

The ASP.NET 2.0 Provider Model
Microsoft Corporation

October 2005

Introduction
ASP.NET 2.0 includes a number of services that store state in databases and other
storage media. For example, the session state service manages per-user session state
by storing it in-process (in memory in the application domain of the host application), in
memory in an external process (the "state server process"), or in a Microsoft SQL Server
database, while the membership service stores user names, passwords, and other data
in Microsoft SQL Server databases or Active Directory. For the majority of applications,
the built-in storage options are sufficient. However, the need sometimes arises to store
state in other media such as Oracle databases, DB2 databases, Microsoft SQL Server
databases with custom schemas, XML files, or even data sources front-ended by Web
services.

In ASP.NET 1.x, developers who wished to store state in alternative storage media were
faced with the daunting prospect of rewriting large portions of ASP.NET. ASP.NET 2.0, by
contrast, introduces extreme flexibility to state storage. ASP.NET 2.0 services that
manage state do not interact directly with storage media; instead, they use providers as
intermediaries, as pictured in Figure 1.

Figure 1. The ASP.NET 2.0 provider model

A provider is a software module that provides a uniform interface between a service and
a data source. Providers abstract physical storage media, in much the same way that
device drivers abstract physical hardware devices. Because virtually all ASP.NET 2.0
state-management services are provider-based, storing session state or membership
state in an Oracle database rather than a Microsoft SQL Server database is as simple as
plugging in Oracle session state and membership providers. Code outside the provider
layer needn't be modified, and a simple configuration change, accomplished
declaratively through Web.config, connects the relevant services to the Oracle providers.

Thanks to the provider model, ASP.NET 2.0 can be configured to store state virtually
anywhere. Membership data, for example, could just as easily come from a Web service

as from a database. All that's required is a custom provider. Some companies will prefer
to acquire custom providers from third parties. Others, however, will want to write their
own, either because no suitable provider is available off the shelf, or because they wish
to adapt ASP.NET to legacy storage media (for example, existing membership
databases). This whitepaper documents the ASP.NET 2.0 provider model and provides
the critical information that developers need to write robust, high-quality providers.

Goals of the Provider Model
The ASP.NET 2.0 provider model was designed with the following goals in mind:

• To make ASP.NET state storage both flexible and extensible

• To insulate application-level code and code in the ASP.NET run-time from the
physical storage media where state is stored, and to isolate the changes required to
use alternative media types to a single well-defined layer with minimal surface area

• To make writing custom providers as simple as possible by providing a robust and
well-documented set of base classes from which developers can derive provider
classes of their own

It is expected that developers who wish to pair ASP.NET 2.0 with data sources for which
off-the-shelf providers are not available can, with a reasonable amount of effort, write
custom providers to do the job.

The Provider Model
Figure 2 depicts the provider model as it applies to the ASP.NET membership service. In
the top layer are the login controls: Login, LoginView, and others that provide UIs for
logging in users, recovering lost passwords, and more. Underneath the login controls sits
the membership service, which provides the public API used by the controls and that can
be used by application code as well. The membership service stores login credentials and
other information in a membership data source, but rather than access the data source
directly, it interacts with it through a membership provider. Thus, the login controls and
the membership service itself can be adapted to different types of data sources (for
example, Oracle databases) simply by adding new providers.

Figure 2. The membership provider model

Membership providers implement a well-defined interface consisting of methods and
properties defined in an abstract base class named MembershipProvider. Because all
membership providers are built to the same contract, the membership service can
interact with them without knowing or caring how they choose to store the data.

Provider Types
Membership is one of several ASP.NET 2.0 services that use the provider architecture.
Table 1 documents the features and services that are provider-based and the default
providers that service them:

Table 1. Provider-based services

Feature or
Service

Default Provider

Membership System.Web.Security.SqlMembershipProvider

Role management System.Web.Security.SqlRoleProvider

Site map System.Web.XmlSiteMapProvider

Profile System.Web.Profile.SqlProfileProvider

Session state System.Web.SessionState.InProcSessionStateStore

Web events N/A (see below)

Web Parts
personalization

System.Web.UI.WebControls.WebParts.SqlPersonalizationProvider

Protected
configuration

N/A (see below)

SQL providers such as SqlMembershipProvider and SqlProfileProvider use Microsoft SQL
Server or SQL Server Express as their data source. InProcSessionStateStore stores
session state in memory, while XmlSiteMapProvider uses XML files as its data source.
N/A (Not Applicable) designates features and services for which providers must be
explicitly identified. These include:

• Web events, which must be explicitly mapped to providers in the <healthMonitoring>
configuration section. The master Web.config file maps certain Web events to
System.Web.Management.EventLogWebEventProvider, causing them to be logged in
the Windows event log without any setup.

• Protected configuration, which requires callers who invoke its encryption services to
specify a provider. The Aspnet_regiis.exe tool that comes with ASP.NET uses
protected configuration to encrypt and decrypt configuration sections. Unless
instructed to do otherwise, Aspnet_regiis.exe calls upon
System.Configuration.RsaProtectedConfigurationProvider to provide encryption and
decryption services.

Built-In Providers
ASP.NET 2.0 ships with the providers listed in Table 2:

Table 2. ASP.NET 2.0 providers

Provider Type Built-In Provider(s)

Membership System.Web.Security.ActiveDirectoryMembershipProvider
System.Web.Security.SqlMembershipProvider

Role
management

System.Web.Security.AuthorizationStoreRoleProvider
System.Web.Security.SqlRoleProvider
System.Web.Security.WindowsTokenRoleProvider

Site map System.Web.XmlSiteMapProvider

Profile System.Web.Profile.SqlProfileProvider

Session state System.Web.SessionState.InProcSessionStateStore
System.Web.SessionState.OutOfProcSessionStateStore
System.Web.SessionState.SqlSessionStateStore

Web events System.Web.Management.EventLogWebEventProvider
System.Web.Management.SimpleMailWebEventProvider
System.Web.Management.TemplatedMailWebEventProvider
System.Web.Management.SqlWebEventProvider
System.Web.Management.TraceWebEventProvider
System.Web.Management.WmiWebEventProvider

Web Parts
personalization

System.Web.UI.WebControls.WebParts.SqlPersonalizationProvider

Protected
configuration

System.Configuration.DPAPIProtectedConfigurationProvider
System.Configuration.RSAProtectedConfigurationProvider

In addition, Microsoft intends to make a set of providers targeting Microsoft Access
available as a free download. Developers are discouraged from using Microsoft Access on
the back end of enterprise applications, but Microsoft realizes that Access may be
appropriate for small Web sites that serve a very limited number of users.

Provider Base Classes
The System.Configuration.Provider namespace includes a class named ProviderBase that
serves as the root class for all providers. ProviderBase is protoyped as follows:

public class ProviderBase
{
 public virtual string Name { get; }
 public virtual string Description { get; }
 public virtual void Initialize (string name,
 NameValueCollection config);
}

The Name property returns the provider's name (for example,
"AspNetSqlMembershipProvider"), while Description returns a textual description.
Initialize is called by ASP.NET when the provider is loaded, affording the provider the
opportunity to initialize itself. The name parameter contains the provider's name; its
value comes from the name attribute of the <add> element that registered the provider,
as in

<add name="AspNetSqlMembershipProvider" ... />

The config parameter contains the remaining name/value pairs present in the <add>
element.

The default implementation of Initialize ensures that Initialize hasn't been called before
and initializes Name and Description from the configuration attributes of the same name.
ProviderBase's source code appears as follows.

namespace System.Configuration.Provider
{
 using System.Collections.Specialized;
 using System.Runtime.Serialization;

 public abstract class ProviderBase
 {
 private string _name;
 private string _Description;
 private bool _Initialized;

 public virtual string Name { get { return _name; } }
 public virtual string Description
 {
 get { return string.IsNullOrEmpty(_Description) ?
 Name : _Description; }
 }

 public virtual void Initialize(string name,
 NameValueCollection config)
 {
 lock (this) {
 if (_Initialized)
 throw new InvalidOperationException("...");
 _Initialized = true;
 }
 if (name == null)
 throw new ArgumentNullException("name");
 if (name.Length == 0)
 throw new ArgumentException("...", "name");
 _name = name;
 if (config != null) {
 _Description = config["description"];
 config.Remove("description");
 }
 }
 }
}

Developers typically derive from ProviderBase only if they're writing custom services
that are provider-based (see “Custom Provider-Based Services”). The .NET Framework
includes ProviderBase derivatives that define contracts between services and data
sources. For example, the MembershipProvider class derives from ProviderBase and
defines the interface between the membership service and membership data sources.
Developers writing custom membership providers should derive from
MembershipProvider rather than ProviderBase. Figure 3 shows the provider class
hierarchy.

Figure 3. ASP.NET 2.0 provider classes

Provider Registration and Configuration
Providers are registered in <providers> configuration sections in the configuration
sections of the features and services that they serve. For example, membership
providers are registered this way:

<configuration>
 <system.web>
 <membership ...>
 <providers>
 <!-- Membership providers registered here -->
 </providers>
 </membership>
 ...
 </system.web>
</configuration>

While role providers are registered like this:

<configuration>
 <system.web>
 <roleManager ...>

 <providers>
 <!-- Role providers registered here -->
 </providers>
 </roleManager>
 ...
 </system.web>
</configuration>

<add> elements within <providers> elements register providers and make them
available for use. <add> elements support a common set of configuration attributes
such as name, type, and description, plus provider-specific configuration attributes that
are unique to each provider:

<configuration>
 <system.web>
 <membership ...>
 <providers>
 <add name="AspNetSqlMembershipProvider"
 type="[Type name]"
 description="SQL Server membership provider"
 connectionStringName="LocalSqlServer"
 ...
 />
 ...
 </providers>
 </membership>
 ...
 </system.web>
</configuration>

Once registered, a provider is usually designated as the default (active) provider using
the defaultProvider attribute of the corresponding configuration element. For example,
the following <membership> element designates SqlMembershipProvider as the default
provider for the membership service:

<membership defaultProvider="AspNetSqlMembershipProvider">
 <providers>
 ...
 </providers>
</membership>

The defaultProvider attribute identifies by logical name (rather than type name) a
provider registered in <providers>. Note that ASP.NET is not entirely consistent in its

use of the defaultProvider attribute. For example, the <sessionState> element uses a
customProvider attribute to designate the default session state provider.

Any number of providers may be registered for a given service, but only one can be the
default. All providers registered for a given service may be enumerated at run-time
using the service's Providers property (for example, Membership.Providers).

General Considerations for Building Custom Providers
All providers have certain characteristics in common. All, for example, initialize
themselves when the ASP.NET run-time calls the Initialize method that they inherit from
ProviderBase, and all must be thread-safe. The sections that follow document the key
principles and patterns that apply to all providers, regardless of type.

Provider Initialization
All provider classes derive, either directly or indirectly, from
System.Configuration.Provider.ProviderBase. As such, they inherit a virtual method
named Initialize that's called by ASP.NET when the provider is loaded. Derived classes
should override Initialize and use it to perform provider-specific initializations. An
overridden Initialize method should perform the following tasks:

1. Make sure the provider has the permissions it needs to run and throw an exception if
it doesn't. (Alternatively, a provider may use declarative attributes such as
System.Security.Permissions.FileIOPermissionAttribute to ensure that it has the
necessary permissions.)

2. Verify that the config parameter passed to Initialize isn't null and throw an
ArgumentNullException if it is.

3. Call the base class version of Initialize, ensuring that the name parameter passed to
the base class is neither null nor an empty string (and assigning the provider a
default name if it is), and adding a default description attribute to the config
parameter passed to the base class if config currently lacks a description attribute or
the attribute is empty.

4. Configure itself by reading and applying the configuration attributes encapsulated in
config, making sure to call Remove on each recognized configuration attribute.
Configuration attributes can be read using NameValueCollection's string indexer.

5. Throw a ProviderException if config.Count > 0, which means that the element used
to register the provider contains one or more unrecognized configuration attributes.

6. Do anything else the provider needs to do to get itself ready to run-for example,
read state from an XML file so the file needn't be reparsed on each request.
However, it's critical that Initialize not call any feature APIs in the service that the
provider serves, because doing so may cause infinite recursion. For example,
creating a MembershipUser object in a membership provider's Initialize method
causes Initialize to be called again.

The code below shows a canonical Initialize method for a SQL Server provider that
recognizes one provider-specific configuration attribute named connectionStringName.
This is a great example to pattern your code after and it closely parallels the Initialize
methods found in built-in SQL Server providers such as SqlMembershipProvider.

public override void Initialize(string name,
 NameValueCollection config)
{
 // Verify that the provider has sufficient trust to operate. In
 // this example, a SecurityException will be thrown if the provider
 // lacks permission to call out to SQL Server. The built-in
 // providers tend to be less stringent here, simply ensuring that
 // they're running with at least low trust.
 SqlClientPermission.Demand ();

 // Verify that config isn't null
 if (config == null)
 throw new ArgumentNullException ("config");

 // Assign "name" a default value if it currently has no value
 // or is an empty string
 if (String.IsNullOrEmpty (name))
 name = "SampleSqlProvider";

 // Add a default "description" attribute to config if the
 // attribute doesn't exist or is empty
 if (string.IsNullOrEmpty (config["description"])) {
 config.Remove ("description");
 config.Add ("description", "Sample SQL provider");
 }

 // Call the base class's Initialize method
 base.Initialize(name, config);

 // Initialize _connectionStringName from the connectionStringName
 // configuration attribute, or throw an exception if the attribute
 // doesn't exist or is an empty string, or if it designates a
 // nonexistent connection string
 string connect = config["connectionStringName"];

 if (String.IsNullOrEmpty (connect))
 throw new ProviderException
 ("Empty or missing connectionStringName");

 config.Remove ("connectionStringName");

 if (WebConfigurationManager.ConnectionStrings[connect] == null)
 throw new ProviderException ("Missing connection string");

 _connectionString = WebConfigurationManager.ConnectionStrings
 [connect].ConnectionString;

 if (String.IsNullOrEmpty (_connectionString))
 throw new ProviderException ("Empty connection string");

 // Throw an exception if unrecognized attributes remain
 if (config.Count > 0) {
 string attr = config.GetKey (0);
 if (!String.IsNullOrEmpty (attr))
 throw new ProviderException ("Unrecognized attribute: " +
 attr);
 }
}

In the above code, connectionStringName represents a required configuration attribute.
Consequently, Initialize throws an exception if the attribute isn't present. Some
attributes may be optional rather than required. In the case of an optional attribute,
Initialize should assign a sensible default value to the corresponding field or property if
the attribute isn't present.

Provider Lifetime
Providers are loaded when the application using them first accesses a feature of the
corresponding service, and they're instanced just once per application (that is, per
application domain). The lifetime of a provider roughly equals the lifetime of the
application, so one can safely write "stateful" providers that store state in fields. This
one-instance-per-application model is convenient for persisting data across requests, but
it has a downside. That downside is described in the next section.

Thread Safety
In general, ASP.NET goes to great lengths to prevent developers from having to write
thread-safe code. HTTP handlers and HTTP modules, for example, are instanced on a
per-request (per-thread) basis, so they don't have to be thread-safe unless they access
shared state.

Providers are an exception to the one-instance-per-thread rule. ASP.NET 2.0 providers
are instanced one time during an application's lifetime and are shared among all
requests. Because each request is processed on a different thread drawn from a thread
pool that serves ASP.NET, providers can (and probably will be) accessed by two or more
threads at the same time. This means providers must be thread-safe. Providers
containing non-thread-safe code may seem to work at first (and may work just fine
under light loads), but are likely to suffer spurious, hard-to-reproduce data-corruption
errors when the load-and consequently, the number of concurrently executing request-
processing threads-increases.

The only provider method that doesn't have to be thread-safe is the Initialize method
inherited from ProviderBase. ASP.NET ensures that Initialize is never executed on two or
more threads concurrently.

A comprehensive discussion of thread-safe code is beyond the scope of this document,
but most threading-related concurrency errors result when two or more threads access
the same data at the same time and at least one of those threads is writing rather than
reading. Consider, for example, the following class definition:

public class Foo
{
 private int _count;

 public int Count
 {
 get { return _count; }
 set { _count = value; }
 }
}

Suppose two threads each hold a reference to an instance of Foo (that is, there are two
threads but only one Foo object), and one thread reads the object's Count property at
the same time that the other thread writes it. If the read and write occur at precisely the
same time, the thread that does the reading might receive a bogus value. One solution
is to use the Framework's System.Threading.Monitor class (or its equivalent, C#'s lock
keyword) to serialize access to _count. Here's a revised version of Foo that is thread-
safe:

public class Foo
{
 private int _count;
 private object _syncLock = new object ();

 public int Count
 {
 get { lock (_syncLock) { return _count; } }
 set { lock (_syncLock) { _count = value; } }
 }
}

The System.Threading namespace includes other synchronization classes as well,
including a ReaderWriterLock class that allows any number of threads to read shared
data concurrently but prevents overlapping reads and writes as well as overlapping
writes. (By contrast, the Monitor class restricts access to one thread at a time, even if all
threads are readers.) In addition, the

System.Runtime.CompilerServices.MethodImplAttribute class can be used to serialize
access to entire methods:

[MethodImpl (MethodImplOptions.Synchronized)]
public void SomeMethod ()
{
 // Only one thread at a time may execute this method
}

However, synchronizing with MethodImpl is inferior to synchronizing with Monitor,
ReaderWriterLock, and other System.Threading classes due to its coarseness in locking
out threads. At best, MethodImpl (MethodImplOptions.Synchronized) locks at the object
level-the equivalent of lock (this). Under certain circumstances, it locks at the type level
or even at the application domain level, either of which adversely affects performance
and scalability.

Here are some key points regarding thread safety to keep in mind as you write and test
custom providers:

• Outside of the Initialize method, a thread-safe provider serializes read/write accesses
to all instance data, including fields. Accesses need not be serialized if they are read-
only. For example, a provider's Initialize method might read a connection string from
Web.config and store it in (write it to) an instance field. The write doesn't have to be
synchronized because it's performed in Initialize, which never executes on
concurrent threads. If all accesses to the field outside of Initialize are reads rather
than writes, then those accesses do not require synchronization, either

• A thread-safe provider does not have to serialize accesses to local variables or other
stack-based data

• Never pass a value type (such as an int or a struct) to lock or Monitor.Enter. The
compiler won't let you because if it did, you'd get no synchronization at all due to the
fact that the value type would be boxed. That's why the thread-safe version of Foo
uses lock (_syncLock) rather than lock (_count). _syncLock is a reference type;
_count is not

• The best way to test the thread safety of a custom provider is to subject it to heavy
loads on a multiprocessor machine

For more information on synchronizing concurrently executing threads in managed code,
refer to the following resources:

• “Safe Thread Synchronization” by Jeffrey Richter. Article in the January 2003 issue of
MSDN Magazine.

• Chapter 14 of the book "Programming Microsoft .NET" by Jeff Prosise (2002,
Microsoft Press).

Localization
For simplicity, the provider code above (and elsewhere in this document) hard-codes
error messages, provider descriptions, and other text strings. Providers intended for

general consumption should avoid hard-coded strings and use localized string resources
instead.

Atomicity
Some provider operations involve multiple updates to the data source. For example, a
role provider's AddUsersToRoles method is capable of adding multiple users to multiple
roles in a single operation and therefore may require multiple updates to the data
source. When the data source supports transactions (for example, when the data source
is SQL Server), it is recommended that you use transactions to ensure the atomicity of
updates-that is, to roll back already-completed updates if a subsequent update fails. If
the data source doesn't support transactions, the provider author is responsible for
ensuring that updates are performed either in whole or not at all.

Exceptions and Exception Types
The .NET Framework's System.Configuration.Provider namespace includes a general-
purpose exception class named ProviderException that providers can throw when errors
occur. In general, exception types should be as specific as possible. For example, when
a null reference is passed to a method that requires a non-null reference, the provider
should throw an ArgumentNullException. Similarly, when an empty string is passed to a
method that requires a non-empty string, the provider should throw an
ArgumentException.

More general errors, such as asking a role provider to delete a role that doesn't exist,
can be handled by throwing ProviderExceptions. If desired, you can define your own
error-specific exception classes and use them in lieu of ProviderExceptions. The
providers included with ASP.NET 2.0 use ProviderExceptions extensively to flag errors.

Implementation Completeness
A provider is not required to implement the full contract defined by the base class it
derives from. For example, a membership provider may choose not to implement the
GetNumberOfUsersOnline method inherited from MembershipProvider. (The method
must be overridden in the derived class to satisfy the compiler, but its implementation
might simply throw a NotSupportedException.) Obviously, the more complete the
implementation the better, and developers should take care to document any features
that aren't supported.

Membership Providers
Membership providers provide the interface between ASP.NET's membership service and
membership data sources. The two most common reasons for writing a custom
membership provider are:

• You wish to store membership information in a data source that is not supported by
the membership providers included with the .NET Framework, such as an Oracle
database or a Web service.

• You wish to store membership information in a SQL Server database whose schema
differs from that of the database used by
System.Web.Security.SqlMembershipProviderif, for example, you need to integrate
ASP.NET's membership service with an existing membership database.

The fundamental job of a membership provider is to interface with data sources
containing containing data regarding a site's registered users, and to provide methods
for creating users, deleting users, verifying login credentials, changing passwords, and
so on. The .NET Framework's System.Web.Security namespace includes a class named
MembershipUser that defines the basic attributes of a membership user and that a
membership provider uses to represent individual users.

The MembershipProvider Class
Developers writing custom membership providers begin by deriving from
System.Web.Security.MembershipProvider, which derives from ProviderBase and adds
abstract methods and properties (as well as a handful of virtuals) defining the basic
characteristics of a membership provider. MembershipProvider is prototyped as follows:

public abstract class MembershipProvider : ProviderBase
{
 // Abstract properties
 public abstract bool EnablePasswordRetrieval { get; }
 public abstract bool EnablePasswordReset { get; }
 public abstract bool RequiresQuestionAndAnswer { get; }
 public abstract string ApplicationName { get; set; }
 public abstract int MaxInvalidPasswordAttempts { get; }
 public abstract int PasswordAttemptWindow { get; }
 public abstract bool RequiresUniqueEmail { get; }
 public abstract MembershipPasswordFormat PasswordFormat { get; }
 public abstract int MinRequiredPasswordLength { get; }
 public abstract int MinRequiredNonAlphanumericCharacters { get; }
 public abstract string PasswordStrengthRegularExpression { get; }

 // Abstract methods
 public abstract MembershipUser CreateUser (string username,
 string password, string email, string passwordQuestion,
 string passwordAnswer, bool isApproved, object providerUserKey,

 out MembershipCreateStatus status);

 public abstract bool ChangePasswordQuestionAndAnswer
 (string username, string password,
 string newPasswordQuestion, string newPasswordAnswer);

 public abstract string GetPassword (string username,
 string answer);

 public abstract bool ChangePassword (string username,
 string oldPassword, string newPassword);

 public abstract string ResetPassword (string username,
 string answer);

 public abstract void UpdateUser (MembershipUser user);

 public abstract bool ValidateUser (string username,
 string password);

 public abstract bool UnlockUser (string userName);

 public abstract MembershipUser GetUser (object providerUserKey,
 bool userIsOnline);

 public abstract MembershipUser GetUser (string username,
 bool userIsOnline);

 public abstract string GetUserNameByEmail (string email);

 public abstract bool DeleteUser (string username,
 bool deleteAllRelatedData);

 public abstract MembershipUserCollection GetAllUsers
 (int pageIndex, int pageSize, out int totalRecords);

 public abstract int GetNumberOfUsersOnline ();

 public abstract MembershipUserCollection FindUsersByName
 (string usernameToMatch, int pageIndex, int pageSize,
 out int totalRecords);

 public abstract MembershipUserCollection FindUsersByEmail
 (string emailToMatch, int pageIndex, int pageSize,
 out int totalRecords);

 // Virtual methods
 protected virtual byte[] EncryptPassword (byte[] password);
 protected virtual byte[] DecryptPassword (byte[] encodedPassword);
 protected virtual void OnValidatingPassword
 (ValidatePasswordEventArgs e);

 // Events
 public event MembershipValidatePasswordEventHandler
 ValidatingPassword;
}

The following table describes MembershipProvider's methods and properties and
provides helpful notes regarding their implementation:

Table 3. MembershipProvider methods and properties

Method or Property Description

EnablePasswordRetrieval Indicates whether passwords can be
retrieved using the provider's GetPassword
method. This property is read-only.

EnablePasswordReset Indicates whether passwords can be reset
using the provider's ResetPassword
method. This property is read-only.

RequiresQuestionAndAnswer Indicates whether a password answer must
be supplied when calling the provider's
GetPassword and ResetPassword methods.
This property is read-only.

ApplicationName The name of the application using the
membership provider. ApplicationName is
used to scope membership data so that
applications can choose whether to share
membership data with other applications.
This property can be read and written.

MaxInvalidPasswordAttempts Works in conjunction with
PasswordAttemptWindow to provide a
safeguard against password guessing. If
the number of consecutive invalid
passwords or password questions ("invalid
attempts") submitted to the provider for a
given user reaches
MaxInvalidPasswordAttempts within the
number of minutes specified by
PasswordAttemptWindow, the user is
locked out of the system. The user remains
locked out until the provider's UnlockUser

method is called to remove the lock.

The count of consecutive invalid attempts
is incremented when an invalid password
or password answer is submitted to the
provider's ValidateUser, ChangePassword,
ChangePasswordQuestionAndAnswer,
GetPassword, and ResetPassword methods.

If a valid password or password answer is
supplied before the
MaxInvalidPasswordAttempts is reached,
the count of consecutive invalid attempts is
reset to zero. If the
RequiresQuestionAndAnswer property is
false, invalid password answer attempts
are not tracked.

This property is read-only.

PasswordAttemptWindow For a description, see
MaxInvalidPasswordAttempts. This
property is read-only.

RequiresUniqueEmail Indicates whether each registered user
must have a unique e-mail address. This
property is read-only.

PasswordFormat Indicates what format that passwords are
stored in: clear (plaintext), encrypted, or
hashed. Clear and encrypted passwords
can be retrieved; hashed passwords
cannot. This property is read-only.

MinRequiredPasswordLength The minimum number of characters
required in a password. This property is
read-only.

MinRequiredNonAlphanumericCharacters The minimum number of non-
alphanumeric characters required in a
password. This property is read-only.

PasswordStrengthRegularExpression A regular expression specifying a pattern
to which passwords must conform. This
property is read-only.

CreateUser Takes, as input, a user name, password,
e-mail address, and other information and
adds a new user to the membership data
source. CreateUser returns a
MembershipUser object representing the
newly created user. It also accepts an out
parameter (in Visual Basic, ByRef) that
returns a MembershipCreateStatus value

indicating whether the user was
successfully created or, if the user was not
created, the reason why. If the user was
not created, CreateUser returns null.

Before creating a new user, CreateUser
calls the provider's virtual
OnValidatingPassword method to validate
the supplied password. It then creates the
user or cancels the action based on the
outcome of the call.

ChangePasswordQuestionAndAnswer Takes, as input, a user name, password,
password question, and password answer
and updates the password question and
answer in the data source if the user name
and password are valid. This method
returns true if the password question and
answer are successfully updated.
Otherwise, it returns false.

ChangePasswordQuestionAndAnswer
returns false if either the user name or
password is invalid.

GetPassword Takes, as input, a user name and a
password answer and returns that user's
password. If the user name is not valid,
GetPassword throws a ProviderException.

Before retrieving a password, GetPassword
verifies that EnablePasswordRetrieval is
true. If EnablePasswordRetrieval is false,
GetPassword throws a
NotSupportedException. If
EnablePasswordRetrieval is true but the
password format is hashed, GetPassword
throws a ProviderException since hashed
passwords cannot, by definition, be
retrieved. A membership provider should
also throw a ProviderException from
Initialize if EnablePasswordRetrieval is true
but the password format is hashed.

GetPassword also checks the value of the
RequiresQuestionAndAnswer property
before retrieving a password. If
RequiresQuestionAndAnswer is true,
GetPassword compares the supplied
password answer to the stored password
answer and throws a
MembershipPasswordException if the two

don't match. GetPassword also throws a
MembershipPasswordException if the user
whose password is being retrieved is
currently locked out.

ChangePassword Takes, as input, a user name, a password
(the user's current password), and a new
password and updates the password in the
membership data source. ChangePassword
returns true if the password was updated
successfully. Otherwise, it returns false.

Before changing a password,
ChangePassword calls the provider's
virtual OnValidatingPassword method to
validate the new password. It then
changes the password or cancels the
action based on the outcome of the call.

If the user name, password, new
password, or password answer is not valid,
ChangePassword does not throw an
exception; it simply returns false.

Following a successful password change,
ChangePassword updates the user's
LastPasswordChangedDate.

ResetPassword Takes, as input, a user name and a
password answer and replaces the user's
current password with a new, random
password. ResetPassword then returns the
new password. A convenient mechanism
for generating a random password is the
Membership.GeneratePassword method.

If the user name is not valid,
ResetPassword throws a
ProviderException. ResetPassword also
checks the value of the
RequiresQuestionAndAnswer property
before resetting a password. If
RequiresQuestionAndAnswer is true,
ResetPassword compares the supplied
password answer to the stored password
answer and throws a
MembershipPasswordException if the two
don't match.

Before resetting a password,
ResetPassword verifies that
EnablePasswordReset is true. If
EnablePasswordReset is false,

ResetPassword throws a
NotSupportedException. If the user whose
password is being changed is currently
locked out, ResetPassword throws a
MembershipPasswordException.

Before resetting a password,
ResetPassword calls the provider's virtual
OnValidatingPassword method to validate
the new password. It then resets the
password or cancels the action based on
the outcome of the call. If the new
password is invalid, ResetPassword throws
a ProviderException.

Following a successful password reset,
ResetPassword updates the user's
LastPasswordChangedDate.

UpdateUser Takes, as input, a MembershipUser object
representing a registered user and
updates the information stored for that
user in the membership data source. If
any of the input submitted in the
MembershipUser object is not valid,
UpdateUser throws a ProviderException.

Note that UpdateUser is not obligated to
allow all the data that can be encapsulated
in a MembershipUser object to be updated
in the data source.

ValidateUser Takes, as input, a user name and a
password and verifies that they are valid-
that is, that the membership data source
contains a matching user name and
password. ValidateUser returns true if the
user name and password are valid, if the
user is approved (that is, if
MembershipUser.IsApproved is true), and
if the user isn't currently locked out.
Otherwise, it returns false.

Following a successful validation,
ValidateUser updates the user's
LastLoginDate and fires an
AuditMembershipAuthenticationSuccess
Web event. Following a failed validation, it
fires an
AuditMembershipAuthenticationFailure
Web event.

UnlockUser Unlocks (that is, restores login privileges
for) the specified user. UnlockUser returns
true if the user is successfully unlocked.
Otherwise, it returns false. If the user is
already unlocked, UnlockUser simply
returns true.

GetUser Takes, as input, a user name or user ID
(the method is overloaded) and a Boolean
value indicating whether to update the
user's LastActivityDate to show that the
user is currently online. GetUser returns a
MembershipUser object representing the
specified user. If the user name or user ID
is invalid (that is, if it doesn't represent a
registered user) GetUser returns null
(Nothing in Visual Basic).

GetUserNameByEmail Takes, as input, an e-mail address and
returns the first registered user name
whose e-mail address matches the one
supplied.

If it doesn't find a user with a matching e-
mail address, GetUserNameByEmail
returns an empty string.

DeleteUser Takes, as input, a user name and deletes
that user from the membership data
source. DeleteUser returns true if the user
was successfully deleted. Otherwise, it
returns false.

DeleteUser takes a third parameter-a
Boolean named deleteAllRelatedData-that
specifies whether related data for that
user should be deleted also. If
deleteAllRelatedData is true, DeleteUser
should delete role data, profile data, and
all other data associated with that user.

GetAllUsers Returns a MembershipUserCollection
containing MembershipUser objects
representing all registered users. If there
are no registered users, GetAllUsers
returns an empty
MembershipUserCollection

The results returned by GetAllUsers are
constrained by the pageIndex and
pageSize input parameters. pageSize
specifies the maximum number of

MembershipUser objects to return.
pageIndex identifies which page of results
to return. Page indexes are 0-based.

GetAllUsers also takes an out parameter
(in Visual Basic, ByRef) named
totalRecords that, on return, holds a count
of all registered users.

GetNumberOfUsersOnline Returns a count of users that are currently
online-that is, whose LastActivityDate is
greater than the current date and time
minus the value of the membership
service's UserIsOnlineTimeWindow
property, which can be read from
Membership.UserIsOnlineTimeWindow.
UserIsOnlineTimeWindow specifies a time
in minutes and is set using the
<membership> element's
userIsOnlineTimeWindow attribute.

FindUsersByName Returns a MembershipUserCollection
containing MembershipUser objects
representing users whose user names
match the usernameToMatch input
parameter. Wildcard syntax is data
source-dependent. MembershipUser
objects in the MembershipUserCollection
are sorted by user name. If
FindUsersByName finds no matching
users, it returns an empty
MembershipUserCollection.

For an explanation of the pageIndex,
pageSize, and totalRecords parameters,
see the GetAllUsers method.

FindUsersByEmail Returns a MembershipUserCollection
containing MembershipUser objects
representing users whose e-mail
addresses match the emailToMatch input
parameter. Wildcard syntax is data
source-dependent. MembershipUser
objects in the MembershipUserCollection
are sorted by e-mail address. If
FindUsersByEmail finds no matching users,
it returns an empty
MembershipUserCollection.

For an explanation of the pageIndex,
pageSize, and totalRecords parameters,
see the GetAllUsers method.

EncryptPassword Takes, as input, a byte array containing a
plaintext password and returns a byte
array containing the password in
encrypted form. The default
implementation in MembershipProvider
encrypts the password using
<machineKey>'s decryptionKey, but
throws an exception if the decryption key
is autogenerated.

Override only if you want to customize the
encryption process. Do not call the base
class's EncryptPassword method if you
override this method.

DecryptPassword Takes, as input, a byte array containing an
encrypted password and returns a byte
array containing the password in plaintext
form. The default implementation in
MembershipProvider decrypts the
password using <machineKey>'s
decryptionKey, but throws an exception if
the decryption key is autogenerated.

Override only if you want to customize the
decryption process. Do not call the base
class's DecryptPassword method if you
override this method.

OnValidatingPassword Virtual method called when a password is
created. The default implementation in
MembershipProvider fires a
ValidatingPassword event, so be sure to
call the base class's OnValidatingPassword
method if you override this method. The
ValidatingPassword event allows
applications to apply additional tests to
passwords by registering event handlers.

A custom provider's CreateUser,
ChangePassword, and ResetPassword
methods (in short, all methods that record
new passwords) should call this method.

Your job in implementing a custom membership provider in a derived class is to override
and provide implementations of MembershipProvider's abstract members, and optionally
to override key virtuals such as Initialize.

Do you wonder why MembershipProvider's EncryptPassword and
DecryptPassword methods throw exceptions if <machineKey>'s decryption key
(which also happens to be an encryption key) is autogenerated? Here's how one
member of the ASP.NET team explained it:

"Back in the alpha we kept running across developers that worked a little bit on
one machine and then picked up their MDB and copied it to another machine. At
which pointsurprise!none of the passwords could be decrypted any more. So we
decided to disallow autogenerated keys when using encrypted passwords. The
reality is that autogenerated keys are really fragile. It's just way too easy to get
yourself in a situation where these keys change. And once that happens, you are
left with a useless membership database."

Scoping of Membership Data
All membership providers inherit from MembershipProvider a property named
ApplicationName whose purpose it to scope the data managed by the provider.
Applications that specify the same ApplicationName when configuring the membership
service share membership data; applications that specify unique ApplicationNames do
not. Membership provider implementations must therefore associate users with
application names so operations performed on membership data sources can be scoped
accordingly.

As an example, a provider that stores membership data in a SQL database might use a
command similar to the following to determine whether a specified user name and
password are valid for the application named "Contoso:"

SELECT COUNT (*) FROM Users
WHERE UserName='Jeff' AND Password='imbatman'
AND ApplicationName='Contoso'

The final AND in the WHERE clause ensures that other applications containing identical
user names and passwords don't produce false positives in the "Contoso" application.

Strong Password Policies
A full-featured membership provider supports strong password policies. Before creating
a password, a membership provider should verify that the password contains at least the
number of characters specified by the MinRequiredPasswordLength property, at least the
number of non-alphanumeric characters specified by
MinRequiredNonAlphaNumericCharacters, and, if PasswordStrengthRegularExpression is
neither null nor empty, that the password conforms to the pattern specified by the
regular expression stored in that property. A membership consumer can then enact
strong password policies in either of two ways:

• Set the provider's PasswordStrengthRegularExpression property to null and use
MinRequiredPasswordLength and MinRequiredNonAlphanumericCharacters to specify
minimum character counts

• Set the provider's MinRequiredPasswordLength property to 1 and
MinRequiredNonAlphanumericCharacters to 0 and use
PasswordStrengthRegularExpression to specify a regular expression defining
acceptable password formats

Password-validation logic should be applied in all provider methods that create or accept
new passwords, including CreateUser, ChangePassword, and ResetPassword. This logic
is not automatically supplied by MembershipProvider.

Account Locking
A full-featured membership provider also supports the locking out of users after a
consecutive number of failed login attempts within a specified time period. A consumer
uses the provider's MaxInvalidPasswordAttempts and PasswordAttemptsWindow
properties to configure this feature. Once locked out, a user may not log in again until
his or her account is unlocked. MembershipProvider defines an Unlock method for
unlocking locked-out users, and the System.Web.Security.MembershipUser class, which
represents individual users managed by the membership service, includes an
IsLockedOut property that indicates whether the corresponding user is currently locked
out of the system.

ReadOnlyXmlMembershipProvider
Figure 4 contains the source code for a membership provider named
ReadOnlyXmlMembershipProvider that demonstrates the minimum functionality required
of a membership provider-the provider equivalent of "hello, world." Despite its
simplicity, ReadOnlyXmlMembershipProvider is capable of supporting applications that
authenticate users using Login controls or direct calls to Membership.ValidateUser. It
also provides data regarding membership users to applications that request it using
Membership methods such as GetUser and GetAllUsers. It does not support Membership
methods such as CreateUser and ChangePassword that modify the data source, hence
the "ReadOnly" in the class name. ReadOnlyXmlMembershipProvider methods that write
to the data source throw NotSupportedExceptions if called.

Figure 4. ReadOnlyXmlMembershipProvider
using System;
using System.Xml;
using System.Collections.Generic;
using System.Collections.Specialized;
using System.Configuration.Provider;
using System.Web.Security;
using System.Web.Hosting;
using System.Web.Management;
using System.Security.Permissions;
using System.Web;

public class ReadOnlyXmlMembershipProvider : MembershipProvider

{
 private Dictionary<string, MembershipUser> _Users;
 private string _XmlFileName;

 // MembershipProvider Properties
 public override string ApplicationName
 {
 get { throw new NotSupportedException(); }
 set { throw new NotSupportedException(); }
 }

 public override bool EnablePasswordRetrieval
 {
 get { return false; }
 }

 public override bool EnablePasswordReset
 {
 get { return false; }
 }

 public override int MaxInvalidPasswordAttempts
 {
 get { throw new NotSupportedException(); }
 }

 public override int MinRequiredNonAlphanumericCharacters
 {
 get { throw new NotSupportedException(); }
 }

 public override int MinRequiredPasswordLength
 {
 get { throw new NotSupportedException(); }
 }

 public override int PasswordAttemptWindow
 {
 get { throw new NotSupportedException(); }
 }

 public override MembershipPasswordFormat PasswordFormat
 {
 get { throw new NotSupportedException(); }
 }

 public override string PasswordStrengthRegularExpression
 {
 get { throw new NotSupportedException(); }
 }

 public override bool RequiresQuestionAndAnswer
 {
 get { throw new NotSupportedException(); }
 }

 public override bool RequiresUniqueEmail
 {
 get { throw new NotSupportedException(); }
 }

 // MembershipProvider Methods
 public override void Initialize (string name,
 NameValueCollection config)
 {
 // Verify that config isn't null
 if (config == null)
 throw new ArgumentNullException ("config");

 // Assign the provider a default name if it doesn't have one
 if (String.IsNullOrEmpty (name))
 name = "ReadOnlyXmlMembershipProvider";

 // Add a default "description" attribute to config if the
 // attribute doesn't exist or is empty
 if (string.IsNullOrEmpty (config["description"])) {
 config.Remove ("description");
 config.Add ("description",
 "Read-only XML membership provider");
 }

 // Call the base class's Initialize method
 base.Initialize(name, config);

 // Initialize _XmlFileName and make sure the path
 // is app-relative
 string path = config["xmlFileName"];

 if (String.IsNullOrEmpty (path))
 path = "~/App_Data/Users.xml";

 if (!VirtualPathUtility.IsAppRelative(path))
 throw new ArgumentException
 ("xmlFileName must be app-relative");

 string fullyQualifiedPath = VirtualPathUtility.Combine
 (VirtualPathUtility.AppendTrailingSlash
 (HttpRuntime.AppDomainAppVirtualPath), path);

 _XmlFileName = HostingEnvironment.MapPath(fullyQualifiedPath);
 config.Remove ("xmlFileName");

 // Make sure we have permission to read the XML data source and
 // throw an exception if we don't
 FileIOPermission permission =
 new FileIOPermission(FileIOPermissionAccess.Read,
 _XmlFileName);
 permission.Demand();

 // Throw an exception if unrecognized attributes remain
 if (config.Count > 0) {
 string attr = config.GetKey (0);
 if (!String.IsNullOrEmpty (attr))
 throw new ProviderException
 ("Unrecognized attribute: " + attr);
 }
 }

 public override bool ValidateUser(string username, string password)
 {
 // Validate input parameters
 if (String.IsNullOrEmpty(username) ||
 String.IsNullOrEmpty(password))
 return false;

 try
 {
 // Make sure the data source has been loaded
 ReadMembershipDataStore();

 // Validate the user name and password
 MembershipUser user;
 if (_Users.TryGetValue (username, out user))
 {
 if (user.Comment == password) // Case-sensitive

 {
 // NOTE: A read/write membership provider
 // would update the user's LastLoginDate here.
 // A fully featured provider would also fire
 // an AuditMembershipAuthenticationSuccess
 // Web event
 return true;
 }
 }

 // NOTE: A fully featured membership provider would
 // fire an AuditMembershipAuthenticationFailure
 // Web event here
 return false;
 }
 catch (Exception)
 {
 return false;
 }
 }

 public override MembershipUser GetUser(string username,
 bool userIsOnline)
 {
 // Note: This implementation ignores userIsOnline

 // Validate input parameters
 if (String.IsNullOrEmpty(username))
 return null;

 // Make sure the data source has been loaded
 ReadMembershipDataStore();

 // Retrieve the user from the data source
 MembershipUser user;
 if (_Users.TryGetValue (username, out user))
 return user;

 return null;
 }

 public override MembershipUserCollection GetAllUsers(int pageIndex,
 int pageSize, out int totalRecords)
 {
 // Note: This implementation ignores pageIndex and pageSize,

 // and it doesn't sort the MembershipUser objects returned

 // Make sure the data source has been loaded
 ReadMembershipDataStore();

 MembershipUserCollection users =
 new MembershipUserCollection();

 foreach (KeyValuePair<string, MembershipUser> pair in _Users)
 users.Add(pair.Value);

 totalRecords = users.Count;
 return users;
 }

 public override int GetNumberOfUsersOnline()
 {
 throw new NotSupportedException();
 }

 public override bool ChangePassword(string username,
 string oldPassword, string newPassword)
 {
 throw new NotSupportedException();
 }

 public override bool
 ChangePasswordQuestionAndAnswer(string username,
 string password, string newPasswordQuestion,
 string newPasswordAnswer)
 {
 throw new NotSupportedException();
 }

 public override MembershipUser CreateUser(string username,
 string password, string email, string passwordQuestion,
 string passwordAnswer, bool isApproved, object providerUserKey,
 out MembershipCreateStatus status)
 {
 throw new NotSupportedException();
 }

 public override bool DeleteUser(string username,
 bool deleteAllRelatedData)
 {

 throw new NotSupportedException();
 }

 public override MembershipUserCollection
 FindUsersByEmail(string emailToMatch, int pageIndex,
 int pageSize, out int totalRecords)
 {
 throw new NotSupportedException();
 }

 public override MembershipUserCollection
 FindUsersByName(string usernameToMatch, int pageIndex,
 int pageSize, out int totalRecords)
 {
 throw new NotSupportedException();
 }

 public override string GetPassword(string username, string answer)
 {
 throw new NotSupportedException();
 }

 public override MembershipUser GetUser(object providerUserKey,
 bool userIsOnline)
 {
 throw new NotSupportedException();
 }

 public override string GetUserNameByEmail(string email)
 {
 throw new NotSupportedException();
 }

 public override string ResetPassword(string username,
 string answer)
 {
 throw new NotSupportedException();
 }

 public override bool UnlockUser(string userName)
 {
 throw new NotSupportedException();
 }

 public override void UpdateUser(MembershipUser user)

 {
 throw new NotSupportedException();
 }

 // Helper method
 private void ReadMembershipDataStore()
 {
 lock (this)
 {
 if (_Users == null)
 {
 _Users = new Dictionary<string, MembershipUser>
 (16, StringComparer.InvariantCultureIgnoreCase);
 XmlDocument doc = new XmlDocument();
 doc.Load(_XmlFileName);
 XmlNodeList nodes = doc.GetElementsByTagName("User");

 foreach (XmlNode node in nodes)
 {
 MembershipUser user = new MembershipUser(
 Name, // Provider name
 node["UserName"].InnerText, // Username
 null, // providerUserKey
 node["EMail"].InnerText, // Email
 String.Empty, // passwordQuestion
 node["Password"].InnerText, // Comment
 true, // isApproved
 false, // isLockedOut
 DateTime.Now, // creationDate
 DateTime.Now, // lastLoginDate
 DateTime.Now, // lastActivityDate
 DateTime.Now, // lastPasswordChangedDate
 new DateTime(1980, 1, 1) // lastLockoutDate
);

 _Users.Add(user.UserName, user);
 }
 }
 }
 }
}

ReadOnlyXmlMembershipProvider uses an XML file with a schema matching that of the
below as its data source (see Figure 5). Each <User> element defines one membership
user. To avoid redundant file I/O and XML parsing, the provider reads the XML file once

and stores the data in a dictionary of MembershipUser objects. Each object in the
dictionary is keyed with a user name, making lookups fast and easy.

Figure 5. Sample ReadOnlyXmlMembershipProvider Data Source
<Users>
 <User>
 <UserName>Bob</UserName>
 <Password>contoso!</Password>
 <EMail>bob@contoso.com</EMail>
 </User>
 <User>
 <UserName>Alice</UserName>
 <Password>contoso!</Password>
 <EMail>alice@contoso.com</EMail>
 </User>
</Users>

ReadOnlyXmlMembershipProvider supports one custom configuration attribute:
xmlFileName. The provider's Initialize method initializes a private field named
_XmlFileName with the attribute value and defaults to ~/App_Data/Users.xml if the
attribute isn't present. The Web.config file in Figure 6 registers
ReadOnlyXmlMembershipProvider, makes it the default membership provider, and points
it to MembershipUsers.xml (located in the application root) as the data source. The type
name specified in the <add> element assumes that the provider is deployed in an
assembly named CustomProviders.

Figure 6. Web.config file making ReadOnlyXmlMembershipProvider the default
membership provider
<configuration>
 <system.web>
 <membership defaultProvider="AspNetReadOnlyXmlMembershipProvider">
 <providers>
 <add name="AspNetReadOnlyXmlMembershipProvider"
 type="ReadOnlyXmlMembershipProvider, CustomProviders"
 description="Read-only XML membership provider"
 xmlFileName="~/App_Data/MembershipUsers.xml"
 />
 </providers>
 </membership>
 </system.web>
</configuration>

As you peruse ReadOnlyXmlMembershipProvider's source code, here are a few key
points to keep in mind regarding its implementation:

• For simplicity, ReadOnlyXmlMembershipProvider doesn't support encrypted or
hashed passwords. Passwords are stored in plaintext, and they're stored in the

Comment properties of the corresponding MembershipUser objects since the
MembershipUser class, by design, lacks a Password property. In practice,
MembershipUser objects should never store passwords. Passwords should stay in the
data source, and they should be stored in encrypted or hashed form in the absence
of a compelling reason to do otherwise. (In fact, it's quite acceptable for membership
providers to not support plaintext password storage as long as that fact is
documented.)

• ReadOnlyXmlMembershipProvider doesn't read the XML data source in Initialize;
rather, it loads it on demand, the first time the data is needed. This is done for a
pragmatic reason. The very act of creating MembershipUser objects in Initialize
would cause Initialize to be called again, resulting in an infinite loop and an eventual
stack overflow. As stated in “Provider Initialization,” a provider's Initialize method
must avoid making calls into the service that the provider serves because doing so
may cause deadly reentrancies.

• For simplicity, ReadOnlyXmlMembershipProvider doesn't scope membership data
using the ApplicationName property. Instead, it assumes that different applications
will target different membership data sources by specifying different XML file names.

• ReadOnlyXmlMembershipProvider's GetAllUsers method doesn't honor the pageIndex
and PageSize parameters, nor does it sort the MembershipUser objects that it
returns by user name.

• ReadOnlyXmlMembershipProvider contains minimal thread synchronization code
because most of its work involves reading, not writing. It does lock when reading the
membership data source to ensure that two threads won't try to initialize the in-
memory representation of that source (a Dictionary object) at the same time.

• ReadOnlyXmlMembershipProvider.Initialize calls Demand on a FileIOPermission
object to verify that it can read the XML data source. It delays making the call until
after processing the xmlFileName configuration attribute so it knows the data
source's file name.

ReadOnlyXmlMembershipProvider is a good starting point for understanding membership
providers, but a full-featured provider must implement methods that write to the data
source as well as methods that read from them. A full-featured provider must also
support non-cleartext password storage and scoping by ApplicationName.

Role Providers
Role providers provide the interface between ASP.NET's role management service (the
"role manager") and role data sources. The two most common reasons for writing a
custom role provider are:

• You wish to store role information in a data source that is not supported by the role
providers included with the .NET Framework, such as an Oracle database or a Web
service.

• You wish to store role information in a SQL Server database whose schema differs
from that of the database used by System.Web.Security.SqlRoleProvider-if, for
example, you need to integrate ASP.NET's role manager with an existing role
database.

The fundamental job of a role provider is to interface with data sources containing
containing role data mapping users to roles, and to provide methods for creating roles,
deleting roles, adding users to roles, and so on. Given a user name, the role manager
relies on the role provider to determine whether what role or roles the user belongs to.
The role manager also implements admninistrative methods such as Roles.CreateRole
and Roles.AddUserToRole by calling the underlying methods in the provider.

The RoleProvider Class
Developers writing custom role providers begin by deriving from
System.Web.Security.RoleProvider, which derives from ProviderBase and adds abstract
methods and properties defining the basic characteristics of a role provider. RoleProvider
is prototyped as follows:

public abstract class RoleProvider : ProviderBase
{
 // Abstract properties
 public abstract string ApplicationName { get; set; }

 // Abstract methods
 public abstract bool IsUserInRole (string username,
 string roleName);
 public abstract string[] GetRolesForUser (string username);
 public abstract void CreateRole (string roleName);
 public abstract bool DeleteRole (string roleName,
 bool throwOnPopulatedRole);
 public abstract bool RoleExists (string roleName);
 public abstract void AddUsersToRoles (string[] usernames,
 string[] roleNames);
 public abstract void RemoveUsersFromRoles (string[] usernames,
 string[] roleNames);
 public abstract string[] GetUsersInRole (string roleName);
 public abstract string[] GetAllRoles ();

 public abstract string[] FindUsersInRole (string roleName,
 string usernameToMatch);
}

The following table describes RoleProvider's members and provides helpful notes
regarding their implementation. Unless otherwise noted, RoleProvider methods that
accept user names, role names, and other strings as input consider null (Nothing in
Visual Basic) or empty strings to be errors and throw ArgumentNullExceptions or
ArgumentExceptions in response.

Table 4. RoleProvider methods and properties

Method or Property Description

ApplicationName The name of the application using the role provider.
ApplicationName is used to scope role data so that
applications can choose whether to share role data with
other applications. This property can be read and
written.

IsUserInRole Takes, as input, a user name and a role name and
determines whether the specified user is associated with
the specified role.

If the user or role does not exist, IsUserInRole throws a
ProviderException.

GetRolesForUser Takes, as input, a user name and returns the names of
the roles to which the user belongs.

If the user is not assigned to any roles, GetRolesForUser
returns an empty string array (a string array with no
elements). If the user name does not exist,
GetRolesForUser throws a ProviderException.

CreateRole Takes, as input, a role name and creates the specified
role.

CreateRole throws a ProviderException if the role already
exists, the role name contains a comma, or the role
name exceeds the maximum length allowed by the data
source.

DeleteRole Takes, as input, a role name and a Boolean value that
indicates whether to throw an exception if there are
users currently associated with the role, and then
deletes the specified role.

If the throwOnPopulatedRole input parameter is true and
the specified role has one or more members, DeleteRole
throws a ProviderException and does not delete the role.
If throwOnPopulatedRole is false, DeleteRole deletes the

role whether it is empty or not.

When DeleteRole deletes a role and there are users
assigned to that role, it also removes users from the
role.

RoleExists Takes, as input, a role name and determines whether
the role exists.

AddUsersToRoles Takes, as input, a list of user names and a list of role
names and adds the specified users to the specified
roles.

AddUsersToRoles throws a ProviderException if any of
the user names or role names do not exist. If any user
name or role name is null (Nothing in Visual Basic),
AddUsersToRoles throws an ArgumentNullException. If
any user name or role name is an empty string,
AddUsersToRoles throws an ArgumentException.

RemoveUsersFromRoles Takes, as input, a list of user names and a list of role
names and removes the specified users from the
specified roles.

RemoveUsersFromRoles throws a ProviderException if
any of the users or roles do not exist, or if any user
specified in the call does not belong to the role from
which he or she is being removed.

GetUsersInRole Takes, as input, a role name and returns the names of
all users assigned to that role.

If no users are associated with the specified role,
GetUserInRole returns an empty string array (a string
array with no elements). If the role does not exist,
GetUsersInRole throws a ProviderException.

GetAllRoles Returns the names of all existing roles. If no roles exist,
GetAllRoles returns an empty string array (a string array
with no elements).

FindUsersInRole Takes, as input, a search pattern and a role name and
returns a list of users belonging to the specified role
whose user names match the pattern. Wildcard syntax is
data-source-dependent and may vary from provider to
provider. User names are returned in alphabetical order.

If the search finds no matches, FindUsersInRole returns
an empty string array (a string array with no elements).
If the role does not exist, FindUsersInRole throws a
ProviderException.

Your job in implementing a custom role provider in a derived class is to override and
provide implementations of RoleProvider's abstract members, and optionally to override
key virtuals such as Initialize.

Scoping of Role Data
All role providers inherit from RoleProvider a property named ApplicationName whose
purpose it to scope the data managed by the provider. Applications that specify the
same ApplicationName when configuring the role provider share role data; applications
that specify unique ApplicationNames do not. Role provider implementations must
therefore associate role names with application names so operations performed on role
data sources can be scoped accordingly.

As an example, a role provider that stores role data in a SQL database might use a
command similar to the following to delete the role named "Administrators" from the
application named "Contoso:"

DELETE FROM Roles
WHERE Role='Administrators' AND ApplicationName='Contoso'

The AND in the WHERE clause ensures that other applications containing roles named
"Administrators" are not affected.

ReadOnlyXmlRoleProvider
Figure 7 contains the source code for a rudimentary role provider named
ReadOnlyXmlRoleProvider-the counterpart to the ReadOnlyXmlMembershipProvider class
presented in “Membership Providers.” ReadOnlyXmlRoleProvider supports applications
that use the ASP.NET role manager to restrict access to resources based on role
memberships. It implements RoleProvider methods that read from the data source, but
it doesn't implement methods that write to the data source. Roles methods such as
IsUserInRole and RoleExists will work when ReadOnlyXmlRoleProvider is acting as the
role provider; methods such as CreateRole and AddUserToRole will not.

Figure 7. ReadOnlyXmlRoleProvider
using System;
using System.Web.Security;
using System.Collections.Generic;
using System.Collections.Specialized;
using System.Configuration.Provider;
using System.Web.Hosting;
using System.Xml;
using System.Security.Permissions;
using System.Web;

public class ReadOnlyXmlRoleProvider : RoleProvider
{
 private Dictionary<string, string[]> _UsersAndRoles =

 new Dictionary<string, string[]>(16,
 StringComparer.InvariantCultureIgnoreCase);

 private Dictionary<string, string[]> _RolesAndUsers =
 new Dictionary<string, string[]>(16,
 StringComparer.InvariantCultureIgnoreCase);

 private string _XmlFileName;

 // RoleProvider properties
 public override string ApplicationName
 {
 get { throw new NotSupportedException(); }
 set { throw new NotSupportedException(); }
 }

 // RoleProvider methods
 public override void Initialize(string name,
 NameValueCollection config)
 {
 // Verify that config isn't null
 if (config == null)
 throw new ArgumentNullException("config");

 // Assign the provider a default name if it doesn't have one
 if (String.IsNullOrEmpty(name))
 name = "ReadOnlyXmlRoleProvider";

 // Add a default "description" attribute to config if the
 // attribute doesn't exist or is empty
 if (string.IsNullOrEmpty(config["description"]))
 {
 config.Remove("description");
 config.Add("description", "Read-only XML role provider");
 }

 // Call the base class's Initialize method
 base.Initialize(name, config);

 // Initialize _XmlFileName and make sure the path
 // is app-relative
 string path = config["xmlFileName"];

 if (String.IsNullOrEmpty (path))
 path = "~/App_Data/Users.xml";

 if (!VirtualPathUtility.IsAppRelative(path))
 throw new ArgumentException
 ("xmlFileName must be app-relative");

 string fullyQualifiedPath = VirtualPathUtility.Combine
 (VirtualPathUtility.AppendTrailingSlash
 (HttpRuntime.AppDomainAppVirtualPath), path);

 _XmlFileName = HostingEnvironment.MapPath(fullyQualifiedPath);
 config.Remove ("xmlFileName");

 // Make sure we have permission to read the XML data source and
 // throw an exception if we don't
 FileIOPermission permission =
 new FileIOPermission(FileIOPermissionAccess.Read,
 _XmlFileName);
 permission.Demand();

 // Throw an exception if unrecognized attributes remain
 if (config.Count > 0)
 {
 string attr = config.GetKey(0);
 if (!String.IsNullOrEmpty(attr))
 throw new ProviderException
 ("Unrecognized attribute: " + attr);
 }

 // Read the role data source. NOTE: Unlike
 // ReadOnlyXmlMembershipProvider, this provider can
 // read the data source at this point because Read-
 // RoleDataStore doesn't call into the role manager
 ReadRoleDataStore();
 }

 public override bool IsUserInRole(string username, string roleName)
 {
 // Validate input parameters
 if (username == null || roleName == null)
 throw new ArgumentNullException();
 if (username == String.Empty || roleName == string.Empty)
 throw new ArgumentException();

 // Make sure the user name and role name are valid
 if (!_UsersAndRoles.ContainsKey (username))

 throw new ProviderException("Invalid user name");
 if (!_RolesAndUsers.ContainsKey(roleName))
 throw new ProviderException("Invalid role name");

 // Determine whether the user is in the specified role
 string[] roles = _UsersAndRoles[username];
 foreach (string role in roles)
 {
 if (String.Compare(role, roleName, true) == 0)
 return true;
 }

 return false;
 }

 public override string[] GetRolesForUser(string username)
 {
 // Validate input parameters
 if (username == null)
 throw new ArgumentNullException();
 if (username == string.Empty)
 throw new ArgumentException();

 // Make sure the user name is valid
 string[] roles;
 if (!_UsersAndRoles.TryGetValue(username, out roles))
 throw new ProviderException("Invalid user name");

 // Return role names
 return roles;
 }

 public override string[] GetUsersInRole(string roleName)
 {
 // Validate input parameters
 if (roleName == null)
 throw new ArgumentNullException();
 if (roleName == string.Empty)
 throw new ArgumentException();

 // Make sure the role name is valid
 string[] users;
 if (!_RolesAndUsers.TryGetValue (roleName, out users))
 throw new ProviderException("Invalid role name");

 // Return user names
 return users;
 }

 public override string[] GetAllRoles()
 {
 int i = 0;
 string[] roles = new string[_RolesAndUsers.Count];
 foreach (KeyValuePair<string, string[]> pair in _RolesAndUsers)
 roles[i++] = pair.Key;
 return roles;
 }

 public override bool RoleExists(string roleName)
 {
 // Validate input parameters
 if (roleName == null)
 throw new ArgumentNullException();
 if (roleName == string.Empty)
 throw new ArgumentException();

 // Determine whether the role exists
 return _RolesAndUsers.ContainsKey(roleName);
 }

 public override void CreateRole(string roleName)
 {
 throw new NotSupportedException();
 }

 public override bool DeleteRole(string roleName,
 bool throwOnPopulatedRole)
 {
 throw new NotSupportedException();
 }

 public override void AddUsersToRoles(string[] usernames,
 string[] roleNames)
 {
 throw new NotSupportedException();
 }

 public override string[] FindUsersInRole(string roleName,
 string usernameToMatch)
 {

 throw new NotSupportedException();
 }

 public override void RemoveUsersFromRoles(string[] usernames,
 string[] roleNames)
 {
 throw new NotSupportedException();
 }

 // Helper method
 private void ReadRoleDataStore()
 {
 XmlDocument doc = new XmlDocument();
 doc.Load(_XmlFileName);
 XmlNodeList nodes = doc.GetElementsByTagName("User");

 foreach (XmlNode node in nodes)
 {
 if (node["UserName"] == null)
 throw new ProviderException
 ("Missing UserName element");

 string user = node["UserName"].InnerText;
 if (String.IsNullOrEmpty(user))
 throw new ProviderException("Empty UserName element");

 if (node["Roles"] == null ||
 String.IsNullOrEmpty (node["Roles"].InnerText))
 _UsersAndRoles.Add(user, new string[0]);
 else
 {
 string[] roles = node["Roles"].InnerText.Split(',');

 // Add the role names to _UsersAndRoles and
 // key them by user name
 _UsersAndRoles.Add(user, roles);

 foreach (string role in roles)
 {
 // Add the user name to _RolesAndUsers and
 // key it by role names
 string[] users1;

 if (_RolesAndUsers.TryGetValue(role, out users1))
 {

 string[] users2 =
 new string[users1.Length + 1];
 users1.CopyTo(users2, 0);
 users2[users1.Length] = user;
 _RolesAndUsers.Remove(role);
 _RolesAndUsers.Add(role, users2);
 }
 else
 _RolesAndUsers.Add(role,
 new string[] { user });
 }
 }
 }
 }
}

ReadOnlyXmlRoleProvider uses an XML file with a schema matching that of the file in
Figure 8 as its data source. Each <User> element defines one user, and subelements
define the user name and role or roles to which the user belongs. To avoid redundant
file I/O and XML parsing, the provider reads the XML file once and populates two private
fields with role data:

• A Dictionary named _UsersAndRoles, which stores lists of roles keyed by user
names. Methods such as IsUserInRole and GetRolesForUser use this field to quickly
perform role lookups given a user name.

• A Dictionary named _RolesAndUsers, which stores lists of users keyed by role
names. Methods such as GetUsersInRole use this field to quickly perform user name
lookups given a role name. GetAllRoles uses it to enumerate role names.

Both fields are populated when the Initialize method calls ReadRoleDataStore. Because
the initialization code doesn't use the roles API, there's no danger of Initialize being
called recursively. Furthermore, since Initialize is guaranteed to be called on only one
thread, ReadRoleDataStore contains no thread synchronization code.

Figure 8. Sample ReadOnlyXmlRoleProvider Data Source
<Users>
 <User>
 <UserName>Bob</UserName>
 <Roles>Members</Roles>
 </User>
 <User>
 <UserName>Alice</UserName>
 <Roles>Members,Administrators</Roles>
 </User>
</Users>

ReadOnlyXmlRoleProvider supports one custom configuration attribute: xmlFileName.
The provider's Initialize method initializes a private field named _XmlFileName with the
attribute value and defaults to Roles.xml if the attribute isn't present. The Web.config
file in Figure 9 registers ReadOnlyXmlRoleProvider, makes it the default role provider,
and designates ~/App_Data/UserRoles.xml as the data source. The type name specified
in the <add> element assumes that the provider is deployed in an assembly named
CustomProviders.

Figure 9. Web.config file making ReadOnlyXmlRoleProvider the default role
provider
<configuration>
 <system.web>
 <roleManager enabled="true"
 defaultProvider="AspNetReadOnlyXmlRoleProvider">
 <providers>
 <add name="AspNetReadOnlyXmlRoleProvider"
 type="ReadOnlyXmlRoleProvider, CustomProviders"
 description="Read-only XML role provider"
 xmlFileName="~/App_Data/UserRoles.xml"
 />
 </providers>
 </roleManager>
 </system.web>
</configuration>

For simplicity, ReadOnlyXmlRoleProvider doesn't scope role data using the
ApplicationName property. Instead, it assumes that different applications will target
different role data sources by specifying different XML file names.

Site Map Providers
Site map providers provide the interface between ASP.NET's data-driven site-navigation
features and site map data sources. The two most common reasons for writing a custom
site map provider are:

• You wish to store site maps in a data source that is not supported by the site map
providers included with the .NET Framework, such as a Microsoft SQL Server
database.

• You wish to store site map data in an XML file whose schema differs from that of the
one used by System.Web.XmlSiteMapProvider.

The fundamental job of a site map provider is to read site map data from a data source
and build an upside-down tree of SiteMapNode objects (Figure 10), and to provide
methods for retrieving nodes from the site map. Each SiteMapNode in the tree
represents one node in the site map. SiteMapNode properties such as Title, Url,
ParentNode, and ChildNodes define the characteristics of each node and allow the tree to
be navigated up, down, and sideways. A single site map can be managed by one or
several providers. Site map providers can form a tree of their own, linked together by
their ParentProvider properties, with each provider in the tree claiming responsibility for
a subset of the site map. A SiteMapNode's Provider property identifies the provider that
"owns" that node.

Figure 10. Site map structure

ASP.NET assumes that each site map node's URL is unique with respect to other URLs in
the site map. However, site maps do support nodes without URLs. Every SiteMapNode
has a Key property that the provider initializes with a value that uniquely identifies the
node. ASP.NET's XmlSiteMapProvider class sets SiteMapNode.Key equal to the node's
URL if SiteMapNode.Url is neither null nor empty, or to a randomly generated GUID
otherwise. Site map providers include methods for finding nodes by URL or by key.

Developers writing custom site map providers typically begin by deriving from
System.Web.StaticSiteMapProvider, which derives from System.Web.SiteMapProvider.
However, developers also have the option of deriving from SiteMapProvider directly.
SiteMapProvider defines the basic contract between ASP.NET and site map providers.
StaticSiteMapProvider goes much further, providing default implementations of most of
SiteMapProvider's abstract methods and overriding key virtuals to provide functional,
even optimized, implementations.

Deriving from StaticSiteMapProvider is appropriate for custom providers that read node
data once (or infrequently) and then cache the information for the lifetime of the
provider. Deriving from SiteMapProvider is appropriate for custom providers that query a
database or other underlying data source in every method call.

The SiteMapProvider Class
System.Web.SiteMapProvider is prototyped as follows:

public abstract class SiteMapProvider : ProviderBase
{
 // Public events
 public event SiteMapResolveEventHandler SiteMapResolve;

 // Public properties
 public virtual SiteMapNode CurrentNode { get; }
 public bool EnableLocalization { get; set; }
 public virtual SiteMapProvider ParentProvider { get; set; }
 public string ResourceKey { get; set; }
 public virtual SiteMapProvider RootProvider { get; }
 public virtual SiteMapNode RootNode { get; }
 public bool SecurityTrimmingEnabled { get; }

 // Non-virtual methods
 protected SiteMapNode ResolveSiteMapNode(HttpContext context) {}
 protected static SiteMapNode GetRootNodeCoreFromProvider
 (SiteMapProvider provider) {}

 // Virtual methods
 public override void Initialize(string name,
 NameValueCollection attributes) {}
 protected virtual void AddNode(SiteMapNode node) {}
 protected internal virtual void AddNode(SiteMapNode node,
 SiteMapNode parentNode) {}
 protected internal virtual void RemoveNode(SiteMapNode node) {}
 public virtual SiteMapNode FindSiteMapNode(HttpContext context) {}
 public virtual SiteMapNode FindSiteMapNodeFromKey(string key) {}
 public virtual SiteMapNode GetCurrentNodeAndHintAncestorNodes
 (int upLevel) {}

 public virtual SiteMapNode GetCurrentNodeAndHintNeighborhoodNodes
 (int upLevel, int downLevel) {}
 public virtual SiteMapNode
 GetParentNodeRelativeToCurrentNodeAndHintDownFromParent
 (int walkupLevels, int relativeDepthFromWalkup) {}
 public virtual SiteMapNode
 GetParentNodeRelativeToNodeAndHintDownFromParent
 (SiteMapNode node, int walkupLevels,
 int relativeDepthFromWalkup) {}
 public virtual void HintAncestorNodes(SiteMapNode node,
 int upLevel) {}
 public virtual void HintNeighborhoodNodes(SiteMapNode node,
 int upLevel, int downLevel) {}
 public virtual bool IsAccessibleToUser(HttpContext context,
 SiteMapNode node) {}

 // Abstract methods
 public abstract GetChildNodes(SiteMapNode node);
 public abstract SiteMapNode FindSiteMapNode(string rawUrl);
 public abstract SiteMapNode GetParentNode(SiteMapNode node);
 protected internal abstract SiteMapNode GetRootNodeCore();
}

The following table describes SiteMapProvider's methods and properties and provides
helpful notes regarding their implementation:

Table 5. SiteMapProvider methods and properties

Method or Property Description

CurrentNode Returns a SiteMapNode reference to the site map
node representing the current page (the page
targeted by the current request). This property is
read-only.

EnableLocalization Indicates whether localization is enabled for this
provider. This property can be read or written.

ParentProvider Gets or sets a SiteMapProvider reference to this
provider's parent provider, if any. Get accessor
returns null (Nothing in Visual Basic) if this provider
doesn't have a parent. This property can be read or
written.

ResourceKey Gets or sets the provider's resource key-the root
name of the resource files from which SiteMapNodes
extract values for properties such as Title and
Description. This property can be read or written.

RootProvider Returns a SiteMapProvider reference to the root site
map provider. This property is read-only.

RootNode Returns a SiteMapNode reference to the site map's
root node. This property is read-only.

SecurityTrimmingEnabled Returns a Boolean indicating whether security
trimming is enabled. SiteMapProvider initializes this
property from the securityTrimmingEnabled
configuration attribute. This property is read-only.

Initialize Called to initialize the provider. The default
implementation in SiteMapProvider initializes the
provider's Description property, calls base.Initialize,
and initializes the SecurityTrimmingEnabled property
from the securityTrimmingEnabled configuration
attribute.

AddNode (SiteMapNode) Adds a root SiteMapNode to the site map. The default
implementation in SiteMapProvider calls AddNode
(node, null), which throws a
NotImplementedException.

AddNode (SiteMapNode,
SiteMapNode)

Adds a SiteMapNode to the site map as a child of the
specified SiteMapNode, or as the root node if the
specified SiteMapNode is null (Nothing in Visual
Basic). The default implementation in SiteMapProvider
throws a NotImplementedException, so this method
should be overridden in a derived class.

RemoveNode Removes the specified SiteMapNode from the site
map. The default implementation in SiteMapProvider
throws a NotImplementedException, so this method
should be overridden in a derived class.

FindSiteMapNode
(HttpContext)

Retrieves a SiteMapNode representing the current
page. The default implementation in SiteMapProvider
calls the abstract FindSiteMapNode method to return
the SiteMapNode that corresponds to
HttpContext.Request.RawUrl.

FindSiteMapNode (string) Returns a SiteMapNode representing the page at the
specified URL. Returns null (Nothing in Visual Basic) if
the specified node isn't found.

This method is abstract (MustOverride in Visual Basic)
and must be overridden in a derived class.

FindSiteMapNodeFromKey Retrieves a SiteMapNode keyed by the specified key-
that is, a SiteMapNode whose Key property matches
the input key. Node lookups are normally performed
based on URLs, but this method is provided so nodes
that lack URLs can be retrieved from the site map.
Returns null (Nothing in Visual Basic) if the specified

node isn't found. The default implementation in
SiteMapProvider always returns null, so this method
should be overridden in a derived class.

GetCurrentNodeAnd-
HintAncestorNodes

Retrieves a SiteMapNode representing the current
page. The default implementation in SiteMapProvider
simply returns CurrentNode, but derived classes that
don't store entire site maps in memory can override
this method and return a SiteMapNode along with the
number of generations of ancestor nodes specified in
the upLevel parameter. Returns null (Nothing in Visual
Basic) if the specified node isn't found.

GetCurrentNodeAnd-
HintNeighborhoodNodes

Retrieves a SiteMapNode representing the current
page. The default implementation in SiteMapProvider
simply returns CurrentNode, but derived classes that
don't store entire site maps in memory can override
this method and return a SiteMapNode along with the
number of generations of ancestor nodes specified in
the upLevel parameter and the number of generations
of descendant nodes specified in the downLevel
parameter. Returns null (Nothing in Visual Basic) if
the specified node isn't found.

GetParentNodeRelativeToCur
rent-
NodeAndHintDownFromParen
t

Retrieves a SiteMapNode representing an ancestor of
the current node the specified number of generations
higher in the hierarchy. Derived classes that don't
store entire site maps in memory can override this
method and return a SiteMapNode along with the
number of generations of descendant nodes specified
in the relativeDepthFromWalkup parameter. Returns
null (Nothing in Visual Basic) if the specified node isn't
found.

GetParentNodeRelativeToNod
eAnd-HintDownFromParent

Same as
GetParentNodeRelativeToCurrentNodeAndHintDown-
FromParent, but takes a SiteMapNode as input and
performs lookup relative to that node rather than the
current node.

HintAncestorNodes Takes the specified SiteMapNode and fills its ancestor
hierarchy with the number of generations specified in
the UpLevel parameter. The default implementation in
SiteMapProvider does nothing.

HintNeighborhoodNodes Takes the specified SiteMapNode and fills its ancestor
and descendant hierarchies with the number of
generations specified in the UpLevel parameter and
downLevel parameters. The default implementation in
SiteMapProvider does nothing.

IsAccessibleToUser Returns a Boolean indicating whether the current user

has permission to access the specified SiteMapNode.
The default implementation in SiteMapProvider
returns false if security trimming is enabled and the
user does not belong to any of the roles associated
with the SiteMapNode and the user does not have
access to the corresponding URL according to any URL
or file authorization rules currently in effect.
SiteMapProvider also recognizes the role name "*" as
an indication that everyone is permitted to access this
node. Security trimming is described more fully in
“Security Trimming.”

GetChildNodes Returns a SiteMapNodeCollection representing the
specified SiteMapNode's children. Returns an empty
SiteMapNodeCollection if the node has no children.

This method is abstract (MustOverride in Visual Basic)
and must be overridden in a derived class.

GetParentNode Returns a SiteMapNode representing the specified
SiteMapNode's parent. Returns null (in Visual Basic,
Nothing) if the node has no parent.

This method is abstract (MustOverride in Visual Basic)
and must be overridden in a derived class.

GetRootNodeCore Returns a SiteMapNode representing the root node of
the site map managed by this provider. If this is the
only site map provider, or if it is the top provider in a
hierarchy of providers, GetRootNodeCore returns the
same SiteMapNode as SiteMap.RootNode. Otherwise,
it may return a SiteMapNode representing a node
elsewhere in the site map hierarchy.

This method is abstract (MustOverride in Visual Basic)
and must be overridden in a derived class.

You may think it curious that in addition to supporting methods such as
GetChildNodes and GetParent for retrieving nodes from a site map provider, the
SiteMapProvider class also has "Hint" methods such as
GetCurrentNodeAndHintAncestorNodes that can be called to say "give me a node
and make sure that the hierarchy of nodes above and below it are populated to a
specified depth." After all, isn't a SiteMapNode implicitly wired to its parent and
child nodes without explicitly demanding that it be so? Here's some background
from the ASP.NET team:

"We added the Hint* methods prior to Beta 1 after meeting with the Sharepoint

and Content Management teams. Since for Sharepoint their custom site map
providers run against a database, they wanted ways to be able to tell the
provider that certain pieces of additional data above and beyond a specific
requested node may be needed. Some of the methods incorporate both the hint
and return a node (e.g., GetCurrentNodeAndHint-AncestorNodes), while others
are just straight hint methods (e.g., HintAncestorNodes).""Either way, we would
still want providers to implement methods such as GetChildNodes and GetParent
to return nodes that can navigate into their children or up to their parent. A
provider could just choose to return the set of relevant nodes based on the
method that is called. Inside of SiteMapNode.Parent and
SiteMapNode.ChildNodes, the provider is called to fetch more nodes. This is
where the hint methods are usefula developer who understands the usage
patterns on their site can intelligently hint the provider that parent or child nodes
"around" a specific node may be requested, and thus a custom provider can
proactively fetch and cache the information."

A site map provider that stores entire site maps in memory can simply use the
default implementations of the "Hint" methods. Site map providers that don't
store entire site maps in memory, however, might choose to override these
methods and use them to optimize SiteMapNode lookups.

Security Trimming
The SiteMapProvider class contains built-in support for security trimming, which restricts
the visibility of site map nodes based on users' role memberships. SiteMapProvider
implements a Boolean read-only property named SecurityTrimmingEnabled, which
indicates whether security trimming is enabled. Furthermore, SiteMapProvider.Initialize
initializes this property from the provider's securityTrimmingEnabled configuration
attribute. Internally, SiteMapProvider methods that retrieve nodes from the site map call
the provider's virtual IsAccessibleToUser method to determine whether nodes can be
retrieved. All a custom provider has to do to support security trimming is initialize each
SiteMapNode's Roles property with an array of role names identifying users that are
permitted to access that node, or "*" if everyone (including unauthenticated users and
users who enjoy no role memberships) is permitted.

Security trimming doesn't necessarily prevent SiteMapProvider.IsAccessibleToUser from
returning true if the user doesn't belong to one of the roles specified in a node's Roles
property. Here's a synopsis of how IsAccessibleToUser uses SiteMapNode.Roles to
authorize access to a node-that is, to determine whether to return true or false:

1. If the current user is in a role specified in the node's Roles property, or if Roles is
"*", the node is returned.

2. If the current user is not in a role specified in the node's Roles property, then a URL
authorization check is performed to determine whether the user has access to the
node's URL. If the answer is yes, the node is returned.

3. If Windows authentication is being used on the site, and if (1) and (2) failed, then a
file authorization (ACL) check is performed against the node's URL using the current
user's security token. If the ACL check succeeds, the node is returned.

Nodes lower in the hierarchy implicitly inherit the Roles properties of their parents, but
only to a point. Refer to the sidebar below for a more detailed explanation.

At first glance, it might appear that as a custom site map creates a tree of
SiteMapNodes, it must explicitly flow the Roles properties of parents down to
their children. However, that's not the case. Here's an explanation from the
team:

"In terms of role inheritance-there is not direct inheritance. Instead, when you
iterate through a set of nodes, if you encounter a node that the current user is
not authorized to access, you should stop. As an example, suppose some piece of
code is recursing down through the nodes, and when it reaches a certain node,
IsAccessibleToUser returns false. The code should stop iterating at that point
and go no lower. However, if you were to call FindSiteMapNode to get one of the
child nodes directly, that would work."

In other words, a provider need not copy a parent node's Roles property to child
nodes. Nor is FindSiteMapNode or IsAccessibleToUser obligated to walk up the
SiteMapNode tree to determine whether a specified node is accessible. Node
accessibility is primarily a mechanism allowing controls such as TreeViews and
Menus, which iterate through trees of SiteMapNodes from top to bottom in order
to render site maps into HTML, to stop iterating when they encounter a node that
the current user lacks permission to view.

Content Localization
The combination of SiteMapProvider's EnableLocalization and ResourceKey properties
and SiteMapNode's ResourceKey property enables site map providers to support content
localization. If localization is enabled (as indicated by the provider's EnableLocalization
property), a provider may use the ResourceKey properties to load text for
SiteMapNode's Title and Description properties, and even for custom properties, from
resources (for example, compiled RESX files).

Resource keys can be implicit or explicit. Here's an example of an XmlSiteMapProvider-
compatible site map that uses implicit resource keys to load node titles and descriptions:

<siteMap enableLocalization="true">
 <siteMapNode description="Home" url="~/Default.aspx">
 <siteMapNode title="Autos" description="Autos"
 url="~/Autos.aspx" resourceKey="Autos" />
 <siteMapNode title="Games" description="Games"
 url="~/Games.aspx" resourceKey="Games" />
 <siteMapNode title="Health" description="Health"

 url="~/Health.aspx" resourceKey="Health" />
 <siteMapNode title="News" description="News"
 url="~/News.aspx" resourceKey="News" />
 </siteMapNode>
</siteMap>

In this example, the "Autos" site map node's Title and Description properties are taken
from resources named Autos.Title and Autos.Description (and default to "Autos" and
"Autos" if those resources don't exist or localization isn't enabled). SiteMapNode
formulates the resource names by combining resourceKey values and property names; it
also handles the chore of loading the resources.

The root name of the file containing the resources is specified using the provider's
ResourceKey property. For example, suppose ResourceKey="SiteMapResources", and
that localization resources are defined in RESX files deployed in the application's
App_GlobalResources directory for automatic compilation. SiteMapNode will therefore
extract resources from SiteMapResources.culture.resx, where culture is the culture
expressed in Thread.CurrentThread.CurrentUICulture. Resources for the fr culture would
come from SiteMapResources.fr.resx, resources for en-us would come from
SiteMapResources.en-us.resx, and so on. Requests lacking a culture specifier would
default to SiteMapResources.resx.

A site map provider that supports localization via implicit resource keys should do the
following:

• Initialize its ResourceKey property with a root resource file name. This value could
come from a custom configuration attribute, or it could be based on something else
entirely. ASP.NET's XmlSiteMapProvider, for example, sets the provider's
ResourceKey property equal to the site map file name specified with the siteMapFile
configuration attribute (which defaults to Web.sitemap).

• Pass resource key values specified for site map nodesfor example, the resourceKey
attribute values in <siteMapNode> elementsto SiteMapNode's constructor as the
implicitResourceKey parameter.

• Set its own EnableLocalization property to true.

Although SiteMapProvider implements the EnableLocalization property, neither
SiteMapProvider nor StaticSiteMapProvider initializes that property from a configuration
attribute. If you want to support enableLocalization in your provider's configuration, you
should do as XmlSiteMapProvider does and initialize the provider's EnableLocalization
property from the enableLocalization attribute of the <siteMap> element in the site map
file. It's important to set the provider's EnableLocalization property to true if you wish to
localize site map nodes, because the SiteMapNode class checks that property before
deciding whether to load content from resources.

The StaticSiteMapProvider Class
Whereas SiteMapProvider defines the basic contract between ASP.NET and site map
providers, StaticSiteMapProvider aids developers in implementing that contract.
StaticSiteMapProvider is the base class for ASP.NET's XmlSiteMapProvider. It can also be
used as the base class for custom site map providers. Provider classes that derive from

StaticSiteMapProvider require considerably less code than providers derived from
SiteMapProvider.

The word "Static" in StaticSiteMapProvider refers to the fact that the site map data
source is static. Nonetheless, while the data source may be static, the site map itself
does not have to be. Developers can add, remove, and change site map nodes on the fly
by responding to a site map provider's SiteMapResolve events.

ASP.NET's XmlSiteMapProvider goes to the extra trouble of monitoring the site
map file and reloading it if it changes. While not required of a custom site map
provider, that behavior will certainly be appreciated by administrators who
want to modify a site map without having to restart the application. The
System.IO.FileSystemWatcher class provides an efficient means for monitoring
files for changes. If you use it, don't forget to implement IDisposable in the
derived class and close the FileSystemWatcher in the Dispose method. If site
map data is stored in a Microsoft SQL Server database, consider using ASP.NET
2.0's SqlCacheDependency class to monitor the database for changes.

System.Web.StaticSiteMapProvider is prototyped as follows:

public abstract class StaticSiteMapProvider : SiteMapProvider
{
 public abstract SiteMapNode BuildSiteMap();
 protected virtual void Clear() {}
 protected internal override void AddNode(SiteMapNode node,
 SiteMapNode parentNode) {}
 protected internal override void RemoveNode(SiteMapNode node) {}
 public override SiteMapNode FindSiteMapNode(string rawUrl) {}
 public override SiteMapNode FindSiteMapNodeFromKey(string key) {}
 public override SiteMapNodeCollection
 GetChildNodes(SiteMapNode node) {}
 public override SiteMapNode GetParentNode(SiteMapNode node) {}
}

The following table describes StaticSiteMapProvider's methods and provides helpful
notes regarding their implementation:

Table 6. StaticSiteMapProvider methods and properties

Method Description

BuildSiteMap Called to read the site map from the data source and
return a reference to the root SiteMapNode. Since this
method may be called more than once by ASP.NET,
the method implementation should include an internal
check that refrains from reloading the site map if it
has already been loaded.

This method is abstract (MustOverride in Visual Basic)
and must be overridden in a derived class.

Clear Clears the site map by removing all SiteMapNodes.

FindSiteMapNode Returns a SiteMapNode representing the page at the
specified URL. Returns null (Nothing in Visual Basic) if
the specified node isn't found.

AddNode Adds a SiteMapNode to the site map as a child of the
specified SiteMapNode, or as the root node if the
specified SiteMapNode is null (Nothing in Visual
Basic). The default implementation in
StaticSiteMapProvider performs several important
checks on the node before adding it to the site map,
including a check for duplicate Url or Key properties.

RemoveNode Removes the specified SiteMapNode from the site
map.

FindSiteMapNodeFromKey Retrieves a SiteMapNode keyed by the specified
keythat is, a SiteMapNode whose Key property
matches the input key. Node lookups are normally
performed based on URLs, but this method is provided
so nodes that lack URLs can be retrieved from the site
map. Returns null (Nothing in Visual Basic) if the
specified node isn't found.

GetChildNodes Returns a SiteMapNodeCollection representing the
specified SiteMapNode's children. Returns an empty
SiteMapNodeCollection if the node has no children.

GetParentNode Returns a SiteMapNode representing the specified
SiteMapNode's parent. Returns null (Nothing in Visual
Basic) if the node has no parent.

StaticSiteMapProvider provides default implementations of most of SiteMapProvider's
abstract methods (the notable exception being GetRootNodeCore), and internally it uses
a set of Hashtables to make lookups performed by FindSiteMapNode, GetParentNode,
and GetChildNodes fast and efficient. It also defines an abstract method of its own,
BuildSiteMap, which signals the provider to read the data source and build the site map.
BuildSiteMap can be (and in practice, is) called many times throughout the provider's
lifetime, so it's crucial to build in an internal check to make sure the site map is loaded
just once. (Subsequent calls to BuildSiteMap can simply return a reference to the

existing root node.) In addition, BuildSiteMap should generally not call other site map
provider methods or properties, because many of the default implementations of those
methods and properties call BuildSiteMap. For example, the simple act of reading
RootNode in BuildSiteMap causes a recursive condition that terminates in a stack
overflow.

SqlSiteMapProvider
SqlSiteMapProvider is a StaticSiteMapProvider-derivative that demonstrates the key
ingredients that go into a custom site map provider. Unlike XmlSiteMapProvider, which
reads site map data from an XML file, SqlSiteMapProvider reads site maps from a SQL
Server database. It doesn't support localization, but it does support other significant
features found in XmlSiteMapProvider, including security trimming and site maps of
unlimited depth. SqlSiteMapProvider's source code appears in Figure 11.

Figure 11. SqlSiteMapProvider
using System;
using System.Web;
using System.Data.SqlClient;
using System.Collections.Specialized;
using System.Configuration;
using System.Web.Configuration;
using System.Collections.Generic;
using System.Runtime.CompilerServices;
using System.Configuration.Provider;
using System.Security.Permissions;
using System.Data.Common;

[SqlClientPermission (SecurityAction.Demand, Unrestricted=true)]
public class SqlSiteMapProvider : StaticSiteMapProvider
{
 private const string _errmsg1 = "Missing node ID";
 private const string _errmsg2 = "Duplicate node ID";
 private const string _errmsg3 = "Missing parent ID";
 private const string _errmsg4 = "Invalid parent ID";
 private const string _errmsg5 =
 "Empty or missing connectionStringName";
 private const string _errmsg6 = "Missing connection string";
 private const string _errmsg7 = "Empty connection string";

 private string _connect;
 private int _indexID, _indexTitle, _indexUrl,
 _indexDesc, _indexRoles, _indexParent;
 private Dictionary<int, SiteMapNode> _nodes =
 new Dictionary<int, SiteMapNode>(16);
 private SiteMapNode _root;

 public override void Initialize (string name,
 NameValueCollection config)
 {
 // Verify that config isn't null
 if (config == null)
 throw new ArgumentNullException("config");

 // Assign the provider a default name if it doesn't have one
 if (String.IsNullOrEmpty(name))
 name = "SqlSiteMapProvider";

 // Add a default "description" attribute to config if the
 // attribute doesn't exist or is empty
 if (string.IsNullOrEmpty(config["description"]))
 {
 config.Remove("description");
 config.Add("description", "SQL site map provider");
 }

 // Call the base class's Initialize method
 base.Initialize(name, config);

 // Initialize _connect
 string connect = config["connectionStringName"];

 if (String.IsNullOrEmpty (connect))
 throw new ProviderException (_errmsg5);

 config.Remove ("connectionStringName");

 if (WebConfigurationManager.ConnectionStrings[connect] == null)
 throw new ProviderException (_errmsg6);

 _connect = WebConfigurationManager.ConnectionStrings
 [connect].ConnectionString;

 if (String.IsNullOrEmpty (_connect))
 throw new ProviderException (_errmsg7);

 // In beta 2, SiteMapProvider processes the
 // securityTrimmingEnabled attribute but fails to remove it.
 // Remove it now so we can check for unrecognized
 // configuration attributes.

 if (config["securityTrimmingEnabled"] != null)

 config.Remove("securityTrimmingEnabled");

 // Throw an exception if unrecognized attributes remain
 if (config.Count > 0)
 {
 string attr = config.GetKey(0);
 if (!String.IsNullOrEmpty(attr))
 throw new ProviderException
 ("Unrecognized attribute: " + attr);
 }
 }

 public override SiteMapNode BuildSiteMap()
 {
 lock (this)
 {
 // Return immediately if this method has been called before
 if (_root != null)
 return _root;

 // Query the database for site map nodes
 SqlConnection connection = new SqlConnection(_connect);

 try
 {
 connection.Open();
 SqlCommand command =
 new SqlCommand("proc_GetSiteMap", connection);
 command.CommandType = CommandType.StoredProcedure;
 SqlDataReader reader = command.ExecuteReader();
 _indexID = reader.GetOrdinal("ID");
 _indexUrl = reader.GetOrdinal("Url");
 _indexTitle = reader.GetOrdinal("Title");
 _indexDesc = reader.GetOrdinal("Description");
 _indexRoles = reader.GetOrdinal("Roles");
 _indexParent = reader.GetOrdinal("Parent");

 if (reader.Read())
 {
 // Create the root SiteMapNode and add it to
 // the site map
 _root = CreateSiteMapNodeFromDataReader(reader);
 AddNode(_root, null);

 // Build a tree of SiteMapNodes underneath

 // the root node
 while (reader.Read())
 {
 // Create another site map node and
 // add it to the site map
 SiteMapNode node =
 CreateSiteMapNodeFromDataReader(reader);
 AddNode(node,
 GetParentNodeFromDataReader (reader));
 }
 }
 }
 finally
 {
 connection.Close();
 }

 // Return the root SiteMapNode
 return _root;
 }
 }

 protected override SiteMapNode GetRootNodeCore ()
 {
 BuildSiteMap ();
 return _root;
 }

 // Helper methods
 private SiteMapNode
 CreateSiteMapNodeFromDataReader (DbDataReader reader)
 {
 // Make sure the node ID is present
 if (reader.IsDBNull (_indexID))
 throw new ProviderException (_errmsg1);

 // Get the node ID from the DataReader
 int id = reader.GetInt32 (_indexID);

 // Make sure the node ID is unique
 if (_nodes.ContainsKey(id))
 throw new ProviderException(_errmsg2);

 // Get title, URL, description, and roles from the DataReader
 string title = reader.IsDBNull (_indexTitle) ?

 null : reader.GetString (_indexTitle).Trim ();
 string url = reader.IsDBNull (_indexUrl) ?
 null : reader.GetString (_indexUrl).Trim ();
 string description = reader.IsDBNull (_indexDesc) ?
 null : reader.GetString (_indexDesc).Trim ();
 string roles = reader.IsDBNull(_indexRoles) ?
 null : reader.GetString(_indexRoles).Trim();

 // If roles were specified, turn the list into a string array
 string[] rolelist = null;
 if (!String.IsNullOrEmpty(roles))
 rolelist = roles.Split(new char[] { ',', ';' }, 512);

 // Create a SiteMapNode
 SiteMapNode node = new SiteMapNode(this, id.ToString(), url,
 title, description, rolelist, null, null, null);

 // Record the node in the _nodes dictionary
 _nodes.Add(id, node);

 // Return the node
 return node;
 }

 private SiteMapNode
 GetParentNodeFromDataReader(DbDataReader reader)
 {
 // Make sure the parent ID is present
 if (reader.IsDBNull (_indexParent))
 throw new ProviderException (_errmsg3);

 // Get the parent ID from the DataReader
 int pid = reader.GetInt32(_indexParent);

 // Make sure the parent ID is valid
 if (!_nodes.ContainsKey(pid))
 throw new ProviderException(_errmsg4);

 // Return the parent SiteMapNode
 return _nodes[pid];
 }
}

The heart of SqlSiteMapProvider is its BuildSiteMap method, which queries the database
for site map node data and constructs SiteMapNodes from the query results. The query
is performed by calling the stored procedure named proc_GetSiteMap, which is defined
as follows:

CREATE PROCEDURE proc_GetSiteMap AS SELECT [ID], [Title],
[Description], [Url], [Roles], [Parent] FROM [SiteMap] ORDER BY [ID]

The helper method CreateSiteMapNodeFromDataReader does the node construction,
checking for errors such as missing or non-unique node IDs as well.
CreateSiteMapNodeFromDataReader also records each SiteMapNode that it creates in an
internal dictionary used by the other helper method, GetParentNodeFromDataReader, to
retrieve a reference to a node's parent before adding the node to the site map with
AddNode.

SqlSiteMapProvider inherits support for the securityTrimmingEnabled configuration
attribute from SiteMapProvider. It also supports one configuration attribute of its own:
connectionStringName. The provider's Initialize method reads connectionStringName
and BuildSiteMap uses it to read a database connection string from the
<connectionStrings> configuration section. This is the connection string used to connect
to the SQL Server database containing the site map. The Web.config file in Figure 12
makes SqlSiteMapProvider the default provider and provides it with a connection string.

Figure 12. Web.config file making SqlSiteMapProvider the default site map
provider and enabling security trimming
<configuration>
 <connectionStrings>
 <add name="SiteMapConnectionString" connectionString="..." />
 </connectionStrings>
 <system.web>
 <siteMap enabled="true" defaultProvider="AspNetSqlSiteMapProvider">
 <providers>
 <add name="AspNetSqlSiteMapProvider"
 type="SqlSiteMapProvider, CustomProviders"
 description="SQL Server site map provider"
 securityTrimmingEnabled="true"
 connectionStringName="SiteMapConnectionString"
 />
 </providers>
 </siteMap>
 </system.web>
</configuration>

The SQL script in Figure 13 creates a SqlSiteMapProvider-compatible SiteMap table. The
Title, Description, Url, and Roles columns correspond to the SiteMapNode properties of
the same names. The ID and Parent columns serve to uniquely identify nodes in the site

map and form parent-child relationships between them. Every node must have a unique
ID in the ID column, and every node except the root node must contain an ID in the
Parent column identifying the node's parent. The one constraint to be aware of is that a
child node's ID must be greater than its parent's ID. In other words, a node with an ID
of 100 can be the child of a node with an ID of 99, but it can't be the child of a node
with an ID of 101. That's a consequence of the manner in which SqlSiteMapProvider
builds the site map in memory as it reads nodes from the database.

Figure 13. SQL script for creating a SqlSiteMapProvider-compatible SiteMap
table
CREATE TABLE [dbo].[SiteMap] (
 [ID] [int] NOT NULL,
 [Title] [varchar] (32),
 [Description] [varchar] (512),
 [Url] [varchar] (512),
 [Roles] [varchar] (512),
 [Parent] [int]
) ON [PRIMARY]
GO

ALTER TABLE [dbo].[SiteMap] ADD
 CONSTRAINT [PK_SiteMap] PRIMARY KEY CLUSTERED
 (
 [ID]
) ON [PRIMARY]
GO

Figure 14 shows a view in SQL Server Enterprise Manager of a SiteMap table. Observe
that each node has a unique ID and a unique URL. (Tthe latter is a requirement of site
maps managed by site map providers that derive from StaticSiteMapProvider.) All nodes
but the root node also have a parent ID that refers to another node in the table, and the
parent's ID is always less than the child's ID. Finally, because the "Entertainment" node
has a Roles value of "Members,Administrators," a navigational control such as a
TreeView or Menu will only render that node and its children if the user viewing the page
has been authenticated and is a member of the Members or Administrators group. That's
assuming, of course, that security trimming is enabled. If security trimming is not
enabled, all nodes are visible to all users. SqlSiteMapProvider contains no special code to
make security trimming work; that logic is inherited from SiteMapProvider and
StaticSiteMapProvider.

Figure 14. Sample SiteMap table

Session State Providers
Session state providers provide the interface between ASP.NET session state and session
state data sources. The two most common reasons for writing a custom session state
provider are:

• You wish to store session state in a data source that is not supported by the session
state providers included with the .NET Framework, such as an Oracle database.

• You wish to store session state in a SQL Server database whose schema differs from
that of the database used by System.Web.SessionState.SqlSessionStateStore.

Core ASP.NET session state services are provided by
System.Web.SessionState.SessionStateModule, instances of which are referred to as
session state modules. Session state modules encapsulate session state in instances of
System.Web.SessionState.SessionStateStoreData, allocating one SessionStateStoreData
per session (per user). The fundamental job of a session state provider is to serialize
SessionStateDataStores to session state data sources and deserialize them on demand.
SessionStateDataStore has three properties that must be serialized in order to hydrate
class instances:

• Items, which encapsulates a session's non-static objects

• StaticObjects, which encapsulates a session's static objects

• Timeout, which specifies the session's time-out (in minutes)

Items and StaticObjects can be serialized and deserialized easily enough by calling their
Serialize and Deserialize methods. The Timeout property is a simple System.Int32 and is
therefore also easily serialized and deserialized. Thus, if sssd is a reference to an
instance of SessionStateStoreData, the core logic to write the contents of a session to a
session state data source is often no more complicated than this:

stream1 = new MemoryStream ();
stream2 = new MemoryStream ();
writer1 = new BinaryWriter (stream1);
writer2 = new BinaryWriter (stream2);

// Serialize Items and StaticObjects
((SessionStateItemCollection) sssd.Items).Serialize (writer1);
sssd.StaticObjects.Serialize (writer2);

// Convert serialized items into byte arrays
byte[] items = stream1.ToArray ();
byte[] statics = stream2.ToArray ();
int timeout = sssd.Timeout;

// TODO: Write items, statics, and timeout to the data source

One of the challenges to writing a session state provider is implementing a locking
mechanism that prevents a given session from being accessed by two or more
concurrent requests. That mechanism ensures the consistency of session state data by
preventing one request from reading a session at the same time that another request is
writing it. The locking mechanism must work even if the session state data source is a
remote resource shared by several Web servers. Locking behavior is discussed in
“Synchronizing Concurrent Accesses to a Session.”

Another consideration to take into account when designing a session state provider is
whether to support expiration callbacks notifying SessionStateModule when sessions
time out. Expiration callbacks are discussed in “Expiration Callbacks and Session_End
Events.”

The SessionStateStoreProviderBase Class
Developers writing custom session state providers begin by deriving from
System.Web.SessionState.SessionStateStoreProviderBase, which derives from
ProviderBase and adds abstract methods defining the basic characteristics of a session
state provider. SessionStateStoreProviderBase is prototyped as follows:

public abstract class SessionStateStoreProviderBase : ProviderBase
{
 public abstract void Dispose();

 public abstract bool SetItemExpireCallback
 (SessionStateItemExpireCallback expireCallback);

 public abstract void InitializeRequest(HttpContext context);

 public abstract SessionStateStoreData GetItem
 (HttpContext context, String id, out bool locked,
 out TimeSpan lockAge, out object lockId,
 out SessionStateActions actions);

 public abstract SessionStateStoreData GetItemExclusive
 (HttpContext context, String id, out bool locked,
 out TimeSpan lockAge, out object lockId,
 out SessionStateActions actions);

 public abstract void ReleaseItemExclusive(HttpContext context,
 String id, object lockId);

 public abstract void SetAndReleaseItemExclusive
 (HttpContext context, String id, SessionStateStoreData item,
 object lockId, bool newItem);

 public abstract void RemoveItem(HttpContext context,

 String id, object lockId, SessionStateStoreData item);

 public abstract void ResetItemTimeout(HttpContext context,
 String id);

 public abstract SessionStateStoreData CreateNewStoreData
 (HttpContext context, int timeout);

 public abstract void CreateUninitializedItem
 (HttpContext context, String id, int timeout);

 public abstract void EndRequest(HttpContext context);
}

The following table describes SessionStateStoreProviderBase's methods and provides
helpful notes regarding their implementation:

Table 7. SessionStateStoreProviderBase methods and properties

Method Description

CreateNewStoreData Called to create a SessionStateStoreData for a
new session.

CreateUninitializedItem Called to create a new, uninitialized session in the
data source. Called by SessionStateModule when
session state is cookieless to prevent the session
from being unrecognized following a redirect.

Dispose Called when the provider is disposed of to afford it
the opportunity to perform any last-chance
cleanup.

EndRequest Called in response to EndRequest events to afford
the provider the opportunity to perform any per-
request cleanup.

GetItem If session state is read-only (that is, if the
requested page implements
IReadOnlySessionState), called to load the
SessionStateStoreData corresponding to the
specified session ID and apply a read lock so other
requests can read the SessionStateDataStore but
not modify it until the lock is released.

If the specifed session doesn't exist in the data
source, this method returns null (Nothing in Visual
Basic) and sets the out parameter named locked
to false. SessionStateModule then calls
CreateNewStoreData to create a new

SessionStateStoreData to serve this session.

If the specified session is currently locked, this
method returns null (Nothing in Visual Basic) and
sets the out parameter named locked to true,
causing SessionStateModule to retry GetItem at
half-second intervals until the lock comes free or
times out. In addition to setting locked to true,
this method also returns the lock age and lock ID
using the lockAge and lockId parameters.

GetItemExclusive If session state is read-write (that is, if the
requested page implements
IRequiresSessionState), called to load the
SessionStateStoreData corresponding to the
specified session ID and apply a write lock so
other requests can neither read nor write the
SessionStateStoreData until the lock is released.

If the specifed session doesn't exist in the data
source, this method returns null (Nothing in Visual
Basic) and sets the out parameter named locked
to false. SessionStateModule then calls
CreateNewStoreData to create a new
SessionStateStoreData to serve this session.

If the specified session is currently locked, this
method returns null (Nothing in Visual Basic) and
sets the out parameter named locked to true,
causing SessionStateModule to retry
GetItemExclusive at half-second intervals until the
lock comes free or times out. In addition to setting
locked to true, this method also returns the lock
age and lock ID using the lockAge and lockId
parameters.

InitializeRequest Called in response to AcquireRequestState events
to afford the provider the opportunity to perform
any per-request initialization.

ReleaseItemExclusive Called to unlock the specified session if a request
times out waiting for the lock to come free.

RemoveItem Called to remove the specified session from the
data source.

ResetItemTimeout Called to reset the expiration time of the specified
session.

SetAndReleaseItemExclusive Called to write modified session state to the data
source. The newItem parameter indicates whether
the supplied SessionStateStoreData corresponds
to an existing session in the data source or a new
one. If newItem is true,

SetAndReleaseItemExclusive adds a new session
to the data source. Otherwise, it updates an
existing one.

SetItemExpireCallback Called to supply the provider with a callback
method for notifying SessionStateModule that a
session has expired. If the provider supports
session expiration, it should return true from this
method and notify ASP.NET when sessions expire
by calling the supplied callback method. If the
provider does not support session expiration, it
should return false from this method.

Your job in implementing a custom session state provider in a derived class is to
override and provide implementations of SessionStateStoreProviderBase's abstract
members, and optionally to override key virtuals such as Initialize.

Synchronizing Concurrent Accesses to a Session
ASP.NET applications are inherently multithreaded. Because requests that arrive in
parallel are processed on concurrent threads drawn from a thread pool, it's possible that
two or more requests targeting the same session will execute at the same time. (The
classic example is when a page contains two frames, each targeting a different ASPX in
the same application, causing the browser to submit overlapping requests for the two
pages.) To avoid data collisions and erratic behavior, the provider "locks" the session
when it begins processing the first request, causing other requests targeting the same
session to wait for the lock to come free.

Because there's no harm in allowing concurrent requests to perform overlapping reads,
the lock is typically implemented as a reader/writer lock-that is, one that allows any
number of threads to read a session but that prevents overlapping reads and writes as
well as overlapping writes.

Which brings up two very important questions:

1. How does a session state provider know when to apply a lock?

2. How does the provider know whether to treat a request as a reader or a writer?

If the requested page implements the IRequiresSessionState interface (by default, all
pages implement IRequiresSessionState), ASP.NET assumes that the page requires
read/write access to session state. In response to the AcquireRequestState event fired
from the pipeline, SessionStateModule calls the session state provider's
GetItemExclusive method. If the targeted session isn't already locked, GetItemExclusive
applies a write lock and returns the requested data along with a lock ID (a value that
uniquely identifies the lock). However, if the session is locked when GetItemExclusive is
called, indicating that another request targeting the same session is currently executing,
GetItemExclusive returns null and uses the out parameters passed to it to return the
lock ID and the lock's age (how long, in seconds, the session has been locked).

If the requested page implements the IReadOnlySessionState interface instead, ASP.NET
assumes that the page reads but does not write session state. (The most common way
to implement IReadOnlySessionState is to include an EnableSessionState="ReadOnly"

attribute in the page's @ Page directive.) Rather than call the provider's
GetItemExclusive method to retrieve the requestor's session state, ASP.NET calls
GetItem instead. If the targeted session isn't locked by a writer when GetItem is called,
GetItem applies a read lock and returns the requested data. (The read lock ensures that
if a read/write request arrives while the current request is executing, it waits for the lock
to come free. This prevents read/write requests from overlapping with read requests
that are already executing.) Otherwise, GetItem returns null and uses the out
parameters passed to it to return the lock ID and the lock's age-just like
GetItemExclusive.

The third possiblitythat the page implements neither IRequiresSessionState nor
IReadOnlySessionStatetells ASP.NET that the page doesn't use session state, in which
case SessionStateModule calls neither GetItem nor GetItemExclusive. The most common
way to indicate that a page should implement neither interface is to include an
EnableSessionState="false" attribute in the page's @ Page directive.

If SessionStateModule encounters a locked session when it calls GetItem or
GetItemExclusive (that is, if either method returns null), it rerequests the data at half-
second intervals until the lock is released or the request times out. If a time-out occurs,
SessionStateModule calls the provider's ReleaseItemExclusive method to release the lock
and allow the session to be accessed.

SessionStateModule identifies locks using the lock IDs returned by GetItem and
GetItemExclusive. When SessionStateModule calls SetAndReleaseItemExclusive or
ReleaseItemExclusive, it passes in a lock ID. Due to the possibility that a call to
ReleaseItemExclusive on one thread could free a lock just before another thread calls
SetAndReleaseItemExclusive, the SetAndReleaseItemExclusive method of a provider
that supports multiple locks IDs per session should only write the session to the data
source if the lock ID input to it matches the lock ID in the data source.

Expiration Callbacks and Session_End Events
After loading a session state provider, SessionStateModule calls the provider's
SetItemExpireCallback method, passing in a SessionStateItemExpireCallback delegate
that enables the provider to notify SessionStateModule when a session times out. If the
provider supports expiration callbacks, it should save the delegate and return true from
SetItemExpireCallback. Then, whenever a session times out, the provider should notify
SessionStateModule that a session has expired by calling the callback method
encapsulated in the delegate. This enables SessionStateModule to fire Session_End
events when sessions expire.

Session state providers aren't required to support expiration callbacks. A provider that
doesn't support them should return false from SetItemExpireCallback. In that case,
SessionStateModule will not be notified when a session expires and will not fire
Session_End events.

How do the built-in session state providers handle expiration callbacks? The in-

process session state provider, InProcSessionStateStore, stores session content
in the ASP.NET application cache and takes advantage of the cache's sliding-
expiration feature to expire sessions when they go for a specified period of time
without being accessed. When the provider is notified via a cache removal
callback that a session expired from the cache, it notifies SessionStateModule,
and SessionStateModule fires a Session_End event.

The other two built-in providersOutOfProcSessionStateStore and
SqlSessionStateStoredon't support expiration callbacks. Both return false from
SetItemExpireCallback. OutOfProcSessionStateStore uses the application cache
to store sessions, but since session data is stored in a remote process (the "state
server" process), the provider doesn't attempt to notify SessionStateModule
when a session expires. SqlSessionStateStore relies on a SQL Server agent to
"scavenge" the session state database and clean up expired sessions. Having the
agent notify the provider about expired sessions so the provider could, in turn,
notify SessionStateModule would be a tricky endeavor indeed-especially in a Web
farm.

Cookieless Sessions
ASP.NET supports two different types of sessions: cookied and cookieless. The term
actually refers to the mechanism used to round-trip session IDs between clients and
Web servers and does not imply any difference in the sessions themselves. Cookied
sessions round-trip session IDs in HTTP cookies, while cookieless sessions embed
session IDs in URLs using a technique known as "URL munging."

In order to support cookieless sessions, a session state provider must implement a
CreateUninitializedItem method that creates an uninitialized session. When a request
arrives and session state is configured with the default settings for cookieless mode (for
example, when the <sessionState> configuration element contains cookieless="UseUri"
and regenerateExpiredSessionId="true" attributes), SessionStateModule creates a new
session ID, munges it onto the URL, and passes it to CreateUninitializedItem.
Afterwards, a redirect occurs with the munged URL as the target. The purpose of calling
CreateUninitializedItem is to allow the session ID to be recognized as a valid ID following
the redirect. (Otherwise, SessionStateModule would think that the ID extracted from the
URL following the redirect represents an expired session, in which case it would generate
a new session ID, which would force another redirect and result in an endless loop.) If
sessions are cookied rather than cookieless, the provider's CreateUninitializedItem
method is never called. When testing a custom session state provider, be certain to test
it in both cookied and cookieless mode.

A CreateUninitializedItem implementation can use any technique it desires to ensure
that the session ID passed to it is recognized as a valid ID following a redirect.
ASP.NET's InProcSessionStateStore provider, for example, inserts an empty
SessionStateStoreData (that is, a SessionStateStoreData object with null Items and
StaticObjects properties) into the application cache accompanied by a flag marking it as
an uninitialized session. SqlSessionStateStore acts similarly, adding a row representing
the session to the session state database and flagging it as an uninitialized session.

When a session state provider's GetItem or GetItemExclusive method is called, it returns
a SessionStateActions value through the out parameter named actions. The value
returned depends on the state of the session identified by the supplied ID. If the data
corresponding to the session doesn't exist in the data source or if it exists and is already
initialized (that is, if the session was not created by CreateUninitializedItem), GetItem
and GetItemExclusive should return SessionStateActions.None through the actions
parameter. However, if the session data exists in the data source but is not initialized
(indicating the session was created by CreateUninitializedItem), GetItem and
GetItemExclusive should return SessionStateActions.InitializeItem. SessionStateModule
responds to a SessionStateActions.InitializeItem flag by firing a Session_Start event
signifying the start of a new session. It also raises a Session_Start event if GetItem or
GetItemExclusive returns SessionStateActions.None following the creation of a new
session.

TextFileSessionStateProvider
Figure 15 contains the source code for a SessionStateStoreProviderBase-derivative
named TextFileSessionStateProvider that demonstrates the basics of custom session
state providers. TextFileSessionStateProvider stores session state in text files named
SessionID_Session.txt in the application's ~/App_Data/Session_Data directory, where
SessionID is the ID of the corresponding session. Each file contains the state for a
specific session and consists of either two or four lines of text:

• A "0" or "1" indicating whether the session is initialized, where "1" means the session
is initialized, and "0" means it is not

• If line 1 contains a "1", a base-64 string containing the session's serialized non-static
objects

• If line 1 contains a "1", a base-64 string containing the session's serialized static
objects

• A numeric string specifying the session's time-out in minutes

Thus, a file containing an initialized session contains four lines of text, and a file
containing an uninitialized session-that is, a session created by CreateUninitializedItem
in support of cookieless session state-contains two. You must create the
~/App_Data/Session_Data directory before using the provider; the provider doesn't
attempt to create the directory if it doesn't exist. In addition, the provider must have
read/write access to the ~/App_Data/Session_Data directory.

Figure 15. TextFileSessionStateProvider
using System;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.SessionState;
using System.Collections.Specialized;
using System.Collections.Generic;
using System.Configuration.Provider;
using System.Security.Permissions;

using System.Web.Hosting;
using System.IO;

public class TextFileSessionStateProvider :
 SessionStateStoreProviderBase
{
 private Dictionary<string, FileStream> _sessions =
 new Dictionary<string, FileStream> ();

 public override void Initialize(string name,
 NameValueCollection config)
 {
 // Verify that config isn't null
 if (config == null)
 throw new ArgumentNullException("config");

 // Assign the provider a default name if it doesn't have one
 if (String.IsNullOrEmpty(name))
 name = "TextFileSessionStateProvider";

 // Add a default "description" attribute to config if the
 // attribute doesn't exist or is empty
 if (string.IsNullOrEmpty(config["description"]))
 {
 config.Remove("description");
 config.Add("description",
 "Text file session state provider");
 }

 // Call the base class's Initialize method
 base.Initialize(name, config);

 // Throw an exception if unrecognized attributes remain
 if (config.Count > 0)
 {
 string attr = config.GetKey(0);
 if (!String.IsNullOrEmpty(attr))
 throw new ProviderException
 ("Unrecognized attribute: " + attr);
 }

 // Make sure we can read and write files in the
 // ~/App_Data/Session_Data directory
 FileIOPermission permission =
 new FileIOPermission(FileIOPermissionAccess.AllAccess,

 HttpContext.Current.Server.MapPath(
 "~/App_Data/Session_Data"));
 permission.Demand();
 }

 public override SessionStateStoreData
 CreateNewStoreData(HttpContext context, int timeout)
 {
 return new SessionStateStoreData(
 new SessionStateItemCollection(),
 SessionStateUtility.GetSessionStaticObjects(context),
 timeout
);
 }

 public override void CreateUninitializedItem(HttpContext context,
 string id, int timeout)
 {
 // Create a file containing an uninitialized flag
 // and a time-out
 StreamWriter writer = null;

 try
 {
 writer = new StreamWriter(context.Server.MapPath
 (GetSessionFileName(id)));
 writer.WriteLine("0");
 writer.WriteLine(timeout.ToString());
 }
 finally
 {
 if (writer != null)
 writer.Close();
 }
 }

 public override SessionStateStoreData GetItem(HttpContext context,
 string id, out bool locked, out TimeSpan lockAge,
 out object lockId, out SessionStateActions actions)
 {
 return GetSession(context, id, out locked, out lockAge,
 out lockId, out actions, false);
 }

 public override SessionStateStoreData

 GetItemExclusive(HttpContext context, string id,
 out bool locked, out TimeSpan lockAge, out object lockId,
 out SessionStateActions actions)
 {
 return GetSession(context, id, out locked, out lockAge,
 out lockId, out actions, true);
 }

 public override void
 SetAndReleaseItemExclusive(HttpContext context, string id,
 SessionStateStoreData item, object lockId, bool newItem)
 {
 // Serialize the session
 byte[] items, statics;
 SerializeSession(item, out items, out statics);
 string serializedItems = Convert.ToBase64String(items);
 string serializedStatics = Convert.ToBase64String(statics);

 // Get a FileStream representing the session state file
 FileStream stream = null;

 try
 {
 if (newItem)
 stream = File.Create(context.Server.MapPath
 (GetSessionFileName (id)));
 else
 {
 stream = _sessions[id];
 stream.SetLength(0);
 stream.Seek(0, SeekOrigin.Begin);
 }

 // Write session state to the file
 StreamWriter writer = null;

 try
 {
 writer = new StreamWriter(stream);
 writer.WriteLine("1"); // Initialized flag
 writer.WriteLine(serializedItems);
 writer.WriteLine(serializedStatics);
 writer.WriteLine(item.Timeout.ToString());
 }
 finally

 {
 if (writer != null)
 writer.Close();
 }
 }
 finally
 {
 if (newItem && stream != null)
 stream.Close();
 }

 // Unlock the session
 ReleaseItemExclusive(context, id, lockId);
 }

 public override void ReleaseItemExclusive(HttpContext context,
 string id, object lockId)
 {
 // Release the specified session by closing the corresponding
 // FileStream and deleting the lock file
 FileStream stream;

 if (_sessions.TryGetValue (id, out stream))
 {
 _sessions.Remove(id);
 ReleaseLock(context, (string) lockId);
 stream.Close();
 }
 }

 public override void ResetItemTimeout(HttpContext context,
 string id)
 {
 // Update the time stamp on the session state file
 string path = context.Server.MapPath(GetSessionFileName(id));
 File.SetCreationTime(path, DateTime.Now);
 }

 public override void RemoveItem(HttpContext context, string id,
 object lockId, SessionStateStoreData item)
 {
 // Make sure the session is unlocked
 ReleaseItemExclusive(context, id, lockId);

 // Delete the session state file

 File.Delete(context.Server.MapPath(GetSessionFileName(id)));
 }

 public override bool SetItemExpireCallback
 (SessionStateItemExpireCallback expireCallback)
 {
 // This provider doesn't support expiration callbacks,
 // so simply return false here
 return false;
 }

 public override void InitializeRequest(HttpContext context)
 {
 }

 public override void EndRequest(HttpContext context)
 {
 }

 public override void Dispose()
 {
 // Make sure no session state files are left open
 foreach (KeyValuePair<string, FileStream> pair in _sessions)
 {
 pair.Value.Close();
 _sessions.Remove(pair.Key);
 }

 // Delete session files and lock files
 File.Delete (HostingEnvironment.MapPath
 ("~/App_Data/Session_Data/*_Session.txt"));
 File.Delete (HostingEnvironment.MapPath
 ("~/App_Data/Session_Data/*_Lock.txt")); }

 // Helper methods
 private SessionStateStoreData GetSession(HttpContext context,
 string id, out bool locked, out TimeSpan lockAge,
 out object lockId, out SessionStateActions actions,
 bool exclusive)
 {
 // Assign default values to out parameters
 locked = false;
 lockId = null;
 lockAge = TimeSpan.Zero;
 actions = SessionStateActions.None;

 FileStream stream = null;

 try
 {
 // Attempt to open the session state file
 string path =
 context.Server.MapPath(GetSessionFileName(id));
 FileAccess access = exclusive ?
 FileAccess.ReadWrite : FileAccess.Read;
 FileShare share = exclusive ?
 FileShare.None : FileShare.Read;
 stream = File.Open(path, FileMode.Open, access, share);
 }
 catch (FileNotFoundException)
 {
 // Not an error if file doesn't exist
 return null;
 }
 catch (IOException)
 {
 // If we come here, the session is locked because
 // the file couldn't be opened
 locked = true;
 lockId = id;
 lockAge = GetLockAge(context, id);
 return null;
 }

 // Place a lock on the session
 CreateLock(context, id);
 locked = true;
 lockId = id;

 // Save the FileStream reference so it can be used later
 _sessions.Add(id, stream);

 // Find out whether the session is initialized
 StreamReader reader = new StreamReader(stream);
 string flag = reader.ReadLine ();
 bool initialized = (flag == "1");

 if (!initialized)
 {
 // Return an empty SessionStateStoreData

 actions = SessionStateActions.InitializeItem;
 int timeout = Convert.ToInt32(reader.ReadLine ());

 return new SessionStateStoreData(
 new SessionStateItemCollection (),
 SessionStateUtility.GetSessionStaticObjects (context),
 timeout
);
 }
 else
 {
 // Read Items, StaticObjects, and Timeout from the file
 // (NOTE: Don't close the StreamReader, because doing so
 // will close the file)
 byte[] items = Convert.FromBase64String(reader.ReadLine());
 byte[] statics =
 Convert.FromBase64String(reader.ReadLine());
 int timeout = Convert.ToInt32(reader.ReadLine());

 // Deserialize the session
 return DeserializeSession(items, statics, timeout);
 }
 }

 private void CreateLock(HttpContext context, string id)
 {
 // Create a lock file so the lock's age can be determined
 File.Create(context.Server.MapPath
 (GetLockFileName(id))).Close();
 }

 private void ReleaseLock(HttpContext context, string id)
 {
 // Delete the lock file
 string path = context.Server.MapPath(GetLockFileName(id));
 if (File.Exists (path))
 File.Delete(path);
 }

 private TimeSpan GetLockAge(HttpContext context, string id)
 {
 try
 {
 return DateTime.Now
 File.GetCreationTime(context.Server.MapPath

 (GetLockFileName(id)));
 }
 catch (FileNotFoundException)
 {
 // This is important, because it's possible that
 // a lock is active but the lock file hasn't been
 // created yet if another thread owns the lock
 return TimeSpan.Zero;
 }
 }

 string GetSessionFileName(string id)
 {
 return String.Format("~/App_Data/Session_Data/{0}_Session.txt",
 id);
 }

 string GetLockFileName(string id)
 {
 return String.Format("~/App_Data/Session_Data/{0}_Lock.txt",
 id);
 }

 private void SerializeSession(SessionStateStoreData store,
 out byte[] items, out byte[] statics)
 {
 MemoryStream stream1 = null, stream2 = null;
 BinaryWriter writer1 = null, writer2 = null;

 try
 {
 stream1 = new MemoryStream();
 stream2 = new MemoryStream();
 writer1 = new BinaryWriter(stream1);
 writer2 = new BinaryWriter(stream2);

 ((SessionStateItemCollection)
 store.Items).Serialize(writer1);
 store.StaticObjects.Serialize(writer2);

 items = stream1.ToArray();
 statics = stream2.ToArray();
 }
 finally

 {
 if (writer2 != null)
 writer2.Close();
 if (writer1 != null)
 writer1.Close();
 if (stream2 != null)
 stream2.Close();
 if (stream1 != null)
 stream1.Close();
 }
 }

 private SessionStateStoreData DeserializeSession(byte[] items,
 byte[] statics, int timeout)
 {
 MemoryStream stream1 = null, stream2 = null;
 BinaryReader reader1 = null, reader2 = null;

 try
 {
 stream1 = new MemoryStream(items);
 stream2 = new MemoryStream(statics);
 reader1 = new BinaryReader(stream1);
 reader2 = new BinaryReader(stream2);

 return new SessionStateStoreData(
 SessionStateItemCollection.Deserialize(reader1),
 HttpStaticObjectsCollection.Deserialize(reader2),
 timeout
);
 }
 finally
 {
 if (reader2 != null)
 reader2.Close();
 if (reader1 != null)
 reader1.Close();
 if (stream2 != null)
 stream2.Close();
 if (stream1 != null)
 stream1.Close();
 }
 }
}

TextFileSessionStateProvider's locking strategy is built around file-sharing modes.
GetItemExclusive attempts to open the session state file with a FileShare.None flag,
giving it exclusive access to the file. GetItem, however, attempts to open the session
state file with a FileShare.Read flag, allowing other readers to access the file, but not
writers. So that GetItem and GetItemExclusive can return the lock's age if the session
state file is locked when they're called, a 0-byte "lock file" named SessionID_Lock.txt is
created in the ~/App_Data/Session_Data directory when a session state file is
successfully opened. GetItem and GetItemExclusive compute a lock's age by subtracting
the lock file's creation time from the current time. ReleaseItemExclusive and
SetAndReleaseItemExclusive release a lock by closing the session state file and deleting
the corresponding lock file.

TextFileSessionStateProvider takes a simple approach to lock IDs. When it creates a
lock, it assigns the lock a lock ID that equals the session ID. That's sufficient because
the nature of the locks managed by TextFileSessionStateProvider is such that a given
session never has more than one lock applied to it. This behavior is consistent with that
of SqlSessionStateStore, which also uses one lock ID per given session.

Figure 16 demonstrates how to make TextFileSessionStateProvider the default session
state provider. It assumes that TextFileSessionStateProvider is implemented in an
assembly named CustomProviders. Note the syntactical differences between session
state providers and other provider types. The <sessionState> element uses a
customProvider attribute rather than a defaultProvider attribute to designate the default
provider, and the customProvider attribute is ignored unless a mode="Custom" attribute
is included, too.

Figure 16. Web.config file making TextFileSessionStateProvider the default
session state provider
<configuration>
 <system.web>
 <sessionState mode="Custom"
 customProvider="TextFileSessionStateProvider">
 <providers>
 <add name="TextFileSessionStateProvider"
 type="TextFileSessionStateProvider" />
 </providers>
 </sessionState>
 </system.web>
</configuration>

TextFileSessionStateProvider is fully capable of reading and writing any session state
generated by application code. It does not, however, support expiration callbacks. In
fact, the session state files that it generates don't get cleaned up until the provider's
Dispose method is called, which normally occurs when the application is shut down and
the AppDomain is unloaded.

Profile Providers
Profile providers provide the interface between ASP.NET's profile service and profile data
sources. The two most common reasons for writing a custom profile provider are:

• You wish to store profile data in a data source that is not supported by the profile
providers included with the .NET Framework, such as an Oracle database.

• You wish to store profile data in a SQL Server database whose schema differs from
that of the database used by System.Web.Profile.SqlProfileProvider.

The fundamental job of a profile provider is to write profile property values supplied by
ASP.NET to persistent profile data sources, and to read the property values back from
the data source when requested by ASP.NET. Profile providers also implement methods
that allows consumers to manage profile data sources-for example, to delete profiles
that haven't been accessed since a specified date.

The ProfileProvider Class
Developers writing custom profile providers begin by deriving from
System.Web.Profile.ProfileProvider.ProfileProvider derives from
System.Configuration.SettingsProvider, which in turn derives from ProviderBase.
Together, SettingsProvider and ProfileProvider define the abstract class methods and
properties that a derived class must implement in order to serve as an intermediary
between the profile service and profile data sources. ProfileProvider is prototyped as
follows:

public abstract class ProfileProvider : SettingsProvider
{
 public abstract int DeleteProfiles
 (ProfileInfoCollection profiles);

 public abstract int DeleteProfiles (string[] usernames);

 public abstract int DeleteInactiveProfiles
 (ProfileAuthenticationOption authenticationOption,
 DateTime userInactiveSinceDate);

 public abstract int GetNumberOfInactiveProfiles
 (ProfileAuthenticationOption authenticationOption,
 DateTime userInactiveSinceDate);

 public abstract ProfileInfoCollection GetAllProfiles
 (ProfileAuthenticationOption authenticationOption,
 int pageIndex, int pageSize, out int totalRecords);

 public abstract ProfileInfoCollection GetAllInactiveProfiles
 (ProfileAuthenticationOption authenticationOption,

 DateTime userInactiveSinceDate, int pageIndex,
 int pageSize, out int totalRecords);

 public abstract ProfileInfoCollection FindProfilesByUserName
 (ProfileAuthenticationOption authenticationOption,
 string usernameToMatch, int pageIndex, int pageSize,
 out int totalRecords);

 public abstract ProfileInfoCollection
 FindInactiveProfilesByUserName (ProfileAuthenticationOption
 authenticationOption, string usernameToMatch,
 DateTime userInactiveSinceDate, int pageIndex,
 int pageSize, out int totalRecords);
}

A ProfileProvider-derived class must also implement the abstract methods and properties
defined in System.Configuration.SettingsProvider, which is prototyped as follows:

public abstract class SettingsProvider : ProviderBase
{
 // Properties
 public abstract string ApplicationName { get; set; }

 // Methods
 public abstract SettingsPropertyValueCollection
 GetPropertyValues (SettingsContext context,
 SettingsPropertyCollection properties);

 public abstract void SetPropertyValues(SettingsContext context,
 SettingsPropertyValueCollection properties);
}

The following table describes ProfileProvider's methods and properties and provides
helpful notes regarding their implementation:

Table 8. ProfileProvider methods and properties

Method or Property Description

ApplicationName The name of the application using the profile
provider. ApplicationName is used to scope
profile data so that applications can choose
whether to share profile data with other
applications. This property can be read and

written.

GetPropertyValues Reads profile property values from the data
source and returns them in a
SettingsPropertyValueCollection. See
“GetPropertyValues” for details.

SetPropertyValues Writes profile property values to the data
source. The values are provided by ASP.NET in
a SettingsPropertyValueCollection. See
“SetPropertyValues” for details.

DeleteProfiles (ProfileInfoCollection) Deletes the specified profiles from the data
source.

DeleteProfiles (string[]) Deletes the specified users' profiles from the
data source.

DeleteInactiveProfiles Deletes all inactive profiles-profiles that haven't
been accessed since the specified date-from
the data source.

GetNumberOfInactiveProfiles Returns the number of profiles that haven't
been accessed since the specified date.

GetAllProfiles Returns a collection of ProfileInfo objects
containing administrative information about all
profiles, including user names and last activity
dates.

GetAllInactiveProfiles Returns a collection of ProfileInfo objects
containing administrative information regarding
profiles that haven't been accessed since the
specified date.

FindProfilesByUserName Returns a collection of ProfileInfo objects
containing administrative information regarding
profiles whose user names match a specified
pattern.

FindInactiveProfilesByUserName Returns a collection of ProfileInfo objects
containing administrative information regarding
profiles whose user names match a specified
pattern and that haven't been accessed since
the specified date.

Scoping of Profile Data
Profile data is inherently scoped by user name so that profile data can be maintained
independently for each user. When storing profile data, a provider must take care to key
the data by user name so it can be retrieved using the same key later. For anonymous
users, profile providers use anonymous user IDs rather than user names to key profile
properties. The user names passed to profile provider methods are in fact anonymous
user IDs for users who are not authenticated.

In addition, all profile providers inherit from SettingsProvider a property named
ApplicationName whose purpose it to scope the data managed by the provider.
Applications that specify the same ApplicationName when configuring the profile service
share profile data; applications that specify unique ApplicationNames do not. In addition
to associating profiles with user names or anonymous user IDs (profiles are, after all, a
means for storing per-user data), profile-provider implementations must associate
profiles with application names so operations performed on profile data sources can be
scoped accordingly.

As an example, a provider that stores profile data in a SQL database might use a
command similar to the following to retrieve profile data for the user named "Jeff" and
the application named "Contoso:"

SELECT * FROM Profiles
WHERE UserName='Jeff' AND ApplicationName='Contoso'

The AND in the WHERE clause ensures that other applications containing profiles keyed
by the same user name don't conflict with the "Contoso" application.

GetPropertyValues
The two most important methods in a profile provider are the GetPropertyValues and
SetPropertyValues methods inherited from SettingsProvider. These methods are called
by ASP.NET to read property values from the data source and write them back. Other
profile provider methods play a lesser role by performing administrative functions such
as enumerating and deleting profiles.

When code that executes within a request reads a profile property, ASP.NET calls the
default profile provider's GetPropertyValues method. The context parameter passed to
GetPropertyValues is a dictionary of key/value pairs containing information about the
context in which GetPropertyValues was called. It contains the following keys:

• UserNameUser name or user ID of the profile to read

• IsAuthenticatedIndicates whether the requestor is authenticated

The properties parameter contains a collection of SettingsProperty objects representing
the property values ASP.NET is requesting. Each object in the collection represents one
of the properties defined in the <profile> configuration section. GetPropertyValues' job
is to return a SettingsPropertyValuesCollection supplying values for the properties in the
SettingsPropertyCollection. If the property values have been persisted before, then
GetPropertyValues can retrieve the values from the data source. Otherwise, it can return
a SettingsPropertyValuesCollection that instructs ASP.NET to assign default values.

As an example, suppose the <profile> configuration section is defined this way:

<profile>
 <properties>
 <add name="Greeting" type="String" />
 <add name="Count" type="Int32" defaultValue="0" />

 </properties>
</profile>

Each time GetPropertyValues is called, the SettingsPropertyCollection passed to it
contains two SettingsProperty objects: one representing the Greeting property, the
other representing the Count property. The first time GetPropertyValues is called, the
provider can simply do this since the property values haven't yet been persisted in the
data source:

SettingsPropertyValueCollection settings =
 new SettingsPropertyValueCollection ();

foreach (SettingsProperty property in properties)
 settings.Add (new SettingsPropertyValue (property));

return settings;

The returned SettingsPropertyValueCollection contains two SettingsPropertyValues: one
representing the Greeting property's property value, and the other representing the
Count property's property value. Moreover, because PropertyValue and SerializedValue
are set to null in the SettingsPropertyValue objects and Deserialized is set to false,
ASP.NET assigns each property a default value (which come from the properties'
defaultValue attributes if present.)

The second time GetPropertyValues is called, it retrieves the property values from the
data source (assuming the properties were persisted there in the call to
SetPropertyValues that followed the previous call to GetPropertyValues). Once more, its
job is to return a SettingsPropertyValueCollection containing property values. This time,
however, GetPropertyValues has a choice of ways to communicate property values to
ASP.NET:

• It can set the corresponding SettingsPropertyValue object's PropertyValue property
equal to the actual property value and the object's Deserialized property to true.
ASP.NET will retrieve the property value from PropertyValue. This is useful for
primitive types that do not require serialization. It's also useful for explicitly
assigning null values to reference types by setting PropertyValue to null and
Deserialized to true.

• It can set the corresponding SettingsPropertyValue object's SerializedValue property
equal to the serialized property value and the object's Deserialized property to false.
ASP.NET will deserialize SerializedValue to obtain the actual property value, using
the serialization type specified in the SettingsProperty object's SerializeAs property.
This is useful for complex types that require serialization. The provider typically
doesn't do the serialization itself; rather, it reads the serialized property value that
was persisted in the data source by SetPropertyValues.

Another reason for providing serialized data to ASP.NET via the SerializedValue
property is that there is no guarantee the calling code that triggered the call to
GetPropertyValues is actually interested in all the profile properties. Providing
data through SerializedValue allows for lazy deserialization by SettingsBase. If
you have ten properties being retrieved by the profile provider, and the calling
code on a page only uses one of these properties, then nine of properties don't
have to be deserialized, resulting in a potentially significant performance win.

Thus, GetPropertyValues might perform its duties this way the second time around:

SettingsPropertyValueCollection settings =
 new SettingsPropertyValueCollection ();

foreach (SettingsProperty property in properties)
{
 // Create a SettingsPropertyValue
 SettingsPropertyValue pp = new SettingsPropertyValue (property);

 // Read a persisted property value from the data source
 object val = GetPropertyValueFromDataSource (property.Name);

 // If val is null, set the property value to null
 if (val == null)
 {
 pp.PropertyValue = null;
 pp.Deserialized = true;
 pp.IsDirty = false;
 }

 // If val is not null, set the property value to a non-null value
 else
 {
 // TODO: Set pp.PropertyValue to the property value and
 // pp.Deserialized to true, or set pp.SerializedValue to
 // the serialized property value and Deserialized to false.
 // Which strategy you choose depends on which was written
 // to the data source: PropertyValue or SerializedValue.
 }

 // Add the SettingsPropertyValue to the collection

 settings.Add (pp);
}

// Return the collection
return settings;

SetPropertyValues
SetPropertyValues is the counterpart to GetPropertyValues. It's called by ASP.NET to
persist property values in the profile data source. Like GetPropertyValues, it's passed a
SettingsContext object containing a user name (or ID) and a Boolean indicating whether
the user is authenticated. It's also passed a SettingsPropertyValueCollection containing
the property values to be persisted. The format in which the data is persisted-and the
physical storage medium that it's persisted in-is up to the provider. Obviously, the
format in which SetPropertyValues persists profile data must be understood by the
provider's GetProfileProperties method.

SetPropertyValues' job is to iterate through the supplied SettingsPropertyValue objects
and write each property value to the data source where GetPropertyValues can retrieve
it later on. Where SetPropertyValues obtains the property values from depends on the
Deserialized properties of the corresponding SettingsPropertyValue objects:

• If Deserialized is true, SetPropertyValues can obtain the property value directly from
the SettingsPropertyValue object's PropertyValue property.

• If Deserialized is false, SetPropertyValues can obtain the property value, in serialized
form, from the SettingsPropertyValue object's SerializedValue property. There's no
need for the provider to attempt to deserialize the serialized property value; it can
treat the serialized property value as an opaque entity and write it to the data
source. Later, GetPropertyValues can fetch the serialized property value from the
data source and return it to ASP.NET in a SettingsPropertyValue object whose
SerializedValue property holds the serialized property value and whose Deserialized
property is false.

A profile provider's SetPropertyValues method might therefore be structured like this:

foreach (SettingsPropertyValue property in properties)
{
 // Get information about the user who owns the profile
 string username = (string) context["UserName"];
 bool authenticated = (bool) context["IsAuthenticated"];

 // Ignore this property if the user is anonymous and
 // the property's AllowAnonymous property is false
 if (!authenticated &&
 !(bool) property.Property.Attributes["AllowAnonymous"])
 continue;

 // Otherwise persist the property value
 if (property.Deserialized)
 {
 // TODO: Write property.PropertyValue to the data source
 }
 else
 {
 // TODO: Write property.SerializedValue to the data source
 }
}

Alternatively, SetPropertyValues could ignore PropertyValue and simply write
SerializedValue to the data source, regardless of whether Deserialized is true or false.
The GetPropertyValues implementation would read SerializedValue from the data source
and return it in a SettingsPropertyValue object's SerializedValue property with
Deserialized set to false. ASP.NET would then compute the actual property value. This is
the approach taken by ASP.NET's SqlProfileProvider provider, which only stores
serialized property values in the profile database.

The example above doesn't persist a property value if the user isn't authenticated and
the property isn't attributed to allow anonymous users. It assumes that if the property
appears in a SettingsPropertyCollection passed to GetPropertyValues, GetPropertyValues
will see that the property value isn't in the data source and allow ASP.NET to assign a
default value. Similarly, SetPropertyValues may choose not to write to the data source
properties whose UsingDefaultValue property is true, because such values are easily
recreated when GetPropertyValues is called. If a profile provider only persists property
values that have changed since they were loaded, it could even ignore properties whose
IsDirty property is false.

ASP.NET's SqlProfileProvider writes property values to the database even if
IsDirty is false. (The TextFileProfileProvider class presented in the next section
does the same.) That's because each time SqlProfileProvider records profile
property values in the database, it overwrites existing values. It does,
however, refrain from saving values whose AllowAnonymous property is false if
the user is unauthenticated, and properties with IsDirty equal to false and
UsingDefaultValue equal to true. A custom profile provider that stores property
values in individual fields in the data source-fields that can be individually
updated without affecting other fields-could be more efficient in its
SetPropertyValues method by checking the properties' IsDirty values and only
updating the ones that are dirty.

TextFileProfileProvider
Figure 17 contains the source code for a ProfileProvider-derivative named
TextFileProfileProvider that demonstrates the minimum functionality required of a profile
provider. It implements the two key ProfileProvider methods-GetPropertyValues and
SetPropertyValues-but provides trivial implementations of the others. Despite its
simplicity, TextFileProfileProvider is fully capable of reading and writing data generated
from any profile defined in the <profile> configuration section.

TextFileProfileProvider stores profile data in text files named Username_Profile.txt in the
application's ~/App_Data/Profile_Data directory. Each file contains the profile data for a
specific user and consists of a set of three strings (described later in this section). You
must create the ~/App_Data/Profile_Data directory before using the provider; the
provider doesn't attempt to create the directory if it doesn't exist. In addition, the
provider must have read/write access to the ~/App_Data/Profile_Data directory.

Figure 17. TextFileProfileProvider
using System;
using System.Configuration;
using System.Configuration.Provider;
using System.Collections.Specialized;
using System.Security.Permissions;
using System.Web;
using System.Web.Profile;
using System.Web.Hosting;
using System.Globalization;
using System.IO;
using System.Text;

[SecurityPermission(SecurityAction.Assert,
 Flags=SecurityPermissionFlag.SerializationFormatter)]
public class TextFileProfileProvider : ProfileProvider
{
 public override string ApplicationName
 {
 get { throw new NotSupportedException(); }
 set { throw new NotSupportedException(); }
 }

 public override void Initialize(string name,
 NameValueCollection config)
 {
 // Verify that config isn't null
 if (config == null)
 throw new ArgumentNullException("config");

 // Assign the provider a default name if it doesn't have one
 if (String.IsNullOrEmpty(name))

 name = "TextFileProfileProvider";

 // Add a default "description" attribute to config if the
 // attribute doesn't exist or is empty
 if (string.IsNullOrEmpty(config["description"]))
 {
 config.Remove("description");
 config.Add("description", "Text file profile provider");
 }

 // Call the base class's Initialize method
 base.Initialize(name, config);

 // Throw an exception if unrecognized attributes remain
 if (config.Count > 0)
 {
 string attr = config.GetKey(0);
 if (!String.IsNullOrEmpty(attr))
 throw new ProviderException
 ("Unrecognized attribute: " + attr);
 }

 // Make sure we can read and write files
 // in the ~/App_Data/Profile_Data directory
 FileIOPermission permission =
 new FileIOPermission (FileIOPermissionAccess.AllAccess,
 HttpContext.Current.Server.MapPath(
 "~/App_Data/Profile_Data"));
 permission.Demand();
 }

 public override SettingsPropertyValueCollection
 GetPropertyValues(SettingsContext context,
 SettingsPropertyCollection properties)
 {
 SettingsPropertyValueCollection settings =
 new SettingsPropertyValueCollection();

 // Do nothing if there are no properties to retrieve
 if (properties.Count == 0)
 return settings;

 // For properties lacking an explicit SerializeAs setting, set
 // SerializeAs to String for strings and primitives, and XML
 // for everything else

 foreach (SettingsProperty property in properties)
 {
 if (property.SerializeAs ==
 SettingsSerializeAs.ProviderSpecific)
 if (property.PropertyType.IsPrimitive ||
 property.PropertyType == typeof(String))
 property.SerializeAs = SettingsSerializeAs.String;
 else
 property.SerializeAs = SettingsSerializeAs.Xml;

 settings.Add(new SettingsPropertyValue(property));
 }

 // Get the user name or anonymous user ID
 string username = (string)context["UserName"];

 // NOTE: Consider validating the user name here to prevent
 // malicious user names such as "../Foo" from targeting
 // directories other than ~/App_Data/Profile_Data

 // Load the profile
 if (!String.IsNullOrEmpty(username))
 {
 StreamReader reader = null;
 string[] names;
 string values;
 byte[] buf = null;

 try
 {
 // Open the file containing the profile data
 try
 {
 string path =
 String.Format(
 "~/App_Data/Profile_Data/{0}_Profile.txt",
 username.Replace('\\', '_'));
 reader = new StreamReader
 (HttpContext.Current.Server.MapPath(path));
 }
 catch (IOException)
 {
 // Not an error if file doesn't exist
 return settings;
 }

 // Read names, values, and buf from the file
 names = reader.ReadLine().Split (':');

 values = reader.ReadLine();
 if (!string.IsNullOrEmpty(values))
 {
 UnicodeEncoding encoding = new UnicodeEncoding();
 values = encoding.GetString
 (Convert.FromBase64String(values));
 }

 string temp = reader.ReadLine();
 if (!String.IsNullOrEmpty(temp))
 {
 buf = Convert.FromBase64String(temp);
 }
 else
 buf = new byte[0];
 }
 finally
 {
 if (reader != null)
 reader.Close();
 }

 // Decode names, values, and buf and initialize the
 // SettingsPropertyValueCollection returned to the caller
 DecodeProfileData(names, values, buf, settings);
 }

 return settings;
 }

 public override void SetPropertyValues(SettingsContext context,
 SettingsPropertyValueCollection properties)
 {
 // Get information about the user who owns the profile
 string username = (string) context["UserName"];
 bool authenticated = (bool) context["IsAuthenticated"];

 // NOTE: Consider validating the user name here to prevent
 // malicious user names such as "../Foo" from targeting
 // directories other than ~/App_Data/Profile_Data

 // Do nothing if there is no user name or no properties
 if (String.IsNullOrEmpty (username) || properties.Count == 0)
 return;

 // Format the profile data for saving
 string names = String.Empty;
 string values = String.Empty;
 byte[] buf = null;

 EncodeProfileData(ref names, ref values, ref buf,
 properties, authenticated);

 // Do nothing if no properties need saving
 if (names == String.Empty)
 return;

 // Save the profile data
 StreamWriter writer = null;

 try
 {
 string path =
 String.Format(
 "~/App_Data/Profile_Data/{0}_Profile.txt",
 username.Replace('\\', '_'));
 writer = new StreamWriter
 (HttpContext.Current.Server.MapPath(path), false);

 writer.WriteLine(names);

 if (!String.IsNullOrEmpty(values))
 {
 UnicodeEncoding encoding = new UnicodeEncoding();
 writer.WriteLine(Convert.ToBase64String
 (encoding.GetBytes(values)));
 }
 else
 writer.WriteLine();

 if (buf != null && buf.Length > 0)
 writer.WriteLine(Convert.ToBase64String(buf));
 else
 writer.WriteLine();
 }
 finally

 {
 if (writer != null)
 writer.Close();
 }
 }

 public override int DeleteInactiveProfiles
 (ProfileAuthenticationOption authenticationOption,
 DateTime userInactiveSinceDate)
 {
 throw new NotSupportedException();
 }

 public override int DeleteProfiles(string[] usernames)
 {
 throw new NotSupportedException();
 }

 public override int DeleteProfiles(ProfileInfoCollection profiles)
 {
 throw new NotSupportedException();
 }

 public override ProfileInfoCollection
 FindInactiveProfilesByUserName(ProfileAuthenticationOption
 authenticationOption, string usernameToMatch, DateTime
 userInactiveSinceDate, int pageIndex, int pageSize, out int
 totalRecords)
 {
 throw new NotSupportedException();
 }

 public override ProfileInfoCollection FindProfilesByUserName
 (ProfileAuthenticationOption authenticationOption,
 string usernameToMatch, int pageIndex, int pageSize,
 out int totalRecords)
 {
 throw new NotSupportedException();
 }

 public override ProfileInfoCollection GetAllInactiveProfiles
 (ProfileAuthenticationOption authenticationOption,
 DateTime userInactiveSinceDate, int pageIndex, int pageSize,
 out int totalRecords)
 {

 throw new NotSupportedException();
 }

 public override ProfileInfoCollection GetAllProfiles
 (ProfileAuthenticationOption authenticationOption,
 int pageIndex, int pageSize, out int totalRecords)
 {
 throw new NotSupportedException();
 }

 public override int GetNumberOfInactiveProfiles
 (ProfileAuthenticationOption authenticationOption,
 DateTime userInactiveSinceDate)
 {
 throw new NotSupportedException();
 }

 // Helper methods
 private void DecodeProfileData(string[] names, string values,
 byte[] buf, SettingsPropertyValueCollection properties)
 {
 if (names == null || values == null || buf == null ||
 properties == null)
 return;

 for (int i=0; i<names.Length; i+=4)
 {
 // Read the next property name from "names" and retrieve
 // the corresponding SettingsPropertyValue from
 // "properties"
 string name = names[i];
 SettingsPropertyValue pp = properties[name];

 if (pp == null)
 continue;

 // Get the length and index of the persisted property value
 int pos = Int32.Parse(names[i + 2],
 CultureInfo.InvariantCulture);
 int len = Int32.Parse(names[i + 3],
 CultureInfo.InvariantCulture);

 // If the length is -1 and the property is a reference
 // type, then the property value is null
 if (len == -1 && !pp.Property.PropertyType.IsValueType)

 {
 pp.PropertyValue = null;
 pp.IsDirty = false;
 pp.Deserialized = true;
 }

 // If the property value was peristed as a string,
 // restore it from "values"
 else if (names[i + 1] == "S" && pos >= 0 && len > 0 &&
 values.Length >= pos + len)
 pp.SerializedValue = values.Substring(pos, len);

 // If the property value was peristed as a byte array,
 // restore it from "buf"
 else if (names[i + 1] == "B" && pos >= 0 && len > 0 &&
 buf.Length >= pos + len)
 {
 byte[] buf2 = new byte[len];
 Buffer.BlockCopy(buf, pos, buf2, 0, len);
 pp.SerializedValue = buf2;
 }
 }
 }

 private void EncodeProfileData(ref string allNames,
 ref string allValues, ref byte[] buf,
 SettingsPropertyValueCollection properties,
 bool userIsAuthenticated)
 {
 StringBuilder names = new StringBuilder();
 StringBuilder values = new StringBuilder();
 MemoryStream stream = new MemoryStream();

 try
 {
 foreach (SettingsPropertyValue pp in properties)
 {
 // Ignore this property if the user is anonymous and
 // the property's AllowAnonymous property is false
 if (!userIsAuthenticated &&
 !(bool)pp.Property.Attributes["AllowAnonymous"])
 continue;

 // Ignore this property if it's not dirty and is
 // currently assigned its default value

 if (!pp.IsDirty && pp.UsingDefaultValue)
 continue;

 int len = 0, pos = 0;
 string propValue = null;

 // If Deserialized is true and PropertyValue is null,
 // then the property's current value is null (which
 // we'll represent by setting len to -1)
 if (pp.Deserialized && pp.PropertyValue == null)
 len = -1;

 // Otherwise get the property value from
 // SerializedValue
 else
 {
 object sVal = pp.SerializedValue;

 // If SerializedValue is null, then the property's
 // current value is null
 if (sVal == null)
 len = -1;

 // If sVal is a string, then encode it as a string
 else if (sVal is string)
 {
 propValue = (string)sVal;
 len = propValue.Length;
 pos = values.Length;
 }

 // If sVal is binary, then encode it as a byte
 // array
 else
 {
 byte[] b2 = (byte[])sVal;
 pos = (int)stream.Position;
 stream.Write(b2, 0, b2.Length);
 stream.Position = pos + b2.Length;
 len = b2.Length;
 }
 }

 // Add a string conforming to the following format
 // to "names:"

 //
 // "name:B|S:pos:len"
 // ^ ^ ^ ^
 // | | | |
 // | | | +--- Length of data
 // | | +------- Offset of data
 // | +----------- Location (B="buf", S="values")
 // +--------------- Property name

 names.Append(pp.Name + ":" + ((propValue != null) ?
 "S" : "B") + ":" +
 pos.ToString(CultureInfo.InvariantCulture) + ":" +
 len.ToString(CultureInfo.InvariantCulture) + ":");

 // If the propery value is encoded as a string, add the
 // string to "values"
 if (propValue != null)
 values.Append(propValue);
 }

 // Copy the binary property values written to the
 // stream to "buf"
 buf = stream.ToArray();
 }
 finally
 {
 if (stream != null)
 stream.Close();
 }

 allNames = names.ToString();
 allValues = values.ToString();
 }
}

TextFileProfileProvider stores profile data in exactly the same format as ASP.NET's
SqlProfileProvider, with some extra base-64 encoding thrown in to allow binary data and
XML data to be stored in a single line of text. Its EncodeProfileData and
DecodeProfileData methods, which do the encoding and decoding, are based on similar
methods-methods which are internal and therefore can't be called from user code-in
ASP.NET's ProfileModule class.

EncodeProfileData packs all the property values passed to it into three values:

• A string variable named names that encodes each property value in the following
format:

Name:B|S:StartPos:Length

Name is the property value's name. The second parameter, which is either B (for
"binary") or S (for "string"), indicates whether the corresponding property value is
stored in the string variable named values (S) or the byte[] variable named buf (B).
StartPos and Length indicate the starting position (0-based) within values or buf and
the length of the data, respectively. A length of -1 indicates that the property is a
reference type and that its value is null.

• A string variable named values that stores string and XML property values. Before
writing values to a text file, TextFileProfileProvider base-64 encodes it so that XML
data spanning multiple lines can be packed into a single line of text.

• A byte[] variable named buf that stores binary property values. Before writing buf to
a text file, TextFileProfileProvider base-64 encodes it so that binary data can be
packed into a line of text.

DecodeProfileData reverses the encoding, converting names, values, and buf back into
property values and applying them to the members of the supplied
SettingsPropertyValueCollection. Note that profile providers are not required to persist
data in this format or any other format. The format in which profile data is stored is left
to the discretion of the implementor.

Figure 18 demonstrates how to make TextFileProfileProvider the default profile provider.
It assumes that TextFileProfileProvider is implemented in an assembly named
CustomProviders.

Figure 18. Web.config file making TextFileProfileProvider the default profile
provider
<configuration>
 <system.web>
 <profile defaultProvider="TextFileProfileProvider">
 <properties>
 ...
 </properties>
 <providers>
 <add name="TextFileProfileProvider"
 type="TextFileProfileProvider, CustomProviders"
 description="Text file profile provider"
 />
 </providers>
 </profile>
 </system.web>
</configuration>

For simplicity, TextFileProfileProvider does not honor the ApplicationName property.
Because TextFileProfileProvider stores profile data in text files in a subdirectory of the
application root, all data that it manages is inherently application-scoped. A full-featured
profile provider must support ApplicationName so profile consumers can choose whether
to keep profile data private or share it with other applications.

Web Event Providers
Web event providers provide the interface between ASP.NET's health monitoring
subsystem and data sources that log or further process the events ("Web events") fired
by that subsystem. The most common reason for writing a custom Web event provider is
to enable administrators to log Web events in media not supported by the built-in Web
event providers. ASP.NET 2.0 comes with Web event providers for logging Web events in
the Windows event log (EventLogWebEventProvider) and in Microsoft SQL Server
databases (SqlWebEventProvider). It also includes Web event providers that respond to
Web events by sending e-mail (SimpleMailWebEventProvider and
TemplatedMailWebEventProvider) and by forwarding them to the WMI subsystem
(WmiWebEventProvider) and to diagnostics trace (TraceWebEventProvider).

Developers writing custom Web event providers generally begin by deriving from
System.Web.Management.WebEventProvider, which derives from ProviderBase and adds
abstract methods and properties defining the basic characteristics of a Web event
provider, or from System.Web.Management.BufferedWebEventProvider, which derives
from WebEventProvider and adds buffering support. (SqlWebEventProvider, for example,
derives from BufferedWebEventProvider so events can be "batched" and committed to
the database en masse.) Developers writing Web event providers that send e-mail may
also derive from System.Web.Management.MailWebEventProvider, which is the base
class for SimpleMailWebEventProvider and TemplatedMailWebEventProvider.

The WebEventProvider Class
System.Web.Management.WebEventProvider is prototyped as follows:

public abstract class WebEventProvider : ProviderBase
{
 public abstract void ProcessEvent (WebBaseEvent raisedEvent);
 public abstract void Flush ();
 public abstract void Shutdown ();
}

The following table describes WebEventProvider's members and provides helpful notes
regarding their implementation:

Table 9. WebEventProvider methods and properties

Method Description

ProcessEvent Called by ASP.NET when a Web event mapped to this provider fires.
The raisedEvent parameter encapsulates information about the Web
event, including the event type, event code, and a message
describing the event.

Flush Notifies providers that buffer Web events to flush their buffers.
Called by ASP.NET when

System.Web.Management.WebEventManager.Flush is called to flush
buffered events.

Shutdown Called by ASP.NET when the provider is unloaded. Use it to release
any unmanaged resources held by the provider or to perform other
clean-up operations.

Your job in implementing a custom Web event provider in a derived class is to override
and provide implementations of WebEventProvider's abstract methods, and optionally to
override key virtuals such as Initialize.

TextFileWebEventProvider
Figure 19 contains the source code for a sample Web event provider named
TextFileWebEventProvider that logs Web events in a text file. The text file's name is
specified using the provider's logFileName attribute, and the text file is automatically
created by the provider if it doesn't already exist. A new entry is written to the log each
time TextFileWebEventProvider's ProcessEvent method is called notifying the provider
that a Web event has been fired.

Figure 19. TextFileWebEventProvider
using System;
using System.Web.Management;
using System.Configuration.Provider;
using System.Collections.Specialized;
using System.Web.Hosting;
using System.IO;
using System.Security.Permissions;
using System.Web;

public class TextFileWebEventProvider : WebEventProvider
{
 private string _LogFileName;

 public override void Initialize(string name,
 NameValueCollection config)
 {
 // Verify that config isn't null
 if (config == null)
 throw new ArgumentNullException("config");

 // Assign the provider a default name if it doesn't have one
 if (String.IsNullOrEmpty(name))
 name = "TextFileWebEventProvider";

 // Add a default "description" attribute to config if the
 // attribute doesn't exist or is empty
 if (string.IsNullOrEmpty(config["description"]))

 {
 config.Remove("description");
 config.Add("description", "Text file Web event provider");
 }

 // Call the base class's Initialize method
 base.Initialize(name, config);

 // Initialize _LogFileName and make sure the path
 // is app-relative
 string path = config["logFileName"];

 if (String.IsNullOrEmpty(path))
 throw new ProviderException
 ("Missing logFileName attribute");

 if (!VirtualPathUtility.IsAppRelative(path))
 throw new ArgumentException
 ("logFileName must be app-relative");

 string fullyQualifiedPath = VirtualPathUtility.Combine
 (VirtualPathUtility.AppendTrailingSlash
 (HttpRuntime.AppDomainAppVirtualPath), path);

 _LogFileName = HostingEnvironment.MapPath(fullyQualifiedPath);
 config.Remove("logFileName");

 // Make sure we have permission to write to the log file
 // throw an exception if we don't
 FileIOPermission permission =
 new FileIOPermission(FileIOPermissionAccess.Write |
 FileIOPermissionAccess.Append, _LogFileName);
 permission.Demand();

 // Throw an exception if unrecognized attributes remain
 if (config.Count > 0)
 {
 string attr = config.GetKey(0);
 if (!String.IsNullOrEmpty(attr))
 throw new ProviderException
 ("Unrecognized attribute: " + attr);
 }
 }

 public override void ProcessEvent(WebBaseEvent raisedEvent)

 {
 // Write an entry to the log file
 LogEntry (FormatEntry(raisedEvent));
 }

 public override void Flush() {}
 public override void Shutdown() {}

 // Helper methods
 private string FormatEntry(WebBaseEvent e)
 {
 return String.Format("{0}\t{1}\t{2} (Event Code: {3})",
 e.EventTime, e.GetType ().ToString (), e.Message,
 e.EventCode);
 }

 private void LogEntry(string entry)
 {
 StreamWriter writer = null;

 try
 {
 writer = new StreamWriter(_LogFileName, true);
 writer.WriteLine(entry);
 }
 finally
 {
 if (writer != null)
 writer.Close();
 }
 }
}

The Web.config file in Figure 20 registers TextFileWebEventProvider as a Web event
provider and maps it to Application Lifetime events-one of several predefined Web event
types fired by ASP.NET. Application Lifetime events fire at key junctures during an
application's lifetime, including when the application starts and stops.

Figure 20. Web.config file mapping Application Lifetime events to
TextFileWebEventProvider
<configuration>
 <system.web>
 <healthMonitoring enabled="true">
 <providers>
 <add name="AspNetTextFileWebEventProvider"

 type="TextFileWebEventProvider"
 logFileName="~/App_Data/Contosolog.txt"
 />
 </providers>
 <rules>
 <add name="Contoso Application Lifetime Events"
 eventName="Application Lifetime Events"
 provider="AspNetTextFileWebEventProvider"
 minInterval="00:00:01" minInstances="1"
 maxLimit="Infinite"
 />
 </rules>
 </healthMonitoring>
 </system.web>
</configuration>

Figure 21 shows a log file generated by TextFileWebEventProvider, with tabs
transformed into line breaks for formatting purposes. (In an actual log file, each entry
comprises a single line.) An administrator using this log file now has a written record of
application starts and stops.

Figure 21: Sample log produced by TextFileWebEventProvider
5/12/2005 5:56:05 PM
System.Web.Management.WebApplicationLifetimeEvent
Application is starting. (Event Code: 1001)

5/12/2005 5:56:16 PM
System.Web.Management.WebApplicationLifetimeEvent
Application is shutting down. Reason: Configuration changed. (Event Code:
1002)

5/12/2005 5:56:16 PM
System.Web.Management.WebApplicationLifetimeEvent
Application is shutting down. Reason: Configuration changed. (Event Code:
1002)

5/12/2005 5:56:19 PM
System.Web.Management.WebApplicationLifetimeEvent
Application is starting. (Event Code: 1001)

5/12/2005 5:56:23 PM
System.Web.Management.WebApplicationLifetimeEvent
Application is shutting down. Reason: Configuration changed. (Event Code:
1002)

5/12/2005 5:56:23 PM

System.Web.Management.WebApplicationLifetimeEvent
Application is shutting down. Reason: Configuration changed. (Event Code:
1002)

5/12/2005 5:56:26 PM
System.Web.Management.WebApplicationLifetimeEvent
Application is starting. (Event Code: 1001)

The BufferedWebEventProvider Class
One downside to TextFileWebEventProvider is that it opens, writes to, and closes a text
file each time a Web event mapped to it fires. That might not be bad for Application
Lifetime events, which fire relatively infrequently, but it could adversely impact the
performance of the application as a whole if used to log events that fire more frequently
(for example, in every request).

The solution is to do as SqlWebEventProvider does and derive from
BufferedWebEventProvider rather than WebEventProvider. BufferedWebEventProvider
adds buffering support to WebEventProvider. It provides default implementations of
some of WebEventProvider's abstract methods, most notably a default implementation
of ProcessEvent that buffers Web events in a WebEventBuffer object if buffering is
enabled. It also adds an abstract method named ProcessEventFlush that's called when
buffered Web events need to be unbuffered. And it adds properties named UseBuffering
and BufferMode (complete with implementations) that let the provider determine at run-
time whether buffering is enabled and, if it is, what the buffering parameters are.

System.Web.Management.BufferedWebEventProvider is prototyped as follows:

public abstract class BufferedWebEventProvider : WebEventProvider
{
 // Properties
 public bool UseBuffering { get; }
 public string BufferMode { get; }

 // Virtual methods
 public override void Initialize (string name,
 NameValueCollection config);
 public override void ProcessEvent (WebBaseEvent raisedEvent);
 public override void Flush ();

 // Abstract methods
 public abstract void ProcessEventFlush (WebEventBufferFlushInfo
 flushInfo);
}

The following table describes BufferedWebEventProvider's members and provides helpful
notes regarding their implementation:

Table 10. BufferedWebEventProvider methods and properties

Method or Property Description

UseBuffering Boolean property that specifies whether buffering is enabled.
BufferedWebEventProvider.Initialize initializes this property
from the buffer attribute of the <add> element that registers
the provider. UseBuffering defaults to true.

BufferMode String property that specifies the buffer mode.
BufferedWebEventProvider.Initialize initializes this property
from the bufferMode attribute of the <add> element that
registers the provider. bufferMode values are defined in the
<bufferModes> section of the <healthMonitoring>
configuration section. This property has no default value.
BufferedWebEventProvider.Initialize throws an exception if
UseBuffering is true but the bufferMode attribute is missing.

Initialize Overridden by BufferedWebEventProvider. The default
implementation initializes the provider's UseBuffering and
BufferMode properties, calls base.Initialize, and then throws
an exception if unprocessed configuration attributes remain
in the config parameter's NameValueCollection.

ProcessEvent Overridden by BufferedWebEventProvider. The default
implementation calls ProcessEventFlush if buffering is
disabled (that is, if UseBuffering is false) or adds the event to
an internal WebEventBuffer if buffering is enabled.

Flush Overridden by BufferedWebEventProvider. The default
implementation calls Flush on the WebEventBuffer holding
buffered Web events. WebEventBuffer.Flush, in turn,
conditionally calls ProcessEventFlush using internal logic that
takes into account, among other things, the current buffer
mode and elapsed time.

ProcessEventFlush Called by ASP.NET to flush buffered Web events. The
WebEventBufferFlushInfo parameter passed to this method
includes, among other things, an Event property containing a
collection of buffered Web events.

This method is abstract (MustOverride in Visual Basic) and
must be overridden in a derived class.

Your job in implementing a custom buffered Web event provider in a derived class is to
override and provide implementations of BufferedWebEventProvider's abstract methods,
including the Shutdown method, which is inherited from WebEventProvider but not
overridden by BufferedWebEventProvider, and ProcessEventFlush, which exposes a

collection of buffered Web events that you can iterate over. Of course, you can also
override key virtuals such as Initialize.

BufferedTextFileWebEventProvider
Figure 22 contains the source code for a sample buffered Web event provider named
BufferedTextFileWebEventProvider, which logs Web events in a text file just like
TextFileWebEventProvider. However, unlike TextFileWebEventProvider,
BufferedTextFileWebEventProvider doesn't write to the log file every time it receives a
Web event. Instead, it uses the buffering support built into BufferedWebEventProvider to
cache Web events. If UseBuffering is true, BufferedTextFileWebEventProvider commits
Web events to the log file only when its ProcessEventFlush method is called.

Figure 22. BufferedTextFileWebEventProvider
using System;
using System.Web.Management;
using System.Configuration.Provider;
using System.Collections.Specialized;
using System.Web.Hosting;
using System.IO;
using System.Security.Permissions;
using System.Web;

public class BufferedTextFileWebEventProvider :
 BufferedWebEventProvider
{
 private string _LogFileName;

 public override void Initialize(string name,
 NameValueCollection config)
 {
 // Verify that config isn't null
 if (config == null)
 throw new ArgumentNullException("config");

 // Assign the provider a default name if it doesn't have one
 if (String.IsNullOrEmpty(name))
 name = "BufferedTextFileWebEventProvider";

 // Add a default "description" attribute to config if the
 // attribute doesn't exist or is empty
 if (string.IsNullOrEmpty(config["description"]))
 {
 config.Remove("description");
 config.Add("description",
 "Buffered text file Web event provider");
 }

 // Initialize _LogFileName. NOTE: Do this BEFORE calling the
 // base class's Initialize method. BufferedWebEventProvider's
 // Initialize method checks for unrecognized attributes and
 // throws an exception if it finds any. If we don't process
 // logFileName and remove it from config, base.Initialize will
 // throw an exception.

 string path = config["logFileName"];

 if (String.IsNullOrEmpty(path))
 throw new ProviderException
 ("Missing logFileName attribute");

 if (!VirtualPathUtility.IsAppRelative(path))
 throw new ArgumentException
 ("logFileName must be app-relative");

 string fullyQualifiedPath = VirtualPathUtility.Combine
 (VirtualPathUtility.AppendTrailingSlash
 (HttpRuntime.AppDomainAppVirtualPath), path);

 _LogFileName = HostingEnvironment.MapPath(fullyQualifiedPath);
 config.Remove("logFileName");

 // Make sure we have permission to write to the log file
 // throw an exception if we don't
 FileIOPermission permission =
 new FileIOPermission(FileIOPermissionAccess.Write |
 FileIOPermissionAccess.Append, _LogFileName);
 permission.Demand();

 // Call the base class's Initialize method
 base.Initialize(name, config);

 // NOTE: No need to check for unrecognized attributes
 // here because base.Initialize has already done it
 }

 public override void ProcessEvent(WebBaseEvent raisedEvent)
 {
 if (UseBuffering)
 {
 // If buffering is enabled, call the base class's
 // ProcessEvent method to buffer the event

 base.ProcessEvent(raisedEvent);
 }
 else
 {
 // If buffering is not enabled, log the Web event now
 LogEntry(FormatEntry(raisedEvent));
 }
 }

 public override void ProcessEventFlush (WebEventBufferFlushInfo
 flushInfo)
 {
 // Log the events buffered in flushInfo.Events
 foreach (WebBaseEvent raisedEvent in flushInfo.Events)
 LogEntry (FormatEntry(raisedEvent));
 }

 public override void Shutdown()
 {
 Flush();
 }

 // Helper methods
 private string FormatEntry(WebBaseEvent e)
 {
 return String.Format("{0}\t{1}\t{2} (Event Code: {3})",
 e.EventTime, e.GetType ().ToString (), e.Message,
 e.EventCode);
 }

 private void LogEntry(string entry)
 {
 StreamWriter writer = null;

 try
 {
 writer = new StreamWriter(_LogFileName, true);
 writer.WriteLine(entry);
 }
 finally
 {
 if (writer != null)
 writer.Close();
 }
 }

}

One notable aspect of BufferedTextFileWebEventProvider's implementation is that its
Initialize method processes the logFileName configuration attribute before calling
base.Initialize, not after. The reason why is important. BufferedWebEventProvider's
Initialize method throws an exception if it doesn't recognize one or more of the
configuration attributes in the config parameter. Therefore, custom attributes such as
logFileName must be processed and removed from config before the base class's
Initialize method is called. In addition, there's no need for
BufferedTextFileWebEventProvider's own Initialize method to check for unrecognized
configuration attributes since that check is performed by the base class.

BufferedWebEventProvider's Initialize method is inconsistent with other
providers' Initialize implementations in its handling of configuration attributes.
The difference isn't critical, but it is something that provider developers should
be aware of. The reason for the inconsistency is simple and was summed up this
way by an ASP.NET dev lead:

"Different devs wrote different providers and we didn't always manage to herd
the cats."

That's something any dev who has worked as part of a large team can
appreciate.

The Web.config file in Figure 23 registers BufferedTextFileWebEventProvider as a Web
event provider and maps it to Application Lifetime events. Note the bufferMode attribute
setting the buffer mode to "Logging." "Logging" is one of a handful of predefined buffer
modes; you can examine them all in ASP.NET's default configuration files. If desired,
additional buffer modes may be defined in the <bufferModes> section of the
<healthMonitoring> configuration section. If no buffer mode is specified, the provider
throws an exception. That behavior isn't coded into BufferedTextFileWebEventProvider,
but instead is inherited from BufferedWebEventProvider.

Figure 23. Web.config file mapping Application Lifetime events to
BufferedTextFileWebEventProvider
<configuration>
 <system.web>
 <healthMonitoring enabled="true">
 <providers>
 <add name="AspNetBufferedTextFileWebEventProvider"
 type="BufferedTextFileWebEventProvider"
 logFileName="~/App_Data/Contosolog.txt"
 bufferMode="Logging"

 />
 </providers>
 <rules>
 <add name="Contoso Application Lifetime Events"
 eventName="Application Lifetime Events"
 provider="AspNetBufferedTextFileWebEventProvider"
 minInterval="00:00:01" minInstances="1"
 maxLimit="Infinite"
 />
 </rules>
 </healthMonitoring>
 </system.web>
</configuration>

Web Parts Personalization Providers
Web Parts personalization providers provide the interface between ASP.NET's Web Parts
personalization service and personalization data sources. The two most common reasons
for writing a custom Web Parts personalization provider are:

• You wish to store personalization data in a data source that is not supported by the
Web Parts personalization providers included with the .NET Framework, such as an
Oracle database.

• You wish to store personalization data in a SQL Server database whose schema
differs from that of the database used by
System.Web.UI.WebControls.WebParts.SqlPersonalizationProvider.

The fundamental job of a Web Parts personalization provider is to provide persistent
storage for personalization state-state regarding the content and layout of Web Parts
pages-generated by the Web Parts personalization service. Personalization state is
represented by instances of System.Web.UI.WebControls.WebParts.PersonalizationState.
The personalization service serializes and deserializes personalization state and presents
it to the provider as opaque byte arrays. The heart of a personalization provider is a set
of methods that transfer these byte arrays to and from persistent storage.

The PersonalizationProvider Base Class
Developers writing custom personalization providers begin by deriving from
System.Web.UI.WebControls.WebParts.PersonalizationProvider, which derives from
ProviderBase and adds several methods and properties defining the characteristics of a
Web Parts personalization provider. Because many PersonalizationProvider methods
come with default implementations (that is, are virtual rather than abstract), a
functional provider can be written by overriding as little as three or four members in a
derived class. PersonalizationProvider is prototyped as follows:

public abstract class PersonalizationProvider : ProviderBase
{
 // Properties
 public abstract string ApplicationName { get; set; }

 // Virtual methods
 protected virtual IList CreateSupportedUserCapabilities() {}
 public virtual PersonalizationScope DetermineInitialScope
 (WebPartManager webPartManager,
 PersonalizationState loadedState) {}
 public virtual IDictionary DetermineUserCapabilities
 (WebPartManager webPartManager) {}
 public virtual PersonalizationState LoadPersonalizationState
 (WebPartManager webPartManager, bool ignoreCurrentUser) {}
 public virtual void ResetPersonalizationState
 (WebPartManager webPartManager) {}

 public virtual void SavePersonalizationState
 (PersonalizationState state) {}

 // Abstract methods
 public abstract PersonalizationStateInfoCollection FindState
 (PersonalizationScope scope, PersonalizationStateQuery query,
 int pageIndex, int pageSize, out int totalRecords);
 public abstract int GetCountOfState(PersonalizationScope scope,
 PersonalizationStateQuery query);
 protected abstract void LoadPersonalizationBlobs
 (WebPartManager webPartManager, string path, string userName,
 ref byte[] sharedDataBlob, ref byte[] userDataBlob);
 protected abstract void ResetPersonalizationBlob
 (WebPartManager webPartManager, string path, string userName);
 public abstract int ResetState(PersonalizationScope scope,
 string[] paths, string[] usernames);
 public abstract int ResetUserState(string path,
 DateTime userInactiveSinceDate);
 protected abstract void SavePersonalizationBlob
 (WebPartManager webPartManager, string path, string userName,
 byte[] dataBlob);
}

The following table describes PersonalizationProvider's members and provides helpful
notes regarding their implementation:

Table 11. PersonalizationProvider methods and properties

Method or Property Description

ApplicationName The name of the application using the
personalization provider. ApplicationName is used
to scope personalization state so that applications
can choose whether to share personalization state
with other applications. This property can be read
and written.

CreateSupportedUserCapabilities Returns a list of WebPartUserCapability objects
indicating which users can access shared
personalization state and which are permitted to
save personalization state. User capabilities can be
specified in an <authorization> element in the
<personalization> section of the <webParts>
configuration section. By default, all users can
read shared personalization data, and all users can
read and write user-scoped personalization data.

DetermineInitialScope Used by WebPartPersonalization to determine
whether the initial scope of previously loaded
personalization state is shared or per-user.

DetermineUserCapabilities Returns a dictionary of WebPartUserCapability
objects indicating whether the current user can
access shared personalization state and save
personalization state. User capabilities can be
specified in an <authorization> element in the
<personalization> section of the <webParts>
configuration section. By default, all users can
access shared state and all can save
personalization settings.

LoadPersonalizationState Retrieves raw personalization data from the data
source and converts it into a PersonalizationState
object. The default implementation retrieves the
current user name (unless instructed not to with
the ignoreCurrentUser parameter) and path from
the specified WebPartManager. Then it calls
LoadPersonalizationBlobs to get the raw data as a
byte array and deserializes the byte array into a
PersonalizationState object.

ResetPersonalizationState Deletes personalization state from the data source.
The default implementation retrieves the current
user name and path from the specified
WebPartManager and calls
ResetPersonalizationBlob to delete the
corresponding data.

SavePersonalizationState Writes a PersonalizationState object to the data
source. The default implementation serializes the
PersonalizationState object into a byte array and
calls SavePersonalizationBlob to write the byte
array to the data source.

FindState Returns a collection of PersonalizationStateInfo
objects containing administrative information
regarding records in the data source that match
the specified criteria-for example, records
corresponding to users named Jeff* that have
been modified since January 1, 2005. Wildcard
support is provider-dependent.

GetCountOfState Returns the number of records in the data source
that match the specified criteria-for example,
records corresponding to users named Jeff* that
haven't been modified since January 1, 2005.
Wildcard support is provider-dependent.

LoadPersonalizationBlobs Retrieves personalization state as opaque blobs

from the data source. Retrieves both shared and
user personalization state corresponding to a
specified user and a specified page.

ResetPersonalizationBlob Deletes personalization state corresponding to a
specified user and a specified page from the data
source.

ResetState Deletes personalization state corresponding to the
specified users and specified pages from the data
source.

ResetUserState Deletes user personalization state corresponding
to the specified pages and that hasn't been
updated since a specified date from the data
source.

SavePersonalizationBlob Writes personalization state corresponding to a
specified user and a specified page as an opaque
blob to the data source. If userName is null
(Nothing in Visual Basic), then the personalization
state is shared state and is not keyed by user
name.

Your job in implementing a custom Web Parts personalization provider is to provide
implementations of PersonalizationProvider's abstract methods, and optionally to
override key virtuals such as Initialize. In most cases, the default implementations of
PersonalizationProvider's LoadPersonalizationState, ResetPersonalizationState, and
SavePersonalizationState methods will suffice. However, you may override these
methods if you wish to modify the binary format in which personalization state is stored-
though doing so also requires deriving from PersonalizationState to support custom
serialization and deserialization.

You can build a provider that's capable of persisting the personalization state generated
as users modify the content and layout of Web Parts pages by implementing three key
PersonalizationProvider methods: LoadPersonalizationBlobs, ResetPersonalizationBlob,
and SavePersonalizationBlob. It is highly recommended that you implement
GetCountOfState, too, because that method is called by
WebPartPersonalization.HasPersonalizationState, which in turn is called by the
WebPartPageMenu control (which was present in beta 1 and is still available as a
sample). Other abstract methods inherited from PersonalizationProvider are
administrative in nature and should be implemented by a fully featured provider but are
not strictly required.

Scoping of Personalization Data
Web Parts personalization state is inherently scoped by user name and request path.
Scoping by user name allows personalization state to be maintained independently for
each user. Scoping by path ensures that personalization settings for one page don't
affect personalization settings for others. The Web Parts personalization service also
supports shared state, which is scoped by request path but not by user name. (When
the service passes shared state to a provider, it passes in a null user name.) When

storing personalization state, a provider must take care to key the data by user name
and request path so it can be retrieved using the same keys later.

In addition, all Web Parts personalization providers inherit from PersonalizationProvider
a property named ApplicationName whose purpose it to scope the data managed by the
provider. Applications that specify the same ApplicationName when configuring the Web
Parts personalization service share personalization state; applications that specify unique
ApplicationNames do not. Web Parts personalization providers that support
ApplicationName must associate personalization state with application names so
operations performed on personalization data sources can be scoped accordingly.

As an example, a provider that stores Web Parts personalization data in a SQL database
might use a command similar to the following to retrieve personalization state for the
user named "Jeff" and the application named "Contoso:"

SELECT * FROM PersonalizationState
WHERE UserName='Jeff' AND Path='~/Default.aspx'
AND ApplicationName='Contoso'

The final AND in the WHERE clause ensures that other applications containing
personalization state keyed by the same user name and path don't conflict with the
"Contoso" application.

TextFilePersonalizationProvider
Figure 24 contains the source code for a PersonalizationProvider-derivative named
TextFilePersonalizationProvider that demonstrates the minimum functionality required of
a Web Parts personalization provider. It implements the three key abstract
PersonalizationProvider methods-LoadPersonalizationBlobs, ResetPersonalizationBlob,
and SavePersonalizationBlob-but provides trivial implementations of the others. Despite
its simplicity, TextFilePersonalizationProvider is fully capable of reading and writing the
personalization state generated as users customize the layout and content of Web Parts
pages.

TextFilePersonalizationProvider stores personalization state in text files in the
application's ~/App_Data/Personalization_Data directory. Each file contains the
personalization state for a specific user and a specific page and consists of a single base-
64 string generated from the personalization blob (byte array) passed to
SavePersonalizationBlob. The file name, which is generated by combining the user name
and a hash of the request path, indicates which user and which path the state
corresponds to and is the key used to perform lookups. (Shared personalization state is
stored in a file whose name contains a hash of the request path but no user name.) You
must create the ~/App_Data/Personalization_Data directory before using the provider;
the provider doesn't attempt to create the directory if it doesn't exist. In addition, the
provider must have read/write access to the ~/App_Data/Personalization_Data
directory.

Figure 24. TextFilePersonalizationProvider
using System;
using System.Configuration.Provider;

using System.Security.Permissions;
using System.Web;
using System.Web.UI.WebControls.WebParts;
using System.Collections.Specialized;
using System.Security.Cryptography;
using System.Text;
using System.IO;

public class TextFilePersonalizationProvider : PersonalizationProvider
{
 public override string ApplicationName
 {
 get { throw new NotSupportedException(); }
 set { throw new NotSupportedException(); }
 }

 public override void Initialize(string name,
 NameValueCollection config)
 {
 // Verify that config isn't null
 if (config == null)
 throw new ArgumentNullException("config");

 // Assign the provider a default name if it doesn't have one
 if (String.IsNullOrEmpty(name))
 name = "TextFilePersonalizationProvider";

 // Add a default "description" attribute to config if the
 // attribute doesn't exist or is empty
 if (string.IsNullOrEmpty(config["description"]))
 {
 config.Remove("description");
 config.Add("description",
 "Text file personalization provider");
 }

 // Call the base class's Initialize method
 base.Initialize(name, config);

 // Throw an exception if unrecognized attributes remain
 if (config.Count > 0)
 {
 string attr = config.GetKey(0);
 if (!String.IsNullOrEmpty(attr))
 throw new ProviderException

 ("Unrecognized attribute: " + attr);
 }

 // Make sure we can read and write files in the
 // ~/App_Data/Personalization_Data directory
 FileIOPermission permission = new FileIOPermission
 (FileIOPermissionAccess.AllAccess,
 HttpContext.Current.Server.MapPath
 ("~/App_Data/Personalization_Data"));
 permission.Demand();
 }

 protected override void LoadPersonalizationBlobs
 (WebPartManager webPartManager, string path, string userName,
 ref byte[] sharedDataBlob, ref byte[] userDataBlob)
 {
 // Load shared state
 StreamReader reader1 = null;
 sharedDataBlob = null;

 try
 {
 reader1 = new StreamReader(GetPath(null, path));
 sharedDataBlob =
 Convert.FromBase64String(reader1.ReadLine());
 }
 catch (FileNotFoundException)
 {
 // Not an error if file doesn't exist
 }
 finally
 {
 if (reader1 != null)
 reader1.Close();
 }

 // Load private state if userName holds a user name
 if (!String.IsNullOrEmpty (userName))
 {
 StreamReader reader2 = null;
 userDataBlob = null;

 try
 {
 reader2 = new StreamReader(GetPath(userName, path));

 userDataBlob =
 Convert.FromBase64String(reader2.ReadLine());
 }
 catch (FileNotFoundException)
 {
 // Not an error if file doesn't exist
 }
 finally
 {
 if (reader2 != null)
 reader2.Close();
 }
 }
 }

 protected override void ResetPersonalizationBlob
 (WebPartManager webPartManager, string path, string userName)
 {
 // Delete the specified personalization file
 try
 {
 File.Delete(GetPath(userName, path));
 }
 catch (FileNotFoundException) {}
 }

 protected override void SavePersonalizationBlob
 (WebPartManager webPartManager, string path, string userName,
 byte[] dataBlob)
 {
 StreamWriter writer = null;

 try
 {
 writer = new StreamWriter(GetPath (userName, path), false);
 writer.WriteLine(Convert.ToBase64String(dataBlob));
 }
 finally
 {
 if (writer != null)
 writer.Close();
 }
 }

 public override PersonalizationStateInfoCollection FindState

 (PersonalizationScope scope, PersonalizationStateQuery query,
 int pageIndex, int pageSize, out int totalRecords)
 {
 throw new NotSupportedException();
 }

 public override int GetCountOfState(PersonalizationScope scope,
 PersonalizationStateQuery query)
 {
 throw new NotSupportedException();
 }

 public override int ResetState(PersonalizationScope scope,
 string[] paths, string[] usernames)
 {
 throw new NotSupportedException();
 }

 public override int ResetUserState(string path,
 DateTime userInactiveSinceDate)
 {
 throw new NotSupportedException();
 }

 private string GetPath(string userName, string path)
 {
 SHA1CryptoServiceProvider sha =
 new SHA1CryptoServiceProvider();
 UnicodeEncoding encoding = new UnicodeEncoding ();
 string hash = Convert.ToBase64String(sha.ComputeHash
 (encoding.GetBytes (path))).Replace ('/', '_');

 if (String.IsNullOrEmpty(userName))
 return HttpContext.Current.Server.MapPath
(String.Format("~/App_Data/Personalization_Data/{0}_Personalization.txt",
 hash));
 else
 {
 // NOTE: Consider validating the user name here to prevent
 // malicious user names such as "../Foo" from targeting
 // directories other than ~/App_Data/Personalization_Data

 return HttpContext.Current.Server.MapPath
(String.Format("~/App_Data/Personalization_Data/{0}_{1}_Personalization.tx
t",

 userName.Replace('\\', '_'), hash));
 }
 }
}

Figure 25 demonstrates how to make TextFilePersonalizationProvider the default Web
Parts personalization provider. It assumes that TextFilePersonalizationProvider is
implemented in an assembly named CustomProviders.

Figure 25. Web.config file making TextFilePersonalizationProvider the default
Web Parts personalization provider
<configuration>
 <system.web>
 <webParts>
 <personalization
 defaultProvider="AspNetTextFilePersonalizationProvider">
 <providers>
 <add name="AspNetTextFilePersonalizationProvider"
 type="TextFilePersonalizationProvider, CustomProviders"/>
 </providers>
 </personalization>
 </webParts>
</configuration>

For simplicity, TextFilePersonalizationProvider does not honor the ApplicationName
property. Because TextFilePersonalizationProvider stores personalization state in text
files in a subdirectory of the application root, all data that it manages is inherently
application-scoped. A full-featured profile provider must support ApplicationName so
Web Parts consumers can choose whether to keep personalization data private or share
it with other applications.

Custom Provider-Based Services
ASP.NET 2.0 includes a number of provider-based services for reading, writing, and
managing state maintained by applications and by the run-time itself. Developers can
write services of their own to augument those provided with the system. And they can
make those services provider-based to provide the same degree of flexibility in data
storage as the built-in ASP.NET providers.

There are three issues that must be addressed when designing and implementing
custom provider-based services:

• How to architect custom provider-based services

• How to expose configuration data for custom provider-based services

• How to load and initialize providers in custom provider-based services

The sections that follow discuss these issues and present code samples to serve as a
guide for writing provider-based services of your own.

Architecting Custom Provider-Based Services
A classic example of a custom provider-based service is an image storage and retrieval
service. Suppose an application relies heavily on images, and the application's architects
would like to be able to target different image repositories by altering the application's
configuration settings. Making the image service provider-based would afford them this
freedom.

The first step in architecting such a service is to derive a class from ProviderBase and
add abstract methods that define the calling interface for an image provider, as shown in
Figure 26. While you're at it, derive a class from ProviderCollection to encapsulate
collections of image providers. In Figure 26, that class is called ImageProviderCollection.

Figure 26. Abstract base class for image providers
public abstract class ImageProvider : ProviderBase
{
 // Properties
 public abstract string ApplicationName { get; set; }
 public abstract bool CanSaveImages { get; }

 // Methods
 public abstract Image RetrieveImage (string id);
 public abstract void SaveImage (string id, Image image);
}

public class ImageProviderCollection : ProviderCollection
{
 public new ImageProvider this[string name]
 {
 get { return (ImageProvider) base[name]; }
 }

 public override void Add(ProviderBase provider)
 {
 if (provider == null)
 throw new ArgumentNullException("provider");

 if (!(provider is ImageProvider))
 throw new ArgumentException
 ("Invalid provider type", "provider");

 base.Add(provider);
 }
}

The next step is to build a concrete image provider class by deriving from
ImageProvider. Figure 27 contains the skeleton for a SQL Server image provider that
fetches images from a SQL Server database. SqlImageProvider supports image retrieval,
but does not support image storage. Note the false return from CanSaveImages, and the
SaveImage implementation that throws a NotSupportedException.

Figure 27. SQL Server image provider
[SqlClientPermission (SecurityAction.Demand, Unrestricted=true)]
public class SqlImageProvider : ImageProvider
{
 private string _applicationName;
 private string _connectionString;

 public override string ApplicationName
 {
 get { return _applicationName; }
 set { _applicationName = value; }
 }

 public override bool CanSaveImages
 {
 get { return false; }
 }

 public string ConnectionStringName
 {
 get { return _connectionStringName; }
 set { _connectionStringName = value; }
 }

 public override void Initialize (string name,

 NameValueCollection config)
 {
 // Verify that config isn't null
 if (config == null)
 throw new ArgumentNullException ("config");

 // Assign the provider a default name if it doesn't have one
 if (String.IsNullOrEmpty (name))
 name = "SqlImageProvider";

 // Add a default "description" attribute to config if the
 // attribute doesn't exist or is empty
 if (string.IsNullOrEmpty (config["description"])) {
 config.Remove ("description");
 config.Add ("description",
 "SQL image provider");
 }

 // Call the base class's Initialize method
 base.Initialize(name, config);

 // Initialize _applicationName
 _applicationName = config["applicationName"];

 if (string.IsNullOrEmpty(_applicationName))
 _applicationName = "/";

 config.Remove["applicationName"];

 // Initialize _connectionString
 string connect = config["connectionStringName"];

 if (String.IsNullOrEmpty (connect))
 throw new ProviderException
 ("Empty or missing connectionStringName");

 config.Remove ("connectionStringName");

 if (WebConfigurationManager.ConnectionStrings[connect] == null)
 throw new ProviderException ("Missing connection string");

 _connectionString = WebConfigurationManager.ConnectionStrings
 [connect].ConnectionString;

 if (String.IsNullOrEmpty (_connectionString))

 throw new ProviderException ("Empty connection string");

 // Throw an exception if unrecognized attributes remain
 if (config.Count > 0) {
 string attr = config.GetKey (0);
 if (!String.IsNullOrEmpty (attr))
 throw new ProviderException
 ("Unrecognized attribute: " + attr);
 }
 }

 public override Image RetrieveImage (string id)
 {
 // TODO: Retrieve an image from the database using
 // _connectionString to open a database connection
 }

 public override void SaveImage (string id, Image image)
 {
 throw new NotSupportedException ();
 }
}

SqlImageProvider's Initialize method expects to find a configuration attribute named
connectionStringName identifying a connection string in the <connectionStrings>
configuration section. This connection string is used by the RetrieveImage method to
connect to the database in preparation for retrieving an image. SqlImageProvider also
accepts an applicationName attribute if provided but assigns ApplicationName a sensible
default if no such attribute is present.

Configuring Custom Provider-Based Services
In order to use a provider-based service, consumers must be able to configure the
service, register providers for it, and designate which provider is the default. The
Web.config file in Figure 28 registers SqlImageProvider as a provider for the image
service and makes it the default provider. The next challenge is to provide the
infrastructure that allows such configuration directives to work.

Figure 28. Web.config file configuring the image service
<configuration >
 ...
 <connectionStrings>
 <add name="ImageServiceConnectionString" connectionString="..." />
 </connectionStrings>
 <system.web>
 <imageService defaultProvider="SqlImageProvider">
 <providers>

 <add name="SqlImageProvider" type="SqlImageProvider"
 connectionStringName="ImageServiceConnectionString"/>
 </providers>
 </imageService>
 </system.web>
</configuration>

Since <imageService> is not a stock configuration section, you must write a custom
configuration section that derives from System.Configuration.ConfigurationSection.
Figure 29 shows how. ImageServiceSection derives from ConfigurationSection and adds
two properties: Providers and DefaultProvider. The [ConfigurationProperty] attributes
decorating the property definitions map ImageServiceSection properties to
<imageService> attributes. For example, the [ConfigurationProperty] attribute
decorating the DefaultProvider property tells ASP.NET to initialize DefaultProvider with
the value of the <imageService> element's defaultProvider attribute, if present.

Figure 29. Class representing the <imageService> configuration section
using System;
using System.Configuration;

public class ImageServiceSection : ConfigurationSection
{
 [ConfigurationProperty("providers")]
 public ProviderSettingsCollection Providers
 {
 get { return (ProviderSettingsCollection) base["providers"]; }
 }

 [StringValidator(MinLength = 1)]
 [ConfigurationProperty("defaultProvider",
 DefaultValue = "SqlImageProvider")]
 public string DefaultProvider
 {
 get { return (string) base["defaultProvider"]; }
 set { base["defaultProvider"] = value; }
 }
}

Next, you must register the <imageService> configuration section and designate
ImageServiceSection as the handler for it. The Web.config file in Figure 30, which is
identical to the one in Figure 28 except for the changes highlighted in bold, makes
<imageService> a valid configuration section and maps it to ImageServiceSection. It
assumes that ImageServiceSection lives in an assembly named CustomSections. If you
use a different assembly name, you'll need to modify the <section> element's type
attribute accordingly.

Figure 30. Making <imageService> a valid configuration section and registering
ImageServiceSections as the configuration section handler
<configuration >
 <configSections>
 <sectionGroup name="system.web">
 <section name="imageService"
 type="ImageServiceSection, CustomSections"
 allowDefinition="MachineToApplication"
 restartOnExternalChanges="true" />
 </sectionGroup>
 </configSections>
 <connectionStrings>
 <add name="ImageServiceConnectionString" connectionString="..." />
 </connectionStrings>
 <system.web>
 <imageService defaultProvider="SqlImageProvider">
 <providers>
 <add name="SqlImageProvider" type="SqlImageProvider"
 connectionStringName="ImageServiceConnectionString"/>
 </providers>
 </imageService>
 </system.web>
</configuration>

Loading and Initializing Custom Providers
The final piece of the puzzle is implementing the image service and writing code that
loads and initializes the providers registered in <imageService>'s <providers> element.

Figure 31 contains the source code for a class named ImageService that provides a
programmatic interface to the image service. Like ASP.NET's Membership class, which
represents the membership service and contains static methods for performing
membership-related tasks, ImageService represents the image service and contains
static methods for loading and storing images. Those methods, RetrieveImage and
SaveImage, call through to the provider methods of the same name.

Figure 31. ImageService class representing the image service
using System;
using System.Drawing;
using System.Configuration;
using System.Configuration.Provider;
using System.Web.Configuration;
using System.Web;

public class ImageService
{

 private static ImageProvider _provider = null;
 private static ImageProviderCollection _providers = null;
 private static object _lock = new object();

 public ImageProvider Provider
 {
 get { return _provider; }
 }

 public ImageProviderCollection Providers
 {
 get { return _providers; }
 }

 public static Image RetrieveImage(int imageID)
 {
 // Make sure a provider is loaded
 LoadProviders();

 // Delegate to the provider
 return _provider.RetrieveImage(imageID);
 }

 public static void SaveImage(Image image)
 {
 // Make sure a provider is loaded
 LoadProviders();

 // Delegate to the provider
 _provider.SaveImage(image);
 }

 private static void LoadProviders()
 {
 // Avoid claiming lock if providers are already loaded
 if (_provider == null)
 {
 lock (_lock)
 {
 // Do this again to make sure _provider is still null
 if (_provider == null)
 {
 // Get a reference to the <imageService> section
 ImageServiceSection section = (ImageServiceSection)
 WebConfigurationManager.GetSection

 ("system.web/imageService");

 // Load registered providers and point _provider
 // to the default provider
 _providers = new ImageProviderCollection();
 ProvidersHelper.InstantiateProviders
 (section.Providers, _providers,
 typeof(ImageProvider));
 _provider = _providers[section.DefaultProvider];

 if (_provider == null)
 throw new ProviderException
 ("Unable to load default ImageProvider");
 }
 }
 }
 }
}

Before delegating calls to a provider, ImageService.RetrieveImage and
ImageService.SaveImage call a private helper method named LoadProviders to ensure
that the providers registered in <imageService>'s <providers> element have been
loaded and initialized. LoadProviders uses the .NET Framework's
System.Web.Configuration.ProvidersHelper class to do the loading and initializing. One
call to ProvidersHelper.InstantiateProviders loads and initializes the registered image
providers-that is, the providers exposed through the Providers property of the
ImageServiceSection object that LoadProviders passes to
ProvidersHelper.InstantiateProviders.

Observe that the ImageService class implements public properties named Provider and
Providers that provide run-time access to the default image provider and to all
registered image providers. Similar properties may be found in the Membership class
and in other ASP.NET classes representing provider-based services.

Hands-on Custom Providers: The Contoso
Times
Included with this whitepaper is a sample ASP.NET 2.0 application named Contoso Times
(henceforth referred to as "Contoso") that models a newspaper-style content site and
provides a hands-on medium for running several of the sample providers presented in
this document. Specifically, Contoso is capable of using the following custom providers:

• ReadOnlyXmlMembershipProvider

• ReadOnlyXmlRoleProvider

• SqlSiteMapProvider

• TextFileProfileProvider

• TextFileWebEventProvider

The sections that follow provide instructions for getting Contoso up and runningfirst
using providers included with ASP.NET 2.0, and then using the custom providers listed
above.

Installing Contoso
Perform the following steps to install Contoso on your Web server and configure it to use
ASP.NET's SqlMembershipProvider, SqlRoleProvider, XmlSiteMapProvider,
SqlProfileProvider, and EventLogWebEventProvider providers:

3. Create a directory named Contoso on your Web server.

4. Copy the Contoso files into the Contoso directory. These files include a configuration
file named Custom.config that makes the providers listed above the default
providers.

5. Ensure that Microsoft SQL Server is installed on your Web server. Then use the
installation script in the supplied Contoso.sql file to create the Contoso database.

6. If you want ASP.NET's SQL providers to store state in SQL Server, use the
Aspnet_regsql.exe utility that comes with ASP.NET 2.0 to create the Aspnetdb
database. If you'd prefer that the SQL providers use SQL Server Express instead,
delete the following statements from Web.config and Custom.config:

<remove name="LocalSqlServer"/>
<add name="LocalSqlServer"
 connectionString="Server=localhost;Integrated Security=True;
 Database=aspnetdb;Persist Security Info=True" />

7. Open the Contoso site in Visual Studio 2005 and use the Website->ASP.NET
Configuration command to run the Web Site Administration Tool.

8. Click the Web Site Administration Tool's Security tab. On the Security page, use the
"Create or Manage Roles" link to create roles named "Members" and
"Administrators."

9. Go back to the Security page and click "Create Users." Create a pair of users named
Bob and Alice. Add Bob to the "Members" role, and Alice to both the "Members" and
"Administrators" roles.

10. Close the Web Site Administration Tool and return to Visual Studio.

11. Use Visual Studio's Debug->Start Without Debugging command to launch Contoso.
You should see the home page depicted in Figure 32.

Figure 32. The Contoso Times home page

Running Contoso with Default Providers
Now that the application is installed and configured to use the default providers, you can
take it for a test drive. Here's how:

1. Click the "Login" link and log in as Bob. After you're redirected back to the home
page, the text to the right of "Members Only" in the Members Only box at the bottom
of the page should read "Welcome back, Bob," indicating that you're logged in as
Bob and that SqlMembershipProvider is providing data to the membership service.

2. Log out by clicking the "Logout" link. Then log in again, but this time log in as
"Alice." Observe that two new links appear to the left of the "Logout" link: "Admin"
and "Recent Items." When you were logged in as Bob, the "Recent Items" link
appeared but the "Admin" link did not. In Contoso, anonymous users see one link,
users who belong to the "Members" role but not the "Administrators" role see two
links, and users who belong to the "Administrators" role see three links.
SqlRoleProvider is providing role data to the ASP.NET role manager. The appearing
and disappearing links are managed by a LoginView control, which uses role
memberships and login status to display content differently to different users.

3. The navigation bar on the left side of the home page is a TreeView control that
obtains its data from a SiteMapDataSource. The SiteMapDataSource, in turn, gets its
data from XmlSiteMapProvider, which reads the site map from Web.sitemap.
XmlSiteMapProvider is currently configured to enable security trimming, which
explains why anonymous users see two sets of links in the navigation bar, but
logged-in users see three.

4. Open the Windows event log and observe the entry created there when the
application started up. Logging occurred because of the <healthMonitoring> element
in Web.config that maps to Application Lifetime events to
EventLogWebEventProvider.

5. While logged in as Bob or Alice, use the links on the home page to view a few
articles. Then click the "Recent Items" link to see a list of the articles you've viewed
the most recently. Information regarding recently viewed articles is stored in the
user profile, which is currently managed by SqlProfileProvider. Inspect the <profile>
section of Web.config to see how the profile is defined.

Feel free to explore other parts of Contoso as well. For example, clicking the "Admin"
link that's visible to administrators takes you to Contoso's secure back-end, which uses
GridView and DetailsView controls to provide robust content-editing capabilities.

Running Contoso with Custom Providers
Now let's reconfigure Contoso to run with the custom providers listed at the beginning of
this chapter. First rename Web.config to something else (for example, x-Web.config).
Then rename Custom.config to Web.config. Custom.config contains configuration
elements replacing SqlMembershipProvider with ReadOnlyXmlMembershipProvider,
SqlRoleProvider with ReadOnlyXmlRoleProvider, XmlSiteMapProvider with
SqlSiteMapProvider, SqlProfileProvider with TextFileProfileProvider, and
EventLogWebEventProvider with TextFileWebEventProvider. Membership and role data
now come from the file named Users.xml (where Bob and Alice are assigned the
password "contoso!"); the site map now comes from the SiteMap table in the SQL
Server database that contains Contoso's article content; profile data is now stored in
text files in the ~/App_Data/Profile_Data directory; and Application Lifetime Web events
are logged in ~/App_Data/Contosolog.txt.

If you exercise the application using the steps prescribed in “Running Contoso with
Default Providers,” you'll find that it works exactly as before. To the user, the application
looks no different. But on the inside, it now relies on custom data sources serviced by
custom providersa great example of the provider model at work, and of the
transparency it lends to ASP.NET 2.0 state management.

