
Forms Authentication, Authorization, User
Accounts, and Roles :: Creating the
Membership Schema in SQL Server

Introduction
The previous two tutorials examined using forms authentication to identify website

visitors. The forms authentication framework makes it easy for developers to log a

user into a website and to remember them across page visits through the use of

authentication tickets. The FormsAuthentication class includes methods for

generating the ticket and adding it to the visitor’s cookies. The

FormsAuthenticationModule examines all incoming requests and, for those with a

valid authentication ticket, creates and associates a GenericPrincipal and a

FormsIdentity object with the current request. Forms authentication is merely a

mechanism for granting an authentication ticket to a visitor when logging in and, on

subsequent requests, parsing that ticket to determine the user’s identity. For a web

application to support user accounts, we still need to implement a user store and add

functionality to validate credentials, register new users, and the myriad of other user

account-related tasks.

Prior to ASP.NET 2.0, developers were on the hook for implementing all of these user

account-related tasks. Fortunately the ASP.NET team recognized this shortcoming

and introduced the Membership framework with ASP.NET 2.0. The Membership

framework is a set of classes in the .NET Framework that provide a programmatic

interface for accomplishing core user account-related tasks. This framework is built

atop the provider model, which allows developers to plug a customized

implementation into a standardized API.

As discussed in the Security Basics and ASP.NET Support tutorial, the .NET

Framework ships with two built-in Membership providers:

ActiveDirectoryMembershipProvider and SqlMembershipProvider. As its name

implies, the SqlMembershipProvider uses a Microsoft SQL Server database as the

user store. In order to use this provider in an application, we need to tell the

provider what database to use as the store. As you might imagine, the

SqlMembershipProvider expects the user store database to have certain database

tables, views, and stored procedures. We need to add this expected schema to the

selected database.

This tutorial starts by examining techniques for adding the necessary schema to the

database in order to use the SqlMembershipProvider. Following that, we will

examine the key tables in the schema and discuss their purpose and importance.

This tutorial ends with a look at how to tell an ASP.NET application which provider

the Membership framework should use.

Let’s get started!

http://aspnet.4guysfromrolla.com/articles/101905-1.aspx
http://www.asp.net/learn/security/tutorial-01-cs.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.activedirectorymembershipprovider.aspx
http://msdn2.microsoft.com/en-us/library/system.web.security.sqlmembershipprovider.aspx

Step 1: Deciding Where to Place the User
Store
An ASP.NET application’s data is commonly stored in a number of tables in a

database. When implementing the SqlMembershipProvider database schema we

must decide whether to place the Membership schema in the same database as the

application data or in an alternate database.

I recommend locating the Membership schema in the same database as the

application data for the following reasons:

 Maintainability – an application whose data is encapsulated in one database

is easier to understand, maintain, and deploy than an application that has two

separate databases.

 Relational Integrity – by locating the Membership-related tables in the

same database as the application tables it is possible to establish foreign key

constraints between the primary keys in the Membership-related tables and

related application tables.

Decoupling the user store and application data into separate databases only makes

sense if you have multiple applications that each use separate databases, but need

to share a common user store.

Creating a Database
The application we have been building since the second tutorial has not yet needed a

database. We need one now, however, for the user store. Let’s create one and then

add to it the schema required by the SqlMembershipProvider provider (see Step 2).

Note: Throughout this tutorial series we will be using a Microsoft SQL Server

2005 Express Edition database to store our application tables and the

SqlMembershipProvider schema. This decision was made for two reasons:

first, due to its cost – free – the Express Edition is the most readably

accessible version of SQL Server 2005; second, SQL Server 2005 Express

Edition databases can be placed directly in the web application’s App_Data

folder, making it a cinch to package the database and web application

together in one ZIP file and to redeploy it without any special setup

instructions or configuration options. If you’d prefer to follow along using a

non-Express Edition version of SQL Server, feel free. The steps are virtually

identical. The SqlMembershipProvider schema will work with any version of

Microsoft SQL Server 2000 and up.

From the Solution Explorer, right-click on the App_Data folder and choose to Add

New Item. (If you do not see an App_Data folder in your project, right-click on the

project in Solution Explorer, select Add ASP.NET Folder, and pick App_Data.) From

the Add New Item dialog box, choose to add a new SQL Database named

http://en.wikipedia.org/wiki/Foreign_key
http://en.wikipedia.org/wiki/Foreign_key
http://en.wikipedia.org/wiki/Foreign_key
http://msdn2.microsoft.com/en-us/sql/Aa336346.aspx
http://msdn2.microsoft.com/en-us/sql/Aa336346.aspx
http://msdn2.microsoft.com/en-us/sql/Aa336346.aspx

SecurityTutorials.mdf. In this tutorial we will add the SqlMembershipProvider

schema to this database; in subsequent tutorials we will create additional tables to

capture our application data.

Figure 1: Add a New SQL Database Named SecurityTutorials.mdf Database
to the App_Data Folder

Adding a database to the App_Data folder automatically includes it in the Database

Explorer view. (In the non-Express Edition version of Visual Studio, the Database

Explorer is called the Server Explorer.) Go to the Database Explorer and expand the

just-added SecurityTutorials database. If you do not see the Database Explorer

on screen, go to the View menu and choose Database Explorer, or hit Ctrl+Alt+S. As

Figure 2 shows, the SecurityTutorials database is empty – it contains no tables,

no views, and no stored procedures.

Figure 2: The SecurityTutorials Database is Currently Empty

Step 2: Adding the SqlMembershipProvider
Schema to the Database
The SqlMembershipProvider requires a particular set of tables, views, and stored

procedures to be installed in the user store database. These requisite database

objects can be added using the aspnet_regsql.exe tool. This file is located in the

%WINDIR%\Microsoft.Net\Framework\v2.0.50727\ folder.

Note: The aspnet_regsql.exe tool offers both command line functionality

and a graphical user interface. The graphical interface is more user friendly

and is what we will examine in this tutorial. The command line interface is

useful when the addition of the SqlMembershipProvider schema needs to be

automated, such as in build scripts or automated testing scenarios.

The aspnet_regsql.exe tool is used to add or remove ASP.NET application services

to a specified SQL Server database. The ASP.NET application services encompass the

schemas for the SqlMembershipProvider and SqlRoleProvider, along with the

schemas for the SQL-based providers for other ASP.NET 2.0 frameworks. We need to

provide two bits of information to the aspnet_regsql.exe tool:

 Whether we want to add or remove application services, and

 The database from which to add or remove the application services schema

In prompting for the database to use, the aspnet_regsql.exe tool asks us to

provide the name of the server the database resides on, the security credentials for

connecting to the database, and the database name. If you are using the non-

Express Edition of SQL Server, you should already know this information, as it is the

http://msdn2.microsoft.com/en-us/library/ms229862.aspx

same information you must provide through a connection string when working with

the database through an ASP.NET web page. Determining the server and database

name when using a SQL Server 2005 Express Edition database in the App_Data

folder, however, is a bit more involved.

The following section examines a straightforward way for specifying the server and

database name for a SQL Server 2005 Express Edition database in the App_Data

folder. If you are not using SQL Server 2005 Express Edition feel free to skip ahead

to the “Installing the Application Services” section.

Determining the Server and Database
Name for a SQL Server 2005 Express
Edition Database in the App_Data Folder
In order to use the aspnet_regsql.exe tool we need to know the server and

database names. The server name is localhost\InstanceName. Most likely, the

InstanceName is SQLExpress. However, if you installed SQL Server 2005 Express

Edition manually (that is, you did not install it automatically while installing Visual

Studio), then it is possible that you selected a different instance name.

The database name is a bit trickier to determine. Databases in the App_Data folder

typically have a database name that includes a globally unique identifier along with

the path to the database file. We need to determine this database name in order to

add the application services schema through aspnet_regsql.exe.

The easiest way to ascertain the database name is to examine it through SQL Server

Management Studio. SQL Server Management Studio provides a graphical interface

for managing SQL Server 2005 databases, but it does not ship with the Express

Edition of SQL Server 2005. The good news is that you can download the free

Express Edition of SQL Server Management Studio.

Note: If you also have a non-Express Edition version of SQL Server 2005

installed on your desktop then the full version of Management Studio is likely

installed. You can use the full version to determine the database name,

following the same steps as outlined below for the Express Edition.

Start by closing Visual Studio to ensure that any locks imposed by Visual Studio on

the database file are closed. Next, launch SQL Server Management Studio and

connect to the localhost\InstanceName database for SQL Server 2005 Express

Edition. As noted earlier, chances are the instance name is SQLExpress. For the

Authentication option, select Windows Authentication.

http://en.wikipedia.org/wiki/Globally_Unique_Identifier
http://www.microsoft.com/downloads/details.aspx?FamilyId=C243A5AE-4BD1-4E3D-94B8-5A0F62BF7796&displaylang=en

Figure 3: Connect to the SQL Server 2005 Express Edition Instance

After connecting to the SQL Server 2005 Express Edition instance, Management

Studio displays folders for the Databases, the Security settings, the Server Objects,

and so on. If you expand the Databases tab you will see that the

SecurityTutorials.mdf database is not registered in the database instance – we

need to attach the database first.

Right-click on the Databases folder and choose Attach from the context menu. This

will display the Attach Databases dialog box. From here, click the Add button, browse

to the SecurityTutorials.mdf database, and click OK. Figure 4 shows the Attach

Databases dialog box after the SecurityTutorials.mdf database has been selected.

Figure 5 shows Management Studio’s Object Explorer after the database has been

successfully attached.

Figure 4: Attach the SecurityTutorials.mdf Database

Figure 5: The SecurityTutorials.mdf Database Appears in the Databases
Folder

As Figure 5 shows, the SecurityTutorials.mdf database has a rather abstruse

name. Let’s change it to a more memorable (and easier to type) name. Right-click

on the database, choose Rename from the context menu, and rename it

SecurityTutorialsDatabase. This does not change the filename, just the name the

database uses to identify itself to SQL Server.

Figure 6: Rename the Database to SecurityTutorialsDatabase

At this point we know the server and database names for the

SecurityTutorials.mdf database file: localhost\InstanceName and

SecurityTutorialsDatabase, respectively. We are now ready to install the

application services through the aspnet_regsql.exe tool.

Installing the Application Services
To launch the aspnet_regsql.exe tool, go to the start menu and choose Run. Enter

%WINDIR%\Microsoft.Net\Framework\v2.0.50727\aspnet_regsql.exe into the

textbox and click OK. Alternatively, you can use Windows Explorer to drill down to

the appropriate folder and double-click the aspnet_regsql.exe file. Either approach

will net the same results.

Running the aspnet_regsql.exe tool without any command line arguments launches

the ASP.NET SQL Server Setup Wizard graphical user interface. The wizard makes it

easy to add or remove the ASP.NET application services on a specified database. The

first screen of the wizard, shown in Figure 7, describes the purpose of the tool.

Figure 7: Use the ASP.NET SQL Server Setup Wizard Makes to Add the
Membership Schema

The second step in the wizard asks us whether we want to add the application

services or remove them. Since we want to add the tables, views, and stored

procedures necessary for the SqlMembershipProvider, choose the “Configure SQL

Server for application services” option. Later, if you want to remove this schema

from your database, re-run this wizard, but instead choose the “Remove application

services information from an existing database” option.

Figure 8: Choose the “Configure SQL Server for Application Services” Option

The third step prompts for the database information: the server name,

authentication information, and the database name. If you have been following along

with this tutorial and have added the SecurityTutorials.mdf database to

App_Data, attached it to localhost\InstanceName, and renamed it to

SecurityTutorialsDatabase, then use the following values:

 Server: localhost\InstanceName

 Windows authentication

 Database: SecurityTutorialsDatabase

Figure 9: Enter the Database Information

After entering the database information, click Next. The final step summarizes the

steps that will be taken. Click Next to install the application services and then Finish

to complete the wizard.

Note: If you used Management Studio to attach the database and rename the

database file, be sure to detach the database and close Management Studio

before reopening Visual Studio. To detach the SecurityTutorialsDatabase

database, right-click on the database name and, from the Tasks menu,

choose Detach.

Upon completion of the wizard, return to Visual Studio and navigate to the Database

Explorer. Expand the Tables folder. You should see a series of tables whose names

start with the prefix aspnet_. Likewise, a variety of views and stored procedures can

be found under the Views and Stored Procedures folders. These database objects

make up the application services schema. We will examine the membership- and

role-specific database objects in Step 3.

Figure 10: A Variety of Tables, Views, and Stored Procedures Have Been
Added to the Database

Note: The aspnet_regsql.exe tool’s graphical user interface installs the

entire application services schema. But when executing aspnet_regsql.exe

from the command-line you can specify what particular application services

components to install (or remove). Therefore, if you want to add just the

tables, views, and stored procedures necessary for the

SqlMembershipProvider and SqlRoleProvider providers, run

aspnet_regsql.exe from the command-line. Alternatively, you can manually

run the appropriate subset of T-SQL create scripts used by

aspnet_regsql.exe. These scripts are located in the

WINDIR%\Microsoft.Net\Framework\v2.0.50727\ folder with names like

InstallCommon.sql, InstallMembership.sql, InstallRoles.sql,

InstallProfile.sql, InstallSqlState.sql, and so on.

At this point we have created the database objects needed by the

SqlMembershipProvider. However, we still need to instruct the Membership

framework that it should use the SqlMembershipProvider (versus, say, the

ActiveDirectoryMembershipProvider) and that the SqlMembershipProvider

should use the SecurityTutorials database. We’ll look at how to specify what

provider to use and how to customize the selected provider’s settings in Step 4. But

first, let’s take a deeper look at the database objects that were just created.

Step 3: A Look at the Schema’s Core
Tables
When working with the Membership and Roles frameworks in an ASP.NET

application, the implementation details are encapsulated by the provider. In future

tutorials we will interface with these frameworks via the .NET Framework’s

Membership and Roles classes. When using these high-level APIs we do not need to

concern ourselves with the low-level details, like what queries are executed or what

tables are modified by the SqlMembershipProvider and SqlRoleProvider.

Given this, we could confidently use the Membership and Roles frameworks without

having explored the database schema created in Step 2. However, when creating the

tables to store application data we may need to create entities that relate to users or

roles. It helps to have a familiarity with the SqlMembershipProvider and

SqlRoleProvider schemas when establishing foreign key constraints between the

application data tables and those tables created in Step 2. Moreover, in certain rare

circumstances we may need to interface with the user and role stores directly at the

database level (instead of through the Membership or Roles classes).

Partitioning the User Store Into
Applications
The Membership and Roles frameworks are designed such that a single user and role

store can be shared among many different applications. An ASP.NET application that

uses the Membership or Roles frameworks must specify what application partition to

use. In short, multiple web applications can use the same user and role stores.

Figure 11 depicts user and role stores that are partitioned into three applications:

HRSite, CustomerSite, and SalesSite. These three web applications each have their

own unique users and roles, yet they all physically store their user account and role

information in the same database tables.

Figure 11: User Accounts May Be Partitioned Across Multiple Applications

The aspnet_Applications table is what defines these partitions. Each application

that uses the database to store user account information is represented by a row in

this table. The aspnet_Applications table has four columns: ApplicationId,

ApplicationName, LoweredApplicationName, and Description. ApplicationId is

of type uniqueidentifier and is the table’s primary key; ApplicationName

provides a unique human-friendly name for each application.

http://msdn2.microsoft.com/en-us/library/ms187942.aspx

The other Membership- and Role-related tables link back to the ApplicationId field

in aspnet_Applications. For example, the aspnet_Users table, which contains a

record for each user account, has an ApplicationId foreign key field; ditto for the

aspnet_Roles table. The ApplicationId field in these tables specifies the

application partition the user account or role belongs to.

Storing User Account Information
User account information is housed in two tables: aspnet_Users and

aspnet_Membership. The aspnet_Users table contains fields that hold the essential

user account information. The three most pertinent columns are:

 UserId

 UserName

 ApplicationId

UserId is the primary key (and of type uniqueidentifier). UserName is of type

nvarchar(256) and, along with the password, makes up the user’s credentials. (A

user’s password is stored in the aspnet_Membership table.) ApplicationId links the

user account to a particular application in aspnet_Applications. There is a

composite UNIQUE constraint on the UserName and ApplicationId columns. This

ensures that in a given application each username is unique, yet it allows for the

same username to be used in different applications.

The aspnet_Membership table includes additional user account information, like the

user’s password, email address, the last login date and time, and so forth. There is a

one-to-one correspondence between records in the aspnet_Users and

aspnet_Membership tables. This relationship is ensured by the UserId field in

aspnet_Membership, which serves as the table’s primary key. Like the aspnet_Users

table, aspnet_Membership includes an ApplicationId field that ties this information

to a particular application partition.

Securing Passwords
Password information is stored in the aspnet_Membership table. The

SqlMembershipProvider allows for passwords to be stored in the database using

one of the following three techniques:

 Clear – the password is stored in the database as plain-text. I strongly

discourage using this option. If the database is compromised – be it by a

hacker who finds a back door or a disgruntled employee who has database

access – every single user’s credentials are there for the taking.

 Hashed – passwords are hashed using a one-way hash algorithm and a

randomly generated salt value. This hashed value (along with the salt) is

stored in the database.

http://msdn2.microsoft.com/en-us/library/ms191166.aspx

 Encrypted – an encrypted version of the password is stored in the database.

The password storage technique used depends on the SqlMembershipProvider

settings specified in Web.config. We will look at customizing the

SqlMembershipProvider settings in Step 4. The default behavior is to store the hash

of the password.

The columns responsible for storing the password are Password, PasswordFormat,

and PasswordSalt. PasswordFormat is a field of type int whose value indicates the

technique used for storing the password: 0 for Clear; 1 for Hashed; 2 for Encrypted.

PasswordSalt is assigned a randomly generated string regardless of the password

storage technique used; the value of PasswordSalt is only used when computing the

hash of the password. Finally, the Password column contains the actual password

data, be it the plain-text password, the hash of the password, or the encrypted

password.

Table 1 illustrates what these three columns might look like for the various storage

techniques when storing the password “MySecret!”.

Storage Technique Password PasswordFormat PasswordSalt

Clear MySecret! 0 tTnkPlesqissc2y

2SMEygA==

Hashed 2oXm6sZHWbTHFgj

gkGQsc2Ec9ZM=

1 wFgjUfhdUFOCK

QiI61vtiQ==

Encrypted 62RZgDvhxykkqsMc

hZ0Yly7HS6onhpaoC

YaRxV8g0F4CW56O

XUU3e7Inza9j9BKp

2 LSRzhGS/aa/oq

AXGLHJNBw==

Table 1: Example Values for the Password-Related Fields When Storing the
Password “MySecret!”

Note: The particular encryption or hashing algorithm used by the

SqlMembershipProvider is determined by the settings in the <machineKey>

element. We discussed this configuration element in Step 3 of the Forms

Authentication Configuration and Advanced Topics tutorial.

Storing Roles and Role Associations
The Roles framework allows developers to define a set of roles and specify what

users belong to what roles. This information is captured in the database through two

tables: aspnet_Roles and aspnet_UsersInRoles. Each record in the aspnet_Roles

table represents a role for a particular application. Much like the aspnet_Users table,

the aspnet_Roles table has three columns pertinent to our discussion:

http://www.asp.net/learn/security/tutorial-03-cs.aspx
http://www.asp.net/learn/security/tutorial-03-cs.aspx
http://www.asp.net/learn/security/tutorial-03-cs.aspx

 RoleId

 RoleName

 ApplicationId

RoleId is the primary key (and of type uniqueidentifier). RoleName is of type

nvarchar(256). And ApplicationId links the user account to a particular

application in aspnet_Applications. There is a composite UNIQUE constraint on the

RoleName and ApplicationId columns, ensuring that in a given application each role

name is unique.

The aspnet_UsersInRoles table serves as a mapping between users and roles.

There are only two columns – UserId and RoleId – and together they make up a

composite primary key.

Step 4: Specifying the Provider and
Customizing Its Settings
All of the frameworks that support the provider model – such as the Membership and

Roles frameworks – lack implementation details themselves and instead delegate

that responsibility to a provider class. In the case of the Membership framework, the

Membership class defines the API for managing user accounts, but it does not

interact directly with any user store. Rather, the Membership class’s methods hand

off the request to the configured provider – we will be using the

SqlMembershipProvider. When we invoke one of the methods in the Membership

class, how does the Membership framework know to delegate the call to the

SqlMembershipProvider?

The Membership class has a Providers property that contains a reference to all of

the registered provider classes available for use by the Membership framework. Each

registered provider has an associated name and type. The name offers a human-

friendly way to reference a particular provider in the Providers collection, while the

type identifies the provider class. Moreover, each registered provider may include

configuration settings. Configuration settings for the Membership framework include

passwordFormat and requiresUniqueEmail, among many others. See Table 2 for a

complete list of configuration settings used by the SqlMembershipProvider.

The Providers property’s contents are specified through the web application’s

configuration settings. By default, all web applications have a provider named

AspNetSqlMembershipProvider of type SqlMembershipProvider. This default

Membership provider is registered in machine.config (located at

%WINDIR%\Microsoft.Net\Framework\v2.0.50727\CONFIG):

<membership>

 <providers>

http://msdn2.microsoft.com/en-us/library/system.web.security.membership.providers.aspx

 <add name="AspNetSqlMembershipProvider"

 type="System.Web.Security.SqlMembershipProvider, System.Web,

Version=2.0.0.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"

 connectionStringName="LocalSqlServer"

 enablePasswordRetrieval="false"

 enablePasswordReset="true"

 requiresQuestionAndAnswer="true"

 applicationName="/"

 requiresUniqueEmail="false"

 passwordFormat="Hashed"

 maxInvalidPasswordAttempts="5"

 minRequiredPasswordLength="7"

 minRequiredNonalphanumericCharacters="1"

 passwordAttemptWindow="10"

 passwordStrengthRegularExpression=""/>

 </providers>

</membership>

As the markup above shows, the <membership> element defines the configuration

settings for the Membership framework while the <providers> child element

specifies the registered providers. Providers may be added or removed using the

<add> or <remove> elements; use the <clear> element to remove all currently

registered providers. As the markup above shows, machine.config adds a provider

named AspNetSqlMembershipProvider of type SqlMembershipProvider.

In addition to the name and type attributes, the <add> element contains attributes

that define the values for various configuring settings. Table 2 lists the available

SqlMembershipProvider-specific configuration settings, along with a description of

each.

Note: Any default values noted in Table 2 refer to the default values defined

in the SqlMembershipProvider class. Note that not all of the configuration

settings in AspNetSqlMembershipProvider correspond to the default values

of the SqlMembershipProvider class. For example, if not specified in a

Membership provider, the requiresUniqueEmail setting defaults to true.

However, the AspNetSqlMembershipProvider overrides this default value by

explicitly specifying a value of false.

Setting Description

applicationName Recall that the Membership framework

allows for a single user store to be

partitioned across multiple applications.

This setting indicates the name of the

http://msdn2.microsoft.com/en-us/library/1b9hw62f.aspx
http://msdn2.microsoft.com/en-us/library/6d4936ht.aspx
http://msdn2.microsoft.com/en-us/library/whae3t94.aspx
http://msdn2.microsoft.com/en-us/library/aykw9a6d.aspx
http://msdn2.microsoft.com/en-us/library/t062y6yc.aspx

application partition used by the

Membership provider. If this value is

not explicitly specified, it is set, at

runtime, to the value of the

application’s virtual root path.

commandTimeout Specifies the SQL command timeout

value (in seconds). The default value is

30.

connectionStringName The name of the connection string in

the <connectionStrings> element to

use to connect to the user store

database. This value is required.

description Provides a human-friendly description

of the registered provider.

enablePasswordRetrieval Specifies whether users may retrieve

their forgotten password. The default

value is false.

enablePasswordReset Indicates whether users are allowed to

reset their password. Defaults to true.

maxInvalidPasswordAttempts The maximum number of unsuccessful

login attempts that may occur for a

given user during the specified

passwordAttemptWindow before the

user is locked out. The default value is

5.

minRequiredNonalphanumericCharacters The minimum number of non-

alphanumeric characters that must

appear in a user’s password. This value

must be between 0 and 128; the

default is 1.

minRequiredPasswordLength The minimum number of characters

required in a password. This value

must be between 0 and 128; the

default is 7.

name The name of the registered provider.

This value is required.

passwordAttemptWindow The number of minutes during which

failed login attempts are tracked. If a

user supplies invalid login credentials

maxInvalidPasswordAttempts times

within this specified window, they are

locked out. The default value is 10.

passwordFormat The password storage format: Clear,

Hashed, or Encrypted. The default is

Hashed.

passwordStrengthRegularExpression If provided, this regular expression is

used to evaluate the strength of the

user’s selected password when creating

a new account or when changing their

password. The default value is an

empty string.

requiresQuestionAndAnswer Specifies whether a user must answer

his security question when retrieving or

resetting his password. The default

value is true.

requiresUniqueEmail Indicates whether all user accounts in a

given application partition must have a

unique email address. The default value

is true.

type Specifies the type of the provider. This

value is required.

Table 2: Membership and SqlMembershipProvider Configuration Settings

In addition to AspNetSqlMembershipProvider, other Membership providers may be

registered on an application-by-application basis by adding similar markup to the

Web.config file.

Note: The Roles framework works in much the same way: there is a default

registered role provider in machine.config and the registered providers may

be customized on an application-by-application basis in Web.config. We will

examine the Roles framework and its configuration markup in detail in a

future tutorial.

Customizing the SqlMembershipProvider
Settings
The default SqlMembershipProvider (AspNetSqlMembershipProvider) has its

connectionStringName attribute set to LocalSqlServer. Like the

AspNetSqlMembershipProvider provider, the connection string name

LocalSqlServer is defined in machine.config.

<connectionStrings>

 <add name="LocalSqlServer" connectionString="data

source=.\SQLEXPRESS;Integrated

Security=SSPI;AttachDBFilename=|DataDirectory|aspnetdb.mdf;User

Instance=true" providerName="System.Data.SqlClient"/>

</connectionStrings>

As you can see, this connection string defines a SQL 2005 Express Edition database

located at “|DataDirectory|aspnetdb.mdf”. The string “|DataDirectory|” is translated

at runtime to point to the ~/App_Data/ directory, so the database path

“|DataDirectory|aspnetdb.mdf” translates to ~/App_Data/aspnet.mdf.

If we did not specify any Membership provider information in our application’s

Web.config file, the application uses the default registered Membership provider,

AspNetSqlMembershipProvider. If the ~/App_Data/aspnet.mdf database does not

exist, the ASP.NET runtime will automatically create it and add the application

services schema. However, we don’t want to use the aspnet.mdf database; rather,

we want to use the SecurityTutorials.mdf database we created in Step 2. This

modification can be accomplished in one of two ways:

 Specify a value for the LocalSqlServer connection string name in

Web.config. By overwriting the LocalSqlServer connection string name

value in Web.config, we can use the default registered Membership provider

(AspNetSqlMembershipProvider) and have it correctly work with the

SecurityTutorials.mdf database. This approach is fine if you are content

with the configuration settings specified by AspNetSqlMembershipProvider.

For more information on this technique, see Scott Guthrie’s blog post,

Configuring ASP.NET 2.0 Application Services to Use SQL Server 2000 or SQL

Server 2005.

 Add a new registered provider of type SqlMembershipProvider and

configure its connectionStringName setting to point to the

SecurityTutorials.mdf database. This approach is useful in scenarios

where you want to customize other configuration properties in addition to the

database connection string. In my own projects I always use this approach

because of its flexibility and readability.

Before we can add a new registered provider that references the

SecurityTutorials.mdf database, we first need to add an appropriate connection

string value in the <connectionStrings> section in Web.config. The following

markup adds a new connection string named SecurityTutorialsConnectionString

that references the SQL Server 2005 Express Edition SecurityTutorials.mdf

database in the App_Data folder.

<configuration>

 <connectionStrings>

 <add name="SecurityTutorialsConnectionString"

connectionString="Data

Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\SecurityTutorials.

mdf;Integrated Security=True;User Instance=True"

 providerName="System.Data.SqlClient" />

 </connectionStrings>

http://weblogs.asp.net/scottgu/
http://weblogs.asp.net/scottgu/archive/2005/08/25/423703.aspx
http://weblogs.asp.net/scottgu/archive/2005/08/25/423703.aspx

 <system.web>

 ... Configuration markup removed for brevity ...

 </system.web>

</configuration>

Note: If you are using an alternate database file, update the connection

string as needed. For more information on forming the correct connection

string, refer to ConnectionStrings.com.

Next, add the following Membership configuration markup to the Web.config file.

This markup registers a new provider named

SecurityTutorialsSqlMembershipProvider.

<configuration>

 <connectionStrings>

 <add name="SecurityTutorialsConnectionString"

connectionString="Data

Source=.\SQLEXPRESS;AttachDbFilename=|DataDirectory|\SecurityTutorials.

mdf;Integrated Security=True;User Instance=True"

 providerName="System.Data.SqlClient" />

 </connectionStrings>

 <system.web>

 <membership

defaultProvider="SecurityTutorialsSqlMembershipProvider">

 <providers>

 <!-- Add a customized SqlMembershipProvider -->

 <add name="SecurityTutorialsSqlMembershipProvider"

 type="System.Web.Security.SqlMembershipProvider"

 connectionStringName="SecurityTutorialsConnectionString"

 enablePasswordRetrieval="false"

 enablePasswordReset="true"

 requiresQuestionAndAnswer="true"

 applicationName="SecurityTutorials"

 requiresUniqueEmail="true"

 passwordFormat="Hashed"

 maxInvalidPasswordAttempts="5"

 minRequiredPasswordLength="7"

 minRequiredNonalphanumericCharacters="1"

 passwordAttemptWindow="10"

 passwordStrengthRegularExpression=""/>

http://www.connectionstrings.com/

 </providers>

 </membership>

 ... Configuration markup removed for brevity ...

 </system.web>

</configuration>

In addition to registering the SecurityTutorialsSqlMembershipProvider provider,

the above markup defines the SecurityTutorialsSqlMembershipProvider as the

default provider (via the defaultProvider attribute in the <membership> element).

Recall that the Membership framework can have multiple registered providers. Since

AspNetSqlMembershipProvider is registered as the first provider in

machine.config, it serves as the default provider unless we indicate otherwise.

Currently, our application has two registered providers:

AspNetSqlMembershipProvider and SecurityTutorialsSqlMembershipProvider.

However, before registering the SecurityTutorialsSqlMembershipProvider

provider we could have cleared out all previously registered providers by adding a

<clear /> element immediately before our <add> element. This would clear out the

AspNetSqlMembershipProvider from the list of registered providers, meaning that

the SecurityTutorialsSqlMembershipProvider would be the only registered

Membership provider. If we used this approach, then we would not need to mark the

SecurityTutorialsSqlMembershipProvider as the default provider, since it would

be the only registered Membership provider. For more information on using <clear

/>, see Using <clear /> When Adding Providers.

Note that the SecurityTutorialsSqlMembershipProvider’s connectionStringName

setting references the just-added SecurityTutorialsConnectionString connection

string name, and that its applicationName setting has been set to a value of

“SecurityTutorials”. Additionally, the requiresUniqueEmail setting has been set to

true. All other configuration options are identical to the values in

AspNetSqlMembershipProvider. Feel free to make any configuration modifications

here, if you wish. For example, you could tighten the password strength by requiring

two non-alphanumeric characters instead of one, or by increasing the password

length to eight characters instead of seven.

Note: Recall that the Membership framework allows for a single user store to

be partitioned across multiple applications. The Membership provider’s

applicationName setting indicates what application the provider uses when

working with the user store. It is important that you explicitly set a value for

the applicationName configuration setting because if the applicationName is

not explicitly set, it is assigned to the web application’s virtual root path at

runtime. This works fine as long as the application’s virtual root path doesn’t

change, but if you move the application to a different path, the

applicationName setting will change too. When this happens, the

Membership provider will start working with a different application partition

http://msdn2.microsoft.com/en-us/library/t062y6yc.aspx
http://weblogs.asp.net/scottgu/archive/2006/11/20/common-gotcha-don-t-forget-to-clear-when-adding-providers.aspx

than was previously used. User accounts created prior to the move will reside

in a different application partition and those users will no longer be able to log

into the site. For a more in-depth discussion on this matter, see Always Set

the applicationName Property When Configuring ASP.NET 2.0 Membership

and Other Providers.

Summary
At this point we have a database with the configured application services

(SecurityTutorials.mdf) and have configured our web application so that the

Membership framework uses the SecurityTutorialsSqlMembershipProvider

provider we just registered. This registered provider is of type

SqlMembershipProvider and has its connectionStringName set to the appropriate

connection string (SecurityTutorialsConnectionString) and its applicationName

value explicitly set.

We are now ready to use the Membership framework from our application. In the

next tutorial we will examine how to create new user accounts. Following that we will

explore authenticating users, performing user-based authorization, and storing

additional user-related information in the database.

Happy Programming!

Further Reading
For more information on the topics discussed in this tutorial, refer to the following

resources:

 Always Set the applicationName Property When Configuring ASP.NET 2.0

Membership and Other Providers

 Configuring ASP.NET 2.0 Application Services to Use SQL Server 2000 or SQL

Server 2005

 Download SQL Server Management Studio Express Edition

 Examining ASP.NET 2.0’s Membership, Roles, and Profile

 The <add> Element for Providers for Membership

 The <membership> Element

 The <providers> Element for Membership

 Using <clear /> When Adding Providers

 Working Directly with the SqlMembershipProvider

http://weblogs.asp.net/scottgu/archive/2006/04/22/Always-set-the-_2200_applicationName_2200_-property-when-configuring-ASP.NET-2.0-Membership-and-other-Providers.aspx
http://weblogs.asp.net/scottgu/archive/2006/04/22/Always-set-the-_2200_applicationName_2200_-property-when-configuring-ASP.NET-2.0-Membership-and-other-Providers.aspx
http://weblogs.asp.net/scottgu/archive/2006/04/22/Always-set-the-_2200_applicationName_2200_-property-when-configuring-ASP.NET-2.0-Membership-and-other-Providers.aspx
http://weblogs.asp.net/scottgu/archive/2006/04/22/Always-set-the-_2200_applicationName_2200_-property-when-configuring-ASP.NET-2.0-Membership-and-other-Providers.aspx
http://weblogs.asp.net/scottgu/archive/2006/04/22/Always-set-the-_2200_applicationName_2200_-property-when-configuring-ASP.NET-2.0-Membership-and-other-Providers.aspx
http://weblogs.asp.net/scottgu/archive/2006/04/22/Always-set-the-_2200_applicationName_2200_-property-when-configuring-ASP.NET-2.0-Membership-and-other-Providers.aspx
http://weblogs.asp.net/scottgu/archive/2005/08/25/423703.aspx
http://weblogs.asp.net/scottgu/archive/2005/08/25/423703.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyId=C243A5AE-4BD1-4E3D-94B8-5A0F62BF7796&displaylang=en
http://aspnet.4guysfromrolla.com/articles/120705-1.aspx
http://msdn2.microsoft.com/en-us/library/whae3t94.aspx
http://msdn2.microsoft.com/en-us/library/1b9hw62f.aspx
http://msdn2.microsoft.com/en-us/library/6d4936ht.aspx
http://weblogs.asp.net/scottgu/archive/2006/11/20/common-gotcha-don-t-forget-to-clear-when-adding-providers.aspx
http://aspnet.4guysfromrolla.com/articles/091207-1.aspx

About the Author
Scott Mitchell, author of multiple ASP/ASP.NET books and founder of

4GuysFromRolla.com, has been working with Microsoft Web technologies since 1998.

Scott works as an independent consultant, trainer, and writer. His latest book is

Sams Teach Yourself ASP.NET 2.0 in 24 Hours. Scott can be reached at

mitchell@4guysfromrolla.com or via his blog at http://ScottOnWriting.NET.

Special Thanks To…
This tutorial series was reviewed by many helpful reviewers. Lead reviewer for this

tutorial was Alicja Maziarz. Interested in reviewing my upcoming MSDN articles? If

so, drop me a line at mitchell@4GuysFromRolla.com.

http://www.amazon.com/exec/obidos/ASIN/0672327384/4guysfromrollaco
mailto:mitchell@4guysfromrolla.com
http://scottonwriting.net/
mitchell@4GuysFromRolla.com

