
magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS DECEMBER 2014 VOL 29 NO 12

Roam Data Between
Windows Runtime Apps....16

 1214msdn_CoverTip.indd 1 11/7/14 12:48 PM

www.devexpress.com/ASP

0714msdn_CoverTip.indd 2 6/6/14 2:41 PM

www.devexpress.com/superhero

magazine

THE MICROSOFT JOURNAL FOR DEVELOPERS DECEMBER 2014 VOL 29 NO 12

Roaming Data Between Windows Store Apps
and Windows Phone Store Apps
Tony Champion . 16

Developing Your First Game with Unity
and C#, Part 4
Adam Tuliper . 22

Equip Your Apps with OBEX
Uday Gupta . 28

Advanced Push Notifi cations
and Mobile Analytics
Kevin Ashley . 38

Speech Recognition with .NET
Desktop Applications
James McCaffrey . 42

Building Web Apps on the MEAN Stack
with OData in Microsoft Azure
Long Le . 52

COLUMNS
CUTTING EDGE
Effective Image Handling
in Responsive Web Sites
Dino Esposito, page 6

DATA POINTS
A Pattern for Sharing Data
Across Domain-Driven Design
Bounded Contexts, Part 2
Julie Lerman, page10

TEST RUN
Fireworks Algorithm
Optimization
James McCaffrey, page 64

MODERN APPS
Build a Better UX
with Live Tiles
Rachel Appel, page 68

DON’T GET ME STARTED
My Biggest Misteaks
David Platt, page 72

Roam Data Between
Windows Runtime Apps....16

Untitled-13 2 9/9/14 5:08 PM

www.axosoft.com/msdnscrum

Untitled-13 3 9/9/14 5:08 PM

www.axosoft.com/msdnscrum

The Smart Choice for Text Retrieval® since 1991

www.dtSearch.com 1-800-IT-FINDS

Instantly Search
Terabytes of Text

®

Ask about fully-functional evaluations

25+ fielded and full-text search types

dtSearch’s own document filters
support “Office,” PDF, HTML, XML, ZIP,
emails (with nested attachments), and
many other file types

Supports databases as well as static
and dynamic websites

Highlights hits in all of the above

APIs (including 64-bit) for .NET, Java,
C++, SQL, etc.

dtSearch products:
Desktop with Spider

Network with Spider

Publish (portable media)

Web with Spider

Engine for Win & .NET-SDK

Engine for Linux-SDK

Engine for Android-SDK beta

“lightning fast” Redmond Magazine

“covers all data sources” eWeek

“results in less than a second” InfoWorld

hundreds more reviews and developer
case studies at www.dtsearch.com

Document Filters – included with all products, and
also available for separate licensing

Printed in the USA

magazineDECEMBER 2014 VOLUME 29 NUMBER 12

KEITH BOYD Director
MOHAMMAD AL-SABT Editorial Director/mmeditor@microsoft.com
KENT SHARKEY Site Manager

MICHAEL DESMOND Editor in Chief/mmeditor@microsoft.com
LAFE LOW Features Editor
SHARON TERDEMAN Features Editor
DAVID RAMEL Technical Editor
WENDY HERNANDEZ Group Managing Editor

SCOTT SHULTZ Vice President, Art and Brand Design
JOSHUA GOULD Art Director

SENIOR CONTRIBUTING EDITOR Dr. James McCaffrey
CONTRIBUTING EDITORS Rachel Appel, Dino Esposito, Kenny Kerr,
Julie Lerman, Ted Neward, David S. Platt, Bruno Terkaly, Ricardo Villalobos

Henry Allain President, Redmond Media Group
Becky Nagel Vice President, Digital Strategy
Michele Imgrund Vice President, Lead Services Division
Tracy Cook Director, Client Services & Webinar Production
Irene Fincher Director, Audience Development & Lead Generation Marketing

ADVERTISING SALES: 818-674-3416/dlabianca@1105media.com

Dan LaBianca Chief Revenue Offi cer
Chris Kourtoglou Regional Sales Manager
Danna Vedder Regional Sales Manager/Microsoft Account Manager
David Seymour Director, Print & Online Production
Anna Lyn Bayaua Production Coordinator/msdnadproduction@1105media.com

Rajeev Kapur Chief Executive Offi cer
Henry Allain Chief Operating Offi cer
Richard Vitale Senior Vice President & Chief Financial Offi cer
Michael J. Valenti Executive Vice President

Erik A. Lindgren Vice President, Information Technology & Application Development

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offi ces. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or XPO Returns: P.O. Box 201, Richmond Hill, ON L4B 4R5, Canada.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail
requests to “Permissions Editor,” c/o MSDN Magazine, 4 Venture, Suite 150, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Jane Long, Merit Direct. Phone: 913-
685-1301; E-mail: jlong@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

http://www.dtsearch.com
http://www.dtSearch.com
mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:818-674-3416/dlabianca@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:jlong@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com

Untitled-2 1 11/3/14 11:03 AM

www.leadtools.com

msdn magazine4

I am a child of the 1970s. I was raised on American steel, Led Zeppelin
and Th e Six Million Dollar Man. I marveled at Pong, was a beast at
Rock ’Em Sock ’Em Robots, and never understood all the panic and
concern over lawn darts. Th ose things were awesome.

But like any child of a particular decade, I tend to wax nostalgic
about the places, events and things I experienced growing up. Which
is why I never forgave Bruce Springsteen for “Born in the USA,” and
still regard the old, handheld Mattel Electronics Football game as
the greatest toy of all time.

For a kid weaned on meatspace fare like tabletop hockey and the
ball-in-a-tilting maze game Labrynth, Mattel’s handheld Football
was a revelation. Here was a simple, compact, devilishly compel-
ling game that could be played absolutely anywhere. You directed
a tiny, calculator-quality, LED dash up a rectangular football fi eld
populated with other dashes that maneuvered to “tackle” you. If one
of those dashes caught you, you were down. You can see a YouTube
video of the game being played at bit.ly/10E0UXp.

Like so many great innovations, no one got it. At fi rst. According
to an interview with Howard Cohen (bit.ly/111U1zP), one of the lead-
ers of the Mattel Football project, the original production run of
500,000 units was halted aft er just 100,000 were made. Early sales
fi gures from Sears, Roebuck, didn’t support continued production.
And then, sales took off . Before long, Mattel was pumping out a
half million of the handheld game consoles each week.

Mattel Football was a classic case of savvy reuse. Th e game was
powered by a Rockwell calculator chip modifi ed to display the
on-screen action. Th e players were rendered as red LED dashes
instead of dots, Cohen said in his interview with the Handheld
Games Museum, “because they are basically the little segments of
the number 8 on a calculator display.” Other quirks abounded. For
instance, a limitation in the chip constrained the digital football
fi eld to a length of 90 yards. I’m pretty sure none of us ever noticed.

What Innovation Looks Like
In an age of touchscreen tablets and cloud apps it’s hard to believe, but
this is what innovation looks like. Working from the foundations of
available technology and platforms, Mattel created something wholly
new and exciting that both exceeded and reset expectations. For me, as
a child of the 70s, there was life before Mattel Football and life aft er it.

Like so many great innovations, Mattel Football wasn’t the fi rst
of its kind. A little-remembered handheld game called Mattel Auto
Race preceded Football by a year. It proved out the repurposed
calculator chip and display hardware used in the Mattel handhelds,
and showed that Rockwell programmers could knock out a game
experience in just 511 bytes of ROM. But it was Football that nailed
the experience—and foretold the future. You know the universal
head-down, hands-forward posture of commuters staring at their
smartphones (bit.ly/1qAnV4g)? Mattel Football invented that.

Mark Lesser was the Rockwell developer who wrote both Auto
Race and Football, as well as other, early handheld games. In a 2007
interview with Digital Press (the 30th anniversary of Football’s
release), he described working in “a primitive assembly language that
was ad hoc to the specifi c chip being programmed” (bit.ly/1Ay7TBA).
His take on what made Mattel Football so compelling should echo
forward for anyone craft ing modern experiences today.

“Even with the crudest graphics and sounds there are hooks that
carry suffi cient and enduring interest,” Lesser said. “So much of the
appeal of a game relates to the way it is tuned—the harmony between
the elements. Complexity is not
required to create fun gameplay.”

The Greatest Toy of All Time

© 2014 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

MICHAEL DESMONDEDITOR’S NOTE

You know the universal
head-down, hands-forward
posture of commuters staring

at their smartphones?
Mattel Football invented that.

mailto:mmeditor@microsoft.com
www.bit.ly/10E0UXp
www.bit.ly/111U1zP
www.bit.ly/1qAnV4g
www.bit.ly/1Ay7TBA
http://msdn.microsoft.com/magazine

DOMAINS | MAIL | HOSTING | eCOMMERCE | SERVERS

 * Offer valid for a limited time only. The $0.99/month pricing for the 1&1 Unlimited Hosting Package applies during promotional period only. Regular price
of $8.99/month applies after promotional period. Some features listed are only available with package upgrade. Visit www.1and1.com for full promotion details.
Program and pricing specifi cations and availability subject to change without notice. 1&1 and the 1&1 logo are trademarks of 1&1 Internet, all other trademarks
are the property of their respective owners. ©2014 1&1 Internet. All rights reserved. Rubik’s Cube® used by permission of Rubik’s Brand Ltd.

1and1.com
1 (877) 461-2631

®

TRIAL
30 DAY MONEY
BACK GUARANTEE1 MONTH

FLEXIBLE PAYMENT
OPTIONS1 CALL

SPEAK WITH AN
EXPERT 24/71

WordPress & Powerful App Platforms!
 Supports over 140 popular apps including WordPress,
Drupal™, Joomla!™, TYPO3, and more

 Security & version upgrade notifi cations
 Trial version available for all applications
 App Expert Support
 1&1 CDN powered by CloudFlare™ and 2 GB
guaranteed RAM for peak performance

Powerful Tools
 PHP 5.5, Perl, Python, Ruby
 1&1 Mobile Website Builder
 NetObjects Fusion® 2013 included

Successful Marketing
 Facebook® advertising credits
 Listing in business directories
 1&1 Search Engine Optimization
 1&1 E-Mail Marketing Manager

State-of-the-Art Technology
 Maximum availability (Geo-Redundancy)
 300 Gbit/s network connection

All Inclusive
 1 FREE domain: .com, .net, .org, .biz, .info
 Unlimited Power: webspace, traffi c, mail accounts, MySQL databases
 Secure e-mail addresses with virus and spam protection
 Linux or Windows operating system

NEW
 HOSTING
POPULAR APPS - NOW EVEN BETTER!

Starting at

$0.99
 per month*

COMPLETE
PACKAGES
FOR PROFESSIONALS

Untitled-1 1 11/7/14 2:38 PM

http://www.1and1.com
www.1and1.com

msdn magazine6

Responsive Web design (RWD)—creating one unique Web experi-
ence through a fl uid and adaptive Web layout—is undoubtedly one of
those milestones that will change the fl ow of things in the real world.

As a Web developer, you must be ready to live side-by-side with
a given fact and its exact opposite. On one hand, RWD is a de facto
standard. It’s becoming a must-have for all Web sites. On the other
hand, RWD is still an in-progress methodology, with best practices
still being defi ned and redefi ned. In this article, I aim to provide
a quick snapshot of the state of RWD, focusing on the most crit-
ical aspects: overall performance and particular image handling.

RWD Performance
Th e primary purpose of RWD is to make content easy and enjoy-
able to consume on devices, regardless of size and shape. So far, so
good, but how would you do that?

RWD requires quite a diff erent approach to project approval and
development. Th e canonical visual checkpoint when your custom-
ers look at static mockups and give you the green light is a much
less defi ned step. Instead of static mockups, you’ll likely present
wireframes. Overall, a responsive site is easy to sell to customers,
but it’s challenging to explain why it ultimately turns out to be more
expensive than having a classic non-responsive site.

A few years of experience have helped consolidate a few practices
and a few frameworks such as Twitter Bootstrap have emerged to help
with the responsive site implementation. But how about performance?

Performance is currently the sore point of RWD. A responsive site
works beautifully when viewed through powerful desktop browsers.
Th eir performance, though, tends to degrade when consumed via
smaller devices such as smartphones. RWD isn’t eff ective in the same
way for just any type of Web site. A portal of news and videos is easier
to reshape to make content usable on smaller screens than a site that
has a lot of forms and requires interaction, such as a travel-booking
site. In the latter case, the screen size is a more important factor.

Th e key question to ask a potential customer before starting on
an RWD implementation is how much its business cares about the
capabilities of the various devices. If devices serve a business purpose
such as searching or purchasing products or services, then you can’t
just diff erentiate content based on plain screen width and orienta-
tion. A resized desktop browser window and a smartphone may be
able to display content using the same layout, but they run on dif-
ferent hardware and have vastly diff erent computing capabilities.
If the business cares about the choice of devices, those diff erences
should be taken into careful account before making any decisions.

The One-Site Metaphor
Th e “one-site” metaphor is at the foundation of RWD: Th ere’s one
unique set of content pages, one back-end logic, one URL and one
brand. Th ere are two ways you can approach this type of RWD site
development. For each view and regardless of the device, you serve
the same HTML markup and make a bunch of diff erent CSS fi les
available to the device. Each CSS fi le is bound to a media query
expression the browser evaluates at run time when the window size
changes. Th e applied CSS might change on the fl y, which changes
the appearance of the content. Th is approach relies extensively
on CSS3 media queries, a World Wide Web Consortium (W3C)
standard defi ned at bit.ly/1oVBf89. Here’s how you would defi ne two
CSS fi les to be applied at two diff erent screen sizes:

<link type="text/css"
 rel="stylesheet"
 href="view480.css"
 media="only screen and (max-width: 480px)">

<link type="text/css"
 rel="stylesheet"
 href="view800.css"
 media="only screen and (max-width: 800px)">

Th e other option for developing responsive sites involves using
CSS3 Media Queries with JavaScript code to appropriately reshape
the Document Object Model (DOM). Th is approach is more power-
ful because it gives you more control over the layout. It also adds the
opportunity to download extra content specifi c for the screen size. To
detect changes of the screen size, you can use either the window resize
event or the matchMedia event. Th e matchMedia event is a JavaScript
implementation of media queries. When the browser detects a change
in the specifi ed media query, it fi res a call to your code:

if (window.matchMedia) {
 mq800px = window.matchMedia("(min-width: 800px)"),
 mqPortr = window.matchMedia("(orientation: portrait)");

 mq800px.addListener(mq800px_handler);
 mqPortr.addListener(mqPortr_handler);
}

When the browser detects a portrait orientation or a minimum
width of 800 pixels, the code will invoke your handlers. You can
use JavaScript and CSS media queries within the same site. Th ey
apply to individual HTML views or pages.

So the key pattern behind RWD is one set of content with multiple
views, whether you reshape that using CSS or some ad hoc JavaScript.
If you go the CSS route, you’re subject to what you can do with CSS in
a Web page. You can move and reposition elements, you can refl ow
content within diff erently sized containers, and fl oat blocks of content
horizontally or vertically. You can also simply hide unwanted content.

Effective Image Handling in
Responsive Web Sites

CUTTING EDGE DINO ESPOSITO

www.bit.ly/1oVBf89

Untitled-1 1 10/30/14 4:09 PM

www.groupdocs.com

msdn magazine8 Cutting Edge

With JavaScript, you can do all of that and then some. You can make
more sophisticated changes to the view layout, create DOM subtrees
from scratch or download new content from remote endpoints. With
CSS, the DOM is the largest possible. With JavaScript, it can only
grow to the extent of becoming the largest possible that was designed.

Th e size of RWD solutions isn’t an issue when viewing sites on
desktop browsers. It may not even be an issue on most tablets.
Th ose tend to be powerful enough to run any required JavaScript
and are oft en used through a solid Wi-Fi connection. Th e issue is
having RWD sites on smartphones with 3G connections. In those
cases, it’s not so much the amount of markup and JavaScript code,
it’s the related events and their impact on threading that bogs things
down. Th e most painful aspect of RWD is images.

Handling Images
Th e old img element references images. Th ey’re downloaded entirely
and displayed as specifi ed by width and height attributes. If you need
a large background image for a desktop or numerous large images
for a carousel, you can’t simply use CSS to adjust width and height.
Th at would have no impact on the download size. Hiding images
via CSS doesn’t help, either, as the image is downloaded anyway.

Th ere are a few tricks you can apply while waiting for a new
HTML element to be available. However, a new HTML element is
a ways off in terms of widespread browser support. Th ere are some
experiments going, but they’re not for prime time yet. Th e direc-
tion seems to be having an element whose structure blinks at the
HTML5 structure of the video element, as follows:

<picture>
 <source media="(min-width: 400px)" srcset="foo-sm.jpg, foo-sm-2x.jpg 2x">
 <source media="(min-width: 800px)" srcset="foo-md.jpg, foo-md-2x.jpg 2x">

</picture>

When using picture instead of img, you provide a range of options
for the same logical image. You provide a set of images for each media
query scenario and within each scenario you might provide multiple
images to address diff erent pixel densities. In that example, when the
screen width is at least 800 pixels, the browser might choose a regu-
lar image with an appropriate size or a larger copy made-to-measure
for a higher density or even to satisfy art direction requirements and
provide a diff erent image or a crop of the original image when a given
media query kicks in. Th e embedded img element indicates the fallback
and is logically equivalent to what is in use today. You can experiment
with this approach using the JavaScript polyfi ll found at bit.ly/1aVEoxb.

Another approach is to use server-side logic, such as an HTTP
handler. The handler will receive the request and decide which
image to download. Frankly, this approach can be a challenge. Th e
server-side logic needs some clues to select the most appropriate
image. Th ose clues can only come from the browser and should
be put into the HTTP request, whether with a query string or
headers. Th is requires some scripting work to be done when the
images are downloaded upon page loading. Th is is doable, but tricky.

While waiting for the picture element, image size and other
aspects of the RWD specifi cation to become standard and available
on all browsers (only Chrome and Opera currently provide some
support), stop and refl ect on the exact problem you’re trying to solve.

As long as the user is on a desktop browser, the size of the image
isn’t a big deal. Just point img to the largest one. If the browser

window is resized, the same large image is resized. At that point, it no
longer has an impact on performance. You want to change an image on
smaller windows to focus on particular aspects. In that case, one trick
might be to reference the image as the background of a div set via CSS
instead of a plain img element. Th e advantage there is media queries will
select just the image you want. You might get multiple images down-
loaded on the desktop, but that could be a negligible point. Th ere could
be other issues with background images if users try to print the page.

Using background images helps when the RWD site displays
on mobile devices. Images are guaranteed to be of the proper size.
Either way, you need to address the use of images in RWD when
you plan to view the site on non-desktop devices.

How would you detect which type of device is being used? Detect-
ing devices isn’t a deadly sin. Reliably detecting devices is diffi cult,
however, and can be a mess if you do it yourself. You can use a popu-
lar Modernizr plug-in for some forms of client-side device detection
(bit.ly/1tfJhtf). Th is way, you can programmatically modify the DOM
to try to get ad hoc images. Th at approach is reasonable, but doesn’t
scale with the number of devices and may become unreliable at some
point. Device detection is a serious matter and requires expertise.

A Look at WURFL Image Tailor
One new interesting approach to image handling is the Wireless
Universal Resource File (WURFL) Image Tailor (WIT) component.
Backed by the full WURFL engine—the same device detection
engine used by Facebook—WIT performs a quick server-side
analysis of the user agent. It determines the form factor of the
requesting device and serves a resized version of the original
image. WIT is a free service that just requires a fi x to the image URL:

You append the full image URL to the WIT Web site URL so you
can download the image from the original Web site, resize the image
and return pixels to the requesting site. Images are cached on the WIT
end. Th at keeps the number of requests to the bare minimum. A bunch
of supported parameters let you control aspects of the resizing such
as cropping, dimensions and returned format.

WIT has pros and cons. On the upside, it relieves you of the
burden of dealing with multiple versions of the same image. All it
requires is a slightly modifi ed version of the URL in the plain old
img element. Plus, you can start using it in a matter of seconds.

On the downside, it acts as a proxy and doesn’t specifi cally address
scenarios where you care also about pixel density and not just size. In
any case, there’s no reason for not giving it a try. You’ll fi nd it at wurfl .io/#wit.

Th e landscape of image handling within the context of RWD is
fl uid. Some compromise between RWD and devices will have to
be forthcoming to ensure things work eff ectively everywhere.

DINO ESPOSITO is the co-author of “Microsoft .NET: Architecting Applications for
the Enterprise” (Microsoft Press, 2014) and “Programming ASP.NET MVC 5”
(Microsoft Press, 2014). A technical evangelist for the Microsoft .NET Framework
and Android platforms at JetBrains and frequent speaker at industry events world-
wide, Esposito shares his vision of soft ware at soft ware2cents.wordpress.com and
on Twitter at twitter.com/despos.

THANKS to the following technical expert for reviewing this article:
Jon Arne Saeteras

www.wurfl.io/#wit
http://software2cents.wordpress.com
www.twitter.com/despos
www.bit.ly/1aVEoxb

Untitled-6 1 5/28/14 4:02 PM

www.amyuni.com

msdn magazine10

In the October 2014 Data Points (msdn.microsoft.com/magazine/dn802601),
I wrote about a pattern for mirroring data from one database to
another when you’re using multiple Domain-Driven Design (DDD)
bounded contexts (BC), with each BC isolated to its own database.
Th e scenario was that the Customer Management BC allows users
to manage customer data, inserting, updating and deleting cus-
tomer details. Th e second BC is for an ordering system that needs
access to two critical pieces of customer information: the custom-
er’s identifi er key and name. Because these systems are in two sep-
arate BCs, you can’t reach from one into the other to share data.

DDD is for solving complex problems, and simplifying prob-
lems in the domain oft en means moving the complexity outside
of the domain. So the Customer Management BC need not be
aware of this subsequent sharing of data. In my previous column,
I employed the publish/subscribe pattern to solve the problem by

leveraging Domain Events, a message queue (RabbitMQ) and a
service. Th ere were a lot of moving parts.

One shortcut I intentionally took to avoid overwhelming the
explanation with too many concepts was that of triggering the
series of events directly from the customer class by publishing the
event to a message queue.

Th is month, I want to enhance the solution in two ways. First, I
want to publish the message from a more logical spot in the workfl ow:
aft er fi rst confi rming that the customer (whether new or modifi ed)
has been successfully persisted into the customer system’s database.
I also want to make sure the event is published only in response
to relevant events. Publishing the event after a new customer is
created makes sense. But I’d also like to tackle the hypothetical
condition where I might need to be more discriminating about
when updates are published to the message queue. In this case,
I’d like to ensure the relevant message is published only when the
customer’s name has changed. If other data is modifi ed that doesn’t
impact the customer name, I won’t publish the message.

These two changes will make the solution more applicable to
real-world scenarios.

Customer Created or Updated
Becomes Customer Persisted
Th e current solution raises a notifi cation when a customer is created
or when the customer’s name is fixed. The constructor and this
FixName method both call PublishEvent:

public void FixName(string newName){
 Name = newName;
 ModifiedDate = DateTime.UtcNow;
 PublishEvent(false);
 }

PublishEvent triggers the workfl ow that results in the message
being published to the queue:

private void PublishEvent(bool isNew){
 var dto = CustomerDto.Create(Id, Name);
 DomainEvents.Raise(new CustomerUpdatedEvent(dto, isNew));
 }

You can check the October column for details about that solu-
tion. Rather than raising the events from the class, I want to raise the
events aft er I know either the new customer instance or the fi x to the
customer name has been successfully persisted into the database.

Th is means removing the PublishEvent method and the calls to
it from the Customer class.

My data layer has a class containing the data access logic for the
customer aggregate. I’ve moved the PublishEvent method into this
class, renaming it to PublishCustomerPersistedEvent. In my methods

A Pattern for Sharing Data Across Domain-
Driven Design Bounded Contexts, Part 2

DATA POINTS JULIE LERMAN

Code download available at msdn.microsoft.com/magazine/msdnmag1214.

public class CustomerAggregateRepository {

public bool PersistNewCustomer(Customer customer) {
 using (var context = new CustomerAggregateContext()) {
 context.Customers.Add(customer);
 int response = context.SaveChanges();
 if (response > 0) {
 PublishCustomerPersistedEvent(customer, true);
 return true;
 }
 return false;
 }
}

public bool PersistChangeToCustomer(Customer customer) {
 using (var context = new CustomerAggregateContext()) {
 context.Customers.Attach(customer);
 context.Entry(customer).State = EntityState.Modified;

 int response = context.SaveChanges();
 if (response > 0) {
 PublishCustomerPersistedEvent(customer, false);
 return true;
 }
 return false;
 }
}

 private void PublishCustomerPersistedEvent(Customer customer, bool isNew) {
 CustomerDto dto = CustomerDto.Create(customer.Id, customer.Name);
 DomainEvents.Raise(new CustomerUpdatedEvent(dto, isNew));
 }
 }

Figure 1 Persistence Class Raises Events After Data Is Persisted

http://msdn.microsoft.com/magazine/dn802601
http://msdn.microsoft.com/magazine/msdnmag1214

Untitled-1 1 10/30/14 4:10 PM

www.aspose.com

msdn magazine12 Data Points

that persist customers to the database, I
call the new event aft er SaveChanges is
complete (see Figure 1).

With this move, I also needed to
move the infrastructure for publishing
messages into the data layer project. Figure
2 shows the relevant projects (Customer-
Management.Core and Customer-
Management.Infastructure) I created
for the previous column, alongside the
projects aft er I moved this event into the
data layer. Th e CustomerUpdatedEvent,
DTO and Service are now in the Infra-
structure project. It was satisfying to move
infrastructure logic outside of the domain.
I had been bothered by the code smell of
needing it in the core domain.

I have two tests I use to verify that
successful inserts and updates do, in
fact, publish the correct messages into
the queue. A third test verifies that a
failed update doesn’t attempt to publish
any messages to the queue. You can see
these tests in the download solution that accompanies this article.

In the Data Layer, Not in the Domain Model
It’s a really simple change, but I did struggle with this move—not
the technical aspect—but in justifying moving the event out
of my BC and into my data layer. I had a debate about this on
a dog walk. (It is not abnormal for me to be walking through
my woods, or up and down my road, talking to myself. Fortu-
nately, I live in a quiet place where nobody will question my
sanity.) Th e debate ended with the following conclusion: Publishing
the event does not belong in the BC. Why? Because the BC cares only
about itself. Th e BC does not care what other BCs or services or appli-
cations want or need. So, “I need to share my persisted data with the
Ordering System,” is not a valid concern of the BC. It isn’t a domain
event, but an event related to persistence, which I’ll put in the
Application Event bucket.

Fixing a New Problem Created by the Move
There is one issue caused by moving the publish event into my
persistence layer. Th e PersistChangeToCustomer method is used
to persist other edits to the Customer entity, as well. For example,
the Customer entity also has the ability to add or update the cus-
tomer’s shipping and billing addresses. The addresses are value
objects and creating or replacing them with a new set of values
refl ects a change to the customer.

I need to call PersistChangeToCustomer when either of these
addresses change. But in that case, there’s no point in sending a
message to the queue saying that the customer name has changed.

So how do you let this persistence layer know the customer name
didn’t change? An instinctive solution is to add a fl ag property such
as NameChanged. But I don’t want to have to rely on adding Bool-
eans as needed to track the detailed state. I considered raising an

event from the customer class, but not one that would trigger anoth-
er message to a queue. I don’t want a message that just says, “Don’t
send a message.” But how to capture the event?

Once again, Jimmy Bogard comes to the rescue with another
brilliant solution. His May 2014 blog post, “A Better Domain
Events Pattern” (bit.ly/1vUG3sV), suggests collecting events rather than
raising them immediately, then letting the persistence layer grab
that collection and handle the events as needed. Th e point of his
pattern is to remove the static DomainEvents class, which doesn’t
allow you to control when events are raised and can therefore cause
side eff ects. Th is is a newer line of thinking with regard to domain
events. My refactoring will coincidentally avoid that problem,
but I admittedly am still tied to the static DomainEvents class. As
always, I will continue to learn and evolve my practices.

I love Bogard’s approach, but I’m going to steal the idea and use
it a little diff erently than his implementation. I don’t need to send a
message to the queue; I only need to read the event. And it’s a great
way to capture this event in the customer object without creating
various random state fl ags. For example, I can avoid the awkward-
ness of having to include a Boolean that says, “Th e name was fi xed,”
to be set to true or false, as needed.

Bogard uses an ICollection<IDomainEvent> property called
Events property in an IEntity interface. If I had more than one entity
in my domain, I’d do the same or perhaps add it to an Entity base

Figure 2 Project Structure Before and After Moving Event Publishing into the Data Layer

The BC does not care what other
BCs or services or applications

want or need.

www.bit.ly/1vUG3sV

Untitled-1 1 5/7/14 2:43 PM

www.devexpress.com/try

msdn magazine14 Data Points

class. But in this demo, I’ll just put the new property directly into
my Customer object. I’ve created a private fi eld and exposed the
Events as read-only so only the Customer can modify the collection:

private readonly ICollection<IDomainEvent> _events;

public ICollection<IDomainEvent> Events {
 get { return _events.ToList().AsReadOnly(); }
}

Next, I’ll defi ne the relevant event: CustomerNameFixedEvent,
which implements the IDomainEvent interface I used in Part 1 of
this column. CustomerNameFixedEvent doesn’t need much. It will
set the DateTimeEventOccurred property that’s part of the interface:

public class CustomerNameFixedEvent : IDomainEvent{

 public CustomerNameFixedEvent(){
 DateTimeEventOccurred = DateTime.Now;
 }

 public DateTime DateTimeEventOccurred { get; private set; } }
}

Now, whenever I call the Customer.FixName method, I can add
an instance of this event to the Events collection:

public void FixName(string newName){
 Name = newName;
 ModifiedDate = DateTime.UtcNow;
 _events.Add(new CustomerNameFixedEvent());
}

Th is gives me something that’s much more loosely coupled than
a state property. Additionally, I can add logic to it in the future as
my domain evolves without modifying the schema of my Custom-
er class. And I can take advantage of it in my persistence method.

Th e PersistChangeToCustomer method now has new logic. It
will check for this event in the incoming Customer. If that event
exists, it will fi re off the message to the queue. Figure 3 shows the
full method again with the new bit of logic in it—a check for event
type before publishing.

Th e method still returns a Boolean showing whether the Customer
was successfully saved, indicated by the response to SaveChanges
being greater than 0. If that’s the case, then the method will check
for any CustomerNameFixedEvents in the Customer.Events and
publish the message about the customer being persisted as it did
earlier. If for some reason the SaveChanges fails, most likely that
will be indicated by an exception. However, I’m also looking at the
value of response, so I can return false from the method. Th e calling
logic will decide what to do about a failure—perhaps trying the save
again or sending a notifi cation to the end user or some other system.

Because I’m using Entity Framework (EF), it’s worth noting that
you can confi gure EF6 to retry SaveChanges on transient connection

errors. But that will have already played out by the time I get a
response from SaveChanges. Check my December 2013 article, “Entity
Framework 6, Ninja Edition” (msdn.microsoft.com/magazine/ dn532202),
for more information about DbExecutionStrategy.

I added a new test to verify the new logic. Th is test creates and
persists a new customer, then edits the customer’s BillingAddress
property and persists that change. My queue receives a message
that the new Customer was created, but it gets no message in
response to the update that changes the address:

[TestMethod]
public void WillNotSendMessageToQueueOnSuccessfulCustomerAddressUpdate() {
 Customer customer = Customer.Create("George Jetson", "Friend Referral");
 var repo = new CustomerAggregateRepository();
 repo.PersistNewCustomer(customer);
 customer.CreateNewBillingAddress
 ("123 SkyPad Apartments", "", "Orbit City", "Orbit", "n/a", "");
 repo.PersistChangeToCustomer(customer);
 Assert.Inconclusive(@"Check status of RabbitMQ Manager for a create message,
 but no update message");
}

Stephen Bohlen, who reviewed this article, suggests the “test spy
pattern” (xunitpatterns.com/TestSpy.html) as an alternative way of verify-
ing that the messages did make it into the queue.

A Solution in Two Parts
How to share data across bounded contexts is a question many
developers learning about DDD ask. Steve Smith and I hinted at
this capability in our Pluralsight course, Domain-Driven Design
Fundamentals (bit.ly/PS-DDD), but didn’t demonstrate it. We’ve been
asked numerous times to elaborate on how to pull this off . In the
fi rst article in this little series, I leveraged many tools to construct
a workfl ow that would allow data stored in one BC’s database to
be shared with a database used by a diff erent BC. Orchestrating a
publish-subscribe pattern using message queues, events and an
Inversion of Control container let me achieve the pattern in a very
loosely coupled fashion.

Th is month, I expanded the sample in response to the question:
When does it make sense, with a DDD focus, to publish the message?
Originally, I triggered the data-sharing workfl ow by publishing
the event from the Customer class as it created new customers or
updated customer names. Because all of the mechanics were in
place, it was easy in this article to move that logic to a repository,
allowing me to delay publishing the message until I was sure the
customer data had been successfully persisted into the database.

Th ere’s always more fi ne-tuning to be done, and perhaps diff erent
tools you might prefer to use. But you should now have a handle
(no pun intended, but I have to leave it here now) on approaching
the DDD pattern of allowing bounded contexts to work with their
own independent databases.

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives
in the hills of Vermont. You can find her presenting on data access and
other.NET topics at user groups and conferences around the world. She blogs at
thedatafarm.com/blog and is the author of “Programming Entity Framework”
(2010), as well as a Code First edition (2011) and a DbContext edition (2012), all
from O’Reilly Media. Follow her on Twitter at twitter.com/julielerman and see
her Pluralsight courses at juliel.me/PS-Videos.

THANKS to the following Microsoft technical expert for reviewing this article:
Stephen Bohlen

public bool PersistChangeToCustomer(Customer customer) {
 using (var context = new CustomerAggregateContext()) {
 context.Customers.Attach(customer);
 context.Entry(customer).State = EntityState.Modified;

 int response = context.SaveChanges();
 if (response > 0) {
 if (customer.Events.OfType<CustomerNameFixedEvent>().Any()) {
 PublishCustomerPersistedEvent(customer, false);
 }
 return true;
 }
 return false;
 }
 }

Figure 3 PersistChangeToCustomer Method Checking Event Type

http://msdn.microsoft.com/magazine/ dn532202
www.xunitpatterns.com/TestSpy.html
www.bit.ly/PS-DDD
www.thedatafarm.com/blog
www.twitter.com/julielerman
www.juliel.me/PS-Videos

Untitled-1 1 10/13/11 11:25 AM

www.nsoftware.com

msdn magazine16

There’s an entirely diff erent set of standards and expectations
for today’s apps than the desktop apps of a decade ago. One of these
expectations is that apps work and share data across multiple devices.
If a user has the same app installed on their desktop and laptop,
they’ll expect both apps to maintain the same confi guration and
work on the same set of data. Taking it a step further, if the same
app is available on multiple devices, users will expect to be able to
share data across devices.

In the world of data-driven apps, you can handle these expec-
tations primarily on the back-end database. An app on multiple
devices can query the same remote database, and give the user access
to the same data. However, supporting apps with a remote database
adds a tremendous overhead in terms of architecture, development
and maintainability. It’s simply not necessary for all apps. Even
apps that require databases might not want to support app-specifi c
information in a database designed for multiple purposes.

Windows Store and Windows Phone Store apps address this need
with the concept of roaming data. Every app automatically receives
a small amount of cloud storage per user. Th e user can use this to
save information about the app and share it across multiple installs
of the app. Windows Phone Store apps and Windows Store apps
take this another step and let the user share data between apps on
diff erent devices. Here, I’ll look at the uses of roaming data in your
apps and how to use this data eff ectively across devices.

Th is article will use universal apps to demonstrate sharing roaming
data across devices, however, these same techniques work in separate
Windows Phone Store and Windows Store apps. Roaming data also
works just as well across HTML- and XAML-based apps.

Use Roaming Data
One of the nicer aspects of using roaming data in your apps is that
it’s automatically available and it requires no confi guration or other
settings. Simply use the roaming data API available to let your app
take advantage of roaming data.

What to Roam Th e fi rst question most developers ask is what
type of data is good for roaming settings. Keep in mind there’s a
tight size limit on the amount of data that can roam. Th at means
you need to do some advanced planning.

Some of the most common things to roam are user-defined
preferences and settings—aspects such as colors, fonts, options
and so on. Th ese values might take on diff erent meanings if you’re

WIN DOWS PHONE STOR E AP P S

Roaming Data Between
Windows Store Apps
and Windows Phone
Store Apps
Tony Champion

This article discusses:
• Sharing data between mobile apps

• Preparing data and devices to sync roaming data

• Determining the type of data you can sync

Technologies discussed:
Windows Runtime

17December 2014msdnmagazine.com

sharing between Windows Store apps and Windows Phone Store
apps, but providing a similar experience and between platforms
will be a big win for your app.

Current navigation within your app can be a powerful feature.
If a user pulls up a report on a Windows Phone and then logs into
a computer at work, why shouldn’t the Windows Store version of
the app jump straight to the same report? If a user is watching a
video on a desktop, why shouldn’t the Windows Phone version
jump to the same video?

Temporary data can be another candidate for roaming. If a user
is in the middle of typing an e-mail on a laptop, they should be able
to continue that same e-mail at their desktop.

Large datasets typically aren’t candidates for roaming data. How-
ever, you could put a key to the data set in roaming data and pull
the large dataset down to the new client based on the key you share.

Th e list goes on, but the goal is the same. Roaming data should
let the user always feel connected to your app.

Enable Roaming Data Th ere are a couple of prerequisites for your
apps to successfully sync data between devices. First, users have to
log on to the device using a Microsoft account. Roaming settings

are associated with an app and a Microsoft user account. If the user
isn’t using a Microsoft account, the data is missing part of its key.

Second, it’s important the user hasn’t disabled roaming data
capabilities for the device. A user can do this manually or it might
be a device policy applied by system administrators. If roaming
data is disabled, the data won’t sync.

If roaming data isn’t enabled on a device, data is still available
locally. Th erefore, your app doesn’t have to worry about checking
to see if roaming data is syncing and using a diff erent workfl ow.

Explore the API
You’ll fi nd the API for roaming data in the Windows.Storage.Applica-
tionData object. Each app maintains a single instance of Application-
Data you can reference with the Current static property:

var appData = Windows.Storage.ApplicationData.Current;

The API doesn’t include a mechanism to force roaming data
to synchronize. Th at process is left to the device itself to manage.

You can use two types of roaming data. You’ll find the first in
the RoamingSettings property of ApplicationData, which is an
ApplicationDataContainer that manages key/value pairs. Th e set-
tings are managed in the RoamingSettings.Values property and
you can access them as a string indexed array. Th e keys can be any
alphanumeric string up to 255 characters long. Th e value can be
an object as long as it’s a supported Windows Runtime data type.
Th is means you can’t store custom objects in roaming settings.

You can access roaming settings through the indexed Values
property. Add or update a setting by changing the key indexed
Values property to the new value. Use the Values.Remove method
to remove a setting. The following code shows an example of
creating, reading and removing a roaming setting:

var roamingSettings = ApplicationData.Current.RoamingSettings;

// Create setting
roamingSettings.Values["setting1"] = "My First Setting";

// Read setting
var settings1 = roamingSettings.Values["setting1"];

// Remove setting
roamingSettings.Values.Remove("setting1");

// Clear all settings
roamingSettings.Values.Clear();

Storing simple Windows Runtime data types will work for some
instances. However, there are times when storing an entire object
makes sense. Th ere are a couple of ways to store classes in roaming
data, but you can use an ApplicationDataCompositeValue to store
more complex objects in RoamingSettings.

public class Person
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public int Age { get; set; }

 public static Person FromComposite(ApplicationDataCompositeValue composite)
 {
 return new Person()
 {
 FirstName = (string)composite["firstName"],
 LastName = (string)composite["lastName"],
 Age = (int)composite["age"]
 };
 }

 public static ApplicationDataCompositeValue ToComposite(Person person)
 {
 var composite = new ApplicationDataCompositeValue();
 composite["firstName"] = person.FirstName;
 composite["lastName"] = person.LastName;
 composite["age"] = person.Age;

 return composite;
 }
}

Figure 1 Convert from ApplicationDataCompositeValue
to Person Class

var person = new Person()
{
 FirstName = "Tony",
 LastName = "Champion",
 Age = 38
};

roamingSettings.Values["personalInfo"] = Person.ToComposite(person);

if (roamingSettings.Values.ContainsKey("personalInfo"))
{
 var composite =
 (ApplicationDataCompositeValue)roamingSettings.Values["personalInfo"];
 var roamingPerson = Person.FromComposite(composite);
}

Figure 2 Obtain and Store Personal Information
in RoamingSettings

Some of the most common
things to roam are user-defi ned

preferences and settings—
aspects such as colors, fonts,

options and so on.

www.msdnmagazine.com

msdn magazine18 Windows Phone Store Apps

An ApplicationDataCompositeValue is a collection of key/
value pairs stored together. Th is is a great way to group items that
will remain synced as a single unit. Th e following code shows an
example of creating an ApplicationDataCompositeValue and
adding it to RoamingSettings:

var compositeValue = new ApplicationDataCompositeValue();
compositeValue["firstName"] = "Tony";
compositeValue["lastName"] = "Champion";
compositeValue["age"] = 38;

roamingSettings.Values["personalInfo"] = compositeValue;

Th e one downfall to this approach is there’s no mechanism to
automatically go to and from a complex object to an Application-
DataCompositeValue. One approach to resolve this is to create
helper functions for your classes that will handle the conversion
for you. Figure 1 shows a Person class with two static methods—
ToCompositeSetting and FromCompositeSetting. Th ese methods
convert the data stored in the previous example into a Person
object, which will make things like data binding much less complex.

Figure 2 uses the new Person class to obtain and store the
personal information in RoamingSettings.

Th ere’s a special key in the roaming settings you can use for data
you need to sync immediately. Adding HighPriority to any setting
will have it synced as quickly as possible. Th is is great for items like
a current book page number, a paused video frame and anything
else that will help provide a connected experience between devices.
For example, if a user is watching a movie on your Windows Store
app, you could provide the Windows Phone Store app with the sup-
porting data appropriate to the user’s current location in the movie:

var roamingSettings = ApplicationData.Current.RoamingSettings;

var composite = new ApplicationDataCompositeValue();
composite["movieId"] = myVidPlayer.MovieId;
composite["position"] = myVidPlayer.CurrentTime;

roamingSettings.Values["HighPriority"] = composite;

Files are the second type of roaming data. Th e ApplicationData
object contains a RoamingFolder property that returns a Storage-
Folder instance where your app can read and write fi les to be synced.

You can add practically any type of fi le to the RoamingFolder.
However, the file name must conform to certain specifications.
First, the maximum fi le name and extension length is 256 char-
acters. Also, the fi le name can’t have leading spaces. Th ere’s also a
group of Unicode characters that aren’t allowed.

Th ere are also several fi le types that aren’t allowed because they
act like folders, such as .zip and .cab. If you add a fi le to the Roam-
ingFolder that doesn’t meet these requirements, the fi le won’t be
synced, but will still be available for local access.

One use for the RoamingFolder is storing complex objects. Here’s
an example of taking the same Person object, serializing it and then
writing it to a fi le in the RoamingFolder:

var roamingFolder = ApplicationData.Current.RoamingFolder;

// Create file and open a stream to write to
StorageFile personFile = await roamingFolder.CreateFileAsync(
 "personInfo.txt", CreationCollisionOption.ReplaceExisting);
var writeStream = await personFile.OpenStreamForWriteAsync();

// JSON serialize object
var serializer = new DataContractJsonSerializer(typeof(Person));
serializer.WriteObject(writeStream, person);

// Flush the stream
await writeStream.FlushAsync();

JSON serialization is used over XML for size considerations.
With size constraints for roaming data in place, every byte counts.

You can use reverse logic to retrieve an object from the Roaming-
Folder. Th e following code demonstrates reading that same fi le and
returning a Person object:

// Create file and open a stream to write to
var readStream = await roamingFolder.OpenStreamForReadAsync("personInfo.txt");

// JSON deserialize object
var serializer = new DataContractJsonSerializer(typeof(Person));
var roamingPerson = (Person)serializer.ReadObject(readStream);

Now you can read and write roaming data to be synced between
devices, but how will you know when it has been updated? Th is is
handled by the DataChanged event in ApplicationData. Any time
a device receives new roaming data, the DataChanged event will
fi re, passing in the updated ApplicationData object. Th is lets you
make any adjustments to your app when data has changed. Th ere’s
no corresponding event to let you know when data has been pushed
from the device. Th e following code demonstrates how to listen to
the DataChanged event:

private void HandleEvents()
{
 ApplicationData.Current.DataChanged += Current_DataChanged;
}

void Current_DataChanged(ApplicationData sender, object args)
{
 // Update app with new settings
}

void SetVersionHandler(SetVersionRequest request)
{
 SetVersionDeferral deferral = request.GetDeferral();

 if (request.CurrentVersion < 1)
 {
 // Handle upgrade from 0 to 1
 }

 if (request.CurrentVersion < 2)
 {
 // Handle upgrade from 1 to 2
 }

 deferral.Complete();
}

async void SetVersion()
{
 var appData = ApplicationData.Current;
 if (appData.Version < 2)
 {
 await appData.SetVersionAsync(
 2, new ApplicationDataSetVersionHandler(SetVersionHandler));
 }
}

Figure 3 Update Version of Roaming Data

The API doesn’t include a
mechanism to force roaming data
to synchronize. That process is left

to the device itself to manage.

Untitled-4 1 9/8/14 1:46 PM

www.alachisoft.com

msdn magazine20 Windows Phone Store Apps

If your app is taking advantage of the DataChanged event, the
SignalDataChanged method in ApplicationData is useful. Any time
you update any roaming data locally, you can call that method and
it will fi re the DataChanged event and allow any update handlers
you need to run:

// Update settings locally and raise DataChanged event
roamingSettings.Values["favoriteColor"] = "Black";
ApplicationData.Current.SignalDataChanged();

It’s important to keep track of the amount of data you’re
attempting to roam. Each device has a maximum amount of data
that can sync between devices, which is currently 100KB. The
potential issue is it’s an all-or-nothing approach. If the total amount
of data you’re attempting to sync exceeds the limit, then nothing
will sync between the devices. Th e ApplicationData class contains
a RoamingStorageQuota property that returns the total size of
data allowed to be synced in kilobytes. However, ApplicationData

doesn’t contain any mechanism for
determining the current amount
of data you’re using, so for now it’s
up to you to keep track.

New versions of your app could
mean new or changed settings from
previous versions, as well as data
from previous versions no longer
being needed. To address this
issue, the Windows Runtime lets
you version your roaming data.
You’ll fi nd the current roaming data
version to which the app is set in the
ApplicationData.Current.Version.
Th is version number is indepen-

dent of the app version number and by default is set to zero. Th e
app will sync data that matches its version number. Th is lets you
create new data structures without fear of breaking older versions.

You can change the app version through the ApplicationData.Set-
VersionAsync method. Th is method has two parameters, the new
version number and an ApplicationDataSetVersionHandler, to let
you write any code necessary to make changes to the app based on
the new version.

Th e handler contains a single SetVersionRequest parameter. Th is
provides the current version through the CurrentVersion prop-
erty, as well as the new version in the DesiredVersion property.
Your app can use these two values to handle any migrations on an
iterative approach. It also contains a GetDeferralMethod that lets
you hold the thread open until you have the opportunity to com-
plete the migration. Th at way if you have any async calls such as
reading or writing fi les, you can perform those functions before
the version change process is complete. Figure 3 shows how to
migrate to a new version.

Share Between Windows Store
and Windows Phone Store Apps
Now that you’ve implemented roaming settings in both your
Windows Store and Windows Phone Store apps, the next logical step
is for the two companion apps to be able to share their roaming data.

Technically speaking, in order for a Windows Phone Store app
and a Windows Store app to share
roaming data, they must have the
same Package Family Name. Th is
field is generated based on the
Package Name. Th erefore, the two
apps must have the same Package
Name. You can fi nd these values by
associating the apps with names in
their respective stores.

Th e fi rst step to submitting an
app in either store is to assign the
app a name. You can either create
a new name or associate the app
with an existing name. Th e list of
existing names is a combination of

Figure 4 Link a Windows Phone Store App to a Windows Store App

Figure 5 Link a Windows Store App to a Windows Phone Store App

There’s a special key
in the roaming settings you can

use for data you need to
sync immediately.

21December 2014msdnmagazine.com

reserved names for the store you’re in and a list of apps you have
in the other store. Selecting an app in the other store will link your
app, giving it the same name and letting the apps share roaming
data. You can read more about what it means to link a Windows
Store and Windows Phone Store app at bit.ly/10Pl2Xi.

Because the stores are still separate, the experience of linking
your apps is slightly diff erent. If you have an existing Windows
Store app, you can link a Windows Phone Store app by selecting
the Windows Store app in the App info section, as shown in Figure
4. You can also link a Windows Store app to
an existing Windows Phone Store app up in
the App name section, as shown in Figure 5.

Once you’ve created and linked the apps in
the stores, the fi nal step is to associate each of
your apps in Visual Studio to those names.
Right-click in your primary Windows Store
and Windows Phone Store solution and select
Store | Associate App with the Store. Th en
follow the wizard and select the correct name.
Th is will update your Package.appxmanifest
with the information entered in the store.

At this point, your apps will be able to share
roaming data. Remember, it’s important to
track the size of the data you’re roaming.
If the storage quotas are different across
the platforms, you’ll need to plan for the
smaller of the two as your limit.

Debug Roaming Data
Testing your roaming settings is straightfor-
ward. Again, it’s an all-or-nothing situation.
Either your roaming data is synced between
devices or it isn’t. When testing the syncing
process, locking the device will force the
app to attempt to synchronize its data. If this
doesn’t happen, there are a couple of things
to consider:

• Th e most common cause of data not
syncing is the app has exceeded the
roaming storage quota. If the total
size exceeds the limit, the app won’t
attempt to sync its roaming data.

• If you’re storing your data in fi les,
make sure you’ve closed all fi le
handlers. Leaving fi les opened will
maintain a lock on them and also
prevent the synchronization.

Wrapping Up
Using roaming data in your apps provides
your users a consistent and always-connected
experience. Sharing settings, preferences,
and current app state on one device and
carrying it over to another device lets the
users feel like it’s the same app no matter

the device. Adding the ability to share data between Windows
Store and Windows Phone Store apps amplifi es that experience
and opens up a wide range of opportunities.

TONY CHAMPION, a Microsoft MVP, is the president of Champion DS and is
active in the community as a speaker, blogger and author. He maintains a blog at
tonychampion.net. Reach him at tony@tonychampion.net.

THANKS to the following Microsoft technical expert for reviewing this article:
Robert Green

mailto:tony@tonychampion.net
http://www.softfluent.com/forms/msdn-2014
http://www.softfluent.com/forms/msdn-2014
www.msdnmagazine.com
www.bit.ly/10Pl2Xi
www.tonychampion.net

msdn magazine22

Welcome to the fi nal article in my series on Unity game
development. Remember when the app market was fi rst exploding?
Everyone was jumping on the bandwagon, and there was an app for
everything. With a gazillion apps, though, came the trouble people
had fi nding your app. Having apps get lost in the marketplace is a
very real problem for developers. Th e Windows Store/Windows
Phone Store isn’t the dominant marketplace on the planet. Does
that mean you shouldn’t develop for it? Absolutely not. Developers
have a real opportunity here to have their applications found. I
hear of developers having their apps featured oft en. I know exactly
three people who have had this happen on other platforms, and I
talk to a lot of developers from all platforms.

In this article, I’ll look at the process of taking a game developed in
Unity to Windows. Th e process is pretty straightforward and allows
you to do some pretty cool platform integration that’s relatively easy
to implement in a game. Th ere’s some excellent tooling available as
of Unity 4.5, which supports the new Universal Projects (solutions
that generate packages for Windows Phone and Windows Store
with shared code), as well.

As you work, keep this popular saying in mind, “Test early, test
oft en.” You’re not likely to hear a better soft ware development man-
tra, and it holds very true in game dev. I’d like to revise it slightly,

though: “Test early on devices, test oft en on devices.” No matter what
the platform, you’ll fi nd devices might act diff erent than expected.

The Platform
If you’re reading this magazine, you likely have an idea of the
Windows ecosystem. I’ll just do a quick review of what Unity sup-
ports in that ecosystem. You can target Xbox 360, Xbox ONE,
Windows Phone 8/8.1, Windows 8/8.1 (Windows Store apps)
and the desktop. You can choose all of these targets in the free
version of Unity except Xbox. You’ll see Xbox listed in the build
options, but you can’t build to it unless you’re in the ID program
for Xbox ONE. For Xbox 360, you must sign up via an approved
publisher. If you’re working on something super cool, please check
out the ID program at xbox.com/Developers/id. Windows Phone and
Windows Store have very similar build processes.

Remember, Windows Phone and Windows Store have the
following build options: Windows Phone 8 via Silverlight; Windows
Phone 8.1 via Silverlight or the Windows Runtime (WinRT);
Windows 8; Windows 8.1; universal apps that target Windows
Phone 8.1 and Windows 8.1.

Building for Windows
Making a build from Unity is actually quite simple. For local testing,
it’s just a matter of bringing up the build dialog (File | Build Settings),
clicking Build, and choosing an output folder. Th e Build and Run
option launches your game aft er compilation on either a connected
phone or your local system, depending on what you choose. Th at’s
it at a basic level. Aft er a successful build, the folder you chose will
open with either an executable or a Visual Studio solution. Errors
will be shown in the console window, so it’s always a good idea to
have it open via the window menu. If you don’t have the console
window open, you have to remember to look at the very bottom

UN IT Y

Developing Your First
Game with Unity and C#,
Part 4
Adam Tuliper

This article discusses:
• Building for Windows

• Using platform-specifi c code

• Build options

• Player Settings

Technologies discussed:
Unity, C#, Microsoft .NET, Mono

www.xbox.com/Developers/id

23December 2014msdnmagazine.com

status bar of the Editor window for a single line of red messages.
It’s a bit hidden, but once you know it’s there, you won’t forget it.

For All Builds Unity runs your build with what it calls a player
and it supports the players of all the different platforms noted
previously. When you create a build of your game, you’ll need to
add every scene you want in the build. To load the various scenes
in your game (outside of the fi rst one, which loads by default),
you use Application.LoadLevel, which takes either a scene name
such as Application.LoadLevel(“Level1”) or an index such as
Application.LoadLevel(2). I’m not a fan of using the index method
because, as you’ll see, scene ordering can easily vary.

Every level you want to load in code must be added to your
build. In the Build settings dialog, you add whatever scenes you
want in the build via the “Add Current” button or by dragging and
dropping scene fi les onto the build dialog. Here, you can reorder
them, as well (which, again, makes loading scenes by index dan-
gerous because they can easily get reordered). You can enable or
disable these scenes for any build by checking or unchecking them.
As Figure 1 shows, the steps are as follows:

1. Add scenes to the build.
2. Ensure the desired scenes are checked. I oft en check a test scene

to include in a local build and uncheck it for the fi nal build.
3. Highlight the platform for which you want to build.
4. Click Switch platform to trigger Unity to prepare your

assets for the selected platform and enable platform-
specifi c preprocessor constants, such as UNITY_METRO,
UNITY_IPHONE, UNITY_WEBPLAYER, and so forth.

5. Build your game into a platform-specifi c package.
For Windows Desktop Th e standalone (desktop) build is the

default when you open Unity. With this build, Unity uses Mono to
compile your game assemblies and packages them with the runtime
engine. You get an executable fi le and a folder into which everything
is packaged. Th is build is straightforward, as are most desktop builds.

For Windows Store and Windows Phone Th is is where the fun
begins, and I mean it. You can do some really cool platform integra-
tion when exporting to Windows Store and Windows Phone. You
can use a live tile to entice users to come back to your game for free
game credits, send a text message, use geofencing and more. Th e main
thing to note is that it’s relatively easy to integrate platform-specifi c
features into your game.

Th e build process diff ers a bit from the desktop build, although you
can still do a quick Build and Run from the dialog and get a running
Windows Store or Windows Phone app pretty quickly for testing.

To understand where platform-specifi c code can fi t into your Unity
game, look at how Unity compiles your code. Th e code that runs in
the Unity Editor is compiled by the licensed version of Mono. Th is
means you can’t make WinRT (Windows Store/Windows Phone 8.1)
API calls like GeoLocation while running your game in the Editor, as
there are specifi c WinRT methods that don’t exist in Mono. Likewise,
there are features in Mono that don’t exist in the Windows Runtime,
such as Hashtable and traditional .NET fi le access via System.IO. Th ere
are many overlaps between Mono and the Windows Runtime, but
they’re diff erent APIs, so expect some diff erences.

When you build your project for the Windows Store, Unity uses
the Microsoft .NET Framework to compile the game assemblies.
By default it uses the .NET Core to compile your assemblies,
which is essentially what WinRT .NET is. You simply need a way
to tell Unity to compile your platform-specific code only when
compiling for that particular platform.

Th ere are two main ways of using platform-specifi c code here.
(Th ere’s a third technique called a bridge, which wires up actions
between Unity and Visual Studio solution code, but it’s used far

less often and won’t be covered
here.) Th e fi rst technique is to use
a plug-in. You can write your own,
which is fairly trivial, or download
one from several good sources. As
of this writing, prime31.com plug-ins
for Windows Store and Windows
Phone are free. Virtually every
major publisher using Unity uses
plug-ins in its game projects. Get
these while you can, it’s a pretty
amazing deal.

Figure 1 Adding Scenes to a Build

Figure 2 Building with Platform-Specifi c Code via a Plug-In

www.msdnmagazine.com
www.prime31.com

msdn magazine24 Unity

Using Platform-Specifi c Code
Via Plug-Ins Th e plug-in model in Unity uses two versions of a
library with the same method signatures. One is essentially a stub
version of your library compiled against the .NET Framework 3.5,
which is placed in Assets\Plugins\YourPlugin.dll. Th at’s the version
Unity uses when your game is running in the Editor. Th e other one
is compiled for the platform you’re targeting—say Windows Store
or Windows Phone—and is packaged into your game when you
create a build from Unity, as shown in Figure 2.

Th e platform-specifi c library is placed in Assets\Plugins\<Platform>
\YourPlugin.dll (the platform can be Windows 8.x, iOS, Windows
Phone 8 and so on). If you have a reason to create one yourself as

opposed to downloading one of the many already available, check
out bit.ly/1EuLV1N for the basic directions. Th e primary diff erence in the
plug-ins (outside of the platform API, of course) is where you put the
platform-specifi c dll. You can fi nd the plug-in locations at bit.ly/1v2ml1m.

Using one of the prime31 plug-ins here to set a live tile is as
simple as attaching the code in Figure 3 to any GameObject in your
scene. Th e SettingsPane and Tiles class are plug-ins that contain
functionality to implement platform-specifi c code.

Via Preprocessor Directives You can also use preprocessor
directives to enable or disable compilation of inline code. Th is is a
common technique when sharing code among platforms across a
variety of technologies and is also used very oft en in Unity games.
With this method, you simply use a directive in your code class.
Preprocessor directives can be used for various purposes. The
important rules to remember are: Separate your code by platform
with a platform-specifi c preprocessor directive; some preproces-
sor directives become active the moment you switch platforms in
Unity build settings (like UNITY_METRO); some become active
only upon compilation outside of the editor (NETFX_CORE);
others may be available all the time (such as the check for Unity
version, UNITY_4_5, and other custom directives you defi ne).

public class FindLandTarget : MonoBehaviour
{

// If you’re compiling for the Windows Runtime, use this code
// to GeoLocate on object collision.
#if NETFX_CORE
 void OnCollisionEnter(Collision collision)
 {
 Debug.Log("Collided with " + collision.gameObject.name);
 GetGeoLocation();
 }

 async void GetGeoLocation()
 {
 // Must call geolocation on the UI thread, there's a UI piece to be shown.
 UnityEngine.WSA.Application.InvokeOnUIThread(
 async () =>
 {
 var locator = new Windows.Devices.Geolocation.Geolocator();
 var position = await locator.GetGeopositionAsync();
 Debug.Log(string.Format("{0}, {1} Accuracy: {2}",
 position.Coordinate.Latitude, position.Coordinate.Longitude,
 position.Coordinate. Accuracy));
 }, false
);
 /**/
 }
#else // When you’re not using the Windows Runtime, use this collision code instead.
 void OnCollisionEnter(Collision collision)
 {
 // Non-Windows Runtime platforms, no geolocation.
 Debug.Log("Collided with " + collision.gameObject.name);

 }
#endif
}

Figure 4 Using Geolocation

Figure 6 A Universal App with a Shared Project

Figure 5 Building for Windows Store

public class WindowsStoreAppSettings : MonoBehaviour
{
 private void Start()
 {
#if UNITY_METRO // A preprocessor directive to run when Windows Store
 // build is selected in Unity.

 SettingsPane.registerSettingsCommand("Privacy Policy",
 "This is my privacy policy. Consider a url as well to bring you to the site.");

 // Set the live tile. You can set a source as an Internet URL, as well.
 // This is not the Unity assets folder.
 // You'll want to make sure this image appears in the
 // generated Visual Studio project because it won't get
 // pushed from Unity in any way.
 var images = new string[] { "ms-appx:///assets/WideLiveTile.png" };
 Tiles.updateTile(TileTemplateType.TileWideImage, null, images);
#endif
 }
}

Figure 3 Prime31 Plug-in Code

www.bit.ly/1v2ml1m
www.bit.ly/1EuLV1N

1214msdn_LeadTech_Insert.indd 1 11/3/14 11:47 AM

www.leadtools.com

Document Imaging
LEADTOOLS

LEADTOOLS Document Imaging technology has been trusted by application
developers for over two decades to deliver powerful document imaging
features required by financial institutions, government agencies, corporate
offices, and any businesses moving towards automated or paperless
environments.

Features include:

OCR, MICR, OMR and ICR (handwritten)
Structured and unstructured forms recognition and processing with
OEM-ready forms applications (checks, passports, driver licenses, invoices)
Barcodes auto detection, reading and writing
PDF and office format viewing, editing and conversion: convert hundreds of
different file types to PDF, DOC/DOCX, RTF, HTML, XPS
PDF SDK powerful features: page manipulation, optimize PDF, bookmarks
and metadata, create PDF/A files, PDF annotations, image extraction and
more

DOWNLOAD A FREE 60 DAY EVALUATION

1214msdn_LeadTech_Insert.indd 2 11/3/14 11:48 AM

www.leadtools.com

Document Imaging
LEADTOOLS

Document and image viewers for all platforms
Zero-footprint HTML5/JavaScript UI controls & web services
Image clean-up and pre-processing
Virtual Printer and TWAIN/web scanning
Hundreds of file and image formats for loading, saving and compression
Thousands of image processing algorithms

Best of all, these amazing features are extremely programmer-friendly and
allow the development of enterprise-level document imaging applications with
minimal code and time.

WWW.LEADTOOLS.COM

1214msdn_LeadTech_Insert.indd 3 11/3/14 11:48 AM

www.leadtools.com

Medical Imaging
LEADTOOLS

LEAD has served developers in the health and life sciences industries with a
specific medical-focused version of LEADTOOLS for over 20 years. Our SDKs
offer developers all the code necessary to create medical applications that meet
the demands of today’s rapidly evolving, global healthcare system.

Features include:

Comprehensive DICOM SDK supporting the latest specifications
PACS client and server components
OEM-ready applications with source code
HTML5 Zero-footprint Medical Viewer
Rich Client Medical Web Viewer

DOWNLOAD A FREE 60 DAY EVALUATION

1214msdn_LeadTech_Insert.indd 4 11/3/14 11:49 AM

www.leadtools.com

Medical Imaging
LEADTOOLS

Specialized 8-16 bit grayscale image display
Medical image processing
Medical annotations and collaboration tools
3D volume construction and advanced visualization
Optional third-party cloud storage integration
Print to PACS
HL7 messaging and communication
Clinical Context Object Workgroup (CCOW)

WWW.LEADTOOLS.COM

1214msdn_LeadTech_Insert.indd 5 11/3/14 11:49 AM

www.leadtools.com

Multimedia
LEADTOOLS

LEADTOOLS Multimedia SDK products are specifically designed for the
development of audio and video applications across a wide variety of industries
including defense, broadcast and security. The SDK offers a full range of
technologies to developers and turns normally complex DirectShow and Media
Foundation projects into simple tasks.

Features include:

Capture, convert, stream and play audio and video
Hundreds of formats and codecs for DirectShow and Media Foundation
MPEG-2 Transport Stream, H.265, H.264
KLV metadata
UAV and UAS
Audio and video processing filters and transforms including overlays and
motion detection
DICOM reading and writing
DVR
RTSP
Video conferencing

DOWNLOAD A FREE 60 DAY EVALUATION

1214msdn_LeadTech_Insert.indd 6 11/3/14 11:50 AM

www.leadtools.com

Anywhere
LEADTOOLS

The world’s most advanced and popular imaging SDK, LEADTOOLS, includes
native libraries for every major development platform on the market. Leverage
LEADTOOLS’ state-of-the-art imaging features to create powerful applications
that run natively to get the most out of each device’s hardware.

Native libraries for .NET, Win API, WinRT, Linux, iOS, OS X and Android
HTML5 viewers, JavaScript libraries and web services for creating
zero-footprint applications
Document viewers and converters
Native annotation and markup
OCR and barcode
DICOM Data Set and PACS components
Hundreds of formats and image processing algorithms

WWW.LEADTOOLS.COM

1214msdn_LeadTech_Insert.indd 7 11/3/14 11:50 AM

www.leadtools.com

WWW.LEADTOOLS.COM 800.637.1840
DOWNLOAD 60 DAY EVALUATION SALES@LEADTOOLS.COM

LEADTOOLS Version 19 is packed with new features for Document, Medical
and Multimedia Imaging. Developers can do more than ever before with V19:

Improved OCR accuracy across all languages including East Asian

New SVG engine for smooth scrolling and zooming of documents

Document viewer supporting any format with text search, annotations,
lazy loading, and SVG rendering

Convert PDF & office formats at 100% accuracy without the need for
OCR

Forms processing with advanced editor to handle invoices, checks,
driver licenses, passports, etc.

Fastest forms recognition SDK available

Scan with TWAIN from the web

Redesigned, highly customizable, cloud-enabled HTML5 / JavaScript
medical viewer

HL7 SDK with decoders, listener service and MWL integration

H.265 with 4K and 8K ultra-high-definition

What’s New in V19

1214msdn_LeadTech_Insert.indd 8 11/3/14 11:50 AM

mailto:SALES@LEADTOOLS.COM
www.leadtools.com

25December 2014msdnmagazine.com

I’ll show you an example using some Windows platform-specifi c
code. If I want to access GeoLocation in the Windows Runtime,
I can include this code directly in my MonoBehavior-derived
class (as shown in Figure 4), which can be assigned to any Game-
Object. Because this code is compiled in the Editor with Mono, it
will fail without wrapping it in a preprocessor directive. We need
to tell Unity this code is only compiled when outside of the Editor.
You might wonder what the diff erence is between NETFX_CORE
and UNITY_METRO. The former is a compilation setting and
is used only when your game assemblies are compiled for the
Windows Runtime. The latter is used when
you’ve selected Windows Store as the platform
in the Unity build settings. Th is can be active in
your C#, UnityScript or Boo code. I personally
prefer the NETFX_CORE directive to wrap my
WinRT code rather than UNITY_METRO, as
NETFX_CORE is only available on export/
build and UNITY_METRO is active in the
Editor as soon as you switch platforms in the
Build Settings. Th is means code can run while in
the Editor, which can be a problem if it contains
a platform-specifi c API. You can add other direc-
tives on the same line such as && !UNITY_
EDITOR, but I prefer just NETFX_CORE.

Builds
Unity will compile your Windows Store and
Windows Phone 8.1 code using the .NET Frame-
work, specifically the Windows Runtime. It
doesn’t use Silverlight for Windows Phone 8.1.
However, the Windows Phone 8 code is com-
piled as HH, a Silverlight package for Windows
Phone, as expected.

Unity will compile your game assemblies
and create a Visual Studio solution that you in
turn will use to create your fi nal build. In other
words, apart from when doing a desktop build,
you’ll need to do your fi nal compilation in Visual
Studio before sending your game to the Windows
Store or Windows Phone Store. Th e generated
Visual Studio solution contains the Unity bina-
ries packaged with your game assemblies and a

basic XAML/C# or C++ host app. Every time you build from Unity,
the only thing that’s overwritten by Unity is your Data folder. Any
custom code or other changes you make to your Visual Studio
solution aren’t overwritten during future builds from Unity.

Windows Store and Universal App Builds
I’ll take a look at the build options for Windows Store, which are
shown in Figure 5. Th e Windows Store build types in Unity include
Windows 8, Windows 8.1, Windows Phone 8.1, and Universal solu-
tions, which contain both Windows Phone 8.1 and Windows 8.1
projects and a shared project, as shown in Figure 6. Also note the
Unity C# Projects checkbox in Figure 5. Th is is an incredibly useful
feature that I strongly recommend. It will create the Visual Studio
solution with additional projects containing your Unity code, as
shown in Figure 7. You can actually change code in these projects
to a certain extent and upon compile Visual Studio will ask Unity
to reprocess your game assemblies without having to do a full
build again from Unity. Th is means you can edit your Unity code
in your fi nal Visual Studio solution, which is amazing for platform
debugging—it means you don’t have to rebuild your solution from
Unity every time you make a code change.

When Unity generates your Visual Studio solution, there are sev-
eral things to note. First, your Windows Store project will default (as

of this writing) to an ARM build platform, not
x86. Th is can be very confusing when you try
to build and run because you’ll get an error that
your system isn’t an ARM architecture. While I
do recommend you create builds for both ARM
and x86, for local testing you’ll want to choose
x86 to avoid that ARM error. Also, as of this
writing, there are no 64-bit players on Unity for
Windows Store or Windows Phone. If you have
one of the few ARM Windows 8 devices, such
as the Surface 1 or Surface 2 (RT not Pro; Pro
is an x86-based system), then by all means you
can choose ARM and do a remote deployment
and debugging to it. However, most developers
use an x86-based PC for local testing.

Next, you’ll note that the Build Confi guration
Type includes Debug, Master and Release
options. This is in contrast to typical .NET
applications, which include only Debug and
Release. Th e Debug build is the slowest. It con-
tains debugging information and also supports
the Unity Profi ler—a performance tool in the
Pro version used for optimizing games. The
Release build is fully optimized but also sup-
ports the Unity Profi ler. Th e Master build is the
one you submit to each store. Th is is the opti-
mized, production-ready version and it does not
support the Unity Profi ler. When I fi rst test a
game, I choose a Master build so I can get a true
idea of the performance on my device.

For Windows Phone, the two main choices
are whether to build for Windows Phone 8 or

Figure 8 Player Settings for
Windows Store

Figure 7 Additional Projects

www.msdnmagazine.com

msdn magazine26 Unity

for Windows Phone 8.1. Windows Phone 8 apps will run just fi ne
on a Windows Phone 8.1 device, although the code-sharing strat-
egy for platform-specifi c code is much better on Windows Phone
8.1 because you can target universal apps, which share around 90
percent of the API with Windows Store apps. For a typical game,
however, this code sharing may not have much meaning unless
you’re writing platform-specifi c code.

Once you have your solution in Visual Studio, packaging it up
and sending it to the store is the same as for any Windows Phone or
Windows Store application. A Windows Store developer account
is a requirement; you pay once and have it for life. Th at submission
process has been covered many times before, but for a quick over-
view see “Publish to the Windows Store” (bit.ly/Za0Jlx), “Publish to the
Windows Phone Store” (bit.ly/1rdDCwR) and “Why and How to Port
Your Unity Game to Windows and Windows Phone” (bit.ly/1ElzrcL).

Player Settings I discussed the basic process of building from Unity
to Windows, but didn’t look at how you can set icons, splash screens,
the app name and other required items. Th ese can all be found in the
Player Settings, which is loaded from the Build Settings screen and
allows you to confi gure all the major settings for Windows Store and
Windows Phone applications, as shown in Figure 8. You can specify
the splash screen, app name, publisher, compilation settings, icons,
app capabilities like location services, and a few other settings here.
Th ese settings get pushed down to your Visual Studio solution the
fi rst time you build your solution from Unity.

App Icons Unity provides some default icons for your applica-
tion so it will build in Visual Studio. You must change these default
icons or risk failing certifi cation. Unity makes it pretty easy to see
what images you can set on your project, but refer to the certifi -
cation documents for each platform to determine which images
are required. It’s imperative you check your Visual Assets in the

Package.appxmanifest fi le in Visual Studio (for Windows Store and
universal apps) as Unity may have set some default images that you
aren’t going to replace with your own and will need to be removed.

At a minimum, Windows Store apps require a 50x50 Store logo, a
150x150 square logo, a 30x30 square logo, and a 620x300 splash screen,
as described on the Windows Dev Center (bit.ly/1vIJsue). Windows
Phone 8 apps require the app list image and an image for the small
and medium default tiles for the Start screen as described on the
Windows Dev Center (bit.ly/1oKo8Ro). Windows Phone 8.1 apps
require the app list image and default tile images, as well. Th e stores
(which are said to be unifying with Windows 10) may ask for some
other images during submission, such as screenshots.

If you’re going to provide just a single image for Start screen tiles, you
should provide the image scaled to 240 percent for Windows Phone
Store apps and 180 percent for Windows Store apps as per the Windows
Dev Center (bit.ly/1nzWber).

By the way, a while back I wrote a no-frills utility to help generate
images for Windows Store apps. Check it out at bit.ly /ImageProcessor.

Rebuilds and Overwriting Recall that Unity overwrites just your
Data folder in your Visual Studio project (see Figure 9). Th is is a
double-edged sword. You can set the splash screen, icons, and so
on at any time in Unity (and I recommend doing so), but if you’ve
already generated your Visual Studio solution, the Package.appx-
manifest fi le that contains these settings will not be overwritten the
next time you build from Unity. You have to manually set the visual
assets, capabilities and so forth in your Visual Studio solution in
the Package.appxmanifest fi le; or build to a new folder and diff the
folder structure using a diff tool like BeyondCompare; or delete
your Visual Studio solution if you have no custom code in it and
let Unity regenerate it. I typically choose the third option because
I keep my icon and splash screen images confi gured inside Unity.
I just have to remember to bring in my custom live tile images into
my Visual Studio solution. If you’re building for Windows Phone
8 (but not 8.1), the icon must be set in Visual Studio anyway; that’s
one of the few things that isn’t pushed from Unity.

Wrapping Up
Th e build process is extremely simple. Bring up build settings, click
build, open solution, deploy. I showed options for customizing your
builds via plug-ins and preprocessor directives. Because you can call
platform-specifi c code outside of Mono, you have some power at your
fi ngertips. Don’t forget to check out prime31.com for Unity plug-ins
that are currently free for the Windows platform. Th ey allow you
to easily integrate platform features with just a couple lines of code.
Keep an eye on Channel 9 for some new bite-sized Unity training
content (think 10-minute videos) and on my Channel 9 blog for many
mini-tips for building games for the platform. Until next time!

ADAM TULIPER is a senior technical evangelist with Microsoft living in sunny
SoCal. He is an indie game dev, co-admin of the Orange County Unity Meetup,
and a Pluralsight author. He and his wife are about to welcome their third child,
so reach out to him while he still has a spare moment at adamt@microsoft .com
or on Twitter at twitter.com/AdamTuliper.

THANKS to the following technical experts from Unity for reviewing this
article: Tomas Dirvanauskas, Ignas Ziberkas and Tautvydas Žilys

Adam’s Channel 9 blog: bit.ly/AdamChannel9

Microsoft Virtual Academy: Developing 2D & 3D Games
with Unity for Windows bit.ly/FreeUnityTraining

Unity Resources: unity3d.com/learn

Additional Learning

Figure 9 The Data Folder in a Visual Studio Project

www.bit.ly/Za0Jlx
www.bit.ly/1ElzrcL
www.bit.ly/1rdDCwR
www.bit.ly/1vIJsue
www.bit.ly/1oKo8Ro
www.bit.ly/1nzWber
www.bit.ly /ImageProcessor
www.prime31.com
mailto:adamt@microsoft.com
www.twitter.com/AdamTuliper
www.bit.ly/AdamChannel9
www.bit.ly/FreeUnityTraining
www.unity3d.com/learn

Experience how Altova MissionKit®, a software

development suite of industrial-strength XML, SQL,

and data integration tools, can simplify even the

most advanced XML development projects.

Bring your

XML development

projects to light

with the complete set

of tools from Altova®

Altova MissionKit includes multiple,

tightly-integrated XML tools:

XMLSpy® – industry-leading XML editor

 • Support for XML Schema 1.1 and

 XPath/XSLT/XQuery 3.0

 • Industry’s strongest validation engine with Smart Fix

 • Powered by RaptorXML® for lightning-fast

 validation & processing

 • Graphical editing views, powerful

 debuggers, code generation, & more

MapForce® – any-to-any data mapping & integration tool

 • Drag-and-drop data conversion

 • Mapping of XML, DBs, EDI, XBRL, flat files, Excel®,

 JSON & Web services

• Automation via MapForce Server

StyleVision® – visual XSLT stylesheet & report designer

 • Graphical XSLT stylesheet & report design

 for XML, XBRL, & SQL databases

• Output to HTML, PDF, Word & more

• Automation via StyleVision Server

Download a 30 day free trial!

Try before you buy with a free, fully

functional trial from www.altova.com

Address_US

ipo:US-Addresstype

Address

ipo:Addresstype

Address_EU

ipo:EU-Addresstype

ipo:name

ipo:street

ipo:city

type string

type string

type string

type ipo:EU-Postcode

ipo:postcode

ipo:EU-Address

attributes

P

O
WERED BY

RA PTO
R

X
M

L
®

NEW in Version 2015:

• Sophisticated XML file

 modifications via XQuery Update

 Facility in XMLSpy

• New tools for XBRL Table and

 XBRL Formula editing in XMLSpy

• JSON data mapping in MapForce

• Option to generate HTML

 fragments in StyleVision

• And much more

Untitled-7 1 11/5/14 4:29 PM

http://www.altova.com

msdn magazine28

During the last decade, Bluetooth has become a widely
used technology for short-range wireless communication between
devices such as mobile phones, personal computers and headsets.
The Bluetooth Special Interest Group (BTSIG) is the industry
body that defi nes the standards for wireless services in Bluetooth
Profi le specifi cations.

One such profi le is the Object Push Profi le (OPP), which is used
to send files from one device to another. The Object Exchange
Protocol (OBEX) is part of the foundation of the OPP. OBEX is
also used in profi les other than OPP, as it’s a generic protocol for
transferring objects between devices.

For developers looking to use OBEX within their apps, I’ve
developed a set of APIs over the Windows Runtime (WinRT)
Bluetooth APIs that provide OBEX from within the app. Th ese
APIs come as a library package for universal apps, which means
Windows Store apps and Windows Phone Silverlight apps can
leverage the same set of APIs.

OBEX and OPP
First, it’s important to understand what OBEX and OPP are and
how they work. OPP lets a Bluetooth device send a fi le or object
to another OPP-capable Bluetooth device. Th e intended use for
OBEX was file sharing via infrared channels. The BTSIG chose
to reuse this protocol for fi le sharing over Bluetooth. Aside from
the underlying transport medium, OBEX-over-infrared and
OBEX-over-Bluetooth are similar.

OBEX is based on a client-server model in which the recipient
Bluetooth device is running an OBEX server that listens for and
accepts client connections. Th e client Bluetooth device connects
to the server Bluetooth device as a stream channel over Bluetooth.
The authentication requirements to allow the connection and

UN IVE RSAL APPS

Equip Your Apps
with OBEX
Uday Gupta

This article discusses:
• Enabling the Object Exchange Protocol in mobile apps

• Developing universal apps for Windows 8.1 and Windows Phone 8.1

• File sharing across multiple mobile devices

Technologies discussed:
Windows 8.1, Windows Phone 8.1, Windows Phone Runtime API,
Visual Studio 2013

Code download available at:
msdn.microsoft.com/magazine/msdnmag1214

API library code available at:
1drv.ms/1yxmc51

Method (with Parameters) Associated Events
[static] GetDefault No associated event
SearchForPairedDevicesAsync Success - SearchForDevicesSucceeded

Failure - SearchForPairedDevicesFailed

Figure 1 Methods and Associated Events from BluetoothService

www.1drv.ms/1yxmc51
http://msdn.microsoft.com/magazine/msdnmag1214

29December 2014msdnmagazine.com

object transfer depend on the service or application using OBEX. For
example, OPP can allow an unauthenticated connection in order to
streamline the process of quickly exchanging business cards. Other
services using OBEX may only allow authenticated connections.

Files are shared using three types of packets. Th ese packets are
known as fi rst PUT, intermediate PUT and last PUT. Th e fi rst PUT
packet marks the fi le transfer initialization and the last PUT packet
marks its completion. Th e multiple intermediate PUT packets con-
tain the bulk of the data. Aft er the server receives each PUT packet,
it returns an acknowledgement packet to the client.

In a typical scenario, OBEX packets are sent as follows:

1. Th e OBEX client connects to the recipient device by send-
ing a connect packet. Th is packet specifi es the maximum
packet size the client can receive.

2. Aft er receiving a response from the server indicating the
connection has been accepted, the OBEX client sends the
fi rst PUT packet. Th is contains the metadata describing
the object, including the fi le name and size. (While the
OBEX protocol allows for this fi rst PUT packet to also
include object data, the implementation of OBEX in the
library I’ve developed doesn’t send any of that data in the
fi rst PUT packet.)

3. Aft er receiving acknowledgement the server has the fi rst
PUT packet, the OBEX client sends the multiple PUT
packets that contain object data. Th e length of these pack-
ets is limited by the maximum packet size the server can
receive, set by the server’s response to the connect packet
sent in step one.

4. Th e last PUT packet contains the last PUT constant and
the fi nal chunk of object data.

5. Once the fi le sharing is complete, the OBEX client sends
a disconnect packet and closes the Bluetooth connection.
Th e OBEX protocol allows repetition of steps two through
three to send multiple objects on the same connection.

At any point, the OBEX client can abort the sharing process by
sending an ABORT packet. Th e sharing is immediately canceled.
In the library I’ve written, the OBEX protocol implementation

details are hidden and you’ll only
see high-level APIs.

The OBEX Library
Th e Bluetooth OBEX client library
for Windows Store apps is designed
as a portable library targeting:
Windows Store apps and Windows
Phone Silverlight 8.1 apps. It contains
three DLLs that make the library a
runtime for the OBEX client. Each
DLL is designed to handle a spe-
cifi c task: Bluetooth.Core.Service,
Bluetooth.Core.Sockets and Blue-
tooth.Services.Obex.

Bluetooth Core Service The
fi le Bluetooth.Core.Service.dll con-
tains the Bluetooth.Core.Service
namespace. Th is library is designed
to search for and count nearby
Bluetooth devices paired with
the client device (see Figure 1).
Currently, it’s restricted to a one-
time count of paired devices.
Future versions will contain a
watcher to keep looking for addi-
tional Bluetooth devices.

The core Bluetooth service is
represented by a static class called

BluetoothService btService = BluetoothService.GetDefault();
btService.SearchForPairedDevicesFailed += btService_
SearchForPairedDevicesFailed;
btService.SearchForPairedDevicesSucceeded += btService_
SearchForPairedDevicesSucceeded;
await btService.SearchForPairedDevicesAsync();

void btService_SearchForPairedDevicesSucceeded(object sender,
 SearchForPairedDevicesSucceededEventArgs e)
{
 // Get list of paired devices from e.PairedDevices collection
}

void btService_SearchForPairedDevicesFailed(object sender,
 SearchForPairedDevicesFailedEventArgs e)
{
 // Get the failure reason from e.FailureReason enumeration
}

Figure 2 BluetoothService Counting Paired Devices

Method (with Parameters) Associated Events
Constructor(Bluetooth.Core.Services.BluetoothDevice)
Constructor(Bluetooth.Core.Services.BluetoothDevice, System.UInt32)
Constructor(Bluetooth.Core.Services.BluetoothDevice, System.String)
Constructor(Bluetooth.Core.Services.BluetoothDevice, System.UInt32, System.String)

No associated event

PrepareSocketAsync Success – SocketConnected
Failure – ErrorOccured

SendDataAsync(System.Byte[])
SendDataAsync(System.String)

No associated Event

CloseSocket SocketClosed
No associated method DataReceived

Figure 3 Methods and Associated Events from BluetoothSockets

Method (with Parameters) Associated Events
[static] GetDefaultForBluetoothDevice(Bluetooth.Core.Services.BluetoothDevice) No associated event
ConnectAsync Success – DeviceConnected

Failure – ConnectionFailed
SendFileAsync(Windows.Storage.IStorageFile) Success:

ServiceConnected
DataTransferProgressed
DataTransferSucceeded
Disconnecting
Disconnected

Failure:
ConnectionFailed
DataTransferFailed

AbortAsync Aborted

Figure 4 Methods and Associated Events from ObexService

www.msdnmagazine.com

msdn magazine30 Universal Apps

BluetoothService, shown in Figure 2. This class has an API to
asynchronously count devices.

Bluetooth Core Sockets Th e fi le Bluetooth.Core.Sockets.dll
contains the Bluetooth.Core.Sockets namespace and is designed to
support stream-based socket operations over a Bluetooth connection.
Th e socket functionality is exposed via the BluetoothSockets class (see
Figure 3). Th is is neither a TCP nor UDP socket. All communica-
tion with the recipient device takes place through BluetoothSockets.

Bluetooth Services Obex The Bluetooth.Services.Obex.dll
file contains the Bluetooth.Ser-
vices.Obex namespace. Th is is the
core implementation of OBEX,
exposed through a class named
ObexService. Th is class provides
the abstracted view of the Bluetooth
OPP specifi cation. It exposes the
method that helps connect, send
and disconnect from the recipient
Bluetooth device. Figure 4 lists
the APIs and associated events
this class exposes, and Figure 5
demonstrates the usage.

A typical usage scenario for using
these libraries is something like this:

• Using APIs in Blue-
 tooth.Core.Service, count
all the paired OPP-
capable Bluetooth devices.
OPP-capability check is
already implemented.

• Get the instance of BluetoothDevice with which you
want to share fi les.

• Get an instance of ObexService for the recipient Bluetooth
device by passing the instance of BluetoothDevice to
factory method. Th e ObexService class will internally
create an instance of BluetoothSocket, over which the
ObexService will share the fi le.

• Once fi le sharing is complete, the ObexService is
disconnected automatically.

Figure 6 Blank Universal App to Create a New Project

Figure 5 Obex Service Usage

protected async override void OnNavigatedTo(Windows.UI.Xaml.Navigation.
NavigationEventArgs e)
{
 base.OnNavigatedTo(e);

 ObexService obexService = ObexService.GetDefaultForBluetoothDevice(null);
 obexService.DeviceConnected += obexService_DeviceConnected;
 obexService.ServiceConnected += obexService_ServiceConnected;
 obexService.ConnectionFailed += obexService_ConnectionFailed;
 obexService.DataTransferProgressed += obexService_DataTransferProgressed;
 obexService.DataTransferSucceeded += obexService_DataTransferSucceeded;
 obexService.DataTransferFailed += obexService_DataTransferFailed;
 obexService.Disconnecting += obexService_Disconnecting;
 obexService.Disconnected += obexService_Disconnected;
 obexService.Aborted += obexService_Aborted;
 await obexService.ConnectAsync();
}

async void obexService_DeviceConnected(object sender, EventArgs e)
{
 // Device is connected, now send file
 await (sender as ObexService).SendFileAsync(fileToSend);
}

void obexService_ServiceConnected(object sender, EventArgs e)
{
 // Device connected to Obex Service on target device
}

void obexService_ConnectionFailed(object sender, ConnectionFailedEventArgs e)
{
 // Connection to service failed
}

void obexService_DataTransferProgressed(object sender,
DataTransferProgressedEventArgs e)
{
 // Get data transfer progress from DataTransferProgressedEventArgs
}

void obexService_DataTransferSucceeded(object sender, EventArgs e)
{
 // Data transfer succeeded
}

void obexService_DataTransferFailed(object sender,
DataTransferFailedEventArgs e)
{
 // Data transfer failed, get the reason from DataTransferFailedEventArgs
}

void obexService_Disconnecting(object sender, EventArgs e)
{
 // Device is disconnecting from service
 }

void obexService_Disconnected(object sender, EventArgs e)
{
 // Device is now disconnected from targeted device and service
}

void obexService_Aborted(object sender, EventArgs e)
{
 // Data transfer operation is aborted
}

(888) 850-9911
Sales Hotline - US & Canada:

/update/2014/12

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2014 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

Help & Manual Professional from $583.10
Easily create documentation for Windows, the Web and iPad.

• Powerful features in an easy accessible and intuitive user interface

• As easy to use as a word processor, but with all the power of a true WYSIWYG XML editor

• Single source, multi-channel publishing with conditional and customized output features

• Output to HTML, WebHelp, CHM, PDF, ePUB, RTF, e-book or print

• Styles and Templates give you full design control

BEST SELLER

Aspose.Total for .NET from $2,449.02
Every Aspose .NET component in one package.

• Programmatically manage popular fi le formats including Word, Excel, PowerPoint and PDF

• Work with charts, diagrams, images, project plans, emails, barcodes, OCR and OneNote fi les
alongside many more document management features in .NET applications

• Common uses also include mail merging, adding barcodes to documents, building dynamic
reports on the fl y and extracting text from most document types

BEST SELLER

LEADTOOLS Document Imaging SDKs V19 from $2,995.00 SRP

Add powerful document imaging functionality to desktop, tablet, mobile & web applications.

• Universal document viewer & conversion framework for PDF, Offi ce, CAD, TIFF & more

• OCR, MICR, OMR, ICR and Forms Recognition supporting structured & unstructured forms

• PDF & PDF/A Create, Load, Save, View, Edit

• Barcode Detect, Read, Write for UPC, EAN, Code 128, Data Matrix, QR Code, PDF417

• Zero-footprint HTML5/JavaScript UI Controls & Web Services

BEST SELLER

ComponentOne Studio Enterprise 2014 v3 from $1,315.60
.NET Tools for the Professional Developer: Windows, HTML5/Web, and XAML.

• Hundreds of UI controls for all .NET platforms including grids, charts, reports and schedulers

• A line of HTML5 and JavaScript products for enterprise application development

• Built in themes and an array of designers for creating custom themes and styling

• 40+ Windows 8.1 & Windows Phone 8.1 controls and Universal Windows app support

• All Microsoft platforms supported, Visual Studio 2013, ASP.NET, WinForms, WPF & more

BEST SELLER

Untitled-1 1 10/30/14 10:36 AM

http://www.componentsource.com

msdn magazine32 Universal Apps

Get Started
Because my library is targeted toward
Windows Store apps and Windows Phone
8.1 apps, I’ll start with a universal app. Th ese
are a great way of developing apps for all
Windows devices. To learn more about
universal apps, visit bit.ly/1h3AQeu. To start
with universal apps, I’ll use Visual Studio
2013 and create a new universal apps proj-
ect under the Store Apps node (see Figure
6). I used Visual C#, but you can also use
Visual Basic and Visual C++.

Before I start programming for a Bluetooth
OBEX client app, I’ll update the package.appx-
manifest file for both projects (apps for
Windows 8.1 and Windows Phone 8.1):

<Capabilities>
 <m2:DeviceCapability Name="bluetooth.rfcomm">
 <m2:Device Id="any">
 <m2:Function Type="name:obexObjectPush"/>
 </m2:Device>
 </m2:DeviceCapability>
</Capabilities>

To apply this update, I open package.appx -
manifest as a code fi le by choosing View
Code in the context menu in Solution
Explorer. I’ll place this snippet where
<Application> tag ends. Th at code snippet is required to provide
device-level capability to use the Bluetooth radio frequency com-
munication (RFCOMM) service with this app. I also specifi ed all
services and device types compatible with this device.

For my scenario, I need obexObjectPush support from the
device that’s compatible with any OPP-capable device. For more
information on Supported profi les on Windows 8.1 and Windows
Phone 8.1, visit bit.ly/1pG6rYO. If that capability isn’t mentioned,
then device enumeration will fail with CapabilityNotDefined
enum constant.

Before I start coding, I’ll add the reference to the three library fi les
mentioned earlier so I can use the OBEX implementation within
those libraries. I need to a add reference to these libraries for both
projects separately. If the reference isn’t added, the project won’t be
able to use any features.

I’ll follow these coding patterns and practices:
• Implement UX design for Windows Store 8.1 app in

Windows project.
• Implement UX design for Windows Phone 8.1 apps in

Windows Phone project.
• Implement common feature in Shared project.
• Perform platform-specifi c implementation in Shared

project using platform-specifi c compiler constants. For
Windows 8.1, I’ll use WINDOWS_APP. For Windows
Phone 8.1, I’ll use WINDOWS_PHONE_APP. Th ese com-
piler constants are already defi ned as part of the project.

Download the sample code to get hands-on experience with
these libraries, along with the coding practices you should follow
for developing universal apps. Figure 7 shows the sample project’s
Solution Explorer window with the fi le structure and patterns.

Enumerating Paired Devices
Before I can share fi les with a paired device,
I need to see the list of paired devices and
select a target. I’ll get the handle to the
instance of Bluetooth.Core.Services.Blue-
toothService, which represents the core
Bluetooth service provided by my device. I
acquire this instance using the GetDefault
static factory method, because there’s only
one Bluetooth service available per device.

For enumeration, I’ll make a call to the
SearchForPairedDevicesAsync method.
Th is method will start enumerating devices
paired with my device. For Windows Store
8.1 apps, I need to allow the use of a paired
device to get the enumerated devices. If
I block the use, that paired device won’t
be enumerated.

If that API succeeds, it will raise the
SearchForPairedDevicesSucceeded event
and fetch the collection of paired devices
from its event argument. Otherwise, the
SearchForPairedDevicesFailed event will be
raised, with failure enum constant available
in its event argument. Figure 8 shows the

code for enumerating devices.
I’ve also provided the scan button in BottomAppBar for Windows

8.1 and ApplicationBar for Windows Phone 8.1. Th at way an app
user can rescan for devices when a new paired device has arrived.

Figure 7 Solution Explorer of
BluetoothDemo App

protected async override void OnNavigatedTo(NavigationEventArgs e)
{
 base.OnNavigatedTo(e);
 await EnumerateDevicesAsync();
}

public async Task EnumerateDevicesAsync()
{
 BluetoothService btService = BluetoothService.GetDefault();
 btService.SearchForPairedDevicesFailed +=
 btService_SearchForPairedDevicesFailed;
 btService.SearchForPairedDevicesSucceeded +=
 btService_SearchForPairedDevicesSucceeded;
 await btService.SearchForPairedDevicesAsync();
}

void btService_SearchForPairedDevicesSucceeded(object sender,
 SearchForPairedDevicesSucceededEventArgs e)
{
 (sender as BluetoothService).SearchForPairedDevicesFailed -=
 btService_SearchForPairedDevicesFailed;
 (sender as BluetoothService).SearchForPairedDevicesSucceeded -=
 btService_SearchForPairedDevicesSucceeded;
 this.cvBtDevices.Source = e.PairedDevices;
}

void btService_SearchForPairedDevicesFailed(object sender,
 SearchForPairedDevicesFailedEventArgs e)
{
 (sender as BluetoothService).SearchForPairedDevicesFailed -=
 btService_SearchForPairedDevicesFailed;
 (sender as BluetoothService).SearchForPairedDevicesSucceeded -=
 btService_SearchForPairedDevicesSucceeded;
 txtblkErrorBtDevices.Text = e.FailureReason.ToString();
}

Figure 8 Enumerating Paired Devices

www.bit.ly/1h3AQeu
www.bit.ly/1pG6rYO

Untitled-2 1 5/31/13 10:57 AM

www.rssbus.com

msdn magazine34 Universal Apps

When enumerating devices on Windows Phone 8.1, it will
enumerate all OBEX-capable devices, regardless of their physical
presence and whether the Bluetooth radio is switched on. How-
ever, when enumerating devices on Windows 8.1, it will only list
those devices physically present near the Windows 8.1 device and
with their Bluetooth radio switched on.

Once I enumerate the paired devices, I can select a device
to share the files. Each device is represented as an object of the
Bluetooth.Core.Services.BluetoothDevice class. Th e object con-
tains connection details and the display name of the paired device.
Th e Bluetooth.Services.Obex.ObexService will use the connection
details internally to create an instance of Bluetooth.Core.Sock-
ets.BluetoothSocket and connect to the paired device.

Using ObexService
Once I get the instance of the Bluetooth.Core.Services.Bluetooth-
Device object that represents my targeted device for sharing fi les, I
can use Bluetooth.Services.Obex.ObexService for sharing fi les using
OPP. I also need the list of fi les so I can queue them for sharing. In
the code sample, I’ve only provided a handful of fi les. Otherwise, I
could use Windows.Storage.Pickers.FileOpenPicker (see bit.ly/1qtiLeh)
or custom logic from my Windows.Storage.ApplicationData.Cur-
rent.LocalFolder (see bit.ly/1qtiSGI) to select multiple fi les.

As of now, I can only share one file per connection. When
sharing is complete, the connection to the targeted device is closed.
If I need to send multiple files, I need to get the handle to
Blue tooth.Services.Obex.ObexService instance multiple times. I can
acquire this instance using the static factory method GetDefaultFor-
BluetoothDevice(Bluetooth.Core.Services.BluetoothDevice). Th is

method returns the single instance of Bluetooth.Services.Obex.Obex-
Service that represents the Obex service on the device.

To represent the fi le to share, I’ll use the FileItemToShare class.
Th is contains the name, path and size of the fi le, and the instance
of Windows.Storage.IStorageFile (see bit.ly/1qMcZlB) representing
the fi le instance on the disk. I’ll queue all the fi les I have to share in
terms of data structure objects. When sharing multiple fi les, the fi rst
fi le in the list is the one currently being shared. It’s removed from
the list when sharing is complete. Figure 9 shows how to hook up
ObexService and its events for sharing fi les.

When I call the ConnectAsync method, the ObexService object
gets the connection properties from BluetoothDevice object, which
was passed in the factory method. It attempts to create a connection
with the targeted BluetoothDevice over Bluetooth channel. When
that’s successful, it raises the DeviceConnected event. Figure 10
shows the DeviceConnected event handler of ObexService.

As soon as the device is connected to the targeted device, I’ll start
sharing the fi le at index 0 from the list of fi les. Th e fi le is shared by
calling SendFileAsync(Windows.Storage.IStorageFile) and passing
the fi le object represented by IStorageFile from object of type File-
ToShare data structure. When this method is called, the ObexService
attempts to connect to the OBEX Server running on the targeted
device. If the connection is successful, it will raise the Service-
Connected event. Otherwise, it will raise ConnectionFailed event.
Th is code shows the ServiceConnected event handler:

async void obexService_ServiceConnected(object sender, EventArgs e)
{
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 System.Diagnostics.Debug.WriteLine("service connected");
 filesToShare[0].ShareStatus = FileShareStatus.Sharing;
 });
}

Figure 11 shows the ConnectionFailed event handler of
ObexService.

When my device connects to the OBEX server of the targeted
device, the fi le sharing process begins. Th e progress of fi les shared
can be determined from the DataTransferProgressed event. Th e
following code shows the DataTransferProgressed method:

async void obexService_DataTransferProgressed(object sender,
 DataTransferProgressedEventArgs e)
{
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 System.Diagnostics.Debug.WriteLine("Bytes {0}, Percentage {1}",
 e.TransferInBytes, e.TransferInPercentage);
 filesToShare[0].Progress = e.TransferInBytes;
 });
}

ObexService obexService = null;
BluetoothDevice BtDevice = null;
ObservableCollection<FileItemToShare> filesToShare = null;

async override void OnNavigatedTo(NavigationEventArgs e)
{
 base.OnNavigatedTo(e);

 if (e.Parameter == null || !(e.Parameter is BluetoothDevice))
 {
 MessageDialog messageBox = new MessageDialog(
 "Invalid navigation detected. Moving to Main Page", "Bluetooth Hub");
 messageBox.Commands.Add(new UICommand("OK", (uiCommand) =>
 {
 this.Frame.Navigate(typeof(MainPage));
 }));
 await messageBox.ShowAsync();
 return;
 }

 BtDevice = e.Parameter as BluetoothDevice;
 filesToShare = GetFilesFromLocalStorage();
 this.cvFileItems.Source = filesToShare;

 obexService = ObexService.GetDefaultForBluetoothDevice(BtDevice);
 obexService.Aborted += obexService_Aborted;
 obexService.ConnectionFailed += obexService_ConnectionFailed;
 obexService.DataTransferFailed += obexService_DataTransferFailed;
 obexService.DataTransferProgressed += obexService_DataTransferProgressed;
 obexService.DataTransferSucceeded += obexService_DataTransferSucceeded;
 obexService.DeviceConnected += obexService_DeviceConnected;
 obexService.Disconnected += obexService_Disconnected;
 obexService.Disconnecting += obexService_Disconnecting;
 obexService.ServiceConnected += obexService_ServiceConnected;
 await obexService.ConnectAsync();
}

Figure 9 Hooking ObexService and Its Events

async void obexService_DeviceConnected(object sender, EventArgs e)
{
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, async () =>
 {
 System.Diagnostics.Debug.WriteLine("device connected");
 if (filesToShare.Count > 0)
 {
 filesToShare.ShareStatus = FileShareStatus.Connecting;
 await obexService.SendFileAsync(filesToShare[0].FileToShare);
 }
 ...
 });
}

Figure 10 DeviceConnected Event Handler Method

www.bit.ly/1qtiLeh
www.bit.ly/1qtiSGI
www.bit.ly/1qMcZlB

35December 2014msdnmagazine.com

Once file sharing is complete, that raises the DataTransfer-
Succeeded event. If file sharing is unsuccessful, it raises the
DataTransferFailedEvent. Th e following code shows DataTransfer-
Succeeded event handler:

async void obexService_DataTransferSucceeded(object sender, EventArgs e)
{
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 System.Diagnostics.Debug.WriteLine("data transfer succeeded");
 filesToShare.RemoveAt(0);
 });
}

In the event of a fi le sharing error, it will raise a DataTransfer-
Failed event. Th e event handler is shown in the following code:

async void obexService_DataTransferFailed(object sender,
 DataTransferFailedEventArgs e)
{
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, async () =>
 {
 System.Diagnostics.Debug.WriteLine("Data transfer failed {0}",
 e.ExceptionObject.ToString());
 filesToShare[0].ShareStatus = FileShareStatus.Error;
 filesToShare[0].Progress = 0;
 FileItemToShare fileToShare = this.filesToShare[0];
 filesToShare.RemoveAt(0);
 this.filesToShare.Add(fileToShare);
 });
}

When the data transfer is fi nished, the shared fi le is removed from
the list and the ObexService is disconnected. When the ObexService
is disconnecting, it raises the Disconnecting event. And, when the
connection is disconnected properly, then the Disconnected event
is raised. Th e Disconnecting event handler is shown here:

void obexService_Disconnecting(object sender, EventArgs e)
{
 System.Diagnostics.Debug.WriteLine("disconnecting");
}

Once the connection is successfully disconnected, the code in
Figure 12 handles raising the Disconnected event.

When the Disconnected event is raised, remove all handlers and
clear out the ObexService instance. During data transfer, condi-
tions may arise that require you to abort current transfer. To abort
a current transfer, call AbortAsync. Th e Aborted event is raised
with the following code and then the connection to the targeted
device is ended:

async void obexService_Aborted(object sender, EventArgs e)
{
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, () =>
 {
 System.Diagnostics.Debug.WriteLine("Aborted");
 if (!filesToShare.Count.Equals(0))
 {
 filesToShare.RemoveAt(0);
 }
 });
}

Wrapping Up
Th e demo app is now complete. Th e concept of universal apps can
really help you in writing a single piece of code for multiple Win-
dows platforms and form-factors, thereby reducing the overall
development eff ort.

I’ve used these libraries in a number of Windows Store and
Windows Phone apps. Search for Code Create (a free Windows
Phone App) or OBEX (Universal App) and get a glimpse of how
these APIs work in conjunction with the app. Th ese libraries are
available to download from the NuGet repository. Simply search
for “Bluetooth OBEX for Store Apps” on the NuGet online dialog,
straight from the Visual Studio Solution and import these libraries
as a reference to the projects.

UDAY GUPTA is a senior engineer-product development at Symphony Teleca
Corp. Pvt Ltd. in India. He has experience in many .NET technologies, espe-
cially Windows Presentation Foundation, Silverlight, Windows Phone and
Windows 8.x.

THANKS to the following Microsoft technical experts for reviewing this article:
Jeff Kelley and Guruprasad Subbarayan

async void obexService_ConnectionFailed(object sender, ConnectionFailedEventArgs e)
{
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, async () =>
 {
 System.Diagnostics.Debug.WriteLine("connection failed");
 filesToShare[0].ShareStatus = FileShareStatus.Error;
 filesToShare[0].Progress = 0;
 FileItemToShare currentItem = filesToShare[0];
 filesToShare.RemoveAt(0);
 filesToShare.Add(currentItem);
 });
}

Figure 11 ConnectionFailed Event Handler Method

async void obexService_Disconnected(object sender, EventArgs e)
{
 await this.Dispatcher.RunAsync(CoreDispatcherPriority.Normal, async () =>
 {
 System.Diagnostics.Debug.WriteLine("disconnected");

 obexService.Aborted -= obexService_Aborted;
 obexService.ConnectionFailed -= obexService_ConnectionFailed;
 obexService.DataTransferFailed -= obexService_DataTransferFailed;
 obexService.DataTransferProgressed -= obexService_DataTransferProgressed;
 obexService.DataTransferSucceeded -= obexService_DataTransferSucceeded;
 obexService.DeviceConnected -= obexService_DeviceConnected;
 obexService.Disconnected -= obexService_Disconnected;
 obexService.Disconnecting -= obexService_Disconnecting;
 obexService.ServiceConnected -= obexService_ServiceConnected;
 obexService = null;

 if (filesToShare.Count.Equals(0))
 {
 ...
 MessageDialog messageBox =
 new MessageDialog("All files are shared successfully",
 "Bluetooth DemoApp");
 messageBox.Commands.Add(new UICommand("OK", (uiCommand) =>
 {
 this.Frame.Navigate(typeof(MainPage));
 }));
 await messageBox.ShowAsync();
 }
 else
 {
 obexService = ObexService.GetDefaultForBluetoothDevice(BtDevice);
 obexService.Aborted += obexService_Aborted;
 obexService.ConnectionFailed += obexService_ConnectionFailed;
 obexService.DataTransferFailed += obexService_DataTransferFailed;
 obexService.DataTransferProgressed += obexService_DataTransferProgressed;
 obexService.DataTransferSucceeded += obexService_DataTransferSucceeded;
 obexService.DeviceConnected += obexService_DeviceConnected;
 obexService.Disconnected += obexService_Disconnected;
 obexService.Disconnecting += obexService_Disconnecting;
 obexService.ServiceConnected += obexService_ServiceConnected;
 await obexService.ConnectAsync();
 }
 });
}

Figure 12 Disconnected Event Handler Method

www.msdnmagazine.com

PRODUCED BYSUPPORTED BY

magazine

vslive.com

Visual Studio Live!
is hittin’ the open road on the
ultimate code trip! For 22
years, we have helped tens of
thousands of developers
navigate the .NET Highway,
featuring code- lled days,
networking nights and the
best in independent training:

Multi-track Events
Focused, Cutting-edge .NET

 Education
Covering the Hottest Topics
Relevant and Useable

 Content
Expert Speakers, Including

 Many Microsoft Instructors
Interactive Sessions
Discuss Your Challenges
 Find Actionable Solutions

Las Vegas
Code on the Strip
March 16 – 20
Bally’s Hotel & Casino
Las Vegas, NV

MAKE PLANS TO JOIN US IN 2015!

Redmon
Code Home
August 10 – 14
Microsoft HQ
Redmond, WA

Sa Franci c
Code By The Bay
June 15 – 18

2015 Dates Announce

JUST
ADDED!

Untitled-4 2 11/7/14 1:54 PM

www.vslive.com

vslive.com

Orland
Code in the Sun

PART OF LIVE! 360
Tech Events with Perspective

SharePoint Live!
SQL Server Live!
Modern Apps Live!
TechMentor

November 16 – 20
Loews Royal Paci c Resort
Orlando, FL

Au ti
Don’t Mess with Code
June 1 - 4
Hyatt Regency
Austin, TX

New York
The Code That Never Sleeps
September 28 – October 1
NY Marriott at Brooklyn
Bridge Brooklyn, NY

NAVIGATE THE
.NET HIGHWAY

6NO
W

 WITH

Locations
t Cho
Fro !

Untitled-4 3 11/7/14 2:09 PM

www.vslive.com

msdn magazine38

With the increasing complexity of new mobile apps, devel-
opers are interested in the next step in push notifi cation services—push
analytics, market segmentation, reporting and reach via push available
across all major platforms. Microsoft recently acquired the Capptain
platform, which provides all of these services and then some.

While Capptain is not yet a part of Microsoft Azure, it’s already
available for developers at capptain.com. Azure provides a reliable
set of services for push notifi cations for developers on Windows
8, Android and iOS platforms.This article covers some advanced
topics in push notifications for mobile developers.

Capptain provides rich analytics that can tell you most of what you
need to know about your app, including on which devices it’s been used
and usage trends. It can defi ne segments, create marketing campaigns
and monetize your apps with push. It’s powerful technology, and it can
start working for you with just a few initial steps.

Being a mobile developer myself, I quickly realized the benefi ts
of using Capptain in conjunction with Azure Mobile Services. My
Active Fitness app (activefi tness.co) has a sizeable user base. Th is study
provided me with an opportunity to experiment with Capptain
and use it in the production version of my app.

Capptain Concepts
In this article, I’ll be using the following main Capptain concepts:
activities, jobs, application information (appinfo) and extra data
(extras). Figure 1 lists most of the Capptain concepts and terms
and should be a good starting point to help you understand how
Capptain works.

Activity is a fundamental concept to Capptain. For example, an
activity could be a page in your app the user is visiting. It could also
be any logical activity that has duration. Job is another concept that
also has duration, however, jobs are associated with background
tasks, not necessarily connected with the UI.

Capptain provides an extensive set of APIs and native SDKs for
all major platforms: iOS, Android and Windows 8 (see Figure 2).

Besides those APIs, Capptain provides several SDKs for all
major platforms, as listed in Figure 3.

Get Started with Capptain
First, go to capptain.com and create an account. After creating an
account, set up an app of your choice—whether on Android, iOS,
Windows Phone, Windows Store (Windows 8.x) or Web. Each app
has an associated SDK, which I’ll show how to use aft er explaining
some of the Capptain concepts. Capptain also provides a set of demo
applications you’ll fi nd at the bottom of your account page. You can
also check what kind of analytics it provides, with data already in place.

Implement Activity Tracking
To start using Capptain, start with the right SDK for your platform.
I placed an example on GitHub that shows how to use the SDK for
Windows 8.1. SDKs on other platforms work similarly, and use the
same basic concepts.

In the Package.appxmanifest, you need to ensure Internet capability
is enabled. Go to the Declarations panel of your Package.appxmanifest

MOB ILE APPS

Advanced Push
Notifi cations and
Mobile Analytics
Kevin Ashley

This article discusses:
• Adding push notifi cations to mobile apps

• Tracking mobile app activity

• Reporting on app activity data

Technologies discussed:
Microsoft Azure, Windows 8.1, Android, iOS

Code download available at:
github.com/kevinash/CapptainAppSample

www.capptain.com
www.activefitness.co
http://github.com/kevinash/CapptainAppSample
www.capptain.com

39December 2014msdnmagazine.com

fi le. In Available Declarations, select and add File Type Associations.
In the right screen, in the Name fi eld, type capptain_log_fi le and in
the File type fi eld type .set. Th en, in Available Declarations select and
add Cached File Updater.

Next, use NuGet to fetch the latest version of Capptain for
Windows 8.1. In the application OnLaunched event, add the
initialization code for Capptain. Copy your app ID and SDK key
from the Capptain portal:

/* Capptain configuration. */
CapptainConfiguration capptainConfiguration = new CapptainConfiguration();
capptainConfiguration.Agent.ApplicationId = "YOUR_APPID";
capptainConfiguration.Agent.SDKKey = "YOUR_SDK_KEY";

/* Initialize Capptain angent with above configuration. */
CapptainAgent.Instance.Init(e, capptainConfiguration);

For my app, I wanted Capptain to track pages and how much time
the user spends on each page. Th e following snippet, when placed
in the page OnNavigatedTo method, will start tracking HubPage
as a new activity in Capptain:

protected override void OnNavigatedTo(NavigationEventArgs e)
{
 base.OnNavigatedTo(e);
 CapptainAgent.Instance.StartActivity("HubPage");
}

Remember, in Capptain you can only have one activity at a
time per user per app. You don’t need to call EndActivity. Th e new
page calls StartActivity, and the old activity automatically ends. If
you have many pages, you can simplify this approach by deriving

from a special class called CapptainPage. Th is will automatically
associate your pages with new activities.

Another way to track your activities with Capptain is by deriving
your page from CapptainPage. The advantage to this method is
you don’t need to StartActivity manually in the OnNavigatedTo
handler. Th e CapptainPage will handle it for you. To do it this way,
simply insert the following code into your XAML:

<capptain:CapptainPage
 xmlns:capptain="using:Capptain.Agent">
 <!-- layout -->
 ...
</capptain:CapptainPage >

With this code, I called the StartActivity method with HubPage.
When you use the CapptainPage, you don’t need to call Start-
Activity. It will track the name of your page by default. You can
always override GetCapptainPageName to report a diff erent value.

// In the .xaml.cs file
protected override string GetCapptainPageName()
{
 /* your code */
 return "new name";
}

Use Reach with Push Notifi cations
Capptain is especially interesting for mobile apps because it lets you
push notifi cations to user devices using Capptain Reach. You can
set up campaigns and then monitor how they’re delivered. For the
announcements you push, you can defi ne campaign name, content

Device Each device gets a unique identifi er. If you have several apps on the same device, the device identifi er (deviceid) will be the same. (On
Windows Phone, device ID is unique per device and publisher).

User Capptain implicitly assigns one user to one device, so devices and users are equivalent concepts.
Session A session is one use of the application performed by a user. Sessions are automatically computed from a sequence of activities performed by

a user. There’s no need to start/stop a session. Instead, you can start/stop activities. If no activity is reported, no session is reported.
Activity An activity is one use of a given portion of the application performed by one user (usually a screen, but it can be anything suitable to the

application). A user can only perform one activity at a time. An activity has duration—from the moment it’s started to the moment it’s stopped.
Event An event is an instant action; unlike an activity, it doesn’t have duration.
Job A job is like an activity. You can start/stop it and it has duration. A job is intended for a background task, it might not have a UI.
Error An error is an issue correctly reported by the application.
Crash The Capptain SDK automatically reports a crash and an application failure.
Application
Information
(AppInfo)

This is used to tag users (similar to cookies). For one given key, Capptain only keeps track of the latest value set (no history). Setting or
changing the value of an appinfo forces Capptain to reevaluate audience criteria set on this appinfo (if any), meaning that appinfo can be
used to trigger real-time pushes.

Extra Data
(Extras)

Extra data (or extras) is some arbitrary data you can attach to an event, error, activity and job. You can use this data to create ways to
identify segments of your activities, jobs and so on.

Figure 1 Capptain Terms and Concepts

Analytics API The Analytics API is an HTTP API, which lets you retrieve analytics data (the one displayed on the Analytics tab of the Capptain Web site).
Monitor API The Monitor API is an XMPP API, which lets you retrieve real-time monitor data (the one displayed on the Monitor tab of the Capptain Web site).
Segments API The Segments API is an HTTP API, which lets you manage Capptain segments (everything under the Segments tab of the Capptain Web site).
Reach API The Reach API is an HTTP API, which lets you manage Reach campaigns without having to use the Capptain Web interface manually. The

Reach API is a high-level API so you can leverage the Web interface of the Capptain Reach campaign manager.
Device API The Device API is an HTTP/REST API, which lets you retrieve and enrich the information gathered by the Capptain platform about all devices

(and users) using your application.
Push API The Push API is an HTTP API, which lets you push custom data to devices running an application embedding the Capptain SDK.
SDK API The SDK API is an HTTP API, which lets you report logs as a native SDK would do, but using a simple HTTP API.
Account API The Account API is a set of HTTP APIs aimed at retrieving or updating account-related information.

Figure 2 Capptain Provides an Extensive Set of APIs

www.msdnmagazine.com

msdn magazine40 Mobile Apps

(including images), define your audience,
timing and so on.

Capptain Reach is a powerful feature, as it
lets you drive advertising campaigns, promo-
tions and other types of marketing campaigns
directly to your users. Th e key to successful
marketing is relevance. Th anks to the abil-
ity of Capptain to know exactly what page
your user is on, or what activity your user
is doing, each campaign can be more relevant and more eff ective.

For Windows Store apps, Capptain uses the Windows Notifi cations
Service (WNS). You need to update your Package manifest and update
the Capptain portal with the WNS key. Th ere are two scenarios in
which you can integrate these notifi cations into your app—via Over-
lay or WebView integration. Aft er you’ve started a Capptain account,
you can refer to the Capptain documentation for in-depth integra-
tion guidance on “How to Integrate Capptain Reach on Windows” at
bit.ly/12b3bub and “Initialize the Capptain Reach SDK” at bit.ly/1w90J3M.

Overlay Integration
With overlay integration, you derive from the CapptainPageOver-
lay page. The notification will be delivered automatically, using
resources included in the NuGet package in the Resources/Overlay
directory. When a notifi cation comes from Reach API, your app
page will inject the announcement embedded in CapptainOver-
layAnnouncement or CapptainOverlayNotifi cation views. Each
of these views effectively contains a WebView that displays the
announcement. You can further customize these views if you want
to implement your own presentation for the Reach notifi cation.

To get started, include the following declaration in any XAML page
in your project (I implemented this method in the ItemPage.xaml of
the sample project included with this article):

xmlns:capptain="using:Capptain.Overlay"

In XAML, instead of <Page>, make your page
derive from CapptainPageOverlay, as follows:

public sealed partial class ItemPage :
 CapptainPageOverlay

Capptain Reach will inject its notifi cation
views in the fi rst grid it fi nds on your page. If
you want a specifi c grid to receive the view,
you can use the grid named CapptainGrid:

<Grid x:Name="CapptainGrid"></Grid>

WebView Integration
For WebView integration, you need to include WebViews named
capptain_notifi cation_content or capptain_announcement_content,
depending on the type of content you need to receive.

Use the following code to insert the WebViews:
<capptain:CapptainPage
 xmlns:capptain="using:Capptain.Page">
 <Grid>
 <WebView x:Name="capptain_notification_content" Visibility="Collapsed"
 ScriptNotify="scriptEvent" Height="64" HorizontalAlignment="Right"
 VerticalAlignment="Top"/>
 <WebView x:Name="capptain_announcement_content" Visibility="Collapsed"
 ScriptNotify="scriptEvent" HorizontalAlignment="Right"
 VerticalAlignment="Top"/>
 <!-- layout -->
 </Grid>
</capptain:CapptainPage>

Data Push Notifi cations
Besides receiving visual content in your app with the Overlay and
WebView Integration methods, you can also receive data push
notifi cations directly in your app. To do so, you need to implement
two handlers. Th e best place to put them is the constructor of your
App object, in App.cs, as shown in Figure 4.

Analyze Results
Capptain provides a rich view of your data. You can view technical
information associated with your devices, such as manufacturer,
OS version, fi rmware, screen resolution and SDK version. Now
that your app sends activity information to Capptain, you can also
track any technical details you like.

Wrapping Up
Push notifications are powerful mechanisms. Most platforms
currently provide notifi cation service mechanisms, such as WNS,
ANS and Google Cloud Messaging. Azure also provides a scalable
infrastructure called Notifi cation Hubs. As mobile apps evolve, there’s
a need in analytics, reach, advertising and coordinating marketing
campaigns with push. Capptain provides this next-level push
notifi cations analytics tier many mobile developers will need.

KEVIN ASHLEY is an architect evangelist for Microsoft . He’s coauthor of “Professional
Windows 8 Programming” (Wrox, 2012) and a developer of top apps and games.
He oft en presents on technology at various events, industry shows and Webcasts.
In his role, he works with startups and partners, advising on soft ware design,
business and technology strategy, architecture, and development. Follow his blog
at kevinashley.com and on Twitter at twitter.com/kashleytwit.

THANKS to the following Microsoft technical experts for reviewing this article:
Greg Oliver and Bruno Terkaly

Android SDK Native Android SDK
iOS SDK Native iOS SDK
Web Web SDK
Windows Phone Windows Phone SDK
Windows 8 Windows Store SDK

Figure 3 Capptain Provides SDKs to
Support All Major Platforms

CapptainReach.Instance.DataPushStringReceived += (body) =>
{
 Debug.WriteLine("String data push message received: " + body);
 return true;
};

CapptainReach.Instance.DataPushBase64Received += (decodedBody, encodedBody) =>
{
 Debug.WriteLine("Base64 data push message received: " + encodedBody);
 // Do something useful with decodedBody like updating an image view
 return true;
};

CapptainReach.Instance.PushMessageReceived += (id, replyTo, payload) =>
{
 // Your code
};

Figure 4 Implementing Handlers
in the Constructor of the App Object

Capptain is especially interesting
for mobile apps, because it lets you
push notifi cations to user devices.

www.bit.ly/12b3bub
www.bit.ly/1w90J3M
www.kevinashley.com
www.twitter.com/kashleytwit

ement1); areaSeries Add(seriesElement2); areaSeries Add(seriesElement3); // Add series to the plot area plotArea Series Add(areaSeries); //page Elements Add(new LayoutGrid()); // Add the page elements to the page AddEAement1); areaSerieies.AAdd(se(s rriesElement2t2); a) reaSeries.AdA d(seriesElement3); // Add series to the plot area plotArea.Series.Add(areaSeries); //page.Elemenem ts.Add(ddd(new ne LaLayyoutGrid()); // A/ dd the page elements to the page AddEA

s, 240, 0); AddEAN1AN 3SupSup5(pa5(p ge.Elemeentnts, 480, 0); AdddUPCVersionA(page.Elemene ts, 0, 135); AddUPCVersionASup2(page.Elements, 240, 135); AdddUPCddUPCd CVerssionAionAo Sup5((page.Elemennts, t 480, 135); AddEAN8(page.Elements, 0,

.Elements, 480, 2270);; AddddUUPCVersionE(papage.Elementts, 0, 405); AddUPCVersionESuE p2(page.Elements, 240, 405); AddUPCVersionESup5(pageage.Ele.Elelemmments, 4s, 48800, 4405); // AAdd the page toe t the document document.Pages.Add(pa

CaptionAndRectanga lee(elemeements, “EAN/JA/JAN 13 Bar Codde”, x, y, 204, 99); BarCode barCode = new Ean13(“123456789012”, x, y + 21); barCode.ode.X +=X +X +=X + ((2004 -4 - baarCoode.GettSymbolWidth()h) / 2; elements.Add(barCode); } private vovo

dRectangle(elemente s,, “EANEAN/JAN 13 Bar Car Code, 2 digit supplement”, x, y, 204, 99); BarCode barCode = new Ean13Sup2(“12 234556789678 0121212”, 2”, x, yy + 2+ 211); 1); barCoode.XX += (204 - barCode.GetSymbolWidth()) / 2; elements.Add((barC

ts, float x, float yy) { A{ AddCaCaptionAndRectanangle(elements, “EAN/JAN 13 Bar Code, 5 5 digit supplement”, x, y, 204, 99); BaB rrCodee barrCode == new Ean13SupS 5(“12345678901212345”, x, y + 21); ba

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onA(Group elements, float x, float y) {Add{ CaptionAndRectangle(elements, “, UPC VersVersVersVersion ionoi A Baar Cr Coode”, x, y,y, 204, 99);; BarCoode barCode = new UpcVersionA(“12345678901”, xx, y +

s.Add(barCode); } } pprivate te vooid AddUPCVPCVersiers onASup2(Group elements, float x, floato y) { AddCaptionAndRectangle(elementm ““UPCC Version E Bar Code, 2 digit supplement”, x, y, 204, 94 9); BarCoode od

21) ; barCode.X ++= (2= (04 - barba Code.GeetSymbymbolWidth()) / 2; elements.Add(barCode); e } private void AddUPCVersionASSSSuup5(up5(u Group elements,n float x, flfloaflo t VV

digit supplement”,t” xx, y, 22004, 99); BarCodeCode bbarCode = new UUpcVep rsionASuAS p5(“12343 567890112345”, x, y + 21); bbarCarCode.Xde.X += (204 - barCode.GetSymboom lWidth()) / 22; eelele

t x, float y) { AddCapdCaptionnAndRAnd ectangle(eleelemments, “EAN/JANN 88 Bar Code”,de”, xx, y, 204, 0 99); BarCode barCode = nnew Eew Ean8(an8(n8n8 “1 2345670”, x, y + 21); OpenFileileDiala og fileDie aloogoglo =

g.Filter = “Adobeob PDPDF fileess (*.pdf)|*.pdf|Alll FileFiles (*.*)|*.*”; if (fileDieD alog.SShowDiialog() == DialogResult.OK) { { pdfVpdfVf ieweewer.OpOpr.OpOpen (fifileDialogalog.FilleName, “”); } SaveveFileDialog saveFaveFileileDDialoog = neneww Sav

Dialog.Filter == “AdoAdobe PPDF fiDF files (*.pdff)|*.pdpdf|A|All Files (*.*)|*.*”;”; iff (saveFFileDialolog.Showh Dialog() ==DialoalogResgResRee ult..OK)OK) OK) { pdfVfVView .SSaveAsve (sav(saveFieFileDia

printer = pdfViewViewer.Per rinterr; pprinter.PriintWiW thDialog(); } elsee { MesssageBox.SShoww(“Please opeopen a n a fifile to pto p rintrinrint”)”); }OpenFin le DDialoog fileDieD alogalog = new OpenFileDDialog(); fileDiaDialog.og Tittle = e e = e “Opepen File Dl

les (*.*)|*.*|Addobe Pe PDF files es (*.p*.pdf)|*.pdddf”; if i (fifileDialog.ShowwDialalog() === DialogResult.ult OK) { { DynaDynamicPDFVDFVDFVDFViewiewewerClass test e = neew DynammiccPDFViewerClass((); PPDFPrinter ter pprinp ter er r = te= ttet st.OpenFFileFo

= File.ReadAAllByteBytes(@”C:\M:\MyDyDoc.pdff””); //u// sing System.Runntimme.Inttent ropServicces;GCHaGCHandlendledd gch=GCH= CHaananddla e.Aloc(conteents, GCHandleTTypee.Pinnedd);) IIntntPtrPtr cooncontentsIntPtr = g

tents.Lengthh, “”);“”); A AddCaCaptioonAndReReectanglan ee(pageElementts, “BBBookkmark k Pagee E Elemelemeent:”nt:”, x,, y);; pa pagaapageEeEleemeents.Add(newtesw t Bookmookmaark(“Bookmarked TextTextt”, x + 55, y , y, yy ++ 2+ 20+ , pap rentre OutlO ine)); p) a

215, 10, Fonnt.TTimemesRomanma , 1010)); } prprrriivate vooid AddCiirclercle(GGro(G up paageElemeennnts,nts floafloat x,x floafloat yt y)t y) { / { /////Add/Add/A ss a circlt to the pap ge Eleemenmentenents AddCapdCapCaCadCaptiont AndRdRectae

Add(new Cirrcle(x e(x ++ 112.5f5f, y ++ 50f, 1007.5f, 300f, RgbColoolor.RRRed, RgbbbColor.Bor.Bluee,lue 2, LineL eStyylylly e.DaDae shLaLs rge))); } pprivate void AdA d FormatteeddTexxtAreea(Groupp paageElements, flofl aat x, fl float yy)) {) // A// AAdds dds a fofoa rmatted textte a

mic</i>PDFPDF/b>&tm; GGenerator vvv666.0 6 for ..NETNET has has a forrmattted ttetext arrea pea paaage a “ + “ “ele“ele“eleeeemmmentm . ThThis prroviddes rich fororm m atting ssuppupport for texext that appap eears in the doocumment. You have “ + “+ “compcompletlete conco trolol ove ovevever 8 r paragraph

left indentattionn, rigrighht indenentation, aligliggnnment, allollowing orphaaan linnes, aand whwhite ite “ + “spa“spaacece ppce pprereservata ion; 6 foont propropeerties: e <fonont fat f ce=’=’Timemes’>s’>font facece, <//fontt>font “ + “s+ “size, ont><fonont cocoocoot lor=lor=’FF0000’00’>c

 2 line prpropertieses: le leading, ag ndd leaddinngg type.ype. TText can also be rootateeed.</d.</< p>”;p> FFororo mattmattmm edeedTeedTeTeextArx ea fformaormattedTTextAreArea = nnew FormattedTextTex Areare (formattat edHHtmll, x + 5, yy + 20, 215, 60, FonttFammily.Helveelvetictica, 9, fffalalsse);se);se);sssse) // // Sets the i

ddCaptionAAndReRectanct gle(e(pagepageElemeenntsnts, “F, “Fororrmarmattedtte TextT Areeae Page ElElemenement:”,t:”,,, x, y); y); y)y AddCAdddCddCA aptionAnAndReectangnglele(pageElements, “Formatm tedTextAx rea OverOv flflow TText:”, x x + 2279, y); pageElementments.Add(foormarmattedTTTextAxttAAtArea)r ; // CrCrer ate

tArea overflowFoowFormatrm tedTdTextAArea == foormamatteddTdt extArea.GettOveerflowwwFormatmatteddTTexextAxx rea(rerea(re x + x 28284, y +y 200); pageElements.Add(overflowFormattedTextAArea)); } pprivate vooid AddImage(Group p pagpageElementsents, float t x, flo, at yy) {) { // // A/ dd

ents, “Imagee PagePage Elementen :”, xx, y); IImmagemage imaaage =ge new Imaage(SServvever.Mr.MapPattatth(“.h(“.“ ./I./Im./ agesages/DPDDFLogL o..png”), x + 112.5f, y + 50f, 0.24f); // Image is ssizzed and centeredd inn the rectangle immage.age SetBoundunds(21s(215, 5, 65 0); 0) image.VAVAAlign

ge); } privatte void oid AAddLabela (Group pp ppageageElememments, float x, flfloat y) { /// A/ Adds as aa llabel tel t to tht e pappap gegeElemenementts AddCaptionAndRectangle(pageElemenm ts, “LabLa el & PPageNummbeeringLabel Page EElemments:”, x,x, y); y) striing g laabelTextxt = = “= ““Lab

aain page numbumberinering: %%CP%%CP%%% ofof %%%T%%TP%%% pages.”; LLabel le abbel = nnew LLLew Laabel(labbelTeelTeeelTexxt, x + 5, y5 ++ 12, 220, 80, Font.TimesRoman, 12, Texe tAlign.C.Centter); label.Annglee = 8; PageNumbeeringgLabel pagepageNumLNumLabelab = nnnewew Pw Page

, 12, TeextAlxtAligign.CentC er); paga eEleementntntss.Ad.Addd(paageNumLabel));); p paggeElemenments.Addddd(d(label)); } } privprpp ate voidoid A AddLine(Group pageElements, float x, floao t y) { /// Addds aa line to thethe pageElements AdddCCaptionAndRAndRRectanngleglen (pagpag(a eeElemments

+ 5,+ y ++ 20, x + 220, y + 8080, , 3, RRgbbColor.Gr.G eeen)); pageElemmementss.n Add(d(d new w Linee(x ++ 22 2200, yy ++ 20, x + 5,+ 5, y + 80, 3, RgbColor.Green)); } private void AdddLLink((Grouup pageEElemments, float x, floaat yy) { // Adds ads a link toto thethhe pagp eEleEleemen

ynynamicPDF.com.m ”; AAddCaddCaptioptionAAnddnAndRectanglan e((pageElementts, “LLink PaPagege Elemment:nt:”, xx, y);y); LLabel llabela = new Label(text, x + 5, y + 20, 215, 80, font, 12,2 RggbCoolor.Blue)e); laabel.Underline = true;rue Link link =k = newnew LLinnk(x k(x ++ 5,5, y y ++ 20,

on(o “httpp://www.dynnamicppddf.coomm””))); pageEeElemments..Add(Ad labbeel);l); ppagepagpageElementsnts.AAdd(link); k) } prp ivatee void AddPath(Group pageElements, float x, float y) { // AAdds a path to the pageElemeents ceeTe.DynamicamicicPPDPDF.PagegeElemlemlements.PatP h

20,0 RgbgbbColor.Blue, RgbCRgbCoolor.RRedd, 22, LineStyeS lee.Solidd, true); pathhh.Su.SubbPaths.A.Adddd(new Lw LineSineSubPaubPath(x + 215, y + 40)); path.SubPaths.Add(new CurveToSToSubPPathh(x + 1+ 08, y + 80, x + 160,, y ++ 800)); path.SubSubPSubPathssssh .AAAd.Add(new(ne CurveS

ectecctanglangle(pageElemeents, “P“Path Ph Paage ge Element:””, x, yy);) pageEEleEleEE meentss.AdAdd(pad(path));th } pprivaate ve vooid AAddRectangle(Group pageElements, float x, float y) ororderede ddList = ordeo redLedList.GetOverFlowLo List((xx + x 5, y + 2+ 22000); AddCddCCCA aptiapa oonAndRect

2222 55, 1110); page.Eleements.Ats.Add(odd(ordrdrderr edList); x == 0; 0; y +=y ++=y + 118881 ; // CCCreaate e aan unorrderede lisist UnUnordderedList unorderedList = new Unoro deredList(x + 5, y +y + 220, 4400, 900, Font.Ht.Helvetica, 10); uuunoorderredListst.Itte.I ms.Amms Am dd(“ddd(“FruiFruFFFrFruF tss”); unorder

eree ies(); pieSeries.DaataLababel = da; plotArea.Seeriesess.AAd.Add(pieSSSeriesss);es ppieSeries.Elemelementss.AddAdd(27,7, “Website A”); pieSeries.Elements.Add.Ad (19, “Website e B”)); pieSerrieses.Elementmen s.Add(21, “WWebssite CC”); pieSpieSSerieeririees.Elemeneemmee ts[0s[0].Color = a

sess.Elemments[2].Color = auttogradient3;”unoro derreder ddSubLList2 == unoorderedList.Items[ms 1].SubLubLissts.AAddUnorderedSubList(); unorderedSubLu ist2.Items.Add(“dd(“Pottato”); unu ordeeredSubList2.Itemmms.A.Add(d(“Beaansansea ”);;; UUUnorU dereree dSubSu List subU

dSuedd bList(); subUnoUnorderedSubList.Items.As.AAdd(““d Lime”); subUUnorddereedSubList.Itemtems.Ads.Add(“Od(“Orangrange”);e” Unorderd edSubList sus bUnorderd edSue bList2 = unnorddereedSubLisLi t.Items[ms 1].SubLists.s.AddUAAddUd norrdereddeddSubLSubLbList(st); ssubUnbUnu oorderedSe ub

na”aa); UUnorderederedSubList subUnordo erededSubLSu ist3st3 = uunnorderredSubLSubList2.Itet ms[00].Su.SubLisLists.As.AddUnd orderedSSubList(); subUnoU rderedSudSubList3.Items.AAdd((“Swweet Potao to”)); UUnorderedSredSubLubLiL st sst ubUUnordrdeeredSdSredSdSubList4 st4st = ununorderedSu

ubLSuSu ist444.Ite.Items.Am dd(“String Bean”n”); s; subUnbUnordeereedSubbList4..Itemms.Addd(“Lima BeanBean”); subUsubUnnorderedSubList4.Items.Add(“Kidney Bean”e); x += 279; pagpage.EElemenntts.Addd(unorderedListst); u); ; nordno eredreddLisst = = uunordn ereddreddLisst..GetG Overv Flo

e.e.Elemeentsen , “Unordered List Page Ege Elemment On verflverflow:””, x, y,, 2255, 110); page.Elemementsents.AddAdd(un(unorderedList); } private void AddTextFt ield(Group pageEeElemlemennts, flfloaat x, flooatt y) { TextFFielddield txt = new Tew extFextFieldeld(“txtfnafnaaame”,meme”,me”, x +x + 20, 20, y + y +

tteaa dTeextArea(formattedHtml, x ++ 5, 5 y ++ 20, 202 215,15 60, FontFFamilyy.Heelvetica, 9, ffalse)se ; /// SetSets ths the ine dent property formattedTextArea.Style.Paragraph.IndeIn nnt = 1188; AddCaptCap ionAndRendRectanaa gle(eg pagepageep ElemElemE ents, “FFormamormattedttedtedtedTeTextArearea P

atteatat dTeextArea Overflow TeeText:”, x + 27 9, y9, y); p; pageEgeElements.AAdd(formformattedTextAArea); a) // CCreatea ee an overflow formatted text area for the overflow text FoFormmattedTtedTextAxt reaMMaxaxLeLengthngth = 9 = 9= 9; txtxtxtxxt1.B1.Bordeded rCorColor =r = RgbCololoColoor.Br.BBlaack; txttxt1.Ba1 Ba

MaMMM ximuum Lengthgth”; p; ageEEgeEElemeements.nts.Add(Add(txttxt1); TTextFex ieldd txt2 = neew TeextField(“txxtf2namename”, xx + 3+ 30, y + 30, 150, 40); txt2.DefaultValue = “This is a TexxtFtFieldd whiichh goees tototot the nexxt lit liline ine iif thff t e text et et xceexceeds wds wididth”; ”; ttxt2.xt2.xt2xt2 MMMultMu iLinLine = e =

RgRR bCooolor.AliceBlueBluee; txt2.T2. oolTip == “M“Multiline”; ppageEElemennts.AAdd(ttxt2); AddCapCaptiont AndRAndRecctangle(pageElements, “TextField Form Page Element:”, x, x, y, 50450444, 8585); }; } prri vate voioidd AddComCCC boFibo eld(Group pap pageElgeElemeemenene ttts, ts float x, fl

, , y + 4000, 150,, 20 20)20); c; cb.Boro derCd olor = RgbColorr.BBlack; cb.BaackggrounndColor = RgbCRgbColoro .AliAliceBceBlue; cb.Font = Font.Helvetica; cb.FontSize = 12; cb.Itemsem .AAdd(“(“It((em 1m 1”); ; ccb.IItemste .Add(“It““Item 2em 2”); ”); cb.Icb.Itemsems.Add(“Item 3em 3”)); cb.IItems

aaabbble”b].SSeSeSeleleclected = true; cb.Edb itable = true; cb.ToToololTip = “Editable Coe Combo Box””; pa; pageElgeE emements.Add(cb); ComboBox cb1 = new ComboBox(“cmb1namame”, x + 303,030 y +y + 4440 40, 150, 200); c); cb1.Bb1.Bb1 ordeorderColrColoor = Rgbg Coloor.Blr.Br Br B ack;ack cb1.Bac

.F..FFFontontSize = 12; cb1.Items.Add(“Item 1”); cb1.Items.AAdd(“Item 2em 2”); ccb1.Items.Add((“Itemem 3”); cb1.Items.Add(“Item 4”); cb1.Items.Add(“Non-Editable”);”); cb111.Items[“NNon-Eon-Editable”].Selecteccc ed =ed = tru true; ce; cb1 Eb1.EEditable e = fa= f lse;se cb1.ToolT

eerrter.Coonvert(“http://www.google.com”, “Output.pdf”));Convverteer.Coonvert(GetDocD PathPath(“Do(“D cumentA.rtf”), “Output.pdf”);System.Diagnostics.Process..s SStartt(“Ot(“ uutpuutpuutputt.pdf”);”); AsyncCoConvernverrtter t aConaConvertverter =e newe AsyncCncConnverter(); aC

vveerted); aConverter.ConversionError += new ConversiionErroorEvventHHandler(aConveerteer_ConversionError); aConverter.Convert(@”C:\temp\DocumentA.rtA f””””, f , f @”C:C \temte p\OuO tputtputA.pdA.pdf”);f”); aCo aCoa nverter.Convert(ert @”C:\teme p\Dop\D cumentB

\Doc\D ummentC.rtf”, @”C :\temp\OutputC.pdf”); aConverrter.Coonverrt(“hhttp://www.yahoo.coo.com”, @”C:\Temp\yahoo.pdf”); ConvC ersionOptions ops optiontions = nneewnew new ew Conversise onOpOptiontionoo s(72s(720, 70, 720, 72, 7 true); ceTe.DynaDynamicPm DF.CDF.Conveon rsiorsion Con.Co

outpou ut.pdf”, optionso); ceTe.DynamicPDF.Conversion.CConveerter.ConvCon ert(“C:\\temp\\\Documocument2.docx”, “C:\\temp\\op\ utput.pdf”, optiptoptioptiop ons)ons); s; stringing sampleHple tml m = “<“<htmlhtml><bo><bob dydy><p>This is s a very simplee HTMLHTMLHTHT strstrs ing iningin inclincincincludinud ng a g a g TT

(g[] g)

{{

pp

gg g (p p)

[]

[]

pp y y yyp

HighhSecuSec rity securiturity y new w HighhSecuurityy(“OOwnerPassword”, “U“ serPassword”)

yy ppy

ees y yy

p

(p p)

pag p (p pp)

p ()

}

Untitled-1 1 9/8/11 11:56 AM

www.dynamicpdf.com

msdn magazine42

With the introduction of Windows Phone Cortana, the
speech-activated personal assistant (as well as the similar she-who-
must-not-be-named from the Fruit company), speech-enabled
applications have taken an increasingly important place in soft -
ware development. In this article, I’ll show you how to get started
with speech recognition and speech synthesis in Windows con-
sole applications, Windows Forms applications, and Windows
Presentation Foundation (WPF) applications.

Note that you can also add speech capabilities to Windows Phone
apps, ASP.NET Web apps, Windows Store apps, Windows RT apps
and Xbox Kinect, but the techniques to do so are diff erent from
those presented in this article.

A good way to see what this article will explain is to take a look
at the screenshots of two diff erent demo programs in Figure 1 and
Figure 2. Aft er the console application in Figure 1 was launched,
the app immediately spoke the phrase “I am awake.” Of course, you
can’t hear the demo while reading this article, so the demo program
displays the text of what the computer is saying. Next, the user
spoke the command “Speech on.” Th e demo echoed the text that

was recognized, and then, behind the scenes, enabled the appli-
cation to listen for and respond to requests to add two numbers.

Th e user asked the application to add one plus two, then two
plus three. Th e application recognized these spoken commands
and gave the answers out loud. I’ll describe more useful ways to
use speech recognition later.

Th e user then issued the command “Speech off ,” which deactivated
listening for commands to add numbers, but didn’t completely
deactivate speech recognition. With speech off, the next spoken
command to add one plus two was ignored. Finally, the user turned
speech back on, and spoke the nonsense command, “Klatu barada
nikto,” which the application recognized as the command to com-
pletely deactivate speech recognition and exit the application.

Figure 2 shows a dummy speech-enabled Windows Forms
application. The application recognizes spoken commands, but

VOICE RECOG NIT ION

Speech Recognition
with .NET Desktop
Applications
James McCaffrey

This article discusses:
• Adding speech to a console application

• Handling recognized speech

• Installing the speech libraries

• Microsoft.Speech vs. System.Speech

• Adding speech recognition to a Windows Forms application

Technologies discussed:
Visual Studio, C#, .NET Speech Libraries

Code download available at:
msdn.microsoft.com/magazine/msdnmag1214 Figure 1 Speech Recognition and Synthesis in a

Console Application

http://msdn.microsoft.com/magazine/msdnmag1214

43December 2014msdnmagazine.com

doesn’t respond with speech output. When the application was
fi rst launched, the Speech On checkbox control wasn’t checked,
indicating speech recognition wasn’t active. Th e user checked the
Speech On control and then spoke, “Hello.” Th e application echoed
the recognized spoken text in the ListBox control at the bottom
of the application.

Th e user then said, “Set text box 1 to red.” Th e application recog-
nized, “Set text box 1 red,” which is almost—but not quite—exactly
what the user spoke. Although not visible in Figure 2, the text in the
TextBox control at the top of the application was in fact set to “red.”

Next, the user spoke, “Please set text box 1 to white.” The
application recognized “set text box 1 white” and did just that.
Th e user concluded by speaking, “Good-bye,” and the application
echoed the command, but didn’t manipulate the Windows Forms,
although it could have, for example, by unchecking the Speech On
checkbox control.

In the sections that follow, I’ll walk you through the process of
creating both demo programs, including the installation of the
required .NET speech libraries. Th is article assumes you have at least
intermediate programming skills, but doesn’t assume you know
anything about speech recognition or speech synthesis.

Adding Speech to a Console Application
To create the demo shown in Figure 1, I launched Visual Studio
and created a new C# console application named ConsoleSpeech.
I have successfully used speech with Visual Studio 2010 and 2012,
but any recent version should work. After the template code
loaded into the editor, in the Solution Explorer window I renamed
fi le Program.cs to the more descriptive ConsoleSpeechProgram.cs
and then Visual Studio renamed class Program for me.

Next, I added a Reference to fi le Microsoft .Speech.dll, which was
located at C:\ProgramFiles (x86)\Microsoft SDKs\Speech\v11.0\
Assembly. Th is DLL was not on my host machine and had to be
downloaded. Installing the fi les necessary to add speech recognition
and synthesis to an application is not entirely trivial. I’ll explain the
installation process in detail in the next section of this article, but
for now, assume that Microsoft .Speech.dll exists on your machine.

After adding the reference to the speech DLL, at the top of
the source code I deleted all using statements except for the one
that points to the top-level System namespace. Then, I added
using statements to namespaces Microsoft.Speech.Recognition,
Microsoft .Speech.Synthesis and System.Globalization. Th e fi rst
two namespaces are associated with the speech DLL. Note: Some-
what confusingly, there are also System.Speech.Recognition and
System.Speech.Synthesis namespaces. I’ll explain the diff erence
shortly. Th e Globalization namespace was available by default and
didn’t require adding a new reference to the project.

The entire source code for the console application demo is
shown in Figure 3, and is also available in the code download that

accompanies this article. I removed all normal error checking to
keep the main ideas as clear as possible.

Aft er the using statements, the demo code begins like so:
namespace ConsoleSpeech
{
 class ConsoleSpeechProgram
 {
 static SpeechSynthesizer ss = new SpeechSynthesizer();
 static SpeechRecognitionEngine sre;
 static bool done = false;
 static bool speechOn = true;

 static void Main(string[] args)
 {
...

Th e class-scope SpeechSynthesizer object gives the application
the ability to speak. Th e SpeechRecognitionEngine object allows
the application to listen for and recognize spoken words or phrases.
Th e Boolean variable “done” determines when the entire applica-
tion is fi nished. Boolean variable speechOn controls whether the
application is listening for any commands other than a command
to exit the program.

Th e idea here is that the console application doesn’t accept typed
input from the keyboard, so the application is always listening for
commands. However, if speechOn is false, only the command to
exit the program will be recognized and acted on; other commands
will be recognized but ignored.

Th e Main method begins:
try
{
 ss.SetOutputToDefaultAudioDevice();
 Console.WriteLine("\n(Speaking: I am awake)");
 ss.Speak("I am awake");

The SpeechSynthesizer object was instantiated when it was
declared. Using a synthesizer object is quite simple. Th e SetOutput-
ToDefaultAudioDevice method sends output to your machine’s
speakers (output can also be sent to a file). The Speak method
accepts a string and then, well, speaks. It’s that easy.

Speech recognition is much more diffi cult than speech synthesis.
Th e Main method continues by creating the recognizer object:

CultureInfo ci = new CultureInfo("en-us");
sre = new SpeechRecognitionEngine(ci);
sre.SetInputToDefaultAudioDevice();
sre.SpeechRecognized += sre_SpeechRecognized;

First, the language to recognize is specified, United States
English in this case, in a CultureInfo object. Th e CultureInfo object
is located in the Globalization namespace that was referenced with
a using statement. Next, aft er calling the SpeechRecognitionEngine
constructor, voice input is set to the default audio device, a micro-

Figure 2 Speech Recognition in a Windows Forms Application

Using a synthesizer object
is quite simple.

www.msdnmagazine.com

msdn magazine44 Voice Recognition

phone in most situations. Note that most laptops have a built-in
microphone, but most desktop machines will need an external
microphone (oft en combined with a headset these days).

Th e key method for the recognizer object is the SpeechRecognized
event handler. When using Visual Studio, if you type “sre.Speech-
Recognized +=” and wait just a fraction of a second, the IntelliSense
feature will auto-complete your statement with “sre_SpeechRecog-
nized” for the name of the event handler. I recommend hitting the
tab key to accept and use that default name.

Next, the demo sets up the ability to recognize commands to
add two numbers:

Choices ch_Numbers = new Choices();
ch_Numbers.Add("1");
ch_Numbers.Add("2");
ch_Numbers.Add("3");
ch_Numbers.Add("4"); // Technically Add(new string[] { "4" });
GrammarBuilder gb_WhatIsXplusY = new GrammarBuilder();
gb_WhatIsXplusY.Append("What is");
gb_WhatIsXplusY.Append(ch_Numbers);
gb_WhatIsXplusY.Append("plus");
gb_WhatIsXplusY.Append(ch_Numbers);
Grammar g_WhatIsXplusY = new Grammar(gb_WhatIsXplusY);

Th e three key objects here are a Choices collection, a Grammar-
Builder template and the controlling Grammar. When I’m designing
recognition Grammar, I start by listing some specifi c examples of
what I want to recognize. For example, “What is one plus two?”
and, “What is three plus four?”

Th en, I determine the corresponding general template, for ex-
ample, “What is <x> plus <y>?” Th e template is a GrammarBuilder
and the specifi c values that go into the template are the Choices.
Th e Grammar object encapsulates the template and choices.

In the demo, I restrict the numbers to add to 1 through 4, and
add them as strings to the Choices collection. A better approach is:

string[] numbers = new string[] { "1", "2", "3", "4" };
Choices ch_Numbers = new Choices(numbers);

I present the weaker approach to create a Choices collection for two
reasons. First, adding one string at a time was the only approach I saw in
other speech examples. Second, you might think that adding one string
at a time shouldn’t even work; the real-time Visual Studio IntelliSense
shows that one of the Add overloads accepts a parameter of type “params
string[] phrases.” If you didn’t notice the params keyword you might think

Figure 3 Demo Console Application Source Code

using System;
using Microsoft.Speech.Recognition;
using Microsoft.Speech.Synthesis;
using System.Globalization;
namespace ConsoleSpeech
{
 class ConsoleSpeechProgram
 {
 static SpeechSynthesizer ss = new SpeechSynthesizer();
 static SpeechRecognitionEngine sre;
 static bool done = false;
 static bool speechOn = true;

 static void Main(string[] args)
 {
 try
 {
 ss.SetOutputToDefaultAudioDevice();
 Console.WriteLine("\n(Speaking: I am awake)");
 ss.Speak("I am awake");

 CultureInfo ci = new CultureInfo("en-us");
 sre = new SpeechRecognitionEngine(ci);
 sre.SetInputToDefaultAudioDevice();
 sre.SpeechRecognized += sre_SpeechRecognized;

 Choices ch_StartStopCommands = new Choices();
 ch_StartStopCommands.Add("speech on");
 ch_StartStopCommands.Add("speech off");
 ch_StartStopCommands.Add("klatu barada nikto");
 GrammarBuilder gb_StartStop = new GrammarBuilder();
 gb_StartStop.Append(ch_StartStopCommands);
 Grammar g_StartStop = new Grammar(gb_StartStop);

 Choices ch_Numbers = new Choices();
 ch_Numbers.Add("1");
 ch_Numbers.Add("2");
 ch_Numbers.Add("3");
 ch_Numbers.Add("4");

 GrammarBuilder gb_WhatIsXplusY = new GrammarBuilder();
 gb_WhatIsXplusY.Append("What is");
 gb_WhatIsXplusY.Append(ch_Numbers);
 gb_WhatIsXplusY.Append("plus");
 gb_WhatIsXplusY.Append(ch_Numbers);
 Grammar g_WhatIsXplusY = new Grammar(gb_WhatIsXplusY);

 sre.LoadGrammarAsync(g_StartStop);
 sre.LoadGrammarAsync(g_WhatIsXplusY);
 sre.RecognizeAsync(RecognizeMode.Multiple);

 while (done == false) { ; }

 Console.WriteLine("\nHit <enter> to close shell\n");
 Console.ReadLine();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.ReadLine();
 }
 } // Main

 static void sre_SpeechRecognized(object sender,
 SpeechRecognizedEventArgs e)
 {
 string txt = e.Result.Text;
 float confidence = e.Result.Confidence;
 Console.WriteLine("\nRecognized: " + txt);

 if (confidence < 0.60) return;
 if (txt.IndexOf("speech on") >= 0)
 {
 Console.WriteLine("Speech is now ON");
 speechOn = true;
 }
 if (txt.IndexOf("speech off") >= 0)
 {
 Console.WriteLine("Speech is now OFF");
 speechOn = false;
 }
 if (speechOn == false) return;
 if (txt.IndexOf("klatu") >= 0 && txt.IndexOf("barada") >= 0)
 {
 ((SpeechRecognitionEngine)sender).RecognizeAsyncCancel();
 done = true;
 Console.WriteLine("(Speaking: Farewell)");
 ss.Speak("Farewell");
 }

 if (txt.IndexOf("What") >= 0 && txt.IndexOf("plus") >= 0)
 {
 string[] words = txt.Split(' ');
 int num1 = int.Parse(words[2]);
 int num2 = int.Parse(words[4]);
 int sum = num1 + num2;
 Console.WriteLine("(Speaking: " + words[2] + " plus " +
 words[4] + " equals " + sum + ")");
 ss.SpeakAsync(words[2] + " plus " + words[4] +
 " equals " + sum);
 }
 } // sre_SpeechRecognized
 } // Program
} // ns

Untitled-4 1 9/2/14 3:19 PM

www.textcontrol.com/html5

msdn magazine46 Voice Recognition

the Add method accepts only an array of strings, rather than either an
array of type string or a single string. I recommend passing an array.

Creating a Choices collection of consecutive numbers is some-
what a special case, and allows a programmatic approach like this:

string[] numbers = new string[100];
for (int i = 0; i < 100; ++i)
 numbers[i] = i.ToString();
Choices ch_Numbers = new Choices(numbers);

Aft er creating the Choices to fi ll in the slots of the Grammar-
Builder, the demo creates the GrammarBuilder and then the
controlling Grammar, like so:

GrammarBuilder gb_WhatIsXplusY = new GrammarBuilder();
gb_WhatIsXplusY.Append("What is");
gb_WhatIsXplusY.Append(ch_Numbers);
gb_WhatIsXplusY.Append("plus");
gb_WhatIsXplusY.Append(ch_Numbers);
Grammar g_WhatIsXplusY = new Grammar(gb_WhatIsXplusY);

Th e demo uses a similar pattern to create a Grammar for start-
and stop-related commands:

Choices ch_StartStopCommands = new Choices();
ch_StartStopCommands.Add("speech on");
ch_StartStopCommands.Add("speech off");
ch_StartStopCommands.Add("klatu barada nikto");
GrammarBuilder gb_StartStop = new GrammarBuilder();
gb_StartStop.Append(ch_StartStopCommands);
Grammar g_StartStop = new Grammar(gb_StartStop);

You have a lot of fl exibility when defi ning grammars. Here, the
commands “speech on,” “speech off ,” and “klatu barada nikto” are all
placed in the same grammar, because they’re logically related. Th e
three commands could’ve been defi ned in three separate grammars,
or you can put the “speech on” and “speech off ” commands in one
grammar and the “klatu barada nikto” command in a second grammar.

Aft er all the Grammar objects have been created, they’re passed
to the speech recognizer, and speech recognition is activated:

sre.LoadGrammarAsync(g_StartStop);
sre.LoadGrammarAsync(g_WhatIsXplusY);
sre.RecognizeAsync(RecognizeMode.Multiple);

Th e RecognizeMode.Multiple argument is required when you
have more than one grammar, which will be the case in all but the
simplest programs. Th e Main method fi nishes like so:

...
 while (done == false) { ; }
 Console.WriteLine("\nHit <enter> to close shell\n");
 Console.ReadLine();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.ReadLine();
 }
} // Main

The curious-looking empty while loop allows the console
application shell to stay alive. Th e loop will terminate when Boolean
class-scope variable “done” is set to true by the speech recognizer
event handler.

Handling Recognized Speech
Th e code for the speech-recognized event handler begins like this:

static void sre_SpeechRecognized(object sender,
 SpeechRecognizedEventArgs e)
{
 string txt = e.Result.Text;
 float confidence = e.Result.Confidence;
 Console.WriteLine("\nRecognized: " + txt);
 if (confidence < 0.60) return;
...

Th e actual text that’s recognized is stored in the SpeechRecognized-
EventArgs Result.Text property. You can also use the Result.Words
collection. Th e Result.Confi dence property holds a value between

0.0 and 1.0 that’s a rough measure of how likely the
spoken text matches any of the grammars associated
with the recognizer. Th e demo instructs the event
handler to ignore any low-confi dence-recognized text.

Confi dence values can vary wildly depending
on the complexity of your grammars, the quality
of your microphone and so on. For example, if the
demo program must recognize only 1 through 4,
the confidence values on my machine are typi-
cally about 0.75. However, if the grammar must
recognize 1 through 100, the confidence values
drop to about 0.25. In short, you must typically
experiment with confidence values to get good
speech-recognition results.

Next, the speech-recognizer event handler
toggles recognition on and off :

if (txt.IndexOf("speech on") >= 0)
{
 Console.WriteLine("Speech is now ON");
 speechOn = true;
}
if (txt.IndexOf("speech off") >= 0)
{
 Console.WriteLine("Speech is now OFF");
 speechOn = false;
}
if (speechOn == false) return;

Although perhaps not entirely obvious at fi rst,
the logic should make sense if you examine it for a
moment. Next, the secret exit command is processed:Figure 4 The SDK Installation Main Page at the Microsoft Download Center

Untitled-7 1 11/5/14 4:57 PM

www.nevron.com

msdn magazine48 Voice Recognition

if (txt.IndexOf("klatu") >= 0 && txt.IndexOf("barada") >= 0)
{
 ((SpeechRecognitionEngine)sender).RecognizeAsyncCancel();
 done = true;
 Console.WriteLine("(Speaking: Farewell)");
 ss.Speak("Farewell");
}

Notice that the speech recognition engine can in fact recognize
nonsense words. If a Grammar object contains words that aren’t in
the object’s built-in dictionary, the Grammar attempts to identify
such words as best it can using semantic heuristics, and is usually
quite successful. Th is is why I used “klatu” rather than the correct
“klaatu” (from an old science fi ction movie).

Also notice that you don’t have to process the entire recognized Gram-
mar text (“klatu barada nikto”), you only need to have enough infor-
mation to uniquely identify a grammar phrase (“klatu” and “barada”).

Next, commands to add two numbers are processed, and the
event handler, Program class and namespace fi nish up:

...
 if (txt.IndexOf("What") >= 0 && txt.IndexOf("plus") >= 0)
 {
 string[] words = txt.Split(' ');
 int num1 = int.Parse(words[2]);
 int num2 = int.Parse(words[4]);
 int sum = num1 + num2;
 Console.WriteLine("(Speaking: " + words[2] +
 " plus " + words[4] + " equals " + sum + ")");
 ss.SpeakAsync(words[2] + " plus " + words[4] +
 " equals " + sum);
 }
 } // sre_SpeechRecognized
 } // Program
} // ns

Notice that the text in Results.Text is case-sensitive (“What” vs.
“what”). Once you’ve recognized a phrase, you can parse out specifi c

words. In this case, the recognized text has form, “What is x plus
y,” so the “What” is in words[0], and the two numbers to add (as
strings) are in words[2] and words[4].

Installing the Libraries
Th e explanation of the demo program assumes you have all the
necessary speech libraries installed on your machine. To create
and run the demo programs, you need to install four packages: an
SDK to be able to create the demos in Visual Studio, a runtime to
be able to execute the demos aft er they’ve been created, a recogni-
tion language, and a synthesis (speaking) language.

To install the SDK, do an Internet search for “Speech Platform
11 SDK.” Th is will bring you to the correct page in the Microsoft
Download Center, as shown in Figure 4. Aft er clicking the Down-
load button, you’ll see the options shown in Figure 5. Th e SDK
comes in 32-bit and 64-bit versions. I strongly recommend using
the 32-bit version regardless of what your host machine is. The
64-bit version doesn’t interoperate with some applications.

You don’t need anything except the single x86 (32-bit) .msi fi le.
Aft er selecting that fi le and clicking the Next button, you can run
the installation program directly. Th e speech libraries don’t give
you much feedback about when the installation has completed,
so don’t look for some sort of success message.

Next, you want to install the speech runtime. Aft er fi nding the
main page and clicking the Next button, you’ll see the options
shown in Figure 6.

It’s critical you choose the same platform version (11 in the demo)
and bit version (32 [x86] or 64 [x64]) as the SDK. Again, I strongly

recommend the 32-bit version even if you’re work-
ing on a 64-bit machine.

Next, you can install the recognition language.
The download page is shown in Figure 7. The
demo used fi le MSSpeech_SR_en-us_TELE.msi
(English-U.S.). Th e SR stands for speech recog-
nition and the TELE stands for telephony, which
means that the recognition language is designed
to work with low-quality audio input, such as that
from a telephone or desktop microphone.

Finally, you can install the speech synthesis language
and voice. Th e download page is shown in Figure 8.
Th e demo uses fi le MSSpeech_TTS_en-us_Helen.msi.
Th e TTS stands for text-to-speech, which is essentially
a synonym phrase for speech synthesis. Notice there
are two English, U.S. voices available. Th ere are other
English, non-U.S. voices, too. Creating synthesis fi les
is quite diffi cult. It’s possible to buy and then install
other voices from a handful of companies.

Interestingly, even though a speech recognition
language and a speech synthesis voice/language are
really two entirely diff erent things, both downloads
are options from a single download page. Th e Down-
load Center UI allows you to check both a recogni-
tion language and a synthesis language, but trying
to install them at the same time was disastrous for
me, so I recommend installing them one at a time.Figure 5 Installing the Speech SDK

49December 2014msdnmagazine.com

Microsoft.Speech vs. System.Speech
If you’re new to speech recognition and synthesis for Windows appli-
cations, you can easily get confused by the documentation because
there are multiple speech platforms. In particular, in addition to the
Microsoft .Speech.dll library used by the demos in this article, there’s a
System.Speech.dll library that’s part of the Windows
OS. Th e two libraries are similar in the sense that the
APIs are almost, but not quite, the same. So, if you’re
searching online for speech examples and you see a
code snippet rather than a complete program, it’s not
always obvious if the example is referring to System.
Speech or Microsoft .Speech.

The bottom line is, if you’re a beginner with
speech, for adding speech to a .NET applica-
tion, use the Microsoft.Speech library, not the
System.Speech library.

Although the two libraries share some of the
same core base code and have similar APIs, they’re
defi nitely diff erent. Some of the key diff erences are
summarized in the table in Figure 9.

Th e System.Speech DLL is part of the OS, so
it’s installed on every Windows machine. The
Microsoft .Speech DLL (and an associated runtime
and languages) must be downloaded and installed
onto a machine. System.Speech recognition usually
requires user training, where the user reads some
text and the system learns to understand that
particular user’s pronunciation. Microsoft .Speech
recognition works immediately for any user.
System.Speech can recognize virtually any words
(called free dictation). Microsoft.Speech will
recognize only words and phrases that are in a
program-defi ned Grammar.

Adding Speech Recognition to a
Windows Forms Application
The process of adding speech recognition and
synthesis to a Windows Forms or WPF applica-
tion is similar to that of adding speech to a console
application. To create the dummy demo program
shown in Figure 2, I launched Visual Studio and
created a new C# Windows Forms application and
named it WinFormSpeech.

Aft er the template code loaded into the Visual
Studio editor, in the Solution Explorer window,
I added a Reference to fi le Microsoft .Speech.dll,
just as I did with the console application demo.
At the top of the source code, I deleted unnec-
essary using statements, leaving just references
to the System, Data, Drawing and Forms
namespaces. I added two using statements to
bring the Microsoft.Speech.Recognition and
System.Globalization namespaces into scope.

Th e Windows Forms demo doesn’t use speech
synthesis, so I don’t use a reference to the

Microsoft .Speech.Synthesis library. Adding speech synthesis to a
Windows Forms app is exactly like adding synthesis to a console app.

In the Visual Studio design view, I dragged a TextBox control,
a CheckBox control and a ListBox control onto the Form. I
double-clicked on the CheckBox control and Visual Studio

Figure 7 Installing the Recognition Language

Figure 6 Installing the Speech Runtime

www.msdnmagazine.com

msdn magazine50 Voice Recognition

automatically created a skeleton of the Check-
Changed event handler method.

Recall that the console app demo started listening
for spoken commands immediately, and continu-
ously listened until the app exited. Th at approach
can be used for a Windows Forms app, but instead
I decided to allow the user to toggle speech recog-
nition on and off by using the CheckBox control.

Th e source code for the demo program’s Form1.cs
fi le, which defi nes a partial class, is presented in
Figure 10. A speech recognition engine object is de-
clared and instantiated as a Form member. Inside the
Form constructor, I hook up the SpeechRecognized
event handler and create and load two Grammars:

public Form1()
{
 InitializeComponent();
 sre.SetInputToDefaultAudioDevice();
 sre.SpeechRecognized += sre_SpeechRecognized;
 Grammar g_HelloGoodbye = GetHelloGoodbyeGrammar();
 Grammar g_SetTextBox = GetTextBox1TextGrammar();
 sre.LoadGrammarAsync(g_HelloGoodbye);
 sre.LoadGrammarAsync(g_SetTextBox);
 // sre.RecognizeAsync() is in CheckBox event
}

I could’ve created the two Grammar objects
directly as I did in the console application demo,
but instead, to keep things a bit cleaner, I defi ned
two helper methods, GetHelloGoodbyeGrammar
and GetTextBox1TextGrammar, to do that work.

Notice that the Form constructor doesn’t call the RecognizeAsync
method, which means that speech recognition won’t immediately
be active when the application is launched.

Helper method GetHelloGoodbyeGrammar follows the same
pattern as described earlier in this article:

static Grammar GetHelloGoodbyeGrammar()
{
 Choices ch_HelloGoodbye = new Choices();
 ch_HelloGoodbye.Add("hello"); // Should be an array!
 ch_HelloGoodbye.Add("goodbye");
 GrammarBuilder gb_result =
 new GrammarBuilder(ch_HelloGoodbye);
 Grammar g_result = new Grammar(gb_result);
 return g_result;
}

Similarly, the helper method that creates a Grammar object to
set the text in the Windows Forms TextBox control doesn’t pres-
ent any surprises:

static Grammar GetTextBox1TextGrammar()
{
 Choices ch_Colors = new Choices();
 ch_Colors.Add(new string[] { "red", "white", "blue" });
 GrammarBuilder gb_result = new GrammarBuilder();
 gb_result.Append("set text box 1");
 gb_result.Append(ch_Colors);
 Grammar g_result = new Grammar(gb_result);
 return g_result;
}

The helper will recognize the phrase, “set text box 1 red.”
However, the user doesn’t have to speak this phrase exactly. For ex-
ample, a user could say, “Please set the text in text box 1 to red,” and
the speech recognition engine would still recognize the phrase as
“set text box 1 red,” although with a lower confi dence value than if
the user had matched the Grammar pattern exactly. Put another
way, when you’re creating Grammars, you don’t have to take into

account every variation of a phrase. Th is dramatically simplifi es
using speech recognition.

Th e CheckBox event handler is defi ned like so:
private void checkBox1_CheckedChanged(object sender, EventArgs e)
{
 if (checkBox1.Checked == true)
 sre.RecognizeAsync(RecognizeMode.Multiple);
 else if (checkBox1.Checked == false) // Turn off
 sre.RecognizeAsyncCancel();
}

The speech recognition engine object, sre, always remains in exis-
tence during the Windows Forms app’s lifetime. Th e object is activated
and deactivated using methods RecognizeAsync and RecognizeAsync-
Cancel when the user toggles the CheckBox control.

Th e defi nition of the speech-recognized event handler begins with:
void sre_SpeechRecognized(object sender, SpeechRecognizedEventArgs e)
{
 string txt = e.Result.Text;
 float conf = e.Result.Confidence;
 if (conf < 0.65) return;
...

In addition to the more or less always-used Result.Text and
Result.Confidence properties, the Result object has several
other useful, but more advanced, properties you might want to
investigate, such as Homophones and ReplacementWordUnits.

Microsoft.Speech.dll System.Speech.dll
Must install separately Part of the OS (Windows Vista+)
Can package with apps Cannot redistribute
Must construct Grammars Uses Grammars or free dictation
No user training Training for specifi c user
Managed code API (C#) Native code API (C++)

Figure 9 Microsoft.Speech vs System.Speech

Figure 8 Installing the Synthesis Language and Voice

51December 2014msdnmagazine.com

Additionally, the speech recognition engine has several useful
events such SpeechHypothesized.

Th e event handler code concludes with:
...
 this.Invoke(new MethodInvoker(() =>
 { listBox1.Items.Add("I heard you say: " + txt); }));

 if (txt.IndexOf("text") >= 0 &&
 txt.IndexOf("box") >= 0 && txt.IndexOf("1")>= 0)
 {
 string[] words = txt.Split(' ');
 this.Invoke(new MethodInvoker(() =>
 { textBox1.Text = words[4]; }));
 }
}

Th e recognized text is echoed in the ListBox control using the
MethodInvoker delegate. Because the speech recognizer is running
in a diff erent thread from the Windows Forms UI thread, a direct
attempt to access the ListBox control, such as:

listBox1.Items.Add("I heard you say: " + txt);

will fail and throw an exception. An alternative to Method-
Invoker is to use the Action delegate like this:

this.Invoke((Action)(() =>
 listBox1.Items.Add("I heard you say: " + txt)));

In theory, in this situation, using the MethodInvoker delegate
is slightly more effi cient than using the Action delegate because
MethodInvoker is part of the Windows.Forms namespace and,
therefore, specific to Windows Forms applications. The Action
delegate is more general. This example shows you can com-
pletely manipulate a Windows Forms application using speech
recognition—incredibly powerful and useful.

Wrapping Up
Th e information presented in this article should get you up and
running if you want to explore speech recognition and speech syn-
thesis with .NET applications. Mastering the technology itself isn’t
too diffi cult once you get over the initial installation and learning
hurdles. Th e real issue with speech recognition and synthesis is
determining when they’re useful.

With console applications, you can create interesting back-and-forth
dialogs where the user asks a question and the application answers,
resulting in a Cortana-like environment. You have to be a bit care-
ful because when your computer speaks, that speech will be picked
up by the microphone, and may be recognized. I’ve found myself
in some amusing situations where I ask a question, the application
recognizes and answers, but the spoken answer triggers another rec-
ognition event, and I end up in an entertaining infi nite speech loop.

Another possible use of speech with a console application is
to recognize commands such as, “Launch Notepad” and “Launch
Word.” In other words, a console application can be used to
perform actions on your host machine that would normally be
performed using multiple mouse and keyboard interactions.

DR. JAMES MCCAFFREY works for Microsoft Research in Redmond, Wash. He
has worked on several Microsoft products including Internet Explorer and Bing.
Dr. McCaff rey can be reached at jammc@microsoft .com.

THANKS to the following Microsoft Research technical experts for reviewing
this article: Rob Gruen, Mark Marron and Curtis von Veh

Figure 10 Adding Speech Recognition to a Windows Forms

using System;
using System.Data;
using System.Drawing;
using System.Windows.Forms;
using Microsoft.Speech.Recognition;
using System.Globalization;
namespace WinFormSpeech
{
 public partial class Form1 : Form
 {
 static CultureInfo ci = new CultureInfo("en-us");
 static SpeechRecognitionEngine sre = new SpeechRecognitionEngine(ci);

 public Form1()
 {
 InitializeComponent();

 sre.SetInputToDefaultAudioDevice();
 sre.SpeechRecognized += sre_SpeechRecognized;
 Grammar g_HelloGoodbye = GetHelloGoodbyeGrammar();
 Grammar g_SetTextBox = GetTextBox1TextGrammar();
 sre.LoadGrammarAsync(g_HelloGoodbye);
 sre.LoadGrammarAsync(g_SetTextBox);
 // sre.RecognizeAsync() is in CheckBox event
 }

 static Grammar GetHelloGoodbyeGrammar()
 {
 Choices ch_HelloGoodbye = new Choices();
 ch_HelloGoodbye.Add("hello");
 ch_HelloGoodbye.Add("goodbye");
 GrammarBuilder gb_result = new GrammarBuilder(ch_HelloGoodbye);
 Grammar g_result = new Grammar(gb_result);
 return g_result;
 }

 static Grammar GetTextBox1TextGrammar()
 {

 Choices ch_Colors = new Choices();
 ch_Colors.Add(new string[] { "red", "white", "blue" });
 GrammarBuilder gb_result = new GrammarBuilder();
 gb_result.Append("set text box 1");
 gb_result.Append(ch_Colors);
 Grammar g_result = new Grammar(gb_result);
 return g_result;
 }

 private void checkBox1_CheckedChanged(object sender, EventArgs e)
 {
 if (checkBox1.Checked == true)
 sre.RecognizeAsync(RecognizeMode.Multiple);
 else if (checkBox1.Checked == false) // Turn off
 sre.RecognizeAsyncCancel();
 }

 void sre_SpeechRecognized(object sender, SpeechRecognizedEventArgs e)
 {
 string txt = e.Result.Text;
 float conf = e.Result.Confidence;

 if (conf < 0.65) return;

 this.Invoke(new MethodInvoker(() =>
 { listBox1.Items.Add("I heard you say: " + txt); })); // WinForm specific

 if (txt.IndexOf("text") >= 0 && txt.IndexOf("box") >=
 0 && txt.IndexOf("1")>= 0)
 {
 string[] words = txt.Split(' ');
 this.Invoke(new MethodInvoker(() =>
 { textBox1.Text = words[4]; })); // WinForm specific
 }
 }
 } // Form
} // ns

www.msdnmagazine.com
mailto:jammc@microsoft.com

msdn magazine52

Microsoft .NET developers typically build great apps
using JavaScript on the client side and ASP.NET (C# or Visual Basic
.NET) on the server side. But what if you could use one common
language to build apps on all layers of the stack, everything from
the browser and the services layer to server-side business process-
ing, and even to querying and programming in the database? Now
you can, with Node.js. Node.js has been around for a number of
years, but its adoption has picked up signifi cantly in recent years.
Node.js stacks, such as the MongoDB, Express, AngularJS, Node.js

(MEAN) stack, bring many benefi ts to building apps, including the
fact that there’s very little disconnect (if any), between front-end,
middle-layer and back-end developers. In many cases the same
programmer can develop all the layers of an app, because it’s all
done in JavaScript. Moreover, you can now build Node.js apps
directly within Visual Studio 2013 with Node.js Tools for Visual
Studio (NTVS), including full debugging capability.

Getting Started
In this article I’m going to show you that by using the MEAN stack,
building create, read, update and delete (CRUD)-heavy applications
can be fast and easy. I’m going to assume you have a basic concep-
tual understanding of AngularJS (angularjs.org), Node.js (nodejs.org),
MongoDB (mongodb.org) and Express (expressjs.com). If you’re planning
to follow along, please be sure you have the following installed:

• Visual Studio 2013 Update 3 (bit.ly/1o2VvTc)
• Node.js Tools for Visual Studio (nodejstools.codeplex.com)
• MongoDB (Download, bit.ly/1rw0BZm; Install, bit.ly/1uJN8eO)

Th e fi rst step is to open the New Project dialog in Visual Studio
and choose the Blank Microsoft Azure Node.js Web Application
template, as shown in Figure 1. You could shortcut a few items by
choosing the Basic Microsoft Azure Express Application template,
but a blank template provides more granular control over what to
install as middleware for the Node.js application.

What is Node.js middleware? To oversimplify, it’s simply mod-
ules you can plug in to your Node.js application’s Express HTTP

N O DE . J S

Building Web Apps on
the MEAN Stack with
OData in Microsoft Azure
Long Le

Note that Node Tools for Visual Studio and MongoLab on
Microsoft Azure are currently in preview (beta) mode.
Information is subject to change.

This article discusses:

• Building Web apps on the MEAN stack

• Confi guring OData with JayData in Node.js

• Charts and graphs with Kendo UI

• Continuous integration and deployment to Azure with Git

Technologies discussed:
Microsoft Azure, Node.js Tools for Visual Studio, MongoDB,
Express, AngularJS, Node.js

Code download available at:
msdnmeanstack.codeplex.com

http://msdnmeanstack.codeplex.com
www.angularjs.org
www.expressjs.com
www.nodejs.org
www.mongodb.org
www.bit.ly/1o2VvTc
http://nodejstools.codeplex.com
www.bit.ly/1rw0BZm
www.bit.ly/1uJN8eO

53December 2014msdnmagazine.com

request pipeline. Typically, the
middleware gets executed for
every HTTP request.

Next, install Express using the
Node Package Manager (NPM). If
you’re familiar with NuGet packages,
NPM packages are basically the same
thing, but for Node.js applications.

As you can see in Figure 2, I
added @3 in the Other npm argu-
ments text fi eld, in order to install
the latest version of Express 3.
Although Express 4 has been
released, you need to stick with
Express 3 because the other mod-
ules that will be installed haven’t
been updated to some of the break-
ing changes of Express 4.

You’ll need to download and
install the rest of the required NPM
packages: express, odata-server,
stringify-object and body-parser,
but there’s no need to have any
“Other npm arguments,” as I’ll be using the latest version of each
of these npm packages.

Setting up the Server.js File
Th e server.js (sometimes named app.js) fi le, shown in Figure 3, is
basically the starting point of the Node.js app. Th is is where you con-
fi gure your application and inject any needed middleware modules.

In order to consume the required NPM packages/libraries that you
download, you need to use the keyword require(“package name”) to
bring these libraries in scope for a given Node.js class, as shown in
lines 1 to 6 in Figure 3. I’ll quickly review the contents of server.js:

• Line 1-6: Bring all the required packages into the server.js
scope so they can be initialized and plugged into the HTTP
request pipeline.

• Line 7: Initialize a new Express Web application.
• Line 8: Defi ne the OData confi guration for the REST

endpoints; more on this in a bit.
• Line 10: Plug in express.static and pass the directory

path to expose the directory path that’s passed in
publicly. Th is lets anyone reach any content placed
in the NodejsWebApp/Public directory. For exam-
ple, http://localhost:1337/image/myImage.gif would
render the image in NodejsWebApp/Public/image/
myimage.gif to the browser.

• Line 12: Set up a default landing page using the
app.get method. Th e fi rst parameter takes in the path
(the root path of the app). Here, I’m simply rendering
a static HTML fi le by providing the path to it.

• Line 15: Instruct the application to listen and serve
HTTP requests on the specifi ed port; for development
purposes I’m using port 1337, so my application will
listen for requests at http://localhost:1337.

• Line 16: Print the environment variables to the Node.js console
window to bring some visibility to the Node.js environment.

Confi guring OData
With server.js set up, I’m going to focus now on Line 8, where I
confi gure the OData REST endpoints. First, you’ll need to create
two modules: NodejsWebApp/server/data/northwind.js (Figure
4) and NodejsWebApp/server/data/odata.js (Figure 5).

Note that MongoDB is a NoSQL database—that is, a non-relational
document database. When migrating a traditional Northwind da-
tabase to MongoDB to take advantage of the NoSQL model, there
can be many ways to structure it. For this article, I’ll leave the North-
wind schema, for the most part, intact. (I’ve removed other entity
model defi nitions, registrations, and inserts from Figure 4 for brevity.)

Figure 1 Create a Blank Microsoft Azure Node.js Web Application

Figure 2 Finding and Installing NPM Packages Such as Express

www.msdnmagazine.com

msdn magazine54 Node.js

In Figure 4 the models and entities are simply being defi ned,
which can be reused later on the client side when performing
CRUD operations, such as creating new Products, for example.
Also, the NorthwindContext.generateTestData method will seed the
database every time the application is restarted, which will come
in handy when you deploy the application to a live demo site. Th is
makes it easy to refresh the data whenever needed simply by recy-
cling the application. A more elegant approach would be to wrap
this code into an Azure WebJob and schedule it to refresh at a set
frequency, but leave it as is for now. Th e last line in this module,
module.exports = exports = NorthwindContext, wraps everything
so that later on you can “require” this module and use the “new”
operator to create a new instance of the Northwind object type,
which is done in the NodejsWebApp/server/data/odata.js mod-
ule, shown in Figure 5.

You can query MongoDB via the command line or by using one
of the many MongoDB GUI tools out there (such as RoboMongo)
to confirm that the seed data was indeed inserted. Because the
focus of this article is on OData, use LINQPad because it includes
a built-in provider to query with LINQ against OData version 3.

To test the endpoints, download and install LINQPad (linqpad.net),
and then run your application (F5 in Visual Studio 2013). Th en fi re
up LINQPad and set up a new connection to the OData endpoint.
To do so, click Add connection and select OData as your LINQPad
data provider. Th en confi gure the OData LINQ connection with
the URI http://localhost:1337/northwind.svc; username, Admin;
and password, Admin. LINQPad will render the hierarchy based
on the OData CSDL endpoint, as you can see in the upper-left
corner of Figure 6.

(function (odata) {

 var stringify = require('stringify-object');
 var config = require("../config/config");
 console.log(stringify(config));

 odata.config = function (app) {
 var express = require('express');
 require('odata-server');

 var northwindContextType = require('./northwind.js');

 var northwindContext = new NorthwindContext({
 address: config.mongoDb.address,
 port: config.mongoDb.port,
 username: config.mongoDb.username,
 password: config.mongoDb.password,
 name: config.mongoDb.name,
 databaseName: config.mongoDb.databaseName,
 dbCreation: $data.storageProviders.DbCreationType.DropAllExistingTables
 });

 console.log("northwindContext :");
 stringify(northwindContext);

 northwindContext.onReady(function (db) {
 northwindContextType.generateTestData(db, function (count) {
 console.log('Test data upload successful. ', count, 'items inserted.');
 console.log('Starting Northwind OData server.');

 app.use(express.basicAuth(function (username, password) {
 if (username == 'admin') {
 return password == 'admin';
 } else return true;
 }));

Figure 5 NodejsWebApp/server/data/odata.js Module

1 var http = require('http');
2 var express = require('express');
3 var odata = require('./server/data/odata');
4 var stringify = require('stringify-object');
5 var config = require("./server/config/config");
6 var bodyParser = require("body-parser");

7 var app = express();
8 odata.config(app);

9 app.use(bodyParser.json());
10 app.use(express.static(__dirname + "/public"));

11 var port = process.env.port || 1337;

12 app.get("/", function(req, res) {
13 res.sendfile("/public/app/views/index.html", { root: __dirname });
14 });

15 http.createServer(app).listen(port);
16 console.log(stringify(process.env));

Figure 3 The Server.js File

$data.Entity.extend('Northwind.Category', {
 CategoryID: { key: true, type: 'id', nullable: false, computed: true },
 CategoryName: { type: 'string', nullable: false, required: true, maxLength: 15 },
 Description: { type: 'string', maxLength: Number.POSITIVE_INFINITY },
 Picture: { type: 'blob', maxLength: Number.POSITIVE_INFINITY },
 Products: { type: 'Array', elementType: 'Northwind.Product',
inverseProperty: 'Category' }
});

$data.Entity.extend('Northwind.Product', {
 ProductID: { key: true, type: 'id', nullable: false, computed: true },
 ProductName: { type: 'string', nullable: false, required: true, maxLength: 40 },
 EnglishName: { type: 'string', maxLength: 40 },
 QuantityPerUnit: { type: 'string', maxLength: 20 },
 UnitPrice: { type: 'decimal' },
 UnitsInStock: { type: 'int' },
 UnitsOnOrder: { type: 'int' },
 ReorderLevel: { type: 'int' },
 Discontinued: { type: 'bool', nullable: false, required: true },
 Category: { type: 'Northwind.Category', inverseProperty: 'Products' },
 Order_Details: { type: 'Array', elementType: 'Northwind.Order_Detail',
inverseProperty: 'Product' },
 Supplier: { type: 'Northwind.Supplier', inverseProperty: 'Products' }
});

$data.Class.define("NorthwindContext", $data.EntityContext, null, {
 Categories: { type: $data.EntitySet, elementType: Northwind.Category },
 Products: { type: $data.EntitySet, elementType: Northwind.Product },
 // Other entity registrations removed for brevity, please see actual source code.
});

// Other entity definitions removed for brevity, please see actual source code.

NorthwindContext.generateTestData = function(context, callBack) {

 var category1 = new Northwind.Category({ CategoryName: 'Beverages',
 Description: 'Soft drinks, coffees, teas, beer, and ale' });
 // Other category instances removed for brevity, please see actual source code.

 context.Categories.add(category1);
 // Other category inserts removed for brevity, please see actual source code.

 context.Products.add(new Northwind.Product({ ProductName: 'Ipoh
Coffee', EnglishName: 'Malaysian Coffee',
 UnitPrice: 46, UnitsInStock: 670, Discontinued: false, Category: category1 }));
 // Other product inserts removed for brevity, please see actual source code.

 context.saveChanges(function (count) {
 if (callBack) {
 callBack(count);
 }
 });
};

module.exports = exports = NorthwindContext;

Figure 4 NodejsWebApp/server/data/northwind.js

www.linqpad.net

Untitled-1 1 4/1/14 10:47 AM

www.spreadsheetGear.com

msdn magazine56 Node.js

Th ere should be data for Products based on the seed data used
on the server-side (NodejsWebApp/server/northwind.js), so you’ll
want to do a quick LINQ query on Products using LINQPad:

Products.Take(100)

Figure 6 also shows the query and its results.
As you can see, the OData server is properly set up and you’re

able to issue LINQ queries over HTTP and get a list of products
back. If you click on the Request Log tab, you can actually see the
HTTP GET OData URL LINQPad generates from the LINQ state-
ment: http://localhost:1337/northwind.svc/Products()?$top=100.

Once you’ve confi rmed your OData server is indeed running on
the Node.js Express Web app, you’ll want to make use of this and
start building out some common use cases that can consume that
OData goodness. Place everything on the client side in the “public”
folder and all code that runs on the server side in a folder named
Server. Create all the fi les needed for your app in advance as stubs
or placeholders, and then come back around and fi ll in the blanks.
Figure 7 shows the structure of the NodejsWebApp project.

Th e app.js fi le (NodejsWebApp/public/app/app.js) shown in Fig-
ure 8 is basically the starting point of the (client-side) AngularJS
application. I won’t go into all the details; the takeaway here is that
you want to register your client-side routes for your single-page
application (SPA) with the $routeProvider. For each of the routes
(defi ned with the .when method), provide a
path to the view (HTML) to render by setting
the templateUrl property, and specify a view’s
controller by setting the controller property
for a given route. Th e AngularJS controller is
where all of the code lives to facilitate whatever
the view requires—in short, all the JavaScript
code for the view. Th e .otherwise method is
used to confi gure a default route (the home
view) for any incoming requests that don’t
match any of the routes.

Here’s a quick recap of how the concerns
of the Model-View-ViewModel (MVVM)
pattern are represented in the app:

• View = *.html
• ViewModel = *controller.js
• Model = entities that are returned

from REST endpoints, usually are
domain models and/or entities

Figure 9 shows which fi les in the
application address which concern
in the MVVM pattern.

Defi ning the JayData
Client-Side DataContext
as an AngularJS Service
Because most of the controllers will
use the Northwind context, you’ll
want to create a service/factory
named northwindFactory. And
because the initialization of the
Northwind context is async, you’ll

want to set up a JavaScript promise to ensure the Northwind context
initialization has completed and is ready to be used by the time any
of the controllers are loaded. So, in short, the Northwind context
will fi nish loading before any controller with a dependency on the
northwindFactory loads. Notice that all of the confi gured routes

have a “resolve” property, which is how you defi ne what promises
need to resolve before the controller is loaded. In this case, the
property, “northwind,” is set to the northwindFactory. Th e property
name “northwind” will also be the name of the instance that will be
injected into the controller. You’ll see the constructor function for
productController.js in a bit (in Figure 11), where the northwind-

Factory is injected as northwind, the property
name that’s set for northwindFactory in the
resolve property in the routes.

Index.html, shown in Figure 10, will
basically be the layout page and AngularJS
will know which views to swap into the div
with the attribute ng-view. Note that you have
to specify the AngularJS app by confi guring
any HTML element that’s a parent element of
the div attributed with “ng-view.” In this case
you want to set “ng-app” to “myApp,” which
is what the application is named in the app.js.

Note that I’m using a content delivery
network (CDN) for all of my client-side
JavaScript library includes. You can download
the client-side libraries locally using Bower at
the command line (as you’d typically do for
.NET projects with NuGet using the Pack-
age Manager console). In the Microsoft .NET

Figure 6 A LINQ Query and Its Results Using the Discovered Data Model

Figure 7 The NodejsWebApp Project

Because most of the controllers
will use the Northwind

context, you’ll want to create
a service/factory named

northwindFactory.

Untitled-2 1 3/27/14 12:42 PM

www.gdpicture.com

msdn magazine58 Node.js

Framework you use NuGet for both client-side and server-side
packages. In the Node.js realm, however, Bower is used to down-
load client-side libraries/packages while NPM is used to download
and install server-side libraries/packages.

For the layout UI, I use a vanilla bootstrap theme, the one that
the Visual Studio ASP.NET MVC 5 project template generates.

Product View
Just a few lines of HTML are needed for the product view
(NodejsWebApp/public/app/views/products.html). Th e fi rst block
is the Kendo directive for AngularJS to render the grid:

<!-- Kendo UI's AngularJS directive for the grid -->
<div kendo-grid="grid" k-options="options"></div>

<!-- AngularJS template for our View Detail Button in the Grid Toolbar
-->
<script type="text/x-kendo-template" id="viewDetail">
 <a
 class="k-button "
 ng-click="viewDetail(this)">View Detail
</script>

Th e second block is just an AngularJS template for the custom
View Detail button you add to the grid’s toolbar.

Figure 11 shows the Product Controller, NodejsWebApp/app/
controllers/productController.js.

To hydrate the Products Grid, you need to instantiate a Kendo UI
DataSource ($scope.options.dataSource). JayData provides a helper
method to initialize a Kendo UI DataSource bound to its OData REST
endpoints. Th e JayData asKendoDataSourcehelper method knows
how to create the DataSource based on the metadata information pub-
lished by the OData server (http://localhost:1337/northwindsvc), which
is then used to confi gure the $data instance in northwindFactory in
app.js. You’ll see more of the Kendo DataSource when I demonstrate
visual impressions with the Kendo DataViz charting framework.

Along with the out-of-the-box buttons (create, save and cancel)
confi gured in the grid’s toolbar, you add a custom button to navigate

to another view that will render the complete details of a selected
product row ($scope.viewDetail). When the View Detail button
click event occurs, get the selected product DataItem and then,
using the AngularJS $location service, navigate to the edit view
(MyNodejsWebApp/scripts/app/views/edit.html) for the product.

Figure 12 shows the Edit.html fi le, NodejsWebApp/public/app/
views/edit.html.

Notice how the inputs are decorated with the ng-model attri-
bute, which is the AngularJS way of declaratively indicating that
the value for that input will be stored in a property the ng-model
value is set to on the controller $scope. For example, in the fi rst input
fi eld in this view, whose HTML element id is set to productName
(id=“productName”), ng-model is set to product.ProductName.
Th is means that whatever the user enters in the input fi eld (text-
box), the value for $scope.productName will be set accordingly.
Moreover, whatever $scope.product.productName is set to pro-
grammatically in editController will be automatically refl ected in
the value of the input fi eld for productName.

As an example, when the view fi rst loads, you load the product by
the ID passed in through URL, then set $scope.product to that prod-
uct (see Figure 13). Once this happens, everything in the view with

Figure 9 The Model-View-ViewModel Pattern

commands

binding

update

read

Controllers
/app /view /chart .html
/app /controller /edit .html
/app /controller /home .html
/app /controller /index .html
/app /controller /
product .html

ViewModel

Views
/app /view /chart .html
/app /view /edit .html /app /
view /home .html
/app /view /index .html
/app /view /product .html

View

Entities
Northwind .Product
Northwind .Category

Model

Figure 8 The App.js File

'use strict';

var myApp = angular.module('myApp',
 [
 'ngRoute',
 'ngAnimate',
 'kendo.directives',
 'jaydata'
])
 .factory("northwindFactory",
 [
 '$data',
 '$q',
 function($data, $q) {
 // Here you wrap a jquery promise into an angular promise.
 // Simply returning jquery promise causes bogus things
 var defer = $q.defer();
 $data.initService("/northwind.svc").then(function(ctx) {
 defer.resolve(ctx);
 });
 return defer.promise;
 }
])
 .config(function($routeProvider) {
 $routeProvider
 .when('/home',
 {
 templateUrl: 'app/views/home.html'
 })

 .when('/product',
 {
 templateUrl: 'app/views/product.html',
 controller: 'productController',
 resolve: {
 northwind: 'northwindFactory'
 }
 })
 .when('/edit/:id',
 {
 templateUrl: 'app/views/edit.html',
 controller: 'editController',
 resolve: {
 northwind: 'northwindFactory'
 }
 })
 .when('/chart',
 {
 templateUrl: 'app/views/chart.html',
 controller: 'chartController',
 resolve: {
 northwind: 'northwindFactory'
 }
 })
 .otherwise(
 {
 redirectTo: '/home'
 });
 });

59December 2014msdnmagazine.com

ng-model set to $scope.property.* will refl ect all the property values
in $scope.product. In the past, developers typically set values in input
fi elds using jQuery or straight JavaScript for any type of manipula-
tion of the DOM. When building an application with the MVVM
pattern (regardless of the framework), best practice is to manipulate
the DOM only through changes to the ViewModel, never directly
(for example, with JavaScript or jQuery). I’m defi nitely not implying
there’s anything wrong with JavaScript or jQuery, but if you decide
to use a pattern to solve a specifi c problem (in my case, MVVM to
maintain the separation of concerns between the View, ViewModel
and Model), it should be consistent throughout your application.

Note that you could implement a POST server-side action on
Node.js, which is what is typically done with the ASP.NET Web
API. However, the purpose here is to demonstrate how to do this
with Node.js and OData:

app.post('/api/updateProduct', function(req, res) {
 var product = req.body;
 // Process update here, typically what is done with the ASP.NET Web
API
});

For the chart view (NodejsWebApp/public/app/views/chart.html),
you need just one line of markup:

<kendo-chart k-options="options"></kendo-chart>

myApp.controller("productController",
 function($scope, northwind, $location) {

 var dataSource =
 northwind
 .Products
 .asKendoDataSource({ pageSize: 10 });

 $scope.options = {
 dataSource: dataSource,
 filterable: true,
 sortable: true,
 pageable: true,
 selectable: true,
 columns: [
 { field: "ProductID" },
 { field: 'ProductName' },
 { field: "EnglishName" },
 { field: "QuantityPerUnit" },
 { field: "UnitPrice" },
 { field: 'UnitsInStock' },
 { command: ["edit", "destroy"] }
],
 toolbar: [
 "create",
 "save",
 "cancel",
 {
 text: "View Detail",
 name: "detail",
 template: $("#viewDetail").html()
 }
],
 editable: "inline"
 };

 $scope.viewDetail = function(e) {
 var selectedRow = $scope.grid.select();

 if (selectedRow.length == 0)
 alert("Please select a row");

 var dataItem = $scope.grid.dataItem(selectedRow);;

 $location.url("/edit/" + dataItem.ProductID);
 };
 });

Figure 11 The Product Controller

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta charset="utf-8" />
 <title>NodejsWebApp</title>
 <link href="//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/css/bootstrap.min.css"
 rel="stylesheet">
 <link href="//cdn.kendostatic.com/2014.2.716/styles/kendo.common.min.css"
 rel="stylesheet" />
 <link href="//cdn.kendostatic.com/2014.2.716/styles/kendo.bootstrap.min.css"
 rel="stylesheet" />
 <link href="//cdn.kendostatic.com/2014.2.716/styles/kendo.dataviz.min.css"
 rel="stylesheet" />
 <link href="//cdn.kendostatic.com/2014.2.716/styles/
 kendo.dataviz.bootstrap.min.css" rel="stylesheet" />
 <link href="../../css/site.css" rel="stylesheet" />
 </head>
 <body>
 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle"
 data-toggle="collapse" data-target=".navbar-collapse">

 </button>
 NodejsWebApp
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">

 Home

 About

 Contact

 Product

 Chart

 </div>
 </div>
 </div>
 <!-- Binding the application to our AngularJS app: "myApp" -->
 <div class="container body-content" ng-app="myApp">

 <!-- AngularJS will swap our Views inside this div -->
 <div ng-view></div>
 <hr />
 <footer>
 <p>© 2014 - My Node.js Application</p>
 </footer>
 </div>
 <script src="//code.jquery.com/jquery-2.1.1.min.js"></script>
 <script src=
 "//maxcdn.bootstrapcdn.com/bootstrap/3.2.0/js/bootstrap.min.js">
 </script>
 <script src="//code.angularjs.org/1.3.0-beta.16/angular.min.js"></script>
 <script src="//code.angularjs.org/1.3.0-beta.16/angular-route.min.js"></script>
 <script src="//code.angularjs.org/1.3.0-beta.16/angular-animate.min.js"></script>
 <script src="//cdn.kendostatic.com/2014.2.716/js/kendo.all.min.js"></script>
 <script src="//include.jaydata.org/datajs-1.0.3-patched.js"></script>
 <script src="//include.jaydata.org/jaydata.js"></script>
 <script src="//include.jaydata.org/jaydatamodules/angular.js"></script>
 <script src="/lib/jaydata-kendo.js"></script>
 <!--<script src="//include.jaydata.org/jaydatamodules/kendo.js"></script>-->
 <script src="/app/app.js"></script>
 <script src="/app/controllers/productController.js"></script>
 <script src="/app/controllers/chartController.js"></script>
 <script src="/app/controllers/editController.js"></script>
 </body>

</html>

Figure 10 The Index.html File

www.msdnmagazine.com

msdn magazine60 Node.js

All that’s happening here is declaring the Kendo UI Bar Chart
directive, setting these options to bind to a property in the control-
ler named options. Figure 14 shows the product chart view and
Figure 15 shows the product chart controller.

As with productController.js, here you also inject the northwindFactory
as northwind in the controller construction function, again creating a

Kendo dataSource with the JayData helper asKendoDataSource method.
Here are more details about what happens in the chart controller:

$scope.options.series
• type: Th is confi gures the type of chart.
• fi eld: Th e fi eld from the model/entity that will be used for

the series (x-axis) value.

Figure 12 The Edit.html File

<div class="demo-section">
 <div class="k-block" style="padding: 20px">
 <div class="k-block k-info-colored">
 Note: Please fill out all of the fields in this form.
 </div>
 <div>
 <dl>
 <dt>
 <label for="productName">Name:</label>
 </dt>
 <dd>
 <input id="productName" type="text"
 ng-model="product.ProductName" class="k-textbox" />
 </dd>
 <dt>
 <label for="englishName">English Name:</label>
 </dt>
 <dd>
 <input id="englishName" type="text"
 ng-model="product.Englishname" class="k-textbox" />
 </dd>
 <dt>
 <label for="quantityPerUnit">Quantity Per Unit:</label>
 </dt>
 <dd>
 <input id="quantityPerUnit" type="text"
 ng-model="product.QuantityPerUnit" class="k-textbox" />
 </dd>
 <dt>
 <label for="unitPrice">Unit Price:</label>
 </dt>
 <dd>
 <input id="unitPrice" type="text"
 ng-model="product.UnitPrice" class="k-textbox" />
 </dd>
 <dt>
 <label for="unitsInStock">Units in Stock:</label>
 </dt>
 <dd>
 <input id="unitsInStock" type="text"
 ng-model="product.UnitsInStock" class="k-textbox" />
 </dd>
 <dt>
 <label for="reorderLevel">Reorder Level</label>
 </dt>
 <dd>
 <input id="reorderLevel" type="text"

 ng-model="product.ReorderLevel" class="k-textbox" />
 </dd>
 <dt>
 <label for="discontinued">Discontinued:</label>
 </dt>
 <dd>
 <input id="discontinued" type="text"
 ng-model="product.Discontinued" class="k-textbox" />
 </dd>
 <dt>
 <label for="category">Category:</label>
 </dt>
 <dd>
 <select
 kendo-drop-down-list="dropDown"
 k-data-text-field="'CategoryName'"
 k-data-value-field="'CategoryID'"
 k-data-source="categoryDataSource"
 style="width: 200px"></select>
 </dd>
 </dl>

 <button kendo-button ng-click="save()"
 data-sprite-css-class="k-icon k-i-tick">Save</button>
 <button kendo-button ng-click="cancel()">Cancel</button>

 <style scoped>
 dd {
 margin: 0px 0px 20px 0px;
 width: 100%;
 }

 label {
 font-size: small;
 font-weight: normal;
 }

 .k-textbox { width: 100%; }

 .k-info-colored {
 margin: 10px;
 padding: 10px;
 }
 </style>
 </div>
 </div>
</div>

Figure 13 The editController.js File

myApp.controller("editController",
 function($scope, northwind, $routeParams, $location) {

 var productId = $routeParams.id;

 $scope.categoryDataSource = northwind.Categories.asKendoDataSource();

 northwind
 .Products
 .include("Category")
 .single(
 function(product) {
 return product.ProductID == productId;
 },
 { productId: productId },
 function(product) {
 $scope.product = product;
 northwind.Products.attach($scope.product);
 $scope.dropDown.value($scope.product.Category.CategoryID);
 $scope.$apply();

 });

 $scope.save = function() {
 var selectedCategory = $scope
 .categoryDataSource
 .get($scope.product.Category.CategoryID);

 console.log("selecctedCategory: ", selectedCategory.
innerInstance());
 $scope.product.Category = selectedCategory.innerInstance();
 // Unwrap kendo dataItem to pure JayData object
 northwind.saveChanges();
 };

 $scope.cancel = function() {
 $location.url("/product");
 };

 });

61December 2014msdnmagazine.com

$scope.options.valueAxis
• majorUnit: The interval between major divisions. If the

valueAxis.type is set to log, the majorUnit value will be
used for the base of the logarithm.

• plotBands: Th e plot bands for the graph, which are used to
visually indicate the product quantity. If the quantity falls
below a specifi ed level, the user should invoke the product
restocking process.

• max: Th e maximum value for the y-axis.
$scope.options.categoryAxis

• fi eld: Th e fi eld labels for the x-axis.
• labels.rotation: Th e degrees to rotate the labels. Here you

confi gure the labels on the x-axis to be perpendicular to

the running x-axis by setting the value to -90 (degrees),
that is, rotate the labels counterclockwise by 90 degrees.

• majorGridLines.visible: Turns the major gridlines on or off .
You may want to turn them off for cosmetic reasons, to give
the chart a cleaner and more polished look.

• tooltip.visible: Th is enables tooltips when a user hovers
over a vertical bar.

Please see the Kendo UI Chart API for details at bit.ly/1owgWrS.

Azure Web Site Deployment
Because the source code is conveniently hosted in a CodePlex Git
repository, using Azure Web Sites to set up continuous deployment
(continuous delivery) is as simple as it gets:

1. Navigate to your Azure Web site dashboard and
select Set up deployment from source control.

2. Select your repository; for this example,
select CodePlex.

3. Click Next.
4. Select your CodePlex project.
5. Select the branch.
6. Click Check.
7. For every sync to your Git repository, a build

and deployment will occur.
Th at’s it. With a few simple clicks, your application is

deployed with continuous integration and delivery. For
more information on deploying with Git, visit bit.ly/1ycBo9S.

As a .NET developer, I’ve come to really enjoy how
quick and easy it is to build CRUD-heavy applications
with ASP.NET MVC, ASP.NET Web API, OData, Entity
Framework, AngularJS and Kendo UI. Now, by devel-
oping on the MEAN stack, I can still leverage much of
this domain knowledge and experience, with the help

of the JayData libraries. Th e only diff erence
between the two stacks is the server-side
layer. If you’ve been developing with
ASP.NET MVC and the ASP.NET Web
API, Node.js shouldn’t present many prob-
lems because you already have some basic
JavaScript experience. You’ll fi nd complete
source code for the example in this article
at msdnmeanstack.codeplex.com, and a live demo
at meanjaydatakendo.azurewebsites.net.

LONG LE is the principal app/dev architect at CBRE
Inc. and a Telerik/Kendo UI MVP. He spends most
of his time developing frameworks and application
blocks, providing guidance for best practices and
patterns, and standardizing the enterprise tech-
nology stack. In his spare time, he enjoys blogging
(blog.longle.net), playing Call of Duty, or mentoring
(codementor.io/lelong37). You can reach and follow
him on Twitter at twitter.com/LeLong37.

THANKS to the following technical experts for
reviewing of this article:
Robert Bany (JayData), Burk Holland (Telerik) and
Peter Zentai (JayData)

Figure 14 Product Chart View

Figure 15 The Product Chart Controller

myApp.controller("chartController",
 function($scope, northwind) {

 var dataSource = northwind.Products.asKendoDataSource();

 $scope.options = {
 theme: "metro",
 dataSource: dataSource,
 chartArea: {
 width: 1000,
 height: 550
 },
 title: {
 text: "Northwind Products in Stock"
 },
 legend: {
 position: "top"
 },

 series: [
 {
 labels: {
 font: "bold italic 12px Arial,Helvetica,sans-serif;",
 template: '#= value #'
 },
 field: "UnitsInStock",
 name: "Units In Stock"
 }
],
 valueAxis: {
 labels: {
 format: "N0"

 },
 majorUnit: 100,
 plotBands: [
 {
 from: 0,
 to: 50,
 color: "#c00",
 opacity: 0.8
 }, {
 from: 50,
 to: 200,
 color: "#c00",
 opacity: 0.3
 }
],
 max: 1000
 },
 categoryAxis: {
 field: "ProductName",
 labels: {
 rotation: -90
 },
 majorGridLines: {
 visible: false
 }
 },
 tooltip: {
 visible: true
 }
 };
 });

www.msdnmagazine.com
www.bit.ly/1owgWrS
www.bit.ly/1ycBo9S
http://msdnmeanstack.codeplex.com
http://meanjaydatakendo.azurewebsites.net
http://blog.longle.net
http://codementor.io/lelong37
www.twitter.com/LeLong37

PRODUCED BYSUPPORTED BY

magazine

Las Vegas
vslive.com/lasvegas

MARCH 16 – 20
BALLY’S HOTEL & CASINO LAS VEGAS, NV

Visual Studio Live!’s rst stop on its 2015
Code Trip is Las Vegas, situated ttingly near
Historic Route 66. Developers, software
architects, engineers, and designers will cruise
onto the Strip for ve days of unbiased and
cutting-edge education on the Microsoft
Platform. Navigate the .NET Highway with
industry experts and Microsoft insiders in
60+ sessions and fun networking events – all
designed to make you better at your job.

Code on the Strip

Untitled-5 2 11/3/14 12:47 PM

www.vslive.com/lasvegas

vslive.com/lasvegas

CONNECT WITH VISUAL STUDIO LIVE!

twitter.com/vslive – @VSLive

facebook.com – Search “VSLive”

linkedin.com – Join the
“Visual Studio Live” group! Scan the QR code to

register or for more
event details.

Regi ter NOW and
Sav $500!

Use promo code VSLDEC2

TRACKS INCLUDE:

Visual Studio / .NET

JavaScript/HTML5

ASP.NET

Cross-Platform Mobile
 Development

Windows 8.1/WinRT

Database and Analytics

Cloud Computing

Windows Phone

NAVIGATE THE
.NET HIGHWAY

Untitled-5 3 11/3/14 12:47 PM

www.vslive.com/lasvegas

msdn magazine64

Many machine learning soft ware systems use
numerical optimization. For example, in logistic
regression classifi cation, training the classifi er
is the process of fi nding a set of values for the
weights associated with the input variables so
that for a collection of training data, the com-
puted output values closely match the known
output variable values. In other words, the goal
is to optimize (minimize) the error between
computed and desired output values.

Th ere are many diff erent numerical optimi-
zation algorithms. Back-propagation is based
on classical calculus techniques and is oft en
used with neural networks. Particle swarm
optimization mimics group behavior such as
the fl ocking of birds. Evolutionary algorithm
optimization, a form of genetic algorithm
optimization, models the biological processes
of chromosome replication.

Th is article describes a relatively new (fi rst
published in 2010) optimization technique
called fireworks algorithm optimization (FAO). The technique
doesn’t explicitly model or mimic the behavior of fi reworks, but
when the algorithm is visually displayed, the resulting image
resembles the geometry of exploding fi reworks.

Th e best way to see where this article is headed and to get an idea
of what FAO is, is to take a look at the demo program in Figure 1.
Th e goal of the demo program is to use FAO to fi nd the minimum
value of Ackley’s function with 10 variables. Ackley’s function is a
standard benchmark for evaluating the eff ectiveness of numerical
optimization algorithms. Th e demo version has a minimum value
of 0.0 located at (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). Ackley’s function is tricky

because it has many local minimum solutions that can trap search
algorithms before fi nding the one global minimum. A graph of
Ackley’s function of two variables is shown in Figure 2.

Th e demo program sets the number of fi reworks to 5. More fi reworks
increase the chance of fi nding a true optimal solution, at the expense
of performance. FAO typically works well with 3 to 10 fi reworks. FAO
is an iterative process and requires a maximum loop counter value.
A loop counter variable in machine learning optimization is oft en
named “epoch” and the demo sets the maximum value to 1,000 itera-
tions. Th is is a bit small, intended for demo purposes, and in realistic
scenarios, values from 10,000 to 100,000 are typical.

In the demo run in Figure 1, the best (smallest) error associated
with the best position found so far is displayed every 100 epochs.
Notice that FAO starts converging very quickly. Aft er 1,000 epochs,
the best position found is (0.034 0.098 0.003 0.132 -0.054 0.181
-0.018 0.051 0.004 -0.023) and the associated error is 0.41. If the
maximum number of epochs is increased to 10,000, then FAO
will in fact fi nd the optimal solution. FAO, like most numerical
optimization algorithms, isn’t guaranteed to fi nd an optimal solu-
tion in realistic scenarios where the optimal solution isn’t known.

Th is article assumes you have at least intermediate programming
skills, but doesn’t assume you know anything about numerical

Fireworks Algorithm Optimization

TEST RUN JAMES MCCAFFREY

Code download available at msdn.microsoft.com/magazine/msdnmag1214.

Figure 1 Fireworks Algorithm Optimization in Action

Many machine learning
software systems use numerical

optimization.

http://msdn.microsoft.com/magazine/msdnmag1214

65December 2014msdnmagazine.com

optimization or FAO. Th e demo program is coded using C#, but
you shouldn’t have too much difficulty refactoring the code to
another language, such as JavaScript or Python.

Th e demo code is a bit too long to present in its entirety, but
the complete source code is available in the code download that
accompanies this article. Th e demo code has most normal error
checking removed to keep the main ideas as clear as possible and
the size of the code small.

Overall Program Structure
Th e overall program structure, with a few minor edits to save space,
is presented in Figure 3. To create the demo, I launched Visual
Studio and created a new C# console application named Fireworks-
Algorithm. Th e demo has no signifi cant .NET dependencies, so
any recent version of Visual Studio will work.

Aft er the template code loaded into the Visual Studio editor, in the
Solution Explorer window I renamed fi le Program.cs to the more
descriptive FireworksProgram.cs and Visual Studio automatically
renamed class Program for me. At the top of the source code, I
deleted all using statements that pointed to unneeded namespaces,
leaving just the references to System and Collections.Generic.

I coded the demo using a static-method approach rather than
an object-oriented programming (OOP) approach. Th e demo has
all the control logic in the Main method, which calls two public
methods, Solve and Error. Th e essential calling statements are:

int dim = 10;
int n = 5;
int maxEpochs = 1000;
double[] bestPosition = Solve(dim, n, maxEpochs)
double error = Error(bestPosition);

Th e variable dim holds the number of problem dimensions. In
the case of machine learning training, this would normally be the
number of model weights to determine. Variable n is the number of
fi reworks. I use as much as possible the rather terse variable names,
such as n, that are used in the research papers on FAO so you can
use those papers as a resource more easily. Th e FAO technique is
contained in method Solve. Method Error accepts a position (an

array of 10 values), computes the value of Ackley’s function for those
values, and returns the average of the sum of squared diff erences
between the computed outputs and the known minimum of 0.0.

The demo program has a utility class named Info that encap-
sulates a position and its associated error. The class has no
associated methods, such as an explicit constructor, in order to
make it easier for you to refactor the demo code to languages with
limited OOP support.

Understanding the Algorithm
Th e fi reworks algorithm process is illustrated in the graph in Figure
4. Th e image represents a simplifi ed dummy minimization prob-
lem, not the Ackley’s function of the demo program. Th e goal of

using System;
using System.Collections.Generic;
namespace FireworksAlgorithm
{
 class FireworksProgram
 {
 static void Main(string[] args)
 {
 Console.WriteLine("\nBegin fireworks algorithm demo\n");
 Console.WriteLine("Goal is to solve Ackley's function");
 Console.WriteLine("Function has min value = 0.0 at (0, ..))");

 int dim = 10;
 int n = 5; // Number of fireworks
 int maxEpochs = 10000;
 Console.WriteLine("\nSetting Ackley's dimension to " + dim);
 Console.WriteLine("Setting number fireworks to " + n);
 Console.WriteLine("Setting maxEpochs to " + maxEpochs);

 Console.WriteLine("\nBegin algorithm\n");
 double[] bestPosition = Solve(dim, n, maxEpochs);
 Console.WriteLine("\nAlgorithm complete");

 Console.WriteLine("\nBest solution found: ");
 for (int i = 0; i < dim; ++i)
 Console.Write(bestPosition[i].ToString("F3") + " ");
 Console.WriteLine();

 double error = Error(bestPosition);
 Console.WriteLine("\nError of best solution found = " +
 error.ToString("F5"));

 Console.WriteLine("\nEnd fireworks algorithm demo\n");
 Console.ReadLine();
 } // Main

 public static double Error(double[] position) { . . }
 public static double[] Solve(int dim, int n, int maxEpochs) { . . }

 private static int[] PickDimensions(int dim, int z, int seed) { . . }
 private static double YMax(Info[] fireworks) { . . }
 private static double YMin(Info[] fireworks) { . . }
 private static int[] NumberSparks(Info[] fireworks, int m,
 double a, double b) { . . }
 private static double[] Amplitudes(Info[] fireworks, int A,
 int epoch, int maxEpochs, double minX, double maxX) { . . }
 private static double MinAmplitude(int epoch, int maxEpochs,
 double minX, double maxX) { . . }
 private static void AddGaussianSparks(Info[] fireworks,
 List<Info>[] sparksList, int dim, int mHat, int epoch, double minX,
 double maxX, double[] bestPosition, ref double bestError, Random rnd)
 }

 public class Info
 {
 public double[] position;
 public double error;
 }

} // ns

Figure 3 Overall Program Structure

Figure 2 Ackley’s Function of Two Variables

www.msdnmagazine.com

msdn magazine66 Test Run

the dummy problem is to minimize some arbitrary function that
has two input variables, X and Y, where the function has a mini-
mum value of 0.0 located at X = 0 and Y = 0.

Th e image in Figure 4 uses three fi reworks. Each fi rework has
so-called sparks. Th ere are two kinds of sparks, regular and Gaussian.
Figure 5 shows the fi reworks algorithm in very high-level pseudo-code.

For the image in Figure 4, the positions of the three fi reworks
are indicated by the colored dot markers at (-6, 2), (3, 4), and (3,
-3). Notice that the fi rst fi rework is the worst because it’s farthest
away from the target position of (0, 0) and that the third fi rework
is the best because it’s closest. Th e amplitudes are indicated by the
dashed circles around each fi rework. Good fi reworks have smaller
amplitudes and bad fi reworks have larger amplitudes.

Each firework will generate a different number of regular
(non-Gaussian) sparks. Bad fi reworks will generate fewer sparks
than good fireworks. In Figure 4, firework[0] generates three
sparks, fi rework[1] generates four sparks, and fi rework[2] gener-
ates fi ve sparks. Each regular spark will be located within its parent
fi rework’s amplitude. Because good fi reworks have small amplitude
and relatively many sparks, the algorithm search will focus near
good fireworks. Bad fireworks shouldn’t be entirely neglected
because they could lead to an optimal solution that’s
located out of range of the current fi reworks. Th e
Gaussian sparks are generated in such a way that
they tend to be located between a fi rework and the
best-known position of any spark encountered
during the search.

Aft er all regular and Gaussian sparks have been
generated, each is evaluated. New fireworks for
the next round of explosions are selected from
the current sparks. Th e position of the best spark
is retained as one of the new fi reworks to inten-
sify search in good locations. Th e position of the
worst spark is retained to maintain search diversity
and prevent the algorithm from quickly collapsing
onto a solution that may not be optimal. Th e posi-
tions of the remaining fi reworks, just one fi rework
in the simple example in Figure 4, are randomly
selected from the current sparks.

Th e process of generating fi reworks and then
sparks is iterated until some stopping condition
is met. Th e stopping condition is just a maximum
loop counter value in the case of the demo program.
When using FAO for machine learning training,
the stopping condition might also include an

error threshold so that when error drops below some small spec-
ifi ed value that depends on the particular problem being solved,
the processing loop terminates.

Implementing the Fireworks Algorithm
Th e defi nition of method Solve begins as:

public static double[] Solve(int dim, int n, int maxEpochs)
{
 int m = n * 10;
 int mHat = 5;
 double a = 0.04;
 double b = 0.8;
 int A = 40;
 double minX = -10.0;
 double maxX = 10.0;
...

Variable m is the total number of regular sparks, which will be
allocated to the n fi reworks. Variable mHat (so named because
research papers use a lowercase m with a carat over it) is the number
of special Gaussian sparks to generate. Variables a and b control
the minimum and maximum number of sparks for any particular
fi rework. Variable A is the maximum amplitude for any fi rework.
Variables minX and maxX hold the smallest and largest values for
any single value in an Info object’s position array.

Method Solve creates n initial fi reworks, like so:
Random rnd = new Random(3);
Info[] fireworks = new Info[n];
for (int i = 0; i < n; ++i)
{
 fireworks[i] = new Info();
 fireworks[i].position = new double[dim];
 for (int j = 0; j < dim; ++j)
 fireworks[i].position[j] = (maxX - minX) * rnd.NextDouble() + minX;
 fireworks[i].error = Error(fireworks[i].position);
}

Random object rnd is initially using a seed value of 3 only because
that value gave a representative demo run. Each of the n fi reworks are

Figure 4 The Fireworks Algorithm

The process of generating
fi reworks and then sparks is
iterated until some sort of
stopping condition is met.

67December 2014msdnmagazine.com

stored as Info objects in an array. Th e initialization code picks random
values between minX and maxX for each cell of the position array.
For some specifi c machine learning training scenarios, it’s preferable
to initialize the initial fi reworks so they’re far apart from each other.

Method Solve continues by establishing variables to hold the
best position found by any spark, and that position’s associated
error. Unlike fi reworks, which have a fi xed number, the number of
sparks per fi rework will vary in each iteration of the main processing
loop, so sparks are stored in a List collection rather than an array:

double[] bestPosition = new double[dim];
for (int k = 0; k < dim; ++k)
 bestPosition[k] = fireworks[0].position[k];
double bestError = fireworks[0].error; // arbitrary

List<Info>[] sparksList = new List<Info>[n];
for (int i = 0; i < n; ++i)
 sparksList[i] = new List<Info>();

Th e main processing loop begins:
int epoch = 0;
while (epoch < maxEpochs)
{
 if (epoch % 100 == 0) // Show progress every 100 iterations
 {
 Console.Write("epoch = " + epoch);
 Console.WriteLine(" error at best known position = " +
 bestError.ToString("F4"));
 }
...

Here, progress is displayed every 100 epochs. You might want
to consider passing a Boolean flag variable named “progress” to
control whether progress messages are displayed:

int[] numberSparks = NumberSparks(fireworks, m, a, b);
double[] amplitudes = Amplitudes(fireworks, A, epoch, maxEpochs, minX, maxX);
for (int i = 0; i < n; ++i)
 sparksList[i].Clear(); // Number of sparks changed

Next, the number of sparks for each fi rework, and the maximum
amplitude for each fi rework, are calculated using helper methods
NumberSparks and Amplitudes. The number of sparks for a
fi rework is proportional to the error of the fi rework so that good
fi reworks receive a larger proportion of the m total regular sparks.
Similarly, each amplitude is proportional to the error, so that good
fi reworks have smaller amplitudes.

Next, each spark is instantiated:
for (int i = 0; i < n; ++i)
{
 double amp = amplitudes[i]; // Amplitude for curr firework
 int ns = numberSparks[i]; // Number of sparks for curr firework

 for (int j = 0; j < ns; ++j) // Each spark for curr firework
 {
 Info spark = new Info(); // A spark has a position and error
 spark.position = new double[dim]; // Allocate space (ctor doesn't)
 for (int k = 0; k < dim; ++k) // Spark position based on its parent firework
 spark.position[k] = fireworks[i].position[k];

A spark’s position is based on its parent fi rework’s position. Next,
a few (z) of the dimensions of the position array are randomly
selected, and a random displacement is added to the position array:

int z = (int)Math.Round(dim * rnd.NextDouble());
int[] dimensions = PickDimensions(dim, z, epoch);
for (int ii = 0; ii < dimensions.Length; ++ii)
{
 double h = amp * 2 * rnd.NextDouble() - 1;
 int k = dimensions[ii]; // convenience
 spark.position[k] += h; // displace from parent
 if (spark.position[k] < minX || spark.position[k] > maxX)
 spark.position[k] = (maxX - minX) * rnd.NextDouble() + minX;
}
spark.error = Error(spar.position);
sparksList[i].Add(spark);

Aft er generating a spark, method Solve checks to see if the new
spark has the best position found so far:

 if (spark.error < bestError)
 {
 bestError = spark.error;
 for (int k = 0; k < dim; ++k)
 bestPosition[k] = spark.position[k];
 }
 } // Each new regular spark
} // Each firework

Next, special Gaussian sparks are generated:
AddGaussianSparks(fireworks, sparksList, dim, mHat,
 epoch, minX, maxX, bestPosition, ref bestError, rnd);

Helper method AddGaussianSparks generates special sparks so
that their positions tend to be between a randomly selected fi rework
and the best-known position. Method Solve concludes by fi nding
the best and worst spark generated and using their positions for
two of the new fi reworks for the next iteration. Th e remaining n-2
fi reworks are created using randomly selected sparks:

...
 // Find best, worst spark
 // Create 2 new fireworks
 // Create remaining n-2 fireworks

 ++epoch;
 } // main loop
 return bestPosition;
} // Solve

See the code download for implementation details.

A Few Comments
The original paper that presented the fireworks algorithm is
“Fireworks Algorithm for Optimization,” by Y. Tan and Y. Zhu (2010).
Th at paper contained several errors and factors that made the algo-
rithm impractical for real-life optimization. Th ese fl aws were quickly
noted by other researchers. My article is based primarily on the 2013
research paper, “Enhanced Fireworks Algorithm,” by S. Zheng, A.
Janecek and Y. Tan. You can fi nd both papers in several locations
on the Internet. I have made quite a few simplifi cations and minor
modifi cations to the algorithms presented in both research papers.
In my opinion, there isn’t enough research evidence yet to answer the
question of whether fi reworks optimization is better than or worse
than other optimization algorithms. But it sure is interesting.

DR. JAMES MCCAFFREY works for Microsoft Research in Redmond, Wash. He
has worked on several Microsoft products including Internet Explorer and Bing.
Dr. McCaff rey can be reached at jammc@microsoft .com.

THANKS to the following Microsoft technical experts for reviewing this article:
Todd Bello, Kenneth Griffi n, Yong Liu, Brian Mellinger and Esin Saka

initialize 3 fireworks to random positions
loop until done
 for each firework
 calculate the amplitude of the firework
 calculate the number of regular sparks
 generate the regular sparks
 end for
 generate special Gaussian sparks
 evaluate each spark
 from the list of sparks,
 select 3 to act as positions of new fireworks
 create 3 new fireworks
end loop
return the position of the best spark found

Figure 5 The Fireworks Algorithm in High-Level Pseudo-Code

www.msdnmagazine.com
mailto:jammc@microsoft.com

msdn magazine68

Live tiles are an effective way to introduce your app. You can
display information about your app without requiring a user to
enter the app itself. As part of the UX feature of the Windows
platform, live tiles should be alluring and inviting, filled with
relevant and click-worthy content.

Live tiles are your chance to make a great fi rst impression. Th e
user doesn’t care about the code or any technical details. All he
cares about is the experience that he’ll have using your app. Is it
easy to use? Is it intuitive? Th ese things are more important to the
user than what’s under the hood.

Live tiles are the entryway to your app, that fi rst impression that
tells the user about your app’s usability. Everyone who uses your
app will see and use your live tile before any other part of the app.
It doesn’t matter whether it’s to launch the app or just snack on
tidbits of data you display in them. Th e live tile is how you can make
that all-important fi rst impression.

Th is means you had better ensure your tiles and the splash screen
are enticing and attractive. Th at’s not to say you can ignore the rest
of the app, but you’ll never get users to that point without leading
off with some good-looking tiles. As you probably imagine, you
can update live tiles with fresh information periodically, via push
notifi cations. You can even extend notifi cations to the lock screen
by adding badges to show app-related information.

Figure 1 illustrates the four styles of live tiles available on
Windows tablets and desktops: large, wide, medium and small. Th e
images in Figure 1 show how Th e Weather Channel has capital-
ized on a clean design when the tiles aren’t displaying info. When
they are, you see rich graphics and the tiles display only the most
important information. In this case, it’s the current weather and
any severe storm warnings.

A better UX will lead to better ratings in the store and better user
satisfaction. Live tiles with your branding are the best way to dif-
ferentiate your app from others. Figure 1 demonstrates how tiles
can be part of a great experience. Users don’t need to open the app
to see the current weather. On the large primary tile, they can set
up to three cities to track weather, and then track one city at a time
on the others. Th at’s squeezing some serious data into just 310x310
pixels, or an even smaller playing fi eld.

How Live Tile Graphics Work
Now that I’ve explained why live tiles are important, it’s time to
understand how graphics work with them. Fortunately, Microsoft
did a great job creating an easy-to-follow developer-friendly UX

paradigm with a set of design principles that works well on tablets,
phones and smaller, touch-fi rst devices. You can publish apps that
look good without hiring a designer. Th at’s not to say you should
eschew designers altogether. Some apps, especially games, have
complicated graphics that require a designer’s input.

Th is article will cover some live tile designs that non-designing
developers can easily accomplish. As part of that set of principles,
live tiles enable the user to consume data from your app without
actually interacting with your app. Th is is the height of convenience,
as the user can quickly scan the home screen of his device to get
relevant information from multiple sources in a fl ash.

Th ere are two kinds of graphics in a modern app: user-generated
and app graphics. Family vacation or professional photos are con-
sidered user-generated. Th e images within live tiles or on the app
bar are app graphics. When constructing tiles, you can use either
kind to convey information. Visual Studio includes templates that
follow the Microsoft modern design that will help you achieve a
professional presentation. Th is means everything you need is ready
in the package.appxmanifest fi le. All you need to do is provide the
graphics themselves in the correct size.

It’s important to have proper branding for tiles that aren’t live
yet. As you can see in Figure 2, the tiles have a simple design with
a quote balloon and the initials for Quote of the Day (QotD). It’s
easy to fi nd and determine what app this is with its clean design

Build a Better UX with Live Tiles

MODERN APPS RACHEL APPEL

Figure 1 The Four Sizes of Live Tiles—Large, Wide, Medium
and Small

Figure 2 The Live Tiles for the Quote of the Day App

Untitled-1 1 11/7/14 10:29 AM

www.jetbrains.com/msdn

msdn magazine70 Modern Apps

and bright red color. For now, they’re standard, static tiles. Th at will
change when you start sending updates.

Using graphics in a Windows Store app or Windows Phone Store app
requires several images for the following assets:

• Live tiles: Th e large or small squares or rectangles the
user taps or clicks to launch an app. Th ese oft en contain
images or text.

• Badges: Small icons or glyphs on the live tiles that denote
app status. Figure 1 shows a badge in both the large and
small tiles.

• Splash screen: Th e introductory screen that displays just
before the app loads. Frequently, this screen contains a
logo or graphic.

• In-app tiles: Th ese tiles display app data and live in a
GridView or ListView. Th ey look and feel like live tiles
on the Windows Start page.

Th ese images work best using the .png and .jpg formats. Each
Windows Store app and Windows Phone Store app can contain many
diff erent sizes of these image assets. You can confi gure which images
belong to which tile by editing the project’s package manifest. Th e
package manifest is a file where you can set up all app-specific
settings, such as the name, version number, graphic assets and
capabilities declarations. Figure 3 shows the logos you defi ne in
the package.appxmanifest in a Windows Store app.

You should supply at least one graphic for each of the following
asset types, or the app will show their default icons instead:

• Square 70x70 Logo: A 70x70 pixel image
• Square 150x150 Logo: A 150x150 pixel image
• Wide 350x150 Logo: A 350x150 pixel image
• Square 310x310 Logo: A 310x310 pixel image
• Square 30x30 Logo: A 30x30 pixel image

You can—and should—supply scaled graphics for these tile classes.
Th e scaled assets for the items in Figure 3 are at 80 percent, 100

percent, 140 percent and 180 percent. Th e bottom of Figure 3 lists the
precise dimensions required for the scaled assets. Note that these are
just for the Windows Store apps. Windows Phone Store app projects
have slightly diff erent sets of assets and scales that work for the small-
er device types. Both Windows Store and Windows Phone Store apps
have the following logo and Splash screen confi gurations:

• Store logo: Th e logo displayed in the store.
• Badge logo: A small icon that can display on the lock

screen or inside existing tiles.
• Splash screen: A full screen page usually containing a

logo or introductory text shown at app launch.
There are many versions of these images because of the need

to scale them to size correctly on the various screen configura-
tions, from desktop to mobile to tablet and others. A 150x150
pixel image doesn’t have to stretch too far before it starts to look
pixelated and blurry.

You can create graphics for tiles using any photo or graphics
editing program. With these tools, it’s not diffi cult to create a logo
like Figure 2 that’s simple yet noticeable. There are many stock
graphics also available for use in apps.

Code Tiles from Templates
Tiles would be little more than plain icons if not for their ability to
display diff erent images and text at diff erent times. It’s these regular
updates that make them live. You can update tiles with code or inte-
grate them with push notifi cations. If you use push, you can update
tiles using background tasks that fi t into the process lifecycle. Th is way
your app doesn’t need to be running, per se, yet some code can run
at predetermined intervals to cycle through fi ve diff erent items. For
background information on process lifecycle management, see “Th e
Windows Store App Lifecycle” at msdn.microsoft.com/magazine/jj660301.

Th e code in Figure 4 performs a simple tile update to generate
the tiles in Figure 5, without push notifi cations. It fi rst obtains a

TileUpdater object from calling the static CreateTile-
UpdaterForApplication of the TileUpdateManager
class. Once that’s done, the code moves onto fetching
a predefined tile template by passing in one of the
TileTemplateType enum options to the GetTemplate-
Content method of the TileManager class.

Accessing the innerText attribute or calling Set-
Attribute lets the code work with the tile. Th at’s because
an HTML template is what describes how a tile looks
and feels. Fortunately, XAML developers don’t need
to learn a lot of HTML just to make a tile. It does look
like HTML, after all. However, you should know
about elements like the HTML here that defi nes the
TileSquare150x150Text04 template.

<tile>
 <visual version="2">
 <binding template="TileSquare150x150Text04" >
 <image id="1" src=""/>
 <text id="1"></text>
 </binding>
 </visual>
</tile>

You can’t just whip up any old tile out of any old
dimensions, and you don’t write the template HTML
yourself. Instead, there are several templates from Figure 3 Confi gure the Tile Graphics in the App’s Package.appxmanifest File

http://msdn.microsoft.com/magazine/jj660301

71December 2014msdnmagazine.com

which you can choose that let you edit the basic tile shapes, icons
and messages. Th ere’s a listing of these templates for both Windows 8.1
and Windows Phone 8.1, along with code samples at bit.ly/1oqwQd6.

Pick one of the templates from the list and use it in your code.
In Figure 4, the call to GetTemplateContent is what fetches this
pre-defi ned template. You can choose from any of the numerous
templates available.

Up to this point, the code samples have dealt with simply
updating a tile once, on the spot, by executing some code. If you
want to add some extra pizazz, update tiles on a periodic basis with
fresh information. You can do this by adding background tasks
and push notes to your app. Because this article’s focus is more
UX-related, you might want to view the video at bit.ly/1vH6J2p to
learn how to update a tile from a background task.

Use Secondary Tiles for a First-Class UX
Users occasionally want to pin some piece of data to the Start
screen. Airline boarding passes, an eBook, or specifi c stock ticker
symbols are all good examples of things users want to pin to their
screen. Th e way to do that in Windows 8.1 or Windows Phone 8.1
is with secondary tiles. Secondary tiles make it easy for the user to
customize her app, which translates to higher ratings in the store.

Th ere’s a concept of deep linking in the app world. Th is means
a user navigates a few times within an app, then pins it to link to it
later. Here are several uses for secondary tiles:

• Weather for a specifi c city
• Travel itineraries for a specifi c trip
• Saved games
• Specifi c movies to start or resume
• A friend’s contact information
• Your favorite pictures
• Custom alarms

Keep in mind these tiles are secondary because you already have
a primary live tile. App-wide updates should go in the primary tile,
though there aren’t any hard-and-fast rules there. Th e types of par-
ticular data listed for secondary tiles wouldn’t usually make sense
in the main tile. Users typically launch an app, and then go to its
start page. Secondary tiles let users launch an app and go directly
to a specifi c part of the app. Th e term for this is “deep linking.” As a
rule of thumb, use primary tiles to launch to the app’s Start screen
and secondary tiles for specifi c data details.

Th e following code creates and displays a secondary tile:
private void AppBarButton_Click(object sender, RoutedEventArgs e)
{
 string displayName = "Secondary tile";
 string tileActivationArguments = "Look both ways before crossing the street";
 System.Uri square150x150Logo = new System.Uri("ms-appx:///Assets/Logo.
scale-100.png");
 SecondaryTile secondaryTile = new SecondaryTile("Pinned",
 displayName,
 tileActivationArguments,
 square150x150Logo,
 TileSize.Square150x150);
}

When calling the SecondaryTile constructor, pass in all the infor-
mation you need to populate the tile, such as the name, arguments,
size and which image to use. Everything you need is right there in the
call, and the constructor is overloaded, so you have many choices.

Secondary tiles are similar to standard tiles, but they allow that
deep linking to content or a specific part of the app. The more
user-friendly you make both sets of tiles, the better your reviews
in the store. So consider using secondary tiles if your app contains
specifi c data that’s useful to view from the Windows Start page.

A Square Conclusion
When a user doesn’t have to do anything to interact with your
app, and yet receives useful information, that’s a win. Th e ratings
in the app store will refl ect that. Even developers who aren’t big
into graphic design can still create good-looking and useful apps.

Remember to create graphics for as many scaled sizes as possi-
ble, and Windows will deliver the best graphic depending on the
device. Th e better the UX, the better the rating in the app store.
And this translates directly to more downloads.

RACHEL APPEL is a consultant, author, mentor and former Microsoft employee with
more than 20 years of experience in the IT industry. She speaks at top industry confer-
ences such as Visual Studio Live!, DevConnections, MIX and more. Her expertise lies
within developing solutions that align business and technology focusing on the Microsoft
dev stack and open Web. For more about Appel, visit her Web site at rachelappel.com.

THANKS to the following Microsoft technical expert for reviewing this article:
Frank La Vigne

Figure 5 Several of the Tile Sizes You Can Use

var updater = TileUpdateManager.CreateTileUpdaterForApplication();
var square150x150 =
 TileUpdateManager.GetTemplateContent(
 TileTemplateType.TileSquare150x150Text04);
square150x150.GetElementsByTagName("text")[0].InnerText =
 "Only in the darkness can you see the stars. –Dr. Martin Luther King, Jr.";
updater.Update(new TileNotification(square150x150));
var wide310x150 =
 TileUpdateManager.GetTemplateContent(
 TileTemplateType.TileWide310x150SmallImageAndText03);
wide310x150.GetElementsByTagName("text")[0].InnerText =
 "We live in a society exquisitely dependent on science and
 technology, in which hardly anyone knows anything about
 science and technology. - Carl Sagan";
((XmlElement)wide310x150.GetElementsByTagName("image")[0]).SetAttribute("src",
 "ms-appx:///Assets/qotd310x150-sm.png");
updater.Update(new TileNotification(wide310x150));
var large310x310 =
 TileUpdateManager.GetTemplateContent(TileTemplateType.
TileSquare310x310TextList02);
large310x310.GetElementsByTagName("text")[0].InnerText =
 "Let us pick up our books and our pens, they are the most powerful
 weapons. -Malala Yousafzai";
large310x310.GetElementsByTagName("text")[1].InnerText =
 "Never give up, for that is just the place and time that the tide will turn.
 -Harriet Beecher Stowe";
large310x310.GetElementsByTagName("text")[2].InnerText =
 "I've learned that people will forget what you said, people
 will forget what you did, but people will never forget
 how you made them feel. -Maya Angelou";
updater.Update(new TileNotification(large310x310));

Figure 4 Simple Tile Update Without Push Notifi cations

www.msdnmagazine.com
www.bit.ly/1oqwQd6
www.rachelappel.com
www.bit.ly/1vH6J2p

msdn magazine72

I know I must seem omniscient to you. Because I get to pick my
topics, my predictions in this column always come true—for
example, last November I predicted that I wouldn’t be named the
new president of Microsoft .

I know you’ll be astounded to hear that I’ve actually made one or
two mistakes in my life, blown calls on the future of technology that
I didn’t initially see the use of, but which later evolved to become
ubiquitous. Perhaps not on the scale of Bill Gates saying, “No one
would ever need a computer with more than 640k of memory,” but
still: Here are some of the biggest ones that I’ve blown.

A Microsoft evangelist was talking to a small group of us digerati
in 2001, explaining their upcoming Web platform, code-named
“HailStorm” (bit.ly/XOO9Z3). She said, “Your PC will be able call
your kids’ school’s computer and automatically download their
schedules into your Outlook so you’ll know when vacations are.”
I exploded at her: “What planet are you on?” I thought HailStorm
was a classic example of Microsoft hyper-geeks building
something that they themselves would like, and thinking the world
would like it because users are just like them. Ubiquitous
downloadable schedules didn’t happen with the single-vendor,
pay-only plans that Microsoft then had for HailStorm. But with
the vendor-independent RFC 5545 calendar data standard, and
with smartphones in everyone’s pockets, online schedules such as
Google Calendar now pervade our lives. Oops.

I was a judge at the first Imagine Cup finals in Barcelona in
2003. Th e team from Singapore created a supermarket cart with
a built-in scanner so customers could tally up their groceries as
they shopped. Th eir handling of discount coupons almost sent me
through the ceiling. Th e team expected users to carry a Pocket PC,
with which they would scan a bar code on a poster. Th e Pocket PC
would then contact the vendor’s Web site, display more information
about the product and provide a discount coupon. I whacked
them for it in the judging, and also in my book, “Why Soft ware
Sucks” (Addison-Wesley Professional, 2006). I thought, “Who,
but a pitiful geek like you, is going to carry a bar code scanner in
his pocket?” But now that everyone carries a smartphone with a
camera, QR codes appear on almost everything, even tombstones
(bit.ly/1vij0Ls). Double oops.

My biggest public blunder ever has to be my prediction that the
2007 launch of the Apple iPhone would crash in fl ames. I thought
the cellular bandwidth was too low, the price too high, the carrier

(AT&T) too lame and the apps too stupid (see my December 2010
column at msdn.microsoft.com/magazine/gg490348). And I thought that
users would reject a touchscreen in place of physical buttons. I used
deliberately infl ammatory language to get attention, saying that the
iPhone would be “the biggest fl op since ‘Ishtar’ and ‘Waterworld’
combined.” With typical restraint, I wrote that there was no way the
iPhone could meet its expectations, because “God Himself could not
build a phone that would live up to all the hype that the iPhone has
gotten.” (Th at got me some fl ak from religiously minded readers.)

We all know how that prognostication turned out. Th e iPhone
soared (total sales topped 500 million last spring), smartphones
became ubiquitous (with fascinating changes to society, see my
February 2012 column at msdn.microsoft.com/magazine/hh781031),
and I got ripped up one side of the Internet and down the other.
Hey, as my book agent always says, “Th ere’s no such thing as bad
publicity. Just make sure they spell your name right.”

On the fi ve-year anniversary of the iPhone’s launch, a reporter
called me up for his story on pundits who foolishly predicted its
failure (see bit.ly/1q1g3vu). “What do you have to say for yourself?”
he asked me. Having had four-and-a-half years to consider that
question, I replied with the words, which if they ever name a university
aft er me (prediction: don’t hold your breath), will be inscribed in
stone above the entrance: “Saepe fallitur, numquam in dubium.”

“Oft en mistaken, never in doubt.”

DAVID S. PLATT teaches programming .NET at Harvard University Extension
School and at companies all over the world. He’s the author of 11 programming
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006)
and “Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named
him a Soft ware Legend in 2002. He wonders whether he should tape down two
of his daughter’s fi ngers so she learns how to count in octal. You can contact him
at rollthunder.com.

My Biggest Misteaks

DON’T GET ME STARTED DAVID S. PLATT

Hey, as my book agent always
says, “There’s no such thing as

bad publicity. Just make sure they
spell your name right.”

www.bit.ly/XOO9Z3
www.bit.ly/1vij0Ls
http://msdn.microsoft.com/magazine/gg490348
http://msdn.microsoft.com/magazine/hh781031
www.bit.ly/1q1g3vu
www.rollthunder.com

Untitled-3 1 11/7/14 12:38 PM

http://marketdash.componentone.com/redirect.ashx?rdtl=4444

Untitled-7 1 11/5/14 4:36 PM

www.syncfusion.com/predictiveanalytics

	Back
	Print
	MSDN Magazine, December 2014
	Cover Tip
	Front
	Back

	Contents
	CUTTING EDGE: Effective Image Handling in Responsive Web Sites
	DATA POINTS: A Pattern for Sharing Data Across Domain-Driven Design Bounded Contexts, Part 2
	Roaming Data Between Windows Store Apps and Windows Phone Store Apps
	Developing Your First Game with Unity and C#, Part 4
	Equip Your Apps with OBEX
	Advanced Push Notifications and Mobile Analytics
	Speech Recognition with .NET Desktop Applications
	Building Web Apps on the MEAN Stack with OData in Microsoft Azure
	TEST RUN: Fireworks Algorithm Optimization
	MODERN APPS: Build a Better UX with Live Tiles
	DON’T GET ME STARTED: My Biggest Misteaks

	LeadTech Insert - Version 19 is Here

