o,
 W

in
d

o
w

s,
 a

nd
 “

Yo
ur

 p
o

te
nt

ia
l.

O
ur

 p
as

si
o

n.
”

ar
e

ei
th

er
 r

eg
is

te
re

d
tr

ad
em

ar
ks

 o
r

tr
ad

em
ar

ks
 o

f M
ic

ro
so

ft
 C

o
rp

o
ra

ti
o

n
in

 t
he

 U
ni

te
d

St
at

es
 a

nd
/o

r
o

th
er

 c
o

un
tr

ie
s.

PACIFIC DIGITAL IMAGE • 333 Broadway, San Francisco CA 94133 • 415.274.7234 • www.pacdigital.com
Filename:

Colors:
VPS OK:

Operator:
Date:

Time:
LPI:

149761mea01L.ps_wf01
Cyan, Magenta, Yellow, Black

pdi
05-11-17

12:02:29
--

Initial before passing to proofing

5 25 50 75 90 100

CyanCyan RGB

5 25 50 75 90 100

Magenta

5 25 50 75 90 100

Yellow

5 25 50 75 90 100

Black

creo

149761mea01R fp

C M Y K

Spot the difference? Once you start coding, you’ll see it immediately.
The new Visual Studio® 2005 has over 400 new features, such as Web
and Windows® controls that reduce tedious tasks and repetition.
So you can focus on creating great code. Spot the 10 differences
above and play for cool prizes at msdn.microsoft.com/difference

PACIFIC DIGITAL IMAGE • 333 Broadway, San Francisco CA 94133 • 415.274.7234 • www.pacdigital.com
Filename:

Colors:
VPS OK:

Operator:
Date:

Time:
LPI:

149761mea01R.ps_wf01
Cyan, Magenta, Yellow, Black

pdi
05-11-17

12:02:53
--

Initial before passing to proofing

5 25 50 75 90 100

CyanCyan RGB

5 25 50 75 90 100

Magenta

5 25 50 75 90 100

Yellow

5 25 50 75 90 100

Black

creo

098-104680	 Subscribe	at:	www.architecturejournal.net

®

	Cover
	TOC
	Foreward
	Taking Governance to the Edge
	Apply Topic Maps to Applications
	Design and Implement a Software Factory
	Service-Oriented Business Intelligence
	Planning Technical Architecture
	Behavioral Software Architecture Language

