
THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
TOOLBOX
Data Integration Tools and Resources
Terrence Dorsey page 6

CUTTING EDGE
Application Extensibility:
MEF vs. IoC
Dino Esposito page 10

DATA POINTS
Server-Side Paging with the Entity
Framework and ASP.NET MVC 3
Julie Lerman page 16

FORECAST: CLOUDY
Cloud Services Mashup
Joseph Fultz page 22

MOBILE MATTERS
Windows Phone Navigation:
The Basics
Yochay Kiriaty &
Jaime Rodriguez page 82

TEST RUN
Diffusion Testing
James McCaffrey page 86

THE WORKING PROGRAMMER
Multiparadigmatic .NET, Part 6:
Refl ective Metaprogramming
Ted Neward page 88

UI FRONTIERS
Touch Gestures on Windows Phone
Charles Petzold page 92

DON’T GET ME STARTED
Missing the (Power) Point
David Platt page 96

MARCH 2011 VOL 26 NO 3

PROCESS AND DATA INTEGRATION
Cloud-Based Collaboration with SharePoint Online
Chris Mayo . 32

Processing Health Care Claims with
BizTalk Server 2010
Mark Beckner . 44

Tips and Tricks for Loading Silverlight
Locale Resources
Matthew Delisle . 52

Writing a Debugging Tools for Windows Extension
Andrew Richards . 60

Building Data-Centric Web Apps with
ASP.NET MVC and Ext JS
Juan Carlos Olamendy . 70

Building and Using Custom OutputCache
Providers in ASP.NET
Brandon Satrom . 76

Using Quince™, you and your team can
collaborate on the user interface using
wireframes, designs and examples.

Then use NetAdvantage® UI controls,
like the map control used here, to bring
the application to life quickly & easily.

...

..

...

Untitled-7 2 11/10/10 10:59 AM

www.infragistics.com/impress

From start to finish, Infragistics gives you the tools to create
impressive user experiences that'll make end users happy!

SEE HOW WE USE THE TOOLS
TO CREATE THIS KILLER APP AT
INFRAGISTICS.COM/IMPRESS

Infragistics Sales 800 231 8588 • Infragistics Europe Sales +44 (0) 800 298 9055 • Infragistics India +91 80 4151 8042 • @infragistics

..

...

Untitled-7 3 11/10/10 10:59 AM

www.infragistics.com/impress

magazine

Printed in the USA

LUCINDA ROWLEY Director
KIT GEORGE Editorial Director/mmeditor@microsoft.com
KERI GRASSL Site Manager

KEITH WARD Editor in Chief/mmeditor@microsoft.com
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Abraham M. Langer Senior Vice President, Audience Development & Digital Media
Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
Carmel McDonagh Vice President, Attendee Marketing
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

MARCH 2011 VOLUME 26 NUMBER 3

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

programmersparadise.com

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/textcontrol

Download a demo today.

Professional Edition
Paradise #

T79 12101A01
$1,109.99

• .NET WinForms and WPF rich
text box for VB.NET and C#

• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML,

XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames,

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 16.0
Word Processing Components
TX Text Control is royalty-free, robust and
powerful word processing software
in reusable component form.

programmers.com/vSphereprogrammers.com/LEAD

LEADTOOLS Document
Imaging SDK v17.0
by LEAD Technologies
LEADTOOLS Document Imaging has every compo-
nent you need to develop powerful image-enabled
business applications including specialized bi-tonal
image processing, document clean up, annota-
tions, high-speed scanning, advanced compression
(CCITT G3/G4, JBIG2, MRC, ABC), and
Win32/64 binaries for C/C++, .NET, Silverlight,
WPF, WCF, & WF. Available add-ons include:
• Multi-threaded OCR/ICR/OMR/MICR/

Barcodes (1D/2D)
• Forms Recognition/Processing
• Print Capture and Document Writers
• PDF, PDF/A and XPS

Paradise #
L05 03301A01
$2,007.99

VMware vSphere
Essentials Kit Bundle
vSphere Essentials provides an all-in-one
solution for small offices to virtualize three
physical servers for consolidating and
managing applications to reduce hardware
and operating costs with a low up-front
investment. vSphere Essentials includes:

• VMware ESXi and VMware ESX
(deployment-time choice)

• VMware vStorage VMFS
• Four-way virtual SMP
• VMware vCenter Server Agent
• VMware vStorage APIs/VCB
• VMware vCenter Update Manager
• VMware vCenter Server for Essentials

for 3 hosts
Paradise #

V55 85101C02

$446.99

programmers.com/vmware

VMware Workstation 7
VMware Workstation 7 is the gold-standard
virtualization software for desktop and laptop
computers, with the richest feature set and
broadest platform support available. VMware
Workstation enables users to create and host
multiple virtual machines on a single desktop,
expanding the power of desktop systems for
IT administrators; software development and
test engineers; technical sales, training and
support staff; and PC enthusiasts.

VMware Workstation transforms the way
technical professionals develop, test, demo,
and deploy software. Workstation’s innovative
features for VMware environments help to
reduce hardware cost, save time, minimize
risk, and streamline tasks that save time
and improve productivity.

for Linux &
Windows

Paradise #
V55 22301A04

$153.99

Spread for Windows Forms 5
by GrapeCity
• World’s best selling .NET Spreadsheet
• Import/export native Microsoft Excel files

with full formatting
• Extremely flexible printing and export options

including PDF
• Extensible formula support, including

Microsoft Excel functions
• Hundreds of chart styles for enhanced data

visualization
• Powerful user interface and flexible data

connectivity
• WYSIWYG spreadsheet designers, quick-start

wizard and chart designers
• Royalty-free licensing

Upgrade
Paradise #
F02 01101A01
$936.99

programmers.com/grapecity

866-719-1528

New Intel Visual
Fortran Compiler
by Intel
Intel® Visual Fortran Composer XE
2011 includes the latest generation of Intel®

Fortran compilers, Intel® Visual Fortran Compiler
XE 12.0 for Windows. Intel® Fortran Composer
XE is available for Linux and Mac OS X. This
package delivers advanced capabilities for
development of application parallelism and
winning performance for the full range of Intel®

processor-based platforms and other compatible
platforms. It includes the compiler’s breadth of
advanced optimization, multithreading, and
processor support, as well as automatic proces-
sor dispatch, vectorization, and loop unrolling.

for Windows
Single (SSR)
Paradise #
I23 86101E03
$263.99

programmers.com/intel programmers.com/microsoft

Microsoft SQL Server
Developer Edition 2008 R2
by Microsoft
SQL Server 2008 Developer enables
developers to build and test applications
that run on SQL Server on 32-bit, ia64, and
x64 platforms. SQL Server 2008 Developer
includes all of the functionality of Enterprise
Edition, but is licensed only for development,
test, and demo use. The license for SQL
Server 2008 Developer entitles one developer
to use the software on as many systems
as necessary. For rapid deployment into
production, instances of SQL Server 2008
Developer can easily be upgraded to SQL
Server 2008 Enterprise without reinstallation.

2-bit/x64
IA64 DVD
Paradise #

M47 31101A04

$41.99

programmers.com/sparxsystems

Enterprise Architect
Corporate Edition
Visualize, Document and
Control Your Software Project
by Sparx Systems
Enterprise Architect is a comprehensive,
integrated UML 2.1 modeling suite
providing key benefits at each stage of
system development. Enterprise Architect
7.5 supports UML, SysML, BPMN and
other open standards to analyze, design,
test and construct reliable, well under-
stood systems. Additional plug-ins are
also available for Zachman Framework,
MODAF, DoDAF and TOGAF, and to
integrate with Eclipse and Visual Studio
2005/2008.

1-4 Licenses
Paradise #

SP6 03101A02
$182.99

programmers.com/mindjet

Mindjet® MindManager
version 9 for Windows®

Every Successful Project Starts
with a Good Plan.
by Mindjet®

Mindjet MindManager® is information
mapping software that gives business
professionals a better way to conquer
information overload, brainstorm
concepts, develop strategies, simplify
project planning, and communicate
results. MindManager® maps provide
an intuitive visual framework for
planning successful projects.

1 User
Paradise #

F15 17401A01

$293.98

programmers.com/idm

UltraEdit
The #1 Best Selling Text Editor
in the World

by IDM
UltraEdit is the world’s standard in text
editors. Millions use UltraEdit as the
ideal text/hex/programmers editor
on any platform — Windows, Mac,
or Linux!

Features include syntax highlighting
for nearly any programming language;
powerful Find, Replace, Find in Files,
and Replace in Files; FTP support, sort,
column mode, hex, macros/scripting,
large file handling (4+ GB), projects,
templates, Unicode, and more.

Named User
1-24 Users
Paradise #

I84 01201A01
$59.95

NEW
RELEASE!

Win an iPad!
Place an Order for Software
(or Hardware) with
Programmer’s Paradise
and You’ll be Entered
for a Drawing to Win
an iPad Wi-Fi 32GB.

Just Use the Offer Code TRWD03
When You Place Your Order Online or with
Your Programmer’s Paradise Representative.

New
Version

Released!

programmers.com/embarcadero

Embarcadero RAD Studio XE
by Embarcadero
Embarcadero® RAD Studio XE is a comprehen-
sive application development suite and the
fastest way to visually build GUI-intensive,
data-driven applications for Windows, .NET,
PHP and the Web. RAD Studio includes Delphi®,
C++Builder®, Delphi Prism™, and RadPHP™. The
suite provides powerful compiled, managed
and dynamic language support, heterogeneous
database connectivity, rich visual component
frameworks and a vast third-party ecosystem
that enable you to deliver applications up to
5x faster across multiple Windows, Web, and
database platforms!

Paradise #
CGI 15401A01
$1,383.99

NEW
RELEASE!

Untitled-11 1 2/2/11 3:41 PM

www.programmersparadise.com

msdn magazine4

Now, a few words about how to get your article rejected aft er it’s
been accepted for publication. Th e fi rst, best (worst?) thing you can
do is not communicate with the staff , beginning with me. It’s hap-
pened numerous times that an author is late with an article. Hey, stuff
happens, and delays can be caused by any number of circumstances.
What drives me to distraction is when an author doesn’t inform me
that an article or requested bit of information will be late. I can almost
always work around delays; to do that, however, I need to hear from
you. Even if you come to the conclusion that you won’t be able to turn
in an article at all (it happens sometimes), let me know so I can make
alternative arrangements. If I don’t know, however, it throws a shiny
steel monkey wrench right into the middle of our processes, and
makes me (and my staff) miserable. Please don’t make us miserable.

Other reasons your submitted article can be rejected:
• Plagiarism. You can’t copy and paste from published docu-

ments. At all. Not nowhere, not nohow. “Th at’s obvious!” you
say. You’d be surprised at how un-obvious it is to some writers.

• Sloppy writing. See my section about the query. You may
not be the Shakespeare of dev authors, but strive to turn in
your best work. Th at means aft er you write the article, get
away from it for a day and go back and edit it. Th en do it
again. If information is unclear or incomplete, fi x it. Don’t
expect us to do it all for you. If we do that, and still publish
your article anyway because we love the topic, be assured
you won’t get assigned a second article.

• Failure to follow writer’s guidelines. All authors get a copy of
our writing guidelines. I suspect some of them barely glance
at the document. Don’t let this be you. Th ere are specifi c
rules that need to be followed. Learn them. Love them.

One of the best parts of my job is working with authors. I try to
make it a relaxed, enjoyable process. You can do your part to help me
by avoiding these don’ts. Send your
(properly formatted!) article ideas to
me at mmeditor@microsoft .com.

How to Get Rejected

Last month, I talked about some of the best ways to get published
in MSDN Magazine. Th at naturally led me to think of some equally
good ways to not get published in the magazine. If February was
the list of dos, this is the list of don’ts. Follow these rules (or is that
“don’t follow these rules”—I get confused with negatives) to give
your query the best shot at not getting a positive response from
me and the team.

Th e best way to ensure your query doesn’t get accepted, or even
considered, is to put it in the wrong format. We’ve written a guide to
the proper formatting of queries, which you can fi nd at bit.ly/eZcovQ.
One of the critical pieces of information in the document is the title
of your query. It should state “MSDN Article Query” in the subject
line—and nothing else. Please don’t get cute with the title; clever
subject lines don’t thrill me. Like you, I get tons of e-mail each day,
and I need to quickly separate the wheat from the chaff . If you’ve
got the right title, I’ll look over the query; if not, it’s ye olde Delete
key for your e-mail.

Another way to hurt your chances: Make your query novella
length. My eyes glaze over when I open an article query and notice
that it will take quite a lot of scrolling to get through it all. Brevity is
key here—short, sweet and clear. If you can’t do this in your query,
I’ll have serious doubts about whether you can do it in an article.

Th at brings up another crucial point: Your query, if I haven’t
worked with you before, is your initial writing audition. Writing
for MSDN Magazine isn’t like writing a blog entry—you don’t need
to have been previously published, but you do need to demonstrate
at least basic writing chops. If your query is full of misspellings,
sloppy grammar and missing information, you’ll get turned down,
guaranteed. Aft er all, if I can’t trust you to write a proper query, I’m
surely not going to trust you to write an entire article.

One last item about queries: Please don’t make your pitch in
an attached Word document. I’m not keen on downloading and
opening attachments just to read a query. Include the query in the
body of the e-mail—please!

EDITOR’S NOTE KEITH WARD

© 2011 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

mailto:mmeditor@microsoft.com
http://bit.ly/eZcovQ
http://msdn.microsoft.com/magazine

Untitled-1 1 2/9/11 10:43 AM

www.axosoft.com

msdn magazine6

(albahari.com) and supported by a huge community of programmers
and data experts.

If you’re just getting started with LINQ, check out Dan Wahlin’s
blog post, “Learn How to Use LINQ with LINQPad” (bit.ly/hlOyMh),
and Al Tenhundfeld’s article, “Master LINQ with LINQPad” (bit.ly/

fSUij4). Both will get you up and running quickly.
Not only is LINQPad a great tool for LINQ queries, it also lets you

interactively run and verify functions in C# and Visual Basic. Rich
Strahl demonstrates this handy feature in his article, “LINQPad as a
Code Snippet Execution Engine” (bit.ly/eCD60C).

Entity Framework
The ADO.NET Entity Framework is a .NET object-relational mapping
(O/RM) framework meant to simplify access to relational databases
from your code. Simply stated, the Entity Framworok lets you map
your database schema to programmatic entities that you can query
via properties. To learn more about the Entity Framework, see the
ADO.NET Entity Framework Developer Center (bit.ly/eOmtC1).

If you’re new to the Entity Framework, get up to speed by working
through the Microsoft “Getting Started with Entity Framework”
tutorials (bit.ly/gcrXyU) for WebForms. If you prefer to use
ASP.NET MVC, there’s also a “Creating Model Classes with
the Entity Framework” tutorial (bit.ly/dXJAjx).

Julie Lerman, our regular Data Points columnist, is an Entity Framework
expert, having written the comprehensive “Programming Entity
Framework, Second Edition” (O’Reilly,
2010). Learn more about her book at
learnentityframework.com. Want to get a taste of
some advanced tasks you can achieve with
the Entity Framework? Read Lerman’s
December 2010 column, “Profi ling
Database Activity in the Entity
Framework” (bit.ly/fl Lwdw).

Of course, LINQPad is a great tool for
learning the Entity Framework, too. Check
out “Using LINQPad with Entity Frame-
work,” (bit.ly/hUBRu0) for a full tutorial.

Data Integration Tools and Resources
It seems that all but the most trivial applications these days deal with
data. Often, lots of data. So I guess that means, as a developer, you
need to add “Database Expert” to the many hats you wear. Or maybe
not: What if there were tools and resources out there that gave you a
leg up and did some of the heavy lifting for you?

A good place to start is the MSDN Data Developer Center
(msdn.microsoft.com/data), where you’ll fi nd links to a huge selection of
Microsoft tools and technologies for integrating data access into your
apps. From SQL Server to ADO.NET to MSXML, you’ll fi nd it all there.

In fact, it’s such a comprehensive resource I probably could leave it
at that. Happy databinding!

But wait! There’s more ...

Data Basics
What’s that? You’re not already savvy in the ways of SQL Server? Tables,
rows and records sounds more like party planning than dev speak? If
you’re just getting started with data-centric development—or need a
refresher—here are a few resources that will get you up to speed.

Geekgirl’s Plain-English Computing database guides (geekgirls.com/

category/offi ce/databases) provide a series of “Databasics” tutorials
explaining the core concepts of database design and use. If you’re
starting from scratch, you can’t do much better than this.

Once you understand those basics, a solid next step would be
something like the Code Project article “SQL for Developers:
Basic Data Retrieval” (bit.ly/gurX8Y). Here you’ll learn how to use
simple SQL queries to get selected data out of a database and into
your app, where you can do something useful with it. (That task is left
to the reader ... but read on for some tips.)

For a deeper look at the syntax for communicating with a database
engine like SQL Server 2008, check out the Transact-SQL Reference
(bit.ly/hDhdvz) in SQL Server Books Online.

Once you get coding, you’ll want to check frequently for tips and
tricks at SQL for Programmers, the .NET Answers archive of SQL
programming tips (bit.ly/ejD7Zg).

LINQ
Language Integrated Query (LINQ) is a feature of the Microsoft .NET
Framework that extends data access using native language constructs
in C# and Visual Basic (and F# to some extent, as well). Learn more
about it at the LINQ Developer Center (bit.ly/fl 9xpg).

One of the strengths of LINQ is that it enables you to write SQL-like
queries using strongly typed syntax. Then, LINQ providers such as
LINQ to SQL or LINQ to Objects can handle the fi ne details of the
actual data source. For a practical overview of how this works, see
the Data Points column by John Papa, “Standard Query Operators
with LINQ” (bit.ly/huKhxa).

LINQPad (linqpad.net) has become a crucial tool for developers to
learn LINQ, prototype queries, or interactively query a wide variety of
data sources. LINQPad is a free tool written by Joseph Albahari

TOOLBOX TERRENCE DORSEY

Julie Lerman’s Book

LINQPad has become a crucial
tool for developers to learn
LINQ, prototype queries,

or interactively query a wide
variety of data sources.

http://msdn.microsoft.com/data
http://geekgirls.com/category/office/databases
http://geekgirls.com/category/office/databases
http://bit.ly/gurX8Y
http://bit.ly/hDhdvz
http://bit.ly/ejD7Zg
http://bit.ly/fl9xpg
http://bit.ly/huKhxa
http://linqpad.net
http://albahari.com
http://bit.ly/hlOyMh
http://bit.ly/fSUij4
http://bit.ly/fSUij4
http://bit.ly/eCD60C
http://bit.ly/eOmtC1
http://bit.ly/gcrXyU
http://bit.ly/dXJAjx
http://learnentityframework.com
http://bit.ly/flLwdw
http://bit.ly/hUBRu0

Untitled-5 1 2/2/11 1:18 PM

www.devexpress.com/platforms

msdn magazine8 Toolbox

WCF Data Services and OData
WCF Data Services—formerly known as ADO.NET Data Services—lets
you share, consume and update data via HTTP using the OData
protocol (odata.org). Like the Entity Framework, WCF Data Services
uses an Entity Data Model (EDM) to bridge between data source and
program entities. You can read more about WCF Data Services on
MSDN at bit.ly/hnuvwv.

To get you started, Shayne Burgess walks you through the basics
of using OData and Data Services in the article, “Building Rich
Internet Apps with the Open Data Protocol,” in the June 2010
issue of MSDN Magazine (bit.ly/gPZGDc).

Not sure which WCF services to use for your data-centric app?
Tony Sneed wrote an in-depth appraisal of WCF Data Services vs.

WCF Soap Services (bit.ly/icbLnR) that will help you understand the
strengths of each approach.

How about putting a bunch of these technologies together into
one interesting sample? Shawn Wildermuth, in his article “WCF Data
Services and jQuery” (bit.ly/hVCMWd), builds a Web app that uses
jQuery to retrieve data in JSON format, exposes the data as entities
via Entity Framework, and then uses WCF Data Services to expose
the entities via REST. I think we have a “Buzzword Bingo” winner here.

A highly rated tool for making sense of your data sources is the
Open Data Protocol Visualizer extension for Visual Studio 2010
(bit.ly/dWt19X), which displays the types and relationships provided by
WCF Data Services in simplifi ed diagram form. Read Audrey Petit’s
“Open Data Protocol Visualizer Extension for Visual Studio
2010” blog post (bit.ly/hKSKRx) to learn how it works.

NHibernate
NHibernate (nhforge.org) is an open source O/RM framework for
development with the .NET Framework. Like the Entity Framework,
NHibernate lets you map databases to entities and allows simplifi ed
programmatic access to the data.

Because it’s a community-driven effort, there are lots of useful
resources available for learning and using NHibernate in your
projects. One great way is to jump in and start coding. Gabriel
Schenker’s “Your Very First NHibernate Application” series of
articles on dotnetslackers.com (direct link: bit.ly/exFATb) is one such
tutorial. Another is Mitch Fincher’s “Learning with Code Samples”
for NHibernate (bit.ly/e91Nzv).

Would you rather see the movie? Well then, check out the
Summer of NHibernate (summerofnhibernate.com) screencast series,
which walks you step-by-step from getting set up to writing your fi rst
queries to advanced topics like modeling inheritance and managing
session state. There’s a lot to watch, so get your popcorn ready and
settle in for a few evenings of learning.

Zentity
Many business and social apps run
on data, but researchers are
increasingly creating and sorting
through huge data sources from
clinical studies, experimental results
and even celestial observations. In
response, Microsoft Research
released Zentity 2.0 (bit.ly/fi FPb3),
a data library framework that can
be used for storing, accessing and
analyzing data using SQL Server
2008. The new version of Zentity
leverages the .NET Framework 4
with support for WCF Data
Services and OData, LINQ, Entity
Framework, Windows PowerShell
and more.

TERRENCE DORSEY is the technical editor
of MSDN Magazine. You can read his
blog at terrencedorsey.com or follow him
on Twitter: @tpdorsey.

LINQPad

Open Data Protocol Visualizer

TOOLBOX

http://odata.org
http://bit.ly/hnuvwv
http://bit.ly/gPZGDc
http://bit.ly/icbLnR
http://bit.ly/hVCMWd
http://bit.ly/dWt19X
http://bit.ly/hKSKRx
http://nhforge.org
http://bit.ly/exFATb
http://bit.ly/e91Nzv
http://summerofnhibernate.com
http://bit.ly/fiFPb3
http://Twitter.com/tpdorsey

Untitled-5 1 2/2/11 1:18 PM

www.devexpress.com/products

msdn magazine10

 Application Extensibility: MEF vs. IoC
of specific types so that developers can pre- and post-process
the execution of methods. I covered interception in Unity 2.0 in
January (msdn.microsoft.com/magazine/gg535676).

Th e MEF, in a way, can serve as the factory of a graph of objects,
meaning that it can recognize and handle members on a class that
need be resolved at run time. The MEF also provides minimal
support for caching instances, meaning that some caching capa-
bilities exist, but they’re not as functionally rich as in some other
IoC frameworks. Finally, in the version shipped with the .NET
Framework 4, the MEF lacks interception capabilities entirely.

Having said that, when should you use the MEF? If you’ve never
used an IoC framework and just need to clean up the design of your
system by adding a bit of dependency injection, then the MEF can
be an easy start. As long as you can quickly achieve your goals with
it, the MEF is preferable to an IoC framework.

On the other hand, if you’ve spent years working with one or
more IoC frameworks and can squeeze any bit of functionality
out of them, then there’s probably nothing that the MEF can give
you except, perhaps, its ability to scan various types of catalogs to
fi nd matching types. It should be noted, however, that some IoC
frameworks such as StructureMap (structuremap.net/structuremap/
ScanningAssemblies.htm) already off er to scan directories and assemblies
to look for specifi c types or implementations of given interfaces.
With the MEF, this is probably easier and more direct to do than
with StructureMap (and a few others).

In summary, the first question to answer is whether you’re
looking for general extensibility. If the answer is yes, then the MEF
must be considered—perhaps in addition to an IoC tool if you also
need to handle dependencies, singletons and interception. If the

There’s an interesting new component in the Microsoft .NET
Framework 4 specifi cally designed to provide an eff ective answer
to an evergreen question: How would you write extensible appli-
cations that can discover at run time all the parts they’re made of?

As Glenn Block explained in his February 2010 article, “Build-
ing Composable Apps in .NET 4 with the Managed Extensibility
Framework” (msdn.microsoft.com/magazine/ee291628), the Managed
Extensibility Framework (MEF) can be used to streamline building
composable and plug-in-based applications. As one who started
approaching the problem back in 1994 (yes, it was one of my fi rst
real challenges as a developer), I defi nitely welcome any proposed
solutions in this problem space.

Th e MEF doesn’t require you to buy, download and reference any
additional libraries, and it off ers a simple programming interface
because it’s focused on solving the problem of general, third-party
extensibility of existing applications. Glenn’s article is an excellent
introduction to the MEF and should be considered required read-
ing if you’re thinking about plug-in-based applications.

In this article, I’ll walk through the steps required to build an
extensible application using the MEF as the underlying glue to
keep the main body and external parts of the application together.

From IoC to the MEF and Back
Before I get to the sample application, however, I’d like to share
some thoughts about the MEF and another popular family of
frameworks: Inversion of Control (IoC).

In a nutshell, it’s correct to say that the functionality of the
MEF and of a typical IoC framework overlap, but don’t coincide.
With most IoC frameworks you can perform tasks that the MEF
just doesn’t support. You could probably employ a functionally
rich IoC container and, with some effort on your own, emulate
some MEF-specifi c capabilities. In light of this, the question that
I’m frequently asked when I mention the MEF in classes and
everyday work is: What’s the diff erence between the MEF and an
IoC tool? And when do I really need the MEF?

My thought is that, at its core, the MEF is an IoC framework
built right into the .NET Framework. It’s not as powerful as many
of the popular IoC frameworks today, but it can perform the basic
tasks of a typical IoC container quite well.

Today, IoC frameworks have three typical capabilities. First, they
can act as the factory of a graph of objects and walk through the
chain of object relationships and dependencies to create an instance
of any required and registered type. Second, an IoC framework
can manage the lifetime of created instances and offer caching
and pooling capabilities. Th ird, most IoC frameworks support in-
terception and off er to create dynamic proxies around instances

CUTTING EDGE DINO ESPOSITO

public interface IFindTheNumberPlugin {
 void ShowUserInterface(GuessTheNumberSite site);
 void NumberEntered(Int32 number);
 void GameStarted();
 void GameStopped();
}

public interface IFindTheNumberApi {
 Int32 MostRecentNumber { get; }
 Int32 NumberOfAttempts { get; }
 Boolean IsUserPlaying { get; }
 Int32 CurrentLowerBound { get; }
 Int32 CurrentUpperBound { get; }
 Int32 LowerBound { get; }
 Int32 UpperBound { get; }
 void SetNumber(Int32 number);
}

public class FindTheNumberFormBase : Form, IFindTheNumberApi {
 ...
}

Figure 1 Defi nitions for the Application SDK

http://msdn.microsoft.com/magazine/ee291628
http://msdn.microsoft.com/magazine/gg535676
http://structuremap.net/structuremap/ScanningAssemblies.htm
http://structuremap.net/structuremap/ScanningAssemblies.htm

Untitled-5 1 2/2/11 1:19 PM

www.devexpress.com/experience

msdn magazine12 Cutting Edge

answer is no, then the best approach is using an IoC framework
unless you have basic needs that the MEF can address as well. All
things being equal, the MEF is preferable to an IoC framework
because it’s built right into the .NET Framework and you don’t need
to take any additional dependencies.

The MEF and Extensible Applications
While the MEF helps in the building of an extensible application,
the most delicate part of the job is designing the application for
extensibility. Th is is design and has little to do with the MEF, IoC
or other technologies. In particular, you must fi gure out which
parts of your application you intend to make available to plug-ins.

A plug-in is oft en a visual element and needs to interact with the
UI of the main application, add or extend menus, create panes, dis-
play dialog boxes, or even add or resize the main windows. Depend-
ing on how you envision the plug-ins of your specifi c application,
the amount of information to share with plug-ins may consist of
just business data (essentially a segment of the application’s current
state) or reference to visual elements such as containers, menus,
toolbars and even specifi c controls. You group this information
in a data structure and pass it down to the plug-in at initialization
time. Based on that information, the plug-in should be able to
adjust its own UI and implement its own additional custom logic.

Next comes the interface for the plug-ins. Th e interface depends
on the injection points you’ve identifi ed in your main application. By
“injection point” I mean the places in the application’s code from which
you’d invoke plug-ins to give them a chance to kick in and operate.

As an example of an injection point, consider Windows Explorer.
As you may know, Windows Explorer allows you to extend its UI
via shell extensions. Th ese plug-ins are invoked at very specifi c
moments—for example, when the user right-clicks to display the
properties of a selected fi le. As the application’s architect, it’s your
responsibility to identify these injection points and what data you
intend to pass to registered plug-ins at that point.

Once every design aspect has been cleared up, you can look
around for frameworks that can simplify the task of building a
plug-in-based application.

A Sample Plug-In-Based Application
Even a simple application such as “Find the number” can be made
richer and functionally appealing using plug-ins.
You might want to create a separate project to defi ne the SDK
of your application. It will be a class library where you defi ne all
classes and interfaces required to implement plug-ins. Figure 1
shows an example.

All plug-ins are required to implement the IFindTh eNumber-
Plugin interface. Th e main application form will inherit from the
specifi ed form class, which defi nes a list of public helper members
useful to pass information down to plug-ins.

As you may guess from IFindTheNumberPlugin, registered
plug-ins are invoked when the application displays its UI, when
the user makes a new attempt to guess the number, and when the
game is started and stopped. GameStarted and GameStopped are
just notifi cation methods and don’t need any input. NumberEntered
is a notifi cation that brings in the number the user just typed and

submitted for a new try. Finally, ShowUserInterface is invoked
when the plug-in must show up in the window. In this case, a site
object is passed, as defi ned in Figure 2.

The site object represents the point of contact between the
plug-in and the host application. The plug-in must gain some
visibility of the host state and must even be able to modify the
host UI, but it never gains knowledge of the host’s internal details.
That’s why you might want to create an intermediate site object
(part of your SDK assembly) that plug-in projects must reference.

I omitted for brevity the implementation of most methods in
Figure 2, but the constructor of the site object receives a refer-
ence to the application’s main window, and using helper methods
in Figure 1 (exposed by the main window object) it can read and
write the application’s state and visual elements. For example, the
Height member shows how the plug-in may read and write the
height of the host window.

In particular, the FindElement method allows the plug-in (in the
sample application) to retrieve a particular visual element in the
form. It’s assumed that you unveil as part of your SDK some tech-
nical details of how to access certain containers such as toolbars,
menus and the like. In such a simple application, it’s assumed
that you document the ID of the physical controls. Here’s the
implementation of FindElement:

public class FindTheNumberSite {
 private readonly FindTheNumberFormBase _mainForm;

 public FindTheNumberSite(FindTheNumberFormBase form) {
 _mainForm = form;
 }

 public T FindElement<T>(String name) where T:class { ... }
 public void AddElement(Control element) { ... }

 public Int32 Height {
 get { return _mainForm.Height; }
 set { _mainForm.Height = value; }
 }

 public Int32 Width { ... }
 public Int32 NumberOfAttempts { ... }
 public Boolean IsUserPlaying { ... }
 public Int32 LowerBound { ... }
 public Int32 UpperBound { ... }
 public void SetNumber(Int32 number) { ... }
}

Figure 2 The Site Object for Plug-Ins

private void InitializeMef() {
 try {
 _pluginCatalog = new DirectoryCatalog(@"\My App\Plugins");
 var filteredCatalog = new FilteredCatalog(_pluginCatalog,
 cpd => cpd.Metadata.ContainsKey("Level") &&
 !cpd.Metadata["Level"].Equals("Basic"));

 // Create the CompositionContainer with the parts in the catalog
 _container = new CompositionContainer(filteredCatalog);
 _container.ComposeParts(this);
 }
 catch (CompositionException compositionException) {
 ...
 }
 catch (DirectoryNotFoundException directoryException) {
 ...
 }
}

Figure 3 Initializing the MEF

Untitled-5 1 2/2/11 1:20 PM

www.devexpress.com/comments

msdn magazine14 Cutting Edge

public T FindElement<T>(String name) where T:class {
 var controls = _mainForm.Controls.Find(name, true);
 if (controls.Length == 0)
 return null;
 var elementRef = controls[0] as T;
 return elementRef ?? null;
}

With the design of the application’s extensibility model completed,
we’re now ready to introduce the MEF.

Defi ning Imports for Plug-ins
Th e main application will certainly expose a property that lists all
currently registered plug-ins. Here’s an example:

public partial class FindTheNumberForm :
 FindTheNumberFormBase {
 public FindTheNumberForm() {
 InitializeMef();
 ...
 }

 [ImportMany(typeof(IFindTheNumberPlugin)]
 public List<IFindTheNumberPlugin> Plugins {
 get; set;
 }
 ...
}

Initializing the MEF means preparing the composition container
specifying the catalogs you intend to use and optional export
providers. A common solution for plug-in-based applications is
loading plug-ins from a fi xed folder. Figure 3 shows the startup
code of the MEF in my example.

You use a DirectoryCatalog to group available plug-ins and use
the FilteredCatalog class (which is not in the MEF, but an example
is shown in the MEF documentation at bit.ly/gf9xDK) to filter out
some of the selected plug-ins. In particular, you can request that
all loadable plug-ins have a metadata attribute that indicates the
level. Missing the attribute, the plug-in is ignored.

Th e call to ComposeParts has the eff ect of populating the Plugins
property of the application. Th e next step is just invoking plug-ins from
the various injection points. Th e fi rst time you invoke plug-ins is right
aft er the application loads to give them a chance to modify the UI:

void FindTheNumberForm_Load(Object sender, EventArgs e) {
 // Set up UI
 UserIsPlaying(false);

 // Stage to invoke plugins
 NotifyPluginsShowInterface();
}

void NotifyPluginsShowInterface() {
 var site = new FindTheNumberSite(this);
 if (Plugins == null)
 return;

 foreach (var p in Plugins) {
 p.ShowUserInterface(site);
 }
}

Similar calls will appear in the event handlers that signal when
the user just started a new game, quit the current game or just made
a new attempt to guess the mysterious number.

Writing a Sample Plug-In
A plug-in is just a class that implements your app’s extensibility
interface. An interesting plug-in for the application is one that
shows the number of attempts the user made so far. Th e number
of attempts is being tracked by the business logic of the applica-
tion, and it’s exposed to plug-ins via the site object. All a plug-in

must do is prepare its own UI, bind it to the number of attempts
and attach it to the main window.

Plug-ins of the sample application will create new controls in the
UI of the main window. Figure 4 shows a sample plug-in.

Th e plug-in creates a new Label control and places it just below
an existing UI element. Next, whenever the plug-in receives the
notifi cation that a new number has been entered, the counter is
updated to show the current number of attempts according to the
state of the business logic.

Plugging In
At the end of the day, the most delicate task of designing extensible
apps is the design of the host and the interface of plug-ins. Th is is a pure
design task and has to do with the feature list and user’s requirements.

When it comes to implementation, though, you have quite a few
practical tasks to accomplish regardless of the plug-in interface,
such as selecting, loading and verifying plug-ins. In this regard,
the MEF gives you signifi cant help in simplifying creation of the
catalog of plug-ins to load, and automatically loading them up in
much the same way an IoC framework would do.

Note that the MEF is under continual development, and you can fi nd
the latest bits, documentation and example code at mef.codeplex.com.

DINO ESPOSITO is the author of “Programming Microsoft ASP.NET MVC”
(Microsoft Press, 2010) and coauthored “Microsoft .NET: Architecting Applications
for the Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent
speaker at industry events worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical expert for reviewing this article: Glenn Block

[Export(typeof(IFindTheNumberPlugin))]
[PartMetadata("Level", "Advanced")]
public class AttemptCounterPlugin : IFindTheNumberPlugin {
 private FindTheNumberSite _site;
 private Label _attemptCounterLabel;

 public void ShowUserInterface(FindTheNumberSite site) {
 _site = site;
 var numberToGuessLabelRef = _host.FindElement<Label>("NumberToGuess");
 if (numberToGuessLabelRef == null)
 return;

 // Position of the counter label in the form
 _attemptCounterLabel = new Label {
 Name = "plugins_AttemptCounter",
 Left = numberToGuessLabelRef.Left,
 Top = numberToGuessLabelRef.Top + 50,
 Font = numberToGuessLabelRef.Font,
 Size = new Size(150, 30),
 BackColor = Color.Yellow,
 Text = String.Format("{0} attempt(s)", _host.NumberOfAttempts)
 };
 _site.AddElement(_attemptCounterLabel);
 }

 public void NumberEntered(Int32 number = -1) {
 var attempts = _host.NumberOfAttempts;
 _attemptCounterLabel.Text = String.Format("{0} attempt(s)", attempts);
 return;
 }

 public void GameStarted() {
 NumberEntered();
 }

 public void GameStopped() {
 }
}

Figure 4 The Counter Plug-In

http://bit.ly/gf9xDK
http://mef.codeplex.com
http://weblogs.asp.net/despos

Untitled-5 1 2/2/11 1:20 PM

www.devexpress.com/awards

msdn magazine16

GetPagedCustomers method provides server-side paging. If the
goal of the ASP.NET MVC application was to allow the user to in-
teract with all of the customers, that would be a lot of customers
returned in a single query and managed in the browser. Instead,
we’ll let the app present 10 rows at a time and the GetPaged-
Customers will provide that filter. The query that I’ll eventually
need to execute looks like this:

context.Customers.Where(c =>
c.SalesOrderHeaders.Any()).Skip(skip).Take(take).ToList()

Th e view will know which page to request and give that informa-
tion to the controller. Th e controller will be in charge of knowing
how many rows to supply per page. Th e controller will calculate the
“skip” value using the page number and the rows per page. When
the controller calls the GetPagedCustomers method, it will pass in
the calculated skip value as well as the rows per page, which is the
“take” value. So if we’re on page four and presenting 10 rows per
page, skip will be 40 and take will be 10.

Th e paging query fi rst creates a fi lter that requests only those
customers who have any SalesOrders. Th en, using LINQ Skip and
Take methods, the resulting data will be a subset of those custom-
ers. Th e full query, including the paging, is executed in the data-
base. Th e database returns only the number of rows specifi ed by
the Take method.

Th e query is composed of a few parts to enable some tricks I’ll
add down the road. Here’s a fi rst pass at the GetPagedCustomers
method that will be called from the HomeController:

Server-Side Paging with the
Entity Framework and ASP.NET MVC 3

In my January Data Points column, I showed off the jQuery Data-
Tables plug-in and its ability to seamlessly handle huge amounts
of data on the client side. Th is works well with Web applications
where you want to slice and dice large amounts of data. Th is month,
I’ll focus on using queries that return smaller payloads to enable
a different type of interaction with the data. This is especially
important when you’re targeting mobile applications.

I’ll take advantage of features introduced in ASP.NET MVC 3
and demonstrate how to use these together with effi cient server-
side paging against the Entity Framework. Th ere are two challenges
with this task. Th e fi rst is to provide an Entity Framework query
with the correct paging parameters. Th e second is to mimic a fea-
ture of client-side paging by providing visual clues to indicate that
there’s more data to retrieve, as well as links to trigger the retrieval.

ASP.NET MVC 3 has a slew of new features, such as the new
Razor view engine, validation improvements and a ton more
JavaScript features. Th e launch page for MVC is at asp.net/mvc, where
you can download ASP.NET MVC 3 and fi nd links to blog posts
and training videos to help you get up to speed. One of the new
features that I’ll use is the ViewBag. If you’ve used ASP.NET MVC
previously, ViewBag is an enhancement to the ViewData class and
lets you use dynamically created properties.

Another new element that ASP.NET MVC 3 brings to the table
is the specialized System.Web.Helpers.WebGrid. Although one of
the grid’s features is paging, I’ll use the new grid but not its paging in
this example, because that paging is client-side—in other words, it
pages through a set of data provided to it, similar to the DataTables
plug-in. I’m going to be using server-side paging instead.

For this little app, you’ll need an Entity Data Model to work with.
I’m using one created from the Microsoft AdventureWorksLT sam-
ple database, but I only need the Customer and SalesOrderHeaders
brought into the model. I’ve moved the Customer rowguid, Password-
Hash and PasswordSalt properties into a separate entity so that I don’t
have to worry about them when editing. Other than this small change,
I haven’t modifi ed the model from its default.

I created a project using the default ASP.NET MVC 3 project
template. Th is prepopulates a number of controllers and views,
and I’ll let the default HomeController present the Customers.

I’ll use a simple DataAccess class to provide interaction with the
model, context and, subsequently, the database. In this class, my

DATA POINTS JULIE LERMAN

Code download available at code.msdn.microsoft.com/mag201103DataPoints.

Figure 1 Providing Edit ActionLinks in the WebGrid

http://asp.net/mvc
http://code.msdn.microsoft.com/mag201103DataPoints

Untitled-5 1 2/2/11 1:21 PM

www.devexpress.com/eval

msdn magazine18 Data Points

 public static List<Customer> GetPagedCustomers(int skip, int take)
 {
 using (var context = new AdventureWorksLTEntities())
 {
 var query = context.Customers.Include("SalesOrderHeaders")
 .Where(c => c.SalesOrderHeaders.Any())
 .OrderBy(c => c.CompanyName + c.LastName + c.FirstName);

 return query.Skip(skip).Take(take).ToList();
 }
 }

Th e controller Index method that calls this method will determine
the number of rows to return using a variable I’ll call pageSize,
which becomes the value for Take. The Index method will also
specify where to begin based on a page number that will be passed
in as a parameter, as shown here:

 public ActionResult Index(int? page)
 {
 const int pageSize = 10;
 var customers=DataAccess.GetPagedCustomers((page ?? 0)*pageSize, pageSize);
 return View(customers);
 }

Th is gets us a good part of the way. Th e server-side paging is
completely in place. With a WebGrid in the Index view markup, we
can display the customers returned from the GetPagedCustomers
method. In the markup, you need to declare and instantiate the
grid, passing in Model, which represents the List<Customer> that
was provided when the controller created the view. Th en, using the
WebGrid GetHtml method, you can format the grid, specifying
which columns to display. I’ll only show three of the Customer
properties: CompanyName, FirstName and LastName. You’ll be
happy to find full IntelliSense support as you type this markup
whether you use syntax associated with ASPX views or with the
new MVC 3 Razor view engine syntax (as with the following
example). In the fi rst column, I’ll provide an Edit ActionLink so
that the user can edit any of the Customers that are displayed:

@{
 var grid = new WebGrid(Model);
}
<div id="customergrid">
 @grid.GetHtml(columns: grid.Columns(
 grid.Column(format: (item) => Html.ActionLink
 ("Edit", "Edit", new { customerId = item.CustomerID })),
 grid.Column("CompanyName", "Company"),
 grid.Column("FirstName", "First Name"),
 grid.Column("LastName", "Last Name")
))
</div>

Th e result is shown in Figure 1.
So far, so good. But this doesn’t provide a way for the user to

navigate to another page of data. Th ere are a number of ways to
achieve this. One way is to specify the page number in the URI—
for example, http://adventureworksmvc.com/Page/3. Surely you
don’t want to ask your end users to do this. A more discoverable
mechanism is to have paging controls, such as page number links
“1 2 3 4 5 …” or links that indicate forward and backward, for
example, “<< >>.”

Th e current roadblock to enabling the paging links is that the
Index view page has no knowledge that there are more Customers
to be acquired. It knows only that the universe of customers is the
10 that it’s displaying. By adding some additional logic into the data-
access layer and passing it down to the view by way of the controller,
you can solve this problem. Let’s begin with the data-access logic.

In order to know if there are more records beyond the current
set of customers, you’ll need to have a count of all of the possible
customers that the query would return without paging in groups of
10. Th is is where composing the query in the GetPagedCustomers
will pay off . Notice that the fi rst query is returned into _customer-
Query, a variable that’s declared at the class level, as shown here:

_customerQuery = context.Customers.Where(c => c.SalesOrderHeaders.Any());

You can append the Count method to the end of that query to
get the count of all of the Customers that match the query before
paging is applied. Th e Count method will force a relatively simple
query to be executed immediately. Here’s the query executed in SQL
Server, from which the response returns a single value:

SELECT
[GroupBy1].[A1] AS [C1]
FROM (SELECT
 COUNT(1) AS [A1]
 FROM [SalesLT].[Customer] AS [Extent1]
 WHERE EXISTS (SELECT
 1 AS [C1]
 FROM [SalesLT].[SalesOrderHeader] AS [Extent2]
 WHERE [Extent1].[CustomerID] = [Extent2].[CustomerID]
)
) AS [GroupBy1]

Once you have the count, you can determine if the current page
of customers is the fi rst page, the last page or something in between.
Th en you can use that logic to decide which links to display. For
example, if you’re beyond the first page of customers, then it’s
logical to display a link to access earlier pages of customer data
with a link for the previous page, for example, “<<.”

We can calculate values to represent this logic in the data-access
class and then expose it in a wrapper class along with the customers.
Here’s the new class I’ll be using:

 public class PagedList<T>
 {
 public bool HasNext { get; set; }
 public bool HasPrevious { get; set; }
 public List<T> Entities { get; set; }
 }

 public static PagedList<Customer> GetPagedCustomers(int skip, int take)
 {
 using (var context = new AdventureWorksLTEntities())
 {
 var query = context.Customers.Include("SalesOrderHeaders")
 .Where(c => c.SalesOrderHeaders.Any())
 .OrderBy(c => c.CompanyName + c.LastName + c.FirstName);

 var customerCount = query.Count();

 var customers = query.Skip(skip).Take(take).ToList();

 return new PagedList<Customer>
 {
 Entities = customers,
 HasNext = (skip + 10 < customerCount),
 HasPrevious = (skip > 0)
 };
 }
 }

Figure 2 The New Version of GetPagedCustomers

Figure 3 ViewBag Properties Aren’t Available Through
IntelliSense Because They’re Dynamic

Free 60 Day Evaluation!
www.leadtools.com/msdn
(800) 637-1840

Viewer Controls: Win Forms, Web Forms, WPF, Silverlight, ActiveX and COM.
Image Processing: lters, trans orms, color conversion and dra ing nctions

s orting region o interest and e tended gra scale data.
Document Cleanup/Preprocessing: A to des e , des ec le, hole nch, line and border

removal, inverted te t correction and more or o tim m res lts in OC and arcode recognition.
Barcode: A to detect, read and rite and barcodes or m ltithreaded

 bit develo ment.
OCR/ICR/OMR: F ll age or onal recognition or m ltithreaded and bit

develo ment ith P F, P F A, XPS, OC, XM and e t o t t.
Forms Recognition & Processing: A tomaticall identi and classi orms and

e tract ser lled data.
PDF & PDF/A: ead, rite and vie searchable P F ith te t, images, boo mar s

and annotations.
Annotations: nteractive or doc ment mar , redaction and image meas rement
incl ding s ort or COM annotations .
DICOM: F ll s ort or all O classes and modalities de ned in the COM standard
incl ding nca s lated P F C A and a ata .
PACS: F ll s ort or COM messaging and sec re comm nication enabling ic

im lementation o an COM SC and SCP services.
Medical Image Viewer: igh level dis la control ith b ilt in tools or image

mar , indo level, meas rement, oom an, cine, and mani lation.
Medical Web Viewer Framework: Pl g in enabled rame or to ic l b ild high alit , ll eat red, eb based

medical image deliver and vie er a lications.
Medical Workstation Framework: Set o . medical and PACS com onents that can be sed to b ild a ll
eat red PACS Wor station a lication.
3D: Constr ct vol mes rom COM medical images and vis ali e ith a variet o methods incl ding M P,

Min P, M P, and SS .
Multimedia: Ca t re, la , stream and convert MP , A , WM , MP , MP , O , SO, and more. Stream
rom SP Servers.
DVD: Pla , create, convert and b rn images.
DVR: Pa se, re ind and ast or ard live ca t re and P or CP P streams.
MPEG Transport Stream: With or P and CP P streams a to live s ort.

evelo o r
a lication

ith the
same rob st

imaging
technologies

sed b
Microsoft, HP,
Sony, Canon,
Kodak, GE,

Siemens, the US
 Air Force and

Veterans Affairs
Hospitals.

VectorDICOM Medical

MultimediaBarcodeDocument

Silverlight, .NET,
Windows Phone,
WPF, WCF, WF,
C API, C++ Class
Lib, COM & more!

Form Recognition & Processing

Install LEADTOOLS to eliminate months of research and programming time while maintaining high
levels of quality, performance and functionality. LEADTOOLS provides developers easy access to
decades of expertise in color, grayscale, document, medical, vector and multimedia imaging development.

Silverlight: re Silverlight , and Windo s Phone maging S .
Image Formats & Compression: S orts image ormats and com ressions incl ding FF, X F, P F,
P , and CC .
Scanning: WA W A bit , a to detect o tim m driver settings or high s eed scanning.

Untitled-1 1 2/10/11 9:04 AM

http://www.leadtools.com/msdn

msdn magazine20 Data Points

GetPagedCustomers method will now return a PagedList class rather
than a List. Figure 2 shows the new version of GetPagedCustomers.

With the new variables populated, let’s take a look at how the
Index method in the HomeController can push them back to the
View. Here’s where you can use the new ViewBag. We’ll still return
the results of the customers query in a View, but you can additionally
stuff the values to help determine what the markup will look like
for the next and previous links in the ViewBag. Th ey will then be
available to the View at run time:

 public ActionResult Index(int? page)
 {
 const int pageSize = 10;
 var customers=DataAccess.GetPagedCustomers((page ?? 0)*pageSize, pageSize);
 ViewBag.HasPrevious = DataAccess.HasPreviousCustomers;
 ViewBag.HasMore = DataAccess.HasMoreCustomers;
 ViewBag.CurrentPage = (page ?? 0);
 return View(customers);
 }

It’s important to understand that the ViewBag is dynamic, not
strongly typed. ViewBag doesn’t really come with HasPrevious and
HasMore. I’ve just made them up as I’m typing the code. So don’t
be alarmed that IntelliSense doesn’t suggest this to you. You can
create any dynamic properties you’d like.

If you’ve been using the ViewPage.ViewData dictionary and are
curious how this is diff erent, ViewBag does do the same job. But
in addition to making your code a little prettier, the properties are
typed. For example, HasNext is a dynamic{bool} and CurrentPage
is a dynamic{int}. You won’t have to cast the values when you
retrieve them later.

In the markup, I still have the customer list in the Model variable,
but there’s a ViewBag variable avail able as well. You’re on your own
as you type in the dynamic properties into the markup. A tooltip
reminds you that the properties are dynamic, as shown in Figure 3.

Here’s the markup that uses the ViewBag variables to determine
whether or not to display the navigation links:

@{ if (ViewBag.HasPrevious)
 {
 @Html.ActionLink("<<", "Index", new { page = (ViewBag.CurrentPage - 1) })
 }
}

@{ if (ViewBag.HasMore)
 { @Html.ActionLink(">>", "Index", new { page = (ViewBag.CurrentPage + 1) })
 }
}

Th is logic is a twist on markup used in the NerdDinner Application
Tutorial, which you can fi nd at nerddinnerbook.s3.amazonaws.com/Intro.htm.

Now when I run the app, I have the ability to navigate from one
page of customers to the next.

When I’m on the very fi rst page, I have a link to navigate to the
next page but nothing to go to a previous page because there is
none (see Figure 4).

When I click the link and navigate to the next page, you can see that
there are now links to go to the previous or next page (see Figure 5).

 Th e next step, of course, will be to work with a designer to make
this paging more attractive.

Critical Piece of Your Toolbox
Summing up, while there are a number of tools to streamline
client-side paging, such as the jQuery DataTables extension and
the new ASP.NET MVC 3 WebGrid, your application needs may
not always benefit from bringing back large amounts of data.
Being able to perform effi cient server-side paging is a critical piece
of your toolbox. Th e Entity Framework and ASP.NET MVC work
together to provide a great user experience and at the same time
simplify your development task to pull this off .

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives
in the hills of Vermont. You can fi nd her presenting on data access and other
Microsoft .NET topics at user groups and conferences around the world. Lerman
blogs at thedatafarm.com/blog and is the author of the highly acclaimed book,
“Programming Entity Framework” (O’Reilly Media, 2009). You can follow her
at Twitter.com/julielerman.

THANKS to the following technical expert for reviewing this article:
Vishal Joshi

Figure 4 The First Page of Customer Has Only a Link to
Navigate to the Next Page

Figure 5 A Single Page of Customers with Navigation Links to
Go to Previous or Next Page of Customers

http://nerddinnerbook.s3.amazonaws.com/Intro.htm
http://Twitter.com/julielerman

© 2011 ComponentOne LCC. All rights reserved. All other product
and brand names are trademarks and/or registered trademarks of
their respective holders.

Untitled-8 1 2/8/11 2:16 PM

www.componentone.com/bluereportsMSDN

msdn magazine22

Th is summary page is important, as I’ll need to use information
from it in my confi guration of Facebook as an Identity Provider in
ACS. In particular, I’ll need the Application ID and the Application
secret as can be seen in the confi guration information from ACS
shown in Figure 3.

Note that I’ve added friends_hometown to the Application
permissions text box. I’ll need that address to map it, and without
specifying it here I wouldn’t get it back by default. If I wanted some
other data to be returned about the user by the Graph API calls, I’d

Cloud Services Mashup

Up until now, I’ve spent time on solutions using Microsoft Windows
Azure or SQL Azure to augment solution architecture. Th is month
I’m taking a look at how to combine multiple cloud services into a
single app. My example will combine Windows Azure, Windows
Azure AppFabric Access Control, Bing Maps and Facebook to
provide an example of composing cloud services.

For those who are a little put off when thinking about federated
identity or the real-world value of the social network, I’d like to
introduce Marcelus. He’s a friend of mine who owns a residential
and commercial cleaning company. Similar to my father in his
business and personal dealings, he knows someone to do or get just
about anything you want or need, usually in some form of barter.
Some might recognize this as the infamous good ol’ boys’ network,
but I look at Marcelus and I see a living, breathing example of the
Windows Azure AppFabric Access Control service (or ACS for
short) combined with a powerful social network. In real life I can
leverage Marcelus and others like him to help me.

However, in the virtual world, when I use a number of cloud
services they oft en need to know who I am before they allow me to
access their functionalities. Because I can’t really program Marcelus
to serve Web pages, I’m going to use the cloud services in Figure 1
to provide some functionality.

The scenario is that navigation to my site’s homepage will be
authenticated by Facebook and the claims will be passed back to
my site. Th e site will then pull that user’s friends from Facebook
and subsequently fetch information for a selected friend. If the
selected friend has a hometown specified, the user may click on
the hometown name and the Bing Map will show it.

Confi guring Authentication Between Services
Th e December 2010 issue of MSDN Magazine had a good overview
article for ACS, which can be found at msdn.microsoft.com/magazine/gg490345.
I’ll cover the specifi c things I need to do to federate my site with Face-
book. To get this going properly, I’m using AppFabric Labs, which is
the developer preview of Windows Azure AppFabric. Additionally,
I’m using Windows Azure SDK 1.3 and I’ve installed Windows Iden-
tity Foundation SDK 4.0. To get started, I went to portal.appfabriclabs.com
and registered. Once I had access to ACS, I followed the fi rst part of
the directions found at the ACS Samples and Documentation (Labs)
CodePlex page (bit.ly/fuxkbl) to get the service namespace set up. Th e
next goal was to get Facebook set up as an Identity Provider, but in
order to do that I had to fi rst create a Facebook application (see direc-
tions at bit.ly/e9yE3I), which results in a summary like that in Figure 2.

FORECAST: CLOUDY JOSEPH FULTZ

This article discusses a prerelease version of AppFabric Labs.
All information is subject to change.

Code download available at code.msdn.microsoft.com/mag201103Cloudy.

Service Functionality
Windows Azure Host my site and serve pages
AppFabric
Access Control

Manage and negotiate authentication between my site
and Facebook

Facebook Authenticate users and provide social network services
Bing Maps Visualize friends’ hometowns

Figure 1 Cloud Services and Their Functionalities

Figure 2 Facebook Application Confi guration Summary

http://msdn.microsoft.com/magazine/gg490345
http://portal.appfabriclabs.com
http://bit.ly/fuxkbl
http://bit.ly/e9yE3I
http://code.msdn.microsoft.com/mag201103Cloudy

www.devart.com

Untitled-13 1 2/2/11 5:30 PM

http://www.devart.com

msdn magazine24 Forecast: Cloudy

need to look it up at the Facebook Developers site (bit.ly/c8UoAA) and
include the item in the Application permissions list.

Something worth mentioning when working with ACS: You spec-
ify the Relying Parties that will use each Identity Provider. If my site
exists at jofultz.cloudapp.net, it will be specifi ed as a relying party on
the Identity Provider confi guration. Th is is also true for my localhost.
So, in case I don’t want to push to the cloud to test it, I’ll need to con-
fi gure a localhost relying party and select it, as illustrated in Figure 4.

Figure 3 and Figure 4 are both found on the same page for
confi guring the Identity Provider. By the same token, if I only had
it confi gured for localhost, but then attempted to authenticate from
my Web site, it wouldn’t work. I can create a custom login page,
and there’s guidance and a sample for doing so under Application
Integration in the ACS management site. In this sample, I’m just
taking the default ACS-hosted page.

So far I’ve confi gured ACS and
my Facebook application to get
them talking once invoked. Th e
next step is to confi gure this Iden-
tity Provider for my site as a means
of authentication. Th e easiest way
to do this is to install the Windows
Identity Foundation SDK 4.0 found

at bit.ly/ew6K5z. Once installed, there
will be a right-click menu option
available to Add STS reference, as
illustrated in Figure 5.

In my sample I used a default
ASP.NET site created in Visual Studio
by selecting a new Web Role project.
Once it’s created, I right-click on the
site and go about stepping through
the wizard. I’ll confi gure the site to
use an existing Security Token Ser-
vice (STS) by choosing that option
in the wizard and providing a path
to the WS-Federation metadata. So,
for my access control namespace,
the path is:
 jofultz.accesscontrol.appfabriclabs.com/
 FederationMetadata/2007-06/
 FederationMetadata.xml

Using this information, the
wizard will add the confi g section

<microsoft .identityModel/> to the site confi guration. Once this
is done, add <httpRuntime requestValidationMode=“2.0” />
underneath the <system.web/> element. Providing that I specifi ed
localhost as a relying party, I should be able to run the application,
and upon startup be presented with an ACS-hosted login page that
will present Facebook—or Windows Live or Google, if so confi g-
ured. The microsoft.identityModel element is dependent upon
existence of the Microsoft.Identity assembly, so you have to be
sure to set that DLL reference in the site to Copy Always. If it isn’t,
once it’s pushed to Windows Azure it won’t have the DLL and
the site will fail to run. Referring to my previous statement about
needing to have confi guration for localhost and the Windows Azure
hosted site, there’s one more bit of confi guration once the wizard
is complete. Th us, if the wizard was confi gured with the localhost
path, then a path for the Windows Azure site will need to be added
to the <audienceUris> element as shown here:

<microsoft.identityModel>
 <service>
 <audienceUris>
 <add value="http://jofultz.cloudapp.net/" />
 <add value="http://localhost:81/" />
 </audienceUris>

Additionally, the realm attribute of the wsFederation element in
the confi g will need to refl ect the current desired runtime location.
Th us, when deployed to Windows Azure, it looks like this for me:

<federatedAuthentication>
 <wsFederation passiveRedirectEnabled="true" issuer=
 "https://jofultz.accesscontrol.appfabriclabs.com/v2/wsfederation"
 realm="http://jofultz.cloudapp.net/" requireHttps="false" />
 <cookieHandler requireSsl="false" />
</federatedAuthentication>

Figure 3 ACS Facebook Identity Provider Confi guration

Figure 4 ACS Facebook Identity Provider Confi guration: Relying Parties

Something worth mentioning
when working with ACS:

You specify the
Relying Parties that will use

each Identity Provider.

http://bit.ly/c8UoAA
http://bit.ly/ew6K5z

1210msdn_GrapeCity_Insert.indd 1 1/11/11 2:16 PM

www.GCPowerTools.com

1210msdn_GrapeCity_Insert.indd 2 1/11/11 2:16 PM

www.GCPowerTools.com

25March 2011msdnmagazine.com

However, if I want to debug this and
have it work properly at run time on my
localhost (for local debugging), I’ll change
the realm to represent where the site is
hosted locally, such as the following:

<federatedAuthentication>
 <wsFederation passiveRedirectEnabled="true"
 issuer="https://jofultz.accesscontrol.
 appfabriclabs.com/v2/wsfederation"
 realm="http://localhost:81/"
 requireHttps="false" />
 <cookieHandler requireSsl="false" />
</federatedAuthentication>

With everything properly confi gured,
I should be able to run the site, and upon
attempting to browse to the default page
I’ll be redirected to the ACS-hosted login
page, where I can choose Facebook as the
Identity Provider. Once I click Facebook,
I’m sent to the Facebook login page to be
authenticated (see Figure 6).

Because I haven’t used my application
before, Facebook presents me with the
Request Permission dialog for my appli-
cation, as seen in Figure 7.

Not wanting to be left out of the inner circle of those who use
such a fantastic app, I quickly click Allow, aft er which Facebook,
ACS and my app exchange information
(via browser redirects) and I’m fi nally
redirected to my application. At this
point I’ve simply got an empty page,
but it does know who I am and I have
a “Welcome Joseph Fultz” message at
the top right of the page.

Facebook Graph API
For my application, I need to fetch the
friends that comprise my social net-
work and then subsequently retrieve
information about those friends. Face-
book has provided the Graph API to
enable developers to do such things.
It’s pretty well-documented, and best
of all, it’s a fl at and simple implemen-
tation, making it easy to understand

and use. In order to make the requests,
I’ll need an Access Token. Fortunately, it
was passed back in the claims, and with
the help of the Windows Identity Foun-
dation SDK, the claims have been placed
into the principal identity. Th e claims look
something like this:
 http://schemas.xmlsoap.org/ws/2005/05/
 identity/claims/nameidentifier
 http://schemas.microsoft.com/ws/2008/06/
 identity/claims/expiration
 http://schemas.xmlsoap.org/ws/2005/05/
 identity/claims/emailaddress
 http://schemas.xmlsoap.org/ws/2005/05/
 identity/claims/name
 http://www.facebook.com/claims/AccessToken
 http://schemas.microsoft.com/
 accesscontrolservice/2010/07/claims/
 identityprovider

What I really want out of this is the last
part of the full name (for example, name-
identifi er, expiration and so on) and the
related value. So I create the ParseClaims
method to tease apart the claims and place
them and their values into a hash table for
further use, and then call that method in
the page load event:

protected void ParseClaims()
{
 string username = default(string);
 username = Page.User.Identity.Name;

 IClaimsPrincipal Principal = (IClaimsPrincipal) Thread.CurrentPrincipal;
 IClaimsIdentity Identity = (IClaimsIdentity) Principal.Identity;

 foreach (Claim claim in Identity.Claims)
 {
 string[] ParsedClaimType = claim.ClaimType.Split('/');
 string ClaimKey = ParsedClaimType[ParsedClaimType.Length - 1];

 _Claims.Add(ClaimKey, claim.Value);
 }
}

I create an FBHelper class where I’ll create the methods to
access the Facebook information that I desire. To start, I create
a method to help make all of the needed requests. I’ll make each

Figure 6 Facebook Login

Figure 5 Add STS Reference Menu Option

For my application, I need
to fetch the friends that

comprise my social network
and then subsequently retrieve
information about those friends.

www.msdnmagazine.com

msdn magazine26 Forecast: Cloudy

request using the WebClient object and parse the response with
the JavaScript Serializer:

public static Hashtable MakeFBRequest(string RequestUrl)
{
 Hashtable ResponseValues = default(Hashtable);

 WebClient WC = new WebClient();
 Uri uri = new Uri(String.Format(RequestUrl, fbAccessToken));

 string WCResponse = WC.DownloadString(uri);
 JavaScriptSerializer JSS = new JavaScriptSerializer();
 ResponseValues = JSS.Deserialize<Hashtable>(WCResponse);

 return ResponseValues;
}

As seen in this code snippet, each request will need to have
the Access Token that was passed back in the claims. With my
reusable request method in place, I create a method to fetch my
friends and parse them into a hash table containing each of their
Facebook IDs and names:

public static Hashtable GetFBFriends(string AccessToken)
{
 Hashtable FinalListOfFriends = new Hashtable();
 Hashtable FriendsResponse = MakeFBRequest(_fbFriendsListQuery, AccessToken);
 object[] friends = (object[])FriendsResponse["data"];

 for (int idx = 0; idx < friends.Length;idx++)
 {
 Dictionary<string, object> FriendEntry =
 (Dictionary<string, object>)friends[idx];
 FinalListOfFriends.Add(FriendEntry["id"], FriendEntry["name"]);
 }
 return FinalListOfFriends;
}

The deserialization of the friends list
response results in a nested structure of
Hashtable->Hashtable->Dictionary. Th us
I have to do a little work to pull the infor-
mation out and then place it into my own
hash table. Once it’s in place, I switch to my
default.aspx page, add a ListBox, write a little
code to grab the friends and bind the result
to my new ListBox:
 protected void GetFriends()
 {
 Friends = FBHelper.GetFBFriends((string)
 Claims["AccessToken"]);
 this.ListBox1.DataSource = _Friends;
 ListBox1.DataTextField = "value";
 ListBox1.DataValueField = "key";
 ListBox1.DataBind();
 }

If I run the application at this point, once
I’m authenticated I’ll see a list of all of my
Facebook friends. But wait—there’s more!
I need to get the available information for
any selected friend so that I can use that to
show me their hometown on a map. Flipping

back to my FBHelper class, I add a simple method that will take the
Access Token and the ID of the selected friend:

public static Hashtable GetFBFriendInfo(string AccessToken, string ID)
{
 Hashtable FriendInfo =
 MakeFBRequest(String.Format(_fbFriendInfoQuery, ID) +
 "?access_token={0}", AccessToken);
 return FriendInfo;
}

Note that in both of the Facebook helper methods I created, I ref-
erence a constant string that contains the needed Graph API query:

public const string _fbFriendsListQuery =
 "https://graph.facebook.com/me/friends?access_token={0}";
public const string _fbFriendInfoQuery = "https://graph.facebook.com/{0}/";

With my fi nal Facebook method in place, I’ll add a GridView to
the page and set it up to bind to a hash table, and then—in the code-
behind in the SelectedIndexChanged method for the ListBox—I’ll
bind it to the Hashtable returned from the GetFBFriendInfo method,
as shown in Figure 8.

Now that I’ve got my friends and their info coming back from Face-
book, I’ll move on to the part of showing their hometown on a map.

protected void ListBox1_SelectedIndexChanged(object sender, EventArgs e)
{
 Debug.WriteLine(ListBox1.SelectedValue.ToString());
 Hashtable FriendInfo =
 FBHelper.GetFBFriendInfo((string)_Claims["AccessToken"],
 ListBox1.SelectedValue.ToString());
 GridView1.DataSource = FriendInfo;
 GridView1.DataBind();
 try
 {
 Dictionary<string, object> HometownDict =
 (Dictionary<string, object>) FriendInfo["hometown"];
 _Hometown = HometownDict["name"].ToString();
 }
 catch (Exception ex)
 {
 _Hometown = "";//Not Specified";
 }
}

Figure 8 Adding a GridView

Figure 7 Application Permission Request

Using ACS, I was able to create
a sample application from a

composite of cloud technology.

Sign up today for the Safari Books Online Open House and get your team or

workgroup access to the world’s most popular, fully searchable digital library.

See why more than 15 million business and IT professionals, developers

and web designers from corporations, government agencies and academic

institutions access Safari Books Online for research, problem solving, just-in-

time learning, professional development and certification training.

LEARN TODAY. DEVELOP TODAY.
MOVE YOUR LIBRARY TO THE CLOUD

UNLIMITED ACCESS.

UNLIMITED VALUE.

Find all the latest and
most relevant resources
for Microsoft Developers
and IT developers at
Safari Books Online.

safaribooksonline.com/msdnmagLEARN MORE AT

SIGN UP
FOR THE SAFARI
BOOKS ONLINE

OPEN HOUSE

Untitled-4 1 2/3/11 11:01 AM

www.safaribooksonline.com/msdnmag

msdn magazine28 Forecast: Cloudy

There’s No Place Like Home
For those of my friends who have specifi ed their hometown, I want
to be able to click on the hometown name and have the map navi-
gate there. Th e fi rst step is to add the map to the page. Th is is a pretty
simple task and, to that end, Bing provides a nice interactive SDK
that will demonstrate the functionality and then allow you to look
at and copy the source. It can be found at microsoft.com/maps/isdk/ajax/.
To the default.aspx page, I add a div to hold the map, like this:

<div id="myMap" style="position:relative; width:400px; height:400px;" ></div>

However, to get the map there, I add script reference and a little
bit of script to the SiteMaster page:

<script type="text/javascript" src="http://ecn.dev.virtualearth.net/
 mapcontrol/mapcontrol.ashx?v=6.2"></script>
 <script type="text/javascript">
 var map = null;
 function GetMap() {
 map = new VEMap('myMap');
 map.LoadMap();
 }
 </script>

With that in place, when I pull up the page I’ll be presented with
a map on the default position—but I want it to move to my friend’s

hometown when I select it. During the
SelectedIndexChanged event discussed
earlier, I also bound a label in the page to
the name and added a client-side click event
to have the map fi nd a location based on
the value of the label:
 onclick="map.Find(null, hometown.innerText,
 null, null, null, null, true, null, true);
 map.SetZoomLevel(6);"

In the map.Find call, most of the trailing
parameters could be left off if so desired.
Th e reference for the Find method can be
found at msdn.microsoft.com/library/bb429645.
Th at’s all that’s needed to show and inter-
act with the map in this simple example.
Now I’m ready to run it in all of its glory.

If I’ve configured the identityModel
properly to work with my localhost as
mentioned earlier, I can press F5 and run it
locally in debug. So, I hit F5, see a browser
window pop up, and there I’m presented
with my login options. I choose Facebook
and I’m taken to the login page shown in
Figure 6. Once logged in, I’m directed
back to my default.aspx page, which now
displays my friends and a default map like
that in Figure 9.

Next, I’ll browse through my friends and
click one. I’ll get the information available
to me based on his security settings and the
application permissions I requested when
I set up the Identity Provider as seen in
Figure 2. Next, I’ll click in the hometown
name located above the map and the map
will move to center on the hometown, as
seen in Figure 10.

Final Thoughts
I hope I’ve clearly articulated how to bring together several aspects of
the Windows Azure platform, Bing Maps and Facebook—and that
I’ve shown how easy it is. Using ACS, I was able to create a sample
application from a composite of cloud technology. With a little more
work, it’s just as easy to tie in your own identity service to serve as
it’s needed. The beauty in this federation of identity is that using
Windows Azure enables you to develop against and incorporate
services from other vendors and other platforms—versus limiting
you into a single choice of provider and that provider’s services, or
having to fi gure out a low-fi delity integration method. Th ere’s power
in the Microsoft Windows Azure platform, and part of that power is
how easily it can be mashed together with other cloud services.

JOSEPH FULTZ is an architect at the Microsoft Technology Center in Dallas, where
he works with both enterprise customers and ISVs designing and prototyping
soft ware solutions to meet business and market demands. He has spoken at events
such as Tech·Ed and similar internal training events.

THANKS to the following technical expert for reviewing this article: Steve Linehan

Figure 9 Demo Homepage

Figure 10 Hometown in Bing Maps

http://microsoft.com/maps/isdk/ajax/
http://msdn.microsoft.com/library/bb429645

Create accurate PDF documents in a fraction of the time needed
with other tools

WHQL tested for all Windows 32 and 64-bit platforms

Produce fully compliant PDF/A documents

Standard PDF features included with a number of unique features

Interface with any .NET or ActiveX programming language

High-Performance PDF Printer Driver

Edit, process and print PDF 1.7 documents programmatically

Fast and lightweight 32 and 64-bit managed code assemblies
for Windows, WPF and Web applications

Support for dynamic objects such as edit-fields and sticky-notes

Save image files directly to PDF, with optional OCR

Multiple image compression formats such as PNG, JBIG2 and TIFF

■

■

■

■

■

USA and Canada
Toll Free: 1 866 926 9864
Support: (514) 868 9227

Info: sales@amyuni.com

Europe
Sales: (+33) 1 30 61 07 97
Support: (+33) 1 30 61 07 98

Customizations: management@amyuni.com

All trademarks are property of their respective owners. © 1999-2010 AMYUNI Technologies. All rights reserved.

www.amyuni.com

New Touchscreen Tablet
for Mobile Development!

The DevTouch Pro is a new color
touchscreen tablet designed to provide
mobile application developers with a
customizable develo pment, testing
and deployment platform.

Fully open customizable tablet

Develop with .NET, Java or C++

Unrestricted development and
flexible quantities

Fully supported in North America

Learn more at www.devtouchpro.com

PDF Integration into Silverlight Applications

More Development Tools Available at:

v4.5!

v4.5!

New!

PDF Editor for .NET, now Webform Enabled

Server-side PDF component based on the robust Amyuni PDF
Creator ActiveX or .NET components

Client-side C# Silverlight 3 control provided with source-code

Optimization of PDF documents prior to converting them into XAML

Conversion of PDF edit-boxes into Silverlight TextBox objects

Support for other document formats such as TIFF and XPS

■

■

■

■

■

■

■

■

■

■

■

■

■

■

Untitled-3 1 11/8/10 2:53 PM

http://www.amyuni.com
mailto:sales@amyuni.com
mailto:management@amyuni.com
http://www.devtouchpro.com
http://www.amyuni.com

Untitled-3 2 12/2/10 10:47 AM

www.componentart.com

Untitled-3 3 12/2/10 10:47 AM

www.componentart.com

msdn magazine32

S H A RE POINT ONL INE

Cloud-Based
Collaboration with
SharePoint Online

With the release of Offi ce 365, Microsoft will present
the next version of Microsoft Online Services, a cloud-based col-
laboration and communication service based on SharePoint 2010,
Exchange 2010 and Lync Server 2010. Offi ce 365, currently in beta,
will provide SharePoint, Exchange and Lync as a subscription-based
Soft ware as a Service (SaaS) off ering, hosted in cloud datacenters
managed by Microsoft .

SharePoint Online—the cloud-based version of SharePoint 2010—
will provide users with many of the same features of SharePoint
2010, but without the need to manage the hardware or soft ware
required for a scalable and secure collaboration solution. In this
article, I’ll provide an overview of how SharePoint Online develop-

Chris Mayo

ment is similar to and diff erent from SharePoint 2010 development
by building solutions that run in SharePoint Online.

With the next release of SharePoint Online, SharePoint developers
will be able to develop collaboration solutions using the same skills
and tools they use in developing for SharePoint 2010, including
Visual Studio 2010, SharePoint Designer 2010, C# or Visual Basic
and the SharePoint APIs and SDKs. Th ere are many similarities
between developing for SharePoint on-premises and in the cloud,
but there are also signifi cant diff erences that will impact how you
build solutions.

Understanding these diff erences will help you understand what
solutions can be created to run in SharePoint Online and how to
develop those solutions.

SharePoint Online Customization Similarities
In SharePoint 2010 development, you have the ability to customize
SharePoint using the browser and SharePoint Designer 2010 and
by building solutions using Visual Studio 2010. With SharePoint
Online, customization with the browser and SharePoint Designer
2010 is largely the same as SharePoint 2010 (given the feature dif-
ferences mentioned in the next section). Developing SharePoint
Online solutions using Visual Studio 2010 is also largely the same.
Development is done in Visual Studio 2010 against a local instance of
SharePoint 2010 (either running locally in Windows 7 or Windows
Server 2008 R2 or in a virtual machine, or VM), leveraging the
integrated debugging experience for iterative development. When

This article is based on prerelease versions of Offi ce 365 and
SharePoint Online. All information is subject to change.

This article discusses:
• SharePoint Online customization similarities and differences

• Developing for SharePoint Online with sandboxed solutions

• Creating client-side solutions with Silverlight

Technologies discussed:
SharePoint Online, SharePoint 2010

Code download available at:
code.msdn.microsoft.com/mag201102SPOnline

http://code.msdn.microsoft.com/mag201102SPOnline

33March 2011msdnmagazine.com

development is complete, the solution is uploaded to SharePoint
Online using the same Solution Gallery provided in SharePoint 2010.

SharePoint Online Customization Key Differences
Although SharePoint Online is based on SharePoint 2010, there
are some key diff erences to keep in mind as you develop solutions
that will run in the former. First, SharePoint Online only supports
Site- and Web-scoped solutions. It runs in a multi-tenant cloud,

where multiple tenancies run on a shared datacenter infrastruc-
ture, so it make sense that solutions with Farm scope (where a
feature is activated for the entire farm) aren’t supported. Likewise,
in SharePoint Online, the highest level of access to your SharePoint
tenancy is at the site-collection level, so WebApplication-scoped
features (where a feature runs in every Web site in a Web application)
aren’t supported either.

Second, only partial-trust solutions are supported in SharePoint
Online. Full-trust solutions, where your solution would have access
beyond the site-collection level or could be granted permission to
run with admin-level privileges on the farm, also aren’t supported.

Finally, although SharePoint Online is based on SharePoint 2010,
it doesn’t have 100 percent feature parity with its on-premises coun-
terpart. For a complete feature-by-feature comparison between
SharePoint 2010 and SharePoint Online, refer to the Microsoft
SharePoint Online Beta Service Description, available from the Offi ce
365 Beta Service Descriptions page at bit.ly/bBckol.

Th e feature-by-feature list shows that a majority of SharePoint
customization features are supported. Th e lack of support for Busi-
ness Connectivity Services (BCS), External Lists and the ability to
call Web services outside SharePoint Online (which isn’t supported
in partial-trust solutions) will have a signifi cant impact on building
solutions that run in SharePoint Online. BCS support is planned
for a future release, however.

With these similarities and diff erences in mind, let’s look at some
examples of the types of solutions you can build to run in SharePoint

Figure 1 Specify the Site and Trust Level for PurchasingMgr

Item Template
Sandbox
Compatible? Notes

Visual Web Part No Requires ASCX fi le be installed on
SharePoint Servers

Visual Web Part
(Sandboxed)

Yes Provided by installing the Visual
Studio 2010 SharePoint Power Tools

Web Part Yes
Sequential Workfl ow No Requires workfl ow solution be

deployed as Farm Solution
State Machine
Workfl ow

No Requires workfl ow solution be
deployed as Farm Solution

Business Data
Connectivity Model

No Requires BCS solution be
deployed as a full-trust solution;
feature not supported in
SharePoint Online

Application Page No Requires ASPX page be deployed
to SharePoint Server

Event Receiver Yes
Module Yes
Content Type Yes
List Defi nition from
Content Type

Yes

List Defi nition Yes
List Instance Yes
Empty Element Yes
User Control No Requires ASCX fi le to be installed

on SharePoint Servers

Figure 2 Item Templates Supported in Sandboxed Solutions

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

 <Field SourceID="http://schemas.microsoft.com/sharepoint/v3"
 ID="{A74E67E5-8905-4280-90C9-DEBFFC30D43D}"
 Name="RequestDescription"
 DisplayName="Description"
 Group="Purchasing Manager Custom Columns"
 Type="Note"
 DisplaceOnUpgrade="TRUE" />
 <Field SourceID="http://schemas.microsoft.com/sharepoint/v3"
 ID="{CB5054F5-0C60-4DBE-94D2-CEFBFB793C7F}"
 Name="Price"
 DisplayName="Price"
 Group="Purchasing Manager Custom Columns"
 Type="Currency"
 DisplaceOnUpgrade="TRUE" />

 <!-- Parent ContentType: Item (0x01) -->
 <ContentType ID="0x010078a81c8413f54917856495e56e7c09ed"
 Name="Purchasing Manager - Non-Standard Business Purchase Requests Content Type"
 Group="Purchasing Manager Content Types"
 Description=
 "Non-Standard Business Purchase Requests Content Type
 for the Purchasing Manager Solution"
 Inherits="TRUE"
 Version="0">
 <FieldRefs>
 <FieldRef ID="{fa564e0f-0c70-4ab9-b863-0177e6ddd247}" Name="Title"
 DisplayName="Title" />
 <FieldRef ID="{A74E67E5-8905-4280-90C9-DEBFFC30D43D}"
 Name="RequestDescription"
 Required="TRUE" />
 <FieldRef ID="{CB5054F5-0C60-4DBE-94D2-CEFBFB793C7F}" Name="Price"
 Required="TRUE" />
 </FieldRefs>
 </ContentType>
</Elements>

Figure 3 NonStandBusPurchaseRequestsCT Defi nition
via Elements.xml

www.msdnmagazine.com
http://bit.ly/bBckol

msdn magazine34 SharePoint Online

Online, including sandboxed solutions and the SharePoint client
object model (OM). Other solution types, such as automating busi-
ness processes via declarative workfl ow solutions, will be covered
in future articles.

Developing for SharePoint Online
with Sandboxed Solutions
From the previous section, you know that SharePoint Online solu-
tions must be scoped to site or Web features, are restricted to data
in the site collection and must run in partial trust. Developing
solutions that run as sandboxed solutions meet all these criteria
while letting SharePoint Online administrators easily deploy a
solution by uploading it directly to the Solution Gallery.

Visual Studio 2010 provides great support for sandboxed solutions,
including project template and project item template support, the
SharePoint Customization Wizard for creating new projects as sand-
boxed solutions, IntelliSense support for the site collection-scoped
SharePoint APIs, and debugging and packaging support. To get
started building a solution for SharePoint Online, you’ll develop and
debug the solution locally against SharePoint 2010.
You’ll need either Windows 7 64-bit or Windows
Server 2008 R2 installed along with SharePoint
2010 and Visual Studio 2010. Another great way to
get started is to use the 2010 Information Worker
Demonstration and Evaluation Virtual Machine
(RTM), which provides a virtualized SharePoint 2010
development environment (download it from bit.ly/
ezfe2Y). I also recommend the Visual Studio 2010
SharePoint Power Tools (bit.ly/azq882), which add
compile-time support for the sandbox and a
sandboxed Visual Web Part project item template.

In the examples in this article, I’ll build a solu-
tion using the simple scenario of providing the
employees of the fi ctional Contoso Corp. with the
ability to request purchases that aren’t supported
in their procurement system. To get started, I’ll
create a site collection and site in my on-premises
SharePoint 2010 development environment. I’m
using the VMs mentioned previously, so I’ve created

http://o365dpe.contoso.com/sites/spomsdnmag/purchasing. My
fi rst solution will deploy the list used to track these non-standard
purchases. I’ll open Visual Studio 2010, select File | New Project,
and in the New Project dialog I’ll select Empty SharePoint Project
and name the project PurchasingMgr.

In the SharePoint Customization Wizard dialog, for “What local
site … ,” I’ll enter the URL of my site, http://o365dpe.contoso.com/
sites/spomsdnmag/Purchasing/, select “Deploy as a sandboxed
solution” and click Finish as seen in Figure 1.

Next, I’ll select the PurchasingMgr project in Solution Explorer,
right-click and select Add | New Item. In the Add New Item dialog, I’ll
select SharePoint 2010 in the Installed Templates node to the supported

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <!-- Do not change the value of the Name attribute below.
 If it does not match the folder name of the List Definition project item,
 an error will occur when the project is run. -->
 <ListTemplate
 Name="NonStandBusPurchaseRequestsListDefn"
 Type="10051"
 BaseType="0"
 OnQuickLaunch="TRUE"
 SecurityBits="11"
 Sequence="410"
 DisplayName="Purchasing Manager –
 Non-Standard Business Purchase Requests List Definition"
 Description=
 "Non-Standard Business Purchase Requests List Definition
 for the Purchasing Manager Solution"
 Image="/_layouts/images/itgen.png"/>
</Elements>

Figure 4 NonStandBusPurchaseRequestsListDefn
Defi nition via Elements.xml

<View BaseViewID="1" Type="HTML" WebPartZoneID="Main"
 DisplayName="$Resources:core,objectiv_schema_mwsidcamlidC24;"
 DefaultView="TRUE" MobileView="TRUE" MobileDefaultView="TRUE"
 SetupPath="pages\viewpage.aspx" ImageUrl="/_layouts/images/generic.png"
 Url="AllItems.aspx">
 <Toolbar Type="Standard" />
 <XslLink Default="TRUE">main.xsl</XslLink>
 <RowLimit Paged="TRUE">30</RowLimit>
 <ViewFields>
 <FieldRef Name="Attachments">
 </FieldRef>
 <FieldRef Name="LinkTitle">
 </FieldRef>
 <FieldRef ID="{A74E67E5-8905-4280-90C9-DEBFFC30D43D}"
 Name="RequestDescription" />
 <FieldRef ID="{CB5054F5-0C60-4DBE-94D2-CEFBFB793C7F}" Name="Price" />
 </ViewFields>
 <Query>
 <OrderBy>
 <FieldRef Name="ID">
 </FieldRef>
 </OrderBy>
 </Query>
 <ParameterBindings>
 <ParameterBinding Name="NoAnnouncements"
 Location="Resource(wss,noXinviewofY_LIST)" />
 <ParameterBinding Name="NoAnnouncementsHowTo"
 Location="Resource(wss,noXinviewofY_DEFAULT)" />
 </ParameterBindings>
</View>

Figure 5 Adding Custom Columns to the
NonStandBusPurchaseRequestsListDefn Default View

Figure 6 Debugging the PurchasingMgr Solution

http://bit.ly/azq882
http://bit.ly/ezfe2Y
http://bit.ly/ezfe2Y

Untitled-8 1 2/8/11 1:33 PM

www.telerik.com/ajaxMSDN

msdn magazine36 SharePoint Online

SharePoint item templates. Not all of these templates
are supported under sandboxed solutions and there-
fore in SharePoint Online. Figure 2 shows the item
templates supported under sandboxed solutions.

To build my list, I’ll defi ne Site Columns and a
Content Type for the list by selecting the Content
Type item template and entering NonStandBus-
PurchaseRequestsCT for the name.

In the SharePoint Customization Wizard, I’ll
select Item as the base content type and click Fin-
ish. Th e Content Type will have a Title column, a
Description column and a Price column, which I’ll
defi ne declaratively by replacing the contents of the
Elements.xml created with the XML in Figure 3.

Next, I’ll define a list based on that content
type by right-clicking PurchasingMgr in Solution
Explorer and selecting Add New Item. I’ll select the
List Defi nition from Content Type item template
and name the list defi nition NonStandBusPurchase-
RequestsListDefn and click Add.

In the SharePoint Customization Wizard, I’ll select the content
type created earlier and check the “Add a list instance” box. The
Elements.xml created for the NonStandBusPurchaseRequestsList-
Defn is shown in Figure 4.

Note that each list defi nition in my feature needs to be identifi ed
by a unique Type value greater than 10,000 (to avoid confl icts with
lists defi ned by SharePoint), and that I use that value in defi ning
any list instance based on that defi nition.

To add the custom columns to the list view, I’ll open Schema.xml
created and add the FieldRef elements to the default view, as seen
in Figure 5.

Finally, I’ll defi ne an instance of the list by selecting ListInstance1
under NonStandBusPurchaseRequestsListDefn and rename it
NonStandBusPurchaseRequestsListInstance. I’ll open Elements.xml
and add the following XML to base the list on the content type and
to provide helpful descriptions for users:

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <ListInstance Title="Non-Standard Business Purchase Requests"
 OnQuickLaunch="TRUE"
 TemplateType="10051"
 Url="Lists/NonStandBusPurchaseRequestsListInstance"
 Description=
 "Non-Standard Business Purchase Requests List
 for the Purchasing Manager Solution">
 </ListInstance>
</Elements>

In Visual Studio 2010, I’ll select Debug and then Start Debugging
to test the solution. Th e solution is packaged and deployed to my
on-premises site, as seen in Figure 6.

Now that I’ve tested the PurchasingMgr solution, I’m ready
to deploy it to SharePoint Online. I’ll create a new site collection
in SharePoint Online named Purchasing using the Team Site
template. Back in Visual Studio 2010, I’ll package the solution by
right-clicking on the PurchasingMgr project in the Solution Explorer
and selecting Package. To deploy the solution to SharePoint Online,
I’ll just need to upload it to the Solution Gallery and activate the
site features (I’ll need site collection administrator privileges to
do so). To do this, I’ll log in to SharePoint Online and navigate to

my site Collection and select Site Actions | Site Settings, and then
Solutions to access the Solutions Gallery. In the Solution Gallery,
I’ll click the Solutions tab and select Upload Solution in the
ribbon, then browse to the PurchasingMgr.wsp fi le in bin\Debug
and click OK and then Activate. You’ll see your solution in the
Solution Gallery as seen in Figure 7.

Next, to activate the feature that contains my site columns,
content type and list, I’ll navigate to the Purchasing site and select
Site Actions | Site Settings | Manage Site Features. I’ll select the

<UserControl xmlns:sdk="http://schemas.microsoft.com/winfx/2006/xaml/
presentation/sdk"
 x:Class="NonStandBusPurchaseReqsSLOM.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d"
 d:DesignHeight="300" d:DesignWidth="400">

 <Grid x:Name="LayoutRoot" Background="White">
 <Grid.ColumnDefinitions>
 <ColumnDefinition />
 <ColumnDefinition />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>

 <sdk:Label Content="Title:" Grid.Column="0" Grid.Row="0" Margin="3"/>
 <sdk:Label Content="Description:" Grid.Column="0" Grid.Row="1" Margin="3"/>
 <sdk:Label Content="Price:" Grid.Column="0" Grid.Row="2" Margin="3"/>

 <TextBox Name="Title" Grid.Column="1" Grid.Row="0" Margin="3"/>
 <TextBox Name="Description" Grid.Column="1" Grid.Row="1" Margin="3"/>
 <TextBox Name="Price" Grid.Column="1" Grid.Row="2" Margin="3"/>

 <Button Content="Add" Grid.Column="1" Grid.Row="3" Margin="3"
 Name="addNonStanPurchaseReq" HorizontalAlignment="Right"
 Height="25" Width="100" Click="addNonStanPurchaseReq_Click" />
 </Grid>
</UserControl>

Figure 8 NonStandBusPurchaseReqsSLOM MainPage.xaml

Figure 7 PurchasingMgr Solution Deployed to SharePoint Online

Untitled-8 1 2/8/11 1:34 PM

www.telerik.com/razor

msdn magazine38 SharePoint Online

Purchasing Manager - Content Types and Lists feature and select
Activate. At this point you should see the Non-Standard Business
Purchase Requests lists in your SharePoint Online site.

Th e Purchasing Manager is just one example of what you can ac-
complish in SharePoint Online with sandboxed solutions. Keep in
mind the limitations in sandboxed solutions and in the SharePoint
Online supported features, and you can create solutions that will
run in SharePoint 2010 or SharePoint Online.

Creating Client-Side Solutions
with Silverlight
Th e client OM, also introduced with SharePoint
2010, provides an object-oriented, client-side API
for SharePoint clients built using the Microsoft
.NET Framework, Silverlight and ECMAScript (in-
cluding JavaScript and JScript) that run on remote
computers (including the browser for Silverlight
and ECMAScript). Th e API is consistent with the
Microsoft .SharePoint server-side namespace, so
it’s easy to learn. Th e API is also consistent across
the supported client types, so it’s easy to apply that
knowledge across diff erent client solutions. Th e
client OM API is supported in SharePoint Online
and is a valuable tool for cloud development.

For example, I can use the client OM to create
a Silverlight 4 application to add items to my list
and host the application in a sandboxed Web Part.
To do this, I’ll open Visual Studio 2010, select File |
New Project and in the New Project dialog select

Empty SharePoint Project. I’ll name the project PurchasingMgrWP
and click OK. Again, I’ll create the solution as a sandboxed solu-
tion and point it at my on-premises Purchasing site. To create the
Silverlight 4 application, I’ll right-click on the PurchasingMgrWP
solution, select Silverlight under Installed Templates, select
Silverlight Application and name the solution NonStandBus-
PurchaseReqsSLOM. In the New Silverlight Application dialog,
I’ll uncheck “Host the Silverlight application in a new Web Site”

Figure 9 MainPage.xaml in Designer

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Animation;
using System.Windows.Shapes;

using Microsoft.SharePoint.Client;

namespace NonStandBusPurchaseReqsSLOM
{
 public partial class MainPage : UserControl
 {
 private string webUrl;

 public MainPage(string url)
 {
 webUrl = url;

 InitializeComponent();
 }

 private void addNonStanPurchaseReq_Click(object sender, RoutedEventArgs e)
 {
 ClientContext clientContext = new ClientContext(webUrl);

 Web webSite = clientContext.Web;
 ListCollection webLists = webSite.Lists;

 List nonStandBusPurList =
 clientContext.Web.Lists.GetByTitle(

 "Non-Standard Business Purchase Requests");

 ListItem newListItem =
 nonStandBusPurList.AddItem(new ListItemCreationInformation());
 newListItem["Title"] = Title.Text;
 newListItem["RequestDescription"] = Description.Text;
 newListItem["Price"] = Price.Text;

 newListItem.Update();

 clientContext.Load(nonStandBusPurList, list => list.Title);

 clientContext.ExecuteQueryAsync(onQuerySucceeded, onQueryFailed);
 }

 private void onQuerySucceeded(
 object sender, ClientRequestSucceededEventArgs args)
 {
 Dispatcher.BeginInvoke(() =>
 {
 MessageBox.Show("New item added.");
 });
 }

 private void onQueryFailed(object sender,
 ClientRequestFailedEventArgs args)
 {
 Dispatcher.BeginInvoke(() =>
 {
 MessageBox.Show("Request failed. " + args.Message + "\n" +
 args.StackTrace);
 });
 }
 }
}

Figure 10 addNonStanPurchaseReq_Click

DESIGN
Design Applications That Help Run the Business

Our xamMap™ control in Silverlight and
WPF lets you map out any geospatial
data like this airplane seating app to
manage your business. Come to
infragistics.com to try it today!

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91 80 4151 8042

@infragistics

Untitled-6 1 11/10/10 11:41 AM

www.infragistics.com

msdn magazine40 SharePoint Online

(we’ll test by hosting the application in SharePoint) and select
Silverlight 4 for the Silverlight Version.

To reference the Silverlight client OM API, I’ll add references to
Microsoft .SharePoint.Client.Silverlight.dll and Microsoft .Share-
Point.Client.Silverlight.Runtime.dll in C:\Program Files\Common
Files\Microsoft Shared\Web Server Extensions\14\TEMPLATE\
LAYOUTS\ClientBin. Next, I’ll create the Silverlight UI by opening
MainPage.xaml and replacing the XAML with the code in Figure 8.

Th e XAML in Figure 8 defi nes text boxes and a button to collect
information to add to my list as seen in Figure 9.

Double-click the button in the designer and replace the class
with the code in Figure 10.

Th e code in Figure 10 follows a common pattern in client OM
code. First, I’ll get access to the client context via the ClientContext
class (which is equivalent to the SPContext class). Next, I’ll access the
site and list via the Web, ListCollection and List classes, respectively.

Note the similarity to the SPWeb, SPListCollection and SPList classes.
Finally, I’ll create a ListItem by calling the List.AddItem method, pop-
ulate it with data from the UI and call the ListItem.Update method.
The ListItem isn’t actually created until the ClientContext.Load
and ClientContext.ExecuteQueryAsync methods are called to
execute the query. Note that you can save roundtrips to the server
by loading multiple queries via ClientContext.Load, calling the
Client Context.ExecuteQueryAsync method.

To deploy the Silverlight 4 application, I’ll add a module to deploy
the application with my Web Part project. I’ll select Purchasing-
MgrWP in the Solution Explorer, right-click and select Add | New
Item |Module and name the module ClientBin. I’ll replace the
contents of Elements.xml created with this XML:

<?xml version="1.0" encoding="utf-8"?>
<Elements xmlns="http://schemas.microsoft.com/sharepoint/">
 <Module Name="ClientBin">
 <File Path="ClientBin\NonStandBusPurchaseReqsSLOM.xap"
 Url="ClientBin/NonStandBusPurchaseReqsSLOM.xap" />
 </Module>
</Elements>

Th is XML deploys the NonStandBusPurchaseReqsSLOM.xap
fi le to the ClientBin folder in my SharePoint site.

To deploy the output of the NonStandBusPurchaseReqsSLOM
project with the ClientBin module, I’ll select the ClientBin module in
Solution Explorer and open the Project Output References property
dialog. I’ll click Add and select NonStandBusPurchaseReqsSLOM
as the Project Name and ElementFile as the DeploymentType.

Next, I’ll add a custom Web Part to my SharePoint solution to
host my Silverlight 4 application. I’ll select PurchasingMgrWP in
the Solution Explorer, right-click and select Add | New Item, select
Web Part and give the Web Part the name NonStandBusPurchase-
ReqsWP. I’ll use a custom Web Part in order to pass parameters to
my Silverlight 4 application, such as the URL of the site used to
create ClientContext. In order to do this, I’ll add a helper class called
SilverlightObjectTagControl.cs and replace the body of that class
with the code in Figure 11.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace PurchasingMgrWP
{
 class SilverlightObjectTagControl : WebControl
 {
 public string Source { get; set; }
 public string InitParameters { get; set; }

 protected override void CreateChildControls()
 {
 base.CreateChildControls();

 if (Source != null && Source != "")
 {
 string width = (this.Width == Unit.Empty) ? "400" :
 this.Width.ToString();
 string height = (this.Height == Unit.Empty) ? "300" :
 this.Height.ToString();

 this.Controls.Add(new LiteralControl(
 " <div>" +
 " <object data=\"data:application/x-silverlight-2,\" +
 “ type=\"application/x-silverlight-2\" width=\"" + width +
 “ "\" height=\"" + height + "\">" +
 " <param name=\"source\" value=\"" + Source + "\"/>" +
 " <param name=\"onerror\" value=\"onSilverlightError\" />" +
 " <param name=\"background\" value=\"white\" />" +
 " <param name=\"minRuntimeVersion\" value=\"4.0.50826.0\" />" +
 " <param name=\"autoUpgrade\" value=\"true\" />" +
 " <param name=\"initparams\" value=\"" + InitParameters + "\" />" +
 " <a href=\"http://go.microsoft.com/fwlink/?LinkID=" +
 " 149156&v=4.0.50826.0\" +
 " style=\"text-decoration: none;\">" +
 " <img src=\"http://go.microsoft.com/fwlink/?LinkId=161376\" +
 " alt=\"Get Microsoft Silverlight\" style=\"border-style: none\"/>" +
 " " +
 " </object>" +
 " <iframe id=\"_sl_historyFrame\" +
 " style='visibility:hidden;height:0;width:0;border:0px'></iframe>" +
 " </div>"
));

 }
 }
 }
}

Figure 11 Adding the SilverlightObjectTagControl.cs Helper Class

using System;
using System.ComponentModel;
using System.Web;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using Microsoft.SharePoint;
using Microsoft.SharePoint.WebControls;

namespace PurchasingMgrWP.NonStandBusPurchaseReqsWP
{
 [ToolboxItemAttribute(false)]
 public class NonStandBusPurchaseReqsWP : WebPart
 {
 protected override void CreateChildControls()
 {
 base.CreateChildControls();

 SilverlightObjectTagControl slhc =
 new SilverlightObjectTagControl();
 slhc.Source = SPContext.Current.Site.Url +
 "/ClientBin/NonStandBusPurchaseReqsSLOM.xap";
 slhc.InitParameters = "url=" + SPContext.Current.Web.Url;

 this.Controls.Add(slhc);
 }
 }
}

Figure 12 NonStandBusPurchaseReqsWP.cs

DEVELOP
Rich Business Intelligence Applications in WPF and Silverlight

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91 80 4151 8042

@infragistics

Robust Pivot Grids for WPF and
Silverlight let your users analyze data
to make key business decisions.
Visit infragistics.com to try it today!

Untitled-6 1 11/10/10 10:57 AM

www.infragistics.com

msdn magazine42 SharePoint Online

The SilverlightObjectTagControl class in Figure 11 has two
properties: Source is used to pass the URL of the Silverlight
application to load in the Web Part, and InitParameters to pass
initialization parameters to the Silverlight 4 application. These
properties are used to build the <object /> tag for the Silverlight
application in the CreateChildControls method. To use this class,
open NonStandBusPurchaseReqsWP.cs and replace the code in
that class with the code in Figure 12.

Th e code in Figure 12 creates an instance of SilverlightObject-
TagControl, sets the Source property to the URL of the Silverlight
application in ClientBin and sets the InitParameters property to
hold the URL of the current site (where the Non-Standard Busi-
ness Purchase Requests list can be found). To pass the URL to the

constructor of the MainPage class in NonStandBus-
PurchaseReqsSLOM, open App.xaml.cs and add the
following code to the Application_Startup event:
 private void Application_Startup(object sender,
 StartupEventArgs e)
 {
 string url = e.InitParams["url"];

 this.RootVisual = new MainPage(url);
 }

To test the Web Part, deploy the Purchasing-
Mgr.wsp package to the on-premises Purchasing
site to deploy the Non-Standard Business Purchase
Requests list (the list was removed when the
debug session listed earlier was ended), and then
debug the PurchasingMgrWP solution from
Visual Studio 2010. When added to \Purchasing\
Home.aspx, the Web Part allows me to add items
directly to the list from Silverlight, as seen in
Figure 13 and Figure 14.

Developing and debugging against the on-
premises site allows me to use Visual Studio 2010
to debug both the SharePoint and Silverlight 4
code until I have the solution tested completely. At
that point, I’ll upload the PurchasingMgrWP.wsp
to the Solution Gallery in SharePoint Online.

Th e SharePoint client OM provides a familiar
and consistent object-oriented API for accessing
lists and libraries in SharePoint Online. Th e API
is a subset of the Microsoft .SharePoint API and is
scoped to the site collection and below, which is per-
fectly aligned to SharePoint Online development.

SharePoint Solutions in the Cloud
Summing up, SharePoint Online provides SharePoint
developers a unique opportunity to build SharePoint
solutions for the cloud using the skills and tools they
already have. By understanding SharePoint Online
customization features (including what’s supported
and what’s not), sandboxed solutions, the SharePoint
client OM and declarative workfl ows built using
SharePoint Designer 2010, you can build SharePoint
solutions that run in the cloud with SharePoint
Online. To keep up on SharePoint Online devel-

opment throughout the beta process, check out the SharePoint
Online Developer Resource Center (msdn.com/sharepointonline).

CHRIS MAYO is a technology specialist focusing on Offi ce 365 and SharePoint
Online. He has experience as both a writer and a public speaker delivering tech-
nical content to audiences ranging in size from small groups to thousands. He
coauthored “Programming for Unifi ed Communications with Microsoft Offi ce
Communications Server 2007 R2” (Microsoft Press, 2009). He’s been with
Microsoft for 10 years. Prior to joining Microsoft , he served as a developer and
architect in the IT departments of Fortune 500 companies in the retail and fi nance
industries. Keep up with Mayo at his blog, blogs.msdn.com/cmayo.

THANKS to the following technical experts for reviewing this article:
George Durzi, Steve Fox, AJ May and Christina Storm

Figure 13 The NonStandBusPurchaseReqsWP in Action

Figure 14 The Updated Non-Standard Business Purchase Requests List

http://msdn.com/sharepointonline
http://blogs.msdn.com/cmayo

EXPERIENCE
Beautiful Data Visualizations That Bring Your Data to Life

Use our Motion Framework™ to see your data
over time and give your users new insight
into their data. Visit infragistics.com/motion
to try it today!

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics, the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.
Motion Framework is a trademark of Infragistics, Inc.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91 80 4151 8042

@infragistics

Untitled-1 1 1/11/11 1:39 PM

www.infragistics.com/motion

msdn magazine44

B IZ TALK ED I SOLUT IONS

Processing Health
Care Claims with
BizTalk Server 2010

BizTalk Server 2010 introduces an entirely re-architected
platform for managing the exchange of Electronic Data Interchange
(EDI) documents between trading partners. If you’ve worked with
earlier editions of the platform, you may have encountered some
headaches with setting up document exchange between various
parties. With the latest release, you have complete control over
the organization and confi guration of document settings related
to any interchange between parties.

BizTalk Server 2010 also provides a much-improved experience
when developing maps.

To illustrate these new features, I’m going to walk you through
the steps required for building out an EDI solution. Every EDI
solution developed in BizTalk Server 2010 follows a basic pattern:

• Adding and modifying base EDI schemas.
• Creating maps between the EDI document and internal/

external messaging.
• Implementing orchestrations to handle workfl ow associated

with processing the EDI documents.
• Configuring trading partner settings, including parties,

business profi les, agreements and acknowledgments.

Mark Beckner

• Confi guring ports to enable reception or delivery of docu-
ments, whether over FTP, AS2 or another protocol.

For purposes of illustration, we’ll look at the exchange of doc-
uments between a hospital and a claims-processing unit. The
documents exchanged between parties will be Health Insur-
ance Portability and Accountability Act (HIPAA)-compliant 837
Professional and Institutional fi les.

Working with Schemas
In most EDI solutions, you’ll be working with two basic types of
schema: the EDI schemas that represent the fl at fi les exchanged with
trading partners, and the internal schemas that represent document
types needed for processing the data within the EDI document.

In my example, the solution exchanges the 837 documents with
external parties, but uses a diff erent document format for internal
processing. Th e internal schema represents an ECSIF fl at fi le: a
common format for claims processors. Th e 837 schemas that ship
with BizTalk and can be added to a Visual Studio project, but the
internal schemas (such as an ECSIF) must be built by hand.

BizTalk Server 2010 ships with thousands of existing schemas
that defi ne a majority of the EDI documents in use today. To access
the schemas, run the Microsoft EdiXSDTemplates.exe executable
found in the $\Program Files\Microsoft BizTalk Server 2010\XSD_
Schema\EDI directory. For the purposes of this example, I’ll use
the 837 Professional and Institutional HIPAA-compliant schemas
found in the HIPAA\00501 folder. Adding the XSD fi le to a Visual
Studio project allows it to be referenced and used by other BizTalk
components—most importantly, by maps.

Figure 1 shows the 837 Professional 5010 schema within Visual
Studio 2010. Notice the number of nodes on this schema: the 837 is

This article discusses:
• EDI schemas

• Developing EDI maps

• Trading partner confi gurations

• Ports and document delivery

Technologies discussed:
BizTalk Server 2010

45March 2011msdnmagazine.com

one of the most complex EDI documents,
and can be extremely tricky to work with.
It contains hundreds of nodes that are vir-
tually identical, representing subscriber
and patient information.

Figure 2 shows the internal schema rep-
resenting the ECSIF format. Th is schema
was generated using the Flat File Schema
Wizard. Th e wizard can be pointed to a
valid fl at fi le instance to create an XSD.
A number of the fi elds in the FileHeader
node have been promoted in this schema.
Promoted fi elds allow for improved fi lter-
ing and mapping options.

Once the schemas have been defi ned
and added to the Visual Studio project,
you can begin building out the maps. In
this case, I’ll look at several scenarios that
are useful in mapping an 837 document.

Developing Maps
Th e mapping interface in BizTalk Server 2010 has
been extensively revised and introduces a variety of
new capabilities. Th ese capabilities include zoom-
ing, automatic node matching and search capabili-
ties. One of the most noticeable enhancements is
the ability to click on a line or functoid and have all
other mappings fade into the background.

As any EDI map developer will know, some maps
get extremely complex, with multiple tabs and
dozens (or even hundreds) of functoids. Finding
out what data in the source schema maps to what
data in the target schema and what functoids are
being used to do this mapping can be diffi cult to
visualize. By clicking on any of the lines or func-
toids used, all related mappings will be highlighted.

An example of a complex map with a specifi c set of mapping
logic highlighted is shown in Figure 3. This brings up a point
of BizTalk map development that’s often overlooked: there are
times to use the map interface, and there are times not to use it.
Not all mapping that’s done in BizTalk is best suited for standard
mapping—sometimes using alternative approaches is in order.
Alternatives include inline scripting and external components,
including XSLT and Microsoft .NET Framework components.

BizTalk map development generally consists of a combination of
standard functoids and inline XSLT and C#. Th ere are even times when

shelling out to an external XSLT stylesheet is
in order (which bypasses the BizTalk mapper
altogether). EDI maps can become compli-
cated and require ingenuity and planning to
end up with the needed solution.

To illustrate the use of inline C#, let’s
look at a common function of mapping
an outbound 837 Professional or Insti-
tutional fi le: the mapping of hierarchical
(HL) segments. Th e HL segments require
incremental values for each record in the
fi le, and denote parent/child relationships.
There really is no traditional functoid
combination that will allow these values
to be set properly. There is, however, a
simple inline C# approach that allows for
the correct values. Th is approach requires
two scripting functoids: one that stores a
global variable and maps HL01, while the
second maps HL02 (which is dependent

on the value of HL01).
Th e HL01 functoid script looks like this:

 int intHL01;
 public int getHL01() {
 intHL01++;
 return intHL01;
 }

Here’s the code for the HL02 script:
 public int getHL02() {
 return intHL01 -1;
 }

Figure 4 shows the functoids placed in the map.
Another situation that frequently arises in

mapping EDI documents is the need to use inline
XSLT. Th is is one of the most important skills to
incorporate into BizTalk mapping, and is some-
thing you should acquaint yourself with. It allows

for many options around looping and node creation that simply
aren’t available using standard functoid combinations.

One illustration of using Inline XSLT in a map is shown in Figure
5. Th is code demonstrates how to use the Inline XSLT Call Template
functionality to pass in a parameter from the source document
(Name) and create a node in the target 837 document.

When developing a BizTalk map, always think about the long-
term maintainability of the map. Is this something that you’ll be
able to easily update? Is this something that someone else can work
with in the future? Good coding practice should not be forgotten
when working with BizTalk maps, and some amount of architecture

Figure 1 The 837 Professional 5010 Schema

Figure 3 Highlight Capabilities in BizTalk Server 2010 Maps

Figure 2 The Target ECSIF
Schema Format

www.msdnmagazine.com

msdn magazine46 BizTalk EDI Solutions

and planning should be involved when developing maps that have
a lot of logic or complex functionality within them.

Orchestrations
Th e use of orchestrations in EDI solutions is not a requirement. Oft en,
documents simply need to be mapped from one format to another
and delivered, without the need for the inclusion of workfl ow.

In some cases, however, a document may need to have several
steps of processing done to it before it’s ready to be
delivered. To illustrate this, I’ll set up an orchestration to
map and archive messages to a table in SQL Server. Th e
orchestration will be confi gured with a fi lter to ensure
only documents of a certain type are processed by it.

Th e orchestration can be set up to subscribe to just
about any of the fi elds within the ISA or ST segments
of an EDI document (among many other properties).
To confi gure an orchestration to subscribe to a specifi c
field on a document, a filter can be set on the initial
receive shape of the orchestration, as shown in Figure 6.

With the fi lter specifi ed, the orchestration can now
do the necessary processing of the EDI document. In
this case, the orchestration is going to map the data
from the 837 format to the ECSIF format and then
write this information to an archive table in SQL
Server. Th e mapping of the documents is done through
a transform shape and the inclusion of a map fi le, but
the writing of the information to SQL Server has a
number of options available for it.

When thinking of SQL Server, many BizTalk
developers assume that they need to use one of the
adapters available for writing to SQL. The truth is
that, in most cases, the SQL adapters are overly com-
plex for basic database calls. Generally, the easiest and
most supportable approach for interacting with SQL
Server is through the use of a custom .NET assembly
class. When developing classes that will be called from
orchestration, always make sure and mark the class
as serializable to ensure that BizTalk can call it from
any type of transaction state:
 namespace Demo.BizTalk.Helper {
 [Serializable]
 public class DataAccess
 { }
 }

Developing orchestrations for EDI solutions is no
diff erent than for other types of BizTalk implementa-
tions. Th e main thing to remember when developing
orchestrations is to keep it simple. There’s an art to
BizTalk development and to organizing your BizTalk

Figure 6 Setting a Filter on an Orchestration

Figure 5 Passing Parameters to an Inline XSLT Call Template Script

Figure 4 Mapping HL Segment on Outbound 837

Figure 7 Top-Level Party Confi guration

In most EDI solutions,
you’ll be working with two

basic types of schema.

Untitled-11 1 1/7/11 4:08 PM

http://www.aspose.com

msdn magazine48 BizTalk EDI Solutions

projects properly. If you’ve planned and
developed properly, you’ll end up with a
solution that’s easy to make updates to
and deploy to a production environment.

Trading Partner
Confi gurations
BizTalk Server 2010 introduces a new
interface for managing the exchange of
EDI documents between trading part-
ners. It’s made up of three basic tiers
of organization: the party, the business
profi le and the agreement.

Th e party represents the top-level organization of the trading
partner. Confi gurations on this artifact relate to things that are
common across all documents being exchanged with this trading
partner. For example, certifi cates that may be required for secure
communication would be confi gured at this level.

In my example, I have two parties: the claims processor and
the hospital. Each is set up as its own unique BizTalk
party. All that needs to be confi gured is the name, as
shown in Figure 7.

A party will have one or more business profi les associ-
ated with it. Th e business profi le represents a department
within an organization that has its own unique business
identity when sending or receiving EDI documents. A
business identity is the value that appears in the ISA06
or ISA08 segment of an EDI document (depending on
whether the document is being sent or received) and
uniquely identifi es the trading partner from all other
entities. Many organizations will have a single business
profi le, but some will require multiple profi les.

In my example, the claims processor has two business
profi les: one that represents professional claims pro-
cessing, and another that represents institutional claims
processing. Th e hospital also has two business profi les:
the national branch and the international branch. Fig-
ure 8 shows the parties with their business profi les.

Because the business profile represents a unique
business identity within a party, confi gurations at this
level deal with information that’s common across all
documents that will be exchanged with this identity.
All inbound and outbound settings that are common
across all document types being exchanged will be
confi gured: the protocols used (X12, EDIFACT, AS2),
the validation settings, the transaction sets (EDI doc-
uments are allowed at this level), acknowledgments

and some of the envelope settings are
all confi gured on a business profi le. In
many cases, the default information
can be used at this level, because the
configuration of the specific agree-
ments of a business profi le will defi ne
this information and more.

A business profi le can have one or
more agreements. An agreement rep-
resents the way that two parties are
expecting to exchange one or more
document types with one another. Th is

is where the specifi cs about the envelope, the acknowledgments and
the transaction sets allowed are defi ned. One agreement could al-
low for certain documents to be exchanged with 997 acknowledg-
ments confi gured, while another agreement could allow for other
document types to forego the acknowledgments.

In my example, the claims processor and the hospital are exchang-
ing documents. Th e hospital will send the claim (X12 837 Institutional
version 5010) to the claims processor, and the claims processor will
send an acknowledgment (X12 997) back to the hospital. Figure 9
shows the envelope identifi er confi guration and Figure 10 shows
the transaction set confi guration on the agreement for documents
fl owing from the hospital to the claims processor. Note the tabs at
the top of the window indicating the fl ow of the document.

Figure 11 shows the confi guration of the acknowledgments that
are sent back from the claims processor to the hospital.

Figure 8 Business Profi les Associated with Parties

Figure 9 Confi guring ISA Envelope Settings on an Agreement

Figure 10 Confi guring Transaction Sets on an Agreement

BizTalk Server 2010 introduces a
new interface for managing the
exchange of EDI documents.

Untitled-1 1 2/10/11 9:04 AM

www.xceed.com

msdn magazine50 BizTalk EDI Solutions

If you’re exchanging documents with more than a single trading
partner, you’ll likely fi nd that the majority of your confi gurations are
virtually identical—the only thing changing will be the identifi ers
in the ISA segment of the envelope.

To ease development, make sure to use the template functionality
available from the agreement confi guration screen. Th ere are two
buttons you’ll be interested in: Save As Template and Load From
Template. When you have a trading partner fully confi gured, and the
EDI documents are fl owing end-to-end with the correct envelope
settings and acknowledgments, simply save the agreement settings as
a template and use them as the starting point for future agreements.

Port Confi gurations and Document Delivery
The actual delivery of documents to or from BizTalk to external
trading partners is done through the confi guration of ports. Th e
port defines the type of delivery mechanism (FTP, file and so
on) and contains the BizTalk pipeline that transforms the XML

document within BizTalk into the fl at fi le EDI document expected
by trading partners. Th e pipeline contains the logic to interpret (or
create) the EDI envelope on a document and to determine which
party the document resolves to.

To understand how ports process EDI documents, let’s look
at sending an acknowledgment. As you saw earlier, acknowledg-
ments are confi gured on the agreements of a BizTalk party. When
a document arrives, BizTalk can automatically generate a 997
acknowledgment. What happens is that BizTalk creates the 997

XML and drops it on the BizTalk message box, but it
doesn’t actually route the message anywhere. A send
port must be set up and confi gured to convert the
XML to a fl at fi le, add the envelope and deliver it to the
appropriate destination.

Setting up the send port to deliver an acknowledg-
ment requires three basic steps:
 1. Th e defi nition of the send port and delivery protocol
 2. Th e inclusion of the EdiSend pipeline (or custom

pipeline with EDI pipeline components)
 3. Th e confi guration of fi lters to listen for appro-

priate acknowledgments
Confi guring the send port to deliver documents to

a specifi c location is straightforward. Figure 12 shows
a Send Port confi gured with the EdiSend pipeline. Th e
send port will write fi les out to a fi le directory with the
full EDI envelope and formatting in place.

Setting the fi lter on the send port is also easy to do.
It simply requires specifying that it should only pick
up acknowledgments generated by the system for this
trading partner (as opposed to incoming 997s from the
partner). Figure 13 shows a fully confi gured set of fi lters.

Problem Solved
Th e new EDI functionality in BizTalk Server 2010 is
concentrated primarily in the management of trading
partners. Hierarchical relationships and organizations
that were impossible with previous editions of the
platform can now be modeled with relative ease. In
addition to this, the map interface has been enhanced,
and the developer experience with mapping is much
improved. With the various improvements and increased
functionality, any EDI solution can be modeled and
developed successfully using BizTalk Server 2010.

MARK BECKNER is the founder of Inotek Consulting Group
LLC. He works across the Microsoft stack, including BizTalk,
SharePoint, Dynamics CRM and general .NET development. He
can be reached at mbeckner@inotekgroup.com.

Figure 12 Setting Pipeline and Delivery Information on a Port

Figure 11 Confi guring Acknowledgements on an Agreement

Figure 13 Filtering on a Send Port

Confi guring the send port to
deliver documents to a specifi c

location is straightforward.

mailto:mbeckner@inotekgroup.com

ENTERPRISE

SNMP

POP

TCP

UDP

2IP

SSL

SFTP

SSH

HTTP

TELNET

EMULATION

FTPSMTP

WEB
UI

Internet Connectivity for the Enterprise

PowerSNMP for ActiveX and .NET
Create custom Manager, Agent and Trap applications with a set
of native ActiveX, .NET and Compact Framework components.
SNMPv1, SNMPv2, SNMPv3 (authentication/encryption) and
ASN.1 standards supported.

Since 1994, Dart has been a leading provider of high quality, high performance Internet connectivity components supporting a wide
range of protocols and platforms. Dart’s three product lines offer a comprehensive set of tools for the professional software developer.

PowerWEB for ASP.NET
AJAX enhanced user interface controls for responsive ASP.NET
applications. Develop unique solutions by including streaming file
upload and interactive image pan/zoom functionality within a page.

Download a fully functional product trial today!
Ask us about Mono Platform support. Contact sales@dart.com.

PowerTCP for ActiveX and .NET
Add high performance Internet connectivity to your ActiveX, .NET
and Compact Framework projects. Reduce integration costs with
detailed documentation, hundreds of samples and an expert
in-house support staff.

SSH
UDP
TCP
SSL

FTP
SFTP
HTTP
POP

SMTP
IMAP
S/MIME
Ping

DNS
Rlogin
Rsh
Rexec

Telnet
VT Emulation
ZIP Compression
more...

Untitled-1 1 1/11/10 11:10 AM

mailto:sales@dart.com
www.dart.com
www.dart.com

msdn magazine52

S I LV E RL I G HT LOC AL IZAT ION

Tips and Tricks
for Loading Silverlight
Locale Resources

Silverlight is a great framework for creating rich Internet
applications (RIAs), but it doesn’t yet provide the robust support for
localization that you enjoy in other components of the Microsoft
.NET Framework. Silverlight does have .resx fi les, a simple Resource-
Manager class and an element in the project fi le. But aft er that you’re
on your own. There are no custom markup extensions, and no
support for the DynamicResource class.

In this article I’ll show you how to remedy all of these issues. I’ll
present a solution that will allow a developer to load resource sets
at run time, use any format for storing resources, change resources
without recompiling and demonstrate lazy loading of resources.

Th is article is divided into three parts. First, I’ll develop a simple
application using the localization process detailed by Microsoft . Next,

Matthew Delisle

I’ll present another localization solution that has some benefi ts over
the standard process. Finally, I’ll round off the solution with a discus-
sion of the back-end components needed to complete the solution.

The Standard Localization Process
I’ll start by building a Silverlight application that uses the localiza-
tion process outlined by Microsoft . A detailed description of the
process is available at msdn.microsoft.com/library/cc838238(VS.95).

Th e UI contains a TextBlock and an Image, as shown in Figure 1.
Th e localization process described by Microsoft uses .resx fi les

to store the resource data. Th e .resx fi les are embedded in the main
assembly or a satellite assembly and loaded only once, at application
startup. You can build applications targeted at certain languages by
modifying the SupportedCultures element in the project fi le. Th is
sample application will be localized for two languages, English
and French. After adding the two resource files and two images
representing fl ags, the project structure looks like Figure 2.

I changed the build action for the images to content so I can ref-
erence the images using a less verbose syntax. I’ll add two entries to
each fi le. Th e TextBlock is referenced via a property called Welcome,
and the Image control is referenced via a property called FlagImage.

When resource fi les are created in a Silverlight app, the default
modifi er for the generated resource class is internal. Unfortunately,
XAML can’t read internal members, even if they’re located in
the same assembly. To remedy this situation, the generated class
modifi ers need to be changed to public. Th is can be accomplished

This article discusses:
• Locale resource basics

• A smart resource manager

• Using a WCF service

• Loading the neutral locale

Technologies discussed:
Silverlight

Code download available at:
code.msdn.microsoft.com/mag201103Localization

http://msdn.microsoft.com/library/cc838238(VS.95)
http://code.msdn.microsoft.com/mag201103Localization

53March 2011msdnmagazine.com

in the design view of the resource file. The Access
Modifi er dropdown menu lets you designate the scope
of the generated class.

Once resource fi les are ready, you need to bind the
resources in XAML. To do this you create a wrapper
class with a static fi eld referencing an instance of the
resource class. Th e class is as simple as this:

public class StringResources {
 private static readonly strings strings = new strings();
 public strings Strings { get { return strings; } }
}

To make the class accessible from XAML, you need to create an
instance. In this case, I’ll create the instance in the App class so that
it’s accessible throughout the project:

<Application.Resources>
 <local:StringResources x:Key="LocalizedStrings"/>
</Application.Resources>

Data-binding in XAML is now possible. The XAML for the
TextBlock and the Image looks like this:

<StackPanel Grid.ColumnSpan="2" Orientation="Horizontal"
 HorizontalAlignment="Center">
 <TextBlock Text="{Binding Strings.Welcome, Source={StaticResource
LocalizedStrings}}"
 FontSize="24"/>
</StackPanel>
<Image Grid.Row="1" Grid.ColumnSpan="2"
 HorizontalAlignment="Center"
 Source="{Binding Strings.FlagImage, Source={StaticResource
LocalizedStrings}}"/>

Th e path is the String property followed by the key of the resource
entry. Th e source is the instance of the StringResources wrapper
from the App class.

Setting the Culture
Th ere are three application settings that must be confi gured for the
application to pick up the browser’s culture setting and display the
appropriate culture.

Th e fi rst setting is the SupportedCultures element in the .csproj
file. Currently there’s no dialog box in Visual Studio to edit the
setting, so the project fi le must be edited
manually. You can edit a project fi le either
by opening it outside of Visual Studio, or
by unloading the project and selecting edit
from the context menu within Visual Studio.

To enable English and French for this
application, the value of the Supported-
Cultures element looks like this:

<SupportedCultures>fr</SupportedCultures>

Th e cultures values are separated by com-
mas. You don’t need to specify the neutral
culture; it’s compiled into the main DLL.

Th ese next steps are necessary to pick up
the browser language setting. A parameter
must be added to the embedded Silverlight
object in the Web page. The parameters
value is the current UI culture, taken from
the server side. Th is requires the Web page
to be an .aspx fi le. Th e parameter syntax is:

<param name="uiculture"
 value="<%=Thread.CurrentThread.
CurrentCulture.Name %>" />

Th e fi nal mandatory step in this process is to edit the
web.confi g fi le and add a globalization element inside
of the system.web element, setting the values of its
attributes to auto:
 <globalization culture="auto" uiCulture="auto"/>

As mentioned earlier, a Silverlight application has a
neutral language setting. Th e setting is reached by going
to the Silverlight tab of the project properties and clicking
Assembly Information. Th e neutral language property is
located at the bottom of the dialog, as shown in Figure 3.

I recommend setting the neutral language to one without a
region. Th is setting is a fallback, and it’s more useful if it covers a
wide range of potential locales. Setting a neutral language adds an
assembly attribute to the assemblyinfo.cs fi le, like this:

[assembly: NeutralResourcesLanguageAttribute("en")]

After all that, what you end up with is a localized application
that reads the browser language setting at startup and loads the
appropriate resources.

A Custom Localization Process
Th e limitations of the standard localization process stem from the
use of ResourceManager and .resx fi les. Th e ResourceManager class
doesn’t change resource sets at run time based on culture changes
within the environment. Using .resx fi les locks the developer into one
resource set per language and infl exibility in maintaining the resources.

In response to these limitations, let’s look at an alternative solu-
tion that employs dynamic resources.

To make resources dynamic, the resource manager needs to send
notifi cation when the active resource set changes. To send notifi ca-
tions in Silverlight, you implement the INotifyPropertyChanged
interface. Internally, each resource set will be a dictionary with a
key and value type of string.

Th e Prism framework and the Managed Extensibility Framework
(MEF) are popular for Silverlight development, and these frame-

works break up the application into mul-
tiple .xap files. For localization, each .xap
fi le needs its own instance of the resource
manager. To send notifications to every
.xap file (every instance of the resource
manager), I need to keep track of each
instance that gets created and iterate through
that list when notifi cations need to be sent.
Figure 4 shows the code for this Smart-
ResourceManager functionality.

As you can see, a static list is created to
hold all instances of the resource manager.
Th e active resource set is stored in the fi eld
resourceSet and every resource that has been
loaded is stored in the ResourceSets list. In
the constructor, the current instance is stored
in the Instances list. Th e class implements
INotifyPropertyChanged in the standard
way. When the active resource set is changed,
I iterate through the list of instances and fi re
each one’s PropertyChanged event.

Figure 1 The App

Figure 2 Project Structure After
Adding .resx Files

www.msdnmagazine.com

msdn magazine54 SilverLight Localization

Th e SmartResourceManager class needs a way to change the culture
at run time, and it’s as simple as a method that takes a CultureInfo object:

public void ChangeCulture(CultureInfo culture) {
 if (!ResourceSets.ContainsKey(culture.Name)) {
 // Load the resource set
 }
 else {
 ResourceSet = ResourceSets[culture.Name];
 Thread.CurrentThread.CurrentCulture =
 Thread.CurrentThread.CurrentUICulture =
 culture;
 }
}

This method checks to see if the requested culture has been
loaded yet. If not, it loads the culture and then sets it as active. If

the culture has already been loaded, the method simply sets the
corresponding resource set as active. Th e code to load a resource
is omitted for the moment.

For completeness, I’ll also show you the two methods to load
a resource programmatically (see Figure 5). The first method
takes just a resource key and returns the resource from the active
culture. Th e second method takes a resource and a culture name
and returns the resource for that specifi c culture.

If you ran the application right now, all localized strings would
be empty, because no resource sets have been downloaded. To
load the initial resource set, I’m going to create a method named
Initialize that takes the neutral language fi le and culture identifi er.
This method should be called only once during the application
lifetime (see Figure 6).

Binding to XAML
A custom markup extension would provide the most fl uid binding
syntax for the localized resources. Unfortunately, custom markup
extensions aren’t available in Silverlight. Binding to a dictionary is
available in Silverlight 3 and later, and the syntax looks like this:

<StackPanel Grid.ColumnSpan="2" Orientation="Horizontal"
 HorizontalAlignment="Center">
 <TextBlock Text="{Binding Path=ResourceSet[Welcome],
Source={StaticResource
SmartRM}}" FontSize="24"/>
</StackPanel>
<Image Grid.Row="1" Grid.ColumnSpan="2"
 HorizontalAlignment="Center"
 Source="{Binding ResourceSet[FlagImage], Source={StaticResource SmartRM}}"/>

Th e path contains the name of the dictionary property with the
key in square brackets. If you’re using Silverlight 2, there are two
options available: creating a ValueConverter class or emitting a
strongly typed object using refl ection. Creating a strongly typed
object using refl ection is beyond the scope of this article. Th e code
for a ValueConverter would look like Figure 7.

Th e LocalizeConverter class takes the dictionary and parameter
passed in and returns the value of that key in the dictionary. Aft er
creating an instance of the converter, the binding syntax would
look like this:

<StackPanel Grid.ColumnSpan="2" Orientation="Horizontal"
 HorizontalAlignment="Center">
 <TextBlock Text="{Binding Path=ResourceSet, Source={StaticResource
SmartRM}, Converter={StaticResource LocalizeConverter},
ConverterParameter=Welcome}" FontSize="24"/>
</StackPanel>
<Image Grid.Row="1" Grid.ColumnSpan="2" HorizontalAlignment="Center"
 Source="{Binding ResourceSet, Source={StaticResource SmartRM},
Converter={StaticResource LocalizeConverter}, ConverterParameter=FlagImage}"/>

Th e syntax is more verbose using the converter, though you have
more fl exibility. However, for the rest of the article, I’ll continue
without the converter, instead using the dictionary binding syntax.

Locale Settings Redux
Th ere are two application settings that must be confi gured for the
culture to be picked up by the Silverlight application. Th ese are the
same settings discussed with the standard localization process. Th e
globalization element in the web.confi g fi le needs to have culture
and uiCulture values of auto:

<globalization culture="auto" uiCulture="auto"></globalization>

Also, the Silverlight object in the .aspx fi le needs to be passed in
the thread current UI culture value as a parameter:

Figure 3 Setting the Neutral Language

public class SmartResourceManager : INotifyPropertyChanged {
 private static readonly List<SmartResourceManager> Instances =
 new List<SmartResourceManager>();
 private static Dictionary<string, string> resourceSet;
 private static readonly Dictionary<string,
 Dictionary<string, string>> ResourceSets =
 new Dictionary<string, Dictionary<string, string>>();

 public Dictionary<string, string> ResourceSet {
 get { return resourceSet; }
 set { resourceSet = value;
 // Notify all instances
 foreach (var obj in Instances) {
 obj.NotifyPropertyChanged("ResourceSet");
 }
 }
}

public SmartResourceManager() {
 Instances.Add(this);
}

public event PropertyChangedEventHandler PropertyChanged;
public void NotifyPropertyChanged(string property) {
 var evt = PropertyChanged;

 if (evt != null) {
 evt(this, new PropertyChangedEventArgs(property));
 }
}

Figure 4 SmartResourceManager

Just released. . .

Essential Studio Enterprise 2011 Vol. 1:

1.888.9DOTNET | www.syncfusion.com | @syncfusion

Untitled-10 1 2/2/11 3:27 PM

http://www.syncfusion.com

msdn magazine56 SilverLight Localization

<param name="uiculture"
 value="<%=Thread.CurrentThread.CurrentCulture.Name %>" />

To showcase the dynamic localization of the application, I’m going
to add a couple buttons that facilitate changing culture, as shown in
Figure 8. Th e click event for the English button looks like this:

(App.Current.Resources["SmartRM"] as SmartResourceManager).ChangeCulture(
 new CultureInfo("en"));

With some mocked-up data, the application would run and
display the appropriate language. The solution here allows for
dynamic localization at run time and is extensible enough to load
the resources using custom logic.

Th e next section focuses on fi lling in the remaining gap: where
the resources are stored and how they’re retrieved.

Server-Side Components
Now let’s create a database to store resources and a Windows
Communication Foundation (WCF) service to retrieve those
resources. In larger applications, you’d want to create data and busi-
ness layers, but for this example, I won’t be using any abstractions.

Th e reason I chose a WCF service is for the ease of creation and
robustness off ered by WCF. Th e reason I chose to store the resources
in a relational database is for ease of maintenance and administration.
An administration application could be created that would allow
translators to easily modify the resources.

I’m using SQL Server 2008 Express for this application. Th e data
schema is shown in Figure 9.

A Tag is a named group of resources. A StringResource is the entity
representing a resource. Th e LocaleId column represents the name
of the culture that the resource is under. Th e Comment column is
added for compatibility with the .resx format. Th e CreatedDate and
Modifi edDate columns are added for auditing purposes.

A StringResource can be associated with multiple Tags. The
advantage of this is that you can create specific groups (for
example, the resources for a single screen) and download only
those resources. Th e disadvantage is that you can assign multiple
resources with the same LocaleId, Key and Tag. In that case, you
may want to write a trigger to manage creating or updating resources
or use the Modifi edDate column when retrieving resource sets to
determine which is the latest resource.

I’m going to retrieve the data using LINQ to SQL. Th e fi rst ser-
vice operation will take in a culture name and return all resources
associated with that culture. Here’s the interface:

[ServiceContract]
public interface ILocaleService {
 [OperationContract]
 Dictionary<string, string> GetResources(string cultureName);
}

Here’s the implementation:
public class LocaleService : ILocaleService {
 private acmeDataContext dataContext = new acmeDataContext();

 public Dictionary<string, string> GetResources(string cultureName) {
 return (from r in dataContext.StringResources
 where r.LocaleId == cultureName
 select r).ToDictionary(x => x.Key, x => x.Value);
 }
}

Th e operation simply fi nds all resources whose LocaleId is equal
to the cultureName parameter. Th e dataContext fi eld is an instance
of the LINQ to SQL class hooked up to the SQL Server database.
Th at’s it! LINQ and WCF make things so simple.

Now, it’s time to link the WCF service to the SmartResource-
Manager class. Aft er adding a service reference to the Silverlight
application, I register to receive the completed event for the
GetResources operation in the constructor:

public string GetString(string key) {
 if (string.IsNullOrEmpty(key)) return string.Empty;

 if (resourceSet.ContainsKey(key)) {
 return resourceSet[key];
 }
 else {
 return string.Empty;
 }
}

public string GetString(string key, string culture) {
 if (ResourceSets.ContainsKey(culture)) {
 if (ResourceSets[culture].ContainsKey(key)) {
 return ResourceSets[culture][key];
 }
 else {
 return string.Empty;
 }
 }
 else {
 return string.Empty;
 }
}

Figure 5 Loading Resources

public SmartResourceManager() {
 if (Instances.Count == 0) {
 ChangeCulture(Thread.CurrentThread.CurrentUICulture);
 }
 Instances.Add(this);
}

public void Initialize(string neutralLanguageFile,
 string neutralLanguage) {
 lock (lockObject) {
 if (isInitialized) return;
 isInitialized = true;
 }

 if (string.IsNullOrWhiteSpace(neutralLanguageFile)) {
 // No neutral resources
 ChangeCulture(Thread.CurrentThread.CurrentUICulture);
 }
 else {
 LoadNeutralResources(neutralLanguageFile, neutralLanguage);
 }
}

Figure 6 Initializing the Neutral Language

public class LocalizeConverter : IValueConverter {
 public object Convert(object value,
 Type targetType, object parameter,
 System.Globalization.CultureInfo culture) {
 if (value == null) return string.Empty;

 Dictionary<string, string> resources =
 value as Dictionary<string, string>;
 if (resources == null) return string.Empty;
 string param = parameter.ToString();

 if (!resources.ContainsKey(param)) return string.Empty;

 return resources[param];
 }
}

Figure 7 Custom ValueConverter

Untitled-1 1 1/13/11 9:48 AM

www.techexcel.com/TryDevSuite

msdn magazine58 SilverLight Localization

Figure 8Culture-
Change Buttons

public SmartResourceManager() {
 Instances.Add(this);
 localeClient.GetResourcesCompleted +=
 localeClient_GetResourcesCompleted;
 if (Instances.Count == 0) {
 ChangeCulture(Thread.CurrentThread.CurrentUICulture);
 }
}

Th e callback method should add the resource set to
the list of resource sets and make the resource set the
active set. Th e code is shown in Figure 10.

Th e ChangeCulture method needs to be modifi ed to
make a call to the WCF operation:

public void ChangeCulture(CultureInfo culture) {
 if (!ResourceSets.ContainsKey(culture.Name)) {
 localeClient.GetResourceSetsAsync(culture.Name, culture);
 }
 else {
 ResourceSet = ResourceSets[culture.Name];
 Thread.CurrentThread.CurrentCulture =
 Thread.CurrentThread.CurrentUICulture = culture;
 }
}

Loading the Neutral Locale
Th is application needs a way to recover if the Web services can’t be
contacted or are timing out. A resource fi le containing the neutral
language resources should be stored outside of the Web services and
loaded at startup. Th is will serve as a fallback and a performance
enhancement over the service call.

I’m going to create another SmartResourceManager constructor
with two parameters: a URL pointing to the neutral language
resources file and a culture code identifying the culture of the
resource fi le (see Figure 11).

If there’s no neutral resource fi le, the normal process of calling the
WCF call is performed. Th e LoadNeutralResources method uses a

WebClient to retrieve the resource fi le from the server.
It then parses the fi le and converts the XML string into
a Dictionary object. I won’t show the code here as it’s
a bit long and somewhat trivial, but you can fi nd it in
the code download for this article if you’re interested.

To call the parameterized SmartResourceManager
constructor, I need to move the instantiation of the
SmartResourceManager into the code-behind of the App
class (because Silverlight doesn’t support XAML 2009).
I don’t want to hardcode the resource fi le or the culture
code, though, so I’ll have to create a custom Confi guration-

Manager class, which you can check out in the code download.
Aft er integrating the Confi gurationManager into the App class,

the Startup event callback method looks like this:
private void Application_Startup(object sender, StartupEventArgs e) {
 ConfigurationManager.Error += ConfigurationManager_Error;
 ConfigurationManager.Loaded += ConfigurationManager_Loaded;
 ConfigurationManager.LoadSettings();
}

Th e startup callback method now serves to load the application
settings and register for callbacks. If you do choose to make the
loading of the confi guration settings a background call, be careful
of the race conditions that you can run into. Here are the callback
methods for the Confi gurationManager events:

private void ConfigurationManager_Error(object sender, EventArgs e) {
 Resources.Add("SmartRM", new SmartResourceManager());
 this.RootVisual = new MainPage();
}

private void ConfigurationManager_Loaded(object sender, EventArgs e) {
 Resources.Add("SmartRM", new SmartResourceManager(
 ConfigurationManager.GetSetting("neutralLanguageFile"),
 ConfigurationManager.GetSetting("neutralLanguage")));
 this.RootVisual = new MainPage();
}

Th e Error event callback method loads SmartResourceManager
without a neutral language, and the Loaded event callback method
loads with a neutral language.

I need to put the resource file in a location where I don’t have
to recompile anything if I change it. I’m going to put it in the
ClientBin directory of the Web project, and after creating the
resource fi le, I’m going to change its extension to .xml so that it’s
publicly accessible and the WebClient class can access it from the

Figure 9 Schema for Localization Tables in SQL Server 2008 Express

private void localeClient_GetResourcesCompleted(object sender,
 LocaleService.GetResourcesCompletedEventArgs e) {
 if (e.Error != null) {
 var evt = CultureChangeError;

 if (evt != null)
 evt(this, new CultureChangeErrorEventArgs(
 e.UserState as CultureInfo, e.Error));
 }
 else {
 if (e.Result == null) return;

 CultureInfo culture = e.UserState as CultureInfo;

 if (culture == null) return;

 ResourceSets.Add(culture.Name, e.Result);
 ResourceSet = e.Result;
 Thread.CurrentThread.CurrentCulture =
 Thread.CurrentThread.CurrentUICulture = culture;
 }
}

Figure 10 Adding Resources

msdnmagazine.com

Silverlight application. Because it’s publicly accessible, don’t put
any sensitive data in the fi le.

Confi gurationManager also reads from the ClientBin directory.
It looks for a fi le called appSettings.xml, and the fi le looks like this:

<AppSettings>
 <Add Key="neutralLanguageFile" Value="strings.xml"/>
 <Add Key="neutralLanguage" Value="en-US"/>
</AppSettings>

Once appSettings.xml and strings.xml are in place, Confi guration-
Manager and SmartResourceManager can work together to load
the neutral language. Th ere’s room for improvement in this process,
because if the thread’s active culture is diff erent than the neutral
language and the Web service is down, the thread’s active culture
will be diff erent than the active resource set. I’ll leave that as an
exercise for you.

Wrapping Up
What I didn’t go over in this article was normalizing the resources on
the server side. Let’s say that the fr-FR resource is missing two keys that
the fr resource has. When requesting the fr-FR resources, the Web ser-
vice should insert the missing keys from the more general fr resource.

Another aspect that’s built into this solution that I didn’t cover is
loading resources by culture and resource set instead of just culture.
Th is is useful for loading resources per screen or per .xap fi le.

Th e solution I walked you through here does allow you to do a
few useful things, however, including loading resource sets at run
time, using any format for storing resources, changing resources
without recompiling and lazy loading resources.

Th e solution presented here is general-purpose, and you can
hook into it in multiple points and drastically change the imple-
mentation. I hope this helps reduce your daily programming load.

For further in-depth reading about internationalization, check
out the book “.NET Internationalization: Th e Developer’s Guide
to Building Global Windows and Web Applications” (Addison-
Wesley, 2006), by Guy Smith-Ferrier. Smith-Ferrier also has a great
video on internationalization on his Web site; the video is called
“Internationalizing Silverlight at SLUGUK” (bit.ly/gJGptU).

MATTHEW DELISLE enjoys studying both the soft ware and hardware aspects of
computers. His fi rst daughter was born in 2010 and he thinks she’s almost ready to
begin her programming career. Keep up with Delisle via his blog at mattdelisle.net.

THANKS to the following technical expert for reviewing this article:
John Brodeur

public SmartResourceManager(string neutralLanguageFile, string neutralLanguage) {
 Instances.Add(this);
 localeClient.GetResourcesCompleted +=
 localeClient_GetResourcesCompleted;

 if (Instances.Count == 1) {
 if (string.IsNullOrWhiteSpace(neutralLanguageFile)) {
 // No neutral resources
 ChangeCulture(Thread.CurrentThread.CurrentUICulture);
 }
 else {
 LoadNeutralResources(neutralLanguageFile, neutralLanguage);
 }
 }
}

Figure 11 Loading the Neutral Locale

http://msdn.microsoft.com/magazine
www.msdnmagazine.com
http://bit.ly/gJGptU
http://mattdelisle.net

msdn magazine60

DE B UGGER AP I s

Writing a Debugging
Tools for Windows
Extension

Troubleshooting production issues can be one of the
most frustrating jobs that any engineer can do. It can also be one
of the most rewarding jobs. Working in Microsoft Support, I’m
faced with this every day. Why did the application crash? Why did
it hang? Why is it having a performance issue?

Learning how to debug can be a daunting task, and is one of
those skills that requires many hours of regular practice to stay
profi cient. But it’s a crucial skill for being an all-around developer.
Still, by bottling the skills of a few debugging experts, debugger
engineers of all skill levels can execute extremely complex debug-
ging logic as easy-to-run commands.

Myriad troubleshooting techniques can be used to get to the
root cause of a crash, but the most valuable—and most fruitful to
engineers with debugging skills—is a process dump. Process dumps

Andrew Richards

contain a snapshot of a process memory at the time of capture.
Depending on the dumping tool, this could be the entire address
space or just a subset.

Windows automatically creates a minidump through Windows
Error Reporting (WER) when any application throws an unhan-
dled exception. In addition, you can manually create a dump
fi le via the Userdump.exe tool. Th e Sysinternals tool ProcDump
(technet.microsoft.com/sysinternals/dd996900) is becoming the preferred
process-dumping tool of Microsoft Support because it can capture
a dump based upon a large variety of triggers and can generate
dumps of various sizes. But once you have the dump data, what
can you do with it to aid debugging?

Various versions of Visual Studio support opening dump fi les
(.dmp), but the best tool to use is a debugger from Debugging Tools
for Windows. Th ese tools are all based on a single debugging engine
that supports two debugger extension APIs. In this article, I’m going
to cover the basics of building a custom debugger extension so
you can analyze these dump fi les (and also live systems) with ease.

Setting up the Tools
Debugging Tools for Windows (microsoft.com/whdc/devtools/debugging)
is an installable and redistributable component of the Windows
SDK and Windows Driver Kit (WDK). As I write this, the current
version is 6.12, and it’s available in version 7.1 of the Windows
SDK or the WDK. I recommend using the most-recent version,
as the debugging engine has many valuable additions, including
better stack walking.

This article discusses:
• Debugging tools basics

• Using the debugger APIs

• Symbol resolution

• Dealing with processor types

Technologies discussed:
Debugging Tools for Windows, C++

Code download available at:
code.msdn.microsoft.com/mag201103Debugger

http://code.msdn.microsoft.com/mag201103Debugger
http://technet.microsoft.com/sysinternals/dd996900
http://microsoft.com/whdc/devtools/debugging

61March 2011msdnmagazine.com

The Debugging Tools for Windows guidelines say that you
should compile debugger extensions using the WDK build
environment. I use the latest release of the WDK (version 7.1.0
build 7600.16385.1), but any version of the WDK or its previous
incarnation as the Driver Development Kit (DDK) will suffice.
When building an extension using the WDK, you use x64 and x86
Free Build environments.

With a little bit of eff ort you can also adapt my projects to build
in the Windows SDK build environment or Visual Studio.

One note of warning: Th e WDK doesn’t like spaces in path names.
Make sure you compile from an unbroken path. For example, use
something like C:\Projects instead of C:\Users\Andrew Richards\
Documents\Projects.

Regardless of how you build the extension, you’ll need the header
and library fi les of the Debugging Tools SDK, which is a component
of Debugging Tools for Windows. Th e examples in this article use
my x86 path (C:\debuggers_x86\sdk) when referencing the header
and library fi les. If you choose to install the debugger elsewhere,
remember to update the path and add quotes when necessary to
accommodate spaces in the path names.

Using the Debugging Tools
Th e Debugging Tools for Windows debuggers are architecture-
agnostic. Any edition of the debugger can debug any target
architecture. A common example is using the x64 debugger to
debug an x86 application. Th e debugger is released for x86, x64
(amd64) and IA64, but it can debug x86, x64, IA64, ARM, EBC and
PowerPC (Xbox) applications. You can install all of the debugger
editions side-by-side.

Th is agility isn’t universally understood, though. Not all debugger
extensions adapt to the target architecture as well as the debugger
engine does. Some debugger extensions assume that the pointer
size of the target will be the same as the pointer size of the debugger.

Similarly, they use the wrong hardcoded register (esp in place of
rsp, for example) instead of a pseudo-register such as $csp.

If you’re having an issue with a debugger extension, you should
try running the debugger designed for the same architecture as the
target environment. Th is might overcome the assumptions of the
poorly written extension.

Each application build type and associated processor architec-
ture comes with its own set of debugging headaches. Th e assembler
generated for a debug build is relatively linear, but the assembler
generated for a release build is optimized and can resemble a bowl
of spaghetti. On x86 architectures, Frame Pointer Omission (FPO)
plays havoc with call stack reconstruction (the latest debugger
handles this well). On x64 architectures, function parameters and
local variables are stored in registers. At the time of dump capture,
they may have been pushed onto the stack, or may no longer exist
due to register reuse.

Experience is the key here. To be accurate, one person’s experi-
ence is the key here. You just need to bottle their know-how in a
debugger extension for the rest of us. It only takes a few repetitions
of a similar debugging sequence before I automate it as a debugger
extension. I’ve used some of my extensions so much that I forget how
I did the same thing using the underlying debugging commands.

Using the Debugger APIs
Th ere are two debugger extension APIs: the deprecated WdbgExts
API (wdbgexts.h) and the current DbgEng API (dbgeng.h).

WdbgExts extensions are based on a global call that’s confi gured
at initialization (WinDbgExtensionDllInit):

WINDBG_EXTENSION_APIS ExtensionApis;

TARGETNAME=MyExt
TARGETTYPE=DYNLINK

_NT_TARGET_VERSION=$(_NT_TARGET_VERSION_WINXP)

DLLENTRY=_DllMainCRTStartup

!if "$(DBGSDK_INC_PATH)" != ""
INCLUDES = $(DBGSDK_INC_PATH);$(INCLUDES)
!endif
!if "$(DBGSDK_LIB_PATH)" == ""
DBGSDK_LIB_PATH = $(SDK_LIB_PATH)
!else
DBGSDK_LIB_PATH = $(DBGSDK_LIB_PATH)\$(TARGET_DIRECTORY)
!endif

TARGETLIBS=$(SDK_LIB_PATH)\kernel32.lib \
 $(DBGSDK_LIB_PATH)\dbgeng.lib

USE_MSVCRT=1

UMTYPE=windows

MSC_WARNING_LEVEL = /W4 /WX

SOURCES= dbgexts.rc \
 dbgexts.cpp \
 myext.cpp

Figure 1 Sources

// dbgexts.cpp

#include "dbgexts.h"

extern "C" HRESULT CALLBACK
DebugExtensionInitialize(PULONG Version, PULONG Flags) {
 *Version = DEBUG_EXTENSION_VERSION(EXT_MAJOR_VER, EXT_MINOR_VER);
 *Flags = 0; // Reserved for future use.
 return S_OK;
}

extern "C" void CALLBACK
DebugExtensionNotify(ULONG Notify, ULONG64 Argument) {
 UNREFERENCED_PARAMETER(Argument);
 switch (Notify) {
 // A debugging session is active. The session may not necessarily be suspended.
 case DEBUG_NOTIFY_SESSION_ACTIVE:
 break;
 // No debugging session is active.
 case DEBUG_NOTIFY_SESSION_INACTIVE:
 break;
 // The debugging session has suspended and is now accessible.
 case DEBUG_NOTIFY_SESSION_ACCESSIBLE:
 break;
 // The debugging session has started running and is now inaccessible.
 case DEBUG_NOTIFY_SESSION_INACCESSIBLE:
 break;
 }
 return;
}

extern "C" void CALLBACK
DebugExtensionUninitialize(void) {
 return;
}

Figure 2 dbgexts.cpp

www.msdnmagazine.com

msdn magazine62 Debugger APIs

Th e global provides the functionality required to run functions
such as dprintf(“\n”) and GetExpression(“@$csp”) without any
namespace. Th is type of extension resembles the code you’d write
when doing Win32 programming.

DbgEng extensions are based on debugger interfaces. The
IDebugClient interface is passed to you by the debug engine as
a parameter of each call. The interfaces support QueryInterface
for access to the ever-increasing range of debugger interfaces.
Th is type of extension resembles the code you’d write when doing
COM programming.

It’s possible to make a hybrid of the two extension types. You expose
the extension as DbgEng, but add the functionality of the WdbgExts
API at run time via a call to IDebugControl::GetWindbgExtension-
Apis64. As an example, I’ve written the classic “Hello World” as a
DbgEng extension in C. If you prefer C++, refer to the ExtException
class in the Debugging Tools SDK (.\inc\engextcpp.cpp).

Compile the extension as MyExt.dll (TARGETNAME in the
sources file shown in Figure 1). It exposes a command called
!helloworld. The extension dynamically links to the Microsoft
Visual C runtime (MSVCRT). If you want to use static, change the
USE_MSVCRT=1 statement to USE_LIBCMT=1 in the sources fi le.

Th e DebugExtensionInitialize function (see Figure 2) is called
when the extension is loaded. Setting the Version parameter is a
simple matter of using the DEBUG_EXTENSION_VERSION
macro with the EXT_MAJOR_VER and EXT_MINOR_VER
#defi nes I’ve added to the header fi le:

// dbgexts.h

#include <windows.h>
#include <dbgeng.h>

#define EXT_MAJOR_VER 1
#define EXT_MINOR_VER 0

Th e Version value is reported as the API version in the debugger
.chain command. To change the File Version, File Description,
Copyright and other values you need to edit the dbgexts.rc fi le:

myext.dll: image 6.1.7600.16385, API 1.0.0, built Wed Oct 13 20:25:10 2010
 [path: C:\Debuggers_x86\myext.dll]

Th e Flags parameter is reserved and should be set to zero. Th e
function needs to return S_OK.

Th e DebugExtensionNotify function is called when the session
changes its active or accessible status. Th e Argument parameter is
wrapped with the UNREFERENCED_PARAMETER macro to
eliminate the unused parameter compiler warning.

I’ve added the switch statement for the Notify parameter for
completeness, but I haven’t added any functional code in this area.
Th e switch statement processes four session state changes:

• DEBUG_NOTIFY_SESSION_ACTIVE occurs when you
attach to a target.

• DEBUG_NOTIFY_SESSION_INACTIVE occurs when
the target becomes detached (via .detach or qd).

• If the target suspends (hits a breakpoint, for example), the
function will be passed DEBUG_NOTIFY_SESSION_
ACCESSIBLE.

• If the target resumes running, the function will be passed
DEBUG_NOTIFY_SESSION_INACCESSIBLE.

The DebugExtensionUninitialize function is called when the
extension is unloaded.

Each extension command to be exposed is declared as a function
of type PDEBUG_EXTENSION_CALL. Th e name of the function
is the name of the extension command. Because I’m writing “Hello
World,” I’ve named the function helloworld (see Figure 3).

Note that the convention is to use lower-case function names.
Because I’m using the WDK build environment, the myext.def fi le
also needs to be changed. Th e name of the extension command
needs to be added so that it’s exported:

;-------------
; MyExt.def
;-------------
EXPORTS
 helloworld
 DebugExtensionNotify
 DebugExtensionInitialize
 DebugExtensionUninitialize

Th e args parameter contains a string of the arguments for the
command. The parameter is passed as a null-terminated ANSI
string (CP_ACP).

Th e pDebugClient parameter is the IDebugClient interface
pointer that allows the extension to interact with the debugging
engine. Even though the interface pointer looks like it’s a COM
Interface pointer, it can’t be marshaled, nor accessed at a later
time. It also can’t be used from any other thread. To do work
on an alternate thread, a new debugger client (a new interface
pointer to IDebugClient) must be created on that thread using
IDebugClient::CreateClient. Th is is the only function that can be
run on an alternate thread.

Th e IDebugClient interface (like all interfaces) is derived from
IUnknown. You use QueryInterface to access the other DbgEng
interfaces, be they later versions of the IDebugClient interface
(IDebugClient4) or diff erent interfaces (IDebugControl, IDebug-
Registers, IDebugSymbols, IDebugSystemObjects and so on). To
output text to the debugger, you need the IDebugControl interface.

I have two non-SDK fi les in the folder to help with develop-
ment. Th e make.cmd script adds the Debugger SDK inc and lib
paths to the WDK build environment, then runs the appropriate
build command:

@echo off
set DBGSDK_INC_PATH=C:\Debuggers_x86\sdk\inc
set DBGSDK_LIB_PATH=C:\Debuggers_x86\sdk\lib
set DBGLIB_LIB_PATH=C:\Debuggers_x86\sdk\lib
build -cZMg %1 %2

Note that the WDK build environment itself determines whether
an x86 or x64 binary will be built. If you want to build for multiple

// MyExt.cpp

#include "dbgexts.h"

HRESULT CALLBACK
helloworld(PDEBUG_CLIENT pDebugClient, PCSTR args) {
 UNREFERENCED_PARAMETER(args);

 IDebugControl* pDebugControl;
 if (SUCCEEDED(pDebugClient->QueryInterface(__uuidof(IDebugControl),
 (void **)&pDebugControl))) {
 pDebugControl->Output(DEBUG_OUTPUT_NORMAL, "Hello World!\n");
 pDebugControl->Release();
 }
 return S_OK;
}

Figure 3 MyExt.cpp

(888) 850-9911
Sales Hotline - US & Canada:

/update/2011/03

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2011 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

BEST SELLER TX Text Control .NET for Windows Forms/WPF from $499.59
Word processing components for Visual Studio .NET.

FusionCharts from $195.02
Interactive Flash & JavaScript (HTML5) charts for web apps.

BEST SELLER

BEST SELLER Spread for Windows Forms from $959.04
A comprehensive Excel compatible spreadsheet component for Windows Forms applications.

BEST SELLER

BEST SELLER ActiveReports 6 from $685.02
Latest release of the best selling royalty free .NET report writer.

BEST SELLER

BEST SELLER

Untitled-8 1 1/27/11 4:31 PM

http://www.componentsource.com
http://www.componentsource.com

msdn magazine64 Debugger APIs

architectures, you’ll need to open multiple prompts and run make.
cmd in each. Th e building can be done concurrently.

Once built, I use the (x86) test.cmd script to copy the compiled
i386 binaries into the x86 debugger folder (c:\Debuggers_x86),
then launch an instance of Notepad with the debugger attached
and the extension loaded:

@echo off
copy objfre_win7_x86\i386\myext.dll c:\Debuggers_x86
copy objfre_win7_x86\i386\myext.pdb c:\Debuggers_x86
\Debuggers_x86\windbg.exe -a myext.dll -x notepad

If everything has gone as planned, I can type “!helloworld” in the
debugger command prompt and see a “Hello World!” response:

0:000> !helloworld
Hello World!

Symbol Resolution and Reading
Th e “Hello World” application may be amazing, but you can do
better. I’m now going to use this infrastructure to add a command
that actually interacts with the target and would help you do some
analysis. Th e simple test01 application has a global pointer that’s
assigned a value:

// test01.cpp

#include <windows.h>

void* g_ptr;
int main(int argc, char* argv[]) {
 g_ptr = "This is a global string";
 Sleep(10000);
 return 0;
}

The new !gptr command in MyExt.cpp (see Figure 4) will
resolve the test01!g_ptr global, read the pointer and then output
the values found in the same format as “x test01!g_ptr”:

0:000> x test01!g_ptr
012f3370 Test01!g_ptr = 0x012f20e4

0:000> !gptr
012f3370 test01!g_ptr = 0x012f20e4
<string>

Th e fi rst step is to determine the location of the test01!g_ptr
pointer. Th e pointer will be in a diff erent location each time the
application runs because Address Space Layout Randomization
(ASLR) will change the module load address. To get the location,
I use QueryInterface to get the IDebugSymbols interface, and then
use GetOffsetByName. The GetOffsetByName function takes a
symbol name and returns the address as a 64-bit pointer. The
debugger functions always return 64-bit pointers (ULONG64) so
that 64-bit targets can be debugged with a 32-bit debugger.

Remember, this is the address of the pointer in the target address
space, not your own. You can’t just read from it to determine its value.
To get the value of the pointer, I use QueryInterface again to get the
IDebugDataSpaces interface, and then use ReadPointersVirtual. Th is
reads the pointer from the target address space. ReadPointersVirtual
automatically adjusts for pointer size and endian diff erences. You don’t
need to manipulate the pointer returned.

IDebugControl::Output takes the same format string as printf,
but also has formatters that allow you to reference the target address
space. I use the %ma format to print out the ANSI string that the
global pointer points to in the target address space. Th e %p format
is pointer-size-aware and should be used for pointer output (you
must pass a ULONG64).

I’ve modified the test script to load a dump file of the x86
version of test01 instead of launching Notepad:

@echo off
copy objfre_win7_x86\i386\myext.dll c:\Debuggers_x86
copy objfre_win7_x86\i386\myext.pdb c:\Debuggers_x86
\Debuggers_x86\windbg.exe -a myext.dll -y "..\Test01\x86;SRV*c:\symbols*http://
msdl.microsoft.com/download/symbols" -z ..\Test01\x86\Test01.dmp

I’ve also set the symbol path to the test01 x86 folder and the
Microsoft Public Symbol Server so that everything can be resolved.
Additionally, I’ve made an x64 test script that does the same as
the x86 test script, but with a dump fi le of the x64 version of the
test application:

@echo off
copy objfre_win7_x86\i386\myext.dll c:\Debuggers_x86
copy objfre_win7_x86\i386\myext.pdb c:\Debuggers_x86
\Debuggers_x64\windbg.exe -a myext.dll -y "..\Test01\x64;SRV*c:\symbols*http://
msdl.microsoft.com/download/symbols" -z ..\Test01\x64\Test01.dmp

When I run the scripts, the x86 debugger is launched, the
appropriate dump fi le is opened, the x86 version of the extension
is loaded and symbols are resolvable.

Once again, if everything has gone to plan, I can type “x test01!g_ptr”
and !gptr in the debugger command prompt and see similar responses:

// x86 Target
0:000> x test01!g_ptr
012f3370 Test01!g_ptr = 0x012f20e4

0:000> !gptr
012f3370 test01!g_ptr = 0x012f20e4
This is a global string

// x64 Target
0:000> x test01!g_ptr
00000001`3fda35d0 Test01!g_ptr = 0x00000001`3fda21a0

0:000> !gptr
000000013fda35d0 test01!g_ptr = 0x000000013fda21a0
This is a global string

HRESULT CALLBACK
gptr(PDEBUG_CLIENT pDebugClient, PCSTR args) {
 UNREFERENCED_PARAMETER(args);

 IDebugSymbols* pDebugSymbols;
 if (SUCCEEDED(pDebugClient->QueryInterface(__uuidof(IDebugSymbols),
 (void **)&pDebugSymbols))) {
 // Resolve the symbol.
 ULONG64 ulAddress = 0;
 if (SUCCEEDED(pDebugSymbols->GetOffsetByName("test01!g_ptr", &ulAddress))) {
 IDebugDataSpaces* pDebugDataSpaces;
 if (SUCCEEDED(pDebugClient->QueryInterface(__uuidof(IDebugDataSpaces),
 (void **)&pDebugDataSpaces))) {
 // Read the value of the pointer from the target address space.
 ULONG64 ulPtr = 0;
 if (SUCCEEDED(pDebugDataSpaces->ReadPointersVirtual(1, ulAddress,
&ulPtr))) {
 PDEBUG_CONTROL pDebugControl;
 if (SUCCEEDED(pDebugClient->QueryInterface(__uuidof(IDebugControl),
 (void **)&pDebugControl))) {
 // Output the values.
 pDebugControl->Output(DEBUG_OUTPUT_NORMAL,
 "%p test01!g_ptr = 0x%p\n", ulAddress, ulPtr);
 pDebugControl->Output(DEBUG_OUTPUT_NORMAL, "%ma\n", ulPtr);
 pDebugControl->Release();
 }
 }
 pDebugDataSpaces->Release();
 }
 pDebugSymbols->Release();
 }
 }
 return S_OK;
}

Figure 4 Revised MyExt.cpp

C O N N E C T I O N S
MARCH 27-30, 2011, ORLANDO

MEET US AT

WORD PROCESSING
COMPONENTS
WINDOWS FORMS / WPF / ASP.NET / ACTIVEX

MILES BEYOND RICH TEXT

TRUE WYSIWYG

POWERFUL MAIL MERGE

MS OFFICE NOT REQUIRED

PDF, DOCX, DOC, RTF & HTML

Word Processing Components
for Windows Forms & ASP.NET

TX Text Control Sales:
US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0WWW.TEXTCONTROL.COM

Untitled-5 1 2/2/11 1:56 PM

www.textcontrol.com

msdn magazine66 Debugger APIs

If you repeat the test using the x64 debugger, the amd64-compiled
version of the debugger extension and the x86 or x64 dump fi les, you’ll
get the same results. Th at is, the extension is architecture-agnostic.

Processor Types and Stacks
I’m now going to extend this infrastructure once again. Let’s add
a command that fi nds the duration of a Sleep call on the current
thread stack. The !sleepy command (see Figure 5) will resolve
the call stack symbols, look for the Sleep function and read the
DWORD that represents the milliseconds to delay, and then will
output the delay value (if found).

To add some complexity to the command, the command will sup-
port the x86 and x64 versions of the test01 application. Because the
calling convention is diff erent for x86 and x64 applications, the com-
mand will have to be aware of the target’s architecture as it progresses.

Th e fi rst step is to get the stack frames. To get the frames, I use
QueryInterface to get the IDebugControl interface, and then use
GetStackTrace to retrieve information about each stack frame.
GetStackTrace takes an array of DEBUG_STACK_FRAME struc-
tures. I always allocate the array of DEBUG_STACK_FRAME
structures on the heap so that I don’t cause a stack overfl ow. If you’re
retrieving a stack overfl ow thread of a target, you’ll probably hit
your own stack limit if the array is allocated on your stack.

If GetStackTrace succeeds, the array will be populated with
information for each frame that was walked. Success here doesn’t
necessarily mean that the frame information is correct. The
debugger does its best to walk the stack frames, but mistakes can
be made when the symbols aren’t correct (when they’re missing or
have been forced). If you’ve used “.reload /f /i” to force the symbol
load, poor symbol alignment will probably occur.

HRESULT CALLBACK
sleepy(PDEBUG_CLIENT4 Client, PCSTR args) {
 UNREFERENCED_PARAMETER(args);
 BOOL bFound = FALSE;

 IDebugControl* pDebugControl;

 if (SUCCEEDED(Client->QueryInterface(__uuidof(IDebugControl),
 (void **)&pDebugControl))) {
 IDebugSymbols* pDebugSymbols;

 if (SUCCEEDED(Client->QueryInterface(__uuidof(IDebugSymbols),
 (void **)&pDebugSymbols))) {
 DEBUG_STACK_FRAME* pDebugStackFrame =
 (DEBUG_STACK_FRAME*)malloc(
 sizeof(DEBUG_STACK_FRAME) * MAX_STACK_FRAMES);

 if (pDebugStackFrame != NULL) {
 // Get the Stack Frames.
 memset(pDebugStackFrame, 0, (sizeof(DEBUG_STACK_FRAME) *
 MAX_STACK_FRAMES));
 ULONG Frames = 0;

 if (SUCCEEDED(pDebugControl->GetStackTrace(0, 0, 0,
 pDebugStackFrame, MAX_STACK_FRAMES, &Frames)) &&
 (Frames > 0)) {
 ULONG ProcessorType = 0;
 ULONG SymSize = 0;
 char SymName[4096];
 memset(SymName, 0, 4096);
 ULONG64 Displacement = 0;

 if (SUCCEEDED(pDebugControl->GetEffectiveProcessorType(
 &ProcessorType))) {
 for (ULONG n=0; n<Frames; n++) {

 // Use the Effective Processor Type and the contents
 // of the frame to determine existence
 if (SUCCEEDED(pDebugSymbols->GetNameByOffset(
 pDebugStackFrame[n].InstructionOffset, SymName, 4096,
 &SymSize, &Displacement)) && (SymSize > 0)) {

 if ((ProcessorType == IMAGE_FILE_MACHINE_I386) &&
 (_stricmp(SymName, "KERNELBASE!Sleep") == 0) &&
 (Displacement == 0xF)) {
 // Win7 x86; KERNELBASE!Sleep+0xF is usually in frame 3.
 IDebugDataSpaces* pDebugDataSpaces;

 if (SUCCEEDED(Client->QueryInterface(
 __uuidof(IDebugDataSpaces),
 (void **)&pDebugDataSpaces))) {
 // The value is pushed immediately prior to
 // KERNELBASE!Sleep+0xF
 DWORD dwMilliseconds = 0;

 if (SUCCEEDED(pDebugDataSpaces->ReadVirtual(

 pDebugStackFrame[n].StackOffset, &dwMilliseconds,
 sizeof(dwMilliseconds), NULL))) {
 pDebugControl->Output(DEBUG_OUTPUT_NORMAL,
 "Sleeping for %ld msec\n", dwMilliseconds);
 bFound = TRUE;
 }
 pDebugDataSpaces->Release();
 }
 if (bFound) break;
 }

 else if ((ProcessorType == IMAGE_FILE_MACHINE_AMD64) &&
 (_stricmp(SymName, "KERNELBASE!SleepEx") == 0) &&
 (Displacement == 0xAB)) {
 // Win7 x64; KERNELBASE!SleepEx+0xAB is usually in frame 1.
 IDebugRegisters* pDebugRegisters;

 if (SUCCEEDED(Client->QueryInterface(
 __uuidof(IDebugRegisters),
 (void **)&pDebugRegisters))) {
 // The value is in the 'rsi' register.
 ULONG rsiIndex = 0;
 if (SUCCEEDED(pDebugRegisters->GetIndexByName(
 "rsi", &rsiIndex)))
 {
 DEBUG_VALUE debugValue;
 if (SUCCEEDED(pDebugRegisters->GetValue(
 rsiIndex, &debugValue)) &&
 (debugValue.Type == DEBUG_VALUE_INT64)) {
 // Truncate to 32bits for display.
 pDebugControl->Output(DEBUG_OUTPUT_NORMAL,
 "Sleeping for %ld msec\n", debugValue.I32);
 bFound = TRUE;
 }
 }
 pDebugRegisters->Release();
 }

 if (bFound) break;
 }
 }
 }
 }
 }
 free(pDebugStackFrame);
 }
 pDebugSymbols->Release();
 }
 if (!bFound)
 pDebugControl->Output(DEBUG_OUTPUT_NORMAL,
 "Unable to determine if Sleep is present\n");
 pDebugControl->Release();
 }
 return S_OK;
}

Figure 5 Sleepy

Project3 12/16/09 11:55 AM Page 1

www.nsoftware.com

msdn magazine68 Debugger APIs

To eff ectively use the contents of each of the DEBUG_STACK_
FRAME structures, I need to know the target’s eff ective proces-
sor type. As mentioned previously, the target architecture can be
completely diff erent from the debugger extension architecture. Th e
effective processor type (.effmach) is the architecture that the
target is currently using.

Th e processor type can also be a diff erent processor type than that
used by the target’s host. Th e most common example of this is when
the target is an x86 application that’s running via Windows 32-bit
on Windows 64-bit (WOW64) on an x64 edition of Windows. Th e
eff ective processor type is IMAGE_FILE_MACHINE_I386. Th e
actual type is IMAGE_FILE_MACHINE_AMD64.

Th is means you should consider an x86 application to be an x86
application regardless of whether it’s running on an x86 edition
of Windows or an x64 edition of Windows. (Th e only exception
to this rule is when you’re debugging the WOW64 calls that
surround the x86 process.)

To get the eff ective processor type, I use the IDebugControl in-
terface that I already have, and then use GetEff ectiveProcessorType.

If the eff ective processor type is i386, I need to look for the
KERNELBASE!Sleep+0xf function. If all the symbols are resolved
correctly, the function should be in frame 3:

0:000> knL4
 # ChildEBP RetAddr
00 001bf9dc 76fd48b4 ntdll!KiFastSystemCallRet
01 001bf9e0 752c1876 ntdll!NtDelayExecution+0xc
02 001bfa48 752c1818 KERNELBASE!SleepEx+0x65
03 001bfa58 012f1015 KERNELBASE!Sleep+0xf

If the effective processor type is AMD64, I look for the
KERNELBASE!SleepEx+0xab function. If all the symbols are
resolved correctly, the function should be in frame 1:

0:000> knL2
 # Child-SP RetAddr Call Site
00 00000000'001cfc08 000007fe'fd9b1203 ntdll!NtDelayExecution+0xa
01 00000000'001cfc10 00000001'3fda101d KERNELBASE!SleepEx+0xab

However, based on the level of symbol resolution available, the
function symbol I’m looking for may or may not be in the expected
frame. If you open the test01 x86 dump fi le and don’t specify a sym-
bol path, you can see an example of this. Th e KERNELBASE!Sleep
call will be in frame 1 instead of frame 3:

0:000> knL4
 # ChildEBP RetAddr
WARNING: Stack unwind information not available. Following frames may be wrong.
00 001bfa48 752c1818 ntdll!KiFastSystemCallRet
01 001bfa58 012f1015 KERNELBASE!Sleep+0xf
02 001bfaa4 75baf4e8 Test01+0x1015
03 001bfab0 76feaf77 kernel32!BaseThreadInitThunk+0x12

Th e debugger warns you of this possible mistake. If you want to
have your extension adapt to these types of issues, you should iterate
over the frames as I have, instead of just looking at the expected frame.

To determine the existence of the Sleep function, I need to look
up the symbol for each frame. If the eff ective processor type and
symbol make a valid pair, the function has been found. Note that
this logic is fragile and is being used to simplify the example. Th e
symbol may change between builds and platforms. For example,
Windows Server 2008 is kernel32!Sleep+0xf, but Windows 7 is
KERNELBASE!Sleep+0xf.

To get the symbol, I use QueryInterface to get the IDebugSymbol
interface. I then use GetNameByOff set to get the symbol of the
instruction off set address.

There are two parts to the symbol: the symbol name
(KERNELBASE!Sleep) and the displacement (0xf). Th e symbol
name is an amalgamation of the module name and the function
name (<module>!<function>). Th e displacement is the byte off set
from the start of the function to which program fl ow will return to
aft er the call has returned.

If there are no symbols, the function will be reported as just the
module name with a large displacement (Test01+0x1015).

Once I’ve found the frame, the next step is to extract the delay.
When the target is x86 based, the delay will be in a DWORD that
has been pushed onto the stack immediately prior to the function
call (note that this is fragile logic):

// @$csp is the pseudo-register of @esp
0:000> dps @$csp
<snip>
001bfa4c 752c1818 KERNELBASE!Sleep+0xf
001bfa50 00002710
<snip>

The StackOffset member of the DEBUG_STACK_FRAME
structure actually points to this address already, so no pointer
arithmetic is necessary. To get the value, I use QueryInterface to
get the IDebugDataSpaces interface, and then use ReadVirtual to
read the DWORD from the target address space.

If the target is x64 based, the delay isn’t in the stack—it’s in
the rsi register (this is also fragile logic due to its frame-context
dependency):

0:000> r @rsi
rsi=0000000000002710

To get the value, I use QueryInterface to get the IDebugRegisters
interface. I fi rst need to use GetIndexByName to get the index of
the rsi register. I then use GetValue to read the register value from
the target registers. Because rsi is a 64-bit register, the value is
returned as an INT64. Because the DEBUG_VALUE structure is a
union, you can simply reference the I32 member instead of the I64
member to get the truncated version that represents the DWORD
passed to Sleep.

Once again, in both cases, I use the IDebugControl::Output
function to output the result.

Break!
In this article, I barely scratched the surface of what can be achieved.
Stacks, symbols, registers, memory I/O and environmental infor-
mation are but a few of the many things that you can interrogate
and change from within an extension.

In a future article I’ll delve deeper into the relationship a debug-
ger extension can have with the debugger. I’ll cover debugger
clients and debugger callbacks, and I’ll use these to encapsulate
the SOS debugger extension so that you can write an extension
that can debug managed applications without having to have any
knowledge of the underlying .NET structures.

ANDREW RICHARDS is a Microsoft senior escalation engineer for Exchange Server.
He has a passion for support tools, and is continually creating debugger extensions
and applications that simplify the job of support engineers.

THANKS to the following technical experts for reviewing this article:
Drew Bliss, Jen-Lung Chiu, Mike Hendrickson, Ken Johnson, Brunda
Nagalingaiah and Matt Weber

Toll Free USA (888) 774-3273 | Phone (913) 390-4797 | sales@spreadsheetgear.com

Download the FREE fully functional 30-Day
evaluation of SpreadsheetGear 2010 today at

www.SpreadsheetGear.com.

ASP.NET Excel Reporting
Easily create richly formatted Excel reports without Excel using the
new generation of spreadsheet technology built from the ground up
for scalability and reliability.

Excel Compatible Windows Forms Control
Add powerful Excel compatible viewing, editing, formatting, calculating,
charting and printing to your Windows Forms applications with the
easy to use WorkbookView control.

Create Dashboards from Excel Charts and Ranges
You and your users can design dashboards, reports, charts, and
models in Excel rather than hard to learn developer tools and you can
easily deploy them with one line of code.

20 Minutes to 4 Seconds...
SpreadsheetGear for .NET reduced the time to generate a
critical Excel Report “from 20 minutes to 4 seconds” making
his team “look like miracle workers.”

Luke Melia, Software Development Manager at Oxygen Media in New York

Untitled-9 1 11/2/10 12:01 PM

http://www.SpreadsheetGear.com
mailto:sales@spreadsheetgear.com

msdn magazine70

R IA FRAMEW OR KS

Building Data-Centric
Web Apps with ASP.NET
MVC and Ext JS

A rich Internet application (RIA) combines the usability
of a desktop app with the flexibility of Web-based deployment
and revision. There are two key approaches to building RIAs.
First, there are browser plug-ins that host execution environ-
ments such as Flash, Java and Silverlight. Second, there are
JavaScript-based extension libraries such as Dojo, Ext JS, jQuery,
MooTools, Prototype and YUI. Each approach has its advantages
and disadvantages.

JavaScript libraries are a popular choice for building RIAs
because JavaScript is supported by all major browsers and there’s no
need to install a plug-in or runtime environment. I’ve been experi-
menting with another of the libraries mentioned—Ext JS—and I’ve
found that it makes an interesting choice for implementing Web
apps. It’s easy to implement, well-documented and is compatible

Juan Carlos Olamendy

with Selenium for testing. Ext JS also provides pre-defi ned controls
that simplify creating the UI of your Web app.

Unfortunately, most examples of Ext JS are illustrated with
PHP, Python and Ruby on Rails code on the server side. But that
doesn’t mean developers using Microsoft technologies can’t take
advantage of Ext JS. While it’s diffi cult to integrate Ext JS with Web
Forms development (due to the abstraction layer that encapsulates
the request-response nature of the Web in order to provide a
stateful control-based model), you could use the ASP.NET MVC
framework, enabling you to leverage both the Microsoft .NET
Framework and Ext JS in the same app.

In this article, I’ll provide the tutorial I couldn’t find, walking
through the development of a real-world Web solution using ASP.NET
MVC and Ext JS that reads from and writes to a back-end database.

Ext JS Form Basics
To use Ext JS, you fi rst need to download it from sencha.com. (I used
version 3.2.1, but you should grab the most recent version.) Note
that a free, open source version of Ext JS is available for open source
projects, non-profi t organizations and educational use. For other
uses you may need to purchase a license. See sencha.com/products/
license.php for more information.

Uncompress the download into a directory in your fi le system. It
contains everything you need to develop a Web solution using Ext
JS, in particular the main fi le ext-all.js. (Th ere’s also a debug version
to help fi nd errors more easily.) Dependencies, documentation and
example code are all included in the download.

This article discusses:
• Ext JS form basics

• Creating the data store

• Using ASP.NET MVC

• Tying the layers together

Technologies discussed:
ASP.NET MVC, Ext JS, SQL Server 2008

Code download available at:
code.msdn.microsoft.com/mag201103ASPNET

http://code.msdn.microsoft.com/mag201103ASPNET
http://sencha.com/products/license.php
http://sencha.com/products/license.php
http://sencha.com

71March 2011msdnmagazine.com

Th e required folders for a project are \adapters and \resources.
Th e adapters folder enables use of other libraries alongside Ext JS.
Th e resources folder contains dependencies such as CSS and images.

To use Ext JS correctly, you’ll also need to include the three key
fi le references in your pages:

ext-3.2.1/adapter/ext/ext-base.js
ext-3.2.1/ext-all.js
ext-3.2.1/resources/css/ext-all.css

Th e ext-base.js fi le contains the core functionality of Ext JS. Th e
widget defi nitions are contained in ext-all.js, and ext-all.css includes
stylesheets for the widgets.

Let’s start using Ext JS in a static HTML page to illustrate the
basics. Th e following lines are contained within the head section
of the page and link the required fi les to successfully develop an
Ext JS solution (I’ve also included the JavaScript module with some
example widgets from the Ext JS download):

<link rel="stylesheet" type="text/css"
 href="ext-3.2.1/resources/css/ext-all.css" />
<script type="text/javascript" language="javascript"
 src="ext-3.2.1/adapter/ext/ext-base.js"></script>
<script type="text/javascript" language="javascript"
 src="ext-3.2.1/ext-all.js"></script>
<script type="text/javascript" language="javascript"
 src="extjs-example.js"></script>

Within the body of the fi le, I insert a div element for rendering
the main Ext JS form:

<div id="frame">
</div>

 Th e extjs-example.js fi le provides some insight into how Ext JS
applications are constructed. Th e template for any Ext JS application uses
the Ext.ns, Ext.BLANK_IMAGE_URL and Ext.onReady statements:

Ext.ns('formextjs.tutorial');
Ext.BLANK_IMAGE_URL = 'ext-3.2.1/resources/images/default/s.gif';
formextjs.tutorial.FormTutorial = {
 ...
}
Ext.onReady(formextjs.tutorial.FormTutorial.init,
 formextjs.tutorial.FormTutorial);

Th e Ext.ns statement enables you to logically organize your code in a
namespace, in order to avoid naming confl icts and scoping problems.

The Ext.BLANK_IMAGE_URL statement is important for
rendering the widgets. It’s called the spacer image (a transparent
1x1 pixel image) and mainly used to generate the blank space as
well as to place icons and separators.

Th e Ext.onReady statement is the fi rst method to defi ne with
Ext JS code. Th is method is automatically called once the DOM
is fully loaded, guaranteeing that every HTML element that you
may reference is available when the script runs. In the case of
extjs-example.js, here’s the script itself:

formextjs.tutorial.FormTutorial = {
 init: function () {
 this.form = new Ext.FormPanel({
 title: 'Getting started form',
 renderTo: 'frame',
 width: 400,
 url: 'remoteurl',
 defaults: { xtype: 'textfield' },
 bodyStyle: 'padding: 10px',
 html: 'This form is empty!'
 });
 }
}

An instance of the class Ext.FormPanel is created as a container
for the fields. The renderTo property points to the div element
where the form will be rendered. Th e defaults property specifi es
the default component type on the form. Th e url property specifi es
the URI to send the request of the form. Finally, the html property
specifi es the text (with any HTML formatting) as the default output.

To add fi elds, you need to replace the html property with the
items property:

items: [nameTextField, ageNumberField]

Th e fi rst two items to add are a text fi eld and a number fi eld:
var nameTextField = new Ext.form.TextField({
 fieldLabel: 'Name',
 emptyText: 'Please, enter a name',
 name: 'name'
});
var ageNumberField = new Ext.form.NumberField({
 fieldLabel: 'Age',
 value: '25',
 name: 'age'
});

Th e required properties are: fi eldLabel property (to set a descrip-
tive message accompanying the component of the form) and name
property (to set name of the request parameter). Th e emptyText
property defi nes the watermark text that the fi eld will contain when
it’s empty. Th e value property is the default value for the control.

buttons: [{
 text: 'Save',
 handler: function () {
 form.getForm().submit({
 success: function (form, action) {
 Ext.Msg.alert('Success', 'ok');
 },
 failure: function (form, action) {
 Ext.Msg.alert('Failure', action.result.error);
 }
 });
 }
},
{
 text: 'Reset',
 handler: function () {
 form.getForm().reset();
 }
}]

Figure 2 Form Buttons

F igure 1 The Completed Form

www.msdnmagazine.com

msdn magazine72 RIA Frameworks

Another way to declare controls is on the fl y:
items: [
 { fieldLabel: 'Name', emptyText: 'Please, enter a name', name: 'name' },
 { xtype: 'numberfield', fieldLabel: 'Age', value: '25', name: 'age' }
]

As you can see, for the name fi eld you don’t have to specify the
type because it’s taken from the default properties of the form.

I’ll add some additional elements to the form, which ends up
looking like Figure 1.

So far, you’ve built a form using Ext JS to take data from the user.
Now, let’s send the data to the server. You’ll need to add a button
to handle the submit process and show the result to the user, as
shown in Figure 2.

Th e buttons property enables the form to manage all the possible
actions. Each button has name and handler properties. Th e handler

property contains the logic associated with the action executed on
the button. In this case, there are two buttons whose names are Save
and Reset. Th e Save button handler executes a submit action on the
form and shows a message indicating success or failure. Th e Reset
button handler resets the fi eld values on the form.

Th e last—but important—step in form creation is validation.
In order to specify required fi elds, we need to set the allowBlank
property to false and the blankText property to an error message
that's displayed when the required validation fails. For example,
here’s the name fi eld of the form:

{ fieldLabel: 'Name', emptyText: 'Please, enter a name', name: 'name',
allowBlank: false }

When you run the application and click the Save button without
entering any data in the Name and Age fi elds, then you receive an
error message and the required fi elds are underlined in red.

To customize the error messages on the fi elds, add the following
line of code just under the Ext.onReady function:

Ext.QuickTips.init();

Now, when the user moves the mouse pointer over the fi eld, a
balloon with a message displaying the error is displayed.

I set several validation rules for the fi elds such as specifying the
minimum and maximum length allowed, deferring the fi eld vali-
dation until form submission, and creating validation functions
for URLs, e-mail addresses, and other types of data. You can see
the details of this validation in the code download.

Building the Web App
Now, let’s develop a Web solution using Ext JS and ASP.NET MVC.
I used ASP.NET MVC 2, but this solution should be applicable
to ASP.NET MVC 3 as well. Th e scenario I’m going to address is
adding an employee in a human resources management system.

create table department(
 deptno varchar(20) primary key,
 deptname varchar(50) not null,
 location varchar(50)
);

create unique index undx_department_deptname on department(deptname);

insert into department
 values('HQ-200','Headquarter-NY','New York');
insert into department
 values('HR-200','Human Resources-NY','New York');
insert into department
 values('OP-200','Operations-NY','New York');
insert into department
 values('SL-200','Sales-NY','New York');
insert into department
 values('HR-300','Human Resources-MD','Maryland');
insert into department
 values('OP-300','Operations-MD','Maryland');
insert into department
 values('SL-300','Sales-MD','Maryland');

create table employee(
 empno varchar(20) primary key,
 fullname varchar(50) not null,
 address varchar(120),
 age int,
 salary numeric(8,2) not null,
 deptno varchar(20) not null,
 constraint fk_employee_department_belong_rltn foreign key(deptno)
 references department(deptno)
);
create unique index undx_employee_fullname on employee(fullname);

Figure 3 Creating the Human Resources Database

<head runat="server">
 <title><asp:ContentPlaceHolder ID="TitleContent"
 runat="server" /></title>
 <link href="../../Content/Site.css" rel="stylesheet"
 type="text/css" />

 <!-- Include the Ext JS framework -->
 <link href="<%= Url.Content("~/Scripts/ext-3.2.1/resources/css/ext-all.css") %>"
 rel="stylesheet" type="text/css" />
 <script type="text/javascript"
 src="<%= Url.Content("~/Scripts/ext-3.2.1/adapter/ext/ext-base.js") %>">
 </script>
 <script type="text/javascript"
 src="<%= Url.Content("~/Scripts/ext-3.2.1/ext-all.js") %>">
 </script>
 <!-- Placeholder for custom JS and CSS and JS files
 for each page -->
 <asp:ContentPlaceHolder ID="Scripts" runat="server" />
</head>

Figure 4 Site.Master <%@ Page Title="" Language="C#"
 MasterPageFile="~/Views/Shared/Site.Master"
 Inherits="System.Web.Mvc.ViewPage" %>

<asp:Content ID="Content1" ContentPlaceHolderID="TitleContent"
 runat="server">
Index
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="MainContent"
 runat="server">
 <h2>Add a New Employee</h2>
 <div id="employeeform"></div>
</asp:Content>

<asp:Content ID="Content3" ContentPlaceHolderID="Scripts"
 runat="server">
 <script type="text/javascript"
 src="<%= Url.Content("~/Scripts/employee_form.js") %>">
 </script>
</asp:Content>

Figure 5 Adding the Employee Form

The view will present the
form to get the data related

to one employee.

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine74 RIA Frameworks

Th e Add Employee use case description is as follows: A screen
prompts the user to enter valid information for a new employee
such as employee identifi er, full name, address, age, salary and
department. Th e department fi eld is a list of departments from
which to choose.

Th e main implementation strategy is to create an Ext JS form on
the client side—as you’ve already seen—and then process the data
using ASP.NET MVC. Th e persistence layer will use LINQ to rep-
resent business entities and to persist data to the database system.
Th e back-end database is Microsoft SQL Server 2008.

Start by opening Visual Studio 2010 and creating a new project
with the ASP.NET MVC 2 Web Application template.

Next, create the database schema. For this example, the schema
will contain two entities: employee and department. Figure 3 shows
how I created the Human Resources database and the underlying
tables and constraints.

Now let’s use LINQ to SQL to defi ne the structure of the entities
and the persistence mechanism. Start by creating an Employee-
Repository class to manage the data-access logic to the employee
table. In this case, you only need to implement the create operation:

public class EmployeeRepository {
 private HumanResourcesDataContext _ctxHumanResources =
 new HumanResourcesDataContext();

 public void Create(employee employee) {
 this._ctxHumanResources.employees.InsertOnSubmit(employee);
 this._ctxHumanResources.SubmitChanges();
 }
}

You also need a DepartmentRepository class to manage the
data-access logic to the department table. Again, in this simple case
you only need to implement the read operation in order to fi nd a
list of departments:

public class DepartmentRepository {
 private HumanResourcesDataContext _ctxHumanResources =
 new HumanResourcesDataContext();

 public IQueryable<department> FindAll() {
 return from dept in this._ctxHumanResources.departments
 orderby dept.deptname
 select dept;
 }
}

Now let’s defi ne another important piece of the architecture: the
controller. To defi ne a controller, right-click on the Controllers folder
in the Solution Explorer window and select Add | Controller. I used
HumanResourcesController as the controller name.

Ext JS Presentation Layer
Now let’s go back to Ext JS and use the framework to build the
presentation layer of the application. For this solution, you only
need to import ext-all.js and the \adapter and \resources folders.

Go to the Site.Master page and add references to the Ext JS fi les
inside the head element, as well as an <asp:ContentPlaceHolder>
tag element as a container of the customized JavaScript and CSS
code for each page, as shown in Figure 4.

Now let’s add the other important pieces of the MVC architec-
ture: the view. Th e view will present the form to get the data related
to one employee. Go to HumanResourcesController, right-click
on the Index action method and select Add View. Click the Add
button in the Add View dialog box.

To implement the Ext JS form created earlier in the article,
you need to add a JavaScript file to the Scripts directory and a
reference to this JavaScript file in the view. Then include the
reference to the employee_form.js fi le and add a div element into
the Index.aspx view (see Figure 5).

Go to the employee_form.js fi le and add some code to confi gure
the ExtJS form and its underlying widgets. Th e fi rst step is to defi ne
an instance of Ext.data.JsonStore class to get a list of departments:

var departmentStore = new Ext.data.JsonStore({
 url: 'humanresources/departments',
 root: 'departments',
 fields: ['deptno', 'deptname']
});

items: [
 { fieldLabel: 'Employee ID', name: 'empno', allowBlank: false },
 { fieldLabel: 'Fullname', name: 'fullname', allowBlank: false },
 { xtype: 'textarea', fieldLabel: 'Address', name: 'address',
 multiline: true },
 { xtype: 'numberfield', fieldLabel: 'Age', name: 'age' },
 { xtype: 'numberfield', fieldLabel: 'Salary', name: 'salary',
 allowBlank: false },
 { xtype: 'combo', fieldLabel: 'Department', name: 'deptno',
 store: departmentStore, hiddenName: 'deptno',
 displayField: 'deptname', valueField: 'deptno', typeAhead: true,
 mode: 'remote', forceSelection: true, triggerAction: 'all',
 emptyText: 'Please, select a department...', editable: false }
],

Figure 6 Form Field Widgets

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using HumanResources_ExtJS_ASPNETMVC.Models;

namespace HumanResources_ExtJSASPNETMVC.Models.BusinessObjects {
 public class HumanResourcesController : Controller {
 DepartmentRepository _repoDepartment = new DepartmentRepository();
 EmployeeRepository _repoEmployee = new EmployeeRepository();

 // GET: /HumanResources/
 public ActionResult Index() {
 return View();
 }

 // POST: /HumanResource/Departments
 [HttpPost]
 public ActionResult Departments() {
 var arrDepartment = this._repoDepartment.FindAll();
 var results = (new {
 departments = arrDepartment
 });
 return Json(results);
 }

 // POST: /HumanResource/AddEmployee
 [HttpPost]
 public ActionResult AddEmployee(employee employee) {
 string strResponse = String.Empty;
 try {
 this._repoEmployee.Create(employee);
 strResponse = "{success: true}";
 }
 catch {
 strResponse = "{success: false, error: \"An error occurred\"}";
 }
 return Content(strResponse);
 }
 }
}

Figure 7 HumanResourceController

75March 2011msdnmagazine.com

Th e url property points to the departments action method on
the HumanResourceController controller. Th is method is accessed
by the HTTP POST verb. Th e root property is the root element of
the list of departments. Th e fi elds property
specifi es the data fi elds. Now defi ne the form.
Th e properties are self-descriptive:

var form = new Ext.FormPanel({
 title: 'Add Employee Form',
 renderTo: 'employeeform',
 width: 400,
 url: 'humanresources/addemployee',
 defaults: { xtype: 'textfield' },
 bodyStyle: 'padding: 10px',

In this case, the url property points to
the AddEmployee action method on the
HumanResourceController controller. Th is
method is also accessed using HTTP POST.

The items property provides the list of
widgets representing the fi elds of the form
(Figure 6). Here the default widget is a text
fi eld (this is specifi ed in the defaults property).
Th e fi rst fi eld is employee number, which is
required (specifi ed by the allowBlank prop-
erty). Th e second fi eld is the full name, which
is also a required text fi eld. Th e address fi eld
is an optional text area. The age field is an
optional number field. The salary field is
a required number field. And finally, the
department number fi eld is an identifi er string,
which is selected from a list of departments.

Finally, the buttons property is defined
to handle the actions over the form. Th is is
confi gured just like Figure 2, but the text
property has the value “Add.”

Now the employee_form.js fi le is complete.
(I’ve gone through most of the elements of

the fi le here. See the code download for the complete source code
listing for this fi le.)

Now let’s go to HumanResourceController and implement the
corresponding action methods, as shown in Figure 7.

T hat’s It!
Now run the solution. You’ll see the Web page shown in Figure
8. Enter some data in the form and then click Add. You’ll see a
confi rmation message box. You’ll also see the row inserted in the
dbo.employee table on the database.

Th at’s really all there is to creating a simple RIA. Depending on
the features you want to leverage, a similar application could be
built with any of the other popular JavaScript frameworks while
still employing ASP.NET MVC. You could easily substitute Entity
Framework for the data layer, and use Windows Azure storage or
SQL Azure as the back-end data store. Th ese simple building blocks
make building a basic data-centric RIA quick and easy.

JUAN CARLOS OLAMENDY is a senior architect, developer and consultant. He has
been recognized as a Microsoft Most Valuable Professional (MVP) and Oracle
ACE several times. He is Microsoft Certifi ed Technology Specialist in Windows
Communication Foundation. You can contact Olamendy at johnx_olam@fastmail.

THANKS to the following technical experts for reviewing this article:
Scott Hanselman and Eilon Lipton

Fi gure 8 Running the Application

www.MelissaData.com/mynet
www.msdnmagazine.com

msdn magazine76

CACH E INT EGR AT ION

Building and Using
Custom OutputCache
Providers in ASP.NET

If you’re a Web developer, in the past you may have utilized
the output-caching facility provided by ASP.NET. Introduced
with the fi rst version of the Microsoft .NET Framework, ASP.NET
output caching can improve the performance of serving content
to site visitors by retrieving that content from a cache, bypassing
re-execution of pages or controllers. Th is saves your application
expensive database calls when returning data that doesn’t update
frequently, or that can be stale for periods of time.

Brandon Satrom

Th e ASP.NET output cache uses an in-memory storage mecha-
nism and, until the .NET Framework 4, it wasn’t possible to override
or replace the default cache with your own implementation. With
the new OutputCacheProvider type, it’s now possible to implement
your own mechanism for caching page output in ASP.NET.

In this article, I’ll discuss two such custom mechanisms. First,
using MongoDB—a popular document-oriented database—I’ll
create my own provider to facilitate output caching in a simple
ASP.NET MVC application. Then, using the same application,
I’ll quickly swap out my custom provider to leverage features of
Windows Azure AppFabric—specifi cally, the new DistributedCache
provider that leverages Windows Azure infrastructure to provide
a distributed, in-memory cache in the cloud.

Output Caching in ASP.NET
In ASP.NET Web Forms applications, output caching can be con-
fi gured by adding an OutputCache Page directive to any ASP.NET
page or user control:

<%@ OutputCache Duration="60" Location="Any" VaryByParam="name" %>

For ASP.NET MVC applications, output caching is available
using an action filter that ships with ASP.NET MVC, and which
can be leveraged as an attribute on any controller action:

[OutputCache(Duration=60, VaryByParam="none")]

“Duration” and “VaryByParam” are required in ASP.NET MVC 1
and 2 applications (VaryByParam is optional in ASP.NET MVC 3),
and both mechanisms provide several other attributes and parameters

This article discusses a prerelease version of Windows Azure
AppFabric SDK 2.0. All information is subject to change.

This article discusses:
• Output caching in ASP.NET

• Extensible output caching in ASP.NET

• NoSQL, document databases and MongoDB

• Building a custom OutputCacheProvider using MongoDB

• Using the MongoDB OutputCacheProvider in ASP.NET MVC

• Using the Windows Azure AppFabric DistrubutedCache provider

Technologies discussed:
ASP.NET 4, Windows Azure, MongoDB

Code download available at:
code.msdn.microsoft.com/mag201103OutputCache

http://code.msdn.microsoft.com/mag201103OutputCache

77March 2011msdnmagazine.com

that enable developers to control how content is cached (several
VaryByX parameters), where it’s cached (Location) and capabilities
for setting cache invalidation dependencies (SqlDependency).

For traditional output caching, nothing else is needed to imple-
ment this functionality in your applications. Th e OutputCache type
is an HttpModule that runs when your application starts and goes to
work when a page directive or action fi lter is encountered. Upon the
fi rst request of the page or controller in question, ASP.NET will take
the resulting content (HTML, CSS, JavaScript fi les and so on) and
place each item in an in-memory cache, along with an expiration
and a key to identify that item. Th e expiration is determined by the
Duration property, and the key is determined by a combination of
the path to the page and any necessary VaryBy values—for example,
query string or parameter values if the VaryByParam property is
provided. So, consider a controller action defi ned in this manner:

[OutputCache(Duration=20, VaryByParam="vendorState")]
Public ActionResult GetVendorList(string vendorState)
{
 // Action logic here.
}

In this case, ASP.NET will cache an instance of the resulting
HTML view for each occurrence of vendorState (for example, one
for Texas, one for Washington and so on) as that state is requested.
The key by which each instance is stored, in this case, will be a
combination of the path and the vendorState in question.

If, on the other hand, the VaryByParam property is set to “none,”
ASP.NET will cache the result of the fi rst execution of GetVendor-
List and will deliver the same cached version to all subsequent
requests, regardless of the value of the vendorState parameter passed
into that action. Th e key—by which this instance is stored when
no VaryByParam value is provided—would just be the path. A
simplifi ed view of this process is depicted in Figure 1.

Beyond the Duration parameter—used to control the life
of the item in the cache—and a handful of VaryBy parameters
(VaryByParam, VaryByHeader, VaryByCustom, VaryByControl and
VaryByContentEncoding) used to control the granularity of cached
items, the output cache can be confi gured to control the location
of cached content (client, server or downstream proxy). In addi-
tion, ASP.NET 2.0 introduced a SqlDependency attribute, which
allows developers to specify database tables that a page or control
depends upon so that, in addition to time expiration, updates to
your underlying source data can also cause cached items to expire.

Although the .NET Framework 2.0 and 3.0 introduced several
enhancements to the default cache provider, the provider itself
remained the same: an in-memory store, with no extension points
or way to provide your own implementation. Th e in-memory cache
is a perfectly acceptable option in most cases, but can, at times,
contribute to diminished site performance as server resources
are maxed out and memory becomes scarce. What’s more, the
default caching provider mechanism automatically evicts cached
resources—regardless of specifi ed duration—when memory does
become scarce, which leaves the developer with little control over
how cached resources are managed.

Extensible Output Caching in ASP.NET
Th e release of the .NET Framework 4 introduced a new facility that
enables developers to create their own output cache providers and
easily plug those providers into new or existing applications with
only minor changes to the application and its confi guration. Th ese
providers are free to use whatever storage mechanism for cached
information that they choose, such as local disks, relational and non-
relational databases, the cloud or even distributed caching engines
such as that provided in Windows Server AppFabric. It’s even possible
to use multiple providers for diff erent pages in the same application.

Creating your own output cache provider is as simple as creating
a new class that derives from the new System.Web.Caching.Out-
putCacheProvider abstract class and overriding the four methods
that ASP.NET requires to work with cached items. Th e framework
defi nition for the OutputCacheProvider class is listed here (see bit.ly/
fozTLc for more information):

public abstract class OutputCacheProvider : ProviderBase
{
 public abstract object Get(string key);
 public abstract object Add(string key, object entry, DateTime utcExpiry);
 public abstract void Set(string key, object entry, DateTime utcExpiry);
 public abstract void Remove(string key);
}

Figure 1 The ASP.NET Output Caching Process

Browser requests page
(with OutputCache

directive or attribute)

Retrieve page from
cache by key

(path + parameters)

Has item
expired?

Retrieve page from
cache by key

(path + parameters)

Yes Yes

No No

Return cached content Store content in cacheExecute page/action

Return content Return contentStore content in cache

Does page exist
in cache?

It’s now possible to implement
your own mechanism for

caching page output in ASP.NET.

www.msdnmagazine.com

msdn magazine78 Cache Integration

Once you’ve implemented these four methods, all that’s left is to
add the new provider to your web.confi g, specify it as the default
and add an OutputCache directive or attribute to your application.
I’ll cover these steps in detail as I walk through the creation of our
own output cache provider that uses a document database called
MongoDB. But fi rst, it may be helpful to introduce a little context
around the tool we’ll be using to build our custom provider.

NoSQL, Document Databases and MongoDB
For much of the past few decades, the preferred application storage
mechanism has been the relational database management system
(RDBMS), which stores data and relationships in tables. SQL Server
and Oracle are examples of RDBMSes, as are most of the popular
commercial and open source databases currently in use.

However, not all problems requiring storage fi t into the same
transactional mold. In the late ’90s, as the Internet expanded and
many sites grew to manage large volumes of data, it became obvi-
ous that the relational model provided less-than-ideal performance
on certain types of data-intensive applications. Examples include
indexing large volumes of documents, delivering Web pages on
high-traffi c sites or streaming media to consumers.

Many companies addressed their growing storage needs by
turning to NoSQL databases, a class of lightweight database that
doesn’t expose a SQL interface, fixed schemas or pre-defined
relationships. NoSQL databases are used heavily by companies
such as Google Inc. (BigTable), Amazon.com Inc. (Dynamo) and
Facebook (which has a store of more than 50TB for inbox searches)
and are experiencing steady growth in popularity and use.

It’s important to note that, while some have used the term NoSQL
as a rallying cry to call for the abandonment of all RDBMSes,
others emphasize the value of utilizing both types of storage.
NoSQL databases were conceived to solve a class of problem
that RDBMSes couldn’t—not to replace these systems outright.
Th e discriminating developer would be wise to understand both
systems and utilize each where appropriate, even at times mixing
both types of storage in a single application.

One situation well-suited for a NoSQL database is output caching.
NoSQL databases are ideal for working with transient or temporary
data, and cached pages from an ASP.NET application certainly fi t
that bill. One popular NoSQL option is MongoDB (mongodb.org), a
document-oriented NoSQL database used by Shutterfl y, Foursquare,
The New York Times and many others. MongoDB is a fully open
source database written in C++ , with drivers for nearly every major
programming language, C# included. We’ll use MongoDB as the
storage mechanism for our custom output cache provider.

Building a Custom OutputCacheProvider
Using MongoDB
To get started, you’ll want to go to mongodb.org to download and
install the tool. Th e documents at mongodb.org/display/DOCS/Quickstart
should tell you everything you need to know to install MongoDB on
Windows, Mac OS X and Unix. Once you’ve downloaded MongoDB
and tested things out with the shell, I recommend installing the
database as a service using the following command from the instal-
lation directory (be sure to run cmd.exe as an administrator):

C:\Tools\MongoDB\bin>mongod.exe --logpath C:\Tools\MongoDB\Logs
--directoryperdb --install

MongoDB will install itself as a service on your computer and
will use C:\Data\db as the default directory for all its databases. Th e
option --diretoryperdb tells MongoDB to create a root directory
for every database you create.

After running the previous command, type the following to
start the service:

net start MongoDB

Once you have things up and running, you’ll need to install a
driver library to work with MongoDB in .NET. Th ere are several
options available; I’ll be using the mongodb-csharp driver created
by Sam Corder (github.com/samus/mongodb-csharp).

We have MongoDB installed, and we have a driver that we
can use within a .NET application, so now it’s time to create our
custom output cache provider. To do this, I created a new class
library called DocumentCache and added two classes: Document-
DatabaseOutputCacheProvider and CacheItem.

The first is my provider, a public class that subclasses the
abstract OutputCacheProvider. Th e beginning implementation is
depicted in Figure 2.

public override object Add(string key, object entry, DateTime utcExpiry)
{
 key = MD5(key);
 var item = _cacheItems.FindOne(new { _id = key });
 if (item != null) {
 if (item.Expiration.ToUniversalTime() <= DateTime.UtcNow) {
 _cacheItems.Remove(item);
 } else {
 return Deserialize(item.Item);
 }
 }

 _cacheItems.Insert(new CacheItem
 {
 Id = key,
 Item = Serialize(entry),
 Expiration = utcExpiry
 });

 return entry
}

Figure 3 Implementing the Add Method

public class DocumentDatabaseOutputCacheProvider : OutputCacheProvider
{
 readonly Mongo _mongo;
 readonly IMongoCollection<CacheItem> _cacheItems;

 public override object Get(string key)
 {
 return null;
 }

 public override object Add(string key, object entry, DateTime utcExpiry)
 {
 return null;
 }

 public override void Set(string key, object entry, DateTime utcExpiry)
 {
 return;
 }

 public override void Remove(string key)
 {
 return;
 }
}

Figure 2 A Starter OutputCacheProvider Class

http://mongodb.org
http://mongodb.org/display/DOCS/Quickstart
http://mongodb.org
http://github.com/samus/mongodb-csharp

79March 2011msdnmagazine.com

Notice that the second private variable in Figure 2 references
CacheItem, the other class I need to create in my project. CacheItem
exists to contain the relevant details that my output cache provider
needs to work with both ASP.NET and my database, but it isn’t an
object needed external to my provider. As such, I defi ne CacheItem
as an internal class, as shown here:

[Serializable]
internal class CacheItem
{
 public string Id { get; set; }
 public byte[] Item { get; set; }
 public DateTime Expiration { get; set; }
}

Id maps to the key provided to me by ASP.NET. You’ll recall that
the key is a combination of the path and any VaryBy conditions
defi ned in your page directive or action attribute. Th e Expiration
fi eld corresponds to the Duration parameter, and the Item prop-
erty is the item to be cached.

We’ll start implementing our provider by setting things up in the
constructor of our DocumentDatabaseOutputCacheProvider class.
Because we know that ASP.NET maintains a single instance of our
provider for the entire life of the application, we can perform some
setup work in our constructor, like this:

readonly Mongo _mongo;
readonly IMongoCollection<CacheItem> _cacheItems;

public DocumentDatabaseOutputCacheProvider()
{
 _mongo = new Mongo();
 _mongo.Connect();

 var store = _mongo.GetDatabase("OutputCacheDB");
 _cacheItems = store.GetCollection<CacheItem>();
}

Th e constructor creates a new instance of the Mongo type and
connects to the server using the default location (localhost). It
then asks MongoDB for the OutputCacheDB database and for an
IMongoCollection of our CacheItem type. Because MongoDB is
a schema-less database, creating databases on the fl y is supported.
Your first call to _mongo.GetDatabase(“OutputCacheDB”) will
return an instance of a new database, and that database will be
created on disk when the fi rst insert occurs.

Now let’s implement the Add method, as shown in Figure 3.
Th e fi rst thing I do in each method is call the MD5 method on

the passed-in key. Th is method—omitted for brevity, but which
is available in the online source code download—generates a
database-friendly MD5 hash based on the key that ASP.NET
provides to me. Th en, I call my IMongoCollection<CacheItem>
type, _cacheItems, to query the underlying database for the key in
question. Notice the anonymous type (new { _id = key}) passed into
the FindOne method. Querying MongoDB is primarily done via
selector objects or template documents that specify one or more
fi elds in a document to match in the database. _id is the key that
MongoDB uses to store documents, and—by convention of the
driver I’m using—that property is automatically mapped to the Id
property of my CacheItem class. So when I save a new cache item,
as you see in the _cacheItems.Insert method shown in Figure 3,
the key is assigned using the Id property, which MongoDB uses
to populate the internal _id field of the record. MongoDB is a
key-value store, so each CacheItem object is stored using binary-
serialized JSON that looks like the following:

{ "_id" : ObjectId(Id), "CacheItem": new CacheItem { Id = key, Item =
entry, Expiration = utcExpiry } }

If I fi nd a CacheItem with the same key as the one passed in, I
check the expiration of that item against the current UTC time. If
the item hasn’t expired, I binary deserialize it using a private method
(available in the online source code) and return the existing item.
Otherwise, I insert a new item into my store, binary serialize it and
return the passed-in entry.

Once I’ve implemented adding items to the cache, I can add the
Get method, which will fi nd and return a cached item by key (or
null if a result isn’t found) as shown in Figure 4.

As with the Add method, the Get method also checks the expiration
of the item if it exists in the database and, if it has expired, removes
it and returns null. If the item exists and hasn’t expired, it’s returned.

Now, let’s implement the Remove method, which accepts a key and
removes the item matching that key from the database, as shown here:

public override void Remove(string key)
{
 key = MD5(key);
 _cacheItems.Remove(new { _id = key });
}

Just as with the code our driver uses to get a database that doesn’t
yet exist, MongoDB doesn’t complain if we attempt to remove an
item that isn’t found in our database. It simply does nothing.

According to our abstract base class, there’s still one fi nal method
we need to implement to have a functional custom output cache
provider, the Set method. I’ve included it in Figure 5.

public override object Get(string key)
{
 key = MD5(key);
 var cacheItem = _cacheItems.FindOne(new { _id = key });

 if (cacheItem != null) {
 if (cacheItem.Expiration.ToUniversalTime() <= DateTime.UtcNow) {
 _cacheItems.Remove(cacheItem);
 } else {
 return Deserialize(cacheItem.Item);
 }
 }

 return null;
}

Figure 4 Implementing the Get Method

{
 key = MD5(key);
 var item = _cacheItems.FindOne(new { _id = key });

 if (item != null)
 {
 item.Item = Serialize(entry);
 item.Expiration = utcExpiry;
 _cacheItems.Save(item);
 }
 else
 {
 _cacheItems.Insert(new CacheItem
 {
 Id = key,
 Item = Serialize(entry),
 Expiration = utcExpiry
 });
 }
}

Figure 5 Implementing the Set Method Public Override Void
Set(string key, object entry, DateTime utcExpiry)

www.msdnmagazine.com

msdn magazine80 Cache Integration

At a glance, it may seem that the Add and Set methods are
identical, but there’s a key difference between their intended
implementation. According to the MSDN Library documents
on the OutputCacheProvider class (bit.ly/fozTLc), the Add method
of a custom provider should look for a value in the cache that
matches the specified key and, if it exists, do nothing to the
cache and return the saved item. If that item doesn’t exist, Add
should insert it.

Th e Set method, on the other hand, should always put its value
into the cache, inserting the item if it doesn’t exist and overwriting
it if it does. You’ll notice, in Figure 3 for Add and Figure 5 for Set,
that these methods behave as specifi ed.

With those four methods implemented, we’re now ready to put
our provider to work.

Using the MongoDB OutputCacheProvider
in ASP.NET MVC
Once we’ve compiled our custom provider, we can add that
provider to any ASP.NET application with a few lines of confi g-
uration. After adding a reference to the assembly that contains
the provider, add the following text to your web.confi g fi le in the
<system.web> section:

<caching>
 <outputCache defaultProvider="DocumentDBCache">
 <providers>
 <add name="DocumentDBCache"
 type="DocumentCache.DocumentDatabaseOutputCacheProvider, DocumentCache" />
 </providers>
 </outputCache>
</caching>

The <providers> element defines all of the custom providers
you want to add to your application and defi nes a name and type
for each. Because you can have multiple custom providers in a
single application, you’ll also want to specify the defaultProvider
attribute, as I do in the preceding code snippet.

My sample application is a simple ASP.NET MVC site with a
CustomersController. In that controller is an action called Top-
Customers, which returns a list of the top customers for my busi-
ness. Th is information is the result of complex calculations and
several database queries in my SQL Server database and is only
updated once an hour. For these reasons, it’s an ideal candidate for
caching. So I add an OutputCache attribute to my action, like so:

[OutputCache(Duration = 3600, VaryByParam = "none")]
public ActionResult TopCustomers()
{
 var topCustomers = _repository.GetTopCustomers();
 return View(topCustomers);
}

Now, if I run the site and navigate to my TopCustomers page,
my custom provider will roll into action. First, my Get method
will be called, but because this page isn’t yet cached, nothing will
be returned. Th e controller action will then execute and return the
TopCustomers view, as depicted in Figure 6.

ASP.NET will then call my custom cache provider, executing the
Set method, and the item will be cached. I’ve set the duration to 3,600
seconds—or 60 minutes—and every subsequent request for that
time period will use the cached item returned by my Get method,
bypassing re-execution of my Controller Action. If any underlying
data is changed, updates will be refl ected on the fi rst execution aft er
expiration, and that new information will then be cached for an hour.
If you want to see MongoDB in action, you have a couple of options.
You can open your browser and navigate to http://localhost:28107/,
which displays the log, as well as recent queries and statistics about your

database. Or, you can run mongo.
exe from the bin directory of your
MongoDB installation and query
your database via the Mongo Shell.
For more information about using
these tools, see mongodb.org.

Using the
DistributedCache
Provider
So what if everything I’ve discussed
so far is more than you’d care to dive
into? Perhaps you want to leverage an
alternative caching mechanism, but
you have neither the time nor the de-
sire to roll your own? You’ll be happy
to know that, since the introduction
of extensible output caching, many Figure 7 Windows Azure AppFabric Labs Summary Page

Figure 6 The Cached TopCustomers View

http://bit.ly/fozTLc
http://mongodb.org

81March 2011msdnmagazine.com

alternatives—commercial, open source and provided by Microsoft —
are either available or in development. One such example is a
cloud-based, distributed in-memory cache: the DistributedCache
provider currently available as a part of Windows Azure AppFabric.
If you’re already building cloud-based applications, Windows
Azure AppFabric Caching can speed up access to data for those
applications and, because caching is delivered as a cloud service,
the setup is simple and requires no overhead to maintain.

At the time of this writing, AppFabric Caching is part of the
Windows Azure AppFabric Community Technology Preview
October Release, so you can access caching features without an
active Windows Azure account. However, if you’re an MSDN
subscriber, I highly recommend activating your Windows Azure
benefi ts at windows.azure.com. Go to portal.appfabriclabs.com and create
an account to use the developer preview features.

Once you’ve created a Labs account, click on the Add Service
Namespace link to enable AppFabric services (see Figure 7).

Aft er you’ve set up your service namespace, click on the Cache
link, and take note of the service URL and authentication token listed
in the cache section (see Figure 8). You’ll need this information to
confi gure your application to use the DistributedCache provider.

Next, you’ll need to download and install the Windows Azure
AppFabric SDK (click the download link on the Cache page in the
portal). Aft er the installation is complete, you’re ready to confi gure
Windows Azure AppFabric Caching for your application.

You’ll need to add references to several assemblies that the SDK
installation placed on your machine. Using the same ASP.NET
MVC application you used for your custom Document database
cache, navigate to the SDK install location (default is C:\Program
Files*\Windows Azure AppFabric SDK\V2.0\Assemblies\Cache)
and add references to each assembly contained within.

Once you’ve done that, open your web.confi g and add the following
<confi gSections> entry, keeping any existing confi guration sections:

<configSections>
 <section name="dataCacheClient"
 type="Microsoft.ApplicationServer.Caching.DataCacheClientSection,
 Microsoft.ApplicationServer.Caching.Core"
 allowLocation="true" allowDefinition="Everywhere"/>
</configSections>

Next, create the <dataCacheClient> section, replacing the
<host> name, cachePort and <messageSecurity> authorizationInfo
properties with details from your portal account, like so:

<dataCacheClient deployment="Simple">
 <hosts>
 <host name="yournamespace.cache.appfabriclabs.com" cachePort="your port" />
 </hosts>
 <securityProperties mode="Message">
 <messageSecurity authorizationInfo="your authentication token">
 </messageSecurity>
 </securityProperties>
</dataCacheClient>

Th en, fi nd the <caching> section under <system.web> and add
the following provider entry aft er the entry you created for your
custom provider:

<add name="DistributedCache"
 type="Microsoft.Web.DistributedCache.DistributedCacheOutputCacheProvider,
 Microsoft.Web.DistributedCache"
 cacheName="default" />

Finally, change the defaultProvider attribute on the <outputCache>
element to “DistributedCache.” The DistributedCacheOutput-
CacheProvider is a subclass type of the abstract OutputCache-
Provider, just like our MongoDB implementation. Now, build and
run your application and navigate to the Top Customers page. Try
adding a customer while the list is still cached and notice that, as
with our MongoDB implementation, the list will remain cached
as long as you specify.

Wrapping Up
In this article, I discussed ASP.NET output caching, classical
uses of the default in-memory cache, and new extensible caching
facilities provided using the OutputCacheProvider abstract class
in the .NET Framework 4. I talked about NoSQL and document
databases and how these types of systems are ideal for working
with transient data, such as cached output. We used MongoDB
to build a sample output cache and used that within an ASP.NET
MVC application. Finally, we moved our output cache to the
cloud, and with minor setup and configuration and no code
changes whatsoever, we were able to swap out caching mecha-
nisms in our application.

Extensible output caching is just one of the many great new
features in ASP.NET 4, and I hope
this exploration of the feature—
and of the technologies that can
be leveraged along with it—has
been useful . To learn more about
MongoDB, go to mongodb.org. To learn
more about Windows Azure App-
Fabric, go to portal.appfabriclabs.com/
helpandresources.aspx.

BRANDON SATROM works as a developer
evangelist for Microsoft in Austin, Texas.
He blogs at userinexperience.com and can
be found on Twitter: @BrandonSatrom.

THANKS to the following technical
experts for reviewing this article:
Brian H. Prince and Clark SellFigure 8 AppFabric Labs Cache Settings Page

www.msdnmagazine.com
http://windows.azure.com
http://portal.appfabriclabs.com
http://mongodb.org
http://portal.appfabriclabs.com/helpandresources.aspx
http://portal.appfabriclabs.com/helpandresources.aspx
http://Twitter.com/BrandonSatrom

msdn magazine82

• Pressing the Back button while in the first screen of an
application must exit the application. Th is functionality comes
for free. If you don’t prevent the navigation, the framework
exits for you—in fact, this is the only way to exit a Silverlight
application. Th ere’s no Exit method in the exposed APIs.

• To maintain a consistent user experience (UX) across apps,
the Back button should only be used for backward navigation.

In addition to the Back button’s critical role in navigation, the
Start button also participates in navigation. When the user presses
the Start button, the running application is deactivated and a context
switch is performed as you navigate forward to the Start menu. From
here a user can launch another application and navigate within the new
application, or he can choose to navigate back (using the hardware
Back button) to the previously running application. Th is eff ectively
creates a navigation model where the Back button navigates
through the pages of a running application or through the stack of
previously running application.

Windows Phone APIs
As noted earlier, the core players for navigation are Phone-
ApplicationFrame and PhoneApplicationPage.

PhoneApplicationFrame acts as the RootVisual for the applica-
tion. At startup, a PhoneApplicationFrame is instantiated in the
App class in App.xaml.cs (see Figure 1).

Th e runtime automatically navigates to the instance of Phone-
ApplicationPage, which is specified by the NavigationPage

Windows Phone Navigation: The Basics

Silverlight Windows Phone applications have a Web-like page model
where the end users navigate from one page to another. Th ere’s a
dedicated hardware Back button to easily navigate back to previous
pages (without consuming screen real estate), and the journaling (or
history) of your navigation is integrated with the platform to ease
navigating or transitioning across diff erent applications. Th is two-
part article will:

• Introduce you to the page navigation model on Windows Phone.
• Provide the best practices you’ll need to get the most out

of the current APIs–such as integration with the hardware
Back button, optimized loading and unloading of pages,
and ensuring your navigation model meets Windows Phone
certifi cation guidelines.

• Introduce actionable, easy-to-follow recipes to create the
most complex navigations not implemented with the cur-
rent APIs, including transient content and page transitions.

Windows Phone Nav Model
Th e Windows Phone navigation model consists of a frame (Phone-
ApplicationFrame) and one or more pages (PhoneApplicationPage)
that hold the content loaded into the frame.

Th e PhoneApplicationFrame exposes most of the navigation
events and exposes the Navigate method you’ll use to go across
pages. It also determines the client area for the application and
reserves the space for the application bar and the system tray.

PhoneApplicationPage has page-specifi c notifi cations for when
a page is navigated to and when a user navigates away from a page.
It also handles the events related to the hardware Back button.

Both PhoneApplicationFrame and PhoneApplicationPage share
a NavigationService; this service is actually doing the navigation.
Windows Phone supports journaling (tracking the history of the pages
you’ve loaded so you can go back to a previous page) and exposes APIs
so you can go back. Forward navigation isn’t supported on the phone.

Windows Phone has three dedicated hardware buttons: Back,
Start and Search. Th ere are specifi c application-certifi cation require-
ments around handling of the hardware Back button:

• An application shouldn’t prevent the user from going back
to a previous page. Th e only possible exception is a prompt
when data loss is involved–you can then prompt to confi rm
and let the user through if he chooses to navigate back.

• If a popup, the Soft ware Input Panel (SIP) or other transient
dialog is open, pressing the hardware Back button should
dismiss this dialog but not leave the current page (eff ec-
tively canceling the Back button navigation).

MOBILE MATTERS YOCHAY KIRIATY AND JAIME RODRIGUEZ

Code download available at code.msdn.microsoft.com/mag201103Mobile.

private void InitializePhoneApplication()
{
 if (phoneApplicationInitialized)
 return;

 // Create the frame but don't set it as RootVisual yet; this allows the splash
 // screen to remain active until the application is ready to render.
 RootFrame = new PhoneApplicationFrame();
 RootFrame.Navigated += CompleteInitializePhoneApplication;

 // Handle navigation failures
 RootFrame.NavigationFailed += RootFrame_NavigationFailed;

 // Ensure we don't initialize again
 phoneApplicationInitialized = true;
}

Figure 1 Instantiation of RootFrame in App.xaml.cs

http://code.msdn.microsoft.com/mag201103Mobile

83March 2011msdnmagazine.com

attribute in the DefaultTask on the WMAppManifest.xml application
manifest, as shown here:

<Tasks>
 <DefaultTask Name ="_default" NavigationPage="MainPage.xaml"/>
</Tasks>

Getting a bit closer to responsibilities and APIs, PhoneApplication-
Frame exposes most of the navigation methods and events we’ll
need for this article. Figure 2 lists the most relevant methods,
properties and events in PhoneApplicationFrame.

Most are inherited from Frame, so for those familiar with the
Silverlight Frame class, these methods should look familiar. The
list in Figure 2 isn’t inclusive of all PhoneApplicationFrame
features, just the relevant ones for navigation.

Code Walk-Through: To see all these events and properties
in action, explore AllNavigations-
Events.xaml.cs in the sample code
accompanying this article. You can
also see the order in which events
fi re in Figure 3.

PhoneApplicationFrame also
determines the client area that the
application will get and reserves
the space for the application bar
and the system tray. This detail
will be relevant as we navigate
across pages that have an appli-
cation bar because it’s specified
at the page level, and there’s a
system-wide animation to show
and hide the application bar as a
page gets loaded.

Th e second participant in the nav-
igation is Phone ApplicationPage. It
plays two critical roles in navigation:

• Handling of the hardware Back button presses.
• Providing events for page lifecycle to know when a page is

activated/deactivated.
For integration with the hardware Back button, PhoneApplication-

Page exposes a BackKeyPress event. The page also has a virtual
OnBackKeyPress method you can override in your instance of a
page to handle and even cancel a Back button press event.

PhoneApplicationFrame has a Navigating event and an OnNavi-
gatingFrom notifi cation/callback. Within both of these, you can
cancel navigations to other pages within the app by setting e.Cancel
= true in the NavigationCancelEventArgs parameter passed to these
methods; due to a known bug on the platform, you shouldn’t can-
cel Back button navigations from these events/methods. If you do

Name Type Description
Navigate Method Navigates to a new PhoneApplicationPage specifi ed by the URI parameter. The parameter is a Uri, so a Navigate call

effectively instantiates the new page and navigates to it (you don’t pass it an already instantiated page).
CanGoBack Read-Only

Property
Returns true if the application’s back stack (the journaling history) isn’t empty. This means users have navigated forward
at least once within the app. If the application is in the fi rst page loaded in the app, CanGoBack will return false and
you won’t be able to programmatically call GoBack, but the end user can still press the hardware Back button and the
application will exit because it’s going back to the previously running application.

CanGoForward Read-Only
Property

Not applicable to Windows Phone. It’s always false because forward navigation isn’t supported.

UriMapper Property Gets/Sets a UriMapper. Beyond our scope for this article, but worth mentioning that Uri mapping is supported.
GoBack Method Navigates to the most recent entry in the back stack. This method will throw an exception if there’s no entry in the back

stack; always check CanGoForward before calling this method.
GoForward Method Not supported on Windows Phone; will throw InvalidOperationException
Navigating Event Occurs when a new navigation is requested. At this point, it can still be canceled by setting the Cancel property in

the NavigatingCancelEventArgs parameter to true. Please see notes later on about why you shouldn’t cancel back
navigations in this event.

Navigated Event Occurs when a navigation has been executed. This doesn’t mean that the page content that was navigated to has been
loaded. It simply occurs when the content has been found and navigated to.

NavigationFailed Event Occurs when an error has been encountered.
NavigationStopped Event Occurs when navigation is stopped by either calling the StopLoading method or more commonly when a new

navigation is requested and a navigation was in progress.

Figure 2 PhoneApplicationFrame Methods, Properties and Events

Figure 3 The Sequence of Events as You Navigate Across Pages

Navigate
(Page2.xaml)

Navigate
(Page3.xaml)

Navigate
(Page1.xaml)

GoBack

GoBack

GoBack
(Exits app)

Page1

OnNavigationFrom

OnNavigationTo
Loaded

OnNavigationFrom

OnNavigationTo
Loaded

Page2

OnNavigationFrom

OnNavigationTo
Loaded

OnNavigationFrom

OnNavigationTo
Loaded

Page3

OnNavigationFrom

OnNavigationTo
Loaded

www.msdnmagazine.com

msdn magazine84 Mobile Matters

cancel a hardware Back button press in this event, your navigation
will break and the application will need to be restarted. Th e only
two recommended methods for canceling a hardware Back but-
ton press are the PhoneApplicationPage BackKeyPress event and
the OnBackKeyPress callback.

See Figure 4 for a list of events and methods where navigations
can be canceled, with recommendations on whether a Back press
can be canceled in that method, and advice on how to check if the
event was a back navigation.

PhoneApplicationPage complements these events to complete
the navigation lifecycle with the more useful OnNavigatedTo and
OnNavigatedFrom method callbacks for the page. To better under-
stand and easily remember when these callbacks are called, it’s best
to complete their method names with a “this page.” One method
is called when the user has “navigated to this page,” and later the
other method gets called when the user is “navigated from this
page” onto another page.

Figure 3 shows the sequence of events as you navigate across
pages. Th e symmetry between NavigatedTo/NavigatedFrom makes
these two methods ideal for starting and stopping work that’s
required when the page is visible, but not required when the page is

in the back stack. Also notice
that NavigatedTo always fi res
before a page is loaded, so don’t
assume the contents of the
page are loaded at this time.

Th e reason OnNavigatedTo
and OnNavigatedFrom are
critical to Windows Phone is
because of the back stack. Th e
OS maintains the back stack
for pages you can go back to, so
pages aren’t immediately un-
loaded, destroyed or garbage
collected when a navigation

happens from one page to another. Instead, the pages are moved to
the back stack and kept alive (in memory), and when the user clicks
back to get to that page, the page is simply added back into the visual
tree. Th e page isn’t recreated (unless the application has been deacti-
vated and tombstoned between when the user left the page and clicked
back). Because forward journaling isn’t supported, pages are eligible
for garbage collection when you navigate from a page back to the
previous page—assuming there are no other references to this page.

Figure 5 shows a diagram that illustrates a PhoneApplication-
Page lifecycle.

As you navigate from Page1 to Page2 and then Page3, pages aren’t
garbage collected until you call the GoBack method from the page.
Inactive pages are in the back stack, but still in memory. If these
pages are listening to global events, the event listeners are still active.

Despite a page not getting garbage collected when you navigate
from it, the page is no longer visible or active until you navigate
back to it, so you should make sure you do any cleanup and release
any expensive resources when the user has navigated away from
a page. For example, if you’re listening to location changes using
GeoCoordinateWatcher, you should stop the listener on the
OnNavigatedFrom and restart it when the user navigates back to
your page–and your page OnNavigatedTo is called.

Code Walk-Through: To see how pages are retained in
memory while they’re in the back stack, explore the Garbage-
CollectedSample page included in the accompanying code
download. It keeps a running tally of pages in memory, and you
can see it increase as you navigate forward and decrease as you
navigate back from a page.

That wraps up the first part of our series. Next month, we’ll
focus on advanced navigation topics.

YOCHAY KIRIATY is a senior technical evangelist at Microsoft , focusing on client
technologies such as Windows and Windows Phone. He coauthored the books
“Introducing Windows 7 for Developers” (Microsoft Press, 2009) and “Learning
Windows Phone Programming” (O’Reilly Media, 2011).

JAIME RODRIGUEZ is a principal evangelist at Microsoft driving adoption
of emerging client technologies such as Silverlight and Windows Phone. You
can reach him on Twitter: @jaimerodriguez or on blogs.msdn.com/jaimer.

THANKS to the following technical expert for reviewing this article:
Peter Torr

Owner Event/Notifi cation
Can Cancel a
New Navigation

Can Cancel Back
Navigations Check for Back Navigations

PhoneApplicationFrame Navigating Yes No Yes; check e.NavigationMode
!= NavigationMode.Back

PhoneApplicationPage OnNavigatingFrom Yes No Yes; check e.NavigationMode
!= NavigationMode.Back

PhoneApplicationPage OnBackKeyPress No (called only
when Back key
press is called)

Yes Not needed; only called on
hardware Back key press

PhoneApplicationPage BackKeyPress
(event)

No (called only
when Back key
press is called)

Yes Not needed; only called on
hardware Back key press

Figure 4 Events and Methods Where Navigations Can Be Canceled

Figure 5 The PhoneApplicationPage Lifecycle

Navigate
(Page2.xaml)

Navigate
(Page3.xaml)

Navigate
(Page1.xaml)

GoBack

GoBack

GoBack
(Exits app)

Page2Page1 Page3

http://Twitter.com/jaimerodriguez
http://blogs.msdn.com/jaimer

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BarCoa C de bbarCoarCCode =de = newn EEanEan113SuS pp5(“12234556789001212345”, x, y + 21); barCode.X += (204 - barCodee.Get

ddUPCVersionA(GrouGroup elemenem ts, float x, floatfloa y) { AddCaptionAndRectangle(elemente s, “UPC Version A Bar Code”, x, y, 2y, 204, 99);9)99);9) Bar BarB rBa CodeC barbarCCode = neew UpcVepcVersionAA(“12345678901”, x, y + 21); barCode.X += (204 - baarCo

ddUPCVersionASSup2(up2 Grououpp elements,, floatoa xx, float y) { AddCaptionAndRectangle(ele(ments, “UPC Version E Bar Code, 2 digit git supsuppsuppup lement”nt”, x,x, x y, 204, 999); BaarCodde barCCode = new UpcVersionASup2(“123456787 90112”, xx, yx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup5(Group elements, float x, floato y) { AddCaptionAndRectangle(eleementmmentm s, “s, “UPC UPC VerVersion EE Bar Code, 5 diggit suupplemment”, x, y, 204, 99); BarCode barCode = n ew UpcVeeersio

ode.GetSymbolWWidth(dth)) / 2; 2 elements.AddAdd(bar(ba Code); } privatee voi v d AddEANEAN8(Group p elements, float x, float y) { AddCddCaptitionAnonAn dRecReccecttaangle(elemments, “EANN/JANN 8 BBar Codde”, x, y, 204, 99); BarCode barCode == newn Ean8(“123434

g(); fileDialog.Title =le = “Op “Open Fen File Dialogg”; filfi eDialog.Filter = “AdAdobe PDFF fileses (*.pdf)f)|*.pdf|All Files (*.*)|*.*”; if (fileDieDialog.log.ShSSShowwDDiallog()og == DialoggResult.OK) { pdfVieweewer.OppenFile(fileDialog.FileName, “”); } SaveSav FileF Diallog saavaveFa

File Dialog”; s saveFveFileDialoal gg.Filter = “AdoAdobee PDF files (*.pdf)f)|*.pdf|All Files (**.*)|*.*”; if (saveFileDialog.ShowDowDialoialoa g()=g()==DiaDi=DiaDi logResulsule t .OOK) {{ pdfVfVieweewerr.SaveAs(saveFileDiaDialog.FileNamee);); } } if (p(dfVidfV ewewer.PPagP e

WithDialog(); } e else se { MessMe aageBox.SShow(w “PPlease open a fifile tto printt”); } OOpenFileF Dialog fileDiD aloglog = n = nnnew Oew Oe pepenpenFileDDialog(); fifile Dialog.Tiitle = “Open File Dialoog”; filleDialog.InitialDirecectoory = @”c:\”:\ ; fi fileDleDialoglo .Filterter = “= “All F

) == DialogResules t.Ot.OK) { Dy D nnamicPDFFViewewerrClass test = new Dew DynammicPDFVieewerCr lass(); PDFDFPrinPrintter prinprinninterter er = = test.OpenFpe ileForPorPrinnter (file(fileDiaalog.FileName); pprinnter.PrintQuieQuiet();() } bytbybytby ee[] contcontentst =

pServices; GCHGC andandle gcchh = GCHandled .AllAl occ(contents, GCHHandndleTypType.Pinnedd); IntIntPtr contcontentsentsIntPtr ===gcch.ch.h.AAAddrOfPinnednn Objeect()ct ;ppdf Viewer.O.OpenBpepe ufffefeuff r(cor(r(cor(ntentsIntPtrt ,

kmark Page Elemelement:”, x,x, y); y); p pageEleementen s.AAdd(new Bookkmarrk(“(BBookB marked Text”x , x , x + 5,+ 5, y + 20,0 parpareenenttOe utline)); pageElg emennts.Ats.Add (new Label(“This tes texxt is bookmaokmaokmarkedrked ”, .”, xx + 5, y + 20, 2

ageElements, fls, float a x, float at y) {{ // Addsdss a circltt to the pageEllemeents AddCaptioonnAndRAndRectaectangle(paggpagpaggeEleeEl mentmen s, “Circle PPaage Elemment:ent:”, x, y); pageElgeElements.As.Add(ndddd(ndd ew CCircle(x (x + 112.5f2 ,

shLarge)); } pprivavate te void AddFAd orormattedteede TextArrea(Group pp ageeEg lemennts, float x,x, floafloat yt y)t { /{ / AdA dsds ads a for forfofoo matttedd text area too tthepageEeElle ments strring formattm edHtedHtml = “<p“<p><<i>Dynamic</i>PDb>P F</bb>&tm>&tmmtm; Generaeraaator oro v6.0 foror .NE

matting suppoort for or text thath t aappears s in the ddocument. Yt. Youuu havve “ + “comcompletetple e cooontrorol ovovovovver 8r 8e parar agraph pph properties: ssppacing befoeforee, spacingg after, firfirst liine “ + “indentantation, left indentatitation, righr t ininndentdentdentntatiotionn, a, aaliignment, alalllowi

fontt fac f e, </fonnt>t>><f> ont ppoino tSizSize=’6’>fffont “ + “““size, </</fonfonntn ><fo<f nt ct coolorloolorlol =’FF000000 ’>>coloor, >b old, </b<<i>italic aannd </i><<u>uunderline</u>>; “ + “and 2 line proopertrties: leaeadingng, anndd leleeeaadinaad g type. Text

extArea = neew FoFormatrm tedTdTextAArea(fororrmmattedHHtmtml, x + 5, y +++ 20,, 21555, 60, F, FontontFamilmmi y.HeHeelvvelveteticaica, 9, ffalse)e); // SSets the the indent properoperty foformatteatt ddTextAreeaa.Styyle.PParagrapph.Inndent = 18; AddCCapttionAndRectRectanglgle(pae(papa(paapae geEgeElements, ts, “F

ageElemem ntts, “Fo“FormmattedTdTextAtArea OOvvverflow flow TText:”, x + 27999, y); pagpaggeEleeEleementmen ss.AdAdAdd(fod(foodd ormrrmatrmatmatatttedTextAtArea)); // CCreate e an oa verflow formatteded t text art a ea for tr the ooverflflow textt FoormattedTextArea ova oveerflowForFormattma edTeTTeextArxtArxtArtxttArea =ea =e formatte

a(x + 284, y + 20)20); pap geEElemenements.Adddd(o(overflverflowwFowFoow rmatarm tedTeextAe rrea); } privprivate ate vvooidov AddAddA dA Imagmagmagmage(Group up paggeElememeents, float x, float y) { // A/ dds an in magee tto thhe paageElemmenents AddCaptionAndRedRectangle((pagpageElemmmentsenntstsnts, “Imagegee Pag

es/DPDFLoogo.pn.png”), x ++ 1112.55f, y ++ 550f,50f, 0.20.244f);4f // Image is sizeed annnd centeenteredd in tn tthe rrrrectataec nglengle imam ge.SetBoB unds(215, 60); image.VAlign = VAlign.Cenenterr; imaage.Alignn = Align.Center; paggeEeElements.Ad.Addd(imaggee)g ;; } } privvate ate vvoidv A

pageElemennts AdAddCapdC tiononAndRectaannglengle(pag(paggeeEleeElements, “LLabell & PPagePageNumbeerinerine gLgLabg bel PPage ElememE entts:”, x, y); string labelText = “Labels can be rottaated”; strring numbermbe Text = “PageNummbeeringLabelsels contcontaiain ppage nummbeerib ngTT

xt, x + 5, y + 12+ 12, 22220, 80, F0 ontt.TimemessRomRoman,an, 12, TextAlign..Cennter);; l lababel.AngAngglle = 8; 8; 8; PagePageeNNumNumbN erinri gLagLabel pageNumLabel = new PageNumberb ingLabelab (nnumbberText, x +x + 5, y + 55, 220, 880, FFont.TimesResRoman, 1212, TextAltAligignign.n Ce

mem nts.Add(labeabel); l); } private voe id AAddLdLinne(Gne(Groupp pageElemennts, flflfloat x, floaoat y) {{{) { / // Addss a l a lla inne to the phe pageEag lements AddCaptionAndRectangle(p(ageElemee nnts, ““Line Paage Element:”, x, y); ppageeElemennts.As.Add(neew Lw ine(x +x + + x 5, y5 +

w Liw ne(xx + 2+ 220, y + 20, x + + 5, yy + 8 + 0,0, 30, 3, Rg, RgbCoolor.Green)); } prprivivaate vvoid Ad AddLiinknk(Groupup p pagpap eElementments, float x, float y) { // Adds a link to the ppageElemeem ntts Foont font == Foont.TimesRoman;; st string text = “TThisT iss s a lia nk tnk tk o o Dynaamic

mentm :”, x, y); Label label == newne LaLabbbel(textt, x + 5, y + 20, 2155,5, 800, fonnnnt, 1t, 2, R2, RgbbColor.or.BBluelu); l; abel.UndUndererline = true; Link link = new Link(x + 5, y + 20, font.on GGetTeextWidthh(texxt, 12), 12 - font.GGetDDescendder(1r(12), neeww ee UrlUrlAlAction(“n(“hhttp

EleE mennts.Add(li(nk);; } p } privavate ve voidd AAddPath(ath Grroup pageElemmentts, floatoatfl x, floatt y) y) {{ // AddAd s a s pathh to the pageElements ceTe.DynamicPDF.PageElementen s.Pathh path = nneww ceTe.DynamicPDPDF.PF.PageElemenmennnts.Ps.Paaath(h(x + x + 55, y, y + + 2+ 20, R

PathP s.AAdd(new LineeSubPatPa h(xx ++ 2215, y + 4+ 0))); path.Suh.S bPatths.Ahs.AAAdddd((new CurvurveeToSubPatPa h(x h(x + 1008, y + 80, x + 160, y + 80)); path.SubPaths.Add(neww CCurvveSuubPath(x + 55, y + 40, x + 65, 6 y + y + 80, x + 5, y5, yy + + 60))); AddAddCCaCaptC ionAAnd

AAdd(ppaaath); } privatee void AAddRReccttaangle(GrG oupp pageeEElemennnts, flflflofloatat x, float yat y)) oorderee dLisdL t = t = ordderedList.GetOverFlowList(x + 5, y + 20); AddCaptionAnAndRRectaanggle(pagge.Elements, “Orderr ed Led List Pagegee Ele EleEl mentttn OOOve Ovev rflowrfl :”, x, y, 2

88; /8; // C/ Create an unoordereedd list UUnnornorderede List uunorderere edListt =t =stt neeew UUnonorderrderedLLied st(xx + 55, yy + 20+ 20, 400, 90, Font.Helvetica, 10); unorderedList.Items.Add(Add(“Fruits””); uunorderedere List.Items.Add(“d “VegeVegeg tablees””); UnU U ordeeer redSreedSd ubbList unord

tt((); (); unorderedSubList.Items.ms.Add(“dd((““ Citrus”); unordorderededederedSuSubLiist.Iteeemss.AdAddd(“ Nonn-Citrt us”)s” ; AdAddCCaptionAndRectangle(page.Elemennts, “Unordered Lisst Pagee Elemmente :”, x, yx, y, 225, 110); Unonn rddereedSubLisbLisst ununnu ordederedSredSdredSdd ubLiub st2 = uno

rederer SubbbList2.Items.Add((“PoPotato”); unorderedSSubLiiubLisstt2.Itemmms.Addddd(“BBeans”); Unorno derederedSubdSubLisst subUnorderedSubList = unorderede SubLS ist.Items[0]].SuubLists.AAddddUnorderrde edSubList(); subs bUnorUnorderedSubdSSubbLListLLL .Iteteeems.Ams.Am Addd(“Lime”); s

LList subbbUnorderedSSubList2st = unorderedSubLbLS iist.ist.Itemss[1].SuubLissts.AAddUnordeeredSuedS bLisbL t();t() suubUnorderedSubList2.Items.Add(“Mana go”); subUnorrdereedSSubList2.It2 temms.AAdd(“Banana”);); UnUnordderedSSuSubdS ListLissLis sububUnorn derede dSubList

tt(()(); subUUnordereddSSubList3.Items.Add(“SweSweew t PoPotato””); Unoorderred dSSubList subbUnorUno dereer dSubdSubListList44 = unorrderedSubList2.It2 ems[1].S].SubLists.AddUnoordeereddSubbList(s); subUnubU orderedSubLibubListst4.s Iteems.AdAdAdA d(“Sd(“S“Strining BeeBeean”)an” ; subUnoU rde

AAdddd(“Kiddney Beanean”); x += 279; paga e.Elemeements.Addd(ud nnordereedLisst); uunorderedListLis == unordnorderedere List.GetOvere FlowList(x + 5, y + 20);) AddA CaptionAndRecctanngle(ppageag .Elemeents, “UnorUnorderederer d Lid st PPage e ElemElemmmeent ee Oveverve flow:flow:flo ”, x, y, 225

ooiddd AdddTedTextFxtField(Group pageElemenme ts, , flofloat x,, flooat y)) { TexxtField txtt = new TextFixtF eeld(“txt“t fnafname”, x + 20, y + 40, 120, 20); txt.Defaulu tValue = “This iis s a Scrrollabble Te extFFieldd”; txt.BordederColrColC or =o RgbRgbCColoor.Br.Br.Br.Black; txtxttxtxt.BacackgrokgroundCun o

(td(d xt); TTexTextField txt1 = new TextFiField(ld “txxtf1naf1 me”,me” x + 175, yy + 440, 120, 20); txtt1.DefDe aultu Valualue = “TextField”; txt1.Password = true; ttxt1.MaxLength = = 99; txtt1.BoordderColor = RgbCollor.BBor.Black; txt1.B1.Backgckgrounou dCololor =oror =or = RgbRgbR ColoColor Alr.Al

eree ies(); pieSeries.DataLabel == da;a;da plop tAreAreaa.Sea riesrie .Add(pieSSeriess); ppieSeries.Elemelementss.Add(Add(27,27, “Website A”); pieSeries.Elements.Addd (19, “Website BB”)); pieSerrieses.Elementmen s.Add(21d(21, “WWWebsiseb te Cee ”); ”);); pieSpieSp eries.ElElemenmeements[0ts[0s[0s[0].Co].C lor or == a

esess.Elements[2].Color = aututograog diendientt3;”RgbCRgbColoor.AliceeBlue; txt2.Too.ToolTip = “Multilinnee”; pagepageElElements.Add(txt2); AddCaptionAndRectangle(pageElememennts, “TexxtFiField Formorm PagPage Ele Elemenemenemennnt:”,:”, x, y, 5, 5y 0404, 85);5) } p} rivaate ve ve ooid oid AddCdCombomb

CombCCC ooBox(“cmmbnambna e”, e”, x + x + 51, 51, y + y + 40,40, 150,15 220); cb.BBorderColoor = RgbColor.BlacBlack; ccb.Bab.BackckgroundColor = RgbColor.AliceBlue; cb.Font = Font.Helveelveticaa; cbb.FonFo tSizzSizze = e 12; cb.Icb.Itemsstemsstems.AddA (“Item 1eme ”);); cb.cb.Itemstems.AddAdAd.Add(“It(“It(“It(Item 2em ”); ”); cbcb

didd table””)”); cb.Itemms[s[“[“Editaabble”].Selectcteded = true; c; cb.Editable = truue; ccb.ToolTip == “Edi“Ed tablab e CoC mmbo Box”; pageElements.Add(cb); ComboBox cb1 = new Cew omboombbb Box(B x(“cmbmb1nammee”, x + 303,3303, y + y + 40, 150, 20 20); c); cb1.BBb1 ordedederderrColor == R

= F== ont.HHHelveticca;a; ca; cbb1.FontSnt ize = 122; cb1.Itemss.AAdd(“IItem 1”); ccb1.Ittems.Add(“It“Item 2em ”); ”) cb1.cb1.ItItems.Add(“Item 3”); cb1.Items.Add(“Item 4”); cb1.Itemss.AAddd(“Noon-Ediditabtablee”);); c cb1.Items[““[“Non-Non-EditEditableable”].S”].Seelected = tr= ue; ue; cb1.1 Edita

ntnntts.Ads dd(cb(cb(cb1); Converter.CoC nvert(“http://www.gogoogogle.ccom”, “Outputt.pdf”);Convertve er.Cer.Conveonvert(GetDocPath(“DocumentA.rtf”), “Output.pdf”);System.Diaiagnooosticscss.ProoPP cesssess.SStart(“Outptput.pput.pdf”)df”); As; AsyncCncConverterrt aCooCoonnvenverteer = new A

errr((aC(aCo(nverrter_Converted); aConverter.ConversionErroor += nnew ConnversionErrorEvventHtHandler(aConverter_ConversionError); aConverter.Convert(@”C:\tC:\ emmp\mpmm DDocummenmenttAA.rtf”, @”C:\tememmmp\Oup\OutputtputA.pdA.pdf”);f”);) aConverv rter.ter.Coonvert(@”C

verve t(@”C:\temp\DocumentC.rtf”, @”C:\temp\OutputCC.pdf”)); aCoonveerter.Convert(e “hhttp://p://www.yahoo.com”, @”C:\Temp\yahoo.pdf”); ConversionOptionsoni ooptop ionnsnsns = = new CConversiosionOptnOpttionsions(720(720, 72, 720, 72, ttrue); ceeTe.DTe. yynamicPDF

tempte \\ooutput.pdf”, options); ceTe.DynamicPDF.Conveersion.Connvertter.Convert(“C:\\\teemp\\Document2.docx”, “C:\\temp\\output.pdf”, options); string sg ammmpamplmpam eHtmH ml = l “<hth ml><ml><bodybody><p>><p>pp TThis is a very ssimplm e HTML ML strring includ

<tab<t le bborder=\”1\”>1 <tr><td>100</td><td>200</td>”” + “<ttd>3300<</td></tr><tr><<td>>400</td><td>500</td><td>600</t< d></tr></table><></bod/body><y><//</</hhthtmhtmlhtmhtm >”;Conveveo rsion.Con.CoCC nvernverter.ter.CConvvertHtmlString(saamplempleHtmll, “C“C:\\\temp\emp\\Sam\Sam

ererNamee”, Path.Combo ine(GetPath(), “LetterPortrait.pdff”)); prrintJoob.DDocumentNamee = “LettLetter Pe ortrait”; if (printJob.Pob. rinter.Color) prinprinprinprinpri tJobtJob P.PrintOpntOn tions.Cos. lor o = trtrue; ue; if (if (prinprinri tJobtJo .Printer.ColC late) printJob.Pb.P.PPrrintr OOptiOptip ons.ons.onons CoCoollollate at = tr= tr= uurr

innt

;ppd

t:: ,

Untitled-3 1 12/7/10 3:43 PM

http://www.yahoo.com%E2%80%9D
www.DynamicPDF.com/eval
www.DynamicPDF.com
www.cete.com

msdn magazine86

Automatically generating test case data with diff usion testing is
great in principle, but how does it work? Th e best way to explain
diff usion testing is by way of an example. Take a look at Figure 1.

Here, I’m testing a function, Choose(n,k), which returns the
number of ways to select k items from n items where order doesn’t
matter. In my simplifi ed example, I have three existing test cases.
The first test case has inputs n = 8 and k = 3 and an expected
result of 56. Aft er my test harness executed the fi rst test case, which
yielded a pass result, I used diff usion testing to automatically gen-
erate a new test case with inputs n = 9, k = 3 and an expected result
of 84. Neat! Notice that because test case 002 yielded a fail result,
I didn’t generate a new diff used test case.

But how are new test cases generated from an existing test case?
For the Choose(n,k) function, it turns out that, mathematically,
Choose(n+1,k) = Choose(n,k) * (n+1) / (n-k+1). In other words, there’s
a known relationship between new inputs and old return values. Th e
function I used to generate a diff used test case from an existing test case

Diffusion Testing

In this month’s column, I introduce you to a soft ware-testing tech-
nique I call diff usion testing. Th e key idea of diff usion testing is that
it’s sometimes possible to automatically generate new test case data
from existing test cases that yield a pass result.

Although diff usion testing is a technique that isn’t applicable in
most soft ware-testing scenarios, when diff usion testing is applicable,
it can greatly improve the effi ciency of your test eff ort. Perhaps in
part because it’s a niche technique, diff usion testing is one of the
least known of all major testing techniques, based on my experience.

Before I present examples of diff usion testing, let me explain the
motivation behind the method. A test case typically consists of a
test case ID, a set of one or more inputs and an expected result.
For example, the vector {001, 2, 3, 5} could represent a test case for
a Sum function, with ID = 001, inputs = 2 and 3 and an expected
result = 5. Th e test case inputs are sent to the system under test, an
actual result is produced and the actual result is compared to the
expected result to determine a test case pass/fail result.

In many software-testing situations, it’s difficult and time-
consuming to determine the expected result part of a test case.
For example, suppose you’re testing a basic math function that
computes the harmonic mean of two inputs that are rates. The
average of 30.0 kilometers per hour (kph) and 60.0 kph is not (30.0
+ 60.0) / 2 = 45.0 kph, but rather the harmonic mean of 30.0 and
60.0, which is 1 / ((1/30.0 + 1/60.0) / 2) = 40.0 kph. Generating
hundreds of expected results for this function would be tedious,
take a lot of time and be prone to error.

The difficulty of determining test case expected results is a
fundamental concept in soft ware testing and is sometimes referred
to as the test oracle problem. In fact, one of the holy grails of soft -
ware testing is the search for techniques that can automatically
determine test cases. So the motivation behind diff usion testing
is that, if you can somehow automatically generate new test case
data, you’ll sidestep a time-consuming part of the testing process
and be able to test your system more thoroughly.

TEST RUN JAMES MCCAFFREY

Code download available at code.msdn.microsoft.com/mag201103TestRun.

When diffusion testing is
applicable, it can greatly improve
the effi ciency of your test effort.

Figure 1 Diffusion Testing Demo

http://code.msdn.microsoft.com/mag201103TestRun

87March 2011msdnmagazine.com

is shown in Figure 2. Th e entire program that generated the output
shown in Figure 1 is available at code.msdn.microsoft.com/mag201103TestRun.

A couple of additional examples may help to make this idea clearer.
Suppose you’re testing functions that compute the trigonometric
sine and cosine. You may recall that sin 2t = 2 * sin t * cos t. So if
you have test cases that yield pass results for the sine and cosine
of some input, you could use diff usion testing to derive a new test
case for the sine function.

Diff usion testing isn’t magic. Suppose you’re testing a function
that accepts a product ID of some sort, searches a SQL database and
returns true if the product is in stock and false if the product isn’t in
stock. Because there’s no relationship between diff erent inputs and
results, you couldn’t use diff usion testing in this scenario. In this
respect, diff usion testing is similar to other forms of testing such as
boundary condition testing and pairwise testing: It’s a technique that’s
applicable only in certain situations.

Let me present another example of diff usion testing. Suppose
you’ve written a function, Gauss(z), which accepts a standard normal
z value and which returns the area under the standard normal (bell-
shaped curve) distribution from negative infi nity to z. For example,
Gauss(-1.645) = 0.0500, Gauss(1.645) = 0.9500 and Gauss(0) = 0.5000.
One way to use diff usion testing is to note the monotonic property of
Gauss and that for any z value in the range negative infi nity to 2.5, the
result of Gauss(z + 0.1) must be greater than Gauss(z). Another way
to use diff usion testing is to note the symmetric property of Gauss
and that for any z value that’s less than 0.0, Gauss(-z) = 1.0 - Gauss(z).

Th e examples I’ve presented illustrate the three most common—
but by no means the only—scenarios where diff usion testing is
applicable. Th e fi rst scenario is where you’re testing a mathematical
function that can be defi ned as a recurrence relationship. Th e second
scenario is where you’re testing a function that has some monotonic
relationship. And the third scenario is where you’re testing a function
that has some symmetric relationship. A related form of testing, but

one that isn’t diffusion testing, is when you’re testing a function
where switching the order of input values doesn’t change the return
value, such as with Sum(x,y).

Mathematical functions are the most common type of component
under test that can benefi t from diff usion testing, because such func-
tions most oft en are recurrent, monotonic or symmetric—but you
should be alert to other situations, too. Mathematical functions that
involve recurrence relations are especially well-suited for diff usion
testing because you can oft en generate multiple new test cases from
an existing test case. In the demo in Figure 1, test case 001 with n =
8, k = 3 and expected = 56 generated a new diff used test case with
n = 9, k = 3 and expected = 84. Th is new test case could be used to
generate another test case with n = 10, k = 3 and expected = 120, and
if that test case passed, it could be used to generate yet another new
test case, and so on.

Before I wrap up, let me jump on my soapbox and address a
pet peeve of mine related to naming different software-testing
techniques and principles. I’ve labeled the technique described in
this column as diff usion testing because existing test cases diff use,
or scatter, to create new cases. I could just as well have called the
technique adaptive testing or auto-generation testing or any of a
number of other things. It’s not the label that’s important, but rather
the technique represented by the label that counts.

In many fi elds of study, including soft ware testing, self-proclaimed
experts apply some label to a common-sense technique and implic-
itly attempt to convince people new to the fi eld that the label itself
somehow carries some importance. Th is is typically motivated by the
desire to directly sell training or indirectly sell consulting services by
delivering a talk at a conference on the marvelous new label. Notable
off enders are the terms “exploratory testing” and “context school of
testing,” but there are many others. So take the term “diff usion testing”
for what it is—simply a label to describe a soft ware-testing technique,
but one that can be a useful addition to your technical toolkit.

DR. JAMES MCCAFFREY works for Volt Information Sciences Inc., where he man-
ages technical training for soft ware engineers working at the Microsoft Redmond,
Wash., campus. He’s worked on several Microsoft products, including Internet
Explorer and MSN Search. Dr. McCaff rey is the author of “.NET Test Automation
Recipes” (Apress, 2006), and can be reached at jammc@microsoft .com.

THANKS to the following technical experts for reviewing this article:
Bj Rollison and Alan Page

static string CreateDiffusedTestCase(string existingTestCase)
{
 // Assumes input format is CaseID:N:K:Expected
 string[] tokens = existingTestCase.Split(':');

 string oldTestCase = tokens[0];
 int oldN = int.Parse(tokens[1]);
 int oldK = int.Parse(tokens[2]);
 long oldExpected = long.Parse(tokens[3]);

 string newTestCase = oldTestCase + "-diffused";
 int newN = oldN + 1;
 int newK = oldK;
 long newExpected = (oldExpected * (oldN + 1)) / (oldN - oldK + 1);

 return newTestCase + ":" + newN + ":" + newK + ":" + newExpected;
}

Figure 2 Generating a New Test Case

Diffusion testing is one
of the least known of all major

testing techniques.

If you can somehow
automatically generate new test
case data, you’ll sidestep a time-
consuming part of the testing

process and be able to test your
system more thoroughly.

www.msdnmagazine.com
http://code.msdn.microsoft.com/mag201103TestRun
mailto:jammc@microsoft.com

msdn magazine88

spond on a one-to-one basis with the columns of a relational table
and the properties are publicly accessible. You could write a pro-
cedure to take instances of Person, extract the bits of data, inject
those bits into SQL statements, and send the resulting statement
to the database:

class DB {
 public static bool Insert(Person p) {
 // Obtain connection (not shown)
 // Construct SQL
 string SQL = "INSERT INTO person VALUES (" +
 "'" + p.FirstName + "', " +
 "'" + p.LastName + "', " +
 p.Age + ")";
 // Send resulting SQL to database (not shown)
 // Return success or fail
 return true;
 }
}

Th e drawback to a procedural approach rears its ugly head fairly
quickly: new types (Pet, Instructor, Student and so on) that also
want to be inserted will require new methods of mostly similar
code. Worse, if properties exposed to the public API don’t corre-
spond one-to-one with columns or internal fi elds, things can get
complicated quickly—developers writing the SQL routines will
need to know which fi elds need persisting and which don’t, a pretty
clear violation of encapsulation.

From a design perspective, the object-relational problem wants
to capture the SQL-esque parts of persisting the data into common-
ality, so that managing database connections and transactions is
handled in one place, but still allows for variability in the actual
structure of the things being persisted (or retrieved).

Recall, from our earlier investigations, that procedural approaches
capture algorithmic commonality, and that inheritance captures
structural commonality while allowing for (positive) variability—
but neither of these exactly do what’s needed. The inheritance
approach—putting the commonality into a base class—will require
that developers working in derived classes specify the SQL string
and handle much of the in/out bookkeeping (essentially pushing
commonality back down into derived classes). The procedural
approach will need some kind of variability inside the procedure
(extracting and building the SQL to execute) specifi ed from outside
the procedure, which turns out to be relatively diffi cult to achieve.

Enter Metaprogramming
One solution to the object-relational persistence problem frequently
cited is that of automatic metaprogramming: using the database
schema, create classes that know how to persist themselves to and
from the database.

Multiparadigmatic .NET, Part 6:
Refl ective Metaprogramming

Th e marathon continues. In my previous installment we discussed
automatic metaprogramming, and by this point the ideas of
commonality and variability should be taking on a familiar feel.
I’m now full-on talking about metaprogramming—the idea of
programs writing programs.

Last month I examined one of the more familiar approaches to
metaprogramming: automatic metaprogramming, more commonly
known as code generation. In an automatic metaprogramming
scenario, developers write programs that describe the “things” to be
generated. Usually this is done with the aid of command-line param-
eters or other inputs such as relational database schemas, XSD fi les
or even Web Services Description Language (WSDL) documents.

Because code generation is essentially “just as if ” the code were
written by human hands, variability can come at any point inside
the code. Data types, methods, inheritance ... all of it can be varied
according to need. Th e drawback, of course, is twofold. First, too
much variability can render the generated code (and, more oft en
than not, the templates by which the code is generated) diffi cult to
understand. Second, the generated artifacts are essentially uneditable
unless the code generation is somehow partitioned away through
the use of partial classes or code generation is no longer necessary.

Fortunately, C# and Visual Basic off er more metaprogrammatic
tactics than just automatic metaprogramming, and have done so
since the earliest days of the Microsoft .NET Framework.

Persistent Problems
A recurring problem in the object-oriented environment is that of
object-to-relational persistence—also known as object-to-XML
conversion or, in the more modern Web 2.0 world, object-to-JSON
transformation. Despite developers’ best eff orts, it seems inevitable
that object models need to escape the CLR somehow and either
move across the network or move onto disk and back again. And
herein lies the problem: the previous modes of design—procedural
and object-oriented—don’t off er good solutions for this dilemma.

Consider a canonical, simplifi ed representation of a human being
modeled in code:

class Person {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int Age { get; set; }

 public Person(string fn, string ln, int a) {
 FirstName = fn; LastName = ln; Age = a;
 }
}

Persisting instances of this object, as it turns out, is not diffi cult,
particularly because the properties (in their simplest form) corre-

THE WORKING PROGRAMMER TED NEWARD

89March 2011msdnmagazine.com

Unfortunately, this has all the traditional problems of code genera-
tion, particularly when classes want to change the object representation
to be something easier to work with than what the physical database
schema implies. For example, a VARCHAR(2000) column would be
much easier to work with if it were a .NET Framework System.String
and not a char[2000].

Other code-generation techniques started from the class defi ni-
tions and created a database schema alongside the persistent class
defi nitions … but that meant that somehow now the object hierarchy
was duplicated into two diff erent models, one solely for persistence
and one for everything else. (Note that as soon as it becomes neces-
sary to transform the object into XML, another hierarchy springs
into being that you have to handle, and yet another one to handle
JSON. Quickly this approach grows intractable.)

Fortunately, refl ective metaprogramming off ers potential relief.
A part of the .NET Framework since 1.0, System.Refl ection allows
developers to examine the structure of objects at run time, which
in this case permits the persistence-minded infrastructure the
opportunity to examine the structure of the object being persisted
and generate the SQL required from there. A basic introduction to
System.Refl ection is well-documented both within the MSDN
documentation at msdn.microsoft.com/library/f7ykdhsy(v=VS.400) and in the
MSDN Magazine articles “Use Refl ection to Discover and Assess the
Most Common Types in the .NET Framework” (msdn.microsoft.com/
magazine/cc188926) and “CLR Inside Out: Refl ections on Refl ection”
(msdn.microsoft.com/magazine/cc163408). I won’t discuss it any further here.

Refl ection permits commonality of algorithm, while allowing
for variability of structure manipulated by that algorithm, all while
continuing to preserve the appearance of encapsulation. Because
reflection (in an appropriately configured security context) has
access to private members of objects, internal data can still be
manipulated without forcing those data members to be made public.

Positive variability—the ability to vary by adding things—is, as
always, easy to work with, as the number of fi elds is largely irrelevant
to most refl ection-based code. Negative variability—the ability to vary
by removing things—doesn’t seem to fi t at all, however. Aft er all, a class
without fi elds doesn’t really need to be persisted, does it? And a refl ection-
based infrastructure looping through private fi elds won’t have much of
a problem not looping at all, as nonsensical as that may seem.

However, negative variability here is slightly diff erent than just
not having fi elds. In certain scenarios, the Person class will have
internal fi elds that don’t want to be persisted at all. Or, more strik-
ingly, the Person class will have fi elds it wants persisted in a diff erent
data format than its CLR-hosted representation. Person.Birthdate
wants to be stored as a String, perhaps, or even across three columns
(day, month, year) rather than in a single column. In other words,
negative variability in a refl ective metaprogrammatic sense is not
about the lack of fi elds, but about doing something diff erent to
certain instances of types that would otherwise be handled in a
standard way (persisting a string to a VARCHAR column being
the standard, for example, but for one or more particular fi elds,
persisting a string to a BLOB column).

Th e .NET Framework makes use of custom attributes to convey
this negative variability. Developers use attributes to tag elements
within the class to convey the desire for that custom handling, such

as @NotSerialized in the case of object serialization. It’s important
to note, however, that the attribute itself does nothing—it’s merely
a flag to the code looking for that attribute. Of itself, then, the
attribute provides no negative variability, but merely makes it easier
to denote when that negative variability should kick in.

Attributes can also be used to convey positive variability. One
example is how the .NET Framework uses attributes to convey
transactional handling, assuming that the lack of an attribute on a
method indicates no transactional affi nity whatsoever.

Mirror, Mirror, on the Wall
Without attributes, refl ective metaprogramming establishes an entirely
new kind of variability. Now names can be used to refer to elements
within the program (rather than through compiler symbols)—and at
a much later time (runtime) than the compiler traditionally permits.
For example, early drops of the NUnit unit-testing framework, like
its cousin JUnit in the Java space, used refl ection to discover methods
that began with “test” as part of the name, and assumed that they were
test methods to execute as part of a test suite.

Th e name-based approach requires developers to take elements
traditionally reserved for human eyes—the names of things—and
require them to follow strict conventions, such as the “test” prefi x for
NUnit methods. Th e use of custom attributes relaxes that naming-
based convention (at the expense of now requiring additional code
constructs in the classes in question), essentially creating an
opt-in mechanism that developers must accept in order to receive
the benefi ts of the metaprogram.

Attributes also provide the ability to tag arbitrary data along with
the attribute, providing a much more fi ne-grained parameterization
to the metaprogrammatic behavior. Th is is something not typically
possible with automatic metaprogramming, particularly not when
the client wants diff erent behavior for structurally similar constructs
(such as the strings-to-BLOBs-instead-of-VARCHAR-columns
example from earlier).

Owing to its runtime-bound nature, however, reflection fre-
quently enforces a performance hit on code that uses it extensively.
In addition, refl ection doesn’t off er solutions to the problems cited
in the automatic metaprogramming scenario from last month—the
proliferation of classes, for example. Another metaprogrammatic
solution is available, but that will have to wait for next month.

Happy coding!

TED NEWARD is a Principal with Neward & Associates, an independent fi rm
specializing in enterprise Microsoft .NET Framework and Java platform systems.
He’s written more than 100 articles, is a C# MVP and INETA speaker and has
authored and coauthored a dozen books, including “Professional F# 2.0” (Wrox,
2010). He also consults and mentors regularly. Reach him at ted@tedneward.com
with questions or consulting requests, and read his blog at blogs.tedneward.com.

THANKS to the following technical expert for reviewing this article:
Anthony Green

Now names can be used to refer
to elements within the program.

mailto:ted@tedneward.com
www.msdnmagazine.com
http://blogs.tedneward.com
http://msdn.microsoft.com/library/f7ykdhsy(v=VS.400
http://msdn.microsoft.com/magazine/cc188926
http://msdn.microsoft.com/magazine/cc188926
http://msdn.microsoft.com/magazine/cc163408

VISUAL STUDIO LIVE! LAS VEGAS TRACKS

Visual Studio Live! Pre-Conference Workshops: Monday, April 18, 2011
(Separate entry fee required)

MWK1 An Introduction to Multi-Platform Mobile
Development Using C#: iPhone, Android, and
Windows Phone 7 Ken Getz & Brian Randell

MWK2 Workshop: Making Effective Use of
Silverlight and WPF Billy Hollis & Rockford Lhotka

MWK3 Workshop: Programming with WCF in
One Day Miguel Castro

Visual Studio Live! Day 1: Tuesday, April 19, 2011

T1 Easing in to Windows Phone 7
Development Walt Ritscher

T2 Getting Started with ASP.NET MVC
Philip Japikse

T3 Azure Platform Overview
Vishwas Lele

T4 Best Kept Secrets in Visual Studio
2010 and .NET 4.0 Deborah Kurata

T5 Silverlight in 75 Minutes
Ken Getz

T6 Test Driving ASP.NET MVC2
Philip Japikse

T7 Building Azure Applications
Vishwas Lele

T8 How We Do Language Design at
Microsoft Lucian Wischik

TCT1 Chalk Talk: Silverlight, WCF RIA Services, and
Your Business Objects Deborah Kurata

TCT2 Chalk Talk: Building N-Tier Applications With
Entity Framework 4 Leonard Lobel

TCT3 Chalk Talk: Join the XAML Revolution
Billy Hollis

T9 Transitioning from Windows Forms
to WPF Miguel Castro

T10 HTML5/IE9 inspire T11 Building Compute-Intensive Apps
in Azure Vishwas Lele

T12 Turn Your Development Up to 11:
Debugging to Win with Visual Studio
2010 Brian Randell

T13 Programming for Windows 7 with
WPF Miguel Castro

T14 Improving Your ASP.NET
Application Performance with
Asynchronous Pages and Actions
Tiberiu Covaci

T15 Using C# and Visual Basic to
Build a Cloud Application for Windows
Phone 7 Lucian Wischik &
Srivatsn Narayanan

T16 Designing and Developing for the
Rich Mobile Web Joe Marini

Visual Studio Live! Day 2: Wednesday, April 20, 2011

W1 Bind Anything to Anything in
Silverlight and WPF Rockford Lhotka

W2 HTML 5 and Your Web Sites
Robert Boedigheimer

W3 How to Make Your Application
Awesome with JSON, REST, WCF and
MVC James Bender

W4 Visual Studio LightSwitch—
Beyond the Basics Robert Green

W5 Design, Don't Decorate
Billy Hollis

W6 Styling Web Pages with CSS 3
Robert Boedigheimer

W7 RESTBuilding RESTful Services in
the Microsoft Platform: When to Use
What? Jesus Rodriguez

W8 Advanced LightSwich
Development Michael Washington

WCT1 Chalk Talk: CSLA .NET Rockford Lhotka WCT2 Chalk Talk: Busy Developer’s Guide to (ECMA/Java)Script Ted Neward

W9 Leveraging the MVVM Pattern in
Silverlight, WPF and Windows Phone
Rockford Lhotka

W10 HTML5 Messaging, Web
Workers and Web Sockets with
JavaScript Jeffrey McManus

W11 WCF Workflow Services
Rob Daigneau

W12 The Almighty @— A Razor
Primer Charles Nurse

W13 Top 7 Lessons Learned On My
First Big Silverlight Project
Benjamin Day

W14 jQuery Application Development
Jeffrey McManus

W15 WCF Tips & Tricks – From the
Field Christian Weyer

W16 WebMatrix Real World Data-
Centric Applications Charles Nurse

Visual Studio Live! Day 3: Thursday, April 21, 2011

TH1 Multi-touch Madness! Brian Peek TH2 The Best of jQuery
Robert Boedigheimer

TH3 Making WCF Simple: Best
Practices for Testing, Deploying and
Managing WCF Solutions in the Big
Enterprise Jesus Rodriguez

TH4 Digging Deeper in Windows
Phone 7 Walt Ritscher

TH5 XAML Primer Clarifying the UI
Markup Language Walt Ritscher

TH6 Single Sign-On for ASP.NET
Applications Dominick Baier

TH7 How to Take WCF Data Services
to the Next Level Rob Daigneau

TH8 C# on Android: Building Android
Apps with .NET Christian Weyer

TH9 Silverlight Security
Dominick Baier

TH10 The Scrum vs. Kanban Cage
Match Benjamin Day & David Starr

TH11 Busy .NET Developer's Guide
to Parallel Extensions for .NET 4
Ted Neward

TH12 C# on Android: Building Android
Apps with .NET Christian Weyer

TH13 LINQ Programming Model
Marcel de Vries

TH14 Patterns of Healthy Teams using
Visual Studio and TFS David Starr

TH15 Designing Applications in the
Era of Many-Core Computing Tiberiu
Covaci

TH16 XNA Games for Windows
Phone 7 Brian Peek

TH17 So Many Choices, So Little
Time: Understanding Your .NET 4.0
Data Access Options Leonard Lobel

TH18 Produce Better Quality Code
by Leveraging the Visual Test Tools
You Never Discovered Before
Marcel de Vries

TH19 Building Event-Driven
Applications with Microsoft
StreamInsight Torsten Grabs

TH20 Windows Azure and PHP
Jeffrey McManus

Visual Studio Live! Post-Conference Workshops: Friday, April 22, 2011
(Separate entry fee required)

FWK1 Architectural Katas Workshop Ted Neward FWK2 SQL Server 2011 Andrew Brust & Leonard Lobel

Silverlight/WPF
Programming

Practices

Visual Studio
2010/
.NET 4

WCF Cloud Computing
Data

Management
Web/

HTML 5
"Simplification"

Tools
Mobile

Development

AGENDA

VISIT US ONLINE AT VSLIVE.COM/LV FOR DETAILS ON SESSIONS, SPEAKERS, AND MORE!

Untitled-6 2 2/2/11 2:01 PM

www.vslive.com/lv

APRIL 18–22, 2011
LAS VEGAS, NEVADA
RIO ALL-SUITE HOTEL & CASINO

REGISTER BY MARCH 23
SAVE $200!
USE CODE MARAD

WWW.VSLIVE.COM/LV

CHECK OUT THE FULL 50+ SESSION SCHEDULE NOW!

If you’re looking for hard-hitting .NET
development training, look no further
than Visual Studio Live! Las Vegas.
Our goal? To arm you with the knowledge
to build better applications.

THE REAL-WORLD
TRAINING YOU NEED.

DOWNLOAD
THE AGENDA
NOW!

VISUAL STUDIO LIVE! LAS VEGAS is 5 days packed with full

day workshops, keynotes from industry heavy weights and your choice

of 50 hard-hitting sessions.

You'll learn tips, tricks and fi xes from .NET pros like Billy Hollis,

Rockford Lhotka, Andrew Brust, Deborah Kurata and Dave Mendlen,

Senior Director, Developer Platform and Tools at Microsoft.

SUPPORTED BY:

PRODUCED BY:

Untitled-6 3 2/2/11 2:01 PM

www.vslive.com/lv

msdn magazine92

us a “sneak peek” at enhancements to the frameworks that might be
incorporated in future releases. Full source code is an extra bonus.

Windows Phone 7 now also benefi ts from this custom. Th e Silverlight
for Windows Phone Toolkit (available at silverlight.codeplex.com) contains
DatePicker, TimePicker and ToggleSwitch controls already familiar
to users of Windows Phone 7; a WrapPanel (handy for dealing with
phone orientation changes); and multi-touch gesture support.

Th is new Silverlight gesture support in the toolkit is intended to
be similar to the XNA TouchPanel.ReadGesture method, except
it’s delivered through routed events rather than polling.

How similar is it? Much more so than I expected! Looking at
the source code, I was quite surprised to discover that these new
Silverlight gesture events were entirely derived from a call to the
XNA TouchPanel.ReadGesture method. I wouldn’t have thought
that a Silverlight application on Windows Phone was allowed to
call this XNA method, but there it is.

Although the Silverlight and XNA gestures are fairly similar, the
properties associated with the gestures are not. Th e XNA properties
use vectors, for example, and because Silverlight doesn’t include a
Vector structure (an omission I feel is ridiculous), the properties
had to be redefi ned for Silverlight in certain simple ways.

As I’ve been working with these gesture events, they’ve come to
be my favorite multi-touch API for Silverlight for Windows Phone.
I’ve found them to be comprehensive for much of what I need to
do and also fairly easy to use.

Let me demonstrate by giving these gestures actual work to do.

Gesture Service and Listener
All the source code for this column is in a downloadable Visual Studio
solution named GestureDemos that contains three projects. You’ll

Touch Gestures on Windows Phone 7

As someone who spends much of his professional life observing the
evolution of APIs, I’ve been quite entertained by that little corner
of the API universe occupied by multi-touch. I’m not sure I’d even
want to count the number of diff erent multi-touch APIs spread out
over Windows Presentation Foundation (WPF), Microsoft Surface,
Silverlight, XNA and Windows Phone, but what’s most evident is
that a “unifi ed theory” of multi-touch is still elusive.

Of course, this plethora of touch APIs shouldn’t be surprising for
a technology that’s still comparatively young. Moreover, multi-touch
is more complex than the mouse. Th at’s partially due to the potential
interaction of multiple fingers, but it also reflects the difference
between a purely artifi cial device such as the mouse and all-natural
fi ngers. We humans have a lifetime of experience using our fi ngers,
and we expect them to interact with the world in well-known ways,
even if we’re touching the glossy surface of a video display.

For the application programmer, Windows Phone 7 defines
four—yes, four—diff erent touch interfaces.

Silverlight applications written for Windows Phone 7 have
the option of obtaining low-level touch input through the static
Touch.FrameReported event, or higher-level input through the
various Manipulation routed events. Th ese Manipulation events
are mostly a subset of similar events in WPF, but they’re diff erent
enough to cause major headaches.

XNA applications for Windows Phone 7 use the static TouchPanel
class to obtain touch input, but that single class actually incorpo-
rates two touch interfaces: Th e GetState method obtains low-level
fi nger activity, and the ReadGesture method obtains higher-level
gestures. Th e gestures supported by the ReadGesture method are
not stylus-like gestures such as checkmarks and circles. Th ey’re
much simpler gestures described by names such as Tap, Drag and
Pinch. In keeping with XNA architecture, touch input is polled by
the application rather than being delivered through events.

Gestures Come to Silverlight
I naturally assumed that Silverlight for Windows Phone 7 already
had a suffi cient number of multi-touch APIs, so I was quite surprised
to see a third one added to the mix—albeit in a toolkit that came
out a little too late for me to describe in my book, “Programming
Windows Phone 7” (Microsoft Press, 2010).

As you probably know, various releases of WPF and Silverlight
over the past several years have been supplemented by toolkits
released through CodePlex. Th ese toolkits allow Microsoft to get new
classes to developers outside of the usual ship cycle and oft en give

UI FRONTIERS CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201103UIFrontiers.

I’ve been quite
entertained by that little corner
of the API universe occupied

by multi-touch.

http://silverlight.codeplex.com
http://code.msdn.microsoft.com/mag201103UIFrontiers

93March 2011msdnmagazine.com

need to have the Windows Phone 7 development tools installed, of
course, and also the Silverlight for Windows Phone Toolkit.

Aft er installing the toolkit, you can use it in your own Windows
Phone projects by adding a reference to the Microsoft .Phone.Con-
trols.Toolkit assembly. In the Add Reference dialog box, it should
be listed under the .NET tab.

In a XAML fi le, you’ll then need an XML namespace declaration
like this one (but all on one line):

xmlns:toolkit=
"clr-namespace:Microsoft.Phone.Controls;
assembly=Microsoft.Phone.Controls.Toolkit"

Here are the 12 available gesture events, roughly in the order that
I’ll discuss them (the events that I’ve grouped on a single line are
related and occur in a sequence):

GestureBegin, GestureCompleted
Tap
DoubleTap
Hold
DragStarted, DragDelta, DragCompleted
Flick
PinchStarted, PinchDelta, PinchCompleted

Suppose you want to handle Tap and Hold events that occur on
a Grid or any child of the Grid. You can specify that in the XAML
fi le like so:

<Grid ... >
 <toolkit:GestureService.GestureListener>
 <toolkit:GestureListener
 Tap="OnGestureListenerTap"
 Hold="OnGestureListenerHold" />
 </toolkit:GestureService.GestureListener>
 ...
</Grid>

You indicate the events and handlers in a GestureListener
tag that’s a child of the GestureListener attached property of the
GestureService class.

Alternatively in code, you’ll need a namespace directive for the
Microsoft .Phone.Controls namespace and the following code:

GestureListener gestureListener =
 GestureService.GetGestureListener(element);

gestureListener.Tap += OnGestureListenerTap;
gestureListener.Hold += OnGestureListenerHold;

In either case, if you’re setting this gesture listener on a panel, make
sure that the Background property is at least set to Transparent! Events
will simply fall through a panel with a default background of null.

Tap and Hold
All gesture events are accompanied by event arguments of type
GestureEventArgs or a type that derives from GestureEventArgs. Th e
OriginalSource property indicates the top-most element touched by
the fi rst fi nger that meets the screen; the GetPosition method pro-
vides the current coordinates of that fi nger relative to any element.

Th e gesture events are routed, which means that they can travel
up the visual tree and be handled for any element that has a
GestureListener installed. As usual, an event handler can set the
Handled property of GestureEventArgs to true to prevent an event
from travelling further up the visual tree. However, this only aff ects
other elements using these gesture events. Setting Handled to true
does not prevent elements higher in the visual tree from obtaining
touch input through other interfaces.

The GestureBegin event indicates that a finger has touched a
previously fi ngerless screen; GestureCompleted signals when all

fi ngers have left the screen. Th ese events may be handy for initial-
ization or cleanup, but you’ll generally be more focused on gesture
events that occur between these two events.

I’m not going to spend much time on the simpler gestures. A
Tap occurs when a finger touches the screen and then lifts up
within about 1.1 seconds, without moving too far from the original
position. If two taps are close in succession, the second one comes
through as a DoubleTap. A Hold occurs when a fi nger is pressed
on the screen and remains in roughly the same spot for about
1.1 seconds. Th e Hold event is generated at the end of this time
without waiting for the fi nger to lift .

Drag and Flick
A Drag sequence—consisting of a DragStarted event, zero or more
DragDelta events and a DragCompleted event—occurs when a
fi nger touches the screen, moves and lift s. Because it isn’t known
that dragging will occur when a finger first touches the screen,
the DragStarted event is delayed until the finger actually starts
moving beyond the Tap threshold. Th e DragStarted event might
be preceded by a Hold event if the fi nger has been on the screen
without moving for about a second.

Because the fi nger has already begun moving when the Drag-
Started event is fi red, the DragStartedEventArgs object can include
a Direction property of type Orientation (Horizontal or Vertical).
The DragDeltaEventArgs object accompanying the DragDelta
event includes more information: HorizontalChange and Vertical-
Change properties that are convenient for adding to the X and
Y properties of a TranslateTransform, or the Canvas.Left and
Canvas.Top attached properties.

<Image Name="image"
 Source="PetzoldTattoo.jpg"
 Stretch="None"
 HorizontalAlignment="Left"
 VerticalAlignment="Top">
 <Image.RenderTransform>
 <TransformGroup>
 <MatrixTransform x:Name="previousTransform" />

 <TransformGroup x:Name="currentTransform">
 <ScaleTransform x:Name="scaleTransform" />
 <RotateTransform x:Name="rotateTransform" />
 <TranslateTransform x:Name="translateTransform" />
 </TransformGroup>
 </TransformGroup>
 </Image.RenderTransform>
</Image>

Figure 1 The Image Element in ScaleAndRotate

We humans have a lifetime
of experience using our

fi ngers, and we expect them
to interact with the world in

well-known ways.

www.msdnmagazine.com

msdn magazine94 UI Frontiers

The Flick event occurs when a finger leaves the screen as it’s
still moving, suggesting that the user wants inertia to occur. Th e
event arguments include an Angle (measured clockwise from
the positive X axis) and HorizontalVelocity and VerticalVelocity
values, both in pixels per second.

Th e Flick event can occur in isolation; or it can occur between
DragStarted and DragCompleted events without any Drag Delta
events; or it might follow a series of DragDelta events before
DragCompleted. Generally you’ll want to handle Drag events and
Flick events in conjunction, almost as if the Flick is a continuation
of the Drag. However, you’ll need to add your own inertia logic.

Th is is demonstrated in the DragAndFlick project. Th e display
contains an ellipse that the user simply drags around with a fi nger. If
the fi nger leaves the screen with a fl icking motion, then a Flick event
occurs and the Flick handler saves some information and installs a
handler for the CompositionTarget.Rendering event. Th is event—
which occurs in synchronization with the video display refresh—keeps
the ellipse moving while applying a deceleration to the velocity.

Bouncing off the sides is handled a bit unusually: Th e program
maintains a position as if the ellipse simply keeps moving in the
same direction until it stops; that position is folded into the area
in which it can bounce.

Pinch Me, I Must Be Dreaming
The Pinch sequence occurs when two fingers are touching the
screen; it’s generally interpreted to expand or contract an on-screen
object, possibly rotating it as well.

Th ere’s no question that the pinching operation constitutes one
of the most treacherous areas of multi-touch processing, and it’s
not unusual to see higher-level interfaces fail at providing adequate
information. Most notoriously, the Windows Phone 7 Manipulation-
Delta event is particularly tricky to use.

When handling gestures, Drag sequences and Pinch sequences
are mutually exclusive. Th ey don’t overlap but they can occur back
to back. For example, press a fi nger to the screen and drag it. Th at
generates a DragStarted and multiple DragDelta events. Now press
a second fi nger to the screen. You’ll get a DragCompleted to com-
plete the Drag sequence followed by a PinchStarted and multiple
PinchDelta events. Now lift the second fi nger while the fi rst fi nger
keeps moving. That’s a PinchCompleted to complete the Pinch
sequence, followed by DragStarted and DragDelta. Depending
on the number of fingers touching the screen, you’re basically
alternating between Drag sequences and Pinch sequences.

One helpful characteristic of this Pinch gesture is that it doesn’t
discard information. You can use properties of the event arguments

to entirely reconstruct the positions of the two fi ngers, so you can
always go back to fi rst principles if you need to.

During a Pinch sequence, the current location of one fi nger—let’s
call it the primary fi nger—is always available with the GetPosition
method. For this discussion, call that return value pt1. For the
PinchStarted event, the PinchStartedGestureEventArgs class has
two additional properties named Distance and Angle indicating
the location of the second fi nger relative to the fi rst. You can easily
calculate that actual location using the following statement:

Point pt2 = new Point(pt1.X + args.Distance * Cos(args.Angle),
 pt1.Y + args.Distance * Sin(args.Angle));

The Angle property is in degrees, so you’ll need Cos and Sin
methods to convert to radians before calling Math.Cos and
Math.Sin. Before the PinchStarted handler has completed, you’ll
also want to save the Distance and Angle properties in fields,
perhaps named pinchStartDistance and pinchStartAngle.

Th e PinchDelta event is accompanied by a PinchGestureEvent-
Args object. Once again, the GetPosition method gives you the
location of the primary finger, which has perhaps moved from
its original location. For the second fi nger, the event arguments
provide DistanceRatio and TotalAngleDelta properties.

Th e DistanceRatio is the ratio of the current distance between
the fi ngers to the original distance, which means you can calculate
the current distance like so:

double distance = args.DistanceRatio * pinchStartDistance;

Th e TotalAngleDelta is a diff erence between the current angle
between the fi ngers and the original angle. You can calculate the
current angle like this:

double angle = args.TotalAngleDelta + pinchStartAngle;

Now you can calculate the location of the second fi nger as before:
Point pt2 = new Point(pt1.X + distance * Cos(angle),
 pt1.Y + distance * Sin(angle));

You don’t need to save any additional information to fi elds during
PinchDelta handling to process further PinchDelta events.

Th e TwoFingerTracking project demonstrates this logic by displaying
blue and green ellipses that track one or two fi ngers around the screen.

Scale and Rotate
Th e PinchDelta event also provides suffi cient information to per-
form scaling and rotation on objects. I had to supply my own matrix
multiplication method, but that was about the extent of the hassles.

To demonstrate, the ScaleAndRotate project implements what is
now a “traditional” type of demonstration that lets you drag, scale
and optionally rotate a photograph. To perform these transforms, I
defi ned the Image element with a double-barreled RenderTransform
as shown in Figure 1.

Although the Silverlight and XNA
gestures are fairly similar, the

properties associated with the
gestures are not.

For the application programmer,
Windows Phone 7 defi nes
four—yes, four—different

touch interfaces.

95March 2011msdnmagazine.com

When a Drag or Pinch operation is in progress, the three trans-
forms in the nested TransformGroup are manipulated to move
the picture around the screen, scale it and rotate it. When a Drag-
Completed or PinchCompleted event occurs, the Matrix in the
MatrixTransform named previousTransform is multiplied by
the composite transform available as the Value property of the
TransformGroup. The three transforms in this TransformGroup
are then set back to their default values.

Scaling and rotation are always relative to a center point, which
is the point that remains in the same location when the transform
occurs. A photograph scaled or rotated relative to its upper-left
corner ends up in a diff erent location than a photograph scaled or
rotated relative to its lower-right corner.

Th e ScaleAndRotate code is shown in Figure 2. I use the primary
fi nger as the scaling and rotation center; these center points are set
on the transforms during PinchStarted handling and they don’t

change for the duration of the Pinch sequence. During PinchDelta
events, the DistanceRatio and TotalAngleDelta properties provide
scaling and rotation information relative to that center. Any change
in movement of the primary fi nger (which must be detected with a
saved fi eld) then becomes an overall translation factor.

Th at’s certainly the simplest pinch code I’ve ever written, and
that fact is perhaps the best endorsement I can provide for this
new gesture interface.

Perhaps a unifi ed theory of multi-touch isn’t far off aft er all.

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine. His
new book, “Programming Windows Phone 7” (Microsoft Press, 2010), is avail-
able as a free download at bit.ly/cpebookpdf.

THANKS to the following technical expert for reviewing this article:
Richard Bailey

public partial class MainPage : PhoneApplicationPage
{
 bool isDragging;
 bool isPinching;
 Point ptPinchPositionStart;

 public MainPage()
 {
 InitializeComponent();
 }

 void OnGestureListenerDragStarted(object sender, DragStartedGestureEventArgs args)
 {
 isDragging = args.OriginalSource == image;
 }

 void OnGestureListenerDragDelta(object sender, DragDeltaGestureEventArgs args)
 {
 if (isDragging)
 {
 translateTransform.X += args.HorizontalChange;
 translateTransform.Y += args.VerticalChange;
 }
 }

 void OnGestureListenerDragCompleted(object sender,
 DragCompletedGestureEventArgs args)
 {
 if (isDragging)
 {
 TransferTransforms();
 isDragging = false;
 }
 }

 void OnGestureListenerPinchStarted(object sender,
 PinchStartedGestureEventArgs args)
 {
 isPinching = args.OriginalSource == image;

 if (isPinching)
 {
 // Set transform centers
 Point ptPinchCenter = args.GetPosition(image);
 ptPinchCenter = previousTransform.Transform(ptPinchCenter);

 scaleTransform.CenterX = ptPinchCenter.X;
 scaleTransform.CenterY = ptPinchCenter.Y;

 rotateTransform.CenterX = ptPinchCenter.X;
 rotateTransform.CenterY = ptPinchCenter.Y;

 ptPinchPositionStart = args.GetPosition(this);
 }
 }

 void OnGestureListenerPinchDelta(object sender, PinchGestureEventArgs args)
 {
 if (isPinching)
 {
 // Set scaling
 scaleTransform.ScaleX = args.DistanceRatio;
 scaleTransform.ScaleY = args.DistanceRatio;

 // Optionally set rotation
 if (allowRotateCheckBox.IsChecked.Value)
 rotateTransform.Angle = args.TotalAngleDelta;

 // Set translation
 Point ptPinchPosition = args.GetPosition(this);
 translateTransform.X = ptPinchPosition.X - ptPinchPositionStart.X;
 translateTransform.Y = ptPinchPosition.Y - ptPinchPositionStart.Y;
 }
 }

 void OnGestureListenerPinchCompleted(object sender, PinchGestureEventArgs args)
 {
 if (isPinching)
 {
 TransferTransforms();
 isPinching = false;
 }
 }

 void TransferTransforms()
 {
 previousTransform.Matrix = Multiply(previousTransform.Matrix,
 currentTransform.Value);

 // Set current transforms to default values
 scaleTransform.ScaleX = scaleTransform.ScaleY = 1;
 scaleTransform.CenterX = scaleTransform.CenterY = 0;

 rotateTransform.Angle = 0;
 rotateTransform.CenterX = rotateTransform.CenterY = 0;

 translateTransform.X = translateTransform.Y = 0;
 }

 Matrix Multiply(Matrix A, Matrix B)
 {
 return new Matrix(A.M11 * B.M11 + A.M12 * B.M21,
 A.M11 * B.M12 + A.M12 * B.M22,
 A.M21 * B.M11 + A.M22 * B.M21,
 A.M21 * B.M12 + A.M22 * B.M22,
 A.OffsetX * B.M11 + A.OffsetY * B.M21 + B.OffsetX,
 A.OffsetX * B.M12 + A.OffsetY * B.M22 + B.OffsetY);
 }
}

Figure 2 The ScaleAndRotate Code

www.msdnmagazine.com
http://bit.ly/cpebookpdf

msdn magazine96

degrade it. Th e slides in the Microsoft November 2010 Windows
Azure training kit all contain a horizontal color gradient, dark blue
on the left fading to light blue on the right (see Figure 1). “Th at’s
our branding,” said one Microsoft employee. “It looks nice. What’s
wrong with it?”

Here’s what’s wrong: Th e constantly changing contrast between the
white text and the background color requires constant fi ne muscle
adjustment as your eye scans the line. Th at quickly causes pain in
your eye muscles, your body saying, “Hey, knock it off .” Try it now:
Concentrate on the text in the fi gure. You’ll feel the fi rst twinges of
genuine pain in under a minute. And class attendees look at these
slides for three days. Ouch.

Th is branding says, “We’re Microsoft . We know we make your
head hurt, and we do it anyway. Remember us.” I doubt that was
the intention, but it is the result.

Both the bad presenter and the bad slide builder had been care-
fully trained in the use of a soft ware package. Th ey had not been
trained in communication with human beings, the ultimate goal of
their eff orts, which the soft ware package was supposed to enhance.
We need to start teaching them what they’re really doing.

DAVID S. PLATT teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Soft ware Legend in 2002. He wonders whether he should tape down two
of his daughter’s fi ngers so she learns how to count in octal. You can contact him
at rollthunder.com.

Missing the (Power) Point

I just sat through the gazzilionth bad PowerPoint presentation of
my working life. Has anyone ever seen a good PPT presentation?
I can’t remember one. Th ey’re rarer than Siberian tigers.

This speaker had apparently just discovered slide transition
eff ects, and used a diff erent one for every slide. Bounces. Dissolves.
Wipe downs. A clockwise wheel with eight spokes. It reminded
of the late ’80s when we fi rst got laser printers. We switched fonts
every few words just because we could, so our documents resem-
bled kidnap ransom notes.

Worse, this presenter did nothing but read out his PPT bullets
one by one. I pay $2,000 to get groped by the TSA, crammed into
a metal tube with crying infants and fl ung across many time zones,
eat bad hotel food and sleep on lumpy mattresses to hear some
art major read a list of bullet points? I could’ve stayed home, slept
in my own Tempur-Pedic bed, played with my kids, and read the
darn bullet points myself.

A speaker should have to earn a license before presenting a PPT
talk. Until you enter the authorization key from a certifi ed instructor,
PPT will refuse to run on any computer connected to a projector.
You’d learn to stroll through the audience as they gather for your
talk, greeting as many as you could—addressing them by the names
on their badges, shaking hands if you could. You’d ask where they’re
from, what they’re doing in their jobs, what they came here to learn
from you. You’d start getting onto their wavelength, and getting
them onto yours.

And during the talk, you’d get out from behind the podium
and use a remote clicker to switch slides. You’d make eye contact
with individuals, placing a monitor facing you at the front of the
audience so you wouldn’t have to turn your head away from them
to see the screen that’s being projected. If the venue wouldn’t give
you one, you could have a colleague hold up a laptop with its screen
facing you. If a colleague wouldn’t do it, you could bribe an attendee.
If none of those work, then you’d be alone in the world, my friend,
and have problems way bigger than PPT. But you shouldn’t infl ict
your problems on your audience.

Likewise, anyone who composed a PPT deck would have to earn
a new, diff erent certifi cation before PPT would project it. Th e cur-
rent PPT certifi cation teaches you how to do things, but it doesn’t
teach you what to do and what not to, or where or when or why. It
teaches you how to start the chain saw, but not which end to hold.

For example, it teaches you how to do color gradients, but doesn’t
tell you when they improve the audience’s experience and when they

DON’T GET ME STARTED DAVID PLATT

Figure 1 The Background Isn’t Easy on the Eyes

http://rollthunder.com

Untitled-1 1 1/12/11 10:03 AM

www.GCPowerTools.com

Untitled-1 1 11/4/10 4:37 PM

www.dundas.com

	Back
	Print
	MSDN Magazine, March 2011
	Contents
	TOOLBOX: Data Integration Tools and Resources
	CUTTING EDGE: Application Extensibility: MEF vs. IoC
	DATA POINTS: Server-Side Paging with the Entity Framework and ASP.NET MVC 3
	FORECAST: CLOUDY: Cloud Services Mashup
	PROCESS AND DATA INTEGRATION:
	Cloud-Based Collaboration with SharePoint Online
	Processing Health Care Claims with BizTalk Server 2010
	Tips and Tricks for Loading Silverlight Locale Resources
	Writing a Debugging Tools for Windows Extension
	Building Data-Centric Web Apps with ASP.NET MVC and Ext JS
	Building and Using Custom OutputCache Providers in ASP.NET

	MOBILE MATTERS: Windows Phone Navigation: The Basics
	TEST RUN: Diffusion Testing
	THE WORKING PROGRAMMER: Multiparadigmatic .NET, Part 6: Reflective Metaprogramming
	UI FRONTIERS: Touch Gestures on Windows Phone
	DON’T GET ME STARTED: Missing the (Power) Point

	GrapeCity Insert

