
Secrets of Great
Architects
Don Awalt and Rick McUmber,
RDA Corporation
pp 04 – 13

The Case for Software
Factories
Jack Greenfield,
Microsoft Corporation
pp 14 – 19

Identity and Access
Management
Frederick Chong,
Microsoft Corporation
pp 20 – 31

Business Patterns for
Software Engineering
Use – Part 2
Philip Teale,
Microsoft Corporation and
Robert Jarvis, SA Ltd
pp 32 – 43

A Strategic Approach to
Data Transfer Methods
E G Nadhan and
Jay-Louise Weldon, EDS
pp 44 – 54

Messaging Patterns
in Service Oriented
Architecture – Part 2
Soumen Chatterjee
pp 55 – 60

Dear Architect
While it is often difficult to reach
agreement, one thing I think all
architects can agree on is that our
jobs are getting harder, not easier.
We’re facing an ever-increasing level
of complexity with an ever-shrinking
level of resources. Whether its new
challenges such as increased
regulatory compliance or old-fashion
challenges like feature creep and
slashed budgets, the architect’s job
continues to become more difficult
as well as more important every day.

Abstraction is the architect’s key tool
for dealing with complexity. We’ve
seen the evolution of architectural
abstractions techniques such as
models and patterns; however we

have yet to realize much in the way
of measurable value from them.
Models and patterns are useful for
communicating effectively with our
peers, but so far they haven’t helped
drastically reduce the amount of
resources it takes to build and operate
a system. In order to continue to deal
with increasing complexity, we need to
get much more pragmatic about using
abstraction to solve problems.

In this, the third issue of JOURNAL,
we focus on raising the abstraction
level. This focus ranges from general
techniques for abstraction to the
introduction of an industrialized
manufacturing approach for software
development. Along the way, we cover

the use of patterns to describe
business functions as well as identity
and data management.

Regardless of our disagreements, the
looming crisis of complexity threatens
to severely impede the progress
of software construction and the
businesses that rely on that software.
Going forward, JOURNAL will
continue to deliver information from
all aspects of the software architecture
industry and to provide the guidance
architects need.

Harry Pierson
architect,
D&PE Architecture Strategy,
Microsoft Corporation

JOURNAL3 MICROSOFT ARCHITECTS JOURNAL JULY 2004 A NEW PUBLICATION FOR SOFTWARE ARCHITECTS

JOURNAL3

JOURNAL3 | Editorial 2

Dear Architect
Welcome to the summer issue of
JOURNAL. These last few months have
been really exciting for ‘architecture’ as
a topic at Microsoft. The Microsoft®

architecture center has become
established as a leading portal for
architectural content and a springboard
for thousands of our customers and
partners to dive into excellent guidance
on architecting and developing
solutions on the Windows® platform.

This issue has an abundance of
architectural gems written by respected
architects from Microsoft and valued
partners and I’m confident that it has
raised the level of content quality to
a higher level.

We start with a paper by Don Awalt
and Rick McUmber of RDA Corporation,
also members of the Microsoft
Architecture Advisory Board, who
reveal many secrets of great architects.
They tackle a very hard problem faced
daily by Enterprise architects, namely
the challenge of high complexity in
systems development which is
compounded by ever-changing needs of
the business and pressure to adopt new
technologies as they emerge. The key
secret of great architects they reveal
begins with a mastery of solution
conceptualization and abstraction.
The way in which the authors have
dissected the problem and provided
an exemplary walkthrough of the
solution process is evidence itself
of such mastery.

Jack Greenfield from Microsoft’s
Enterprise Frameworks and Tools
division discusses in his article
important new thinking on a critical
business imperative troubling many
organizations today – how to scale up
software development? As currently
practiced, software development is
slow, expensive and error prone, and
results in a multitude of well-known
problems. Despite these shortcomings,
the ‘products’ of software development
obviously provide significant value to
consumers, as shown by a long term
trend of increasing demand. To address
these shortcomings a case is made for
a ‘Software Factories’ methodology
to industrialize the development of
software which is described in detail in
a forthcoming book of the same name
by Jack Greenfield and Keith Short,
from John Wiley and Sons.

Feedback from customers to Microsoft
on the challenges of implementing SOA
systems has been very consistent; issues
in managing identities, aggregating
data, managing services, and integrating
business processes have been cited
over and over again as major road
blocks to realizing more efficient and
agile organizations. Frederick Chong
from the Architecture Strategy team in
Microsoft writes a paper on one of these
challenges, namely Identity and Access
Management. He provides a succinct
and comprehensive overview of what
I&AM means using a simple framework
consisting of three key areas: identity
life cycle management, access
management, and directory services.

Microsoft’s Philip Teale and Robert
Jarvis of SA Ltd. follow with the second
part of their paper discussing business
patterns – which are essentially
architectural templates for business
solutions. In this paper they describe
how to develop business patterns based
on business functions, data, and
business components and also show
how these elements can be used to
engineer software systems. A realistic
but simplified example is used to show
how to use standard techniques to
develop descriptions of these elements
required for a business pattern.

Next, Easwaran Nadhan and Jay-
Louise Weldon, both from EDS,
examine various data transfer
strategies for the enterprise which
enable timely access to the right
information and data sharing such
that business processes can be
effective across the enterprise. They
describe eight options and analyze those
using criteria such as data latency
requirements, transformation needs,
data volume considerations, and
constraints regarding the level of
intrusion and effort that can be
tolerated by an enterprise in order
to realize the expected benefits.

Editorial
By Arvindra Sehmi

Keep updated with additional information
at http://msdn.microsoft.com/architecture/journal

JOURNAL3 | Editorial 3

The final paper is part two of Soumen
Chatterjee’s description of SOA
messaging patterns. Traditionally
messaging patterns have been applied
to enterprise application integration
solutions. Soumen uses these patterns
to explain how SOA can be implemented.
His insights are derived from the
original work of Hohpe and Woolf ’s
book on Enterprise Integration
Patterns. However, Soumen shows us
how the same messaging patterns
described in the book can be applied
equally effectively at the application
architecture level, especially in SOA-
based solutions, because they too are
fundamentally message-oriented.

Please keep up to date on the web at
the Microsoft® architecture center and
specifically at the home for JOURNAL
http://msdn.microsoft.com/architecture/
journal where you'll be able to
download the articles for your added
convenience. And keep a look out for
announcements of a new JOURNAL
subscription service coming soon.

As always, if you’re interested in
writing for JOURNAL please send me
a brief outline of your topic and your
resume to asehmi@microsoft.com

Now put your feet up and get reading!

Arvindra Sehmi
Architect, D&PE, Microsoft EMEA

JOURNAL3 | Secrets of Great Architects 4

Secrets of Great Architects
By Don Awalt and Rick McUmber, RDA Corporation

“By organizing the solution into discrete levels, architects are able to focus on a single
aspect of the solution while ignoring for the moment all remaining complexities.”

Applying Levels of Abstraction
to IT Solutions
Enterprise architects are challenged
by the vast amount of complexity
they face. It’s one thing to develop
an isolated, departmental application
that automates a business task.
However, it is quite another to design
and assemble a worldwide network of
IT labs filled with applications, servers
and databases which support tens of
thousands of IT users, all supporting
various business activities.
Compounding the complexity, the
IT network must always be available,
responsive and protect the corporation’s
precious information assets. In addition
to all of this, the IT network must be
flexible enough to support the ever-
changing needs of the business and to
adopt new technologies as they emerge.

Some architects clearly stand out and
thrive in this complexity. We’ve been
fortunate to work side by side with
some truly great analysts and architects
over our careers. Reflecting on these
experiences, we’ve analyzed what
makes an exceptional architect.

Without exception, all great architects
have mastered the ability to
conceptualize a solution at distinct
levels of abstraction. By organizing the
solution into discrete levels, architects
are able to focus on a single aspect of
the solution while ignoring for the
moment all remaining complexities.
Once they stabilize that part of the
solution, they can then proceed to other
aspects, continuously evolving and
refining the layers into a cohesive model;
one that can ultimately be implemented.

Most software developers know that
they should decompose the solution
into levels of abstraction. However,
this is very difficult to apply in practice

on actual projects. Upon encountering
the first hurdle, it’s easy to abandon
the levels in the rush to start coding.
Great architects work through the
challenges and are disciplined to
maintain the levels throughout the
entire project lifecycle. They realize
if they don’t, they’ll eventually drown
in the complexity.

This article presents techniques for
applying levels of abstraction to IT
solutions. We first demonstrate the
approach through a simple example,
and then propose a structure of
system artifacts based on formal
levels of abstraction.

Levels of Abstraction: A Powerful
Weapon for all Engineers
Other engineering disciplines, such as
civil engineers, have been coping with
complexity by leveraging levels of
abstraction for centuries. Let’s study
how other, more mature, engineering
disciplines apply levels of abstraction,
starting with the electrical engineers
who design computer systems which
continually grow increasingly complex
with each new generation.

Hardware Engineers
System designers model computer
systems using levels of abstraction.
Each level is well defined and provides
a distinct perspective of the system.
Many systems are designed at three
primary levels – System, Subsystem
and Component as shown in Figure 1.

Layering enables the engineers to
integrate an enormous amount of
complexity into a single, working
computer system. It’s impossible to
comprehend a computer strictly at the
level of its atomic parts. There are
~25,000,000 transistors on a single
Intel Itanium® chip alone!

This approach of breaking complexity
down into layers of abstraction is
of course not unique to IT-related
disciplines. A similar approach is
used in countless other disciplines
from aeronautical engineering
to microbiology.

Core Principles When Applying
Levels of Abstraction
All engineers follow this core set of
principles when applying levels of
abstraction. These principles also
hold true when applying levels of
abstraction to software.

The number and scope of the levels
are well defined – In order for
engineers to collaborate on a complex
system, all team members must share
the same understanding of the levels.
So as designers make design decisions,
they must file those decisions at the
appropriate level of detail.

Multiple views within each level –
The complexity within a single level

System Design

MouseKeyboard

RAID Subsystem SCSIBus

CommBoard
• CPU
• DRAMs
• Clock
• MemoryChips
• etc

CPU
• Processor
• Microcode
• Cache
• Clock
• etc

MemoryChip
• Transistors
• Clock
• etc.

Disk
• Platters
• Heads
• ControllerCard
• Bus
• etc

Monitor

CommBoard Backplane

SoundCard

Subsystem Design

RAID Subsystem
Design
• Disks 1-16
• ControllerCard
• Bus
• etc

MotherBoard
• CPU1
• CPU2
• DRAMs
• Clock
• MemoryChips
• etc

Component Design

Motherboard

Figure 1. Levels of Abstraction
for a Computer System

JOURNAL3 | Secrets of Great Architects 5

1 Many have successfully applied levels of
abstraction to software. Ed Yourdon and
Tom DeMarco proposed structured
analysis and structured system design
in 1979. Many branches of the
US Government standardized on
DoD’s 2167A standard which requires

systems to be composed of a hierarchy
of hardware and software configuration
items. The DBA community frequently
applies levels of detail to model
relational databases. In particular, the
Bachman toolset and James Martin’s
Information Engineering Methodology

(IEM) model databases logically, then
physically. A Google search of ‘software
levels of abstraction’ returns several
results, however, most are from the
academic community and seem to focus
on formal computer languages.

can become too much to grasp all at
once. In this case, engineers present
the design within a single level through
multiple views. Each view presents
a particular aspect of the design,
yet remains at the same level of
abstraction. For example, the
motherboard engineer creates a view
for each layer of the board, modeling
the design of the connection pathways
for that layer.

Must maintain consistency among
the levels – In order for the system to
function as intended, each subsequent
layer must be a proper refinement of
its parent layer. If the computer system
designer switches from an IDE bus to
a SCSI bus, then the interface
specifications for all devices must also
switch to SCSI. If the levels are not
synchronized, the system won’t perform
as envisioned at the top level.

Apply Levels of Abstraction
to IT Systems
Now that we’ve examined how other
disciplines apply levels of abstraction,
let’s apply the technique to IT
solutions1. The following sections
present techniques for applying
levels of abstraction to model the
requirements, design and
implementation of a typical IT
application. The techniques are
presented through a simple,
instructional example of an online
order system for a hypothetical
retailer. In our example, we not only
include the architecture, but expand
the scope to include the system
requirements and the business context
as defined by the retail industry.

Level Name Level Scope

Domain – The company is the ‘black box’ central actor.
– Model the business from the perspective of the business’

external actors.
– Model only the business interactions. Omit the communication

mediums.

Business – Model the business process workflows that are realization
Processes of the domain level’s business interactions.

– The system serves as the ‘black box’ central actor.
– Model the business processes from the perspective of the

system’s external actors. Include the communication mediums
for completing the business transactions.

Logical – Model the internal design of the system.
– The major system components function as the main actors.
– Model the system behavior from the perspective of inside the

system ‘black box’.

Physical – Model the physical structure of the implementation.

Level Name Level Scope

System The computer engineer designs the system by integrating
various subsystems, such as a backplane, circuit boards, a
chassis, internal devices such as CD/DVD drives & disk
drives and external devices such as a display monitor,
keyboard and mouse. The engineer thinks of the system in
terms of its subsystems, their interfaces and their
interconnections. Each subsystem interface is documented as
a formal specification to the subsystem designer.

Subsystem The subsystem engineer designs the subsystem by
integrating components. For example the motherboard
designer architects the motherboard by integrating
components such as memory chips, DMA chips and a CPU
chip. Likewise, the display monitor engineer designs the
monitor by integrating components such as a video card and
CRT. The subsystem engineer thinks of the subsystem in
terms of its components, their interfaces and their
interconnections. Each component interface is documented
as a formal specification to the component engineer.

Component The component engineer designs the component by
assembling and integrating subcomponents. For example,
the memory chip designer architects the chip as a complex
network of integrated circuits.

The three levels of abstraction are defined as follows:

JOURNAL3 | Secrets of Great Architects 6

Simple Framework: Four Levels
of Abstraction
Our simple example defines the
following four levels of abstraction
for an IT solution:

Within each level, we present both the
dynamic view and static view of the
behavior for that particular level.
Whereas the dynamic view models the
messaging among the objects, the static
view models the structure and
relationships among the objects.

Domain Level of Abstraction
Applying the scoping rules above, the
retailer serves as the black box central
actor in the domain level. The customer
serves as the external actor. The domain
level is modeled from the perspective
of the customer. Only the purchase
interactions are modeled. The
communication mediums used to
complete the purchase are not included
at this level but are introduced at the
business process level.

Dynamic View
The dynamic view within the domain
level models the interactions between
the customer and the retailer. The
following figure summarizes the
domain context and contains a
simple use case narration of the
business interactions.

Static View
The static view of the domain level
models the class structure and their
relationships of the objects witnessed
in the use case. In other words – ‘What
objects does the customer need to
understand in order to accomplish the
purchase transaction at this level of
abstraction?’ Figure 3 presents the class

diagram for the static view of the
domain level.

The customer is an instance of Person.
The relationship between the customer
and the retailer is embodied as an
Account. All Purchases are associated
with the customer’s Account. The
Purchase is associated with each of the
Items being purchased. Each Item is of
a specific Product, where Product
follows the meta-class pattern.
Instances of Product are in effect classes
themselves. Modeling Product as a
meta-class makes our model more
flexible in that adding additional
Products to the Catalog is purely a

data driven process and doesn’t impact
the class model. Rounding out the
classes, each Payment is associated
with its Purchase.

As you can see, the model at this level
is representative for most any retailer –
online or brick-and-mortar, large or
small. This illustrates why the
[Industry] Domain Model should
indeed define the company as the black
box central actor. Companies in the
same industry tend to support the
same set of business interactions with
their external actors. Moreover, domain
models exclude the specific business
processes of the company as they can
vary widely among companies in the
same industry.

The domain level focuses strictly on
business interactions viewed from the
perspective of the external actor. We
must be careful to not include
implementation mechanisms for
accomplishing the interactions. These
details belong at the next level of
abstraction. So in this case, we only
model browse, select, purchase and pay.
We do not model how these interactions
are accomplished – via telephone, US
Mail, email, web application, in person,
check, credit card or cash.

Customer

Purchase items
1. Customer browses the retailer’s
 catalog of items
2. Customer selects one or more items
3. Customer pays the retailer for
 the items

Retailer

Purchase
Item(s)

Figure 2. Domain level dynamic view for purchasing
items from a retailer

Figure 3. Domain level static view for purchasing items from a retailer

JOURNAL3 | Secrets of Great Architects 7

“In order for engineers to collaborate on a complex system,
all team members must share the same understanding of
the levels.”

Business Process of Abstraction
The next level of abstraction models
the company’s business processes for
realizing the interactions that were
captured at the domain level. The
system level ‘zooms inside’ the
company black box and identifies all
employees and systems that collaborate
in order to perform the business
transaction. At this level, the system
to be developed serves as the black
box central actor.

Applying the scoping rules for the
system level, the online order system
serves as the black box central actor.
The customer and the employee serve
as external actors. The system level
is modeled from the perspective of
the customer and the employee. The
customer performs the purchase
online. Payment is made via credit
card. The order is fulfilled by shipping
the items to the customer’s shipping
address. Notification of shipment
is sent via email.

Dynamic View
The dynamic view replays the domain
level purchase transaction, this time
exposing the internal business

processes of the retailer. Figure 4
summarizes the business process
context and contains a simple use case
narration of the interactions among the
system and its actors.

Static View
The static view at this level refines the

class model to capture the objects
witnessed in the business process level
use cases. In other words – ‘What
objects do the customer and employee
need to understand in order to create
an order online and fulfill the order?’
Figure 5 presents the class diagram
for the business process static view.

Figure 4. Business process level dynamic view for purchasing items online from a retailer

Customer

Purchase Items Online
1. Customer visits the retailer’s
 web site
2. Customer browses the retailer’s
 online catalog
3. Alternatively, the customer performs
 a keyword search against the catalog
4. Customer selects item(s)
5. Customer logs into her online account
6. Customer creates an order for the
 items(s)
7. Customer pays for the items with her
 credit card
8. Employee checks the system for
 unfulfilled orders
9. Employee fulfills the order by
 pulling items from the inventory,
 packaging and shipping them to the
 order’s shipping address

System

Employee

Register/Login
Browse/Search Catalog

Order Items(s)

Credit
Authorizer

Authorize Credit Card

Fulfill
Order

Retailer

Ship Item(s) Notify

Variations
• Customer may login at any point prior
 to creating the order
• At step 5, customer can register a
 new user account if she does not yet
 have one
• At step 7, credit authorizer could
 reject credit card payment if
 authorization fails

10.Employee updates the system with the
 shipping information which decrements
 the item inventory
11. System automatically sends an email
 notification to the customer
 indicating the shipping status

Figure 5. Business process level static view for purchasing items online from a retailer

JOURNAL3 | Secrets of Great Architects 8

We refine the domain class model to
capture the perspective at this level of
abstraction. The Person, Account and
Company abstractions remain the
same as well as Catalog and Product.
However, the abstract Purchase event
from the domain model is replaced with
an Order. Orders contain LineItems
which are associated with the Product
in the Catalog. Since this level models
the company’s internal business process,
we need to capture the inventory onhand
(an attribute of a stock keeping unit
(SKU) which represents an inventory
of items at a particular location). We
also model the customer’s UserAccount
which provides access to the online
system. Payment is accomplished by
using a CreditCardAccount. Location
represents a geopoint within the US
and serves as the billing address as
well as the Order’s shipping address.
Shipment contains Items included in
the Shipment.

The system level of abstraction usually
requires a great deal of creativity
because it is at this level that we invent
ways to streamline business processes.
In doing so, it is common to realize a
single domain level transaction using
several different mediums at the
business process level. For example, a
purchase can be accomplished online,
over the phone, by mailing or faxing an
order form or in-person at the retail
store. Each of these would need to be
modeled at the business process level.
Notice that even though the Credit
Authorizer is an external actor to the
retailer, it is introduced at this level
because it is only needed to implement
a business process that first appears
at this level.

Lastly, notice that the system is
technology independent. Our online
purchase system could be implemented
with any web technology. Selecting

technologies inside the system black
box is an architecture decision.

Logical Level of Abstraction
The logical level zooms inside the
system black box, exposing the high
level design of the system. The
architect selects the technology and
defines the high level system structure.
In our simple example, the system is
comprised of an IIS/ASP.Net server
that hosts the presentation, business
and data access layers and a SQL
Server database server that hosts
the persistent data.

Dynamic View
The dynamic view at the logical level
traces the message flows through the
major components of the system. As
an example, Figure 6 traces the flow
when submitting the ConfirmOrder
web form.

Static View
The static view at this level also
switches our perspective to the system
internals. Whereas the business
process level modeled the real world
abstractions that appear in the
business processes, this level models
the abstractions as they are to be
represented inside the system. In an
actual system, the architect would
design the classes for each software
layer (presentation, business and data
access). To keep this article brief,
Figure 7 presents just the static design
for the business layer to show how the
system level abstractions are refined to
the design.

The architect refines the system level
classes to design the business layer
interface.

All accounts and customers in the
system are the retailer’s, so it’s not

“Domain models exclude the specific business processes of the
company as they can vary widely among companies in the
same industry.”

Figure 6. Logical level dynamic view for purchasing items online from a retailer

System

ConfirmOrderPage.aspx

Presentation Layer

Business Layer

Data Access Layer

DB Server

Order

DBInterface

SaveOrderSP

Credit Authorizer

Web/App Server

ExecuteSP(”SaveOrderSP”,XML)

Execute(XML)

Save()

Authorize(amt)

Confirm Order
1. Customer reviews the order
 summary and confirms by submitting
 the form
2. ASP.Net posts the ConfirmOrderPage
 who retrieves the current order
 and invokes Order.Save()
3. Order.Save() validates order
 business rules. If any are
 violated, Save returns the list
 of errors
4. Otherwise, Save() invokes the
 credit authorizer to authorize the
 payment amount
5. If successful, Save() serializes
 all parts of the Order and invokes
 the Data Access Layer to execute
 the SaveOrderSP
6. The Data Access Layer forwards the
 request to the stored procedure
7. SaveOrderSP saves the order in the
 database

Post

JOURNAL3 | Secrets of Great Architects 9

practical to create a single instance of
Company and associate it with all
accounts, so Company is omitted at this
level. Rather than creating a separate
instance for each CreditCardAccount, we
simply store the credit card number and
billing address with the Payment.
Further, it is not practical for the system
to create an instance for every Item sold,
so Item is removed from the model and
instead the model tracks the quantity of
items ordered in the LineItem and the
quantity of items shipped in the new
ShippedItems class.

The architect also defines the
granularity of the services that the
business layer exposes. For this
example, the business layer exports
Create, Read, Update and Delete
(CRUD) services for Account,
UserAccount, Order, Shipment and
Catalog. The ellipses indicate the
CRUDing granularity.

Note that even though the classes at
this level are not a proper superset of
the business process classes, the
architect arrives at this design by
directly refining the business process

classes, changing the perspective
from outside the system to inside
the system.

Physical Level of Abstraction
The physical level of abstraction
captures the structure of the system
implementation. The system is
implemented as a network of nodes,
each node configured with hardware
and software. The three software layers
in the logical view (presentation,
business and data) are physically
implemented as code and deployed onto
these nodes. Persistent classes in the

Figure 7. Logical level static view for purchasing items online from a retailer

JOURNAL3 | Secrets of Great Architects 10

logical view are physically stored in
relational tables in a SQL Server
database.

Dynamic View
The dynamic view traces the message
flows through the nodes of the physical
configuration. The ConfirmOrder HTTP
post flows from the customer’s browser
through the internet through the
retailer’s firewall to the web server
where Windows forwards it to IIS who
passes it to ASP.Net who then dispatches
ConfirmOrder.aspx. Fortunately,
modern development tools insulate
us from the majority of the physical
network. Architects, however, need to
understand the physical layer in order
to avoid network bottlenecks and
security exposures.

Static View
The static view (Figure 7) refines the
persistent classes in the logical view
to their physical representation. In
our retail example, the business layer

classes are stored in the following SQL
Server tables.

Classes map to relational tables and
attributes are implemented as columns.
One-to-one relationships and one-to-
many relationships are implemented
using a foreign key. Optimistic
concurrency is implemented by
assigning a datetime field to each
parent class being CRUDed.

When designing the logical level, the
architect focuses mainly on implementing
system functionality. Confident that the
system functionality is covered, the
architect can focus on optimizing the
implementation at the physical level.

Evolve the Levels through
Iterations
Having established this framework, the
architect evolves the solution over
several iterations. Each iteration
incorporates additional functionality –
invoices, back orders, order in person,

order by phone, and so on. In each case,
the architect updates the appropriate
level of abstraction, and then refines
the updates to the physical
implementation level.

Revisit the Levels of Abstraction
Core Principles
Let’s test our example against the core
level of abstraction principles.

The number and scope of the levels
are well defined
We have four distinct levels – Company
black box, System black box, Logical
design inside the system and Physical
implementation.

Multiple views within each level
In this simple example, we presented
a dynamic view and static view at
each level.

Must maintain consistency among
the levels
If a change is made to the domain
model, the impact of the changes must
flow down to the lower levels. For
example, if the retailer decides to
offer maintenance contracts for its
products, the analyst would add
MaintenanceContract to the domain
model and refine it to its physical
representation. Synchronizing all
levels is critical for maintaining large
systems. As enhancement requests are
submitted, the analyst performs an
impact assessment to the appropriate
level of detail. Some enhancements
impact the domain level (and therefore
all subsequent levels). Others merely
impact the physical level.

Figure 8. Physical level static view for purchasing items online from a retailer

JOURNAL3 | Secrets of Great Architects 11

Scaling Levels to Support
Enterprise Solutions
Now that we’ve presented a simple
example with four levels of abstraction,
let’s scale the approach to support
solutions for IT enterprises. Figure 9
presents a Rational Unified Process
(RUP) configuration that organizes
project artifacts in to well defined
levels of abstraction.

The levels in the table are described
below.

Domain – The domain level captures
the business context for a project.

Project Vision – The project vision
communicates the business impact
the system will have on the business.
It quantifies this impact in a return on
investment analysis. The project vision
represents the highest level of
abstraction of the project.

Business Process – The system level
models the business processes within
the company. For extremely complex
organizations, this level
can be subdivided into sublevels –
division, interdepartmental and
intradepartmental.

UI Specification – The UI
specification designs the user interface
that realizes the business processes.
It is comprised of a UI design document
and a functional UI prototype.

Detailed Requirements – The
detailed requirements specify the
lowest level abstraction of the system
requirements. It includes details such
as data type formats and detailed
business rules. It also contains the
proficiency requirements such as
performance, availability, security,
internationalization, configuration,
scalability and flexibility requirements.

“No longer do we overwhelm the business users with a single,
monolithic functional specification.”

Level Name Level Scope

Domain The company is the ‘black box’ central actor.
Model the business from the perspective of the business’ external actor.
Model only the business interactions. Do not include the communication mediums.

Project Vision Project mission, project business objectives, project return on investment.

Business Process Model the business process workflows that are realization of the domain level’s business interactions.
The system serves as the ‘black box’ central actor.
Model the business processes from the perspective of the system’s external actors.
Include the communication mediums for completing the business transactions.

UI Specification UI design and UI prototype of system functionality. Demonstrate how system users are able to realize
the above business process workflows.

Detailed Specify the lowest level details that represent the external interface of the system.
Requirements For example, ‘US zipcodes must be masked as xxxxx or xxxxx-xxxx’.

Specify the proficiency requirements – performance, availability, security, internationalization,
configuration, scalability and flexibility.

Architecture Inside the system ‘black box’.

Implementation Database schemas, source code, reference data, configuration files.

Logical Concurrency Security Deployment Component Data
View View View View View View

Logical Concurrency Security Network Component Logical
Design Design Design Configuration Interfaces Data Model

Concurrency Security Box Component Physical
Implementation Implementation Configuration Implementations Data Model

Figure 9. RUP configuration organizing project artifacts into well defined levels of abstraction

JOURNAL3 | Secrets of Great Architects 12

Architecture – The system architecture
is organized into six views –
– Logical: Defines the software layers

and major abstractions that perform
the system functionality.

– Concurrency: Captures the parallel
aspects of the system, including
transactions, server farms and
resource contention.

– Security: Defines the approach for
authentication, authorization,
protecting secrets and journaling.

– Deployment: Defines the network
topology and deployment
configuration of the system.

– Component: Defines the system
components, their interfaces and
dependencies.

– Data: Defines the design structure
of the persistent data.

Benefits
Organizing system artifacts into
discrete levels of abstraction delivers
several benefits:
– It separates the system requirements

into three distinct levels of
abstraction – Business Processes,
UI Specification and Detailed
Requirements. No longer do we
overwhelm the business users with
a single, monolithic functional
specification. Instead, we communicate
the system requirements in three
refined levels of detail.

– Analysts and architects are able to
harness the complexity into a single,
integrated model of the system.

– Architects can focus on a single
aspect of the system and integrate
those decisions into the overall
solution.

– The levels of abstraction form the
structure of the system artifacts. For
example, the software architecture
document dedicates a subsection
for each view.

– The levels of abstraction provide
direct traceability from requirements
to design to implementation.
Traceability enables a team
to perform an accurate impact
assessment when evaluating
change requests.

– After developing several systems
using the same framework, patterns
emerge at each level of abstraction.
Organizations can catalog these
patterns and other best practices
within each level of abstraction.
This catalog of best practices serves
as the foundation of a process
improvement program.

JOURNAL3 | Secrets of Great Architects 13

Summary
All engineering disciplines apply
formal levels of abstraction in order
to cope with complexity. Software is
no exception. In order to realize the
benefits of levels of abstraction,
projects must
– Formally identify the layers, each

with a well-defined scope
– Split complexity within a level into

multiple views
– Maintain consistency among the

levels

This article demonstrated how to apply
levels of abstraction through a simple
example, then scaled the approach
to support enterprise IT solutions.
It offered a RUP configuration
framework that organizes system
artifacts into well defined levels
of abstraction.

Self-Assessment
Does your current project apply levels
of abstraction?
Are the levels well-defined?
Are the levels well understood by
the project team?
If the complexity becomes too great
within a level, does the team split
it into views?
Does the team maintain consistency
among the levels?
Would your project benefit from
levels of abstraction?

Great architects follow these principles
instinctively. The rest of us must
consciously apply levels of abstraction
and exercise discipline to maintain the
levels throughout the project lifecycle.

Resources
Cockburn, Alistair. Writing Effective
Use Cases. New Jersey: Addison-
Wesley, 2001

Kroll, Per and Kruchten, Philippe. The
Rational Unified Process Made Easy: A
Practitioner’s Guide to the RUP. Boston
MA: Pearson Education and Addison-
Wesley, 2003

DeMarco, Tom and Plauger, P J
Structured Analysis and System
Specification. Prentice Hall PTR, 1979

Online copy of DoD standard 2167A can
be found at
http://www2.umassd.edu/SWPI/DOD/M
IL-STD-2167A/DOD2167A.html

About the Authors

Don Awalt
CEO and founder of RDA
Corporation AWALT@rdacorp.com
Don Awalt is the CEO and founder of
RDA Corporation, founded in 1988 as a
custom software engineering firm with
offices in Washington DC, Baltimore,
Atlanta, Philadelphia, and Chicago.
The firm, a Microsoft Gold Certified
Partner, is focused on the development
of enterprise web and rich client
systems using the .NET Framework.
Don currently serves as the Microsoft
Regional Director for Washington DC,
and was formerly the founding

Regional Director for Philadelphia. Don
is a frequent speaker at industry
events, including Tech Ed, Developer
Days, MSDN events, and various SQL
Server and Windows events. He has
served as a contributing editor for SQL
Server Magazine and PC Tech Journal
Magazine, and has written for other
publications as well. Don’s particular
areas of expertise include Web Services,
SQL Server, the evolution of modern
programming languages, and much of
the architecture and process work seen
in Microsoft’s Prescriptive Architecture
Group (PAG).

Rick McUmber
Director of Quality and Best
Practices for RDA
McUmber@rdacorp.com
Rick McUmber is Director of Quality
and Best Practices for RDA. For 11
years, he worked for IBM and Rational
Software Corporation respectively,
developing systems for the Department
of Transportation, Department of
Defense, NASA and Canada’s
Department of National Defense. Since
1994, he has worked with RDA
developing business solutions for
its customers.

JOURNAL3 | Software Factories 14

The Case for Software Factories
By Jack Greenfield, Microsoft Corporation

“A Software Factory is a development environment configured to
support the rapid development of a specific type of application,
and promises to change the character of the software industry
by introducing patterns of industrialization.”

This article briefly presents the
motivation for Software Factories, a
methodology developed at Microsoft.
It describes forces that are driving a
transition from craftsmanship to
manufacturing. In a nutshell, a
Software Factory is a development
environment configured to support the
rapid development of a specific type of
application. Software Factories are
really just a logical next step in the
continuing evolution of software
development methods and practices.
However, they promise to change the
character of the software industry by
introducing patterns of industrialization.

Scaling Up Software Development
Software development, as currently
practiced, is slow, expensive and error
prone, often yielding products with
large numbers of defects, causing
serious problems of usability, reliability,
performance, security and other
qualities of service.

According to the Standish Group
[Sta94], businesses in the United States
spend around $250 billion on software
development on approximately 200
projects each year. Only 16% of these
projects finish on schedule and within
budget. Another 31% are canceled,
mainly due to quality problems, for
losses of about $81 billion. Another
53% exceed their budgets by an average
of 189%, for losses of about $59 billion.
Projects reaching completion deliver
an average of only 42% of the originally
planned features.

These numbers confirm objectively what
we already know by experience, which
is that software development is labor
intensive, consuming more human
capital per dollar of value produced
than we expect from a modern industry.

Of course, despite these shortcomings,
the products of software development
obviously provide significant value to
consumers, as demonstrated by a long
term trend of increasing demand.
This does not mean that consumers
are perfectly satisfied, either with the
software we supply, or with the way
we supply it. It merely means that they
value software, so much so that they
are willing to suffer large risks and
losses in order to reap the benefits it
provides. While this state of affairs is
obviously not optimal, as demonstrated
by the growing popularity of outsourcing,
it does not seem to be forcing any
significant changes in software
development methods and practices
industry wide.

Only modest gains in productivity have
been made over the last decade, the
most important perhaps being byte
coded languages, patterns and agile
methods. Apart from these advances,
we still develop software the way we
did ten years ago. Our methods and
practices have not really changed much,
and neither have the associated costs
and risks.

This situation is about to change,
however. Total global demand for
software is projected to increase by
an order of magnitude over the next
decade, driven by new forces in the
global economy like the emergence
of China and the growing role
of software in social infrastructure;
by new application types like business
integration and medical informatics;
and by new platform technologies
like web services, mobile devices
and smart appliances.

Without comparable increases in
capacity, it seems inevitable that total

software development capacity is
destined to fall far short of total
demand by the end of the decade. Of
course, if market forces have free play,
this will not actually happen, since the
enlightened self interest of software
suppliers will provide the capacity
required to satisfy the demand.

Facing the Changes Ahead, Again
What will change, then, to provide the
additional capacity? It does not take
much analysis to see that software
development methods and practices
will have to change dramatically.

Since the capacity of the industry
depends on the size of the competent
developer pool and the productivity
of its members, increasing industry
capacity requires either more
developers using current methods and
practices, or a comparable number of
developers using different methods
and practices.

While the culture of apprenticeship
cultivated over the last ten years seems
to have successfully increased the
number of competent developers
and average developer competency,
apprenticeship is not likely to equip
the industry to satisfy the expected
level of demand for at least two reasons:
– We know from experience that there

will never be more than a few
extreme programmers. The best
developers are up to a thousand
times more productive than the
worst, but the worst outnumber the
best by a similar margin [Boe81].

– As noted by Brooks [Bro95], adding
people to a project eventually yields
diminishing marginal returns. The
amount of capacity gained by
recruiting and training developers
will fall off asymptotically.

JOURNAL3 | Software Factories 15

The solution must therefore involve
changing our methods and practices.
We must find ways to make developers
much more productive.

Innovation Curves and
Paradigm Shifts
As an industry, we have collectively
been here before. The history of
software development is an assault
against complexity and change, with
gains countered by losses, as progress
creates increasing demand. While great
progress has been made in a mere half
century, it has not been steady. Instead,
it has followed the well known pattern
of innovation curves, as illustrated in
Figure 1 [Chr97].

Typically, a discontinuous innovation
establishes a foundation for a new
generation of technologies. Progress on
the new foundation is initially rapid,
but then gradually slows down, as the
foundation stabilizes and matures.
Eventually, the foundation loses its
ability to sustain innovation, and
a plateau is reached. At that point,
another discontinuous innovation
establishes another foundation for
another generation of new technologies,
and the pattern repeats. Kuhn calls

these foundations paradigms, and the
transitions between them paradigm
shifts [Kuh70]. Paradigm shifts occur
at junctures where existing change
is required to sustain forward
momentum. We are now at such
a juncture.

Raising the Level of Abstraction
Historically, paradigm shifts have
raised the level of abstraction for
developers, providing more powerful
concepts for capturing and reusing
knowledge in platforms and languages.
On the platform side, for example, we
have progressed from batch processing,
through terminal/host, client/server,
personal computing, multi-tier systems
and enterprise application integration,
to asynchronous, loosely coupled
services. On the language side, we have
progressed from numerical encoding,
through assembly, structured and
object oriented languages to byte coded
languages and patterns, which can be

seen as language based abstractions.
Smith and Stotts summarize this
progression eloquently [SS02]:

The history of programming is an
exercise in hierarchical abstraction.
In each generation, language designers
produce constructs for lessons learned
in the previous generation, and then
architects use them to build more
complex and powerful abstractions.

They also point out that new
abstractions tend to appear first
in platforms, and then migrate
to languages. We are now at a point in
this progression where language based
abstractions have lagged behind
platform based abstractions for a long
time. Or, to put it differently, we are
now at a point where tools have lagged
behind platforms for a long time.
Using the latest generation of platform
technology, for example, we can now
automate processes spanning multiple

Maturity

Maturity

Optimization

Inception

Optimization

Inception

Value

Time

Figure 1. Innovation Curves

Figure 2. ASIC Based Design Tools1

1 This illustration featuring Virtuoso® Chip Editor and Virtuoso® XL Layout Editor
has been reproduced with the permission of Cadence Design Systems, Inc © 2003
Cadence Design Systems, Inc. All rights reserved. Cadence and Virtuoso are the
registered trademarks of Cadence Design Systems, Inc.

JOURNAL3 | Software Factories 16

businesses located anywhere on the
planet using services composed by
orchestration, but we still hand-stitch
every one of these applications, as if
it is the first of its kind. We build large
abstract concepts like insurance claims
and security trades from small
concrete concepts like loops, strings
and integers. We carefully and
laboriously arrange millions of tiny
interrelated pieces of source code and
resources to form massively complex
structures. If the semiconductor
industry used a similar approach,
they would build the massively
complex processors that power
these applications by hand soldering
transistors. Instead, they assemble
predefined components called
Application Specific Integrated
Circuits (ASICs) using tools like the
ones shown in Figure 2, and then
generate the implementations.

Can’t we automate software
development in a similar way? Of
course, we can, and in fact we already
have. Database management systems,
for example, automate data access
using SQL, providing benefits like data
integration and independence that
make data driven applications easier to
build and maintain. Similarly, widget
frameworks and WYSIWYG editors
make it easier to build and maintain
graphical user interfaces, providing
benefits like device independence
and visual assembly. Looking closely
at how this was done, we can see a
recurring pattern.

– After developing a number of systems
in a given problem domain, we
identify a set of reusable abstractions
for that domain, and then we
document a set of patterns for using
those abstractions.

– We then develop a run time, such as
a framework or server, to codify the
abstractions and patterns. This lets
us build systems in the domain by
instantiating, adapting, configuring
and assembling components defined
by the run time.

– We then define a language and build
tools that support the language, such
as editors, compilers and debuggers,
to automate the assembly process.
This helps us respond faster to
changing requirements, since part of
the implementation is generated, and
can be easily changed.

This is the well known Language
Framework pattern described
by Roberts and Johnson [RJ96].
A framework can reduce the cost
of developing an application by an
order of magnitude, but using one
can be difficult. A framework defines
an archetypical product, such as
an application or subsystem, which
can be completed or specialized in
varying ways to satisfy variations
in requirements. Mapping the
requirements of each product variant
onto the framework is a non-trivial
problem that generally requires the
expertise of an architect or senior
developer. Language based tools can
automate this step by capturing
variations in requirements using
language expressions, and generating
framework completion code.

Industrializing Software
Development
Other industries increased their capacity
by moving from craftsmanship, where
whole products are created from scratch
by individuals or small teams, to
manufacturing, where a wide range of
product variants is rapidly assembled
from reusable components created by

multiple suppliers, and where
machines automate rote or menial
tasks. They standardized processes,
designs and packaging, using product
lines to facilitate systematic reuse, and
supply chains to distribute cost and
risk. Some are now capable of mass
customization, where product variants
are produced rapidly and inexpensively
on demand to satisfy the specific
requirements of individual customers.

Can Software Be Industrialized?
Analogies between software and
physical goods have been hotly debated.
Can these patterns of industrialization
be applied to the software industry?
Aren’t we somehow special, or different
from other industries because of the
nature of our product? Peter Wegner
sums up the similarities and
contradictions this way [Weg78]:

Software products are in some respects
like tangible products of conventional
engineering disciplines such as bridges,
buildings and computers. But there are
also certain important differences that
give software development a unique
flavor. Because software is logical not
physical, its costs are concentrated in
development rather than production,
and since software does not wear
out, its reliability depends on logical
qualities like correctness and
robustness, rather than physical
ones like hardness and malleability.

Some of the discussion has involved an
‘apples to oranges’ comparison between
the production of physical goods, on one
hand, and the development of software,
on the other. The key to clearing up
the confusion is to understand the
differences between production and
development, and between economies
of scale and scope.

“If the semiconductor industry used a similar approach,
they would build the massively complex processors that
power these applications by hand soldering transistors.”

JOURNAL3 | Software Factories 17

In order to provide return on
investment, reusable components must
be reused enough to more than recover
the cost of their development, either
directly through cost reductions, or
indirectly, through risk reductions,
time to market reductions, or quality
improvements. Reusable components
are financial assets from an
investment perspective. Since the cost
of making a component reusable is
generally quite high, profitable levels
of reuse are unlikely to be reached by
chance. A systematic approach to reuse
is therefore required. This generally
involves identifying a domain in which
multiple systems will be developed,
identifying recurring problems in that
domain, developing sets of integrated
production assets that solve those
problems, and then applying them as
systems are developed in that domain.

Economies of Scale and Scope
Systematic reuse can yield economies
of both scale and scope. These two
effects are well known in other
industries. While both reduce time
and cost, and improve product quality,
by producing multiple products
collectively, rather than individually,
they differ in the way they produce
these benefits.

Economies of scale arise when multiple
identical instances of a single design
are produced collectively, rather than
individually, as illustrated in Figure 3.
They arise in the production of things
like machine screws, when production
assets like machine tools are used to
produce multiple identical product
instances. A design is created,
along with initial instances, called
prototypes, by a resource intensive
process, called development, performed
by engineers. Many additional

“Other industries increased their capacity by moving from craftsmanship... to manufacturing...
where machines automate rote or menial tasks. [And] the key to meeting global demand is to
stop wasting the time of skilled developers on rote and menial tasks.”

Initial Use
Occurs Here

Reuse
Occurs Here

Production Assets
Many Copies
(Optional)

Few
Prototypes

Multiple
Designs

Initial Use
Occurs Here

Production Assets
Many

Copies
Few

Prototypes

Reuse
Occurs Here

Single design

Figure 3. Economies of Scale

Figure 4. Economies of Scope

JOURNAL3 | Software Factories 18

instances, called copies, are then
produced by another process, called
production, performed by machines
and/or low cost labor, in order to satisfy
market demand.

Economies of scope arise when multiple
similar but distinct designs and
prototypes are produced collectively,
rather than individually, as
illustrated in Figure 4. In automobile
manufacturing, for example, multiple
similar but distinct automobile designs
are often developed by composing
existing designs for subcomponents,
such as the chassis, body, interior and
drive train, and variants or models are
often created by varying features, such
as engine and trim level, in existing
designs. In other words, the same
practices, processes, tools and materials
are used to design and prototype
multiple similar but distinct products.
The same is true in commercial
construction, where multiple bridges
or skyscrapers rarely share a common
design. However, an interesting twist in
commercial construction is that usually
only one or two instances are produced
from every successful design, so
economies of scale are rarely, if ever,
realized. In automobile manufacturing,
where many identical instances are
usually produced from successful
designs, economies of scope are
complemented by economies of scale,
as illustrated by the copies of each
prototype shown in Figure 4.

Of course, there are important
differences between software and
either automobile manufacturing
or commercial construction, but it

resembles each of them at times.
– In markets like the consumer

desktop, where copies of products like
operating systems and productivity
applications are mass produced,
software exhibits economies of scale,
like automobile manufacturing.

– In markets like the enterprise, where
business applications developed for
competitive advantage are seldom,
if ever, mass produced, software
exhibits only economies of scope,
like commercial construction.

We can now see where apples have
been compared with oranges.
Production in physical industries
has been naively compared with
development in software. It makes no
sense to look for economies of scale in
development of any kind, whether of
software or of physical goods. We can,
however, expect the industrialization
of software development to exploit
economies of scope.

What Will Industrialization
Look Like?
Assuming that industrialization can
occur in the software industry, what
will it look like? We cannot know with
certainty until it happens, of course.
We can, however, make educated
guesses based on the way the software
industry has evolved, and on what
industrialization has looked like in
other industries. Clearly, software
development will never be reduced
to a purely mechanical process tended
by drones. On the contrary, the key
to meeting global demand is to stop
wasting the time of skilled developers
on rote and menial tasks. We must find

ways to make better use of precious
resources than spending them on the
manual construction of end products
that will require maintenance or even
replacement in only a few short months
or years, when the next major platform
release appears, or when changing
market conditions make business
requirements change, which ever
comes first.

One way to do this is to give developers
ways to encapsulate their knowledge as
reusable assets that others can apply.
Is this far fetched? Patterns already
demonstrate limited but effective
knowledge reuse. The next step
is to move from documentation
to automation, using languages,
frameworks and tools to automate
pattern application.

Semiconductor development offers
a preview into what software
development will look like when
industrialization has occurred. This is
not to say that software components
will be as easy to assemble as ASICs
any time soon; ASICs are the highly
evolved products of two decades of
innovation and standardization in
packaging and interface technology.
On the other hand, it might take less
than 20 years. We have the advantage
of dealing only with bits, while the
semiconductor industry had the
additional burden of engineering the
physical materials used for component
implementation. At the same time,
the ephemeral nature of bits creates
challenges like the protection of digital
property rights, as seen in the film and
music industries.

JOURNAL3 | Software Factories 19

Conclusion
This article has described the inability
of the software industry to meet
projected demand using current
methods and practices. A great many
issues are discussed only briefly here,
no doubt leaving the reader wanting
evidence or more detailed discussion.
Much more detailed discussion is
provided in the book ‘Software
Factories: Assembling Applications
with Patterns, Models, Frameworks
and Tools’, by Jack Greenfield and
Keith Short, from John Wiley and Sons.
More information can also be found at

http://msdn.microsoft.com/architecture/
overview/ softwarefactories, and at

http://www.softwarefactories.com/

including articles that describe the
chronic problems preventing a
transition from craftsmanship to
manufacturing, the critical innovations
that will help the industry overcome
those problems, and the Software
Factories methodology, which
integrates the critical innovations.

Copyright Declaration
Copyright © 2004 by Jack Greenfield
Portions copyright © 2003 by Jack
Greenfield and Keith Short, and
reproduced by permission of Wiley
Publishing, Inc. All rights reserved.

References
1. [Boe81] B Boehm. Software

Engineering Economics. Prentice
Hall PTR, 1981

2. [Bro95] F Brooks. The Mythical
Man-Month. Addison-Wesley, 1995

3. [Chr97] C Christensen. The
Innovator’s Dilemma, Harvard
Business School Press, 1997

4. [Kuh70] T Kuhn. The Structure Of
Scientific Revolutions. The University
Of Chicago Press, 1970

5. [RJ96] D Roberts and R. Johnson.
Evolving Frameworks: A Pattern
Language for Developing Object-
Oriented Frameworks. Proceedings
of Pattern Languages of Programs,
Allerton Park, Illinois, September 1996

6. [SS02] J. Smith and D Stotts.
Elemental Design Patterns – A Link
Between Architecture and Object
Semantics. Proceedings of OOPSLA
2002

7. [Sta94] The Standish Group.
The Chaos Report.
http://www.standishgroup.com/sampl
e_research/PDFpages/chaos1994.pdf

8. [Weg78] P Wegner. Research
Directions In Software Technology.
Proceedings Of The 3rd International
Conference On Software
Engineering. 1978

Jack Greenfield
Architect, Microsoft Corporation
jackgr@microsoft.com

Jack Greenfield is an Architect for
Enterprise Frameworks and Tools at
Microsoft. He was previously Chief
Architect, Practitioner Desktop Group,
at Rational Software Corporation, and
Founder and CTO of InLine Software
Corporation. At NeXT, he developed the

Enterprise Objects Framework, now
called Apple Web Objects. A well known
speaker and writer, he also contributed
to UML, J2EE and related OMG and
JSP specifications. He holds a B.S. in
Physics from George Mason University.

JOURNAL3 | Identity and Access Management 20

Identity and Access Management
By Frederick Chong, Microsoft Corporation

1 Context defines the boundary which
an identity is used. The boundary
could be business or application
related. For example, Alice may
use a work identity with the identifier
Alice@WallStreetAce.com to identify

herself at her Wall Street employer
(Wall Street Ace) as well as to execute
a stock trade in NYSE. Her Wall
Street employer and the NYSE would
be two different business contexts
where the same identifier is used.

Abstract
To date, many technical decision
makers in large IT environments have
heard about the principles and benefits
of Service Oriented Architecture
(SOA). Despite this fact, very few IT
organizations are yet able to translate
the theoretical underpinnings of SOA
into practical IT actions.

Over the last year, a few individual
solution architects on my team have
attempted to distill the practical
essence of SOA into the following
areas: Identity and Access Management,
Service Management, Entity
Aggregation and Process Integration.
These four key technical areas present
significant technical challenges to
overcome but yet provide the critical
IT foundations to help businesses
realize the benefits of SOA.

Note that it is our frequent interactions
with architects in the enterprises that
enable us to collate, synthesize and
categorize the practical challenges
of SOA into these areas. Our team
organizes the Strategic Architect
Forums that are held multiple times
worldwide annually. In these events,
we conduct small discussion groups to
find out the pain points and technical
guidance customers are looking for. The
feedback from our customers has been
very consistent: issues in managing
identities, aggregating data, managing
services, and integrating business
processes have been cited over and over
again as major road blocks to realizing
more efficient and agile organizations.
In addition, our team also conducts
proof-of-concept projects with

customers to drill deeper into
the real world requirements and
implementation issues. It is through
these combinations of broad and deep
engagements with customers that we
on the Architecture Strategy team
derived our conclusions on the four
significant areas for IT to invest in.

The key focus of this paper is to
provide an overview of the technical
challenges in one of those areas, namely
identity and access management; and
secondarily, to help the reader gain
an understanding of the commonly
encountered issues in this
broad subject.

Introduction
Identity and access management
(I&AM) is a relatively new term that
means different things to different
people. Frequently, IT professionals
have tended to pigeonhole its meaning
into certain identity and security
related problems that they are
currently faced with. For example,
I&AM has been perceived to be a
synonym for single sign-on, password
synchronization, meta-directory, web
single sign-on, role-based entitlements,
and similar ideas.

The primary goal of this paper is to
provide the reader with a succinct and
comprehensive overview of what I&AM
means. In order to accomplish this
purpose, we have structured the
information in this paper to help
answer the following questions:
– What is a digital identity?
– What does identity and access

management mean?

– What are the key technology
components of I&AM?

– How do the components of I&AM
relate to one another?

– What are the key architecture
challenges in IA&M?

Anatomy of a Digital Identity
Personal identifications in today’s
society can take many different forms.
Some examples of these forms are
driver licenses, travel passports,
employee cardkeys, and club
membership cards. These forms
of identifications typically contain
information that is somewhat unique to
the holder, for example, names, address
and photos, as well as information
about the authorities that issued the
cards, for example, an insignia of the
local department of motor vehicles.

While the notion of identities in
the physical world is fairly well
understood, the same cannot be
said about the definition of digital
identities. To help lay the ground work
for the rest of the discussions in this
paper, this section describes one notion
of a digital identity, as illustrated in
Figure 1. Our definition of digital
identity consists of the following parts:
– Identifier: A piece of information that

uniquely identifies the subject of this
identity within a given context1.
Examples of identifiers are email
addresses, X500 distinguished names
and Globally Unique Identifiers
(GUIDs).

– Credentials: Private or public data
that could be used to prove
authenticity of an identity claim. For
example, Alice enters in a password

2 From Enterprise Identity Management:
It’s About the Business, Jamie Lewis,
The Burton Group Directory and
Security Strategies Report, v1 July
2nd 2003.

3 The term ‘life cycle’ when used in
the context of digital identities is
somewhat inappropriate since digital
identities are typically not recycled.

However, since the phrase ‘identity life
cycle management’ is well entrenched
in the IT community, we will stick with
the ‘life cycle’ terminology.

JOURNAL3 | Identity and Access Management 21

to prove that she is who she says she
is. This mechanism works because
only the authentication system and
Alice should know what the password
for Alice is. A private key and the
associated X509 public key certificate
is another example of credentials.

– Core Attributes: Data that help
describe the identity. Core attributes
may be used across a number of
business or application contexts.
For example, addresses and phone
numbers are common attributes that
are used and referenced by different
business applications.

– Context-specific Attributes: Data that
help describe the identity, but which
is only referenced and used within
specific context where the identity is
used. For example, within a company,
the employee’s preferred health plan
information is a context specific
attribute that is interesting to the
company’s health care provider but
not necessarily so to the financial
services provider.

What is Identity and Access
Management?
The Burton Group defines identity
management as follows: ‘Identity

management is the set of business
processes, and a supporting infrastructure
for the creation, maintenance, and use
of digital identities’2

In this paper, we define identity and
access management (I&AM) as follows:
‘Identity and access management refers
to the processes, technologies and
policies for managing digital identities
and controlling how identities can be
used to access resources’

We can make a few important
observations from the above definitions:
– I&AM is about the end-to-end life

cycle3 management of digital
identities. An enterprise class
identity management solution should
not be made up of isolated silos of
security technologies, but rather,
consists of well integrated fabric
of technologies that address the
spectrum of scenarios in each stage
of the identity life cycle. We will talk
more about these scenarios in a later
section of this paper.

– I&AM is not just about technology,
but rather, is comprised of three
indispensable elements: policies,
processes and technologies. Policies
refer to the constraints and
standards that needs to be followed
in order to comply with regulations
and business best practices; processes
describe the sequences of steps that
lead to the completion of business
tasks or functions; technologies
are the automated tools that help
accomplish business goals more
efficiently and accurately while
meeting the constraints and
guidelines specified in the policies.

– The relationships between elements
of I&AM can be represented as the
triangle illustrated in Figure 2.
Of significant interest is the fact

that there is a feedback loop that links
all three elements together. The lengths
of the edges represent the proportions
of the elements relative to one
another in a given I&AM system.
Varying the proportion of one element
will ultimately vary the proportion of
one or more other elements in order
to maintain the shape of a triangle
with a sweet spot (shown as an
intersection in the triangle).

– The triangle analogy is perfect for
describing the relationships and
interactions of policies, processes
and technologies in a healthy I&AM
system as well. Every organization
is different and the right mix of
technologies, policies and processes
for one company may not necessarily
be the right balance for a different
company. Therefore, each organization
needs to find its own balance
represented by the uniqueness
of its triangle.

– An organization’s I&AM system does
not remain static over time. New
technologies will get introduced and
adopted; new business models and
constraints will change the corporate
governance and processes to do
things. As we mentioned before,

Context-Specific
Attributes

Credentials

Core Attributes

Identifier

Figure 1. Anatomy of a Digital Identity

Technology Process

Policy

Figure 2. Essential elements of an identity and
access management system

JOURNAL3 | Identity and Access Management 22

when one of the elements change,
it is time to find a new balance.
It is consequently important to
understand that I&AM is a
journey, not a destination.

Identity and Access
Management Framework
As implied in the previous sections,
identity and access management is
a very broad topic that covers both
technology and non-technology areas.
We will focus the rest of this paper
around the technology aspects of
identity and access management.

To further contain the technical scope
of this topic that is still sufficiently
broad, it is useful to abide by some
structure for our discussions. We will
use the framework shown in Figure 3,
which illustrates several key logical
components of I&AM to lead the
discussions on this subject.

This particular framework
highlighted three key ‘buckets’
of technology components:
– Identity life cycle management
– Access management
– Directory services

The components in these technology
buckets are used to meet a set of
recurring requirements in identity
management solutions. We will
describe the roles that these
components play in the next
few sections.

Directory Services
As mentioned previously, a digital
identity consists of a few logical types
of data – the identifier, credentials
and attributes. This data needs to
be securely stored and organized.
Directory services provide the
infrastructure for meeting such needs.
Entitlements and security policies
often control the access and use of
business applications and computing
infrastructure within an organization.
Entitlements are the rights and
privileges associated with individuals
or groups. Security policies refer to the
standards and constraints under which
IT computing resources operate.
A password complexity policy is an
example of a security policy. Another
example is the trust configuration
of a business application which
may describe the trusted third party
that the application relies upon to help
authenticate and identify application
users. Like digital identities,
entitlements and security policies need
to be stored, properly managed and
discovered. In many cases, directory
services provide a good foundation
for satisfying these requirements.

Access Management
Access management refers to the
process of controlling and granting
access to satisfy resource requests.
This process is usually completed
through a sequence of authentication,
authorization, and auditing actions.
Authentication is the process by which

Applications

Directory
Services

Users, Attributes,
Credentials, Roles, Groups

and Policies

Access
Management

Authentication
& SSO
Trust & Federation
Entitlements &
Authorization
Security Auditing
Identity Propagation,
Impersonation and
Delegation

Identity
Life-Cycle
Management

User Management
Credential Management
Entitlement Management

Identity Integration
Provisioning &
Deprovisioning

Figure 3. Logical Components of I&AM

JOURNAL3 | Identity and Access Management 23

identity claims are proven. Authorization
is the determination of whether an
identity is allowed to perform an action
or access a resource. Auditing is the
accounting process for recording
security events that have taken place.
Together, authentication, authorization,
and auditing are also commonly known
as the gold standards of security. (The
reasoning behind this stems from
the periodic symbol for Gold, ‘Au’;
the prefix for all three processes.)

There are several technical issues that
solutions architects may encounter
when designing and integrating
authentication, authorization, and
auditing mechanisms into the
application architecture:
– Single Sign-On
– Trust and Federation
– User Entitlements
– Auditing

We will describe these challenges and
their solutions in more detail later on
in this document.

Identity Life Cycle Management
The life cycle of a digital identity can
be framed in similar stages to the life
cycles of living things:
– Creation
– Utilization
– Termination

Every stage in an identity’s life cycle
has scenarios that are candidates for
automated management. For example,
during the creation of a digital identity,
the identity data needs to be propagated
and initialized in identity systems.
In other scenarios an identity’s
entitlements might need to be
magnified when the user represented
by the identity receive a job promotion.
Finally when the digital identity is no

longer put to active use, its status
might need to be changed or the
identity might need to be deleted
from the data store.

All events during the life cycle of a
digital identity need to be securely,
efficiently, and accurately managed,
which is exactly what identity life
cycle management is about.

The requirements for identity life
cycle management can be discussed
at several levels, as represented in
Figure 4. The types of data that need
to be managed are shown at the identity
data level. Based on our previous
definitions of digital identity, the
relevant data includes credentials,
such as passwords and certificates;
and user attributes, such as names,
address and phone numbers. In
addition to credentials and attributes,
there are also user entitlements data
to manage. These entitlements are
described in more detail later on, but
for now, entitlements should be

considered as the rights and privileges
associated with identities.

Moving up a level in the illustration,
the requirements listed reflect the
kinds of operations that can be
performed on identity data. Create,
Read, Update, and Delete (CRUD)
are data operation primitives coined
by the database community. We reuse
these primitives here as they provide
a very convenient way for classifying
the kinds of identity management
operations. For example, we can
classify changes to account status,
entitlements, and credentials under
the Update data primitive.

The next level in the illustration shows
two identity life cycle administration
models: self-service and delegated. In
traditional IT organizations, computer
administration tasks are performed
by a centralized group of systems
administrators. Over time, organizations
have realized that there may be good
economic and business reasons to

Business Scenarios

Self Service

Hire/Fire Job Change
Registration
& Enrollment

Delegated
Administration

Administration Models

Read:
• User
 Entitlements
• User
 Attributes

Update:
• User
 Entitlements
• User
 Attributes
• Update
 Credentials
• Change
 Account
 Status

Create:
• New Account

Delete:
• Existing
 Account

Data Operations

Identity Data

Credentials Entitlements Attributes

Figure 4. Levels of Identity Life Cycle Management Requirements

JOURNAL3 | Identity and Access Management 24

enable other kinds of administration
models as well. For example, it is often
more cost effective and efficient for
individuals to be able to update some
of their personal attributes, such
as address and phone number,
by themselves. The self-service
administration model enables such
individual empowerment. The middle
ground between the self-service and
centralized administration models
is delegated administration. In the
delegated model, the responsibilities
of identity life cycle administration
are shared between decentralized
groups of administrators. The common
criteria used to determine the scope of
delegation are organization structure
and administration roles. An example
of delegated administration based
on organization structure is the
hierarchy of enterprise, unit and
department level administrators
in a large organization.

The above life cycle administration
models can be used to support a variety
of business scenarios, some of which
are listed in Figure 4. For instance,
new employees often require accounts
to be created and provisioned for them.
Conversely, when an employee is no
longer employed, the existing account
status might need to be changed. Job
change scenarios can also have several
impacts on the digital identities.
For example, when Bob receives
a promotion, his title might need
to be changed and his entitlements
might need to be extended.

Now that we have a better
understanding of identity life cycle
management requirements, we are
ready to drill into the challenges
involved in meeting those requirements.
The illustration in Figure 5 speaks to the

fact that a typical user in an enterprise
typically has to deal with multiple
digital identities which might be stored
and managed independently of one
another. This current state of affairs is
due to the ongoing evolution that every
business organization goes through.
Events such as mergers and acquisitions
can introduce incompatible systems into
the existing IT infrastructure; and
evolving business requirements might
have been met through third party
applications that are not well integrated
with existing ones.

One may presume that it would have
been much easier for enterprises to
deprecate the current systems and
start over. However, this solution is

seldom a viable option. We have to
recognize that existing identity
systems might be around for a long
time, which leads us to find other
solutions for resolving two key issues
arising from managing data across
disparate identity systems:

1. Duplication of information
Identity information is often
duplicated in multiple systems.
For example, attributes such as
addresses and phone numbers are
often stored and managed in more
than one system in an environment.
When identity data is duplicated, it
can easily get out of sync if updates
are performed in one system but not
the others.

Figure 5. Current state of affairs: multiple identity systems in the enterprise

SQL
Database

Exchange
Server
Directory

Digital
Identity

1

Credentials

Attributes

LDAP
Directory

Active
Directory

HR DatabaseSAP

Digital
Identity

2

Credentials

Attributes

Digital
Identity

3

Credentials

Attributes

JOURNAL3 | Identity and Access Management 25

2. Lack of integration
The complete view of a given user’s
attributes, credentials and privileges
are often distributed across multiple
identity systems. For example, for
a given employee, the human
resource related information might
be contained in an SAP HR system,
the network access account in an
Active Directory and the legacy
application privileges stored in a
mainframe. Many identity life cycle
management scenarios require
identity information to be pulled
from and pushed into several
different systems.

We refer to the above issues as the
identity aggregation challenge, which
we will describe in more detail in a
later section.

Challenges in Identity and
Access Management

Single Sign-On
A typical enterprise user has to login
multiple times in order to gain access
to the various business applications
that they use in their jobs. From the
user’s point of view, multiple logins
and the need to remember multiple
passwords are some of the leading
causes of bad application experiences.
From the management point of view,
forgotten password incidents most
definitely increase management costs,
and when combined with bad user
password management habits (such
as writing passwords down on yellow
sticky notes,) can often lead to
increased opportunities for security
breaches. Because of the seemingly
intractable problems that multiple
identities present, the concept of single
sign-on (SSO); the ability to login once
and gain access to multiple systems,

has become the ‘Holy Grail’ of identity
management projects.

Single Sign-On Solutions
Broadly speaking, there are five classes
of SSO solutions. No one type of
solution is right for every application
scenario. The best solution is very
much dependent on factors such as
where the applications requiring SSO
are hosted, limitations placed by the
infrastructure (e.g. firewall restrictions),
and the ability to modify the
applications. These are the five
categories of SSO solutions:
1. Web SSO
2. Operating System Integrated

Sign-On
3. Federated Sign-On
4. Identity and Credential Mapping
5. Password Synchronization

Web SSO solutions are designed
to address web application sign-on
requirements. In these solutions,
unauthenticated browser users are
redirected to login websites to enter
in user identifications and credentials.
Upon successful authentication, HTTP
cookies are issued and used by web
applications to validate authenticated
user sessions. Microsoft Passport is an
example of Web SSO solutions.

Operating system integrated sign-on
refers to authentication modules and
interfaces built into the operating
system. The Windows security
subsystem provides such capability
through system modules such as Local
Security Authority (LSA) and Security
Specific Providers (SSP) SSPI refers to
the programming interfaces into these
SSP. Desktop applications that use the
SSPI APIs for user authentication can
then ‘piggyback’ on Windows desktop
login to help achieve application SSO.

GSSAPI on various UNIX
implementations also provide the
same application SSO functionality.

Federated sign-on requires the
application authentication
infrastructures to understand trust
relationships and interoperate through
standard protocols. Kerberos and the
future Active Directory Federation
Service are examples of federation
technologies. Federated sign-on means
that the authentication responsibility
is delegated to a trusted party.
Application users need not be prompted
to sign-on again as long as the user
has been authenticated by a federated
(i.e. trusted) authentication
infrastructure component.

Identity and credential mapping
solutions typically use credential
caches to keep track of the identities
and credentials to use for accessing a
corresponding lists of application sites.
The cache may be updated manually or
automatically when the credential (for
example password) changes. Existing
applications may or may not need to
be modified to use identity mapping
solutions. When the application cannot
be modified, a software agent may be
installed to monitor application login
events. When the agent detects such
events, it finds the user credential in
the cache and automatically inputs
the credential into the application
login prompt.

The password synchronization
technique is used to synchronize
passwords at the application
credential databases so that users
and applications do not have to manage
multiple passwords changes. Password
synchronization as a silo-ed technology
does not really provide single sign-on,

JOURNAL3 | Identity and Access Management 26

but results in some conveniences that
applications can take advantage of. For
example, with password synchronization,
a middle tier application can assume
that the password for an application
user is the same at the various systems
it need access to so that the application
does not have to attempt looking up
for different passwords to use when
accessing resources at those systems.

Entitlement Management
Entitlement management refers to the
set of technologies used to grant and
revoke access rights and privileges to
identities. It is closely associated with
authorization, which is the actual
process of enforcing the access rules,
policies and restrictions that are
associated with business functions
and data.

Today’s enterprise applications
frequently use a combination of role-
based authorization and business
rules-based policies to determine what
a given identity can or cannot do.

Within a distributed n-tiered
application, access decisions can be
made at any layer in the application’s
architecture. For example, the
presentation tier might only present
UI choices that the user is authorized
to make. At the service layer of the
architecture, the service might check
that the user meets the authorization
condition for invoking the service. For
example, only users in the manager
role can invoke the ‘Loan Approval’
service. Behind the scenes at the
business logic tier, there might need to
be fine grain business policy decisions
such as ‘Is this request made during
business hours’; at the data layer,
the database stored procedure
might filter returned data based

on the relationship between the
service invoker’s identity and the
requested data.

Given the usefulness, and often
intersecting use, of both role and rule-
based authorization schemes, it is not
always clear to application architects
how to model an entitlement
management framework that
integrates both schemes cleanly.
Many enterprises have separate
custom engines to do both.

Figure 6 Integrating role and rule
based authorization illustrates a
representation of how both schemes
might be combined and integrated. In
this representation, we can envision a
role definition (which typically reflects
a job responsibility) with two sets
of properties. One set of properties
contain the identities of people
or systems that are in the given role.
For example, Alice, Bob and Charlie
may be assigned to the Manager role.
The second set of properties contains
the set of rights that a given role
has. Rights can represent business
functions or actions on computing
resources. For example, transfer fund
defines a business function and read
file refers to an operation on a
computing resource. Furthermore,
we can assign a set of conditional

statements (business rules) for each
right. For example, the transfer fund
right may have a conditional statement
to allow the action if the current time
is within business hour. Note that the
conditional statement might base
its decision on dynamic input data
that can only be determined at
application runtime.

It is also important for most
organizations to have a consolidated
view of all the rights that a given
identity possesses. To meet this
requirement, entitlement management
applications typically leverage a
centralized policy store to help
facilitate centralized management
and reporting of users’ rights.

Identity Aggregation
Enterprise IT systems evolve
organically over the course of an
organization’s history. This is often
due to reasons such as mergers and
acquisitions, or preferences and
changes of IT leaderships. The
consequences of this are often
manifested through hodge-podges
of disconnected IT systems with
undesirable architectural artifacts.
Identity-related systems are no
exceptions to such IT evolutions.

Frequently, the enterprise will have not
just one identity systems, but several,
each serving different business functions
but storing duplicated and related data.
Applications that need to integrate
with those business functions are then
forced to reconcile the differences and
synchronize the duplications.

For example, a banking customer
service application might need to
obtain customer information from
an IBM DB2 database, an Oracle

User1

User2

...

Right1

Right2

...

Business Rule1

Business Rule2

...

Group1

Group2

...

Role

Figure 6. Integrating role and rule
based authorization

JOURNAL3 | Identity and Access Management 27

database and a homegrown CRM. In
this case, the application’s concept of
‘Customer’ is defined by three different
systems. Attributes that describe
customer such as customer name,
address, and social security number
might be stored and duplicated in
multiple systems. On the other
hand, non-duplicated data such as the
financial products that the customer
has purchased and the customer’s bank
balance might be kept in separate
systems. The application will need
to aggregate this data from different
systems to get the necessary view
of the customer.

Moving the underlying identity data
into one huge giant identity system

might seem like an obvious answer to
this problem. However, there are many
real world issues (for example, the risk
of breaking legacy applications) that
prevent such solution from being
broadly adopted any time soon.

Identity aggregation therefore refers
to the set of technologies that help
applications aggregate identity
information from different identity
systems, while reducing the complexity
of data reconciliation, synchronization
and integration.

There are several technical challenges
that identity aggregation technologies
should help address:
– Maintaining relationships for

data transformations
– Optimizing data CRUD operations
– Synchronizing data

The next few sub-sections provide an
overview of these design issues.

(a) Maintaining Relationships for Data
Transformations
An identity aggregation solution can
provide several benefits to applications
with disparate views of identity
information that manipulate data in
different systems. The first benefit
involves providing applications with
a consolidated view or an aggregated
view of the data in the individual
systems. In order to transform and
represent data in different views, the
identity aggregation solution needs
to maintain meta-data describing the
schema representing the consolidated
view and its relationship with the
data schema in the various
identity systems.

Let’s look at a specific example of
an identity life cycle management

application that is managing data
across a few existing systems. The
consolidated view of the management
application is represented by a new
schema which is made up of new
and existing identity attributes.

Figure 7 Reconciling identity schemas
illustrates an example where a new
identity schema is defined for the
application. The new schema refers
to attributes in two existing identity
schemas and also defined new ones
that are not currently specified
(Account Number, Cell phone
and Preferences).

In order for applications to query and
update data in existing stores, we will
need to maintain data relationships
between the attributes defined in the
new schema and the corresponding
attributes in the existing schemas. For
example, the following relationships
will need to be maintained:

Reference – A reference refers to a piece
of information that unambiguously
identifies an instance of data as
represented by a particular data
schema. For example, the ‘Customer
ID’ attribute allows a data instance as
represented by the application scheme
in Figure 7 to find its corresponding
data instance as represented by
existing schema 1. Different schemas
may use different references to identify
their own data instances.

Ownership – A data attribute may
be defined in more than one existing
schema. Using the same example
shown in Figure 7 again, we can see
that the ‘Name’ and ‘Address’ attributes
are defined in both existing schemas.
In the event of a data conflict, the
application needs to know which

Application Identity
Schema

Name
 Account Number
 Address
 Customer ID
 Home Phone
 Cell Phone
 Email Address
 Preferences

Existing Identity
Schema 2

Name
 Address
 Email Address
 Account Number
 Customer ID

Existing Identity
Schema 1

Name
 Address
 Customer ID
 Phone Number

Mapped
attributes:
<Name, Address,
Customer ID,
Phone Number>

New attributes:
<Cell phone,
Preferences>

Mapped
attributes:

<Name, Address,
Customer ID,
Phone Number>

Figure 7. Reconciling identity schemas

JOURNAL3 | Identity and Access Management 28

version holds the authoritative copy to
keep. In addition, there may be scenarios
where an attribute can get its value
from a prioritized list of owners. In
those scenarios, when the value for
an attribute is not present in the first
authoritative source, the aggregation
service should query the next system
in the prioritized list of owners.

Attribute Mapping – Attributes defined
in multiple data store may have the
same semantic meaning, but have
the same or different syntactic
representations. When querying or
updating a data attribute, the identity
aggregation service needs to know
the attributes that are semantically
equivalent to one another. For example,
although customer id is defined in all
three schemas, it is named differently
as CustID in identity schema 2. When
the application performs an update for
an identity’s customer id number, the
system must also know to update the
CustID attribute for the data instance
represented by schema 2.

(b) Optimizing Data CRUD Operations
As previously identified, CRUD is a
database acronym that stands for Create,
Read, Update and Delete. CRUD
defines the basic primitive operations
for manipulating data. The reason
why CRUD is raised as a technical
challenge is because the performance
for completing an aggregation-related
activity that involves CRUD operations
across multiple data backend systems
can vary significantly depending on the
data relationships.

In the best case scenario, CRUD
operations can be parallelized. This is
mostly true in situations where the
data instances can be resolved using
the same reference and the data

reference always resolves to a unique
instance. For example, if the social
security number is the only key used
for querying and aggregating data
across data stores, that particular
query can be issued in parallel.

In the worst case scenario, the CRUD
operations are serialized across data
stores. Serialized operation is common
in situations where the references used
for resolving data instances have
dependencies on other data instances.
As a simple illustration, let’s suppose
we need to aggregate data from the
HR and Benefits databases and the
instance references are employee ID
and social security ID respectively.
If the only initial key we have for the
query is the employee ID, and the
social security ID can only be obtained
from the HR database, then we will
need to serialize the query in the
following order:
1. Query the HR database using the

employee ID as the key.
2. Extract the social security number

from the above query results.
3. Query the benefits database.
4. Aggregate the query results.

Replication is a common technique
used to address performance
degradation due to CRUD operations
across data stores. To address the
performance issue, a portion of the
backend data attributes may be
replicated to a store maintained
by the identity aggregation service.
In addition, the local copy of the
replicated data can be further
de-normalized to help improve
the CRUD performance.

(c) Synchronizing Data
Data synchronization is needed in
situations when one or both of the

following conditions are true:
– Duplicate identity attributes exist

in multiple backend stores.
– Data is replicated to an intermediate

identity aggregator store.

However, the use of data
synchronization may also
introduce other design issues:
– Data conflict resolution. In situations

where the data can be updated from
more than one source, it is often easy
to introduce conflicting data. Some
common practices to help mitigate
the situations are as follows:
– Assign data ownership priority so

that in the event of conflict, we
will use the assigned authority.

– In a conflict, the last writer wins.
– Synchronization triggers. A couple

of common approaches are:
• Scheduled updates.
• Event notification based.

Trust and Federation
As mentioned in the single sign-on
section, federation offers a form of
single sign-on solution. However,
federation is more than just single
sign-on. Federation implies delegation
of responsibilities honored through
trust relationships between federated
parties. Authentication is just one
form of delegated responsibility.
Authorization, profile management,
pseudonym services, and billing are
other forms of identity-related
functions that may be delegated
to trusted parties.

There are three technology elements
that are crucial to the concept
of federation:
– A federation protocol that enables

parties to communicate.
– A flexible trust infrastructure that

supports a variety of trust models.

JOURNAL3 | Identity and Access Management 29

– An extensible policy management
framework that supports differing
governance requirements.

Federation protocols are the ‘languages’
that are used by federating parties to
communicate with each other. Since
federation implies that a responsibility
is delegated to and performed by a
different party, the protocol must allow
individuals to obtain ‘capabilities’ –
essentially tamper-proof claims that
a given identity has successfully
completed an action or is entitled to
a collection of privileges. For example,
in the case of federated sign-on, an
authenticated identity obtains a
capability that proves that the
individual has successfully
authenticated with an approved
authentication service.

In a complex business world, it is
possible to have relatively complex
trust schemes involving multiple
business parties. Federation technology
must be able to capture the essence of
those real world trust relationships
into simple to understand but powerful

trust models that will help enable
various business scenarios. Some
common trust models, illustrated
in Figure 8, are as follows:
– Hub-and-spoke
– Hierarchical
– Peer-to-peer Web of Trust

The hub-and-spoke model is the
simplest to understand. In this model,
there is a central broker that is directly
trusted by the federating parties. The
European Union is an example of
this federation model where the EU
countries directly trust the EU
body to provide common economic
guidelines and trade opportunities
to federated parties.

In the hierarchical model, two parties
have an indirect trust relationship if
they both have a trust path in their
respective branches in the hierarchical
tree to a common root authority. The
American political system demonstrates
this trust model. This political system
has federal, state, county and local city
political bodies, each existing at
various levels of the hierarchy.

The peer-to-peer model represents
a collection of ad-hoc direct trust
relationships. Personal relationships
between friends in the physical world
are good examples of this trust model.

Note that it is also possible to extend
and form new networks of federations
that consist of different trust models,
or hybrid models.

A basic policy management framework
must allow policies to be created,
deleted, modified and discovered. In
order to promote federated systems
that enable new business models and
partnerships to be quickly integrated,
the policy management framework
must also be extensible to reflect the
dynamicity of the environment it
aims to support.

Some examples of application policies
that are relevant in the federated
world are:
– Trusted issuer of identity-related

capabilities.
– The types of capabilities required

to invoke an application’s operation.

Federation implies delegation of responsibilities honored
through trust relationships between federated parties.”

Hub and Spoke

Figure 8. Common trust models

Hierarchical Peer-to-Peer Web of Trust

JOURNAL3 | Identity and Access Management 30

– The kinds of identity information
that the application expects in
capabilities.

– The kinds of privileges that an
identity must demonstrate in order
to invoke a service.

Auditing
Auditing in the context of I&AM, is
about keeping records of ‘who did what,
when’ within the IT infrastructure.
Federal regulations such as the
Sarbanes-Oxley Act are key drivers
of the identity-related auditing
requirements.

(a) IT Audit Process
The IT audit process typically involves
the following phases as illustrated in
Figure 9:
– Audit generation
– Data collection and storage
– Analysis and feedback

Audit trails can be generated by
different infrastructure and application
components for different purposes. For
example, firewalls and VPN servers can

generate events to help detect external
intrusions; middleware components can
generate instrumentation data to help
detect performance anomalies; and
business applications can produce
audit data to aid debugging or comply
with regulatory audit requirements.

After the audit data has been produced,
it needs to be collected and stored.
There are two main models to consider
here: distributed and centralized. In the
distributed model, audit data typically
remains in the system where the data
is generated. With the centralized
approach, data is sent to a central
collection and data storage facility.

Once the data is collected, they may be
processed and analyzed automatically
or manually. The audit analysis is
designed to lead to conclusions on what
corrective actions, if any, are needed to
improve the IT systems and processes.

(b) Audit Systems Design
Considerations
Given the typical auditing process
described in the previous sections,
there are several considerations
that are important to the design
of auditing systems:
– Locality of audit generation

and storage
– Separation of auditor’s role
– Flow of audited events

Once an audit trail is generated, the
audit data can be stored locally on the
same system or transferred to another
storage location. This consideration is
important from a security perspective,
as audit data can be easier to change
and modify if it is stored on the same
system that generates it. This point can
be illustrated by a simple example:
In the event that a system has been

compromised, the attacker might be
able to modify the audit trail on the
local system to cover up the hacking
attempt. Therefore, for higher assurance
against such attacks, you might want
the audit system to store the data
separately on a remote machine.

Role separation is a common best
practice to help minimize the
occurrence of illegal activities resulting
from actions that might circumvent
accountability checks. For example, a
corporate acquisition officer should not
be able to approve purchasing requests.
In the field of IT audit, it is common
practice to separate the system
administrator role from the auditor’s
role. Doing so prevents the system
administrator who usually has ‘god
status’ on computers to cover up audit
trails of unauthorized activities.

In a distributed design model, where
audit data is generated and stored in
different systems, only allowing data
to flow out of the audit generation
systems can add another level of
safeguard. This preventive measure
reduces the chances of tampered audit
data replacing actual trails.

In addition, identity auditing
infrastructures are also expected
to be:
– Efficient (typically means a

message-based asynchronous
communication channel).

– Available (typically means
distributed, clustered and
fault tolerant).

– Accurate (keep accurate records
and traces).

– Non-repudiated (can be admitted
into the courts of law as evidence,
typically means the records need
to be digitally signed).

Reporting and
Analysis

Collection and
Storage

Audit Generation

Figure 9. IT audit process

JOURNAL3 | Identity and Access Management 31

Conclusions
Organizations are made up of people
and systems, represented within the
IT systems as digital identities.
Everything that occurs in businesses
is the consequence of actions initiated
by and for those identities. Without
identities (even anonymous identities)
there would be no activities and
businesses would be lifeless constructs.

At the highest level, SOA can be seen
as a way to organize the business IT
infrastructure that executes and
manages business activities. Therefore,
enterprises seeking to realize SOA must
figure out how to resolve the identity
and access management challenges
they face today. We have provided an
overview on a few keys technology areas:
– Achieving user and application

single sign-on.
– Aggregating, transforming,

synchronizing and provisioning
identity data from various
identity systems.

– Managing access to business
functions and data using roles
and rules.

– Federating with business partners.
– Auditing identity-related activities.

We also hope that the technical
discussions on challenges have helped
the readers gain some appreciation of
the products and solutions in
this space.

Our final conclusion is:
Identity and access management is a
cornerstone to realizing SOA. Show
me an enterprise that claims to be
‘SOAccessful’ and I’ll show you an
enterprise that has good handle on
its identity and access management.

References
1. SOA Challenges: Entity Aggregation,

Ramkumar Kothandaraman, .NET
Architecture Center, May 2004
(URL: http://msdn.microsoft.com/
architecture/default.aspx?pull=/
library/en-us/dnbda/html/
dngrfsoachallenges-
entityaggregation.asp)

2. Enterprise Identity Management:
It’s About the Business, Jamie Lewis,
The Burton Group Directory and
Security Strategies Report, v1 July
2nd 2003

3. Microsoft Identity and Access
Management Series, Microsoft
Corporation, May 14th, 2004 (URL:
http://www.microsoft.com/downloads/
details.aspx?FamilyId=794571E9-
0926-4C59-BFA9-
B4BFE54D8DD8&displaylang=en)

4. Enterprise Identity Management:
Essential SOA Prerequisite Zapflash,
Jason Bloomberg, Zapflash, June
19th, 2003 (URL:
http://www.zapthink.com/report.htm
l?id=ZapFlash-06192003)

Frederick Chong
Solutions Architect,
Microsoft Corporation
fredch@microsoft.com

Frederick Chong is a solutions architect
in the Microsoft Architecture Strategy
Team where he delivers guidance on
integrating applications with identity
and access management technologies.
He discovered his interest in security
while prototyping an electronic-cash
protocol in the network security group
at the IBM T J Watson Research

Center. Since then, he has implemented
security features and licensing
enforcement protocol in Microsoft
product teams and collaborated with
various enterprise customers
to architect and implement a variety of
security solutions including web single
sign-on, SSL-VPN and web services
security protocol.

JOURNAL3 | Business Patterns – Part 2 32

Business Patterns for Software
Engineering Use – Part 2
By Philip Teale, Microsoft Corporation and Robert Jarvis, SA Ltd

1 Our definition of a ‘pattern’ follows
the classic definition created by
Christopher Alexander in A Timeless
Way of Building, Oxford University
Press, 1979. When writing patterns
we use a Coplien-style notation.

2 For information on SAM – see Enterprise
Architecture – Understanding the Bigger Picture,
Bob Jarvis, a Best Practice Guideline published
by the National Computing Centre, UK, May 2003
or http://www.systems-advisers.com

Introduction
This is the second article in a series of
two. The purpose of these articles is to
explore whether business patterns1 can
be defined in a structured way, and if
so – whether these business patterns
would be of value for those who build
software systems that support the
business. Our point of view is that
this value does exist.

The first article was published in
JOURNAL2 and it explored how to
define business patterns that would
be useful for software engineers.
Article 1 sets the scene for this article
and should be read before this one.

In the first article we used an
Enterprise Architecture Framework
called SAM2 to analyse the opportunity
and we concluded that such business
patterns will describe:

– The business functions being
supported.

– The data that is required to support
the described functions.

– The business components that are the
IT representations of the data and
functions the business needs.

– Optionally, the infrastructure needed
to support the functions, data and
components. This is necessary
in highly distributed enterprises
or those made up of divisions
or units with diverse technical
or operational environments.

In addition, we defined the business
patterns that describe the key
relationships between these dimensions.

In this second article, we describe
how to develop business patterns
based on business functions, data,
and business components. We also
show how these can be used to
engineer software systems.

Summary of Article 2
In this article we use a realistic but
simplified example to show how to
use standard techniques to develop
descriptions of the business functions,
data and business components required

Difference between patterns and
systems
If you haven’t had much experience
with patterns, you might look at the
examples in this article and see them
as a system development rather than
a pattern. This is because, for
software engineering, a pattern is a
stepping stone on the way to
developing part of a system. The
pattern gets you part of the way to
the final objective by starting you off
from a tried-and-trusted place. It
looks familiar, but it is not a solution
in itself – it is an abstraction of the
solution that you have to embellish
to make it the solution that suits
your needs. The tricky bit in creating
patterns is to get the level of
abstraction right. Very little
abstraction constrains the usefulness
of the pattern, as it is then very
specific. But a lot of abstraction also
limits the usefulness as it provides
very little practical value.

Think of a common situation today
where you might have designed a
service called ‘message broker’ to
provide message routing and
transformation between a variety of
IT services. A highly abstracted
pattern would be exactly what we
just said – ‘if you want to provide
message routing and transformation
between a variety of IT services
then use a message broker’. How

useful was that? Well, it starts you
thinking the right way, so it is some
use but does not provide a lot of
practical help.

On the other hand, after you’ve built
a message broker for handling the IT
services required by a bank to handle
a consolidated customer view, could
you take that solution and call it a
pattern? Yes, but how many would it
be useful for? It is too specific and is
a potentially-repeatable solution
rather than a pattern.

Somewhere in between is the ‘sweet
spot’, where the key ideas at all the
levels involved in building the
system can be abstracted and
reapplied to solve many industry
problems. These are the most
powerful patterns. In this article we
think the Business Component
specification example we show is in
that sweet spot for the healthcare
industry. We think this is an
important aspect of business
patterns that should be clearly
recognised – some will not be of
interest outside the industry (like
this one) and some will (that
represent common functions). We
speculate that the common ones
that cross industries actually identify
the areas mostly ripe for outsourcing
– but that’s a whole different
discussion. [0]

3 Problem Refinement Model – please
see Article 1 in JOURNAL2.

JOURNAL3 | Business Patterns – Part 2 33

for a business pattern. We do not
describe the infrastructure needed, and
hence will not explore the relationships
to infrastructure either. Our goal is
to say ‘it can be done, and you already
know how’ rather than to provide
a detailed guide to every step.

First we show a way to define the
business functions, data and
components we need, and then second
we use the PRM3 to show a roadmap
for the journey. The example we use
is based on the Healthcare industry
but the techniques are valid for any
industry. The techniques shown are
those that were actually used in a real
project. It is important to stress that
we are not saying that you must use
these techniques. The techniques in
themselves are not important – it’s
the results that matter. These should
enable you to engineer either more
refined patterns or real software
systems from the deliverables.

Business Functions
To develop business patterns our first
goal must be to discover, define and
document relevant business functions.
This has two main tasks:

1. We want to discover the atomic level
function set that describes the
problem space. These are known as
‘primitive functions’ in functional
modelling. The same things are
known as ‘elementary processes’ in
Business Process Re-engineering.

2. We want to aggregate the atomic
functions into larger and larger
grained functional groups.

Note that by ‘atomic’ we mean that
the function cannot be meaningfully
divided any further – once started,
the function has to be completed or

aborted. This can be more fine-grained,
and therefore voluminous, than is
strictly necessary for business pattern
definition. Therefore what we actually
seek for a business pattern is business
functions defined at to level of
decomposition at which meaningful
relationships can be formed with the
other spheres, particularly the data
sphere. In the case of business functions
we find this in practice to be at about
the fourth level of decomposition from
the root of the hierarchy. At this level
it usually possible to formulate CRUD
(Create, Read, Update and Delete)
relationships with data entities held
in the Data sphere.

We can tackle the definition of business
functions either bottom-up or top-down
or in a mixture of the two.

Bottom-Up analysis
In this approach the analyst works
with a representative set of users from
the business domain, to analyse their
view of the business processes that
they perform. This may be done using
use case diagrams or any technique

that can show the sequential and
parallel tasks carried out in the
process. The collection of processes is
then catalogued and analysed and it
is usually noticed that many of the
steps or low-level tasks carried out in
these processes are repeated many
times in different processes. The
redundant tasks are identified and
eliminated a non-redundant set of
primitive functions.

This is shown in Figure 1 using a
simple flowcharting technique. It can
be seen that task A is redundant and
so will appear only once in the
primitive set.

Then having derived the non-
redundant primitive set by this
analysis, we can now iteratively
aggregate the functions into a
provisional hierarchy, such as
that shown in Figure 2.

From the point of view of a business
pattern, there are issues with using
a bottom-up approach:

Process 1

A B ?

C E

A DX Y

D

Process 2

Figure 1. Process discovery & synthesis

JOURNAL3 | Business Patterns – Part 2 34

1. This can be a very labour-intensive
process for a large business area,
involving many users. (This can be
mitigated by compromising on a
scenario + use-case approach rather
than full process analysis).

2. The nature of the process leads to an
analysis of the ‘as-is’ situation. This
is acceptable as long as this is clear
and the results are used accordingly.

3. In order to be sure that you are
documenting a pattern, you would
have to repeat or at least verify
the analysis in several similar
enterprises. This could present
many practical problems.

The benefits of the bottom-up approach
are that the fundamental analysis has
been now done and can readily be
applied as a foundation for a solution
derived from the pattern. The point
of a pattern is to document successful
practice, and given that the example
has been well chosen, this will
naturally occur.

Top-Down Analysis
The functional decomposition in Figure
2 could be derived another way. This
could involve hypothesising the upper
levels of the hierarchy and ‘filling in’
the levels below until a satisfactory
degree of detail has been obtained.
Clearly it is necessary to verify that the
results are accurate and reflect reality.

Thus, a Top-Down analysis starts
by describing the business problem
domain at its most abstract, and
then iteratively decomposing until
the primitive level is reached. This can
be done by using a standard approach
such as IDEF04 for functional modelling.
Alternatively use the UML extensions
for business process modelling.

In fact, the ‘top-down’ approach need
not address business processes at
all. There are pros and cons to this.
A benefit of using this approach in
pattern definition is that the work can
be done with industry consultants who
have worked with many clients in the
problem domain. In essence, one is

performing ‘knowledge mining’ with
experts and this can be much faster.
It reduces the number of examples you
need to work with directly, and alters
the analyst’s role to that of reviewer
rather than worker.

The Mixed Approach
In practice, it is often the case that we
carry out the top-down and bottom-up
approaches together, iteratively
switching from process synthesis to
hierarchy construction to decomposition
to the next lower level. This has the
benefit of verifying the hypothetical
top-down decomposition with real-
world functions gleaned bottom-up.
In practice this can be the quickest
and most reliable method.

Functional Decomposition
Example
The following example, and those that
follow, are based on a real world situation
in Patient Healthcare and show the
deliverables for a core business pattern,
using a process analysis approach.

The Enterprise

Marketing

Research
Territory

Management

Design &

Development

Workflow

Layout

General

Accounting

Financial

Planning

Product

Specification

Maintenance

Information

Control

Materials

Requirements

Capacity

Planning

Scheduling Purchasing

Receiving Maintenance

Inventory

Control

Equipment

Performance

Budget

Accounting

Funds

Management

Cost

Planning

Capital

Acquisition

Recruiting/

Development

Organisation

Analysis

Review &

Control

Risk

Management

Personnel

Planning

Business

Planning

Shipping

Planning

Forecasting

Sales

Selling

Order

Servicing

Administration

Engineering Production
Materials

Management

Facilities

Management
Administration Finance

Human

Resources
Management

Compensation

Figure 2. Example of typical result of business function analysis

4 A member of the IDEF family
of FIPS standards from NIST. See
http://www.itl.nist.gov/fipspubs/
by-num.htm number 183.

JOURNAL3 | Business Patterns – Part 2 35

Firstly, we carried out an analysis of
the functional requirements of the
problem domain. Working from provided
scenarios such as that for breast cancer
care, we have derived over 40 processes
carried out by patients, professionals,
system administrators and the
‘confidentiality guardian’. This latter
role is charged with the stewardship
of confidentiality of information.

These processes were documented
using UML use cases. These proved to
be highly repetitious in that the same

or similar sub-activities re-occurred
within many use cases. Thus we
extracted and consolidated these
activities into a single list as follows:

Patient Logon (Authentication)
Patient Logoff (Audit)
Apply Patient Search
Manage Own Patient's Details
Manage Own Patient's Preferences
View Personalised Area
View Own GP Details
Manage Own General Health Data
Manage Donor Details
Manage Patient Details

Manage Family Members
View Immunisations/Vaccinations
Manage Personal Preferences
View Patient Health Records
View Patient Journey
View Patient Personalised Area
Apply Clinical Override
Review Clinical Overrides
Generate Patient Events
Manage Own Patient Events
Construct Patient Journey
View Own Patient Journey
View Own Medical History
Define General Consents

Manage & Operate
NHS Gateway

Manage Access

Patient Logon

(Authentification)

Patient Logoff

Professional Logon

(Authentication)

Professional Logoff

View Patient Health Records

Apply Clinical Override

Review Clinical Overrides

Generate Patient Events

Manage Own Patient Events

View Own Medical History

Manage Patient
Events

Manage
Consents

Maintain Care
Pathways

Access GP &
Hospital Systems

Maintain
Professional
Register

Manage Patient
Information

Manage Patient
Journeys

Maintain Healh
Subject

Classifications

Manage
Appointments

Manage
Organisational

Structure

Maintain
Professional
Permissions

Define General Consents

Manage Own Consents

(Patient)

Maintain Care Pathways Access System Index

Access Event Detail

Maintain Clinical Processes

Maintain Professional

Register

Maintain Specific

Permissions

Apply Patient Search

Manage Own Patient’s Details

View Own Personalised Area

View Own GP’s Details

Manage Own General Health Data

Manage Donor Details

Manage Patient Details (by Prof)

Manage Family Members

View Immunisations/Vaccinations

Manage Personal Preferences

View Personalised Area (by Prof)

View Patient Journey

View Own Patient Journey

Maintain Health Subject

Capture Other Health Codes

Model Other Health Code

Perform Health Code

Translation

Book Appointment

Change Appointment

Maintain Role Definitions

Maintain Group/Team Structure

Maintain Group/Team Membership

Maintain Permission Delegations

Define General Permissions

View Own Prof Permissions

Figure 3. Healthcare Example – Functional Decomposition

JOURNAL3 | Business Patterns – Part 2 36

Manage Own Consents
Maintain Health Subjects
Perform Health Code Translation
Capture Other Health Code
Model Other Health Code Structure
Maintain Care Pathways
Manage Book Appointment
Change Appointment
Access Event Detail
Access System Index
Maintain Clinical Processes
Maintain Role Definitions
Maintain Group/Team Structure
Maintain Group/Team Membership
Maintain Permission Delegations
Maintain Professional Register
Professional Logon (Authentication)
Professional Logoff (Audit)
View Own Prof Permissions
Maintain Specific Permissions
Define General Permissions

These processes may be represented in
a hierarchy as shown in Figure 3. In so
doing we have derived a higher level
which summaries and contains these
activities according to their subject
and functional similarity.

Data Model
The Healthcare example is underpinned
by a comprehensive data model.

We carried out an analysis of the data
created and managed within the scope
of our problem domain. This revealed
31 main entities such as Patient,
Healthcare Professional, Patient Event,
Care Pathway, and so on. These were
defined. We identified candidate
primary keys and principal attributes
for these entities and mapped the
relationships between the entities,
including resolving any many-to-many
relationships. The identification of
these entities and their relationships
was driven by the functional

analysis being carried out in parallel.
As far as we are aware, all identified
functional requirements are supported
by the data model and vice versa. The
31 entities have been allocated to eight
‘data subjects’ based on the cohesion
of the entities in terms of the relative
strengths of the mutual relationships.

These groups are:
– Patients
– Patient Consents
– Care Pathways
– Health Subjects
– Clinical Processes
– Roles, Teams and Organisations
– Professionals and Permissions
– Local Systems

These data subjects form the first pass
definition of the required data bases
and their provisional content. The
Patients’ data subject is shown in
Figure 4. This takes the form of a
conventional Entity-Relationship
model showing data entities named
and identified by their primary keys.
The entities within the coloured area
belong to the Patients data subject.
The entities outside the coloured area
belong to other data subjects but have
significant relationships with entities
within the Patient data subject.

A ‘Crow’s Foot’ relationship notation
has been used but an IDEF1x notation
could have been used if preferred. All
many-to-many relationships have been
resolved. This is necessary because
M:M relationships usually conceal
further entities and relationships.

This approach allows us to form a
shallow hierarchy for data (Root >
Subject Area > Entity > Attribute) and
then to form relationships between the
members of Data and the members of

Business Function. This normally takes
the form of a CRUD Matrix showing
the actions of specific Business
Functions upon specific Data Entities.

Mapping Relationships
Having defined the required
functionality in the form of a functional
decomposition hierarchy and also
defined the data required in an entity
relationship data model, we can now
derive a first cut component
architecture by comparing the
identified functions and data.

We do this by forming a matrix,
the rows of which are the identified
functions and the columns the
identified data entities. In the
cells we place a value:

– ‘C’ meaning this function CREATES
an instance of this data entity

– ‘R’ meaning this function READS an
instance of this data entity

– ‘U’ meaning this function UPDATES
an instance of this data entity

– ‘D’ meaning this function DELETES
an instance of this data entity

The result is shown in Figure 5.

Clustered Matrix
We have ensured that every column
(data entity) has at least one create
operation and that each row (function)
has some activity. Please note that the
values are not absolutely precise,
particularly with regard to read
operations. We have not specified
delete operations.

We now analyse the matrix by using
the affinity analysis and clustering

JOURNAL3 | Business Patterns – Part 2 37

Generic Care Pathway Segment Use

Care Pathway ID
Care Pathway Segment ID

Sequence in Pathway
Mandatory Optional

Generic Care Pathway Event

Care Pathway Event ID

Patient No
Care Pathway ID
Care Pathway Segment ID
Care Pathway Event ID

u
s
e
d

i
n

r
e
s
u
l
t
s

i
n

o
f
f
e
r
s

m
a
y

b
e

i
n
c
l
u
d
e
d

i
n

Patients

Patient ID

Patient Name
Patient Address
Date of Birth
Consent Status (Default or Specific)
Patient Attributes
Last Logon
Preferences

Patient Event
Patient No
Event Date
Health Subject Code
Duplicate Serial

Patients’ Data Links
Patient No
Event Date
Health Subject Code
Duplicate Serial
System ID
Protocol/WSDL/URL

System ID Patient No
Event Date
Health Subject
Duplicate Serial
Group/Team ID
Clinical Process Code
Activity ID
Detail

Patients’ ePR Event

Patient No
Event Date
Health Subject Code
Duplicate Serial
Date & Time

Appointment

Healthcare Prof ID
Patient No
Event Date
Health Subject
Duplicate Serial
Access Date

Professional/Event Access History

Individual Access Consents
Patient No
Healthcare Prof ID
Event Date
Health Subject

Health Subject Code

Patient No
Health Subject
Role ID
Consent reversal date

Patient No
Health Subject
Healthcare Prof ID
Role ID

has made

has

has

has

has

has

has

has

classifies

contains

Patient

Care Pathway Event Description

Patient Journey

Generic or Custom
Planned Date
Completed Date

Care Pathway ID
Care Pathway Segment ID
Care Pathway Event ID
Short Description
Status/Outcome
Patient Confidentiality Flag
Healthcare Professional Y/N

Patient Consent Reversal

Care Relationship

Start Date
End Date

Health Subject

Definition

Date Granted
Date Revoked

Override Used Y/N

Type
Protocol/UDDI

System Index

Location

Figure 4. Example Data Model – Patients’ Data Subject

JOURNAL3 | Business Patterns – Part 2 38

technique. The objective is to deduce
groups of functions and entities that
share create and update operations.
We are exploiting the ‘loose coupling’
and ‘tight cohesion’ notions used in
the functional decomposition with
the inter-entity relationships (some
of which are vital and others merely
transient) in the data model.

We adjust the model to bring together
functions and entities with strong
affinity. Description of the detailed

algorithm used (the ‘North West’
method) is beyond the scope of this
paper, however the result is the
emergence of mutually exclusive
groups of functions and entities formed
round create and update actions. These
groups are our candidate business
components as shown in Figure 6.

Business Component Derivation
Firstly we should clarify what we mean
by business component.

A business function creates, reads,
updates and deletes data. Grouping
together all the functions that create
and update the same data entities,
using a technique such as commutative
clustering, defines non-redundant
‘building blocks’ – business components
– that can be used to construct
patterns, systems or applications that
in turn support particular business
processes. The Business Components
sphere is an example of a ‘derived
sphere’ – one which is deduced from

Patient Logon (Authentication)

Patient Logoff

Apply Patient Search

Manage Own Patient’s Details

Manage Own Patient’s Preferences

View Personalised Area

View Own GP Details

Manage Own General Health Data

Manage Donor Details

Manage Patient Details

Manage Family Members

View Immunisations/Vaccinations

Manage Personal Preferences

View Patient Health Records

View Patient Journey

View Patient Personalised Area

Apply Clinical Override

Review Clinical Overrides

Generate Patient Events

Manage Own Patient Events

Construct Patient Journey

View Own Patient Journey

View Own Medical History

Define General Consents

Manage Own Consents

Maintain Health Subjects

Perform Health Code Translation

Capture Other Health Code

Model Other Health Code Structure

Maintain Care Pathways

Manage Book Appointment

Change Appointment

Access Event Detail

Access System Index

Maintain Clinical Processes

Maintain Role Definitions

Maintain Group/Team Structure

Maintain Group/Team Membership

Maintain Permission Delegations

Maintain Professional Register

Prof Logon (Authentication)

Prof Logoff

View Own Prof Permissions

Maintain Specific Permissions

Define General Permissions

NHS Gateway
Component Architecture A

pp
oi

nt
m

en
ts

C
ar

e
R

el
at

io
ns

hi
p

C
li

ni
ca

l P
at

hw
ay

(L
oc

al
)

C
li

ni
ca

l P
at

hw
ay

A
ct

iv
it

y
G

en
er

al
C

on
se

nt
s

Ta
bl

e

G
en

er
ic

C
ar

e
P

at
hw

ay

G
en

er
ic

C
ar

e
P

at
hw

ay
E

ve
nt

G
en

er
ic

C
ar

e
P

at
hw

ay
S

eg
m

en
t

G
en

er
ic

C
ar

e
P

at
hw

ay
S

eg
m

en
t

U
se

G
ro

up
/T

ea
m

M
em

be
rs

hi
p

G
ro

up
/T

ea
m

R
ol

es

G
ro

up
/T

ea
m

S
tr

uc
tu

re

H
ea

lt
h

S
ub

je
ct

H
ea

lt
h

S
ub

je
ct

C
od

e
T

ra
ns

la
ti

on
In

di
vi

du
al

A
cc

es
s

C
on

se
nt

s
N

H
S

G
ro

up
s

&
Te

am
s

N
H

S
P

ro
fe

ss
io

na
l

N
H

S
P

ro
fe

ss
io

na
l’s

R
ol

es
N

H
S

R
ol

es

O
th

er
H

ea
lt

h
C

od
e

P
at

hw
ay

S
eg

m
en

t
E

ve
nt

U
se

P
at

ie
n

t

P
at

ie
n

t
C

on
se

nt
R

ev
er

sa
l

P
at

ie
n

t
E

ve
nt

P
at

ie
n

t
Jo

ur
ne

y

P
at

ie
n

ts
’ D

at
a

L
in

ks

P
at

ie
n

ts
’ e

P
R

E
ve

nt
s

P
er

m
is

si
on

D
el

eg
at

io
n

s

P
ro

fe
ss

io
n

al
P

er
m

is
si

on
s

P
ro

fe
ss

io
n

al
/E

ve
nt

A
cc

es
s

H
is

to
ry

S
ys

te
m

In
de

x

R

R

R

R R

R

R R R R

R R R R

R R

R

R

R R R

R R

R R

R

R

R

R

R

R R R

RRRR R

R R
R

R
R

R R
R R

R

R
R

R

R R

R

R

R

R

R

R

R
R
R
R

R
R

R

R

R

R

R

R R
R

RRRR

R

RR

R
R R

R

R

R

R

R

R R R

R

R

R
R

R

R

R

R

R

R

C

C

C C

C

C C C C C

C
C C

C C
C

C

C

C C

C

C

C

C

C

C

C C

C

C

C

C

C

R C

R C
R C

R

R

R

R

R

U

U

U
U

U

U
U

U
U
U

U

U

U

U

U

Figure 5. Function vs Data ‘CRUD’ Matrix

JOURNAL3 | Business Patterns – Part 2 39

the relationships between two other
spheres. This is a powerful technique
that exploits hidden value in
an enterprise architecture. By
encapsulating functionality and data
into components, software reuse and
replaceability become practical.
Further, components offer ‘services’
that may be ‘orchestrated’ in
conjunction with the services
offered by other components
to create an application.

The business components resulting from
our cluster analysis include service
interfaces, business entity components,
data access components and perhaps
service agents. These artifacts
align with the .Net Application
Architecture5. The business component
does not contain ‘agile’ elements such
as UI Components and UI process
components, business workflows, or
elements such as security, operational
management and communication.

We think this coarse grained definition
is very useful. It provides the stable
part of the overall solution architecture
which is then rounded out with the
agile elements – like UI, UI Processes
and Business Workflows. Thus we can
provide an agile solution based on the
foundation of a stable pattern.

The coarse-grained business
components and their services are
discovered through an affinity and

Patient Logon (Authentication)

Patient Logoff

Apply Patient Search

Manage Own Patient’s Details

Manage Own Patient’s Preferences

View Personalised Area

View Own GP Details

Manage Own General Health Data

Manage Donor Details

Manage Patient Details

Manage Family Members

View Immunisations/Vaccinations

Manage Personal Preferences

View Patient Health Records

View Patient Journey

View Patient Personalised Area

Apply Clinical Override

Review Clinical Overrides

Generate Patient Events

Manage Own Patient Events

Construct Patient Journey

View Own Patient Journey

View Own Medical History

Define General Consents

Manage Own Consents

Maintain Health Subjects

Maintain Care Pathways

Manage Book Appointment

Change Appointment

Access Event Detail

Access System Index

Maintain Clinical Processes

Maintain Role Definitions

Maintain Group/Team Structure

Maintain Group/Team Membership

Maintain Permission Delegations

Maintain Professional Register

Prof Logon (Authentication)

Prof Logoff

View Own Prof Permissions

Maintain Specific Permissions

Define General Permissions

Patient Healthcare
Component Architecture P

at
ie

n
t

P
ro

fe
ss

io
na

l/E
ve

nt
A

cc
es

s
H

is
to

ry
P

at
ie

n
t

E
ve

nt

P
at

ie
n

ts
’ D

at
a

L
in

ks

P
at

ie
n

t
Jo

ur
ne

y

G
en

er
al

C
on

se
nt

s
Ta

bl
e

In
di

vi
du

al
A

cc
es

s
C

on
se

nt
s

P
at

ie
n

t
C

on
se

nt
R

ev
er

sa
l

H
ea

lt
h

S
ub

je
ct

H
ea

lt
h

S
ub

je
ct

C
od

e
T

ra
ns

la
ti

on
O

th
er

H
ea

lt
h

C
od

e

G
en

er
ic

C
ar

e
P

at
hw

ay

G
en

er
ic

C
ar

e
P

at
hw

ay
S

eg
m

en
t

U
se

G
en

er
ic

C
ar

e
P

at
hw

ay
S

eg
m

en
t

P
at

hw
ay

S
eg

m
en

t
E

ve
nt

U
se

G
en

er
ic

C
ar

e
P

at
hw

ay
E

ve
nt

A
pp

oi
nt

m
en

ts

P
at

ie
n

ts
’ e

P
R

E
ve

nt
s

S
ys

te
m

In
de

x

C
li

ni
ca

l P
at

hw
ay

(L
oc

al
)

C
li

ni
ca

l P
at

hw
ay

A
ct

iv
it

y
G

en
er

ic
R

ol
es

G
ro

up
s

&
Te

am
s

G
ro

up
/T

ea
m

S
tr

uc
tu

re

G
ro

up
/T

ea
m

R
ol

es

G
ro

up
/T

ea
m

M
em

be
rs

hi
p

P
er

m
is

si
on

D
el

eg
at

io
n

s

P
ro

fe
ss

io
n

al

P
ro

fe
ss

io
n

al
’s

R
ol

es

C
ar

e
R

el
at

io
ns

hi
p

P
ro

fe
ss

io
n

al
P

er
m

is
si

on
s

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R
R

R R

R

R

R

R

R

R

R

R R

R

R
R

R

R

R R R R R

R R R R R

R

R

R R

R

R

R

R R R R R

R

R

R

R R R
R RR

R R R

R

R

R R

R

R R

R
R

R

R R
R R

R

R R

R

R

R

R
R

R

R
R
R

R
R

C

C

C
C

C

C C

C

C

C C
C C

R R

C

C C C C C

C

C C
C

C C

R

R

R R

C

C

C
C C

C C

C

U

U

U

U

U

U

U

U

U

U

U U

U

U

U

Patient Component

Prof Access History Component

Patients’ Event Component

Health Subject Component

Patient Consent Component

Care Pathways Component

GP & Hospital Systems Component

Appointments Component

Clinical Process Component

Groups & Teams Component

Professionals Component

Permissions Component

Figure 6. Clustered Matrix

5 Application Architecture for .Net:
Designing Applications and Services –
Patterns and Practices Guide –
Microsoft Corporation 2002

JOURNAL3 | Business Patterns – Part 2 40

clustering analysis performed on
the relationships between business
function and data. After these
spheres are defined, a CRUD
matrix is created to determine
the component-data relationship.

In SAM, business component forms
a hierarchy too. Thus the business
component can decompose one level
to specify the services, business entity
and data access sub-components.
At this level, business components
will also specify the business services
that we intend to expose. It is useful
to explicitly call these out, so that
decisions can be made around whether
these will be internal services
or exposed as web services.

Components and Services
The list of components is as follows:
– Patient Component
– Professional Access History

Component
– Patients’ Events Component
– Patient Consents Component
– Health Subject Component
– Care Pathways Component
– Appointments Component
– GP & Hospital Systems Access

Component
– Clinical Processes Component
– Groups & Teams Component
– Professionals Component
– Permissions Component

We think that this set of
components represents the essence
of a Business Pattern definition.

One of these components - the Patient
component is shown in Figure 7. This
indicates the functionality, data
managed and services and features
offered by the component.

Services and Features provided:

EXAMPLES:
• Patient Logon and Logoff records
• Search for Patient by Patient Number or Name/Address/DoB etc.
• Maintenance of Patient Details and Preferences by the Patient
• Provision of GP assignment for each patient
• Provision of patient medical attributes (blood group, etc.) – GP supplied
• Provision of immunisation/vaccination information – GP supplied
• Etc

Business Component Specification

Patient Component

Description

Functions supported (Business Logic) Data maintained (Business Entities)

The Patient component supports storage and access to data regarding a patient.
Functions are provided to input, validate, maintain, store and output standing
patient data such as name and address, personal details and limited medically-
related data should this be available.

EXAMPLES:
Patient Logon (Authentication)
Patient Logoff (Audit)
Apply Patient Search
Manage Own Patient’s Details
View Own GP Details
Manage Own General Health Data
Manage Donor Details
Manage Patient Data (by Professional)
Manage Family Members
View Immunisations/Vaccinations
Manage Personal Preferences
Etc

EXAMPLES:
Patient Number
Patient Name
Patient Address
Date of Birth
Patient Attributes:
 Phone Number
Occupation

 Sex
 Special Needs
 Marital Status
 Weight History
 Etc…

PK
AK
AK
AK
Atts

Figure 7. Sample Business Component.

Architecture

Business

Primitive
Functions Optionally

1. Use Case Model

2. Analysis and
 Design Model

3. Deployment Model

1. Bus Process
 analysis

2. IDEFO
 Model

UML Elaboration
for Projects

Conceptual 3. Functional Decomposition
4. E/R Data Model
5. Business Component
6. Business Services

 7. Application Model
 8. IT Services
 9. IT Contracts
10. Process Model

11. Topologies
12. Placements

13. Product/Function mapping

Logical

Physical

Implementation

Design

Figure 8. PRM with Architect and Design views

JOURNAL3 | Business Patterns – Part 2 41

How the Business Patterns are
useful for Software Engineering
Now we’ve reached the second part of
this article where we talk about the
roadmap for how to use the above
descriptions of business patterns to

engineer either other types of patterns,
or actual software systems.

We illustrate this using the five layers
of the PRM as shown in Figure 8. You’ll
note that the PRM distinguishes

between the architect’s view (a higher-
level view, for example guiding a
programme of projects) and a designer’s
view (for example, design for a project
or subset thereof). Figure 8 intends to
indicate the different techniques and
notations appropriate to these different
views, just to give you a flavour for how
the refinement is done.

What is key to note is that the PRM
simply identifies the elements needs to
get right through to an implementation
– it makes no assumptions or
judgements about how best to achieve
this! You can use whatever approach
you favour to fill out the set of
deliverables and in whatever order you
want (after the business patterns are
defined). You chose the best way for the
organisation that you are working in.

When considering business patterns
we need to recognise this essential
difference between architecture and
design in the context of the side-bar
about the right level of abstraction.

Where the Business Patterns fit
The sweetest spot for the business
patterns is shown in Figure 9. Here
they define those stable elements of a
business, the business functions, data
and business components that are in
scope for the effort. Used this way they
can be used to guide large programmes
of work, which leads to greater
consistency across projects, with
less overall effort.

Business Patterns and Service
Oriented Architecture
For those that want to provide either
other IT patterns, or further guidance

Architecture

Business

Primitive
Functions Optionally

1. Use Case Model

2. Analysis and
Design Model

3. Deployment Model

1. Bus Process
analysis

2. IDEFO
 Model

UML Elaboration
for Projects

Conceptual 3. Functional Decomposition
4. E/R Data Model
5. Business Componente
6. Business Services

 7. Application Model
 8. IT Services
 9. IT Contracts
10. Process Model

11. Topologies
12. Placements

13. Product/Function mapping

Logical

Physical

Implementation

Design

STABLE:
Base

Business
Pattern

AGILE:
Base
SOA
Model

Figure 9. Business patterns sweet spot in the PRM

STABLE:
Base

Business
Pattern

Architecture

Business

Primitive
Functions Optionally

1. Use Case Model

2. Analysis and
 Design Model

3. Deployment Model

1. Bus Process
analysis

2. IDEFO
 Model

UML Elaboration
for Projects

Conceptual 3. Functional Decomposition
4. E/R Data Model
5. Business Component
6. Business Services

 7. Application Model
 8. IT Services
 9. IT Contracts
10. Process Model

11. Topologies
12. Placements

13. Product/Function mapping

Logical

Physical

Implementation

Design

6 See http://www.microsoft.com/resources/practices/ or Amazon.
7 http://www.martinfowler.com/books.html#eaa
8 Design Patterns Elements of Reusable Object-Oriented Software by Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides. http://hillside.net/patterns/DPBook/DPBook.html

Figure 10. Adding an IT architecture to the business patterns

related to providing an IT solution for
the business problem, the business
patterns can be refined further with
the elements of a Service Oriented
Architecture (SOA is not required, but
is an excellent fit; what is needed is an
architectural elaboration to transform
into an IT solution).

To do this we need to add the topics that
we said provided the opportunity for
business agility, as shown in Figure 10.

The elaboration that we are describing
here and in the next part could still be
described in the form of patterns. The
addition of these two sets of elements
changes a business pattern into a
business solution pattern. Alternatively,
we could build a specific business
solution architecture for the business
pattern. We’ll revisit this in a moment.

Note that at this stage all the work is
still technology product-independent.

Business patterns, SOA and
(Microsoft) Product details
Finally we can elaborate yet
further with product and practice
recommendations for successfully
implementing the solution on Microsoft
technology, as in Figure 11.

At this point we have delivered
business patterns, a service-oriented
application architecture, and a set of
Microsoft patterns for implementation.
Examples of the Microsoft technology
patterns can be found on

http://www.microsoft.com/resources/
practices/

JOURNAL3 | Business Patterns – Part 2 42

STABLE:
Base

Business
Pattern

AGILE:
Base
SOA
Model

Industry
Specific
Solutions

Architecture

Business

Primitive
Functions

1. Bus Process
analysis

2. IDEFO
 Model

Conceptual 3. Functional Decomposition
4. E/R Data Model
5. Business Component
6. Business Services

 7. Application Model
 8. IT Services
 9. IT Contracts
10. Process Model

11. Topologies
12. Placements

13. Product/Function mapping

Logical

Physical

Implementation

Design

AGILE:
Architectural

Product
Guidance

Figure 11. Adding Microsoft technology elements

Figure 12. Refinement for solution design

STABLE:
Base

Business
Pattern

AGILE:
Architectural

Product
Guidance

AGILE:
Base
SOA
Model

Architecture

Business

Primitive
Functions Optionally

1. Use Case Model

2. Analysis and
 Design Model

3. Deployment Model

1. Bus Process
analysis

2.IDEFO
 Model

UML Elaboration
for Projects

Conceptual 3. Functional Decomposition
4. E/R Data Model
5. Business Component
6. Business Services

 7. Application Model
 8. IT Services
 9. IT Contracts
10. Process Model

11. Topologies
12. Placements

13. Product/Function mapping

Logical

Physical

Implementation

Design

Robert Jarvis,
Director, SA Ltd
v-rjarvi@microsoft.com
Robert Jarvis is a Director of Systems Advisers Limited, a
UK consultancy specialising in the development of Strategic
Systems Architectures for major international enterprises.
He is also an Associate Architectural Consultant with
Microsoft Ltd. Bob has over 30 years experience as an

International Systems Consultant and Architect advising
business and governmental organisations in the UK,
Continental Europe and the Americas. He specialises
in Enterprise Architecture working particularly on the
business/technology intersection. He is the author of
‘Enterprise Architecture – Understanding the Bigger
Picture’, a best practice guideline published by the
UK’s National Computing Centre in 2003.

JOURNAL3 | Business Patterns – Part 2 43

At this stage we would have completed
the delivery of a full set of linked
patterns, or an IT solution, to solve a
common business problem at the
architecture level. But what if you’d
like to actually build a system? You
probably need more detail, which is
what the design view will deliver.

Business Patterns and
Industry Solutions
The above deliverables provide a
guiding architecture which can be
used to scope, costs and govern the
IT projects that implement it. However,
it is not detailed enough for solution
implementation. If we want to provide
a solution, we need further elaboration
at the design level, which is guided by
the architecture provided. It is probable
that the solution will be implemented
in several projects, and in this case the
architecture is what keeps all the
projects on the right track for cross-
project consistency.

Figure 12 shows this next refinement.
In the figure we show UML as it is a
common way to drive a design phase.
Again though we want to be clear that
this is an illustration and there is
nothing to say that is has to be done
this way. All we are saying is that this
is a common way to achieve the
refinement of the architecture into
a design for implementation.

While we are performing this
refinement, we can again be creating
patterns – IT design ones this time. In
fact we are now getting (finally) to the
territory that most of today’s software
pattern literature describes! Examples
include Microsoft’s Enterprise Solution
Patterns Using Microsoft .NET6, and
Martin Fowler’s Patterns of Enterprise
Application Architecture7.

Or, rather than patterns we can be
creating an actual solution design.

This is the end of the roadmap for this
article. Clearly the last stage would be
to implement the design, and that is
where patterns such as those of the
Gang of Four8 and the Patterns-
Oriented Software Architecture
set are very relevant, as well as the
Microsoft and Martin Fowler patterns
already mentioned.

Summary – Framework and
approach for Business Patterns
and Industry Solutions
What we have described in this article
is a framework and approach for
creating and then using business
patterns through a guiding architecture
that can be used to scope, cost and
govern IT projects to implement it. To
provide a solution, you need further
elaboration at the design level, and this
is guided by the architecture provided.

Disclaimer:
The opinions expressed in this paper
are those of the authors. These are not
necessarily endorsed by their companies
and there is no implication that any
of these ideas or concepts will be
delivered as offerings or products
by those companies.

Philip Teale,
Partner Strategy Consultant,
Microsoft UK
pteale@microsoft.com

Philip Teale is a Partner Strategy
Consultant working for Enterprise
& Partner Group in Microsoft UK.
Previously, he worked for the Microsoft
Prescriptive Architecture Group in
Redmond, and for Microsoft Consulting
Services before that. He has 29 years
of Enterprise IT experience of which
four years have been with Microsoft
and 16 with IBM, in both field and
software development roles. His

international experience includes nine
years working in the USA, three years
in Canada and 17 years in the UK.
Phil’s background is in architecting,
designing and building large complex
distributed commercial systems. His
most recent contribution to industry
thought-leadership was to drive
Microsoft in the creation of patterns
for enterprise systems development.
He is a Fellow of the RSA.

JOURNAL3 | Data Transfer Strategies 44

A Strategic Approach to
Data Transfer Methods
By E G Nadhan and Jay-Louise Weldon, EDS

“A sound, enterprise-wide data transfer strategy is necessary to guide IT practitioners and
to enable consistent representation of key business entities across enterprise applications.”

Introduction
Today, business is driven by having
access to the right information at the
right time. Information is the lifeline
for the enterprise. However, timely
access to the right information is
complicated by the number and
complexity of business applications
and the increased volumes of data
maintained. Data needs to be shared
in order for business processes to
be effective across the enterprise.
Organizations have a variety of ways
in which they can share data. A fully
integrated set of applications or access
to common databases is ideal. However,
if these alternatives are not practical,
data must be moved from one
application or database to another
and the designer must choose from the
range of alternatives that exist for data
transfer. As a result, data sharing can
pose a significant challenge in the
absence of an established data transfer
strategy for the enterprise.

Most enterprises have acquired or built
applications that support the execution
of business processes specific to
autonomous business units within the
enterprise. While these applications
serve the specific need of the business
units, there continues to be a need
to share data collected or maintained
by these applications with the rest
of the enterprise. In cases where the
applications serve as the Systems of
Record, the volume of data to be shared
is relatively high. Further, enterprises
have accumulated huge volumes of data
over the past few decades as storage
costs have decreased and the amount
of activity tracked in the e-Commerce
environment has grown beyond that
of the mainframe-centric world.

Modern IT organizations face the
challenge of storing, managing, and
facilitating the exchange of data at
unprecedented volumes. While data
base management systems have
evolved to address the storage and
management of terabytes of data, the
issue of effectively exchanging high
volumes of data between and among
enterprise applications remains. A
sound, enterprise-wide data transfer
strategy is necessary to guide IT
practitioners and to enable consistent
representation of key business entities
across enterprise applications.

Background
The mainframe world of the 70’s
consisted of punch card driven
monolithic applications, many of which
continue to be the systems of record in
organizations today. The advent of the
Personal Computer in the 80’s fostered
the client-server world of the early
90’s where the PC evolved into a robust
client workstation. Processing power
continued to grow exponentially
resulting in the introduction of mid-
range servers that were employed
by key business units within the
organization. Client-server technology
gave these autonomous business units
the power to store and use data in their
own world. Such autonomy gave birth
to many repositories that did a good
job of storing isolated pockets of data
within the enterprise. N-tier distributed
computing in the late 90’s resulted
in the creation of additional layers
that stored data specific to these
business units.

While departmental business processes
are not impacted by the proliferation of
data across multiple repositories, there

exists a critical need to leverage data
at an enterprise level – as well as at
the business unit level. For example,
organizations need to have an
enterprise level view of the customer
and serve their customers as a single
logical entity. In today’s world of real-
time online interaction with customers,
end-to-end system response has become
a critical success factor as well. The
fundamental requirements to provide
basic customer service have not
changed over the years. However,
maintenance and retrieval of the data
expediently to provide such service has
become a much more complex process.

In spite of this complexity, enterprises
of today need to have access to all these
pockets of data as well as the original
systems of record. Such access is
accomplished either by building
connection mechanisms to the various
systems or by transferring data
between systems at periodic intervals.
Enterprise Application Integration
(EAI) tools can be applied to move
transactions and messages from
one application to another. Extract
Transformation and Load (ETL) tools
perform the same task but usually
move data in bulk.

This article describes the options
available to address this problem
of data sharing. While the options
are not mutually exclusive, they
represent logically different design
and execution principles.

Target Audience
IT personnel who are faced with the
challenges of sharing data between
multiple applications within the
enterprise would benefit from the

JOURNAL3 | Data Transfer Strategies 45

contents of this article. Such personnel
include IT Enterprise Architects, Data
Architects, Integration Architects as
well as Subject Matter Experts for the
key enterprise applications. Process
and Functional managers within
the enterprise who work closely
with the IT architects will develop
an appreciation for the complexities
of data sharing driven by business
process changes.

Problem Definition
Applications often need to make their
data accessible to other applications
and databases for various reasons.
Data may need to be moved from
one platform to another or from
one geographic location to another.
Data may need to be moved to make
it accessible to other applications
that need it without impacting the
performance of the source system.
Changes in data may need to be moved
to keep two systems in sync. Often,
firms will create a shared repository,
called an Operational Data Store
(ODS), to collect data from source
systems and make it available to other
systems and databases. Data must
then be moved from the originating
application to the ODS.

There are many ways to accomplish
data transfer and many factors to
consider when choosing the alternative
that best fits the situation at hand.
Efficiencies become critical when
the data volume is large. Bulk data
transfer may not be a viable alternative
due to time constraints. At the same
time, identification of changed data
can be a challenge.

The example below represents
a realistic scenario where this
situation manifests itself.

Sample Scenario
A customer-facing website allows
subscribers to a service to enroll online.
The processes involved in this activity
will capture a number of relevant data
elements about the subscriber. The
captured data will be immediately
housed in a Sales system (e.g. an Order
Management System). In this example,
the Sales system would be considered
the System of Record for these data
elements. Subscriber data is, no doubt,
critical to the Sales department. At the
same time, it is also important to several
other business units. For instance, the
Billing department will need it to make
sure that financial transactions with
the subscriber are executed. And, the
Marketing department may want this
data to help design campaigns to cross-
sell and up-sell products and services
to the subscriber. Therefore, it is crucial
that subscriber data be placed, as soon
as possible in an enterprise accessible
Operational Data Store from which
it can be made available to those
applications that need it.

From a systems standpoint, Figure 1
represents the scenario just described.
It illustrates a front end application
storing data into its proprietary
System of Record and receiving an
acknowledgement of a successful
update. This System of Record is
constantly populated with high
volumes of data that need to be
transferred to an Operational Data
Store so that they may be shared
with the rest of the enterprise. The
subsequent sections illustrate the
different ways of accomplishing such
a transfer.

Figure 1 illustrates the following steps:
1. Front End Application updates

System of Record.

2. System of Record acknowledges
successful update.

3. Transfer of data to the Operational
Data Store.

Depending on the context of the specific
problem domain for a given enterprise,
there are multiple approaches to effect
the transfer of data to the ODS in this
scenario. The various approaches
involved are described in the sections
that follow.

The approaches presented are based
on the following assumptions:
1. For simplicity’s sake, we have

assumed that there is only one
System of Record within the
Enterprise for any given data
element. Propagation of data to
multiple Systems of Record can
be accomplished using one or
more of these options.

2. An update to a System Of Record can
mean the creation, modification, or
even the deletion of a logical record.

3. The acknowledgement step is the
final message to the Front End
Application that indicates that
all the intermediate steps involved
in the propagation of data to the
System of Record as well as the
Operational Data Store have been
successfully completed. Additional
acknowledgement steps between
selected pairs of nodes might
be necessary depending on the

System Of
Record

Operational
Data Store

2

1

3

Front End
Application

Figure 1. Sample Scenario

JOURNAL3 | Data Transfer Strategies 46

implementation context for specific
business scenarios.

4. Metadata, while not directly
addressed in this paper, is a crucial
consideration for data transfer1.
It is assumed that all the options
discussed entail the capture,
manipulation and transfer of
metadata. However, the discussion
in this paper is limited to the logical
flow of data between the different
nodes within the end-to-end process.

Business Process Review
There are various options available for
engineering the transfer of data within
the Sample Scenario defined in Figure 1.

However, prior to exercising any given
option, it is prudent to take a step back,
review and validate the business need
for the transfer of data. The actual
transfer of data between systems
could be a physical manifestation of a
different problem at a logical business
process level. A review of the end-to-
end processes may expose opportunities
to streamline the business process flow
resulting in the rationalization of the
constituent applications. Such
rationalization could mitigate and in
some cases, eliminate the need for such
transfer of data. Some simple questions
to ask would include:
– Why does the data need

to be transferred?
– Why can’t the data stay

in a single system?

A viable answer to these questions
could eliminate the need for such
transfer of data.

If there is still a clear need for this
transfer of data even after a review of
the end-to-end business process, there
are multiple options available that
broadly conform to one or more of
these approaches:
– EAI Technologies
– ETL Technologies
– Combinations

The remaining options explore these
different possibilities.

Data Transfer Options
This section describes the architectural
options that are available for sharing
data between discrete applications.
The discussion here is independent of
commercial solutions; rather it focuses
on genres of technologies that are
available in the market today.

The options discussed in this
section are:
– Option 1: EAI Real-time Transfer
– Option 2: EAI Propagation of

Incremental records
– Option 3: Incremental Batch Transfer

(Changed Data Capture)
– Option 4: Native Replication
– Option 5: Bulk Refresh using Batch

File Transfer
– Option 6: ETL/ELT Transfer
– Option 7: Enterprise Information

Integration

Option 1: EAI Real-time Transfer
Figure 2 illustrates the manner in
which an EAI Integration Broker2

can facilitate this transfer.

This option is application-driven and
most appropriate for data transfers
where the updates to the System of
Record and the ODS are part of the
same transaction. An Integration
Broker receives the transaction
initiated by the Front End Application
after which it assumes responsibility
for the propagation of the data to the
System of Record as well as the
Operational Data Store. The steps are
executed in the following sequence:
1. Front End Application initiates

update to the System of Record.
2. Integration Broker receives this

update from the Front End
Application and sends it to the
System of Record.

3. System of Record acknowledges
the update.

4. Integration Broker immediately
initiates a corresponding update to
the Operational Data Store, thereby
effecting an immediate, real-time
transfer of this data.

5. ODS acknowledges the receipt
of this update.

System Of
Record

Operational
Data Store

6
1

2 3

54

Front End
Application

Integration
Broker

Figure 2. EAI Real-time Transfer

1 Effective data sharing requires
a common understanding of the
meaning and structure of data for the
provider and the receiver. Metadata –
data about data – is the vehicle
for achieving that understanding.
When data is shared or physically

transferred between parties, metadata
also must be exchanged. It is the
designer’s responsibility to ensure
the appropriate metadata is captured
and transferred in all data transfer
situations.

2 An integration broker is a component
that routes the messages exchanged
between applications. It facilitates
the conditional transfer of messages
between applications based on
predefined rules driven by business
logic and data synchronization
requirements.

JOURNAL3 | Data Transfer Strategies 47

“While departmental business processes are not impacted by the proliferation
of data across multiple repositories, there exists a critical need to leverage data
at an enterprise level as well as at the business unit level.”

6. Integration broker sends the
acknowledgement of these updates
to the Front-End Application.

Usage Scenario – Financial Institution
A front end CRM application captures
data about prospects calling into the
Contact Center. The CRM application
propagates the prospect data to an
Operational Data Store that contains
the basic customer data for enterprise-
wide reference. This data needs to be
propagated to the ODS immediately so
that the most current data is available
to all the other customer-facing
applications like the Automated Teller
Machine (ATM), financial centers
(branches) and online banking access.

Option 2: EAI Propagation of
Incremental records
This option is application-driven and
appropriate for lower priority data.
The Front End Application updates the
System of Record after which this data
is propagated to the ODS through the
Integration Broker. This is characteristic
of scenarios where there is a tightly
coupled portal to an ERP or CRM
system. There are two different
mechanisms to effect this transfer
of data to the ODS:
– Option 2a: Push to Integration

Broker: System of Record initiates
the notification of the receipt of this
data to the Integration Broker. The
‘push’ is frequently triggered by
a scheduled requirement, for
example, daily update.

– Option 2b: Pull from Integration
Broker: Integration Broker continuously
polls the System of Record for receipt
of this data. The ‘pull’ is frequently
triggered by a business event in the
application using the ODS, for
example, a service transaction that
requires up-to-date customer data.

Usage Scenario – Manufacturing
Organization
An order entry ERP application is used
by Customer Service Representatives
to enter orders every hour directly into
the backend orders database. New
orders received must be transferred
to the enterprise service dashboard
repository on a daily basis. The
enterprise service dashboard provides
management a holistic view of the
order volume as of the previous
business day. The first option could be a
daily ‘push’ of new orders from the ERP
application to the dashboard repository.
Or, the dashboard could initiate a ‘pull’
from the orders database through the
Integration Broker to provide this data
when management requires the latest
view of the order volume.

Each of these options is explained
in further detail below.

Option 2a: Push to Integration
Broker
Figure 3 illustrates the EAI propagation
of incremental records by having the
System of Record push this data to
the Integration Broker. The steps are
executed in the following sequence:
1. Front End Application initiates

update to the System Of Record
2. System of Record notifies Integration

Broker about receipt of this data
after completing the update.

3. Integration Broker receives this
update and sends it to the ODS.

4. ODS acknowledges the update.
5. Integration Broker sends an

acknowledgement of the successful
propagation of this data to the Front
End Application.

Option 2b: Pull from
Integration Broker
Figure 4 illustrates the EAI propagation

of incremental records by having
Integration Broker poll the System
of Record on a regular basis and
propagate this data to the ODS.
The steps are executed in the
following sequence:
1. Front End Application initiates

update to the System of Record.
2. Integration Broker polls the System

of Record to check if any new data
has been received.

3. System of Record responds to the poll.
4. If there is new data to be propagated,

Integration Broker sends an update
to the ODS.

System Of
Record

Operational
Data Store

5

2

3
4

1
Front End
Application

Integration
Broker

Figure 3. Push to Integration Broker

System Of
Record

Operational
Data Store

6

2

4
5

1

3

Front End
Application

Integration
Broker

Figure 4. Pull from Integration Broker

JOURNAL3 | Data Transfer Strategies 48

5. ODS acknowledges the update.
6. Integration Broker sends an

acknowledgement of the successful
propagation of this data to the Front
End Application.

Option 3: Incremental Batch
Transfer (Changed Data Capture)
Option 3 is data-driven and is used to
periodically move new or changed data
from the source to the target data
store. This option is applicable to
scenarios where it is acceptable for the
data updated in the System of Record
to be provided to other applications
after a finite time window (e.g. one
day). In such scenarios, the data is
transferred on an incremental basis
from the System of Record to the ODS.
This data sharing option involves
capturing changed data from one or
more source applications and then
transporting this data to one or more
target operations in batch. This is
graphically depicted in Figure 5.
Typical considerations in this option
include identifying a batch transfer
window that is conducive to both the
source and target system(s) to extract
and transport the data.

There are two ways to accomplish this:
1. Change Log: System of Record

maintains the changed data in
dedicated record sets so that the
Batch Transfer Program can directly
read these record sets to obtain
the delta since the last transfer.
In this case, the System of Record
is responsible for identifying the
changed data in real-time as and
when the change happens.

2. Comparison to previous: Batch
Transfer Program leverages the
data in the base record sets within
the System of Record to identify
the changed content. In this case,
the Batch Transfer Program has
the responsibility of comparing
the current state of data with
earlier states to determine what
had changed in the interim.

The typical sequence of events for this
kind of data sharing is as follows:
1. Front End Application initiates

update to the System of Record.
2. Batch Transfer Program fetches

changed data from System of Record.
3. Batch Transfer Program updates

Operational Data Store.
4. An acknowledgement is sent to the

Front End Application, System of
Record and/or the Batch Transfer
Program after the Operational Data
Store has been successfully updated.

Usage Scenario – Service Provider
The sales force uses a sales leads
database that tracks all the leads that
the sales representatives are pursuing.
The project delivery unit tracks the
resources required for sales and delivery
related activities. The project delivery
unit maps resource requirements to
existing projects as well as leads
currently in progress. To that end, the
leads data is transferred on a daily

basis from the sales leads database to
the project delivery database through
the incremental batch transfer option.

Option 4: Native Replication
Option 4 is a data-driven option that is
especially relevant for high-availability
situations, e.g., emergency services,
where the source and target data stores
need to stay in sync virtually all the
time. This data sharing option involves
the use of native features of database
management systems (DBMS) to
reflect changes in one or more source
databases to one or more target
databases. This could happen either
in (near) real-time or in batch mode.
The typical sequence of events for
native replication is:

1. Front End Application initiates
update to the System of Record.

2. Native Replication transfers
data from System of Record
to Operational Data Store.

3. Operational Data Store sends an
acknowledgement of receipt of data
back to the System of Record.

4. The System of Record sends an
acknowledgement of the success
of the operation to the Front
End Application.

System Of
Record

Operational
Data Store

4

1

4

Batch
Transfer
Program

2

34

Front End
Application

Figure 5. Incremental Batch Transfer

System Of
Record

Operational
Data Store

1

4

32

Front End
Application

Figure 6. Native Replication

JOURNAL3 | Data Transfer Strategies 49

“The enterprise-wide data model functions like a virtual database. In some respects, it is
a view, in relational database terms, on tables spread across multiple physical databases.”

Usage Scenario – Health Care Payer
Claims data is being entered through
a two-tier Client Server application
to a backend RDBMS by Customer
Service Representatives. Updates to
the Customer Profile are also made in
the System of Record while entering
data about the claims. Customer Profile
updates are directly replicated into the
ODS which serves as the Customer
Information File for all the other
enterprise applications.

Option 5: Bulk Refresh using Batch
File Transfer
This option is data-driven and
appropriate when a large amount of
data, for example, a reference table of
product data, needs to be periodically
brought into sync with the System of
Record. This option transfers all the
data inclusive of the latest changes
on a periodic basis. All the records are
extracted from the System of Record
and refreshed into the ODS. Existing

records in the ODS are purged during
each transfer. Such transfers are
typically done in batch mode overnight.

Bulk Refresh is well suited for
scenarios where there is significant
overhead involved in identifying and
propagating the incremental changes.
The incremental approach can be
more error prone and therefore,
maintenance intensive.
These types of transfers can be
accomplished in one of two ways:
– Option 5a: File Extract: A program

in System of Record extracts all the
records into an intermediate file.
This file is subsequently loaded
into the ODS by another program.

– Option 5b: Program Extract: A
separate program queries the System
of Record and transfers each record
in real time to the ODS. There is no
intermediate file created.

Option 5a: File Extract with
Full Refresh
Figure 7 illustrates the file based
extraction process for bulk transfer of
data. The following steps are executed
in this process:

System Of
Record

Operational
Data Store

3

4

1

2

Extract
File

Front End
Application

Figure 7. File Extract

Figure 8. Program Extract

System Of
Record

Operational
Data Store

3

4

1

2

Front End
Application

Extract
and Load
Program

JOURNAL3 | Data Transfer Strategies 50

1. Front End Application initiates
update to the System of Record.

2. System of Record acknowledges
the update.

3. All records are extracted into an
Extract File from the System
of Record.

4. Extract File is refreshed into ODS.

Option 5b: Program Extract with
Full Refresh
Figure 8 illustrates the program-based
extraction process for bulk transfer of
data. The following steps are executed
in this process:
1. Front End Application initiates

update to the System of Record.
2. System of Record acknowledges

the update.
3. Extract and Load program retrieves

and updates all the records from the
System of Record into the ODS.

Unlike the File Extract, retrieval from
the System of Record and updates into
the ODS are part of a single transaction
with no intermediate persistence of the
data. The Extract and Load program can
be triggered at fixed time intervals or
on the occurrence of specific events. For
instance, it can run four times a day,
or on updates to a critical master table.
While this is architecturally similar to
Option 3: Incremental Batch Transfer
(see Figure 5), the scope is different: here,
all data from the System of Record is
transferred to the ODS, rather than
just an incremental change.

Usage Scenario – Large Enterprise
HR Department
Large international enterprises with
thousands of employees have an
organizational hierarchy that is
spread wide and deep across the globe.
A minor change to this hierarchy
can have a ripple effect across the

organizational layers. While the
organizational structure is maintained
in a single repository, it is used in a
read only mode by other applications
from the Operational Data Store.
The organizational structure, thus,
must be fully refreshed on a regular
basis in the Operational Data Store.

Option 6: ETL/ELT Transfer
Option 6, illustrated in Figure 9, is
data driven and most appropriate
where substantial data scrubbing and
transformation are required as the
data are moved, e.g., for integration
into a data warehouse or data mart.
This option overlaps with both Option
3: Incremental Batch Transfer and
Option 5: Bulk Refresh transfers.
The difference is that business logic
is applied to the data while it is
transported from source to target
systems. An ETL tool is often used for
this kind of data transfer. Source data
is extracted, transformed en route,
and then loaded into one or more target
databases. The transformations
performed on the data represent the
business rules of the organization. The
business rules ensure that the data is
standardized, cleaned and possibly
enhanced through aggregation or other
manipulation before it is written to the
target database(s).

ETL transfer involves the following
steps:
1. Front End Application initiates

update to the System of Record.
2. ETL Transfer Program fetches

changed or bulk data from System
of Record.

3. ETL Transfer Program updates
Operational Data Store.

4. An acknowledgement is sent to the
Front End Application, System of
Record and/or the ETL Transfer

Program after the Operational Data
Store has been successfully updated.

The same applies to ELT transfer as
well. The difference between ETL and
ELT lies in the environment in which
the data transformations are applied.
In traditional ETL, the transformation
takes place when the data is en route
from the source to the target system. In
ELT, the data is loaded into the target
system, and then transformed within
the target system environment. This
has become a popular option recently
with since there are significant
efficiencies that can be realized by
manipulating data within database
environments (for example by using
stored procedures).

Usage Scenario – Health Care Provider
Employers send Entitlement
information for Employees and their
dependents to Health Care Insurance
Payers on a weekly basis recording all
the changes that happened each week.
The incoming data is in a format
proprietary to the Employer that needs
to be converted into the Health Care
provider’s backend mainframe system’s
format. Summary records have to be

System Of
Record

Operational
Data Store

4

1

4

ETL
Transfer
Program

2

34

Front End
Application

Figure 9. ETL Transfer

JOURNAL3 | Data Transfer Strategies 51

created that list the number of
dependents and children that each
employee has. ETL tools can be used
to perform these format and content
transformations in batch mode.

Option 7: Enterprise Information
Integration
This option is an emerging one and
is similar to Business Process Review.
It involves the creation of a logical
enterprise-wide data model that
represents the key business entities
and their relationships in a consistent,
standardized fashion. The Enterprise
Information Integration layer where
this model resides has the business
intelligence to do the following:
– Determine the repository that has

the most accurate value for each
data element.

– Construct the result set by fetching
the right information from the right
repository.

– Propagate updated information to
all the affected repositories so that
they are in a synchronized state
all the time.

– Provide an enterprise-wide view
for all the business entities.

The enterprise-wide data model
functions like a virtual database. In
some respects, it is a view, in relational
database terms, on tables spread across
multiple physical databases.

As part of its information integration
responsibilities, the Enterprise
Information Integration (EII) layer can
propagate the information to the ODS
and the System of Record ensuring
that they are synchronized. This is
illustrated in Figure 10.

The following execution steps
are involved when the EII option
is exercised:
1. Front End Application initiates

update to the System of Record
through the EII layer.

2. EII layer updates System of Record.
3. EII layer updates the Operational

Data Store.
4. Upon successful completion of both

updates, the EII layer sends the
acknowledgement back to the Front
End Application.

Compound Scenarios
Apart from the Sample Scenario
described at the beginning of this paper
and the usage scenarios described
under each option, there are complex
situations where the various options
for data transfer need to be evaluated
carefully and a combination of the
relevant ones applied. These scenarios
include, but are not limited to:
– Populating a DW or an ODS with

data from operational systems
– Populating data marts from a DW

or an ODS
– Back propagating integrated data

into applications
– Combinations of application-to-

application and application-to-ODS
data transfers

The first three of these scenarios can
be handled using Business Process
Review and/or Option 1: EAI Real-time
Transfer through Option 7: Enterprise
Information Integration described
above. Application to application
scenarios involve a mix of the above
options and two types are discussed
here in detail.

Enterprise
Information
Integration

Layer

1

4

System Of
Record

Operational
Data Store

2

3

Front End
Application

Figure 10. Enterprise Information Integration

“The most appropriate option for an environment is based on the data
transfer requirements and constraints specific to that environment.”

JOURNAL3 | Data Transfer Strategies 52

Option 8a: Application-to-
Application Transfer with Cross-
reference
Option 8a is appropriate when the EAI
tool must perform a simple lookup
during data transfer. For example,
while transferring data from a Sales
application (X) to a Finance application
(Y), current account code based on the
transaction type in the Sales transaction
must be looked up and added to the
transaction during transfer.

The business requirement in this
scenario, graphically depicted in
Figure 11, is to transfer data from
application X to application Y. As
part of this transfer, there must be
manipulations performed on the
data that require cross-reference
tables (like looking up codes and
translating into meaningful values
in the target system). While real-time
EAI transfer can effect the transfer of
data from application X to application
Y, ETL transfer can be used to transfer
cross-reference data from these
systems into a cross-reference
data construct (represented as
XREF in the diagram).

Note: Option 5a: File Extract with Full
Refresh or Option 5b: Program Extract
with Full Refresh could also be used to
update the XREF table.

Option 8b: Application-to-
Application Transfer with
Static Data
Option 8b represents a situation where
the data from application X must be
augmented with data from application
Z during transfer to application Y. For
example, a transaction from the Sales
application (X) must be augmented by
product cost data from the Inventory

application (Z) during transfer into the
Finance application (Y).

In this scenario, depicted in Figure 12,
data is transferred from application
X to Y. At the same time, updating
application Y also involves receiving
other data from secondary applications
that are static – or at least relatively
static compared to the real-time nature
of transfer from X to Y. Here, EAI is
used to achieve the transfer of some
of the data from X to Y. ETL transfer
is used to prepare and provide the
additional data that application Y
requires from a secondary application
(Z) into an ODS. EAI then fetches the
additional data from the ODS to
populate application Y.

Note: Any one of Option 6: ETL/ELT
Transfer through Option 7: Enterprise
Information Integration could be used
for the update of the ODS.

Options Analysis
The most appropriate option for an
environment is based on the data
transfer requirements and constraints
specific to that environment. There are
several procedural, architectural and

financial criteria that have to be
taken into account while determining
the most suitable option for an
environment. This section outlines the
key criteria to be considered followed
by a ranking of each option in the
context of these criteria. While there
may very well be other applicable
options or combinations of these
options as discussed under Compound
Scenarios, this section focuses on the
basic options (1 through 6) described
earlier.

Business Process Review and
Enterprise Information Integration
have been excluded from the analysis
since they do not actually involve the
transfer of data.

These criteria can be classified into
Requirements and Constraints as
shown in Table 1. Requirements are
typically architectural in nature, driven
by business needs. Constraints define
the parameters within which the
solution must be architected keeping
the overall implementation and
maintenance effort in mind.

Y

XREF

ETLEAIX

Figure 11. A2A Transfer with Cross-Reference

ODS

ETL

Z

EAI

Y

X

Figure 12. A2A Transfer with Static Data

JOURNAL3 | Data Transfer Strategies 53

Table 2 outlines the characteristics of
Option 1: EAI Real-time Transfer
through Option 6: ETL/ELT Transfer
in the context of these criteria.
Please note that Business Process
Review and Option 7: Enterprise
Information Integration have not been

analyzed in Table 2. Business Process
Review is a revision to the existing
business processes that may result in
the implementation of any one of the
other options. Option 7: Enterprise
Information Integration has to do
with the logical representation of

information at an enterprise level. Any
one of Option 1: EAI Real-time Transfer
through Option 6: ETL/ELT Transfer
may be used in conjunction with the
EII model.

Criterion Category Description

Latency Requirement How quickly is the data to be transferred?

Transformation Requirement Complexity of the transformation to be performed as part
of the transfer

Volume Requirement Quantity of data exchanged during each transfer

Intrusion Constraint Degree of change to existing applications in order to effect
data transfer

Effort Constraint Effort required to build and maintain the solution

Table 1. Evaluation Criteria

Table 2. Options Evaluation

Criterion

Latency
Near Near

Batch
Near

Batch BatchReal Time Real time Real Time

Transformation High High Medium
Not Not

HighApplicable Applicable

Volume Low Low Medium Low High High

Intrusion High Medium High Low Low Low

Effort High Medium Medium Low Low High

6
–

E
T

L
/E

L
T

5
–

B
u

lk
 R

ef
re

sh
w

it
h

 B
at

ch
T

ra
n

sf
er

4
–

N
at

iv
e

R
ep

li
ca

ti
on

3
–

In
cr

em
en

ta
l

B
at

ch
 T

ra
n

sf
er

2
–

E
A

I
P

ro
p

ag
at

io
n

 o
f

In
cr

em
en

ta
l

R
ec

or
d

s

1
–

E
A

I
R

ea
l

T
im

e
T

ra
n

sf
er

Option

E G Nadhan
Principal, EDS
Easwaran.Nadhan@eds.com

E G Nadhan is a Principal with the
EDS Extended Enterprise Integration
group. With over 20 years of experience
in the software industry, Nadhan is

responsible for delivering integrated
EAI and B2B solutions to large scale
customers.

JOURNAL3 | Data Transfer Strategies 54

Conclusion
There are many approaches available to
enterprises for effecting data transfer
between and among their business
applications. Enterprises should first
review the Business Process to confirm
the necessity of the transfer. Once
confirmed, there are multiple options,
enabled by EAI and ETL technologies,
to effect the data transfer. In some cases,
a combination of options might be
needed to address the complete set
of data transfer requirements within

an enterprise. The process driving
such transfers should establish the
technology and the tool employed rather
than have the technology define the
process. Large enterprises typically
employ an optimal mixture of all three
strategies: Business Process Review,
EAI and ETL. Enterprise Information
Integration is emerging as another
viable option in this space. The right
option or combination of options to be
used for a given scenario depends upon
several criteria, some of which are

requirements-driven while others are
constraints. This paper presents the
most significant criteria to consider
and provides an evaluation of each
option based on these criteria.

Special Acknowledgement:
The authors thank Carleen Christner,
Managing Consultant with the EDS
Extended Enterprise Integration group
for her thorough review of the paper
and the feedback she provided on the
content and format.

Jay-Louise Weldon
Managing Consultant, EDS
Jaylouise.weldon@eds.com

Jay-Louise Weldon is a Managing
Consultant with EDS’ Business
Intelligence Services group. Jay-Louise

has over 20 years experience with
business intelligence solutions and
database and system design.

JOURNAL3 | Messaging Patterns – Part 2 55

Introduction
In part one of this paper published
in issue 2 of JOURNAL we described
how messaging patterns exist at
different levels of abstraction in SOA.
Specifically, Message Type Patterns
were used to describe different
varieties of messages in SOA, Message
Channel Patterns explained messaging
transport systems and finally Routing
Patterns explained mechanisms to
route messages between the Service
Provider and Service Consumer. In this
second part of the paper we will cover
Contract Patterns that illustrate the
behavioral specifications required to
maintain smooth communications
between Service Provider and Service
Consumer and Message Construction
Patterns that describe creation of
message content that travels across
the messaging system.

Contracts and Information Hiding
An interface contract is a published
agreement between a service provider
and a service consumer. The contract
specifies not only the arguments and
return values that a service supplies,
but also the service’s pre-conditions
and post-conditions.

Parnas and Clements best describe the
principles of information hiding:

“Our module structure is based on the
decomposition criterion known as
information hiding [IH]. According to
this principle, system details that are
likely to change independently should
be the secrets of separate modules; the
only assumptions that should appear in
the interfaces between modules are
those that are considered unlikely to
change. Each data structure is used
in only one module; one or more

programs within the module may
directly access it. Any other program
that requires information stored in a
module’s data structures must obtain
it by calling access programs belonging
to that module”.
(Parnas and Clements 1984)[8]

Applying this statement to SOA,
a service should never expose its
internal data structures. Otherwise
it causes unnecessary dependencies
(tight coupling) between the service
provider and its consumers. Internal
implementation details are exposed by
creating an parameterized interface
design mapped to the service’s
implementation aspects rather
than to its functional aspects.

Contract Pattern
Problem:
How can behaviors be defined
independent of implementations?

Solution:
The concept of an interface contract
was added to programming languages
like C# and Java to describe a behavior
both in syntax and semantics.
Internal data semantics must be
mapped into the external semantics
of an independent contract. The
contract depends only on the
interface’s problem domain, not
on any implementation details.

Interactions:
The methods, method types, method
parameter types, and field types
prescribe the interface syntax. The
comments, method names, and field
names describe the semantics of the
interface. An object can implement
multiple interfaces.

Message Construction
The message itself is simply some sort
of data structure – such as a string,
a byte array, a record, or an object.
It can be interpreted simply as data,
as the description of a command to
be invoked on the receiver, or as the
description of an event that occurred
in the sender. When two applications
wish to exchange a piece of data, they
do so by wrapping it in a message.
Message construction introduces
the design issues to be considered
after generating the message.
In this message construction
patterns catalogue we will
present three important message
construction patterns.

Correlation Identifier
Problem:
In any messaging system, a consumer
might send several message requests to
different service providers. As a result
it receives several replies. There must
be some mechanism to correlate the
replies to the original request.

Solution:
Each reply message should contain
a correlation identifier; a unique id
that indicates which request message
this reply is for. This correlation id
is generated based on a unique id
containing within the request message.

Interactions:
There are six parts to Correlation
Identifier:
– Requestor – Consumer application.
– Replier – Service Provider. It

receives the request ID and stores
it as the correlation ID in the reply.

– Request – A Message sent from the
consumer to the Service Provider
containing a request ID.

Messaging Patterns in Service
Oriented Architecture – Part 2
By Soumen Chatterjee

“A service should never expose
its internal data structures.”

JOURNAL3 | Messaging Patterns – Part 2 56

– Reply – A Message sent from the
Service Provider to the Consumer
containing a correlation ID.

– Request ID – A token in the request
that uniquely identifies the request.

– Correlation ID – A token in the
reply that has the same value as the
request ID in the request.

Working Mechanism:
During the creation time, a request
message is assigned with a request ID.
When the service provider processes
the request, it saves the request ID
and adds that ID to the reply as a
correlation ID. Therefore it helps to
identify request-reply matching. A
correlation ID (and also the request ID)
is usually associated with the message
header of a message rather than the
body and can be treated as a metadata
of the message.

Message Sequence
Problem:
Because of the inherent distributed
nature of messaging, communication
generally occurs over a network.
You must utilize appropriate
network bandwidth, maintaining
best performance. In certain scenarios
(such as sending a list of invoices for a
particular customer) you might need to
send large amounts of data (100 MB or
more). In such cases it is recommended
to divide the data into smaller chunks,

and send the data as a set of messages.
The problem is, how to rearrange the
data chunks to form the whole set.

Solution:
Use a message sequence, and mark
each message with sequence
identification fields.

Interaction:
The three message sequence
identification fields are:
– Sequence ID – Used to differentiate

one sequence from other.
– Position ID – A relative unique ID

to identify a message position within
a particular sequence.

– End of Sequence indicator – Used
to indicate the end of a sequence.

The sequences are typically designed
such that each message in a sequence
indicates the total size of the sequence;
that is, the number of messages in the
sequence (see Figure 26).

As an alternative, you can design the
sequences such that each message
indicates whether it is the last message
in that sequence (see Figure 27).

Let’s take a real life example. Suppose
we want to generate a report for all
invoices from 01/01/2001 to 31/12/2003.
This might return millions of records.
To handle this scenario, divide the
timeframe into quarters and return
data for each quarter. The sender sends
the quarterly data as messages, and
the receiver uses the sequence number
to reassemble the data and identifies
the completion of received data based
on End of Sequence indicator.

Message Expiration
Problem:
Messages are stored on disk or
persistent media. With the growing
number of messages, disk space is
consumed. At the end of messaging life
cycle, messages should be expired and
destroyed to reclaim disk space.

Consumer Service
Provider

Request

Message ID

Correlation ID

Reply

3 2

1 2 3

1

Figure 25: Correlation Identifier

Sequence 9

Position 0

End F

Message Body

Sequence 9

Position 1

End F

Message Body

Sequence 9

Position n-1

size T

Message Body

Sequence #9

Figure 27: Message Sequence with message end indicator

Sequence 1

Position 1

size 1

Message Body

Sequence 1

Position 2

size n

Message Body

Sequence 1

Position n

size n

Message Body

Sequence #1

Figure 26: Message Sequence indicating size

“Message construction introduces the design issues to be considered
after generating the message. Sender and receiver disagreements on
the format of the message are reconciled by message transformation.”

JOURNAL3 | Messaging Patterns – Part 2 57

Solution:
Set the message expiration to specify a
time limit for preservation of messages
on persisting media.

Interaction:
A message expiration is a timestamp
(date and time) that decides lifetime
of the message.

When a message expires, the messaging
system might simply discard it or move
it to a dead letter channel.

Message Transformation
Various applications might not agree
on the format for the same conceptual
data; the sender formats the message
one way, but the receiver expects it to
be formatted another way. To reconcile
this, the message must go through an
intermediate conversion procedure that
converts the message from one format
to another. Message transformation

might involve data change (data
addition, data removal, or temporary
data removal) in existing nodes by
implementing business rules. Sometimes
it might enrich an empty node as well.
Here we present few important
message transformation patterns.

Envelope Wrapper
Problem:
When one message format is
encapsulated inside another, the
system might not be able to access node
data. Most messaging systems allow
components (for example, a content-
based router) to access only data fields
that are part of the defined message
header. If one message is packaged into
a data field inside another message, the
component might not be able to use the
fields to perform routing or business
rule based transformation. Therefore,
some data fields might have to be
elevated from the original message

into the message header of the new
message format.

Solutions:
Use an envelope wrapper to wrap data
inside an envelope that is compliant
with the messaging infrastructure.
Unwrap the message when it arrives
at the destination.

Interactions:
The process of wrapping and unwrapping
a message consists of five steps:
1. The message source publishes a

message dependent on raw format.
2. The wrapper takes the raw message

and transforms it into a message
format that complies with the
messaging system. This may include
adding message header fields,
encrypting the message, adding
security credentials etc.

3. The messaging system processes
the compliant messages.

Consumer

Expired
Message

Reroute Message
Delivery

Message
Expires

Request

Intended
Service
Provider

Channel

Dead Letter
Channel

Figure 28: Message Expiration

Wrapper Messaging System

Unwrapper

Request

Reply

1 2 3

4

5

Figure 29: Envelope Wrapper

JOURNAL3 | Messaging Patterns – Part 2 58

4. A resulting message is delivered
to the unwrapper. The unwrapper
reverses any modifications the
wrapper made. This may include
removing header fields, decrypting
the message or verifying security
credentials.

5. The message consumer receives
a ‘clear text’ message.

An envelope typically wraps both the
message header and the message body
or payload. We can think of the header
as being the information on the outside
of the envelope – it is used by the
messaging system to route and track
the message. The contents of the
envelope are the payload, or body –
the messaging infrastructure does
not care about it until it arrives at
the destination.

Content Enricher
Problem:
Let’s consider the example. An online
loan processing system receives
information including a customer credit
card number and an SSN. In order to
complete the approval process, it needs
to perform a complete credit history
check. However, this loan processing
system doesn’t have the credit history
data. How do we communicate with
another system if the message
originator does not have all the
required data fields available?

Solution:
Use a specialized transformer, a content
enricher, to access an external data
source in order to enrich a message
with missing information.

Interactions:
The content enricher uses embedded
information inside the incoming
message to retrieve data from an

external source. After the successful
retrieval of the required data from
the resource, it appends the data
to the message.

The content enricher is used in many
occasions to resolve reference IDs
contained in a message. In order to
keep messages small, manageable, and
easy to transport, very often we just
pass simple object references or keys
rather than passing a complete object
with all data elements. The content
enricher retrieves the required data
based on the object references included
in the original message.

Content Filter
Problem:
The content enricher helps us in
situations where a message receiver
requires more (or different) data
elements than are contained in the
original message. There are
surprisingly many situations where the
reverse is desired; the removal data
elements from a message. The reason
behind data removal from the original
message is to simplify message
handling, remove sensitive security

data, and to reduce network traffic.
Therefore, we need to simplify the
incoming documents to include only the
elements we are actually interested.

Solution:
Use a content filter to remove
unimportant data items from
a message.

Interactions:
The content filter not only removes data
elements but also simplify the message
structure. Many messages originating
from external systems or packaged
services contain multi-levels of nested,
repeating groups because they are
modeled after generic, normalized
database structures. The content filter
flattens this complex nested message
hierarchy. Multiple content filters can
be used as a to break one complex
message into individual messages that
each deal with a certain aspect of the
large message.

Claim Check
Problem:
A content enricher enriches message
data and a content filter removes
unneeded data items from a message.
Sometimes however, the scenario might
be little different. Moving large
amounts of data via messages might
be inefficient due to network limitation
or hard limits of message size, so we
might need to temporarily remove
fields for specific processing steps
where they are not required, and
add them back into the message
at a later point.

Solution:
Store message data in a persistent
store and pass a claim check to
subsequent components. These
components can use the claim check

Simple Message

Message Enricher

Resource

Enriched
Message

Figure 30: Content Enricher

Simple Message

Content Filter

Filtered Message

Figure 31: Content Filter

JOURNAL3 | Messaging Patterns – Part 2 59

to retrieve the stored information
using a content enricher.

Interactions:
The Claim Check pattern consists
of the following five steps:
1. A message with data arrives.
2. The ‘check luggage’ component

generates a unique key that is used
in later stage as the claim check

3. The check luggage component
extracts the data based on a unique
key from the persistent store.

4. It removes the persisted data from
the message and adds the claim
check.

5. The checked data is retrieved by
using a content enricher to retrieve
the data based on the claim check.

This process is analogous to a luggage
check at the airport. If you do not want
to carry your luggage with you, you
simply check it with the airline counter.
In return you receive a sticker on your
ticket that has a reference number
that uniquely identifies each piece of
luggage you checked. Once you reach
your final destination, you can retrieve
your luggage.

Conclusion
SOA stresses interoperability, the
ability to communicate different
platforms and languages with each
other. Today’s enterprise needs a
technology-neutral fabricated solution
to orchestrate the business processes
across the verticals. The SOA, then,
presents a shift from the traditional
paradigm of enterprise application
integration (EAI) where automation
of a business process required specific
connectivity between applications.
According to Robert Shimp, vice
president of Technology Marketing
at Oracle:

“EAI requires specific knowledge of
what each application provided ahead
of time. SOA views each application as
a service provider and enables dynamic
introspection of services via a common
service directory, Universal Description
Discovery and Integration of Web
services (UDDI).” [10]

Messaging is the backbone of SOA.
Steven Cheah, director of Software
Engineering and Architecture at
Microsoft Singapore, states:

“We now finally have a standard vehicle
for achieving SOA. We can now define
the message standards for SOA using
these Web services standards.”[10]

Cheah considers SOA ‘a refinement of
EAI’. Specifically, SOA recommends
some principles, which actually help
achieve better application integration.
These principles include the description
of services by the business functions
they perform; the presentation of
services as loosely-coupled functions
with the details of their inner workings
not visible to parties who wish to use
them; the use of messages as the only
way ‘in’ or ‘out’ of the services; and
federated control of the SOA across
organizational domains, with no single
party having total control of it.

We started at the ten thousand foot
level with a vision of service-oriented
enterprise. We then descended down
through a common architecture (SOA)
and proceeded by outlining messaging.
Now, we are armed with the necessary
messaging patterns valuable to attack
the SOA complexities and to achieve
the vision of dynamic process oriented
service bus enterprise.

“SOA is ‘a refinement of EAI’. Specifically, SOA
recommends some principles, which actually
help achieve better application integration.”

Simple Message Check luggage

Data Storage

Message with
Claim Check

1 2

Content
Enricher Enriched

Message

54

3

Figure 32: Claim Check

JOURNAL3 | Messaging Patterns – Part 2 60

Copyright Declaration
G Hohpe & B Woolf, ENTERPRISE
INTEGRATION PATTERNS, (adapted
material from pages 59-83), © 2004
Pearson Education, Inc. Reproduced by
permission of Pearson Education, Inc.
Publishing as Pearson Addison Wesley.
All rights reserved.

References
1. Enterprise Integration Patterns:

Designing, Building, and Deploying
Messaging Solutions, Gregor Hohpe
and Bobby Woolf, Addison-Wesley,
2004

2. Service Oriented architecture:
A Primer, Michael S Pallos, EAI
Journal, December 2001

3. Solving Information Integration
Challenges in a Service-Oriented
Enterprise, ZapThink Whitepaper,
http://www.zapthink.com

4. SOA and EAI, De Gamma Website,
http://www.2gamma.com/en/produit/
soa/eai.asp

5. Introduction to Service-Oriented
Programming, Guy Bieber and Jeff
Carpenter, Project Openwings,
Motorola ISD, 2002

6. Java Web Services Architecture,
James McGovern, Sameer Tyagi,
Michael Stevens, and Sunil Mathew,
Morgan Kaufman Press, 2003

7. Using Service-Oriented Architecture
and Component-Based Development
to Build Web Service Applications,
Alan Brown, Simon Johnston, and
Kevin Kelly, IBM, June 2003

8. The Modular Structure of Complex
Systems, Parnas D and Clements P,
IEEE Journal, 1984

9. Design Patterns: Elements of
Reusable Object-Oriented Software,
Gamma E, Helm R, Johnson R, and
Vlissides J, Addison-Wesley, 1994

10. Computerworld Year-End Special:
2004 Unplugged, Vol. 10, Issue No.
10, 15 December 2003 - 6 January
2004,
http://www.computerworld.com.sg/
pcwsg.nsf/currentfp/fp

11. Applying UML and Patterns –
An introduction to OOA/D and the
Unified Process, Craig Larman,
2001

Soumen Chatterjee,
schatterjee@ieee.org

Soumen is a Microsoft Certified
Professional and Sun Certified
Enterprise Architect. He's significantly
involved in enterprise application
integration and distributed object
oriented system development using
Java/J2EE technology to serve global
giants in the finance and health care
industries. With expertise in EAI
design patterns, messaging patterns

and testing strategies he designs
and develops scalable, reusable,
maintainable and performance tuned
EAI architectures. Soumen is an
admirer of extreme programming
methodology and has primary interests
in AOP and EAI. Besides software
Soumen likes movies, music and
follows mind power technologies.

Microsoft is a registered trademark of Microsoft Corporation

JOURNAL3

Executive Editor
& Program Manager
Arvindra Sehmi
Architect, Developer and Platform
Evangelism Group, Microsoft EMEA
www.thearchitectexchange.com/asehmi

Managing Editor
Graeme Malcolm
Principal Technologist,
Content Master Ltd

Editorial Board
Christopher Baldwin
Principal Consultant, Developer
and Platform Evangelism Group,
Microsoft EMEA
Gianpaolo Carraro
Architect, Developer and Platform
Evangelism Group, Microsoft EMEA
Simon Guest
Program Manager, Developer
and Platform Evangelism Group,
Architecture Strategy,
Microsoft Corporation
www.simonguest.com

Wilfried Grommen
General Manager, Business Strategy,
Microsoft EMEA
Richard Hughes
Program Manager, Developer
and Platform Evangelism Group,
Architecture Strategy, Microsoft
Corporation
Neil Hutson
Director of Windows Evangelism,
Developer and Platform Evangelism
Group, Microsoft Corporation
Eugenio Pace
Program Manager,
Platform Architecture Group,
Microsoft Corporation
Harry Pierson
architect, Developer and
Platform Evangelism Group,
Architecture Strategy,
Microsoft Corporation
devhawk.net
Michael Platt
Architect, Developer and Platform
Evangelism Group, Microsoft Ltd
blogs.msdn.com/michael_platt
Philip Teale
Partner Strategy Manager, Enterprise
Partner Group, Microsoft Ltd

Project Management
Content Master Ltd
www.contentmaster.com

Design Direction
venturethree, London
www.venturethree.com
Orb Solutions, London
www.orb-solutions.com

Orchestration
Katharine Pike
WW Architect Programs Manager,
Developer and Platform Evangelism
Group, Architecture Strategy,
Microsoft Corporation

Foreword Contributor
Harry Pierson
architect, Developer and
Platform Evangelism Group,
Architecture Strategy,
Microsoft Corporation
devhawk.net

The information contained in this Microsoft® Architects Journal (‘Journal’) is for information purposes only. The material in the Journal does not constitute the opinion of Microsoft or Microsoft’s advice and you should not rely
on any material in this Journal without seeking independent advice. Microsoft does not make any warranty or representation as to the accuracy or fitness for purpose of any material in this Journal and in no event does

Microsoft accept liability of any description, including liability for negligence (except for personal injury or death), for any damages or losses (including, without limitation, loss of business, revenue, profits, or consequential loss)
whatsoever resulting from use of this Journal. The Journal may contain technical inaccuracies and typographical errors. The Journal may be updated from time to time and may at times be out of date. Microsoft accepts no

responsibility for keeping the information in this Journal up to date or liability for any failure to do so. This Journal contains material submitted and created by third parties. To the maximum extent permitted by applicable
law, Microsoft excludes all liability for any illegality arising from or error, omission or inaccuracy in this Journal and Microsoft takes no responsibility for such third party material.

All copyright, trade marks and other intellectual property rights in the material contained in the Journal belong, or are licenced to, Microsoft Corporation. Copyright © 2003 All rights reserved. You may not copy, reproduce,
transmit, store, adapt or modify the layout or content of this Journal without the prior written consent of Microsoft Corporation and the individual authors. Unless otherwise specified, the authors of the literary and artistic

works in this Journal have asserted their moral right pursuant to Section 77 of the Copyright Designs and Patents Act 1988 to be identified as the author of those works.

	Front Cover/Contents
	Editorial by Arvindra Sehmi
	Secrets of Great Architects by Don Awalt and Rick McUmber, RDA Corporation
	Don Awalt – Biography
	Rick McUmber – Biography
	The Case for Software Factories by Jack Greenfield, Microsoft Corporation
	Jack Greenfield – Biography
	Identity and Access Management by Frederick Chong, Microsoft Corporation
	Frederick Chong – Biography
	Business Patterns for Software Engineering Use – Part 2 by Philip Teale, Microsoft Corporation and Robert Jarvis, SA Ltd
	Philip Teale – Biography
	Robert Jarvis – Biography
	A Strategic Approach to Data Transfer Methods by E G Nadhan and Jay-Louise Weldon, EDS
	E G Nadhan – Biography
	Jay-Louise Weldon – Biography
	Messaging Patterns in Service Oriented Architecture – Part 2 by Soumen Chatterjee
	Soumen Chatterjee – Biography

