
Implementing Your Device Driver 1

 ©2011 Microsoft

Implementing Your Device Driver
Windows Embedded Compact 7 Technical Article

Writers: Mark McLemore

Technical Reviewer: KS Huang, Michael Svob

Published: March 2011

Applies To: Windows Embedded Compact 7

Abstract
This article helps you get started implementing a device driver for Windows Embedded
Compact 7. You learn how to create your device driver project from a sample stream
driver, add functionality to control your hardware, and implement device driver features
that are used by the OS and applications. You should read this article after reading the
introductory article Planning Your Device Driver
(http://go.microsoft.com/fwlink/?LinkID=210236) and before reading the companion
article Building and Testing Your Device Driver
(http://go.microsoft.com/fwlink/?LinkID=210199).

http://go.microsoft.com/fwlink/?LinkID=210236�
http://go.microsoft.com/fwlink/?LinkID=210199�

Implementing Your Device Driver 2

 ©2011 Microsoft

Introduction
After you are familiar with the material in the companion article Planning Your Device
Driver (http://go.microsoft.com/fwlink/?LinkID=210236), you can begin implementing
your device driver. The easiest way to begin this implementation is to start with an
existing sample device driver, modify it to fit your design, and add functionality to
support your hardware. When you have completed an initial device driver
implementation, refer to the article Building and Testing Your Device Driver
(http://go.microsoft.com/fwlink/?LinkID=210199) for the steps to build your device
driver.

Because each device driver can be very different in architecture, the interfaces it
supports, its size, the complexity of its implementation, and the kind of hardware it
supports, no single step-by-step procedure for device driver development applies to all
device drivers. Your device hardware may generate interrupts or may be a polled
device; it may support direct memory access (DMA), and you may be able to turn it on
and off for power management support. Applications may require your device driver to
manage multiple open instances across multiple devices, or your driver may support
only one open instance on one hardware device.

For this reason, this article focuses on the most frequently used scenarios:

• Porting a sample stream driver to start your device driver project.
• Managing device driver context.
• Adding support for interrupt handling.
• Marshaling data between caller and device driver address spaces.
• Adding support for DMA.
• Supporting device interfaces.
• Supporting power management.

Not all implementation tasks in this article may apply to your device driver. Just choose
from the topics in this article that apply to your particular device driver design. Each
topic provides pointers to Windows Embedded Compact 7 reference documentation that
explains the relevant APIs in more detail. Some topics refer you to a sample device
driver that provides a working example of the functionality that is explained in the
topic; you can study this example code to understand how to implement the
functionality you need while you learn how to use the APIs more effectively.

Porting the Sample Stream Driver
Because most Windows Embedded Compact 7 device drivers are stream drivers,
Microsoft provides a sample stream driver that you can use to begin developing your
device driver. The sample driver code that is described in the following steps does not
actually work with specific hardware; you must modify this driver code for it to function
correctly with your target device.

1. If you have not already done so, use the integrated development environment (IDE)
in Platform Builder to create an OS design. For more information about creating an
OS design, see the article Using Platform Builder in Windows Embedded Compact 7
(http://go.microsoft.com/fwlink/?LinkID=210759).

http://go.microsoft.com/fwlink/?LinkID=210236�
http://go.microsoft.com/fwlink/?LinkID=210236�
http://go.microsoft.com/fwlink/?LinkID=210199�
http://go.microsoft.com/fwlink/?LinkID=210759�

Implementing Your Device Driver 3

 ©2011 Microsoft

2. Copy the sample stream driver to your OS design. The sample stream driver is
located at %_WINCEROOT%\Platform\BSPTemplate\Src\Drivers\Streamdriver.

3. Rename the sample stream driver source files to names that correspond with the
functionality you intended for your device driver. You can rename the “SDT” prefix
of each function to a prefix that you choose for your device driver.

4. Edit the TARGETNAME and SOURCES values in the sources file so that your driver
corresponds with your new file names.

5. Verify that your driver entry points are correctly exposed to the build system. As
shown in the sample stream driver source, you should include each function in the
.def file and preface each function with an extern “C” declaration in the .cpp file.

6. Modify the source code for your driver to implement the stream interface functions.
You can start by implementing code to manage open and device contexts. For more
information about managing context, see Managing Device Driver Context in this
article.

7. Add functionality to control your hardware, including interrupt handling, DMA
processing, data marshaling, device interface support, and power management as
required. We recommend that you first create header files with constants and data
structures that represent your hardware before writing hardware-specific code. Note
that adding functionality to control your hardware is typically the bulk of the process
to implement your device driver.

8. Add code to connect the functionality you implement in step 7 to the stream
interfaces of your driver.

9. If your driver must support additional functionality beyond that which the stream
interface functions expose, you can choose to implement custom I/O control codes
in the IOControl function of your driver.

When you are ready to build your device driver, the article Building and Testing Your
Device Driver (http://go.microsoft.com/fwlink/?LinkID=210199) explains how to add
registry information for your driver to the Platform.reg file, how to modify Platform.bib
and build system files so that the OS design includes your driver, how to build a run-
time image with your device driver, and how to test your device driver. After you
complete steps 1-5 and have a basic driver shell, verify that you can build your device
driver, include it in a run-time image, and access it from a simple test application
before adding more functionality in steps 6-9.

Managing Device Driver Context
Device drivers often must manage multiple open instances and multiple devices. When
a device driver multiplexes its functionality across multiple open instances or multiple
devices, it uses device driver context to keep track of which data structures and system
resources go with which open instances and hardware devices. Because device drivers
are DLLs with global variables and data structures that are shared by all driver
instances, device drivers must use context management techniques to prevent
resources that are allocated for one open instance or device from being incorrectly
modified or deallocated for another open instance or device. For example, if the device
driver deallocates the wrong memory block in response to an XXX_Close call, memory
leaks, application failures, or an unstable system could occur.

Device drivers use device context to manage resources that are associated with a
particular hardware device and open context to manage resources that are associated
with a particular open instance. Depending on the functionality of your hardware, your

http://go.microsoft.com/fwlink/?LinkID=210199�
http://go.microsoft.com/fwlink/?LinkID=210199�

Implementing Your Device Driver 4

 ©2011 Microsoft

device driver might support only one open instance and only one device, multiple open
instances on one device, one open instance per hardware device, or multiple open
instances across multiple devices. In each case, your device driver must correctly
manage each type of context separately.

Managing Device Context
Device drivers typically use device context to manage physical resources and memory
areas that are associated with a hardware device. The device context is usually a
pointer to a data structure that contains information about a single hardware device
and the resources the system uses to control that device. A device driver might use
multiple device contexts to support multiple hardware devices. For example, when a
network device driver manages multiple network interface cards, it creates and
maintains a separate device context for each network interface card.

When the Device Manager calls your XXX_Init function, your return value is the device
context (a DWORD) that you create for the initialized device. The Device Manager
passes a registry path to your driver that describes the device to be initialized, and your
driver uses this information to populate any data structures that are associated with the
device context that you create for that device.

As an example, the following is a modified version of the stream driver SDT_Init
function, with additional code to create and return a device context.

// SDT_Init
//
// This function initializes the device driver. Its responsibility
// is to set the default state of the device and to allocate and
// initialize any global variables or resources.
//
// Upon success, this function returns a handle to the driver’s state
// (device context). This is passed to Open and Deinit when they are
// called.

DWORD SDT_Init(LPCTSTR pContext, DWORD dwBusContext)
{
 BOOL fOk = FALSE;
 DEBUGMSG(ZONE_INIT,
 (TEXT(“SDT_Init(): context %s.\r\n”), pContext));

 // Allocate enough storage for this device context:

 SDT_DEV_CONTEXT* pDevContext =
 (SDT_DEV_CONTEXT *)LocalAlloc(LPTR, sizeof(SDT_DEV_CONTEXT));

 // If allocation failed, set the error, clean up, and exit:

 if (pDevContext == NULL)
 {
 SetLastError(ERROR_OUTOFMEMORY);
 DEBUGMSG(ZONE_ERROR,
 (TEXT(“SDT_Init(): cannot allocate memory!\r\n)));
 goto cleanup;
 }

Implementing Your Device Driver 5

 ©2011 Microsoft

 // Try to read the registry entry for this device into
 // the device context data structure (implement the function
 // ReadRegistry to open the registry key passed in pContext
 // and populate pDevContext with information from this
 // registry key).

 if (!ReadRegistry(pContext, pDevContext))
 {
 DEBUGMSG(ZONE_WARNING,
 (TEXT(“SDT_Init(): unable to read registry!)));
 goto cleanup;
 }

 // .
 // Initialize device hardware here
 // .

 fOk = TRUE;

cleanup:
 // If initialization fails, free the device context
 // structure and prepare to return 0 (NULL).
 // Otherwise, if initialization succeeds, return
 // the device context.

 if (!fOk && pDevContext)
 {
 LocalFree(pDevContext);
 pDevContext = NULL;
 }
 DEBUGMSG(ZONE_INIT,
 (TEXT(“SDT_Init(): context %x.\r\n”), pDevContext));
 g_pDevContext = pDevContext;
 return (DWORD) pDevContext;
}

In this example, when SDT_Init is called, it allocates a structure to hold the device
context, reads the registry key for the device (passed in the first parameter), and
initializes driver data structures with information from that registry key. After it
initializes the device hardware (using information stored in pDevContext), it returns
pDevContext to the caller. If the driver is unable to allocate a device context structure
for the device or if it detects an error while initializing hardware, it sets the appropriate
error code by calling SetLastError and returns 0 (zero) as the value of the device
context to indicate that SDT_Init did not succeed.

In this example, the device driver supports only one device context. If your device
driver supports multiple devices, and therefore, multiple device contexts, you can
modify this code to save multiple copies of pDevContext in a global device driver data
structure such as a linked list. For an example of how to save multiple open contexts in
a global device driver data structure, see the section Managing Open Context. You can
use this approach to manage multiple device contexts.

Implementing Your Device Driver 6

 ©2011 Microsoft

Managing Open Context
Device drivers use open context to manage multiple open instances on a particular
device. When an application calls CreateFile for a stream driver, the stream driver
creates an open context. The open context is typically a pointer to a data structure that
contains information about that open instance. The stream driver uses the open context
to associate data pointers and other resources with an open instance.

For example, the following is a modified version of the stream driver SDT_Open
function with additional code to create and return an open context.

// SDT_Open
//
// This function prepares the device driver for reading, writing,
// or both. It creates a context that is returned to an application.
// The application uses this context to call into the driver to
// perform reads and writes.
//
// The driver may optionally allocate a new context each time this
// function is called. This allows multiple applications to use
// the driver simultaneously. The driver is responsible for tracking
// all of the contexts that it creates so that it can deallocate
// them when Close or Deinit are called.
//
DWORD SDT_Open(DWORD hDeviceContext, DWORD AccessCode, DWORD ShareMode)
{
 DEBUGMSG(ZONE_INIT,
 (TEXT(“SDT_Open(): device context %x.\r\n”), hDeviceContext));

 // Return NULL if the device context is invalid:

 if (!hDeviceContext)
 {
 DEBUGMSG(ZONE_OPEN|ZONE_ERROR,
 (TEXT(“SDT_Open(): uninitalized device!\r\n)));
 SetLastError(ERROR_INVALID_HANDLE);
 return(NULL);
 }
 SDT_DEVICE_CONTEXT* pDevice = (SDT_DEVICE_CONTEXT *)hDeviceContext;

 //.
 // Verify that the hardware can support this
 // additional open instance.
 //.

 // Allocate enough storage for this open context:

 SDT_OPEN_CONTEXT* pOpenContext =
 (SDT_OPEN_CONTEXT *)LocalAlloc(LPTR, sizeof(SDT_OPEN_CONTEXT));

 // If allocation fails, set the error and return NULL:

 if (pOpenContext == NULL)
 {
 SetLastError(ERROR_OUTOFMEMORY);

Implementing Your Device Driver 7

 ©2011 Microsoft

 DEBUGMSG(ZONE_ERROR,
 (TEXT(“SDT_Open(): cannot allocate memory!\r\n)));
 return(NULL);
 }

 //.
 // Initialize the pOpenContext structure here and
 // configure the hardware accordingly for this open instance.
 //.

 // Use a critical section to protect the linked list of
 // open instances while you insert this instance into the list:

 EnterCriticalSection(&(pDevice->OpenCS));
 InsertHeadList(&pDevice->OpenList, pOpenContext);
 LeaveCriticalSection(&(pDevice->OpenCS));

 // Log a success message and return the open context:

 DEBUGMSG(ZONE_INIT,
 (TEXT(“SDT_Open(): open context %x.\r\n”), pOpenContext));
 return (DWORD) pOpenContext;
}

In this example, SDT_Open first checks that the device context the caller passes into
the first parameter is valid. If the device context is not valid, SDT_Open signals an
error and returns NULL. Because SDT_Init returns NULL if it is unable to create a device
context, this validation of the passed-in device context is an important check to include
in the SDT_Open function; the caller might simply pass the device context that is
returned from SDT_Init without checking for errors.

After SDT_Open verifies that the hardware can support the additional open instance (a
code sample is not included here because this verification is hardware-specific), it
allocates an SDT_OPEN_CONTEXT structure to store information about the open
instance. After configuring the hardware for this open operation and populating this
structure with information about the open instance (again, these details are hardware-
specific), it saves this open context in a linked list of open instances that are associated
with that device. The critical section protects the linked list in case multiple threads call
SDT_Open simultaneously. After InsertHeadList saves the open context in the list,
SDT_Open returns it to the caller. Of course, you don’t have to use a linked list here;
you can choose a different data structure to save and locate your open contexts.

Adding Interrupt Handling Functionality
Most peripheral devices generate interrupts to receive service from the OS. Because
these peripheral devices can cause or signal interrupts, their device drivers must
process interrupts to service their devices. Devices generate interrupts by using
physical interrupt request (IRQ) lines. An IRQ line is a hardware line over which a
device can send an interrupt signal to the microprocessor. A system interrupt
(SYSINTR), which is also known as a logical interrupt, is a mapping of an IRQ as
specified by the OEM adaptation layer (OAL). For more information about this mapping
and the OAL, see the article The Basics of Bringing up a Hardware Platform
(http://go.microsoft.com/fwlink/?LinkId=205801).

http://go.microsoft.com/fwlink/?LinkId=205801�

Implementing Your Device Driver 8

 ©2011 Microsoft

A typical Windows Embedded Compact 7 device driver separates interrupt handling into
two components:

• An interrupt service routine (ISR)
• An interrupt service thread (IST)

The following sections describe these components in more detail.

Interrupt Service Routines
An ISR is a software routine that hardware invokes in response to an interrupt. ISRs
examine an interrupt and determine how to handle it. ISRs handle the interrupt and
then return a logical interrupt value. If no further handling is required because the
device is disabled or data is buffered, the ISR notifies the kernel with a SYSINTR_NOP
value. An ISR must perform very quickly to avoid slowing down the operation of the
device and the operation of all lower-priority ISRs. The ISR runs in kernel mode; so it
should do the minimum work that is required to service the interrupt. Because the
kernel handles the saving and restoring of CPU registers, you can implement your ISR
in small and fast C code instead of in assembly code.

The ISR performs the following tasks:

• Determines the source of the interrupt.
• Masks the interrupt.
• Reads data from the device into a software buffer if the data might be lost or

another interrupt might overwrite it.
• Clears the interrupt condition on the device.
• Translates the interrupt into a system interrupt (SYSINTR) identifier that the ISR

returns to the OS.
Although an ISR might move data from a CPU register or a hardware port into a
memory buffer, it typically relies on a dedicated interrupt service thread (the IST) to do
most of the required processing. If additional processing is required, the ISR returns a
logical interrupt value other than SYSINTR_NOP to the kernel. It then maps a physical
interrupt number to a logical interrupt value. For example, the keyboard could be
associated with IRQ 4 on one device and IRQ 15 on another device. The ISR, which is in
the OAL, translates the hardware-specific value to the Windows Embedded Compact
standard value of SYSINTR_KEYBOARD. In this example, SYSINTR_KEYBOARD is the
return value from the ISR.

Interrupt Service Threads
When an ISR notifies the kernel of a specific logical interrupt value, the kernel examines
an internal table to map the logical interrupt value to an event handle. The kernel
wakes the associated IST by signaling the event. This event is a standard
synchronization object that wakes a thread in response to an event.

The IST runs in a user mode process called the User Mode Driver Host. For more
information about the User Mode Driver Host, see User Mode Driver Framework
(http://go.microsoft.com/fwlink/?LinkID=210291) in Windows Embedded Compact 7
Documentation.

http://go.microsoft.com/fwlink/?LinkID=210291�

Implementing Your Device Driver 9

 ©2011 Microsoft

The IST performs the following tasks:
• Loads the ISR if the driver uses an installable ISR.
• Creates an event, registers this event in the kernel for the logical interrupt identifier

that is associated with the ISR, and waits for the event.
• Performs all interrupt processing when it wakes on the event.

The following section describes how the IST interacts with other interrupt handling
components to service an interrupt.

Servicing Interrupts
Figure 1 shows how the interrupt handling components interact with each other and the
device hardware during interrupt processing. Note that you implement only some of the
components that are shown in this diagram: you typically provide the device driver ISR,
platform dependent driver (PDD) lower-layer routines, and OAL routines, and Microsoft
provides the kernel exception and interrupt handling functionality in addition to a model
device driver (MDD) library that includes the device driver IST.

Figure 1 - Interrupt handling components

When an interrupt occurs, interrupt handling typically occurs in the following sequence,
although the details can vary depending on the CPU architecture.

1. When your device generates an interrupt, the microprocessor jumps to the kernel
exception handler.

2. The exception handler disables all interrupts of an equal or lower priority at the
microprocessor and then calls the appropriate ISR for that IRQ. If this IRQ is
associated with your device, the exception handler calls your driver ISR.

3. Your ISR services the interrupt. Typically, your ISR also masks the board-level
device interrupt so that the OS does not respond to the interrupt signal from your
device during interrupt processing.

4. After servicing the interrupt, your ISR returns a logical interrupt identifier to the
kernel interrupt handler.

Implementing Your Device Driver 10

 ©2011 Microsoft

5. The kernel interrupt handler receives the return value from your ISR, reenables all
interrupts at the microprocessor except for the current interrupt (which remains
masked at the board), and then signals the appropriate IST event.

6. The OS schedules the IST.
7. When the IST wakes, it works to complete the interrupt processing by calling

various lower-level driver routines to access the hardware. This process could
include moving data into a device buffer or interpreting status data from the device.

8. When the IST completes interrupt processing, it calls the InterruptDone function,
which in turn calls the OEMInterruptDone function in the OAL.

9. OEMInterruptDone reenables (unmasks) the current interrupt.

As described in step 4, your ISR services the device interrupt and translates the
interrupt into a SYSINTR. It then passes this logical identifier to the kernel as its return
value. Your ISR returns one of the return codes listed in Table 1 to notify the kernel
how to handle the interrupt.

Table 1: ISR Return Codes

Code Description

SYSINTR_NOP The kernel does nothing.

SYSINTR_XXX
The kernel schedules interrupt processing so that the IST wakes
and does its work. XXX specifies the logical interrupt value for
the specific interrupt source.

SYSINTR_RESCHED The kernel reschedules the IST.

Each IRQ is associated with an ISR, and an ISR can respond to multiple IRQ sources.
When interrupts are enabled and an interrupt occurs, the kernel calls the registered ISR
for that interrupt. When finished, the ISR returns an interrupt identifier. The kernel
examines the returned interrupt identifier and sets the associated event. When the
kernel sets the event, the IST starts processing.

Registering Your Interrupt Service Routine
Your driver must register its ISR with the kernel unless the driver relies on the OAL ISR
function to handle its interrupt. The driver must register its ISR with the kernel so that
the kernel calls the ISR when its associated physical interrupt occurs. If your driver
does not register an ISR, a default ISR, which is installed by the OAL in OEMInit,
handles any interrupts that the device generates.

If your device driver has an ISR, your device driver must perform the following actions
when it loads:

1. Register its ISR with the kernel.
2. Map the IRQ of the device to a unique SYSINTR.

To associate your ISR with your device, you register your ISR with the exception
handler when you start the OS by including a call to HookInterrupt in OEMInit. To
map an IRQ to a SYSINTR, you call OALIntrStaticTranslate in OEMInit. During boot,
the kernel calls OEMInit in the OAL, and then OEMInit calls HookInterrupt to inform
the exception handler of the address of your ISR and the IRQ that your ISR services.

Implementing Your Device Driver 11

 ©2011 Microsoft

For more information about interrupt service routine registration, see HookInterrupt
(http://go.microsoft.com/fwlink/?LinkID=210361) in Windows Embedded Compact 7
Documentation.

The interrupt handler registration process registers an event that is associated with the
system interrupt SYSINTR. When your device driver starts, it creates an IST, and then
calls InterruptInitialize to register this event. The IST can then use
WaitForSingleObject to wait on this event and register it with the interrupt handler.
You can register your IST for one or more logical interrupts (SYSINTRs).

If you use the Microsoft implementation of the MDD for a particular driver, you do not
have to write code to register the interrupt. The MDD layer of the driver registers the
driver for interrupts. If you write a monolithic driver, you must implement code to
register the IST of the driver with the interrupt handler. To do this, use the
CreateEvent function to create an event, and then use the InterruptInitialize
function to associate the event with a SYSINTR.

If your device driver must stop processing an interrupt, call the InterruptDisable
function. When your driver calls this function, the interrupt handler removes the
association between the IST and the specified logical interrupt. The interrupt handler
accomplishes this by calling the OEMInterruptDisable function to turn off the
interrupt. If necessary, you can register for the interrupt again.

Handling Nested Interrupts
To prevent loss and delay of high-priority interrupts, the Windows Embedded Compact
kernel uses nested interrupts. Nested interrupts allow interrupt requests (IRQs) of a
higher priority to preempt IRQs of a lower priority. Because of this preemption at the
hardware level, ISRs of a higher priority might preempt ISRs of a lower priority.

The following steps explain how Windows Embedded Compact handles nested ISR calls:

1. The kernel disables all other IRQs that have the same priority or lower priority as
the IRQ that invoked the current ISR call.

2. If a higher-priority IRQ arrives before the current ISR completes processing, the
kernel saves the current ISR state. The state includes only the set of CPU registers
that the OS supports for use in an ISR.

3. The kernel calls the higher-priority ISR to handle the new request.
4. The kernel loads the original ISR state and continues processing.

The kernel saves the state of the currently running ISR when a higher-priority interrupt
occurs and restores it after the high-priority ISR has finished processing. In most cases,
a preempted ISR does not detect that it has been preempted. The level of interrupt
nesting is limited solely by what the hardware platform can support.

An ISR that uses too much time can cause other interrupts to be missed entirely,
resulting in erratic or sluggish performance of the whole system. By separating
interrupt processing into a very short ISR and a longer IST, ISRs can mask interrupts
for as little time as possible. ISRs can only mask interrupts that are of equal or lower
priority. Windows Embedded Compact can nest as many ISRs as the hardware platform
supports. Other than a possible delay in completion, a higher-priority interrupt does not
affect the processing of a running ISR.

http://go.microsoft.com/fwlink/?LinkID=210361�

Implementing Your Device Driver 12

 ©2011 Microsoft

Handling Shared Interrupts
On some hardware platforms, multiple devices might share a single interrupt request
line. Sharing is necessary because hardware platforms have a finite number of inputs.
When interrupts are shared, the microprocessor is aware of an interruption, but it is not
necessarily aware of which device interrupted it. To determine this, the OS exception
handler must typically examine device-specific registers that indicate the state of a
specified device interrupt line.

You can register routines with the kernel that are automatically invoked when a shared
interrupt occurs. The ISR that you hook to an interrupt in OEMInit must call
NKCallIntChain, which is a kernel function, to examine a list of installed ISRs for the
interrupt that has been signaled.

The following sequence of steps describes how the OS handles shared interrupts:

1. Your ISR routine calls NKCallIntChain to examine a list of installed ISRs for the
interrupt that a device has signaled.

2. If the first ISR in the list determines that its associated device has asserted the
interrupt, it performs any necessary work and then returns the SYSINTR that is
mapped to the interrupt. If this ISR determines that it is not necessary for the IST
to do additional processing, it returns SYSINTR_NOP.

3. If the first ISR in the list determines that its associated device has not asserted the
interrupt, it returns SYSINTR_CHAIN, which causes NKCallIntChain to call the next
ISR in the chain.

The order of installing ISRs is important because it sets priority. The first ISR on the
chain has priority over the succeeding ISRs on the chain. For more information about
handling shared interrupts, see NKCallIntChain
(http://go.microsoft.com/fwlink/?LinkID=210362) in Windows Embedded Compact 7
Documentation.

Interrupt Handling Functions
The following table lists the Windows Embedded Compact 7 functions that device driver
developers typically use to implement device driver interrupt handling functionality.

Table 2: Interrupt Handler Functions

Function Description

InterruptDisable Disables a hardware interrupt that its interrupt handler
specifies.

InterruptDone Signals to the kernel that interrupt processing is complete.

InterruptInitialize
Initializes a hardware interrupt with the kernel. This
initialization allows the device driver to register an event and
enable the interrupt.

HookInterrupt Associates an ISR with an IRQ. You call this function from
within OEMInit to make this association.

http://go.microsoft.com/fwlink/?LinkID=210362�
http://go.microsoft.com/fwlink/?LinkID=210946�
http://go.microsoft.com/fwlink/?LinkID=210947�
http://go.microsoft.com/fwlink/?LinkID=210949�
http://go.microsoft.com/fwlink/?LinkID=210361�

Implementing Your Device Driver 13

 ©2011 Microsoft

Function Description

UnhookInterrupt Breaks the association between an ISR and an IRQ.

CreateEvent Creates a named or unnamed event object.

SetInterruptEvent Allows a device driver to cause an artificial interrupt event.

SetEvent Sets the state of the specified event object to signaled.

ResetEvent Sets the state of the specified event object to nonsignaled.

PulseEvent
Provides a single operation that sets the state of the specified
event object to signaled, and then resets it to nonsignaled after
releasing the appropriate number of waiting threads.

WaitForSingleObject

Returns when the specified object is in the signaled state or
when the time-out interval elapses. The kernel provides special
treatment for interrupt events. ISTs cannot use
WaitForMultipleObject with an interrupt event.

CeSetPowerOnEvent Signals events during suspend or resume. Power handlers call
this function.

For more information about these functions, see the reference information for each
function in Windows Embedded Compact 7 Documentation.

Marshaling Data Between Memory Buffers
In Windows Embedded Compact 7, each process has its own virtual memory space and
memory context. When an application moves data to or from your device driver, you
must marshal the data between the address space of the application and the address
space of your device driver. You marshal data in one of two ways:

• Copy the data between the application memory buffer and a memory buffer that
your device driver manages.

• Map the virtual memory address of the application memory buffer to a physical
memory location so that your device driver can directly access the application
memory buffer without making an extra copy.

You can use the kernel buffer marshaling functions in Table 3 to marshal data between
an application and your device driver.

Table 3: Kernel Buffer Marshaling Functions

Function Description

CeOpenCallerBuffer Checks access and marshals a buffer pointer from the
source process so that the current process can access it.

CeCloseCallerBuffer Frees any resources that CeOpenCallerBuffer allocated.

http://go.microsoft.com/fwlink/?LinkID=210950�
http://go.microsoft.com/fwlink/?LinkID=210951�
http://go.microsoft.com/fwlink/?LinkID=210955�
http://go.microsoft.com/fwlink/?LinkID=210954�
http://go.microsoft.com/fwlink/?LinkID=210953�
http://go.microsoft.com/fwlink/?LinkID=210952�
http://go.microsoft.com/fwlink/?LinkID=210956�
http://go.microsoft.com/fwlink/?LinkID=210957�
http://go.microsoft.com/fwlink/?LinkID=210945�
http://go.microsoft.com/fwlink/?LinkID=210940�

Implementing Your Device Driver 14

 ©2011 Microsoft

Function Description

CeAllocAsynchronousBuffer
Remarshals a buffer that CeOpenCallerBuffer already
marshaled so that the server can use it asynchronously
after returning from the API call.

CeAllocDuplicateBuffer Abstracts the work that is required to make secure
copies of the API parameters.

CeFreeAsynchronousBuffer Frees any resources that CeAllocAsynchronousBuffer
allocated.

CeFreeDuplicateBuffer Frees a duplicate buffer that CeAllocDuplicateBuffer
allocated.

CeFlushAsynchronousBuffer
Flushes any changed data between the source and the
destination buffer that CeAllocAsynchronousBuffer
allocated.

Keep in mind that your device driver must explicitly map all the pointers that the data
structures contain. For example, DeviceIoControl buffers are often structures that
contain data, and some of this data could be pointers to other data structures. For more
information about buffer marshaling functions, see Kernel Buffer Marshaling Reference
(http://go.microsoft.com/fwlink/?LinkID=210258) in Windows Embedded Compact 7
Documentation.

Synchronous and Asynchronous Access
In Windows Embedded Compact 7, marshaling depends on whether a pointer is used
synchronously or asynchronously. If a pointer parameter or embedded pointer is used
synchronously, the address space of the calling process is accessible for the duration of
a call to the driver. This availability eliminates the need for a copy. The driver can use,
unchanged, the calling process pointer, which can then directly access the memory of
the caller. This is the direct access method of marshaling.

If your driver uses a pointer asynchronously, it is critical that the caller memory buffer
be accessible when the address space of the caller is unavailable. Windows Embedded
Compact 7 includes the CeAllocAsynchronousBuffer and
CeFreeAsynchronousBuffer functions for drivers to marshal pointer parameters and
embedded pointers when your driver needs asynchronous access to a caller memory
buffer. When a thread like an IST requires access to the caller buffer, these marshaling
helper functions choose between copying the data or using a buffer aliasing mechanism
to avoid copying data. This choice is dependent on the size of the buffer involved. If the
buffer is small enough, the kernel duplicates the buffer by copying the data. However,
this duplication can affect performance, and if the buffer is too large to duplicate, the
kernel creates an alias for the buffer instead of copying the data.

The following code is an example of marshaling pointers for asynchronous access in a
device driver IOControl function.

// In XXX_IOControl
//
// CeOpenCallerBuffer generates g_pMappedEmbedded

http://go.microsoft.com/fwlink/?LinkID=210363�
http://go.microsoft.com/fwlink/?LinkID=210939�
http://go.microsoft.com/fwlink/?LinkID=210943�
http://go.microsoft.com/fwlink/?LinkID=210944�
http://go.microsoft.com/fwlink/?LinkID=210941�
http://go.microsoft.com/fwlink/?LinkID=210258�

Implementing Your Device Driver 15

 ©2011 Microsoft

// . . .

hr = CeAllocAsynchronousBuffer((PVOID *) &g_pMarshaled,
 g_pMappedEmbedded, pInput->dwSize, ARG_I_PTR);

// Check for FAILED(hr) == true, handle the error.
// . . .
// Use the pointer
// . . .
// When done with the pointer:

Hr = CeFreeAsynchronousBuffer((PVOID)g_pMarshaled,
 g_pMappedEmbedded, pInput->dwSize, ARG_I_PTR);

// Call CeCloseCallerBuffer . . .

For more information about asynchronous access, see CeAllocAsynchronousBuffer
(http://go.microsoft.com/fwlink/?LinkID=210363) in Windows Embedded Compact 7
Documentation.

Supporting Direct Memory Access
Direct memory access (DMA) is a method that you can use to transfer data from a
device to memory, from memory to a device, or from memory to memory, without the
help of the microprocessor. In a standard DMA transfer, a DMA controller performs the
transfer. In a bus master transfer, a peripheral performs the transfer. Common buffer
DMA operations use a contiguous buffer in main memory, while scatter/gather DMA
uses multiple blocks at different memory addresses. The type of DMA transfer you
choose depends on the design of your hardware device. You can perform common
buffer and scatter/gather DMA operations by using CEDDK.dll DMA functions or by
directly calling kernel functions.

In Windows Embedded Compact 7, you can perform DMA in three ways:

• By using common DMA functions such as HalAllocateCommandBuffer,
HalFreeCommonBuffer, and HalTranslateSystemAddress.

• By using DMA abstraction functions.
• By directly calling kernel functions, such as AllocPhysMem and FreePhysMem.

Which method you use depends on your device, the type of memory alignment it uses,
whether it supports scatter/gather DMA, and whether you implement your driver for
bus independence. The following subsections explain each of these methods in more
detail.

Common DMA Functions
The following table lists three CEDDK.dll functions that are useful for common buffer
DMA transfers. These functions handle bus and hardware platform-specific address
translations for you; they also handle address translations between the system and the
PCI bus for the DMA controller to use for copying data.

http://go.microsoft.com/fwlink/?LinkID=210363�

Implementing Your Device Driver 16

 ©2011 Microsoft

Table 4: Common DMA Functions

Function Description

HalAllocateCommonBuffer
Allocates memory, locks it down, and maps it so that
the microprocessor and the device can access it
simultaneously.

HalFreeCommonBuffer
Frees a common buffer that is allocated by
HalAllocateCommonBuffer, together with all the
resources that the buffer uses.

HalTranslateSystemAddress
Translates a physical system address to a logical bus
address, which you can pass to a bus controller for DMA
operations.

These functions translate a physical RAM address to the corresponding bus-relative
physical address for the DMA controller. To set up a common buffer for bus master DMA
by using the CEDDK.dll functions, a bus master DMA device driver can call
HalAllocateCommonBuffer, passing in a DMA_ADAPTER_OBJECT structure that
contains information about the DMA adapter.

The following code example shows a call to HalAllocateCommonBuffer to allocate a
physical memory buffer address for DMA.

// Set up the DMA adapter descriptor structure.

DMA_ADAPTER_OBJECT AdapterObject;
AdapterObject.ObjectSize = sizeof(AdapterObject);
AdapterObject.InterfaceType = Internal;
AdapterObject.BusNumber = 0;

// Allocate a physical buffer.

m_vuaBuf = (PBYTE)HalAllocateCommonBuffer(&AdapterObject,
 cbBufSize, &m_paBuf, FALSE);

// Unable to allocate a physical buffer.

if (m_vuaBuf == NULL)
{
 RETAILMSG(1,(L”unable to allocate %d bytes\r\n”, cbBufSize));
 ret = ERROR_OUTOFMEMORY;
 ASSERT(0);
 HalFreeCommonBuffer(NULL, 0, m_paBuf, m_vuaBuf, FALSE);
 goto cleanup;
}

// . . .
// Use the buffer
// . . .

http://go.microsoft.com/fwlink/?LinkID=210977�
http://go.microsoft.com/fwlink/?LinkID=210978�
http://go.microsoft.com/fwlink/?LinkID=210979�

Implementing Your Device Driver 17

 ©2011 Microsoft

// When done with the buffer:

HalFreeCommonBuffer(&AdapterObject, cbBufSize, m_paBuf,
 m_vuaBuf, FALSE);

In this example, m_vuaBuf is the DMA buffer virtual uncached address, cbBufSize is
the buffer length, in bytes, and m_paBuf is the buffer physical address. The last
parameter is set to FALSE to disable caching. When HalAllocateCommonBuffer
successfully returns, it allocates a shared buffer of locked, physically contiguous pages
that the microprocessor and the device can access simultaneously for DMA operations.

For an example that uses these common DMA functions for scatter/gather DMA, see the
sample ATAPI device driver source that is located in
%_WINCEROOT%\Public\Common\Oak\Drivers\Block\ATAPI. Note that to set up
scatter/gather DMA, you must simultaneously use multiple pairs of base addresses and
lengths as shown in the sample driver.

For more information about common DMA functions, see Ceddk.dll DMA Functions
(http://go.microsoft.com/fwlink/?LinkID=210250) in Windows Embedded Compact 7
Documentation.

DMA Abstraction Layer
Windows Embedded Compact 7 includes a DMA abstraction library with which you can
implement DMA support in a bus-independent manner. The purpose of the DMA
abstraction library is to create an interface with which a device driver developer can
implement DMA support, and also to provide an interface for platform-dependent DMA
handler routines. By using the DMA abstraction library functions you can use an
onboard or built-in DMA controller through a chip-specific DMA driver that works with a
standard set of bus-independent DMA functions.

The DMA abstraction framework is made up of three components:

• The DMA model device driver (MDD).
• The DMA platform dependent driver (PDD).
• The DMA abstraction functions of CEDDK.dll.

CEDDK.dll forwards all function requests to the DMA driver by using IOCTLs. Table 5
lists the CEDDK.dll functions that are included in the DMA abstraction layer.

Table 5: DMA Abstraction Layer Functions

Function Description

DMAAllocateChannel Prepares the system for a DMA operation
on behalf of the target device.

DMAFreeChannel

Frees a DMA channel buffer that
DMAAllocateChannel allocated, together
with all the resources that the DMA
channel uses to transfer data.

http://go.microsoft.com/fwlink/?LinkID=210250�
http://go.microsoft.com/fwlink/?LinkID=210958�
http://go.microsoft.com/fwlink/?LinkID=210963�

Implementing Your Device Driver 18

 ©2011 Microsoft

Function Description

DMAOpenBuffer Maps a virtual buffer to a physical DMA
block.

DMAGetAdapter
Returns the length and physical address of
a DMA buffer block that DMAOpenBuffer
creates.

DMAGetBufferPhysAddr

Returns the length and physical address of
a DMA buffer block that DMAOpenBuffer
creates to map a virtual buffer to physical
memory.

DMAFlushBlockBuffer Manually flushes the DMA buffer block to
regain cache coherency.

DMACloseBuffer
Frees all resources that DMAOpenBuffer
allocates to map a virtual buffer to a
physical DMA block.

DMAStartTransfer Puts a DMA transfer into auto start mode.

DMAIssueMultipleBufferTransfer Queues multiple DMA transfer requests.

DMAIssueRawTransfer

Sets up map descriptor registers for a
channel to map a DMA channel from a
locked buffer. This function fails if other
DMA transfers are queued in the DMA
channel.

DMAIssueTransfer

Sets up map descriptor registers for a
channel to map a DMA transfer from a
locked buffer. If other DMA transfers are
queued in the DMA channel, this function
queues this transfer.

DMARawTransferControl
Directly controls hardware-mapped DMA
transfers, unless the transfer is already
completed or is not queued.

DMATransferOnBlocks Starts a subordinate DMA transfer that
uses an associated memory block.

DMAGetStatus Gets the current active or queued DMA
transfer status.

DMAGetContexts Retrieves DMA transfer object context
values.

DMACancelTransfer Cancels an active DMA transfer.

http://go.microsoft.com/fwlink/?LinkID=210973�
http://go.microsoft.com/fwlink/?LinkID=210964�
http://go.microsoft.com/fwlink/?LinkID=210965�
http://go.microsoft.com/fwlink/?LinkID=210962�
http://go.microsoft.com/fwlink/?LinkID=210960�
http://go.microsoft.com/fwlink/?LinkID=210975�
http://go.microsoft.com/fwlink/?LinkID=210970�
http://go.microsoft.com/fwlink/?LinkID=210971�
http://go.microsoft.com/fwlink/?LinkID=210972�
http://go.microsoft.com/fwlink/?LinkID=210974�
http://go.microsoft.com/fwlink/?LinkID=210976�
http://go.microsoft.com/fwlink/?LinkID=210968�
http://go.microsoft.com/fwlink/?LinkID=210966�
http://go.microsoft.com/fwlink/?LinkID=210959�

Implementing Your Device Driver 19

 ©2011 Microsoft

Function Description

DMACloseTransfer Closes a DMA transfer and releases all
related resources.

For more information about these functions, see the reference information for each
function in Windows Embedded Compact 7 Documentation.

Direct Calls to Kernel Functions
You can make direct calls to kernel functions to allocate physical memory for DMA to
use. Direct calls are useful when you need a finer degree of control over DMA
operations than is possible by using the DMA functions in CEDDK.dll. For example, by
using kernel functions you can change the default memory alignment of a DMA transfer.
Because CEDDK.dll functions use a default memory alignment of 64 KB, you may need
to use direct kernel calls if your device requires a smaller memory alignment. When you
use direct calls to kernel functions to manage DMA transfers, you must handle any
platform-specific address translations. You can call HalTranslateSystemAddress to
translate these addresses.

Table 6 lists the kernel functions that you call to allocate and deallocate a physical
memory buffer for DMA transfers.

Table 6: Kernel DMA Buffer Functions

Function Description

AllocPhysMem Allocates a section of physically contiguous memory.

FreePhysMem Releases physical memory back to the system.

For a DMA example that uses these kernel functions, see the sample device driver
source that is located in %_WINCEROOT%\Public\Common\Oak\Drivers\USB\Hcd.

Supporting Device Interfaces
Device interfaces are the methods that applications use to access device driver
capabilities. Because a device driver can implement any arbitrary set of commands in
its IOControl function, it is useful to have a standard set of IOCTL commands that
device drivers can implement for common operations. The existence of a standard set
of IOCTL commands makes it possible for applications to use the same IOCTL command
for an operation that is supported by multiple device drivers. For example, Windows
Embedded Compact Power Manager uses a set of common device interfaces to issue
power management commands to device drivers. For more information about power
management, see the section Supporting Power Management in this article.

Device interface classes are a way to organize and describe these common IOCTL
commands. Device drivers use device interface classes to implement device interfaces,
and a device driver can have zero or more device interface classes. Platform Builder
includes files that uniquely identify each interface class with a GUID; the header (.h) file
that declares the interface typically defines the GUID and associates the GUID with the
interface. The following code example shows how a header file typically defines a device
interface GUID:

http://go.microsoft.com/fwlink/?LinkID=210961�
http://go.microsoft.com/fwlink/?LinkID=210936�
http://go.microsoft.com/fwlink/?LinkID=210938�

Implementing Your Device Driver 20

 ©2011 Microsoft

#define DEVCLASS_IFCNAME_STRING \
 TEXT(“{12345678-1234-1234-1234567887654321}”)

#define DEVCLASS_IFCNAME_GUID \
 { 0x12345678, 0x1234, 0x1234, \
 { 0x12, 0x34, 0x56, 0x78, 0x87, 0x65, 0x43, 0x21 }}

Table 7 lists some of the predefined interfaces and the header file under
%_WINCEROOT% that defines each interface.

Table 7: Device Interfaces

Interface Header file

BATTERY_DRIVER_CLASS Public\Common\OAK\Inc\Battery.h

BLOCK_DRIVER_GUID Public\Common\SDK\Inc\Storemgr.h

CDDA_MOUNT_GUID Public\Common\SDK\Inc\Storemgr.h

CDFS_MOUNT_GUID Public\Common\SDK\Inc\Storemgr.h

DEVCLASS_CARDSERV_GUID Public\Common\SDK\Inc\Cardserv.h

DEVCLASS_DISPLAY_GUID Public\Common\SDK\Inc\Winddi.h

DEVCLASS_KEYBOARD_GUID Public\Common\SDK\Inc\Keybd.h

DEVCLASS_STREAM_GUID Public\Common\SDK\Inc\Pnp.h

FATFS_MOUNT_GUID Public\Common\SDK\Inc\Storemgr.h

FSD_MOUNT_GUID Public\Common\SDK\Inc\Storemgr.h

NLED_DRIVER_CLASS Public\Common\SDK\Inc\Storemgr.h

PMCLASS_BLOCK_DEVICE Public\Common\SDK\Inc\Pm.h

PMCLASS_DISPLAY Public\Common\SDK\Inc\Pm.h

PMCLASS_GENERIC_DEVICE Public\Common\SDK\Inc\Pm.h

PMCLASS_NDIS_MINIPORT Public\Common\SDK\Inc\Pm.h

STORE_MOUNT_GUID Public\Common\SDK\Inc\Storemgr.h

STOREMGR_DRIVER_GUID Public\Common\SDK\Inc\Storemgr.h

UDFS_MOUNT_GUID Public\Common\SDK\Inc\Storemgr.h

Note You are not restricted to this list of predefined interface classes. You can
define your own interface classes.

Implementing Your Device Driver 21

 ©2011 Microsoft

Advertising a Device Interface
When a device driver supports one or more device interfaces, it must notify the OS of
the device interfaces that it supports. Your device driver should export a device
interface only if it entirely implements that device interface. Any application or OS
component that interacts with your driver expects full support of the device interfaces
that you advertise.

You can advertise a device interface in one of two ways:

• By defining a registry subkey called IClass that specifies one or more GUIDs that
represent the device interfaces that your driver supports.

• By calling the Device Manager function AdvertiseInterface to announce the
interfaces that your device driver exposes.

Typically, you advertise with AdvertiseInterface when you want to explicitly send
notifications for a removable-media storage device or when your device driver discovers
which interfaces it is to expose to the OS and applications. When you call
AdvertiseInterface, your announcement is available to any application or OS
component that calls RequestDeviceNotifications. These announcement recipients
can call StopDeviceNotifications to stop receiving device interface notifications.

For more information about AdvertiseInterface, see AdvertiseInterface
(http://go.microsoft.com/fwlink/?LinkID=210985) in Windows Embedded Compact 7
Documentation. For more information about device interface notifications and IClass,
see Device Interface Notifications (http://go.microsoft.com/fwlink/?LinkID=210251) in
Windows Embedded Compact 7 Documentation.

Supporting Power Management
Power Manager is a system software component that manages device power to improve
overall OS power efficiency. For more information about power management in
Windows Embedded Compact 7, see Power Management
(http://go.microsoft.com/fwlink/?LinkID=210272) in Windows Embedded Compact 7
Documentation.

You can add power management support to your device driver to reduce power
consumption on your target platform. To do this, your driver must support the stream
interface. For more information about the stream interface, see the companion article
Planning Your Device Driver (http://go.microsoft.com/fwlink/?LinkID=210236).

After you implement the stream interface in your device driver, you can add power
management support by adding power management IOCTL functionality to your driver,
by notifying Power Manager that your driver has power management capability, and by
implementing device power states. We recommend that you use power management
IOCTLs to manage power to your device instead of using the XXX_PowerUp and
XXX_PowerDown stream interface functions.

Adding Power Management IOCTLs
Power Manager communicates to a device with the IOCTLs listed in Table 8. You
implement these IOCTLs in your device driver to respond to calls from Power Manager.

http://go.microsoft.com/fwlink/?LinkID=210985�
http://go.microsoft.com/fwlink/?LinkID=210251�
http://go.microsoft.com/fwlink/?LinkID=210272�
http://go.microsoft.com/fwlink/?LinkID=210236�

Implementing Your Device Driver 22

 ©2011 Microsoft

Table 8: Power Management IOCTLs

Function Description

IOCTL_POWER_CAPABILITIES Checks device-specific capabilities.

IOCTL_POWER_GET Gets the current device power state.

IOCTL_POWER_SET Requests a change from one device
power state to another.

IOCTL_REGISTER_POWER_RELATIONSHIP
Notifies the parent device so that the
parent device can register all the devices
that it controls.

For more information about these IOCTLs, see Power Management I/O Controls
(http://go.microsoft.com/fwlink/?LinkID=210273) in Windows Embedded Compact 7
Documentation.

Notifying Power Manager
To notify Power Manager of your device driver power management capabilities, you
expose a power management device interface that allows Power Manager to query your
device power management capabilities and to control its power state. For more
information about device interfaces, see the section Supporting Device Interfaces in this
article.

The power management interface you implement depends on the kind of device that
your driver supports. Table 9 lists predefined power management interfaces and the
kind of device each supports for managing power on that type of device.

Table 9: Power Management Interfaces

Interface Device type

PMCLASS_BLOCK_DEVICE Storage device

PMCLASS_DISPLAY Display device

PMCLASS_NDIS_MINIPORT Network device

PMCLASS_GENERIC_DEVICE All other devices

These interfaces are defined in the header file %_WINCEROOT%\
Public\Common\SDK\Inc\Pm.h. After you implement the required interface for your
device type, call the AdvertiseInterface function to advertise your interface. Power
Manager uses IOControl commands to query your device power management
capabilities after you advertise your interface. In addition, to register your device driver
for power management notifications, call the RequestPowerNotifications function
and pass a handle to a message queue that is exclusively created for power
management notifications. Do this only if your driver must respond to a power
notification and can afford to incur the associated overhead. Typically, after your device
driver advertises power management capabilities to Power Manager, your driver needs

http://go.microsoft.com/fwlink/?LinkID=210980�
http://go.microsoft.com/fwlink/?LinkID=210981�
http://go.microsoft.com/fwlink/?LinkID=210982�
http://go.microsoft.com/fwlink/?LinkID=210983�
http://go.microsoft.com/fwlink/?LinkID=210273�

Implementing Your Device Driver 23

 ©2011 Microsoft

to process only DeviceIoControl calls from Power Manager. For more information
about RequestPowerNotifications, see RequestPowerNotifications
(http://go.microsoft.com/fwlink/?LinkID=210986) in Windows Embedded Compact 7
Documentation.

Implementing Device Power States
To implement power management functionality, your driver supports transitions
between predefined power states. Power Manager passes a device power state to your
driver; your driver must then map the state to its device capabilities and also perform
the applicable state transition on the device.

Table 10 describes the device power states.

Table 10: Device Power States

Device
power
state

Registry key Description

Full on D0
The device is on and running. It is receiving full power
from the system and is delivering full functionality to
the user.

Low on D1

The device is fully functional at a lower power or
performance state than D0. The D1 state is applicable
when the device is being used; however, peak
performance is unnecessary, and power is at a
premium.

Standby D2 The device is partially powered and has automatic
wake-up on request.

Sleep D3

The device is partially powered and has device-initiated
wake-up, if available. A device in state D3 is sleeping
but capable of raising the system power state on its
own. It consumes only enough power to be able to do
this, which must be less than or equal to the amount of
power that is used in state D2.

Off D4

The device has no power. A device in state D4 should
not be consuming any significant power. Some
peripheral buses require static terminations that
intrinsically use nonzero power when a device is
physically connected to the bus. A device on such a bus
can still support D4.

A physical device does not have to support all the device power states that are shown
in Table 10. The only device power state that all devices must support is the full-on
state, D0. A driver that receives a request to enter a power state that its device
hardware does not support enters the next available power state that it supports. For
example, if Power Manager requests that your driver enter the D2 state and your device
does not support D2, your driver can instead transition the device to the state D3 or

http://go.microsoft.com/fwlink/?LinkID=210986�

Implementing Your Device Driver 24

 ©2011 Microsoft

D4. This transition is possible if Power Manager supports one of these states. If Power
Manager requests that your device enter the D3 state but your device cannot wake the
system, we recommend that your driver enters the D4 state by turning off the power
instead of staying in standby mode. These rules are intended to simplify device driver
implementation.

Power Manager maps system power states to the corresponding device power states.
For example, if a device supports only power states D0 and D4, Power Manager does
not immediately request that the device enter the D4 power state when it transitions
from the full-on power state. Power Manager waits until the system enters a system
power state in which D3 or D4 is configured as the maximum device power state for
that device. If D0, D1, or D2 is configured as the maximum power state, Power
Manager keeps the device at D0.

When your device driver starts, it puts the device in the full-on state D0. Before your
device driver is unloaded, it should put the device into D4 (the power off state), if
possible. If your device enters another device power state at startup, it can issue a
DevicePowerNotify request while processing IOCTL_POWER_CAPABILITIES.

For more information about device power states, see CEDEVICE_POWER_STATE
(http://go.microsoft.com/fwlink/?LinkID=210364) in Windows Embedded Compact 7
Documentation. For more information about IOCTL commands that Power Manager
issues to your device driver, see Power Management I/O Controls
(http://go.microsoft.com/fwlink/?LinkID=210273) in Windows Embedded Compact 7
Documentation.

Conclusion
This article explains the most frequent tasks that are required to implement a Windows
Embedded Compact 7 device driver, and provides pointers to sample code and
reference documentation to help you develop a working device driver. It helps you learn
how to start your device driver project from a sample stream driver. You then add
functionality to manage device context and open context when the OS and applications
initialize and open your device driver. This article explains how to service interrupts
from your device, register your interrupt handler with the OS, and handle shared
interrupts. It also helps you learn how to marshal data between address spaces, use
DMA to move data to and from your device, advertise device interfaces to the rest of
the system, and support power management IOCTL commands. With this knowledge,
and the information in companion articles Planning Your Device Driver
(http://go.microsoft.com/fwlink/?LinkID=210236) and Building and Testing Your Device
Driver (http://go.microsoft.com/fwlink/?LinkID=210199), you can develop a working,
full-featured device driver to support your device hardware in Windows Embedded
Compact 7.

Additional Resources
• Windows Embedded website (http://go.microsoft.com/fwlink/?LinkID=203338)

http://go.microsoft.com/fwlink/?LinkID=210364�
http://go.microsoft.com/fwlink/?LinkID=210273�
http://go.microsoft.com/fwlink/?LinkID=210236�
http://go.microsoft.com/fwlink/?LinkID=210199�
http://go.microsoft.com/fwlink/?LinkID=210199�
http://go.microsoft.com/fwlink/?LinkID=203338�

Implementing Your Device Driver 25

 ©2011 Microsoft

Copyright
This document is provided “as-is.” Information and views expressed in this document,
including URL and other Internet Web site references, may change without notice. You
bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in
any Microsoft product. You may copy and use this document for your internal, reference
purposes.

© 2011 Microsoft. All rights reserved.

	Implementing Your Device Driver
	Abstract
	Introduction
	Porting the Sample Stream Driver
	Managing Device Driver Context
	Managing Device Context
	Managing Open Context

	Adding Interrupt Handling Functionality
	Interrupt Service Routines
	Interrupt Service Threads
	Servicing Interrupts
	Registering Your Interrupt Service Routine
	Handling Nested Interrupts
	Handling Shared Interrupts
	Interrupt Handling Functions

	Marshaling Data Between Memory Buffers
	Synchronous and Asynchronous Access

	Supporting Direct Memory Access
	Common DMA Functions
	DMA Abstraction Layer
	Direct Calls to Kernel Functions

	Supporting Device Interfaces
	Advertising a Device Interface

	Supporting Power Management
	Adding Power Management IOCTLs
	Notifying Power Manager
	Implementing Device Power States

	Conclusion
	Additional Resources

