

File System Behavior Overview Page 1 of 59

File System Behavior in the Microsoft
Windows Environment

This document contains a compilation of file system specific topics. The audience for these topics is

developers interested in creating file systems that are functionally compatible with existing Windows file

systems.

This document covers the native windows files systems:

 NTFS

 FAT

 EXFAT

 CDFS

 UDF

Differences in functionality between the above file systems will be explicitly noted. The term ‘file

system’ will be used to refer to all the file systems for functionality that does not differ between them.

File System Behavior Overview Page 2 of 59

Revision History
Date Changes

June 2008 Initial Revision

April 2009
 Differences between various windows file systems

 Windows 7 Oplock changes

 File Stream naming conventions

May 2009

 IRP return codes

 Timestamps

 Wildcards

 Corrections to stream naming information

File System Behavior Overview Page 3 of 59

Table of Contents

1 File Streams --- 5

2 Oplock Semantics -- 6

2.1 Overview -- 6

2.2 Granting Oplocks -- 7

2.3 Breaking Oplocks --- 12

2.4 Acknowledging Oplock Breaks -- 24

2.5 Differences between the various file systems in Windows: --- 25

3 Byte Range Lock Semantics --- 26

3.1 Overview --- 26

3.2 Functional Description -- 26

3.3 Processing Details -- 28

3.4 Side Effects of Byte Range Locks --- 29

4 File Deletion Semantics -- 32

4.1 Overview: -- 32

4.2 Summary --- 32

4.3 Detailed Description --- 33

5 IRP Return Codes -- 36

5.1 IRP_MJ_CREATE -- 36

5.2 IRP_MJ_CLOSE -- 37

5.3 IRP_MJ_READ --- 37

5.4 IRP_MJ_WRITE -- 37

5.5 IRP_MJ_QUERY_INFORMATION -- 38

5.6 IRP_MJ_QUERY_VOLUME_INFORMATION -- 40

5.7 IRP_MJ_SET_INFORMATION -- 41

5.8 IRP_MJ_SET_VOLUME_INFORMATION --- 42

5.9 IRP_MJ_QUERY_EA -- 43

5.10 IRP_MJ_SET_EA --- 43

5.11 IRP_MJ_FLUSH_BUFFERS --- 43

5.12 IRP_MJ_DIRECTORY_CONTROL --- 44

5.13 IRP_MJ_FILE_SYSTEM_CONTROL -- 45

File System Behavior Overview Page 4 of 59

5.14 IRP_MJ_LOCK_CONTROL --- 50

5.15 IRP_MJ_CLEANUP -- 50

5.16 IRP_MJ_QUERY_SECURITY --- 50

5.17 IRP_MJ_SET_SECURITY-- 50

5.18 IRP_MJ_QUERY_QUOTA -- 51

5.19 IRP_MJ_SET_QUOTA -- 51

6 Time stamps -- 52

6.1 NTFS --- 52

6.2 UDF -- 53

6.3 FAT --- 54

6.4 exFAT -- 55

7 Wild Cards -- 57

7.1 Wild Card Characters -- 57

7.2 Wild Card Matching -- 57

File System Behavior Overview Page 5 of 59

1 File Streams
A file stream is a sequence of bytes. File operations such as read and write operate on streams.

Historically file systems have typically had only one stream per file that holds the files data and thus had

no need to distinguish between the concept of a file and a stream. However some modern file systems

like NTFS allow multiple data streams per file so in Windows it’s necessary to distinguish between a file

and a stream.

In windows all files systems have one default data stream. The default data stream is associated with a

file handle when opening a file without specifying a stream name: (e.g. CreateFile(“SomeFile”,…)) This

is the only method supported for the FAT, CDFS, and EXFAT file systems.

The NTFS and UDFS file systems can have alternate named data streams. To open a named data stream

use the name syntax filename:stream_name. For example to open a stream named ‘streamX’ on file

‘SomeFile’ : CreateFile(“SomeFile:streamX”, …).

File System Behavior Overview Page 6 of 59

2 Oplock Semantics

2.1 Overview
Opportunistic locks, or oplocks, provide a mechanism that allows file server clients (such as those

utilizing the SMB and SMB2 protocols) to dynamically alter buffering strategy for a given file or stream in

a consistent manner to increase performance and to reduce network use. To increase the network

performance for remote file operations, a client can locally buffer file data, which reduces or eliminates

the need to send and receive network packets. For example, a client may not have to write information

into a file on a remote server if the client knows that no other process is accessing the data. Likewise,

the client may buffer read-ahead data from the remote file if the client knows that no other process is

writing data to the remote file. Applications and drivers can also use oplocks to transparently access files

without affecting other applications that might need to use those files.

 Oplocks are granted on stream handles, meaning that the operations apply to the given open stream of

a file and, in general, operations on one stream do not affect oplocks on a different stream. There are

exceptions to this, which are explicitly listed below.

There are currently eight different types of oplocks:

 A Level 2 (or shared) oplock indicates that there are multiple readers of a stream and no writers.
This supports client read caching.

 A Level 1 (or exclusive) oplock allows a client to open a stream for exclusive access and allows
the client to perform arbitrary buffering. This supports client read caching and write caching.

 A Batch oplock (also exclusive) allows a client to keep a stream open on the server even though
the local accessor on the client machine has closed the stream. This supports scenarios where
the client needs to repeatedly open and close the same file, such as during batch script
execution. This supports client read caching, write caching, and handle caching.

 A Filter oplock (also exclusive) allows applications and file system filters (including minifilters),
which open and read stream data, a way to “back out” when other applications, clients, or both
try to access the same stream. This supports client read caching and write caching.

 A Read (R) oplock (shared) indicates that there are multiple readers of a stream and no writers.
This supports client read caching.

 A Read-Handle (RH) oplock (shared) indicates that there are multiple readers of a stream, no
writers, and that a client can keep a stream open on the server even though the local accessor
on the client machine has closed the stream. This supports client read caching and handle
caching.

 A Read-Write (RW) oplock (exclusive) allows a client to open a stream for exclusive access and
allows the client to perform arbitrary buffering. This supports client read caching and write
caching.

 A Read-Write-Handle (RWH) oplock (exclusive) allows a client to keep a stream open on the
server even though the local accessor on the client machine has closed the stream. This
supports client read caching, write caching, and handle caching.

Level 1, Level 2, and Batch oplocks were implemented in Windows NT 3.1. The Filter oplock was added

in Windows 2000. R, RH, RW, and RWH oplocks have been added in Windows 7.

File System Behavior Overview Page 7 of 59

Some oplocks seem quite similar. In particular, R seems similar to Level 2, RW seems similar to Level 1,

and RWH seems similar to Batch. The R, RH, RW, and RWH oplocks (hereinafter referred to collectively

as “Windows 7 oplocks”) have been added to Windows 7 to provide greater flexibility for the caller to

express caching intentions, and to allow oplock breaks and upgrades (that is, modification of the oplock

state from one level to a level of greater caching; for example, upgrading a Read oplock to a Read-Write

oplock). This flexibility is not achievable with the Level 2, Level 1, Batch, and Filter oplocks (hereinafter

referred to collectively as “legacy oplocks”). Differences between the Windows 7 oplocks and the legacy

oplocks are discussed later in this documentation.

The core functionality of the oplock package is implemented in the kernel (primarily through FsRtlXxx

routines). File systems call into this package to implement the oplock functionality in their file system.

This document describes how windows file systems interoperate with the kernel oplock package. There

may be some differences in behavior between the various windows file systems and this will be explicitly

noted.

Oplocks are granted on stream handles. This means an oplock is granted for a given open of a stream.

Starting with Windows 7, the stream handle can be associated with an oplock key, that is, a GUID value

that is used to identify multiple handles that belong to the same client cache view 1. The oplock key can

be explicitly provided (to IoCreateFileEx) when the handle is created. If an oplock key is not explicitly

specified when the handle is created, the system will treat the handle as having a unique oplock key

associated with it, such that its key will differ from any other key on any other handle. If a file operation

is received on a handle other than the one on which the oplock was granted, and the oplock key that is

associated with the oplock’s handle differs from the key that is associated with the operation’s handle,

and that operation is not compatible with the currently granted oplock, then that oplock is broken. The

oplock breaks even if it is the same process or thread performing the incompatible operation. For

example, if a process opens a stream for which an exclusive oplock is granted and the same process then

opens the same stream again, using a different (or no) oplock key, the exclusive oplock is broken

immediately.

Remember that oplock keys exist on handles, and they are "put on" the handle when the handle is

created. You can associate a handle with an oplock key even if no oplocks are granted.

2.2 Granting Oplocks
Oplocks are requested through FSCTLs. The following list shows the FSCTLs for the different oplock types

(which user-mode applications and kernel-mode drivers can issue):

 FSCTL_REQUEST_OPLOCK_LEVEL_1
 FSCTL_REQUEST_OPLOCK_LEVEL_2
 FSCTL_REQUEST_BATCH_OPLOCK

1 It is more accurate to say that the oplock key is associated with the FILE_OBJECT structure that the stream handle refers to. This distinction is

important when the handle is duplicated, such as with DuplicateHandle. Each of the duplicate handles refers to the same underlying

FILE_OBJECT structure.

http://go.microsoft.com/fwlink/?linkid=124237

File System Behavior Overview Page 8 of 59

 FSCTL_REQUEST_FILTER_OPLOCK

 FSCTL_REQUEST_OPLOCK

The first four FSCTLs in the list are used to request legacy oplocks. The last FSCTL is used to request

Windows 7 oplocks with the REQUEST_OPLOCK_INPUT_FLAG_REQUEST flag specified in the Flags

member of the REQUEST_OPLOCK_INPUT_BUFFER structure, passed as the lpInBuffer parameter of

DeviceIOControl. In a similar manner, FltFsControlFile and ZwFsControlFile can be used to request

Windows 7 oplocks from kernel mode. To specify which of the four Windows 7 oplocks is required, one

or more of the flags OPLOCK_LEVEL_CACHE_READ, OPLOCK_LEVEL_CACHE_HANDLE, or

OPLOCK_LEVEL_CACHE_WRITE is set in the RequestedOplockLevel member of the

REQUEST_OPLOCK_INPUT_BUFFER structure. For more information, see FSCTL_REQUEST_OPLOCK.

When a request is made for an oplock and the oplock can be granted, the file system returns

STATUS_PENDING (because of this, oplocks are never granted for synchronous I/O). The FSCTL IRP does

not complete until the oplock is broken. If the oplock cannot be granted, an appropriate error code is

returned. The most commonly returned error codes are STATUS_OPLOCK_NOT_GRANTED and

STATUS_INVALID_PARAMETER (and their equivalent user-mode analogs).

As mentioned previously, the Filter oplock allows an application to "back out" when other

applications/clients try to access the same stream. This mechanism allows an application to access a

stream without causing other accessors of the stream to receive sharing violations when attempting to

open the stream. To avoid sharing violations, a special three-step procedure should be used to request a

Filter oplock (FSCTL_REQUEST_FILTER_OPLOCK):

1. Open the file with a required access of FILE_READ_ATTRIBUTES and a share mode of FILE_SHARE_READ |
FILE_SHARE_WRITE | FILE_SHARE_DELETE.

2. Request a Filter oplock on the handle from step 1.
3. Open the file again for read access.

The handle opened in step 1 will not cause other applications to receive sharing violations, since it is

open only for attribute access (FILE_READ_ATTRIBUTES), and not data access (FILE_READ_DATA). This

handle is suitable for requesting the Filter oplock, but not for performing actual I/O on the data stream.

The handle opened in step 3 allows the holder of the oplock to perform I/O on the stream, while the

oplock granted in step 2 allows the holder of the oplock to "get out of the way" without causing a

sharing violation to another application that attempts to access the stream.

The NTFS file system provides an optimization for this procedure through the FILE_RESERVE_OPFILTER

create option flag. If this flag is specified in step 1 of the previous procedure, it allows the file system to

fail the create request with STATUS_OPLOCK_NOT_GRANTED if the file system can determine that step

2 will fail. Be aware that if step 1 succeeds, there is no guarantee that step 2 will succeed, even if

FILE_RESERVE_OPFILTER was specified for the create request. Only the NTFS file system supports the

FILE_RESERVE_OPFILTER flag.

Windows 7 introduces a more general way to get an oplock without causing other applications to get

sharing violations between the time an application opens a handle and requests its oplock. This new

File System Behavior Overview Page 9 of 59

method allows an application to request any oplock type (not just a Filter oplock). To use this method,

an application calls NtCreateFile and specifies FILE_OPEN_REQURING_OPLOCK in the CreateOptions

parameter. If an oplock already exists on the file, this call will fail with

STATUS_CANNOT_BREAK_OPLOCK. If the call succeeds, the application must then request an oplock. It

may request an oplock of any type. It is possible for the oplock request to fail if, before the request is

made, a third party opens the file using the FILE_COMPLETE_IF_OPLOCKED create option. In that case

the application is advised to close its handle.

The following table identifies the required conditions necessary to grant an oplock.

Request type Conditions

Level 1

Filter

Batch

Granted only if all of the following conditions are true:

 The request is for a given stream of a file.
o If a directory, STATUS_INVALID_PARAMETER is returned.

 The stream is opened for ASYNCHRONOUS access.
o If opened for SYNCHRONOUS access, STATUS_OPLOCK_NOT_GRANTED is

returned (oplocks are not granted for synchronous I/O requests).

 There are no TxF transactions on any stream of the file.
o Else STATUS_OPLOCK_NOT_GRANTED is returned.

 There are no other opens on the stream (even by the same thread).
o Else STATUS_OPLOCK_NOT_GRANTED is returned.

Be aware that if the current oplock state is:

 No Oplock: The request is granted.

 Level 2: The original Level 2 request is broken with
FILE_OPLOCK_BROKEN_TO_NONE. The requested exclusive oplock is then
granted.

 Level 1, Batch, Filter, Read, Read-Handle, Read-Write, or Read-Write-Handle:
STATUS_OPLOCK_NOT_GRANTED is returned.

Level 2 Granted only if all of the following conditions are true:

 The request is for a given stream of a file.
o If a directory, STATUS_INVALID_PARAMETER is returned.

 The stream is opened for ASYNCHRONOUS access.
o If opened for SYNCHRONOUS access,

STATUS_OPLOCK_NOT_GRANTED is returned.
 There are no TxF transactions on the file.

o Else STATUS_OPLOCK_NOT_GRANTED is returned.
 There are no current Byte Range Locks on the stream.

o Else STATUS_OPLOCK_NOT_GRANTED is returned.
o Be aware that prior to Windows 7, the operating system verifies if

a byte range lock ever existed on the stream since the last time it
was opened, and fails the request if so.

Be aware that if the current oplock state is:

 No Oplock: The request is granted.
 Level 2 and/or Read: The request is granted. You can have multiple

Level 2/Read oplocks granted on the same stream at the same time.
Multiple Level 2 (but not Read) oplocks can even exist on the same

File System Behavior Overview Page 10 of 59

handle.
o If a Read oplock is requested on a handle that already has a Read

oplock granted to it, the first Read oplock’s IRP is completed with
STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE before the
second Read oplock is granted.

 Level 1, Batch, Filter, Read-Handle, Read-Write, Read-Write-Handle:
STATUS_OPLOCK_NOT_GRANTED is returned.

Read Granted only if all of the following conditions are true:

 The request is for a given stream of a file.
o If a directory, STATUS_INVALID_PARAMETER is returned.

 The stream is opened for ASYNCHRONOUS access.
o If opened for SYNCHRONOUS access,

STATUS_OPLOCK_NOT_GRANTED is returned.
 There are no TxF transactions on the file.

o Else STATUS_OPLOCK_NOT_GRANTED is returned.
 There are no current Byte Range Locks on the stream.

o Else STATUS_OPLOCK_NOT_GRANTED is returned.
Be aware that if the current oplock state is:

 No Oplock: The request is granted.
 Level 2 and/or Read: The request is granted. You can have multiple

Level 2/Read oplocks granted on the same stream at the same time.
o Additionally, if an existing oplock has the same oplock key as the

new request, its IRP is completed with
STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE.

 Read-Handle and the existing oplock has a different oplock key from
the new request: The request is granted. Multiple Read and Read-
Handle oplocks can coexist on the same stream (see the note following
this table).
o Else (oplock keys are the same) STATUS_OPLOCK_NOT_GRANTED

is returned.
 Level 1, Batch, Filter, Read-Write, Read-Write-Handle:

STATUS_OPLOCK_NOT_GRANTED is returned.

Read-Handle Granted only if all of the following conditions are true:

 The request is for a given stream of a file.
o If a directory, STATUS_INVALID_PARAMETER is returned.

 The stream is opened for ASYNCHRONOUS access.
o If opened for SYNCHRONOUS access,

STATUS_OPLOCK_NOT_GRANTED is returned.
 There are no TxF transactions on the file.

o Else STATUS_OPLOCK_NOT_GRANTED is returned.
 There are no current Byte Range Locks on the stream.

o Else STATUS_OPLOCK_NOT_GRANTED is returned.
Be aware that if the current oplock state is:

 No Oplock: the request is granted.
 Read: the request is granted.

File System Behavior Overview Page 11 of 59

o If an existing Read oplock has the same oplock key as the new
request, its IRP is completed with
STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE. This means that
the oplock is upgraded from Read to Read-Handle.

o Any existing Read oplock that does not have the same oplock key
as the new request remains unchanged.

 Level 2, Level 1, Batch, Filter, Read-Write, Read-Write-Handle:
STATUS_OPLOCK_NOT_GRANTED is returned.

Read-Write Granted only if all of the following conditions are true:

 The request is for a given stream of a file.
o If a directory, STATUS_INVALID_PARAMETER is returned.

 The stream is opened for ASYNCHRONOUS access.
o If opened for SYNCHRONOUS access,

STATUS_OPLOCK_NOT_GRANTED is returned.
 There are no TxF transactions on the file.

o Else STATUS_OPLOCK_NOT_GRANTED is returned.
 If there are other opens on the stream (even by the same thread) they

must have the same oplock key.
o Else STATUS_OPLOCK_NOT_GRANTED is returned.

Be aware that if the current oplock state is:

 No Oplock: the request is granted.
 Read or Read-Write and the existing oplock has the same oplock key as

the request: the existing oplock’s IRP is completed with
STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE, the request is
granted.
o Else STATUS_OPLOCK_NOT_GRANTED is returned.

 Level 2, Level 1, Batch, Filter, Read-Handle, Read-Write-Handle:
STATUS_OPLOCK_NOT_GRANTED is returned.

Read-Write-

Handle

Granted only if all of the following are true:

 The request is for a given stream of a file.
o If a directory, STATUS_INVALID_PARAMETER is returned.

 The stream is opened for ASYNCHRONOUS access.
o If opened for SYNCHRONOUS access,

STATUS_OPLOCK_NOT_GRANTED is returned.
 There are no TxF transactions on the file.

o Else STATUS_OPLOCK_NOT_GRANTED is returned.
 If there are other open requests on the stream (even by the same

thread) they must have the same oplock key.
o Else STATUS_OPLOCK_NOT_GRANTED is returned.

Be aware that if the current oplock state is:

 No Oplock: the request is granted.
 Read, Read-Handle, Read-Write, or Read-Write-Handle and the existing

oplock has the same oplock key as the request: the existing oplock’s
IRP is completed with STATUS_OPLOCK_SWITCHED_TO_NEW_HANDLE,
the request is granted.

File System Behavior Overview Page 12 of 59

o Else STATUS_OPLOCK_NOT_GRANTED is returned.
 Level 2, Level 1, Batch, Filter: STATUS_OPLOCK_NOT_GRANTED is

returned.

Note: Read and Level 2 oplocks may coexist on the same stream, and Read and Read-Handle oplocks

may coexist, but Level 2 and Read-Handle oplocks may not coexist.

2.3 Breaking Oplocks
After an oplock is granted, the owner of that oplock has access to the stream (based on the type of

oplock that was requested). If the operation received is not compatible with the current oplock, the

oplock is broken.

When an oplock is granted, the requesting IRP is pended. When an oplock is broken, the pended oplock

request IRP is completed with STATUS_SUCCESS. For Level 1, Batch, and Filter oplocks the

IoStatus.Information member of the IRP is set to indicate the level to which the oplock is breaking.

These levels are:

 FILE_OPLOCK_BROKEN_TO_NONE – The oplock was broken and there is no current oplock on
the stream. The oplock is said to have been “broken to None”.

 FILE_OPLOCK_BROKEN_TO_LEVEL_2 – The current oplock (Level 1 or Batch) was converted to a
Level 2 oplock. Note that Filter oplocks never break to Level 2, they always break to None.

For Read-Handle, Read-Write, and Read-Write-Handle oplocks, the level to which the oplock is breaking

is described as a combination of zero or more of the flags OPLOCK_LEVEL_CACHE_READ,

OPLOCK_LEVEL_CACHE_HANDLE, or OPLOCK_LEVEL_CACHE_WRITE in the NewOplockLevel member of

the REQUEST_OPLOCK_OUTPUT_BUFFER structure passed as the lpOutBuffer parameter of

DeviceIOControl In a similar manner, FltFsControlFile and ZwFsControlFile can be used to request

Windows 7 oplocks from kernel mode. For more information, see FSCTL_REQUEST_OPLOCK.

When breaking a Level 1, Batch, Filter, Read-Handle, Read-Write, or Read-Write-Handle oplock, the

pended oplock request IRP is completed by the oplock package and the operation that caused the

oplock break is itself pended (note that if the operation is issued on a synchronous handle, or it is an

IRP_MJ_CREATE, which is always synchronous, the I/O manager causes the operation to block, rather

than return STATUS_PENDING), waiting for an acknowledgement from the owner of the oplock to tell

the oplock package that they have finished their processing and it is safe for the pended operation to

proceed. The purpose of this delay is to allow the owner of the oplock to put the stream back into a

consistent state before the current operation proceeds. The system waits forever to receive the

acknowledgement as there is no timeout. It is therefore incumbent on the owner of the oplock to

acknowledge the break in a timely manner. The pended operation’s IRP is set into a cancelable state. If

the application or driver performing the wait terminates, the oploack package immediately completes

the IRP with STATUS_CANCELLED.

An IRP_MJ_CREATE IRP may specify the FILE_COMPLETE_IF_OPLOCKED create option to avoid being

blocked as part of oplock break acknowledgement. This option tells the oplock package not to block the

create IRP until the oplock break acknowledgement is received. Instead, the create is allowed to

proceed. If a successful create results in an oplock break, the return code is

File System Behavior Overview Page 13 of 59

STATUS_OPLOCK_BREAK_IN_PROGRESS, rather than STATUS_SUCCESS. The

FILE_COMPLETE_IF_OPLOCKED flag is typically used to avoid deadlocks. For example, if a client owns an

oplock on a stream and the same client subsequently opens the same stream, the client would block

waiting for itself to acknowledge the oplock break. In this scenario, use of the

FILE_COMPLETE_IF_OPLOCKED flag avoids the deadlock.

Because the file system initiates oplock breaks for Batch and Filter oplocks before checking for sharing

violations, it is possible for a create that specified FILE_COMPLETE_IF_OPLOCKED to fail with

STATUS_SHARING_VIOLATION but still cause a Batch or Filter oplock to break. In this case, the

information member of the IO_STATUS_BLOCK structure is set to FILE_OPBATCH_BREAK_UNDERWAY to

allow the caller to detect this case.

For Read-Handle and Read-Write-Handle oplocks, the oplock break is initiated after the file system

checks for and detects a sharing violation. This gives holders of these oplocks the opportunity to close

their handles and get out of the way, thus allowing for the possibility of not returning the sharing

violation to the user. It also avoids unconditionally breaking the oplock in cases where the handle that

the oplock caches does not conflict with the new create.

When Level 2 and Read (shared) oplocks break, the system does not wait for an acknowledgement. This

is because there should be no cached state on the stream that needs to be restored to the file before

allowing other clients access to it.

There are certain file system operations which check the current oplock state to determine if the oplock

needs to be broken. The following sections list each operation and describe what triggers an oplock

break, what determines the level to which the oplock breaks, and whether an acknowledgement of the

break is required:

 IRP_MJ_CREATE
 IRP_MJ_READ

 IRP_MJ_WRITE
 IRP_MJ_CLEANUP

 IRP_MJ_LOCK_CONTROL
 IRP_MJ_SET_INFORMATION

 IRP_MJ_FILE_SYSTEM_CONTROL

A break of a Windows 7 oplock requires an acknowledgement if the

REQUEST_OPLOCK_OUTPUT_FLAG_ACK_REQUIRED flag is set in the Flags member of the

REQUEST_OPLOCK_OUTPUT_BUFFER structure passed as the output parameter of DeviceIOControl

(lpOutBuffer), FltFsControlFile (OutBuffer) or ZwFsControlFile (OutBuffer). For more information, see

FSCTL_REQUEST_OPLOCK.

2.3.1 IRP_MJ_CREATE

The following only applies when an existing stream of a file is being opened (that is, newly created

streams cannot have pre-existing oplocks on them).

File System Behavior Overview Page 14 of 59

Note: When processing IRP_MJ_CREATE for any oplock, if the desired access contains nothing other

than FILE_READ_ATTRIBUTES, FILE_WRITE_ATTRIBUTES, or SYNCHRONIZE, the oplock does not break

unless FILE_RESERVE_OPFILTER is specified. Specifying FILE_RESERVE_OPFILTER always results in an

oplock break if the create succeeds. For brevity and simplicity, the following table omits the foregoing,

since it applies to all oplocks.

Request Type Conditions

Level 1 Broken on IRP_MJ_CREATE when:

 The oplock key associated with the FILE_OBJECT on which the open is
occurring is different from the oplock key associated with the
FILE_OBJECT that owns the oplock.

If the oplock is broken:

 Break to None IF:
o The FILE_RESERVE_OPFILTER flag is set

OR

o Any of the following create disposition values are specified:
o FILE_SUPERSEDE
o FILE_OVERWRITE
o FILE_OVERWRITE_IF

ELSE

o Break to Level 2.
o An acknowledgement must be received before the operation

continues.

Level 2 Broken on IRP_MJ_CREATE when:

 Any of the following create disposition values are specified:
o FILE_SUPERSEDE
o FILE_OVERWRITE
o FILE_OVERWRITE_IF

If the oplock is broken:

 Break to None.
 No acknowledgement is required, the operation proceeds

immediately.

Batch Broken on IRP_MJ_CREATE when:

 The oplock key associated with the FILE_OBJECT on which the open is
occurring is different from the oplock key associated with the
FILE_OBJECT that owns the oplock.

If the oplock is broken:

 Break to None IF:
o The FILE_RESERVE_OPFILTER flag is set.

OR

o Any of the following create disposition values are specified:
o FILE_SUPERSEDE

File System Behavior Overview Page 15 of 59

o FILE_OVERWRITE
o FILE_OVERWRITE_IF

ELSE

o Break to Level 2.
o An acknowledgement must be received before the operation

continues.

Filter Broken on IRP_MJ_CREATE when:

 A "writable" desired access was requested on the stream which was
not opened for FILE_SHARE_READ access. Note that "writeable"
access is defined as any attribute other than:
o FILE_READ_ATTRIBUTES
o FILE_WRITE_ATTRIBUTES
o FILE_READ_DATA
o FILE_READ_EA
o FILE_EXECUTE
o SYNCHRONIZE
o READ_CONTROL

AND

 The oplock key associated with the FILE_OBJECT on which the open is
occurring is different from the oplock key associated with the
FILE_OBJECT that owns the oplock.

If the oplock is broken:

 Break to None.
 An acknowledgement must be received before the operation

continues.

Read Broken on IRP_MJ_CREATE when:

 Any of the following create disposition values are specified:
o FILE_SUPERSEDE
o FILE_OVERWRITE
o FILE_OVERWRITE_IF

AND

 The oplock key associated with the FILE_OBJECT on which the open is
occurring is different from the oplock key associated with the
FILE_OBJECT that owns the oplock.

If the oplock is broken:

 Break to None.
 No acknowledgement is required, the operation proceeds

immediately.

Read-Handle Broken on IRP_MJ_CREATE when:

 The current open conflicts with an existing open such that a sharing
violation would occur.
OR

 Any of the following create disposition values are specified:

File System Behavior Overview Page 16 of 59

o FILE_SUPERSEDE
o FILE_OVERWRITE
o FILE_OVERWRITE_IF

AND (for either of the above two conditions)

 The oplock key associated with the FILE_OBJECT on which the open is
occurring is different from the oplock key associated with the
FILE_OBJECT that owns the oplock.

If the oplock is broken:

 Break to None IF:
o The FILE_RESERVE_OPFILTER flag is set.

OR

o Any of the following create disposition values are specified:
o FILE_SUPERSEDE
o FILE_OVERWRITE
o FILE_OVERWRITE_IF

ELSE

o Break to Read.
o An acknowledgement must be received before the operation

continues.

Read-Write Broken on IRP_MJ_CREATE when:

 Any of the following create disposition values are specified:
o FILE_SUPERSEDE
o FILE_OVERWRITE
o FILE_OVERWRITE_IF

AND

 The oplock key associated with the FILE_OBJECT on which the open is
occurring is different from the oplock key associated with the
FILE_OBJECT that owns the oplock.

If the oplock is broken:

 Break to None IF:
o The FILE_RESERVE_OPFILTER flag is set.

OR

o Any of the following create disposition values are specified:
o FILE_SUPERSEDE
o FILE_OVERWRITE
o FILE_OVERWRITE_IF

ELSE

o Break to Read.
o An acknowledgement must be received before the operation

continues.

Read-Write-

Handle

Broken on IRP_MJ_CREATE when:

 The current open conflicts with an existing open such that a sharing
violation would occur.

File System Behavior Overview Page 17 of 59

OR

 Any of the following create disposition values are specified:
o FILE_SUPERSEDE
o FILE_OVERWRITE
o FILE_OVERWRITE_IF

AND (for either of the above two conditions)

 The oplock key associated with the FILE_OBJECT on which the open is
occurring is different from the oplock key associated with the
FILE_OBJECT that owns the oplock.

If the oplock is broken:

 Break to None IF:
o The FILE_RESERVE_OPFILTER flag is set.

OR

o Any of the following create disposition values are specified:
o FILE_SUPERSEDE
o FILE_OVERWRITE
o FILE_OVERWRITE_IF

ELSE

o Break to Read-Write if the current open conflicts with an existing
open such that a sharing violation would occur. Otherwise, break
to Read-Handle.

o An acknowledgement must be received before the operation
continues.

The file system performs additional checks for Batch and Filter oplocks (rather than the oplock package

itself) when processing an IRP_MJ_CREATE operation, which impact whether the file system asks the

oplock package to perform oplock break processing. This is a case where operations on one data stream

can impact the oplocks on other data streams of the same file (that is,the last two list items of the

following criteria list). If one or more of the following criteria are met, the file system asks the oplock

package to perform oplock break processing:

Request a break if this is a network query open and a KTM transaction is present. Otherwise, do not

request a break on network query open.

If a SUPERSEDE, OVERWRITE or OVERWRITE_IF operation is performed on an alternate data stream and

FILE_SHARE_DELETE is not specified and there is a Batch or Filter oplock on the primary data stream,

request a break of the Batch or Filter oplock on the primary data stream.

If a SUPERSEDE, OVERWRITE or OVERWRITE_IF operation is performed on the primary data stream and

DELETE access has been requested and there are Batch or Filter oplocks on any alternate data stream,

request a break of the Batch or Filter oplocks on all alternate data streams that have them.

When the file system decides to ask the oplock package to perform oplock break processing, the rules

laid out in the preceding table apply.

http://go.microsoft.com/fwlink/?linkid=124745

File System Behavior Overview Page 18 of 59

The check to break Batch and Filter oplocks occurs before the share access checks are made. This means

the Batch or Filter oplock is broken even if the open request ultimately fails due to a sharing violation.

2.3.2 IRP_MJ_READ

The following only applies when a stream is being read. If a TxF transacted reader performs the read,

this check is not made since a transacted reader excludes a writer (that is, a writer holding an oplock

cannot be present at all).

Request Type Conditions

Level 1

Batch

Broken on IRP_MJ_READ when:

 The read operation occurs on a FILE_OBJECT with a different oplock key from
the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to Level 2.
 An acknowledgement must be received before the operation continues.

Read-Write Broken on IRP_MJ_READ when:

 The read operation occurs on a FILE_OBJECT with a different oplock key from
the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to Read.
 An acknowledgement must be received before the operation continues.

Read-Write-

Handle

Broken on IRP_MJ_READ when:

 The read operation occurs on a FILE_OBJECT with a different oplock key from
the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to Read-Handle.
 An acknowledgement must be received before the operation continues.

Level 2

Filter

Read

Read-Handle

 The oplock is not broken, no acknowledgement is required, and the
operation proceeds immediately.

2.3.3 IRP_MJ_WRITE

The following only applies when a stream is being written and the write is not a paging I/O.

Request Type Conditions

File System Behavior Overview Page 19 of 59

Level 1

Batch

Filter

Read-Handle

Read-Write

Read-Write-

Handle

Broken on IRP_MJ_WRITE when:

 The write operation occurs on a FILE_OBJECT with a different oplock
key from the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to None.
 An acknowledgement must be received before the operation

continues.

Read Broken on IRP_MJ_WRITE when:

 The write operation occurs on a FILE_OBJECT with a different oplock
key from the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to None.
 No acknowledgement is required, the operation proceeds

immediately.

Level 2 Always break to None.
 No acknowledgement is required, the operation proceeds

immediately.

2.3.4 IRP_MJ_CLEANUP

The following only applies when a stream is being closed.

Request Type Conditions

Level 1

Batch

Filter

Read-Handle

Read-Write

Read-Write-

 Always break to None.
 No acknowledgement is required, the operation proceeds

immediately. Note that any I/O operations (IRPs) waiting for an
acknowledgement from a pending break request are completed
immediately.

File System Behavior Overview Page 20 of 59

Handle

Level 2

Read

 Always break to None. Note that other Level 2 or Read oplocks on the
same stream are not affected; only the Level 2 or Read oplock
associated with this FILE_OBJECT is broken.

 No acknowledgement is required, the operation proceeds
immediately.

2.3.5 IRP_MJ_LOCK_CONTROL

The following applies on every byte range lock operation on the given stream.

Request Type Conditions

Level 1

Batch

Read-Handle

Read-Write

Read-Write-

Handle

Broken on IRP_MJ_LOCK_CONTROL when:

 The lock operation occurs on a FILE_OBJECT with a different oplock
key from the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to None.
 An acknowledgement must be received before the operation

continues.

Read Broken on IIRP_MJ_LOCK_CONTROL when:

 The lock operation occurs on a FILE_OBJECT with a different oplock
key from the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to None.
 No acknowledgement is required, the operation proceeds

immediately.

Filter The oplock is not broken, no acknowledgement is required, and the
operation proceeds immediately.

Level 2 Always break to None.
 No acknowledgement is required, the operation proceeds

immediately.

2.3.6 IRP_MJ_SET_INFORMATION

Certain IRP_MJ_SET_INFORMATION operations check oplock state. The following six operations perform

this check:

2.3.6.1 FileEndOfFileInformation and FileAllocationInformation
This information applies when the following operations are being performed on a file or stream:

File System Behavior Overview Page 21 of 59

 A caller attempts to change the logical size of the stream. Note that when the cache manager's
lazy writer thread attempts to set a new end of file, no oplock check is made. This is because the
check is made previously when the real write request is received.

 A caller attempts to change the allocated size of the stream.

Request Type Conditions

Level 1

Batch

Filter

Read-Handle

Read-Write

Read-Write-

Handle

Broken on IRP_MJ_SET_INFORMATION (for FileEndOfFileInformtion and

FileAllocationInformation) when:

 The operation occurs on a FILE_OBJECT with a different oplock key
from the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to None.
 An acknowledgement must be received before the operation

continues.

Read Broken on IRP_MJ_SET_INFORMATION (for FileEndOfFileInformtion and

FileAllocationInformation) when:

 The operation occurs on a FILE_OBJECT with a different oplock key
from the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to None.
 No acknowledgement is required, the operation proceeds

immediately.

Level 2 Always break to None.
 No acknowledgement is required, the operation proceeds

immediately.

2.3.6.2 FileRenameInformation, FileShortNameInformation, and FileLinkInformation
This information applies when the following operations are being performed on a file or stream:

 The file or stream is being renamed.
 A short name is being set for the file.
 A hard link is being created for the file. This affects oplock state if the new hard link is

superseding an existing link to a different file, and the oplock exists on the link being
superseded.

 An ancestor directory of the stream on which the oplock exists is being renamed, or the
ancestor directory’s short name is being set.

Request Type Conditions

File System Behavior Overview Page 22 of 59

Batch

Filter

Broken on IRP_MJ_SET_INFORMATION (for FileRenameInformation,

FileShortNameInformation, and FileLinkInformation) when:

 The operation occurs on a FILE_OBJECT with a different oplock key
from the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to None.
 An acknowledgement must be received before the operation

continues.

Read-Handle Broken on IRP_MJ_SET_INFORMATION (for FileRenameInformation,

FileShortNameInformation, and FileLinkInformation) when:

 The operation occurs on a FILE_OBJECT with a different oplock key
from the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to Read.
 An acknowledgement must be received before the operation

continues.

Read-Write-

Handle

Broken on IRP_MJ_SET_INFORMATION (for FileRenameInformation,

FileShortNameInformation, and FileLinkInformation) when:

 The operation occurs on a FILE_OBJECT with a different oplock key
from the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to Read-Write.
 An acknowledgement must be received before the operation

continues.

Level 1

Level 2

Read

Read-Write

 The oplock is not broken, no acknowledgement is required, and the
operation proceeds immediately.

2.3.6.3 FileDispositionInformation
This information applies when a caller tries to delete the file.

Request Type Conditions

Read-Handle Broken on IRP_MJ_SET_INFORMATION (for FileDispositionInformation)

when:

 The operation occurs on a FILE_OBJECT with a different oplock key
from the FILE_OBJECT which owns the oplock.

File System Behavior Overview Page 23 of 59

2.3.7 IRP_MJ_FILE_SYSTEM_CONTROL

The FSCTL_SET_ZERO_DATA file system control code operation checks oplock state:

2.3.7.1 FSCTL_SET_ZERO_DATA

This information applies when a caller wants to zero the current contents of the given stream.

Request Type Conditions

Level 1

Batch

Filter

Read-Handle

Read-Write

Read-Write-

Handle

Broken on IRP_MJ_FILE_SYSTEM_CONTROL (for FSCTL_SET_ZERO_DATA)

when:

 The operation occurs on a FILE_OBJECT with a different oplock key
from the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to None.
 An acknowledgement must be received before the operation

continues.

Read Broken on IRP_MJ_FILE_SYSTEM_CONTROL (for FSCTL_SET_ZERO_DATA)

when:

 The operation occurs on a FILE_OBJECT with a different oplock key

AND

 FILE_DISPOSITION_INFORMATION.DeleteFile is TRUE.

If the oplock is broken:

 Break to Read.
 An acknowledgement must be received before the operation

continues.

Read-Write-

Handle

Broken on IRP_MJ_SET_INFORMATION (for FileDispositionInformation)

when:

 The operation occurs on a FILE_OBJECT with a different oplock key
from the FILE_OBJECT which owns the oplock.
AND

 FILE_DISPOSITION_INFORMATION.DeleteFile is TRUE.

If the oplock is broken:

 Break to Read-Write.
 An acknowledgement must be received before the operation

continues.

File System Behavior Overview Page 24 of 59

from the FILE_OBJECT which owns the oplock.

If the oplock is broken:

 Break to None.
 No acknowledgement is required, the operation proceeds

immediately.

Level 2 Always break to None.
 No acknowledgement is required, the operation proceeds

immediately.

2.4 Acknowledging Oplock Breaks
There are different types of acknowledgements that the owner of an oplock can return. These

acknowledgements are sent as file system control codes (that is, FSCTLs). They are:

 FSCTL_OPLOCK_BREAK_ACKNOWLEDGE
o This FSCTL indicates that the oplock owner has completed stream synchronization and they

accept the level to which the oplock was broken (either Level 2 or None).
 FSCTL_OPLOCK_BREAK_ACK_NO_2

o This FSCTL indicates that the oplock owner has completed stream synchronization but does
not want a Level 2 oplock. Instead, the oplock should be broken to None (that is, the oplock is
to be relinquished entirely).

 FSCTL_OPBATCH_ACK_CLOSE_PENDING
o For a Level 1 oplock, this FSCTL indicates that the oplock owner has completed stream

synchronization and is relinquishing the oplock entirely (no Level 2 oplock may result from this
acknowledgement).

o For a Batch or Filter oplock, this FSCTL indicates that the oplock owner intends to close the
stream handle on which the oplock was granted. Operations blocked, awaiting
acknowledgement of the oplock break, continue to wait until the oplock owner’s handle is
closed.

 FSCTL_REQUEST_OPLOCK
o By specifying REQUEST_OPLOCK_INPUT_FLAG_ACK in the Flags member of the

REQUEST_OPLOCK_INPUT_BUFFER structure passed as the lpInBuffer parameter of
 DeviceIOControl, this FSCTL is used to acknowledge breaks of Windows 7 oplocks. The
acknowledgement is required only if the REQUEST_OPLOCK_OUTPUT_FLAG_ACK_REQUIRED
flag is set in the Flags member of the REQUEST_OPLOCK_OUTPUT_BUFFER structure passed
as the lpOutBuffer parameter of DeviceIoControl. In a similar manner, FltFsControlFile and
ZwFsControlFile can be used to acknowledge Windows 7 oplocks from kernel-mode. For more
information, see FSCTL_REQUEST_OPLOCK.

A related FSCTL code is FSCTL_OPLOCK_BREAK_NOTIFY. This code is used when the caller wants to be

notified when an oplock break on the given stream completes. This call may block. When the

FSCTL_OPLOCK_BREAK_NOTIFY call returns STATUS_SUCCESS, this signifies one of the following:

 No oplock granted.
 No oplock break was in progress at the time of the call.
 Any oplock break that was in progress is now complete.

File System Behavior Overview Page 25 of 59

To send an acknowledgement when no acknowledgement is expected is an error and the

acknowledgement FSCTL IRP is failed with STATUS_INVALID_OPLOCK_PROTOCOL.

2.5 Differences between the various file systems in Windows:
1. NTFS supports all the oplock semantics discussed above
2. FAT/exFAT/UDF and CDFS file systems support the legacy Level 1, Level 2, Batch, and Filter

oplock semantics
3. FAT supports the new FILE_OPEN_REQUIRING_OPLOCK NtCreateFile create option, and the R,

RH, RW and RWH oplock levels in Windows 7.
4. exFAT only supports the new FILE_OPEN_REQUIRING_OPLOCK NtCreateFile create option.

File System Behavior Overview Page 26 of 59

3 Byte Range Lock Semantics

3.1 Overview
Byte range locks are mechanisms that allow a user-mode application to lock a region (or range) of a file’s

data stream, allowing multiple user-mode processes to have synchronized access to those regions. They

are useful for applications that require granular locking mechanisms in a single file, like some database

applications.

It is important to note that for windows file systems Byte Range Locks operate on a data stream. The

concept of byte range locks in Windows is very similar to the one found in the POSIX standard, and,

therefore, the UNIX operating system as well. There is however some differences in the way they work

in Windows compared to POSIX.

3.2 Functional Description
Ranges in a stream are defined by an offset, length pair. Offset and length are 64-bit unsigned integers.

This way of defining byte range locks is used both in the Win32 and the native NT APIs (but in the Win32

APIs each of the 64-bit integers are split into 2 32-bit ones).

There are two types of byte range locks: shared and exclusive. Shared locks are also known as ‘read’

locks, whereas exclusive locks are also known as ‘write’ locks. This illustrates their purpose: shared locks

can be acquired by more than one different process at the same range and prevent write operations on

that range (no process can write on it, not even the first process to acquire a lock on the region, even if

it’s the single process locking the region), allowing all processes (not only locking processes) to read it

consistently. On the other hand, exclusive locks are only granted to a single process at a time for a given

range, disallowing other processes reads and writes in that range, allowing the owner to write it or

update it with the guarantee no inconsistent data is being read from or written to it.

One key aspect of Windows byte range locks is the fact they are mandatory instead of only advisory.

This means they are enforced by file systems during read and write operations, preventing those

operations from occurring on ranges where they conflict with a lock that’s in place2. However, byte

range locks are not enforced when using file mapping APIs.

Locking operations can either wait or fail immediately. If the operation is requested to fail immediately,

the API call will return STATUS_LOCK_NOT_GRANTED (or the equivalent Win32 API error code) when it

conflicts with a range previously locked by another process. However, in case a wait is desired, the call

will cause the thread to block, waiting for the conflicting range to be unlocked. If the stream handle was

opened for asynchronous access, the call actually returns immediately with STATUS_PENDING (or

Win32 ERROR_IO_PENDING) so the application has to explicitly check for operation completion later or

explicitly wait for its completion.

2
 Contrast that with POSIX byte range locks, which are advisory: this means file systems allow any operation in a

file range even if there’s a lock in place. Therefore, applications need to be polite and explicitly check for existing
locks in a range before reading it or writing to it.

File System Behavior Overview Page 27 of 59

Byte range locks are not persistent, which means all information about which ranges are locked and

which are not stays exclusively in memory and is never recorded on disk by file systems. They are also

logical, which means it is possible to lock a stream in a range that extends past the end of file or even a

range that exists completely outside of the stream’s actual size.

Byte range locks are removed by either an explicit unlock operation or when the last handle to a given

stream is closed. All open handles are automatically closed by the system when an application

terminates. This means any outstanding byte range locks will also be cleared.

There are three types of unlock operations. The first unlocks a single range of the stream

(IRP_MN_UNLOCK_SINGLE), and it’s the only one that’s exposed via the Win32 and native NT APIs. It

takes a range as argument, and this range must exactly match a locked range, so it’s not possible to

unlock two adjacent ranges by issuing a single unlock operation that spans both, for instance. It is also

not possible to unlock only part of a range that was previously locked with a single operation3. The

second operation unlocks all locks of a stream owned by a given process (IRP_MN_UNLOCK_ALL), and

the third unlocks all locks of a stream owned by a given process and having a given key

(IRP_MN_UNLOCK_ALL_BY_KEY). These later two operations are used internally by drivers and the I/O

manager to do close and cleanup work.

Ownership of byte range locks is determined by a unique combination of process ID, file object (or

handle) and lock key. This has a few important consequences: first, a process will have no access to

regions locked by itself if it tries to access them via a handle different than the one used to lock those

regions. Also, child processes inheriting a file handle will have no access to regions locked by the parent

process (which also happens in POSIX).

3.2.1 Range Semantics

Ranges used in Windows are defined by an offset, length pair, with absolute offsets, which means they

start at the beginning of the stream, which is almost like in POSIX, except for the fact that in POSIX

offsets can be relative to a file cursor as well (and Windows has no file cursors in its stream handles).

Windows ranges also differ from POSIX in at least one very important way, which must be noted

because it is a departure from a very common use of POSIX byte range locks, Windows4 supports zero-

length ranges.

Zero-length byte range locks actually affect no single byte of the stream, meaning they can still be

accessed even with such locks in place. However, they do conflict with other ranges in the following

manner: given a definition of a range as R = {O, L}, where O is the offset and L the length, a zero-length

range R0 = {N, 0} will conflict with range R1 = {X, Y} if and only if X < N and X+Y > N.

3
 This, however, works with POSIX locks.

4
 In POSIX, a length of zero is treated very differently: it actually means the range extends all the way to the end of

file, which means in practice POSIX has no zero-length ranges. This is worth mentioning because using a length of
zero with POSIX byte range locks is actually a very common practice, which obviously wouldn’t work at all in
Windows.

File System Behavior Overview Page 28 of 59

That is perhaps better understood by the following verbose rule: “a conflict will only exist if the positive-

length range contains the zero-length range’s offset but doesn’t start at it.” As an example, the ranges R2

= {5, 10} and R3 = {6, 0} will conflict with each other, because byte 6 is contained within R2, and R2 does

not start at byte 6. For another example, range R4 = {6, 10} will not conflict with R3 because even though

R4 contains byte 6, it starts at it.

The description of zero-length ranges might give the idea that it may be possible to request a lock with

range {0, 0} and it won’t conflict with any lock (as no range can have an offset less than zero). However,

this is not true and the use of {0, 0} locks is extremely discouraged because Windows is not prepared to

deal with them, leading to unexpected behavior5.

Similarly, ranges that extend past the 64 bit limit (that is, adding offset + length overflows 64 bits) must

not be used as Windows is not prepared to deal with them and they lead to highly unexpected and

inconsistent behavior6.

3.3 Processing Details
The most common way of locking a range in a stream is a call to the Win32 API functions LockFile()

or LockFileEx(). Those functions actually execute the lock request by calling the native NT API

function, NtLockFile(), with the correct parameters, one of them being a key value of zero. Key

values are just 32-bit integers that are used, together with the file object and the process ID, to uniquely

identify a lock owner. They are not exposed by the Win32 API and are mostly used internally by remote

file systems to differentiate between multiple remote clients.

The lock request is then passed down to the file system. If the file system defines a fast I/O callback, the

fast I/O path is used for this operation; otherwise the traditional IRP path is used. If a lock request made

via the fast I/O path can’t be immediately satisfied and is not set to fail immediately, then the fast I/O

call fails and the request is retried via the IRP path since an IRP can be pended and queued for later

processing.

With unlocking operations the mechanism is similar but simpler: fast I/O if the file system driver defines

the callback for the corresponding operation type, with the IRP path being used either if there is no such

callback or if the fast I/O call fails. The simplicity comes from the fact that those requests always return

immediately, that is, they are never set to a pending state.

3.3.1 Lock Operation IRPs

The IRP major and minor function values for all byte range lock operations are illustrated on the

following table:

Operation Major Function Minor Function

1 Lock
IRP_MJ_LOCK_CONTROL

IRP_MN_LOCK
2 Unlock Single Range IRP_MN_UNLOCK_SINGLE

5
 This is fixed in Windows 7, but it doesn’t make {0, 0} locks any more useful so their use is still discouraged.

6
 Also fixed in Windows 7, which will ensure locks in those ranges always fail, with
STATUS_INVALID_LOCK_RANGE.

File System Behavior Overview Page 29 of 59

3 Unlock All Ranges IRP_MN_UNLOCK_ALL
4 Unlock All Ranges By Key IRP_MN_UNLOCK_ALL_BY_KEY

The next table shows the IRP and IO_STACK_LOCATION fields containing the parameters for all the lock

operations:

Parameter Field in IO_STACK_LOCATION Used by

File Object FileObject 1, 2, 3, 4
Offset Parameters.LockControl.ByteOffset 1, 2

Length Parameters.LockControl.Length 1, 2
Process There is no field. The process is obtained from the

IRP by IoGetRequestorProcess(Irp)
1, 2, 3, 4

Key Parameters.LockControl.Key 1, 2, 4
Fail Immediately? SL_FAIL_IMMEDIATELY set on Flags 1

Exclusive Lock? SL_EXCLUSIVE_LOCK set on Flags 1

3.3.2 Lock Operation Fast I/O Callbacks

Every lock operation has a fast I/O path that can be implemented by the file system (NTFS implements

them). The table below shows the callback fields in the driver object corresponding to every lock

operation:

Operation Callback in DRIVER_OBJECT

1 Lock FastIoDispatch->FastIoLock
2 Unlock Single Range FastIoDispatch->FastIoUnlockSingle
3 Unlock All Ranges FastIoDispatch->FastIoUnlockAll
4 Unlock All Ranges By Key FastIoDispatch->FastIoUnlockAllByKey

Parameters for those operations are the exact same as the ones used for them in the IRP path, except

they are passed as function arguments.

3.4 Side Effects of Byte Range Locks
The presence of byte range longs on a given stream impact how other operations operate on that

stream. The operations affected are:

 Read (IRP_MJ_READ)

 Write (IRP_MJ_WRITE)

 Byte Range Locks

 Oplocks

 Handle Close (IRP_MJ_CLEANUP)

3.4.1 Reads and Writes

The obvious effect of byte range locks on read and write operations is the prevention of those

operations in case they happen in a range that conflicts with a lock (since Windows byte range locks are

File System Behavior Overview Page 30 of 59

mandatory). In this case, the read (not issued by the owner and falling inside a range locked exclusive) or

write operation (that either falls inside a range locked shared or falls inside an exclusive range that the

process doesn’t own) will fail with STATUS_FILE_LOCK_CONFLICT.

There is a less obvious implication of byte range locks on these operations: the existence of byte range

locks on a stream will mark it for questionable fast I/O (if not already marked as questionable or even

flagged for fast I/O not possible). This will cause further reads and writes on that stream to always go

through the IRP path if they conflict with a lock in place (as fast reads and writes don’t execute if fast I/O

is questionable and the range conflicts with a lock).

3.4.2 Byte Range Locks

Existing byte range locks on a stream will affect further lock operations if they conflict with existing

locks. It is not possible to lock ranges for exclusive access if they conflict with existing locks. In these

cases, the operations will fail with STATUS_LOCK_NOT_GRANTED or, depending on the parameters (the

FailImmediately argument from NtLockFile() or the LOCKFILE_FAIL_IMMEDIATELY flag on

the Win32 API LockFileEx()), queued for later processing when the conflicting locks are unlocked,

releasing those queued locks. Locking a range for shared access will succeed if the range only overlaps

the ranges of other shared locks, or if it overlaps a range locked for exclusive access with the same

ownership. This means a process can lock a range for exclusive access, then, using the same file handle

(same ownership), can lock the same range or portions of it for shared access, and that shared lock will

be enforced, meaning the process cannot write to them, not even using the same handle, even though it

still has an exclusive lock on them.

An attempt to unlock a byte range that’s not locked (meaning it doesn’t match exactly a locked range),

or one the current process does not own will fail with STATUS_RANGE_NOT_LOCKED. In the case that a

range is locked for both exclusive and shared access by the same owner, the unlock operation will

unlock the exclusive lock. A second unlock operation will then unlock the shared lock.

3.4.3 Oplocks

The acquisition of a byte range lock breaks Level1 and Batch oplocks to NONE if they occur on a handle

different than the handle owning the oplock. Level 2 (or shared) oplocks are always broken to NONE.

Filter oplocks are never broken by specifying a byte range lock.

Once a byte range lock is granted for a given stream, that stream will fail all subsequent Level 2 oplock

requests until all existing handles for that stream are closed. Batch and Level 1 oplocks will be granted if

requested using the handle that owns the byte range lock.

3.4.4 Handle Close

When the last handle to a stream for a given process is closed, but the stream is still open by other

processes, all byte range locks on that stream that are owned by that process are unlocked by the I/O

Manager sending an IRP_MN_UNLOCK_ALL request to the file system. No IRP_MJ_CLEANUP operation

is generated at this time.

File System Behavior Overview Page 31 of 59

When the last handle to a stream for the entire system is closed, the I/O Manager sends an

IRP_MJ_CLEANUP operation to the file system. The file system must remove any remaining byte range

locks on that stream as part of its IRP_MJ_CLEANUP processing.

File System Behavior Overview Page 32 of 59

4 File Deletion Semantics

4.1 Overview:
Some Windows file systems, including NTFS, support hard links, which associate multiple names in the

directory hierarchy with the same file data. Additionally, some file systems support multiple data

streams in a single file. For the purpose of this document the terms “link” and “stream” will be used

respectively to refer a hard link and a named data stream. For file systems, such as FAT and CDFS, that

do not support hardlinks and alternate data streams, there is one and only one link to the file and a

single data stream which is also the default data stream.

Link and stream deletion in Windows are implemented using a delete on close semantic. Broadly this

means that deletion occurs when all handles to a link or stream are closed and not when the link or

stream is initially marked for deletion.

4.1.1 Definition of Terms

 Delete-on-close state: A handle reaches this state if it opened the link or stream with the

DELETE_ON_CLOSE flag, but has not yet been closed. Additional handles to the link or stream

can be opened during this state as long as they specify FILE_SHARE_DELETE access. We

transition the link or stream to the delete-pending state when the handle is closed.

 Delete-pending state: We reach this state in one of two ways:

o A handle was closed that specified the DELETE_ON_CLOSE flag at open/create time.

o A set file information call was made using the FileDispositionInformation information

class with the DeleteFile field of the FILE_DISPOSITION_INFORMATION structure set to

TRUE. While in this state attempts to open additional handles to the link or stream fail

with the error STATUS_DELETE_PENDING.

 Open-by-ID: In addition to opening a file by its path and name, file systems like NTFS supports

the ability to open files by an ID number. The system supports two different ID number values:

o FileID – this is a unique 64-bit number generated by the file system.

o ObjectID – this is a unique 128-bit number (or GUID) which can be assigned to a file

(FSCTL_SET_OBJECT_ID). This is guaranteed to be unique on the given volume. This

capability is supported by NTFS only.

4.2 Summary
There are two ways to mark a link or stream for deletion:

 Set the DELETE_ON_CLOSE flag when creating or opening the file (IRP_MJ_CREATE)

 Set the DeleteFile field in the FILE_DISPOSITION_INFORMATION structure to TRUE when

invoking the FileDispositionInformation file information class (IRP_MJ_SET_INFORMATION)

There is one way to unmark a link or stream for deletion:

File System Behavior Overview Page 33 of 59

 Set the DeleteFile field in the FILE_DISPOSITION_INFORMATION structure to FALSE when

invoking the FileDispositionInformation file information class (IRP_MJ_SET_INFORMATION)

There are two ways to query whether deletion is pending on a link or stream

 Examine the DeletePending field in the FILE_STANDARD_INFORMATION structure after invoking

the FileStandardInformation file information class (IRP_MJ_QUERY_INFORMATION)

 Examine the DeletePending field in the FILE_STANDARD_INFORMATION structure after invoking

the FileAllInformation file information class (IRP_MJ_QUERY_INFORMATION)

When all handles to a file object for a link or stream are closed, a cleanup IRP (IRP_MJ_CLEANUP) is sent

to the file system which, in certain cases (detailed below), will trigger the deletion of the file data, link or

stream.

4.3 Detailed Description

4.3.1 Set Delete-on-close during Open/Create (IRP_MJ_CREATE)

The delete on close flag can be specified when creating or opening a link or stream. While the handle

remains open, the handle is in the delete-on-close state. This means that additional handles can be

opened to the file or stream provided they specify FILE_SHARE_DELETE access. After receiving the

cleanup IRP for a handle that specified DELETE_ON_CLOSE, the handle’s corresponding link or stream

enters the delete-pending state. While in this state any attempt to open the link or stream will fail with

STATUS_DELETE_PENDING.

Note that if the DELETE_ON_CLOSE flag is specified on a directory with child files or directories, the

create operation will succeed, but the delete on close flag will be silently ignored when processing the

cleanup IRP and the directory will not be deleted.

The create operation can fail marking the file delete on close for any of the following reasons:

- The file is marked read-only – STATUS_CANNOT_DELETE

- The volume is marked read-only – STATUS_CANNOT_DELETE

- The file backs an image section – STATUS_CANNOT_DELETE

- The link or stream is already in the delete-pending state – STATUS_DELETE_PENDING

4.3.2 Set Delete-on-close using FileDispositionInformation Information Class

(IRP_MJ_SET_INFORMATION)

The FileDispositionInformation information class can be used to mark a link or stream for deletion and

transition it to the delete-pending state. In this state attempts to open the link or stream will fail with

STATUS_DELETE_PENDING.

This operation can fail for any of the following reasons:

- The handle was opened by ID – STATUS_INVALID_PARAMTER

- The file is an internal file system metadata file – STATUS_CANNOT_DELETE

File System Behavior Overview Page 34 of 59

- The file is marked read-only – STATUS_CANNOT_DELETE

- The volume is marked read-only _- STATUS_MEDIA_WRITE_PROTECTED or

STATUS_ACCESS_DENIED (on CDFS & UDF file systems when the file system is read-only)

- The handle is to a directory that still has files or directories in it –

STATUS_DIRECTORY_NOT_EMTPY

4.3.3 Clear Delete-on-close using FileDispositionInformation Information Class

(IRP_MJ_SET_INFORMATION)

This operation will remove the delete on close flag from any link or stream that is in the delete-pending

state. This will cause the link or stream to no longer be deleted when its last handle is closed.

Note that if a handle is marked delete on close during create and the handle has not been closed,

clearing the delete on close flag will have no effect. The link or stream will still be set to the delete-

pending state when the handle is closed and thus ultimately deleted.

This operation can fail for the following reason:

- The handle was opened by ID – STATUS_INVALID_PARAMETER

4.3.4 Query Delete-pending using FileStandardInformation or FileAllInformation

information classes (IRP_MJ_QUERY_INFORMATION)

This will return TRUE in the DeletePending field if the link or stream is in the delete-pending state and

FALSE otherwise.

Note that the link or stream will be in the delete-on-close state, and DeletePending will be set to FALSE,

if no handle that was opened with the delete on close flag specified has gone through cleanup (provided

the delete-pending state has not been explicitly set through IRP_MJ_SET_INFORMATION).

4.3.5 Closing a Handle (IRP_MJ_CLEANUP)

When a cleanup operation is sent by the IO Manager, the file system will do the following to process link

and stream deletions:

If the handle is in the delete-on-close state the link or stream will be transitioned to the delete-pending

state.

If the link or stream is in the delete-pending state (including the case where it was just transitioned to

this state) decisions will be made using the following decision tree.

- If the handle was opened via the file or default data stream name then the file system first

checks if any other handles have been opened to that link or any of its data streams.

o If there are other open handles, the file system does not delete the link or file data.

o If this is the final handle to the link or stream:

 If there are no other remaining links and there are no handles opened to the file

then it deletes both the link from the namespace and the file’s data contents

File System Behavior Overview Page 35 of 59

 If there are no other remaining links, but there are handles to the file (open-by-

ID handles in this case), then neither the link nor file data is deleted. The file

system will delete the link and file data when the final handle is closed

 If there are additional links (possible on NTFS & UDF) then the file system

removes this name from the namespace and decrements the link count, but

retains the file data

- If the handle was opened to a named data stream then the files system checks if there are any

open handles to the given stream:

o If there are then it does not delete the stream

o If there aren’t then it deletes the stream

File System Behavior Overview Page 36 of 59

5 IRP Return Codes

This section lists the common error codes for file system related IRP’s. MS-ERREF contains the

definitive list of system return codes and their descriptions.

This section is scoped to the NTFS file system at this time. A future version of this document will note

differences for the other file systems.

5.1 IRP_MJ_CREATE
Return Code

STATUS_OBJECT_NAME_INVALID

STATUS_INVALID_PARAMETER

STATUS_DIRECTORY_IS_A_REPARSE_POINT

STATUS_VOLUME_DISMOUNTED

STATUS_VOLUME_NOT_UPGRADED

STATUS_CANCELLED

STATUS_SHARING_VIOLATION

STATUS_INVALID_HANDLE

STATUS_FILE_LOCK_CONFLICT

STATUS_INTERNAL_ERROR

STATUS_NOT_A_DIRECTORY

STATUS_OPLOCK_BREAK_IN_PROGRESS

STATUS_INVALID_OWNER

STATUS_MEDIA_WRITE_PROTECTED

STATUS_WAIT_FOR_OPLOCK

STATUS_PENDING

STATUS_UNABLE_TO_DELETE_SECTION

STATUS_SUCCESS

STATUS_OBJECT_PATH_NOT_FOUND

STATUS_UNEXPECTED_IO_ERROR

STATUS_OBJECT_NAME_NOT_FOUND

STATUS_NOT_FOUND

STATUS_MFT_TOO_FRAGMENTED

STATUS_END_OF_FILE

STATUS_ACCESS_DENIED

STATUS_OPLOCK_NOT_GRANTED

STATUS_OBJECT_NAME_COLLISION

STATUS_DISK_CORRUPT_ERROR

STATUS_DISK_FULL

STATUS_EAS_NOT_SUPPORTED

STATUS_IO_REPARSE_DATA_INVALID

STATUS_INSUFFICIENT_RESOURCES

STATUS_FILE_IS_A_DIRECTORY

File System Behavior Overview Page 37 of 59

STATUS_FILE_DELETED

STATUS_DELETE_PENDING

STATUS_USER_MAPPED_FILE

STATUS_CANNOT_DELETE

STATUS_CANT_BREAK_TRANSACTIONAL_DEPENDENCY

STATUS_FILE_CORRUPT_ERROR

STATUS_FILE_SYSTEM_LIMITATION

STATUS_REPARSE

5.2 IRP_MJ_CLOSE
Return Code

STATUS_SUCCESS

5.3 IRP_MJ_READ
Return Code

STATUS_ACCESS_DENIED

STATUS_CANCELLED

STATUS_DISK_CORRUPT_ERROR

STATUS_DISK_FULL

STATUS_END_OF_FILE

STATUS_FILE_CLOSED

STATUS_FILE_CORRUPT_ERROR

STATUS_FILE_DELETED

STATUS_FILE_LOCK_CONFLICT

STATUS_FLOATED_SECTION

STATUS_INSUFFICIENT_RESOURCES

STATUS_INVALID_DEVICE_REQUEST

STATUS_INVALID_HANDLE

STATUS_INVALID_PARAMETER

STATUS_INVALID_USER_BUFFER

STATUS_PENDING

STATUS_REPARSE

STATUS_SHARING_VIOLATION

STATUS_SUCCESS

STATUS_STREAM_MINIVERSION_NOT_VALID

STATUS_UNEXPECTED_IO_ERROR

STATUS_UNSUCCESSFUL

STATUS_THREAD_IS_TERMINATING

STATUS_VOLUME_DISMOUNTED

5.4 IRP_MJ_WRITE
Return Code

STATUS_FILE_DELETED

STATUS_FILE_LOCK_CONFLICT

File System Behavior Overview Page 38 of 59

STATUS_INSUFFICIENT_RESOURCES

STATUS_INVALID_DEVICE_REQUEST

STATUS_PENDING

STATUS_REPARSE

STATUS_SUCCESS

STATUS_INVALID_PARAMETER

STATUS_FLOATED_SECTION

STATUS_FILE_CLOSED

STATUS_VOLUME_DISMOUNTED

STATUS_DISK_FULL

STATUS_UNEXPECTED_IO_ERROR

STATUS_INVALID_HANDLE

STATUS_FILE_CORRUPT_ERROR

STATUS_STREAM_MINIVERSION_NOT_VALID

STATUS_END_OF_FILE

STATUS_FILE_INVALID

STATUS_SHARING_VIOLATION

STATUS_ACCESS_DENIED

STATUS_VERIFY_REQUIRED

STATUS_UNEXPECTED_IO_ERROR

STATUS_BUFFER_TOO_SMALL

STATUS_DEVICE_DATA_ERROR

STATUS_MFT_TOO_FRAGMENTED

STATUS_CANCELLED

STATUS_THREAD_IS_TERMINATING

STATUS_TOO_LATE

STATUS_MEDIA_WRITE_PROTECTED

STATUS_TRANSACTIONAL_CONFLICT

STATUS_USER_MAPPED_FILE

STATUS_WAIT_FOR_OPLOCK

STATUS_NOT_IMPLEMENTED

STATUS_INVALID_USER_BUFFER

5.5 IRP_MJ_QUERY_INFORMATION
The table below lists the return codes that apply to queries of all information classes. In the subsections

that follow information class specific return codes are also listed.

Return Code

STATUS_INVALID_PARAMETER

STATUS_VOLUME_DISMOUNTED

STATUS_INVALID_HANDLE

STATUS_SUCCESS

STATUS_INSUFFICIENT_RESOURCES

STATUS_FILE_DELETED

File System Behavior Overview Page 39 of 59

STATUS_INVALID_DEVICE_REQUEST

STATUS_BUFFER_OVERFLOW

5.5.1 FileAccessInformation

Implemented locally by the I/O Manager, does not flow over the wire.

5.5.2 FileAlignmentInformation

Implemented locally by the I/O Manager, does not flow over the wire.

5.5.3 FileAllInformation

Return Code

STATUS_ACCESS_DENIED

STATUS_BUFFER_TOO_SMALL

5.5.4 FileAlternateNameInformation

Return Code

STATUS_OBJECT_NAME_NOT_FOUND

5.5.5 FileAttributeTagInformation

No additional information class specific return codes.

5.5.6 FileBasicInformation

No additional information class specific return codes.

5.5.7 FileCompressionInformation

Return Code

STATUS_FILE_CORRUPT_ERROR

5.5.8 FileEaInformation

(see IRP_MJ_QUERY_EA)

5.5.9 FileFullEaInformation

(not implemented by NTFS, SRV implements it, see SMB server documentation)

5.5.10 FileHardLinkInformation

Return Code

STATUS_INVALID_USER_BUFFER

STATUS_BUFFER_TOO_SMALL

STATUS_ACCESS_DENIED

5.5.11 FileInternalInformation

No additional information class specific return codes.

5.5.12 FileNameInformation

Return Code

STATUS_ACCESS_DENIED

STATUS_BUFFER_TOO_SMALL

File System Behavior Overview Page 40 of 59

5.5.13 FileNetworkOpenInformation

No additional information class specific return codes.

5.5.14 FilePositionInformation

No additional information class specific return codes.

5.5.15 FileSfioReserveInformation

Return Code

STATUS_BUFFER_TOO_SMALL

5.5.16 FileStandardInformation

No additional information class specific return codes.

5.5.17 FileStandardLinkInformation

No additional information class specific return codes.

5.5.18 FileStreamInformation

No additional information class specific return codes.

5.6 IRP_MJ_QUERY_VOLUME_INFORMATION
Return Code

STATUS_BUFFER_OVERFLOW

STATUS_INVALID_DEVICE_REQUEST

STATUS_VOLUME_DISMOUNTED

5.6.1 FileFsVolumeInformation

No additional information class specific return codes.

5.6.2 FileFsSizeInformation

No additional information class specific return codes.

5.6.3 FileFsDeviceInformation

No additional information class specific return codes.

5.6.4 FileFsAttributeInformation

No additional information class specific return codes.

5.6.5 FileFsControlInformation

Return Code

STATUS_NO_MATCH

STATUS_NO_MORE_MATCHES

5.6.6 FileFsFullSizeInformation

No additional information class specific return codes.

5.6.7 FileFsObjectIdInformation

Return Code

File System Behavior Overview Page 41 of 59

STATUS_VOLUME_NOT_UPGRADED

STATUS_OBJECT_NAME_NOT_FOUND

5.6.8 FileFsDriverPathInformation

Implemented locally by the I/O Manager, does not flow over the wire.

5.7 IRP_MJ_SET_INFORMATION
Return Code

STATUS_INVALID_PARAMETER

STATUS_VOLUME_DISMOUNTED

STATUS_INVALID_HANDLE

STATUS_MEDIA_WRITE_PROTECTED

STATUS_PENDING

STATUS_SUCCESS

STATUS_INSUFFICIENT_RESOURCES

STATUS_CANCELLED

STATUS_OPLOCK_BREAK_IN_PROGRESS

STATUS_FILE_INVALID

STATUS_ACCESS_DENIED

5.7.1 FileAllocationInformation

Return Code

STATUS_USER_MAPPED_FILE

5.7.2 FileBasicInformation

No additional information class specific return codes.

5.7.3 FileDispositionInformation

Return Code

STATUS_CANNOT_DELETE

STATUS_DIRECTORY_NOT_EMPTY

5.7.4 FileEndOfFileInformation

Return Code

STATUS_USER_MAPPED_FILE

5.7.5 FileFullEaInformation

(not implemented by NTFS, SRV implements it, see SMB server documentation)

5.7.6 FileLinkInformation

Return Code

STATUS_OBJECT_NAME_INVALID

STATUS_OBJECT_NAME_COLLISION

STATUS_TOO_MANY_LINKS

STATUS_FILE_IS_A_DIRECTORY

STATUS_CANT_BREAK_TRANSACTIONAL_DEPENDENCY

File System Behavior Overview Page 42 of 59

STATUS_DELETE_PENDING

5.7.7 FilePositionInformation

No additional information class specific return codes.

5.7.8 FileRenameInformation

Return Code

STATUS_OBJECT_NAME_INVALID

STATUS_OBJECT_NAME_COLLISION

STATUS_OBJECT_TYPE_MISMATCH

STATUS_CANT_BREAK_TRANSACTIONAL_DEPENDENCY

STATUS_FILE_CORRUPT_ERROR

STATUS_DELETE_PENDING

STATUS_OBJECT_NAME_NOT_FOUND

5.7.9 FileSfioReserveInformation

Return Code

STATUS_NOT_SUPPORTED

5.7.10 FileShortNameInformation

Return Code

STATUS_PRIVILEGE_NOT_HELD

STATUS_SHORT_NAMES_NOT_ENABLED_ON_VOLUME

STATUS_OBJECT_NAME_COLLISION

STATUS_FILE_CORRUPT_ERROR

STATUS_CANT_BREAK_TRANSACTIONAL_DEPENDENCY

5.7.11 FileValidDataLengthInformation

Return Code

STATUS_NOT_SUPPORTED

STATUS_PRIVILEGE_NOT_HELD

STATUS_USER_MAPPED_FILE

5.8 IRP_MJ_SET_VOLUME_INFORMATION

5.8.1 FileFsLabelInformation

Return Code

STATUS_INVALID_VOLUME_LABEL

STATUS_FILE_INVALID

5.8.2 FileFsControlInformation

Return Code

STATUS_FILE_INVALID

STATUS_INVALID_PARAMETER

File System Behavior Overview Page 43 of 59

5.8.3 FileFsObjectIdInformation

Return Code

STATUS_VOLUME_NOT_UPGRADED

STATUS_OBJECTID_NOT_FOUND

STATUS_OBJECT_NAME_NOT_FOUND

STATUS_OBJECT_NAME_INVALID

STATUS_INVALID_ADDRESS

STATUS_OBJECT_NAME_COLLISION

STATUS_FILE_INVALID

STATUS_INVALID_PARAMETER

STATUS_VOLUME_DISMOUNTED

5.9 IRP_MJ_QUERY_EA
Return Code

STATUS_INVALID_PARAMETER

STATUS_NONEXISTENT_EA_ENTRY

STATUS_VOLUME_DISMOUNTED

STATUS_INVALID_USER_BUFFER

STATUS_INVALID_EA_NAME

STATUS_EA_CORRUPT_ERROR

STATUS_EA_TOO_LARGE

STATUS_SUCCESS

STATUS_EAS_NOT_SUPPORTED

STATUS_NO_EAS_ON_FILE

STATUS_BUFFER_OVERFLOW

STATUS_BUFFER_TOO_SMALL

STATUS_NO_MORE_EAS

STATUS_EA_LIST_INCONSISTENT

5.10 IRP_MJ_SET_EA
Return Code

STATUS_MEDIA_WRITE_PROTECTED

STATUS_INVALID_PARAMETER

STATUS_VOLUME_DISMOUNTED

STATUS_INVALID_USER_BUFFER

STATUS_INVALID_EA_NAME

STATUS_EA_TOO_LARGE

STATUS_SUCCESS

STATUS_EAS_NOT_SUPPORTED

STATUS_PENDING

STATUS_EA_LIST_INCONSISTENT

5.11 IRP_MJ_FLUSH_BUFFERS
Return Code

File System Behavior Overview Page 44 of 59

STATUS_MEDIA_WRITE_PROTECTED

STATUS_INVALID_PARAMETER

STATUS_VOLUME_DISMOUNTED

STATUS_INVALID_DEVICE_REQUEST

STATUS_UNABLE_TO_DELETE_SECTION

STATUS_SUCCESS

STATUS_UNEXPECTED_IO_ERROR

STATUS_INVALID_HANDLE

STATUS_FILE_CORRUPT_ERROR

5.12 IRP_MJ_DIRECTORY_CONTROL

5.12.1 IRP_MN_NOTIFY_CHANGE_DIRECTORY

Return Code

STATUS_INVALID_PARAMETER

STATUS_PENDING

STATUS_INVALID_DEVICE_REQUEST

STATUS_DELETE_PENDING

STATUS_SUCCESS

STATUS_INVALID_HANDLE

STATUS_NOTIFY_CLEANUP

STATUS_NOTIFY_ENUM_DIR

STATUS_CANCELLED

STATUS_INSUFFICIENT_RESOURCES

5.12.2 IRP_MN_QUERY_DIRECTORY

Return Code

STATUS_OBJECT_NAME_INVALID

STATUS_NO_SUCH_FILE

STATUS_INVALID_PARAMETER

STATUS_VOLUME_DISMOUNTED

STATUS_INVALID_USER_BUFFER

STATUS_INVALID_DEVICE_REQUEST

STATUS_NO_MORE_FILES

STATUS_SUCCESS

STATUS_INVALID_HANDLE

STATUS_FILE_CORRUPT_ERROR

STATUS_BUFFER_OVERFLOW

STATUS_INVALID_INFO_CLASS

STATUS_INSUFFICIENT_RESOURCES

STATUS_PENDING

5.12.2.1 FileBothDirectoryInformation

No additional information class specific return codes.

File System Behavior Overview Page 45 of 59

5.12.2.2 FileDirectoryInformation

No additional information class specific return codes.

5.12.2.3 FileFullDirectoryInformation

No additional information class specific return codes.

5.12.2.4 FileIdBothDirectoryInformation

No additional information class specific return codes.

5.12.2.5 FileIdFullDirectoryInformation

No additional information class specific return codes.

5.12.2.6 FileNamesInformation

No additional information class specific return codes.

5.12.2.7 FileIdGlobalTxDirectoryInformation

No additional information class specific return codes.

5.12.2.8 FileObjectIdInformation

No additional information class specific return codes.

5.12.2.9 FileQuotaInformation

No additional information class specific return codes.

5.12.2.10 FileReparsePointInformation

No additional information class specific return codes.

5.13 IRP_MJ_FILE_SYSTEM_CONTROL
Return Code

STATUS_INVALID_PARAMETER

STATUS_SUCCESS

STATUS_INSUFFICIENT_RESOURCES

STATUS_VOLUME_DISMOUNTED

STATUS_INVALID_USER_BUFFER

STATUS_MEDIA_WRITE_PROTECTED

STATUS_INVALID_DEVICE_REQUEST

STATUS_BUFFER_TOO_SMALL

STATUS_ACCESS_DENIED

STATUS_SYSTEM_SHUTDOWN

STATUS_DISK_CORRUPT_ERROR

STATUS_WRONG_VOLUME

STATUS_UNRECOGNIZED_VOLUME

STATUS_BAD_DEVICE_TYPE

STATUS_FILE_CORRUPT_ERROR

STATUS_INVALID_HANDLE

File System Behavior Overview Page 46 of 59

5.13.1 FSCTL_ALLOW_EXTENDED_DASD_IO

No additional FSCTL specific return codes.

5.13.2 FSCTL_CREATE_OR_GET_OBJECT_ID

Return Code

STATUS_VOLUME_NOT_UPGRADED

STATUS_DUPLICATE_NAME

5.13.3 FSCTL_DELETE_OBJECT_ID

Return Code

STATUS_VOLUME_NOT_UPGRADED

STATUS_OBJECT_NAME_NOT_FOUND

STATUS_OBJECTID_NOT_FOUND

5.13.4 FSCTL_DELETE_REPARSE_POINT

Return Code

STATUS_VOLUME_NOT_UPGRADED

STATUS_INVALID_BUFFER_SIZE

STATUS_IO_REPARSE_TAG_MISMATCH

STATUS_REPARSE_ATTRIBUTE_CONFLICT

STATUS_NOT_A_REPARSE_POINT

STATUS_IO_REPARSE_TAG_INVALID

STATUS_IO_REPARSE_DATA_INVALID

STATUS_OBJECT_NAME_INVALID

STATUS_INVALID_ADDRESS

STATUS_OBJECT_NAME_COLLISION

5.13.5 FSCTL_ENCRYPTION_FSCTL_IO

Return Code

STATUS_VOLUME_NOT_UPGRADED

STATUS_OBJECT_NAME_COLLISION

STATUS_OBJECT_NAME_NOT_FOUND

STATUS_EFS_ALG_BLOB_TOO_BIG

5.13.6 FSCTL_FILESYSTEM_GET_STATISTICS

Return Code

STATUS_BUFFER_OVERFLOW

5.13.7 FSCTL_FIND_FILES_BY_SID

Return Code

STATUS_VOLUME_NOT_UPGRADED

STATUS_NO_QUOTAS_FOR_ACCOUNT

STATUS_CANCELLED

STATUS_NO_MORE_FILES

STATUS_OBJECT_PATH_NOT_FOUND

STATUS_NAME_TOO_LONG

File System Behavior Overview Page 47 of 59

STATUS_TXF_USE_NEW_PARENT_DIR

STATUS_BUFFER_OVERFLOW

5.13.8 FSCTL_GET_COMPRESSION

No additional FSCTL specific return codes.

5.13.9 FSCTL_GET_NTFS_VOLUME_DATA

No additional FSCTL specific return codes.

5.13.10 FSCTL_GET_OBJECT_ID

Return Code

STATUS_VOLUME_NOT_UPGRADED

STATUS_OBJECTID_NOT_FOUND

STATUS_OBJECT_NAME_NOT_FOUND

5.13.11 FSCTL_GET_REPARSE_POINT

Return Code

STATUS_VOLUME_NOT_UPGRADED

STATUS_NOT_A_REPARSE_POINT

STATUS_BUFFER_OVERFLOW

STATUS_IO_REPARSE_DATA_INVALID

STATUS_IO_REPARSE_TAG_INVALID

5.13.12 FSCTL_GET_RETRIEVAL_POINTERS

Return Code

STATUS_END_OF_FILE

STATUS_BUFFER_OVERFLOW

STATUS_INVALID_HANDLE

5.13.13 FSCTL_IS_PATHNAME_VALID

No additional FSCTL specific return codes.

5.13.14 FSCTL_IS_VOLUME_DIRTY

No additional FSCTL specific return codes.

5.13.15 FSCTL_LMR_GET_LINK_TRACKING_INFORMATION

Not implemented by local file systems.

5.13.16 FSCTL_LMR_SET_LINK_TRACKING_INFORMATION

Not implemented by local file systems.

5.13.17 FSCTL_QUERY_FAT_BPB

Obsolete, not supported by NTFS.

5.13.18 FSCTL_QUERY_ALLOCATED_RANGES

Return Code

STATUS_UNEXPECTED_IO_ERROR

File System Behavior Overview Page 48 of 59

STATUS_BUFFER_OVERFLOW

5.13.19 FSCTL_QUERY_SPARING_INFO

(not implemented by NTFS)

5.13.20 FSCTL_READ_FILE_USN_DATA

Return Code

STATUS_BUFFER_OVERFLOW

5.13.21 FSCTL_READ_RAW_ENCRYPTED

Return Code

STATUS_INVALID_HANDLE

STATUS_NOT_IMPLEMENTED

STATUS_UNEXPECTED_IO_ERROR

STATUS_END_OF_FILE

5.13.22 FSCTL_RECALL_FILE

Not implemented by local file systems.

5.13.23 FSCTL_SET_COMPRESSION

Return Code

STATUS_UNSUCCESSFUL

STATUS_COMPRESSION_DISABLED

STATUS_UNEXPECTED_IO_ERROR

STATUS_DISK_FULL

5.13.24 FSCTL_SET_DEFECT_MANAGEMENT

(not implemented by NTFS)

5.13.25 FSCTL_SET_ENCRYPTION

Return Code

STATUS_VOLUME_NOT_UPGRADED

5.13.26 FSCTL_SET_OBJECT_ID

Return Code

STATUS_VOLUME_NOT_UPGRADED

STATUS_OBJECT_NAME_NOT_FOUND

STATUS_OBJECTID_NOT_FOUND

STATUS_OBJECT_NAME_INVALID

STATUS_INVALID_ADDRESS

STATUS_OBJECT_NAME_COLLISION

5.13.27 FSCTL_SET_OBJECT_ID_EXTENDED

Return Code

STATUS_VOLUME_NOT_UPGRADED

STATUS_OBJECT_NAME_NOT_FOUND

STATUS_OBJECTID_NOT_FOUND

File System Behavior Overview Page 49 of 59

STATUS_OBJECT_NAME_INVALID

5.13.28 FSCTL_SET_REPARSE_POINT

Return Code

STATUS_VOLUME_NOT_UPGRADED

STATUS_INVALID_BUFFER_SIZE

STATUS_NOT_A_DIRECTORY

STATUS_REPARSE_ATTRIBUTE_CONFLICT

STATUS_PENDING

STATUS_EAS_NOT_SUPPORTED

STATUS_IO_REPARSE_DATA_INVALID

STATUS_DIRECTORY_NOT_EMPTY

STATUS_IO_REPARSE_TAG_MISMATCH

STATUS_IO_REPARSE_TAG_INVALID

5.13.29 FSCTL_SET_SHORT_NAME_BEHAVIOR

No additional FSCTL specific return codes.

5.13.30 FSCTL_SET_SPARSE

Return Code

STATUS_VOLUME_NOT_UPGRADED

STATUS_UNSUCCESSFUL

5.13.31 FSCTL_SET_ZERO_DATA

Return Code

STATUS_PENDING

STATUS_UNABLE_TO_DELETE_SECTION

STATUS_USER_MAPPED_FILE

STATUS_DISK_FULL

STATUS_FILE_LOCK_CONFLICT

STATUS_OPLOCK_BREAK_IN_PROGRESS

STATUS_FILE_DELETED

5.13.32 FSCTL_SET_ZERO_ON_DEALLOCATION

No additional FSCTL specific return codes.

5.13.33 FSCTL_SIS_COPYFILE

Not Implemented by local file systems.

5.13.34 FSCTL_WRITE_RAW_ENCRYPTED

Return Code

STATUS_UNABLE_TO_DELETE_SECTION

STATUS_UNEXPECTED_IO_ERROR

5.13.35 FSCTL_WRITE_USN_CLOSE_RECORD

Return Code

File System Behavior Overview Page 50 of 59

STATUS_JOURNAL_DELETE_IN_PROGRESS

STATUS_JOURNAL_NOT_ACTIVE

5.14 IRP_MJ_LOCK_CONTROL
Return Code

STATUS_INVALID_PARAMETER

STATUS_PENDING

STATUS_INVALID_DEVICE_REQUEST

STATUS_SUCCESS

STATUS_RANGE_NOT_LOCKED

STATUS_CANCELLED

STATUS_INSUFFICIENT_RESOURCES

STATUS_INVALID_LOCK_RANGE

STATUS_LOCK_NOT_GRANTED

STATUS_INVALID_HANDLE

STATUS_VOLUME_DISMOUNTED

5.15 IRP_MJ_CLEANUP
Return Code

STATUS_SUCCESS

STATUS_PENDING

5.16 IRP_MJ_QUERY_SECURITY
Return Code

STATUS_INVALID_PARAMETER

STATUS_BUFFER_OVERFLOW

STATUS_VOLUME_DISMOUNTED

STATUS_SUCCESS

STATUS_INVALID_USER_BUFFER

STATUS_INVALID_SECURITY_DESCR

STATUS_INSUFFICIENT_RESOURCES

STATUS_INVALID_SID

STATUS_INVALID_ACL

STATUS_UNKNOWN_REVISION

STATUS_INVALID_REVISION

STATUS_BUFFER_TOO_SMALL

5.17 IRP_MJ_SET_SECURITY
Return Code

STATUS_MEDIA_WRITE_PROTECTED

STATUS_INVALID_PARAMETER

STATUS_BUFFER_OVERFLOW

STATUS_VOLUME_DISMOUNTED

STATUS_SUCCESS

File System Behavior Overview Page 51 of 59

STATUS_UNSUCCESSFUL

STATUS_SECURITY_STREAM_IS_INCONSISTENT

STATUS_ACCESS_DENIED

STATUS_INVALID_SECURITY_DESCR

STATUS_NO_INHERITANCE

STATUS_INVALID_OWNER

STATUS_PRIVILEGE_NOT_HELD

STATUS_UNKNOWN_REVISION

STATUS_BAD_INHERITANCE_ACL

STATUS_NO_SECURITY_ON_OBJECT

5.18 IRP_MJ_QUERY_QUOTA
Return Code

STATUS_INVALID_PARAMETER

STATUS_VOLUME_DISMOUNTED

STATUS_INVALID_USER_BUFFER

STATUS_BUFFER_OVERFLOW

STATUS_NO_MORE_ENTRIES

STATUS_INSUFFICIENT_RESOURCES

STATUS_QUOTA_LIST_INCONSISTENT

STATUS_INVALID_DEVICE_REQUEST

STATUS_BUFFER_TOO_SMALL

STATUS_SUCCESS

5.19 IRP_MJ_SET_QUOTA
Return Code

STATUS_INVALID_PARAMETER

STATUS_VOLUME_DISMOUNTED

STATUS_INVALID_USER_BUFFER

STATUS_NO_MORE_ENTRIES

STATUS_INSUFFICIENT_RESOURCES

STATUS_MEDIA_WRITE_PROTECTED

STATUS_QUOTA_LIST_INCONSISTENT

STATUS_INVALID_DEVICE_REQUEST

STATUS_ACCESS_DENIED

STATUS_CANNOT_DELETE

STATUS_PENDING

STATUS_EA_LIST_INCONSISTENT

STATUS_DATATYPE_MISALIGNMENT

STATUS_SUCCESS

File System Behavior Overview Page 52 of 59

6 Time stamps

Windows has 4 types of timestamps as follows:

 CreationTime – when the file was created

 LastAccessTime – when the file was last accessed

 ChangeTime – when the file’s metadata or contents were last changed.

 LastWriteTime – when the files contents were last modified.

Some file systems may implement only a subset of these timestamps.

Timestamps are queried and set via the information class ‘FileBasicInformation’. See *MS-FSCC] for

more details.

Timestamp update may be suppressed by calling IRP_MJ_SET_INFORMATION (FileBasicInformation

class) with -1 for the time fields you do not want changed. This will suppress all timestamp updates for

the file handle.

6.1 NTFS
6.1.1 Supported TimeStamps

Timestamp When Set or Changed

CreationTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

Note: By default, the creation time is tunneled if a file is deleted, and a file
with the same name is created within 15 seconds.
(See KB172190 http://support.microsoft.com/?kbid&id=172190)

 Set when IRP_MJ_SET_INFORMATION is processed for the following
information classes:

o FileBasicInformation
o FileRenameInformation (if the file is being tunneled)

LastAccessTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

 Noted when the file is accessed, set to the current time when the handle is
closed. (See note about LastAccessTime below.)

ChangeTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

 Set when IRP_MJ_SET_EA is processed.

 Set when the following FSCTLs are processed:
o FSCTL_SET_REPARSE_POINT
o FSCTL_DELETE_REPARSE_POINT
o FSCTL_SET_ENCRYPTION
o FSCTL_SET_OBJECT_ID

http://support.microsoft.com/?kbid&id=172190

File System Behavior Overview Page 53 of 59

o FSCTL_SET_OBJECT_ID_EXTENDED
o FSCTL_CREATE_OR_GET_OBJECT_ID
o FSCTL_DELETE_OBJECT_ID

 Set when IRP_MJ_SET_SECURITY is processed.

 Set when IRP_MJ_SET_INFORMATION is processed for the following
information classes:

o FileAllocationInformation
o FileBasicInformation
o FileEndOfFileInformation
o FileLinkInformation
o FileRenameInformation
o FileShortNameInformation

 Set when IRP_MJ_FLUSH_BUFFERS is processed.

 Noted when a write is made to the file, set to the current time when the file
handle is closed.

LastWriteTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

 Set to the current time on a supersede/overwrite open, or on a stream
rename.

 Set when IRP_MJ_SET_INFORMATION is processed for the following
information classes:

o FileAllocationInformation
o FileBasicInformation
o FileEndOfFileInformation

 Set when IRP_MJ_FLUSH_BUFFERS is processed.

 Noted when a write is made to the file, set to the current time when the file
handle is closed.

6.1.2 Time Format

 Stored in UTC time

 Resolution is 100 nanoseconds

6.1.3 Remarks

 LastAccessTime is updated at a 60 minute granularity.

 In Vista/Server08 updates to LastAccessTime are disabled by default and are updated only when the

file is closed.

6.2 UDF
6.2.1 Supported TimeStamps

Timestamp When Set or Changed

CreationTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

Note: UDFS does not support the tunnel cache.

File System Behavior Overview Page 54 of 59

 Set when IRP_MJ_SET_INFORMATION is processed for the following
information classes:

o FileBasicInformation

LastAccessTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

 Noted when the file is read, set to the current time when the handle is
closed, but only if another timestamp has changed as well.

ChangeTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

 Set when IRP_MJ_SET_INFORMATION is processed for the following
information classes:

o FileAllocationInformation
o FileBasicInformation
o FileEndOfFileInformation

 Otherwise, UDFS updates ChangeTime at the same time as LastWriteTime.

 Set when a write is made to the file, set to the current time when the file
handle is closed.

LastWriteTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

 Set when IRP_MJ_SET_INFORMATION is processed for the following
information classes:

o FileAllocationInformation
o FileBasicInformation
o FileEndOfFileInformation

 Otherwise, UDFS updates ChangeTime at the same time as LastWriteTime.

 Set when a write is made to the file, set to the current time when the file
handle is closed.

6.2.2 Time Format

 Stored in UTC time if time zone is available. Stored as local time if time zone is not available.

 Resolution is 1 microsecond

6.3 FAT
6.3.1 Supported TimeStamps

Timestamp When Set or Changed

CreationTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

Note: By default, the creation time is tunneled if a file is deleted, and a file
with the same name is created within 15 seconds.

(See KB172190 http://support.microsoft.com/?kbid&id=172190)

 Set when IRP_MJ_SET_INFORMATION is processed for the following
information classes:

http://support.microsoft.com/?kbid&id=172190

File System Behavior Overview Page 55 of 59

o FileBasicInformation
o FileRenameInformation (if the file is being tunneled)

LastAccessTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

 Noted when the file is accessed, set to the current time when the handle is
closed.

LastWriteTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

 Set to the current time on a supersede/overwrite open, or a new stream is
created.

 Set when IRP_MJ_SET_INFORMATION is processed for the following
information classes:

o FileAllocationInformation
o FileBasicInformation
o FileEndOfFileInformation
o FileValidDataLengthInformation

 Set when IRP_MJ_FLUSH_BUFFERS is processed.

 Noted when a write is made to the file, set to the current time when the file
handle is closed.

6.3.2 Time Format

 Stored in local time

 Resolution for CreationTime is 10 milliseconds

 Resolution for LastWriteTime is 2 seconds

 Resolution for LastAccessTime is 1 day.

6.4 exFAT
6.4.1 Supported TimeStamps

Timestamp When Set or Changed

CreationTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

Note: By default, the creation time is tunneled if a file is deleted, and a file
with the same name is created within 15 seconds.

(See KB172190 http://support.microsoft.com/?kbid&id=172190)

 Set when IRP_MJ_SET_INFORMATION is processed for the following
information classes:

o FileBasicInformation
o FileRenameInformation (if the file is being tunneled)

LastAccessTime Set to the current time when the file is created during processing of
IRP_MJ_CREATE.

 Noted when the file is accessed, set when the handle is closed.

LastWriteTime Set to the current time when the file is created.

http://support.microsoft.com/?kbid&id=172190

File System Behavior Overview Page 56 of 59

 Set to the current time on a supersede/overwrite open, or a new stream is
created.

 Set when IRP_MJ_SET_INFORMATION is processed for the following
information classes:

o FileAllocationInformation
o FileBasicInformation
o FileEndOfFileInformation
o FileValidDataLengthInformation

 Set when IRP_MJ_FLUSH_BUFFERS is processed.

 Noted when a write is made to the file, set to the current time when the file
handle is closed.

6.4.2 Time Format

 Stored in UTC time if time zone is available. Stored as local time if time zone is not available.

 Resolution for CreationTime is 10 milliseconds

 Resolution for LastWriteTime is 10 milliseconds

 Resolution for LastAccessTime is 2 seconds.

File System Behavior Overview Page 57 of 59

7 Wild Cards

IRP_MJ_DIRECTORY_CONTROL can specify wild cards characters as part of the name query. This section

outlines these wildcard sets and their processing by IRP_MJ_DIRECTORY_CONTROL within the file

system in Windows.

7.1 Wild Card Characters
Characters 0x2A ‘*’ and 0x3F ‘?’ are treated as wild card characters in Windows. These characters can be

combined together with other wild card or normal characters to form an expression that can specified

as part of a directory query.

7.2 Wild Card Matching
The wild card matching is performed by enumerating all the files in a given directory and matching each

file name with the name expression that was specified as part of the directory query. The expression

analysis is carried out for each character of the name until the expression stops matching. Since the file

names are enumerated from the disk they cannot contain any wildcards. If the directory open was a

insensitive open the file name characters and corresponding name expression needs to be upcased

using the on disk upcase table before the name – expression comparison is performed.

These wildcard matches are performed as below:

~* is DOS_STAR, ~? is DOS_QM, and ~. is DOS_DOT

* - matches 0 or more characters.

? - matches exactly 1 character.

DOS_STAR - matches 0 or more characters until encountering and matching the final ‘.’ in the
name.

DOS_QM - matches any single character, or upon encountering a period or end of name string,
advances the expression to the end of the set of contiguous DOS_QMs.

DOS_DOT - matches either a ‘.’ or zero characters beyond name string.

7.2.1 Expression Evaluation

First and foremost the file system starts off name matching with the expression “*”. If the expression

contains a single wild card character ‘*’ all matches are satisfied immediately. This is the most common

wild card character used in Windows and expression evaluation is optimized by looking for this

character first.

Subsequently evaluation of the “*X” expression is performed. This is a case where the expression starts

off with a wild card character and contains some non-wild card characters towards the tail end of the

File System Behavior Overview Page 58 of 59

name. This is evaluated by making sure the expression starts off with the character ‘*’ and does not

contain any wildcards in the latter part of the expression. The tail part of the expression beyond the first

character ‘*’ is matched against the file name at the end upcasing each character if necessary during the

comparison.

The remaining expressions are evaluated in a non deterministic finite order as listed below:

 S

 <-----<

 X | | e Y

X * Y == (0)----->-(1)->-----(2)-----(3)

 S-.

 <-----<

 X | | e Y

X ~* Y == (0)----->-(1)->-----(2)-----(3)

 X S S Y

X ?? Y == (0)---(1)---(2)---(3)---(4)

 X . . Y

X ~.~. Y == (0)---(1)----(2)------(3)---(4)

 | |________|

 | ^ |

 |_______________|

 ^EOF or .^

 X S-. S-. Y

X ~?~? Y == (0)---(1)-----(2)-----(3)---(4)

 | |________|

 | ^ |

 |_______________|

 ^EOF or .^

where S is any single character

 S-. is any single character except the final ‘.’

 e is a null character transition

 EOF is the end of the name string

File System Behavior Overview Page 59 of 59

