

Azure AD B2C Custom Policies
Bring-your-own-identity and Migrating Users

Microsoft Corporation

Published: September 2018

Version: 0.9 (DRAFT)

Author: Philippe Beraud (Microsoft France)

Contributors/Reviewers: Marcelo di lorio (Microsoft Spain), Kim Cameron, Brandon Murdoch, Ronny Bjones, Jose Rojas

(Microsoft Corporation)

For the latest information on Azure Active Directory, please see

http://azure.microsoft.com/en-us/services/active-directory/

Copyright© 2018 Microsoft Corporation. All rights reserved.

Abstract: Azure AD, the Identity Management as a Service (IDaaS) cloud multi-tenant service with proven

ability to handle billions of authentications per day, extends its capabilities to manage consumer identities

with a new service for Business-to-Consumer (B2C): Azure AD B2C.

Azure AD B2C is "IDaaS for Customers and Citizens” designed with Azure AD privacy, security, availability,

and scalability for customer/citizen identity and access management (CIAM). It’s a comprehensive, cloud-

based, 100% policy driven solution where declarative policies encode the identity behaviors and experiences

as well as the relationships of trust and authority inside a Trust Framework (TF).

Whilst the built-in policies in Azure AD B2C leverage a dedicated TF tailored by Microsoft, i.e. the “Microsoft

Basic Trust Framework” in which you can set up for your configuration these predefined policies, the custom

policies give you full control, and thus allows you to author and create your own Trust Framework through

declarative policies. They thus provide you with all the requirements of an Identity “Hub”.

This document is intended for IT professionals, system architects, and developers who are interested in

understanding the advanced capabilities Azure AD B2C provides with the custom policies, and more

especially in this context how to successfully address the most common advanced scenarios.

1 Bring-your-own-identity and Migrating Users

Table of Content
NOTICE .. 3

INTRODUCTION .. 4

OBJECTIVES OF THIS DOCUMENT ... 4

NON-OBJECTIVES OF THIS PAPER ... 4

ORGANIZATION OF THIS PAPER .. 5

ABOUT THE AUDIENCE ... 5

BRINGING YOUR OWN IDENTITY (BYOI) FOR WORK OR SCHOOL USERS 7

INTEGRATING AN AZURE AD TENANT AS A CLAIMS PROVIDER .. 7

INTEGRATING AD FS AS A CLAIMS PROVIDER ... 14

INTEGRATING SALESFORCE AS A CLAIMS PROVIDER .. 26

CONFIGURING PASSWORD COMPLEXITY FOR LOCAL ACCOUNTS ... 37

BRINGING YOUR OWN IDENTITY (BYOI) FOR SOCIAL USERS ... 42

COLLECTING ADDITIONAL SCOPES FROM FACEBOOK ... 42

INTEGRATING GOOGLE+ AS A CLAIMS PROVIDER ... 48

INTEGRATING AMAZON AS A CLAIMS PROVIDER ... 55

INTEGRATING LINKEDIN AS A CLAIMS PROVIDER ... 61

INTEGRATING MICROSOFT ACCOUNT (MSA) AS A CLAIMS PROVIDER .. 65

INTEGRATING TWITTER AS A CLAIMS PROVIDER .. 69

PRE-FILLING THE REQUESTS WITH A DOMAIN HINT ... 73

EXCHANGING CLAIMS WITH DIRECTORIES OR OTHER SYSTEMS .. 74

INTEGRATING WITH YOUR B2C TENANT .. 74

INTEGRATING WITH A RESTFUL API .. 87

IMPLEMENTING A CUSTOM USER JOURNEY ... 97

CREATING A NEW USER JOURNEY .. 97

CUSTOMIZING AN EXISTING USER JOURNEY... 100

CUSTOMIZING THE UI OF A USER JOURNEY ... 103

MIGRATING USERS TO YOUR B2C TENANT ... 123

UNDERSTANDING THE PRIMARY CONSIDERATIONS FOR THE MIGRATION .. 123

MIGRATING USERS IDENTIFIED USING A LOCAL IDP TO YOUR B2C TENANT .. 129

MIGRATING USERS IDENTIFIED USING A SOCIAL NETWORKING ACCOUNT TO YOUR B2C TENANT 132

REQUIRING USERS TO CHANGE PASSWORD ON FIRST SIGN-IN .. 136

HELPING TO HANDLE GDPR REQUIREMENTS .. 145

GETTING DATA SUBJECTS’ CONSENT ... 145

FULFILLING THE DATA SUBJECT REQUESTS (DSRS) .. 149

HANDLING BREACH NOTIFICATION ... 152

APPENDIX BUILDING THE CODE SAMPLES .. 153

BUILDING A RESTFUL API CLAIMS PROVIDER ... 153

2 Bring-your-own-identity and Migrating Users

BUILDING THE CONTOSO.AADB2C.UI CODE SAMPLE .. 162

BUILDING THE AADB2C.USERMIGRATION CODE SAMPLE ... 166

3 Bring-your-own-identity and Migrating Users

Notice
This document covers the custom policies1 now available for evaluation under public preview for all Azure

Active Directory B2C (Azure AD B2C) customers. Custom policies are designed primarily for advanced

identity pros/developers who need to address the most complex identity scenarios.

This feature set indeed requires developers to configure the Identity Experience Framework (mostly) directly

via XML file editing. This method of configuration is powerful but more complex. Advanced identity

pros/developers using the Identity Experience Framework should plan to invest some time completing walk-

throughs and reading the online reference documentation beyond this series of documents.

For most scenarios, we recommend that you use Azure AD B2C built-in policies2. Built-in policies are easier

to set up for your configuration. You can use built-in and custom policies in the same Azure Active Directory

B2C tenant.

As of this writing, custom policies are in public preview and may be substantially modified before GA.

For information, see RELEASE NOTES FOR AZURE ACTIVE DIRECTORY B2C CUSTOM POLICY PUBLIC PREVIEW3.

This document will be updated to reflect the changes introduced at GA time for custom policies.

This document reflects current views and assumptions be of the date of development and is subject to

change. Actual and future results and trends may differ materially from any forward-looking

statements. Microsoft assumes no responsibility for errors or omissions in the materials.

THIS DOCUMENT IS FOR INFORMATIONAL AND TRAINING PURPOSES ONLY AND IS PROVIDED "AS IS"

WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED

TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT.

1 AZURE ACTIVE DIRECTORY B2C: CUSTOM POLICIES: https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-

overview-custom
2 AZURE ACTIVE DIRECTORY B2C: BUILT-IN POLICIES: https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-

reference-policies
3 RELEASE NOTES FOR AZURE ACTIVE DIRECTORY B2C CUSTOM POLICY PUBLIC PREVIEW: https://docs.microsoft.com/en-us/azure/active-directory-

b2c/active-directory-b2c-developer-notes-custom

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-overview-custom
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-policies
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-developer-notes-custom

4 Bring-your-own-identity and Migrating Users

Introduction
Azure AD B2C is a cloud identity service for your consumer-facing web and mobile applications. Azure AD

B2C is designed to solve the identity management challenges that have emerged, as economic and

competitive pressures drive commercial enterprises, educational institutions, and government agencies to

shift their service delivery channels from face-to-face engagements to online web and mobile applications.

Based on standardized protocols, Azure AD B2C is "IDaaS for Customers and Citizens” designed with Azure

AD privacy, security, availability, and scalability for customer/citizen identity and access management (CIAM).

The “secret sauce” of Azure AD B2C to achieve the above objectives resides in the 100% policy driven Identity

Experience Framework that consume fit to purpose declarative policies.

Many of the most frequently used identity use cases can be addresses using the B2C extension in the Azure

portal as the developer control surface. However, there some advanced features only available by writing

custom user journeys which must be configured directly into policy XML files and uploaded to the B2C

tenant. Access to this incremental feature set is available via the custom policies in Azure AD B2C.

Note For a basic level of proficiency with the policy configuration available directly in the B2C Admin portal,

see the introduction video BUSINESS-TO-CONSUMER IDENTITY MANAGEMENT WITH AZURE ACTIVE DIRECTORY B2C4 where all

the relevant B2C Admin portal settings are.

Objectives of this document

This fourth document discusses the most common advanced identity use cases. This document is indeed

intended as a guidance document for implementing these identity use cases so that you can smoothly and

seamlessly instantiate your own specific to purpose tailored identity “Hub” based on the advanced

capabilities of Azure AD B2C.

For that purpose, it covers a series of common scenarios and depict how to implement them thanks to

custom policies.

As far as the related policy definition is concerned, this series of envisaged scenarios leverages the custom

policies of the “Starter Pack”, and as such override/extend them in many cases to drastically limit the amount

of information to provide to enable the intended scenario.

Note For more information on the “Starter Pack” and how to get started with, see the second document of

this series.

Non-objectives of this paper

This series of document is not intended as an overview document for the Azure AD offerings but rather

focusses on this Azure AD B2C identity service, and more specifically on the custom policies as per currently

available public preview.

4 BUSINESS-TO-CONSUMER IDENTITY MANAGEMENT WITH AZURE ACTIVE DIRECTORY B2C: https://channel9.msdn.com/Events/Build/2016/P423

https://channel9.msdn.com/Events/Build/2016/P423

5 Bring-your-own-identity and Migrating Users

Note For more information, see the article GETTING STARTED WITH AZURE AD5. As well as the whitepapers ACTIVE

DIRECTORY FROM THE ON-PREMISES TO THE CLOUD6 and AN OVERVIEW OF AZURE AD7 as part of the same series of documents.

Organization of this paper

To cover the aforementioned objectives, this document of the series is organized in the following six

sections:

• BRINGING YOUR OWN IDENTITY (BYOI) FOR WORK OR SCHOOL USERS.

• BRINGING YOUR OWN IDENTITY (BYOI) FOR SOCIAL USERS.

• EXCHANGING CLAIMS WITH DIRECTORIES OR OTHER SYSTEMS.

• IMPLEMENTING A CUSTOM USER JOURNEY.

• MIGRATING USERS TO YOUR B2C TENANT.

• HELPING TO HANDLE GDPR REQUIREMENTS.

These sections provide the information details necessary to understand the new capabilities introduced by

the custom policies in Azure AD B2C that allow successfully implementing the most common use cases with

your own (Trust Framework) custom policies.

About the audience

This document is intended for IT professionals, system architects, and developers who are interested in

understanding the advanced capabilities Azure AD B2C provides with all the requirements of an Identity

5 GETTING STARTED WITH AZURE AD: https://docs.microsoft.com/en-us/azure/active-directory/get-started-azure-ad
6 ACTIVE DIRECTORY FROM THE ON-PREMISES TO THE CLOUD: https://aka.ms/aadpapers
7 AN OVERVIEW OF AZURE AD: https://aka.ms/aadpapers

https://docs.microsoft.com/en-us/azure/active-directory/get-started-azure-ad
http://www.microsoft.com/en-us/download/details.aspx?id=36391
http://www.microsoft.com/en-us/download/details.aspx?id=36391
http://www.microsoft.com/en-us/download/details.aspx?id=36391

6 Bring-your-own-identity and Migrating Users

“Hub”, and in this context how to address the most common use cases based on the already available

features as per the currently available public preview.

7 Bring-your-own-identity and Migrating Users

Bringing your own identity (BYOI) for

work or school users
User management and configuring authentication can be a time-consuming process. It can also be error

prone if the authentication and identity requirements are complex, leading to possible issues with security.

To reduce costs, it is sometimes worthwhile to consider using third party identity providers to manage and

authenticate users, although integration multiple IdPs into a solution can also be a challenge. Using Azure

AD B2C simplifies many of these tasks.

This section illustrates how to use in a non-exhaustive manner specific products or services to ingrate with

Azure AD B2C to “Bring Your Own Identity” (BYOI) for work or school users:

• Integrating an Azure AD tenant as a claims provider.

• Integrating AD FS as a claims provider.

• Integrating Salesforce as a claims provider.

This section also covers how to configure password complexity in custom policies for local accounts.

Note In addition to the above use cases, you can also consider the ones in the GitHub repo

marcelodiiorio/My-Azure-AD-B2C-use-cases8, which are found in customers’ real situation or requested by peers.

The following subsections depict the related configuration for your B2C tenant and your custom policies

based on the “Starter Pack”. They assume that you followed the instructions provided in the second

document of this series to setup and configure the “Starter Pack”.

Integrating an Azure AD tenant as a claims provider

This section shows how to integrate an Azure AD tenant as a claims provider. The

litware369.onmicrosoft.com Azure AD tenant will serve as an illustration.

Note For more information, see articles AZURE ACTIVE DIRECTORY B2C: SIGN IN BY USING AZURE AD ACCOUNTS9 and

AZURE ACTIVE DIRECTORY B2C: ALLOW USERS TO SIGN IN TO A MULTI-TENANT AZURE AD IDENTITY PROVIDER USING CUSTOM POLICIES10.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

To do so, you will have to:

1. Create an Azure AD application for your B2C tenant.

2. Add the Azure AD application key in your B2C tenant.

3. Update the custom policy to configure the organizational Azure AD tenant as a claims provider in

the intended user journey(s).

8 marcelodiiorio/My-Azure-AD-B2C-use-cases: https://github.com/marcelodiiorio/My-Azure-AD-B2C-use-cases
9 AZURE ACTIVE DIRECTORY B2C: SIGN IN BY USING AZURE AD ACCOUNTS: https://docs.microsoft.com/en-us/azure/active-directory-

b2c/active-directory-b2c-setup-aad-custom
10 AZURE ACTIVE DIRECTORY B2C: ALLOW USERS TO SIGN IN TO A MULTI-TENANT AZURE AD IDENTITY PROVIDER USING CUSTOM POLICIES:

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-commonaad-custom

https://github.com/marcelodiiorio/My-Azure-AD-B2C-use-cases
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-aad-custom
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-commonaad-custom
https://github.com/marcelodiiorio

8 Bring-your-own-identity and Migrating Users

4. Upload the custom policy.

5. Test the custom policy using Run Now.

The next sections detail the above.

Creating an Azure AD application

To enable sign-in for users from a specific Azure AD organization, you need to prior register an application

within the organizational Azure AD tenant.

We use "fabrikam369.onmicrosoft.com" for the organizational Azure AD tenant and

"litware369b2c.onmicrosoft.com" as the B2C tenant in the following instructions.

To illustrate the core principles that pertain to the integration of any OAuth 2.0 based identity provider, we

cover hereafter the declaration of your B2C tenant as an application in this social identity provider.

Proceed with the following steps:

1. Open a browsing session and navigate to the Azure portal at https://portal.azure.com.

2. Log in to the Azure portal as an account with administrative privileges in your Azure tenant.

3. On the upper right corner, select your account. From the Directory list, choose the organizational

Azure AD tenant where you want to register your application, For example

fabrikam369.onmicrosoft.com in our illustration.

4. Click Azure Active Directory on the left navigation menu. (You may need to find it by selecting

More services>.)

5. Select App registrations and click New application registration. A new blade opens.

6. Provide the following entries:

a. In Name, enter “Azure AD B2C (litware369b2c.onmicrosoft.com)” for the web application.

https://portal.azure.com/

9 Bring-your-own-identity and Migrating Users

b. For Application type, leave Web app / API selected.

c. In Sign-on URL, specify:

https://login.microsoftonline.com/te/<your_b2c_tenant>.onmicrosoft.com/oauth2/authresp

where <your_b2c_tenant> by the name of your B2C tenant. (The value for

<your_b2c_tenant> must be all lowercase.) For example in our configuration:

 https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/oauth2/authresp

7. Select Create.

8. Select All apps.

9. Note the application ID, here “db1c7d12-7877-4dd9-a418-16da6b56eea3”. You will need them

later to configure this organizational Azure AD tenant as an identity provider in your B2C tenant.

This value will be referred as to the “YourAppIDValue” value.

10. Select the newly created web application.

11. Select Settings > Keys.

12. Under Passwords, enter the key description, select a duration, and then click Save. The value of the

key is displayed. Copy it because you will use it in the steps in the next section. It will be referred as

to the “YourAppSecretValue” value.

Adding the Azure AD application key in your B2C tenant

Federation with Azure AD organizational accounts requires a client secret for the organizational Azure AD

tenant to trust Azure AD B2C on behalf of the above application. This secret, i.e. the above

“YourAppSecretValue” value need to be stored in your B2C tenant.

Proceed with the following steps:

1. Log in to the Azure portal as an account with administrative privileges in your Azure tenant, and

then switch to your B2C tenant, for example litware369b2.onmicrosoft.com in our illustration.

2. Select All services, type Azure AD BC in the search field, and then select Azure AD B2C.

3. Select Identity Framework Experience - PREVIEW.

4. Select Policy Keys from left menu.

5. Select +Add.

6. For Options, select Manual.

https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/oauth2/authresp

10 Bring-your-own-identity and Migrating Users

7. For Key usage, leave Signature selected.

8. In Name, choose a name that matches your Azure AD tenant name. For example,

“Fabrikam369Secret”.

9. In Secret, enter the Azure AD app secret key you recorded earlier, i.e. the above

“YourAppSecretValue” value.

10. Select Create.

Once the operation complete, a key B2C_1A_Fabrikam369Secret should be created and listed.

Updating the custom policy

Defining the organization Azure AD tenant as a claim provider

To sign in by using the Azure AD organizational account, you need to define the Azure AD tenant as a claims

provider in your B2C tenant. In other words, you need to specify an endpoint that Azure AD B2C

communicates with. The endpoint provides a set of claims that are used by Azure AD B2C to verify that a

specific user has authenticated.

It’s time to define Azure AD as a claims provider with an associated technical profile. This technical profile is

named Fabrikam369-OIDC hereafter.

Proceed with the following steps:

1. Navigate to the SocialAndLocalAccounts folder in the “Starter Pack”.

2. Open the extension policy file, i.e. the TrustFrameworkExtensions.xml file, using an XML editor of

your choice, for instance Visual Studio (Code).

11 Bring-your-own-identity and Migrating Users

3. Scroll down to the ClaimsProviders section.

4. Add the following ClaimsProvider element to the list in the ClaimsProviders node.

<!-- Organizational Azure AD claims provider -->
<ClaimsProvider>

 <Domain>fabrikam369.onmicrosoft.com</Domain>
 <DisplayName>Login using Fabrikam369</DisplayName>

 <TechnicalProfiles>

 <TechnicalProfile Id="Fabrikam369-OIDC">
 <DisplayName>Fabrikam369 Employee</DisplayName>
 <Description>Login with your Fabrikam369 account</Description>

 <Protocol Name="OpenIdConnect"/>
 <OutputTokenFormat>JWT</OutputTokenFormat>
 <Metadata>

 <Item Key="METADATA">https://login.windows.net/your_AzureAD_tenant/.well-known/openid-configuration</Item>
 <Item Key="ProviderName">https://sts.windows.net/your_AzureAD_tenant_id/</Item>
 <Item Key="client_id">your_AzureAD_client_id</Item>
 <Item Key="IdTokenAudience">your_AzureAD_client_id</Item>

 <Item Key="response_types">id_token</Item>
 <Item Key="UsePolicyInRedirectUri">false</Item>
 </Metadata>
 <CryptographicKeys>
 <Key Id="client_secret" StorageReferenceId="B2C_1A_Fabrikam369Secret"/>
 </CryptographicKeys>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="socialIdpUserId" PartnerClaimType="oid"/>
 <OutputClaim ClaimTypeReferenceId="tenantId" PartnerClaimType="tid"/>
 <OutputClaim ClaimTypeReferenceId="givenName" PartnerClaimType="given_name" />
 <OutputClaim ClaimTypeReferenceId="surName" PartnerClaimType="family_name" />
 <OutputClaim ClaimTypeReferenceId="displayName" PartnerClaimType="name" />
 <OutputClaim ClaimTypeReferenceId="authenticationSource" DefaultValue="azureADAuthentication" />
 <OutputClaim ClaimTypeReferenceId="identityProvider" DefaultValue="AzureAD" />
 </OutputClaims>
 <OutputClaimsTransformations>
 <OutputClaimsTransformation ReferenceId="CreateRandomUPNUserName"/>
 <OutputClaimsTransformation ReferenceId="CreateUserPrincipalName"/>
 <OutputClaimsTransformation ReferenceId="CreateAlternativeSecurityId"/>
 <OutputClaimsTransformation ReferenceId="CreateSubjectClaimFromAlternativeSecurityId"/>
 </OutputClaimsTransformations>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-Noop"/>
 </TechnicalProfile>
 </TechnicalProfiles>
</ClaimsProvider>

Note For more information, see section § Specifying a technical profile for an OpenID Connect claims provider in the

sixth document of this series, along with the implementation notes for the technical profile if any.

5. Under the ClaimsProvider node:

a. Update the value for the Domain element to a unique value that both reflect the

organizational Azure AD tenant and that can be used to distinguish it from other identity

providers.

b. Update the value for the DisplayName element to a friendly name for the claims provider.

This value is not currently used.

6. To get a token from the Azure AD endpoint, you need to define the protocols that Azure AD B2C

should use to communicate with Azure AD. This is done inside the TechnicalProfile element of the

ClaimsProvider section.

7. Update the ID of the TechnicalProfile node. This ID is used to refer to this technical profile from

other parts of the policy.

12 Bring-your-own-identity and Migrating Users

8. Update the value for the DisplayName element. To reflect the organizational Azure AD tenant being

referenced. This value will be displayed on the sign-in button on your sign-in screen.

9. Likewise, update the value for the Description element.

10. You need to update the Metadata section in the XML snippet to reflect the configuration settings

for your specific organizational Azure AD tenant. In the above XML snippet, update the metadata

values as follows:

a. Set <Item Key="METADATA"> to:

https://login.windows.net/your_AzureAD_tenant/.well-known/openid-configuration

where your_AzureAD_tenant is your Azure AD tenant name, for example

fabrikam369.onmicrosoft.com

https://login.windows.net/fabrikam369.onmicrosoft.com/.well-known/openid-

configuration

11. Open a browsing and navigate to the METADATA URL that you just updated.

12. In the browser, look for the 'issuer' object and copy its value. It should look like the following:

https://sts.windows.net/your_AzureAD_tenant_id/. For example, in our configuration:

https://sts.windows.net/79943d36-a830-454f-89aa-9c775b83a809/

13. Paste the value for <Item Key="ProviderName"> in the XML snippet.

14. Replace the value your_AzureAD_client_id of <Item Key="client_id"> with the client ID of your Azure

AD application, i.e. the above the “YourAppIDValue” value.

15. Replace the value your_AzureAD_client_id of <Item Key="IdTokenAudience"> with the client ID of

your Azure AD application, i.e. the above the “YourAppIDValue” value.

In addition, federation with Azure AD requires a client secret for Azure AD to trust Azure AD B2C on

behalf of the application. The above XML code snippet already references the same Azure AD secret

named B2C_1A_Fabrikam369Secret that was created through the B2C blade of the Azure portal if

you have followed the procedure outlined in the previous section.

16. Save the XML file.

Registering the Azure AD claims provider to the Sign-Up or Sign-In

(SUSI) user journey

To register the Azure AD claims provider to the Sign-Up or Sign-In (SUSI) user journey, proceed with the

following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element. If the element doesn't exist, add one (or uncomment it).

3. Copy the entire content of UserJourneys node from the TrustFrameworkBase.xml file as a child of

the UserJourneys element in the TrustFrameworkExtensions.xml file. If you already copied this

content, you can skip this step.

4. Find the UserJourney element with attribute value Id="SignUpOrSignIn".

https://login.windows.net/fabrikam369.onmicrosoft.com/.well-known/openid-configuration
https://login.windows.net/fabrikam369.onmicrosoft.com/.well-known/openid-configuration
https://sts.windows.net/79943d36-a830-454f-89aa-9c775b83a809/

13 Bring-your-own-identity and Migrating Users

5. Locate the OrchestrationStep element with attribute Order="1" value under this element.

6. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="Fabrikam369Exchange" />

7. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="Fabrikam369Exchange" TechnicalProfileReferenceId="Fabrikam369-OIDC" />

8. Save the XML file.

Uploading the custom policy to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the TrustFrameworkExtensions.xml policy file.

5. Click Upload and ensure that it does not fail the validation.

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Click the B2C_1A_signup_signin custom policy to see its detail view. A new blade opens.

14 Bring-your-own-identity and Migrating Users

3. Click Run now.

4. The sign-in page should include the option to sign in with the organizational Azure AD tenant.

5. You should be able to sign in using your Azure AD account.

Integrating AD FS as a claims provider

This section covers how to integrate an on-premises AD FS as a claims provider in your custom policies.

This can be achieved via both the WS-Fed and the SAML 2.0 standard.

Integrating AD FS as a claim provider via WS-Fed

This section shows you, in this use case, how to configure on-premises AD FS as a claims provider (via the

WS-Fed protocol) in your B2C tenant.

15 Bring-your-own-identity and Migrating Users

As of this writing, the use of the WS-Fed protocol should be considered as under DEVELOPMENT and is

NOT part of the features included in the public preview. For information, see RELEASE NOTES FOR AZURE

ACTIVE DIRECTORY B2C CUSTOM POLICY PUBLIC PREVIEW11.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

It notably covers how to:

1. Create a relying party trust in the on-premises AD FS infrastructure.

2. Update the custom policy to configure AD FS as a claims provider in the intended user journey(s).

3. Upload the custom policy.

4. Test the custom policy using Run Now.

The next sections detail the above.

Creating a relying party trust in AD FS

In this use case, your B2C tenant acts as a relying party from the AD FS perspective and obtains a security

token from the AD FS as a claims provider.

The configuration on the AD FS side is straightforward as one can expect from the solution. This consists as

usual in:

1. Creating a relying trust for Azure AD B2C.

2. Configuring the issuance transform rules.

The next sections detail the above. AD FS in Windows Server 2012 R2 will serve hereafter as an illustration

for the configuration in AD FS. Differences with AD FS in Windows Server 2016 will be highlighted on purpose

if any.

Creating a relying party trust

The Add-ADFSRelyingPartyTrust cmdlet enables to add a new relying party trust to your AD FS

deployment:

Add-ADFSRelyingPartyTrust -Identifier <String[]> -Name <String> -WSFedEndpoint <Uri>

Note For more information, see article ADD-ADFSRELYINGPARTYTRUST12.

Note For information on how to create a relying party trust manually, see article CREATE A RELYING PARTY

TRUST13.

As per WS-Fed specification being used in this scenario, the WS-Fed request must include a wtRealm

parameter, which corresponds in AD FS to the above Identifier argument of the cmdlet.

11 RELEASE NOTES FOR AZURE ACTIVE DIRECTORY B2C CUSTOM POLICY PUBLIC PREVIEW: https://docs.microsoft.com/en-us/azure/active-

directory-b2c/active-directory-b2c-developer-notes-custom
12 ADD-ADFSRELYINGPARTYTRUST: https://docs.microsoft.com/en-us/powershell/module/adfs/add-

adfsrelyingpartytrust?view=winserver2012r2-ps
13 CREATE A RELYING PARTY TRUST: https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-

2012/dn486828(v=ws.11)

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-developer-notes-custom
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-developer-notes-custom
https://docs.microsoft.com/en-us/powershell/module/adfs/add-adfsrelyingpartytrust?view=winserver2012r2-ps
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn486828(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/dn486828(v=ws.11)

16 Bring-your-own-identity and Migrating Users

The value of this parameter should be set as follows with Azure AD B2C unless specified otherwise in the

metadata of the related WS-Fed claims provider technical profile in the policy XML file:

https://login.microsoftonline.com/te/<your_b2c_tenant>/<your_base_policy>

Where your_b2c_tenant is the B2C tenant, and your_base_policy the base policy your custom policy being

executed inherits from. For example, in our configuration:

For example:

https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_TrustFrameworkBase

Generally speaking, AD FS when acting as a claims provider must normally be configured to return the issued

SAML security token to specific WS-Fed endpoint addresses. Hence, as per WS-Fed specification, the WS-

Fed request also includes a wReply parameter, which is the URL to which the response token should be

posted. This parameter corresponds to the WSFedEndpoint argument of the cmdlet.

The WSFedEndpoint argument must be set to:

https://login.microsoftonline.com/te/<your_b2c_tenant>/<your_custom_policy>/WSFED/SSO/ASSERTIONC

ONSUMER

Where your_b2c_tenant is the B2C tenant, and your_custom_policy the custom policy being executed. For

example, in our configuration:

https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_Signup_Signin/WSFED/SSO/

ASSERTIONCONSUMER

Considering the above, to create a new relying party trust named B2C Tenant to your AD FS, run the

following command:

PS> $wsRealm = "https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_TrustFrameworkBase"
PS> $wsReply =
"https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_Signup_Signin/WSFED/SSO/ASSERTIONCONSUMER"
PS> Add-ADFSRelyingPartyTrust -Identifier $wsRealm -Name 'B2C Tenant' -WSFedEndpoint $wsReply

As per above configuration, the Identifier tab of the B2C Tenant relying party trust contains the above

wtRealm value under Relying party identifiers.

https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_TrustFrameworkBase
https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_Signup_Signin/WSFED/SSO/ASSERTIONCONSUMER
https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_Signup_Signin/WSFED/SSO/ASSERTIONCONSUMER

17 Bring-your-own-identity and Migrating Users

In addition to:

https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_Signup_Signin/WSFED/SSO/

ASSERTIONCONSUMER

Add the following two Relying Party identifiers:

1. https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_Signup_Signin

2. https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_TrustFrameworkBase

Likewise, the endpoint tab contains the above wReply value listed under WS-Federation Passive

Endpoints.

https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_Signup_Signin/WSFED/SSO/ASSERTIONCONSUMER
https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_Signup_Signin/WSFED/SSO/ASSERTIONCONSUMER

18 Bring-your-own-identity and Migrating Users

By double-clicking the related line, you can edit the value if needed.

Configuring AD FS issuance transform rules

The previous relying party trust is where the federation trust between AD FS as a claims provider and your

B2C tenant as a relying party is configured.

AD FS is a security token service (STS) that relies on a claims-based model. In this model, the claims pipeline

represents the path that claims must follow through the service before they can be issued as part of a SAML

token.

Note For additional detail on the claims pipeline, see article THE ROLE OF THE CLAIMS PIPELINE
14.

AD FS manages the entire end-to-end process of flowing claims through the various stages of the claims

pipeline, which also includes the processing of different claim rule sets by the claim rule-based engine.

14 THE ROLE OF THE CLAIMS PIPELINE: https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-

2012/ee913585(v=ws.11)

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/ee913585(v=ws.11)

19 Bring-your-own-identity and Migrating Users

Note For additional detail on the claim rule-based engine, see article THE ROLE OF THE CLAIMS ENGINE
15.

In the considered use case, the claim engine controls which users have access to the Azure AD B2C relying

party based on the issuance authorization rules, and then it issues outgoing claims to your B2C tenant based

on issuance transform rules.

Consequently, issuance transform rules must be at least configured to define the claims to be returned to

Azure AD B2C.

Each of these claims should have an existing claim description in AD FS, which is comparable to the claims

schema definition in the XML policy file. The Add-AdfsClaimDescription cmdlet enables to add such a

definition to AD FS if required.

Note For more information, see article ADD-ADFSCLAIMDESCRIPTION16.

The New-ADFSClaimRuleSet cmdlet allows to create a set of claims rules.

Note For more information, see article NEW-ADFSCLAIMRULESET17.

Note For information on how to create claims rule for a Relying Party Trust, see article CHECKLIST: CREATING

CLAIM RULES FOR A RELYING PARTY TRUST18.

The Set-ADFSRelyingPartyTrust cmdlet allows then to add this set of claims rules as issuance transform

rules to an existing relying party trust identified via its wtRealm value.

Note For more information, see article SET-ADFSRELYINGPARTYTRUST19.

To configure issuance transform rules for the previously created relying party trust named B2C Tenant, run

the following commands:

PS> $wsRealm = "https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_TrustFrameworkBase"
PS> $ruleSet = New-ADFSClaimRuleSet -ClaimRule 'c:[Type ==
"http://schemas.microsoft.com/ws/2008/06/identity/claims/windowsaccountname", Issuer == "AD AUTHORITY"] => issue(store =
"Active Directory", types = ("http://schemas.microsoft.com/ws/2008/06/identity/claims/windowsaccountname",
"http://schemas.xmlsoap.org/claims/employeeNumber",
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress",
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname",
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname"), query =
";userPrincipalName,employeeNumber,mail,givenName,sn;{0}", param = c.Value);'
PS> Set-ADFSRelyingPartyTrust -TargetIdentifier $wsRealm -IssuanceTransformRules $ruleSet.ClaimRulesString

15 THE ROLE OF THE CLAIMS ENGINE: https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-

2012/ee913582(v=ws.11)
16 ADD-ADFSCLAIMDESCRIPTION: https://docs.microsoft.com/en-us/powershell/module/adfs/add-

adfsclaimdescription?view=winserver2012r2-ps
17 NEW-ADFSCLAIMRULESET: https://docs.microsoft.com/en-us/powershell/module/adfs/new-adfsclaimruleset?view=winserver2012r2-

ps
18 CHECKLIST: CREATING CLAIM RULES FOR A RELYING PARTY TRUST: https://docs.microsoft.com/en-us/previous-versions/windows/it-

pro/windows-server-2012-R2-and-2012/ee913578(v=ws.11)
19 SET-ADFSRELYINGPARTYTRUST: https://docs.microsoft.com/en-us/powershell/module/adfs/set-

adfsrelyingpartytrust?view=winserver2012r2-ps

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/ee913582(v=ws.11)
https://docs.microsoft.com/en-us/powershell/module/adfs/add-adfsclaimdescription?view=winserver2012r2-ps
https://docs.microsoft.com/en-us/powershell/module/adfs/new-adfsclaimruleset?view=winserver2012r2-ps
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/ee913578(v=ws.11)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-R2-and-2012/ee913578(v=ws.11)
https://docs.microsoft.com/en-us/powershell/module/adfs/set-adfsrelyingpartytrust?view=winserver2012r2-ps

20 Bring-your-own-identity and Migrating Users

By double-clicking the related line, you can edit the issuance transform rules if needed.

Updating the custom policy

The configuration for AD FS as a claims provider in your custom policy is straightforward as a simple four

steps process when you’d want to override/extend an already existing relying party information along with

its existing user journey (canvas).

21 Bring-your-own-identity and Migrating Users

This process can be described as follows:

1. Add the missing claim type information in the TrustFrameworkExtensions.xml custom policy that

comes along with the core templates of the “Starter Pack”.

2. Define AD FS as a claims provider in the TrustFrameworkExtensions.xml custom policy.

3. Register the AD FS claims provider in an (existing) user journey.

The next sections detail the above.

Adding the missing claim type information

This very first step is optional depending if you’d like to leverage or not one or several additional claim types

that do not yet exist in the TrustFrameworkBase.xml file that comes along with the core templates of the

“Starter Pack”.

As discussed in the third document of this series, you can leverage for that purpose the

TrustFrameworkExtensions.xml policy file. This is illustrated later in this document.

Defining AD FS as a claims provider

You will need at this stage to configure AD FS as a claims provider.

As outlined before, to limit the amount of information to specify in all of your custom policies that may use

this claims provider, you can seamlessly leverage the TrustFrameworkExtensions.xml policy file of the core

templates of the “Starter Pack” to provide a core definition for the AD FS claims provider with an associated

technical profile. This technical profile is named ADFS-WSFED-Outbound hereafter.

Proceed with the following steps:

1. Navigate to the SocialAndLocalAccounts folder in the “Starter Pack”.

2. Open the extension policy file, i.e. the TrustFrameworkExtensions.xml file, using an XML editor of

your choice, for instance Visual Studio (Code).

3. Scroll down to the ClaimsProviders section.

4. Add the following ClaimsProvider element to the list in the ClaimsProviders node. Replace

your_adfs_url with the actual FQDN DNS name of your on-premises AD FS server/farm.

<ClaimsProvider>
 <Domain>litware369.com</Domain>
 <DisplayName>Litware369 ADFS</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="ADFS-WSFED-Outbound">
 <DisplayName>Litware369 ADFS</DisplayName>
 <Description>Login with your Litware369 account</Description>
 <Protocol Name="WsFed" />
 <Metadata>

 <Item Key="PartnerEntity">https://<your_adfs_domain>/FederationMetadata/2007-

06/FederationMetadata.xml</Item>

 </Metadata>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="userId" PartnerClaimType="employeeNumber" />
 <OutputClaim ClaimTypeReferenceId="givenName" />
 <OutputClaim ClaimTypeReferenceId="surname" />
 <OutputClaim ClaimTypeReferenceId="displayName" PartnerClaimType="CommonName" />
 <OutputClaim ClaimTypeReferenceId="sub" PartnerClaimType="UPN" />
 <OutputClaim ClaimTypeReferenceId="identityProvider" DefaultValue="ADFS" />

22 Bring-your-own-identity and Migrating Users

 <OutputClaim ClaimTypeReferenceId="authenticationSource" DefaultValue="enterpriseIdp" />
 </OutputClaims>
 <OutputClaimsTransformations>
 <OutputClaimsTransformation ReferenceId="CreateRandomUPNUserName" />
 <OutputClaimsTransformation ClaimTypeReferenceId="CreateUserPrincipalName" />
 <OutputClaimsTransformation ClaimTypeReferenceId="CreateAlternativeSecurityId" />
 <OutputClaimsTransformation ClaimTypeReferenceId="CreateSubjectClaimFromAlternativeSecurityId" />
 </OutputClaimsTransformations>
 </TechnicalProfile>
 </TechnicalProfiles>
<ClaimsProvider>

You will not be surprised that the protocol being used here is the WsFed (WS-Federation) protocol.

It could also have been SAML2 as ADFS supports it also, see section § Integrating AD FS as a claims

provider via SAML-P 2.0.

Note For more information, see section § Specifying a technical profile for a WS-Fed claims provider in the

sixth document of this series, along with the implementation notes for the technical profile if any.

5. Save the policy XML file.

Registering the AD FS claims provider to the Sign-Up or Sign-In (SUSI) user journey

To register the AD FS claims provider to the Sign-Up or Sign-In (SUSI) user journey, proceed with the

following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element. If the element doesn't exist, add one (or uncomment it).

3. Copy the entire content of UserJourneys node from the TrustFrameworkBase.xml file as a child of

the UserJourneys element in the TrustFrameworkExtensions.xml file. If you already copied this

content, you can skip this step.

4. Find the UserJourney element with attribute value Id="SignUpOrSignIn".

5. Locate the OrchestrationStep element with attribute Order="1" value under this element.

6. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="AdfsExchange" />

7. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="AdfsExchange" TechnicalProfileReferenceId="ADFS-WSFED-Outbound" />

8. Save the XML file.

23 Bring-your-own-identity and Migrating Users

Registering the AD FS claims provider to the Profile Edit user journey

(Optional)

To register the AD FS claims provider to the Profile Edit user journey, proceed with the following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element, and then find the UserJourney element with attribute value

Id="ProfileEdit".

3. Locate the OrchestrationStep element with attribute Order="1" value under this element.

4. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="AdfsExchange" />

5. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="AdfsExchange" TechnicalProfileReferenceId="ADFS-WSFED-Outbound" />

6. Save the XML file.

Uploading the custom policy to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the TrustFrameworkExtensions.xml policy file

5. Click Upload and ensure that it does not fail the validation.

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Click the B2C_1A_signup_signin custom policy to see its detail view. A new blade opens.

24 Bring-your-own-identity and Migrating Users

3. Click Run now.

The sign-in page should include the option to sign in with the identity in the on-premises environment,

thanks to the AD FS infrastructure.

Integrating AD FS as a claims provider via SAML-P 2.0

This section shows you, in this use case, how to configure on-premises AD FS as a claims provider (via the

SAML-P 2.0 protocol) in your B2C tenant.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

The configuration steps are similar to ones of the previous section excepted for the relying party trust that

slightly defer. You can refer to article AZURE ACTIVE DIRECTORY B2C: ADD ADFS AS A SAML IDENTITY PROVIDER USING CUSTOM

POLICIES20 for specific guidance.

For the configuration, you can leverage the sample policy files provided under the folder scenarios\aadb2c-

ief-setup-adfs2016-app of the “Starter Pack” for enabling an on-premises AD FS as claims provider in your

B2C tenant.

To complete the configuration, you will need a certificate (with its private key) issued from a public certificate

authority such as DigiCert. The certificate file (without the private key), i.e. the .cer file, should be added on

the AD FS relying party side, while the certificate file (with the private key), i.e. the .pfx file should be added

the Identity Experience Framework side.

20 AZURE ACTIVE DIRECTORY B2C: ADD ADFS AS A SAML IDENTITY PROVIDER USING CUSTOM POLICIES: https://docs.microsoft.com/en-

us/azure/active-directory-b2c/active-directory-b2c-custom-setup-adfs2016-idp

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-setup-adfs2016-idp
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-setup-adfs2016-idp

25 Bring-your-own-identity and Migrating Users

The following XML snippet provide a core definition for the AD FS claims provider with an associated

technical profile (via SAML-P 2.0) in the TrustFrameworkExtensions.xml policy file of the core templates of

the “Starter Pack”. This technical profile is named ADFS-SAML2-Outbound hereafter.

The key B2C_1A_ADFSSamlCert corresponds to the above certificate (with its private key).

<ClaimsProvider>
 <Domain>litware369.com</Domain>
 <DisplayName>Litware369 ADFS</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="ADFS-SAML2-Outbound">
 <DisplayName>Litware369 ADFS</DisplayName>
 <Description>Login with your Litware369 account</Description>
 <Protocol Name="SAML2"/>
 <Metadata>
 <Item Key="RequestsSigned">false</Item>
 <Item Key="WantsEncryptedAssertions">false</Item>

 <Item Key="PartnerEntity">https://<your_ADFS_url>/federationmetadata/2007-

06/federationmetadata.xml</Item>

 </Metadata>
 <CryptographicKeys>
 <Key Id="SamlAssertionSigning" StorageReferenceId="B2C_1A_ADFSSamlCert"/>
 <Key Id="SamlMessageSigning" StorageReferenceId="B2C_1A_ADFSSamlCert"/>
 </CryptographicKeys>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="socialIdpUserId" PartnerClaimType="userPrincipalName" />
 <OutputClaim ClaimTypeReferenceId="givenName" PartnerClaimType="given_name"/>
 <OutputClaim ClaimTypeReferenceId="surname" PartnerClaimType="family_name"/>
 <OutputClaim ClaimTypeReferenceId="email" PartnerClaimType="email"/>
 <OutputClaim ClaimTypeReferenceId="displayName" PartnerClaimType="name"/>
 <OutputClaim ClaimTypeReferenceId="identityProvider" DefaultValue="contoso.com" />
 <OutputClaim ClaimTypeReferenceId="authenticationSource" DefaultValue="socialIdpAuthentication"/>
 </OutputClaims>
 <OutputClaimsTransformations>

26 Bring-your-own-identity and Migrating Users

 <OutputClaimsTransformation ReferenceId="CreateRandomUPNUserName"/>
 <OutputClaimsTransformation ReferenceId="CreateUserPrincipalName"/>
 <OutputClaimsTransformation ReferenceId="CreateAlternativeSecurityId"/>
 <OutputClaimsTransformation ReferenceId="CreateSubjectClaimFromAlternativeSecurityId"/>
 </OutputClaimsTransformations>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-Noop"/>
 </TechnicalProfile>
 </TechnicalProfiles>
</ClaimsProvider>

Note For more information, see section § Specifying a technical profile for a SAML 2.0 claims provider in the

sixth document of this series, along with the implementation notes for the technical profile if any.

Integrating Salesforce as a claims provider

This section shows how to integrate the Salesforce IDP as an example of a SAML-P 2.0 claims provider.

Note For more information, see article AZURE ACTIVE DIRECTORY B2C: SIGN IN BY USING SALESFORCE ACCOUNTS VIA

SAML21.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

To do so, you will have to:

1. Setup a My Domain in Salesforce.

2. Setup the identity provider in Salesforce.

3. Create a Salesforce application.

4. Create a signed certificate for your B2C tenant.

5. Add a SAML signing certificate to your B2C tenant.

6. Update custom policies to use Salesforce as claim provider in the intended user journey(s).

7. Upload custom policies.

8. Test the custom policy using Run Now.

The next sections detail the above.

If you don't have a Salesforce developer account you can sign-up for a free developer account at

https://developer.salesforce.com/signup, and then setup a My Domain Name.

This is the purpose of the next section. We assume you are using Salesforce Lightning Experience22.

Setting up a My Domain Name in Salesforce

Proceed with the following steps:

Note For more information, see article SET UP A MY DOMAIN NAME23.

1. Login to your Salesforce developer account.

2. In the left menu, under Settings, select Company Settings, then click My Domain.

21 AZURE ACTIVE DIRECTORY B2C: SIGN IN BY USING SALESFORCE ACCOUNTS VIA SAML: https://docs.microsoft.com/en-us/azure/active-

directory-b2c/active-directory-b2c-setup-sf-app-custom
22 LIGHTNING EXPERIENCE FAQ: https://developer.salesforce.com/page/Lightning_Experience_FAQ
23 SET UP A MY DOMAIN NAME: https://help.salesforce.com/articleView?id=domain_name_setup.htm&type=0

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-sf-app-custom
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-sf-app-custom
https://developer.salesforce.com/signup
https://developer.salesforce.com/signup
https://help.salesforce.com/articleView?id=domain_name_setup.htm&language=en_US&type=0
https://help.salesforce.com/articleView?id=domain_name_setup.htm&type=0

27 Bring-your-own-identity and Migrating Users

3. Under Choose Your Domain Name, type your domain name, for example “litware369b2c” in our

illustration.

4. Click Check Availability. If the domain name is unique, it will be available.

5. Click Register Domain. Please wait 5-10 minutes before proceeding to the next step. The custom

domain name you just registered requires some time to take effect.

Refresh the page. If you don’t see Authentication Configuration section, wait another minute and

try again.

6. Click Log in.

7. Click Open. A new tab opens.

28 Bring-your-own-identity and Migrating Users

8. Click I Don’t Want to Register My Phone. The tab closes.

9. Click Deploy to Users.

10. Click OK on the dialog box to confirm domain deployment.

29 Bring-your-own-identity and Migrating Users

11. You can now sign-in to https://litware369b2c-dev-ed.my.salesforce.com.

Setting up the identity provider in Salesforce

Proceed with the following steps:

1. In the left menu, under Settings, expand the Identity menu and then select Identity Provider.

2. Select Enable Identity Provider to enable Salesforce as an identity provider.

3. Select the default certificate from the list and then select Save.

30 Bring-your-own-identity and Migrating Users

Creating a Salesforce application in Salesforce

Proceed with the following steps:

1. On the Identity Provider page, select the Service Providers link Service Providers are now created

via Connected Apps. Click here. A New Connected App page opens.

2. Provide a connected app name, API name, and contact email.

3. Scroll down to the Web App Settings section and select Enable SAML.

4. In Entity Id, enter:

https://login.microsoftonline.com/te/<your_b2c_tenant>.onmicrosoft.com/<your_base_policy>B2C_1A_

TrustFrameworkBase

where your_b2c_tenant is the name of your B2C tenant, and your_base_policy the base policy the

custom policy being executed inherits from. For example, in our configuration:

https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_TrustFrameworkBase

5. In ACS URL, enter:

https://login.microsoftonline.com/te/<your_b2c_tenant>.onmicrosoft.com/<your_custom_policy>/SAM

LP/SSO/ASSERTIONCONSUMER

https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_TrustFrameworkBase

31 Bring-your-own-identity and Migrating Users

where your_b2c_tenant is the name of your B2C tenant, and your_custom_policy the custom policy

being executed. For example, in our configuration:

https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_Signup_Signin/SAMLP/S

SO/ASSERTIONCONSUMER

6. Leave the remaining fields at their default values, scroll down, and select Save.

7. On the overview page for the new app, select Manage.

8. Scroll down to the SAML Login Information section. Record the value for Metadata Discovery

Endpoint. For example, in our configuration:

https://litware369b2c-dev-ed.my.salesforce.com/.well-known/samlidp/B2C_Tenant.xml

9. Scroll down to the Profiles section, and then select Manage Profile.

10. Select the profile or group you want to federate with Azure AD B2C. Select System Administrator

so that you can federate with your account.

11. Click Save.

Generating a signing certificate for your B2C tenant

Requests sent to Salesforce need to be signed by your B2C tenant.

To generate a signing certificate, proceed with the following steps:

1. Open a PowerShell command prompt.

2. Run the following commands. Replace <your_b2c_tenant> with the name of your B2C tenant, for

example litware369b2c in our configuration, and provide a password for the certificate.

$tenantName = "<you_b2c_tenant>.onmicrosoft.com"
$pwdText = "<your_password here>"

$Cert = New-SelfSignedCertificate -CertStoreLocation Cert:\CurrentUser\My -DnsName
"SamlIdp.$tenantName" -Subject "B2C SAML Signing Cert" -HashAlgorithm SHA256 -KeySpec Signature -KeyLength 2048

$pwd = ConvertTo-SecureString -String $pwdText -Force -AsPlainText

Export-PfxCertificate -Cert $Cert -FilePath .\B2CSigningCert.pfx -Password $pwd

https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_Signup_Signin/SAMLP/SSO/ASSERTIONCONSUMER
https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/B2C_1A_Signup_Signin/SAMLP/SSO/ASSERTIONCONSUMER
https://litware369b2c-dev-ed.my.salesforce.com/.well-known/samlidp/B2C_Tenant.xml

32 Bring-your-own-identity and Migrating Users

Adding a SAML signing certificate to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, go to the Azure AD B2C blade, and then select Identity Experience Framework

- PREVIEW.

2. Select Policy Keys.

3. Select +Add.

4. In the Options list, select Upload.

33 Bring-your-own-identity and Migrating Users

5. Set the Name to “SAMLSigningCert”.

6. Upload the B2CSigningCert.pfx file you created in the in the previous procedure and provide the

password that you specified when you created the certificate.

7. Select Create.

8. When the key has been created, record the key full name, including the B2C_1A prefix (it should be

something like B2C_1A_SAMLSigningCert if you specified the Subject of the certificate exactly as

shown previously).

Updating custom policies

Define Salesforce as claim provider

To register Salesforce as claim provider in your custom policy files as follows, proceed with the following

steps:

1. Navigate to the SocialAndLocalAccounts folder in the “Starter Pack”.

2. Open the extension policy file, i.e. the TrustFrameworkExtensions.xml file, using an XML editor of

your choice, for instance Visual Studio (Code).

3. Scroll down to the ClaimsProviders section.

34 Bring-your-own-identity and Migrating Users

4. Add the following ClaimsProvider element to the list in the ClaimsProviders node.

<ClaimsProvider>

 <!--Domain value must be unique -->
 <Domain>your_Salesforce_domain</Domain>

 <DisplayName>Salesforce</DisplayName>
 <TechnicalProfiles>
 <!-- Technical profile Id will be used to refere this profile in other parts of Policy-->
 <TechnicalProfile Id="Salesforce-SAML2-outbound">
 <!-- Sign in button text-->
 <DisplayName>Salesforce</DisplayName>
 <Description>Login with your Salesforce account</Description>
 <!-- SalesForce use SAML 2.0 so make sure use SAML2 in the value -->
 <Protocol Name="SAML2"/>
 <Metadata>
 <Item Key="RequestsSigned">false</Item>
 <Item Key="WantsEncryptedAssertions">false</Item>
 <Item Key="WantsSignedAssertions">false</Item>

 <!-- Copy the endpoint url here from SalesForce app you have created in SalesForce from metadata section of App
 overview-->
 <Item Key="PartnerEntity">your_SalesForce_app_endpoint_uri</Item>

 </Metadata>
 <CryptographicKeys>
 <!--This is the key you have created in Azure AD B2C -> Identify Framework Experience->Policy Keys section --
>
 <Key Id="SamlAssertionSigning" StorageReferenceId="B2C_1A_SAMLSigningCert"/>
 <Key Id="SamlMessageSigning" StorageReferenceId="B2C_1A_SAMLSigningCert"/>
 </CryptographicKeys>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="socialIdpUserId" PartnerClaimType="userId"/>
 <OutputClaim ClaimTypeReferenceId="givenName" PartnerClaimType="given_name"/>
 <OutputClaim ClaimTypeReferenceId="surname" PartnerClaimType="family_name"/>
 <OutputClaim ClaimTypeReferenceId="email" PartnerClaimType="email"/>
 <OutputClaim ClaimTypeReferenceId="displayName" PartnerClaimType="username"/>
 <OutputClaim ClaimTypeReferenceId="authenticationSource" DefaultValue="externalIdp"/>
 <OutputClaim ClaimTypeReferenceId="identityProvider" DefaultValue="SAMLIdp" />
 </OutputClaims>
 <OutputClaimsTransformations>
 <OutputClaimsTransformation ReferenceId="CreateRandomUPNUserName"/>
 <OutputClaimsTransformation ReferenceId="CreateUserPrincipalName"/>
 <OutputClaimsTransformation ReferenceId="CreateAlternativeSecurityId"/>
 <OutputClaimsTransformation ReferenceId="CreateSubjectClaimFromAlternativeSecurityId"/>
 </OutputClaimsTransformations>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-Noop"/>
 </TechnicalProfile>
 </TechnicalProfiles>
</ClaimsProvider>

Note For more information, see section § Specifying a technical profile for a SAML 2.0 claims provider in the

sixth document of this series, along with the implementation notes for the technical profile if any.

5. In the Domain element, replace your_Salesforce_domain with the name of the domain you created

for your Salesforce developer account. For example, litware369 in our illustration.

6. In the PartnerEntity element, replace your_SalesForce_app_endpoint_uri with the Salesforce Metadata

Discovery Endpoint that you recorded earlier. For example, in our configuration:

https://litware369-dev-ed.my.salesforce.com/.well-known/samlidp/B2C_Tenant.xml

7. Save the XML file.

https://litware369-dev-ed.my.salesforce.com/.well-known/samlidp/B2C_Tenant.xml

35 Bring-your-own-identity and Migrating Users

Registering the Salesforce claims provider to the Sign-Up or Sign-In

(SUSI) user journey

To register the Salesforce claims provider to the Sign-Up or Sign-In (SUSI) user journey, proceed with the

following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element. If the element doesn't exist, add one (or uncomment it).

3. Copy the entire content of UserJourneys node from the TrustFrameworkBase.xml file as a child of

the UserJourneys element in the TrustFrameworkExtensions.xml file. If you already copied this

content, you can skip this step.

4. Find the UserJourney element with attribute value Id="SignUpOrSignIn".

5. Locate the OrchestrationStep element with attribute Order="1" value under this element.

6. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="SalesforceExchange" />

7. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="SalesforceExchange" TechnicalProfileReferenceId="Salesforce-SAML2-Outbound" />

8. Save the XML file.

Uploading the custom policy to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the TrustFrameworkExtensions.xml policy file

5. Click Upload and ensure that it does not fail the validation.

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Click the B2C_1A_signup_signin custom policy to see its detail view. A new blade opens.

36 Bring-your-own-identity and Migrating Users

3. Click Run now. The sign-in page should include the option to sign in with Salesforce.

4. You should be able to sign in using your Salesforce credentials.

37 Bring-your-own-identity and Migrating Users

Enter your Salesforce credential and clock Log In.

5. Complete the sign-up process and click Continue. The received claims are rendered by the

https://jwt.ms website. You can see the IdP claim set to SAMLIdP.

Configuring password complexity for local accounts

Azure AD B2C uses by default strong passwords for local accounts. However, the custom policies support

changing the complexity requirements for passwords supplied by an end user when creating an account.

This is done at the custom policy level. As such, in other words, it is possible to have one custom policy

https://jwt.ms/

38 Bring-your-own-identity and Migrating Users

require a four-digit pin during sign-up while another custom policy requires an eight-character string during

sign-up. For example, you may use a policy with different password complexity for adults than for children.

If you’re not interested in this use case, you can skip this entire section and jump to the next part.

This section shows how to configure the password complexity.

Note For more information, see article CONFIGURE PASSWORD COMPLEXITY IN B2C WITH CUSTOM POLICIES24.

To do so, you will have to:

1. Update the custom policy to configure the password complexity.

2. Upload the custom policy.

3. Test the custom policy using Run Now.

The next sections detail the above.

Updating the custom policy

To configure password complexity in custom policy, proceed with the following steps:

1. Navigate to the SocialAndLocalAccounts folder in the “Starter Pack”.

2. Open the Sign-Up or Sign-In (SUSI) relying party (RP) policy file, i.e. the SignUpOrSignIn.xml file,

using an XML editor of your choice, for instance Visual Studio (Code).

3. Between the </BasePolicy> and the <RelyingParty> elements, add the following XML snippet.

<BuildingBlocks>
 <ClaimsSchema>
 <ClaimType Id="newPassword">
 <InputValidationReference Id="PasswordValidation" />
 </ClaimType>
 <ClaimType Id="reenterPassword">
 <InputValidationReference Id="PasswordValidation" />
 </ClaimType>
 </ClaimsSchema>
 <Predicates>
 <Predicate Id="Lowercase" Method="MatchesRegex" HelpText="a lowercase">
 <Parameters>
 <Parameter Id="RegularExpression">[a-z]</Parameter>
 </Parameters>
 </Predicate>
 <Predicate Id="Uppercase" Method="MatchesRegex" HelpText="an uppercase">
 <Parameters>
 <Parameter Id="RegularExpression">[A-Z]</Parameter>
 </Parameters>
 </Predicate>
 <Predicate Id="Number" Method="MatchesRegex" HelpText="a number">
 <Parameters>
 <Parameter Id="RegularExpression">[0-9]</Parameter>
 </Parameters>
 </Predicate>
 <Predicate Id="Symbol" Method="MatchesRegex" HelpText="a symbol">
 <Parameters>
 <Parameter Id="RegularExpression">[!@#$%^*()]</Parameter>
 </Parameters>
 </Predicate>
 <Predicate Id="Length" Method="IsLengthRange" HelpText="The password must be between 8 and 16 characters.">
 <Parameters>
 <Parameter Id="Minimum">8</Parameter>
 <Parameter Id="Maximum">16</Parameter>
 </Parameters>

24 CONFIGURE PASSWORD COMPLEXITY IN B2C WITH CUSTOM POLICIES: https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-

directory-b2c-reference-password-complexity-custom

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-password-complexity-custom

39 Bring-your-own-identity and Migrating Users

 </Predicate>
 </Predicates>
 <InputValidations>
 <InputValidation Id="PasswordValidation">
 <PredicateReferences Id="LengthGroup" MatchAtLeast="1">
 <PredicateReference Id="Length" />
 </PredicateReferences>
 <PredicateReferences Id="3of4" MatchAtLeast="3"
 HelpText="You must have at least 3 of the following character classes:">
 <PredicateReference Id="Lowercase" />
 <PredicateReference Id="Uppercase" />
 <PredicateReference Id="Number" />
 <PredicateReference Id="Symbol" />
 </PredicateReferences>
 </InputValidation>
 </InputValidations>
</BuildingBlocks>

The above XML snippet defines an input validation rule for strong passwords. This rule validates that

a password is 8 to 16 characters and contains 3 of 4 of numbers, uppercase, lowercase, or symbols.

For that purpose, it adds, inside the BuildingBlocks node, Predicates, InputValidations, and

ClaimsSchema elements to the policy. The purpose of these elements is as follows:

• The Predicates element has a series of Predicate elements, each of them defining a basic

string validation check that returns true or false.

• The InputValidations element has one or more InputValidation elements.

Each InputValidation is constructed by using a series of Predicate elements. This element

allows you to perform boolean aggregations (similar to and and or).

• The ClaimsSchema defines which claim is being validated. It then defines

which InputValidation rule is used to validate that claim.

As far as the latter is concerned, the above claim types newPassword and reenterPassword are

considered special, so do not change the names. The UI validates the user correctly reentered their

password during account creation based on these ClaimType elements. The same ClaimType

elements are found in the B2C_1A_TrustFrameworkBase policy from which inherits this policy.

These elements’ definitions are here overridden to define an InputValidationReference element. The

ID attribute of this new element is pointing to the InputValidation element that we define at the end

of the XML snippet.

An InputValidation element is an aggregation of PredicateReferences. Each PredicateReferences must

be true in order for the InputValidation to succeed. However, inside the PredicateReferences element

use an attribute called MatchAtLeast to specify how many PredicateReference checks must return

true. Optionally, define a HelpText attribute to override the error message defined in the Predicate

elements that it references.

Eventually, the InputValidation element is referenced in ClaimType elements, here newPassword

and reenterPassword. Therefore, this above rule is being enforced in this custom policy.

4. Save the XML file.

Uploading the custom policy to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

40 Bring-your-own-identity and Migrating Users

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the SignUpOrSignIn.xml policy file

5. Click Upload and ensure that it does not fail the validation.

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Click the B2C_1A_signup_signin custom policy to see its detail view. A new blade opens.

3. Click Run now.

4. Click Sign up now.

5. Click Send verification code.

6. Enter the received code in the Verification code and click Verify Code.

41 Bring-your-own-identity and Migrating Users

7. Select New Password.

The expected input validation is in place. Type a password. As the specified password respects the

predicates, these are erased from the above message in red.

42 Bring-your-own-identity and Migrating Users

Bringing your own identity (BYOI) for

social users
This section illustrates how to use in a non-exhaustive manner popular external social identity providers

(IdPs) to integrate with Azure AD B2C in order to “Bring Your Own Identity” (BYOI) for social user to help

you:

• Collecting additional scopes from Facebook.

• Integrating Google+ as a claims provider.

• Integrating Amazon as a claims provider.

• Integrating LinkedIn as a claims provider.

• Integrating Microsoft Account (MSA) as a claims provider.

• Integrating Twitter as a claims provider.

• Pre-filling a request with a domain hint.

The following subsections depicts the related configuration for your B2C tenant and your custom policies

based on the “Starter Pack”. They assume that you followed the instructions provided in the second

document of this series to setup and configure the “Starter Pack”.

Collecting additional scopes from Facebook

The second document of this series provides instructions on how to declare Facebook as a social identity

provider in your B2C tenant and how to use it with the custom policies that comes with the “Starter Pack”.

At this stage, Facebook should be already configured in your B2C tenant as a social identity provider.

This section shows you how to collect additional scopes from Facebook. If you’re not interested in this

use case, you can skip this entire section and jump to the next one.

To do so, you will have to:

1. Review the available scopes from Facebook.

2. Update the technical profile of the Facebook claims provider and the user journey(s) in custom

policies to include the additional scopes.

3. Upload custom policies.

4. Test the custom policy using Run Now.

The next sections detail the above.

Reviewing the available scope from Facebook

You can leverage the Graph API Explorer tool from Facebook to see and query the available scope.

43 Bring-your-own-identity and Migrating Users

Proceed with the following steps:

1. Open a browsing session, navigate to https://developers.facebook.com/tools/explorer/ and then

click Log In to sign-in with your Facebook account.

2. Click Get Token and then Get User Access Token to obtain a suitable access token. A Select

Permissions dialog pops up.

a. Select the required User Data Permissions based on the information you’d like to retrieve.

b. Click Get Access Token.

3. Enter your query, for example “me?fields=id,first_name,last_name,name,email,picture” in our

illustration and click Submit.

For the sake of the illustration, we are interested in retrieving the URL of the user picture in

addition to the other fields already configured in the Facebook claims provider.

https://developers.facebook.com/tools/explorer/

44 Bring-your-own-identity and Migrating Users

Updating custom policies

As per the second document in this series, Facebook is already defined in the custom policy as a claims

provider with an associated technical profile. This technical profile is named Facebook-OAUTH hereafter.

To obtain additional scopes, proceed with the following steps:

1. Navigate to the SocialAndLocalAccounts folder in the “Starter Pack”.

2. Open the extension policy file, i.e. the TrustFrameworkExtensions.xml file, using an XML editor of

your choice, for instance Visual Studio (Code).

3. Scroll down to the BuildingBlocks section.

4. Add the following XML snippet within the node.

<BuildingBlocks>

 <ClaimsSchema>
 <ClaimType Id="picture">
 <DisplayName>Picture</DisplayName>
 <DataType>string</DataType>
 </ClaimType>
 </ClaimsSchema>

</BuildingBlocks>

5. Scroll down to the ClaimsProviders section.

6. Locate the ClaimsProvider element in the ClaimsProviders node whose display name is Facebook.

45 Bring-your-own-identity and Migrating Users

7. Add both the picture field to the "ClaimsEndpoint" metadata item and the picture output claim to

the Facebook-OAUTH technical profile as illustrated

<!-- Facebook claims provider -->
<ClaimsProvider>
 <DisplayName>Facebook</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="Facebook-OAUTH">
 <Metadata>
 <Item Key="client_id">462526187284464</Item>
 <Item Key="scope">email public_profile</Item>

 <Item
Key="ClaimsEndpoint">https://graph.facebook.com/me?fields=id,first_name,last_name,name,email,philber</Item>

 </Metadata>

 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="picture" PartnerClaimType="picture" />
 </OutputClaims>

 </TechnicalProfile>
 </TechnicalProfiles>
</ClaimsProvider>

Note For more information, see section § Specifying a technical profile for an OAuth 2.0 claims provider in

the sixth document of this series, along with the implementation notes for the technical profile if any.

8. Save the XML file.

9. Now open the Sign-Up or Sign-In (SUSI) relying party (RP) policy file, i.e. the SignUpOrSignIn.xml

file.

10. Scroll down to the TechnicalProfile element of the RelyingParty node.

11. Add the following XML snippet within the OutputClaims node.

<OutputClaim ClaimTypeReferenceId="picture" />

The RelyingParty node should be as follows:

<RelyingParty>
 <DefaultUserJourney ReferenceId="SignUpOrSignIn" />
 <TechnicalProfile Id="PolicyProfile">
 <DisplayName>PolicyProfile</DisplayName>
 <Protocol Name="OpenIdConnect" />
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="displayName" />
 <OutputClaim ClaimTypeReferenceId="givenName" />
 <OutputClaim ClaimTypeReferenceId="surname" />
 <OutputClaim ClaimTypeReferenceId="email" />

 <OutputClaim ClaimTypeReferenceId="picture" />

 <OutputClaim ClaimTypeReferenceId="objectId" PartnerClaimType="sub" />
 <OutputClaim ClaimTypeReferenceId="identityProvider" />
 </OutputClaims>
 <SubjectNamingInfo ClaimType="sub" />
 </TechnicalProfile>
</RelyingParty>

12. Save the XML file.

46 Bring-your-own-identity and Migrating Users

Uploading custom policies to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the TrustFrameworkExtensions.xml policy file

5. Click Upload and ensure that it does not fail the validation.

6. Repeat the above steps with the SignUpOrSignIn.xml policy file.

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

47 Bring-your-own-identity and Migrating Users

2. Click the B2C_1A_signup_signin custom policy to see its detail view. A new blade opens.

3. Click Run now.

The sign-in page should include the option to sign in with Facebook. You should be able to sign in using

your Facebook account and retrieve in the issued token the picture information.

The next sections cover how to leverage the most common social identity providers for your identity use

cases.

48 Bring-your-own-identity and Migrating Users

Integrating Google+ as a claims provider

This section shows you, in this use case, how to configure Google+ as a claims provider in your B2C tenant.

Note For more information, see article AZURE ACTIVE DIRECTORY B2C: ADD GOOGLE+ AS AN OAUTH2 IDENTITY

PROVIDER USING CUSTOM POLICIES25.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

To do so, you will have to:

1. Create a Google+ application and supply it with the right parameters.

2. Add the Google+ application key in your B2C tenant.

3. Update the custom policy to configure Google+ as a claims provider in the intended user journey(s).

4. Upload the custom policy.

5. Test the custom policy using Run Now.

The next sections detail the above.

Creating a Google+ application

To create a Google+ application and add its details to your B2C tenant, you can follow and complete all the

required instructions in the article AZURE ACTIVE DIRECTORY B2C: PROVIDE SIGN-UP AND SIGN-IN TO CONSUMERS WITH

GOOGLE+ ACCOUNTS26.

You will need a Google+ account to perform the described steps. If you don’t have one, you can get it at

https://accounts.google.com/SignUp?hl=en.

To illustrate the core principles that pertain to the integration of any OAuth 2.0 based identity provider, we

cover hereafter the declaration of your B2C tenant as an application in this social identity provider.

Proceed with the following steps:

1. Open a browsing session and navigate to the Google Developer Console at

https://console.developers.google.com/.

2. Sign in to your Google+ account.

3. Select Select project, then and Create.

4. Enter a project name, for example “Litware369B2CGooglePlus”, and then click Create.

5. When the project has been created, select the Litware369B2CGooglePlus project from project

menu.

6. In the left-hand menu, select API & Services, and then Credentials.

25 AZURE ACTIVE DIRECTORY B2C: ADD GOOGLE+ AS AN OAUTH2 IDENTITY PROVIDER USING CUSTOM POLICIES: https://docs.microsoft.com/en-

us/azure/active-directory-b2c/active-directory-b2c-custom-setup-goog-idp
26 AZURE ACTIVE DIRECTORY B2C: PROVIDE SIGN-UP AND SIGN-IN TO CONSUMERS WITH GOOGLE+ ACCOUNTS: https://docs.microsoft.com/en-

us/azure/active-directory-b2c/active-directory-b2c-setup-goog-app

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-setup-goog-idp
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-setup-goog-idp
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-goog-app
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-goog-app
https://console.developers.google.com/
https://console.developers.google.com/
https://console.developers.google.com/

49 Bring-your-own-identity and Migrating Users

7. Select Create credentials, and then OAuth client ID.

8. Click Configure consent screen.

a. in Email address, provide your email address,

b. In Product name shown to users, enter a product name.

c. Select Save.

9. A list of options shows up.

50 Bring-your-own-identity and Migrating Users

Select Web Application.

10. Configure the Web application for your B2C tenant:

a. In Name, enter “Azure AD B2C client”.

b. In Authorized JavaScript Origins, enter “https://login.microsoftonline.com”.

c. In Authorized Redirect URIs, use

https://login.microsoftonline.com/te/<your_b2c_tenant>.onmicrosoft.com/oauth2/authresp

where your_b2c_tenant the name of your B2C tenant, for example:

 https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/oauth2/authresp

d. Click Create.

11. Record both the client ID and client secret; you will need them later to configure Google+ as a

social identity provider in your B2C tenant (see next section and section § Defining Google+ as a

claim provider). They will be respectively referred as to the “YourAppIDValue” and

“YourAppSecretValue” values.

Adding the Google+ application key in your B2C tenant

Federation with Google+ accounts requires a client secret for Google+ to trust Azure AD B2C on behalf of

the above application. This secret, i.e. the above “YourAppSecretValue” value need to be stored in your B2C

tenant.

Proceed with the following steps:

11. Log in to the Azure portal as an account with administrative privileges in your Azure tenant, and

then switch to your B2C tenant, for example litware369b2.onmicrosoft.com in our illustration.

12. Select All services, type “Azure AD B2C” in the search field, and then select Azure AD B2C.

13. Select Identity Framework Experience - PREVIEW.

14. Select Policy Keys from left menu.

15. Select +Add.

https://login.microsoftonline.com/te/litware369b2c.onmicrosoft.com/oauth2/authresp

51 Bring-your-own-identity and Migrating Users

16. For Options, select Manual.

17. For Key usage, leave Signature selected.

18. In Name, enter “GoogleSecret”.

19. In Secret, enter the Google app secret key you recorded earlier, i.e. the above “YourAppSecretValue”

value.

20. Select Create.

Once the operation complete, a key B2C_1A_GoogleSecret should be created and listed.

Updating the custom policy

In lieu of the below steps, you can use the sample policy files under the folder scenarios\aadb2c-ief-setup-

google-app of the “Starter Pack” for enabling a Google+ application as an identity provider (IdP) in your B2C

tenant.

Defining Google+ as a claim provider

To sign in by using Google+ account, you need to define Google+ as a claims provider in your B2C tenant.

In other words, you need to specify an endpoint that Azure AD B2C communicates with. The endpoint

provides a set of claims that are used by Azure AD B2C to verify that a specific user has authenticated.

It’s time to define Google+ as a claims provider with an associated technical profile. This technical profile is

named Google-OAUTH hereafter.

52 Bring-your-own-identity and Migrating Users

Proceed with the following steps:

1. Navigate to the SocialAndLocalAccounts folder in the “Starter Pack”.

2. Open the extension policy file, i.e. the TrustFrameworkExtensions.xml file, using an XML editor of

your choice, for instance Visual Studio (Code).

3. Scroll down to the ClaimsProviders section.

4. Add the following ClaimsProvider element to the list in the ClaimsProviders node. Replace

your_Google+_client_id with the client ID of your Google+ application, i.e. the above the

“YourAppIDValue” value.

<!-- Google+ claims provider -->
<ClaimsProvider>
 <Domain>google.com</Domain>
 <DisplayName>Google</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="Google-OAUTH">
 <DisplayName>Google</DisplayName>
 <Protocol Name="OAuth2" />
 <Metadata>
 <Item Key="ProviderName">google</Item>
 <Item Key="authorization_endpoint">https://accounts.google.com/o/oauth2/auth</Item>
 <Item Key="AccessTokenEndpoint">https://accounts.google.com/o/oauth2/token</Item>
 <Item Key="ClaimsEndpoint">https://www.googleapis.com/oauth2/v1/userinfo</Item>
 <Item Key="scope">email</Item>
 <Item Key="HttpBinding">POST</Item>
 <Item Key="UsePolicyInRedirectUri">0</Item>

 <Item Key="client_id">your_Google+_client_id</Item>

 </Metadata>
 <CryptographicKeys>
 <Key Id="client_secret" StorageReferenceId="B2C_1A_GoogleSecret" />
 </CryptographicKeys>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="socialIdpUserId" PartnerClaimType="id" />
 <OutputClaim ClaimTypeReferenceId="email" PartnerClaimType="email" />
 <OutputClaim ClaimTypeReferenceId="givenName" PartnerClaimType="given_name" />
 <OutputClaim ClaimTypeReferenceId="surname" PartnerClaimType="family_name" />
 <OutputClaim ClaimTypeReferenceId="displayName" PartnerClaimType="name" />
 <OutputClaim ClaimTypeReferenceId="identityProvider" DefaultValue="google.com" />
 <OutputClaim ClaimTypeReferenceId="authenticationSource" DefaultValue="socialIdpAuthentication" />
 </OutputClaims>
 <OutputClaimsTransformations>
 <OutputClaimsTransformation ReferenceId="CreateRandomUPNUserName" />
 <OutputClaimsTransformation ReferenceId="CreateUserPrincipalName" />
 <OutputClaimsTransformation ReferenceId="CreateAlternativeSecurityId" />
 <OutputClaimsTransformation ReferenceId="CreateSubjectClaimFromAlternativeSecurityId" />
 </OutputClaimsTransformations>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-SocialLogin" />
 <ErrorHandlers>
 <ErrorHandler>
 <ErrorResponseFormat>json</ErrorResponseFormat>
 <ResponseMatch>$[?(@.error == 'invalid_grant')]</ResponseMatch>
 <Action>Reauthenticate</Action>
 <!--In case of authroziation code used error, we don't want the user to select his account again.-->
 <!--AdditionalRequestParameters Key="prompt">select_account</AdditionalRequestParameters-->
 </ErrorHandler>
 </ErrorHandlers>
 </TechnicalProfile>
 </TechnicalProfiles>
</ClaimsProvider>

53 Bring-your-own-identity and Migrating Users

Note For more information, see section § Specifying a technical profile for an OAuth 2.0 claims provider in

the sixth document of this series, along with the implementation notes for the technical profile if any.

In addition, federation with Google+ requires a client secret for Google+ to trust Azure AD B2C on

behalf of the application. The above XML code snippet already references the same Google secret

named B2C_1A_GoogleSecret that was created through the B2C blade of the Azure portal if you

have followed the procedure outlined in the previous section.

5. Save the XML file.

Registering the Google+ claims provider to the Sign-Up or Sign-In

(SUSI) user journey

To register the Google+ claims provider to the Sign-Up or Sign-In (SUSI) user journey, proceed with the

following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element. If the element doesn't exist, add one (or uncomment it).

3. Copy the entire content of UserJourneys node from the TrustFrameworkBase.xml file as a child of

the UserJourneys element in the TrustFrameworkExtensions.xml file. If you already copied this

content, you can skip this step.

4. Find the UserJourney element with attribute value Id="SignUpOrSignIn".

5. Locate the OrchestrationStep element with attribute Order="1" value under this element.

6. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="GoogleExchange" />

7. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="GoogleExchange" TechnicalProfileReferenceId="Google-OAUTH" />

8. Save the XML file.

Registering the Google+ claims provider to the Profile Edit user journey

(Optional)

To register the Google+ claims provider to the Profile Edit user journey, proceed with the following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element, and then find the UserJourney element with attribute value

Id="ProfileEdit".

3. Locate the OrchestrationStep element with attribute Order="1" value under this element.

4. Add the following XML snippet under the ClaimsProviderSelections node:

54 Bring-your-own-identity and Migrating Users

<ClaimsProviderSelection TargetClaimsExchangeId="GoogleExchange" />

5. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="GoogleExchange" TechnicalProfileReferenceId="Google-OAUTH" />

6. Save the XML file.

Uploading the custom policy to your B2C tenant

Proceed with the following steps:

6. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

7. Select Upload Policy.

8. Check Overwrite the policy if it exists.

9. In Upload policy, select the TrustFrameworkExtensions.xml policy file

10. Click Upload and ensure that it does not fail the validation.

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Click the B2C_1A_signup_signin custom policy to see its detail view. A new blade opens.

55 Bring-your-own-identity and Migrating Users

3. Click Run now.

4. The sign-in page should include the option to sign in with Google+. You should be able to sign in

using your Google+ account.

Integrating Amazon as a claims provider

This section shows you how to configure Amazon as a claims provider in your B2C tenant.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

To do so, you will have to:

1. Create an Amazon application and supply it with the right parameters.

2. Add the Amazon application key in your B2C tenant.

3. Update the custom policy to configure Amazon as a claims provider in the intended user journey(s).

4. Upload the custom policy.

5. Test the custom policy using Run Now.

The next sections detail the above.

Creating an Amazon application

The article AZURE ACTIVE DIRECTORY B2C: PROVIDE SIGN-UP AND SIGN-IN TO CONSUMERS WITH AMAZON ACCOUNTS27

provides all the required instructions for creating the Amazon application:

27 AZURE ACTIVE DIRECTORY B2C: PROVIDE SIGN-UP AND SIGN-IN TO CONSUMERS WITH AMAZON ACCOUNTS: https://docs.microsoft.com/en-

us/azure/active-directory-b2c/active-directory-b2c-setup-amzn-app

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-amzn-app

56 Bring-your-own-identity and Migrating Users

• You will need an Amazon account to perform the described steps. If you don’t have one, you can

get it at https://www.amazon.com/.

• Eventually, you will need the value of both Client ID and Client Secret to configure Amazon as a

social identity provider in your B2C tenant. Note down these values that will be in the next section

respectively referred as to the “YourClientIDValue” and “YourClientSecretValue” values.

Adding the Amazon application key in your B2C tenant

Federation with Amazon accounts requires a client secret for Amazon to trust Azure AD B2C on behalf of

the above application. This secret, i.e. the above “YourAppSecretValue” value need to be stored in your B2C

tenant.

Proceed with the following steps:

1. Log in to the Azure portal as an account with administrative privileges in your Azure tenant, and

then switch to your B2C tenant, for example litware369b2.onmicrosoft.com in our illustration.

2. Select All services, type Azure AD BC in the search field, and then select Azure AD B2C.

3. Select Identity Framework Experience - PREVIEW.

4. Select Policy Keys from left menu.

5. Select +Add.

6. For Options, select Manual.

7. For Key usage, leave Signature selected.

8. In Name, enter “AmazonSecret”.

https://www.amazon.com/

57 Bring-your-own-identity and Migrating Users

9. In Secret, enter the Amazon app secret key you recorded earlier, i.e. the above “YourAppSecretValue”

value.

10. Select Create.

Once the operation complete, a key B2C_1A_AmazonSecret should be created and listed.

Updating the custom policy

In lieu of the below steps, you can use (the content of) the sample policy file Sample-Amazon-OAuth2-

TrustFrameworkExtensions.xml that is provided under the folder scenarios\aadb2c-ief-setup-amzn-app of the

“Starter Pack” for enabling an Amazon application as an Identity Provider in your B2C tenant.

Defining Amazon as a claim provider

You will need at this stage to configure a claims provider for Amazon and reflect in its definition the above

values.

58 Bring-your-own-identity and Migrating Users

As before, we continue to leverage the B2C_1A_TrustFrameworkExtensions.xml custom policy file of the

SocialAndLocalAccounts core template of the “Starter Pack” to provide a core definition for Amazon as a

claims provider with an associated technical profile. This technical profile is named Amazon-OAUTH

hereafter.

<!-- Amazon claims provider -->
<ClaimsProvider>
 <Domain>amazon.com</Domain>
 <DisplayName>Amazon</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="Amazon-OAUTH">
 <DisplayName>Amazon</DisplayName>
 <Protocol Name="OAuth2" />
 <Metadata>
 <Item Key="ProviderName">amazon</Item>
 <Item Key="authorization_endpoint">https://www.amazon.com/ap/oa</Item>
 <Item Key="AccessTokenEndpoint">https://api.amazon.com/auth/o2/token</Item>
 <Item Key="ClaimsEndpoint">https://api.amazon.com/user/profile</Item>
 <Item Key="scope">profile</Item>
 <Item Key="HttpBinding">POST</Item>
 <Item Key="UsePolicyInRedirectUri">0</Item>

 <Item Key="client_id">your_Amazon_client_id</Item>

 </Metadata>
 <CryptographicKeys>
 <Key Id="client_secret" StorageReferenceId="B2C_1A_AmazonSecret" />
 </CryptographicKeys>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="socialIdpUserId" PartnerClaimType="user_id" />
 <OutputClaim ClaimTypeReferenceId="email" PartnerClaimType="email" />
 <OutputClaim ClaimTypeReferenceId="displayName" PartnerClaimType="name" />
 <OutputClaim ClaimTypeReferenceId="identityProvider" DefaultValue="amazon.com" />
 <OutputClaim ClaimTypeReferenceId="authenticationSource" DefaultValue="socialIdpAuthentication" />
 </OutputClaims>
 <OutputClaimsTransformations>
 <OutputClaimsTransformation ReferenceId="CreateRandomUPNUserName" />
 <OutputClaimsTransformation ReferenceId="CreateUserPrincipalName" />
 <OutputClaimsTransformation ReferenceId="CreateAlternativeSecurityId" />
 <OutputClaimsTransformation ReferenceId="CreateSubjectClaimFromAlternativeSecurityId" />
 </OutputClaimsTransformations>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-SocialLogin" />
 </TechnicalProfile>
 </TechnicalProfiles>
</ClaimsProvider>

Note For more information, see section § Specifying a technical profile for an OAuth 2.0 claims provider in

the sixth document of this series, along with the implementation notes for the technical profile if any.

You simply need to slightly modify the above XML code snippet to reflect in it the information that pertains

to the Amazon application created in the previous section. Replace your_Amazon_client_id with the client

ID of your Amazon application, i.e. the above the “YourAppIDValue” value.

In addition, federation with Amazon requires a client secret for Amazon to trust Azure AD B2C on behalf of

the application. The above XML code snippet already references the same Amazon secret named

B2C_1A_AmazonSecret that was created through the B2C blade of the Azure portal if you have followed

the procedure outlined in the previous section.

59 Bring-your-own-identity and Migrating Users

Registering the Amazon claims provider to the Sign-Up or Sign-In

(SUSI) user journey

At this stage, Amazon has been set up as a claims provider but it’s not available in any user journey. To make

it available, we need to create a duplicate of an existing user journey template and to add the Amazon claims

provider in it.

To register the Amazon claims provider to the Sign-Up or Sign-In (SUSI) user journey, proceed with the

following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element. If the element doesn't exist, add one (or uncomment it).

3. Copy the entire content of UserJourneys node from the TrustFrameworkBase.xml file as a child of

the UserJourneys element in the TrustFrameworkExtensions.xml file. If you already copied this

content, you can skip this step.

4. Find the UserJourney element with attribute value Id="SignUpOrSignIn".

5. Locate the OrchestrationStep element with attribute Order="1" value under this element.

6. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="AmazonExchange" />

7. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="AmazonExchange" TechnicalProfileReferenceId="Amazon-OAUTH" />

8. Save the XML file.

Registering the Amazon claims provider to the Profile Edit user journey

(Optional)

To register the Amazon claims provider to the Profile Edit user journey, proceed with the following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element, and then find the UserJourney element with attribute value

Id="ProfileEdit".

3. Locate the OrchestrationStep element with attribute Order="1" value under this element.

4. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="AmazonExchange" />

60 Bring-your-own-identity and Migrating Users

5. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="AmazonExchange" TechnicalProfileReferenceId="Amazon-OAUTH" />

6. Save the XML file.

Uploading the custom policy to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the TrustFrameworkExtensions.xml policy file

5. Click Upload and ensure that it does not fail the validation.

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Click the B2C_1A_signup_signin custom policy to see its detail view. (You can alternatively select

the B2C_1A_ProfileEdit custom policy if you also modified above the Profile Edit user journey.) A

new blade opens.

61 Bring-your-own-identity and Migrating Users

3. Click Run now.

The sign-in page should include the option to sign in with Amazon. You should be able to sign in using

your Amazon account.

Integrating LinkedIn as a claims provider

This section shows you, in this use case, how to configure LinkedIn as a social identity provider in your B2C

tenant.

Note For more information, see article AZURE ACTIVE DIRECTORY B2C: ADD LINKEDIN AS AN IDENTITY PROVIDER BY

USING CUSTOM POLICIES28.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

To do so, you will have to:

1. Create a LinkedIn application and supply it with the right parameters.

2. Add the LinkedIn application key in your B2C tenant.

3. Update the custom policy to configure LinkedIn as a claims provider in the intended user journey(s).

4. Upload the custom policy.

5. Test the custom policy using Run Now.

The next sections detail the above.

Creating a LinkedIn application

The article AZURE ACTIVE DIRECTORY B2C: PROVIDE SIGN-UP AND SIGN-IN TO CONSUMERS WITH LINKEDIN ACCOUNTS29

provides all the required instructions for creating the LinkedIn application:

• You will need a LinkedIn account to perform the described steps. If you don’t have one, you can get

it at https://www.linkedin.com/.

• Eventually, you will need the value of both Client ID and Client Secret to configure LinkedIn as a

social identity provider in your B2C tenant. Note down these values that will be later respectively

referred as to the “YourClientIDValue” and “YourClientSecretValue” values.

Adding the LinkedIn application key in your B2C tenant

Federation with LinkedIn accounts requires a client secret for LinkedIn to trust Azure AD B2C on behalf of

the above application. This secret, i.e. the above “YourAppSecretValue” value need to be stored in your B2C

tenant.

Proceed with the following steps:

1. Log in to the Azure portal as an account with administrative privileges in your Azure tenant, and

then switch to your B2C tenant, for example litware369b2.onmicrosoft.com in our illustration.

28 AZURE ACTIVE DIRECTORY B2C: ADD LINKEDIN AS AN IDENTITY PROVIDER BY USING CUSTOM POLICIES: https://docs.microsoft.com/en-

us/azure/active-directory-b2c/active-directory-b2c-custom-setup-li-idp
29 AZURE ACTIVE DIRECTORY B2C: PROVIDE SIGN-UP AND SIGN-IN TO CONSUMERS WITH LINKEDIN ACCOUNTS: https://docs.microsoft.com/en-

us/azure/active-directory-b2c/active-directory-b2c-setup-li-app

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-setup-li-idp
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-setup-li-idp
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-li-app
https://www.linkedin.com/

62 Bring-your-own-identity and Migrating Users

2. Select All services, type Azure AD BC in the search field, and then select Azure AD B2C.

3. Select Identity Framework Experience - PREVIEW.

4. Select Policy Keys from left menu.

5. Select +Add.

6. For Options, select Manual.

7. For Key usage, select Signature.

8. In Name, enter “LinkedInSecret”.

9. In Secret, enter the LinkedIn app secret key you recorded earlier, i.e. the above

“YourAppSecretValue” value.

10. Select Create.

Once the operation complete, a key B2C_1A_LinkedInSecret should be created and listed.

Updating the custom policy

Based on the outcome of the previous section, the configuration for LinkedIn as a claims provider in your

custom policy is straightforward as a simple two steps process. This twofold process can be described as

follows:

1. Add LinkedIn as a claims provider in the B2C_1A_TrustFrameworkExtensions.xml custom policy file

that comes along with the core templates of the “Starter Pack”.

2. Use LinkedIn as a claims provider in an (existing) user journey.

The next sections detail the above.

In lieu of the below steps, you can use the sample policy file Sample-LinkdIn-OAuth2-

TrustFrameworkExtensions.xml under the folder scenarios\aadb2c-ief-setup-li-app of the “Starter Pack” for

enabling a LinkedIn application as an identity provider (IdP) in your B2C tenant.

Defining LinkedIn as a claim provider

You will need at this stage to configure a claims provider for LinkedIn and reflect in its definition the above

values.

As before, we continue to leverage the B2C_1A_TrustFrameworkExtensions.xml custom policy file of the

SocialAndLocalAccounts core template of the “Starter Pack” to provide a core definition for LinkedIn as a

claims provider with an associated technical profile. This technical profile is named LinkedIn-OAUTH

hereafter.

<!-- LinkedIn claims provider -->
<ClaimsProvider>
 <Domain>linkedin.com</Domain>
 <DisplayName>LinkedIn</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="LinkedIn-OAUTH">
 <DisplayName>LinkedIn</DisplayName>
 <Protocol Name="OAuth2" />
 <Metadata>
 <Item Key="ProviderName">linkedin</Item>
 <Item Key="authorization_endpoint">https://www.linkedin.com/oauth/v2/authorization</Item>
 <Item Key="AccessTokenEndpoint">https://www.linkedin.com/oauth/v2/accessToken</Item>
 <Item Key="ClaimsEndpoint">https://api.linkedin.com/v1/people/~:(id,first-name,last-name,email-
address,headline)</Item>

63 Bring-your-own-identity and Migrating Users

 <Item Key="ClaimsEndpointAccessTokenName">oauth2_access_token</Item>
 <Item Key="ClaimsEndpointFormatName">format</Item>
 <Item Key="ClaimsEndpointFormat">json</Item>
 <Item Key="scope">r_emailaddress r_basicprofile</Item>
 <Item Key="HttpBinding">POST</Item>
 <Item Key="UsePolicyInRedirectUri">0</Item>

 <Item Key="client_id">your_LinkedIn_client_id</Item>

 </Metadata>
 <CryptographicKeys>
 <Key Id="client_secret" StorageReferenceId="B2C_1A_LinkedInSecret" />
 </CryptographicKeys>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="socialIdpUserId" PartnerClaimType="id" />
 <OutputClaim ClaimTypeReferenceId="givenName" PartnerClaimType="firstName" />
 <OutputClaim ClaimTypeReferenceId="surname" PartnerClaimType="lastName" />
 <OutputClaim ClaimTypeReferenceId="email" PartnerClaimType="emailAddress" />
 <!--<OutputClaim ClaimTypeReferenceId="jobTitle" PartnerClaimType="headline" />-->
 <OutputClaim ClaimTypeReferenceId="identityProvider" DefaultValue="linkedin.com" />
 <OutputClaim ClaimTypeReferenceId="authenticationSource" DefaultValue="socialIdpAuthentication" />
 </OutputClaims>
 <OutputClaimsTransformations>
 <OutputClaimsTransformation ReferenceId="CreateRandomUPNUserName" />
 <OutputClaimsTransformation ReferenceId="CreateUserPrincipalName" />
 <OutputClaimsTransformation ReferenceId="CreateAlternativeSecurityId" />
 <OutputClaimsTransformation ReferenceId="CreateSubjectClaimFromAlternativeSecurityId" />
 </OutputClaimsTransformations>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-SocialLogin" />
 </TechnicalProfile>
 </TechnicalProfiles>
</ClaimsProvider>

Note For more information, see section § Specifying a technical profile for an OAuth 2.0 claims provider in

the sixth document of this series, along with the implementation notes for the technical profile if any.

You simply need to slightly modify the above XML code snippet to reflect in it the information that pertains

to the LinkedIn application created in the previous section. Replace your_LinkedIn_client_id with the client

ID of your LinkedIn application, i.e. the above the “YourAppIDValue” value.

In addition, federation with LinkedIn requires a client secret for LinkedIn to trust Azure AD B2C on behalf of

the application. The above XML code snippet already references the same LinkedIn secret named

B2C_1A_LinkedIn Secret that was created through the B2C blade of the Azure portal if you have followed

the procedure outlined in the previous section.

Registering the LinkedIn claims provider to the Sign-Up or Sign-In

(SUSI) user journey

To register the LinkedIn claims provider to the Sign-Up or Sign-In (SUSI) user journey, proceed with the

following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element. If the element doesn't exist, add one (or uncomment it).

3. Copy the entire content of UserJourneys node from the TrustFrameworkBase.xml file as a child of

the UserJourneys element in the TrustFrameworkExtensions.xml file. If you already copied this

content, you can skip this step.

4. Find the UserJourney element with attribute value Id="SignUpOrSignIn".

5. Locate the OrchestrationStep element with attribute Order="1" value under this element.

64 Bring-your-own-identity and Migrating Users

6. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="LinkedInExchange" />

7. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="LinkedInExchange" TechnicalProfileReferenceId="LinkedIn-OAUTH" />

8. Save the XML file.

Registering the LinkedIn claims provider to the Profile Edit user journey

(Optional)

To register the LinkedIn claims provider to the Profile Edit user journey, proceed with the following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element, and then find the UserJourney element with attribute value

Id="ProfileEdit".

3. Locate the OrchestrationStep element with attribute Order="1" value under this element.

4. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="LinkedInExchange" />

5. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="LinkedInExchange" TechnicalProfileReferenceId="LinkedIn-OAUTH" />

6. Save the XML file.

Uploading the custom policy to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the TrustFrameworkExtensions.xml policy file

5. Click Upload and ensure that it does not fail the validation.

65 Bring-your-own-identity and Migrating Users

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Click the B2C_1A_signup_signin custom policy to see its detail view. (You can alternatively select

the B2C_1A_ProfileEdit custom policy if you also modified above the Profile Edit user journey.) A

new blade opens.

3. Click Run now.

4. The sign-in page should include the option to sign in with LinkedIn. You should be able to sign in

using your LinkedIn account.

Integrating Microsoft Account (MSA) as a claims provider

This section shows you, in this use case, how to configure Microsoft Account (MSA) as a social identity

provider in your B2C tenant.

Note For more information, see article AZURE ACTIVE DIRECTORY B2C: ADD MICROSOFT ACCOUNT (MSA) AS AN

IDENTITY PROVIDER USING CUSTOM POLICIES30.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

To do so, you will have to:

1. Create a Microsoft Account application and supply it with the right parameters.

2. Add the Microsoft Account application key in your B2C tenant.

3. Update the custom policy to configure Microsoft Account as a claims provider in the intended user

journey(s).

4. Upload the custom policy.

5. Test the custom policy using Run Now.

The next sections detail the above.

Creating a Microsoft Account application

The article AZURE ACTIVE DIRECTORY B2C: PROVIDE SIGN-UP AND SIGN-IN TO CONSUMERS WITH MICROSOFT ACCOUNTS31

provides all the required instructions for creating the Microsoft Account application:

• You will need a Microsoft Account (MSA) account to perform the described steps. If you don’t have

one, you can get it at https://www.live.com/.

• Eventually, you will need the value of both Client ID and Client Secret to configure Microsoft

Account as a social identity provider in your B2C tenant. Note down these values that will be later

respectively referred as to the “YourClientIDValue” and “YourClientSecretValue” values.

30 AZURE ACTIVE DIRECTORY B2C: ADD MICROSOFT ACCOUNT (MSA) AS AN IDENTITY PROVIDER USING CUSTOM POLICIES:

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-setup-msa-idp
31 AZURE ACTIVE DIRECTORY B2C: PROVIDE SIGN-UP AND SIGN-IN TO CONSUMERS WITH MICROSOFT ACCOUNTS: https://docs.microsoft.com/en-

us/azure/active-directory-b2c/active-directory-b2c-setup-msa-app

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-setup-msa-idp
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-setup-msa-idp
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-msa-app
https://www.live.com/

66 Bring-your-own-identity and Migrating Users

Adding the Microsoft Account application key in your B2C

tenant

Federation with Microsoft Account (MSA) accounts requires a client secret for Microsoft Account to trust

Azure AD B2C on behalf of the above application. This secret, i.e. the above “YourAppSecretValue” value

need to be stored in your B2C tenant.

Proceed with the following steps:

1. Log in to the Azure portal as an account with administrative privileges in your Azure tenant, and

then switch to your B2C tenant, for example litware369b2.onmicrosoft.com in our illustration.

2. Select All services, type Azure AD BC in the search field, and then select Azure AD B2C.

3. Select Identity Framework Experience - PREVIEW.

4. Select Policy Keys from left menu.

5. Select +Add.

6. For Options, select Manual.

7. For Key usage, select Signature.

8. In Name, enter “MSASecret”.

9. In Secret, enter the Microsoft Account app secret key you recorded earlier, i.e. the above

“YourAppSecretValue” value.

10. Select Create.

Once the operation complete, a key B2C_1A_MSASecret should be created and listed.

Updating the custom policy

Based on the outcome of the previous section, the configuration for Microsoft Account (MSA) as a claims

provider in your custom policy is straightforward as a simple two steps process. This twofold process can be

described as follows:

1. Add Microsoft Account as a claims provider in the B2C_1A_TrustFrameworkExtensions.xml custom

policy file that comes along with the core templates of the “Starter Pack”.

2. Use Microsoft Account as a claims provider in an (existing) user journey.

The next sections detail the above.

In lieu of the below steps, you can use the sample policy files under the folder scenarios\aadb2c-ief-setup-

msa-app of the “Starter Pack” for enabling a Microsoft Account application as an identity provider (IdP) in

your B2C tenant.

Defining Microsoft Account as a claim provider

You will need at this stage to configure a claims provider for Microsoft Account and reflect in its definition

the above values.

As before, we continue to leverage the B2C_1A_TrustFrameworkExtensions.xml custom policy file of the

SocialAndLocalAccounts core template of the “Starter Pack” to provide a core definition for Microsoft

67 Bring-your-own-identity and Migrating Users

Account as a claims provider with an associated technical profile. This technical profile is named MSA-OIDC

hereafter.

<!—Microsoft Account claims provider -->
<ClaimsProvider>
 <Domain>live.com</Domain>
 <DisplayName>Microsoft Account</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="MSA-OIDC">
 <DisplayName>Microsoft Account</DisplayName>
 <Protocol Name="OpenIdConnect" />
 <Metadata>
 <Item Key="ProviderName">https://login.live.com</Item>
 <Item Key="METADATA">https://login.live.com/.well-known/openid-configuration</Item>
 <Item Key="response_types">code</Item>
 <Item Key="response_mode">form_post</Item>
 <Item Key="scope">openid profile email</Item>
 <Item Key="HttpBinding">POST</Item>
 <Item Key="UsePolicyInRedirectUri">0</Item>

 <Item Key="client_id">your_MSA_client_id</Item>

 </Metadata>
 <CryptographicKeys>
 <Key Id="client_secret" StorageReferenceId="B2C_1A_MSASecret" />
 </CryptographicKeys>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="identityProvider" DefaultValue="live.com" />
 <OutputClaim ClaimTypeReferenceId="authenticationSource" DefaultValue="socialIdpAuthentication" />
 <OutputClaim ClaimTypeReferenceId="socialIdpUserId" PartnerClaimType="sub" />
 <OutputClaim ClaimTypeReferenceId="displayName" PartnerClaimType="name" />
 <OutputClaim ClaimTypeReferenceId="email" />
 </OutputClaims>
 <OutputClaimsTransformations>
 <OutputClaimsTransformation ReferenceId="CreateRandomUPNUserName" />
 <OutputClaimsTransformation ReferenceId="CreateUserPrincipalName" />
 <OutputClaimsTransformation ReferenceId="CreateAlternativeSecurityId" />
 <OutputClaimsTransformation ReferenceId="CreateSubjectClaimFromAlternativeSecurityId" />
 </OutputClaimsTransformations>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-SocialLogin" />
 </TechnicalProfile>
 </TechnicalProfiles>
</ClaimsProvider>

 Note For more information, see section § Specifying a technical profile for an OpenID Connect claims provider

in the sixth document of this series, along with the implementation notes for the technical profile if any.

You simply need to slightly modify the above XML code snippet to reflect in it the information that pertains

to the Microsoft Account application created in the previous section. Replace your_MSA_client_id with the

client ID of your Microsoft Account application, i.e. the above the “YourAppIDValue” value.

In addition, federation with Microsoft Account requires a client secret for Microsoft Account to trust Azure

AD B2C on behalf of the application. The above XML code snippet already references the same Microsoft

Account secret named B2C_1A_MSASecret that was created through the B2C blade of the Azure portal if

you have followed the procedure outlined in the previous section.

68 Bring-your-own-identity and Migrating Users

Registering the Microsoft Account claims provider to the Sign-Up or

Sign-In (SUSI) user journey

To register the Microsoft Account claims provider to the Sign-Up or Sign-In (SUSI) user journey, proceed

with the following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element. If the element doesn't exist, add one (or uncomment it).

3. Copy the entire content of UserJourneys node from the TrustFrameworkBase.xml file as a child of

the UserJourneys element in the TrustFrameworkExtensions.xml file. If you already copied this

content, you can skip this step.

4. Find the UserJourney element with attribute value Id="SignUpOrSignIn".

5. Locate the OrchestrationStep element with attribute Order="1" value under this element.

6. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="MSAExchange" />

7. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="MSAExchange" TechnicalProfileReferenceId="MSA-OIDC" />

8. Save the XML file.

Registering the Microsoft Account claims provider to the Profile Edit

user journey (Optional)

To register the Microsoft Account claims provider to the Profile Edit user journey, proceed with the following

steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element, and then find the UserJourney element with attribute value

Id="ProfileEdit".

3. Locate the OrchestrationStep element with attribute Order="1" value under this element.

4. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="MSAExchange" />

5. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="MSAExchange" TechnicalProfileReferenceId="MSA-OIDC" />

69 Bring-your-own-identity and Migrating Users

6. Save the XML file.

Uploading the custom policy to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the TrustFrameworkExtensions.xml policy file

5. Click Upload and ensure that it does not fail the validation.

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Click the B2C_1A_signup_signin custom policy to see its detail view. (You can alternatively select

the B2C_1A_ProfileEdit custom policy if you also modified above the Profile Edit user journey.) A

new blade opens.

3. Click Run now.

4. The sign-in page should include the option to sign in with Microsoft Account. You should be able

to sign in using your Microsoft Account (MSA) account.

Integrating Twitter as a claims provider

This section shows you, in this use case, how to configure Twitter as a social identity provider in your B2C

tenant.

Note For more information, see article AZURE ACTIVE DIRECTORY B2C: ADD TWITTER AS AN OAUTH1 IDENTITY PROVIDER

BY USING CUSTOM POLICIES32.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

To do so, you will have to:

1. Create a Twitter application and supply it with the right parameters.

2. Add the Twitter application key in your B2C tenant.

3. Update the custom policy to configure Twitter as a claims provider in the intended user journey(s).

4. Upload the custom policy.

5. Test the custom policy using Run Now.

The next sections detail the above.

32 AZURE ACTIVE DIRECTORY B2C: ADD TWITTER AS AN OAUTH1 IDENTITY PROVIDER BY USING CUSTOM POLICIES: https://docs.microsoft.com/en-

us/azure/active-directory-b2c/active-directory-b2c-custom-setup-twitter-idp

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-setup-twitter-idp
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-setup-twitter-idp

70 Bring-your-own-identity and Migrating Users

Creating a Twitter application

The article AZURE ACTIVE DIRECTORY B2C: PROVIDE SIGN-UP AND SIGN-IN TO CONSUMERS WITH TWITTER ACCOUNTS USING

AZURE AD B2C33 provides all the required instructions for creating the Twitter application:

• You will need a Twitter account to perform the described steps. If you don’t have one, you can get

it at https://twitter.com/signup.

• Eventually, you will need the value of both Client ID and Client Secret to configure Twitter as a

social identity provider in your B2C tenant. Note down these values that will be later respectively

referred as to the “YourClientIDValue” and “YourClientSecretValue” values.

Adding the Twitter application key in your B2C tenant

Federation with Twitter accounts requires a client secret for Twitter to trust Azure AD B2C on behalf of the

above application. This secret, i.e. the above “YourAppSecretValue” value need to be stored in your B2C

tenant.

Proceed with the following steps:

1. Log in to the Azure portal as an account with administrative privileges in your Azure tenant, and

then switch to your B2C tenant, for example litware369b2c.onmicrosoft.com in our illustration.

2. Select All services, type Azure AD BC in the search field, and then select Azure AD B2C.

3. Select Identity Framework Experience - PREVIEW.

4. Select Policy Keys from left menu.

5. Select +Add.

6. For Options, select Manual.

7. For Key usage, select Signature.

8. In Name, enter “TwitterSecret”.

9. In Secret, enter the Twitter application secret key you recorded earlier, i.e. the above

“YourAppSecretValue” value.

10. Select Create.

Once the operation complete, a key B2C_1A_TwitterSecret should be created and listed.

Updating the custom policy

Based on the outcome of the previous section, the configuration for Twitter as a claims provider in your

custom policy is straightforward as a simple two steps process. This twofold process can be described as

follows:

1. Add Twitter as a claims provider in the B2C_1A_TrustFrameworkExtensions.xml custom policy file

that comes along with the core templates of the “Starter Pack”.

33 AZURE ACTIVE DIRECTORY B2C: PROVIDE SIGN-UP AND SIGN-IN TO CONSUMERS WITH TWITTER ACCOUNTS USING AZURE AD B2C:

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-twitter-app

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-twitter-app
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-setup-twitter-app

71 Bring-your-own-identity and Migrating Users

2. Use Twitter as a claims provider in an (existing) user journey.

The next sections detail the above.

In lieu of the below steps, you can use the sample policy file Sample-Twitter-OAuth1-

TrustFrameworkExtensions.xml under the folder scenarios\aadb2c-ief-setup-twitter-app of the “Starter Pack”

for enabling a Twitter application as an identity provider (IdP) in your B2C tenant.

Defining Twitter as a claim provider

You will need at this stage to configure a claims provider for Twitter and reflect in its definition the above

values.

As before, we continue to leverage the B2C_1A_TrustFrameworkExtensions.xml custom policy file of the

SocialAndLocalAccounts core template of the “Starter Pack” to provide a core definition for Twitter as a

claims provider with an associated technical profile. This technical profile is named Twitter-OAUTH1

hereafter.

<!-- Twitter claims provider -->
<ClaimsProvider>
 <Domain>twitter.com</Domain>
 <DisplayName>Twitter</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="Twitter-OAUTH1">
 <DisplayName>Twitter</DisplayName>
 <Protocol Name="OAuth1" />
 <Metadata>
 <Item Key="ProviderName">Twitter</Item>
 <Item Key="authorization_endpoint">https://api.twitter.com/oauth/authenticate</Item>
 <Item Key="access_token_endpoint">https://api.twitter.com/oauth/access_token</Item>
 <Item Key="request_token_endpoint">https://api.twitter.com/oauth/request_token</Item>
 <Item
Key="ClaimsEndpoint">https://api.twitter.com/1.1/account/verify_credentials.json?include_email=true</Item>
 <Item Key="ClaimsResponseFormat">json</Item>

 <Item Key="client_id">your Twitter consumer key</Item>

 </Metadata>
 <CryptographicKeys>
 <Key Id="client_secret" StorageReferenceId="B2C_1A_TwitterSecret" />
 </CryptographicKeys>
 <InputClaims />
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="socialIdpUserId" PartnerClaimType="user_id" />
 <OutputClaim ClaimTypeReferenceId="displayName" PartnerClaimType="screen_name" />
 <OutputClaim ClaimTypeReferenceId="email" />
 <OutputClaim ClaimTypeReferenceId="identityProvider" DefaultValue="twitter.com" />
 <OutputClaim ClaimTypeReferenceId="authenticationSource" DefaultValue="socialIdpAuthentication" />
 </OutputClaims>
 <OutputClaimsTransformations>
 <OutputClaimsTransformation ReferenceId="CreateRandomUPNUserName" />
 <OutputClaimsTransformation ReferenceId="CreateUserPrincipalName" />
 <OutputClaimsTransformation ReferenceId="CreateAlternativeSecurityId" />
 <OutputClaimsTransformation ReferenceId="CreateSubjectClaimFromAlternativeSecurityId" />
 </OutputClaimsTransformations>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-SocialLogin" />
 </TechnicalProfile>
 </TechnicalProfiles>
</ClaimsProvider>

72 Bring-your-own-identity and Migrating Users

 Note For more information, see section § Specifying a technical profile for an OAuth 1.0 claims provider in the sixth

document of this series, along with the implementation notes for the technical profile if any.

You simply need to slightly modify the above XML code snippet to reflect in it the information that pertains

to the Twitter application created in the previous section. Replace your_Twitter_client_id with the client ID

of your Twitter application, i.e. the above the “YourAppIDValue” value.

In addition, federation with Twitter requires a client secret for Twitter to trust Azure AD B2C on behalf of the

application. The above XML code snippet already references the same Twitter secret named

B2C_1A_TwitterSecret that was created through the B2C blade of the Azure portal if you have followed the

procedure outlined in the previous section.

Registering the Twitter claims provider to the Sign-Up or Sign-In (SUSI)

user journey

To register the Twitter claims provider to the Sign-Up or Sign-In (SUSI) user journey, proceed with the

following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element. If the element doesn't exist, add one (or uncomment it).

3. Copy the entire content of UserJourneys node from the TrustFrameworkBase.xml file as a child of

the UserJourneys element in the TrustFrameworkExtensions.xml file. If you already copied this

content, you can skip this step.

4. Find the UserJourney element with attribute value Id="SignUpOrSignIn".

5. Locate the OrchestrationStep element with attribute Order="1" value under this element.

6. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="TwitterExchange" />

7. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="TwitterExchange" TechnicalProfileReferenceId="Twitter-OAUTH1" />

8. Save the XML file.

Registering the Twitter claims provider to the Profile Edit user journey

(Optional)

To register the Twitter claims provider to the Profile Edit user journey, proceed with the following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the

TrustFrameworkExtensions.xml file using an XML editor of your choice.

2. Find the UserJourneys element, and then find the UserJourney element with attribute value

Id="ProfileEdit".

73 Bring-your-own-identity and Migrating Users

3. Locate the OrchestrationStep element with attribute Order="1" value under this element.

4. Add the following XML snippet under the ClaimsProviderSelections node:

<ClaimsProviderSelection TargetClaimsExchangeId="TwitterExchange" />

5. Locate the OrchestrationStep element with attribute Order="2" in the UserJourney node and add the

following XML snippet under the ClaimExchanges node:

<ClaimsExchange Id="TwitterExchange" TechnicalProfileReferenceId="Twitter-OAUTH1" />

6. Save the XML file.

Uploading the custom policy to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the TrustFrameworkExtensions.xml policy file

5. Click Upload and ensure that it does not fail the validation.

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Click the B2C_1A_signup_signin custom policy to see its detail view. (You can alternatively select

the B2C_1A_ProfileEdit custom policy if you also modified above the Profile Edit user journey.) A

new blade opens.

3. Click Run now.

4. The sign-in page should include the option to sign in with Twitter. You should be able to sign in

using your Twitter account.

Pre-filling the requests with a domain hint

Azure AD B2C allows to pre-fill a domain in the requests to the Identity Experience Framework with the

domain_hint query string parameter. As an illustration, the following request bounces you directly to

Facebook for the sign-in.

https://login.microsoftonline.com/litware369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=B2C_1A_sign

up_signin&client_id=95b7953b-a499-48b9-bc1b-

48bb095d6939&nonce=defaultNonce&redirect_uri=https%3A%2F%2Fjwt.ms&scope=openid&response_t

ype=id_token&domain_hint=facebook.com

https://login.microsoftonline.com/litware369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=B2C_1A_signup_signin&client_id=95b7953b-a499-48b9-bc1b-48bb095d6939&nonce=defaultNonce&redirect_uri=https%3A%2F%2Fjwt.ms&scope=openid&response_type=id_token&domain_hint=facebook.com
https://login.microsoftonline.com/litware369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=B2C_1A_signup_signin&client_id=95b7953b-a499-48b9-bc1b-48bb095d6939&nonce=defaultNonce&redirect_uri=https%3A%2F%2Fjwt.ms&scope=openid&response_type=id_token&domain_hint=facebook.com
https://login.microsoftonline.com/litware369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=B2C_1A_signup_signin&client_id=95b7953b-a499-48b9-bc1b-48bb095d6939&nonce=defaultNonce&redirect_uri=https%3A%2F%2Fjwt.ms&scope=openid&response_type=id_token&domain_hint=facebook.com
https://login.microsoftonline.com/litware369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=B2C_1A_signup_signin&client_id=95b7953b-a499-48b9-bc1b-48bb095d6939&nonce=defaultNonce&redirect_uri=https%3A%2F%2Fjwt.ms&scope=openid&response_type=id_token&domain_hint=facebook.com

74 Bring-your-own-identity and Migrating Users

Exchanging claims with directories or

other systems
This section illustrates how to use in a non-exhaustive manner specific directory provider or REST APIs to

exchange claims with your B2C tenant to sustain your own specific scenarios.

The following sections depicts the related configuration for your B2C tenant and related custom policies.

Integrating with your B2C tenant

This section illustrates how to integrate with your B2C tenant to exchange claims.

Adding your B2C tenant as a claim provider

The B2C_1A_TrustFrameworkBase custom policy coming with the core templates of the “Starter Pack” already

contains the suitable information to declare your B2C tenant as an Azure AD claims provider.

Note For more information, see the second document of this series.

Note For more information on the already declared technical profiles, see the appendix A. of the third

document of this series.

So, the good news is that you don’t have anything specific to do to add your B2C as a claims provider.

Supporting custom attributes with your B2C tenant

Azure AD B2C allows consumer applications to store some type of custom user profile information. Such a

capability is achieved through the support of Extension properties (a.k.a. custom attributes) on users.Note

 For more information, see article AZURE ACTIVE DIRECTORY B2C: CREATING AND USING CUSTOM ATTRIBUTES IN A CUSTOM

PROFILE EDIT POLICY34.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

Such Extension properties can only be registered on an Application object even though they may contain

data for a User. They belong to that application.

34 AZURE ACTIVE DIRECTORY B2C: CREATING AND USING CUSTOM ATTRIBUTES IN A CUSTOM PROFILE EDIT POLICY: https://docs.microsoft.com/en-

us/azure/active-directory-b2c/active-directory-b2c-create-custom-attributes-profile-edit-custom

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-create-custom-attributes-profile-edit-custom
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-create-custom-attributes-profile-edit-custom

75 Bring-your-own-identity and Migrating Users

The application must be granted write access to register an Extension property. 100 Extension properties

(across ALL types and ALL applications) can be written to any single object. Extension properties are added

to the target directory type and becomes immediately accessible in the B2C tenant.

If the application is deleted, those Extension properties along with any data contained in them are also

removed. If an Extension property is deleted by the application, it is removed on the target directory object,

and any data contained in it is removed too.

Thus, before Extension properties can be stored, a new application must be created if your B2C tenant has

not been upgraded to support the custom policies.

Note For more information, see section § Managing your users and their attributes with the Graph API of the

third document of this series.

The object id of that application is to be provided in the technical profile(s) of a custom policy.

Note A B2C tenant typically includes a Web App named b2c-extensions-app. This application is primarily

used by the B2C built-in policies for the custom claims created via the Azure portal and for storing the related

Extension properties. Using this application to register extensions for custom policies is recommended only for

advanced users. You can refer to the aforementioned article for related instructions.

To complete this procedure, proceed with the following steps in order.

1. Create a new application to store the Extension properties and get the object id of the considered

application.

2. Modify the custom policies to add:

a. The application’s object id.

b. The new claims type for the Extension properties in the custom policies.

c. The Extension properties/custom attributes in the relevant technical profiles of the above

policies.

3. Upload the custom policies.

4. Test the custom policies.

The next sections detail in order each of the above steps.

Creating a new application to store the Extension properties

Proceed with the following steps:

1. Log in to the Azure portal as an account with administrative privileges in your Azure tenant.

litware369b2c.onmicrosoft.com b2c-extensions-app

WebApp-GraphAPI-DirectoryExtensions

storeMembership

76 Bring-your-own-identity and Migrating Users

2. Click Azure Active Directory on the left navigation menu. (You may need to find it by selecting

More services>.)

3. Select App registrations and click New application registration. A new blade opens.

4. Provide the following recommended entries:

a. In Name, enter “WebApp-GraphAPI-DirectoryExtensions” for the web application.

b. For Application type, leave Web app / API selected.

c. In Sign-on URL, specify “https://<your_b2c_tenant>.onmicrosoft.com/WebApp-GraphAPI-

DirectoryExtensions” and replace <your_b2c_tenant> by the name of your B2C tenant. For

example, in our configuration:

https://litware369b2c.onmicrosoft.com/WebApp-GraphAPI-DirectoryExtensions

5. Select Create.

6. Select All apps.

7. Select the newly created web application.

8. Select Settings > Required permissions.

9. Select Windows Azure Active Directory under API.

https://litware369b2c.onmicrosoft.com/WebApp-GraphAPI-DirectoryExtensions

77 Bring-your-own-identity and Migrating Users

10. Place a checkmark in Application Permissions: Read and write directory data, and then select

Save.

11. Choose Grant permissions

12. Confirm Yes.

13. Copy to your clipboard and save the following identifiers:

• Application ID: 4046aed8-66aa-4c9f-9249-7391e8c70244

• Object ID: 8d9a8b31-44fe-4a29-a21c-6d8909eda885

Updating the custom policies

Adding the ApplicationObjectID to the base policy

To add a new claim type, proceed with the following steps:

1. Navigate to the SocialAndLocalAccounts folder in the “Starter Pack”.

78 Bring-your-own-identity and Migrating Users

2. Open the extension policy file, i.e. the TrustFrameworkBase.xml file, using an XML editor of your

choice, for instance Visual Studio (Code).

3. Scroll down to the <TechnicalProfile Id="AAD-Common"> element.

4. Add the following XML snippet after the Protocol element.

<Metadata>
 <Item Key="ApplicationObjectId">insert objectId here</Item>
 <Item Key="ClientId">insert appId here</Item>
</Metadata>

5. In the Metadata element underneath, replace “insert objectId here” outlined in red with the above

Object ID value, and “insert appId here” outlined in red with the above Application ID value:

<ClaimsProviders>
 <ClaimsProvider>
 <DisplayName>Azure Active Directory</DisplayName>
 <TechnicalProfile Id="AAD-Common">
 <DisplayName>Azure Active Directory</DisplayName>
 <Protocol Name="Proprietary" Handler="Web.TPEngine.Providers.AzureActiveDirectoryProvider, Web.TPEngine,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />

 <Metadata>

 <Item Key="ApplicationObjectId">insert objectId here</Item>
 <Item Key="ClientId">insert appId here</Item>

 </Metadata>

 <CryptographicKeys>
 <Key Id="issuer_secret" StorageReferenceId="TokenSigningKeyContainer" />
 </CryptographicKeys>
 <IncludeInSso>false</IncludeInSso>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-Noop" />
 </TechnicalProfile>
 </ClaimsProvider>
</ClaimsProviders>

6. Save the XML file.

Important note When the above technical profile writes for the first time to the newly created extension

property, you may experience a one-time error. The extension property is created the first time it is used.

Adding the new claim type in the custom policies

To add a new claim type, proceed with the following steps:

1. Navigate to the SocialAndLocalAccounts folder in the “Starter Pack”.

2. Open the extension policy file, i.e. the TrustFrameworkExtensions.xml file, using an XML editor of

your choice, for instance Visual Studio (Code).

3. In the ClaimsSchema node, add the following ClaimsType element before the closing

</ClaimsSchema> element.

<ClaimType Id="extension_storeMembershipNumber">
 <DisplayName>Store Membership Number</DisplayName>
 <DataType>string</DataType>
 <UserHelpText>Your store membership number</UserHelpText>
 <UserInputType>TextBox</UserInputType>
</ClaimType>

79 Bring-your-own-identity and Migrating Users

4. Save the XML file.

5. Add the same ClaimType definition to the TrustFrameworkBase.xml policy file.

Note Adding a ClaimType definition in both the base and the extensions policy files is normally not

necessary, However, since the next steps will add the extension_storeMembershipNumber to the TechnicalProfiles

node in the base policy file, the policy validator will reject the upload of the base file without it.

6. Open the TrustFrameworkBase.xml file.

7. Add the extension_storeMembershipNumber claim:

a. As an output claim in the technical profile “”to get the value of the claim when a user signs

up with a local account.

<TechnicalProfile Id="LocalAccountSignUpWithLogonEmail">
 <DisplayName>Email signup</DisplayName>
 <Protocol Name="Proprietary" Handler="Web.TPEngine.Providers.SelfAssertedAttributeProvider, Web.TPEngine,

 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 <Metadata>
 <Item Key="IpAddressClaimReferenceId">IpAddress</Item>
 <Item Key="ContentDefinitionReferenceId">api.localaccountsignup</Item>
 <Item Key="language.button_continue">Create</Item>
 </Metadata>
 <CryptographicKeys>
 <Key Id="issuer_secret" StorageReferenceId="B2C_1A_TokenSigningKeyContainer" />
 </CryptographicKeys>
 <InputClaims>
 <InputClaim ClaimTypeReferenceId="email" />
 </InputClaims>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="objectId" />
 <OutputClaim ClaimTypeReferenceId="email" PartnerClaimType="Verified.Email" Required="true" />
 <OutputClaim ClaimTypeReferenceId="newPassword" Required="true" />
 <OutputClaim ClaimTypeReferenceId="reenterPassword" Required="true" />
 <OutputClaim ClaimTypeReferenceId="executed-SelfAsserted-Input" DefaultValue="true" />
 <OutputClaim ClaimTypeReferenceId="authenticationSource" />
 <OutputClaim ClaimTypeReferenceId="newUser" />

 <!-- Optional claims, to be collected from the user -->
 <OutputClaim ClaimTypeReferenceId="displayName" />
 <OutputClaim ClaimTypeReferenceId="givenName" />
 <OutputClaim ClaimTypeReferenceId="surName" />

 <OutputClaim ClaimTypeReferenceId="extension_storeMembershipNumber"/>

 </OutputClaims>
 <ValidationTechnicalProfiles>
 <ValidationTechnicalProfile ReferenceId="AAD-UserWriteUsingLogonEmail" />
 </ValidationTechnicalProfiles>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-AAD" />
</TechnicalProfile>

b. As an input and output claim in the technical profile "SelfAsserted-ProfileUpdate" to both

retrieve and update the Extension property in the user profile for the current user in the

directory.

<TechnicalProfile Id="SelfAsserted-ProfileUpdate">
 <DisplayName>User ID signup</DisplayName>
 <Protocol Name="Proprietary" Handler="Web.TPEngine.Providers.SelfAssertedAttributeProvider, Web.TPEngine,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 <Metadata>
 <Item Key="ContentDefinitionReferenceId">api.selfasserted.profileupdate</Item>
 </Metadata>
 <IncludeInSso>false</IncludeInSso>
 <InputClaims>

 <InputClaim ClaimTypeReferenceId="alternativeSecurityId" />

80 Bring-your-own-identity and Migrating Users

 <InputClaim ClaimTypeReferenceId="userPrincipalName" />

 <!-- Optional claims. These claims are collected from the user and can be modified. Any claim added here should be
 updated in the ValidationTechnicalProfile referenced below so it can be written to directory after being
 updated by the user, i.e. AAD-UserWriteProfileUsingObjectId. -->
 <InputClaim ClaimTypeReferenceId="givenName" />
 <InputClaim ClaimTypeReferenceId="surname" />

 <InputClaim ClaimTypeReferenceId="extension_storeMembershipNumber"/>

 </InputClaims>
 <OutputClaims>
 <!-- Required claims -->
 <OutputClaim ClaimTypeReferenceId="executed-SelfAsserted-Input" DefaultValue="true" />

 <!-- Optional claims. These claims are collected from the user and can be modified. Any claim added here should be
 updated in the ValidationTechnicalProfile referenced below so it can be written to directory after being
 updated by the user, i.e. AAD-UserWriteProfileUsingObjectId. -->
 <OutputClaim ClaimTypeReferenceId="givenName" />
 <OutputClaim ClaimTypeReferenceId="surname" />

 <OutputClaim ClaimTypeReferenceId="extension_storeMembershipNumber"/>

 </OutputClaims>
 <ValidationTechnicalProfiles>
 <ValidationTechnicalProfile ReferenceId="AAD-UserWriteProfileUsingObjectId" />
 </ValidationTechnicalProfiles>
</TechnicalProfile>

c. As a persisted claim in the technical profile "AAD-UserWriteProfileUsingObjectId" to persist

the value of the claim in the Extension property, for the current user in the directory.

<TechnicalProfile Id="AAD-UserWriteProfileUsingObjectId">
 <Metadata>
 <Item Key="Operation">Write</Item>
 <Item Key="RaiseErrorIfClaimsPrincipalAlreadyExists">false</Item>
 <Item Key="RaiseErrorIfClaimsPrincipalDoesNotExist">true</Item>
 </Metadata>
 <IncludeInSso>false</IncludeInSso>
 <InputClaims>
 <InputClaim ClaimTypeReferenceId="objectId" Required="true" />
 </InputClaims>
 <PersistedClaims>
 <!-- Required claims -->
 <PersistedClaim ClaimTypeReferenceId="objectId" />

 <!-- Optional claims -->
 <PersistedClaim ClaimTypeReferenceId="givenName" />
 <PersistedClaim ClaimTypeReferenceId="surname" />

 <PersistedClaim ClaimTypeReferenceId="extension_storeMembershipNumber" />

 </PersistedClaims>
 <IncludeTechnicalProfile ReferenceId="AAD-Common" />
</TechnicalProfile>

d. As an output claim in the technical profile "AAD-UserReadUsingObjectId" to read the value

of the Extension property every time a user logs in.

<TechnicalProfile Id="AAD-UserReadUsingObjectId">
 <Metadata>
 <Item Key="Operation">Read</Item>
 <Item Key="RaiseErrorIfClaimsPrincipalDoesNotExist">true</Item>
 </Metadata>
 <IncludeInSso>false</IncludeInSso>
 <InputClaims>
 <InputClaim ClaimTypeReferenceId="objectId" Required="true" />
 </InputClaims>
 <OutputClaims>

81 Bring-your-own-identity and Migrating Users

 <!-- Optional claims -->
 <OutputClaim ClaimTypeReferenceId="signInNames.emailAddress" />
 <OutputClaim ClaimTypeReferenceId="displayName" />
 <OutputClaim ClaimTypeReferenceId="otherMails" />
 <OutputClaim ClaimTypeReferenceId="givenName" />
 <OutputClaim ClaimTypeReferenceId="surname" />

 <OutputClaim ClaimTypeReferenceId="extension_storeMembershipNumber" />

 </OutputClaims>
 <IncludeTechnicalProfile ReferenceId="AAD-Common" />
</TechnicalProfile>

At this stage, only the technical profiles involved in the flow of local accounts only

have been changed.

If the new attribute is desired in the flow of a social/federated account, a different set

of technical profiles needs to be changed as illustrated in the three next steps.

e. As an output claim in the technical profile “SelfAsserted-Social” to get the value of the claim

when a social/federated user signs up/logs in.

<TechnicalProfile Id="SelfAsserted-Social">
 <DisplayName>User ID signup</DisplayName>
 <Protocol Name="Proprietary" Handler="Web.TPEngine.Providers.SelfAssertedAttributeProvider, Web.TPEngine,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 <Metadata>
 <Item Key="ContentDefinitionReferenceId">api.selfasserted</Item>
 </Metadata>
 <CryptographicKeys>
 <Key Id="issuer_secret" StorageReferenceId="B2C_1A_TokenSigningKeyContainer" />
 </CryptographicKeys>
 <InputClaims>
 <!-- These claims ensure that any values retrieved in the previous steps (e.g. from an external IDP) are prefilled.
 Note that some of these claims may not have any value, for example, if the external IDP did not provide any of
 these values, or if the claim did not appear in the OutputClaims section of the IDP.
 In addition, if a claim is not in the InputClaims section, but it is in the OutputClaims section, then its
 value will not be prefilled, but the user will still be prompted for it (with an empty value). -->
 <InputClaim ClaimTypeReferenceId="displayName" />
 <InputClaim ClaimTypeReferenceId="givenName" />
 <InputClaim ClaimTypeReferenceId="surname" />
 </InputClaims>
 <OutputClaims>
 <!-- These claims are not shown to the user because their value is obtained through the
 "ValidationTechnicalProfiles" referenced below, or a default value is assigned to the claim. A claim is only
 shown to the user to provide a value if its value cannot be obtained through any other means. -->
 <OutputClaim ClaimTypeReferenceId="objectId" />
 <OutputClaim ClaimTypeReferenceId="newUser" />
 <OutputClaim ClaimTypeReferenceId="executed-SelfAsserted-Input" DefaultValue="true" />

 <!-- Optional claims. These claims are collected from the user and can be modified. If a claim is to be persisted
 in the directory after having been collected from the user, it needs to be added as a PersistedClaim in the
 ValidationTechnicalProfile referenced below, i.e. in AAD-UserWriteUsingAlternativeSecurityId. -->
 <OutputClaim ClaimTypeReferenceId="displayName" />
 <OutputClaim ClaimTypeReferenceId="givenName" />
 <OutputClaim ClaimTypeReferenceId="surname" />

 <OutputClaim ClaimTypeReferenceId="extension_storeMembershipNumber"/>

 </OutputClaims>
 <ValidationTechnicalProfiles>
 <ValidationTechnicalProfile ReferenceId="AAD-UserWriteUsingAlternativeSecurityId" />
 </ValidationTechnicalProfiles>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-SocialSignup" />
</TechnicalProfile>

82 Bring-your-own-identity and Migrating Users

f. As a persisted claim in the technical profile "AAD-UserWriteUsingAlternativeSecurityId" to

persist the value of the claim in the Extension property. This is the equivalent of step c for

social/federated account.

<TechnicalProfile Id="AAD-UserWriteUsingAlternativeSecurityId">
 <Metadata>
 <Item Key="Operation">Write</Item>
 <Item Key="RaiseErrorIfClaimsPrincipalAlreadyExists">true</Item>
 <Item Key="UserMessageIfClaimsPrincipalAlreadyExists">
 You are already registered, please press the back button and sign in instead.
 </Item>
 </Metadata>
 <IncludeInSso>false</IncludeInSso>
 <InputClaimsTransformations>
 <InputClaimsTransformation ReferenceId="CreateOtherMailsFromEmail" />
 </InputClaimsTransformations>
 <InputClaims>
 <InputClaim ClaimTypeReferenceId="AlternativeSecurityId" PartnerClaimType="alternativeSecurityId" Required="true" />
 </InputClaims>
 <PersistedClaims>
 <!-- Required claims -->
 <PersistedClaim ClaimTypeReferenceId="alternativeSecurityId" />
 <PersistedClaim ClaimTypeReferenceId="userPrincipalName" />
 <PersistedClaim ClaimTypeReferenceId="mailNickName" DefaultValue="unknown" />
 <PersistedClaim ClaimTypeReferenceId="displayName" DefaultValue="unknown" />

 <!-- Optional claims -->
 <PersistedClaim ClaimTypeReferenceId="otherMails" />
 <PersistedClaim ClaimTypeReferenceId="givenName" />
 <PersistedClaim ClaimTypeReferenceId="surname" />

 <PersistedClaim ClaimTypeReferenceId="extension_storeMembershipNumber" />

 </PersistedClaims>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="objectId" />
 <OutputClaim ClaimTypeReferenceId="newUser" PartnerClaimType="newClaimsPrincipalCreated" />
 <!-- The following other mails claim is needed for the case when a user is created, we get otherMails from
 directory. Self-asserted provider also has an OutputClaims, and if this is absent, Self-Asserted provider will
 prompt the user for otherMails. -->
 <OutputClaim ClaimTypeReferenceId="otherMails" />
 </OutputClaims>
 <IncludeTechnicalProfile ReferenceId="AAD-Common" />
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-AAD" />
</TechnicalProfile>

g. As an output claim in the technical profile "AAD-UserReadUsingAlternativeSecurityId" to

persist the value of the claim in the Extension property. This is the equivalent of the above

step d.

<TechnicalProfile Id="AAD-UserReadUsingAlternativeSecurityId">
 <Metadata>
 <Item Key="Operation">Read</Item>
 <Item Key="RaiseErrorIfClaimsPrincipalDoesNotExist">true</Item>
 <Item Key="UserMessageIfClaimsPrincipalDoesNotExist">
 User does not exist. Please sign up before you can sign in.
 </Item>
 </Metadata>
 <InputClaims>
 <InputClaim ClaimTypeReferenceId="AlternativeSecurityId" PartnerClaimType="alternativeSecurityId" Required="true" />
 </InputClaims>
 <OutputClaims>
 <!-- Required claims -->

 <OutputClaim ClaimTypeReferenceId="objectId" />

 <!-- Optional claims -->
 <OutputClaim ClaimTypeReferenceId="userPrincipalName" />
 <OutputClaim ClaimTypeReferenceId="displayName" />
 <OutputClaim ClaimTypeReferenceId="otherMails" />
 <OutputClaim ClaimTypeReferenceId="givenName" />

83 Bring-your-own-identity and Migrating Users

 <OutputClaim ClaimTypeReferenceId="surname" />

 <OutputClaim ClaimTypeReferenceId="extension_storeMembershipNumber" />

 </OutputClaims>
 <IncludeTechnicalProfile ReferenceId="AAD-Common" />
</TechnicalProfile>

8. Save the XML file.

Declaring the new claim type to the Sign-Up or Sign-In (SUSI) user

journey

To declare the new claim type to the Sign-Up or Sign-In (SUSI) user journey, proceed with the following

steps:

1. Navigate to the SocialAndLocalAccounts folder in the “Starter Pack”.

2. Open the extensions policy file, i.e. the SignUpOrSignIn.xml file, using an XML editor of your choice,

for instance Visual Studio (Code).

3. Find the element <TechnicalProfile Id="PolicyProfile">, and in the OutputClaims node add the

following XML snippet:

<OutputClaim ClaimTypeReferenceId="extension_storeMembershipNumber" />

4. Save the XML file.

Registering the new claim type to the Profile Edit user journey

To register the new claim type to the Profile Edit user journey, proceed with the following steps:

1. Still from the SocialAndLocalAccounts folder in the “Starter Pack”, open the ProfileEdit.xml file using

an XML editor of your choice.

2. Find the element <TechnicalProfile Id="PolicyProfile">, and in the OutputClaims node add the

following XML snippet:

<OutputClaim ClaimTypeReferenceId="extension_storeMembershipNumber" />

3. Save the XML file.

Uploading the custom policies to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the TrustFrameworkBase.xml policy file.

5. Click Upload and ensure that it does not fail the validation.

84 Bring-your-own-identity and Migrating Users

6. Repeat above steps with the TrustFrameworkExtensions.xml, SignUpOrSignIn.xml, and the

ProfileEdit.xml policy files.

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Click the B2C_1A_signup_signin custom policy to see its detail view. A new blade opens.

3. Click Run now.

4. On the sign in page, select for instance Facebook, and enter your Facebook account’s credential

when prompted.

5. On the sign-up page, verify that the prompt Store Membership Number appears.

6. Specify a value for store membership number and click Continue.

85 Bring-your-own-identity and Migrating Users

7. In the https://jwt.ms page, you should see a claim with type extension_storeMembershipNumber

that has the value that you specified.

8. Repeat the above steps 2 and 3 with the B2C_1A_ProfileEdit custom policy.

9. Change the value of the store membership number and click Continue.

10. In the https://jwt.ms page, you should see the new value listed.

https://jwt.ms/
https://jwt.ms/

86 Bring-your-own-identity and Migrating Users

Getting the list of all the Extensions properties

To get the list of all the Extensions properties, a.k.a. custom attributes, that have been created on the

WebApp-GraphAPI-DirectoryExtensions application, you can use the B2C.exe tool covered in the third

document of this series.

Type the following command:

PS> .\B2C.exe Get-Extension-Attribute <object-id_of_b2c-extensions-app>

In our illustration, 8d9a8b31-44fe-4a29-a21c-6d8909eda885:

PS> .\B2C.exe Get-Extension-Attribute 8d9a8b31-44fe-4a29-a21c-6d8909eda885
GET https://graph.windows.net/litware369b2c.onmicrosoft.com/applications/8d9a8b31-44fe-4a29-a21c-6d8909eda885/extensionP
roperties?api-version=1.6
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6IlliUkFRUlljRV9tb3RXVkpLSHJ3TEJiZF85...

200: OK

{
 "odata.metadata": "https://graph.windows.net/litware369b2c.onmicrosoft.com/$metadata#directoryObjects/Microsoft.Direct
oryServices.ExtensionProperty",
 "value": [
 {
 "odata.type": "Microsoft.DirectoryServices.ExtensionProperty",
 "objectType": "ExtensionProperty",
 "objectId": "93ad5eff-76e1-462f-8dde-3cd0ea43faaf",
 "deletionTimestamp": null,
 "appDisplayName": "",

 "name": "extension_4046aed8-66aa-4c9f-9249-7391e8c70244_storeMemebershipNumber",

 "dataType": "String",
 "isSyncedFromOnPremises": false,
 "targetObjects": [
 "User"
]
 },

The above JSON snippet lists the Extensions property/custom attribute storeMembershipNumber created in

the previous sections: extension_4046aed8-66aa-4c9f-9249-7391e8c70244_storeMembershipNumber

As you can see, the custom attributes are stored in the format:

extension_<Client ID>_<attribute>

Where:

• <Client ID> is the “Client ID” value of the WebApp-GraphAPI-DirectoryExtensions application:

4046aed8-66aa-4c9f-9249-7391e8c70244.

• <attribute> is the attribute name.

You can then update one of the two above .json files with the new property and a value for the property and

run the following:

PS> .\B2C Update-User <object_id_of_user> <path_to_json_file>

87 Bring-your-own-identity and Migrating Users

Sharing the same Extension properties with the built-in custom

policies

As noticed earlier, when you add Extension properties (a.k.a. custom attributes) via the Azure portal for built-

in policies, those properties are registered using the b2c-extensions-app that exists in every B2C tenant.

To use these Extension properties in your custom policies, proceed with the following steps:

1. Within your B2C tenant in the Azure portal, navigate to Azure Active Directory and select App

registrations.

2. Find your b2c-extensions-app and select it.

3. Under Essentials, record - as before with the WebApp-GraphAPI-DirectoryExtensions app - both

the Application ID and the Object ID.

4. Open the base policy file, specify them as before in the technical profile “AAD-Common”, save the

XML file and upload it to your B2C tenant.

Integrating with a RESTful API

The Identity Experience Framework in Azure AD B2C provides complete control for configuring policies. It

enables you to integrate identity providers with external REST full APIs through user journeys. IEF sends and

receives data in form of claims. You can configure a custom policy to exchange claims and perform complex

validation of identity information through a REST API.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

You can design the integration with a RESTful API in the following two ways:

1. Validation technical profile: The call to the RESTful API happens within the validation technical

profile of the specified technical profile. The validation technical profile validates the user-provided

data before the user journey moves forward. With the validation technical profile, you can:

a. Send input claims.

b. Validate the input claims and throw custom error messages.

c. Send back output claims.

2. Claims exchange: This design is similar to the validation technical profile, but it happens within an

orchestration step. This definition is limited to:

a. Send input claims.

b. Send back output claims.

We will illustrate both ways.

88 Bring-your-own-identity and Migrating Users

Creating an API application

Follow the instructions provided in section § Building a RESTful API claims provider in the Appendix.

Whilst this section features Azure App Service - Web Apps35 and the ASP.Net Core technology, one should

note that Azure Functions36 also provides an excellent foundation to create (serverless) RESTful APIs in the

cloud.

Integrating with a RESTful API for validating user input

This section shows how to create a user journey that interacts with the above RESTful API. It will leverage

this RESTful service that validates user input and sends an error message if the input data is not valid. The

data that the service validates is part of the identity information provided when a user signs up to your

application.

Note For more information, see articles WALKTHROUGH: INTEGRATE REST API CLAIMS EXCHANGES IN YOUR AZURE AD

B2C USER JOURNEY AS VALIDATION ON USER INPUT37 and INTEGRATE REST API CLAIMS EXCHANGES IN YOUR AZURE AD B2C USER

JOURNEY AS VALIDATION OF USER INPUT38.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

To do so, you will have to:

1. Update custom policies to use the API as claim provider in the intended user journey(s).

2. Upload custom policies.

3. Test the custom policy using Run Now.

The next sections detail the above.

Updating the custom policies

Proceed with the following steps:

1. Navigate to the SocialAndLocalAccounts folder in the “Starter Pack”.

2. Open the base policy file, i.e. the TrustFrameworkBase.xml file, using an XML editor of your choice,

for instance Visual Studio (Code).

3. Replace the <> element with the following XML snippet in the technical profiles

“LocalAccountSignUpWithLogonEmail” and “SelfAsserted-Social”.

<OutputClaim ClaimTypeReferenceId="extension_storeMembershipNumber" PartnerClaimType="storeMembershipNumber" />

4. Save the XML file.

5. Now open the extension policy file, i.e. the TrustFrameworkExtensions.xml file.

35 Azure App Service - Web Apps: https://azure.microsoft.com/en-us/services/app-service/web/
36 Azure Functions: https://azure.microsoft.com/en-us/services/functions/
37 WALKTHROUGH: INTEGRATE REST API CLAIMS EXCHANGES IN YOUR AZURE AD B2C USER JOURNEY AS VALIDATION ON USER INPUT:

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-rest-api-validation-custom
38 INTEGRATE REST API CLAIMS EXCHANGES IN YOUR AZURE AD B2C USER JOURNEY AS VALIDATION OF USER INPUT: https://docs.microsoft.com/en-

us/azure/active-directory-b2c/active-directory-b2c-custom-rest-api-netfw

https://azure.microsoft.com/en-us/services/app-service/web/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-rest-api-validation-custom
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-rest-api-validation-custom
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-rest-api-netfw
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-rest-api-netfw

89 Bring-your-own-identity and Migrating Users

6. In the ClaimsProviders node, add the following ClaimsProvider element.

<ClaimsProvider>
 <DisplayName>REST APIs</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="ValidateStoreMembershipNumber">
 <DisplayName>Validate Store Membership Number</DisplayName>
 <Protocol Name="Proprietary" Handler="Web.TPEngine.Providers.RestfulProvider, Web.TPEngine, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=null" />
 <Metadata>

 <Item Key="ServiceUrl">https://your_webservice.azurewebsites.net/api/membership/validate</Item>

 <Item Key="AuthenticationType">None</Item>
 <Item Key="SendClaimsIn">Body</Item>
 </Metadata>
 <InputClaims>
 <InputClaim ClaimTypeReferenceId="extension_storeMembershipNumber"
 PartnerClaimType="storeMembershipNumber" />
 </InputClaims>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-Noop" />
 </TechnicalProfile>
 <TechnicalProfile Id="LocalAccountSignUpWithLogonEmail">
 <ValidationTechnicalProfiles>
 <ValidationTechnicalProfile ReferenceId="ValidateStoreMembershipNumber" />
 </ValidationTechnicalProfiles>
 </TechnicalProfile>
 <TechnicalProfile Id="SelfAsserted-Social">
 <ValidationTechnicalProfiles>
 <ValidationTechnicalProfile ReferenceId="ValidateStoreMembershipNumber" />
 </ValidationTechnicalProfiles>
 </TechnicalProfile>
 <TechnicalProfile Id="SelfAsserted-ProfileUpdate">
 <ValidationTechnicalProfiles>
 <ValidationTechnicalProfile ReferenceId="ValidateStoreMembershipNumber" />
 </ValidationTechnicalProfiles>
 </TechnicalProfile>
 </TechnicalProfiles>
</ClaimsProvider>

The technical profile “ValidateStoreMembershipNumber” is used as a validation technical profile for

the technical profiles “LocalAccountSignUpWithLogonEmail”, “SelfAsserted-Social”, and

“SelfAsserted-ProfileUpdate” to validate the user input for the Extension property

extension_storeMembershipNumber.

7. Replace your_webservice highlighted in red with the name under which your RESTful API has been

published. For example, in our configuration:

“storemembershipapi20180627033636”, See section § Publishing the project as an Azure Website in

the Appendix.

8. Save the XML file.

Important note For the sake of simplicity, the above RESTful API is provided with no authentication, see

related metadata in the above technical profile ValidateStoreMembershipNumber. For more information about how

to secure such an API, see articles SECURE YOUR RESTFUL SERVICES BY USING HTTP BASIC AUTHENTICATION39 and SECURE YOUR

RESTFUL SERVICE BY USING CLIENT CERTIFICATES40 to support a basic authentication respectively a certificate-based

authentication. The policy files along with the code samples provided in the folder scenarios\ aadb2c-ief-rest-api-

39 SECURE YOUR RESTFUL SERVICES BY USING HTTP BASIC AUTHENTICATION: https://docs.microsoft.com/en-us/azure/active-directory-

b2c/active-directory-b2c-custom-rest-api-netfw-secure-basic
40 SECURE YOUR RESTFUL SERVICE BY USING CLIENT CERTIFICATES: https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-

directory-b2c-custom-rest-api-netfw-secure-basic

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-rest-api-netfw-secure-basic
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-rest-api-netfw-secure-basic
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-custom-rest-api-netfw-secure-basic

90 Bring-your-own-identity and Migrating Users

netfw-secure-basic respectively scenarios\ aadb2c-ief-rest-api-netfw-secure-cert of the “Starter Pack can be used as

an illustration or as a starting point.

Uploading the custom policies to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the TrustFrameworkBase.xml policy file.

5. Click Upload and ensure that it does not fail the validation.

6. Repeat above steps with the TrustFrameworkExtensions.xml policy file.

Testing the custom policy by using Run Now

To test the custom policy, proceed with the following steps:

1. In the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Users.

3. In All users, select the user you created in above section § Integrating with your B2C tenant, and

select Delete user. Select Yes to confirm the deletion.

4. Navigate to the previous page.

5. Click the B2C_1A_signup_signin custom policy to see its detail view. A new blade opens.

91 Bring-your-own-identity and Migrating Users

6. Click Run now.

7. On the sign in page, select Sign up now.

8. On the sign-up page, verify that the prompt Store Membership Number appears.

9. Attempt to sign up with a store membership number that is not a multiple of 5.

10. Verify that if you specify a multiple of 5 for the store membership number then sign up is successful.

In the https://jwt.ms page, you should see a claim with type extension_storeMembershipNumber

that has the value that you specified as a multiple of 5.

11. Repeat the above steps 5 and 6 with the B2C_1A_ProfileEdit custom policy.

12. Change the value of the store membership number to another value that is not a multiple of 5 and

click Continue.

https://jwt.ms/

92 Bring-your-own-identity and Migrating Users

13. Now specify a multiple of 5 for the store membership number and click Continue. In the

https://jwt.ms page, you should see a claim with type extension_storeMembershipNumber that

has the value that you specified as a multiple of 5.

Integrating with a RESTful API for validating user input

This section shows how to create a user journey that interacts with the previous RESTful API (See section §

Creating an API application). It will leverage this RESTful service that also reads the input user claims and

returns a Store Membership Date.

Note For more information on how integrating a REST API for claims exchange, see article WALKTHROUGH:

INTEGRATE REST API CLAIMS EXCHANGES IN YOUR AZURE AD B2C USER JOURNEY AS AN ORCHESTRATION STEP41.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

To do so, you will have to:

1. Update custom policies to use the API as claim provider in the intended user journey(s).

2. Upload custom policies.

3. Test the custom policy using Run Now.

The next sections detail the above.

41 WALKTHROUGH: INTEGRATE REST API CLAIMS EXCHANGES IN YOUR AZURE AD B2C USER JOURNEY AS AN ORCHESTRATION STEP:

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-rest-api-step-custom

https://jwt.ms/
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-rest-api-step-custom
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-rest-api-step-custom

93 Bring-your-own-identity and Migrating Users

Updating the custom policies

Proceed with the following steps:

1. Navigate to the SocialAndLocalAccounts folder in the “Starter Pack”.

2. Open the extension policy file, i.e. the TrustFrameworkExtensions.xml file, using an XML editor of

your choice, for instance Visual Studio (Code).

3. In the BuildingBlocks node, insert the following ClaimType to the collection in the ClaimsSchema

node.

<ClaimType Id="extension_storeMembershipDate">
 <DisplayName>Store Membership Date</DisplayName>
 <DataType>string</DataType>
 <UserHelpText>Your store membership date</UserHelpText>
 <UserInputType>TextBox</UserInputType>
</ClaimType>

4. In the ClaimsProviders node, find the ClaimsProvider node that contains the <DisplayName>REST

APIs</DisplayName> element.

5. Add the following TechnicalProfile element to this claims provider.

<!-- Obtain claim technical profile -->
<TechnicalProfile Id="ObtainStoreMembershipDate">
 <DisplayName>Obtain Store Membership Date</DisplayName>
 <Protocol Name="Proprietary" Handler="Web.TPEngine.Providers.RestfulProvider, Web.TPEngine, Version=1.0.0.0,
Culture=neutral,
 PublicKeyToken=null" />
 <Metadata>

 <Item Key="ServiceUrl">https://your_webservice.azurewebsites.net/api/membership/membershipdate</Item>

 <Item Key="AuthenticationType">None</Item>
 <Item Key="SendClaimsIn">Body</Item>
 </Metadata>
 <InputClaims>
 <InputClaim ClaimTypeReferenceId="extension_storeMembershipNumber" PartnerClaimType="storeMembershipNumber" />
 </InputClaims>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="extension_storeMembershipDate" PartnerClaimType="storeMembershipDate" />
 </OutputClaims>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-Noop" />
</TechnicalProfile>

6. As before, replace your_webservice highlighted in red with the name under which your RESTful API

has been published. For example, in our configuration:

“storemembershipapi20180627033636”

See section § Publishing the project as an Azure Website in the Appendix.

7. Scroll down to the UserJourneys node at the end of the file and add the following UserJourney

element to this node.

<UserJourney Id="ProfileEditObtainApiClaim">
 <OrchestrationSteps>
 <OrchestrationStep Order="1" Type="ClaimsProviderSelection" ContentDefinitionReferenceId="api.idpselections">
 <ClaimsProviderSelections>
 <ClaimsProviderSelection TargetClaimsExchangeId="LocalAccountSigninEmailExchange" />
 </ClaimsProviderSelections>
 </OrchestrationStep>
 <OrchestrationStep Order="2" Type="ClaimsExchange">
 <ClaimsExchanges>

94 Bring-your-own-identity and Migrating Users

 <ClaimsExchange Id="LocalAccountSigninEmailExchange"
 TechnicalProfileReferenceId="SelfAsserted-LocalAccountSignin-Email" />
 </ClaimsExchanges>
 </OrchestrationStep>
 <OrchestrationStep Order="3" Type="ClaimsExchange">
 <ClaimsExchanges>
 <ClaimsExchange Id="AADUserReadWithObjectId" TechnicalProfileReferenceId="AAD-UserReadUsingObjectId" />
 </ClaimsExchanges>
 </OrchestrationStep>
 <OrchestrationStep Order="4" Type="ClaimsExchange">
 <ClaimsExchanges>
 <ClaimsExchange Id="B2CUserProfileUpdateExchange" TechnicalProfileReferenceId="SelfAsserted-ProfileUpdate" />
 </ClaimsExchanges>
 </OrchestrationStep>
 <OrchestrationStep Order="5" Type="ClaimsExchange">
 <ClaimsExchanges>
 <ClaimsExchange Id="GetStoreMembershipDateData" TechnicalProfileReferenceId="ObtainStoreMembershipDate" />
 </ClaimsExchanges>
 </OrchestrationStep>
 <OrchestrationStep Order="6" Type="SendClaims" CpimIssuerTechnicalProfileReferenceId="JwtIssuer" />
 </OrchestrationSteps>
 <ClientDefinition ReferenceId="DefaultWeb" />
</UserJourney>

8. Save the XML file.

9. Now open the ProfileEdit.xml file, using an XML editor of your choice, for instance Visual Studio

(Code).

10. Scroll down to the RelyingParty node and under this node replace the DefaultUserJourney node with

the following XML element.

<DefaultUserJourney ReferenceId="ProfileEditObtainApiClaim" />

11. Under the <TechnicalProfile Id="PolicyProfile"> node, add the following XML snippet below the

OutputClaims node.

<OutputClaim ClaimTypeReferenceId="extension_storeMembershipDate" />

12. Save the XML file.

Uploading the custom policies to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the TrustFrameworkExtensions.xml policy file.

5. Click Upload and ensure that it does not fail the validation.

6. Repeat the above steps with the ProfileEdit.xml policy file.

Testing the custom policy

To test the custom policy, proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

95 Bring-your-own-identity and Migrating Users

2. Use the Users blade to delete the user you created in the previous test.

3. Close the Users blade and then click the B2C_1A_signup_signin custom policy to see its detail view.

A new blade opens.

4. Click Run now.

5. On the sign in page, select Sign up now.

6. On the sign-up page, sign up again.

7. When sign up is complete, click the B2C_1A_EditProfile custom policy to edit your profile and click

Run now.

96 Bring-your-own-identity and Migrating Users

8. Log in with the previously created account. After updating your profile, you should see the

storeMembershipDate claim in the token sent back from the Identity Experience Framework in

Azure AD B2C.

97 Bring-your-own-identity and Migrating Users

Implementing a custom user journey
This section covers how to:

• Create a new user journey.

• Customize an existing user journey.

• Customize the UI of a user journey.

The next sections detail the above in order.

Creating a new user journey

This section illustrates how to modify an existing user journey to create a new one.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

As such, and for the sake of the illustration, we will use the SignUpOrSignin user journey that comes with

the “Starter Pack” in the SocialAndLocalAccountsWithMfa folder in its base policy file to create as such

another user journey to sign in a user without multi-factor authentication (MFA); so, namely the eponym

one in the SocialAndLocalAccounts folder. This user journey will be named SignUpOrSignin_NoMfa.

Proceed with the follow steps:

1. Navigate to the folder in the “Starter Pack”.

2. Open the base policy file, i.e. the TrustFrameworkBase.xml file, using an XML editor of your choice,

for instance Visual Studio (Code).

3. Scroll down and locate the SignUpOrSignin user journey.

4. Copy the XML between <UserJourney> and </UserJourney> XML elements and paste it as an

independent user journey in the same file.

5. Rename the Id attribute on the copied UserJourney XML element to SignUpOrSignin_NoMfa or

something similar.

<UserJourney Id="SignUpOrSignin_NoMfa">

 <OrchestrationSteps>

 <OrchestrationStep Order="1" Type="CombinedSignInAndSignUp" ContentDefinitionReferenceId="api.signuporsignin">
 <ClaimsProviderSelections>
 <ClaimsProviderSelection TargetClaimsExchangeId="FacebookExchange" />
 <ClaimsProviderSelection ValidationClaimsExchangeId="LocalAccountSigninEmailExchange" />
 </ClaimsProviderSelections>
 <ClaimsExchanges>
 <ClaimsExchange Id="LocalAccountSigninEmailExchange"
 TechnicalProfileReferenceId="SelfAsserted-LocalAccountSignin-Email" />
 </ClaimsExchanges>
 </OrchestrationStep>

 <!-- Check if the user has selected to sign in using one of the social providers -->
 <OrchestrationStep Order="2" Type="ClaimsExchange">
 <Preconditions>
 <Precondition Type="ClaimsExist" ExecuteActionsIf="true">
 <Value>objectId</Value>
 <Action>SkipThisOrchestrationStep</Action>
 </Precondition>

98 Bring-your-own-identity and Migrating Users

 </Preconditions>
 <ClaimsExchanges>
 <ClaimsExchange Id="FacebookExchange" TechnicalProfileReferenceId="Facebook-OAUTH" />
 <ClaimsExchange Id="SignUpWithLogonEmailExchange"
 TechnicalProfileReferenceId="LocalAccountSignUpWithLogonEmail" />
 </ClaimsExchanges>
 </OrchestrationStep>

 <!-- For social IDP authentication, attempt to find the user account in the directory. -->
 <OrchestrationStep Order="3" Type="ClaimsExchange">
 <Preconditions>
 <Precondition Type="ClaimEquals" ExecuteActionsIf="true">
 <Value>authenticationSource</Value>
 <Value>localAccountAuthentication</Value>
 <Action>SkipThisOrchestrationStep</Action>
 </Precondition>
 </Preconditions>
 <ClaimsExchanges>
 <ClaimsExchange Id="AADUserReadUsingAlternativeSecurityId"

 TechnicalProfileReferenceId="AAD-UserReadUsingAlternativeSecurityId-NoError" />
 </ClaimsExchanges>
 </OrchestrationStep>

 <!-- Show self-asserted page only if the directory does not have the user account already (i.e. we do not have an
 objectId). This can only happen when authentication happened using a social IDP. If local account was created
 or authentication done using ESTS in step 2, then an user account must exist in the directory by this time.
 -->
 <OrchestrationStep Order="4" Type="ClaimsExchange">
 <Preconditions>
 <Precondition Type="ClaimsExist" ExecuteActionsIf="true">
 <Value>objectId</Value>
 <Action>SkipThisOrchestrationStep</Action>
 </Precondition>
 </Preconditions>
 <ClaimsExchanges>
 <ClaimsExchange Id="SelfAsserted-Social" TechnicalProfileReferenceId="SelfAsserted-Social" />
 </ClaimsExchanges>
 </OrchestrationStep>

 <!-- This step reads any user attributes that we may not have received when authenticating using ESTS so they can
 be sent in the token. -->
 <OrchestrationStep Order="5" Type="ClaimsExchange">
 <Preconditions>
 <Precondition Type="ClaimEquals" ExecuteActionsIf="true">
 <Value>authenticationSource</Value>
 <Value>socialIdpAuthentication</Value>
 <Action>SkipThisOrchestrationStep</Action>
 </Precondition>
 </Preconditions>
 <ClaimsExchanges>
 <ClaimsExchange Id="AADUserReadWithObjectId" TechnicalProfileReferenceId="AAD-UserReadUsingObjectId" />
 </ClaimsExchanges>
 </OrchestrationStep>
 <!-- The previous step (SelfAsserted-Social) could have been skipped if there were no attributes to collect
 from the user. So, in that case, create the user in the directory if one does not already exist
 (verified using objectId which would be set from the last step if account was created in the directory. -->
 <OrchestrationStep Order="6" Type="ClaimsExchange">
 <Preconditions>
 <Precondition Type="ClaimsExist" ExecuteActionsIf="true">
 <Value>objectId</Value>
 <Action>SkipThisOrchestrationStep</Action>
 </Precondition>
 </Preconditions>
 <ClaimsExchanges>
 <ClaimsExchange Id="AADUserWrite" TechnicalProfileReferenceId="AAD-UserWriteUsingAlternativeSecurityId" />
 </ClaimsExchanges>
 </OrchestrationStep>

 <!-- Phone verification: If MFA is not required, the next two steps (#7-#8) should be removed.
 This step checks whether there's a phone number on record, for the user. If found, then the user is challenged
 to verify it. -->
 <OrchestrationStep Order="7" Type="ClaimsExchange">
 <Preconditions>
 <Precondition Type="ClaimsExist" ExecuteActionsIf="true">
 <Value>isActiveMFASession</Value>
 <Action>SkipThisOrchestrationStep</Action>
 </Precondition>
 </Preconditions>

99 Bring-your-own-identity and Migrating Users

 <ClaimsExchanges>
 <ClaimsExchange Id="PhoneFactor-Verify" TechnicalProfileReferenceId="PhoneFactor-InputOrVerify" />
 </ClaimsExchanges>
 </OrchestrationStep>

 <!-- Save MFA phone number: The precondition verifies whether the user provided a new number in the
 previous step. If so, then the phone number is stored in the directory for future authentication
 requests. -->
 <OrchestrationStep Order="8" Type="ClaimsExchange">
 <Preconditions>
 <Precondition Type="ClaimsExist" ExecuteActionsIf="false">
 <Value>newPhoneNumberEntered</Value>
 <Action>SkipThisOrchestrationStep</Action>
 </Precondition>
 </Preconditions>
 <ClaimsExchanges>
 <ClaimsExchange Id="AADUserWriteWithObjectId"
 TechnicalProfileReferenceId="AAD-UserWritePhoneNumberUsingObjectId" />
 </ClaimsExchanges>
 </OrchestrationStep>

 <OrchestrationStep Order="9" Type="SendClaims" CpimIssuerTechnicalProfileReferenceId="JwtIssuer" />

 </OrchestrationSteps>
 <ClientDefinition ReferenceId="DefaultWeb" />
</UserJourney>

6. The OrchestrationStep XML elements with Order = 7 to 8 above perform phone authentication.

Remove those steps.

7. Change the order of the last orchestration step from 9 to 7. If you don’t do that and later attempt

to use the policy, Azure AD B2C will complain about inconsistent order numbers.

8. Save the XML file.

9. In the same folder, copy the SignUpOrSignin.xml policy to the SignUpOrSignin_NoMfa.xml file or

something similar and open that XML file.

10. Change the PolicyId attribute on TrustFrameworkPolicy XML element to

B2C_1A_signup_signin_nomfa. When a policy is uploaded, the PolicyId attribute is used to

determine its name in the system.

11. Similarly, change the ReferenceId attribute of the DefaultUserJourney XML element under the

RelyingParty section to SignUpOrSignin_NoMfa. This indicates which user journey will be

executed when a request comes with p=SignUpOrSignin_NoMfa.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<TrustFrameworkPolicy
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.microsoft.com/online/cpim/schemas/2013/06"
 PolicySchemaVersion="0.3.0.0"
 TenantId="litware369b2c.onmicrosoft.com"

 PolicyId="B2C_1A_signup_signin_nomfa"

 PublicPolicyUri="http://litware369b2c.onmicrosoft.com/B2C_1A_signup_signin">
 <BasePolicy>
 <TenantId>litware369b2c.onmicrosoft.com</TenantId>
 <PolicyId>B2C_1A_TrustFrameworkExtensions</PolicyId>
 </BasePolicy>

 <RelyingParty>

 <DefaultUserJourney ReferenceId="SignUpOrSignIn_NoMfa" />

 <TechnicalProfile Id="PolicyProfile">
 <DisplayName>PolicyProfile</DisplayName>

100 Bring-your-own-identity and Migrating Users

 <Protocol Name="OpenIdConnect" />
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="displayName" />
 <OutputClaim ClaimTypeReferenceId="givenName" />
 <OutputClaim ClaimTypeReferenceId="surname" />
 <OutputClaim ClaimTypeReferenceId="email" />
 <OutputClaim ClaimTypeReferenceId="objectId" PartnerClaimType="sub"/>
 <OutputClaim ClaimTypeReferenceId="identityProvider" />
 </OutputClaims>
 <SubjectNamingInfo ClaimType="sub" />
 </TechnicalProfile>
 </RelyingParty>
</TrustFrameworkPolicy>

12. Save the XML file

13. Upload above XML files to your B2C tenant as before.

14. Select the B2C_1A_signup_signin_nomfa newly uploaded policy and click Run Now.

This should allow an existing user to sign-up or sign in without phone verification.

Customizing an existing user journey

This section illustrates some common customization for a user journey.

Note For more information, see article AZURE ACTIVE DIRECTORY B2C: MODIFY SIGN UP TO ADD NEW CLAIMS AND

CONFIGURE USER INPUT42.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

Collecting a new attribute from the user during sign up and

send it to the application

This section depicts how to use a newly created attribute in a sign-up or sign in policy to collect it from the

user, and ultimately send the collected value to the consumer application that runs the policy.

This twofold process consists in:

1. Adding a claim type for the new attribute in the claims schema section,

2. And then adding the attribute in the self-asserted provider to collect from the user in local account

creation at sign-up time,

As an illustration in order of the above process, proceed with the following steps:

1. Navigate this time to the folder in the “Starter Pack”.

2. Open the base policy file, i.e. the TrustFrameworkBase.xml file, using an XML editor of your choice,

for instance Visual Studio (Code).

3. Scroll down to the ClaimsSchema section to add a claim type for the new attribute.

4. Copy the givenName claim type that is close to the end of the ClaimsSchema section, and then

paste it just before the end of the ClaimsSchema section.

42 AZURE ACTIVE DIRECTORY B2C: MODIFY SIGN UP TO ADD NEW CLAIMS AND CONFIGURE USER INPUT: https://docs.microsoft.com/en-

us/azure/active-directory-b2c/active-directory-b2c-configure-signup-self-asserted-custom

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-configure-signup-self-asserted-custom
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-configure-signup-self-asserted-custom

101 Bring-your-own-identity and Migrating Users

5. In the pasted claim type:

a. Update the Id attribute to a unique value so it can be later referenced from other places

in the custom policy. For example, in our illustration, surname.

b. Update the other elements to provide appropriate values. One should note that

DisplayName and UserHelpText XML elements are shown to the end user.

c. Eventually update DefaultPartnerClaimTypes XML element to reflect the default claim

types that you expect to go in the token to the consumer application.

<!-- SECTION III: Additional claims that can be collected from the users, stored in the directory, and sent in the token.
 Add additional claims here. -->

<ClaimType Id="givenName">
…
</ClaimType>

<ClaimType Id="surname">
 <DisplayName>Surname</DisplayName>
 <DataType>string</DataType>
 <DefaultPartnerClaimTypes>
 <Protocol Name="OAuth2" PartnerClaimType="family_name" />
 <Protocol Name="OpenIdConnect" PartnerClaimType="family_name" />
 <Protocol Name="SAML2" PartnerClaimType="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname" />
 </DefaultPartnerClaimTypes>
 <UserHelpText>Your surname (also known as family name or last name.</UserHelpText>
 <UserInputType>TextBox</UserInputType>
</ClaimType>

6. Now that the new claim type is fully specified, locate the SignUpOrSignIn user journey in the same

policy file.

<UserJourney Id="SignUpOrSignIn">
 <OrchestrationSteps>

 <OrchestrationStep Order="1" Type="CombinedSignInAndSignUp" ContentDefinitionReferenceId="api.signuporsignin">
 <ClaimsProviderSelections>
 <ClaimsProviderSelection TargetClaimsExchangeId="FacebookExchange" />
 <ClaimsProviderSelection ValidationClaimsExchangeId="LocalAccountSigninEmailExchange" />
 </ClaimsProviderSelections>
 <ClaimsExchanges>
 <ClaimsExchange Id="LocalAccountSigninEmailExchange"
 TechnicalProfileReferenceId="SelfAsserted-LocalAccountSignin-Email" />
 </ClaimsExchanges>
 </OrchestrationStep>

 <!-- Check if the user has selected to sign in using one of the social providers -->
 <OrchestrationStep Order="2" Type="ClaimsExchange">
 <Preconditions>
 <Precondition Type="ClaimsExist" ExecuteActionsIf="true">
 <Value>objectId</Value>
 <Action>SkipThisOrchestrationStep</Action>
 </Precondition>
 </Preconditions>
 <ClaimsExchanges>
 <ClaimsExchange Id="FacebookExchange" TechnicalProfileReferenceId="Facebook-OAUTH" />

 <ClaimsExchange Id="SignUpWithLogonEmailExchange"
 TechnicalProfileReferenceId="LocalAccountSignUpWithLogonEmail" />

 </ClaimsExchanges>
 </OrchestrationStep>
 …
 </OrchestrationSteps>
 <ClientDefinition ReferenceId="DefaultWeb" />
</UserJourney>

102 Bring-your-own-identity and Migrating Users

7. In the orchestration step 2, locate the technical profile name for the

SignUpWithLogonEmailExchange claims exchange. It should be the

LocalAccountSignUpWithLogonEmail technical profile. If you recall What we’ve covered in

section § Integrating with your B2C tenant, the LocalAccountSignUpWithLogonEmail self-asserted

technical profile was used during local account creation.

8. Search that technical profile in the policy file.

9. In the OutputClaims section of the technical profile, add the newly created claim type in steps 4 to 5.

Essentially an output claim (i.e. an OutputClaim XML element) listed in such a technical profile

indicates that this claim needs to be sent back by the provider and thus will be sourced from the

user.

<TechnicalProfile Id="LocalAccountSignUpWithLogonEmail">
 <DisplayName>Email signup</DisplayName>
 <Protocol Name="Proprietary" Handler="Web.TPEngine.Providers.SelfAssertedAttributeProvider, Web.TPEngine,
 Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" />
 …
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="objectId" />
 <OutputClaim ClaimTypeReferenceId="email" PartnerClaimType="Verified.Email" Required="true" />
 <OutputClaim ClaimTypeReferenceId="newPassword" Required="true" />
 <OutputClaim ClaimTypeReferenceId="reenterPassword" Required="true" />
 <OutputClaim ClaimTypeReferenceId="executed-SelfAsserted-Input" DefaultValue="true" />
 <OutputClaim ClaimTypeReferenceId="authenticationSource" />
 <OutputClaim ClaimTypeReferenceId="newUser" />

 <!-- Optional claims, to be collected from the user -->
 <OutputClaim ClaimTypeReferenceId="displayName" />
 <OutputClaim ClaimTypeReferenceId="givenName" />

 <OutputClaim ClaimTypeReferenceId="surName" />

 <OutputClaim ClaimTypeReferenceId="extension_storeMembershipNumber" PartnerClaimType="storeMembershipNumber" />
 </OutputClaims>
 …
</TechnicalProfile>

10. Save the XML file and upload it to your B2C tenant as before.Now open the SignupOrSignin.xml

policy XML file in the same folder.

12. Scroll down to the RelyingParty section of the custom policy. This XML element determines the

interaction between Azure AD B2C and the consumer application that’s making the request.

13. Add a new OutputClaim XML element with the ClaimTypeReferenceId attribute set to the Id attribute

of the new claim type you added in the B2C_1A_TrustFrameworkBase.xml policy XML file in above

steps 4 to 5. This allows to send the attribute to the consumer application in the token

14. Save the XML file and upload it to your B2C tenant as before.

15. Eventually run the custom policy using the Azure AD B2C blade in the Azure portal to test the new

attribute being collected from the user during local account creation and sent in the token.

Applying a claims transformation to create a new claim

To continue our series of illustration in terms of user journey’s customizations, we will then create a new

claims transformation to create a new displayName claim from the givenName and surname claims and

send it in the token to the consumer application.

This twofold process consists in:

103 Bring-your-own-identity and Migrating Users

1. Creating the claims transformation as such in the policy XML file.

2. Referencing the claims transformation from a claims provider to apply it.

As such, this section illustrates:

• How claims transformations are declared in the policy XML file, the role of the InputClaims,

OutputClaims and InputParameters collections/sections.

• The relationship between claims transformation and claims providers.

As an illustration of the above process, proceed with the following steps:

1. Navigate this time to the folder in the “Starter Pack”.

2. Open the base policy file, i.e. the TrustFrameworkBase.xml file, using an XML editor of your choice,

for instance Visual Studio (Code).

3. Scroll down and locate the ClaimsTransformations section.

4. Add a new claims transformation with the following ClaimsTransformation XML element.

<ClaimsTransformation Id="CreateDisplayNameFromGivenNameAndSurname" TransformationMethod="FormatStringMultipleClaims">
 <InputClaims>
 <InputClaim ClaimTypeReferenceId="givenName" TransformationClaimType="inputClaim1" />
 <InputClaim ClaimTypeReferenceId="surname" TransformationClaimType="inputClaim2" />
 </InputClaims>
 <InputParameters>
 <InputParameter Id="stringFormat" DataType="string" Value="{0} {1}" />
 </InputParameters>
 <OutputClaims>
 <OutputClaim ClaimTypeReferenceId="displayName" TransformationClaimType="outputClaim" />
 </OutputClaims>
</ClaimsTransformation>

This is just the declaration of the claims transformation. The Id attribute is used to later reference

the transformation. This claims transformation uses a predefined transformation method (e.g.

TransformationMethod attribute), provides the input claims (e.g. InputClaims section) and input

parameter (e.g. InputParameters section), and returns output claims (e.g. OutputClaims section).

5. In the LocalAccountSignUpWithLogonEmail technical profile, add the following

OutputClaimsTransformation:

<OutputClaimsTransformations>
 <OutputClaimsTransformation ReferenceId="CreateDisplayNameFromGivenNameAndSurname"/>
</OutputClaimsTransformations>

Now when the technical profile will be invoked, and claims are returned from that technical profile,

this claims transformation will be applied to create (or overwrite) the displayName claim.

6. Save the XML file and upload it to your B2C tenant as before.

7. Execute the B2C_1A_signup_signin policy. displayName should appear in the token that is issued

to the consumer application.

Customizing the UI of a user journey

Azure AD B2C allows you to customize the look-and-feel of user experience on the various pages that can

be potentially served and displayed by Azure AD B2C via your custom policies.

104 Bring-your-own-identity and Migrating Users

UI customization for a relating seamless user experience is key for any business-to-consumer solution. By

seamless user experience, we mean an experience, whether on device or browser, where a user’s journey

through our service cannot be distinguished from that of the customer service they are using. (Localization

is also part of this story to smoothly adapt the UI to the end-user.)

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

Understanding the CORS way for UI customization

The Identity Experience Engine in Azure AD B2C runs code in your consumer's browser and uses the modern

and standard approach Cross-Origin Resource Sharing (CORS)43 to load custom content from a specific URL

that you specify in a custom policy to point to your HTML5/CSS templates (see next section): “Cross-origin

resource sharing (CORS) is a mechanism that allows restricted resources (e.g. fonts) on a web page to be

requested from another domain outside the domain from which the resource originated.”44

Compared to the old traditional way, where template pages are owned by the solution where you provided

limited text and images, where limited control of layout and feel was offered leading to more than difficulties

to achieve a seamless experience, the CORS way supports HTML5 and CSS and allows you to:

• Host the content and the solution injects its controls using client-side script.

• Have full control over every pixel of layout and feel.

You can provide as many content pages as you like by crafting HTML5/CSS files as appropriate.

Note For security reasons, the use of JavaScript is currently blocked for customization. It’s going to be relax

in a near future.

In each of your HTML5/CSS templates, you provide an “anchor” element, which corresponds to the required

<div id=”api”> element in the HTML or the content page as illustrate hereafter. Azure AD B2C indeed

requires that all content pages have this specific div.

<!DOCTYPE html>
<html>
 <head>
 <title>Your page content’s title!</title>
 </head>
 <body>

 <div id="api"></div>

 </body>
</html>

Azure AD B2C-related content for the page will be injected into this div, while the rest of the page is yours

to control. The Azure AD B2C’s JavaScript code pulls in your content and injects our HTML into this specific

div element. Azure AD B2C injects the following controls as appropriate: account chooser control, login

controls, multi-factor (currently phone-based) controls, and attribute collection controls. In terms of

commitment, we will ensure that i) all our controls are HTML5 compliant and accessible, ii) all our controls

can be fully styled, and iii) a control version will not regress.

43 CROSS-ORIGIN RESOURCE SHARING W3C RECOMMENDATION 16 JANUARY 2014: http://www.w3.org/TR/cors/
44 CROSS-ORIGIN RESOURCE SHARING: https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

http://www.w3.org/TR/cors/

105 Bring-your-own-identity and Migrating Users

The merged content is eventually displayed as the dynamic document to your external user.

To ensure of the above works as expected, you must:

• Ensure your content is HTML5 compliant and accessible.

• Ensure your content server is enabled for CORS.

Note To verify that the site you are hosting your content on has CORS enabled and test CORS requests, you

can use the site http://test-cors.org/. Thanks to this site, you can simply either send the CORS request to a remote

server (to test if CORS is supported) or send the CORS request to a test server (to explore certain features of CORS).

Note The site http://enable-cors.org/ also constitutes a more than useful resources on CORS.

• Serve content over HTTPS.

• Use absolute URLS such as https://yourdomain/content for all links and CSS content.

Thank to this CORS-based approach, the end users will then have consistent experiences between

your application and the pages served by Azure AD B2C.

Adding static UI customization to a user journey

Note For more information, see article AZURE ACTIVE DIRECTORY B2C: CONFIGURE UI CUSTOMIZATION IN A CUSTOM

POLICY45.

Creating a storage account for your HTML5/CSS templates

To create a storage account, proceed with the following steps:

1. Open a browsing session and navigate to the Azure portal at https://portal.azure.com.

2. Sign in with your administrative credentials.

3. Click + New > Data + Storage > Storage account. A Create storage account blade opens.

45 AZURE ACTIVE DIRECTORY B2C: CONFIGURE UI CUSTOMIZATION IN A CUSTOM POLICY: https://docs.microsoft.com/en-us/azure/active-

directory-b2c/active-directory-b2c-ui-customization-custom

http://test-cors.org/
http://enable-cors.org/
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-ui-customization-custom
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-ui-customization-custom
https://portal.azure.com/

106 Bring-your-own-identity and Migrating Users

Note You will need an Azure subscription to create an Azure Blob Storage account. You can sign up a free

trial at the Azure website at https://azure.microsoft.com/en-us/free/?v=18.23.

4. In Name, provide a name for the storage account, for example, “litware369b2c" in our configuration.

This value will be later referred as to storageAccountName.

5. Pick the appropriate selections for the location, the replication mode, the performance/pricing tier,

the resource group and the subscription. Make sure that you have the Pin to Startboard option

checked. Click Create.

6. Go back to the Startboard and click the storage account that you just created.

107 Bring-your-own-identity and Migrating Users

7. In the Services section, click Blobs. A Blob service blade opens up.

8. Click + Container.

9. In Name, provide a name for the container. For example, in our configuration, "b2c". This value will

be later referred as to containerName.

10. Select Blob (anonymous read access for blobs only) as the Access type. Click OK.

11. The container that you created will appear in the list on the Containers blade.

108 Bring-your-own-identity and Migrating Users

12. Close the blade.

13. On the storage account blade, click the Key icon. An Access keys blade opens up.

14. Write down the value of the key under key1. This value will be later referred as key1.

Important note key1 is an important security credential.

Downloading the helper tool

To download the so-called Azure Blob Storage helper tool, proceed with the following step:

1. Download the helper tool as a .zip file from GitHub at https://github.com/azureadquickstarts/b2c-

azureblobstorage-client/archive/master.zip.

2. Save the B2C-AzureBlobStorage-Client-master.zip file on your local machine.

3. Extract the content of the B2C-AzureBlobStorage-Client-master.zip file on your local disk, for

example under the Starter-Pack folder. This will create a B2C-AzureBlobStorage-Client-master

folder underneath.

4. Open that folder and extract the content of the archive file B2CAzureStorageClient.zip within it.

https://github.com/azureadquickstarts/b2c-azureblobstorage-client/archive/master.zip
https://github.com/azureadquickstarts/b2c-azureblobstorage-client/archive/master.zip

109 Bring-your-own-identity and Migrating Users

Uploading the sample files

To upload the sample files from the content pack, proceed with the following steps:

1. From the Windows Explorer, navigate to the above folder B2C-AzureBlobStorage-Client-master

located under the Starter-Pack folder.

2. Run the B2CAzureStorageClient.exe file within. This program will simply upload all the files in the

directory that you specify to your storage account and enable CORS access for those files.

3. When prompted, specify:

a. The name of your storage account, i.e. storageAccountName, for example litware369b2c in

our configuration.

b. The primary access key of your azure blob storage, i.e. key1, for example litware369b2c in

our configuration.

c. The name of your storage blob storage container, i.e. containerName, for example b2c in

our configuration.

d. And eventually, for the sake of this illustration, the path of the Wingtip Toys sample files,

e.g. the B2C-AzureBlobStorage-Client-master\sample_templates\wingtip folder under the

Starter-Pack folder.

If you followed the steps above, the HTML5 and CSS files for the fictitious company Wingtip Toys will now

be pointing to your storage account.

You can verify that the content has been uploaded correctly by opening the related container blade in the

Azure portal.

110 Bring-your-own-identity and Migrating Users

You can alternatively verify that the content has been uploaded correctly with the Microsoft Azure Storage

Explorer tool46 or by trying to access on the browser. The page should be displayed in the browser.

Note For additional information, see the article AZURE ACTIVE DIRECTORY B2C: A HELPER TOOL USED TO DEMONSTRATE

THE PAGE USER INTERFACE (UI) CUSTOMIZATION FEATURE47.

The following table describes the purpose of the above HTML5 pages.

HTML5 template Description

phonefactor.html This page can be used as a template for a multi-factor authentication page. (See

below)

resetpassword.html This page can be used as a template for a forgot password page. (See below)

selfasserted.html This page can be used as a template for a social account sign-up page, a local

account sign-up page, or a local account sign-in page. (See below)

unified.html This page can be used as a template for a unified sign-up or sign-in page. (See

below)

updateprofile.html This page can be used as a template for a profile update page. (See below)

Ensuring the storage you are hosting your HTML5/CSS templates from

has CORS enabled

As stated before, CORS (Cross-Origin Resource Sharing) must be enabled on your endpoint for Azure AD

B2C to load your content. This is because your content is hosted on a different domain than the domain the

Identity Experience Framework in Azure AD B2C will be serving the page from.

To verify that the storage you are hosting your content on has CORS enabled, proceed with the following

steps:

1. Open a browsing session and navigate to the page unified.html using the full URL of its location in

your storage account:

46 Microsoft Azure Storage Explorer tool: https://azure.microsoft.com/en-us/features/storage-explorer/
47 AZURE ACTIVE DIRECTORY B2C: A HELPER TOOL USED TO DEMONSTRATE THE PAGE USER INTERFACE (UI) CUSTOMIZATION FEATURE:

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-ui-customization-helper-tool

https://azure.microsoft.com/en-us/features/storage-explorer/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-ui-customization-helper-tool
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-ui-customization-helper-tool

111 Bring-your-own-identity and Migrating Users

https://<your_storageAccount>.blob.core.windows.net/<your_containerName>/unified.html

For example, in our configuration:

https://litware369b2c.blob.core.windows.net/b2c/unified.html

2. Navigate to your storage account in the Azure portal, select CORS under BLOB SERVICE. You can

view the CORS rule that has been set by the helper tool for your container.

3. Now navigate to http://test-cors.org. This site allows you to verify that the page you are using has

CORS enabled.

4. In Remote URL, enter the full URL for your unified.html content, and click Send Request.

5. Verify that the output in the Results section contains “XHR status: 200”. This indicates that CORS is

enabled.

https://contoso369b2c.blob.core.windows.net/b2c/unified.html
http://test-cors.org/

112 Bring-your-own-identity and Migrating Users

Adding a link to your HTML5/CSS templates to your user journey

This section describes how add a link to your custom HTML5/CSS templates to your user journey by editing

a custom policy directly.

Note For details that pertain to how to configure and use a storage for your custom HTML5/CSS templates,

see section § Managing your HTML5/CSS templates for the policies of the third document of this series.

The custom HTML5/CSS templates to use in your user journey have to be specified in a list of content

definitions that can be used in those user journeys. For that purpose, an optional ContentDefinitions XML

element must be declared under the BuildingBlocks section of your custom policy file.

The ContentDefinitions section can contains a series of ContentDefinition XML elements. The Id attribute of

this element allows to specify the type of pages that relates to the content definition, and thus the context

in which a custom HTML5/CSS template is going to be used. The following table describes the set of the id

attributes.

Id Description

api.error Error page. This page is displayed when an exception or an error is encountered.

api.idpselections Identity provider selection page. This page contains a list of identity providers

that the user can choose from during sign-in. These are either enterprise identity

providers, social identity providers such as Facebook and Google+, or local

accounts (based on email address or user name).

api.idpselections.signup Identity provider selection for sign-up. This page contains a list of identity

providers that the user can choose from during sign-up. These are either

enterprise identity providers, social identity providers such as Facebook and

Google+, or local accounts (based on email address or user name).

api.localaccountpasswordreset Forgot password page. This page contains a form that the user has to fill to

initiate their password reset.

113 Bring-your-own-identity and Migrating Users

api.localaccountsignin Local account sign-in page. This page contains a sign-in form that the user has

to fill in when signing in with a local account that is based on an email address

or a user name. The form can contain a text input box and password entry box.

api.localaccountsignup Local account sign-up page. This page contains a sign-up form that the user

has to fill in when signing up for a local account that is based on an email address

or a user name. The form can contain different input controls such as text input

box, password entry box, radio button, single-select drop-down boxes, and

multi-select check boxes.

api.phonefactor Multi-factor authentication page. On this page, users can verify their phone

numbers (using text or voice) during sign-up or sign-in

api.selfasserted Social account sign-up page. This page contains a sign-up form that the user

has to fill in when signing up using an existing account from a social identity

provider such as Facebook or Google+. This page is similar to the above social

account sign-up page with the exception of the password entry fields.

api.selfasserted.profileupdate Profile update page. This page contains a form that the user can use to update

their profile. This page is similar to the above social account sign-up page with

the exception of the password entry fields.

api.signuporsignin Unified sign-up or sign-in (SUSI) page. This page handles both sign-up &

sign-in of users, who can use enterprise identity providers, social identity

providers such as Facebook or Google+, or local accounts.

api.signuporsigninwithkmsi Unified sign-up or sign-in (SUSI) page with 'Keep me signed in (KMSI)'

capability. This page is similar to the above unified sign-up or sign-in (SUSI)

page plus the KMSI capability. For more information, see article AZURE ACTIVE

DIRECTORY B2C: ENABLE 'KEEP ME SIGNED IN (KMSI)'48.

Each ContentDefinition XML element contain in turn an inner LoadUri XML element that points to the

intended HTML5/CSS template.

Note For additional detail on the content definitions, see eponym section § Specifying the content definitions

of the sixth document of this series.

To configure a custom HTML5/CSS template to use in your user journey, proceed with the following steps:

1. Navigate this time to the folder in the “Starter Pack”.

2. Open the base policy file, i.e. the TrustFrameworkBase.xml file, using an XML editor of your choice,

for instance Visual Studio (Code).

3. Search for the ContentDefinitions element.

4. For each ContentDefinition b underneath, modify the LoadUri XML element to specify the URL of

your custom HTML5/CSS template.

For example, search for the ContentDefinition node that contains Id="api.signuporsignin" and

Change the value of LoadUri from ~/tenant/default/unified to

https://litware369b2c.blob.core.windows.net/b2c/unified.html.

48 AZURE ACTIVE DIRECTORY B2C: ENABLE 'KEEP ME SIGNED IN (KMSI)': https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-

directory-b2c-reference-kmsi-custom

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-kmsi-custom
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-kmsi-custom
https://litware369b2c.blob.core.windows.net/b2c/unified.html

114 Bring-your-own-identity and Migrating Users

<ContentDefinition Id="api.signuporsignin">

 <LoadUri>https://litware369b2c.blob.core.windows.net/b2c/unified.html</LoadUri>

 <RecoveryUri>~/common/default_page_error.html</RecoveryUri>
 <DataUri>urn:com:microsoft:aad:b2c:elements:unifiedssp:1.0.0</DataUri>
 <Metadata>
 <Item Key="DisplayName">Signin and Signup</Item>
 </Metadata>
</ContentDefinition>

5. Repeat above step 4 to set additional content definition as needed for your user journey.

6. Save the XML file and upload it to your B2C tenant as before.

7. Test your user journey as usual. The custom HTML5/CSS template(s) should now be used by Azure

AD B2C.

Adding dynamic UI customization to a user journey

In the previous section, you upload HTML5/CSS templates to an Azure Blob storage. Those HTML5

HTML5/CSS templates are static and render the same HTML content for each request.

With custom policy, you can also customize the look and feel for your user dynamically.

Note For more information, see article AZURE ACTIVE DIRECTORY B2C: CONFIGURE THE UI WITH DYNAMIC CONTENT BY

USING CUSTOM POLICIES49.

If you’re not interested in this use case, you can skip this entire section and jump to the next one.

Custom policies indeed allow you to send through parameters in a query string. These parameters pass on

to your HTML endpoint and can dynamically change the page content. For example, as a very basic

illustration, you can change the B2C sign-up or sign in background image, based on a parameter you pass

from your web/mobile application. Such a capability can be used to sustain a specific marketing campaign.

For the sake of the illustration, we leverage here the sample policy files under the folder scenarios\ aadb2c-

ief-ui-customization of the “Starter Pack” along with the provided code sample. This sample code is an

ASP.NET Core web app, which can accept query string parameters and respond accordingly by serving the

appropriate HTML5/CSS template. This template is customized in accordance to the received query string

parameters.

To do so, you will have to:

• Build the ASP.NET Core sample web app. This MVC based sample web app hosts your HTML5/CSS

templates.

• Publish this web app to Azure App Service.

• Set cross-origin resource sharing (CORS) for this web app.

• Update the custom policies to uverride the LoadUri elements to point to the intended view of this

MVC based web app.

• Upload the custom policies.

• Test the custom policies by using Run Now.

49 AZURE ACTIVE DIRECTORY B2C: CONFIGURE THE UI WITH DYNAMIC CONTENT BY USING CUSTOM POLICIES: https://docs.microsoft.com/en-

us/azure/active-directory-b2c/active-directory-b2c-ui-customization-custom-dynamic

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-ui-customization-custom-dynamic
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-ui-customization-custom-dynamic

115 Bring-your-own-identity and Migrating Users

The next section detail each of the above steps.

Building the code sample

Follow the instructions as per section § Building the Contoso.AADB2C.UI code sample in the Appendix.

Ensuring the HTML5/CSS templates from the web app have CORS

enabled

As stated before, CORS (Cross-Origin Resource Sharing) must be enabled on your endpoint for Azure AD

B2C to load your content. This is because your content is hosted on a different domain than the domain the

Identity Experience Framework in Azure AD B2C will be serving the page from.

To verify that the web app you are hosting your content on has CORS enabled, proceed with the following

steps:

1. Open a browsing session and navigate to the unified view using the URL of the published web app:

https://<your_app_name>.azurewebsites.net/home/unified

For example, in our configuration:

https://litware369b2caadb2cui.azurewebsites.net/home/unified

https://litware369b2caadb2cui.azurewebsites.net/home/unified

116 Bring-your-own-identity and Migrating Users

2. Now navigate to http://test-cors.org. This site allows you to verify that the page you are using has

CORS enabled.

3. In Remote URL, enter the full URL for your unified view, and click Send Request.

4. Verify that the output in the Results section contains “XHR status: 200”. This indicates that CORS is

enabled. In other words, your content web app is enabled for CORS

At this stage, the HTML5/CSS templates are ready to use. However, they are not available in the

ContentDefinition element of your custom policy.

Updating the extension custom policy

Configuring the custom HTML5/CSS template(s) to use

To configure the custom HTML5/CSS template(s) to use in your user journeys, proceed with the following

steps:

1. Navigate this time to the folder in the “Starter Pack”.

http://test-cors.org/

117 Bring-your-own-identity and Migrating Users

2. Open the base policy file, i.e. the TrustFrameworkBase.xml file, using an XML editor of your choice,

for instance Visual Studio (Code).

3. Search for the ContentDefinition element, and then copy the entire content of the

ContentDefinitions node.

<ContentDefinitions>

 <!-- This content definition is to render an error page that displays unhandled errors. -->
 <ContentDefinition Id="api.error">
 <LoadUri>~/tenant/default/exception.cshtml</LoadUri>
 <RecoveryUri>~/common/default_page_error.html</RecoveryUri>
 <DataUri>urn:com:microsoft:aad:b2c:elements:globalexception:1.1.0</DataUri>
 <Metadata>
 <Item Key="DisplayName">Error page</Item>
 </Metadata>
 </ContentDefinition>

 <ContentDefinition Id="api.idpselections">
 <LoadUri>~/tenant/default/idpSelector.cshtml</LoadUri>
 <RecoveryUri>~/common/default_page_error.html</RecoveryUri>
 <DataUri>urn:com:microsoft:aad:b2c:elements:idpselection:1.0.0</DataUri>
 <Metadata>
 <Item Key="DisplayName">Idp selection page</Item>
 <Item Key="language.intro">Sign in</Item>
 </Metadata>
 </ContentDefinition>

 <ContentDefinition Id="api.idpselections.signup">
 <LoadUri>~/tenant/default/idpSelector.cshtml</LoadUri>
 <RecoveryUri>~/common/default_page_error.html</RecoveryUri>
 <DataUri>urn:com:microsoft:aad:b2c:elements:idpselection:1.0.0</DataUri>
 <Metadata>
 <Item Key="DisplayName">Idp selection page</Item>
 <Item Key="language.intro">Sign up</Item>
 </Metadata>
 </ContentDefinition>

 <ContentDefinition Id="api.signuporsignin">
 <LoadUri>~/tenant/default/unified.cshtml</LoadUri>
 <RecoveryUri>~/common/default_page_error.html</RecoveryUri>
 <DataUri>urn:com:microsoft:aad:b2c:elements:unifiedssp:1.0.0</DataUri>
 <Metadata>
 <Item Key="DisplayName">Signin and Signup</Item>
 </Metadata>
 </ContentDefinition>

 <ContentDefinition Id="api.selfasserted">
 <LoadUri>~/tenant/default/selfAsserted.cshtml</LoadUri>
 <RecoveryUri>~/common/default_page_error.html</RecoveryUri>
 <DataUri>urn:com:microsoft:aad:b2c:elements:selfasserted:1.1.0</DataUri>
 <Metadata>
 <Item Key="DisplayName">Collect information from user page</Item>
 </Metadata>
 </ContentDefinition>

 <ContentDefinition Id="api.selfasserted.profileupdate">
 <LoadUri>~/tenant/default/updateProfile.cshtml</LoadUri>
 <RecoveryUri>~/common/default_page_error.html</RecoveryUri>
 <DataUri>urn:com:microsoft:aad:b2c:elements:selfasserted:1.1.0</DataUri>
 <Metadata>
 <Item Key="DisplayName">Collect information from user page</Item>
 </Metadata>
 </ContentDefinition>

 <ContentDefinition Id="api.localaccountsignup">
 <LoadUri>~/tenant/default/selfAsserted.cshtml</LoadUri>
 <RecoveryUri>~/common/default_page_error.html</RecoveryUri>
 <DataUri>urn:com:microsoft:aad:b2c:elements:selfasserted:1.1.0</DataUri>
 <Metadata>
 <Item Key="DisplayName">Local account sign up page</Item>
 </Metadata>
 </ContentDefinition>

 <ContentDefinition Id="api.localaccountpasswordreset">
 <LoadUri>~/tenant/default/selfAsserted.cshtml</LoadUri>

118 Bring-your-own-identity and Migrating Users

 <RecoveryUri>~/common/default_page_error.html</RecoveryUri>
 <DataUri>urn:com:microsoft:aad:b2c:elements:selfasserted:1.1.0</DataUri>
 <Metadata>
 <Item Key="DisplayName">Local account change password page</Item>
 </Metadata>
 </ContentDefinition>

</ContentDefinitions>

4. Now open the extension policy file, i.e. the TrustFrameworkExtensions.xml file and then search for

the BuildingBlocks element.

5. Paste the entire contents of the ContentDefinitions node that you copied as a child of the

BuildingBlocks element.

6. Search for the ContentDefinition node that contains Id="api.signuporsignin" in the XML that you

copied.

7. Change the value of LoadUri from ~/tenant/default/unified to

https://<your_app_name>.azurewebsites.net/home/unified.

The related XML should look like the following:

<ContentDefinition Id="api.signuporsignin">

 <LoadUri>https://litware369b2caadb2cui.azurewebsites.net/home/unified</LoadUri>

 <RecoveryUri>~/common/default_page_error.html</RecoveryUri>
 <DataUri>urn:com:microsoft:aad:b2c:elements:unifiedssp:1.0.0</DataUri>
 <Metadata>
 <Item Key="DisplayName">Signin and Signup</Item>
 </Metadata>
</ContentDefinition>

8. Save the XML file and upload it to your B2C tenant as before.

9. Test your user journey as usual by using Run Now. You should be able to see your custom HTML5

with the background that you created earlier.

Adding dynamic content

The background should now change based on a query string parameter named campaignId. Your relying

party (RP) application (web and mobile apps) sends the parameter to the Identity Experience Framework in

Azure AD B2C. The relying party (RP) custom policy reads the parameter and sends its value to your

HTML5/CSS template, i.e. your MVC based ASP.NET Core web app.

Proceed with the following steps:

1. From the folder in the “Starter Pack”, open the Sign-up or Sign-in (SUSI) policy file, i.e. the

SignUpOrSignin.xml file, using an XML editor of your choice, for instance Visual Studio (Code).

2. Search for the DefaultUserJourney node and right after the DefaultUserJourney node, add the

following XML snippet.

<UserJourneyBehaviors>
 <ContentDefinitionParameters>

 <Parameter Name="campaignId">{OAUTH-KV:campaignId}</Parameter>
 </ContentDefinitionParameters>
</UserJourneyBehaviors>

119 Bring-your-own-identity and Migrating Users

3. Save the XML file and upload it to your B2C tenant as before.

4. Test the B2C_1A_signup_signin policy as usual by using Run Now. You should see the same

background image that was previously displayed.

5. Copy the URL from the browser's address bar and add the campaignId query string parameter to

the URI. For example, add &campaignId=hawaii, as shown in following image:

https://login.microsoftonline.com/litware369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=B2C_

1A_signup_signin&client_id=95b7953b-a499-48b9-bc1b-

48bb095d6939&nonce=defaultNonce&redirect_uri=https%3A%2F%2Fjwt.ms&scope=openid&res

ponse_type=id_token&prompt=login&campaignId=hawaii

6. Change the value to “tokyo”, and then press ENTER.

https://login.microsoftonline.com/litware369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=B2C_1

A_signup_signin&client_id=95b7953b-a499-48b9-bc1b-

48bb095d6939&nonce=defaultNonce&redirect_uri=https%3A%2F%2Fjwt.ms&scope=openid&res

ponse_type=id_token&prompt=login&campaignId=tokyo

120 Bring-your-own-identity and Migrating Users

7. Select the Sign up now link on the sign-in page. The browser displays the default background

image, not the image you defined. This behavior arises because you've changed only the sign-up or

sign-in page.

8. To change the rest of the Self-Assert content definitions, open the extension policy file, i.e. the

TrustFrameworkExtensions.xml file.

9. In your extension policy, find the ContentDefinition nodes that contain Id="api.selfasserted",

Id="api.localaccountsignup", and Id="api.localaccountpasswordreset", and set the LoadUri attribute

to your selfasserted URI, i.e. https://<your_app_name>.azurewebsites.net/home/selfasserted.

The related XML should look like the following for the ContentDefinition node that contain

Id="api.selfasserted":

<ContentDefinition Id=" api.selfasserted">

 <LoadUri>https://litware369b2caadb2cui.azurewebsites.net/home/selfasserted</LoadUri>

 <RecoveryUri>~/common/default_page_error.html</RecoveryUri>
 <DataUri>urn:com:microsoft:aad:b2c:elements:selfasserted:1.1.0</DataUri>
 <Metadata>
 <Item Key="DisplayName">Collect information from user page</Item>
 </Metadata>
</ContentDefinition>

121 Bring-your-own-identity and Migrating Users

10. Save the XML file, upload it to your B2C tenant, and ensure that it passes validation.

11. Run the B2C_1A_signup_signin policy, and then select Sign up now to see the result.

Triggering language-specific content for the user journey

You can trigger language-specific content by just adding a query string parameter ui_locales to a standard

request to the Identity Experience Framework in Azure AD B2C in order to render the end user experience

in the target language.

For example, following is a request to run a Sign-Up or Sign-In (SUSI) policy in French:

https://login.microsoftonline.com/litware369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=B2C_1A_signu

p_signin&client_id=95b7953b-a499-48b9-bc1b-

48bb095d6939&nonce=defaultNonce&redirect_uri=https%3A%2F%2Fjwt.ms&scope=openid&response_t

ype=id_token&prompt=login&ui_locales=fr

https://login.microsoftonline.com/litware369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=B2C_1A_signup_signin&client_id=95b7953b-a499-48b9-bc1b-48bb095d6939&nonce=defaultNonce&redirect_uri=https%3A%2F%2Fjwt.ms&scope=openid&response_type=id_token&prompt=login&ui_locales=fr
https://login.microsoftonline.com/litware369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=B2C_1A_signup_signin&client_id=95b7953b-a499-48b9-bc1b-48bb095d6939&nonce=defaultNonce&redirect_uri=https%3A%2F%2Fjwt.ms&scope=openid&response_type=id_token&prompt=login&ui_locales=fr
https://login.microsoftonline.com/litware369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=B2C_1A_signup_signin&client_id=95b7953b-a499-48b9-bc1b-48bb095d6939&nonce=defaultNonce&redirect_uri=https%3A%2F%2Fjwt.ms&scope=openid&response_type=id_token&prompt=login&ui_locales=fr
https://login.microsoftonline.com/litware369b2c.onmicrosoft.com/oauth2/v2.0/authorize?p=B2C_1A_signup_signin&client_id=95b7953b-a499-48b9-bc1b-48bb095d6939&nonce=defaultNonce&redirect_uri=https%3A%2F%2Fjwt.ms&scope=openid&response_type=id_token&prompt=login&ui_locales=fr

122 Bring-your-own-identity and Migrating Users

As illustrated, when you call into the Identity Experience Framework in Azure AD B2C, the page is translated

to the locale that you have indicated. This type of configuration gives you complete control over the

languages in your user journey and ignores the language settings of the user's browser.

Important note Custom policies must be updated to provide language-specific custom UI pages, and

override any string on any page, as required, for the right end user experience. Same is true if you’re using

extensions properties, a.k.a. custom attributes. For more information, see article LANGUAGE CUSTOMIZATION IN CUSTOM

POLICIES50.

You might not need that level of control over what languages your customer sees. If you don't provide a

ui_locales parameter, like we did so far, the user's experience is dictated by their browser's settings. You can

still control which languages your user journey is translated to by adding it as a supported language. If a

customer's browser is set to show a language that you don't want to support, then the language that you

selected as a default in supported cultures is shown instead:

• ui-locales specified language: your user journey is translated to the language that's specified here.

If the ui_locales parameter specifies one language that is not supported, the user journey is

translated to the policy default language.

• Browser-requested language: If no ui_locales parameter was specified, your user journey is

translated to the user agent (typically the browser) requested language, if the language is supported.

• Custom policy default language: If the browser doesn't specify a language, or it specifies one that

is not supported, the user journey is translated to the policy default language. See section §

Specifying the supported locales in the sixth document of this series.

50 LANGUAGE CUSTOMIZATION IN CUSTOM POLICIES: https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-

language-customization-custom

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-language-customization-custom
https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-language-customization-custom

123 Bring-your-own-identity and Migrating Users

Migrating users to your B2C tenant
To migrate work or school users from an identity provider database, a local directory, to your B2C tenant,

you can use the Azure AD Graph API to retrieve the details of local users and groups, and then recreate the

same structures in your B2C tenant. However, there are a number of issues that you should consider. This is

the purpose of the next sections.

Understanding the primary considerations for the

migration

Azure AD B2C allows you to migrate users through the Azure AD Graph API. As stated above, you simply

read user’s date from the local directory, and recreate a new account in your B2C tenant, but arguably, the

most important concern here is the dependence on the user's password.

It may be possible to recreate users with their original passwords if you have access to them, but if the

passwords are (salted and) stored in hash format, or encrypted, this approach might not be possible (or even

desirable). Instead, you can opt to generate a random password and require users to reset their password

the first time they log in after the migration.

From a practical standpoint, the above leads to five different migration flows:

1. Migrating users with existing password.

2. Migrating users without password and forcing them to change the password via a password reset

policy.

3. Migrating users with password harvesting.

4. Pre-migrating users without password and setting password just-in-time

5. Migrating active users just-in-time.

The next sections illustrate each flow in order.

Migrating users with existing password

This first migration flow fits when you have access to user credentials (user name and password) in a clear

text, or the credentials are encrypted, but you are able to decrypt them.

This first migration flow is based on a pre-migration process. This process basically implies:

• Reading the users’ data from the old identity provider and create new accounts in your B2C tenant.

• Changing your mobile or web application(s) to authenticate against your B2C tenant by executing

a sign-in (custom) policy.

Once the pre-migration process is completed, you can go live users are able to sign-in immediately.

124 Bring-your-own-identity and Migrating Users

This process can be applied to migrate all users or only pre-selected ones. Before going live, you should

prevent users from updating their password or creating new ones.

Generally speaking, migration time can take long (depending on the number of users), but you can pre-

migrate users a month, or 2 months before going live. We advise to keep track on the changes in your old

identity provider. Before going live, you will then have to update only the changes, i.e. new users, password

reset or remove unnecessary users.

Migrating users without password and forcing them to change

the password

Compared to the previous migration flows, this second flow fits when you don’t have access to user’s

password. For example, the passwords are stored in hash format or in an identity provider you don’t have

access to - The identity provider allows to validate user credentials by calling an (out-of-band) web service

-.

This flow also implies a pre-migration-process. It basically implies:

• First pre-migrating the users with the same way when you have the passwords (see previous

section): you read the user data, including the user name and the user profile and create on that

basis a new account in your B2C tenant with a random password you generate, prior to migrate to

Azure AD B2C.

• Changing your mobile or web application(s) to authenticate against your B2C tenant by executing

a sign-in (custom) policy.

Once the pre-migration process is completed, you direct the users to a password reset policy to change

their password.

Before going live, you should also prevent users from updating their password or creating new ones. The

same considerations apply.

125 Bring-your-own-identity and Migrating Users

To force the users to change their password, the process involves custom policies with two calls to a RESTful

API service. You indeed need to:

• Optionally send them a link to reset password policy.

• On the sign-in policy flow, add a call to a custom RESTful API. The API checks if the user migrates

with random password – the user still didn’t change the password -. If the user needs to change the

password, the API will return a friendly error message to the end-user.

• On password reset policy flow, make an additional call to RESTful API to change the user status.

For that purpose, the above custom RESTful API is declared in your custom policy, e.g. the

B2C_1A_TrustFrameworkExtensions custom policy, as a claims provider with two technical profiles - A

technical profile can be indeed seen as a function -: one for the call during the sign-in flow and another one

for the call during the password reset flow.

These technical profiles, respectively named in our illustration “LocalAccountSignIn” and

“LocalAccountPasswordReset”, can be used as a validation technical profile for the technical profiles used in

the related flows as follows.

<TechnicalProfile Id="SelfAsserted-LocalAccountSignin-Email" >
 <ValidationTechnicalProfiles>

 <ValidationTechnicalProfile ReferenceId="LocalAccountSignIn" />

 </ValidationTechnicalProfile>
</TechnicalProfile>

<TechnicalProfile Id="LocalAccountWritePasswordUsingObjectId" >
 <ValidationTechnicalProfiles>

 <ValidationTechnicalProfile ReferenceId="LocalAccountPasswordReset" />

 </ValidationTechnicalProfile>
</TechnicalProfile>

Migrating users with password harvesting

With this third migration flow, you force users to change on your old identity provider their password. You

capture the password and create a new account with the new password (or update the new password, if

user already exists) in your B2C tenant.

126 Bring-your-own-identity and Migrating Users

The migration flow is only suitable for active users. If a user didn’t change the password during that period

of time, the account will not migrate to your B2C tenant.

One should note that you can combine and can run the second migration as well to cover 100% of the users.

Pre-migrating users without password and setting password

just-in-time

Just-in-time (JIT) migration comes to deal with the case you don’t have access to users’ password in more

efficient way. The process also involves a custom policy with a call to RESTful API service.

This migration flow enables to:

• Migrate user without password, set password just-in-time.

-or-

• Do a just-in-time migration.

The next sections examine in order these two options.

Migrating user without password, setting password just-in-time

With this first option, you first you run the pre-migration, i.e. read the users from your old identity provider,

create new accounts in your B2C tenant. But, since you do not have the passwords, you create the account

with random password you generate. User’s password will be set later just-in-time when users try to sign

in.

For that purpose, you configure your custom policy to call a RESTful API endpoint sending the sign-in

name and the password as input parameters on the function call. This API offers a simple business logic as

follows.

On sign-in, when a user provides the username and password, your endpoint receives the user name and

password. Then, it first checks if the user exists in the old identity provider. If yes, it validates the received

credentials against the old identity provider. The validation is done by comparing the password in hash

format or calling an out-of-band web service to run on the old identity provider.

If there is a match, i.e. the password provided by the user is valid, it then updates the password “just-in-

time”. Otherwise, you do nothing: you just let the Identity Experience Framework in Azure AD B2C to throw

a “Bad user name or password” error message.

Et voilà! After the password is updated, the control returns back to Identity Experience Framework in Azure

AD B2C for the rest of policy execution, which validates the credentials and issues an access token.

127 Bring-your-own-identity and Migrating Users

To avoid repeating the same process over and over again, right after the just-in-time migration, you need

to change a user status (to migrated) or remove the entity from your old identity provider.

As before, you should prevent users from creating new accounts before going live.

Doing a just-in-time migration

With this second option, you support a full just-in-time migration: not only the password is reset just-in-

time, but this user account is also created just-in-time. The migration flow is only suitable for active users.

The related overall process remains the same as the previous one, but this time you don’t run the pre-

migration. Rather on sign-in, the RESTful API endpoint both creates the user and set the password.

The sign-in custom policy is almost the same as the one for setting the password just-in-time. If the

password matches, you create the user with the password provided by the user.

However, if the password doesn’t match, you return a “bad user name or password” 409 HTTP error message

to the Identity Experience Framework in Azure AD B2C.

On the next try, i.e. when the user gets the bad username or password error message, you create the user

or set the password. Unless the Identity Experience Engine will tell the user, the account you provided doesn’t

exist. So, you are responsible to return the error message.

128 Bring-your-own-identity and Migrating Users

You also need to create the user on the sign-up and password reset user journeys. So adequate custom

policies need also to be configured to cover these scenarios.

On the sign-up custom policy, the user should be prevented from creating an existing account. A call is

made to the RESTful API endpoint to check if the account exists in your old identity provider. If yes, a 409

HTTP error message “The account you provided already exist” is returned to the Identity Experience Engine

in Azure AD B2C.

On the password reset, the account should already exist in your B2C tenant. Azure AD B2C will not allow to

change the password for a non-existing user. This said, since the user may exit or abandon the password

reset process, you should keep track on the users with random password and on the sign-in process, your

code may need to update the password, instead of creating a new account. This is a (very) rare case but you

should cover all the scenarios…

Considering all the above, our recommendation is to use the first approach, by combining the pre-migration

with set password just-in-time.

129 Bring-your-own-identity and Migrating Users

Choosing the right path

The following table sums up the above migration flows:

Migration Flow Pre-

migration

Custom

policy

Password

accessible

Active

users only

Complexity User

impact

Downtime Retired old

IdP

Migrate users with

existing password

Yes Yes Low Low Yes

Migrate user

without password,

force them to

change password

Yes Low Yes Low Yes

Migrate user with

password

harvesting

Yes Yes Low

Pre-Migrate user

without password,

set password just-

in-time

Yes Yes Medium Low

Do a just-in-time

migration

 Yes Yes High

Based on this “background”, let’s now illustrates some of them with the tooling/code sample that comes

with the “Starter Pack” along with the use of the Azure AD Graph API as discussed in the third document of

this series.

Migrating users identified using a local IdP to your B2C

tenant

This section is intended as an illustration of the first migration flow discussed earlier (see section § Migrating

users with existing password earlier in this document).

For that purpose, we use as detailed hereafter an intermediary file formatted in JSON that contains all the

key information about the users to migrate. In a real-life scenario, we will rather use a direct communication

between the application used for the migration and the old identity provider (database).

This procedure follows a two-stage approach:

1. Retrieve the key information about users (sign in name, email, password, display name, given name,

and surname) from the local identity provider/directory and save this information as a JSON array

in a text file.

You should not include domain-specific data such as object IDs, although you can include the

attributes that your organization utilizes, such as job title, telephone number, and office location

You can perform this task by capturing the JSON formatted output of PowerShell commands, (as

shown in the section § Using the Azure AD Graph API from PowerShell in the third document of this

series) and editing the results, or by following the principles also used in the third document by the

130 Bring-your-own-identity and Migrating Users

B2CGraphClient code sample application and writing the data to a file rather than displaying it on

the screen. If necessary, an administrator can modify the resulting file and remove any records for

users that should not be migrated.

2. Iterate through the records in the JSON text file and use the Azure AD Graph API to create the

corresponding users in Azure AD. Again, you can adapt the techniques used by the B2CGraphClient

application to achieve this.

The steps that follow assume that you have already retrieved the users to be migrated and saved them in a

.json file with known passwords.

Following is an illustration of such a .json file. We will refer to this file as the UserData.json file.

{
 "Users": [
 {
 "email": "James@contoso.com",
 "displayName": "James Davis",
 "firstName": "James",
 "lastName": "Davis",
 "password": "1234567"
 },
 {
 "email": "Linda@contoso.com",
 "displayName": "Linda Taylor",
 "firstName": "Linda",
 "lastName": "Taylor",
 "password": "1234567"
 },
 {
 "email": "William@contoso.com",
 "displayName": "William Martin",
 "firstName": "William",
 "lastName": "Martin",
 "password": "1234567"
 },
 {
 "email": "Thomas@contoso.com",
 "displayName": "Thomas Lee",
 "firstName": "Thomas",
 "lastName": "Lee",
 "password": "1234567"
 },
 {
 "email": "Lisa@contoso.com",
 "displayName": "Lisa Bell",
 "firstName": "Lisa",
 "lastName": "Bell",
 "password": "1234567"
 },
 {
 "email": "Emily@contoso.com",
 "displayName": "Emily King",
 "firstName": "Emily",
 "lastName": "King",
 "password": "1234567"
 }
]
}

Notice that it includes users' “passwords”.

Building the AADB2C.UserMigration code sample application

For the sake of this illustration, you will use a sample application that reads a .json file and uploads the users

found to your B2C tenant, i.e. the AADB2C.UserMigration sample application that is provided as the

AADB2C.UserMigration.zip archive file as part of the “Starter Pack” under the \scenarios\aadb2c-user-

migration folder.

131 Bring-your-own-identity and Migrating Users

This application provides options to enable you to reuse the existing passwords for users (if they are

available). The application requires an application registration in Azure AD B2C.

To save time, these steps reuse the B2CGraphClient created build and configured in the third document of

this series.

Perform all the instructions that pertains to the section § Building and running the AADB2C.UserMigration

project in the Error! Reference source not found..

Using the AADB2C.UserMigration code sample application

Note The following steps are primarily concerned with handling users with passwords that can be migrated.

The cases for users with indecipherable passwords, or that require users to reset their password, are covered in the

section § Requiring users to change password on first sign-in later in this document.

The rest of this section assumes that you successfully performed all the task outlined in section § Building

and running the AADB2C.UserMigration project in the Error! Reference source not found..

Proceed with the following steps:

1. Using Windows Explorer, copy the above UsersData.json file containing the sample user data to the

AADB2C.UserMigration\bin\Debug folder.

2. Open a command prompt window and move to the AADB2C.UserMigration\bin\Debug folder.

3. At the command prompt, type the following command.

C:\> UserMigration 1

This command reads the records from the file UsersData.json and creates the corresponding users

in your B2C tenant. You should see messages confirming each user as they are created.

4. In the Azure portal, make sure you are connected as a user account with administrative privileges in

the B2C tenant. Select Azure AD B2C, and then select Users under MANAGE.

5. Verify that the new users appear in the list of users for your B2C tenant.

132 Bring-your-own-identity and Migrating Users

Migrating users identified using a social networking

account to your B2C tenant

If users are identified by using social networking accounts, the social networking Identity provider takes

responsibility for authenticating them; your B2C tenant does not contain any password data for these

accounts.

To migrate users with these types of account, you must recreate the data required by the social network

identity provider to identify these users.

This information is usually held in the userIdentites property of each user in Azure AD B2C and is typically

a combination of the name of the issuer (such as Facebook) and an issuer user id (an encoded, unique value

that identifies the user to the social network identity provider). For example:

"userIdentities": [
 {
 "issuer": "Facebook.com",
 "issuerUserId": "MTIzNDU2Nzg5MA=="
 }
]

For the sake of this illustration, we will use the following sample user data.

{
 "Users": [
 {
 "accountEnabled": true,
 "displayName": "AAA BBB",
 "userPrincipalName" : "aabb@litware369b2c.onmicrosoft.com",
 "passwordProfile": {
 "password": "Test1234",
 "forceChangePasswordNextLogin": false
 },
 "mailNickname" : "aabb",
 "userIdentities": [
 {
 "issuer": "facebook.com",
 "issuerUserId": "MATxTNg5MzYyMzMyMNY1Njc="
 }

133 Bring-your-own-identity and Migrating Users

]
 },
 {
 "accountEnabled": true,
 "displayName": "CCC DDD",
 "userPrincipalName" : "ccdd@litware369b2c.onmicrosoft.com",
 "passwordProfile": {
 "password": "Test1234",
 "forceChangePasswordNextLogin": false
 },
 "mailNickname" : "ccdd",
 "userIdentities": [
 {
 "issuer": "facebook.com",
 "issuerUserId": "NATxTNg5MzYyMzMyMNY1Njc="
 }
]
 },
 {
 "accountEnabled": true,
 "displayName": "EEE FFF",
 "userPrincipalName" : "eeff@litware369b2c.onmicrosoft.com",
 "passwordProfile": {
 "password": "Test1234",
 "forceChangePasswordNextLogin": false
 },
 "mailNickname" : "eeff",
 "userIdentities": [
 {
 "issuer": "facebook.com",
 "issuerUserId": "OATxTNg5MzYyMzMyMNY1Njc="
 }
]
 }
]
}

This above snippet contains a list of users in JSON formatted. Such a list typically constitutes an extract from

the old identity provider database to migrate from.) The way the above data is formatted if how it is returned

by using the Azure AD Graph API.)

Notice that each user in this file has a userIdentities property that references Facebook as a social identity

provider. Do not change any data, expected the name of your B2C tenant in each userPrincipalName suffix

in lieu of litware369b2c.onmicrosoft.com.

This content will be referred as to the UsersSocialData.json file.

To migrate these types of users to your B2C tenant, proceed with the following steps:

Important note The AADB2C.UserMigration application does not currently support users with social

identities, so these steps focus on using PowerShell instead.

1. Using Windows Explorer, copy the above UsersData.json file containing the sample user data to the

AADB2C.UserMigration\bin\Debug folder.

2. Open a PowerShell command prompt window and move to the AADB2C.UserMigration\bin\Debug

folder.

Note For more information, see blog post WORKING WITH AZURE ACTIVE DIRECTORY GRAPH API FROM POWERSHELL51.

3. Now open a PowerShell command prompt or a PowerShell ISE environment.

51 WORKING WITH AZURE ACTIVE DIRECTORY GRAPH API FROM POWERSHELL:

https://blogs.technet.microsoft.com/paulomarques/2016/03/21/working-with-azure-active-directory-graph-api-from-powershell/

https://blogs.technet.microsoft.com/paulomarques/2016/03/21/working-with-azure-active-directory-graph-api-from-powershell/

134 Bring-your-own-identity and Migrating Users

4. Create the following PowerShell function:

function GetAuthToken
{ param
 (
 [Parameter(Mandatory=$true)]
 $TenantName
)
 $adal =
"${env:ProgramFiles}\WindowsPowerShell\Modules\ADAL.PowerShell\3.19.4.1\Microsoft.IdentityModel.Clients.ActiveDirectory.d
ll"
 [System.Reflection.Assembly]::LoadFrom($adal) | Out-Null
 $clientId = "1950a258-227b-4e31-a9cf-717495945fc2"
 $redirectUri = "urn:ietf:wg:oauth:2.0:oob"
 $resourceAppIdURI = "https://graph.windows.net"
 $authority = "https://login.windows.net/$TenantName"
 $PlatformParameters = New-Object Microsoft.IdentityModel.Clients.ActiveDirectory.PlatformParameters(0)
 $tokenCache = New-Object Microsoft.IdentityModel.Clients.ActiveDirectory.TokenCache
 $authContext = New-Object "Microsoft.IdentityModel.Clients.ActiveDirectory.AuthenticationContext" -ArgumentList
$authority, $tokenCache
 $authResult = $authContext.AcquireTokenAsync($resourceAppIdURI, $clientId, $redirectUri,
$PlatformParameters).GetAwaiter().GetResult()
 return $authResult
}

The GetAuthToken function prompts you to log in to the Azure AD (B2C) tenant specified by the

$TenantName parameter and returns the authentication token if the login is successful.

5. Create a variable that references the name of your Azure AD tenant. Replace <your_B2C_tenant>

with the name of your Azure AD tenant):

$tenant = "<your_B2C_tenant>.onmicrosoft.com"

6. Run the GetAuthToken function and extract the authentication token from the result:

$token = GetAuthToken -TenantName $tenant

7. Construct an HTTP authorization header object that contains the bearer token in the $token

variable:

$authHeader = @{
 'Content-Type'='application\json'
 'Authorization'=$token.CreateAuthorizationHeader() }

8. Type the following commands:

$jsonlist = Get-Content -Raw -Path .\UsersSocialData.json | ConvertFrom-Json
$userlist = $jsonlist | select -expand users
$resource = "users/"
$uri = "https://graph.windows.net/$tenant/$($resource)?api-version=1.6"

These statements read the user accounts from the above .json file and generate a list of user objects.

The $resource and $uri variables reference the URI in your tenant where the new users should be

stored.

135 Bring-your-own-identity and Migrating Users

9. Enter the following block of code:

foreach ($user in $userlist)
{
 $newuser = $user | ConvertTo-Json
 Invoke-RestMethod -Uri $uri –Headers $authHeader –Method Post -Body $newuser -ContentType "application/json" –Verbose
 echo Created $user.displayName
}

These statements iterate through the list of user objects and send an HTTP POST request to your

Azure AD to create each user in turn.

10. In the Azure portal, make sure you are connected as a user account with administrative privileges in

the B2C tenant. Select Azure AD B2C, and then select Users under MANAGE.

11. Verify that the new users appear in the list of users for your B2C tenant, and that each user is

identified as a facebook.com user.

136 Bring-your-own-identity and Migrating Users

Requiring users to change password on first sign-in

This section is intended as an illustration of the second and forth migration flows discussed earlier (see

sections § Migrating users without password and forcing them to change the password and § Pre-migrating

users without password and setting password just-in-time earlier in this document).

137 Bring-your-own-identity and Migrating Users

As already outlined, to handle users with passwords that cannot be migrated, you will need to generate a

random password, and then get users to reset their passwords when they log in. To achieve this, you have

several strategies available, including:

• Directly emailing each user with the endpoint of the Password Reset built-in policy for your B2C

tenant:

• Setting the forceChangePasswordNextLogin attribute of the password profile for the user to true:

{
 "accountEnabled" : true,
 "userPrincipalName" : "ddee@contoso.com",
 "displayName" : "DDD EEE",
 "passwordProfile" : {
 "password" : "********",
 "forceChangePasswordNextLogin" : true
 },
 "mailNickname" : "ddee"
}

In the situation where the passwords have been successfully migrated - the original passwords are reused -

, it is still good practice to ask users to reset their passwords the next time they log in. You can use either of

the strategies just highlighted. However, the problem with the first approach is that users might choose to

ignore the email; there is no compulsion for them to reset their password.

The second approach enforces a password change, but from an administrative perspective it is not easy to

determine that users have actually logged in and done so, so their accounts might still reference an old,

unmodified password.

138 Bring-your-own-identity and Migrating Users

The AADB2C.UserMigration sample application introduced in section § Migrating users identified using a

local IdP to your B2C tenant adopts a third approach that enables you to quickly check whether users have

reset their passwords:

1. As users are migrated, a record of each user is also recorded in Azure table storage.

2. A separate REST API, AADB2C.UserMigration.API, implemented as part of the

AADB2C.UserMigration solution reads the user records in table storage.

3. The next time the user logs in, a custom policy invokes the AADB2C.UserMigration.API with the

details of the user.

• If the user's record is found in table storage, the API returns the error message "You must

change password".

• Once the user has changed their password, the policy calls the API again to remove the

user's record from table storage.

At any stage, an administrator with the appropriate access rights can read the data from table storage to

determine which users are yet to reset their password.

Building the AADB2C.UserMigration code sample application

Perform all the instructions that pertains in the Error! Reference source not found. to the sections §

Building and deploying the AADB2C.UserMigration.API project and § Updating the AADB2C.UserMigration

project.

Using the AADB2C.UserMigration code sample application

The rest of this section assumes that you successfully performed all the task outlined in section § Building

and deploying the AADB2C.UserMigration.API project in the Error! Reference source not found..

For the sake of the illustration, the steps that follow assume that you have already retrieved the users to be

migrated - and whose passwords are undecipherable and so need to have random passwords generated -

and saved them to a .json file. We will refer to this file as the UsersDataResetPasswords.json file.

The sample user data are as follows:

{
 "Users": [
 {
 "email": "Fred@contoso.com",
 "displayName": "Fred Davis",
 "firstName": "Fred",
 "lastName": "Davis",
 "password": "12345678"
 },
 {
 "email": "Belinda@contoso.com",
 "displayName": "Belinda Taylor",
 "firstName": "Belinda",
 "lastName": "Taylor",
 "password": "12345678"
 },
 {
 "email": "Herbert@contoso.com",
 "displayName": "Herbert Martin",
 "firstName": "Herbert",
 "lastName": "Martin",
 "password": "12345678"
 },
 {

139 Bring-your-own-identity and Migrating Users

 "email": "Sid@contoso.com",
 "displayName": "Sid Lee",
 "firstName": "Sid",
 "lastName": "Lee",
 "password": "12345678"
 },
 {
 "email": "Sharon@contoso.com",
 "displayName": "Sharon Bell",
 "firstName": "Sharon",
 "lastName": "Bell",
 "password": "12345678"
 },
 {
 "email": "Emilia@contoso.com",
 "displayName": "Emilia King",
 "firstName": "Emilia",
 "lastName": "King",
 "password": "12345678"
 }
]
}

This file is similar in format to the UsersData.json file except that it contains a different set of user account

information.

To illustrate this approach, proceed with the following steps:

1. Using Windows Explorer, copy the above UsersDataResetPasswords.json file containing the sample

user data to the AADB2C.UserMigration\bin\Debug folder.

2. Open the UsersDataResetPasswords.json file using Visual Studio Code or Notepad and add a record

for a user with your own email address. Save the file.

3. Open a command prompt window and move to the AADB2C.UserMigration\bin\Debug folder.

4. At the command prompt, type the following command.

C:\> UserMigration 2

This command migrates the users listed in the UsersDataResetPasswords.json file. Remember that

option 2 causes the program to run the MigrateUsersWithRandomPasswordAsync that you have

just amended.

You should see messages confirming each user as they are created.

140 Bring-your-own-identity and Migrating Users

5. In the Azure portal, select Azure AD B2C, and then select Users under MANAGE.

6. Verify that the new users appear in the list of users for your B2C tenant.

7. Use the Microsoft Azure Storage Explorer52 to verify that the new users also appear in the

aadb2cusermigration Azure table.

Updating the extension custom policy

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

52 Microsoft Azure Storage Explorer: https://azure.microsoft.com/en-us/features/storage-explorer/

https://azure.microsoft.com/en-us/features/storage-explorer/

141 Bring-your-own-identity and Migrating Users

2. Select the B2C_1A_TrustFrameworkExtensions custom policy file. A new blade opens.

3. Select Download and save the file as TrustFrameworkExtensions.xml.

4. Open the TrustFrameworkExtensions.xml file using an XML editor of your choice, for instance Visual

Studio (Code).

5. Scroll down to the ClaimsProviders section.

6. Add the following <ClaimsProvider> element to the list in the ClaimsProviders section. Change

<your_app> to ADB2CUserMigrationAPILitware369b2c (two occurrences) as per API publication,

see section § Building and deploying the AADB2C.UserMigration.API project in the Appendix Building

the code samples:

<ClaimsProvider>
 <DisplayName>Password Reset APIs</DisplayName>
 <TechnicalProfiles>
 <TechnicalProfile Id="LocalAccountSignIn">
 <DisplayName>Local account just in time migration</DisplayName>
 <Protocol Name="Proprietary" Handler="Web.TPEngine.Providers.RestfulProvider, Web.TPEngine, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=null" />
 <Metadata>

 <Item Key="ServiceUrl">https://<your_app>.azurewebsites.net/api/PrePasswordReset/LocalAccountSignIn</Item>

 <Item Key="AuthenticationType">None</Item>
 <Item Key="SendClaimsIn">Body</Item>
 </Metadata>
 <InputClaims>
 <InputClaim ClaimTypeReferenceId="signInName" PartnerClaimType="email" />
 </InputClaims>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-Noop" />
 </TechnicalProfile>

 <TechnicalProfile Id="LocalAccountPasswordReset">
 <DisplayName>Local account just in time migration</DisplayName>
 <Protocol Name="Proprietary" Handler="Web.TPEngine.Providers.RestfulProvider, Web.TPEngine, Version=1.0.0.0,
 Culture=neutral, PublicKeyToken=null" />
 <Metadata>

 <Item Key="ServiceUrl">https://<your_app>.azurewebsites.net/api/PrePasswordReset/PasswordUpdated</Item>

 <Item Key="AuthenticationType">None</Item>
 <Item Key="SendClaimsIn">Body</Item>
 </Metadata>
 <InputClaims>
 <InputClaim ClaimTypeReferenceId="email" PartnerClaimType="email" />
 </InputClaims>
 <UseTechnicalProfileForSessionManagement ReferenceId="SM-Noop" />
 </TechnicalProfile>
 </TechnicalProfiles>
</ClaimsProvider>

142 Bring-your-own-identity and Migrating Users

7. Add the following ClaimsProvider element to the list, directly after the one that you added in the

previous step.

<ClaimsProvider>
 <DisplayName>Local Account</DisplayName>
 <TechnicalProfiles>
 <!-- This technical profile uses a validation technical profile to authenticate the user. -->
 <TechnicalProfile Id="SelfAsserted-LocalAccountSignin-Email">
 <ValidationTechnicalProfiles>
 <ValidationTechnicalProfile ReferenceId="LocalAccountSignIn" />
 </ValidationTechnicalProfiles>
 </TechnicalProfile>
 <TechnicalProfile Id="LocalAccountWritePasswordUsingObjectId">
 <ValidationTechnicalProfiles>
 <ValidationTechnicalProfile ReferenceId="LocalAccountPasswordReset" />
 </ValidationTechnicalProfiles>
 </TechnicalProfile>
 </TechnicalProfiles>
</ClaimsProvider>

8. Save the XML file.

Uploading the extension custom policy to your B2C tenant

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Select Upload Policy.

3. Check Overwrite the policy if it exists.

4. In Upload policy, select the above litware369b2c.onmicrosoft.com-

B2C_1A_TrustFrameworkExtensions.xml policy file.

5. Click Upload and ensure that it does not fail the validation.

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Click the B2C_1A_signup_signin custom policy to see its detail view. A new blade opens.

143 Bring-your-own-identity and Migrating Users

3. Click Run now.

4. Attempt to log in using your email address, as listed in the UsersDataResetPasswords.json file.

Provide the password specified in this file, and then select Sign in.

You should see the error message “You need to change your password. Please click on the 'Forgot

your password?' link below.”

5. Close the sign-in page and return to the Azure portal.

6. Select the B2C_1A_PasswordReset custom policy, and then select Run now. Follow the process to

reset the password for your email address.

a. Specify your email address, as listed in the UsersDataResetPasswords.json file and click Send

verification code.

144 Bring-your-own-identity and Migrating Users

b. Once you receive the verification code, enter it and then click Verify code. You can now

change your password.

c. Now change your password and click Continue.

7. When you have reset your password, return to the Azure portal, select the B2C_1A_signup_signin

custom policy again, and then select Run now.

Et voilà! You should now be able to sign in.

8. Eventually, verify with the Microsoft Azure Storage Explorer that your email address is no longer

listed in the Azure table.

145 Bring-your-own-identity and Migrating Users

Helping to handle GDPR requirements
Since May 25, 2018, the General Data Protection Regulation53, more commonly referred to by its English

acronym "GDPR" is applicable. The GDPR imposes new rules on companies, government agencies, non-

profits, and other organizations that offer goods and services to people in the European Union (EU), or that

collect and analyze data tied to EU residents.

In the age of digital transformation, data privacy and improved security have become major concerns. The

GDPR is fundamentally concerned with the issue of protecting the privacy of individuals and enabling them

to exercise their rights in this regard. To this end, the GDPR establishes a set of the most stringent global

requirements imposed on organizations in terms of protection of privacy. These requirements govern how

you must manage and protect the personal data of individuals in the EU while respecting their individual

choices, no matter where the data are processed, stored, or sent.

Thus, Microsoft and its customers have now set out on the path to achieve the privacy objectives set by the

GDPR. Microsoft believes that privacy is a fundamental right, and we believe that the GDPR represents an

important advance in terms of privacy and protection of related rights. At the same time, we recognize that

the GDPR will impose significant changes on organizations around the world.

Note For more information, see whitepapers GDPR HOW-TO: GET ORGANIZED AND IMPLEMENT THE RIGHT PROCESSES54

and GDPR: HOW TO BECOME AND REMAIN COMPLIANT55.

Although the path to GDPR may be difficult, Microsoft is here to help. Information about Microsoft Services

to support your GDPR accountability as well as an understanding of the technical and organizational

measures Microsoft has taken to support the GDPR are provided on the Microsoft Service Trust portal56.

In this context, this section provides specific information regarding Azure AD B2C regarding the following

topics:

• Explicit data subject consents (opt-in).

• Data subject requests (DSRs).

• Data breach notification.

The next sections cover each topic in order.

Getting data subjects’ consent

The GDPR mandates data controllers (you) to obtain an explicit consent from individuals (or, data subjects)

prior collecting and analyzing personal data.

Personal data must be indeed processed in a transparent manner in the sense that the data subjects must

be informed of the purpose of the processing – uses for anything other than for the specific processing

53 REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL OF 27 APRIL 2016 ON THE PROTECTION OF NATURAL PERSONS WITH

REGARD TO THE PROCESSING OF PERSONAL DATA AND ON THE FREE MOVEMENT OF SUCH DATA, AND REPEALING DIRECTIVE 95/46/EC (GENERAL DATA

PROTECTION REGULATION): http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
54 GDPR HOW-TO: GET ORGANIZED AND IMPLEMENT THE RIGHT PROCESSES: https://aka.ms/GDPR-process-EN
55 GDPR: HOW TO BECOME AND REMAIN COMPLIANT: https://aka.ms/gdpr-become-compliant-en
56 GET STARTED: SUPPORT FOR GDPR ACCOUNTABILITY: https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted

http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R0679
https://aka.ms/GDPR-process-EN
https://aka.ms/gdpr-become-compliant-en
https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted
https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted
https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted
https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted

146 Bring-your-own-identity and Migrating Users

described are not permitted – and that only the data necessary for that purpose will be collected. The

consent of the individuals must be clearly and explicitly requested and obtained prior to the collection of

the data and can be withdrawn at any time. Special conditions also apply for minors who require parental

authority.

Important note The GDPR permits Member States in the European Union (EU) to set the age at which minors

require parental authority for consent as low as 13 years. So this requirement may vary from one Member State to

the next.

Capturing “terms of use” (ToU) agreements

Azure AD B2C allows you to capture “terms of use” (ToU) agreements by tracking when users consent. You

can also prompt users if their agreement is out of date or if they haven’t signed it previously.

Note For more information, see section CAPTURE TERMS OF USE AGREEMENT57 in article MANAGE USER ACCESS IN

AZURE AD B2C.

To incorporate an orchestration step to a Sign-Up and Sign-In (SUSI) user journey that prompts the user to

accept the organization's terms and conditions, you need to add a related claim to the sign-up page, and

then validate the input using an external RESTful API as already illustrated in section § Integrating with a

RESTful API earlier in document.

For the sake of simplicity, we illustrate hereafter only the first part.

Updating the custom policies

Proceed with the following steps:

1. Navigate to the SocialAndLocalAccounts folder in the “Starter Pack”.

2. Open the base policy file, i.e. the TrustFrameworkBase.xml file, using an XML editor of your choice,

for instance Visual Studio (Code).

3. Scroll down to the ClaimsSchema node.

4. Inside the ClaimsSchema node, insert the following claim type.

<ClaimType Id="TnCs">
 <DisplayName>Terms of Service Consent</DisplayName>
 <DataType>string</DataType>
 <UserHelpText>I agree to the Litware 369 terms of service.</UserHelpText>
 <UserInputType>CheckboxMultiSelect</UserInputType>
 <Restriction>
 <Enumeration Text="I agree to the Litware 369 terms of service." Value="6/19/2018" SelectByDefault="false" />
 </Restriction>
 </ClaimType>

5. Find the element <TechnicalProfile Id="LocalAccountSignUpWithLogonEmail">, and in the

OutputClaims node, add the following element.

<OutputClaim ClaimTypeReferenceId="TnCs" Required="true" />

57 MANAGE USER ACCESS IN AZURE AD B2C: https://docs.microsoft.com/en-us/azure/active-directory-b2c/manage-user-accesst

https://docs.microsoft.com/en-us/azure/active-directory-b2c/manage-user-access#capture-terms-of-use-agreement

147 Bring-your-own-identity and Migrating Users

6. Save the XML file.

7. To add a claim to the sign-up and sign-in (SUSI) page, now open the SignUpOrSignIn.xml relying

party file using the XML editor of your choice.

8. Find the element <TechnicalProfile Id="PolicyProfile">, and in the OutputClaims node, add the

following XML snippet.

<OutputClaim ClaimTypeReferenceId="TnCs"/>

9. Save the XML file.

Uploading the custom policies to your B2C tenant

Proceed with the following steps:

6. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

7. Select Upload Policy.

8. Check Overwrite the policy if it exists.

9. In Upload policy, select the TrustFrameworkBase.xml policy file.

10. Click Upload and ensure that it does not fail the validation.

11. Repeat the above steps 2-5 with the SignUpOrSignIn.xml file.

Testing the custom policy by using Run Now

Proceed with the following steps:

1. In the Azure portal, in the Azure AD B2C blade, select Identity Experience Framework - PREVIEW.

2. Click the B2C_1A_signup_signin custom policy to see its detail view. A new blade opens.

3. Click Run now.

4. In the sign-in page, select Sign-up now.

5. In the sign-up page, notice that the Terms of Service Consent checkbox appears.

6. Attempt to create an account without checking Terms of Service Consent. This should fail with the

message “This information is required.” You should only be able to proceed once you have checked

the box.

7. Verify that you can create an account if you select the Terms of Service Consent box.

148 Bring-your-own-identity and Migrating Users

Getting parental consent

As stated above, applications need consent to allow access for the minors. Minors must have consent from

a parent to use any service, regardless of whether it’s targeted at minors. In addition, telemetry, analytics

and targeted marketing should be disabled for minors even after parental consent.

Azure AD B2C provides parental consent features as follows:

• Collecting Date of Birth and Country for all users to determine if the user is a minor. This information

can be collected during sign-up for new users, or during sign-in for existing users if Date of Birth

and Country have not been previously collected.

This feature is illustrated in the Woodgrove Groceries demo58 introduced at the end of the second

document of this series.

• Blocking minors from signing up from your service if that is the desired behavior.

This feature is also illustrated in the Woodgrove Groceries demo.

• Issuing id tokens with a claim indicating that the user is considered a minor. This will take into

consideration that different countries have different laws about what age is considered a minor.

• Invoking a parental consent service over the OpenID Connect (OIDC) standard protocol. The age

verification and parental consent itself is not a service provide by Microsoft.

• Storing a child’s parent data in the directory through the Azure AD Graph API.

• Enabling and disabling a child’s account through the Azure AD Graph API. This will be possible by

flagging an account as minor without parental consent.

• Deleting a child’s account.

58 WoodGrove Groceries demo code: https://github.com/Azure-Samples/active-directory-external-identities-woodgrove-demo

Sign-up

• Email?

• Date Of

Birth?

• Country?

• Accept Terms

of Use.

Block

Welcome!

Minor?

Yes

No

SignUp attributes

collected from User

Date of Birth

Azure AD B2C

WoodGrove Tenancy

149 Bring-your-own-identity and Migrating Users

Note For more information, see articles MANAGE USER ACCESS IN AZURE AD B2C59, USING AGE GATING IN AZURE AD

B2C60, and MANAGE USER DATA IN AZURE AD B2C61
.

Getting consent to share data with 3rd party services

In addition to the above, the GDPR mandates consent to be given explicitly (opt-in) for sharing individual

(data subjects) information with 3rd parties. Data subjects must be able to withdraw consent for sharing

their personal data at any time.

As per above sections, custom policies allow for enforcing the collection of consent from a user. For

example:

• Consent can be collected as part of all registrations (i.e. sign-up) and persisted in your B2C tenant.

• Consent can be collected if it is missing or has expired during a sign-in user journey.

• Access to the application can be blocked by the Identity Experience Framework in Azure AD B2C if

consent is declined.

Fulfilling the Data Subject Requests (DSRs)

With the GDPR, the rights of the data subject are extended, starting with the consent that the person must

provide in full knowledge of the facts: transparency is imposed on the purpose of the processing, the

personal data collected, any data transfers to third parties and/or outside the European Union (EU), the

retention period of personal data, and the right to submit a complaint.

The GDPR grants individuals (or, data subjects) certain rights in connection with the processing of their

personal data, including the right to access their data, correct inaccurate data, erase data or restrict its

processing, receive their data and fulfill a request to transmit their data to another controller. (In addition,

the concept of profiling is introduced to indicate that the data subject must be informed of the said profiling

and may refuse it except where this is necessary for the performance of the contract.)

The GDPR requires data controllers (you) and data processors (Microsoft in the context of Azure AD B2C) to

respond to those requests. This section shows hereafter how Microsoft (for Azure AD B2C) will enable you

to do so.

Note For more information, see article GDPR: DATA SUBJECT REQUESTS (DSRS)62.

Additional support has been introduced in Azure AD B2C to the audit logs about user data both via APIs

and through the Azure management portal. This, along with the changes made to how Microsoft handle

data, helps you fulfill requests for deletion and accessing data.

59 Ibid
60 USING AGE GATING IN AZURE AD B2C: https://docs.microsoft.com/en-us/azure/active-directory-b2c/basic-age-gating
61 MANAGE USER DATA IN AZURE AD B2C: https://docs.microsoft.com/en-us/azure/active-directory-b2c/manage-user-data
62 GDPR: DATA SUBJECT REQUESTS (DSRS): https://servicetrust.microsoft.com/ViewPage/GDPRDSR

https://docs.microsoft.com/en-us/azure/active-directory-b2c/manage-user-access
https://docs.microsoft.com/en-us/azure/active-directory-b2c/basic-age-gating
https://docs.microsoft.com/en-us/azure/active-directory-b2c/basic-age-gating
https://docs.microsoft.com/en-us/azure/active-directory-b2c/manage-user-data
https://servicetrust.microsoft.com/ViewPage/GDPRDSR

150 Bring-your-own-identity and Migrating Users

Note For more information, see articles ACCESSING AZURE AD B2C AUDIT LOGS63 and MANAGE USER DATA IN AZURE

ACTIVE DIRECTORY B2C64.

The features in Azure AD B2C do not guarantee GDPR compliance, rather, they must be used in

specific ways to achieve compliance. Overall orchestration and reporting of GDPR compliance across all

applications, databases, and customer support systems is not a goal.

The specific roles of Azure AD B2C will depend on the unique approach to compliance in each organization.

We illustrate hereafter how to fulfill the right to export and the one to be forgotten.

Fulfilling the right to export

Providing the ability to exercise the right to export with your B2C tenant requires to both:

• Get the current state of user with a read of the user information via the Azure AD Graph API as

covered in the third document of this series.

• Get the user’s activity from the improved audit logs.

Developers (i.e. app creators) need to call the Azure AD Graph API for the user. B2C users do not interact

with the Azure AD Graph API directly.

The Azure AD Graph API may be used to export the user data in your B2C tenant in real

time. Alternatively, an end user may log into to an Azure AD B2C registered application, proactively select

a “Profile View” policy and review their own provided data as part of an user journey.

Furthermore, the usage logs (a.k.a. Audit log) may be downloaded by the application using the Azure AD

Reporting API, filtered by the object ID of a user and provided to the end user in a compliant industry

standard format.

Note For more information, see article GET STARTED WITH THE AZURE ACTIVE DIRECTORY REPORTING API65.

63 ACCESSING AZURE AD B2C AUDIT LOGS: https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-

audit-logs
64 MANAGE USER DATA IN AZURE ACTIVE DIRECTORY B2C: https://docs.microsoft.com/azure/active-directory-b2c/manage-user-data
65 GET STARTED WITH THE AZURE ACTIVE DIRECTORY REPORTING API: https://docs.microsoft.com/en-us/azure/active-directory/active-directory-

reporting-api-getting-started-azure-portal

https://docs.microsoft.com/en-us/azure/active-directory-b2c/active-directory-b2c-reference-audit-logs
https://docs.microsoft.com/azure/active-directory-b2c/manage-user-data
https://docs.microsoft.com/azure/active-directory-b2c/manage-user-data
https://docs.microsoft.com/en-us/azure/active-directory/active-directory-reporting-api-getting-started-azure-portal

151 Bring-your-own-identity and Migrating Users

Following is an example of a B2C export script in PowerShell. This is an example only and will not work in its

present form. It should be used to form your own query by updating the variables outlined in red:

Constants

Insert your application's Client ID, a GUID registered by Global Admin granted read permissions granted on Azure AD Graph
$ClientID = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
Insert your application's Client Key/Secret string
$ClientSecret = "XX"
Insert your Azure AD Tenant; for example, contoso.onmicrosoft.com
$tenantdomain = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"
Insert the ObjectID of the user to dump.
$userToDump = "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"

AAD Instance; for example https://login.microsoftonline.com
$loginURL = "https://login.microsoftonline.com"
Azure AD Graph API resource URI
$resource = "https://graph.windows.net"

Write-Output "Dumping user $userToDump from Directory: $tenantdomain"

Create HTTP header, get an OAuth2 access token based on client id, secret and tenant domain

$body = @{grant_type="client_credentials";resource=$resource;client_id=$ClientID;client_secret=$ClientSecret}
$oauth = Invoke-RestMethod -Method Post -Uri $loginURL/$tenantdomain/oauth2/token?api-version=1.0 -Body $body
$baseURL = 'https://graph.windows.net/'+$tenantdomain+'/'

Parse audit report items, save output to file(s): userX.json, where X = 0 thru n for number of nextLink pages

if ($oauth.access_token -ne $null) {
 $i=0
 $headerParams = @{'Authorization'="$($oauth.token_type) $($oauth.access_token)"}
 #
 # This line dumps a single user
 #
 $url = 'https://graph.windows.net/' + $tenantdomain + '/users/'+$userToDump+'?api-version=1.6'
 #
 # this line will dump all the users in the tenant.
 #
 #$url = 'https://graph.windows.net/' + $tenantdomain + '/users/?api-version=1.6&$top=5'
 # loop through each query page (1 through n)
 Do{
 # display each event on the console window
 Write-Output "Fetching data using Uri: $url"
 $aUser = (Invoke-WebRequest -UseBasicParsing -Headers $headerParams -Uri $url)
 foreach ($userProperties in ($aUser.Content | ConvertFrom-Json)) {
 Write-Output ($userProperties | ConvertTo-Json)
 }

 # save the query page to an output file
 Write-Output "Save the output to a file user$i.json"
 $aUser.Content | Out-File -FilePath user$i.json -Force
 $url = ($aUser.Content | ConvertFrom-Json).'odata.nextLink'
 if ($url -ne $null){ $url = $baseURL + $url + '&api-version=1.6&$top=5'; Write-output "Next Page: $i $url"}
 $i = $i+1
 } while($url -ne $null)
} else {
 Write-Host "ERROR: No Access Token"
}

Fulfilling the right to be forgotten

Likewise, providing the ability to exercise the right to be forgotten with your B2C tenant simply requires

deleting the user account via the Azure AD Graph API.

Similarly, developers (i.e. app creators) need to call Azure AD Graph API for the user. B2C users do not

interact with Azure AD Graph API directly.

The DELETE command in the Azure AD Graph API enables you to delete all the user data for a user in

response to a qualified request. The data will be soft-deleted immediately before acknowledging success,

152 Bring-your-own-identity and Migrating Users

and all data will be hard deleted within 30 days. You may also choose to hard delete the user data. In this

case, the data will be deleted within one day. Soft-delete is reversible within 30 days, hard-delete is not.

Usage logs (a.k.a. audit logs) are deleted automatically every 30 days by the Azure AD B2C service for all

users.

Handling breach notification

The GDPR imposes data controllers (you) to notify any data breach within 72 hours of having become aware

of a breach.

In the event of a breach, Microsoft will contact the Azure subscription owner as well as the security contact

specified. This requires that the Azure AD B2C tenant be linked to an Azure subscription and that the

information is up to date.

Note For more information, see article DATA BREACH NOTIFICATION UNDER THE GDPR66.

This concludes this fourth document of this series.

66 DATA BREACH NOTIFICATION UNDER THE GDPR: https://servicetrust.microsoft.com/ViewPage/GDPRBreach

https://servicetrust.microsoft.com/ViewPage/GDPRBreach

153 Bring-your-own-identity and Migrating Users

Appendix Building the code samples

Building a RESTful API claims provider

Creating a new API in ASP.NET Core

To create a new RESTful API in ASP.NET Core, proceed with the following steps:

1. Start Visual studio 2017.

2. On the File menu, select New and then select Project.

3. In the New Project dialog box, expand Visual C#, select Web, and then select ASP.NET Core Web

Application.

4. Name the project StoreMembershipApi, and then select OK.

5. In the New ASP.NET Core Web Application dialog box, select Web Application (Model View

Controller), select No Authentication, and then select OK.

154 Bring-your-own-identity and Migrating Users

Adding data models and the controller to the API project

The user will provide a Store Membership Number at the time of registration of his account. The RESTful

API will validate this number, and if it is verified, registration will be allowed to proceed. If the number is

invalid, the service will send back a validation failed error.

For the sake of this illustration, the validation is simple: the provided Store Membership Number must be

an integer that is divisible by 5.

Proceed with the following steps:

1. In Solution Explorer, right-click Models, select Add, and the select Class.

2. In the Add New Item dialog box, select Class. Specify the name ValidationResponseContent, and

then select Add.

155 Bring-your-own-identity and Migrating Users

3. Replace the code in the ValidationResponseContent.cs file with the following code snippet:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace StoreMembershipApi.Models {
 public class ValidationResponseContent : StoreResponseContent
 {
 public string StoreMembershipNumber { get; set; }
 }
}

4. Using the same procedure, add another class to the Models folder, named StoreResponseContent.

Replace the code for the class with the following code snippet:

using System.Net;
using System.Reflection;

namespace StoreMembershipApi.Models
{
 public class StoreResponseContent
 {
 public string Version { get; set; }
 public int Status { get; set; }
 public string UserMessage { get; set; }

 public StoreResponseContent()
 { }

 public StoreResponseContent(string message, HttpStatusCode status)
 {
 this.UserMessage = message;
 this.Status = (int)status;
 this.Version = Assembly.GetExecutingAssembly().GetName().Version.ToString();
 }
 }
}

156 Bring-your-own-identity and Migrating Users

5. Add a further class to the Models folder, named MembershipRequest. Replace the code generated

for this class with the following code snippet:

using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace StoreMembershipApi.Models
{
 public class MembershipRequest
 {
 public int StoreMembershipNumber { get; set; }
 }
}

6. In Solution Explorer, right-click the Controllers folder, select Add, and then select Controller.

7. In the Add Scaffold dialog box, select API Controller -Empty, and then select Add.

8. In the Add Empty API Controller dialog box, name the controller MembershipController, and

then select Add.

9. Replace the code generated for the controller with the following code snippet:

using System; using System.Net;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using StoreMembershipApi.Models;

namespace StoreMembershipApi.Controllers
{
 /// <summary>
 /// This controller is responsible for responding to requests from our custom policies
 /// to validate store membership numbers and retrieve customer membership dates.

157 Bring-your-own-identity and Migrating Users

 /// </summary>

 [Route("api/[controller]")]
 public class MembershipController : Controller
 {
 /// <summary>
 /// This method receives a storeMembershipnumber from the policy validation step and returns a 409 Conflict
 /// response if the store membership number is not valid (not a multiple of 5), and a 200 Ok response on
 /// successful validation of the store membership number.
 /// </summary>
 /// <param name="request">Passed from the policy validation step, contains a storeMembershipNumber.</param>
 /// <returns>HTTP 200 Ok on success. HTTP 409 Conflict if provided an invalid store membership number.</returns>
 [HttpPost("validate")]
 public IActionResult ValidateMembershipNumber([FromBody] MembershipRequest request)
 {
 if (!IsStoreMembershipNumberValid(request.StoreMembershipNumber))
 {
 return GenerateErrorMessageWithMessage("Store membership number is not valid, it must be a multiple of 5!");
 }

 // Return the output claim(s)
 return Ok(new ValidationResponseContent
 {
 StoreMembershipNumber = request.StoreMembershipNumber.ToString()
 });
 }

 /// <summary>
 /// Constructs an HTTP 409 Conflict IActionResult to return back to the validation or orchestration step.
 /// This is used to communicate with the policy steps to communicate an error state.
 /// </summary>
 /// <param name="message">The message to be passed back to the user to explain why the request failed.</param>
 /// <returns>An IActionResult representing an HTTP 409 Conflict with a custom payload.</returns>
 private IActionResult GenerateErrorMessageWithMessage(string message)
 {
 return StatusCode((int)HttpStatusCode.Conflict, new StoreResponseContent
 {
 Version = "1.0.0",
 Status = (int) HttpStatusCode.Conflict,
 UserMessage = message
 });
 }

 /// <summary>
 /// Validates a provided store membership number by using the modulus operator (see more <see
 href="https://docs.microsoft.com/enus/dotnet/csharp/language-reference/operators/remainder-
operator">here</see>)
 /// to determine if the provided store membership number is a multiple of 5. If it is, we return true, if not, we
return
 /// false.
 /// </summary>
 /// <param name="storeMembershipNumber">The store membership number to be validated.</param>
 /// <returns>True on successful validation, false if validation fails.</returns>
 private bool IsStoreMembershipNumberValid(int storeMembershipNumber)
 {
 if (storeMembershipNumber % 5 != 0)
 {
 return false;
 }

 return true;
 }
 }
}

10. On the File menu, select Save All.

11. On the Build menu, select Rebuild Solution, and verify that the solution builds without any errors.

158 Bring-your-own-identity and Migrating Users

Publishing the project as an Azure Website

Proceed with the following steps:

1. In Solution Explorer, right-click the StoreMembershipApi project node, and then select Publish.

2. In the Pick a publish target dialog box, select App Service, select Create New, and then select

Publish.

3. In the Create App Service dialog box, login to Azure as an account with administrative privileges

in your Azure domain, specify a unique App Name, select a resource group, and then select Create.

159 Bring-your-own-identity and Migrating Users

4. Wait while the service is published.

5. The site will launch in the browser when publishing is complete.

6. Record the URL of your service in the browser address bar.

160 Bring-your-own-identity and Migrating Users

Modifying the API project to support user store membership

date

Proceed with the following steps:

1. Return to the StoreMembershipApi project in Visual Studio 2017.

2. In Solution Explorer, right-click Models, select Add, and then select Class.

3. In the Add New Item dialog box, select Visual C#, and then select Class. Specify the name

MembershipDateResponseContent and then select Add.

4. Replace the code in the MembershipDateResponseContent.cs file with the following code.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

namespace StoreMembershipApi.Models
{
 public class MembershipDateResponseContent : StoreResponseContent
 {
 public string StoreMembershipDate { get; set; }
 }
}

5. In Solution Explorer, expand the Controllers folder, and select the MembershipController.cs file.

161 Bring-your-own-identity and Migrating Users

6. Add the following methods to the MembershipController class.

/// <summary>
/// This method receives a storeMembershipnumber from the policy orchestration step and returns a 409 Conflict
/// response if the store membership number is not valid (not a multiple of 5), and a 200 Ok response containing
/// the member's membership date if the store membership number is valid.
/// </summary>
/// <param name="request">Passed from the policy orchestration step, contains a storeMembershipNumber.</param>
/// <returns>HTTP 200 Ok on success with an obtained membership date. HTTP 409
Conflict if provided an invalid store membership number.</returns>
[HttpPost("membershipdate")]
public IActionResult GetMembershipDate([FromBody] MembershipRequest request)
{
 if (!IsStoreMembershipNumberValid(request.StoreMembershipNumber))
 {
 return GenerateErrorMessageWithMessage("Store membership number is not valid, it must be a multiple of 5!");
 }

 var membershipDate = ObtainStoreMembershipDate();
 return Ok(new MembershipDateResponseContent
 {
 Version = "1.0.0",
 Status = (int)HttpStatusCode.OK,
 UserMessage = "Membership date located successfully.",
 StoreMembershipDate = membershipDate.ToString("d")
 });
}

/// <summary>
/// Generates a date within the last 90 days to return as the store membership number for a member.
/// In a production application you'd likely contact a database here to get a real membership date for a member.
/// </summary>
/// <returns>A DateTime representing the store membership date for a member.</returns>
private static DateTime ObtainStoreMembershipDate()
{
 var random = new Random();
 var daysOffOfToday = random.Next(0, 90);
 var randomDate = DateTime.Now.AddDays(-daysOffOfToday);

 return randomDate;
}

7. Save the file.

8. On the Build menu, select Rebuild Solution. Verify that the solution compiles without any errors.

9. In Solution Explorer, right-click the StoreMembershipApi project, and then select Publish.

10. In the Publish window, select Publish. Wait for the updated service to be deployed.

162 Bring-your-own-identity and Migrating Users

Building the Contoso.AADB2C.UI code sample

Building the code sample

Proceed with the following steps:

1. Navigate to the folder scenarios\aadb2c-ief-ui-customization of the “Starter Pack”.

2. Extract on your computer the Contoso.AADB2C.UI.zip archive file under the Starter-Pack folder. A

Contoso.AADB2C.UI folder is created underneath.

3. Using Visual Studio 2017, open the Contoso.AADB2C.UI.sln solution file in the Contoso.AADB2C.UI

folder located under the Starter-Pack folder.

If necessary, Visual Studio 2017 will download all the required NuGet package and resolve all the

dependencies.

4. Open the Controllers\HomeController.cs file and scroll to the unified method.

public IActionResult unified(string campaignId)
{
 SetPageBackground(campaignId);
 return View();
}

This method accepts a campaignId parameter.

163 Bring-your-own-identity and Migrating Users

5. Navigate to the definition of SetPageBackground method.

private void SetPageBackground(string campaignId)
{
 // If campaign ID is Hawaii, show Hawaii backgound
 if (campaignId != null && campaignId.ToLower() == "hawaii")
 {
 ViewData["background"] = "https://kbdevstorage1.blob.core.windows.net/asset-blobs/19889_en_1";
 }
 // If campaign ID is Tokyo, show Tokyo backgound
 else if (campaignId != null && campaignId.ToLower() == "tokyo")
 {
 ViewData["background"] = "https://kbdevstorage1.blob.core.windows.net/asset-blobs/19666_en_1";
 }
 // Default background
 else
 {
 ViewData["background"] = "https://kbdevstorage1.blob.core.windows.net/asset-blobs/18983_en_1";
 }
}

This method checks the parameter's value and sets the ViewData["background"] variable

accordingly to replace the background image of the view:

• https://kbdevstorage1.blob.core.windows.net/asset-blobs/19889_en_1

 -or-

• https://kbdevstorage1.blob.core.windows.net/asset-blobs/19666_en_1

-or-

• https://kbdevstorage1.blob.core.windows.net/asset-blobs/18983_en_1

6. Open the Views\Home\unified.cshtml file and scroll to the unified method and locate the <div

id="background_branding_container"> element under the <body> element.

<body>
 <div id="background_branding_container">

 </div>

 …
</body>

The element with id background_background_image is set with the above picture files

depending on the value of the campaignId parameter.

The selfAsserted method in the Controllers\HomeController.cs file and the element with id

background_background_image in the Views\Home\unified.cshtml file are set the same way.

7. On the Build menu, select Rebuild Solution. Verify that the solution compiles without any errors.

Publishing the code sample to Azure

Proceed with the following steps:

1. In Solution Explorer, right-click the Contoso.AADB2C.UI project, and then select Publish. A Pick a

publish target dialog opens.

https://kbdevstorage1.blob.core.windows.net/asset-blobs/19889_en_1
https://kbdevstorage1.blob.core.windows.net/asset-blobs/19666_en_1
https://kbdevstorage1.blob.core.windows.net/asset-blobs/18983_en_1

164 Bring-your-own-identity and Migrating Users

2. Select the App Service, select Create New, and then click Publish. A Create App Service dialog

opens.

This dialog enables you to create all the necessary Azure resources needed to run the ASP.NET Core

web app in Azure.

3. In App Name, accept the automatically generated name, which is unique, or type a unique app

name - valid characters are a-z, A-Z, 0-9, and the hyphen (-) -. For example, in our configuration,

Litware369b2cAADB2CUI.

The URL of the web app will be http://<your_app_name>.azurewebsites.net,

where <your_app_name> is the chosen app name for the web app.

4. Select Create to start creating the Azure resources. The deployment starts.

165 Bring-your-own-identity and Migrating Users

5. After the creation process is complete, the wizard publishes the ASP.NET web app to Azure and then

launches the app in the default browser.

Configuring CORS in Azure App Service

Proceed with the following steps:

1. In the Azure portal, Select App Services, and then select the name of the web app. For example, in

our configuration, Litware369b2cAADB2CUI.

2. Under API, select CORS.

3. In ALLOWED ORIGINS, do either of the following:

• Enter the URL or URLs that you want to allow JavaScript calls to come from

-or-

• Enter an asterisk (*) to specify that all origin domains are accepted.

4. Click Save. After you select Save, the API app accepts JavaScript calls from the specified URLs.

166 Bring-your-own-identity and Migrating Users

Building the AADB2C.UserMigration code sample

This section depicts how to build the AADB2C.UserMigration sample.

The folder scenarios\aadb2c-user-migration of the “Starter Pack” provide both a code sample application

and a pre-defined set of custom policies to ease such a migration.

This AADB2C.UserMigration code sample along with the provided XML files demonstrate how to migrate

existing user accounts, from any identity provider to your B2C tenant. This code sample is not meant to be

prescriptive, but rather describes two of several different approaches as outlined in the course of this paper

(see section § Understanding the primary considerations for the migration). The developer is responsible for

suitability and performances.

Building and running the AADB2C.UserMigration project

Proceed with the following steps:

1. Extract on your computer the AADB2C.UserMigration.zip archive file under the Starter-Pack folder.

An AADB2C.UserMigration folder is created underneath.

2. Using Visual Studio 2017, open the AADB2C.UserMigration.sln solution file in the

AADB2C.UserMigration folder located under the Starter-Pack folder.

If necessary, Visual Studio 2017 will download all the required NuGet package and resolve all the

dependencies.

3. In Solution Explorer, under the AADB2C.UserMigration project, open the App.config file.

167 Bring-your-own-identity and Migrating Users

4. In the App.config file, modify the values in the appSettings section. Provide the name of your B2C

tenant, the application ID and the secret key for the application.

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.6.1" />
 </startup>

 <appSettings>

 <add key="b2c:Tenant" value="" />

 <add key="b2c:ClientId" value="" />

 <add key="b2c:ClientSecret" value="" />

 …
 </appSettings>
…
</configuration>

You can reuse here the application ID and secret that you created for the B2CGraphClient

application in the third document of this series, see section § Building the B2CGraphClient code

sample in Appendix B. Building the code samples:

a. Tenant: litware369b2c.onmicrosoft.com

b. ClientId: eca22455-926d-43db-89de-1cfafe9a05e6

c. ClientSecret: /NC2fqSQjahypbcYikFh6ebYplPls5f+ZsxOlm2qzCc=

5. On the Build menu, select Rebuild Solution. Verify that the solution compiles without any errors.

6. In Solution Explorer, under the AADB2C.UserMigration project, select the file Program.cs. The

Main method in this file is the entry point for the application.

The application expects the user to provide a numeric option on the command line to specify which

operation to perform. If no option is specified, the code displays a menu indicating the available

choices - there are other selections available other than 1 and 2, but they are not used by this

illustration -.

If the user specifies option 1, the application invokes the MigrateUsersWithPasswordAsync

method.

If the user invokes option 2, the application runs the MigrateUsersWithRandomPasswordAsync

method.

static void Main(string[] args)
{
 if (args.Length <= 0)
 {
 Console.WriteLine("Please enter a command as the first argument.");
 Console.WriteLine("\t1 : Migrate users with password");
 Console.WriteLine("\t2 : Migrate users with random password");
 Console.WriteLine("\t3 Email-address : Get user by email address");
 Console.WriteLine("\t4 Display-name : Get user by display name");
 Console.WriteLine("\t5 : User migration cleanup");
 return;
 }
 try
 {
 switch (args[0])
 {
 case "1":
 MigrateUsersWithPasswordAsync().Wait();
 break;
 case "2":
 MigrateUsersWithRandomPasswordAsync().Wait();

168 Bring-your-own-identity and Migrating Users

 break;
 …
 }
 …
 }
 …
}

7. Scroll down and find the MigrateUsersWithPasswordAsync method. This method reads the user

data from a file (checking to make sure that the file exists first) and creates a collection of user

objects in a variable called users. The code then iterates through this collection and calls the

b2CGraphClient.CreateUser method to create each user. Note that the users.

GenerateRandomPassword variable is a Boolean indicating whether the

B2CGraphClient.CreateUser method should use the password specified as a parameter to this

method or generate its own random password. This method sets the GenerateRandomPassword

variable to false.

Note The method MigrateUsersWithRandomPasswordAsync, which runs when the users specify option

2 when executing the program, sets this variable to true. The b2cGraphClient.CreateUser method uses the Azure

AD Graph API to create the user by sending an HTTP POST request to the users resource for Azure AD, as previously

described.

/// <summary>
/// Migrate users with their password
/// </summary>
/// <returns></returns>
static async Task MigrateUsersWithPasswordAsync() {
 string appDirectoryPath = Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAssembly().Location);
 string dataFilePath = Path.Combine(appDirectoryPath, Program.MigrationFile);

 // Check file existence
 if (!File.Exists(dataFilePath))
 {
 Console.ForegroundColor = ConsoleColor.Red;
 Console.WriteLine($"File '{dataFilePath}' not found");
 Console.ResetColor();
 return;
 }

 // Read the data file and convert to object
 UsersModel users = UsersModel.Parse(File.ReadAllText(dataFilePath));

 // Create B2C graph client object
 B2CGraphClient b2CGraphClient = new B2CGraphClient(Program.Tenant, Program.ClientId, Program.ClientSecret);
 foreach (var item in users.Users)
 {
 await b2CGraphClient.CreateUser(item.email, item.password, item.displayName, item.firstName, item.lastName,
 users.GenerateRandomPassword);
 }

 Console.WriteLine("Users migrated successfully");
}

Building and running the AADB2C.UserMigration.API project

To build and deploy the AADB2C.UserMigration.API, you will have to:

1. Create a storage account.

2. Building and deploying the AADB2C.UserMigration.API project.

3. Updating the “Stater Pack” custom policies.

The next section depicts in order each of these related tasks.

169 Bring-your-own-identity and Migrating Users

Creating a storage account

The following procedure shows how to implement this approach.

1. In the Azure portal, make sure you are connected as an account with administrative privileges, and

switch to your Azure tenant (not the B2C tenant).

2. Select + Create a resource.

3. In Search, enter “Storage account”, and then select Storage account – blob, table, file, queue.

4. Click Create.

170 Bring-your-own-identity and Migrating Users

a. Enter a unique name for the storage account, for example in our illustration

“aadb2cusermigration”.

b. Leave the remaining options at their defaults (create a new resource group if necessary),

and then select Create.

5. When the storage account has been created, select All resources, select your new storage account,

and then select Access keys under SETTINGS.

171 Bring-your-own-identity and Migrating Users

6. Under key1, make of note the value for the Connection string:

DefaultEndpointsProtocol=https;AccountName=aadb2cusermigration;AccountKey=OSWFiMKXEQ

qwWyN2AmfEll6J7nySwCAvGTgFJPwzdozBM8NnTIQrKhknos88LDc6TZ7Y+Y+fqr+X+toelP8J7A==;

EndpointSuffix=core.windows.net.

Building and deploying the AADB2C.UserMigration.API project

Proceed with the following steps:

1. In Visual Studio, return to the AADB2C.UserMigration.sln solution file in the AADB2C.UserMigration

folder located under the Starter-Pack folder.

2. In Solution Explorer, expand the AADB2C.UserMigration project, and then select the App.config

file.

3. In the App.config file, in the appSettings section, insert the above table storage connection string

as the value for the BlobStorageConnectionString key.

172 Bring-your-own-identity and Migrating Users

<appSettings>
 <add key="b2c:Tenant" value="litware369b2c.onmicrosoft.com" />
 <add key="b2c:ClientId" value="eca22455-926d-43db-89de-1cfafe9a05e6" />
 <add key="b2c:ClientSecret" value="/NC2fqSQjahypbcYikFh6ebYplPls5f+ZsxOlm2qzCc=" />
 <add key="MigrationFile" value="UsersData.json" />

 <add key="BlobStorageConnectionString" value="" />

</appSettings> </appSettings>

4. In Solution Explorer, expand the AADB2C.UserMigration.API project, and then select the

Web.config file.

5. In the Web.config file, in the appSettings section, insert the same table storage connection string

as the value for the BlobStorageConnectionString key.

<appSettings>
 <add key="webpages:Version" value="3.0.0.0" />
 <add key="webpages:Enabled" value="false" />
 <add key="ClientValidationEnabled" value="true" />
 <add key="UnobtrusiveJavaScriptEnabled" value="true" />

 <add key="BlobStorageConnectionString" value="" />

</appSettings>

6. On the Build menu, select Rebuild Solution.

7. In Solution Explorer, right-click the AADB2C.UserMigration.API project, and then select Publish.

A dialog box pops up.

8. In the Pick a publish target dialog, select App Service, select Create New, and then select Publish.

9. In the Create App Service dialog box:

a. Log in with an account with administrative privileges in your Azure tenant (if necessary, add

the account to Visual Studio).

173 Bring-your-own-identity and Migrating Users

b. Set the App Name to ADB2CUserMigrationAPILitware369b2c where Litware369b2c is

the name of your B2C tenant.

c. Accept the default values for the remaining fields.

d. And then select Create.

9. Wait while the web application is published.

When deployment is complete, the web app will start running and a browser window will open. The

browser might display the error message “The resource cannot be found”, but this is OK ;-)

174 Bring-your-own-identity and Migrating Users

Updating the AADB2C.UserMigration project

Proceed with the following steps:

1. In Visual Studio, return to the AADB2C.UserMigration.sln solution file in the AADB2C.UserMigration

folder located under the Starter-Pack folder.

10. In Solution Explorer, expand the AADB2C.UserMigration project, and then open the App.config file.

11. In the App.config file, in the appSettings section of the file, modify the value is the MigrationFile

key to refer to a file named UsersDataResetPasswords.json.

<appSettings>
 <add key="b2c:Tenant" value="litware369b2c.onmicrosoft.com" />
 <add key="b2c:ClientId" value="eca22455-926d-43db-89de-1cfafe9a05e6" />
 <add key="b2c:ClientSecret" value="/NC2fqSQjahypbcYikFh6ebYplPls5f+ZsxOlm2qzCc=" />

 <add key="MigrationFile" value="UsersDataResetPasswords.json " />

 <add key="BlobStorageConnectionString" value="" />
</appSettings>

12. In Solution Explorer, in the AADB2C.UserMigration project, open the Program.cs file.

13. Scroll down and find the MigrateUsersWithRandomPasswordAsync method.

static async Task MigrateUsersWithRandomPasswordAsync()
{
 string appDirecotyPath = Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAssembly().Location);
 string dataFilePath = Path.Combine(appDirecotyPath, Program.MigrationFile);

 // Check file existence
 if (!File.Exists(dataFilePath))
 {
 Console.ForegroundColor = ConsoleColor.Red;
 Console.WriteLine($"File '{dataFilePath}' not found");
 Console.ResetColor();
 return;
 }

 // Read the data file and convert to object
 UsersModel users = UsersModel.Parse(File.ReadAllText(dataFilePath));

 // Create B2C graph client object
 B2CGraphClient b2CGraphClient = new B2CGraphClient(Program.Tenant, Program.ClientId, Program.ClientSecret);

 // Parse the connection string and return a reference to the storage account.
 CloudStorageAccount storageAccount = CloudStorageAccount.Parse(Program.BlobStorageConnectionString);

 // Create the table client.
 CloudTableClient tableClient = storageAccount.CreateCloudTableClient();

 // Retrieve a reference to the table.
 CloudTable table = tableClient.GetTableReference("users");

 // Create the table if it doesn't exist.
 table.CreateIfNotExists();

 // Create the batch operation.
 TableBatchOperation batchOperation = new TableBatchOperation();
 foreach (var item in users.Users)
 {
 await b2CGraphClient.CreateUser(item.email, item.password, item.displayName, item.firstName, item.lastName,
 users.GenerateRandomPassword);

 // Create a new customer entity.
 // Note: Azure Blob Table query is case sensitive, always set the email to lower case
 TableEntity user = new TableEntity("B2CMigration", item.email.ToLower());

 // Create the TableOperation object that inserts the customer entity.

175 Bring-your-own-identity and Migrating Users

 TableOperation insertOperation = TableOperation.InsertOrReplace(user);

 // Execute the insert operation.
 table.Execute(insertOperation);
 }

 Console.WriteLine("Users migrated successfully");
}

The above code uses the Azure Table API to create a new table, named users, in your storage

account. It then iterates through the user listed in the JSON file and called the

b2cGraphClient.CreateUser method to add each user to your Azure AD domain. If this operation

is successful, the method then adds a record of the user to the users table.

14. In the statement that calls the b2cGraphClient.CreateUser method, change the

users.GenerateRandomPassword parameter (highlighted) to false. For this example, we want to

preserve user's passwords, but force them to change in the next time they log in.

await b2CGraphClient.CreateUser(item.email, item.password, item.displayName, item.firstName, item.lastName, false);

15. On the Build menu, select Rebuild Solution.

176 Bring-your-own-identity and Migrating Users

The information contained in this document represents the current view of Microsoft Corporation on the

issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions,

it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the

accuracy of any information presented after the date of publication.

This white paper is for informational purposes only. Microsoft makes no warranties, express or implied, in this

document.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under

copyright, no part of this document may be reproduced, stored in, or introduced into a retrieval system, or

transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for

any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights

covering subject matter in this document. Except as expressly provided in any written license agreement from

Microsoft, the furnishing of this document does not give you any license to these patents, trademarks,

copyrights, or other intellectual property.

© 2018 Microsoft Corporation. All rights reserved.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and

events depicted herein are fictitious. No association with any real company, organization, product, domain

name, e-mail address, logo, person, place, or event is intended or should be inferred.

Microsoft, list Microsoft trademarks used in your white paper alphabetically are either registered trademarks or

trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective

owners.

	Notice
	Introduction
	Objectives of this document
	Non-objectives of this paper
	Organization of this paper
	About the audience

	Bringing your own identity (BYOI) for work or school users
	Integrating an Azure AD tenant as a claims provider
	Creating an Azure AD application
	Adding the Azure AD application key in your B2C tenant
	Updating the custom policy
	Defining the organization Azure AD tenant as a claim provider
	Registering the Azure AD claims provider to the Sign-Up or Sign-In (SUSI) user journey

	Uploading the custom policy to your B2C tenant
	Testing the custom policy by using Run Now

	Integrating AD FS as a claims provider
	Integrating AD FS as a claim provider via WS-Fed
	Creating a relying party trust in AD FS
	Creating a relying party trust
	Configuring AD FS issuance transform rules

	Updating the custom policy
	Adding the missing claim type information
	Defining AD FS as a claims provider
	Registering the AD FS claims provider to the Sign-Up or Sign-In (SUSI) user journey

	Registering the AD FS claims provider to the Profile Edit user journey (Optional)
	Uploading the custom policy to your B2C tenant
	Testing the custom policy by using Run Now

	Integrating AD FS as a claims provider via SAML-P 2.0

	Integrating Salesforce as a claims provider
	Setting up a My Domain Name in Salesforce
	Setting up the identity provider in Salesforce
	Creating a Salesforce application in Salesforce
	Generating a signing certificate for your B2C tenant
	Adding a SAML signing certificate to your B2C tenant
	Updating custom policies
	Define Salesforce as claim provider
	Registering the Salesforce claims provider to the Sign-Up or Sign-In (SUSI) user journey
	Uploading the custom policy to your B2C tenant
	Testing the custom policy by using Run Now

	Configuring password complexity for local accounts
	Updating the custom policy
	Uploading the custom policy to your B2C tenant
	Testing the custom policy by using Run Now

	Bringing your own identity (BYOI) for social users
	Collecting additional scopes from Facebook
	Reviewing the available scope from Facebook
	Updating custom policies
	Uploading custom policies to your B2C tenant
	Testing the custom policy by using Run Now

	Integrating Google+ as a claims provider
	Creating a Google+ application
	Adding the Google+ application key in your B2C tenant
	Updating the custom policy
	Defining Google+ as a claim provider
	Registering the Google+ claims provider to the Sign-Up or Sign-In (SUSI) user journey
	Registering the Google+ claims provider to the Profile Edit user journey (Optional)

	Uploading the custom policy to your B2C tenant
	Testing the custom policy by using Run Now

	Integrating Amazon as a claims provider
	Creating an Amazon application
	Adding the Amazon application key in your B2C tenant
	Updating the custom policy
	Defining Amazon as a claim provider
	Registering the Amazon claims provider to the Sign-Up or Sign-In (SUSI) user journey
	Registering the Amazon claims provider to the Profile Edit user journey (Optional)

	Uploading the custom policy to your B2C tenant
	Testing the custom policy by using Run Now

	Integrating LinkedIn as a claims provider
	Creating a LinkedIn application
	Adding the LinkedIn application key in your B2C tenant
	Updating the custom policy
	Defining LinkedIn as a claim provider
	Registering the LinkedIn claims provider to the Sign-Up or Sign-In (SUSI) user journey
	Registering the LinkedIn claims provider to the Profile Edit user journey (Optional)

	Uploading the custom policy to your B2C tenant
	Testing the custom policy by using Run Now

	Integrating Microsoft Account (MSA) as a claims provider
	Creating a Microsoft Account application
	Adding the Microsoft Account application key in your B2C tenant
	Updating the custom policy
	Defining Microsoft Account as a claim provider
	Registering the Microsoft Account claims provider to the Sign-Up or Sign-In (SUSI) user journey
	Registering the Microsoft Account claims provider to the Profile Edit user journey (Optional)

	Uploading the custom policy to your B2C tenant
	Testing the custom policy by using Run Now

	Integrating Twitter as a claims provider
	Creating a Twitter application
	Adding the Twitter application key in your B2C tenant
	Updating the custom policy
	Defining Twitter as a claim provider
	Registering the Twitter claims provider to the Sign-Up or Sign-In (SUSI) user journey
	Registering the Twitter claims provider to the Profile Edit user journey (Optional)

	Uploading the custom policy to your B2C tenant
	Testing the custom policy by using Run Now

	Pre-filling the requests with a domain hint

	Exchanging claims with directories or other systems
	Integrating with your B2C tenant
	Adding your B2C tenant as a claim provider
	Supporting custom attributes with your B2C tenant
	Creating a new application to store the Extension properties
	Updating the custom policies
	Adding the ApplicationObjectID to the base policy
	Adding the new claim type in the custom policies
	Declaring the new claim type to the Sign-Up or Sign-In (SUSI) user journey
	Registering the new claim type to the Profile Edit user journey

	Uploading the custom policies to your B2C tenant
	Testing the custom policy by using Run Now
	Getting the list of all the Extensions properties
	Sharing the same Extension properties with the built-in custom policies

	Integrating with a RESTful API
	Creating an API application
	Integrating with a RESTful API for validating user input
	Updating the custom policies
	Uploading the custom policies to your B2C tenant
	Testing the custom policy by using Run Now

	Integrating with a RESTful API for validating user input
	Updating the custom policies
	Uploading the custom policies to your B2C tenant
	Testing the custom policy

	Implementing a custom user journey
	Creating a new user journey
	Customizing an existing user journey
	Collecting a new attribute from the user during sign up and send it to the application
	Applying a claims transformation to create a new claim

	Customizing the UI of a user journey
	Understanding the CORS way for UI customization
	Adding static UI customization to a user journey
	Creating a storage account for your HTML5/CSS templates
	Downloading the helper tool
	Uploading the sample files
	Ensuring the storage you are hosting your HTML5/CSS templates from has CORS enabled
	Adding a link to your HTML5/CSS templates to your user journey

	Adding dynamic UI customization to a user journey
	Building the code sample
	Ensuring the HTML5/CSS templates from the web app have CORS enabled
	Updating the extension custom policy
	Configuring the custom HTML5/CSS template(s) to use
	Adding dynamic content

	Triggering language-specific content for the user journey

	Migrating users to your B2C tenant
	Understanding the primary considerations for the migration
	Migrating users with existing password
	Migrating users without password and forcing them to change the password
	Migrating users with password harvesting
	Pre-migrating users without password and setting password just-in-time
	Migrating user without password, setting password just-in-time
	Doing a just-in-time migration

	Choosing the right path

	Migrating users identified using a local IdP to your B2C tenant
	Building the AADB2C.UserMigration code sample application
	Using the AADB2C.UserMigration code sample application

	Migrating users identified using a social networking account to your B2C tenant
	Requiring users to change password on first sign-in
	Building the AADB2C.UserMigration code sample application
	Using the AADB2C.UserMigration code sample application
	Updating the extension custom policy
	Uploading the extension custom policy to your B2C tenant
	Testing the custom policy by using Run Now

	Helping to handle GDPR requirements
	Getting data subjects’ consent
	Capturing “terms of use” (ToU) agreements
	Updating the custom policies
	Uploading the custom policies to your B2C tenant
	Testing the custom policy by using Run Now

	Getting parental consent
	Getting consent to share data with 3rd party services

	Fulfilling the Data Subject Requests (DSRs)
	Fulfilling the right to export
	Fulfilling the right to be forgotten

	Handling breach notification

	Appendix Building the code samples
	Building a RESTful API claims provider
	Creating a new API in ASP.NET Core
	Adding data models and the controller to the API project
	Publishing the project as an Azure Website
	Modifying the API project to support user store membership date

	Building the Contoso.AADB2C.UI code sample
	Building the code sample
	Publishing the code sample to Azure
	Configuring CORS in Azure App Service

	Building the AADB2C.UserMigration code sample
	Building and running the AADB2C.UserMigration project
	Building and running the AADB2C.UserMigration.API project
	Creating a storage account
	Building and deploying the AADB2C.UserMigration.API project

	Updating the AADB2C.UserMigration project

