

© 2012 Microsoft. All rights reserved.

Populating a Silverlight for Windows Embedded
UI with Collections of Data

Published: January 2012

Applies To: Windows Embedded Compact 7

Abstract

This paper demonstrates data binding in a Silverlight for Windows Embedded application. Data binding

is the process of linking data stored in data source objects with elements in a UI, so that when the data

is updated, the UI elements display the new values. This paper describes the following:

 Differences between the implementation of data binding in Silverlight for Windows Embedded and

Microsoft Silverlight 3

 How to support hierarchical data in collections

 How to create a list box that is connected to a data source collection

 How to respond to notifications from the data provider

 How to add support for updating the data source from the UI

The example project in this paper requires Microsoft Expression Blend 3, Visual Studio 2008 with SP1,

Windows Embedded Compact 7, and a virtual CEPC.

© 2012 Microsoft. All rights reserved.

Contents

Introduction .. 3

Data Source Collections in Silverlight for Windows Embedded .. 4

Implementation for Binding Data in Silverlight for Windows Embedded ... 5

Differences Between Microsoft Silverlight 3 and Silverlight for Windows Embedded 6

TPropertyBag<Derived> in Silverlight for Windows Embedded .. 7

Support for Hierarchical Data in Collections ... 8

Prerequisites .. 10

Create the Expression Blend Project and the Windows Embedded Silverlight Tools Subproject 11

Populate the List Box with Data .. 13

Create a Data Class .. 13

Create a Data Source Collection ... 16

Set up a Data Connection Between the List Box and the Data Source Collection 18

Update the Data (Optional) ... 19

Connect to a Data Provider ... 20

Add the Data Provider's Supporting Files to your Application Subproject 20

Add Functionality to Respond to Notifications from the Data Provider ... 21

Convert Data Types for Properties in TPropertyBag<Derived> ... 22

Update Data Source Properties ... 24

Update a Data Source Collection .. 27

Add Support for Users to Update the Data (Optional) .. 28

Update and Build the Project .. 30

Conclusion ... 31

Additional Resources ... 31

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

3

Introduction

Many types of Windows Embedded Compact 7 applications must display collections of data that are

maintained separately from the UI. Often, these collections are large and constantly changing. For

example, an email application on a Windows Embedded Compact device connects to a Microsoft

Exchange Server to populate its inbox with a collection of email messages. As new data becomes

available, the email data from Microsoft Exchange Server that is displayed in the inbox is updated.

When you want an application to display data that is maintained separately from the UI, you can use

Silverlight for Windows Embedded classes and interfaces to bind data in a collection to elements in the

UI. When the data changes, you can optionally update the data in the collection so that the UI displays

the updated data.

Data binding is the process of linking data stored in data source objects with elements in a UI, so that

when the data is updated, the UI elements display the new values.

Some types of applications that you can populate with dynamic data are:

Email applications that display data from a Microsoft Exchange Server

Multimedia applications that display data from a user’s media library

Database applications that display data from SQL Server Compact Edition

Short Message Service (SMS) message applications that display data from SMS messages

Set-top box applications that display data from a cable television channel listing or video-on-

demand (VOD) server

Global Positioning System (GPS) applications that display GPS data based on the current location

of the device.

Applications that display the status of nodes on a home automation or industrial automation

network, such as Heating, Ventilation, and Air Conditioning (HVAC), or lights

If you are familiar with Windows Embedded Compact 7, Silverlight for Windows Embedded, and

Microsoft Expression Blend 3, and your application must display data that is maintained separately from

the UI, you can use Silverlight for Windows Embedded classes and interfaces to bind data in a data

collection to elements in the UI. When the data changes, you can update the data in the collection so

that the UI can display the updated data.

The primary components that you use to implement data binding functionality are:

A data source collection — an object that contains a set of C++ data source objects, which store

strings, property values, or other nested objects in a property bag

The data provider — the external source of dynamic data, such as a server, database, or computer

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

4

When the data provider has new data, you can design your application to access the data source

collection, and update, delete, or add new objects to it. Then, the UI elements can display updated data

stored in the collection.

In some cases, you may want to display hierarchical data in a Silverlight for Windows Embedded UI.

When hierarchical data is supported in a data source collection, items in the collection can also contain

their own sub-collections of data. For example, consider an application that displays a collection of

inventory items. When a user selects an item, the user might also want to see a collection of calendar

dates that shows when the item was produced, inspected, shipped, and purchased. To display a

collection that belongs to an item in a collection, you must support hierarchical data in your Expression

Blend project and C++ code.

The data-binding implementation for using data collections in Silverlight for Windows Embedded

resembles the implementation in Microsoft Silverlight 3, but differs in the following respects:

Silverlight for Windows Embedded provides one primary derived collection class,

XRObservableCollection (http://go.microsoft.com/fwlink/?LinkId=223714), which you use to create

data source collections. In contrast, Microsoft Silverlight 3 provides approximately fourteen classes

that inherit from System.Collections.ObjectModel::Collection<T>.

Silverlight for Windows Embedded does not support reflection, but instead provides a property bag

interface that handles the functionality of resolving property names.

Silverlight for Windows Embedded provides helper classes to support functionality that resembles

the Component Object Model (COM) for managing collection objects.

Silverlight for Windows Embedded supports interface maps for extending data binding objects to

support additional interfaces.

The major steps you perform to populate the UI with collections of dynamic data are:

1. Create the Expression Blend Project and the Windows Embedded Silverlight Tools Subproject

2. Populate the List Box with Data

3. Update the Data (Optional)

4. Add Support for Users to Update the Data (Optional)

5. Update and Build the Project

Before beginning the steps to populate the UI with collections of data, it is helpful to understand how

data binding works in Silverlight for Windows Embedded. The next section provides in-depth

information about how data binding works with data source collections.

Data Source Collections in Silverlight for Windows
Embedded

To maintain data collections separately from the UI, you can use the Silverlight for Windows Embedded

class library to implement data source objects and a data source collection. You use the library classes

and interfaces to populate the UI with collections of data.

http://go.microsoft.com/fwlink/?LinkId=223714

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

5

Implementation for Binding Data in Silverlight for Windows
Embedded

In Silverlight for Windows Embedded, a data source collection is an

XRObservableCollection<ItemType> object that contains a set of C++ data source objects, each of

which implements TPropertyBag<Derived>. Each data source object stores its strings, property

values, and other nested objects in a property bag. You can display the property values, strings, and

nested objects in a Silverlight for Windows Embedded UI by binding their data to UI elements. Then,

you can set the data source collection as both the data context and the items source for a list box that

contains data-bound elements that you defined in the XAML UI.

Note

Although this white paper uses an IXRListBox (http://go.microsoft.com/fwlink/?LinkId=208908)

object to illustrate how to bind data in collections to the UI, you can also use an IXRComboBox

(http://go.microsoft.com/fwlink/?LinkId=208907) object, which inherits from IXRItemsControl

and also supports the IXRItemsControl::SetItemsSource

(http://go.microsoft.com/fwlink/?LinkID=223719) method. To define a combo box in XAML, see

ComboBox Class (http://go.microsoft.com/fwlink/?LinkId=142209) on MSDN.

A data provider is an external source of dynamic data, such as a mail folder, that exists in a separate

component, such as another DLL on the device or a server, database, or computer. Data is maintained

in the data provider, while the data source objects and data source collection that store the data are

written in the C++ code-behind for your Windows Embedded Silverlight Tools subproject. You can

design your application to access the data source collection and update, delete, or add new objects to it

when the data provider has new data. Then, when the collection raises the CollectionChanged event,

the list box that you defined in the XAML UI can display updated data stored in the collection.

The following diagram shows the relationships between components in the Silverlight for Windows

Embedded implementation for binding data.

http://go.microsoft.com/fwlink/?LinkId=208908
http://go.microsoft.com/fwlink/?LinkId=208907
http://go.microsoft.com/fwlink/?LinkID=223719
http://go.microsoft.com/fwlink/?LinkId=142209

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

6

Figure 1: Implementation for Binding Data in Silverlight for Windows Embedded

Differences Between Microsoft Silverlight 3 and Silverlight for
Windows Embedded

The implementation for using data source collections in Silverlight for Windows Embedded resembles

the implementation in Microsoft Silverlight 3. For example, XRObservableCollection<ItemType>

(http://go.microsoft.com/fwlink/?LinkId=223714) is the C++ equivalent of ObservableCollection<T>

(http://go.microsoft.com/fwlink/?LinkId=226354) in Microsoft Silverlight 3. And,

XRObservableCollection<ItemType> (http://go.microsoft.com/fwlink/?LinkId=223714) implements

IXRNotifyCollectionChanged (http://go.microsoft.com/fwlink/?LinkId=226356), which is the C++

equivalent of INotifyCollectionChanged (http://go.microsoft.com/fwlink/?LinkId=226355). The primary

differences in implementation between Microsoft Silverlight 3 and Silverlight for Windows Embedded for

data source collections are:

http://go.microsoft.com/fwlink/?LinkId=223714
http://go.microsoft.com/fwlink/?LinkId=226354
http://go.microsoft.com/fwlink/?LinkId=223714
http://go.microsoft.com/fwlink/?LinkId=226356
http://go.microsoft.com/fwlink/?LinkId=226355

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

7

Silverlight for Windows Embedded provides XRObservableCollection<ItemType>

(http://go.microsoft.com/fwlink/?LinkId=223714) as the primary derived class for data source

collections.

Because Silverlight for Windows Embedded does not provide equivalent support for the

System.Reflection C# namespace, it instead provides the TPropertyBag<Derived>

(http://go.microsoft.com/fwlink/?LinkId=223715) C++ interface for you to implement on your custom

class type.

TPropertyBag<Derived> maintains a property list for an object. It provides methods that you use

to retrieve property values by specifying the name of a property, instead of specifying the name of

an object that represents a property.

XRObservableCollection<Derived> does not support C++ equivalent methods for

ICollection::IsSynchronized (http://go.microsoft.com/fwlink/?LinkId=27027) or ICollection::SyncRoot

(http://go.microsoft.com/fwlink/?LinkId=227485), which are used to synchronize access to a

collection that is by default not synchronized (that is, not thread-safe). Instead, use an

XRAutoCriticalSection (http://go.microsoft.com/fwlink/?LinkId=227480) object, or implement your

own thread safety mechanism for accessing a data source collection.

To support functionality that resembles COM for managing objects, Silverlight for Windows

Embedded provides the helper class XRObject<Base>

(http://go.microsoft.com/fwlink/?LinkId=224270).

XRObject<Base> also supports interface maps, so that you can support requesting an interface

pointer to a collection class object by using the COM method IUnknown::QueryInterface.

Silverlight for Windows Embedded supports populating the ListBox and ComboBox Silverlight 3

XAML elements with data from a collection.

The following Silverlight 3 XAML elements support displaying data from a collection in Microsoft

Silverlight 3, but are unsupported in Silverlight for Windows Embedded:

AutoCompleteBox

DataGrid

HeaderedItemsControl

TabControl

TreeView

Silverlight for Windows Embedded does not support UI-to-UI binding, in which you use a UI

element as the data source for another UI element. Instead, you can identify properties in two

different UI elements that are data-bound to the same data source property. For more information,

see Data Binding in Silverlight for Windows Embedded Virtual Lab

(http://go.microsoft.com/fwlink/?LinkId=226353).

TPropertyBag<Derived> in Silverlight for Windows Embedded

To manage access to the values of data source properties in a data source object, you can implement

the TPropertyBag<Derived> (http://go.microsoft.com/fwlink/?LinkId=223715) interface on the object.

http://go.microsoft.com/fwlink/?LinkId=223714
http://go.microsoft.com/fwlink/?LinkId=223715
http://go.microsoft.com/fwlink/?LinkId=27027
http://go.microsoft.com/fwlink/?LinkId=227485
http://go.microsoft.com/fwlink/?LinkId=227480
http://go.microsoft.com/fwlink/?LinkId=224270
http://go.microsoft.com/fwlink/?LinkId=226353
http://go.microsoft.com/fwlink/?LinkId=223715

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

8

We recommend using TPropertyBag<Derived> instead of IXRPropertyBag

(http://go.microsoft.com/fwlink/?LinkId=223720) because TPropertyBag<Derived> provides the

following additional functionality in Silverlight for Windows Embedded:

It supports registering properties so that you can obtain property values by name. By implementing

TPropertyBag<Derived>, you will not have to provide a custom implementation of GetValue and

SetValue methods in your data class.

It raises the PropertyChanged event when you set a new value for a property in the property bag.

It provides default functionality for owning and registering properties represented by objects of type

iXRPropertyBinding.

The following diagram shows a class diagram for TPropertyBag<Derived>.

Figure 2: TPropertyBag<Derived> Class Diagram

Support for Hierarchical Data in Collections

You can display hierarchical data in a Silverlight for Windows Embedded application.

The example from the Introduction describes an inventory tracking application that can also display a

sub-collection of calendar dates that indicate when each inventory item was produced, inspected,

shipped, and purchased. When the user selects an inventory item, the UI can display calendar data

from the item’s sub-collection in another list box, or in text elements. This functionality is known as

supporting hierarchical data in a UI.

Silverlight for Windows Embedded represents hierarchical data in a property of a C++ data source

object.

http://go.microsoft.com/fwlink/?LinkId=223720

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

9

To display a sub-collection of data that belongs to an item in a collection, you must support

hierarchical data in both your Expression Blend project and C++ code. To support hierarchical data in

the data source object, you add a data field of type TBoundPointerProperty<PropertyType>

(http://go.microsoft.com/fwlink/?LinkId=227476) to the data source object. Then, you can set the value

of the TBoundPointerProperty<PropertyType> data field to an interface pointer to a hierarchical data

collection in the form of another XRObservableCollection<ItemType>

(http://go.microsoft.com/fwlink/?LinkId=223714) object.

To support hierarchical data, follow the optional steps in each procedure in this white paper that are

labeled “To support displaying hierarchical data.”

The following diagram shows the differences in the Silverlight for Windows Embedded implementation

for binding data when your application must support hierarchical data.

Figure 3: Implementation for Binding Data and Supporting Hierarchical Data

http://go.microsoft.com/fwlink/?LinkId=227476
http://go.microsoft.com/fwlink/?LinkId=223714

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

10

Prerequisites

To populate a Silverlight for Windows Embedded UI with dynamic collections of data by following the

steps in this white paper, you must install the following items on your computer in the order listed:

1. Microsoft Expression Blend 3. For more information, see Microsoft Expression Blend 3

(http://go.microsoft.com/fwlink/?LinkId=204751) at the Microsoft Download Center.

2. Visual Studio 2008 with SP1.

3. Windows Embedded Compact 7.

Important

By default, Windows Embedded Silverlight Tools is installed when you install Windows

Embedded Compact 7. To verify this during installation, choose Custom Install and

confirm that the Windows Embedded Silverlight Tools option is selected.

4. A virtual CEPC, correctly installed and configured. For more information, see Getting Started with

Virtual CEPC (http://go.microsoft.com/fwlink/?LinkId=199788).

When you install Windows Embedded Silverlight Tools, the Expression Blend templates are installed at

%ProgramFiles%\Microsoft Expression\Blend 3\ProjectTemplates\en\Windows Embedded Silverlight

Tools\Application.

If you are using a non-U.S. English language version of Expression Blend 3, you must manually copy

the template files from %ProgramFiles%\Microsoft Expression\Blend 3\ProjectTemplates\en\Windows

Embedded Silverlight Tools\Application to an Applications folder that you create in your local user

directory at the following location: %Users%\user-name\Documents\Expression\Blend

3\ProjectTemplates\Windows Embedded Silverlight Tools\Applications.

After you manually copy the files to the new directory path, Expression Blend can display the templates

in the New Project dialog box.

In addition, we recommend the following:

(Optional) Determine which data provider (for example, a Microsoft Exchange Server, a Video on

Demand (VOD) server, or a user’s media library of songs) that you want to use to populate the UI

with data. Make sure that you can access the data; for example, by creating an Ethernet network

connection to a test server, or by implementing the media library in your OS design project.

Build a run-time image that supports Silverlight for Windows Embedded (using SYSGEN variable

SYSGEN_XAMLRUNTIME), Target Control Shell (using SYSGEN variable SYSGEN_SHELL), and

the functionality that your data provider requires. For example, if your data provider is a media

library, the run-time image must support Media Library (using SYSGEN variable

SYSGEN_MEDIAAPPS_MEDIALIBRARY).

http://go.microsoft.com/fwlink/?LinkId=204751
http://go.microsoft.com/fwlink/?LinkId=199788
http://go.microsoft.com/fwlink/?LinkId=199788

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

11

Create the Expression Blend Project and the
Windows Embedded Silverlight Tools
Subproject

To create an application that can display data from a data source, you must create a XAML UI that

supports data from a data source collection. Then, you use Windows Embedded Silverlight Tools to

create an application subproject that is founded on your XAML project so you can add it to your OS

design.

In this step, you design a list-box UI element for the data-bound elements by using Microsoft

Expression Blend 3. The Expression Blend project must include the following XAML elements:

A ListBox (http://go.microsoft.com/fwlink/?LinkId=141725) XAML element to contain the data-bound

elements

A DataTemplate (http://go.microsoft.com/fwlink/?LinkId=221481) XAML element that defines the

presentation and appearance of the data-bound elements

Before you create the project and subproject, you must determine the data source properties that will

populate UI elements with data. To populate the list box with data, you add names of properties from

the C++ data-source object to Binding Markup Extensions

(http://go.microsoft.com/fwlink/?LinkID=219141).

To determine which data-source properties will populate UI elements with data

1. Determine the type of data to display in your application. For example, a media application

might display the following data for each item in a data source collection:

The name of the album

The name of the artist

The number of times that a user plays the media

A collection of other albums also produced by the artist

2. Choose property names for the data. For example, the media application described earlier

might use the following property names:

AlbumName

AlbumArtist

PlayCount

OtherAlbumsList

Note

You will reuse these property names when you register properties with data source

objects in the collection.

http://go.microsoft.com/fwlink/?LinkId=141725
http://go.microsoft.com/fwlink/?LinkId=221481
http://go.microsoft.com/fwlink/?LinkID=219141

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

12

To create an Expression Blend 3 project for a UI that you will populate with collections of
data

1. In Expression Blend, on the File menu, click New Project.

2. In Project types, select Windows Embedded.

3. Type a project name, and then click OK.

4. Add a ListBox element.

5. Add a DataTemplate element based on how you want to bind data:

To bind data to items in one element, such as a ListBox, add the DataTemplate element

to the UserControl root element in MainPage.xaml.

To bind data to several different elements on the page, define the DataTemplate element

as an application resource in App.xaml.

6. In the ListBox element, add an ItemTemplate attribute and set its value as the name of the

DataTemplate. For more information, see Data Templating Overview

(http://go.microsoft.com/fwlink/?LinkId=220675) on MSDN.

7. Transform elements into data-bound elements by doing the following:

a. Identify the element attribute to populate with data.

b. For the attribute value, add a binding markup extension with the property name that you

chose earlier in this section. For more information, see Binding Declarations Overview

(http://go.microsoft.com/fwlink/?LinkId=219553) on MSDN.

8. (Optional) To support displaying hierarchical data, you can define another ListBox element and

transform it into a data-bound element. Add an ItemsSource attribute to the additional ListBox

element, and use a binding markup extension that has a property name. Later, you will register

the property name of the hierarchical data with a TBoundPointerProperty object.

For example, in the media application described earlier, the hierarchical data would be

represented as the OtherAlbumsList property.

For more information about hierarchical data, see Data Source Collections in Silverlight for

Windows Embedded. For an example in XAML, see How to: Use the Master-Detail Pattern with

Hierarchical Data (http://go.microsoft.com/fwlink/?LinkId=221489) on MSDN.

9. On the File menu, click Save.

To create a Windows Embedded Silverlight Tools subproject that is founded on your
Expression Blend project

For instructions on how to create a Windows Embedded Silverlight Tools subproject, see A

Sample Application Tutorial Using Windows Embedded Silverlight Tools

(http://go.microsoft.com/fwlink/?linkid=189508) on MSDN.

http://go.microsoft.com/fwlink/?LinkId=220675
http://go.microsoft.com/fwlink/?LinkId=219553
http://go.microsoft.com/fwlink/?LinkId=221489
http://go.microsoft.com/fwlink/?LinkId=221489
http://go.microsoft.com/fwlink/?linkid=189508
http://go.microsoft.com/fwlink/?linkid=189508

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

13

Populate the List Box with Data

After you create the Windows Embedded Silverlight Tools subproject that uses your Expression Blend

project as its foundation, you can add C++ code to the subproject files. This code populates the UI with

data from a data source collection. The list box in your application displays the items from your data

source collection in a list. Your application can populate each list-box item with a data source object

from the collection.

When the user selects an item in the list, you can also populate data-bound elements with data-source

properties of the object that is bound to the item. For example, when a user selects an item in a media

playlist, the media application can populate TextBlock data-bound elements with the AlbumName and

AlbumArtist data-source property values for the selected item.

To populate a list box with data, you must create a data class and a data source collection, and then

establish a data connection between the data source collection and the list box.

Create a Data Class

To populate a list box with data from a collection, you must first create a class or set of classes to

represent your collection data.

The data provider may organize its data in a variety of ways, including data in event structures, property

values, classes, data fields, and so on.

To prepare the collection data for a Silverlight for Windows Embedded application, you must represent

it by creating a data class that uses the programming elements in the Silverlight for Windows

Embedded class library.

To create a data class

1. In Platform Builder, open the subproject you created in Create the Expression Blend Project

and the Windows Embedded Silverlight Tools Subproject, earlier in this white paper.

2. Implement a custom data class that implements the TPropertyBag<Derived>

(http://go.microsoft.com/fwlink/?LinkId=223715) interface.

3. In the data class, add a property field for each data-source property you identified in Create the

Expression Blend Project and the Windows Embedded Silverlight Tools Subproject. The

property fields must have data types of Silverlight for Windows Embedded classes that

represent properties, which include TBoundProperty<PropertyType>

(http://go.microsoft.com/fwlink/?LinkId=227477), TBoundProperty<BSTR>

(http://go.microsoft.com/fwlink/?LinkId=227478), and TBoundPointerProperty<PropertyType>

(http://go.microsoft.com/fwlink/?LinkId=227476).

Note

TBoundProperty<PropertyType>, TBoundProperty<BSTR>, and

TBoundPointerProperty<PropertyType> provide Get and Set methods, so you do

http://go.microsoft.com/fwlink/?LinkId=223715
http://go.microsoft.com/fwlink/?LinkId=227477
http://go.microsoft.com/fwlink/?LinkId=227478
http://go.microsoft.com/fwlink/?LinkId=227476

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

14

not have to implement your own Get and Set methods in the data class, as you do for

classes that implement IXRPropertyBag

(http://go.microsoft.com/fwlink/?LinkId=223720).

4. Implement functionality in the data class to register the properties by using

TPropertyBag.BeginRegisterProperties, TPropertyBag.RegisterBoundProperty, and

TPropertyBag.EndRegisterProperties, as follows:

a. Block other threads by calling TPropertyBag.BeginRegisterProperties.

b. Call TPropertyBag.RegisterBoundProperty for each property field, and pass the data-

source property name that you identified earlier in this tutorial into the PropertyName input

parameter.

c. Stop blocking other threads by calling TPropertyBag.EndRegisterProperties.

5. (Optional) To support displaying hierarchical data, define another property field of type

TBoundPointerProperty<PropertyType>. The property field represents a pointer to a

collection object that belongs to the data class.

Important

Set the PropertyType template parameter to an interface that

XRObservableCollection<Derived> supports, such as IXRList, IXREnumerable, or

IXRValueCollection.

The following example code shows a data class that has a property field, m_pManager, for storing

hierarchical data.

Important

For readability, the following code example does not contain security checking or error

handling. Do not use the following code in a production environment.

#include "XRCollection.h"

#include "XRPropertyBag.h"

class _declspec(uuid("{557BFE61-D018-41ce-AF28-06EB6812DBFC}")) MyEmployee : public

TPropertyBag<MyEmployee>

{

protected:

 MyEmployee() {};

public:

 HRESULT Initialize(int ID, const WCHAR* pFirstName)

 {

 HRESULT hr = InitializeProperties();

http://go.microsoft.com/fwlink/?LinkId=223720

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

15

 m_ID = ID;

 m_FirstName = SysAllocString(pFirstName);

 return hr;

 }

 TBoundProperty<int> m_ID;

 TBoundProperty<BSTR> m_FirstName;

 TBoundPointerProperty<TPropertyBag> m_pManager;

 TBoundPointerProperty<IXRList> m_pDirectReports;

 HRESULT InitializeProperties()

 {

 HRESULT hr = S_OK;

 hr = BeginRegisterProperties();

 if (FAILED(hr))

 return hr;

 hr = RegisterBoundProperty(L"ID", m_ID);

 if (FAILED(hr))

 return hr;

 hr = RegisterBoundProperty(L"FirstName", m_FirstName);

 if (FAILED(hr))

 return hr;

 hr = RegisterBoundProperty(L"Manager", m_pManager);

 if (FAILED(hr))

 return hr;

 hr = RegisterBoundProperty(L"DirectReports", m_pDirectReports);

 if (FAILED(hr))

 return hr;

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

16

 hr = EndRegisterProperties();

 return hr;

 }

};

Create a Data Source Collection

After you create a data class, you must use it to instantiate data source objects and add them to an

XRObservableCollection<ItemType> object.

To create a data source collection

1. In your subproject, open the source code file where you want to add functionality to create the

data source collection. For example, in Solution Explorer, browse to Subprojects\< Subproject

Name>\Source files, and open MainPage.cpp.

2. Define an XRObservableCollection<ItemType> (http://go.microsoft.com/fwlink/?LinkId=223714)

object variable and create an instance by calling

XRObservableCollection.CreateInstance(XRObservableCollection**).

3. Create data source objects to add to the collection. For each data source object, do the

following:

a. Define an object variable.

b. To block other threads from accessing the collection object, implement a thread safety

mechanism. For example, initialize an XRAutoCriticalSection

(http://go.microsoft.com/fwlink/?LinkId=227480) object and call EnterCriticalSection

(http://go.microsoft.com/fwlink/?LinkId=226720).

c. To create an object instance of the data class, call

TPropertyBag.CreateInstance(Derived**).

d. On the collection instance, call its derived method XRValueCollectionT.Add(const

ItemType&) to add the data source object to the collection.

e. Release ownership of the thread. For example, call LeaveCriticalSection

(http://go.microsoft.com/fwlink/?LinkId=226721).

4. (Optional) To support hierarchical data, do the following:

a. Identify a data source object that must support hierarchical data and that includes a

TBoundPointerProperty<PropertyType> property field.

b. Create an XRObservableCollection<ItemType>

(http://go.microsoft.com/fwlink/?LinkId=223714) sub-collection of items by repeating steps 1

and 2.

c. To convert the sub-collection object into an XRValue

http://go.microsoft.com/fwlink/?LinkId=223714
http://go.microsoft.com/fwlink/?LinkId=227480
http://go.microsoft.com/fwlink/?LinkId=226720
http://go.microsoft.com/fwlink/?LinkId=226721
http://go.microsoft.com/fwlink/?LinkId=223714
http://go.microsoft.com/fwlink/?LinkId=223716

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

17

(http://go.microsoft.com/fwlink/?LinkId=223716) object, create an XRValue

(http://go.microsoft.com/fwlink/?LinkId=223716) object and call

XRValue::SetValue(IXREnumerable, bool).

d. To block other threads from accessing the collection object, implement a thread safety

mechanism. For example, initialize an XRAutoCriticalSection

(http://go.microsoft.com/fwlink/?LinkId=227480) object and call EnterCriticalSection

(http://go.microsoft.com/fwlink/?LinkId=226720).

e. On the data source object, call TPropertyBag.SetValue(const WCHAR *,XRValue *) to

set the XRObservableCollection<ItemType>

(http://go.microsoft.com/fwlink/?LinkId=223714) sub-collection as the value of a property

field of type TBoundPointerProperty<PropertyType>

(http://go.microsoft.com/fwlink/?LinkId=227476).

f. On the collection instance, call its derived method XRValueCollectionT.Add(const

ItemType&) to add the data source object to the collection.

g. Release ownership of the thread. For example, call LeaveCriticalSection

(http://go.microsoft.com/fwlink/?LinkId=226721).

5. In the shutdown code for your application, call the inherited method

_XRValueCollectionBaseT.Clear to release references to objects in the data source

collection. For example, add the code to the helper method App::OnExit in App.cpp.

The following code example creates a data source collection of data source objects. The code example

assigns initial values to data source objects by using a custom method, Initialize, that initializes the

ID and FirstName registered properties.

Important

For readability, the following code example does not contain security checking or error

handling. Do not use the following code in a production environment.

#include “XamlRuntime.h”

#include “XRPtr.h”

#include “XRCollection.h”

static XRPtr<MyEmployee> m_pModel;

 static HRESULT CreateModel()

 {

 HRESULT hr = S_OK;

 XRPtr<XRObservableCollection<MyEmployee*>,IXREnumerable> pCollection;

 XRObservableCollection<MyEmployee*>::CreateInstance(&pCollection);

http://go.microsoft.com/fwlink/?LinkId=223716
http://go.microsoft.com/fwlink/?LinkId=227480
http://go.microsoft.com/fwlink/?LinkId=226720
http://go.microsoft.com/fwlink/?LinkId=223714
http://go.microsoft.com/fwlink/?LinkId=227476
http://go.microsoft.com/fwlink/?LinkId=226721

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

18

 XRPtr<MyEmployee> pEmployee1;

 MyEmployee::CreateInstance(&pEmployee1);

 pEmployee1->Initialize(1, L"EmployeeOne");

 XRPtr<MyEmployee> pEmployee2;

 MyEmployee::CreateInstance(&pEmployee2);

 pEmployee2->Initialize(2, L"EmployeeTwo");

 pCollection->Add(pEmployee1);

 pCollection->Add(pEmployee2);

 MyEmployee::CreateInstance(&m_pModel);

 m_pModel->Initialize(3, L"EmployeeModel");

 m_pModel->m_pDirectReports = pCollection;

 return hr;

 }

Set up a Data Connection Between the List Box and the
Data Source Collection
After you create a data source collection, you must establish a data connection by expanding the

responsibilities of the XRObservableCollection<ItemType> object to include the following roles:

The data context for your application

The items source for the list box

To set up a data connection between the list box and the data source collection

1. In your subproject, open the source code file where you want to add functionality for setting up

the data connection. For example, in Solution Explorer, browse to Subprojects\<Subproject

Name>\Source files, and open MainPage.cpp.

2. To obtain a pointer to the root element of the visual host, call

IXRVisualHost::GetRootElement.

3. To obtain a pointer to the list box that you designed earlier in this tutorial, call

IXRFrameworkElement::FindName on the root element.

4. Create an XRValue (http://go.microsoft.com/fwlink/?LinkId=223716) object instance of type

VTYPE_ENUMERABLE.

http://go.microsoft.com/fwlink/?LinkId=223716

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

19

5. To convert the XRObservableCollection<ItemType>

(http://go.microsoft.com/fwlink/?LinkId=223714) object instance into an XRValue

(http://go.microsoft.com/fwlink/?LinkId=223716) object, call

XRValue::SetValue(IXREnumerable, bool).

6. To set the data context, call IXRFrameworkElement::SetDataContext

(http://go.microsoft.com/fwlink/?LinkId=223718) on the root element of the visual host, and

pass the XRValue (http://go.microsoft.com/fwlink/?LinkId=223716) object as the Value

parameter.

Note

For applications that display data from multiple data source collections, call

IXRFrameworkElement::SetDataContext

(http://go.microsoft.com/fwlink/?LinkId=223718) on each list box, user control, or

content holder that will display the data stored in each collection.

7. To set the data collection as the source of items displayed in the list box, call the derived

method IXRItemsControl::SetItemsSource (http://go.microsoft.com/fwlink/?LinkID=223719) on

the IXRListBox pointer.

Note

This step is equivalent to adding an ItemsSource attribute to a ListBox element in

XAML.

Update the Data (Optional)

You can extend your application to support dynamic data collections.

Data from a data provider can change periodically. For example, new email messages appear in a

user’s Inbox, television program listings change each day, and a user might add songs to a media

playlist. When new data is available in the data provider, the application can update the collection.

You can programmatically update data by doing the following:

Updating properties in an existing object

Adding, removing, or replacing objects in an existing collection

The programming steps necessary to implement checking for new data or receiving notifications when

new data is available are beyond the scope of this white paper. These steps will be specific to your

implementation and your purpose for populating elements in your Silverlight for Windows Embedded UI

with dynamic data. General guidelines for connecting to a data provider to check for new data are

provided in Connect to a Data Provider.

http://go.microsoft.com/fwlink/?LinkId=223714
http://go.microsoft.com/fwlink/?LinkId=223716
http://go.microsoft.com/fwlink/?LinkId=223718
http://go.microsoft.com/fwlink/?LinkId=223716
http://go.microsoft.com/fwlink/?LinkId=223718
http://go.microsoft.com/fwlink/?LinkID=223719

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

20

If you decide to implement functionality for dynamic data collections, make sure that you implement a

mechanism that retrieves update data synchronously from the data provider. The mechanism must

work correctly with the UI threading model so that the UI thread is blocked while the application is

updating data.

Connect to a Data Provider
Before you can update a data source collection with new data from the provider, you must connect the

Windows Embedded Silverlight Tools subproject to the provider.

The specific steps to accomplish this depend on the data provider that your application uses. In

general, for any type of Silverlight for Windows Embedded application, you must do the following to

connect to a data provider:

1. Add the Data Provider's Supporting Files to your Application Subproject

2. Add Functionality to Respond to Notifications from the Data Provider

3. Convert Data Types for Properties in TPropertyBag<Derived>

To illustrate this task, this section of the white paper refers to examples for an email application that

uses the Windows Embedded Compact Messaging API (CE MAPI).

Add the Data Provider's Supporting Files to your Application
Subproject

To connect to a data provider, you include the header (.h) files and library (.lib) files that the provider

uses to represent its data.

Note

The header files to include, and the order in which you define the #include statements, are

specific to the functionality of your data provider.

For example, for a CEMAPI email message application, follow the steps below to add the supporting

files to your application subproject.

To add a CEMAPI .h file to a Windows Embedded Silverlight Tools subproject

1. In Platform Builder, open the application subproject that you created in Create the Expression

Blend Project and the Windows Embedded Silverlight Tools Subproject.

2. In MainPage.cpp, add #include "mapidefs.h" immediately following the #include

"stdafx.h" statement.

3. Repeat step 2 for any other source code file in which you will use CEMAPI programming

elements combined with Silverlight for Windows Embedded programming elements.

To link the CEMAPI .lib file to a Windows Embedded Silverlight Tools subproject

1. In the Solution Explorer in Platform Builder, right-click the subproject, and then choose

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

21

Properties.

2. Click Link.

3. In the Additional Libraries text box, append the following text to the text string, and then click

OK:

$(SG_OUTPUT_ROOT)\sdk\lib\$(_CPUINDPATH)\cemapi.lib

After you append the text, the contents of the text box are as follows:

$(SG_OUTPUT_ROOT)\sdk\lib\$(_CPUINDPATH)\coredll.lib

$(SG_OUTPUT_ROOT)\sdk\lib\$(_CPUINDPATH)\xamlruntime.lib

$(SG_OUTPUT_ROOT)\sdk\lib\$(_CPUINDPATH)\oleaut32.lib

$(SG_OUTPUT_ROOT)\sdk\lib\$(_CPUINDPATH)\cemapi.lib

After you add the required .h and .lib files, you are ready to start adding functionality that responds to

notifications that the data provider sends when it updates its data.

Add Functionality to Respond to Notifications from the Data
Provider

When a data provider’s data changes, it must notify applications to which it is connected. Then, those

applications can update their data source objects and display the new data in the UI.

To connect to a data provider, you must add functionality to your application that responds to

notifications and obtains new data after each notification is received.

For example, you can add the functionality to an event handler for a UI element such as a “Check for

Updated Data” button.

The functionality that responds to notifications and updates data must implement thread safety.

Otherwise, a user updating the data by using the UI and a data provider updating the data might occur

simultaneously, which can compromise data integrity. For example, you can use the

XRAutoCriticalSection (http://go.microsoft.com/fwlink/?LinkId=227480) class to create a critical section

object that blocks access to the thread until the updated data is obtained.

Note

Different data providers have different implementations of sending notifications to applications.

For example, for a CEMAPI email message application, you can implement functionality that registers

for and responds to notifications by creating a MAPI advise sink object and obtaining event data from a

NOTIFICATION programming element. For more information, see Event Notification in MAPI

(http://go.microsoft.com/fwlink/?LinkId=228769), Handling Notifications

(http://go.microsoft.com/fwlink/?LinkId=228772), and Handling an Incoming Message

(http://go.microsoft.com/fwlink/?LinkId=228770).

http://go.microsoft.com/fwlink/?LinkId=227480
http://go.microsoft.com/fwlink/?LinkId=228769
http://go.microsoft.com/fwlink/?LinkId=228772
http://go.microsoft.com/fwlink/?LinkId=228770

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

22

After you add functionality to respond to notifications and obtain new data from the data provider, you

must then verify that the data is in the correct format before you add it to a TPropertyBag<Derived>

object.

Convert Data Types for Properties in TPropertyBag<Derived>

When you receive new data from a data provider, you must verify that the data is represented by a data

type that is appropriate for a TBoundPropertyBase<PropertyType,StoreType> derived object. Data

from a provider is not guaranteed to be represented by a data type that is compatible with the

TBoundPropertyBase<PropertyType,StoreType> derived objects that represent properties in

Silverlight for Windows Embedded. For example, not all strings in all data providers are of type BSTR.

Then, you can add the data to a TBoundPropertyBase<PropertyType,StoreType> derived object.

The following list describes how to treat the various types of data:

For data that uses common types such as integer, float, and Boolean, type conversion is not

required. You can add the new value directly to a TBoundProperty<PropertyType>

(http://go.microsoft.com/fwlink/?LinkId=227477) object by calling its derived method

TBoundPropertyBase.Set(XRValue *) or TBoundPropertyBase.Set(const PropertyType&).

For text data in strings, you must first convert the string to a BSTR data type before you add it to a

TBoundProperty<BSTR> (http://go.microsoft.com/fwlink/?LinkId=227478) object. For example,

provide the string as the input parameter to the SysAllocString function when you allocate the

BSTR string.

For data that is represented as an object, you must add the value to a

TBoundPointerProperty<PropertyType> (http://go.microsoft.com/fwlink/?LinkId=227476) object. For

example, you can use TBoundPointerProperty.operator=(const PropertyType *) to assign a

new value to the object.

The following example code defines a text string that emulates the property value of a

PR_SENDER_NAME property from a MAPI message object, converts it to a BSTR, and sets a new

value of the Name property in a TPropertyBag<Derived> data object.

Important

For readability, the following code example does not contain security checking or error

handling. Do not use the following code in a production environment.

#include “XRPropertyBag.h”

#include “XamlRuntime.h”

LPWSTR EmailSenderName = TEXT("Sanjay Patel");

XRValue updatedxrvalue;

updatedxrvalue.bstrStringVal = SysAllocString(EmailSenderName);

http://go.microsoft.com/fwlink/?LinkId=227477
http://go.microsoft.com/fwlink/?LinkId=227478
http://go.microsoft.com/fwlink/?LinkId=227476

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

23

updatedxrvalue.vType = VTYPE_BSTR;

m_DataObject->SetValue(L"Name", &updatedxrvalue);

The following example code converts an interface pointer to an XRPtr<Interface>

(http://go.microsoft.com/fwlink/?LinkId=229300) smart pointer, and then sets the smart pointer as the

value of a TBoundPointerProperty<PropertyType> object in a TPropertyBag<Derived> object

called ClassName.

Important

For readability, the following code example does not contain security checking or error

handling. Do not use the following code in a production environment.

#include “XRPropertyBag.h”

#include “XamlRuntime.h”

#include “XRPtr.h”

#include “Data.h”

// Define global variable for data source object.

XRPtr<ClassName> m_Object;

HRESULT MainPage::ConvertType(IXRPropertyBag* pData)

{

 // Initialize smart pointer and assign it the value of an interface pointer.

 XRPtr<IXRPropertyBag> pXRObject;

 pXRObject = pData;

 // Set the value of a property field in m_Object to the smart pointer.

 m_Object->pObject = pXRObject;

 return S_OK;

}

Contents of Data.h file:

class _declspec(uuid("{0ED08C01-200A-42ed-BB7C-A4ED016B65B7}")) ClassName : public

TPropertyBag<ClassName>

http://go.microsoft.com/fwlink/?LinkId=229300

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

24

{

protected:

 // To create an instance of this class, use the TPropertyBag.CreateInstance

method and not the default constructor.

 ClassName() {};

public:

 TBoundProperty<BSTR> bstrProp1;

 TBoundProperty<BSTR> bstrProp2;

 TBoundPointerProperty<IXRPropertyBag> pObject;

 HRESULT InitializeProperties()

 {

 HRESULT hr = S_OK;

 hr = BeginRegisterProperties();

 if (FAILED(hr))

 {

 return hr;

 }

 hr = RegisterBoundProperty(L"Name", bstrProp1);

 hr = RegisterBoundProperty(L"Address", bstrProp2);

 hr = RegisterBoundProperty(L"Object1", pObject);

 hr = EndRegisterProperties();

 return hr;

 }

};

After you verify that the data is of the appropriate type, you can update a data source property or modify

items in a data source collection.

Update Data Source Properties
You can update the data source properties of an existing object, such as an object that represents a

media file, in the data source collection that you created in Create a Data Source Collection.

For example, consider a user who edits media files in a playlist and adds metadata for album name and

album artist. When the user reloads the playlist on a Windows Embedded Compact device, the media

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

25

application detects the changes and updates the AlbumName and AlbumArtist properties of items

in an existing collection.

To update data source properties

1. In Platform Builder, open your OS design project.

2. In your subproject, open the source code file where you want to add functionality for updating

the data. For example, in Solution Explorer, browse to Subprojects\<Subproject Name>\Source

files, and open MainPage.cpp.

3. Obtain a pointer to the XRObservableCollection<ItemType>

(http://go.microsoft.com/fwlink/?LinkId=223714) collection.

4. To block other threads from accessing the collection object, implement a thread safety

mechanism. For example, create an XRAutoCriticalSection

(http://go.microsoft.com/fwlink/?LinkId=227480) object, and call EnterCriticalSection

(http://go.microsoft.com/fwlink/?LinkId=226720).

5. Obtain a pointer to a data-source object in the collection. For example, call the derived method

XRValueCollectionT.GetItem(int,Obj**) to obtain a pointer to an item in the collection.

6. To obtain the current value of a property in the data source object, call

TPropertyBag.GetValue(const WCHAR *,XRValue *).

7. To set a new value for a property, call TPropertyBag.SetValue(const WCHAR *,XRValue *).

8. Release ownership of the thread. For example, call LeaveCriticalSection

(http://go.microsoft.com/fwlink/?LinkId=226721).

The following example code obtains the value of a property of an item in a data source collection and

updates its value.

Important

For readability, the following code example does not contain security checking or error

handling. Do not use the following code in a production environment.

#include "XRPropertyBag.h"

#include "XRCollection.h"

#include "oleauto.h"

HRESULT MainPage::UpdateData()

{

 // Create a data source collection with one item

 XRPtr<XRObservableCollection<ClassName*>,IXREnumerable> pCollection;

 XRObservableCollection<ClassName*>::CreateInstance(&pCollection);

http://go.microsoft.com/fwlink/?LinkId=223714
http://go.microsoft.com/fwlink/?LinkId=227480
http://go.microsoft.com/fwlink/?LinkId=226720
http://go.microsoft.com/fwlink/?LinkId=226721

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

26

 XRPtr<ClassName> pItem;

 pItem->InitializeProperties();

 pCollection->Add(pItem);

 // Define variables for the data source object and property.

 XRPtr<ClassName> pObj;

 XRValue xrvalueCurrent;

 XRValue xrvalueNew;

 TBoundProperty<BSTR> bstrProp;

 // Set a BSTR string for the new XRValue object.

 bstrProp = SysAllocString(L"UpdatedStringValue");

 xrvalueNew.bstrStringVal = bstrProp;

 // Define a critical section object.

 XRAutoCriticalSection csObject;

 // Obtain an item from the collection.

 pCollection->GetItem(0, &pObj);

 // Request mutually exclusive access to the thread.

 EnterCriticalSection(&csObject);

 // Update a data source property.

 pObj->GetValue(L"PropName1", &xrvalueCurrent);

 if (xrvalueCurrent.bstrStringVal != bstrProp)

 {

 pObj->SetValue(L"PropName1", &xrvalueNew);

 }

 // Release the critical section object.

 LeaveCriticalSection(&csObject);

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

27

 return S_OK;

}

Update a Data Source Collection

You can update the items in a data source collection. For example, if a user adds or deletes media files

in a playlist and then reloads the playlist on a device, the media application can update the collection.

To update a data source collection

1. In Platform Builder, open your OS design project.

2. In your subproject, open the source code file where you want to add functionality for updating

the data source collection. For example, in Solution Explorer, browse to

Subprojects\<Subproject Name>\Source files, and open MainPage.cpp.

3. To block other threads from accessing the collection object, implement a thread safety

mechanism. For example, create an XRAutoCriticalSection

(http://go.microsoft.com/fwlink/?LinkId=227480) object and call EnterCriticalSection

(http://go.microsoft.com/fwlink/?LinkId=226721).

4. Obtain a pointer to the XRObservableCollection<ItemType>

(http://go.microsoft.com/fwlink/?LinkId=223714) collection. For example, call the derived

method IXRItemsControl::GetItemsSource.

5. Update the data source collection.

a. To add a new item, call the derived method XRValueCollectionT.Add(const ItemType&).

b. To remove an item, call the derived method XRValueCollectionT.Remove(const

ItemType&).

c. To replace an item, call the derived method XRValueCollectionT.SetItem(int,const

ItemType&).

1. To raise the CollectionChanged event, call

XRObservableCollection.OnCollectionChanged(XRCollectionChangedCustomEventArgs

*).

2. Release ownership of the thread. For example, call LeaveCriticalSection

(http://go.microsoft.com/fwlink/?LinkId=226721).

http://go.microsoft.com/fwlink/?LinkId=227480
http://go.microsoft.com/fwlink/?LinkId=226721
http://go.microsoft.com/fwlink/?LinkId=223714
http://go.microsoft.com/fwlink/?LinkId=226721

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

28

Add Support for Users to Update the Data
(Optional)

In your application’s UI, you can add support that allows users to update data in the data source

collection.

For example, an inventory tracking application might display a collection of items. When the user

selects an item, the application can populate text boxes or text elements with data about the item. In

order for the user to update this data, the application must support user updates to the data.

For editable data-bound elements, such as TextBox elements, you can add support for bidirectional

updates so that a user’s changes to a data-bound element are transferred to the data source and

update the value of the C++ data source property. In Microsoft Silverlight 3, this functionality is known

as two-way binding.

For data-bound elements that cannot be edited, such as a TextBlock, you can add C++ functionality

that calls TBoundPropertyBase.Set in a derived class to update the data source property based on

user interaction.

Add C++ event handling functionality for users to update the data

1. In Platform Builder, open your subproject.

2. In Solution Explorer, expand the subproject, expand Resource files, and then open

MainPage.xaml.

3. Create an event-handling method that changes a property of an item in the data source

collection.

a. On the Tools menu, point to Windows Embedded Silverlight Tools, and then click

Windows Embedded Events.

b. In the Windows Embedded Events window, select the UI element to which you want to

add an event-handling method.

c. Locate the event in the list, and double-click in the text field on the right.

d. In MainPage.cpp, add functionality that retrieves a data-source object instance and

updates its property value based on user interaction.

The following example code shows an event handler that increments the value of a

TBoundProperty<int> data source property when the user clicks a button.

Important

For readability, the following code example does not contain security checking or error

handling. Do not use the following code in a production environment.

#include "MainPage.h"

#include “XRPropertyBag.h”

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

29

XRPtr<IntegerPropertyBag> m_DataSourceObject;

HRESULT MainPage::Increment_Click (IXRDependencyObject* pSender,

XRMouseButtonEventArgs* pArgs)

{

 HRESULT hr = E_NOTIMPL;

 if ((NULL == pSender) || (NULL == pArgs))

 {

 hr = E_INVALIDARG;

 }

 TBoundProperty<int>* IntProp;

 iXRPropertyBinding* pProperty = NULL;

 pProperty = m_DataSourceObject->GetPropertyByName(L"IntegerData1");

 IntProp = (TBoundProperty<int>*)pProperty;

 int intValue = IntProp->Get();

 intValue = intValue + 1;

 IntProp->Set(intValue);

 // Update layout to see whether the data-bound element is updated

 m_pLayoutRoot->UpdateLayout();

 return hr;

}

Add support for bidirectional updates between a UI element and a property

1. In Expression Blend 3, open the project you created in Create the Expression Blend Project

and the Windows Embedded Silverlight Tools Subproject.

2. Find the UI element that you want users to edit with an updated property value (for example, a

TextBox).

3. In the Binding Markup Extension (http://go.microsoft.com/fwlink/?LinkID=219141) for the UI

element, add Mode=TwoWay. For example:

<TextBox x:Name="UserTextData" Height="47" HorizontalAlignment="Right"

http://go.microsoft.com/fwlink/?LinkID=219141

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

30

Margin="0,167,75,0" VerticalAlignment="Top" Width="231"

Text="{Binding BinaryStringData1, Mode=TwoWay}" TextWrapping="Wrap"

FontSize="16"/>

4. Save your changes.

After you update the XAML or the C++ source code to add support for user updates, you must update

and build the project in Platform Builder.

Update and Build the Project

After you create the Expression Blend project and the Windows Embedded Silverlight Tools subproject,

and add C++ code to populate the list box with data, you can build and run the Silverlight for Windows

Embedded application.

If you made changes to the Expression Blend project after you created the subproject in Platform

Builder, you must update the subproject by using Windows Embedded Silverlight Tools.

To update the subproject

1. In Platform Builder, open the subproject.

2. Open a file (for example, MainPage.cpp) in the subproject.

3. On the Tools menu, point to Windows Embedded Silverlight Tools, and then click Update

Silverlight for Windows Embedded Project.

4. On the File menu, click Save All.

To build and run the subproject

1. In Solution Explorer, expand Subprojects, right-click the name of your subproject, and then

click Build.

2. Verify that no errors or warnings are reported in the Output window.

3. Start the virtual CEPC that you already preconfigured. If you have not done so already, see

Getting Started with Virtual CEPC (http://go.microsoft.com/fwlink/?LinkId=199788).

4. On the Target menu, click Attach Device.

5. When the run-time image loads on the virtual CEPC, run your application.

a. On the Target menu, click Run Programs.

b. In the Run Program dialog box, click the file name of your application with the .exe

extension, and then click Run.

c. In virtual CEPC, check the UI to verify that the data that you added to the

XRObservableCollection<ItemType> (http://go.microsoft.com/fwlink/?LinkId=223714) is

http://go.microsoft.com/fwlink/?LinkId=199788
http://go.microsoft.com/fwlink/?LinkId=223714

Populating a Silverlight for Windows Embedded UI with Collections of Data

© 2012 Microsoft. All rights reserved.

31

displayed in the list box and in any additional data-bound elements.

Conclusion

In an application based on Silverlight for Windows Embedded, you can implement C++ functionality that

populates UI elements with data from a data source collection. First, you create an Expression Blend

project that has a ListBox element and data-bound elements that use Binding Markup Extensions

(http://go.microsoft.com/fwlink/?LinkID=219141). Then, you use Windows Embedded Silverlight Tools

to create a subproject in Platform Builder that uses your Expression Blend project as its foundation.

Next, you add C++ code to the subproject to create a data class and a data source collection, and to

establish a connection between the collection and the list box. You can optionally add functionality to

update the data with new data from the data provider.

By using the data-binding classes and interfaces in Silverlight for Windows Embedded, you can build

email applications, set-top box applications, media player applications, or any type of application that

you want to display data that is maintained separately from the UI.

Additional Resources

To learn more about Silverlight for Windows Embedded, see the following resources:

A Sample Application Tutorial Using Windows Embedded Silverlight Tools

(http://go.microsoft.com/fwlink/?linkid=189508)

Performance Tuning Guide for Silverlight for Windows Embedded

(http://go.microsoft.com/fwlink/?LinkId=205643)

Video: Create a Silverlight for Windows Embedded Application Part 1

(http://go.microsoft.com/fwlink/?LinkId=223337)

Video: Create a Silverlight for Windows Embedded Application Part 2

(http://go.microsoft.com/fwlink/?LinkId=223339)

http://go.microsoft.com/fwlink/?LinkID=219141
http://go.microsoft.com/fwlink/?linkid=189508
http://go.microsoft.com/fwlink/?LinkId=205643
http://go.microsoft.com/fwlink/?LinkId=223337
http://go.microsoft.com/fwlink/?LinkId=223339

© 2012 Microsoft. All rights reserved.

This document is provided “as-is.” Information and views expressed in this document, including URL

and other Internet Web site references, may change without notice. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes.

© 2011 Microsoft. All rights reserved.

	Populating a Silverlight for Windows Embedded UI with Collections of Data
	Introduction
	Data Source Collections in Silverlight for Windows Embedded
	Implementation for Binding Data in Silverlight for Windows Embedded
	Differences Between Microsoft Silverlight 3 and Silverlight for Windows Embedded
	TPropertyBag<Derived> in Silverlight for Windows Embedded

	Support for Hierarchical Data in Collections

	Prerequisites
	Create the Expression Blend Project and the Windows Embedded Silverlight Tools Subproject
	Populate the List Box with Data
	Create a Data Class
	Create a Data Source Collection
	Set up a Data Connection Between the List Box and the Data Source Collection

	Update the Data (Optional)
	Connect to a Data Provider
	Add the Data Provider's Supporting Files to your Application Subproject
	Add Functionality to Respond to Notifications from the Data Provider
	Convert Data Types for Properties in TPropertyBag<Derived>

	Update Data Source Properties
	Update a Data Source Collection

	Add Support for Users to Update the Data (Optional)
	Update and Build the Project
	Conclusion
	Additional Resources

