
journal14_english.pdf

Journal 14

Learn the discipline,
pursue the art, and
contribute ideas at
www.ArchitectureJournal.net
Resources you can
build on.

®

Mobile Architecture
Architectural
Considerations for
a World of Devices

Best Practices: Extending
Enterprise Applications
to Mobile Devices

Connected Consumer
Experience in Automobiles

Architecture Journal
Profile: Faisal Waris

Mobile Data Architecture

Test-Driven Development
for Mobile Applications

Case Study: Support
Technicians on the Road

Foreword	 1

by	Simon	Guest

Architectural	Considerations	for	a	World	of	Devices	 2

by	Atanu	Banerjee
Explore	the	architectural	aspects	and	considerations	in	designing	applications	for	mobile	devices.

Best	Practices:	Extending	Enterprise	Applications		
to	Mobile	Devices	 10

by	Kulathumani	Hariharan
Discover	best	practices	and	recommendations	for	extending	enterprise	applications		
to	a	mobile	platform.

Connected	Consumer	Experience	in	Automobiles	 17

by	Christoph	Schittko,	Darryl	Hogan,	and	Jon	Box
How	can	the	automobile	be	extended	to	support	more	advanced	software	capabilities?			
Explore	a	scenario	and	architectural	considerations	for	creating	connected	consumer	
experiences.

Architecture	Journal	Profile:	Faisal	Waris	 24

In	our	first	external	architect	profile,	we	chat	with	Faisal	Waris	about	his	role,	thoughts	on		
mobile	devices,	and	general	architectural	trends.

Mobile	Data	Architecture	 26

by	Rodney	Guzman
What	are	the	data	challenges	associated	with	occasionally	connected	mobile	applications,		
and	how	can	you	overcome	them?

Test-Driven	Development	and	Continuous	Integration		
for	Mobile	Applications	 31

by	Munjal	Budhabhatti
Learn	how	test-driven	development	and	continuous	integration	can	help	increase	the		
reliability	of	applications,	and	how	both	approaches	work	for	mobile	applications.

Case	Study:	Support	Technicians	on	the	Road	 36

by	András	Velvárt	and	Peter	Smulovics	
Investigate	a	case	study	of	how	support	technicians	on	the	road	in	Hungary	benefit	from		
a	state-of-the-art	mobile	application.

Contents

Resources you can build on. www.architecturejournal.net

Journal	14			

TM

Dear Architect,

Founder
Arvindra Sehmi
Microsoft Corporation

Editor-in-Chief
Simon Guest
Microsoft Corporation

Microsoft Editorial Board
Gianpaolo Carraro
John deVadoss
John Evdemon
Neil Hutson
Eugenio Pace
Javed Sikander
Philip Teale

Publisher
Lisa Slouffman
Microsoft Corporation

Design, Print, and Distribution
CMP Technology – Contract Publishing
Chris Harding, Managing Director
Angela Duarte, Publication Manager
Lisa Broscritto, Project Manager
Kellie Ferris, Director of Advertising
Jimmy Pizzo, Production Director

The information contained in The Architecture Journal

(“Journal”) is for information purposes only. The material

in the Journal does not constitute the opinion of Microsoft

Corporation (“Microsoft”) or CMP Media LLC (“CMP”) or

Microsoft’s or CMP’s advice and you should not rely on

any material in this Journal without seeking independent

advice. Microsoft and CMP do not make any warranty or

representation as to the accuracy or fitness for purpose of

any material in this Journal and in no event do Microsoft or

CMP accept liability of any description, including liability

for negligence (except for personal injury or death), for any

damages or losses (including, without limitation, loss of

business, revenue, profits, or consequential loss) whatsoever

resulting from use of this Journal. The Journal may contain

technical inaccuracies and typographical errors. The Journal

may be updated from time to time and may at times be

out of date. Microsoft and CMP accept no responsibility for

keeping the information in this Journal up to date or liability

for any failure to do so. This Journal contains material

submitted and created by third parties. To the maximum

extent permitted by applicable law, Microsoft and CMP

exclude all liability for any illegality arising from or error,

omission or inaccuracy in this Journal and Microsoft and

CMP take no responsibility for such third party material.

The following trademarks are registered trademarks of

Microsoft Corporation: ActiveSync, RoundTable, Silverlight,

SQL Server, Virtual Earth, Visual Studio, Windows CardSpace,

Windows Live, Windows Mobile, Windows Server, Windows

Vista, Xbox 360, Xbox Live. Any other trademarks are the

property of their respective owners.

All copyright and other intellectual property rights in the

material contained in the Journal belong, or are licensed

to, Microsoft Corporation. You may not copy, reproduce,

transmit, store, adapt or modify the layout or content of

this Journal without the prior written consent of Microsoft

Corporation and the individual authors.

Copyright © 2007 Microsoft Corporation. All rights reserved.

®

� • Journal 14 • www.architecturejournal.net

Foreword

Every day I find the pervasiveness of mobile phones and devices just
amazing, especially when I look at the projected growth rate for the next
few years. With this growth and the rapid advances in mobile technology,
I realize that there is a very good chance that my children will grow up
never knowing what landline, rotary or pulse dialing really means! With
any technology, software plays an important role in complementing this
phenomenal growth of hardware, and this is the focus of this issue of The
Architecture Journal.
 To lead off this issue, Atanu Banerjee covers many considerations
and aspects of applications on mobile devices today. Following this,
Kulathumani Hariharan, an architect at Tata Consultancy Services, shares
best practices, tips, and recommendations that may be pertinent if you are
considering taking a line-of-business application to the mobile platform.
 We are then joined by Christoph Schittko, Darryl Hogan, and Jon Box
as they introduce us to a scenario of a connected consumer experience
in automotive devices. We explore what the future of software in the
automobile may look like and some of the architectural perspectives that
support this. Closely related to this article, we are very pleased to have
our first external architect profile in The Architecture Journal. Faisal Waris
is an architectural consultant, working at Ford Motor Company. We ask
him about some of his thoughts on architecture, especially as they relate to
mobile development.
 Following Faisal, Rodney Guzman of InterKnowlogy shares some of his
thoughts on mobile data architecture. Rodney explores some of the data
challenges with occasionally connected applications and offers some ideas
and concepts to help address data conflict resolution. Taking a deeper dive
into mobile development, we are then joined by Munjal Budhabhatti from
ThoughtWorks, who covers the importance of test-driven development
and continuous integration, common engineering practices for many
organizations, and discusses how these can be implemented for mobile
applications.
 We wrap up this issue with a trip to Hungary with András Velvárt and
Peter Smulovics to look at how Monicomp, an organization that installs,
maintains, and repairs point-of-service systems is using an ultra-mobile PC
application for their support technicians on the road.
 That brings this issue to close. I hope that some of the articles and
authors help inspire mobile application development in your organization.
We’ll be returning in the new year with Journal 15 on the “Role of an
Architect,” where we’ll be taking a closer look at the people in our
profession, and putting the work that we do under the microscope!

Simon Guest

� www.architecturejournal.net • Journal 14 •

Architectural
Considerations for
a World of Devices
by Atanu Banerjee

New Opportunities With Devices
After 10 years of hype, mobility solutions are finally taking off. You could

ask, “Why now? What has changed? Are there any new opportunities

to consider? Should I consider mobile devices in my solutions?” It turns

out, economic, social, and technology trends are accelerating the move

to devices. There is a broad spectrum of devices with different form

factors, running different kinds of applications, as shown in Figure 1, and

associated with different sets of trends.

Economic Trends

An important driver of adoption for cellular phones has been emerging

markets. For example, BusinessWeek reports that Nigeria had 500,000

telephone lines in 2001, but now has more than 30 million cell phone

subscribers. It is currently estimated that there will be 5 billion cell

phone users in the world by 2015.

 Adoption of cell phones drives adoption of services for cell phones. In

Asia, many services leverage high-end devices to deliver rich, interactive

media. These require higher end smartphones and pocket PCs shown

in Figure 1. However, many people in emerging markets cannot afford

such devices, so services that target lower end volume handsets are also

being rolled out. In Kenya, Safaricom rolled out an SMS-based service

for mobile payments in March 2007, called M-Pesa, that has been widely

adopted. Unsurprisingly, access to improved communications can also

be hugely beneficial to local economies. Dr. Robert Jensen at Brown

University conducted a study of Indian fishermen who started using

mobile phones to find the best coastal marketplaces for their catch. While

the fishermen saw profits increase 8 percent, consumer prices actually

dropped by 4 percent because less fish was being wasted.

 Today in Helsinki, Finland, 57 percent of public transport single tickets

are paid by mobile phone. In Croatia, over half of all parking is paid by

mobile phone. Twenty percent of London’s congestion charge is paid by

mobile phone. (See Resources: Mobile Phones As Mass Media.)

Social Trends

There are now over twice as many mobile phones worldwide as there

are personal computers. The wireless industry used the opening of

its largest trade show in March to outline opportunities for a “three-

screen” world (PC, TV, mobile), in which mobile devices become

major avenues for TV shows, music, games, and advertising. For many

younger consumers, it might even be argued that the mobile device is

the most important of those three screens.

 Accompanying the growth in devices, the evolution of the Internet

is leading to new usage patterns. Today’s solutions are differentiated

from older ones by their global reach and scale, which lead to new

channels for user participation. For example, sporting goods company

Nike sells the Nike+, a small sensor that fits into a runner’s shoes and

tracks his progress on an iPod that the runner also carries. When

the Apple iPod is connected to a PC, details of the runner’s runs get

posted to the Nike+ Web site, a social networking site for runners, so

Summary
The number of mobile device users is rapidly
increasing, but the promise of solutions that leverage
networks of connected devices has remained largely
unrealized. Some of the pieces needed to build
rich, connected experiences were not available until
recently. This article explores some of the economic,
social, and technology trends that are driving the
adoption of mobile devices; describes the different
kinds of user experiences that are now becoming
possible; and presents an overview of architectural
concerns associated with such mobility solutions, at
the levels of hardware, software, connectivity, and
services capabilities.

Devices

Sensor/actuator
applications

Mobility applications

Traditional desktop
applications

Personal
health & info
applications

Limited
applications

Mobile Device Continuum

Smart
Personal
Objects

Custom embedded
devices

Volume
handsets

Ultra Mobile PC
(UMPC)

Notebook PC

Tablet PC

Smartphone

Pocket PC

Phones Portable PCs

Figure 1: Range of mobile devices, and the kinds of applications

that run on them

Architectural Considerations

� • Journal 14 • www.architecturejournal.net

that runners around the world can form groups to track each other’s

routes and progress.

 The Internet is also changing the way that content gets created.

Blogging is making content publishing less impersonal as readers are

closer to authors. Content is also becoming interactive and social with

online gaming, chat, and the advent of communities around user-

generated content. This trend will accelerate with the proliferation of

mobile devices that make it easy to capture content on a device to edit

content directly on the device, attach context to the newly created

content and then upload the content to storage either on a PC or in

the cloud. In some P2P scenarios, it is also becoming possible to share

content directly from the device itself.

 This transformation of content pipelines makes it more likely that

content creation will be triggered by external events rather than on

fixed schedules. The handiness of devices makes it increasingly likely

that a means of recording an event will be at hand when it happens,

leading to the spontaneous creation of new content that might not

have been captured otherwise. Not surprisingly, the amount of content

being generated and stored has exploded. The upsurge in spontaneous

citizen reporting has resulted, on more than one occasion, in footage

from a mobile device leading to dramatic public reaction.

Technology Trends

The first trend that is reshaping the industry is that of convergence.

Today people use a wide variety of devices—smartphones, PDAs, laptops,

personal media players, cameras and camcorders. It is expected that

these technologies will converge into more powerful, general-purpose

personal computing devices that can be used for a wide variety of

business and consumer-oriented tasks. Convergence in networks will

mean seamless handling of both voice and data over the same protocols.

 Convergence leads to the second trend: Devices are getting smarter.

A new generation of smartphones is becoming increasingly aware of the

user’s environments and local context, through sensors (such as GPS or

accelerometer) and better software on the device. This context might

be used to tag content (for example, tagging a photograph with time/

location metadata), to tailor application behavior (no application alerts

when the user is on a phone call, for example), or to control the user’s

local environment (such as settings in a car self-adjusting based on the

driver’s identity which has been retrieved from a device on the driver’s

person). Networks will also extend to cover devices and agents distributed

around the body over protocols such as Bluetooth — which is the idea

of Personal Area Networks (PANs). All this will lead to new architectures

where devices are much more than just information displays — they will

become first class application platforms in their own right. Not only that,

but there will likely be some scenarios (such as PANs) where some devices

act as servers for other devices (in client-server architectures), or as super-

peers / index servers (in P2P architectures).

 This is important as mobile device applications need to provide a

user experience that is very different from that of a desktop. The key

characteristic of mobile users is that they are engaged in some other

primary activity. A device-based application should not force its users to

make accommodations, but instead fit into people’s lives and lifestyles

by being context-aware, nonobtrusive, and ready to provide value

rapidly at short notice.

 The third trend is the mobile Internet, a collection of Web sites and

services specifically targeted at mobile devices and available over Internet

protocols. Growth of the mobile Web will accelerate consumption of

Internet-based applications and services from mobile devices, which

today is constrained by device and mobile access plan limitations.

 The combination of these three trends will result in a move toward

pervasive computing. As devices proliferate and become smarter, more

computing power will be embedded at the edges of the network. As

devices become better at handling user context, they will become

increasingly unobtrusive. As devices become better networked, and as

the mobile Internet evolves, users will have available a rich set of services

that can make use of this personal context. The borders between human

environments and computing devices will gradually blur, and users

will get the sense of being assisted by their immediate environments.

Large numbers of embedded computing devices will force new solution

architectures to handle emergent challenges around user experience,

device management, security, content management, and so forth.

Network access needs to become universally available. Although we are

clearly not at the point of pervasive computing yet, we are moving in

that direction with the growth of embedded devices and smartphones,

the spread of wireless connectivity across our environments (from work

places to living spaces to some cars), and the broad availability of Internet

services to be accessed by devices.

What Will User Experience Look Like?
As devices become more common, software will need to span a mesh

of Web-connected devices and embrace the increasing pervasiveness

of the Internet, a core pattern of Web 2.0 described by Tim O’Reilly

as “software above the level of a single device.” Devices are used in

multiple physical and virtual spaces (Figure 2, above).

Figure �: User experiences in a world of connected devices

span multiple physical and virtual spaces. Each of the blue dots

represents a physical environment (a room, the home, workspace),

a social environment (friends, family, colleagues), a virtual

environment (profile pages, virtual world, online game) or a

subscribed online service.

• Messages (Email, IM, SMS, Voice)
• Notifications/Events
• Feedback
• Changes to Environment

• Content and Media
• Communications (Email, IM, SMS,Voice)
• Control Messages/Requests

Me

My Immediate
Environment

My Remote
Environments

My Social
Networks

My Subscribed
Services

Architectural Considerations

� www.architecturejournal.net • Journal 14 •

Experiences Related to Me

The devices in these scenarios are typically used for communications

(phone, email), gathering of content (mobile search), consumption of

content (personal media players), and for health monitoring (heart

rate monitor). The application scope in these scenarios centers on

information gathered about you, created for you, or consumed

directly by you. Relevant information includes credentials (Live ID),

contacts, messages, presence information, and personal content

(audio, video). The types of devices that are important include cell

phones, smartphones, PDAs, Ultra-Mobile PCs (UMPCs), laptops, and

health monitors. The connectivity needed is for Bluetooth Personal

Area Networks (PAN), Health sensors, and so on.

Experiences Related to My Local Environment

As described earlier, the proliferation of smart devices will lead

to spaces where the boundaries between a person’s immediate

environment and computing devices in that environment are blurred.

This will be achieved through networked devices with built-in sensors

(GPS, accelerometer, ambient light sensor), that understand user

context, and are unobtrusive in their actions, so that users get the

sense of being assisted by their environment.

 An example of such an environment is the Microsoft Auto solution,

which connects a user’s devices (such as mobile phones and portable

media players) into a single in-car system that can be operated with the

driver’s voice or buttons on the steering wheel. Ford Motor Company

will roll out a solution called Ford Sync in 2008, which will enable next

generation mobile user experiences: for example, users entering a car

while talking on a mobile phone and can press a button on the steering

wheel to have the phone connect to Sync without interrupting the call.

Another case of extending an automotive environment with devices is

that of OnStar, which provides security and roadside assistance: within

the car, a communications device is connected to the radio, a GPS

antenna, and a microphone via an on-board network (or bus).

 Conference rooms are being extended with devices as well.

Microsoft RoundTable is a combination video conferencing camera and

microphone that uses sound and motion detection to automatically

shift focus to the current speaker. Eliminating the need for speakers to

move to face a fixed camera when they start to speak is in line with the

idea of devices becoming less obtrusive in their actions.

 In some cases, devices may need to share information with other

devices also in a user’s vicinity, as well as with Internet-based services,

raising issues around discovery, handshaking, shared understanding

of the user’s identity and context, and so on.

Experiences Related to My Remote Environments

Remote environments are similar to local environments, in that

they are spaces where devices gather information and take actions.

However remote environments are not in the immediate vicinity of

the user of the device. In other words, scenarios and experiences that

relate to a users remote environments allow that person to connect

to, monitor, and work with devices at other locations. Reasons to do

this would be to monitor or even control the environment at remote

locations as a safeguard against criminal activity or for other reasons.

For example, people might be interested in remotely monitoring

their homes or workplaces (such as a data center), or even loved ones

(children or elderly parents). A simple example of a device that does

this is a baby monitor. Businesses might want to monitor remote

locations; there are a host of logistics-related scenarios using RFID

devices in this category as well (for example, to ensure the electronic

pedigree of pharmaceuticals as they are transported through a supply

chain, in order to eliminate counterfeit drugs).

Experiences Related to My Social Networks

Figure 3 shows that mobile devices fit into social networks in the same

way personal computers do. Users use their devices to search for and

find people and their content, to coordinate with their friends and

relatives, and to share content with others.

 However, the reach and scale of devices is much broader than

personal computers, and social interactions are more spontaneous

(when the user is on the go, her camera phone is always at hand).

Applications and services need to accommodate such scenarios,

where the user’s attention span is sharply reduced.

What architectures are needed to build end-to-end
solutions that support devices?
Challenges in Delivering Rich Experiences on Devices

There are many differences between devices and personal computers,

and it would be a mistake to consider devices as just smaller versions of

PCs. In order to deliver rich experiences onto devices, solution architects

need to consider a number of constraining factors, much more so

than when delivering applications to a personal computer. These

constraints include hardware capabilities of the devices themselves,

device operating systems and application runtimes, development tools,

connectivity choices, and also available services running on the Web.

Some of the challenges in building experiences for devices are:

1. Unlike PCs, people consider devices to be accessories: Users carry

devices on their person and often view them as expressions of their

lifestyle or even personal self-image. Coolness factor, great design,

and user experience are critical.

Implications: Rich device design and presentation capabilities are

needed—both for the device itself as well as for the applications

running on the device.

Figure 3: Social networking on devices

FIND EXPLORE

COORDINATESHARE
Connect with friends

Architectural Considerations

� • Journal 14 • www.architecturejournal.net

2. Devices have limited resources. As devices (and their batteries)

become smaller and lighter, screen sizes and layouts become more

restrictive, and the “power budget” to support rich applications

shrinks. More complex devices tend to have shorter battery lives

than simple bare-bones phones. Memory available on a device

is limited as well, although this is mitigated by improvements in

storage technology. Devices support for Wi-Fi often comes at the

price of shorter battery life as well.

Implications: Energy efficiency is critical. Device operating systems

should have fine-grained control over hardware utilization. In some

cases, application processing should be offloaded from the device

to avoid excessive resource consumption. This leads to a tradeoff

with the first two items in this list.

3. Devices are not standardized. Unlike PCs, the form factors and

hardware/software profiles of devices are much less standardized.

Implications: A developer of applications for mobile devices needs

to target lowest common denominator for screen size, shape, and

orientation in order to deploy to a wide variety of handsets. This leads

to an implicit tradeoff with the need for rich user experience; solution

architects will have to optimize both software and hardware together

in order to get the best overall experience. Application developers

for embedded devices have a different set of challenges in this area –

lack of standardization in hardware make it hard to presume the set of

resources that will be available to the application.

4. Devices need to support offline scenarios and occasionally slow

connections. For many reasons, devices are not always connected

(connections may not be cost-effective during international travel,

for example) or access speeds are not fast enough to support

decision-making at the point of need (using online maps to make

routing decisions while traveling).

Implications: Devices need to be more than thin client displays;

they need to be application platforms in their own right. A key

requirement for this capability is local processing and storage, with

synchronization with PCs or Internet-services.

5. Connectivity is not standardized. Although several standards exist

for network protocols, there are several ways for a user to access

information and services on the Internet from their mobile devices.

Depending upon the capabilities of their device, and the service

plan that they have with their network operator, a user might want

to access information and services on the mobile internet via voice

(through voice recognition), messaging (SMS, email), or through

Internet protocols (WiFi, tethered connection, or appropriate

data plan). In emerging markets services will probably need to be

delivered over SMS or voice, as users are more likely to have volume

handsets with limited capabilities. For rich media experiences, it is

likely that a fast Internet protocol will be required.

Implications: Tailor access to the kind of experience being delivered

and the market to which it is being delivered. It is possible that services

will need to be accessible to devices from a number of different end

points, each supporting a different address and method of access.

Applying a Software + Services Approach to Devices
The last issue of The Architecture Journal covered the emerging

paradigm of Software + Services. In the context of a mobile application,

the goal is to combine the best of the Web with the best aspects

of devices—but subject to the constraints just described. As shown

in Figure 4, solution architects need to design for a specific type of

user experience, and pick an appropriate device based on minimum

device capabilities needed (hardware and software on the device) and

connectivity options and services available to users of the device.

Hardware Form Factors of the Device

Just as there is a wide range of mobility-based scenarios, there is a wide

range of device form factors to support these scenarios as shown in

Figure 1. The choice of device depends on how it is going to be used.

 For example, in the consumer personal device space, the spectrum

of available hardware ranges broadly from WM (Windows Mobile)-

based devices on one end, laptops on the other, and UMPC devices in

the middle. WM devices are usually either smartphones or pocket PCs

(typically under 5-inch screen size), and UMPCs are usually portable

digital companions (typically 5.6- to 7-inch screen sizes).

Sensors to Receive Inputs From the Immediate Environment

Devices can receive inputs from a variety of different sensor elements

listed in this section. Some of these sensors will provide channels for

users to interact with the software running on the device. Other sensors

on the device will provide applications with a view of the user’s current

context at any time so that software can adjust itself accordingly.

1. Touch Technologies. Some devices use touch technologies to

improve user experience. Newer devices use “capacitive touch,”

which does not require pressure to register touch (unlike the

“resistive touch” found on older devices, which often required

a stylus). Devices with “capacitive touch” are easier to use, more

accurate, and more responsive. The older touch screens were

often not very clear in sunlight, which made it harder to see rich

media, but the newer touch screens are typically brighter, as their

surface isn’t covered with the thin film required for “resistive touch.”

Another advance is multitouch (the ability to handle input from

more than one finger at the same time), which lets users resize a

window by pinching or expanding two fingers on the screen.

 A common user objection to touch screens is their lack of tactile

response. However some handset manufacturers are adding

the tactile-feedback technology found in game controllers (for

example, to give a slight vibration when a touch screen’s virtual

keyboard is tapped). This will be similar to the response that users

are accustomed to getting from traditional mechanical keyboards.

2. GPS. Many mobility solutions depend upon knowledge of the user’s

location. A common technique for a device to determine its location

Figure �: A conceptual framework to apply Software + Services to

a mesh of devices

• Communications
• Content

• Control messages/requests

• Messages
• Events

Environmental
Awareness Device or

PC
Access

Channel
Service Content or

DataUser
Experience

• Feedback
• Changes to Environment

Architectural Considerations

� www.architecturejournal.net • Journal 14 •

is GPS (or Global Positioning System) which does so based on line

of sight from three or more satellites (which means that GPS cannot

be used indoors). Some location-based services on the Web will

automatically use GPS information on the device (when available) to

provide information filtered by the users location (Live Search).

3. Accelerometer. Some devices have accelerometers built in. A basic

usage of this is to automatically detect the orientation of the device,

that is, landscape or portrait mode. More advanced uses of the

accelerometer include gesture recognition, media control, or game

control. In the future, it is quite conceivable that accelerometers on

devices could lead to sophisticated control scenarios similar to those

of the remote control of the Nintendo Wii, which is built around an

accelerometer.

4. Health monitoring sensors. Examples are sensors for heart rate or

blood sugars.

5. RFID. RFID readers, scanners, and printers are a range of devices

that use RFID technologies in primarily enterprise scenarios such as

logistics and supply chain management. Devices with built-in RFID

sensors are meant to replace an older generation of devices that use

bar code scanning.

6. Other Sensors. Other sensors found on devices might include

ambient light sensors (to control screen brightness and preserve

battery life) or proximity sensors (to turn off display when the

device is being used as a phone).

Software Running On the Device

Software running on the device falls into the following categories:

1. Device Operating System

2. Application Platform—both the application runtime and design tools

3. Mobile Browser—this is emerging as an application platform in its

own right for consumer devices

4. Applications.

The operating system should be chosen based on how the device is

to be used, as there is an implicit tradeoff between managing limited

device resources and the richness of applications running on the device.

Devices have different needs; let us look at the software stacks for each

type of device represented in Figure 1.

Software Stack for Embedded Devices. Windows Embedded CE is

a hard, real-time, 32-bit, memory-protected operating system kernel

that can support a wide range of processor architectures (ARM, MIPS,

x86, or SH4). It comes as a set of about 700 components, from which

a subset can be packaged into custom images. For example a kernel

only image can be assembled that boots with an approximately 300

KB footprint, but it is also possible to add other technologies into

the image—such as Web server, browser, media player, networking

support, .Net Compact Framework—all of which increase the size of

the OS image. Devices built with Windows Embedded CE might be

headless, or might have some form of display. Also devices can either

be open (that is, exposing application APIs) or closed (without a third-

party developer story).

 Windows CE is available to the general embedded system

development community to build their own devices. It is also used

within Microsoft to build the Windows Mobile and Microsoft Auto

solutions. Windows Mobile is used to power smartphones and PDAs,

while Microsoft Auto is a platform for the auto industry to build

advanced in-vehicle solutions.

Software Stack for Smartphones and PDAs. Windows Mobile

chooses its own set of operating system components from Windows

Embedded CE, with a custom shell, device-specific technologies

(connection manager), and some applications (Office Mobile). Windows

Mobile OEMs often add their own specific applications and services to

the image (screen plug-ins, applications like VoIP, games), but do not

customize the set of components in the base WM image. The result

is a consistent set of APIs that are offered across all Windows Mobile

devices: In theory, applications written for one Windows Mobile device

should work across all Windows Mobile devices. In reality, mobile

devices vary greatly in their hardware capabilities (connectivity options,

screen size, resolution, orientation), making it difficult to build an

application that works well across all devices, even when the underlying

APIs are the same. Figure 5 shows the range of development options for

building application interfaces on a Windows Mobile smartphone.

Software Stack for Ultra-Mobile PCs. UMPC devices get the full

fidelity software stack—the Windows Vista operating system, the

.Net Framework as the runtime for managed applications, and IE7

as the browser. Existing PC applications do not need to be rewritten

to run on an UMPC—although they might be extended to support

touch and ink (these capabilities are now built right into Windows

Vista). However, all this comes at the cost of battery life (often just 4-

6 hours), as UMPCs do not manage device resources at the granular

level the way Windows Mobile does.

Access Channels to Support Devices

Mobile devices such as cell phones are

used primarily for communications—

mostly voice calling today—but also

some other forms of messaging, such

as email, instant messaging (IM), and

SMS. Beyond these basic communication

services, it is expected that devices

will connect to a much richer set of

application services in the future. While

there is a relatively large market for

such services, it cannot be assumed

Figure �: Development options for building application interfaces on a Windows Mobile

smartphone

Smart Client Experiences

Native

Win32 APIs
(subset of “desktop”
Win32 APIs)

Managed

Rich
Interactive
Experiences

Intelligent
Forms

Basic Forms

Ajax HTML WAP

.Net Compact
Framework & SQL
Compact Edition

Silverlight
(available for

devices in 2008)

AJAX/Atlas Pocket IE
ASP.NET

Pocket IE
ASP.NET

ASP.Net Mobile Controls

Rich Experience Broad Reach

Architectural Considerations

� • Journal 14 • www.architecturejournal.net

that users of those services will always have advanced

Internet-capable devices that either have a carrier data

plan or are WiFi-enabled. This leads to service delivery

to devices over other channels as well (such as SMS or

voice, as in the previously discussed SMS-based services

for mobile payments in Kenya).

Some examples of network channels over which

applications and services may be delivered are:

1. Voice

 a. Voice Recognition: These services are accessed

through a phone call, with voice recognition

software running on the other end. Figure 6 shows

how Microsoft Office Communications Server can be

used to deliver speech-enabled applications that can

either be accessed through telephony application

services, or through alternate channels.

 As an example of such a mobile application, consider

Live Search on Windows Mobile devices, which can

be accessed through a voice interface in the U.S.

Voice recognition software converts the users speech into the

search query string; results are then displayed as usual.

2. Messaging

 a. SMS: Some basic services are now being offered over SMS, such

as stock updates, alerts, and, in some countries now, Internet

search. For example, Microsoft Research did a project in India,

where they built an SMS-enabled solution for a sugarcane

cooperative. Farmers can use their phones to get information

(such as market price information) by sending in requests

as SMS messages. The responses are also sent back to them

through SMS. Microsoft Research has made the toolkit used for

this project available as a shared solution on CodePlex.

(See Resources: SMS Server Toolkit.)

3. Internet

 a. WiFi: This works well for devices equipped for WiFi, when in the

vicinity of an accessible wireless hotspot.

 b. Mobile data plan: This typically is a premium service offered by

mobile network operators, to provide Internet access over the

operator’s own cellular network.

4. Connection to other devices using P2P (Peer-to-Peer) technologies

 a. Some devices can exchange information with another device

directly, without having that information pass through a central

server. Architectural considerations, such as discovery and

handshaking, can be accomplished in two ways:

 i. A central index server brokers the connection: For example

consider the XBox 360 and the XBox Live. When a user logs

into his XBox 360, he can join a group of up to 16 gamers that

play within a single session. Although the Live service tracks

who is online and brokers the initial connection into the

group, all further messaging between XBox 360 consoles is

direct through P2P technologies and not through the server.

 ii. Without a central index server: Discovery of nearby devices,

and the handshaking between them, happens directly, without

going through a central server. For example, the Zune music

player can share currently playing music with up to three other

Zunes in the vicinity via P2P technologies.

Services to Support Devices
Beyond basic communication services, it is expected that in the future,

devices will connect to a rich set of services on the Internet. These

services will likely be architected in three tiers:

1. Application and solution services. These offer support that is specific

to a set of scenarios, such as health or CRM.

2. Attached or third-party services. These services offered by other

providers are attached onto the application services; for example, a

mobility solution for healthcare providers using services for email,

update, or collaboration provided by other parties.

3. Utility/infrastructure/building block services.

Services in the second and third tiers represent common, horizontal

capabilities which cut across many different application services. Some

of these are described below in the context of mobility solutions. In the

future, these services would typically be provided by a platform provider,

such as Windows Live Platform, or even by a mobile network operator.

Device Management and Security

Attack vectors for devices are similar to that of networked personal

computers, except that devices are much more likely to get lost or stolen,

and it is often harder to secure them physically given their mobility (as

opposed to a computer sitting on a desk or in a data center). So there are

three primary areas in which to consider security issues on devices. The

first is around securing the device itself. The second is around securing

the network—that is, ensuring message confidentiality and integrity.

A number of security issues here can be addressed in layers of the

networking stack (for example, radio modulation techniques to provide

wireless signal transmission security, IPSec, and so forth). The third area

of security is securing the applications that run on the device—or run on

the Web but are accessed through devices—and that is described in the

section on identity and access management.

 In some cases management of devices is like that of personal

computers. For example, devices need to be upgraded with patches

(firmware and software), media, or applications. Communications to

devices need to be secured, and in some cases metered, and paid for

Figure 6: Using Speech technologies in Microsoft Office Communications

Server to deliver voice enabled services over the internet

Prompts

database

Speech core

Speech
output

Speech Engine
Services

HTML + SALT + JScript

Multimodal clients
with an embedded

SALT browser (IE/pIE)

Telephony
Application

Services

Speech Application Language Tags (SALT) ClientsDevelopment Tools

Speech Application SDK
(Visual Studio)

Web server
Grammars

ASP.NET
dialogs

SAPI

Speech
recognition

<%@ Page language=”c#” %>
(HTML>
 <speech:QA runat+”server”>
 <Prompt>...</Prompt>
 <Answers>...</Answers>
 <Reco>...</Reco>
 </speecj:QA>
</HTML>

<rule id=”cityRule”>
 <one-of>
 <item>London</item>
 <item>Seattle</item>
 </one-of>
</rule

Architectural Considerations

� www.architecturejournal.net • Journal 14 •

(for commercial downloads). However, management of devices does

differ in some crucial respects because devices are often much harder

to secure: Mobile devices are easy to misplace, and in many cases,

access to the devices cannot be restricted.

 Management services need to be provided to devices that connect

into a network, to answer the following kinds of questions.

• Network administrators: “How many devices are on my network

right now? How much bandwidth? How much time? What types of

devices are there?”

• Helpdesk: “What is the history for your device? Has your device

been updated? What are the details of your device?”

• Security administrators: “What devices don’t have my security

update? What if I enforce this policy? How many devices are in

compliance?”

• User: “I just lost my device and I’d like to safeguard private

information on it. Can you wipe it remotely?”

Note that simply locking down a device isn’t enough if it has a 2 GB

storage card filled with sensitive information when it gets lost. One way

that Windows Mobile 6 handles this problem, is by encrypting storage

card data so that it can only be read by the device that wrote to it.

Identity and Access Management

Applications running on different networked devices need a way

to share credentials among themselves, as well as with back-end

services that they connect to. As scenarios for devices become more

sophisticated, this will require universally recognized credentials

(for example, the identity of the user, and in some scenarios, the

identity of the originating device as well). Today a cellular phone is

identified by a phone number. Although smartphones do allow the

user to connect to back-end services online, those services typically

require the user to authenticate himself in multiple additional ways—

which have nothing to do with the phone number, such as email

address or other Web-based credentials. As devices proliferate in

the future, as will the services to support them, a single universal

identifier (conceptually similar to Live ID today, perhaps) might solve

the authentication problem. However, other new complications will

arise—how does identity get chained across devices and Web-based

services? Where do boundaries of trust get established?

 Although much has been done to secure networks and devices,

a different set of technologies are needed to broker trust among

applications running on those devices (and services that they connect

to)—technologies for federated identity. These technologies help

the user manage multiple digital identities and control how much

personal information is shared with other devices and services. Each

of these identities would be built around a set of claims which are

expressions of trust from a certifying party — one or more identity

services in the cloud acting as brokers of trust, issuing claims (or

expressions of trust) embedded in security tokens.

Rendezvous and Presence

Mobile presence services make users’ mobile context available to

their social networks. Context data, such as location, device idle time,

device profile (ring volume, vibrate), and calendar information, would

be available either from other mobile devices, or through a gadget/

widget/badge embedded on the user’s blog or Web page. It might

be displayed as a list (by augmenting a contacts list), or might be

displayed on a map. In short, mobile presence should let a user’s

social networks know when they are reachable and when they are not,

and what their preferred mode of communication is at that moment.

This information should not be specific to a user’s mobile carrier, as it

is unlikely that all members of a user’s social networks are customers

of the same mobile carrier. Ideally, this presence information would

connect into a unified communications backbone that combines

different forms of messaging.

Location-Based Services

Unlike personal computers, in the future it is likely that most

consumer devices will know their exact location, possibly through a

position determination technology such as GPS. This opens up the

possibility for a wide variety of cloud services which can make use

of that information to present to the user content appropriate for

that location. The growth of online Geographic Information Systems

(GIS) with published interfaces for storing data and associated spatial

metadata is enabling this trend. Some of these systems are also

marked up with extra user-generated content tagged by location.

A location-based service would make use of the user’s geographic

coordinates as an index or a filter into a GIS, to retrieve the right

information. Such services might include local search, navigation,

emergency services, tracking of children/pets/objects of value,

multi-player mobile games, locating people in your social networks,

logistics/transportation management, and so on.

Mobile Search and Advertising Services

In some ways, Web search from a mobile device is not very different

from Web search from a personal computer. An analysis of Google

search logs presented in “Deciphering Trends In Mobile Search” shows

that despite the limitations in input techniques, the average number

of words in a search query did not change much across mobile

phones, PDAs, and personal computers. (See Resources: Deciphering

Trends in Mobile Search.)

 However, in other ways mobile search has the potential to be more

dynamic than search from a personal computer. Devices are in the

position to know more about the user’s current context (location).

Search engines today process queries against an index that has been

built up by crawling the Web. The potential for mobile search is that

the extra context available to the device could also be used by the

search engine when formulating its response. For example, search

results might be filtered by the current location, or list of sponsored

links might include a mobile coupon to a local business.

 As an example of this, Live Search for Windows Mobile now

includes voice input (beta), gas prices, and hours of operation for

businesses. The service can also use GPS data on GPS-enabled phones

to provide location-aware local search.

Storage, Content Delivery and Content Management Services

As mentioned in the section on social trends, the proliferation of

devices is leading to an explosion in the amount of content that

is being generated and that needs to be stored off the device.

This leads to the need for storage services to back up devices, for

content delivery networks to move the data, and also for content

Architectural Considerations

� • Journal 14 • www.architecturejournal.net

management services to organize newly acquired content so that it

becomes discoverable.

 Organization of content implies a taxonomy—which might be

explicitly defined, but is more likely to be emergent based on tagging

of content with a snapshot of the context of the user at the time

that the content was created. This context might be location, time,

an event, and so forth—anything that the device was aware of and

automatically recorded.

Alerting Services

As the amount of content available online keeps increasing, there is a

need for users to filter the information signals that they receive. One

way that users can do this is by subscribing to a particular alerting

service like Windows Live Alerts. These alerts can be received on

mobile devices as SMS messages. A user can also embed a gadget for

reading alerts on their own Web sites.

Synchronization Services

As users move to a world of devices, content is increasingly being

left scattered across personal computers at home, at work, in online

services, and now on mobile phones. An important part of end-to-end

mobility solutions will include synchronization services, which solve the

problem of synchronizing any content, over any protocol, and onto any

device or personal computer. These synchronization services would

need to be able to handle subtle issues around scenarios involving

caching, offline usage, sharing, and roaming. One way to build such

services is to use the Microsoft Sync Framework, which lets application

developers easily add synchronization capabilities to an application or

service. This is enabled through a provider model that can be extended

to support common scenarios such as syncing relational databases, file

systems, lists, devices, PIM, music, video, and so on.

Summary
A summary view of all the development options

available to an architect of mobility solutions is shown

in Figure 7, with examples of specific experiences,

connection points, and access channels. There are

several cross-cutting concerns for devices, services,

and access technologies, such as how to manage

identity and trust across all these different layers.

 The approach for an architect of mobility

solutions should be to balance the need to achieve

broad reach and scale for his target audience against

the need to deliver rich experiences that users can

connect with. Ideal solutions will combine the best of

the Web with the best aspects of devices.

Resources

Deciphering Trends In Mobile Search

http://www.maryamkamvar.com/publications/

KamvarBalujaComputerMagazine.pdf

“Mobile Phones As Mass Media: Models For Content

Distribution,” by Alan Moore

http://www.masternewmedia.org/media/mobile-

phones/mobile-phones-as-mass-media-white-paper-

part-2-20070711.htm

 “Safaricom: On a Tear in Africa,” by Jack Ewing, August 27, 2007,

BusinessWeek

http://www.businessweek.com/globalbiz/content/aug2007/

gb20070827_543072.htm

SMS Server Toolkit

http://research.microsoft.com/research/downloads/details/9190f48f-

6e3d-4ee8-b4a9-b346db76be1d/details.aspx

 “Upwardly Mobile in Africa,” by Jack Ewing, September 13, 2007,

BusinessWeek

http://www.businessweek.com/globalbiz/content/sep2007/

gb20070913_705733.htm

About the Author

Atanu Banerjee is a member of the Platform Architecture Team

at Microsoft, where he works on architecture for next generation

solutions. He joined Microsoft from i2 Technologies, where he worked

in various roles for more than seven years, including chief architect

for a supply chain management product line, development manager,

product architect, team lead, and software developer. During that

time, he wrote a lot of code, designed new solutions, and worked with

some large manufacturing customers. Prior to i2, Atanu worked in the

advanced control systems group at Aspen Technologies, designing

and implementing model predictive control systems for the process

industry. Atanu received his Ph.D. from Georgia Tech in 1996. He

resides in Redmond, Wash. with his wife and six-year-old son.

Figure �: A summary view of the development options for building mobility

solutions

Sensor
Networks

Monitoring

Transactions
Payments

Networking

Messaging
Social

Maps

News
Information

Video

Music

Entertainment

Computer
Desktop

Notebook

UMPC

Devices

Networked
Appliance

PDA
Smart
Phone

Volume
Handset

Embedded Peer to Peer

Other Devices

WiFi

Data Pln
Internet

SMS

Messaging

Speech
Recognization

Voice

Cloud Services

Access
Channels

Services Information
Storage

Content

Video

Audio

Pictures

Blogs

Wikis

News

Data

Private
A

p
p

lic
at

io
ns

 a
nd

 S
ol

ut
io

n
Se

rv
ic

es

A
tt

ac
he

d
/3

rd
 p

ar
ty

 S
er

vi
ce

s

U
til

ity
/I

nf
ra

st
ru

ct
ur

e/
Bu

ild
in

g
 B

lo
ck

 S
er

vi
ce

s

Public

Group

Connection
Points

Experiences

Cross Cutting Concerns

Device Management and Security

Metadata and Tools

Search

Identity and Directory

Data/Content Synchronization

Email

10 www.architecturejournal.net • Journal 14 •

Best Practices: Extending
Enterprise Applications
to Mobile Devices
by Kulathumani Hariharan

Mobile Solution Overview
When extending enterprise applications to mobile devices, many

solutions require a three-tier approach: the enterprise application itself,

mobile middleware, and the mobile client application.

 Enterprise Application. There are, of course, many flavors of

enterprise applications that can be extended on to mobile devices,

such as Customer Relation Management (CRM), Enterprise Resource

Planning (ERP), and Business Intelligence (BI).

 Mobile Middleware. As most enterprise applications don’t have

a direct way of working with devices, mobile middleware (as it will be

called in this article) plays a crucial role. Some of the important features

of this tier include security, data synchronization, device management,

and the necessary support for multiple devices.

 Mobile Client Application. The mobile client application is,

of course, the software that will run on the device. There are many

considerations at this tier, including data availability, communication

with middleware, local resource utilization, and local data storage. In

addition, many business factors need to be considered. For example,

who are the target users? How critical is it to have the latest data? Are

there restrictions for storing data on the device? What provisions are

there in case of no network connectivity?

 When selecting the platform for the device, we see three main options:

• Online Applications (also known as a thin client). This is client software,

normally a browser, used when connectivity can be guaranteed.

Without a connection, the mobile application does not work.

• Offline Applications (also known as a thick client). This is client

software installed locally to the device that holds all required data

for the duration of most operations, and synchronizes at the end of

each day or a preconfigured period of time.

• Occasionally Connected Applications (also known as a smart client).

This is client software installed locally, similar to the offline model,

but where the application can update and refresh data at any

point in time. The frequency of the data refresh depends on the

criticality of the application.

Using the above three tiers as reference, let’s now explore what this

means for a product-based Sales Force Automation / Field Force

Automation (SFA/FFA).

Extending a Product-based SFA/FFA Application
on to a Mobile Device
A product-based SFA/FFA is typically part of a CRM or ERP application.

It’s common that this type of application does not have an existing

solution for mobile devices. The application’s server-side front end

is typically a Web-based or a rich client application, supported by

a relational database with a large data store catering to the whole

organization. There tend to be certain restrictions on access to this

database, including the following challenges:

• Changes to schema to support mobile extension — there is often

little that can be done (or should be done) to change the schema to

support mobile applications.

• Data access directly from the database, and update into the

tables from the mobile device — often there are several layers of

communication to go through and it is not possible to access the

database directly from the device.

• Understanding the schema of the data store — schemas for these

types of applications are designed to be extended, and as a result

can be large and unwieldy.

• Designing a staging area with a schema structure similar to the back

end for data to flow to the mobile devices — creating a replica

environment for development and staging can be a challenge.

Solution Introduction

When extending a product-based SFA/FFA application on to mobile

devices, the challenges mentioned in the previous section need to be

effectively addressed. The architecture needs to consider components

that work in tandem to address these challenges.

Summary
Extending enterprise applications to mobile devices
is increasingly becoming a priority for organizations
optimizing their workforce. To achieve the desired
result of a robust, scalable, secure, and responsive
mobile solution with multiple device platform support,
many components need to work together. The
challenge is to seamlessly extend various flavors of
enterprise applications, many based on a variety of
technologies and platforms, on to mobile devices. This
article outlines the components required to extend a
generic enterprise application on to mobile devices,
covers some best practices and recommendations,
and describes a case study based on a real-world
implementation.

Extending Enterprise Applications

11 • Journal 14 • www.architecturejournal.net

 Figure 1 shows a proposed model for the smart client application;

Table 1 lists the components for both the middleware and client

application with a brief description of its role as part of the solution.

Note that the component list is an optional superset and specific

implementations may not have all the components.

Best Practices

From experience, we have found the following to be best practice when

creating applications based on the model outlined by Figure 1 and

Table 1.

1. Use Database Stored Procedures to write wrapper code for faster

data access.

2. For ad-hoc data, the data should be populated using database views

for faster output to the device.

3. The staging database infrastructure could be part of the main

database server for faster response to mobile devices (the benefit is

dependent on the number of users and the server load at any point

of time).

4. While extending data from the back end to the staging database,

include only those columns and fields that are necessary on the

mobile device as the same is to be extended on to the device. This

will help in adhering to size constraints on the device.

5. The staging database should only have data for a limited period

(two months, for example) with regular scheduled archives;

constraining the size of the database will reduce seek time.

6. Use the record version number to easily track records for delta

updates during synchronization.

7. Use mapping tables in the staging database to track record

version to facilitate conflict resolution; for example, to impose a

conflict rule, overriding a transaction record with a server-side

change even when multiple changes are done on the client end.

(A mapping table is a table in the staging database which contains

the primary key of the back-end database table and the primary

key of the record on the device database.)

8. The Data Exchange Service should be a recurring process and should

be configurable in the middleware console to handle continuous

changes on the back-end system and staging database (triggered

from client), creating an asynchronous method of working.

9. Maintain only necessary user details on the middleware and link

to the enterprise directory service for authentication and other

user data. This will reduce out-of-sync issues for user information

between the enterprise directory and the middleware.

10. Do not store passwords in the staging database; instead, query the

enterprise directory service during authentication. This eliminates

out-of-sync issues caused due to non-update of the server-side

password in the middleware.

11. During synchronization, the client application should first check

for application updates by sending its current version and

downloading the latest version if applicable; this is an optimized

mechanism for application version management.

12. Store the user device profile (device platforms and OS versions)

in the user database and push version updates to the device

accordingly, sending different builds to different users.

13. Maintain three tables: in-queue, out-queue, and user-wise out-

queue for synchronization management, simplifying queue

management and optimizing the synchronization process.

14. The communication manager can be made to try alternative types

of connectivity when the primary method is not available, so as

to use the most efficient available network connectivity option.

For example, when wireless LAN is not available, the application

tries General Packet Radio Service (GPRS) network; if GPRS is not

available, the client does not synchronize.

15. The background sync interval should take into consideration the

number of users and the number of concurrent users the server can

support. These considerations will assist in reducing the load on the

server supporting the maximum number of mobile users.

Figure 1: Components for extending a product-based SFA/FFA on to mobile device—Smart Client Approach

Middleware Console

Mobile Middleware

Back End

Product
Based

SFA/FFA

Enterprise
Directory
Service

Client Application

Data
Exchange
Service

Ad-hoc Data
Request
Manager

Special
Utilities
Service

Data
Optimization

Security
Manager

Sync
Service

Authentication
Service

Staging DB
Management

Conflict
Manager

User
Management

Device
Management

Communication
Manager

Data
Optimization

Security
Manager

Remote
Data Access

External
Hardware
Interface

Device
Resource

Management

Application Activity
Triggered Sync

Device Application
• Application Business Logic
• Validations and Alerts
• UI
• Authentication

Background
Sync Scheduler

Apply/
Compose

Local DB
Manager

Device
Management

Device
Synchronization

Manager

BA
C

K-
EN

D
 D

AT
A

 A
CC

ES
S

M
A

N
A

G
ER

C
O

N
N

EC
TI

O
N

 M
A

N
A

G
ER

Extending Enterprise Applications

12 www.architecturejournal.net • Journal 14 •

16. The Device Synchronization Manager just needs to send the

username, device application version, sync interval time, and the

delta updates during synchronization. To reduce the number of

concurrent synchronizations, the middleware should return whether

an update is available and the next time for synchronization if no

update is required.

17. The record state column should be maintained at record level for

faster composing of data during synchronization.

18. The applications should be designed in such a way that when the

battery power is low, background thread priority should be set to

low, reducing CPU usage and extending battery life.

19. Develop the emulator (if not readily available) for the device type.

This reduces efforts during development and testing phases. For

example, use Microsoft platform builder to develop a Win CE

emulator that can support features required by the application.

20. During application development, also develop simulation

Component Description

Back-end Data Access Manager • Consists of wrapper code for calling the back-end APIs to insert, update, and delete data from the back end.

Ad-hoc Data Request Manager • Preconfigured methods that return ad-hoc real-time data to the mobile device.

Staging Database Management • Manages data in the staging database
 • Stores the replica of all transaction tables with mobile users’ specific columns and data.
 • Handles data archiving
 • Handles in-queue and out-queue
 • Cleans up database space.

Conflict Manager • Manages data conflicts while synchronizing with the back-end database
 • Monitors for conflicts like Server Wins vs. Client Wins, sharing of records by multiple users, updating a
 record on device when the record has been deleted on the back end and so on.

Data Exchange Service • Composes changes from the back end for a particular user to be sent to the mobile device
 • Applies changes from the mobile device to the back end using the Back-end Data Access Manager
 • Runs as a recursive service, running regularly after a period of time (configurable)
 • Sends composed data to the out-queue
 • Picks the data from the in-queue for applying to the back end.

Middleware Console • The user interface for configuring middleware
 • Used to configure modules such as user management, data subsetting, synchronization management,
 device management, and so on.

Special Utilities Service • Contains business logic to do specific activities that are not a core part of the middleware, but part of the
 mobile solution—for example, a location-based service that gets location updates captured from the
 device and uses a geographic information system to map latitude and longitude and display as reports
 • Optional, driven by business requirements.

User Management • Manages the mobile users using the mobile devices
 • User list can be linked with the enterprise directory services for using the same authentication on mobile
 devices.

Device Management • Manages the devices from the server
 • Sends new application updates to the mobile devices
 • Views application logs
 • Explores device-related issues
 • Manages enforcing enterprise security policies like erasing of data on devices that have not synchronized for
 certain number of days.

Data Optimization • Optimizes the way data is sent to the mobile device
 • Compresses data and chooses the best method for sending data based on the connection speed or type
 of connectivity
 • Uncompresses data coming from the mobile device.

Security Manager • Encrypts data being sent to the mobile device
 • Decrypts the data coming from the mobile device.

Synchronization Service • Core component of the middleware
 • Incoming data from the mobile device is received into the in-queue and the outgoing data is pushed to the
 mobile device from out-queue
 • Data exchange service composes changes for a particular user into the out-queue and applies the in-queue
 changes from the mobile device onto the back end
 • Background synchronization from the device; the service maintains a user-wise queue and checks for new
 records to be sent to the mobile device.

Authentication Service • Authenticates the mobile user during login process and synchronization.

Connection Manager • Handles multiple connections at the same time from mobile users up to a maximum number of
 concurrent users.

Table 1: Middleware and Client Application Components

Middleware

Extending Enterprise Applications

13 • Journal 14 • www.architecturejournal.net

application(s) to test the input data and output data through

peripherals attached to the device.

21. Dummy data obtained from the device manufacturer or created

using device manuals will be crucial for simulation application.

22. When designing the modules for the peripherals, place hardware-

specific and application-specific functions in their respective

libraries so that changes to the peripherals can be made without

affecting the application library.

23. Where the application consists of multiple screens having common

UI parts and functionality, design a base form that contains the

common elements.

24. Use frames instead of multiple forms wherever possible for faster

user interface response.

25. Messages (such as error messages and alerts) should be configured

in the middleware and should flow to the devices. Other

configuration files should also be configurable on middleware and

Component Description

Communication Manager • Establishes connection to the network.

Device Synchronization Manager • Authenticates with the authentication service
 • Sends and receives data from the synchronization service in the middleware
 • Downloads application updates and device management commands.

Data Optimization • Optimizes the way data is sent to the middleware
 • Compresses data and chooses the best method for sending based on the connection speed and
 type of connectivity
 • Uncompresses incoming data from the middleware.

Security Manager • Encrypts data being sent to the middleware
 • Decrypts the data coming from the middleware.

Apply/Compose • Applies the incoming data
 • Composes changes to be sent to the back end.

Scheduler for Background Synchronization • Configurable component schedules background synchronization from mobile device
 • Sends data to the server at a pre-configured interval without user intervention (automatically).

Remote Data Access • Calls the methods defined in the ‘Ad-hoc Data Request Manager’ to have real-time data on the
 mobile device; if connectivity is not available then data existing in the device is used.

Local Database Manager • Manages data in the device database
 • Applies and composes data
 • Cleans up temporary data from the database
 • Manages record state
 • Manages device configuration details.

Device Management • Executes commands from middleware
 • Applies application updates
 • Locks out application if the user enters wrong password for a specific number of times
 • Send logs to middleware.

Application Activity Triggered Synch • Triggers synchronization on completion of a complete business flow, ensuring that the mobile client
 back end are in sync.

Application Business Logic • Lynchpin of the whole mobile solution (actual application used by the mobile users).

Validations and Alerts • Validates the user input with some business rules
 • In case of non-compliance, displays alerts on the user interface accordingly.

External Hardware Interface • Interacts with external hardware interfaces attached with the device
 • Necessary for data flow to external applications, such as Barcode Scanner.

Device Resource Management • Accesses the resource state and displays alerts if user attention is required.

User Interface • Face of the mobile solution.
 • Information entered by the user through the UI is validated and processed by the business logic.

Authentication • Authenticates user with the middleware if there is network connectivity, otherwise authenticates
 with credentials available locally.

Client Application (cont’d)

Extending Enterprise Applications

14 www.architecturejournal.net • Journal 14 •

then pushed to the device application for use.

26. Database-specific queries should not be hard-coded;

instead, the queries should be fetched from the

middleware via a configuration file.

Technical Case Study: Extending a CRM
Application on to Mobile Devices for a Territory
Management System
A top pharmaceutical company with pan-India

presence wanted to improve the efficiency of its

Sales Representatives working in the field. The sales

representatives of the company meet physicians in

hospitals and clinics to promote the company drugs,

distribute samples and promotional materials and, at the

end of the day, record all details through a Web-based

CRM application.

 The proposed handheld-based solution had the

following goals:

• Improve the efficiency and effectiveness of sales

representatives

• Improve productivity by 10 percent

• Reduce manual process expenses like stationary and telephone

• Provide a quick and easy user interface for successful user adoption

• Upload latest data from device on to the server so that managers

can track the sales representative’s work

• Download latest product inventory on the device for getting orders

from chemists (only if there is connectivity).

This handheld-based solution was designed, developed, and

implemented throughout India where the pharmaceutical company

is located.

Problem Definition

Sales representatives of the pharmaceutical company make about 10 field

calls a day to meet physicians to promote drugs, take orders, and distribute

samples. A sales call typically lasts 2-10 minutes since the physicians have

full schedules. In this limited time, the sales representative has to discuss

the drugs, get feedback from the physician, and distribute samples,

journals, and promotional materials. The information collected is captured

on paper by the sales representative who, at end of the day, enters all

call-related information on to the Web-based CRM application. The sales

representative’s supervisor views the data and approves the day’s work; the

management team can also analyze the data and view reports.

 This manual process of capturing data has several problems. Data has

to be entered by sales representatives on paper and then reentered at

end-of-day into the CRM system via the Web. This process leads to data

errors and discrepancies.

 The key drawbacks of the existing manual process were:

• Inefficient data collection process

• Capturing information on paper is time-consuming

• Delays in getting information from the field

Figure 2: Deployment diagram of territory management system on

handheld device

CRM

Web Server

Enterprise
Integration

LAN Connectivity

Mobile Middleware PDA Client

Web Based
Application

SQL CE 3.0
Staging DB

Internet

Enterprise
Backend

Database
Server

Figure 3: Solution architecture for territory management system on handheld device

Middleware Console

Mobile MiddlewareBack End

CRM

Enterprise
Directory
Service

Client Application

Data
Exchange

Service

Device
Management

Sync
Service

Authentication
Service

User
Management

CRM Data
Access Manager

Communication Manager

Remote Data Access
(Ad-hoc Data)

Device Application
Alerts/UI Authentication

Device Synchronization
Manager

CRM
Database

Server
Staging

DB
SQL CE 3.0

XML

GPRSLAN

APIs

Extending Enterprise Applications

15 • Journal 14 • www.architecturejournal.net

• Consolidation and decision support delayed

• Delay in sending the latest information to the field

• Expenses incurred for stationary, phone, and so forth

• Insufficient data to talk to physicians and chemists

• No history of calls available with sales representative

• Error factor due to late data entry

• No knowledge of current inventory status of an item in the field.

Solution

Since the CRM solution had already been implemented, an extension

on to mobile devices was required with the same set of features. The

handheld application had to integrate with the CRM back end seamlessly.

This handheld base solution enables the sales representative to capture

and transfer information from the field efficiently. The mobile application

runs on the handheld, which is carried by the sales representative when

they are on the field and has information such as customer data, product,

sample, call history, appointment schedules, and product inventory.

Figure 2 on the preceding page shows the deployed mobile solution.

 The solution has four major components: handheld application,

handheld database, middleware, and CRM application.

 Handheld application. This application runs on the Windows

Mobile devices and is used to capture the data from the field. The

application also has a synchronization component to synchronize the

handheld data with the server database at office.

 Handheld database. This is the database that resides on the

handheld. This database has the data specific to the individual sales

representative to enable his work in the field.

 Middleware. This component, residing on the enterprise end,

is used to synchronize the data between the CRM database and

handheld device. The middleware uses a staging database that

Component Description

CRM Data Access Manager • Performs updates on CRM database (data captured by sales representative while on the field)

Data Exchange Service • Composes the changes (out–queue) from CRM back-end system based on the data sub-setting for
 every user (like doctor/chemist appointment schedule)
 • Runs in an interval of two minutes after the completion of the previous process
 • Applies data from the staging database (in-queue) to CRM back-end system using the CRM Data
 Access Manager (data captured by sales representative in the field).

User Management • Contains list of users linked with enterprise directory service
 • Contains user specific information like device information, last synchronization date time, device
 lockout status and so on.

Middleware Console • User interface for the middleware
 • User interface for user management, device management, viewing synchronization logs and data
 exchange service logs.

Device Management • Place new application builds in the pre-defined shared location in the middleware
 • Create builds to cater to different types of devices.
 (Note the corresponding component in the client application is taken care by Device Synchronization
 Manager.)

Sync Service • Place the incoming records in the in-queue
 • Push the outgoing records from the out-queue
 • Manage user wise queue like an index table to check if a particular user has any records for
 download.

Authentication Service • Authenticates the user by connecting to the enterprise directory service.

Middleware

Table 2: Overview of Middleware and Client Application Components in the Solution Architecture for the Territory Management System Case Study

Component Description

Communication Manager • Connects to the middleware for authentication and data synchronization
 • Tries to connect with middleware first via Microsoft ActiveSync, if not available then connect using
 GPRS/CDMA
 • If no connection is available then return with message saying so.

Device Synchronization Manager • Composes the changes on the client database in XML format
 • Applies incoming data to local device database
 • Picks up client application update file from the pre-defined location in the middleware if the file is
 not available in the device.

Remote Data Access • Connects to middleware to get updated appointment and campaign lists.

Device Application (Alerts/UI • Displays alerts on campaign details, missed appointments, and so forth
/Authentication) • Authenticates with middleware if connectivity is available or authenticates locally if connectivity is
 not available.

Client Application

Extending Enterprise Applications

16 www.architecturejournal.net • Journal 14 •

acts as the server for the handheld device. The staged data is then

synchronized with the CRM database using native APIs, providing

seamless integration.

 CRM application. This is the back-end database, which

stores the enterprise information. The data specific to each sales

representative is downloaded to the staging database and then to the

representative’s device. The updated data from handheld database is

also uploaded first to the staging database and then updated to the

CRM database.

 The solution architecture, based on the components from our

generic smart client model from Figure 1, are shown in Figure 3

on page 14. Table 2 on page 15 lists the components for both the

middleware and client application with a brief description of its role as

part of extending CRM application on to mobile.

The architecture and process flow can be summarized as follows:

• The sales representatives have handheld devices with mobile

application installed.

• Sales representative creates a weekly (can be daily or monthly also)

schedule for meeting the doctors, approved by supervisor.

• Representative connects to the enterprise network through GPRS

and downloads the data specific to the sales representative in the

handheld database.

• The representative meets the physicians and captures the sales

call information using the mobile application. Representative also

captures which (if any) samples or promotional materials were given

to the physician.

• Data is uploaded and downloaded automatically

 without user intervention; latest data is available to the user via

background synchronization.

• Sales representative adds/updates the physician information if a new

physician has been targeted or information of existing physician has

been modified.

• Sales representative books new orders from hospitals or chemists,

aided with a real-time view of inventory status.

• The expenses incurred in meeting the physician and chemists are

also captured using the mobile application.

• Managers can view the activities of the sales representative through

the reports component. They can also create business plan and

strategy after analyzing the data.

• Throughout the day, the manager can track the sales representative

working pattern and the data entered.

Addressing Key Challenges

During development, the design team came across many challenges.

The challenges and the way they were addressed is described below:

• Cannot make any modification schema to support mobile extension:

This challenge was addressed by creating a staging area having a

schema structure similar to CRM back-end database.

• Cannot update directly into the tables from the mobile device: This

challenge was addressed by creating mapping tables and using

wrapper code to call CRM back-end system API’s.

• Understanding the schema structure in which data is stored:

This challenge was addressed by going through the technical

documentation of CRM and going through the table structure in the

CRM system database to understand the each field and its use.

• Designing a staging area with the similar schema structure of the

back-end CRM system for data to flow to the mobile devices: This

challenge was addressed by first copying the structure of CRM back-

end database on to staging database, then removing the fields that

need not be on the device and last creating data exchange service

for efficient integration with CRM back-end system.

Pay-Offs

The sales force automation system has been well-received by the

pharmaceutical company, especially by the 2000 sales representatives

who are the target users of this application.

 The implementation of the system has led to an efficient and

effective field data collection process and improved communication

between the sales representatives and management. Sales

representatives in the field and managers in the office each have access

to the information they need—data that is up-to-date and relevant to

them—whether making field calls or planning marketing strategies.

About the Author

Kulathumani Hariharan is a senior solution architect working with

the Wireless & Pervasive Technologies Practice of TATA Consultancy

Services. He specializes in architecting enterprise mobile solutions and

defining in the mobile middleware adoption strategy for the enterprise

mobile customers.

“SaleS repreSentativeS of the

pharmaceutical company make about

10 field callS a day to meet phySicianS

to promote drugS, take orderS, and

diStribute SampleS. information

collected iS captured on paper by

the SaleS repreSentative who, at end

of the day, enterS all call-related

information on to the web-baSed crm

application. thiS manual proceSS of

capturing data leadS to data errorS

and diScrepancieS.”

17 • Journal 14 • www.architecturejournal.net

Connected Consumer
Experience in Automobiles
by Christoph Schittko, Darryl Hogan and Jon Box

Scenario
The Woodson family has just purchased a new car with a mobile

computer on board. This PC serves as their guidance and

entertainment system, but also comes preloaded with several

productivity applications, such as travel planning, reminders, and a

list manager. The software loaded on the Auto PC not only performs

processing locally on the device, but also leverages services in the

cloud to enhance the capabilities of the device and to ensure that the

information presented by the software is up-to-date.

 The Woodsons have decided to take their new car on the

upcoming family road trip. Mary Woodson is not only the mom;

she is the family event coordinator. Mary sits down at the family

computer to plan their adventure using a Web-based version of the

trip planning application shipped with their in-car computer. Mary

plans the route they will drive and makes reservations for hotel and

restaurant stops along the way. Mary unwittingly uses a mashup

consisting of a number of services running in the cloud. All the

information pertinent to the trip is stored remotely in an Internet-

based location which is accessible only by Mary and her designates.

When the time comes to confirm the hotel reservations and pay for

attraction tickets, Mary hesitates when she’s asked for her credit card

information. She’s heard that entering your credit card information on

a Web site can potentially lead to identity theft. She’s soon relieved

to discover that she can create and use a digital information card

managed by her bank to present payment information to the various

vendors. This option provides a measure of safety over presenting

her credit card information over the Internet to each of these vendors

individually. She can select the appropriate card right from her

desktop as a source of payment information, allowing her bank to

pass her secured credit card information to the necessary vendors

without transmitting sensitive information from her PC.

 The trip starts with a reasonable lack of eventfulness. The kids

have chosen to take only a few of their own DVDs along for the trip.

If they decide on a whim that they’d like to see something different

they can always download a movie to the car. For Dad, his smartphone

connects itself to the car via Bluetooth and his calls, text messages,

and email are now directed to the vehicle’s computer rather than his

phone. An incoming text message from the home security system

Summary
What sets a vehicle apart from a hunk of metal and
four wheels? It’s all about features. Manufacturers are
constantly adding newer media devices, more powerful
motors, and softer seats, all in the name of improving
the driver’s experience. Yet with all these improvements,
auto manufacturers have barely scratched the surface
with respect to the capabilities of the myriad of software
and services advances available in recent years.
 There has been a lot of talk around services in the
cloud and their application based on the consumption
of services. Despite this, many reference architectures
and papers aimed at demonstrating patterns for
designing these systems have taken an idealistic
approach to the application—frequently citing simple
examples or applying scenarios that are not pragmatic.
This paper defines a practical solution architecture
based on a scenario one might encounter in everyday
life. We intend to inspire architects to use the same
approach to define innovative solutions for the
problems they face.
 The solution architecture defined here is a
combination of real platform services that exist today
and fabricated services that help round out the
solution. This solution will demonstrate the application
of Software + Services (S+S) to mobile application
architecture as a means to extend the digital lifestyle
beyond the desktop. Security, privacy, and data
architecture will be addressed broadly.

“The InTerneT Is aT The begInnIng of ITs

TransformaTIon To become a plaTform for

servIces In The cloud: plaTforms such as

WIndoWs lIve provIde apIs for presence,

alerTIng, conTacT and calendar manage-

menT, as Well as maps and dIrecTIons; as

anoTher example, bIzTalk servIces WIll

offer a pub-sub plaTform and message

rouTIng and delIvery.”

Connected Consumer Experience

18 www.architecturejournal.net • Journal 14 •

indicates that one of the motion detectors has picked up movement in

the backyard. Dad places a call to Bob Thomas next door who checks

the situation to find it was only one of the neighborhood kids chasing

a stray ball.

 A few hours into the journey the engine light comes on. Data

is immediately sent to a diagnostic service provided by the vehicle

manufacturer. The service finds a warranty issue that needs to be

tended to and returns a message to the on-board PC with a simple

diagnostic report and the name and location of the dealer nearest the

car’s current location. Mom clicks on the dealer’s address to get turn-

by-turn directions and the family heads for the detour. The family

uses the search functionality on the car’s computer console to find a

restaurant near the dealer for a quick snack. (Figure 1 illustrates this

engine light scenario.)

 After servicing their car they are back on their way, three hours

behind schedule. Mom pulls up the travel itinerary she created at

home. The dinner reservation at the restaurant in the next town needs

to be cancelled and new dinner plans need to be made. Mom orders

pizza online to be picked up at a nearby pizzeria and pays for it once

again using her banking information card. After a great meal they all

look forward to a memorable trip.

Solution Architecture
Architecture Options

As you can imagine from the scenario, the solution

brings together services from numerous providers and

applications that consume these services. The consuming

applications could either be application containers

following the composite User Interface (UI) pattern to

allow dynamic provisioning of new services or it could

be special purpose custom applications delivered as

client applications. The general approach follows the S+S

paradigm to provide a simple, yet rich and intuitive user experience

across devices and audiences. The combination of client software

and remote services is particularly important in this mobile scenario

because the locally running software can improve user experience

by masking the high latency over-the-air service invocations or

temporary network connection problems that are common even on

modern wireless wide area networks.

 The services fall into three general categories (Table 1):

• Common Platform Services, commodity services published by

third-party service providers. These are the kinds of services that

other service providers will build on top of in order to extend

their story, as well as to utilize the maturity and stability of others’

infrastructure, specialization, and business efforts (one of the

core principles of S+S). Many software and online businesses have

realized the opportunity of building out a platform “in the cloud.”

Microsoft’s offering of services under the Windows Live brand is

one example for an Internet platform.

• Manufacturer Services, provided by the manufacturer either within

the car or in the cloud to access vehicle, dealer, and manufacturer

information.

Connected Consumer Experience Service Windows Live Service Category

Common Platform Services Building Block Service

Manufacturer Services Attached Service

Value Add Services Finished Service or Attached Service

Table 1: Connected Consumer service categories relationship to the

Windows Live service taxonomy

Figure 1: The Auto PC offers applications to manage the vehicle and travel.

Connected Consumer Experience

19 • Journal 14 • www.architecturejournal.net

• Value Add Services, provided by the car manufacturer or third parties

to offer services that increase sales or customer loyalty or services

offered to support special purpose devices sold by third parties.

These service categories refine the more generic service taxonomy

for Windows Live services listed at: http://www.microsoft.com/online/

default.mspx

Technology Environment (Constraints and Assumptions)

The solution requires an environment where Internet access is widely

available, but not necessarily ubiquitous. Ideally, the car has the means

to connect to the Internet without additional devices — for example,

it does not require a cradled cell phone to enable network access

to services provided by the car. Network access to the car enables

application scenarios such as remote start, remote diagnostics, and

notifications of events in the car.

 Some applications that benefit from location information

may not need the context provided by vehicle-specific data. Such

applications could also run on commodity devices, such as GPS-

enabled smartphones and personal digital assistants, because there is

no dependency on the vehicle-specific data. These devices are often

equipped with modern platforms like the .NET Compact Framework

and can access SOAP-based Web services just like a server or a

desktop computer. Visual Studio 2008 and .NET Compact Framework

3.5 add support for consuming WCF and WS-* based web services for

WS-Addressing and message-level security based on WS-Security.

Value Add Services
In our scenario, the Woodson family touches many different types

of software and services. For instance, the vehicle manufacturer

provided a service to analyze vehicle diagnostic data and to notify

the vehicle owner of a problem along with information on where to

get the problem fixed. The trip planning service stored their travel

itinerary and made it accessible from the Internet. These are value-

added services which can be more completely described as services

which provide a unique experience to the consumer. They differ from

common platform services in that they are not considered general

purpose or widely available. Instead, they are most likely developed

to establish a competitive advantage and perhaps to extend the

usefulness of another product.

 In many cases, these services may be composites of custom code

and one or more core platform services, allowing the service provider

to make available features where they are lacking domain-specific

knowledge. An example of a composite application would be a dealer

locator service (Figure 2). An automotive manufacturer may know the

location of their dealerships, but it is unlikely that they would have the

data necessary to provide navigational guidance to the dealer from a

specific location. The manufacturer would most likely rely on services

provided by Windows Live Maps or Mapquest.

 In and of themselves, value-add services would not be

considered finished products. These services are domain-specific

building blocks to build complete applications. We can say that

these services provide the features used to create a more complex

and complete piece of software.

 The most flexibility is gained using a deployment model that

consists solely of services running in the cloud, because changes only

require updates to the servers hosting the services, not to each car

that consumes the service. These services are typically HTTP-based

services that can be invoked by a client — either an application or

another service. The benefit of this approach is that all the executing

software is centrally deployed to a data center making it easier to

manage. The drawback is that the service consumer must have a

connection available to make use of the service (Figure 3).

 Although it is possible to run the complete solution on the

client, this pattern constitutes a closed environment where access

to more relevant and up-to-date data is not possible, making the

solution less useful. This is the blueprint that exists today for many

mobile computing systems, especially those based in automobiles.

The upgrade path for these devices is non-existent and the limited

functionality they provide is of minimal benefit to the owner of the

device (Figure 4, page 20).

 A preferable pattern for a mobile computing solution takes

advantage of the ability to access software and data stored on the local

device. In this case we can deploy the value-add logic to the device

and make enough data available to the application that the application

would be useful even when the connection is unavailable. This

model decentralizes a great deal of integration and control logic and

introduces maintenance and bug fix challenges, but the improvement

in the user’s experience will likely make the pains worthwhile (Figure 5,

page 20).

Internet

Live Maps

Dealer
Location
Service

Vehicle
Diagnostic

Service
RescueMe

Service

Figure 2: The RescueMe composite services aggregates car

manufacturer and third-party services.

Travel
Service

Routing
Service

Traffic Data
Service

Figure 3: The most flexible architecture consumes only

remote services.

Connected Consumer Experience

20 www.architecturejournal.net • Journal 14 •

Services Technology Platform
The Internet is at the beginning of its transformation to become a

platform for services in the cloud: Platforms such as Windows Live provide

basic APIs for presence, alerting, contact, and calendar management, as

well as Virtual Earth maps and driving directions; as another example,

BizTalk Services will offer a pub-sub platform and message routing

and delivery. These are all key ingredients for rich, robust connected

applications, but current feature sets and SLAs reflect that these services

are still early in their life cycle.

 Future services could extend presence settings with a “driving in the

car” setting that always allows traffic alerts and some alerts that the driver

configured—the alert API could add “car” in addition to “IM application,”

“email,” and “SMS” to the list of notification endpoints.

Mobile Client Technology Platform
There are several platforms to choose from when it comes to realizing

the connected consumer experience and there are trade-offs between

the platforms. The priorities and constraints dictated by the actual

solution have to drive the platform selection. In general, Windows Vista

Embedded enables the richest experience through the feature set of the

operating system and the full .NET Framework, but it’s also the platform

with the largest footprint, the most demanding processor requirements,

and highest licensing cost. Windows CE provides a lower cost alternative

with lower hardware requirements, and more options to customize the

operating system but fewer capabilities. A Windows CE-based platform

should include the .NET Compact Framework to take advantage of the

productivity benefits of managed code development and base class

libraries. Finally, Windows Mobile provides a constantly improving

richer experience. Platform services are provided through the compact

 Windows Embedded Windows CE .NET Compact Windows Mobile .NET Compact
 .NET Framework Framework Framework 2.0 (3.5)

Target Scenario Rich In-Vehicle Low Fidelity In-Vehicle Consumer Device
 Scenario UMPC Scenario

UX Full WPF feature set Windows Forms Windows Forms
 Silverlight in the Future Silverlight in the
 Touch Future Touch

Communication WCF SOAP, REST and JSON WS-I SOAP Web Services WS-I SOAP Web Services
 WCF Client (3.5) WCF Client (3.5)

Interaction Speech with Vista or Third-Party Speech Third-Party Add-On Speech Third-Party Add-On
 Add-OnTouch Touch if hardware support Touch on PocketPC devices

Authentication CardSpace Username Certificates

Data Storage Full access to local Local file system Local file system
 storage devices and a Optional SQL CE SQL CE
 variety of databases

Development Tools Visual Studio Visual Studio Visual Studio

Car Integration Yes, via serial or Yes, via serial or No
 custom ports custom ports

Table 2: Client platform decision points

Travel
Application

Telematics
Data Service

Routing
Service

Traffic Data
Service

Figure 5: The Software+Services architecture combines benefits

of local and remote services.

Travel
Application

Telematics
Data Service

Figure 4: The least flexible architecture consumes only local

services offered by the vehicle.

Connected Consumer Experience

21 • Journal 14 • www.architecturejournal.net

framework, providing a programming model consistent with the skills of a

broad set of developers. Table 2 on the preceding page lists the strengths

and limitations of each platform for mobile application development.

Client Application
Several options for interacting with computing systems are available

to us today. Rich client applications realize the greatest benefits

consuming services because they can take advantage of local data

storage mechanisms and computing power that is not available

through Web-based delivery mechanisms. Web applications have

the benefit of being centrally hosted and managed but, being

connection-dependent, cannot fully realize the connected consumer

experience. A rich client application, in addition to providing the

most comprehensive user experience, is more readily able to take

advantage of services that might only be available locally. It is more

practical to consume and evaluate vehicle performance data locally

in the vehicle rather than passing the data into the cloud for further

processing. We also avoid any privacy and security issues when we

don’t transmit data from the car to remote services.

 Lastly, a rich client application can handle identity and session

more easily than a Web-based application. It is a trivial exercise to

store information cards locally on a device and use those cards to

establish identity with a service or another application.

Service Delivery Patterns
We can expect that Internet connectivity is widely available to our

solution, but we cannot make the assumption that connectivity is

ubiquitous. Each service delivery pattern has different strengths in

terms of latency, flexibility, and functionality (Table 3). A rich client

allows us to adopt a set of design patterns that allow us not only to

account for those times when we are disconnected from the network,

but also to use the additional capabilities of the client to enhance the

user experience.

 Many rich applications built these days are only shells providing

input and output for a set of services living behind the user interface.

In this pattern, the client is highly reliant on connectivity to provide any

kind of useful interaction for the end user. This client may have simple

caching to deal with network latency or conditions where the network

is simply not available, but it does not extend its usefulness beyond

what is available through the services it consumes.

 We can extend this pattern to create a second, more useful pattern

in which the client remains a dependant service consumer, but the

computing infrastructure is extended to the client. In other words, we

take advantage of the application’s ability to perform processing tasks

in the vehicle, thereby relieving the services of some of the processing

burden. A typical result in this case is a more responsive albeit still

underachieving application.

 Short of downloading all functionality to the client device, we can

implement a pattern in which services become simple data providers

and consumers. The logic for how we utilize the data is embedded

in the client and the client becomes the focal point of the user’s

experience. This pattern allows us to deal with latency caused by slow

or non-existent network connections as well as presenting to the user

an experience resembling her home PC. One issue related to this

pattern is that of upgradability. Because the application is deployed to

the client device it becomes more difficult to add functionality or to

upgrade existing functionality. Services such as the .NET Framework’s

click-once deployment model and adoption of composite UI

application patterns help overcome this challenge. New services can

be readily upgraded and added, as is the case with any Web service.

 It is possible for software vendors and service providers to

offer multiple versions of their products—for example, a vehicle-

independent version for devices offered through regular retail

channels and a vehicle-specific version offered through the vehicle

manufacturer that offers additional functionality (Figure 6). An

enhanced model would “light up” the experience on the device and

in the car when a customer buys both products. The mobile device

application could also provide value-adds, such as the display of the

current location of the car, remote start, and automatic data sync from

the device when it’s brought into the car. Both, the device application

and the vehicle application can access the service provider’s cloud-

based services, which increases their utilization because of the larger

target audience.

 With the S+S architecture, client applications are not bound to the

vehicle. Services can be offered through myriad commodity devices

such as smartphones and mobile PCs with user experiences tailored

to those platforms. Because data stored in the cloud is available to

any and all devices, we can make the transition between devices

almost completely seamless. The important tenet to maintain is that

interaction with the devices should be a natural experience for the

user. The growing collection of more and more powerful devices

presents many options to present a consistent level of interaction

between client and computer. The user interface may change to suit

the form factor, but the level of service will remain the same.

Figure 6: Different heads allow for better utilization of services

and a more differentiated user experience.

Travel
Application

Telematics
Data Service

Routing
Service

Traffic Data
Service

Driving
Analysis Serivce

Route Planning
Applications

@

Pattern Latency Flexibility Functionality

Thin service High High Medium
consumer

Richer client Medium Medium Medium

Smart client Low Low High

Table 3: Comparison of client architectures

Connected Consumer Experience

22 www.architecturejournal.net • Journal 14 •

Security, Identity and the Client
Identity is a challenge in any system as are authentication, authorization,

and privacy. This is especially the case with mobile applications. The

greater the remove between the core application and the device, the

more difficult it becomes to deal with matters of security. A richer client

allows us to maintain security tokens on the device, creating an arguably

more secure application.

Secure Communication

Privacy is a major concern for anyone exchanging data with

services in the cloud. In the past, the focus was on HTTPS and SSL

for transmission of encrypted information. The problem with SSL

is that it is a point-to-point protocol and doesn’t allow for data to

be exchanged securely between multiple endpoints. Composite

applications (comprising multiple services almost by definition) require

an end-to-end approach to security. A better solution would be to

obscure the data on the device and allow it to be transported over

an encrypted or clear connection. This is the approach taken by the

authors of the WS-Security protocol. The client device possesses a

public key used to encrypt the data before it is release for transport.

Only the destination service is able to the decrypt the message. Data

in the message intended for different recipients can be encrypted with

different public keys, thereby ensuring that data can only be read by

the intended recipient. Client-side development platforms like the

various versions of the .NET Framework implement WS-Security as

part of WCF.

 Digital signatures provide an added measure of trust. The client

could use a unique identifier such as a private key from an X.509

certificate to sign the message, ensuring that the data was indeed

sent by the party whose identity is claimed in the message; the digital

signature would also provide the assurance that the data was not

tampered with in transit. A digital signature is essentially a one-way

hash of the originating data. If the hash cannot be reproduced by the

recipient, the signature is understood to be invalid: Either the key pair

does not match, invalidating the claimed identity, or the data has been

tampered with in transit.

 The S+S approach enables use of WS-Security, but it offers an even

more secure option to improve privacy: Not transmitting any secure

information at all. Moving computing operations that include personally

identifiable data to the car or the device eliminates the need to transmit

the information over insecure channels. Take CardSpace authentication

as an example. A CardSpace identity tied to the car avoids transmitting

personal identity or weak username/password combinations.

 In the interest of privacy, service providers are encouraged not to

require any sensitive information. For all exceptions, the application

provider should request the user’s permission for transmitting

information to the service. By default, each application should follow

Microsoft’s guideline for secure computing and not transmit any

sensitive information without explicit permission from the user.

Authentication and Authorization
Identity tokens can be used to authenticate and authorize users for

services they would like to access. An information card such as a

CardSpace card would allow the user to present a claim of identity

to a service. The burden of verifying that identity could be held by

the service or a relying party could be used to validate the identity.

Authorization would still be the responsibility of the invoked service.

 Authentication is very important in our mobile scenario for a

number for reasons: We need to restrict access to the application to

paying customers, but we also need to ensure that each user’s private

data is protected from unauthorized access. In our scenario, there’s

an additional concern: Remote access to the car. There are privacy

concerns around accessing the car’s location and travel history,

but there are also safety concerns. Starting or stopping the car, for

example, is a feature that needs to be guarded very tightly. You

wouldn’t want a malicious hacker to shut off your car’s engine while

you’re driving down the highway.

 On the Internet, user identity is typically established by entering

a username/password combination but that’s not the experience we

expect when we get into a car. The key is the traditional means of

getting access to the car and its services. We can employ a similar

interaction model for in the connected services scenario with smart

keys or CardSpace-based solutions.

 However, there are a few interesting architectural concerns around

identity in the car. For one, the car itself is a multi-tenant application

because it can have multiple drivers potentially with different roles—

the owner, the owner’s teenage daughter, or a mechanic that services

the car are a few examples. Many cars today offer preference settings

for seat and steering wheel positions for different drivers based on

the key they carry. This experience can be extended to computing

Routing
Service

Calendar Service

Telematics Collection
Service

Maintenance Alert
Service

Car Identity

Driver Identity

Figure 7: Car and drivers need their own different digital identities

to access services.

“The s+s approach enables use of

Ws-securITy, buT IT offers an even more

secure opTIon To Improve prIvacy: noT

TransmITTIng any secure InformaTIon aT

all. movIng compuTIng operaTIons ThaT

Include personally IdenTIfIable daTa

To The car or The devIce elImInaTes The

need To TransmIT The InformaTIon over

Insecure channels.”

Connected Consumer Experience

23 • Journal 14 • www.architecturejournal.net

devices in the vehicle, making applications and data available based

on the current driver’s identity. Access to the entire system can be

limited for guests in the car.

 The concept of identity exists even for the vehicle itself (Figure

7). A digital identifity could be assigned to individual cars allowing

access to manufacturer services that provide vehicle-specific services.

Drivers on the other hand need a portable identity. Most computer

users today have at least one digital identity associated with them.

Extending that identity to be used in a vehicle is not trivial, but is

entirely possible.

Multitenant Data Architecture
Another factor to consider is the problem of data storage and privacy.

In order to make this type of computing experience useful a good

amount of personal information would need to be stored in the cloud.

This creates a challenge for the data architect who must make sure

that the data is stored in an efficient manner while not compromising

the security and privacy of a consumer using the service.

 Arguably the best solution for a data store with a large number

of tenants is the shared database, shared schema method. In this

case, the data of every tenant is stored in the same tables with data

associated to each tenant through metadata. This pattern places the

guarantee of privacy and security on any application accessing the

data and may dictate additional software development costs, but the

cost savings for the long term maintenance of the data far outweighs

this cost.

Conclusion
Connected consumer experiences such as the one outlined in this

article present a great opportunity to add value to existing products.

The current and upcoming generations of consumers are technology

savvy and will rely on digital helpers everywhere, not just on their

desktop at work. The ubiquity of computing devices and the wide

availability of network connectivity present an opportunity for

manufacturers and new service providers to connect with their

customers in new and meaningful ways (Figure 8).

 The car in particular is such an important part in many people’s

life. You bring kids to school, visit customers, or take road trip

vacations. You may spend hours each week driving around and you

find yourself in situations where some extra help can make a big

difference to you.

 The Microsoft Platform is very well suited for building S+S

solutions on the client and on the server. Technologies like WCF and

the .NET framework are well-suited to building cloud-based services

because support for message exchange protocols—such as JSON,

POX/REST, SOAP, and WS-*—guarantees interoperability with all kinds

of service consumers. Often, services are not built from scratch but by

aggregating existing services. Technologies like BizTalk Server or the

cloud-based BizTalk Services are well-suited to aggregate building-

block services into value-added services. The platform also offers

Windows Live building-block services, such as contacts, alerts or

photos, which can be included in value-added services.

 Software + Services provide an excellent pattern for delivering

services across a number of platforms. Flexible service delivery

mechanisms allow us to quickly add new features with little interruption

to existing systems. Advances in presentation technologies and device

form factors enable us to present software to users in the most context-

appropriate manner.

 We’re already seeing the combination of Software + Services

emerging in many areas. Early adopters are proving the value of these

solutions and setting the bar for others to meet. The tools and the

platforms are there. It’s only up to the application providers to build

solutions that reach users in the best possible ways.

About the Authors

Darryl Hogan is an architect in Microsoft’s Developer and Platform

Evangelism Group. Darryl has extensive experience architecting and

implementing numerous enterprise applications during nearly 15

years in the IT industry. In his current role, Darryl provides guidance

and education to architects implementing enterprise solutions and

enterprise architectures on Microsoft technologiers.

Christoph Schittko is an architect for Microsoft based in Texas

where he works with customers to build powerful solutions that

combine software + services for cutting edge user experiences and

leveraging service-oriented architecture (SOA) solutions. Prior to

joining Microsoft, Christoph assisted with companies adopting service

orientation and delivering Software-as-a-Service (SaaS) solutions.

Christoph has over 14 years experience developing and architecting

software solutions in a wide variety of industries. He writes and speaks

on Web services and XML at various conferences. Christoph holds

an advanced degree in Electrical Engineering from the Friedrich-

Alexander University Erlangen-Nürnberg.

Jon Box is an architect evangelist at Microsoft. He works with

customers to utilize Microsoft technologies to build impactful

solutions. Jon has been programming professionally since 1985. He

has worked in a variety of environments and languages that include

COBOL, Assembler, Clipper, C, C++ (Borland, ATL, MFC, Win32, COM/

DCOM), VB5/VB6, and .NET. For more thoughts from Jon, see his blog

at http://blogs.msdn.com/jonbox.

Identity

Platform Services

Manufacturer Services

Value Add Services

Figure 8: The Internet services platform enables connected

consumer experiences in the car, on devices and the PC.

24 www.architecturejournal.net • Journal 14 •

Architectural Journal
Profile: Faisal Waris

AJ: Faisal, can you tell us a little about yourself?

FW: I am a consultant at Ford Motor Company, working for Synova Cor-

poration. Essentially, my main role at Ford is as an SOA architect, and I

have been here for four or five years. I am also the co-chair of an AIAG

workgroup that deals with business-to-business (B2B) messaging. AIAG

stands for the Automotive Industry Action Group, a standards body for

the automotive supply chain. It has a fairly large membership consisting

of various OEMs and suppliers.

AJ: Four or five years at Ford as an SOA architect sounds like a

fascinating role. Can you elaborate a little more on your work?

FW: The team I work in is part of the Enterprise Architecture Group,

which takes on various roles. Firstly, we are similar in some respects to

a research organization, looking at emerging technologies, perform-

ing proofs-of-concepts, and experimenting with software and devices

to figure out if something will add value to Ford. Then, we engineer that

technology for the mainstream application teams. The other role of the

group is about setting standards, which can include defining standards

and best practices around Service-Oriented Architecture (SOA) and

other architectural topics. SOA governance is a major area that we’re

currently working on. This involves creating processes, frameworks and

usage guidelines for enterprise-wide products and services that are

being introduced into Ford. We also help application teams implement

SOA Web services and troubleshoot when things go wrong.

AJ: Many of our readers may be implementing SOA. What recom-

mendations would you share with them?

FW: One of the debates we have here—and, I believe, one that’s probably

happening in most other places—is the question, What is a Service? What

does a service consist of? If I have an FTP job, is that a service? Does the

word service only describe a Web service, or does a service in AJAX count

also? I think a lot of companies, including ourselves, struggle with the def-

inition. We have decided to adopt a very pragmatic way to deal with it. To

resolve this we use the OASIS definition. You can go to OASIS and actu-

ally get that from their Web site. We decided to use that as our definition

because a lot of people worked on it, so it’s kind of a consensus view on

how to define SOA. It’s still a very generic definition, but what it allows you

to do is to tailor it for specific use. If you think about it, almost anything

can be a service, but if you want to have an architecture that connects all

of these services together in a uniform way, deferring to the OASIS defini-

tion, then you have to start to think about what you really want a service to

be. We found that if you want uniformity across your services then the first

step is to establish a certain set of standards and protocols.

AJ: You mention a focus on governance. Do you think many

organizations today struggle with governance?

FW: I think it depends on the maturity of the organization—or the

maturity of SOA in the organization. If you are just starting out, then

heavy duty governance is not what’s really needed. What’s needed at

that time is helping and nurturing the nascent SOA in an organization.

This can include SOA evangelism, talking to your application teams, and

explaining concepts and how things get done. After a certain point in

time—when everybody is comfortable and services are being built—

then you can step back and put on more of a governance hat. As an

organization we’re now making this transition. We have done the evan-

gelizing, and SOA has become accepted. We are now in the phase

where we need to start thinking about how we manage all of that, mak-

ing sure the right services are being built, avoiding duplication; given

that we have different application teams with different points of view,

how do we broker the right service so we have the right consumers and

the right providers and the right set of interfaces.

AJ: You also mentioned co-chairing an AIAG workgroup. Can you

give the readers a little kind of background on AIAG, especially

related to the mission of the group?

FW: AIAG is more than just an action group; it is both a vertical for the sup-

ply chain and a standards body. It brings together suppliers and OEMs, and

gets them working together on common problems. There are engineering

type standards, and there are process standards, but more and more they

are getting into eCommerce type standards—these are standards related

to the exchange of information between suppliers and OEMs. I am part of

the group that works with those sets of standards, and our goal is to enable

seamless integration between automotive supply chain partners by defin-

ing standard business processes. A standard process could be something

like inventory management process—say Kanban, MinMax—Quality or

Warranty processes. We then take these processes and perform proof of

concepts using Web services and related technologies (such as ebMS). We

demonstrate that many implementations of a business process (with inter-

faces defined by a set of WSDLs) can interoperate securely and reliably. Our

goal is to promote this in the industry.

AJ: The current issue of the Journal is about mobile applications

In this issue, we catch up with Faisal Waris, an architectural
consultant at Ford. The Architecture Journal asks him
about the role, what some of his challenges are, and his
views on architecture.

Architectural Journal Profi le: Faisal Waris

25 • Journal 14 • www.architecturejournal.net

and devices. Some readers may have heard about Ford’s new Sync

product. Could you tell us a little about that?

FW: Sync is a partnership between Microsoft and Ford, and is one of

the first applications of the Microsoft Automotive PC in production use.

Sync is very interesting. In its current context, Sync provides services

related to entertainment, voice recognition, operating the phone, and

media devices. One way to think about it is as a general purpose com-

puting platform in the automobile. With this paradigm, the sky is the

limit; there are a lot of possibilities as to what you can do with it. Of

course, there are challenges related to what you can put in a car from

a user perspective because of many considerations. But a new world is

beginning and we are very excited to be a part of that.

AJ: How do you see the role of software in the automobile evolving

over the coming years?

FW: Ford is obviously thinking of many different areas, some of which

I can’t cover in this interview for confidentiality reasons, but a general

purpose computing platform in the car opens up a lot of dreams and

possibilities. There is a potential for providing many services inside the

car that can operate on voice recognition especially one that can per-

form well in an automotive environment.

AJ: We find that many readers of the Architecture Journal are aspir-

ing architects, perhaps senior developers looking for the next step in

their career, and thinking about what they need to become an archi-

tect. As someone who has been doing this role for some time, what

kind of advice would you give a would-be architect today?

FW: I think that there’s a gradual process where someone transitions from

developer to development lead, and then on to architect. There are also

very different types of architects. At Ford we have infrastructure architects,

solution architects, and even specific architects like SOA architects. If you

are an aspiring architect, I believe that being current with the literature is

key because being able to understand how to take a set of technologies

and stitch them into a solution requires fairly broad knowledge, and fairly

current knowledge of what’s out there. I have to do a lot of reading just

to keep up with everything that’s going on. I’m also more of a hands-on

architect, so even though I am playing an architecture role I like to go in

and roll my sleeves up and tweak with code. I’ve found that’s this is really

beneficial. A lot of architects distance themselves from doing any kind of

hands-on work, which can be a mistake because you really can’t archi-

tect unless you understand the whole picture and sometimes you have

to understand at a very deep level to be able make the right kind of deci-

sion. My advice would be to play around a lot with new technologies and

experiment. You don’t have to write production applications, but what

you can do is experiment so that you have a sense of what something can

do, what are its limits, what are its capabilities, and that overall gives you a

much better perspective as to what will work and what won’t work.

AJ: One of the questions we always love to ask the people we inter-

view is “What’s the one thing that you regret most in your career,

and what did you learn from it?”

FW: That’s a hard one to answer! I can’t actually remember anything

that I really regret. I have had many chances to go purely into manage-

ment, and I have steered myself clear of that. I’ve always had one foot

in the technical area. I think that has helped me to be where I am today.

Being in this position I do think there may be a limitation that I start

to run into, and the question can be how do I advance in this position?

Should it be a move into management, or do you stay in an architect

consulting role, or how do you move forward? That’s one of the things

that I need to figure out.

AJ: Related to your career, what do you hope to accomplish in the

next few years and over the long term?

FW: One of my personal quests is to establish a new way of dealing with

B2B messaging. If you look at what we have today in terms of messag-

ing, it is mostly Electronic Data Interchange (EDI). There’s some XML being

implemented, but if you look at it, it is still mostly EDI over FTP. My personal

quest is to enable B2B Web services, and I believe we have all of the com-

ponents out there. We have the WS-* specifications that work well in B2B

space. For example, we have WS-Addressing for asynchronous messag-

ing, WS-ReliableMessaging for robust delivery of messages, WS-Atomic-

Transaction for transactions, WS-Security and WS-SecureConversation for

security, and so on. Many of the toolsets are now implementing these stan-

dards, so one of the things that I am working on here at Ford and at AIAG

is to establish these as the new standards for B2B messaging. Of course, it’s

very hard given the large installed base of existing technolgies—but slowly,

we start to see people recognizing the value of exchanging messages with

XML because you can do a lot more with it. Unlike EDI, many aspects of

XML messaging can be managed just by leveraging metadata (such as

XML Schema, WSDL, WS-Policy, etc.). Plus, you can create robust integra-

tions (through reliable messaging), which is difficult with something like EDI.

That’s my personal cause, so it’s very rewarding and exciting.

 The other area of technology I am personally interested in is the

semantic Web technologies. Now this may be getting a little old at this

time—I think it has gone over the “hype curve” and may even be in the

“trough of disillusionment” —but when I work with information, I see

how it can be managed better, and I always go back to the capabilities

promised in the vision of the semantic Web. I hope that this need will be

recognized by others and maybe there’ll be a resurgence.

 At this point I am happy with what I am doing and very, very busy,

so I haven’t had much time to think about the long term. I definitely like

the architect role and I don’t know whether I want to grow out of it any

time soon.

AJ: Faisal, thanks for sharing some of your insights and thoughts!

If you would like to nominate someone who would make a good candi-

date for the profile in the next issue of the Journal, please contact the

editors at editors@architecturejournal.net.

Faisal Waris
Synova Corp.

Faisal Waris works for Synova Corp. and is

a consulting SOA Architect at Ford Motor

Company. Lately, he has be active with

the Sync program (www.syncmyride.com).

Sync is the result of a partnership between

Microsoft and Ford and is one of the first

production applications of Microsoft’s

Automotive PC. Faisal is also the co-chair

of a workgroup at Automotive Industry Action Group (AIAG,

www.aiag.com) where we works on automotive electronic

commerce standards.

26 www.architecturejournal.net • Journal 14 •

Mobile Data
Architecture
by Rodney Guzman

Scenario
For the purposes of this article, a sample event management application

is introduced. This application is a hosted Web site with a robust data

model. The business demands that this application be accessible in

remote, disconnected areas where the events are held. At the events,

the company’s products can be purchased and attendee information

updated just as they can on the Web site. Each event lasts for potentially

multiple days with thousands of attendees. During the event, there is

no regularity at which anyone can assume to have network connectivity.

Shortly after the event is completed, the data on each client much

be reconciled. The simplified database diagram shown in Figure 1 is

referenced as a sample subset from this application.

 Re-use of existing components to minimize the cost of building

a smart client application has been demanded by the business. The

business does not want to rebuild their business objects already

abstracted away correctly from their ASP.NET application. They

want the same business objects to be deployed with the smart client

Windows Presentation Foundation (WPF) application. SQL Express

will be in use on the desktop, and the data schema will re-used from

the Web application.

When You Are Connected
You can never rely on when occasionally connected applications

will be connected, which imposes a tremendous burden on your

application. An application must be connected at certain times to

perform base functions. For our example scenario, to optimize the

event experience for attendees, pre-registration information should

be accessible on the disconnected client during the event, so the

device is synchronized with the central data warehouse prior to the

event. Regardless of how the information is interchanged, the device

needs to be connected before the event to obtain this information.

 The initial requirements for the application included a model that

supported an application that never required the user, at any time,

to be connected to perform a function. Ironically, the user has to

be connected at some point in the life cycle of using the application

in order for data to be synchronized to and from the server. The

lack of control over when the application might be connected poses

complexities that cannot be ignored. In the case of this application,

requirements were modified to force the application to be connected

at key moments in time.

Complexity of Never Knowing When You Are Connected
SQL Replication supports very well the concept of data interchange

with occasionally connected clients. However, if you are managing a

multistep process in which each step relies on some form of connectivity,

knowing where you are in the process can be challenging. In the event

management application, to rely exclusively on SQL Replication, the

process flow would have to resemble the following:

1. The list of available events would be replicated to each client device.

If a new event is added, or an existing one modified, it would need to

be synchronized to each device.

Summary
Applications that are occasionally connected have
a reputation for being difficult to implement.
The challenges are layered, and the heart of the
problem is how data is managed. Each occasionally
connected client consumes and produces data at
random intervals. Islands of data are produced
when disconnected, and must be reconciled later
when connectivity is restored. Technologies exist to
move data to and from the clients, however, only
the simplest of data reconciliation tasks are handled
without custom code intervening. For example, SQL
Replication is a fantastic technology for moving new
data from one system to another. But when a record
is updated by more than one client, should the last
one in always win? Also, what happens when new
data entities are created on multiple clients, but they
each represent the same unique entity instance?
Unfortunately, data models are usually too complex to
be handled by generic conflict resolution processes.
 This article will discuss how to build your data model
to support an occasionally connected application. The
data model supports the introduction of a complex
conflict resolution process built in .NET. A point-of-
service sample application is introduced with steep
requirements, including: Web and smart client entry
points; smart clients will be occasionally connected;
data entities that span multiple tables; and a complex
conflict resolution process which includes support for
new records that can be created on the Web application
and/or smart client application instances.

Mobile Data Architecture

27 • Journal 14 • www.architecturejournal.net

Mobile Data
Architecture

2. Authorization for who can see which event would be replicated to each

client device. If authorization changed, it would need to be replicated.

3. On the local device, the user selects the event to synchronize,

placing a record in the EventDownload table in the local database

which includes the host name of the client machine and the event

to replicate.

4. The EventDownload table is replicated back to the server.

5. Filtered SQL Replication brings down the requested events to the

user’s device.

This process flow seems simple enough but requires connectivity

throughout the process. Imagine having a conversation with a

nontechnical user about why he could not see the event on his device

because the authorization granting him access changed after he

synchronized his machine. Relying on a model where you cannot ever

control connectivity can be complicated to debug and maintain.

Relying On Key Connected Moments
Ultimately, connectivity at some point is required. In contrast to the

pure SQL replication model, a more direct approach can be taken to

simplify the overall processing. Enforcing connectivity at key points

avoids several of the round trips described in the previous section.

For example, rather than synchronizing the list of events to the local

database, a Web service can be invoked to retrieve a list of authorized

events the user can synchronize with, changing the flow to:

1. The user launches the application and retrieves a list of events via

a Web service call. Only authorized events are shown to the user.

2. The user picks an event and calls the Web service again. On the

server a record is set in the EventDownload table with the host

name of the user device.

3. Filtered SQL Replication rules associate events to client

host names, specifiying which events will be replicated to which

client device (Figure 2).

A whole host of additional information can be obtained

through the Web services, from the number of records to be

synchronized to progress updates on whether a replication has

occurred or is complete.

Conflict Resolution
SQL Replication and ADO.NET provide no silver bullet for

conflict resolution. Most of our applications are simply too

complicated to handled by out-of-the-box solutions. We

cannot always rely on the “last one in wins”—typically, we

need to wait for data to be accumulated from multiple sources

before making a decision on what “the best” record is.

 This outlook seems abysmal, but there are techniques

to cut through this complexity. In the event management

application, we rely on the strengths of SQL Replication as

a cornerstone to the solution. A perceived strength of SQL

Replication is that it is fantastic for managing SQL inserts. For

updates, however, there were too many scenarios where we

needed fine control over the conflict resolution process at

scheduled intervals.

 The event management application presented several

complications to this process. For example, an attendee record is

not represented by a single table in the database. This complicates

replication of information that has not changed as change is what drives

SQL replication. A logical record of the attendee was formed, which is a

record that spans multiple SQL tables. When a change occurred on any

component of the logical record, a logical transaction was produced. This

concept is important because it allows us to move information to the data

warehouse even if change did not occur.

 Most applications suffer from this complexity, and it’s what makes

replicating data back and forth so difficult. We broke down this

complexity in the event management application, and the pattern we

followed could be implemented in any disconnected application.

Logical Records
In the context of the event management application, a logical record for

an attendee is not only the information within the Attendee table, but

all related information. Selected sessions, product purchases, and family

members all make up the attendee logical record. If any one of these

pieces of information is changed, regardless of what table the change was

made in, then the attendee logical record has been changed.

 A base requirement for this application is that if an attendee’s

information is touched at the smart client, a validation of the entire

Figure 1: Extremely scoped down version of the SQL tables

AttendeeID

SessionID
SessionName
SessionDescription

EventID
SessionID
StartTime
StopTime
Location

Attendee

Session

EventSessionMap

LastName
FirstName
EmailAddress
DateOfBirth
Address1
Address2
City
Country
ZipCode

SessionID
AttendeeID
DTenteredOn

SessionAttendeeMap
Event

EventID
EventName

Family
FamilyID
AttendeeID
LastName
FirstName
EmailAddress
DateOfBirth
RelationshipID

Figure 2: EventDownload table specifies which events will

download to which client hosts.

EventDownloadID
ClinetHostName
EventID
DTEnteredOn
EnteredBy

EventDownload

Event

EventID
EventName

Mobile Data Architecture

28 www.architecturejournal.net • Journal 14 •

attendee logical record has occurred. Therefore, even if only a single

table was modified, each table’s data that represents an attendee logical

record has been validated as being correct at that moment in time. This

poses an interest dilemma in that standard SQL replication processing

cannot automatically synchronize all table data related to a logical record

if the data has not been touched. We managed this problem by forcing

a change to occur in the database to trigger the appropriate set of

events—what we call “logical transactions”—for SQL Replication.

Table History
The existing Web application’s database has a history table associated

to every user modifiable table in the database. The purpose of these

history tables is to keep a history of all changes, when the changes were

made, and who made the changes. A requirement of the smart client

application is that all of the local history changes are recorded and then

replicated back to the central data warehouse. All of the history tables

are populated by a trigger on the respective parent table. Any time an

insert or update is performed on the parent table, a new history record is

produced (Figure 3).

 The history tables constitute a transaction history of change to each

table, a fact which became important to us when considering how

updates to a record can be replicated back to the central data warehouse.

Instead of replicating a change to a record back to the central data

warehouse, such as an update to the parent table, we could replicate the

new inserted history records and reconcile all the information centrally in

an intelligent manner.

 In our design, we would always have at least one record in a history

table. If a record is created on the smart client, then the trigger would

fire and produce a history record. If a record was replicated centrally to

the smart client, the trigger would fire, also ensuring that a history record

would be present.

 In order to take advantage of history records as transactions, and

to support the concept of logical records where a record is represented

across multiple tables, we needed to bind history records across history

tables. This requirement resulted in the concept of logical transactions.

Logical Transactions
A logical transaction is a representation of an attendee across all tables at

a moment in time. What was missing from the history tables was a way

to associate them together. When a change occurred in a parent table,

the trigger will fire to populate the respective history table. This trigger

would now need to be modified to perform the following functions

(Figure 4):

• Make a copy of the parent table and insert it into the respective

history table (as before)

• Obtain a new transaction ID that was date and time stamped

• For every history table that represents the logical record, update the

last history record inserted with the new transaction ID

 The third point is important in that even though we made a change

to a single table, and only one new history record was produced, in that

moment of time all of the other tables that represent the logical record

have been validated. The functionality of obtaining a new transaction ID

and updating all the latest respective history records is encapsulated in

an SQL user-defined function and inserted into each trigger.

 Logical transactions solve a key problem we had when dealing with

information being updated on multiple devices. This problem stems

from the complexity of synchronization multiple devices at different

times for the same information. Consider this scenario:

Device A updates Attendee X on Monday, and device B updates the exact

same information for Attendee X on Tuesday. In this application, because

the same information was updated, the information updated on device B

is deemed more relevant than A because it was updated at a later time.

However, device B is synchronized on Thursday and device A on Friday.

In the Thursday evening conflict resolution processing, no updates from

device A are known, so device B’s updates are taken. In Friday evening’s

conflict resolution processing, device A’s information is reconciled.

Without any date/time stamping of the logical transaction, it is difficult

to understand when the change occurred and whether or not device A’s

information is more or less relevant than device B’s. Logical transactions

provided a clean representation of the information for all data entities in

the system.

Updated Records
When an SQL table record is updated, SQL Replication can be used to

move those changes from one database to another. Sounds simple

enough when stated this way, however, knowing if you should overwrite

the changes you have with an update from another system is not so

trivial. The last-one-in-wins rule does not always apply. There may be

parts of the record you wish to keep rather than just overwriting it.

Figure 3: History tables on key parent tables allow “transactions”

to be maintained.

AttendeeID
Attendee

LastName
FirstName
EmailAddress
DateOfBirth
Address1
Address2
City
Country
ZipCode

AttendeeIDHistory

AttendeeHistory

AttendeeID
DTEnteredOn

FirstName
LastName

EmailAddress
DateOfBirth
Address1
Address2
City
Country
ZipCode

Family
FamilyID
AttendeeID
LastName
FirstName
EmailAddress
DateOfBirth
RelationshipID

FamilyHistory

FamilyHistoryID
FamilyID
DTEnteredOn
LastName
FirstName
EmailAddress
DateOfBirth
RelationshipID

Mobile Data Architecture

29 • Journal 14 • www.architecturejournal.net

 Refining how one requires updated records to flow within your

application is important in simplifying as much as possible the overall

design. In the case of disconnected mobile applications, the flow

of information flows from a central server out and lives and grows

temporarily on each disconnected device, and eventually flows back to the

central server. When examining this flow we made some assumptions and

requirements on how the event management application would operate.

 Information from the central server only flowed once to the mobile

device. For example, when an event was requested to be synchronized,

and all the attendees’ information was replicated down to the device, any

updates made to the attendee information in the online Web application

would not be replicated to the device. Even if we intended updates to be

replicated, we could not rely on the users to re-synchronize their devices

throughout the event. However, during the events, the attendees may

update their information online. Our design allows multiple devices and

the online system to update the same records and for reconciliation later

by our .NET conflict resolution process. This is enabled by only replicating

what has been inserted and not updated. Only SQL inserts (no updates)

are communicated between systems. We can then pick a time of our

choosing to reconcile all the information centrally.

 In the event management application, after an event has been

replicated to a device, a replicated attendee can be updated by the WPF

application. When the attendee record is updated, a history record is

produced. With the history record, a new logical transaction is created.

Both of these are SQL inserts. What has been inserted is replicated back

to the central server. The parent record itself is not replicated as this

would overwrite the record on the server. The .NET conflict resolution

process examines the logical transaction queue and determines new

changes are present. It examines the history records that have been

produced and determines the best approach to integrate those changes

into the parent records.

Inserted Records
SQL inserts are much simpler to manage with SQL

replication as there is, on the surface, no conflict resolution

to handle. However, what happens when a new attendee

is added to the disconnected device that already exists

elsewhere? In our application, an attendee could have

registered in the online application after the event

information was replicated; at the event, the attendee

could be added to the mobile application; and later, the

attendee could be working with another user with their

own instance of the application. Multiple instances of the

same attendee record can easily be created.

 We began to think of records that have been inserted

on the client as not having the same rank as records

inserted on the central server. When the inserted record

on the client was replicated back to the server, the

information contained in the record must be validated

before becoming accessible to the application. To prevent

these replicated records from being seen by the ASP.NET

application, they would need to be tagged and excluded

from SQL queries. The .NET conflict resolution process

would examine these records, determine how to integrate

the information, and decide whether or not to copy the

newly inserted information into another record, retire the

record, or make a new attendee available in the ASP.NET

application (in our example).

 For each SQL table that has records that can be replicated from the

device to the central server, a new column was added to maintain the

state of the record. Each record could have one of the following states:

created on the server, not reconciled, merged, retired, or reconciled. If

the record is created with the ASP.NET application, it would be tagged

as “created on the server.” This state tag assists with filtered replication

of records from the server to the client. If a record is created on the

client, then it is “not reconciled.” When this record is replicated back to

the server, then it is in the same “not reconciled” state, identifying the

record to the .NET conflict resolution process as a record that needs to be

processed. The ASP.NET Web application will ignore any records in the

“not reconciled” state. Once processed, depending on the action taken

by the conflict resolution process, the record’s state would be changed to

“merged,” “retired,” “reconciled,” or “unknown.”

Conflict Resolution with .NET
The requirements of the event management mobile application to

manage conflict resolution go beyond what can be handled with out-of-

the-box technologies. With logical transactions and state associated to

inserted records, our goal was to get the data all in one spot in order to be

able to make intelligent decisions about how to handle the information.

Part of the puzzle is to determine when to actually make these intelligent

decisions. Standard out-of-the-box technologies make decisions at the

time the records are moved. In contrast, we needed to have a complete

picture of all the inserted records (with parent tables and history tables)

before determining how to reconcile the information. A business process

was put in place to run the .NET conflict resolution process at 1 A.M.

server time to reconcile the previous day’s replicated information.

 When the process begins, it obtains all logical transactions from

the day that process last successfully executed to the day previous to

AttendeeID
Attendee

LastName
FirstName
EmailAddress
DateOfBirth
Address1
Address2
City
Country
ZipCode

AttendeeIDHistory

AttendeeHistory

AttendeeID
DTEnteredOn

FirstName
LastName

EmailAddress
DateOfBirth
Address1
Address2
City
Country
ZipCode

Family
FamilyID
AttendeeID
LastName
FirstName
EmailAddress
DateOfBirth
RelationshipID

FamilyHistory

FamilyHistoryID
FamilyID
DTEnteredOn
LastName
FirstName
EmailAddress
DateOfBirth
RelationshipID

AttendeeTransaction

AttendeeTransactionID

AttendeeTransactionID

AttendeeTransactionID

AttendeeID
DTEnteredOn

Figure 4: Logical transactions (AttendeeTransaction) keep history records related.

Mobile Data Architecture

30 www.architecturejournal.net • Journal 14 •

the current date. An attendee may be represented by multiple logical

transactions as the information could have been updated multiple times

on one or many machines. For multiple updates for the same attendee

on the same machine, only the last one entered is processed. From the

remaining records, logical transactions are grouped by attendee and

sorted by date and time entered.

 As each logical transaction is processed, it is examined for whether

or not the attendee record was originally replicated from the central

server or entered on the client machine. If originally replicated, then

the history records have already been replicated back and associated

correctly. We are now free to implement as much detail as necessary in

determine what business rules should be executed on the information.

Each logical record referenced by the logical transaction has one or more

tables associated to it. We can decide to simply overwrite more recent

information across all tables, or one or more of the tables, or specific

columns within any of the tables. This all depends on the business rules

and can be as complex as necessary.

 If a logical transaction is associated to an attendee record that was

created on the client, then a determination must be made as to whether

the attendee already exists in the system. At this point in time, this record

is not viewable by the ASP.NET application as it is in a “not reconciled”

state. A composite key is constructed from the attendee records to

uniquely identify them. The existing attendees are examined to see if

there is a match to the new record. One of three pathways is taken at

this point: the new attendee record already exists, is brand new, or this

is not enough information to make a decision. If the attendee already

exists, then all of the history records associated to the attendee record

in the “not reconciled” state are updated to point to the pre-existing

attendee record. The same rules then apply as if the pre-existing record

had been updated. If the attendee record definitely is new, then its

state is changed to “reconciled” and it is made available to the ASP.NET

application. If no determination can be made, then the record’s state is

changed to “unknown” and an exception management Web application

is run to determine what to do with the record.

 This process is repeated for each logical transaction. All the work that

has been done was in preparation for this process to simplify it as much

as possible and to centralize all complexity into a single spot.

Conclusion
Mobile applications are challenging to build. There is no magic

framework we can all use to enable disconnected scenarios. We have

powerful plumbing, but without customization, it only solves the simplest

scenarios. The approach described in this article is generic enough to

be applied to across different disconnected applications. Relying on the

power of SQL Replication to perform only inserts allowed us to focus

conflict resolution in the .NET process. Although much data work had

to be done to augment the database schema to support it, we believe it

simplified, as much as possible, the conflict resolution process.

 This approach is not new, and it has limitations that make it

appropriate for only a subset of mobile applications. Many mobile

scenarios, for example, require real-time resolution of data as soon as it

has been replicated to the central server compared to the many hours

of delay proposed in this solution. Unidirectional replication of only

inserted records may not be feasible, as our choice here was to centralize

when and where we perform conflict resolution. Data loss due to conflict

resolution has also been relegated to manual intervention in this solution.

We took advantage of the requirement to retain and replicate all changes

to records centrally, which became the transactions we based our conflict

resolution process on. If you have no such requirement, then a burden

is placed on replicating more data than you may prefer or be able to do.

Ultimately, the business process driving your solution will dictate how

cavalier you can be with your choices.

Rodney Guzman is the CTO and cofounder of InterKnowlogy. He got his

start in software systems working on submarine sonars during college.

For seven years at SAIC, Rodney was the lead developer and architect

on such projects as a large Java SOA HTTP/XML based Web portal on

military hospitals throughout the country. In 1998 Rodney moved to

Stellcom to work on more Microsoft projects, including Site Server

implementations and an enterprise security framework for Pacific Life,

that allowed custom policies derived from AD groups and attributes to

drive personalization and security on ASP Web sites. At InterKnowlogy,

Rodney steers the technology direction, acting as lead architect on its

largest projects, such as a large SOA implementation with a smart client

framework, creating large Microsoft Web properties (CommNet and

Partner Campaign Builder), and large MOSS implementations. Rodney

architected the WPF/MOSS Scripps Cancer application. Rodney has

spoken in numerous Microsoft events and has written numerous articles.

He has sat on the Commerce PAC and Microsoft Architectural Advisory

Board, and is a Solution Architect MVP.

AttendeeID

Attendee

LastName
FirstName
EmailAddress
DateOfBirth
Address1
Address2
City
Country
ZipCode

Family
FamilyID
AttendeeID
LastName
FirstName
EmailAddress
DateOfBirth
RelationshipID

RecordState

RecordState

Figure 5: RecordState column added to remember where the

record came from and how it was processed.

31 • Journal 14 • www.architecturejournal.net

Test-Driven Development
and Continuous
Integration for Mobile
Applications
by Munjal Budhabhatti

Current State of Mobile Development:
Issues and Challenges
Globally, the number of mobile phone subscribers is approximately

2.5 billion and is expected to grow to 4 billion by 2010. The mobile

device is now a richer platform for application delivery due to such

an exponential growth and wide spread usage. The critical factor, as

always, is the end user experience: application usability, reliability,

and performance.

 Complicating matters, the software development world is

moving from weekly and monthly deployment cycles to continuous

deployment. So how can one ensure that a user always has the

best experience?

 Many that have looked at the agile space will be familiar with

two of the core extreme programming practices: The driving

of development with automated tests, a style of development

introduced by Kent Beck called test-driven development; and a

software development practice of frequently integrating builds

called continuous integration, as articulated by Matthew Foemmel

and Martin Fowler.

 These practices are not new to the software world. However,

mobile application development has lagged in taking advantage of

the test-driven development and continuous integration endowed

by the enterprise software community. This is partially a result of

limited or unavailable mobile platform support in existing toolsets

such as NUnit/MSTest or Cruisecontrol.net/Team Foundation Server.

 A few mobile testing tools allow recording user interactions via

a graphical representation of the client device but do not provide

granular control over the tests. Other tools either demand scripting

on a mobile device or expect tests to be executed, manually, on the

device. As a result, mobile application testing is inefficient and complex,

hindering productivity.

Test-Driven Development
Test-driven development (TDD) is an evolutionary approach where the

development of code is driven by first writing an automated test case,

followed by writing the code to fulfill the test and then refactoring.

TDD essentially is test-first development + refactoring

Red/Green/Refactor—the TDD mantra—is an order to the task of

programming:

1) Red: Write a small automated unit test that doesn’t pass, and

perhaps doesn’t even compile at first. (See Figure 1, page 32.)

2) Green: Write the code necessary to pass the failing test. Ensure

other tests pass as well, if present, in the suite. Check-in the code in

the source code repository. (See Figure 2, page 32.)

3) Refactor: Making existing code beautiful, in small incremental steps,

without changing the intent. (See Figure 3, page 33.)

This technique is thus reverse to traditional programming—developing

code followed by writing a test, which is executed either manually or

automatically. Why embrace such a change, especially when one might

tend to think that it’s extra work? In reality, test-driven development

is risk-averse programming, investing work in the near term to avoid

failures (and even more work) in the late term—Kent Beck has called it

“a way of managing fear during programming.”

The benefits of TDD

• Design improvement. Writing a self-contained test case enforces

the creation of decoupled code—not tightly integrated with other

code—thereby increasing the cohesion of the code while decreasing

the coupling.

• Documentation. A well-written unit test case provides a working

specification and communicates the intent of the code clearly. In

addition, whenever the code changes, the unit test case must be

updated to pass the test suite. Hence, a unit test case always stays in

sync with the code naturally. This is unlike traditional unit test cases,

developed with Microsoft PowerPoint or Microsoft Word. While

Summary
This article demonstrates how test-driven development
and continuous integration addresses the unique
challenges encountered when creating Windows
Mobile applications.

“TesT-driven developmenT is a way of

managing fear during programming—

fear noT in a bad way—buT fear in The

legiTimaTe. if pain is naTure’s way of

saying ‘sTop!’ Then fear is naTure’s way

of saying ‘be careful.’”

—KenT becK

Test-Driven Development

32 www.architecturejournal.net • Journal 14 •

such documents start off with good intentions, over time, the result

often becomes out of sync with the underlying implementation.

• Safe change in the system. TDD provides continuous feedback

about whether the changes made in the code worked well with the

other parts of the system.

• Fail fast. Unit testing can isolate problems quickly, reducing

debugging activities and allowing the system to fail fast.

• Beautiful code. Beautiful code means code which expresses intent

clearly, can afford changes to add features, and has no duplication.

Refactoring retains the behavioral semantics of the code—

functionality is neither added nor removed. It is about improving

the code quality which brings business value.

Automated unit test execution is one of the vital requirements of TDD.

However, because the testing tools are still evolving, the automated

execution is not currently viable in mobile

application development. Implementing

TDD in this environment is therefore

quite challenging, if not impossible.

Unit testing
Testing is customarily thought to be as

a methodical process of proving the

existence or lack of faults in a system.

When a test case is written before

writing the code, the test case becomes

a specification, instead of a mere

verification of the feature.

 Tests are also a way of documenting

found defects. Let’s assume a defect

was discovered in quality assurance

while testing newly deployed bits.

Even if this defect was very trivial to fix,

TDD demands a test case. First, write a

test case that simulates such a failing

behavior, and then write code to pass

the test. Such a practice would ensure

that defects, no matter how petty, do not

creep through the system and regression

testing becomes part of the test suite.

Automated test execution locally, before committing the changes to

the Source Control Repository (SCR), would further reduce the broken

builds phenomenon.

 It is important to prepare the test environment on an emulator

as close to the target hardware as possible. Developing and testing

Windows Mobile applications on an x86 emulator makes little

sense when targeting hardware exclusively for ARM architecture,

an architecture dominant in low power consumption electronics.

Furthermore, in the real world, components often have dependencies

on other objects, databases, or network connections. It is very

easy to fall into a trap of assuming that these dependencies work

flawlessly. Hence if tests are written without taking dependencies into

consideration, an incorrect feedback is possible for those tests which

fail due to dependency problems.

 One way to safeguard against dependencies is to build the object

graph or set up the database in a required state

before executing the test case. This would solve the

issue but would increase test execution time and

build time.

 A more elegant approach would be to instantiate

test objects and replace object dependency by

implementing mocks or stubs—objects that imitate

the behavior of real objects. This ensures isolated

test execution and hence reliable test results. Caution

should be taken while faking the real objects with

mocks or stubs. It is probable that the entire unit test

suite executes faultlessly, yet the product might fail

in quality assurance testing. I have found in my own

experience that complementing mocks and stubs

objects with integration tests provides a true sense

of confidence.

namespace OutlookContacts.Tests
{
 //Ensure that OutlookContact compares correctly with other contacts.
 [TestFixture]
 public class OutlookContactTest
 {
 [Test]
 public void EnsureNullContactIsNotEqualToContact()
 {
 OutlookContact contact = new OutlookContact();
 Assert.AreNotEqual(null, contact);
 }
 [Test]
 public void EnsureContactsWithSameNameAreEqual()
 {
 OutlookContact contactMain = new OutlookContact(“foo”);
 OutlookContact contactOther = new OutlookContact(“foo”);
 Assert.AreEqual(contactMain, contactOther);
 }
 }
}

Figure 1: Sample test cases

namespace OutlookContacts
{
 public class OutlookContact : Contact
 {
 public override bool Equals(object other)
 {
 if (other == null) return false;
 OutlookContact otherContract = (OutlookContact)other;
 return otherContract.AccountName == AccountName;
 }
 }
}

Figure 2: Sample code

Test-Driven Development

33 • Journal 14 • www.architecturejournal.net

Continuous Integration
Martin Fowler has described continuous integration (CI) as a software

development practice of frequently integrating builds, often multiple

times a day. A typical CI workflow, as shown in Figure 4, would be:

Developer:

1) Writes a new unit test case.

2) Executes the unit test case locally on the emulator and confirms that

the test case is failing.

3) Adds or modifies code to pass the test case.

4) Executes the unit test case locally on the emulator and confirms that

the test case is passing.

5) Commits the code to the SCR.

CI Server:

6) Downloads the source code whenever there is a change in the SCR.

7) Compiles and inspects the source code, and creates new binaries.

8) Sets up external dependencies such as database schemas, and

resources (configuration files, satellite assemblies).

9) Deploys the new binaries to and executes the tests on the emulator.

10) Packages and deploys the product to staging environment.

11) Generates feedback based on the results of the build.

Source Code Repository
All the essential files required to build a product reside in the source code

repository (SCR). It plays an important role in the software development

life cycle and CI. SCR tools such as Subversion and Visual Studio Team

Foundation source control enable teams to work collaboratively—on the

same or different artifacts simultaneously, track code changes effortlessly,

and work on different versions of files concurrently.

 The CI server obtains the latest source code from SCR, locates

all required dependencies, and builds the product independently

from the previous build output. SCR allows the team to be more

productive—a new team member does not need to reconfigure third-

party libraries, project structures, or IDE settings for the project.

Moreover, it reduces debugging time by allowing the team to remove

the current changes which would be small and incremental if using

TDD practices. The system could be safely reverted to a previous

version of the code.

 It is vital to include all dependencies in the SCR: This includes

the Windows Mobile SDK, .Net Compact framework installer, Virtual

Machine Network service drivers and other third-party components

and utilities.

Automated build

Contradictory to some misconceptions, the automated build in

mobile applications is much more than a simple code compilation.

It assembles source code from the SCR, compiles code to create

binaries and dependencies (such as configuration objects, resource

assemblies, and so forth), inspects and deploys compiled binaries to a

mobile device or an emulator, loads database

schemas, and executes tests remotely on the

mobile device.

 Build tools such as Nant and MSBuild

do not support mobile application

deployment, partially because mobile device

support in these tools is still immature. In

addition, unit testing tools such as NUnit and

MSTest have a similar problem of executing

tests remotely on a mobile device. To avoid

these limitations a new tool is essential.

wMobinium.net
To address these problems, I created a tool

wMobinium.net which assists TDD and CI

implementation in .Net mobile applications.

wMobinium.net is a unit testing tool that

supports automated deployment and

automated remote unit test execution. It has

a Visual Studio add-in to support TDD in .Net

“conTinuous inTegraTion is a sofTware

developmenT pracTice where members

of a Team inTegraTe Their worK

frequenTly—usually each person

inTegraTes aT leasT daily—leading

To mulTiple inTegraTions per day.

each inTegraTion is verified by an

auTomaTed build (including TesT) To

deTecT inTegraTion errors as quicKly

as possible. many Teams find ThaT

This approach leads To significanTly

reduced inTegraTion problems and

allows a Team To develop cohesive

sofTware more rapidly.”

 —marTin fowler

namespace OutlookContacts
{
 public class OutlookContact : Contact
 {
 public override bool Equals(object other)
 {
 if (other == null) return false;
 return CheckEqualityForOutlookContactObject(other);
 }
 private bool CheckEqualityForOutlookContactObject(object other)
 {
 OutlookContact otherContract = (OutlookContact) other;
 return otherContract.AccountName == AccountName;
 }
 }
}

Figure 3: Sample refactoring

Test-Driven Development

34 www.architecturejournal.net • Journal 14 •

mobile applications. It is a freely available tool on the CodePlex open

source Website (see Resources).

Automated deployment

Unlike desktop application development, mobile application

development faces unique challenges in deployment: first, a deployment

is required for unit testing features on the device and second, deployment

is necessary after a successful build to deliver the working solution on a

staging environment for quality assurance testing.

 For every build, the newly compiled binaries and dependencies

must be copied to a program folder on a device. When an application

entails testing on multiple devices, there will be added complications to

the deployment process. To circumvent these problems, wMobinium.

net offers a deployment tool which implements Window CE’s Remote

Application Programming Interface (RAPI), and facilitates file and folder

deployments. This relieves the pain of manual deployments.

Frequent commits

One of the key components for a successful CI implementation is frequent

commits and hence frequent builds. With longer commit intervals,

team members tend to work in isolation and the build is more prone to

integration issues. When a team member spends more time on a feature

and encounters integration problems while committing the code, he tends

to be reluctant to remove the changes and revert to a previous version of

the code. This reluctance might increase the amount of time and resources

spent on debugging activities. In an ideal scenario, team members check-

in the code at intervals of 30-60 minutes or less. The check-in duration

could be extended by a few hours, but should always be less than a day.

Faster Successful Builds
Once a developer commits code to the SCR, waiting for the feedback from

CI slows down the development process. Longer waits result in decreased

productivity. Furthermore, some of the subprocesses of the build, such as

deployment and testing, are executed on a device/emulator making these

processes inherently slower than it would have been on a desktop.

 To reduce build times, concentrate on the weakest link—the

component that takes the longest time to execute. More often than not,

the cause would be an external dependency, such as a database or other

objects. Accessing a database and setting up test data for each test case

is a resource-intensive operation. As I mentioned earlier, mocks or stubs,

should do the trick. If it is impractical to do so, move the test cases to

secondary or nightly builds—scheduled builds that execute at night when

most of the resources are idle. Test cases targeting tests scenarios on

multiple devices should be added to secondary or nightly builds as well.

 Failing builds cause the most frustration—as if the entire chain of

software churning has been stopped. The code in the SCR is no more

reliable and the team is blocked from getting the latest source code.

The team needs to resolve the issue quickly by fixing the build. If a test

case is causing the failure and fixing the problem might require a longer

duration, it is safe to ignore the test case temporarily to allow the build

to succeed. However, it is vital to track these ignored test cases on an

easily accessible project wall, a physical white board or a virtual board

using collaborative software. The ignored tests should be fixed at a later

time and added back to the test suite.

Automated unit testing

It is quite common to see that the same defects resurface after a few

builds and we often hear a quality assurance analyst say, “but this

defect was already fixed in a previous build.” Boomerang defects reveal

the importance of writing a test for each encountered defect before

modifying the code base. Once the test case is fixed, the entire test

suite must be executed and passed before checking in the modified

code to the SCR.

 I have been on a few projects where the team executes the test suite

manually on a mobile device. Imagine a mobile application developer

who spends few minutes changing the functionality, but spends double

the time to test it manually. This will not only discourage a developer

but will also affect productivity.

 wMobinium.net resolves this annoyance by automating the entire

unit testing workflow. Unlike traditional unit testing, wMobinium.net

presents the test case selection on the desktop, executes tests on the

device, and displays results on the desktop. It takes care of some of the

complications such as the following:

Remote execution of test cases

In order to execute the test cases remotely on a mobile device/emulator,

the tool serializes metadata information of the selected test cases,

starts a conduit process and executes tests on the device. To provide

correct reporting to the CI server, the remote process must be started

synchronously and monitored continuously, which is quite a challenge.

Serializing test results to desktop

In the absence of support for remoting in the .Net Compact Framework

version 2.0, the device must communicate with the desktop using

sockets. The events must be serialized, sent to the desktop through a

socket, deserialized, and propagated to the appropriate event listeners.

wMobinium.net add-in

The tools described here assist the CI server to continuously build, deploy,

and test a .Net mobile application. It would be convenient if the unit

testing feature was supported as an integrated tool in Visual Studio.

Figure 4: Continuous integration in .Net Windows

Mobile application

SQL Server 2005

SQL Server
Mobile Edition

Staging Environment

SQL Server 2005
Mobile Edition

Emulator/Device

Emulator/Device

Software Control Repository

Developer's
Laptop

Continuous
Integration Server

Test-Driven Development

35 • Journal 14 • www.architecturejournal.net

 wMobinium.net add-in, a Visual Studio add-in (Figure 5), is a part

of the wMobinium.net toolset. After activating the add-in, all the

available tests in the solution are displayed in the tool window. A typical

workflow would be:

1) wMobinium.net tool displays available test cases in a solution.

2) User selects test cases to execute.

3) Selected test cases are serialized and sent to the connected device/

emulator.

4) Test cases are executed on the device/emulator and results are sent

back to the desktop.

5) Tool displays results on the desktop.

Benefits of Using CI
Stakeholders and project sponsors always favor reliable outcomes,

clear communication, project visibility, and superior quality of software.

Software development, however, seldom offers such qualities without

the right processes and practices.

 When everything seems to be going well, any defect might

suddently jeopardize the development schedule. Especially during

“Big-bang” integrations, even small issues—like missing configuration

entries, out-of-sync database, or missing dependencies—could be

extremely detrimental when encountered together.

 Continuous integration enables faster feedback. At every change—

adding new or modifying existing features, no matter how big or

small—the CI server would integrate the new parts which would

pass through the entire automatic build cycle—compilation, testing,

inspection, and deployment. This provides visibility of the progress of

the project, enhances the quality of the software developed, and builds

the morale of the team.

 CI does not provide these functionalities out-of-the-box. It is

very possible to implement CI without including automated tests or

inspection in the builds process; however, such a setup would be the

least beneficial. Many, including me, consider that CI without testing is

not CI at all.

Conclusion
From a user perspective, TDD and CI implementation

is the same in a traditional desktop application as

it is in a mobile application. The user creates a new

failing automated test case, writes the code to pass

the test, and refactors the code without changing

the intent. The CI server polls for the latest source

code creates new binaries, executes the tests, and

generates the feedback. However, in a mobile

application the implementation differs in the remote

execution of test cases, notification of test results,

and build deployments. These complexities are

handled by the wMobinium tool.

 In my past experience at one of the biggest

microfinance organizations in Africa, my team and I

developed a .Net mobile application. In the absence

of supporting tools, the development implementing

TDD and CI, although arduous, improved overall

application design, reliability, and performance.

 With the release of .Net Compact Framework

version 2.0, the performance of .Net mobile

applications has improved radically. The newer version provides

improved developer productivity, greater compatibility with the

full .Net framework, and increased support for device debugging.

Combining .Net Compact Framework with TDD and CI (using

wMobinium.net) would bring greater benefits to an organization and

take the mobile application platform to the next level.

 With the proliferation of new mobile devices today, the mobile

application is becoming a crucial part of a broader enterprise product

offering. It is pragmatic, more than ever, to bring mobile application

development out from isolation and include it in enterprise-wide test-

driven development and continuous integration efforts.

Resources

 “Continuous Integration,” Martin Fowler and Matthew Foemmel

http://www.martinfowler.com/articles/continuousIntegration.html

Continuous Integration: Improved Software Quality and Reducing

Risk, Paul Duvall, Steve Matyas, and Andrew Glover (Addison-Wesley

Professional, 2007)

Test-Driven Development: By Example, Kent Beck (Addison-Wesley

Professional, 2002)

wMobinium.net

http://www.codeplex.com/wMobinium

About the Author

Munjal Budhabhatti is a senior solution developer at ThoughtWorks.

He possesses over 10 years of experience in designing large-scale

enterprise applications and has implemented innovative solutions for

some of the largest microfinance, insurance and financial organizations

in Africa, Asia, Europe, and North America. He spends most of his time

writing well-designed enterprise applications using agile processes.

Figure 5: wMobinium.net add-in

36 www.architecturejournal.net • Journal 14 •

Case Study: Support
Technicians on the Road

Worksheet Workflow
Before we look at the architectural overview for the application, let’s

begin with an overview of the important workflow processes in the

organization. For Monicomp, the most important entity in a mobile

workflow is the Worksheet. The worksheet is a work item that needs

to be performed by a field technician. Let’s examine the key concepts

of a simplified workflow:

Creating the worksheet. The worksheet is usually created by the

dispatcher. When a worksheet is created, it has the following key

attributes:

• Type of worksheet which categorizes the work to be performed:

installation, repair, or uninstallation

• A reference to the partner or address where the work is to be

performed

• Information from the original trouble ticket that the dispatcher

recorded (if any)

• Identifiers and additional data of the devices to be installed or

uninstalled

• The identifier of the worksheet itself

• Deadline of the work

Assigning the worksheet. To start the workflow, the dispatcher assigns

a technician to the worksheet after reviewing the workload and the

geographical position of the available technicians. To make this easier,

technicians’ geographical positions are gathered via Global Positioning

System (GPS) tracking devices and displayed on an integrated Virtual

Earth map, with color-coded icons indicating their current workloads.

(See Figure 1.)

Downloading the worksheet. After the worksheet has been assigned to

the technician, a Short Message Service (SMS) message is sent. The SMS

notifies the technician and the Ultra-Mobile PC (UMPC) device that there

is new work to be done. With a synchronization through General Packet

by András Velvárt and Peter Smulovics

Figure 1: Using Virtual Earth Services to select the technician

closest to the target with the smallest workload

Summary
Monicomp is the largest maintainer of banking equipment
in Hungary. The organization installs, maintains, and repairs
Point of Service (POS) terminals, Automatic Teller Machines
(ATM) machines, and other similar banking equipment
using hundreds of technicians scattered all around the
country. Any company that needs to perform these duties
and has to follow ISO 9000 needs all the IT help it can get.
The organization has to track where every meter of a two
kilometer cable has been used, so that if there’s a problem
with the cable, it can go back to each and every shop that
the cable was used in, and perform repairs before more
problems arise. In addition, clients require up-to-the-
minute information on the Web—which can range from
how the country-wide software updates are going right
down to the faulty POS terminal in Mr. Smith’s pet shop.
 As you may expect, a paper-based way of working can’t
keep up with these requirements. It would be unrealistic
for technicians to go out to the field, and send paper
worksheets in for processing at the end of the work week.
You need a 21st century solution. The “MÛVÉSZ” system,
developed by a software development and consulting
company called Response, covers the full range of the
service operation from inventory to billing; from trouble
ticketing to distribution and verification of work for more
than 100 technicians performing the maintenance and
installation tasks. In the article, we will show how the
architecture of this system is designed and describe the
challenges and solutions of creating mobile subsystems.

37 • Journal 14 • www.architecturejournal.net

Radio Service (GPRS), Edge, 3G, or a wireless

network (depending on the availability in

the technician’s area), the new worksheet is

downloaded to the Worksheet application

running on the UMPC.

Filling out the worksheet. The technician

reviews the received worksheet, travels to the

location where the work is to be performed,

and does his job. During the repair, installation,

maintenance, or uninstallation work, he records

the details of the device he’s working on (such

as serial number), and assigns equipment and

materials from his inventory to the device.

He can also use the Worksheet application to

review technical specifications of the device in

question if the repair turns out to be difficult.

These specifications can also be annotated

with Ink, and these annotations are shared in a

knowledgebase.

 Other data to be recorded includes the time

of arrival to the scene, the number of hours it took for the technician

or technicians to perform the job, and travel distance to and from the

location. You can learn more details about the Worksheet application in

the “User Interface with WPF” section later in this article.

Closing the worksheet. After the worksheet is filled, it is printed on

a mobile printer, and signed by the client. The signature could also be

captured on the touch-sensitive display of the UMPC using Ink (so that

technicians would not have to carry printers with them), however, due

to legal issues, this functionality has not yet been used.

Uploading the worksheet. The database on the UMPC is

synchronized, uploading the changes on the worksheet to the central

server. The business logic on the server registers the work undertaken,

removes the used-up materials from the technician’s inventory and

performs all other necessary housekeeping. The synchronization

mechanism is also very handy to create up-to-date backups of

the technicians’ databases. In case a UMPC is broken or lost, the

technician can quickly resume his work because his database can be

recreated as it was at the time of his last synchronization.

Two Types of Synchronization

The UMPC clients can perform two types of synchronization. To save

bandwidth and battery life, the quick synchronization only moves

the data directly related to the technician’s worksheets. The full

synchronization (docking) downloads a complete set of data to the

UMPC (for example, changes in the people force or software updates);

therefore it is usually only performed via Internet connection at the

technician’s home.

Architectural Overview—What and Why?
The architecture, whether it’s defining connections between black

and white boxes, displaying characters in a command line, calling

Web services, or using an Office Business Application, is by nature

determined by the type of quality of the connection. Mobile

computing, despite today’s always-connected ideology, in reality is

occasionally-connected. Given this, how do you plan an architecture

for occasionally-connected scenarios?

 In this section, we summarize some key issues that we confronted

in planning and implementing this mobile, high-complexity

architecture. To start, let’s look at Figure 2, which shows the main

components and communication links of our mobile architecture.

Occasionally Connected

The major consideration for an occasionally-connected architecture

is synchronization, be it one way, two way, dealing with conflict

resolution logic, and presenting this through the user interface. Not

dealing with these issues can cause consistency problems; solving

the problems makes the business logic much more complicated than

a pure offline or online scenario. In order to decrease the time to

market we selected the ADO.NET Synchronization Services, which

were introduced along with other parts of the toolset to create a fully

automated, less error prone, and standardized solution.

Key System Components

At the heart of the system is a multilayered application server, which

performs data storage and business logic functionality. Several

different types of clients utilize its services:

• A Windows Forms application that is used at the headquarters

by the storekeepers, the dispatchers, and technicians performing

repair jobs that cannot be done at the locations. The application

is deployed using ClickOnce, which helps ensure seamless version

upgrades.

• An extranet Web application with fluid and responsive interface

used by the biggest clients to place hundreds of orders in a single

batch, prioritize, and track the progress of these orders.

• A Windows Presentation Foundation (WPF) application running on

hundreds of UMPCs used by technicians who perform installation,

repair, and maintenance tasks throughout the country.

Technicians on the Road

Figure 2: Overview of the main components and their communication links

UMPC Client
UMPC

SQL Server 2008
Reporting
Services

Windows Server 2008

ADO.Net Sync
Services

WCF

3G REST/POX

SQL Server Compact

ADO.Net Sync
Services

Intranet Rich Client

Extranet Web Client

 • Windows Presentation Foundation
 • Powerful inking
 • Handbooks with News Reader SDK & Annotation
 • Taking pictures & annotation, dictating
 • Voice command
 • Virtual Earth
 • Signatures (not yet, legal issues)

 • Joint use of Windows Forms and
 Windows Presentation Foundation
 • ClickOnce
 • Virtual Earth

 • ASP.Net AJAX Futures
 • ASP.Net Futures - Jasper
 • Web Workflow Approvals
 • Silverlight

Astoria

Technicians on the Road

38 www.architecturejournal.net • Journal 14 •

The Server Configuration

As a backend server, we found the new Windows Server 2008 to be

an ideal solution for Software + Services scenarios like this one—

primarily because it is capable of hosting Windows Communication

Foundation (WCF) services to serve and queue HTTP requests at the

kernel level, while at the same time being easy to manage from an

infrastructure perspective.

 We used an instance of SQL Server 2008 running on the server to

provide capabilities like spatial data storage, and to serve as the data

store as a reporting solution for the dispatcher application and the

external website. The previously mentioned synchronization problems

were tackled by the ADO.NET Synchronization Services, along with

Microsoft’s “Database in the Cloud” solution called Astoria, which you

can read about in Issue 13 of the Architecture Journal. Using Astoria we

created a WCF service and through the service, using Representational

State Transfer (REST) and Plain Old XML (POX) protocols, read and

modify the underlying database. To establish the needed business logic

in the appropriate places, we found that the synchronization services,

Astoria, and database triggers worked together well.

Dispatcher, Storage, and Billing Application

To aid the work of storekeepers, group leaders, and dispatchers at the

headquarters, an easy-to-use application was needed to have all required

information instantly available. This Line-of-Business (LOB) application

integrates with positioning systems (using spatial data storage), creating a

good user experience (using a mixture of WPF and Windows Forms), and

displaying maps (using Virtual Earth Live Services).

External Web Site

As this was a new solution, we had some flexibility to look at technologies

without incurring great risk of having to maintain any existing

applications. We implemented a custom workflow step to be able to

approve, reject, or modify records that were visible to the end customer,

primarily to avoid displaying stale data. The solution for this was derived

from the “Windows Workflow Foundation Web Workflow Approvals

Starter Kit“, which we were able to customize with little effort. Another

opportunity for widening the technology horizon was fast prototyping

offered by the “Jasper” scaffolding solution that came with ASP.NET

Futures: starting with a simple interface, we found that it was easy to go

into deep customization without losing the investment in the original

forms. The ASP.NET Ajax Futures’ user-friendly back button and history

support made interface changes fluid.

UMPC Application

We found that the application created for the UMPC device was our

opportunity to add the most innovated thinking. The UMPC device

and the Worksheet application perform many different tasks:

• Recording the work performed by the technician, thus filling out

the worksheet

• Communicating with the server over 3G, Edge, or WiFi, using ADO.NET

Synchronization Services and a local SQL Server 2008 Compact Edition

instance for data storage

• Voice recording and camera for documentation, with additional

annotation via Ink

• Displaying XPS format handbooks using the Microsoft News Reader

SDK for the ATMs/POSs, featuring annotation and collaboration

capability, with voice-, soft-button-, or stylus-based navigation

• Showing map and route information for the next target to visit.

What is the infrastructure under this? From the developer side, it was

really a matter of putting well-defined building blocks together, such

as Enterprise Library, WPF, ADO.NET Synchronization Services, SQL

Server 2008 Compact Edition, WPF, and the .NET Framework. Since

the UMPC is a full-featured PC with an x86 compatible processor,

running familiar operating systems like Windows XP Tablet PC Edition

or Windows Vista, we found that the actual development process

is much like a normal desktop application development. From

the designer and software ergonomics side however, we did find

development a bit more complex. We explore this in the next section.

User Interface with WPF
Moving Away from a Traditional User Interface

Windows Presentation Foundation gives UI designers the chance to

reconsider old habits of UI design and offers the opportunity for some

out-of-the box, lateral thinking.

 Had we taken a traditional view of the UI, we would have probably

enumerated the functions of the software, created groups, and then

Figure 4: Opening the folder reveals further details and access to

editing its contents.
Figure 3: The user is taken immediately to the most used part of

the application.

Technicians on the Road

39 • Journal 14 • www.architecturejournal.net

displayed a main menu after the program had started, most likely with

the most frequently used options first. We decided instead however

to eliminate the main menu altogether—the software starts in the

most used view, with the worksheet overview screen. The additional

functionality of synchronization, version upgrades, reference

repository, and access to the inventory of the user were implemented

as complementary, slide-out panels.

 On the worksheet overview screen, worksheets are visualized as

folders. The folders already show the most important data on the outside

(Figure 3), but further details are displayed when you open a folder

by tapping it on the touch screen (Figure 4). We also placed the “Edit

Worksheet” button inside the folder, thus ensuring that no worksheet is

opened for editing before the user has a chance to look at the details.

Taking Advantage of Spatial Memory

According to Wikipedia, “Spatial memory is the part of memory

responsible for recording information about one’s environment and

its spatial orientation.” For example, spatial memory helps you by

remembering that you have last seen the pen you are looking for on

the right side of the table.

 If you take advantage of spatial memory, and always put the same

thing on the same side of the screen, your users will instinctively

remember where to find it. To implement this in our case, the

bottom slide-out panel contains the reference materials, and

the right side slide-out panel contains the inventory—all the

equipment they have in the backs of their trucks, ready to be

used when installing or repairing devices (Figure 5).

 The inventory panel has two functions. Initially, the

technician checks whether he has the replacement parts with

him. Later, when filling out the worksheet, he records the parts

he has actually used for the repair by dragging and dropping

items from the inventory onto the worksheet. In both cases,

the inventory can be found on the right side, accessed, filtered,

and sorted in the same way. We have chosen the right side

because, during user testing, we found that most of the

technicians are right-handed, thus they hold the UMPC in their

left hand, and the pen in their right hand. With this being the

case, the drag-and-drop operation required to add an item

from the inventory onto the worksheet is more convenient.

 We chose to include a pie menu on the worksheet editor

screen (Figure 6). We found that first time users quickly understand

how the menu works with the help of subtle, but fast animations

when opening the menu, submenu or selecting a menu item. The

large sensitive areas of the menu help when the menu is used with

a finger—your finger is not very precise compared to a mouse or a

stylus, but it is always at hand. The pie menu also takes advantage of

the user’s spatial memory, since it is much easier to remember that the

“Close worksheet” icon is on the right side, than to remember that it is

the third item in a dropdown menu.

 In real life, placement of items is a way of organizing them and we

wanted to take this concept across to the user interface. For example,

you may have the habit of keeping important documents on the

left side of your desk, and less important ones on the right. We have

allowed the same for our technicians in the worksheet overview: the

folders can be moved, rotated, and even resized (Figure 7).

Natural Interaction

However accustomed you or I may be to the mouse, it is not a natural

way of interaction. You have to move an odd-shaped object on your

Figure 5: The inventory is always accessible on the right side. Figure 6: Pie menus are ideal for taking advantage of spatial

memory. Huge sensitive areas help with finger interaction.

Figure 7: Customizable placement of folders allows spatial

grouping to suit the habits of the individual user.

Technicians on the Road

40 www.architecturejournal.net • Journal 14 •

desk, while looking elsewhere for feedback to see whether your cursor

has reached the intended destination. When it comes to interactions like

point-and-click, drag-and-drop, or drawing, using a touch screen is much

more intuitive and productive, even for seasoned mouse-users. With

this said however, a finger or even a pen or stylus tends to be a lot less

precise than a mouse. To accommodate this when we designed the user

interface, we were keen to keep the buttons large and to make sure they

don’t touch each other. For the same reason, when using a scrollbar, we

had to make sure that it was much wider than usual.

 During our user testing we found that a scrollbar is something that

you may not want to have at all in a touch-screen environment. If you

think about it, using a scrollbar is somewhat unnatural — you have

to press a down arrow or drag a small thumb downwards, when you

want the scrolled content to move upwards. When you are scrolling

a document, it is actually moving in the opposite direction than your

mouse or scroll-wheel. A much more natural way of scrolling is to drag

the content itself in the direction you want it to move. Leaving behind

this unnatural way of scrolling is part of what makes the most recent

generation of mobile devices so enjoyable to use.

Using Ink for Input

When it comes to recording information, we found that nothing beats

the versatility of pen and paper from a usability standpoint. Using ink

gives the technicians a way to draw diagrams, write text, or annotate

part of a document freely. In the digital world, Tablet PCs, UMPCs, and

Pocket PCs with touch screens can work similarly. We found that using

digital ink was useful for creating drawings, annotations, and recording

the customer’s signature confirming that the work was performed.

 Using the Ink API in Windows Presentation Foundation (in the

System.Windows.Ink namespace) made using digital ink a breeze in

the above scenarios. In just a couple of hours, we were able to add

the drawing canvas with the ability to store, edit, and resize the ink

strokes—with most of the time spent on creating the icons that switch

between drawing modes. (Figure 8 shows an example of an annotated

picture.) Text recognition (or Ink Analysis) is also very straightforward,

and works for many languages, including English (UK or US), French,

Spanish, Korean, German, Japanese or Chinese.

 Without using Ink Analysis, the way the technician is filling out the

form would be fairly cumbersome without a mouse and a keyboard.

A good example is the field where they record how many hours they

spent with the repairs. We found that the user had to point (click) at

the proper textbox, select its contents if there is any, click to pop up

the on-screen-keyboard, enter the number of hours and close the

keyboard. That’s five clicks, and a lot of context change in the user’s

mind (“I want to enter a number. I need to select where I want it. I

need to bring up a virtual keyboard. I need to use the keyboard, close

the keyboard, return to the main task of filling out the worksheet”).

Compare this with the act of writing the number “3” in the proper

field with the pen (Figure 6), and you will appreciate the natural

simplicity of this new-old way of interaction.

Conclusion
Creating occasionally-connected mobile applications comes with many

challenges. Luckily, hardware and software technologies that make such

an application feasible are starting to become more mainstream—

UMPCs with the hardware capabilities of PCs from a few years back,

GPS trackers, mobile Internet connectivity, sophisticated software

libraries, ink and speech recognition built into the operating system,

and multiple online services; the list goes on. With the system that

we put together for Monicomp we find that it’s all coming together;

enabling developers to build mobile solutions that only sci-fi writers

dared to dream about a decade ago.

About the Authors

András Velvárt approaches software development the Lincoln

way: “If I have six hours to chop down a tree, I will use four hours

to sharpen the axe.” In the past, he was one of the few who helped

spread the idea of the World Wide Web in Hungary. He has always

enjoyed trying and implementing the newest technologies—many of

his proof-of-concepts ended up being useful additions to projects,

from the UI/usability side to the development process side. He has

been working with Microsoft technologies for 12 years. He was

Lead Developer, Architect, and Project Manager on many of Web,

desktop and enterprise projects, until he founded his own software

development and consulting company, Response. András can be

reached at andras.velvart@response.hu.

Peter Smulovics is a Microsoft guy, searching for the needle in the

haystack for more than 10 years. He worked on projects like SQL

2005 Analysis Services, Visual Studio.Net 2005, Microsoft Business

Framework and Portal, ADO.Net Entity Framework, Dynamics Great

Plains and Solomon, doing testing, developing, group leading, and

architecting. Meanwhile, being part of user groups, presenting

at Developer Days, TechEds and Microsoft Forums, leading .NET

introduction in the country—these were all part of his daily job.

Currently, he is working in the Development and Platform Adoption

group and giving architectural aid and workshops for Enterprise

customers on many different products. Peter can be reached at

smulovics.peter@microsoft.com.

Disclaimer: Although the solution described in the article is based on

the actual working system at Monicomp, due to the nature of the topic,

some details have been changed to protect company interests, while

others are currently in the planning or implementation phase.

Figure 8: On the drawing canvas, the technician can record any

type of graphical information.

098-108819	 Subscribe	at:	www.architecturejournal.net

®
TM

