
Metropolis
Pat Helland,
Microsoft Corporation
pp 03 – 10

Service Orientated
Architecture –
Considerations
for Agile Systems
Lawrence Wilkes and
Richard Veryard, CBDI Forum
pp 11 – 23

Service Orientated
Architecture
Implementation
Challenges
Easwaran G Nadhan, EDS
pp 24 – 32

Business Patterns for
Software Engineering
Use – Part 1
Philip Teale, Microsoft Ltd
and Robert Jarvis, SA Ltd
pp 33 – 40

Messaging Patterns
in Service Oriented
Architecture – Part 1
Soumen Chatterjee, CGE&Y
pp 41 – 53

Dear Architect
Over the years we have seen a
number of transitions in Enterprise
computing; from the mainframe model
to client-server computing and then to
browser-based architectures of the
Internet. We are now in the midst of
another inflexion point as we move to
services-based computing and Service
Oriented Architectures (SOA). With
every transition there has been
uncertainty, discussion, debate and best
practice. There have been followers and
leaders, winners and losers, systems
that worked and systems that failed;
this time will be no different!

One thing that has been constant
through all these changes is the need for
thoughtful, informed and experience-
based opinion and guidance from real
practitioners. As we navigate our way
through the hype, lofty claims and
avalanche of press releases looking for
real knowledge and real-world experience
we need all the help we can get to mine
those nuggets of wisdom which will show
us how to build real systems.

In this second issue of JOURNAL a
model for architectural thinking based
on an urban metaphor sets the scene
for a great collection of high quality
papers where the authors cover a
wide range of topics; taking us from
considerations for SOA architecture
and design, SOA implementation
challenges, to the messaging and
business patterns required for
effective development of SOAs.

As the amount of information on
architecture continues to grow the need
for real knowledge and experience
sharing becomes even more important.
JOURNAL brings you some of that
experience from fellow architects
who are leading the way into the
services world.

Enjoy!

Mike Platt
Architect, Developer and Platform
Evangelism Group, Microsoft Ltd

JOURNAL2 MICROSOFT ARCHITECTS JOURNAL APRIL 2004 A NEW PUBLICATION FOR SOFTWARE ARCHITECTS

JOURNAL2

JOURNAL2 | Editorial 2

Dear Architect
Welcome to the spring issue of
JOURNAL. With this second issue we’ve
gone global. This is a direct result of the
tremendous feedback for JOURNAL1
from Microsoft’s customers and
partners, together with encouragement
from colleagues worldwide. For that
incredible vote of support I’d like to
say ‘Thank You’!

I am proud to have put together a
team that believes unfailingly in the
concept of a dedicated publication for
IT architects and to have the support
of some of the most ‘agile’ senior
management in the business. With new
sponsors, like Harry Pierson in
Redmond, we will take this publication
to a bigger audience and extend its
reach through multiple delivery
channels, including the web, digital
download, and through MSDN Library
which becomes the long-term ‘store’
for JOURNAL. We will also reformat
JOURNAL to support individual
printing and easier on-screen reading.

Meet Harry; he’s a smart thinker in the
Platform Strategy and Partner Group in
Microsoft, Redmond. He is determined
to make JOURNAL available through
as many channels as he can dream of,
within limits of course. Harry has
numerous ideas on how to widely
communicate the writing of our authors
who are first and foremost the soul of
this publication. As editors our mission
is simple – make sure our authors get
heard. So JOURNAL is gearing up
for massive reach and the ability to
influence thinking about architecture,
past, present and future.

We are fortunate to open this issue of
JOURNAL with Pat Helland’s first
public written paper on Metropolis,

which uses analogy and metaphor to
explore the present and future directions
of IT by studying the recent history of
our urban centers. Pat’s reputation is
formidable and as the Architect lead
for COM+ and SQL Server Broker past
experience tells us that if he has
something to say it’s probably worth
listening to. Metropolis is part of his
ambition to write a book on SOA and
‘autonomous computing’ therefore we
expect more papers from Pat will
appear in future issues of JOURNAL
as his ideas make their way from
incubation to ink.

Lawrence Wilkes and Richard Veryard,
from their think tank CBDI Forum,
remind us that for all the hype
surrounding SOA we must not forget
that the objective is to build agile
systems in support of the business.
Sometimes we get so carried away with
the compelling power of emerging Web
services technology that we need to be
brought back to earth again. Their list
of principles and best practices does
just that.

Easwaran Nadhan from EDS
demonstrates how companies must
progressively construct components
and services involved in the
implementation of SOA. He postulates
that a road map and company-specific
standards are key prerequisites
ensuring systematic implementation of
such enterprise wide architectures.
He identifies eight key challenges a
company faces in SOA implementation
and uses real-world examples to
address these challenges.

Microsoft’s Philip Teale and Robert
Jarvis of SA Ltd introduce the first part
of a paper discussing business patterns
defining architectural templates for

business solutions. They identify a set
of architectural elements required to
fully describe business patterns. This
set has been classified and focuses on
elements that describe the most stable
parts of a business suitable for
subsequent ‘patternisation’. Part two
of this paper will appear in the next
issue of JOURNAL.

Soumen Chatterjee from CGE&Y
gives us a description of messaging
patterns in SOA. Traditionally
messaging patterns have been applied
to enterprise application integration
solutions, but Soumen uses these
patterns to explain how a SOA can be
implemented. His insight shows us that
messaging patterns can be applied
equally well at the application
architecture level, especially in SOA-
based solutions, because they too are
fundamentally message-oriented.
See the next issue of JOURNAL
for part two.

Please keep up to date on the Web at
the Microsoft® architecture center and
specifically at the new home for
JOURNAL http://msdn.microsoft.com/
architecture/journal where you’ll be able
to download the articles for your added
convenience. If you’re interested in
writing for JOURNAL please send me
a brief outline of your topic and your
resume to asehmi@microsoft.com.

Now immerse yourself in this issue’s
fascinating world of thoughts, ideas
and sheer good advice from some of
the world’s leading architects.

Happy reading!

Arvindra Sehmi
Architect, Developer and Platform
Evangelism Group, Microsoft EMEA

Editorial
By Arvindra Sehmi

Keep updated with additional information
at http://msdn.microsoft.com/architecture/journal

mailto:asehmi@microsoft.com
http://msdn.microsoft.com/architecture/journal

JOURNAL2 | Metropolis 3

A metaphor for the evolution of
information technology into the
world of service oriented
architectures.

This paper explores the idea that
information technology is evolving
in a fashion similar to how American
cities have evolved over the last
two centuries. The opportunities
and pressures of the technological
revolution have driven our
metropolises to adopt new
frameworks, models, and patterns
for commerce and communication.
Recent developments in IT are
analogous. What can we learn
about the present and future
directions of IT by studying the
recent history of our urban centers?

Introduction
In this paper, we are going to explore
how there are similarities between the
evolution of cities in the 19th and 20th
centuries and the development of IT
shops. In both cases, we saw gradual
evolution of environments that
developed in isolation. This independent
development resulted in many
differences of culture and how things
were done.

In the middle of the 19th century, the
railroads connected the majority of the
cities in the United States. This resulted
in people and stuff moving around in a
fashion not previously possible. Moving
people and stuff provided the impetus
for ensuring the stuff worked together
and met standards of compatibility. The
changes in expectations and capabilities

fueled an explosion in retailing,
manufacturing, and led to the
urbanization of American life.

For many years, IT shops have developed
in isolation with independently
developed applications and little
overlap in how things were done. Since
the applications weren’t connected, this
seemed of little consequence. Recently, it
has become very practical to interconnect
both the applications inside an IT shop
and multiple IT shops spread around
the world. People can now easily browse
and visit distant applications. Chunks
of data are easily transmitted to remote
applications. What is still difficult is to
make the data work across different
applications.

Metropolis is an examination of this
analogy in an attempt to both explain
what is happening in Information
Technology today and to show us what
we can expect to happen in the future.
There are eight facets to this analogy
that we explore:
– Cities map to IT shops – these are

systems of systems, isolated from
each, trying to cope with the arrival
of the railroad.

– Factories or Buildings map to
Applications – the broad-stroke
componentization of the
isolated systems.

– Transportation maps to
Communication – the impact of the
railroad being analogous to the
impact of the Internet.

– Manufactured Goods map to
Structured Data – each changing
with the arrival of standards that

are so disruptive to the existing
custom wares.

– Manufactured Assemblies map to
Virtual Enterprises – as bicycles
became assemblies of best-of-breed
components, so business processes
will become pipelines of best-of-breed
service providers.

– Retail and Distribution maps to
Business Process – interoperable
metadata, such as standard sizes
and ingredients lists, permit
transformations and compositions.

– Urban Infrastructure maps to IT
Infrastructure – as the city grows,
economic pressure mounts to develop
common services, such as water,
sewer, and road maintenance.

– City Government maps to IT
Governance – both experience the
pressure to balance investment in
functional growth with investment in
infrastructure.

Our cities transformed themselves
from isolated, quirky heterogeneous
systems to highly inter-operable
systems in less than a century.
Let us see what we can learn from
their experience on our own path to
streamlined interoperability!

Cities ↔ IT Shops
Cities gradually evolved as sites
to gather for both commerce and
manufacturing. Inside the cities there
were independent buildings with
little or no connection between them.
You might consider placement with
respect to the road, but that was
about the extent of the relationship
to other buildings in the city.

1 The author gratefully acknowledges Mike Burner’s
assistance in preparing this paper. Also, the artistic
contributions of Emmanuel Athans have added
tremendously and are deeply appreciated.

Metropolis
By Pat Helland1, Microsoft Corporation

JOURNAL2 | Metropolis 4

Most of us forget today that it was a
hard day’s ride on horseback to go 100
kilometers. Only the most hardy and
adventurous would travel that far in
their lifetime. Cities had only limited
exposure to each other and developed
their own culture, style, and way of
doing things. Similarly, IT shops
gradually evolved as new applications
were built and then extended and
evolved. Each application stood apart
and independent of its neighbors in the
same IT shop. Each IT shop had its own
culture, style and way of doing things.
Only the most hardy and adventurous
traveler would visit multiple IT shops.

Economic pressures changed our cities.
Certainly the best intentions of city
planners eased the transitions – and
saved some historic monuments – but
economic opportunity is what really
drove cities to modernize, to share
services, and to devise creative means
to achieve efficiencies.

Economic pressures are changing our
IT shops, with or without master
planning. As you build new applications
and ‘renovate’ old ones, you must
consider how to link them to the shared
infrastructure. How will they be
connected? How can they leverage
common information architecture?
How will they be factored to maximize
reusability? These are the challenges
and trade-offs we all need to consider.

Factories and Buildings ↔
Applications
In the early part of the nineteenth
century, manufacturing was typically
simple and independent. The goods that
were produced were limited by both the
appetites of the local market and the
sophistication of the manufacturing
process. Factories were largely vertically
integrated, producing all of the parts of
the final assembly, assembling them,
and even selling them. If you wanted
boots you might go to the tannery.
This was not the most efficient
approach to the creation of goods and
the manufactured items were
expensive and usually not of the
highest quality.

Most of our applications today are like
those tanneries of the early 1800s.
They produce processed data
independent of each other, and deliver
into limited ‘markets’. They are
vertically integrated and don’t very
often accept the work of other
applications as input.

The railroad profoundly altered
manufacturing. By driving down the
cost of transporting manufactured
parts, transportation permitted local
manufacturers to produce higher

quality, more sophisticated goods.
Now the boots from the tannery had
steel eyelets to keep the boots from
tearing at the laces, and woven laces
that held up better than leather thongs.
Componentization allowed artisans to
focus on their core competencies, rather
than have to understand the diverse
processes necessary to produce all of
a sophisticated assembly.

Moreover, transportation made new
markets available to businesses,
allowing them to grow and specialize.
A talented potter might come to
dominate a regional market by
shipping her wares up and down the
rail line. ISVs – independent stuff
vendors – proliferated.

For both factories and applications,
independence is essential. You simply
can’t get any work done if you need
to get everything to work together
perfectly. It is only by decoupling the

“Our standards efforts are just beginning. Most application integration today is done by
people, expensively and with high rates of error. Information integration should be a focal
point for IT, since it offers huge opportunity for returns on investment.”

JOURNAL2 | Metropolis 5

evolution of these pieces that you can
achieve change. Yet there are inescapable
advantages to interconnection.
You can leverage the work of others
(factories or applications) to accomplish
your work. The demand of others
for your work provides the economic
stimulus that gives you a reason
for existing.

Transportation ↔ Communication
In the middle of the 19th century, the
railroad arrived! Tremendous amounts
of money were made moving people,
coal, and wheat. It was the delivery
of people and the basic

(non-manufactured) goods that drove
the creation of the rails. Incredible
booms and busts occurred in the 1840s
and 1850s as speculators built short
lines connecting a couple of cities.
Eventually, these were consolidated
and standards were established to
allow nationwide connection by rail.

The movement of people by rail
stimulated tremendous changes.
People traveled to strange and
wondrous places! In addition to the
sweeping cultural changes brought
about by travel, retail began to expand
dramatically as people hopped the
train to go buy stuff from other cities.
Retailers were now able to gather
goods into stores to offer it for sale in
new ways. The movement of stuff also
caused change as there were new
expectations that things would work
together. Before railroads it simply
didn’t matter if one manufacturer’s
goods were incompatible with another
manufacturer’s goods.

At the end of the 20th century, the
Internet arrived! Tremendous amounts
of money were made in browsing,
email, jpegs, mp3s, and chat. The wires
were laid to provide browsing and the
movement of the simplest forms of
data. The .COM boom and bust are
now legendary.

People browsing changed things.
The browser allowed a person to be
transported to directly interact with a
distant application. This direct access
has driven demand for sophisticated
business processing as people question
why automated interaction can’t
replace their direct interaction via
browsers. The changes from the
movement of data are just beginning,
though. Data still does not work
together well and automated business
process is still very limited.

Both transportation and
communication started by moving
people and the basic commodities
(either commodity goods or data with

simple structures). These new
connections drove new changes in
the standardization of stuff and data.
They drove changes in retail and (soon)
in business process.

Manufactured Goods ↔
Structured Data
In the early 1800s, goods were hand-
crafted. Assemblies were created with
‘trim and shim’; if the bolt of a lock
didn’t quite fit the slide, you trimmed
a bit off with a file; if the bolt rattled
in the catch, you shimmed the catch to
get a tighter fit.

Pioneers like Honore LeBlanc
and Eli Whitney introduced the
idea of standardized parts into the
manufacturing process. By establishing
tight controls over the specification and
production of component parts, Whitney
was able to produce 12,000 muskets for
the US military, effectively freeing the
United States of its dependence on
overseas craftsmen for its military
weapons. But this was still ‘in house’
standardization: all of the parts were
produced in one place, under one roof,
and with one set of controls.

By the late 1800s, the idea had
expanded across manufacturers, and
de facto standards had emerged for
common parts. There were sizes for
nuts and bolts and cylinders, with the
expectation that the ones produced by
one factory would be interchangeable
and interoperable with similar and
complementary components produced
by another. Companies that produced
parts with a high degree of precision
thrived; those with less consistent
processes failed.

JOURNAL2 | Metropolis 6

Today we still have mostly non-standard
data structures. Every application
models information its own way, and
we depend on human operators to ‘trim
and shim’ to integrate the applications.
We see the beginnings of this movement
in the XML and Web services
specifications. We now have language
syntax and some rudimentary rules
for exchanging structured data.

Moving forward, we need to add
semantics to our cross-application
understanding. This will occur both
in horizontal and vertical sectors.
Just as the marketplace demanded
interchangeability of goods in the
late 1800s, it will demand the
interchangeability of data in the near
future. This interchangeability will be
at the level of the semantics for real
business-level interaction. This means
standardizing the functionality of
business concepts such as customer
and purchase order. Data items that
will be shared across applications
need standardization.

Applications must retool or perish.
Organizations that fail to realize the
efficiencies of integration-by-design
will lose in the long run to those who
pursue them. The efficiencies resulting
from these changes will be an economic
windfall to the companies that survive
the transition! Just as manufacturing

standards have dramatically improved
our lives, the effective use of business-
level standards for data will
dramatically improve our lives.

Manufactured Assemblies ↔
Virtual Enterprises
Most bicycle manufacturers do not
produce tires, just as dressmakers do
not manufacture their own eyelets.
By creating assemblies out of best-of-
breed components, individual bike
makers can produce higher quality,
more sophisticated products.
Competition among the component
manufacturers drives efficiencies and
quality improvements. Bikes just keep
getting better.

To do this, they need detailed
specifications for the component parts.
You have to match the width of the tire
with the wheel with the fork with the
brakes with the axle bolt. You have to
consider the context in which the part
will be used. Is weight or ruggedness

the principle concern? Manufacturing
became a value chain driven by
information, reputation, and trust.
Companies partnered to change the
process of bringing goods to market.

Today, companies are ‘creating
assemblies’ of their business
functionality. Rather than create a
distribution and shipping department,
the work is outsourced. Rather than
actually building the product owned by
the company, its creation is outsourced
to a company that specializes in low
cost, high quality manufacturing. The
engineering, marketing, and ownership
of the product may remain in-house (or
may not remain in-house). The definition
of a ‘company’ is evolving as surely as
the definition of an assembly did in the
last century.

High-speed communications and
structured information offer the same
promise for many other business
functions, giving rise to the
‘virtualization’ of our organizations.
A business component model can
be created by clearly defining the
semantics and operational requirements
of our business capabilities. With clear
interface definitions, we can encapsulate
the details of how these capabilities are
implemented. Business process becomes
a traversal of these component
capabilities, so each component can

JOURNAL2 | Metropolis 7

be orchestrated as a member of any
number of processes, and may be
transparently relocated inside or
outside of the organization.

Value chains can be created and
recreated using best-of-breed business
capability providers. The ‘owner’ of a
business process might do little more
than orchestrate it. Marketing, sales,
manufacturing, distribution, legal
services, and human resources support
might all come from specialized
business service providers. The best
result is agility and competitive
flexibility. If distribution is backed up
you just engage additional logistics
providers; if your accounting service
is unresponsive you replace them.

To do this, you need detailed
specifications for the component
capabilities. You have to match the
volume of goods shipped with the
countries into which you sell with the
delivery guarantees consistent with the
service levels your customers demand.
You have to consider the context in which
the capability will be used: is security
or transparency the principle concern?

Standards allow the composition of
stuff. Better stuff is created, because
component providers can leverage the
cost of optimization across a broader
market. Competition drives increased
efficiencies, as does a sharper focus on
the unique competencies of each
provider in the value chain. Business
process will just keep getting better.

Retail and Distribution ↔
Business Process
By the late 19th century, urban centers
had developed significant retail
districts. Goods had gotten more

sophisticated and consumer choice had
improved, but shopping was still quite
an expedition. Shopping day might
include taking a train into town, and
then going from butcher to baker to
greengrocer to dressmaker to milliner
to cobbler to jeweler in search of
everything you needed that week.

Stores were often still the front rooms
of the factory. Visiting the shoe store
might receive a request to return in
hour because your shoes were not quite
ready. Much of what was purchased
was still custom made, and therefore
quite expensive.

The new distribution capabilities
enabled new approaches to retail. The
standardization of sizes significantly
reduced the cost of many goods by
permitting mass production (while at
the same time encouraging people to
wear ill-fitting clothes)2. And the ability
to transport goods to central locations
for sale gave rise to the department
store and the supermarket.

And then along came Wal-Mart!
Wal-Mart achieved new efficiencies by
wielding the power of retail over the
manufacturers. Wal-Mart set the
standards, not the manufacturers;
manufacturers complied or Wal-Mart
did not carry their goods. The
effectiveness with which Wal-Mart
delivered pleasant, low-cost, one-stop
shopping made the store a destination
for many shoppers; the power had
effectively shifted to the retailer.

Now let’s examine the state of the art
for business process. A major
innovation is swivel chair integration.
Today’s leading form of B2B computing
is known as fax-and-pray integration.

An important technique for reducing
integration errors is called ALT-TAB
integration which allows the use of
the clipboard to copy data between
applications.

If we are to do better, we need
interchangeability of our data and
operations. Standardized and
interchangeable clothing allowed for
inexpensive production of the clothes.
Furthermore, this approach allowed
the separation of retail and
distribution from the creation of the
goods. For us to make major inroads in
business process we need standardized
and interchangeable data and
operations to allow for better
composition. Then we can create
computing resources and pre-allocate
them for later use. This technique
allows the manipulation of the
resources to be handled separately
from the creation of the resources.
This is an essential requirement to
the creation of a separate mechanism
specifically for business process.

We have seen an amazing
transformation in retail. People
cheerfully accept standard stuff and
customization is rare and expensive.
But business process is still largely
hand-crafted. There are poor standards.
It involves a lot of ‘trim-and-shim’. We
have very poor ‘interchangeability’.

2 Most of us forget that standardized clothing was a
prerequisite for daily bathing. Few could afford more than
one custom-made suit and it didn’t make sense to bath if
your clothes were going to stink, anyway!

JOURNAL2 | Metropolis 8

Finally, it is clear that business process
will grow to be the driving force that
dictates the shape and form of
applications. The work is done via
business process. This will become
more malleable and separate from the
resources being managed. As business
process becomes the economic driver, it
will dictate the shape, form, and
standards of applications as surely as
Wal-Mart drives the standards for
many, many manufactured goods!

Urban Infrastructure ↔
IT Infrastructure
By the late nineteenth century, the
cities had grown and lots of people
were living in them. Pretty soon …
it smelled bad. Urban density drove
urban infrastructure. Common services
such as water, sewer, gas, electricity,
and telephony were built or licensed
by city governments to achieve
efficiencies, realize opportunities, and
make the city a more livable place.

These efforts required metropolitan
services like dams, power plants, and
sewage treatment plants (or perhaps
just sewage pipes run into the bay). In
addition to the metropolitan services
for the infrastructure, you also needed
to hook the services up to every
building in the city. Running the
services to the buildings was the first

problem; connecting to legacy buildings
was frequently a nightmare.

Many buildings were retrofitted. The
Cathedral Notre Dame de Paris has
flush toilets and electric lights. They
were not installed when the structure
was first built. The pace of change in
building technologies over the last
fifty years has taught us a lesson:
now we put conduits from the street
to the building to anticipate evolving
cabling requirements.

Building and connecting to infrastructure
services that are shared is usually a
mix of public and private funding.
Huge infrastructure projects are usually
funded by the city, but individual
connections are usually paid for by the
businesses and homeowners. Major
new private developments may not be
approved unless they commit to paying
for infrastructure improvements. For
example, a new shopping center might
have to pay for road improvements in
front of the complex.

IT shops have grown and lots of
applications are living in them.
Some IT shops … smell bad. Business
process owners need to re-authenticate
application to application. Process
ownership roles are hard to map to
application-specific authorization
schemes. Dozens of applications produce
dozens of logs in dozens of formats.
Exceptions can be hard to route, parse,
or use to take action. Process data is
dispersed across many application-
specific databases, inhibiting
transparency and data mining.

Common services, such as
authentication, authorization, logging,
naming, and directories need to be
commissioned by organizational
governments, and applications need to
be built or retrofitted to use them. This
may require metropolitan support:
without funding and a mandate from
senior management, the investment is
likely to be beyond what an individual
process owner can afford.

Once the mandate and common services
are in place, operational compliance
will be required and paid for by every
new application. Ease of operational
integration will become a key criterion
in the selection of packaged applications.

Crowded environments need well-
designed infrastructure services to
function smoothly. The cost can appear
daunting in the short term, but the
long-term cost of not doing it may drive
you out of business. Just as with
metropolitan infrastructure, there is
competition for funding between the
goals for new business functionality
and the infrastructure needed to make
the whole mess work well.

“Business process modeling and orchestration is nascent. It will grow to become the dominant
force in how applications are designed and integrated. Today, most understanding of
organizational business processes is in the heads of the people that own the process.”

JOURNAL2 | Metropolis 9

“IT investment is a balance of funding the sacred, protecting historic
monuments, and allocating spending between infrastructure and business
opportunity. Striking this balance is a key facet in effective governance.”

City Government ↔ IT Governance
Cities have different visions for their
shape and form. To realize their
visions, governments engage in city
planning. Seattle envisioned itself as a
world-class city, and so engaged in bold
reinventions of itself, from flattening
Denny Hill, to linking the lakes to the
sea, to building the space needle for the
1962 World’s Fair, to spanning Lake
Washington with bridges that usually
float. Other cities take the opposite
approach, using city planning to limit
growth in order to protect livability.

To implement their vision, cities
typically enlist the cooperation of both
business and government. Usually,

businesses are the drivers of the growth
and municipalities constrain and direct
the growth to match their vision.

Different visions lead to different
infrastructure goals. To encourage
growth, cities need to overbuild
infrastructure capacity. Care must
be taken to balance infrastructure
investments! If a city actively pursues
growth but fails to anticipate the impact
on transportation, for example,
congestion and inefficiency will result
(come visit Seattle if you have any
doubts). Zoning, available infrastructure,
and business incentives drive investment
in private industry. Trade-offs are made
in public/private funding according to
the perceived value to the community.
An easy way to start a civic debate is
to propose a new sports stadium be
built using public funds.

So city governments must allocate
resources across an array of competing
priorities, taking care to protect the
sacred – such as education – and
balancing the short-term, long-term,

and speculative. Private industry
makes decisions about what buildings
to erect; constrained and controlled by
planning rules.

IT governance is not so mature. Who
makes the tough choices in IT? Is it the
CEO, the CIO, the business unit leaders,
techies, or perhaps committees? Are
priorities established based on cost,
flexibility, or asset utilization? What is
success, and how is it measured? Are we
seeking cost reductions, business process
transparency, or competitive advantage?

Enterprises might learn a lot by
looking at how cities manage the
difficult process of resource allocation.
What proposals are projected to pay for
themselves? What is the timeframe and
risk analysis around those projections?
What in your organization is sacred?
What resources remain after funding
those efforts? What balance of short-
term, long-term, and speculative
investments are right within the
specific corporate culture?
These problems are common for
metropolitan and IT environments.

It is interesting to note that most
American cities allocate resources in a
way that is optimized for growth. The
decision to build is usually in the hands
of the business and this optimizes for
growth over cost management.

Single
Factory
Interchange-
ability

Railroad
Grows Shopping

Excursions

You Are Here!
Around 1880 or so

Department
Stores Begin

Manufactured
Assemblies

Wal-Mart
Asserts
Itself

1825 1850 1875 1900 1925 1950 1975 2000

JOURNAL2 | Metropolis 10

Looking to the Future
So where do we sit in this timeline
when we compare urban development
with IT shop development?

We’ve seen the usage of sophisticated
data structures that interchange within
a single application. This is analogous
to single-factory interchangeability.
We’ve seen the Internet connect IT
shops and the applications within those
shops similar to the railroad’s growth.
It is common-place to browse a strange
and distant application just as our
grandparents hopped the train for a
shopping excursion and visited many
different stores in a distant city.
Virtual enterprises (analogous to
manufactured assemblies) have barely
begun. We are at the cusp of succeeding
in simple business process (analogous
to department stores). We are at
approximately the early 1880s in
urban development in our parallel
IT shop’s growth!

We can see from this the innovations
ahead lie in the creation of standards
and interchangeability. These will allow
the interconnection of inter-operable
pieces of computing that can move into
these different roles. This will allow
tremendous growth in business process
and, as that business process spans
companies, the increasing growth of
virtual enterprises.

It is this need for independent, and yet
inter-operable, pieces that leads us to
the service-oriented architecture and
the changes we see beginning in
application architecture. This is not to
suggest that it will take 100 more years
to see a Wal-Mart equivalent, but we
will the economic forces driving us to

the dominance of business process over
application and service standards.

Conclusion
We have a fun time ahead of us. We are
building boom towns with no end in
sight. Sure, it won’t take a hundred
years for us to get there, but we won’t
be done tomorrow, either. The same
forces that drove the maturation
and sophistication of cities, civic
infrastructure, and business models
are driving IT today.

What do we have to look out for? How
do we prepare for this adventure?

Remember that heterogeneity happens.
Unless you have a very simple
application portfolio, shared services
will not be achieved by trying to put
all of your applications on one version
of one platform. Even if you could, the
next merger would change that!
Rather, you have to design for
interoperability and integration across
platforms. This is the force that is
driving the industry wide work in
service oriented architectures.

IT investment is a balance of funding
the sacred, protecting historic
monuments, and allocating spending
between infrastructure and business
opportunity. Striking this balance is a
key facet in effective governance, and
in realizing the potential of IT in your
organization.

Our standards efforts are just
beginning. Most integration today is
done by people. It is expensive and has
high rates of error. Information
integration should be a focal point for
IT, since it offers such tremendous

opportunity for returns on investment.
Benefits will be realized through cost
reduction, error elimination, more
effective customer interactions, and
generally better business intelligence.

Business process modeling and
orchestration, too, is nascent, but will
grow to become a dominant force in
how applications are designed and
integrated. Most understanding of
organizational business processes
is in the heads of the process owners.
Tools and techniques for capturing
and refining these processes will
greatly enhance the productivity
of those process owners.

You have to maintain a light hand.
It is counter-productive to try to dictate
what happens in every structure in
town, what color shirts are made, and
how much is charged for soap. You have
to embrace the semi-autonomous
approach to governance that is
characteristic of our cities, and allow
the process owners to optimize and
achieve efficiencies with as few
constraints as possible.

Enterprise application portfolios will
undergo a significant refactoring
process to embrace a model that allows
more autonomous control of business
capabilities. Effective modeling and
a light hand on the tiller will permit
dynamic, distributed organizations to
create and deliver more value than
ever before. In ten years time, IT shops
will evolve from looking like the cities
of the 1880s, to looking much more like
the cities of today.

Just remember to invest in the
transportation systems!

Pat Helland,
Architect, Microsoft Corporation
phelland@microsoft.com
Pat Helland has 25 years of
experience in the software industry
and has been an architect at
Microsoft since 1994. He has worked

for more than 20 years in database,
transaction processing, distributed
systems, as well as fault tolerant and
scalable systems. Pat worked at
Tandem Computers designed TMF
(Transaction Monitoring Facility). He
was one of the founders of the team

that implemented and shipped
Microsoft Transaction Server (MTS),
now COM+. Pat has recently focused
his thinking on loosely-coupled
application environments.

mailto:phelland@microsoft.com

JOURNAL2 | SOA Considerations for Agile Systems 11

When designing business software,
we should remind ourselves that
the objective is delivering agile
systems in support of the business;
not Service Orientation (SO).
Rather, SO is the approach by which
we can enable business and
technology agility, and is not an end
in itself. This must particularly be
borne in mind with references to
Web services. Achieving the agility
that so often accompanies Web
services is not just a consequence
of adopting Web service protocols
in the deployment of systems, but
also of following good design
principles. In this article, we
consider several principles of
good service architecture and
design from the perspective of their
impact on agility and adaptability.

Web services provide a powerful
framework by which we can deliver
more agile solutions. However, we
must combine their use with
principles of Service Orientation that
ensure that agility requirements are
met. We can see parallels with the
adoption of component technologies
and Component Based Development
(CBD). Components promised benefits
such as reuse and an open market in
components, which together would
drastically reduce the time to deliver
new systems. However, while
component technologies like Microsoft
COM have been widely adopted, most
organisations saw little reuse and the
open market in components failed
to grow to anywhere near the level
predicted. IT did get other benefits
from componentisation of course; such
as improvements in system scalability
and the ability to replace components

as needed, but many of the claims we
saw being used to justify investment in
componentization were not realised.

Why was this? Well, while component
technology was a great framework for
reuse, developers didn’t put the effort
into making sure the components
themselves were actually designed for
reuse by another project. Typically,
the effort needed to understand what
an existing component did and adapt it
for a new requirement outweighed the
effort to simply build a new one that
fitted the requirement perfectly from
scratch; except of course that
consequently the new component
wasn’t reusable by the next project
either, and so the cycle continued. In
other words, while many organizations

adopted component technology, they
didn’t adhere to the principles of CBD.

We now face a similar challenge with
services. We can predict that Web
service technology will be widely
adopted, but to what extent will they
be based on the principles of SO? And
if they are not, will the promise of Web
services be realised – particularly for
the business?

Loose Coupling
Loose Coupling is one of the mantras
of Web services. No discussion of
Web services seems complete without
some reference to the advantages
of looser coupling of endpoints
(applications) facilitated by the
use of Web service protocols.

Service Oriented Architecture –
Considerations for Agile Systems
By Lawrence Wilkes and Richard Veryard, CBDI Forum

“While component technology was a great framework for
reuse, developers didn’t put the effort into making sure the
components themselves were actually designed for reuse.”

Business

Process

Layer

Business

Service

Layer

Application

Layer

Technology

Layer

Finance SAP

SeibelPeople
SoftDir

Outlook

J2EE Unix DB2

OS/390
MQ.NET

Product

Customer

Sales

Employee

Figure 1. Decoupling applications and technology through services

The principle is that by using a
resource only via its published service
and not by directly addressing the
implementation behind it then;

1. Changes to the implementation by
the service provider should not affect
the service consumer.

2. The service consumer could choose
an alternative instance of the same
service type (for example change
service provider) without modifying
their requesting application, apart
from the address of the new instance.

3. The service consumer and provider
do not have to have the same
technologies for the implementation,
interface, or integration when Web
services are used (though are both
bound to use the same Web service
protocols).

The concept of coupling applies within
the business itself regardless of any
IT systems, between the software
applications, and at the technology
layer. Figure 1 illustrates that coupling
takes place at a number of levels.

At the Technology Layer we are
concerned with integration at the
platform and network level. For
example how do you connect J2EE
to .NET? Considering integration
technologies at this level might
involve distributed computing or
messaging products.

At the Application Layer we
consider how applications are
connected to other applications; for
example connecting Seibel with SAP.
Enterprise Application Integration
(EAI) technology is the common
approach at this level.

Web service protocols may enable loose
coupling at the technology layer, but
not necessarily in the application layer.
For example, use of Web services
provided by a packaged application
such as SAP might remove technology
dependencies in comparison to use of
their BAPI interfaces that use
component technologies. But the Web
services exposed are still the same
SAP specific interfaces and are not
decoupled from the application.
Consequently the service consumer is
still tightly bound to SAP regardless
of the use of Web services.

We therefore need a separate Business
Service Layer that abstracts the service
away from both the technology and the
application. With this we can then
support the business with a Business
Process Layer that interoperates at the
business service layer with customers
and sales (concepts that do not change)
and not directly at the application layer
with SAP with Seibel (implementations
that do change).

However, some of the loose coupling
benefits of services and Web services for
B2B integration might seem irrelevant
if the business has for example entered
into a multi-year contract to use a
single supplier. Even so, at the end of
the contract the business does not want
to be held to ransom by a supplier who
knows that the tight coupling with
their systems is now a constraint on
change. This is why we need to design
SOA against a business requirement
for specific forms of adaptability. You
should not assume that all forms of
loose coupling at the different levels
are automatically valuable to all
organizations.

Service Provider and Service
Consumer Perspectives
Service agility can be seen from both
the perspective of the service provider
and the service consumer. Table 1
considers some of the agility
requirements of both and the general
service design principle that could
satisfy them. The service consumer’s
real objective is normally to receive
maximum value at minimum cost
and risk. For a service offered on a
commercial basis, risk can be reduced
by aligning the payment of services
with the benefits received – this
should be achieved by some form of
pay-per-use but only if the service and
its commercial terms are properly
designed. Risk is also reduced by
the ability to switch service provider
to gain tactical or operational
improvements in price or service level.

One might expect that the service
provider’s objectives are a mirror of
this – deliver maximum value at
minimum cost and risk. Service value
is maximized by making the service
easily available to as many potential
users as possible, in as many use-
contexts as possible. Cost is reduced
by the economics of scale, as well as
having an efficient response to new
service demands. Risk is reduced by
spreading the service across a wide
variety of different uses and contexts,
so that demand peaks and troughs are
smoothed, and by using virtual (utility
or grid-based) resources to handle
variations in demand levels. If service
consumers each want to use a service
in a different way it makes more sense
for the provider to try and deliver a
generalized service that enables this.

JOURNAL2 | SOA Considerations for Agile Systems 12

These objectives all have implications
of the design of the service from the
provider’s perspective. However, there
also may be a conflict of interest. For
example, the service provider might
deliberately seek to reduce the agility
of the service consumer to use
alternatives by locking them in to
inflexible service designs.

Design Principles
In this section we examine in more
detail some of the design principles
that have so far been mentioned in
passing such as abstraction, and

understand how they contribute
to agility.

Abstraction
The principle of Abstraction is
normally used in the context of
ensuring that a service is independent
of a specific implementation and other
detail. As discussed earlier, Web
services provide a high degree of
abstraction from the service
Implementation by using standards-
based protocols rather than the native
interfaces of the underlying technology.
One of the principles of Service

Orientation is to focus on what a
service does, not how it does it.

To enable agility, we use abstraction to:
– Remove implementation specific

references from the service.
– Hide data or behaviour in the

implementation that is specific only
to the internal working of the
implementation and not important
to the service consumer.

– Transform data types that are
specific to the implementation
technology.

– Hide object behaviour. Unlike object
interfaces which might encapsulate
the implementation we typically do
not want to expose object behaviour
in the service that gives rise to
inheritance, creates dependency on
a specific object technology, or forces
the service consumer into using an
object oriented approach that may be
inappropriate to the messaging style.

Some of these can be seen as similar
to principle of encapsulation in object
and component technology. However,
the goal is not just to hide detail
behind an interface, but also abstract
that interface away from the
implementation technology and any
other implementation specific
features to reduce coupling.

When building a new component, this
abstraction can be built into the
services from scratch. The component
might offer implementation-based
services that are used within the
component and the sub-assembly of
highly related components around
it where tight coupling should not be
an issue (though use of Web services
protocols might still be desirable for

“One of the principles of Service Orientation is to
focus on what a service does, not how it does it.”

Service consumer Objectives

Reduce effort to use new services.

Choose alternative instances of
services type.

Service provider Objectives

Reduce demands from new
consumers for additional features.

Compose New service from
existing ones.

Reduce impact of changes to
service Implementation.

Provide service in new and
unforeseen context.

Provide service to as broad a range
of consumers as possible.

Design Principle

Precise specifications.
Standardized services.

Services well abstracted
from implementation.
Standardized services.

Coarse grained, abstracted
services that meet a wide
range of service requests.

Fine grained, generalized services
that can be composed in a variety
of ways.

Services well abstracted
from implementation.

Generalized services.

Coarse grained, and
generalized services.

Table 1. Balancing service provider and consumer Needs

JOURNAL2 | SOA Considerations for Agile Systems 13

other reasons such as dynamic
addressing of the component for
scalability), whilst a more abstracted
business service is exposed externally.
As illustrated in Figure 2, a process
component is a common way to
architect this. The business service
exposes operations at the order level,
not the individual object level.

The purpose of this is:
1. It means the service consumer does

not have to know how to use all of
the individual implementation-based
services to place an order.

2. From an agility perspective, the way
in which the service provider chooses
to configure those internal
components can change over time
without affecting the service
consumer.

3. The implementation-based services
are still available to other developers
in the project who require them to
compose other business services.

More often perhaps in the current
climate, the business service is going
to be implemented by a number of
existing applications. As shown in
Figure 3 the same pattern still
applies, with a new process component
abstracting the business service away
from the implementation-based
services offered by the packaged
applications. Again the

implementation-based services
are still published so they can be
composed into other services for
different business requirements.
Agility can also be improved not just
by abstracting the service away from
the underlying implementation but
also by taking a more abstract view
of the business concepts in the service
so that they can be used in a broader
context. For example the use of a party
information service instead of separate
ones for customer information,
supplier information, and so on. The
benefit being that new party types can
be accommodated without having to
deliver a new service each time. The
difficulty however is that each of these
types is likely to have specific data or
operations that are not common to the
others, which means we also have to
consider the use of generalization.

Generalization
The principle of generalization is to
broaden the application of a service so
that it can be used in a wider range of
scenarios, including unexpected ones,
removing the need to build a specific
service for each new requirement.

Implementation-Based Services

Order Line Service

Order Component

Order Service

Payment Service

Delivery Service

Order

Web Service

Business
Service

Order

Process

Order

Payment

Delivery

Figure 2. Component exposes abstracted business service

Figure 3. Process Component provides a façade across existing implementation

Customer

Order

Stock

Order Web

Service

CRM

Sales

Logistics

Order

Process

JOURNAL2 | SOA Considerations for Agile Systems 14

The goals of service generalization
to enable agile systems include:
– Separating out common data and

behaviour from the specific, so that
the common parts are more broadly
applicable to a wider range of
requirements and composable into
many other services, as illustrated
in Figure 4.

– Including a wider breadth of data and
behaviour in the service than some
individual service consumers might
require, so that the service meets
the need of broad range of service
consumers without having to deliver
them each a different service.

These first two statements might
appear contradictory. However, this
reflects a two stage process to deliver
agile services. First, decompose the
service to find the fine grained parts
both common and specialized; and then
compose them back together to form a
coarse grained service. Clearly this
can also be considered an aspect of
granularity which is discussed later.

An objective of using generalization
to deliver a coarse grained service
would be to reduce the number of
services that need to be exposed
and maintained. It can reduce the
maintenance that is necessary when

a service consumer want to use the
service in a new context, or realizes
that they need some additional
information from the service that they
have not used before. With foresight,
the generalized service can already
provide this.

Depending on the particular
requirement, generalization might
be at the operation or the message/
document level. It could be two separate
services as shown in Figure 4, or the
document might contain two message
structures, one of which conforms to
the common view.

The downside to this is that it could
become a performance bottleneck, and
be burdened with irrelevant data in
relation to specific usage. Again it
depends on the specific scenario.
If you want to provide a service that
returns information at the customer
level, then returning the balances for
all the customer’s accounts in one go
would reduce traffic, and simplifies
the service request. However, if the
requirement is purely to return the
balance for a specific account, why
incur the overhead of collecting and
returning information on all of them
from various back-end systems?

Standards Compliance
Compliance with domain standards
might not be seen as a matter of
principle, but as a matter of
convenience. A key reason that
standards help with adaptability is
that they have considerable inertia
and take a long time to change.
So the standards provide a helpful
pattern/framework for identifying
certain aspects of the requirements

as common and slow-changing.
Standardization leads to
commoditization, which may be
attractive to the service consumer
because it enables agility through
the ability to choose from multiple
providers who all conform to the same
standard. Similarly it might enable a
service provider to enter an existing
industry by simply conforming to
existing standards without the need
to create new service types.

However, slavish conformance with
standards might be seen as stifling
agility, and an innovative or foolhardy
company might well choose to deviate
from industry standards in order to
increase flexibility or to offer a
differentiated service.
Compliance can include adoption of
standards in the published interface for:
– Business semantics and schemas

(rather than exposing the
proprietary formats used in the
underlying implementation).

– Data values such as reference data.
By which we mean that participants
agree to assign standard values to
data where relevant. For example,
agreement that airports are
identified using the IATA standard
(LHR for London Heathrow), or
that location names conform to
UN/LOCODE standards (GB LIV
for Liverpool in the UK).

– Business processes, such as the
sequencing of messages.

Compliance should also imply a
commitment to maintain service
in line with the evolution of
those standards.

Figure 4.

Generalized service separates common from specific

Customer Type

A Specific Info

Common

Customer Info

Application A

JOURNAL2 | SOA Considerations for Agile Systems 15

Standards are likely to be set at a
vertical industry level by a suitable
industry body, for example ACORD in
the insurance industry. Some have
broader applicability such as the
Uniform Code Council standards for
product coding. The advantages of
Standards compliance include:
– Broadest compatibility between

service providers and consumers.
– Existing standards based services

should work immediately for new
service consumers who also comply
with standards.

– Standards-based services from
alternative providers can be
requested with the minimum,
or no impact on the consumer’s
application; enabling dynamic
switching of service provider.

Granularity
Granularity refers to the scope of
functionality provided by a service. It
has become best practice to recommend
that Web services should be coarse
grained. This is in part a reflection
of the fact that the initial view of Web
services was of a resource that would
be deployed across the Internet with
a slow and unreliable connection. As
such, using a small number of coarse
grained messages would reduce the
number of transmissions and increase
the likelihood of a message arriving
and a transaction being completed
whilst the connection was still
available. Although the quality of
connection is improving all the time,
this remains good advice when
delivering Web services for external
use across the Internet.

However, there is now much wider
internal use of Web services where the
network is faster and more stable.

Coarse Grained
Benefits

All data contained in single request.

Can reduce need to manage
state as the message carries
complete context.

Self-described and self-contained.
Carries complete context of request.

Fine Grained
Benefits

Small messages containing
simple data.

Individual services can be
composed in other services.

Run time flexibility. Individual
services are requested only
in response to the business
process flow.

Challenges

Complex data. Large message size.
Complexity of dealing with
potentially multiple data errors in
different parts of the service request.

Could lead to false sense of state.
Data valid on previous submission
becomes invalid on later
resubmission.

Need to revalidate all the data
with every resubmission.

Might be geared towards a
specific scenario and not reusable
in others.

Challenges

Might need to address way state
is managed between messages.

Recovery of failed executions
if the network is unreliable.

Consumer will need to understand
precise sequencing of service
requests and overall process.

Complex description in terms of
sequencing, pre/post conditions, etc.

Individual services have no context
on its own.

Might reflect the current
implementation too closely,
and impacted by changes
to implementation.

Performance overheads.
Increases network traffic and
overheads of dealing with
multiple service requests.

Table 2. Contrasting fine and coarse-grained service operations

JOURNAL2 | SOA Considerations for Agile Systems 16

A higher number of fine grained
services and messages might therefore
be acceptable in this situation. Some of
the benefits and challenges of
granularity are presented in Table 2.
There is no rule that services should
all be coarse grained, or fine grained.
The ideal is that they should be right
grained for the specific usage scenario.

Granularity Varies Across
Application Tiers
In an article in the previous issue of the
Journal we introduced layers of service
abstraction with coarse grained
business services that were composed
from finer grained implementation-
based services (that are a
straightforward translation of the
existing interfaces into Web services)1.
Web services can however be exposed
at any application tier. Vendors have
made it straightforward to expose Web
services directly from any database,

object or component. Application
package vendors might expose Web
services at a number of different tiers
in their applications.

At each of the following tiers illustrated
in Figure 5 there will be different levels
of granularity:
– Business Objects. Fine grained and

not sufficiently abstracted away
from the implementation design.

– Database. Database calls are also
likely to be fine grained. Though
some stored procedures might offer a
coarser interface, as with components.
However, either way this approach is
likely to expose the internal database
design which would not be desirable.

– Business Components. If you have
built components to package the
business objects, then their interfaces
are likely to be coarser grained, and
better abstracted away from the fine
grained object methods. There is no

guarantee of this, as it depends
on the design and purpose of the
component.

– Business Process Components.
Likely to be coarse grained and a
good match for external Web services,
and a suitable level of abstraction
that reflects some meaningful
business service, not an internal
interface.

Figure 5 illustrates that as you get
closer to the requesting application
the services become coarser. At the
database and object tiers, then fine
grained database and method calls
will be implemented in native platform
technologies giving scalability and
performance. Decisions regarding the
granularity of these are the domain
of the developer.

In this example, Systems A and B are
implemented in different technologies.

F
i
r
e
w
a
l
l

Coarse Grained

Web Service

Operations

Finer Grained

Internal Service

Operations

Fine Grained

Object and

database calls

Service

Consumer

Application

End to End

Business

Process

Business

Component
System ASystem A

Business

Component
System BSystem B

Figure 5. Service operations change granularity across application tiers

1 Understanding SOA,
Wilkes and Sprott.
Microsoft Architects Journal,
JOURNAL1, January 2004

JOURNAL2 | SOA Considerations for Agile Systems 17

As such Web services are used to
remove technology dependencies.
These Web services are also abstracted
away from the implementation so that
the implementation can change with
minimum impact on the service.
Because System A and B are
distributed on the network, coarser
grained services are used to reduce
traffic. However, as they are still
behind the firewall, the overheads of
authentication and encryption are not
apparent. We can refer to these as
internal services. To enable reuse,
these internal services are not too
coarse grained so they the same service
can be used in different contexts (see
generalization above).

Provide Alternative Services.
Use Aggregation and Composition
Although organizations will not want
to proliferate the number of different
Web services needlessly, due to
development and management
overheads; there is no reason to limit
the provision of the service to a single
Web service at a fixed granularity.
For example, a business service could
be exposed as a single coarse grained
Web service for use by third parties,
and also as a set of fine grained
services for internal use, or by closer
business partners. This would provide
a best of both worlds solution. There
are two ways that this ideal solution
could be achieved. Either by simply

providing a parallel Web service of
the same façade, or by reusing the
existing Web services and aggregating
them into a new coarse grained one.

Figure 6 illustrates that services can
be delivered at a number of different
granularities to suit different
requirements. Service consumer A
might be within the same organization
and have high speed reliable transport
available. While, service consumer B is
a third party accessing the systems
across the public Internet.

Clearly there is additional cost in taking
this approach. However, the following
benefits can outweigh this cost:
– The cost of building a Web service is

inexpensive compared to traditional
interfaces.

– The availability of tools that largely
automate aggregation and
consolidation.

– Most importantly, it helps ensure
that Web services of the right
granularity are delivered.

A similar approach applies with
generalized services. Fine grained
generalized services are composed
into coarser grained services that
are specialized towards a specific
requirement. This approach also
assists with abstraction, as the
coarser grained services hide the
fine grained object interfaces.

Architectural Considerations
As well as adopting the above design
principles we can consider some
specific elements of a SOA with
a view towards increasing agility.

Coarse

Grained Web

Service

Fine Grained

Internal

Services

Service

Consumer B

Service

Consumer A

Mixed

Grained Web

Services

Service

Provider’s Web

Service Facade

Service

Provider’s

Systems

Provider

Aggregation

Figure 6. Delivering varying granularity of services

“… there is no reason to limit the provision of the
service to a single Web service at a fixed granularity.”

JOURNAL2 | SOA Considerations for Agile Systems 18

Componentized Implementations
A widely adopted strategy to SOA
is to reuse existing applications by
wrapping them and exposing service
interfaces. Though this is an excellent
way to get off the ground quickly, it
might have drawbacks with regard to
longer term agility somewhere down
the track.

The essence of an SOA is that the
service must be implementation
independent – that is, the service
consumer should not have to
understand the specifics of the
implementation model. The problem
with wrapping what already exists is
that the original application is almost
certainly not going to make this
transparency easy at either a
functional or non functional level. For
example, monolithic implementations
do not support the agility vision of
Web services because:
– They generally don’t scale well, and

you cannot scale the specific part
causing a bottleneck for example.
You would not be able to easily scale
an individual service if the
implementation behind it was a
monolith.

– You cannot dynamically relocate
a monolithic implementation
very easily.

– You cannot change or redirect one
service out of many when the
implementation of them all is in the
same monolith – because internal
dependencies create external service
dependencies.

The structure of the service
Implementation should not be of any
consequence to the service consumer,
but it still remains important to the

service provider for well understood
component benefits of maintainability,
scalability, and so on. Moreover, a
service Implementation that is not well
componentized may impact the agility
of service consumer who finds they are
unable to use alternative services in
some areas, because of the internal
dependencies in the implementation as
illustrated in Figure 7. How quickly in
this example could you implement a
business decision to outsource the
logistics operation and use the Web
services provided by the external
logistics company to continue to satisfy
your customers’ requests for delivery
information? How would you redirect
an individual Web service when the
internal dependencies in the ERP
package still remain?

Even with a componentized
implementation, developers of course
still need to follow CBD best practice
and ensure that dependencies are
through the use of published services
and interfaces, and not for example
by still directly accessing the database
of another component just because
it is convenient.

Ideally there would be very clear
alignment of the business services,
the business objects and the software
components that implement them at
traceable level of granularity so that
the response to change at any level
has the minimum impact on the rest.

In the real world though, this
alignment is often not present.

“Ideally there would be very clear alignment of the business
services, the business objects and the software components
that implement them.”

Figure 7. Avoid internal dependencies

Product

Availability

Reserve Stock

Schedule Delivery

Delivery Status

Create Order

Amend Order

How do you
switch service
provider?

How do you
avoid internal
dependencies?

ERP

Logistics

Package

Monolithic
Implementation

Service Components

Stock

Component

Delivery

Component

Order

Component

JOURNAL2 | SOA Considerations for Agile Systems 19

Fortunately, services help to provide an
excellent transition path from existing
monolithic or poorly structured
implementations. By wrapping the
implementation with well designed
Web services you can then replace the
implementation and remove internal
dependencies as shown in Figure 8.

Finding the business justification for the
final step in this transition is not always
easy. Many will stop at stage 2 when
they have the façade that delivers on
the more immediate need to expose the
business services in place. However, it
should be understood that aspects of
business agility, not just technical
agility remain compromised by the
continued use of a poorly structured
implementation.

Articulation Points
In a SOA, we can introduce a number
of what we term ‘articulation points’
around which we can introduce
flexibility for both the service
provider and consumer.

Figure 9 illustrates some numbered
articulation points at which the
following decisions can be made:
1. Which service should the service

consumer application be using?
2. Which service provider should

the request go to?
3. Which implementation-based

service should receive the request?
4. Which implementation should

process the request?

Agility is served best by separating
these articulation points out of the
applications at each endpoint so that
neither the decision process nor the
result is hard-wired into the code. In
the process illustrated here, the
application always fires off a request to
the same logical service, but the actual
endpoint is resolved by points 1 and 2.
We can use these articulation points as
described in the following list:
– Articulation point 1 might also insert

further information into the request,
such as identity or other non-
functional information; or recompose
the request so that it could be sent to
an alternative provider that operates
a differentiated service.

– Point 2 might also apply within the
service provider, routing the request

Internal dependencies External dependencies

Monolithic

legacy

system

Wrap monolith

with Web services

Replace monolith with

components, retaining

Web services

Figure 8. Using services to migrate existing applications

JOURNAL2 | SOA Considerations for Agile Systems 20

to different business units each with
their own service.

– As well as making a routing decision
at the request level, point 3 could
also decompose the coarse grained
request and route parts to separate
finer-grained implementation
based services.

– Point 4 could be routing the request
based on version, or business rules
such as customer type.

– One or more of these points, typically
2 and 3 could be performed by an
intermediary.

There are a number of approaches to
implementing each of these articulation
points. While a simple script and
perhaps some look-up table might
suffice in some instances (and such a
capability might well be built into the

web server for example), often a more
complex solution, or one that provides
for greater flexibility and can be driven
by multiple business rules, is required.
Options include implementing some
form of service broker which performs
straightforward switching and routing,
or a service façade that may include
more complex functionality. For agility,
the important consideration is how
these points are designed into the SOA
and not left to the developer’s at
implementation.

Service Façades
The concept of a façade should be
familiar to most. Whether in the
context of a building or software, the
basic principle is the same; to expose
a different external view by hiding
that used internally by the underlying

implementation. An obvious role for
a Web service façade is to act as a
wrapper, converting the underlying
implementation technologies into Web
service protocols such as SOAP and
WSDL. As discussed in the previous
section, the façade can be used to help
migrate legacy applications. The façade
can also be used to perform many
other functions in a SOA such as a
level of process orchestration, or Web
service management.

In the context of agility, a façade can
be used to deliver some of the design
principles discussed so far,
– Abstraction. The façade not only

encapsulates the implementation and
provides a black box view, but can be
used to further abstract the Web
service away from the
implementation.

– Granularity. The façade can be
used to compose the right granularity
of Web service for the consumer as
illustrated earlier in Figure 6.

– Versioning. The façade can also be
used to manage the introduction of
new versions of the Web service
(delivered as new services), and
versions of the implementations.

How the façade is implemented
can vary. There can be significant
processing required in the façade,
and the following approaches are
most suitable:
– New process component that is built

specific to the need of a particular
service. This would be highly
optimised, but not very generalized
for other uses. However, it could be
based on a pattern that could be
quickly replicated.

– New process component that is built

JOURNAL2 | SOA Considerations for Agile Systems 21

Service Consumer
Applications

Business
Service

Implementation
Service

Service
Implementation

Possible Intermediary

Alternative Providers

Service Consumer Service Provider

1 2 3 4

Figure 9. Articulation points

JOURNAL2 | SOA Considerations for Agile Systems 22

at the level of a Business Service
Bus, a concept we introduced in the
previous issue of the Journal2. A BSB
is a group of Services related by
business domain. For added flexibility,
this might be database driven in
such a way that new services are
easily added and composed.

– A business process, or orchestration
engine, such as Microsoft BizTalk
Server. We consider this a very
agile solution that is capable of
performing many façade tasks.

Service Brokers
A service broker provides a switching
or routing mechanism. This takes the
address of the incoming request and
routes it instead to another. The WS-
Addressing 3 protocol standard is
particularly applicable here as it
provides a framework for the
addressing of service requests that
enables their routing to be determined
dynamically. As well as capability
within the web server, the service
broker can take many forms such as:
– A new software component

built or acquired for the task
and implemented in the
application server

– A hardware router, some of which
are now emerging with Web service
routing capability

– A Web service Management (WSM)
tool, several of which include
brokering functionality

– Again the orchestration engine can

perform this – though it may be
overkill just for broking.

As can be seen in the previous
discussions, there is no single solution
to each articulation requirement. The
products available, or those built in
house can often perform more than
one function and serve many
articulation points.

In addition, some of the products,
notably orchestration engines and
WSM tools, perform other functions
besides those required here. You
would be unlikely to acquire one just
to perform straightforward brokering
functions as this would not be a very
cost effective option. Acquiring these
is often an organizational not a
project level decision. However, when
justified for their full functionality, it
would make sense to put apply them
to both simple and complex
articulation requirements – although
this must be balanced against the
highly optimised and efficient
processing a simpler switch can
deliver in high throughput situations.

Summary
Many vendors’ presentations on Web
services will commence with the
obligatory statement of the business
problem reflecting the need for agility.
However, there is a big gap between
this need and the Web service
technology that is subsequently

presented as the solution. While Web
services are an essential enabler,
delivering business agility is more a
consequence of thorough analysis of the
business need with agility in mind and
careful design of the solution that is
architected for agility using the
approaches outlined here.

Desirable as agility might be,
delivering on the principles outlined
in the report may not be
straightforward as the following
obstacles need to be overcome.

– Organizational culture and project
orientation. In the same way that
project orientation inhibited the
reuse of components, it may also
stifle agility. The needs of the
business as a whole will not be
considered, and generalized services
that may be applicable elsewhere
will not be delivered.

– Short term thinking. The pressure to
meet immediate requirements leaves
no scope to discuss future needs.
This might not in itself prevent IT
from trying to introduce the
principles outlined here, but make it
difficult to discuss and agree them
with the business.

– Business Secrecy. Whilst the
business may desire agility, it may
not necessarily want to share with
IT the business strategies that
might require agile solutions.

– Ability to abstract and generalize.

2 Understanding SOA,
Wilkes and Sprott.
Microsoft Architects Journal,
JOURNAL1, January 2004

3 http://msdn.microsoft.com/webservices/
default.aspx?pull=/library/en-
us/dnglobspec/ html/ws-addressing.asp

http://msdn.microsoft.com/webservices/

JOURNAL2 | SOA Considerations for Agile Systems 23

The skills required are not always
common in developers, particularly if
it also requires sufficient familiarity
with the business to be able to
abstract and generalize the
business concepts.

If businesses are to become more agile
then they must address these issues.
Business leaders cannot continue to
bemoan the IT department’s apparent
lack of responsiveness to change when
its own practices can create the above
obstacles. Similarly the IT department
must also play its part in designing
agility into their solutions and not
delegating it to the IT vendor’s latest
‘magic bullet’.

References
This article draws from the following
CBDI Journal Reports that provide
greater depth on this topic:
– Business Adaptability and

Adaptation in SOA. Veryard,
Feb 2004
http://www.cbdiforum.com/secure/
interact/2004-02/
business_adaptability.php

– Best Practice Report: Component
Based Service Engineering, Veryard,
Nov 2003
http://www.cbdiforum.com/secure/
interact/2003-11/
comp_based_srv_eng.php3

– Design Pattern: The Web service
Façade. Wilkes, Jan 2003
http://www.cbdiforum.com/secure/
interact/2003-01/facade.php3

– Autonomic Computing. Veryard,
Jan 2003.
http://www.cbdiforum.com/secure/
interact/2003-01/auto.php3

– Enterprise Service Oriented
Architecture. Sims, March 2003
(First of a five part report)
http://www.cbdiforum.com/secure/
interact/2003-03/foundation.php3

Lawrence Wilkes,
Technical Director and Principal
Analyst, CBDI Forum
lawrence.wilkes@cbdiforum.com
Lawrence Wilkes is a frequent
speaker, lecturer and writer on
Web Services, Service Oriented
Architecture, Component Based
Development and Application
Integration approaches. Lawrence has
over 25 years experience in IT working
both for end user organizations in
various industries, as well as for
software vendors and as a consultant.

Richard Veryard,
Associate Analyst, CBDI Forum
richard.veryard@cbdiforum.com
Richard Veryard is a consultant
and writer specializing in the
management of technology, and the
technology of management. He has
worked in the software industry for
many years, with special focus on the
development and deployment of
products and processes, across a wide
range of industries and sectors in
many countries. He has written
several books on modeling and

management, and has published and
presented widely. He is a regular
contributor to CBDI, and is currently
Deputy Chair of IFIP WG 8.6, an
international working group on
the Diffusion, Adoption and
Implementation ofInformation
Technology.

http://www.cbdiforum.com/secure/interact/2004-02/business_adaptability.php
http://www.cbdiforum.com/secure/interact/2003-11/comp_based_srv_eng.php3
http://www.cbdiforum.com/secure/interact/2003-01/facade.php3
http://www.cbdiforum.com/secure/interact/2003-01/auto.php3
http://www.cbdiforum.com/secure/interact/2003-03/foundation.php3
mailto:lawrence.wilkes@cbdiforum.com
mailto:richard.veryard@cbdiforum.com

JOURNAL2 | SOA Implementation Challenges 24

Ensure success by building
and following a road map that
incorporates enterprise-
specific standards.

Introduction
You may well be considering deploying a
service-oriented architecture across your
enterprise. In any such deployment, there
are complex challenges along the way –
including ones unique to your industry
and company. However, with a flexible
road map for the implementation in hand
you’re able to act quickly to meet and
overcome the challenges as they occur.

Service-oriented architectures are an
important new paradigm that supports
modularized implementation of solutions
within a middle tier. These architectures
are particularly applicable when
multiple applications running on varied
technologies and platforms have to
communicate with each other.

However, service-oriented architectures
aren’t implemented overnight.
Companies must first gear up and work
towards the progressive construction of
the components and services involved.
A road map and company-specific
standards are key prerequisites –
ensuring a systematic implementation
of such an architecture enterprise wide.

This article offers different approaches
for companies to use to address various
implementation-related challenges.
Examples are based, when possible, on
EDS’ real-life experiences with our
clients. The article also leverages EDS’
experience in building a tool that
facilitates the configuration, management
and deployment of Web services within
enterprises.

Architectural components
Figure 1 shows the basic components
of a service-oriented architecture.
The components of a service oriented
architecture include:
– Service providers

A service provider is a component
or set of components that execute
a business function in a stateless
fashion, accepting predefined inputs
and outputs.

– Service consumers
A service consumer is a set of
components interested in using one
or more of the services provided by
service providers.

– Service repository
A service repository contains the
descriptions of the services. Service
providers register their services in
this repository and service consumers
access the repository to discover the
services being provided.

Challenges
While implementing a service-oriented
architecture, a company faces up to
eight key challenges. These challenges
align to the steps in a typical project
deployment plan:

1. Service identification. What is
a service? What is the business
functionality to be provided by a
given service? What is the optimal
granularity of the service?

2. Service location. Where should
a service be located within the
enterprise?

3. Service domain definition. How
should services be grouped together
into logical domains?

4. Service packaging. How is
existing functionality within legacy
mainframe systems to be

re-engineered or wrapped into
reusable services?

5. Service orchestration. How are
composite services to be
orchestrated?

6. Service routing. How are requests
from service consumers to be routed
to the appropriate service and/or
service domain?

7. Service governance. How will the
enterprise exercise governance
processes to administer and
maintain services?

8. Service messaging standards
adoption. How will the enterprise
adopt a given standard consistently?

I’ll discuss these challenges in detail
and examine the approaches we can
use to address them. Representative
real-life examples are included,
wherever applicable.

Service identification
Challenge
Properly identifying services and
determining corresponding service
providers is a critical first step in
architecting a service-oriented solution.
In today’s world, similar business
functions could very well be provided by
multiple systems within the enterprise.

Service Oriented Architecture
Implementation Challenges
By Easwaran G Nadhan, EDS

“Properly identifying services and determining corresponding
service providers is a critical first step in architecting a
service-oriented solution.”

Service Consumer A Service Provider A

Service Consumer B Service Provider B

Service
Repository

Figure 1. Service-oriented architectural components

JOURNAL2 | SOA Implementation Challenges 25

Approaches
There are two ways to address this
challenge; service rationalization and
service consolidation.

Service rationalization
Service rationalization involves a
careful analysis of all the systems
and applications providing the given
business function. Through service
rationalization, business functionality
supported by the least frequently
accessed systems can be implemented
within those that are more frequently
accessed. By streamlining systems in
this way, we can enforce more
consistent delivery of services.

Figure 2 provides an example of service
rationalization. The information
received through the Account Profile
business function is required by
multiple front-ending applications such
as online banking, CRM and VRU
applications. The customer and account

repository is the system of record that
supports the Account Profile business
function. Depending on the nature of
the front-end application invoking this
business function, different subsets of
the account profile are returned.

In this example, the enterprise is
increasing online and VRU access for its
customers while decreasing use of a CRM
application that requires significant
human interaction. As customers adapt
rapidly to self-service channels, the
percentage of access through the CRM
application steadily decreases.

As part of the service rationalization
process, the VRU- and online banking-
based Account Profile services are
augmented to implement the CRM
Account Profile business function, as
well. Thus, rationalization eliminates
the CRM Account Profile service and
the definition of two services
supporting it.

Service consolidation
Service consolidation involves the
redefinition of all the service instances
into a consolidated version that
supports the superset of all the
interfaces exposed by the individual
instances. The redefined and
consolidated service is provided by all
the individual applications consistently.

Figure 3 illustrates a product catalog
repository accessed by three separate
services. These services are dedicated
to retrieving predefined subsets of the
information available about a product.
After service consolidation, there’s a
single service that works with the
whole product catalog. This service
contains all the information segments
employed by the individual services
prior to consolidation. Service
consumers selectively work with the
portion of the catalog that’s of interest
to them. Service consolidation is thus
an effective way to streamline
multiple services supporting the
same business function.

Service location
Challenge
Services usually operate on a specific
set of business entities that are
resident within a given system of
record. This system of record is an ideal
location for the service to execute.
However, distributed architectural
solutions can result in business data
being spread across multiple
applications and can generate multiple
instances of the system of record for
the same business entity. Data
synchronization between the two
systems becomes a key requirement.
Where would the service be located in
such scenarios?

CRM
A/C

Profile

VRU
Info

VRU
A/C

Profile

Online
Banking A/C
Profile

Online
Banking
Info

CRM
Info

Common
Information

Customer and
Account Profile DB

Before Rationalization

VRU
Info

Online
Banking
Info

CRM
Info

Common
Information

VRU
A/C

Profile

Online
Banking A/C
Profile

Customer and
Account Profile DB

After Rationalization

Figure 2. Account profile service rationalization

Approaches
There are three ways to solve this
challenge; content-based routing,
service repository-based routing,
and back-end replication.

Content-based routing
This approach routes the incoming
request for this service to the
appropriate system of record. Such a
solution supports location transparency
for service consumers: The algorithm
that determines where a given service
is provided doesn’t have to be exposed
to service consumers. Both systems
of record support an instance of the
service and both service instances
serve as logical entry points for the
given request.

Figure 4 illustrates an example of
content-based routing. In this example,
information about customers is
segregated by region. Customers
belonging to a given region are stored
in the repository in the data center
located within that region. However,

service consumers located within either
region may access this information.
Upon receiving the incoming request,
the Customer Profile service executes
a business rule that determines the
specific repository where the
information about the given customer is
available. Then, the Customer Profile
service routes the given request to the
appropriate region.

Service repository-based routing
A variation of the content-based routing
approach described above, the service
repository-based routing approach is
shown in Figure 5. While the Customer
Profile service executes the same
business rule it does in the content-
based routing approach, it leverages
the information in the service
repository to direct the request to the
appropriate region. This approach
makes it easier to change the routing
logic, if necessary. Requests can be
redirected to a different region simply
by updating the information in the
service repository – without changing
the business rules within the Customer
Profile service itself.

Back-end replication
This approach leverages intrinsic inter-
application connection capabilities to
access the information from the
physical repository that contains the
required information. Thus, both
instances of the system of record
function as a logical entry point to
access the information distributed
across both systems. The service can
be executed on either system. The
physical location of the data being
operated upon is transparent to the
service itself. Figure 6 illustrates a
scenario for back-end replication. The
same Customer Profile service is
executed on the instance of the system
of record that’s closest to the service.
In the event that information from the
other regional repository is required,
the intrinsic data replication
capabilities of the technology behind
the data repository are employed to
fetch the relevant data.

JOURNAL2 | SOA Implementation Challenges 26

Prod Segment A
Inquiry Service

Before Consolidation

Prod Segment B
Inquiry Service

Prod Catalog
Inquiry Service

Prod Segment C
Inquiry Service

After Consolidation

Segment A + B + C

Prod
Catalog
Segment

C

Prod
Catalog
Segment

A

Prod
Catalog
Segment

B

Prod
Catalog

Seg C

Seg B

Seg A

Figure 3. Product catalog service consolidation

Figure 4. Content-based routing

Consumer
Profile
Service A

Consumer
Profile
Service B

Region B
Customers

Region A
Customers

Service domain definition
Challenge
Classifying services into logical
domains simplifies the architecture by
reducing the number of components to
be addressed. Such groupings can be
leveraged for multiple architectural
reasons such as load balancing, access
control, proxy simulation, and vertical
or horizontal partitioning of business
logic. However, it’s often a serious
challenge for business units and
technology centers within an enterprise
to come to a consensus on an appropriate
definition of service domains. What
would be a good logical grouping of
service domains?

Approaches
We can adopt multiple approaches to
define service domains. Table 1 shows a
sample distribution of the applications
and platforms across different business
units. This example will be used to
define the salient characteristics of
each approach discussed in this section.

Functional domains
Functional domains are based on the
business functions being served by a set
of services. The business process owners
within the enterprise are best placed to
define and segregate the business
functions and, therefore, the service

domains. Through such groupings,
business process owners for a given
domain can have autonomous control
of the services within that domain.
As long as business process owners
ensure that specified services within
their respective domains are provided
to the rest of the enterprise, they have
complete control over the architecture
and implementation of the services.

In the example above, there are three
functional service domains: Loans,
Banking and Insurance. Services
housed within these domains may
have to go across multiple platforms
and back-end applications to process
the incoming requests specific to their
domains. However, the business
processes served by the services are
similar within a given domain,
regardless of the application or
platform on which the services
are executing.

1. Loans The Loans service domain
houses services typically provided
within the context of issuing and
managing loans to consumers and
corporate entities. This service
domain includes both mortgage loans
for purchasing residences as well as
loans to purchase assets other than
residences. Services may include loan
origination, loan amortization and
monthly payment calculation.

2. Banking The Banking service
domain houses services typically
associated with banking through
multiple media such as the Internet,
ATM, VRU and financial centers.
Possible services include opening an
account, retrieving an account
balance and transferring funds
between accounts.

JOURNAL2 | SOA Implementation Challenges 27

Region B
Customer
Repository

Consumer
Profile
Service

Region A
Customer
Repository

R
e
g
i
o
n

A

S
e
r
v
i
c
e

R
e
g
i
o
n

B

S
e
r
v
i
c
e

Re
gi
on
 A
 S
er
vi
ce

Region A Service

Service
Repository

Figure 5. Service repository-based routing

Consumer
Profile
Service

Consumer
Profile
Service

Region B
Customers
Repository

Region A
Customers
Repository

Figure 6. Back-end replication

Business Unit Primary Middle Tier Platform Application
Home Loans UNIX SAP
Online Banking Windows Siebel
Banking Centers UNIX PeopleSoft
Insurance Services Windows SAP
Consumer Loans Linux Oracle
Corporate Loans UNIX IBM DB2

Table 1. Sample application distribution

3. Insurance The Insurance service
domain contains services that are
unique to the insurance industry.
Possible services include premium
computation, medical history lookup
and claims processing.

Technology-based domains
Functional service domains that span
multiple technology platforms pose the
intrinsic challenge of keeping pace
with the state of each technology
platform at any given time. Vendors
tend to interpret industry standards in
a way that favors their solution and
that forces companies to depend on
their architecture, hardware and/or
software. Specification of service
domains based on technology allows
efficient and effective usage of that
technology’s unique capabilities.

In the example above, service domains
may be classified by the UNIX, Linux
and Windows platforms.
Infrastructure services such as error
logging, transaction monitoring and
event handling are good candidates for
such services. They’re dependent on
the platform that they’re executing on
and are typically independent of the
business processes that drive the
functional service domains.

Application-based domains
The concept of enterprise application
integration came about as a way for
companies to eliminate the need to
replace existing systems. Today,
enterprises have many multiple front-
ending applications that need to
integrate with the same system of
record to process, package and
present the same information in
different ways.

Application-based service domains
allow for grouping services provided
on a given system. Such an approach
eases the administration and
maintenance of the services since the
underlying system is the same for all
the services within the domain.

In the example above, SAP, Siebel,
PeopleSoft, IBM DB2 and Oracle are
good candidates for application-based
service domains. Some of the sample
services that may be housed within
these domains are listed below.

SAP
– Accounts payable – accounts

receivable reconciliation
– Financial accounting
PeopleSoft
– Addition of employees
– Compensation updates
Oracle
– Data replication
– Role-based presentation

of account information

Service packaging
Challenge
In a service-oriented architecture,
an enterprise’s systems must expose
functionality as services. Systems
built to facilitate integration can do
this more easily; mainframe-based
legacy systems have more difficulty.
When these systems were built, they
served as monolithic applications
containing all the business rules
and processing logic involved. Such
information was distributed across
multiple sets of interlinked programs.

A service-oriented architecture
encourages the individual services to
be self-contained – with no knowledge

of the context of the other services.
Mainframe programs are deeply
intertwined with context-specific
knowledge. How are such mainframe
programs to be re-packaged into
independent, self-contained services?

Approach
We can use a three-step approach to
address this challenge. The approach
involves defining the logical business
areas within the mainframe solution,
assigning program sets to these
business areas, and then engineering
a loosely coupled solution between the
program sets. These steps are outlined
in more detail below:

1. Business area definition
In this step, we establish logical
areas of business functionality. We
can use program call maps and
process flow diagrams to define
these business areas. We can also
define the areas by leveraging
relationships between the programs
on the mainframe systems.
[Programs on mainframe systems
tend to be linked to one another.
There are common underlying
business processes behind such
program-to-program relationships.]

2. Program assignment
Having identified business areas,
we assign individual programs to a
given business area. We many need
to re-engineer programs that do not
readily lend themselves to a specific
business area so they align better
with the given business area. Such
a grouping of programs aligns well
with the service domain concept
discussed earlier.

JOURNAL2 | SOA Implementation Challenges 28

“A service-oriented architecture encourages the individual
services to be self-contained – with no knowledge of the
context of the other services.”

3. Loosely coupled integration
At this point, even though the
programs have been assigned to the
identified business areas, they’re
still interlinked amongst themselves.
In this final step, we replace that
tightly coupled relationship with a
more loosely coupled approach. To do
so, we redefine mainframe program
interfaces so that other applications
can leverage them; the programs
provide the same inputs and
accept the same outputs that they
did originally.

This redefinition process provides an
excellent opportunity to ensure that
these programs serve the enterprise
as a whole rather than serving single
applications in isolation – the purpose
for which they were originally created.
This approach also gears up the
existing mainframe programs toward
a more service-oriented approach,
positioning them as services used by
service consumers external and
internal to the mainframe systems.

Service orchestration
Challenge
A given service exists because there’s
at least one instance of a service
consumer initiating the request for
that service. In some scenarios,
however, a service may have to invoke
many other services to fulfill service
consumer’s original request. Simple
scenarios involve a given service
extending the original request to one
or more services. However, complex
scenarios can involve recursive
invocation of multiple services and, in
some extreme cases, inter-dependent
invocation of multiple services –
which could result in a deadlock.

Here’s an example. For an airline ticket
to be purchased, the following services
need to be executed:
– Get Customer
– Get Schedule
– Check Availability
– Quote Fares
– Receive Payment

Building the orchestration intelligence
into each service can result in the
rather complex scenario illustrated
in Figure 7.

How can such composite services
be orchestrated?

Business process management approach
This approach keeps the individual
service simple: The services don’t have
the intelligence to orchestrate the
procedural invocation of all the other
services required to fulfill the request.
Instead, that intelligence is placed
within the business process layer.
Business processes are responsible for
procedurally invoking each constituent
service, thereby providing the composite
service the service consumer originally

requested. The business process
becomes a specialized instance
of a composite service.

Figure 8 illustrates the Purchase Ticket
business process that contains the
procedural logic of the individual steps
to be executed. The Purchase Ticket
business process discovers the
constituent services through a single
access to the service repository and
subsequently orchestrates the
appropriate steps in sequence.

JOURNAL2 | SOA Implementation Challenges 29

Check
Availability

Get
Schedule

Get
Customer

Receive
Payment

Quote
Fares

Service
Repository

Figure 7. Service orchestration challenge

Get
Customer

Receive
Payment

Service
Repository

Get
Schedule

Check
Availability

Purchase Ticket

Quote
Fares

Figure 8. Business process management approach

Service routing
Challenge
Service-oriented architectures must
provide location transparency to the
service consumers: Service consumers
have to be able to send a request for
any service located in any service
domain. At the same time, accessing
the service repository before each
invocation of a service can be a time-
intensive process. How can these
architectures provide location
transparency while also ensuring
acceptable system performance levels?

Approaches
We can solve the service-routing
challenge in two ways.

Intelligent services
Using this approach, we build location
information for all services into each
individual service. This eliminates
some of the hops required but results
in an overloaded service. Depending
on the frequency at which the services

or their locations undergo changes,
this approach can be maintenance-
intensive. In addition, such an
approach isn’t in line with the loosely
coupled architecture embraced by
services. Nevertheless, it supports a
high-performing solution.

Routers
The other approach is to move the
routing intelligence from the individual
services to a routing component. These
routing components can be at two
levels: service domain and service.

1. Service domain router
A service domain router has
intelligence about the location of
all service domains. Upon receiving
a request, it determines if it can
service the given request by using
one of the services it supports.
If so, it processes the request.
If not, it passes the request on to
the appropriate domain that can
service the request.

2. Service router
A service router is used within
a service domain to direct the
incoming request to the appropriate
service within the domain. Only
those requests that can be serviced
within a given service domain are
passed on to the service router.
The service router reduces the load
of the location information on the
individual services.

Service domain routers and service
routers are more applicable to service
domains that contain a significant
number of services. When there are
only a few services, intelligent services
are a viable option.

Figure 9 illustrates the concept of
service domain routing and service
routing within a domain.

Service governance
Challenge
Regardless of the way service domains
are defined within an enterprise, there
are various philosophical and
technical approaches for creating
new services and modifying existing
services. Who should monitor, define and
authorize the changes to the existing
suite of services supported within
an enterprise? Who should own the
provisioning and maintenance of
these services?

Approaches
An enterprise can address the
challenge most effectively by
establishing an internal governing
body. Multiple governance models are
possible. These are discussed below.

JOURNAL2 | SOA Implementation Challenges 30

Service Domain B

Service
Consumer A

Service
Consumer B

Service Domain
Router B

System
B1

System
B2

Service Router

Service Domain
Router A

System
A1

System
A2

Service Router

Service Domain A

Figure 9. Service domain routers and service routers

Central governance
With central governance, the
governing body within the enterprise
has representation from each service
domain as well as from independent
parties that don’t have direct
responsibility for any of the service
domains. There must also be
representation from the different
business units and from subject matter
experts who can speak to the key
technological components of the
solution. The central governing body as
a whole reviews addition and deletion
of services, as well as changes to
existing services, before authorizing
their implementation.

As shown Figure 10 above, the central
governing body is responsible for
establishing and enforcing service-
oriented architectural guidelines and
standards across the enterprise.

The body is also responsible for
communicating those standards to the
business units, architectural teams
and technology teams.

Distributed governance
With distributed governance, each
business unit has autonomous control
over how it provides the services within
its own organization. Distributed
governance mandates a functional
service domain approach. A service
architecture committee can still provide
high-level guidelines and standards for
implementation of services, but that
committee doesn’t have to authorize
changes to the existing service
infrastructure within a business unit.
The committee suggests compliance with
these guidelines but does not enforce it.

In the distributed governance model
shown in Figure 11, business units
A and B have the freedom to establish

their own independent standards.
Yet appropriate passive measures
(architectural and procedural guidelines)
are in place for the units to follow.

Service messaging standards
adoption
Challenge
Messaging standards specific to vertical
industries enforce standardization on
a set of data elements and message
formats. However, at an individual
data element level, these standards
are flexible enough so that enterprises
can tailor them to conform within the
enterprise-specific business context.
As a result, different business units
within the same enterprise can
conform to the same standard in
multiple ways. Additionally, these
standards provide for the creation
of custom data elements.

For example, the Interactive Financial
Exchange (IFX) standard specifies
multiple ways to uniquely identify
a customer:

– <CustPermId>, which is an internal
database key that uniquely identifies
a customer.

– <CustLoginId>, which is the ID
used by the customer to log in.

Both fields are unique. Enterprises
adopting the IFX standard have to
decide when and where to use each
field. In some cases like this one, clients
have decided to ignore both and create
a custom field that adapts better to
their enterprise system of record!

How is it possible to enforce the
adoption of a single standard across
the enterprise?

JOURNAL2 | SOA Implementation Challenges 31

Architectural

Teams

Technology

Teams

Business

Units

Chief

Enterprise

Architect

Architectural

Rep

Reference Architecture

Technology

Rep
Guidelines

Governing
Body

Business

Unit Rep
Standards

Enterprise Architectural

Strategies

Figure 10. Central governance model

Metadata governance approach
Metadata repositories within the
enterprise support the consistent
representation of key business
entities. These representations are a
superset of the information
distributed across multiple enterprise
systems. Data dictionaries as well as
logical and physical data models are
key inputs into the definition and
maintenance of the metadata
repositories.

The metadata governance team should
be a focused group within the central
governance model discussed earlier.
Metadata governance must be
performed at the enterprise level. In
other words, even if an enterprise
adopts a distributed governance model
for the maintenance of services in
general, it must adopt a central
governance model for metadata.

In the example above, the metadata for
the customer would contain a single
way of uniquely identifying the
customer. In addition, the metadata
would ensure a consistent way of
representing the authentication
information, including login and
password. So even if a company had
chosen to uniquely identify the
customer by using a custom field, the
field would be represented as such in
the metadata repository.

Conclusion
Service-oriented architectures are
rapidly being accepted by the IT world
as a sound, modularized approach for
building and deploying services across
the extended enterprise. However,
practical implementation of these
architectures requires careful planning.
Interested enterprises must first make
sure that they’re geared up to
implement and support them in the
long-term.

By developing and following an
implementation road map, companies
can proactively address a range of
challenges that they’ll encounter along
the way. Each enterprise will face a
unique set of challenges; corresponding
approaches for solving those challenges
will vary, as well. The impact of the
challenges – both during and after the
implementation – also depends on the
context of the given enterprise.

JOURNAL2 | SOA Implementation Challenges 32

Governing
Body

Architectural
Teams

Guidelines

Chief
Enterprise
Architect

Business
Unit A

Business
Unit B

Arch
Team A

Arch
Team B

Technology
Team A

Technology
Team B

Guidelines

Standards

Service
Ownership

Reference
Architecture

Standards

Service
Ownership

Reference
Architecture

Figure 11. Distributed governance model

Easwaran G Nadhan,
Principal, EDS
easwaran.nadhan@eds.com

E G Nadhan is a Principal within the
Solutions Consulting division of EDS,
Plano, Texas. Nadhan has designed
and implemented distributed solutions
in the software industry for the past 20
years. Recently, Nadhan has leveraged
his experience in enterprise

application integration to work with
enterprises to implement service-
oriented architectures. Examples in
this document are based on real-life
experiences encountered within EDS
as well as within organizations that
EDS serves.

mailto:easwaran.nadhan@eds.com

Introduction
This is the first article in a series of
two. The purpose of these articles are to
explore whether business patterns can
be defined in structured way, and if so –
whether these business patterns would
be of value for those who build software
systems that support the business.

The first part explores how to define
business patterns in such a way that
they could be useful for software
engineers. The second part explores
how to develop systems from such
business patterns.

In these articles the term ‘pattern’ is
used according to the classic definition
created by Christopher Alexander 1,
which identifies three key elements
of a pattern.

A Pattern describes a generic solution
to a recurring problem, within a
defined context.

Summary
What is a Business Pattern? A business
pattern describes a re-usable approach
to the solution of a particular business
problem, usually scoped by a business
process. It offers a solution based on
previous success in defining solutions
to the same, or similar, business
problems. A business pattern may be
described as an ‘Architectural Template
for a Business Solution’.

This paper answers the following
questions:
1. Can we develop a framework for

the creation of Business Patterns?
2. Can we define a consistent approach

to creating Business Patterns?
3. Can we prove that the framework

and approach work?
4. Can these Business Patterns be

used to drive either software design
and implementation patterns, or
actual solutions?

In this vision and feasibility paper
we assert that answer to all these
questions is yes.

We believe this to be the case because
in this article …
1. We identify the set of architectural

elements needed to fully describe
business patterns. We classify these
and focus on the elements that
describe the most stable parts of a
business, which are most suitable
for ‘patternisation’.

2. We have defined an appropriate
approach, based on tried and
trusted methods.

In part 2, we provide an example from
the Healthcare industry, which is based
on a real engagement in the UK.

This article does not try to convince
you that you should create business
patterns, nor does it provide a
cost /benefit case for such an activity.
It describes some of the benefits to be
gained from using business patterns
but is not comprehensive. Our goal is to
stimulate interest in this concept and
sow some ideas, because we believe
this will lead to better engineered
software systems.

Benefit of consistency in approach
The benefit of having a framework for
software engineering is well known so
we do not elaborate here. However the
benefit of a consistent approach is
worth a short explanation.

It is the authors’ opinion that we HAVE
to document business patterns in a
consistent, structured way for the
following reasons:
– Such an approach allows for the

gradual introduction of business
patterns and business pattern-based
solutions. It enables an evolution of
systems that implement the patterns.

JOURNAL2 | Business Patterns – Part 1 33

Business Patterns for Software
Engineering Use – Part 1
By Philip Teale, Microsoft Ltd and Robert Jarvis, SA Ltd

“A Pattern describes a generic solution to a
recurring problem, within a defined context.”

Patterns
The three key parts of the pattern
definition are:

– Generic Solution – this means
that a Pattern does not define a
specific solution. Rather, it
identifies the ‘class’ of problem
and how that problem might be
solved with a particular approach,
based on some demonstrable
evidence. Its power is derived
from the fact that it is an
abstraction which can be
leveraged across a large
number of situations.

– Recurring Problem – this
means that Patterns are useful
when the problem is not unique,
and are most useful when the
problem occurs a lot

– Defined Context – this means
that you have to put bounds on the
generic solution because there are
no universally true solutions (at
any useful level). So you have to
understand the circumstances
in which this generic solution
is valid, and hence how to
elaborate on it to create your
own specific design.

1 A Timeless Way of Building,
Oxford University Press, 1979

This is necessary because enterprises
are usually only interested in
investing in parts of their business
at any one time.

– Hence we need to deliver business
patterns incrementally, according to
the benefit to the enterprise. Thus
we need a consistent approach that
allows growth in the scope of the
patterns by seamlessly adding to
the existing ones.

– We also believe that this approach
should be used across industries, so
that if an enterprise in one industry
acquires another in a different
industry (for example, a bank
acquiring an insurance company) they
have the option to integrate quite
easily at the business pattern level.

The implementation interface
for business patterns
We believe that the key to success is
that business patterns enhance the
development and maintenance of IT
systems by offering a consistent
interface for all business patterns.
We recommend that this Interface
takes the form of a definition of the
components and services that will
implement defined business functions
on described business data.

Introduction
Models Used
We need two models – one to show how
to define business patterns and one to
show how to engineer systems based on
business patterns, which may use other
patterns in the process.

We’ve selected two models that we’ve
used before, but it’s important to
recognise we’re not saying that you
have to use these models. We do feel

that it is best for all if the industry
uses a consistent approach to define
business patterns; but that it could
then use many approaches to develop
the systems that implement them.
The models we use have been used
by Microsoft consultants both on
Microsoft internal projects, and on
external to create deliverables for
customers and partners. These
methods and techniques have
been proven in the real-world.

Model 1: an enterprise architecture
framework – SAM 2

In the first part we develop a business
patterns framework using SAM – the
Strategic Architecture Model. SAM
provides an excellent analysis
approach and documentation
structure for enterprise architecture
and associated problem domains.

SAM uses the notions of ‘spheres of
interest’ to represent coherent sets
of facts about an enterprise and
‘relationships’ to associate these
facts into useful groups that provide
insight into the structure and
operations of the enterprise. SAM has
been developed by Systems Advisers
Ltd,3 a UK consultancy which has
worked extensively with Microsoft
in architectural areas.
In this paper we have used SAM to
identify the key business pattern topics.

SAM can be regarded as a superset
of the Zachman Framework for
Enterprise Architecture 4 that extends
this framework by providing a generic
structure for architecture definition
and mechanisms for organising,
relating and analysing architectural
information.

SAM takes an iterative approach to
architecture development operating
in either a top-down or bottom-up
manner, or in a combination of the two,
in building its deliverables. A SAM
‘sphere of interest’ contains all the
relevant information on a particular
topic, such as organisational structure
or business processes, filed and
organised for easy access. A sphere may
be populated ‘bottom-up’ by gathering
all relevant information at a detailed
level and summarising progressively
into higher and higher level groupings,
or ‘top-down’ by defining the putative
higher level groupings and
decomposing these in progressively
more detailed levels until an ‘atomic’
level is reached. In practice these
approaches are usually used together
to build comprehensive and resilient
architectural models and most
importantly to verify the integrity
of the analysis.

Having built and populated a pair of
spheres to a sufficient degree of detail,
the members of these spheres may be
linked to represent the real-life
relationships that drive and sustain
the operations of the enterprise. The
analysis and refinement of these
relationships enables business
optimisation and improvement.

In the context of IT Business Patterns,
SAM provides means of modelling
business functions and data, and their
interrelationships, to derive the
components and services that support
a defined business domain.

Model 2: a problem refinement model
In part 2 we use a Problem Refinement
Model (PRM) to show how to work from

JOURNAL2 | Business Patterns – Part 1 34

2 For information on SAM – see
Enterprise Architecture –
Understanding the Bigger Picture, Bob
Jarvis, a Best Practice Guideline
published by the National Computing
Centre, UK, May 2003 or
http://www.systems-advisers.com

3 See http://www.systems-advisers.com 4 Framework for Information Systems
Architecture, John A Zachman, IBM
Systems Journal, Vol 28, No 3, 1987,
IBM Publication G321-5298

http://www.systems-advisers.com
http://www.systems-advisers.com

a business problem through to a
technology implementation. The generic
Problem Refinement Model can be used
to iteratively refine any problem from
its initial definition to its final
resolution. Our experience has shown
such an approach to be very useful for
solution architects and designers and
so the PRM we show has been
customised to their problem space.
We’ll show how to use that PRM to
evolve the business problems (which
in our case are expressed as business
patterns), into IT solutions.

The PRM we use also recognises
the frequent need to separate the
enterprise architect’s perspective
from the project designer’s perspective,
and uses different techniques for
communication with these audiences.
For each audience it describes different
refinement techniques to use within
a Five-layer view, and the transforms
between the layers. The five layers are
shown in Figure 1:

The reason for having five layers is
that it seems in practice to provide a
comfortable number of refinement steps:

1. The Business Problem (as
represented by a pattern) is very
specific to the business functions
being performed and the data
required.

2. The Conceptual Solution elements
might be reusable by other business
patterns.

3. The Logical Services are reusable
across many solutions.

4. The Physical Services are oriented
to nodes and function/data
placement, which is vendor-
product independent.

5. Vendor-specific issues are isolated
to the Implementation layers. So for
example, here we can provide very
detailed Microsoft product usage
guidance, within the overall context.

One great value of using a refinement
model like this is that you can maintain
traceability through the evolution of
the system. So you can look at an
implementation detail and trace back
through the layers to understand
clearly what each of the drivers for
that implementation was, right up
to the business problem level.

When applying the model for
enterprise architects, we typically use
documentation techniques that are
suitable for long-term guidance of a
programme of implementation projects.
When using it for project designers, we
use techniques like UML – commonly
used ‘languages’ for project analysis
and design. (The distinction of
programme versus project need is the
important point for the refinement
technique used; not the role labels.)

JOURNAL2 | Business Patterns – Part 1 35

Problem Refinement Model
A generic PRM has the following steps:
1. Problem
2. Conceptual Solution
3. Logical Services
4. Physical Services
5. Implementation

For example, we can apply the PRM
to the steps in building a home.

1. Problem: Sheltering a family in
a suitable building.

2. Conceptual Solution:
A visualisation of the property
in a model of its location with its
properties described in such a
way that the prospective owner
can relate to them.

3. Logical Services: a further
refinement of the conceptual
solution in which the standard
requirements; like rooms,
windows, and roof types, are
selected for the building.

4. Physical Services: a refinement
that focuses on the infrastructural
needs; such as foundations,
plumbing, insulation and so on.

5. Implementation: the final
refinement brings together the
logical and physical services to
shown a blueprint of how this
particular house will be
constructed. This is the end of
this architect/designers work
and the design is handed to a
builder. This is analogous to the
roles of the IT Architect and the
IT Project Designer.

Figure 1. A Five Layer View of Problem Refinement

Business problem

Conceptual IT Solution

Logical IT Services

Physical IT Services

System Implementation

“We’ll show how to use that PRM to evolve the business
problems (which in our case are expressed as business
patterns), into IT solutions.”

How to recognise & document
Business Patterns

Using SAM’s Spheres to
Recognise the Real World
We address the question by considering
a set of SAM spheres. These represent
a superset of the Zachman framework.

Our experience of building real
Enterprise Architectures shows that
the spheres shown in Figure 2
typically represent the important
areas of interest.

These spheres of interest need some
explanation. In particular it should be
stressed that these definitions may
vary from enterprise to enterprise.
What is important is that the concepts
are recognised and incorporated into
the overall architectural design.

Within each sphere we store
information about the particular topic –
structured for easy maintenance and
retrieval. Usually this will take the form
of one or more hierarchical structures,
the analogy of the filing cabinet comes
to mind. Each item of information is
known as a ‘member’. A member is
therefore a discrete piece of information
belonging to a sphere of interest.
A sphere about ‘Locations’ might have
the members ‘Head Office’, ‘London Sales
Office’, ‘Birmingham Plant’, and so on.
Further examples of members include:
– A specific organisational unit, for

example ‘sales department’ within
the sphere ‘organisation’; or

– A specific business process, for
example ‘Accept Order’ within the
sphere ‘Business Processes’ or

– A particular data entity, for example
‘Customer’ within the sphere ‘Data’.

Definition of the relevant spheres
Objectives and Goals are the strategic
and tactical aims of the enterprise in
fulfilling its mission. They may be high-
level such as ‘Improve Customer
Service’ or quite focussed such as
‘Reduce call centre waiting time to less
than 30 seconds’. Objectives and goals
impact business processes and are
assigned to organisational units for
their achievement.

Organisation is concerned with the
organisational structure of the
enterprise – groups, departments,
divisions – and the interrelationship
of these organisational units.

Infrastructure is concerned with the
fixed assets of the enterprise –
locations, buildings, equipment
including IT equipment, networks,
transportation, etc. and their
interrelationships.

JOURNAL2 | Business Patterns – Part 1 36

Objectives
& Goals

Organisation

Business
Processes

Applications

Technology

Projects

Business
Components

Data

Business
Functions

Infrastructure

Figure 2. Typical Spheres of Interest

Business Processes are defined here as
the procedures and activities carried
out by the enterprise. Business
Processes are usually expressed as a
sequence of work activities carried out
by various organisational units
working in a co-ordinated way.
Examples might be ‘Process Customer
Orders’, ‘Recruit Staff ’, or ‘Prepare
Shipping Documentation’.

Business Functions are ‘the things an
enterprise does’ like Marketing, Selling,
Product Design, Manufacturing,
Financial Management, Personnel
Management, and so on. These should
not be confused with ‘departments’ that
might do these things. A function might
be carried out by many departments or
organisational units. Functions can
typically be represented in a non-
redundant hierarchy A functional
decomposition is constructed on the
principles of loose coupling and tight
cohesion, principles of good
modularisation that will be familiar
to software engineers.

Data is the fundamental pieces of
information created and used by the
enterprise. Typically these pieces are
expressed at the level of a data entity
such as ‘Employee’ or ‘Product’
or ‘Customer’.

Business Components are
encapsulations of business function
and data. A business function creates,
reads, updates and deletes data.
Grouping together all the functions
that create and update the same data
entities, using a technique such as
commutative clustering, defines non-
redundant ‘building blocks’ –
components – that may be used to

construct systems or applications that
in turn support particular business
processes. Components are also
important artefacts in modern systems
development. By encapsulating
functionality and data, software re-use
and replace-ability become practical.
Further, components offer ‘services’ that
may be used in conjunction with the
services offered by other components
to instantiate a Service Oriented
Architecture. Services exposed using

Internet technology are called ‘web
services’ – an important aspect of
Microsoft’s .NET technology.

Applications are the enterprise’s
inventory of computer and other
systems. These would include all
operational systems (the ‘as-is’), those
under development and those planned
for the future (the ‘to-be’). They may be
component-based or have been built
using older methods of construction.

JOURNAL2 | Business Patterns – Part 1 37

Figure 3. Stable, Agile and Dynamic Spheres of Interest

Objectives
& Goals

Organisation

Business
Processes

Applications

Technology

Projects

Business
Components

Data

Business
Functions

Infrastructure

STABLE DYNAMIC AGILE

Technology describes the hardware,
software and communications
environments and facilities used to
construct and operate applications.
Projects are the controlled pieces of
work needed to realise an application
or set of applications. Projects are
prioritised in alignment with
objectives and goals.

Using SAM’s Spheres for business
modelling
We believe that the above set of
spheres and the relationships between
them can be used to define a sufficient
business model. So is this how we can
describe business patterns? Do we do
this by documenting all these spheres
and all relationships?

In general terms the answer is ‘Yes’,
but this would be is far more than is
strictly necessary, or indeed desirable,
because different spheres are subject
to different degrees of stability:
ranging from highly stable to quite
dynamic. We want to base our
business patterns of the stable
elements of the enterprise and
from this foundation create flexible,
agile solutions.

We postulate that there are really
three categories of sphere in the set
as shown in Figure 3.

Set 1 = Stable
These spheres describe the stable
elements of the business and
represent the fundamental structures
– business function, data, business
components and infrastructure – that
must be present in order to operate
in the defined business domain.

Set 2 = Agile
The agile spheres describe the things
a business does, or can do, to clearly
differentiate itself from its competitors.
How it does this will determine
whether it is an agile business or not.
The agile spheres – organisation,
business process, applications and
technology – are things an enterprise
can change reasonably quickly, even
continuously, in response to market
and economic conditions.

Set 3 = Dynamic
The dynamic spheres are about business
direction, work programmes and change
management, basically ‘what it is all about’.
They describe the effort needed to move
towards a set of business objectives and
goals by means of a set of related projects.

Table 1 answers the questions:
– Which of these sets of spheres can

be expressed as business patterns?
– Which are useful for software

engineering?

JOURNAL2 | Business Patterns – Part 1 38

“… different spheres are subject to different degrees of stability:
ranging from highly stable to quite dynamic. We want to base
our business patterns of the stable elements of the enterprise
and from this foundation create flexible, agile solutions.”

Set of Spheres Can these be expressed Are they useful
as business patterns? for software

engineering?

Stable Yes, and these would be very useful Yes, it’s exactly
for typical business consultancies what we need
and integrators AND for software to do. Hence it
companies (ISVs) who can is what we are
demonstrate how their solutions doing, right
can rapidly provide rich, stable, here!
maintainable functionality.

Agile Yes, and again these would be very Not directly.
useful to typical business consultancies
and, to a lesser degree, integrators
who can use them to effect change
in a client’s business. However, there
will a multitude of different patterns
since the contexts and driving forces
will be very volatile and numerous.

Dynamic Yes, and these patterns would Not directly.
be very useful to typical business
consultancies and system integrators
who specialise in programme and
change management. They can use
these patterns to configure projects
into programmes based upon the
proven patterns from previously
successful approaches.

Conclusion
We conclude that a Business
Pattern will describe:
– The Business Functions being

supported.
– The Data that is required to support

the described functions.
– The Business Components that are

the IT representations of the data
and functions the business needs.

– Optionally, the Infrastructure needed
to support the functions, data and
components. This is necessary in highly
distributed enterprises or those made
up of divisions or units with diverse
technical or operational environments.

In addition, the business pattern will
describe the key relationships between
these dimensions. All SAM spheres
have relationships to all other spheres.
However, we need to focus on certain
core relation-ships that fundamentally
shape the business pattern.

The core relationships are defined thus:
The Stable Relationships:
– Business Functions perform actions

on Business Data (Typically create,
read, update and delete)

– Business Functions are included
in Business Components

– Data are included in Business
Components

The stable spheres link to the agile
spheres as follows:
The Linking Relationships
(Stable > Agile):
– Business Functions are executed

by Business Processes
– Business Processes use the services

of Business Components
– Business Components are

implemented in Applications

The following relationships in the
agile space are useful:
The Agile Relationships
– Business Processes are supported

by Applications
– Applications operate using

Technology
This is represented graphically
in Figure 4.

In addition, there may be relationships
involving Infrastructure and
Organisation (in grey) depending upon

the nature of the enterprise and the
business domain being considered.

However we would issue a word of
caution. Although it is far from
necessary to populate all spheres
before useful results appear, it is
necessary to achieve a critical mass of
related, stable structures before any
significant decisions regarding the
scope and boundaries of business
patterns can be made.

JOURNAL2 | Business Patterns – Part 1 39

Figure 4. Minimum Essential Model for Business Pattern Definition

Executed by

STABLE DYNAMIC AGILE

Objectives
& Goals

Organisation

Business
Processes

Applications

Technology

Projects

Business
Components

Data

Supports

Operates on

Included in

Business
Functions

Infrastructure

I
n
c
l
u
d
e
d
i
n

Impl
emen

ted
in

Se
rv
ic
e
us
ed

by

Us
es

Solution versus Pattern
Business patterns are defined using the
stable spheres and relationships only.
The connections from the business
patterns to potential solutions are
provided by the linking relationships.
Further agility is achieved by
improving and optimising the agile
relationships.

In a full Solution Development, we
would address at least the linked
Stable and Agile spheres and the
shown relationships.

Thus for a Business Pattern we require
that only the three stable spheres and
the relationships between them are
documented. This gives the most solid
base for flexibility in implementations
of the patterns. The three stable
spheres required are highlighted in
Figure 4. The greyed relationships and
spheres represent the linking
relationships from stable to agile i.e.
towards a particular solution. If a
business pattern exists for the subject,
then the solution builds on the pattern.

Part 2
In JOURNAL3, we will show a way
of developing Business Patterns as
represented by Business Functions,
Data and Business Components. We
will also show how these can be used
to engineer software systems.

Disclaimer:
The opinions expressed in this paper
are those of the authors. These are not
necessarily endorsed by their companies
and there is no implication that any of
these ideas or concepts will be delivered
as offerings or products by those
companies.

Philip Teale,
Partner Strategy Consultant,
Microsoft Ltd
pteale@microsoft.com
Philip Teale is a Partner Strategy
Consultant working for Enterprise &
Partner Group in Microsoft UK.
Previously, he worked for the
Microsoft Prescriptive Architecture
Group in Redmond, and for Microsoft
Consulting Services before that. He
has 29 years of Enterprise IT
experience of which four years have
been with Microsoft and 16 with
IBM, in both field and software
development roles. At the time he left
IBM he was working in for the IBM

Software Strategy group, in Somers,
New York. He has also worked for
Standard Life in Edinburgh, TRW in
Southern California and Bank of
America in San Francisco. His
international experience includes
nine years working in the USA, three
years in Canada and seventeen years
in the UK. Phil’s background is in
architecting, designing and building
large complex distributed commercial
systems, with specialisation in the
Finance industry. His most recent
contribution to industry thought-
leadership was to drive Microsoft in
the creation of patterns for enterprise
systems development.

Robert Jarvis, Director, SA Ltd
v-rjarvi@microsoft.com
Robert Jarvis is a Director of Systems
Advisers Limited, a UK consultancy
specialising in the development of
Strategic Systems Architectures for
major international enterprises. He
is also an Associate Architectural
Consultant with Microsoft Ltd. Bob
has over 30 years experience as an
International Systems Consultant
and Architect advising business and
governmental organisations in the
UK, Continental Europe and the
Americas. He is the author of
‘Enterprise Architecture –
Understanding the Bigger Picture’,
a Best Practice Guideline published
by the UK’s National Computing
Centre in 2003.

JOURNAL2 | Business Patterns – Part 1 40

mailto:pteale@microsoft.com
mailto:v-rjarvi@microsoft.com

Introduction:
Process Configuration and
Flexibility Trends
The need for process flexibility is not a
new trend. The trend has been evident
for the last two decades. The Internet,
Web, and mobile computing came along
and enabled a global productivity boom,
resulting in technology innovations that
are constantly laying the foundation for
renovating industrial-age processes.

These solutions are built primarily on
proprietary or system-based messaging
platforms aimed at providing a platform
for integration and communication
between various business components.
The typical method for accessing these
systems is through a wide assortment
of pre-built adapters that provide a bi-
directional connectivity to many types
of application processes. Rather than
explicitly declaring how systems will
interact through low level protocols and
object oriented architectures, Service

Oriented Architecture (SOA) makes it
possible to provide an abstract interface
through which processes or services
can interact. It can be imagined as an
interconnected process based enterprise
that exposes a set of loosely coupled,
coarse-grained services.

What is Service Oriented
Architecture?
SOA is the aggregation of components
that satisfy a business need. It comprises
components, services, and processes.
Components are binaries that have a
defined interface (usually only one), and
a service is a grouping of components
(executable programs) to get the job
done. This higher level of application
development provides a strategic
advantage, facilitating more focus
on the business requirement.

SOA isn’t a new approach to software
design; some of the notions behind
SOA have been around for years.

Jess Thompson, a research director at
Gartner, argues that the underlying
concepts date back to the early 1970s,
when researchers started drawing
boundaries around software and
providing access to that software
only through well-defined interfaces.

A service is generally implemented as
a coarse-grained, discoverable software
entity that exists as a single instance
and interacts with applications and
other services through a loosely coupled
(often asynchronous), message-based
communication model.

The most important aspect of SOA is that
it separates the service’s implementation
from its interface. Service consumers view
a service simply as a communication
endpoint supporting a particular request
format or contract. How service executes
service requested by consumers is
irrelevant; the only mandatory
requirement is that the service sends
the response back to the consumer in
the agreed format, specified in contract.

SOA Entities
SOA consists of various entities
configured together to support the find,
bind, and execute paradigm as shown
in Figure 1.

Service Consumer
The service consumer is an application,
service, or some other type of software
module that requires a service. It is
the entity that initiates the locating
of the service in the service registry,
binding to the service over a transport,
and executing the service function.
The service consumer executes the
service by sending it a request
formatted according to the contract.

JOURNAL2 | Messaging Patterns in SOA – Part 1 41

Messaging Patterns in Service
Oriented Architecture – Part 1
By Soumen Chatterjee, CGE&Y

“A service is generally implemented as a coarse-grained, discoverable software entity
that exists as a single instance and interacts with applications and other services
through a loosely coupled (often asynchronous), message-based communication model.”

Figure 1. SOA Explained

Interact (Bind & Execute)

Find Publish/Register

Service

Requester/Client/

Consumer

Contract

Messaging
Service

Provider/Service

Contract

Contract

Discovery

Agency/

Registry

Service

Description

Service

Description

Service

Service Provider
The service provider is the network-
addressable entity that accepts and
executes requests from consumers. It can
be a mainframe system, a component, or
some other type of software system
that executes the service request. The
service provider publishes its contract
in the service registry for access by
service consumers.

Service Registry
A service registry is a network-based
directory that contains available services.
It is an entity that accepts and stores
contracts from service providers and
provides those contracts to interested
service consumers.

Service Contract
A contract is a specification of the way
a consumer of a service will interact
with the service provider. It specifies
the format of the request and response
from the service. A service contract
may require a set of preconditions and
post conditions. The preconditions and
post conditions specify the state that
the service must be in to execute a
particular function. The contract
may also specify quality of service
(QoS) levels, specifications for the
nonfunctional aspects of the service.

Service Lease
The lease (the time for which the state
may be maintained), which the service
registry grants the service consumer, is
necessary for services to maintain state
information about the binding between
the consumer and provider. It enforces
loose coupling between the service
consumer and the service provider, by
limiting the amount of time consumers
and providers may be bound. Without a

lease, a consumer could bind to a
service forever and never rebind to
its contract again.

Discoverability and Dynamic
Binding: Messaging in SOA
SOA supports the concept of dynamic
service discovery. The service consumer
queries the service registry for a service,
and the service registry returns a list of
all service providers that support the
requested service. The consumer selects
the cost-effective service provider from
the list, and binds to the provider using
a pointer from the service registry entry.

The consumer formats a request message
based on the contract specifications, and
binds the message to a communications
channel that the service supports. The
service provider executes the service and
returns a message that conforms to the
message definition in service contract.

The only dependency between provider
and consumer is the contract, which
the third-party service registry
provides. The dependency is a runtime
dependency and not a compile-time
dependency. All the information the
consumer needs about the service is
obtained and used at runtime. The
service interfaces are discovered
dynamically, and messages are
constructed dynamically. The service
consumer does not know the format
of the request message or response
message or the location of the service
until the service is actually needed.

The ability to transform messages has
the benefit of allowing applications to
be much more decoupled from each
other. Messaging underpins SOA; we
don’t have SOA without messaging.

Messaging Patterns catalogue
within SOA context
Messaging Patterns exist at different
levels of abstraction with the SOA.
Some patterns are used to represent
the message itself, or attributes of a
messaging transport system. Others
are used to represent creation of
message content or change the
information content of a message.
Patterns are also used to discuss
complex mechanisms to direct messages.
SOA messaging patterns can be
divided into the following categories:

– Message Type Patterns: Describe
different varieties of messages that
can be used in SOA.

– Message Channel Patterns: Describe
the fundamental attributes of a
messaging transport system.

– Routing Patterns: Describe
mechanisms to direct messages
between Service Provider and Service
Consumer.

– Service Consumer Patterns: Describe
the behavior of messaging system
clients.

– Contract Patterns: Illustrates the
behavioral specification to maintain
a smooth communication between
Service Provider and Consumer.

– Message Construction Patterns:
Describes the creation of message
content that travel across the
messaging system.

– Transformation Patterns: Change
the information content of a
message within the enterprise
level messaging.

These patterns are shown in Figure 2.

JOURNAL2 | Messaging Patterns in SOA – Part 1 42

“Messaging underpins SOA;
we don’t have SOA without messaging.”

Message Type Patterns
The message itself is simply some sort
of data structure – such as a string, a
byte array, a record, or an object. It can
be interpreted simply as data, as the
description of a command to be invoked
on the receiver, or as the description of
an event that occurred in the sender.
Sender can send a Command Message,
specifying a function or method on the
receiver that the sender wishes to
invoke. It can send a Document
Message, enabling the sender to
transmit one of its data structures to
the receiver. Or it can send an Event
Message, notifying the receiver of a
change in the sender.

The following message type patterns
can commonly be used in SOA.

Command Message
Problem:
How to invoke a procedure in
another application?

Solution:
Use a command message to reliably
invoke a procedure in another
application as shown in Figure 3.

Interactions:
A command message controls another
application, or a series of other
applications, by sending a specially
formatted message to that system. A
command message includes intelligent
instructions to perform a specific action,
either via headers and attributes, or
as part of the message payload. The
recipient performs the appropriate
action when the message is received.
Command messages are closely related
to the Command pattern [9].

A command message is simply a
regular message that happens to
contain a command. A Simple Object
Access Protocol (SOAP) request is a
command message.

Figure 3. Command Message

Command messages are usually sent
on a point-to-point channel so that each
command will only be consumed and
invoked once.

Document Message
Problem:
How can you transfer data
between services?

Solutions:
Use a document message to reliably
transfer a data structure between
applications. See Figure 4.

Interactions:
A document message is just a single
unit of information, a single object or
data structure that may decompose into
smaller units. The important part of a
document message is its content; the
document. This content is retrieved by
un-marshalling/or de-serializing data.

Document messages are usually sent
using a point-to-point channel. In
request-reply scenarios, the reply is
usually a document message where
the result value is the document.

A document message can be any kind of
message in the messaging system.
A Simple Object Access Protocol (SOAP)
reply message is a document message.

Service

Provider
Consumer

Command

Data

Data

JOURNAL2 | Messaging Patterns in SOA – Part 1 43

Figure 2. Messaging Patterns Catalogue within SOA Context

Contracts Envelop Wrapper

Content Enricher

Content Filter

Claim Check

Command Message

Document Message

Event Message

Request Reply Message

Transactional Client

Polling Consumer

Event-Driven Consumer

Durable Subscriber

Idempotent Receiver

Message Facade

Service Activator

Point-to-point Channel

Publish-Subscribe Channel

Datatype Channel

Dead Letter Channel

Guaranteed Delivery Channel

Messaging Bus

Pipes and Filter

Content Based Routing

Content Aggregator

Correlation Identifier

Message Sequence

Message Expiration

Contract

Service

Requester/Client/

Consumer

Message

Router

Contract

Service

Provider/Service

Message

Channel

Contract Pattern Message Transformation Message Types Message Construction

Consumer Patterns Messaging Channels Routers

Figure 4. Document Message

Event Message
Problem:
Several applications would like to use
event-notification to coordinate their
actions, and would like to use messaging
to communicate those events. How can
messaging be used to transmit events
from one service to another?

Solutions:
Use an event message for reliable,
asynchronous event notification
between applications. See Figure 5.

Interactions:
An event message extends the Observer
model to a set of distributed applications.
Event messages can be sent from one
service to another to provide notification
of lifecycle events within a service-
oriented enterprise, or to announce the
status of particular activities.Applications
for this pattern include enterprise
monitoring and centralized logging.

An important characteristic of event
messages is that they do not require
a reply.

An event message can be any kind
of message in the messaging system.
An event can be an object or data
such as an XML document.

‘If a message says that the Stock price
for certain symbol has changed, that’s
an event. If the message provided
information about the symbol, including
its new price, that’s a document.’

Figure 5. Event Message

Request-Reply Message
Problem:
Messages travel into a message
channel in one direction, from the
sender to the receiver. This
asynchronous transmission makes the
delivery more reliable and decouples
the sender from the receiver. The
problem is that communication
between components often needs to be
two-way. When one component notifies
another of a change, it may want to
receive an acknowledgement.

How can messaging be two-way?

Solutions:
Send a pair of request-reply messages,
each on its own channel. See Figure 6.

Interactions:
Request-Reply has two participants:
– Requester (Service Consumer)

– Sends a request message and waits
for a reply message.

– Replier (Service Provider) –
Receives the request message and
responds with a reply message.

The request channel can be a point-to-
point channel or a publish-subscribe
channel. The difference is whether the
request should be broadcast to all
interested parties or should only be
processed by a single consumer. The reply
channel, on the other hand, is almost
always point-to-point, because it usually
makes no sense to broadcast replies.

The request is like a method call. As
such, the reply is one of three
possibilities:
– Void
– Result value
– Exception

The request should contain a return
address to tell the replier where to send
the reply. The reply should contain a
correlation identifier that specifies
which request this reply is for.

Figure 6. Request Reply Message

Messaging Channel Patterns
Channels, also known as queues, are
logical pathways to transport messages.
A channel behaves like a collection or
array of messages, but one that is
magically shared across multiple
computers and can be used concurrently
by multiple applications.

Consumer
Service

Provider
Reply

Request

Service

Provider

Event

Data

Data

Service

Provider
Consumer

Document

Data

Data

JOURNAL2 | Messaging Patterns in SOA – Part 1 44

A service provider is a program
that sends a message by writing the
message to a channel. A consumer
receives a message from a channel.
There are different kinds of messaging
channels available.

Point-to-Point Channel
Problem:
The sender dispatches a message to a
messaging system, which is responsible
for relaying the message to a particular
recipient. The messaging system might
proactively deliver the message (by
contacting the recipient directly), or
hold the message until the recipient
connects to retrieve it. How can you
ensure that exactly one consumer
will receive the message?

Solution:
Send the message on a point-to-point
channel, which ensures that only one
receiver will receive a particular
message. See Figure 7.

Interactions:
A point-to-point channel ensures that only
one consumer consumes any given
message. If the channel has multiple
receivers, only one of them can
successfully consume a particular
message. If multiple receivers try to
consume a single message, the channel
ensures that only one of them succeeds,
so the receivers do not have to coordinate
with each other.The channel can still have
multiple consumers to consume multiple
messages concurrently, but only a single
receiver consumes any one message.

Publish-Subscribe Channel
Problem:
The service provider broadcasts an
event once, to all interested consumers.

Solution:
Send the event on a publish-subscribe
channel, which delivers a copy of a
particular event to each receiver.
See Figure 8.

Interactions:
A publish-subscribe channel that is
developed based on Observer pattern
[9], and describes a single input
channel that splits into multiple
output channels – one for each
subscriber. After publishing an event
into the publish-subscribe channel,
the same message is delivered to each
of the output channels. Each output
channel is configured on one-to-one
topology to allow only one consumer
to consume a message. The event is
considered consumed only when all
of the consumers have been notified.

A publish-subscribe channel can be a
useful for systems management, error
debugging and different level of testing.

Datatype Channel
Problem:
The receiver must know what type of
messages it is receiving, or it won’t know
how to process them. For example, a
sender might send different objects
such as purchase orders, price quotes,
and queries, but a receiver will probably
take different steps to process each of
these, so it has to know which is which.

Solution:
Use a separate datatype channel for
each data type, so that all data on a
particular channel is of the same type.
See Figure 9.

Interactions:
In any messaging system there are
several separate datatype channels for
each type of data. All of the messages on
a given channel will contain the same
type of data. Based on data type, the
service provider sends the data to the
channel and the consumer receives data
from the appropriate datatype channel.

JOURNAL2 | Messaging Patterns in SOA – Part 1 45

Consumer
Service

ProviderRequest Request
Point-to-point

Channel

Figure 7. Point-to-point Channel

Consumer
Service

Provider 2

Service

Provider 1

Service

Provider 3

Request Request
Publish Subscribe

channel

Figure 8. Publish-Subscribe Channel

Dead Letter Channel
Problem:
There are a number of reasons for
message delivery to fail. Issues might
be message channel configuration
problem, a problem with consumers,
or message expiration.

Solution:
When there is any delivery issue with
the message, it can be moved to a
different messaging channel called a
dead letter channel. See Figure 10.

Interactions:
A dead letter channel is a separate
channel dedicated for bad messages or
invalid messages. From this channel
messages can be rerouted to the
mainstream channel or even in

separate channel for special processing
of the message.

Guaranteed Delivery
Problem:
One of the main advantages of
asynchronous messaging over RPC is
that the participants don’t need to be
online at the same time. While the
network is unavailable, the messaging
system has to use a store and forward
mechanism to ensure message
durability. By default, the messages
are stored in memory until they can
be successfully forwarded to the next
contract point. This mechanism works
well when the messaging system is
running reliably, but if the messaging
system crashes, all of the stored
messages are lost. As a preventative

measure, applications use persistent
media like files and databases to
ensure recovery from system crashes.

Figure 11. Guaranteed Delivery

Solution:
Use a guaranteed delivery mechanism
to make messages persistent.
See Figure 11.

Interactions:
With guaranteed delivery, the
messaging system uses a built-in data
store (local storage disk space in a
participant computer) to persist
messages in each participant computer
on which the messaging system is
installed. The message is safely stored
until it is successfully delivered. In this
way, it ensures guaranteed delivery.

This guaranteed delivery mechanism
increases system reliability, but at the
expense of performance as it involves
considerable numbers of I/O and
consumes a large amount of disk space.
Therefore if performance or debugging/
testing is the priority try to avoid using
guaranteed delivery.

Message Bus
Problem:
An enterprise consists of various

Consumer

Disk Disk

Computer 2Computer 1

Service

Provider

Request Request

JOURNAL2 | Messaging Patterns in SOA – Part 1 46

Figure 9. Datatype Channel

Consumer
Service

Provider 2

Service

Provider 1

Service

Provider 3

Request

Request

Request

Request ADT Channel

Order Channel

Result Channel

Consumer

Dead

Message

Reroute Message
Delivery

Delivery
Fails

Request

Intended

Service

Provider

Channel

Dead Letter

Channel

Figure 10. Dead Letter Channel

independent applications
communicating with each other in a
unified manner. We need an integration/
service architecture that enables those
applications to coordinate in a loosely
coupled fashioned.

Solution:
Structure the connecting middleware
between these applications as a message
bus that enables them to work together
using messaging as shown in Figure 12.

Interactions:
A message bus is a combination of
a common data model, a common
command set, and a messaging
infrastructure to allow different
heterogeneous systems to communicate
through a shared set of interfaces.

A message bus can be considered as a
universal connector between the various

enterprise systems, and as a universal
interface for client applications that
wish to communicate with each other.

A message bus requires that all of the
applications should use the same
canonical data model. Applications
adding messages to the bus may need
to depend on message routers to route
the messages to the appropriate final
destinations.

Message Routing Patterns
Almost all messaging system uses built
in router as well as customized routing.
Message Routers are very important
building blocks for any good integration
architecture. As opposed to the different
message routing design patterns, this
pattern describes a hub-and-spoke
architectural style with few specially
embedded routing logic.

In search of the right router
An important decision for an architect
is to choose the appropriate routing
mechanism. Patterns that will help
you make the right decision are:
– Pipes and Filter
– Content-Based Router
– Content Aggregator

Pipes and Filter
Problem:
How can you divide a larger processing
task into a sequence of smaller,
independent processing steps?

Solution:
Use the pipes and filters pattern to
divide a larger processing task into a
sequence of smaller, independent
processing steps (filters) that are
connected by channels (pipes).
See Figure 13.

Interactions:
Each filter exposes a very simple
interface: it receives messages on the
inbound pipe, processes the message,
performs business transformations,
and publishes the results to the
outbound pipe. The pipe connects one
filter to the next, sending output
messages from one filter to the next.
It’s very similar to execution of a
method call through passing
parameters and getting a return
value. It follows ‘chain of
responsibility’ [11] pattern. Because
all components use the same external
interface they can be composed into
different solutions by connecting the
components to different pipes. The
connection between filter and pipe is
sometimes called port. In the basic
form, each filter component has one
input port and one output port.

JOURNAL2 | Messaging Patterns in SOA – Part 1 47

Figure 12. Message Bus

Consumer

Service

Provider 1

Service

Provider 2

Service

Provider 3

Request Request

Request

Request

C
h
a
n
n
e
l

Service

Provider

Pipe

Filter Filter

Pipe Pipe
ConsumerReply Reply

Figure 13. Pipes and Filter

The pipes and filters pattern uses
abstract pipes to decouple components
from each other. The pipe allows one
component to send a message into the
pipe so that it can be consumed later
by another process that is unknown to
the component. One of the potential
downsides of pipes and filters
architecture is the larger number of
required channels that consume memory
and CPU cycles. Also, publishing a
message to a channel involves a certain
amount of overhead because the data
has to be translated from the application-
internal format into the messaging
infrastructure’s own format.

Using pipes and filters also improves
module-wise unit testing ability. It can
help to prepare a testing framework.
It is more efficient to test and debug
each core function in isolation because
we can tailor the test mechanism to
the specific function.

Content-Based Router
Problem:
The routing can be based on a number
of criteria such as existence of fields,
specific field values, and so on.

Solution:
Use a content-based router to route
each message to correct consumer based
on message content. See Figure 14.

Interactions:
The content-based router examines the
message content and routes the message
onto a different channel based on
message data content. When
implementing a content-based router,
special caution should be taken to make
easily maintainable routing logic. In more
sophisticated integration scenarios, the

content-based router can be implemented
as a configurable rules engine that
computes the destination channel based
on a set of configurable rules.

Content Aggregator
Problem:
The messaging system exchanges
messages between a variety of sources.
The messages have similar content but
different formats, which can complicate
the processing of combined messages.
It would be better processing decision if
we assigned different components with
different responsibilities [11]. For
example, if we want to select all of the
transactions of a particular customer
from different business zones for a
particular quarter. This method is
called event linking and sequencing.

Solution:
Use a stateful content aggregator, to
collect and store individual messages
and combine those related messages to
publish a single aggregated message.
See Figure 15.

Interactions:
A content aggregator is a special filter
that receives a stream of messages
and correlates related messages.
When a complete set of messages has
been received, the aggregator collects
information from each correlated
message and publishes a single,
aggregated message to the output
channel for further processing.
Therefore, aggregator has to be stateful,
because it needs to save the message
state with processing state until the
complete formation of the aggregation.

JOURNAL2 | Messaging Patterns in SOA – Part 1 48

Service

Provider

Consumer 1

Consumer 2

Reply
Content Based

Router

Figure 14. Content Based Router

Figure 15. Content Aggregator

Service

Provider

Reply

Data 1

Message 1

Data 1
Content

Aggregator

Message 1

Reply

When designing an aggregator, we
need to specify the following items:
– Correlation Id – An identifier that

indicates messages internal
relationship

– End Condition – The condition that
determines when to stop processing

– Aggregation Algorithm – The
algorithm used to combine the received
messages into a single output message

Every time the content aggregator
receives a new message, it checks
whether the message is a part of
already existing aggregate or a new
aggregate. After adding the message,
the content aggregator evaluates the
process end condition for the aggregate.
If the condition evaluates to true, a new
aggregated message is formed from the
aggregate and published to the output
channel. If the process end condition
evaluates to false, no message is
published and the content aggregator
continues processing.

Service Consumer Patterns
There are several possible types of
Service Consumer. In this pattern
catalogue we will present a set of
consumer patterns.

Transactional Client
Problem:
Transactions are important part of
any messaging system and are
sufficient for any participant to send
or receive a single message. However,
a few specific scenarios might need a
broader transactional approach, which
in turn may need special transactional
coordination. These cases include (but
are not limited to):
– Send-Receive Message Pairs – Receive

one message and send another.

– Batch Message – Send or receive a
group of related messages in a
batch mode.

– Message/Database Coordination –
Send or receive a message combined
with database update. For example,
when an application receives and
processes a message for ordering a
product, the application will also
need to update the product
inventory database.

Scenarios like these require a different
specification of transactional boundaries
with much more complexities involving
more than just a single message and
may involve other transactional stores
besides the messaging system.

How can you solve this kind of
transactional problems?

Solution:
Use a transactional client – make the
client’s session with the messaging
system transactional and ensure that
the client can specify complex
transaction boundaries. See Figure 16.

Interactions:
Both participants can be transactional.
From a sender’s point of view, the

message isn’t considered added to the
channel until the sender commits the
transaction. On the other hand message
isn’t removed from the channel until
the receiver commits the transaction.

With a transactional receiver, messages
can be received without actual removal
of the message from the channel. The
advantage of this approach is that if
the application crashed at this point,
the message would still be on the queue
after message recovery has been
performed; the message would not be
lost. After the message processing is
finished, and on successful transaction
commit, the message is removed from
the channel.

Polling Consumer
Problem:
In any messaging system, the
consumer needs an indication that
application is ready so that it can
consume the message.

The best approach for the consumer
is to repeatedly check the channel for
message availability. If any message is
available, the consumer consumes it.
This checking is a continuous process
known as polling.

JOURNAL2 | Messaging Patterns in SOA – Part 1 49

Messaging

System

Transactional

Consumer
Consumer

Receive

Commit

Process

<<Delete Message>>

<<Deliver>>

Figure 16. Transactional Client Sequence Diagram

Solution:
The application should use a polling
consumer, one that explicitly makes
a call when it wants to receive a
message. See Figure 17.

Interactions:
A polling consumer is a message receiver.
A polling consumer restricts the
number of concurrent messages to be
consumed by limiting the number of
polling threads. In this way, it prevents
the application from being blocked by
having to process too many requests,
and keeps any extra messages queued
up until the receiver can process them.

Event-Driven Consumer
Problem:
The problem with polling consumers is
that it’s a continuous process involves
dedicated threads and consumes process
time while polling for messages.

Solution:
Instead of making the consumer poll for
the message, a better idea might be to
use event driven message notifications
to indicate message availability.
See Figure 18 and Figure 19.

The application should use an event-
driven consumer. Event-driven
consumers automatically consume
messages as they become available.

Interactions:
An event-driven consumer is invoked
by the messaging system at the time
of message arrival on the consumer’s
channel. The consumer uses application-
specific callback mechanism to pass the
message to the application.

Durable Subscriber
Problem:
In some cases you might require
guaranteed message delivery where a
message consumer is not connected to
publish-subscribe channel or has crashed

before receiving a message. In this case
the messaging system needs to ensure
guaranteed message delivery when the
consumer reconnects to the system.

Solution:
Use a durable subscriber. See Figure 20
and 21.

Interactions:
A durable subscription saves messages
for an off-line subscriber and ensures
message delivery when the subscriber
reconnects. Thus it prevents published
messages from getting lost and ensures
guaranteed delivery. A durable
subscription has no effect on the
normal behavior of the online/active
subscription mechanism.

JOURNAL2 | Messaging Patterns in SOA – Part 1 50

Service

Provider
Data

Polling

Consumer

Figure 17. Polling Consumer

Service

Provider
Data

Event Driven

Consumer

Figure 18. Event-Driven Consumer

Messaging

System

Event Driven

Consumer

Consumer

Initialize

New

Callback

ProcessOn Recieve

Deliver

Figure 19. Event-Driven Consumer Sequence Diagram

Service

Provider
Reply

Durable

Subscriber/

Consumer

Non-Durable

Subscriber/

Consumer

Publish
Subscribe
Channel

Reply

Figure 20. Durable Subscriber

Idempotent Receiver
Problem:
For certain scenarios, instead of using
Durable Subscription mechanism, some
reliable messaging implementations
can produce duplicate messages to
ensure guaranteed, at-least once
Delivery. In these cases, message
delivery can generally only be
guaranteed by resending the message
until an acknowledgment is returned
from the recipient. However, if the
acknowledgment is lost due to an
unreliable connection, the sender may
resend a message that the receiver
has already received.

We need to ensure that the messaging
system is able to safely handle any
messages that are received multiple
times.

Solution:
Design a receiver to be an idempotent
receiver. See Figure 22.

Interactions:
The term idempotent is originated from
mathematics to describe the ability of a
function that produces the same result
if it is applied to itself, i.e. f(x) = f(f(x)).

In messaging Environment this concept
ensures safely resent of same message
irrespective of receipt of same message
multiple times.

In order to detect and eliminate
duplicate messages based on the
message identifier, the message
consumer has to maintain a buffer of
already received message identifiers.
One of the key design issues is to
decide message persisting timeout. In
the simplest case, the service provider
sends one message at a time, awaiting
the receiver’s acknowledgment after
every message. In this scenario, the
consumer efficiently uses the message
identifier to check that the identifiers
are identical. In practice, this style of
communication is very inefficient,
especially when significant throughput
is required. In these situations, the
sender might want to send a whole set
of messages in a batch mode without
awaiting acknowledgment for
individual one. This will necessitate
keeping a longer history of identifiers
for already received messages, and the
size of the message subscriber’s buffer
will grow significantly depending on
the number of message the sender can
send without an acknowledgment.

An alternative approach to achieving
idempotency is to define the semantics
of a message such that resending the
message does not impact the system.
For example, rather than defining a
message as variable equation like ‘Add
0.3% commission to the Employee code
A1000 having a base salary of $10 000’,
we could change the message to ‘Set
the commission amount $300.00 to the
Employee code A1000 having a base
salary of $10 000’. Both messages
achieve the same result – even if the
current commission is $300. The
second message is idempotent because
receiving it twice will not have any
effect. So whenever possible, try to
sendconstants as message and avoid
variables in messages. In this way we
can efficiently achieve idempotency.

Figure 22. Duplicate Message Problem

Service Factory
Problem:
When designing service consumer for
multiple styles of communication, it
might seem necessary to define the
service for each style, and this concept
can be linked to the Factory Design
Pattern [9]. In SOA it’s a challenge to
invoke the right services based on the
style of communication.

Service

Provider

Acknowledge

Message

Message

Duplicate Message

Network Failure

Consumer

JOURNAL2 | Messaging Patterns in SOA – Part 1 51

Subscriber

Publish Process

Messaging

System

Subscribe

Subscribe

Unsubscribe<<Deliver>>

Durable

Subscriber

Close

Close

Consumer

Figure 21. Durable Subscriber sequence diagram

Solution:
Design a service factory that connects
the messages on the channel to the
service being accessed. See Figure 23.

Interactions:
A service factory may return a simple
method call or even a complex remote
process invocation. The service factory
invokes the service just like any other
method invocation and optionally can
create a customized reply message.

Message Façade Pattern
Problem:
Depending on business requirements,
you might need to encapsulate business
logic flow and complexity behind a
standard façade.

Solution:
A message façade can be used
asynchronously and maintained
independently. It acts as an interceptor
between service consumer and service
provider. See Figure 24.

Interactions:
The client creates a command message
and sends it to the message façade
through messaging channel. The façade
receives the message (using a polling
consumer or an event-driven consumer)
and uses the information it contains to
access business tier code to fulfill a use
case. Optionally, a return message is
sent to the client confirming successful
completion of the use case and
returning data.

Conclusion
So far we have understood how
messaging patterns exist at different
levels of abstraction in SOA. In this
paper, which is the first of a two-part
series on messaging patterns in service
oriented architecture, Message Type

Patterns were used to describe different
varieties of messages in SOA, Message
Channel Patterns explained messaging
transport systems, Routing Patterns
explained mechanisms to route
messages between the Service Provider
and Service Consumer, and finally
Service Consumer Patterns illustrated
the behavior of messaging system
clients. In the next issue of JOURNAL,
the final part of this paper will cover
Contract Patterns that illustrate the
behavioral specifications required to
maintain smooth communications
between Service Provider and Service
Consumer and Message Construction
Patterns that describe creation of
message content that travels across
the messaging system.

JOURNAL2 | Messaging Patterns in SOA – Part 1 52

Figure 23. Service Factory

Consumer Request

Reply

Service

Activator

Service Provider

Service

Consumer
Message

Facade
Router

Service

Provider

Figure 24. Message Façade

Copyright Declaration
G Hohpe & B Woolf, Enterprise
Integration Patterns, (adapted material
from pages 59-83), (c) 2004 Pearson
Education, Inc. Reproduced by
permission of Pearson Education, Inc.
Publishing as Pearson Addison Wesley.
All rights reserved.

References
1. Enterprise Integration Patterns:

Designing, Building, and Deploying
Messaging Solutions, Gregor Hohpe
and Bobby Woolf,
Addison-Wesley, 2004

2. Service Oriented architecture:
A Primer, Michael S Pallos,
EAI Journal, December 2001

3. Solving Information Integration
Challenges in a Service-Oriented
Enterprise, ZapThink Whitepaper,
http://www.zapthink.com

4. SOA and EAI, De Gamma Website,
http://www.2gamma.com/en/produit/
soa/eai.asp

5. Introduction to Service-Oriented
Programming, Guy Bieber and Jeff
Carpenter, Project Openwings,
Motorola ISD, 2002

6. Java Web Services Architecture,
James McGovern, Sameer Tyagi,
Michael Stevens, and Sunil Mathew,
Morgan Kaufman Press, 2003

7. Using Service-Oriented Architecture
and Component-Based Development
to Build Web Service Applications,

Alan Brown, Simon Johnston, and
Kevin Kelly, IBM, June 2003

8. The Modular Structure of Complex
Systems, Parnas D and Clements P,
IEEE Journal, 1984

9. Design Patterns: Elements of
Reusable Object-Oriented Software,
Gamma E, Helm R, Johnson R, and
Vlissides J, Addison-Wesley, 1994

10. Computerworld Year-End Special:
2004 Unplugged, Vol. 10, Issue No. 10,
15 December 2003–6 January 2004,
http://www.computerworld.com.sg/
pcwsg.nsf/currentfp/fp

11. Applying UML and Patterns –
An introduction to OOA/D and
the Unified Process,
Craig Larman, 2001

JOURNAL2 | Messaging Patterns in SOA – Part 1 53

Soumen Chatterjee,
Senior Consultant, CGE&Y (India)
soumen.chatterjee@cgey.com

Soumen is a Microsoft Certified
Professional and Sun Certified
Enterprise Architect. He’s significantly
involved in enterprise application
integration and distributed object
oriented system development using
Java/J2EE technology to serve global
giants in the finance and health care
industries. With expertise in EAI
design patterns, messaging patterns
and testing strategies he designs and

develops scalable, reusable,
maintainable and performance tuned
EAI architectures. Soumen is a
Senior Consultant with Cap Gemini
Ernst & Young. He’s an admirer of
extreme programming methodology
and has primary interests in AOP
and EAI. Besides software Soumen
likes movies, music and follows mind
power technologies.

http://www.computerworld.com.sg/pcwsg.nsf/currentfp/fp
http://www.zapthink.com
http://www.2gamma.com/en/produit/soa/eai.asp
mailto:soumen.chatterjee@cgey.com

Microsoft is a registered trademark of Microsoft Corporation

JOURNAL2

Executive Editor
& Program Manager
Arvindra Sehmi
Architect, Developer and Platform
Evangelism Group, Microsoft EMEA

Managing Editor
Graeme Malcolm
Principal Technologist,
Content Master Ltd

Editorial Board
Christopher Baldwin
Principal Consultant, Developer and
Platform Evangelism Group, Microsoft
EMEA
Gianpaolo Carraro
Architect, Developer and Platform
Evangelism Group, Microsoft EMEA
Simon Guest
Program Manager, PSPG Architecture
Strategy, Microsoft Corporation
http://www.simonguest.com

Wilfried Grommen
General Manager, Business Strategy,
Microsoft EMEA
Richard Hughes
Program Manager, PSPG Architecture
Strategy Microsoft Corporation
Neil Hutson
Director of Windows Evangelism,
Platform Strategy and Partner Group,
Microsoft Corporation
Eugenio Pace
Principal Consultant, Microsoft
Consulting Services, Microsoft
Argentina
Harry Pierson
Architect, PSPG Architecture Strategy,
Microsoft Corporation
http://devhawk.com
Michael Platt
Architect, Developer and Platform
Evangelism Group, Microsoft Ltd
http://blogs.msdn.com/michael_platt

Philip Teale
Partner Strategy Manager, Enterprise
Partner Group, Microsoft Ltd

Project Management
Content Master Ltd
www.contentmaster.com

Design Direction
venturethree, London
www.venturethree.com

Orchestration
Katharine Pike
WW Architect Programs Manager,
PSPG Architecture Strategy, Microsoft
Corporation

Foreword Contributor
Michael Platt
Architect, Developer and Platform
Evangelism Group, Microsoft Ltd
http://blogs.msdn.com/michael_platt

The information contained in this Microsoft® Architects Journal (‘Journal’) is for information purposes only. The material in the Journal does not constitute the opinion of Microsoft or Microsoft’s advice and you should not rely
on any material in this Journal without seeking independent advice. Microsoft does not make any warranty or representation as to the accuracy or fitness for purpose of any material in this Journal and in no event does

Microsoft accept liability of any description, including liability for negligence (except for personal injury or death), for any damages or losses (including, without limitation, loss of business, revenue, profits, or consequential loss)
whatsoever resulting from use of this Journal. The Journal may contain technical inaccuracies and typographical errors. The Journal may be updated from time to time and may at times be out of date. Microsoft accepts no

responsibility for keeping the information in this Journal up to date or liability for any failure to do so. This Journal contains material submitted and created by third parties. To the maximum extent permitted by applicable
law, Microsoft excludes all liability for any illegality arising from or error, omission or inaccuracy in this Journal and Microsoft takes no responsibility for such third party material.

All copyright, trade marks and other intellectual property rights in the material contained in the Journal belong, or are licenced to, Microsoft Corporation. Copyright © 2003 All rights reserved. You may not copy, reproduce,
transmit, store, adapt or modify the layout or content of this Journal without the prior written consent of Microsoft Corporation and the individual authors. Unless otherwise specified, the authors of the literary and artistic

works in this Journal have asserted their moral right pursuant to Section 77 of the Copyright Designs and Patents Act 1988 to be identified as the author of those works.

http://www.simonguest.com
http://devhawk.com
http://blogs.msdn.com/michael_platt
http://blogs.msdn.com/michael_platt
http://www.venturethree.com
http://www.contentmaster.com

	Front Cover / Contents
	Editorial By Arvindra Sehmi
	Metropolis By Pat Helland
	Pat Helland - Biography
	Service Oriented Architecture – Considerations for Agile Systems By Lawrence Wilkes and Richard Veryard
	Lawrence Wilkes - Biography
	Richard Veryard - Biography
	Service Oriented Architecture Implementation Challenges By Easwaran G Nadhan
	Easwaran G Nadhan - Biography
	Business Patterns for Software Engineering Use – Part 1 By Philip Teale and Robert Jarvis
	Philip Teale - Biography
	Robert Jarvis - Biography
	Messaging Patterns in Service Oriented Architecture – Part 1 By Soumen Chatterjee
	Soumen Chatterjee - Biography
	Editorial Board / Contributors

