
Improving Performance in Rich User Interfaces for Embedded Systems 1

 © 2011 Microsoft

Improving Performance in Rich User Interfaces
for Embedded Systems

Windows Embedded Compact 7 Technical Article

Writers: Dion Hutchings, David Franklin, Frankie Anderson

Published: March 2011

Applies To: Windows Embedded Compact 7

Abstract

Performance in applications that include graphical user interfaces (GUI) involves both
usability and responsiveness. High performance, rich user interfaces (UI) provide
appropriate, useful and intuitive displays, as well as quick and smooth responses to
user actions. The providers, creators and developers of embedded devices have begun
to add rich UIs to their products, and have likely encountered issues in driving the
performance of the end-user experience on those devices. This paper identifies what
the performance factors are, how performance is affected by choice of UI design and
hardware platform, and where performance improvements can be made.

Improving Performance in Rich User Interfaces for Embedded Systems 2

 © 2011 Microsoft

Introduction
Information and guidance given here will help you match your product hardware
platform with your desired customer experience, and will help you to maximize the
performance of the user interface (UI) for your product. The proliferation of rich media
experiences across the Internet and desktop has raised consumer expectations,
significantly raising the performance bar for all devices. The problem of meeting ever-
increasing customer expectation can be rationally framed as a trade-off between
complexity of the UI and, to a certain extent, the capability (cost) of the hardware
platform.

The complexity of your user interface increases rapidly as it becomes richer and more
dynamic, and its performance will suffer commensurately if it is launched on an
inadequate hardware platform. In this white paper we try to provide some insight into
the graphics rendering process to help you determine how to improve it with a
combination of hardware, software, and design techniques. Hardware, in particular the
graphics processing unit (GPU), has evolved enormously in the past few years, and
understanding how it facilitates and affects the performance of your product is crucial.

Performance Challenges for Rich User
Interfaces

Embedded systems suppliers and developers have long been optimizing their user
interfaces (UIs) to perform on hardware-limited platforms. The advent of rich UIs has
actually intensified performance issues by adding more complex paradigms for
displaying and interacting with devices. Depictions of three-dimensional objects and
animation are two aspects of a rich UI that can have profound effects on the perceived
performance of a device.

To get to the bottom of performance issues, we must define metrics for measuring
performance that we can use to reasonably compare one UI to another. We also need
to analyze differences and similarities between various UI designs, so we can determine
their relative complexity.

The central performance trade-off is balancing complexity of the UI with capability of
the hardware. A complicated, multilayered user experience simply requires higher
capability in the hardware platform. Perhaps the most important factor in determining
GUI performance is that it is render-bound—the more pixels that you have to render,
the greater the performance cost. As straightforward as this trade-off seems, no easy
formula exists for determining hardware requirements for a particular UI scenario,
because those requirements can depend heavily on the choice of design for the UI.

Determining where performance bottlenecks occur can be very challenging in a rich UI.
For example, the collection of all visual elements that you use in an application UI can
be envisioned as a visual tree. This tree represents the accumulation of all visual
elements that the application creates, whether basic or elaborate, in code or in markup.
A larger visual tree places a heavier computational load on the system and takes longer
to parse and load. Also, a rich UI is interactive. As the user exercises the UI, the visual
elements change or move across the screen, and the reaction of the device to user
inputs must be natural, rapid, and smoothly responsive. When more pixels move and
change, again there is a higher computational load and the recalculation of pixels takes
longer.

Improving Performance in Rich User Interfaces for Embedded Systems 3

 © 2011 Microsoft

If the performance bottleneck is in parsing and loading the visual tree, rather than in
the pixel recalculations, certain types of remedies are used to make improvements. The
effects of changes to the UI design or implementation of the design must be well
understood to improve the UI performance.

Performance Factors That Can Be Measured
and Compared
Factors for the UI

We can define primary performance factors that are directly tied to the complexity of
the UI design. These factors can also be somewhat affected by the specific
implementation of the interface. There are two major performance measurements in
every UI.

• Load time (the time it takes to render the first screen) depends on:
 Number of UI elements in the design.
 Types of UI elements in the design.

• Animation speed (the smooth and realistic appearance of movement on the screen)
depends on:
 Number of UI elements that move.
 Size of the UI elements that move, or portion of the screen that is covered by

moving elements.
 Whether the UI elements are changing or oscillating as they move.

Factors for Hardware Capability
You can take advantage of hardware features by using specific implementation
techniques; however, there is a baseline set of capabilities that affect and possibly limit
the performance of any UI. The most important common denominator hardware
attributes that directly impact UI performance are:

• Processor (CPU) speed and type
• Graphics processing unit (GPU) speed and capability
• System and graphics memory amount

Analysis of UI Complexity
The hardware platform that you use for your product constrains the complexity that can
be built into the UI for your product. However, the increase in functionality of graphics
hardware has spawned a number of new techniques; it is now possible to interactively
execute graphic rendering algorithms that were traditionally considered too complex.

The area of user experience and human-centered design has benefitted from recent
study and advancement. Analyze your product, using the results of this work, to
determine the best possible experience for your consumers. Scenarios, derived from
studying your customers’ needs and expectations, and competitive products, help you
to determine the level of complexity you must address to build your product.
Determining what makes customers excited about your product helps you understand
the components of your application that require the most focus. To achieve maximum

Improving Performance in Rich User Interfaces for Embedded Systems 4

 © 2011 Microsoft

impact on user perception, you can single out the critical areas of your UI and build
richness and complexity for these areas.

Table 1 shows three basic levels of UI complexity, and enumerates the primary
characteristics that define each level, from both the user and the designer perspective.

Table 1 - Levels of UI Complexity

Complexity User experience Designer experience

Premium Premium shell
experience

Dense UI

Rich animations

Fluid look and feel
Multilayered UI

Flexible graphic design

Screen resolution high (> 800 × 600 pixels)

Animations occupy large portion of the screen
(> 25 percent)

Complex animations with high frame rate (20+
fps)

Heavy use of vectors and paths

High Interactive shell
experience
Instant visual state
changes
Simple animations
Click-response look
and feel

Limited graphic design

Screen resolution limited

Animations of moderate size (< 20 percent)

Simple animations with medium frame rate
(15+ fps)

Static icons

All graphic effects offloaded to GPU

Standard Simple shell experience

Limited screen
complexity

No animations

Static look and feel

Little graphic design

Screen resolution very limited

No animation (effects only)

Bitmaps (pre-effected) used instead of paths

Analysis of Hardware Capability
Traditional hardware platforms support traditional UIs. Rendering, the conversion of
graphic information to displayable pixels, is entirely CPU-bound on traditional hardware
platforms. Rich or complex UIs demand innovative rendering techniques, which are
more efficiently and rapidly performed on specially designed graphics hardware. The
combination of specialized rendering methods and specialized graphics hardware is
commonly called the rendering pipeline or graphics pipeline.

An increasing number of embedded device platforms are available with on-board GPUs
designed to speed and improve the rendering process. GPUs incorporate custom
microchips that implement graphics processing functions to add special effects to UI
elements in a 3-D environment. GPUs implement vertex shaders for the UI elements,
and they implement pixel, or fragment shaders, to compute color, depth, and other
attributes on a per pixel basis. GPUs generally consist of multiple parallel processing
units that are capable of executing rendering conversions on multiple graphic elements
simultaneously.

Improving Performance in Rich User Interfaces for Embedded Systems 5

 © 2011 Microsoft

Table 2 shows some recommendations for hardware capability for the three UI
complexity levels described in Table 1 of the previous section.

Table 2 - Minimum Hardware Capability for Levels of UI Complexity

Complexity Minimum Hardware CPU and GPU* Minimum Hardware Memory
Available

Premium Without GPU, not recommended
With GPU, dual 1 GHz processor

512 MB

High Without GPU, dual 1 GHz processor
With GPU, 1 GHz processor

256 MB

Standard Without GPU, 550 MHz processor
With GPU, 550 MHz processor

128 MB

* GPU with support for either DirectDraw or OpenGL 2.0.

Performance Improvement Solutions
Silverlight for Windows Embedded is a native code (C++) UI framework that delivers
impressive graphics with optimized performance on embedded devices. Although it goes
without saying that any device rendering graphics for its UI performs better with more
memory and a faster processor, accelerating the rendering process is a key to achieving
optimal performance results.

Rendering Process Architecture
The Silverlight for Windows Embedded rendering process is driven by the UI design and
is performed in the CPU. As shown in Figure 1, it consists of two distinct,
computationally intense phases:

• Rasterization turns each vector-based UI
element into the pixel-based representation that
the device screen can display. The renderer
allocates a memory buffer of appropriate size to
hold the bitmap image and places the UI
element image into that buffer, pixel by pixel.

• Composition layers the memory buffer contents
(bitmap images) on top of one another, taking
into consideration opacity and transformations
(such as scale, skew or translation). The
resulting composed image is directly displayed
on the device screen.

A typical screen may be composed of tens of UI
elements, each of which may, in turn, be composed
of even more UI elements. The rendering process
interleaves rasterization and composition phases to
efficiently utilize the available memory; the process
will overlay an element into an existing buffer
whenever possible.

Figure 1 - Silverlight Rendering
Process

Improving Performance in Rich User Interfaces for Embedded Systems 6

 © 2011 Microsoft

When UI elements are animated, it wastes processor time to re-rasterize elements that
are not moving. In addition, only the portions of the display that are affected by
element movement need to be re-composed. To optimize the rendering process,
Silverlight for Windows Embedded automatically defers composition of certain elements,
so that the composition steps can be more rapidly completed by using a GPU.

Using a GPU to speed the rendering process is commonly referred to as hardware
acceleration. If your device does not have a GPU or is otherwise incapable of hardware
acceleration, Silverlight uses Graphics Device Interface (GDI) to draw UI objects pixel
by pixel onto the primary display surface in z-order, with a corresponding lower
rendering speed.

Hardware Acceleration Architecture
Hardware acceleration requires that you use one of the following architectures.

• GPU with an OpenGL interface that:
 Supports OpenGL Embedded Systems (ES) 2.0.
 Supports a simple vertex/fragment shader.

• GPU or video hardware with a DirectDraw interface that supports:
 Per pixel and constant, premultiplied and hardware accelerated alpha blits.
 Hardware accelerated blits on SCRCCOPY raster operations.
 Hardware accelerated color fill.
 20-MB video memory (or system memory that the GPU can directly operate).

To support OpenGL for Embedded Systems (OpenGL ES) hardware acceleration in
Silverlight for Windows Embedded Compact, use the architecture shown in Figure 2.

Figure 2 - Hardware Acceleration Architecture

Improving Performance in Rich User Interfaces for Embedded Systems 7

 © 2011 Microsoft

1. XAML Run-time Core: This component is the software portion of the Silverlight rendering
engine. This component works with the OpenGL Plug-in to provide acceleration.

2. OpenGL Plug-in: This component handles the interaction with the OpenGL driver. Silverlight
contains a sample version of a plug-in that supports OpenGL ES 2.0. To customize the OpenGL
(for example, to support OpenGL 1.2), you modify this component.

3. OpenGL Driver: The OGL driver is provided as a binary by the GPU provider and is specific to
the chipset on the board support package (BSP).

4. Vertex/Fragment Shader: The vertex/fragment shader is about 25 lines of code that manages
the interaction with the Open GL Plug-in. Silverlight includes sample code for shaders , and it
must be compiled on the GPU into a Shaders.dll. Consult your hardware provider for
instructions on compiling shaders for the target GPU.

Note If Silverlight cannot find the Shaders.dll library for the GPU, it will
compile the default shaders at run time. However, many OpenGL drivers will not
support run-time compilation, and compiling the shaders at run time can result
in poor performance.

Low-cost platforms, such as ARM9 or similar, typically have inadequate processor speed
and lack GPUs. Using Silverlight on such devices can result in insufficient performance.

Performance Improvement Implementation
A simple example that illustrates how you can improve performance with a GPU is a
static circle that moves around the interior of a static background. The optimal behavior
is to rasterize both the background and the circle and save the resulting images. In this
scenario, the pixel-based images for the circle and the background are stored on the
GPU as textures and then, for each frame, they are composed by the GPU—the
translation transform for the moving circle is changed slightly for each frame, creating
the illusion of motion.

When Silverlight renders the example image for the first time, it does the following:

1. Sets up for rasterization by allocating memory buffer for background.
2. Rasterizes background object (walks through visual tree until circle object is

encountered).
3. Sends rasterized background buffer to GPU (stores as a texture).
4. Rasterizes circle object (cached object).
5. Sends rasterized circle buffer to GPU (stores as a texture).
6. Composes the buffers (done in the GPU).
The GPU can compose textures very rapidly (and with trivial CPU usage), and the GPU
can support a number of simple transformations. The most important are:

• Translation: changing the location of the object.
• Scaling: zooming in and out, to create the illusion of depth.
• Rotation: turning the object about a point or axis.
• Deformation: changing the skew or aspect ratio of the object.
The amount of video memory on the GPU determines the size and number of buffers
that it can use for compositing graphics.

Improving Performance in Rich User Interfaces for Embedded Systems 8

 © 2011 Microsoft

Load Time Improvement Examples
Silverlight for Windows Embedded Compact 7 includes features that are specifically
designed to improve load time. Support for compiling XAML into Binary XAML (BAML)
substantially shortens the time needed for a running application to load and display a
new screen. Performance testing shows that load time improvements range from 27
percent to 38 percent by using this approach. Figure 3 illustrates some examples of
load time decreases for standard and high category UIs. The times shown in Figure 3
were obtained by using two different minimal hardware platforms.

Figure 3 - Browser Load Examples

Silverlight for Windows Embedded now supports encoding Portable Network Graphics
(PNG) files in a less-compressed format so that they can be read into memory faster.
Specific test examples speed up this process by 24 percent to 40 percent, depending on
the hardware platform and image characteristics. Load time improvements for two
image types are shown below: graphic images, which are constructed manually and
typically used as building blocks of UIs, and photo images, which are generated by a
camera and typically used as shell backgrounds, or manipulated directly in applications.
Figure 4 shows load times of PNG images of two sizes, 800 × 640 (512,000) pixels and
4 megapixels (MP).

0
200
400
600
800

1000
1200
1400

Platform
1

Platform
2

Platform
1

Platform
2

Example Browser Load Times
(microseconds)

Standard UI without
improvements

Standard UI Compact 7

High UI without
improvement

High UI Compact 7

Improving Performance in Rich User Interfaces for Embedded Systems 9

 © 2011 Microsoft

Figure 4 - Image Load Examples

Animation Speed Improvement Examples
Silverlight for Windows Embedded Compact 7 implements automatic support for
hardware acceleration. Cached composition now occurs automatically; developers no
longer specify it manually. Silverlight selects appropriate UI elements and applies
cached composition to them to gain animation speed (performance tests show
improvements on the order of 4 to 6 times faster than without automatic composition
caching) when used in conjunction with hardware acceleration. Figure 5 shows two
examples (wizard and music player) of animation speed obtained on a static
background display with full screen sliding transition responses to pan and flick
gestures, and two examples (panel and keyboard) of animation speed on an animated
background with sliding transition responses to pan and flick gestures. These results
were obtained on minimal hardware platforms both with and without OGL-capable
GPUs.

0
100
200
300
400
500
600
700
800

800 × 640 4MP 800 × 640 4MP

Example Image Load Times
(microseconds)

Graphic PNG without
improvements

Graphic PNG Compact 7

Photo PNG without
improvements

Photo PNG Compact 7

Improving Performance in Rich User Interfaces for Embedded Systems 10

 © 2011 Microsoft

Figure 5 - Animation Speed Examples

Key Implementation Considerations for
Improving UI Performance

Load time is significantly improved in Silverlight for Windows Embedded Compact 7,
mainly by modifications to compilation of BAML and PNG files for loading graphic or
photographic images. BAML files are smaller and faster to read than the original XAML
files, which lowers load time. The following practices can increase the gain of these
improvements:

• Load image assets from resource binaries.
• Create controls for self-contained elements; invoke controls only when necessary.

Examples include History/Favorites, Zoom options panel and status bar elements.
• Use images instead of controls when possible. Check whether buttons can be

represented with images and whether to use stack panels or list boxes.
• Use images instead of paths when possible; use a minimal number of precision

points in paths.
• Replace storyboard elements with visual states.
• Share styles when appropriate. For example, if you want all buttons in your design

to look the same, you can define a button style and apply it to all of the buttons.
• Prune unnecessary visual state groups and empty or default values out of the XAML.

Examples are: <Storyboard/> and Stretch=”Fill”.

• Design for minimal use of screen real estate. For example, use visibility = collapsed
instead of opacity = 0.

• Specify target types for styles and for control templates that are inside resources.

Animation speed is made faster in Silverlight for Windows Embedded Compact 7 by
automatically invoking cached composition. The most effective way to improve
animation is to use faster hardware or to use a less complex UI. Some other effective
ways to improve animation are:

0

10

20

30

40

50

High Wizard
UI

High Music
Player UI

Premium
Panel UI

Premium
Keyboard UI

Example Animation Speeds
(frames per second)

Without OGL

With OGL

Without OGL

With OGL

Improving Performance in Rich User Interfaces for Embedded Systems 11

 © 2011 Microsoft

• Limit large-scale animations to use transformations that can be hardware
accelerated. For example, use a translation transformation, rather than modifying x
and y positions of an object.

• Structure the XAML to improve buffer usage.

Windows Embedded Compact 7 Compact Test Kit (CTK) includes sample performance
tests to help you analyze how applications perform on your hardware platforms. These
samples can assist you in determining how to maximize performance of your UI.

Conclusion
The information presented here can help you systematically and rationally improve the
UI performance of your embedded devices. Load time and animation speed are the
main factors that determine how well a UI performs. Higher UI complexity negatively
affects both of these performance factors, but increased capability of modern hardware
platforms mitigates some of these effects. The latest release of Silverlight for Windows
Embedded Compact 7 includes significant improvements in base performance of more
complex UIs, and includes sample performance tests to help you determine the
performance of your UI on your hardware platform.

Additional Resources
• Microsoft Silverlight for Windows Embedded

(http://go.microsoft.com/fwlink/?LinkId=192016)

• Silverlight for Windows Embedded Reference
(http://go.microsoft.com/fwlink/?LinkId=192017)

• Microsoft Silverlight (http://go.microsoft.com/fwlink/?LinkId=192018)

• Differences Between Silverlight for the Web and Silverlight for Windows Embedded
(http://go.microsoft.com/fwlink/?LinkId=192019)

• Windows Embedded (http://go.microsoft.com/fwlink/?LinkId=192020)

http://go.microsoft.com/fwlink/?LinkId=192016�
http://go.microsoft.com/fwlink/?LinkId=192017�
http://go.microsoft.com/fwlink/?LinkId=192018�
http://go.microsoft.com/fwlink/?LinkId=192019�
http://go.microsoft.com/fwlink/?LinkId=192020�

Improving Performance in Rich User Interfaces for Embedded Systems 12

 © 2011 Microsoft

Copyright
This document is provided “as-is”. Information and views expressed in this document,
including URL and other Internet Web site references, may change without notice. You
bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in
any Microsoft product. You may copy and use this document for your internal, reference
purposes.

© 2011 Microsoft. All rights reserved.

	Improving Performance in Rich User Interfaces for Embedded Systems
	Abstract
	Introduction
	Performance Challenges for Rich User Interfaces
	Performance Factors That Can Be Measured and Compared
	Factors for the UI
	Factors for Hardware Capability
	Analysis of UI Complexity
	Analysis of Hardware Capability

	Performance Improvement Solutions
	Rendering Process Architecture
	Hardware Acceleration Architecture

	Performance Improvement Implementation
	Load Time Improvement Examples
	Animation Speed Improvement Examples

	Key Implementation Considerations for Improving UI Performance
	Conclusion
	Additional Resources

