«7 Windows Embedded

Compact

DevHealth Memory Usage Tool for Windows
Embedded Compact 7

Writer: Windows Embedded Compact JDP Team
Published: February 2012
Applies To: Windows Embedded Compact 7

Abstract

This paper describes how to use the DevHealth tool to analyze memory use on your Windows
Embedded Compact device. It includes:

e An overview of the DevHealth tool and the types of reports that it generates.
e Guidance on how to run the tool.

e Descriptions of the individual reports.

© 2012 Microsoft. All rights reserved.

Contents

INEFOAUCTION .. 3
USING DEVHEAIN ... 4
RUNNING DEVHEAIN ... 4
Interpreting the REPOIt DALAccoiiiiiiiiie e 6
SYSIEM MEMOIY REPOIT. ...ttt ettt ettt e e e e et e e e a e e e e e e e esnnna e e e eeeeees 6
System MemOry Map REPOIot e e e e et e e e e e aeees 9
PrOCESS REPOIT ...ttt ettt e e e e et e e e e e et e e e e e e anaaas 12
MOAUIE REPOIT ... 13
[(=T o =T o [0 APPSR PPPPPPIN 15
DEPENAENCY REPOIT ... 17
1670] o3 [0 13T o PP PPPPPPUPPPPPPPPTPPIN 18
ACJItIONAI RESOUITES ...ttt s 19

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact7 3

Introduction

DevHealth is a memory-reporting tool that you can run on Windows Embedded Compact 7 devices with
or without establishing a connection between your development computer and your device. By using
DevHealth, you can take a snapshot of virtual memory and generate an overview of the memory
footprint of the device. DevHealth can produce the following reports, which are text files that you can
read by using any text file viewer:

e System Memory Report: Lists the amount of memory on the device and how it is being used

e System Memory Map Report: Shows the page types of the virtual memory that is being used by
each process

e Process Report: Lists the number of pages of virtual memory that are being used by each process

e Module Report: Lists the number of pages of virtual memory that are being used by each DLL
module

e Heap Report: Provides information on each heap that is being used by each process

e Dependency Report: Lists the module reference counts for all processes and DLL modules that
are loaded into memory

You can use DevHealth to monitor the memory usage of the device or as the starting point for
investigations into memory leaks. For example, to monitor device or application memory usage over a
long period of time, you can run DevHealth at 15-minute intervals by using the timer option. You can
then analyze the individual output files. You can also use DevHealth for memory leak investigations by
comparing DevHealth reports before and after a complex scenario. An unexpected increase in the
program memory usage may indicate potential memory leaks. Note that DevHealth reports memory
usage on a module-by-module and process-by-process basis and does not provide more specific
details about individual memory allocations. However, this information may help you narrow down
memory leaks to processes or modules. At that point, you can use other tools such as the Resource
Leak Detector in the Windows Embedded Compact Remote Tools Framework to find exactly where the
memory leaks are located in the source code.

Other Windows Embedded Compact 7 tools may generate data similar to what DevHealth generates.
For example, you can use the Performance Monitor or the Resource Consumer in the Remote Tools
Framework to monitor system memory usage. The Target Control command mi in Platform Builder also
generates memory map data. However, those methods require a connection between your
development computer and your device, and they report less detailed memory usage information than
DevHealth. DevHealth is not designed to replace these other tools, but to provide an additional option.
You should select your tool based on your needs.

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 4

Using DevHealth

DevHealth consists of two device-side files: the main program (devhealth.exe) and a kernel DLL
(devhealthdll.dll). You can find these files on your development computer in
%_WINCE700%\public\COMMON\oak\target\<CPU Type>\<Build Type>, where <Build Type> is
checked, debug, or retail.

You can run DevHealth either from your device or from Platform Builder. If you want to run DevHealth
from your device, you need to copy both devhealth.exe and devhealthdll.dll to the device. Because
devhealthdll.dll is a kernel DLL, copy it to the Windows directory on the device. If you plan to run the
tool from the device with command-line options, and you do not have the Standard Shell
(SYSGEN_STANDARDSHELL) in your OS image, include the Command Processor (SYSGEN_CMD)
in your OS image. If you want to run DevHealth from Platform Builder by using a kernel independent
transport layer (KITL) connection, copy devhealth.exe and devhealthdll.dll to the flat release directory.

Running DevHealth

You can run DevHealth with command-line options to produce different memory usage reports. When
you run DevHealth with no command-line options, the output is the same as when you use the option
all. The command-line options are listed in the table below.

Command-line option Result Report description (if applicable)
all Produces all of the reports listed | Each report is described in this
in this table. The output is the table.

same as if there were no
command-line options.

system Produces a System Memory This report lists the amount of
Report RAM and non-volatile storage
that is on the device and
provides an overview of the
number of pages that are used
by each consumer of RAM.

map Produces a System Memory Map | This report shows the individual
Report page types of the virtual memory
that is used by each process.

proc Produces a Process Report For each process, this report
lists the number of pages of
virtual memory that are used for

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 5

Command-line option

Result

Report description (if applicable)

a subset of page types.

mod

Produces a Module Report

For each DLL module, this report
lists the number of pages of
virtual memory that are used for
a subset of page types.

heap

Produces a Heap Report

For each heap that is used by
each process, this report lists the
starting and ending address and
the number of blocks that are
allocated for each module.

depend

Produces a Dependency Report

This report lists the module
reference counts for all
processes and DLL modules that
are loaded into memory.

ignoredup

Ignores duplicate pages

None.

pte

Displays page table entries

None.

timer

Generates a report every 15
minutes

None.

The procedures below show you how to run DevHealth on your device or by using Platform Builder on
your development computer. If you use Platform Builder, make sure that your development computer is
connected to your device before starting that procedure.

> To run DevHealth on your device

1. Onyour device, open a Command Prompt window.

2. At the command prompt, type devhealth.exe <command-line options>

> To run DevHealth from Platform Builder

1. In Platform Builder, click Target and then click Target Control.

2. Atthe Target Control command prompt, type s devhealth.exe <command-line options>

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 6

Interpreting the Report Data

DevHealth reports are text files that you can view by using any text file viewer. Every time you run
DevHealth, it creates an output text file named mem_*.txt, where the wildcard is a number based on
how many mem_*.txt files already exist in the directory.

A Note

Every time you run DevHealth, it creates just one output file (mem_*.txt), which contains all of
the individual reports that you chose to run based on your command-line options.

DevHealth puts its output file in one of the following locations on the device, whichever one it finds first:
1. \Storage Card

2. \Hard Disk
3. \Release
Ij Note

If you run DevHealth while connected to Platform Builder over a KITL transport, you can
access your device’s \Release directory on your development computer by going to the flat
release directory, which is the same as the \Release directory on your device. The flat
release directory is a single directory on your development computer that contains all of the
files to be included in the final OS image, specified as the Release directory inthe <My
Project> Property Pages dialog box in Platform Builder.

4. Device root directory
For a description of the data that each report generates and how to interpret that data, see:

e System Memory Report

e System Memory Map Report
e Process Report
e Module Report

e Heap Report
e Dependency Report

System Memory Report

The DevHealth System Memory Report provides a summary of the amount of RAM and non-volatile

storage on the device and shows which consumers are using the physical RAM at the time that you run

the DevHealth tool. There are three sections in the System Memory Report: a total storage section and

two physical RAM sections, as described below.

e Total Storage: Provides the total number of pages of non-volatile storage space and the number of
available and used pages of non-volatile storage space.

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 7

e Physical RAM (sources breakdown): Lists the sources of RAM that are on the device. This
section always includes a Main Memory section, and may include one or more Extension DRAM
sections.

e Physical RAM (consumers breakdown): Shows how the entire physical RAM of the device is
being used at the moment of the report. This part of the report breaks the memory down into
different sections such as program memory, object store, paging pool, Watson size, and so
on. Within the Program Memory section, there is a summary for each type of page that is allocated,
such as code, stack, heap, data, and so on.

The address ranges for the various sections of RAM correspond to the actual physical addresses that
each virtual address range maps to. In this way, this report can account for the entire physical RAM on
the device at any time.

In the System Memory Report, "Unaccounted/Unknown" indicates that there is a difference between the
number of physical pages that are accounted for and the number of physical pages that are available.
That is, there are some pages for which the usage is unknown. This is different from "unknown" in the
System Memory Map report. In the System Memory Map Report, "unknown" means that DevHealth
found pages in use but cannot report their purpose. In the System Memory Report, "unknown" means
that there are some pages that DevHealth did not even find.

One possible source of memory listed as "Unaccounted/Unknown" is by processes that have exited. If
a process exits, but a program still has a handle to that process, the memory of the process is not
freed, but the process will not show up in DevHealth report. As a result, a large amount of unknown
memory could indicate a leak of process handles.

An example of a System Memory Report is shown below.

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 8

Page Size: 4096

| Pages | Size (bytes) | Size (MB) | Address

Total Storage (Flash) | 28838 | 118120448 | 112.65 | n/a
Available Stocrage | 28820 | 118046720 | 112.58 | n/a
Used Storage | i3 | 73728 | 0.07 | n/a
Physical RAM (sources breakdown) 1 57839 | 238908544 | 225.93 | nfa
Main Memory | 8687 | 35581952 | 33.93 | 0x81d00000 - Ox83eeefff
Extension DRAM 1 | 49152 | 201326592 | 192.00 | Ox94000000 - Ox9fffffff
Physical RAM (consumers breakdeown) | 57839 | 236908544 | 225.93 | n/a

Kernel Preallce. | 53 1 217088 | 0.21 | 0x81d00000 - O0x81d34fff

Page Tables | 11 4096 | 0.00 | 0x81d35000 - O0x81d35fff

Kernel Log Ptr | 11 4096 | 0.00 | 0x81d36000 - 0x81d36Lff

Watson Size | 01 01 0.00 | n/a

Cverhead (kernel RAM map) | 29 | 118784 | 0.11 | n/a

Object Store | 28877 | 118280192 | 112.80 | n/a

Program Memory | 28878 | 118284288 | 112.80 | n/a
RVRILABLE FROGRAM MEMORY | 26441 | 108302336 | 103.29 | n/a

'Free' pages in-use by pool | al [N} 0.00 | n/a
USED PROGRAM MEMORY | 2437 | 9981952 | 9.52 | n/a
Kernel Objects | 91 | 372736 | 0.36 | n/a
Unused Paging Pool 1 794 | 3252224 | 3.10 | n/a
Unaccounted / Unknown | 742 1 3039232 | 2.90 | n/a
Pregrams | 1604 | 6569984 | €.27 | n/a
{5) Stack | 169 | 692224 | 0.66 | nfa

(H) Heap | 538 | 2203648 | 2.10 | n/a

(E) EXE Data | 61 24576 | 0.02 | n/a

{D) DLL Data | a79 1 1552384 | 1.48 | n/a

{c) Code RAM | 21 8192 | 0.01 | n/a
Proceas | 21 8192 | 0.01 | nfa
Module | al [.00 | n/a

(z) Read only RAM | 175 1 716800 | 0.68 | n/a
Proceas | 71 28672 | 0.03 | n/a
Module | 168 | 688128 | 0.66 | n/a
Map/Shared | al (] 0.00 | nf/a

(W) Read/Write RAM | 335 | 1372160 | 1.31 | n/a
Proceas | 335 1 1372160 | 1.31 | n/a
Mcdule | al [N} 0.00 | nfa
Map/Shared | al a1l 0.00 | n/a

Program memory that would be left if paging peool pages above "target' were freed:

Program Memory | 28878 1 118284288 | 112.80 | n/a
AVAILABLE PROGRAM MEMORY | 268441 | 108302336 | 103.29 | n/a
USED PROGRAM MEMCORY | 2437 | 9381952 | 9.52 | n/a

Kernel Objects I 91 1 372736 | 0.36 1 n/fa
Unused Paging Peoel | 794 | 3252224 | 3.10 | n/a
Unaccounted / Unknown | 742 | 3039232 | 2.90 | nfa
Programs | 1604 | 6569984 | 6.27 | n/a

Paging Peoocl Beference Values (actual RAM consumed is already counted above)

Loader Pool (Current In Use) | 124 | 507904 | 0.48 | nfa

Loader Pool (Current Free) 1 644 | 2637824 | 2.52 | n/a

Loader Pool (Current Consumption) | 768 | 3145728 | 3.00 | n/a

Loader Pool (Target) | 768 | 3145728 | 3.00 | n/a

Loader Pocl (Maximum) | 2048 | 8388608 | g2.00 | nf/a

File Pool (Current In Use) 1 106 | 434176 | 0.41 | n/a

File Pool (Current Free) | 150 | 614400 | 0.59 | n/a

File Pool (Current Consumption) 1 256 | 1048576 | 1.00 | nfa

File Pool (Target) | 256 | 1048576 | 1.00 | n/a

File Pecl (Maximum) | 2560 | 10485760 | 10.00 | n/a

Loader Paging Pool (fail count)]

Loader Paging Pool (trim count) 1 0

Loader Paging Pool (critical count) | a

File Paging Pool (fail count) | [1]

File Paging Pool (trim count) | Q

File Paging Poel (critical count) | a

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 9

System Memory Map Report

The DevHealth System Memory Map Report provides detailed information about the virtual memory
usage of the device at the moment that you run DevHealth. This report, which lists page types for all
processes, provides similar data to that of the Visual Studio 2008 Target Control command mi full.
However, the System Memory Map Report that DevHealth provides contains more detailed information,
such as the virtual memory address range that each DLL module uses. The System Memory Map
Report of each process contains the base address of a virtual memory chunk, a symbol that represents
a single page of virtual memory, and a summary of the information for the component that uses the
corresponding pages.

The meanings of the symbols are listed in the table below.

Symbol Meaning

- (hyphen) Reserved but not in use. This symbol indicates
a virtual page that is currently allocated but is
not mapped to any physical memory.

C Executable code either in ROM or in the NK
region outside of system RAM.

c Executable code in RAM.

R Read-only data section in an .exe or .dll file

either in ROM or in the NK region outside of
system RAM. May also be a memory-mapped
file in ROM.

r Read-only data section in RAM, or RAM
committed as read-only. If this read-only data is
not an .exe or a .dll file, it is most likely a
memory-mapped file.

D Writable data section in a .dll file. Cannot be
shared between processes.

E Writable data section in an .exe file.

p Paging pool.

S Committed stack page for a thread.

H Heap.

W RAM committed as read-write. Most likely

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 10

Symbol Meaning

mapped memory.

P A peripheral that is not part of system RAM.
The peripheral may be video memory, a
camera, or some other device.

d Duplicate. This page of RAM was already
accounted for. For example, it might be a
shared module or an address that was virtually
copied. Assignment of duplicate addresses
follows the order of DevHealth output.

An excerpt from a System Memory Map Report is shown below. This excerpt shows the memory usage
of one process. The System Memory Map Report of each process contains three columns. Each line
represents 64 KB of virtual memory in the process. The first column represents the base address of the
64 KB virtual memory chunk. (When an address is skipped, it signifies that no pages are presently
allocated in the entire 64 KB chunk.) The second column contains a symbol that represents a single
page of virtual memory (see the table above for an explanation of the symbols). There are 16 symbols
because each page is 4 KB. The third column of the report summarizes the information for the
component that uses the corresponding pages.

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 11

Memory usage for Process d21347b0: 'explorer.exe' pid 3710012
Bleock base 00000000 end 00054000

000000002 --——- ——————————

00010000: -CCCCCCCCCCCCCCC

00020000: CCCCCCCCCCCCCCCC

00030000z CCW--CCCCCCCCCCC

00040000: CCCCCCCCCCCCCCCC

00050000: CCCC

00060000: —-——————————v 555

00070000: HHHHHH------——- <-- Heap:0x00070010

=== File hMap=0x9FF&2358 "NLSFILE™ (0x000802D4 - Ox000B31A1)

00080000: dddddddddddddddd

00090000: dddddddddddddddd

000a0000: dddddddddddddddd

000b0000: dddd

=== end hMap
000c0000: -—————————————o 5
00040000: HHHHHHHHHHHH--- <-- Heap:0x000d40010
000e0000: —-——-————————o 55
000£0000: ——————————————— 5
40000000 ===m=——————————e

=== coredll.dll (40010000 - 400a%ffif)
400100002 -ddddddddddddddd
40020000: dddddddddddddddd
40030000: dddddddddddddddd
40040000: dddddddddddddddd
40050000: dddddddddddddddd
40060000: dddddddddddddddd
40070000: dddddddddddddddd
40080000: dddddddddddddddd
40090000: dddddddD-----—- dd <«-- DLL: coredll.dll
400a0000: ddddd-----
=== coredll.dl]l page summary: cocde=0[rcm{C):0 ram{c):0] data r/o(R)=0
r/w=l[ro(r)=0 rw(W)=0 exe(E)=0 dl1{D)=1 heap(H)=0]
page (p)=0 stack(5)=0 dup(d)=141 unknown{?)=0 cbj {0)=0 peripheral {F)=0
regerved(-)=12
fpeort.dll (40000000 - 400clfff)
DLL: fpcrt.dll

400b0000: -ddddddddddddddD
400c0000: --

=== fpcrt.dl]l page summary: code=0[rom{C):0 ram{c):0] data r/o(R)=0
rfw=1l[ro{r)=0 rw{W)=0 exe(E)=0 d11{D)=1 heap(H)=0]
page (p)=0 stack(5)=0 dup(d)=14 unknown(2)=0 cbj (0)=0 peripheral (F)=0
reserved(-)=3
notify.dll (40040000 - 400decfff)
notify.dll page surmary: code=0[rom({C):0 ram(c):0] data r/o{R)=0
r/w=0[roc({r)=0 rw{W)=0 exe(E)=0 dl11{D)=0 heap(H)=0]
page (p)=0 stack(5)=0 dup(d)=0 unknown(2)=0 ckj (0)=0 peripheral (F)=0
regerved (-)=0

=== zlib.dll (40100000 - 4010cfff)
40100000: -CCCCCCCCCD-- «-- DLL: zlib.dll
=== zlib.dll page summary: code=9%[rom(C):% ram{c):0] data r/oc(R)=0
r/w=1l[ro(r)=0 rw(W)=0 exe(E)=0 dl1(D)=1 heap(H)=0]
page (p)=0 stack(5)=0 dup(d)=0 unknown(2)=0 cbj (0)=0 peripheral (F)=0
reserved(-)=3

=== commctrl.dll (40120000 - 40184fff)

40120000: -ddddddddddddddd
40130000: dddddddddddddddd

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 12

Process Report

The DevHealth Process Report displays the number of pages of certain page types that each process
uses at the moment that DevHealth runs. The page types that the Process Report accounts for are:

Symbol Meaning

S Committed stack page for a thread.

H Heap.

E Writable data section in an .exe file.

D Writable data section in a .dll file. Cannot be

shared between processes.

O

Executable code in RAM.

Read-only data section in RAM, or RAM
committed as read-only. If this read-only data is
not an .exe or a .dll file, it is most likely a
memory-mapped file.

W RAM committed as read-write. Most likely
mapped memory.

An example of a Process Report is shown below, followed by an explanation of its columns.

Process | PID Base Page? | '5' 'H" 'E' 'D' 'c' 'r" 'W' | Total
NE.EXE | 0x00400002 O0x00000000 N | 134 475 o 272 a 81 317 | 1279
shell.exe | 0x01240002 0O=x00000000 ¥ | 1 1 a 2 a a 3 7
udevice.exe | 0x01bd0002 0x00000000 PART | 9 11 a 21 a 25 11 &7
udevice.exe | 0x00420006 Ox00000000 PART | 1 2 a 3 a 52 1] 59
udevice.exe | 0x01480006 O0x00000000 PART | 1 3 a 15 a 11 11 31
udevice.exe | 0x03790002 0x00000000 PBART | 2 8 a & a 1 11 13
explorer.exe | 0x03710012 O0x00000000 ¥ | 7 18 a 16 a a 1] 42
ErulatorStub.exe | 0x04030002 0O=x00000000 ¥ | 4 1 a 1 a a 11 7
servicesd.exe | 0x040e20002 0Ox00000000 ¥ | a8 22 0 32 a 2 2 1 13
udevice.exe | 0x04c30002 0x00000000 PART | 1 2 a 10 a 1 1] 15
devhealth&(.exe | 0x03c70006 O0x00000000 CANNOTI 1 1 a 1 2 2 [13
Total | | 169 544 o0 379 2 175 335 | 1604

The meanings of the columns are listed below.

e The Process column shows the name of the process.
e The PID column shows the process ID (PID).

e The Base column is always zero in this report.

e The Page? column shows whether the module is pageable or not. The meanings of the entries in
this column are given below.

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 13

Page? column entry Description
Y The module (.exe or .dll) is fully pageable.
N The module is stored on media where it could

be paged, but it is currently unpaged. This
means that all of the code and data for the
module is consuming RAM while the module is
loaded. To make the module page-able, you
would have to set linker settings to allow paging
and/or set the module to be page-able in the
.bib files or driver registry settings.

CANNOT The module is stored on media where it cannot
be paged (usually the Release Directory File
System Drive (RELFSD)), so it is unpaged.
This means that all of the code and data for the
module is consuming RAM while the module is
loaded.

PART The module is stored on media where it could
be paged, but only part of the module is page-
able. This is usually true of drivers that have
some ISR/IST or power management code
which cannot safely be paged, while the rest of
the driver could be paged. The unsafe parts of
the driver are reported to the linker as un-page-
able, while the rest is allowed to page in order
to reduce RAM consumption.

e The Total column displays the sum of the S, H, E, D, ¢, r and W values in the preceding
columns. This total does not include pages of type C, R, p, d, ?, P, and -, which are listed in the
page summaries of the individual processes in the System Memory Map Report. Note that the
Process Report summarizes the number of pages for certain page types, whereas the System
Memory Map shows the layout.

Module Report

The DevHealth Module Report displays the number of pages for three page types for all DLL modules
that are loaded in memory at the moment that DevHealth runs. The Module Report accounts for the
following page types:

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 14

Page type Description
(o Executable code in RAM.
r Read-only data section in RAM, or RAM

committed as read-only. If this read-only data is
not an .exe or a .dll file, it is most likely a
memory-mapped file.

D Writable data section in a .dll file. Cannot be
shared between processes.

An example of a Module Report is shown below, followed by an explanation of its columns.

Module | Base End Page? | 'e' "' D" | Tctal
devhealthdlle0.d11 | O0xd1850000 Oxdladefff CANNCT | 1] 12 123 | 141
k.toolhelp.dll | O0xc0320000 0xcO385£EE Y |] a 11 1
k.coredll.dll | 0xc0090000 0xc0l127EEE PART |] [11 7
k.fpert.dll | 0xc0130000 0xc0141FfFfF PART | 1] 1 11 2
gwea.dll | Oxc0lc0000 0xc0293fff Y | 0 a & | @
k.iphlpapi.dll | 0xc04b0000 0xcO4bffff Y | 0 a 11 1
ipwvehlp.dll | Oxc0&£0000 0xcORfbfff Y | 0 a 2 1 2
ne2000.d11 | OxcO&E0000 OxcOREafff Y | 1] a 11 1
ndia.dll | Oxc05a0000 0xc05c3fff Y |] a 11 1
commetrl.dll | 0x40120000 0x40184FFfF Y | 1] a a1 a
coredll.dll | 0x40010000 0x400a9fff Y | 1] a a1 a
33llsp.dll | 0x402a0000 0x402aafff Y | 0 a (| a
wapm.dll | 0x40270000 0x40275£fF Y | 1] a a1 a
netui.dll | 0x40310000 0x4034cfff Y | 1] 14 a1 14

Pages Size (MB)

Total Code for all Modules: a 0.00

Total Read fer all Modulesa: 1468 0.66

Total Data feor all Modules: 272 1.08

Total for all Modules: 440 1.72

Pages Size (MB)

Total Code for non-pageable Modules: 1] 0.00

Total Read for non-pageable Modules: 44 0.17

Total Data for non-pageable Modules: 213 0.83

Total for non-pageable Modules: 257 1.00

The meanings of the columns are listed below.

e The Module column shows the name of the module.

e The Base column is the starting address of the module in virtual memory.
e The End column is the ending address of the module in virtual memory.

e The Page? column shows whether the module is pageable or not. The meanings of the entries in
this column are given below.

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 15

Page? column entry Description
Y The module (.exe or .dll) is fully pageable.
N The module is stored on media where it could

be paged, but it is currently unpaged. This
means that all of the code and data for the
module is consuming RAM while the module is
loaded. To make the module page-able, you
would have to set linker settings to allow paging
and/or set the module to be page-able in the
.bib files or driver registry settings.

CANNOT The module is stored on media where it cannot
be paged (usually the Release Directory File
System Drive (RELFSD)), so it is unpaged.
This means that all of the code and data for the
module is consuming RAM while the module is
loaded.

PART The module is stored on media where it could
be paged, but only part of the module is page-
able. This is usually true of drivers that have
some ISR/IST or power management code
which cannot safely be paged, while the rest of
the driver could be paged. The unsafe parts of
the driver are reported to the linker as un-page-
able, while the rest is allowed to page in order
to reduce RAM consumption.

e The Total column displays the sum of the c, r, and D values in the preceding columns.

Heap Report

For each heap in a process, the DevHealth Heap Report provides the following information:
e The start and end address of the heap region

e The number of allocation blocks

e The total size of the allocation

If the heap sentinel is enabled, the Heap Report section labeled Per-module consumption shows the
number of allocation blocks and the size of total allocations by each module. To enable the heap

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 16

sentinel in the OS image, set IMGENABLEHEAPSENTINEL=1. The Per-module consumption
section is labeled as “Allocated by unknown modules” if the heap sentinel is not enabled.

Below is an excerpt of a Heap Report, which shows that there are two heaps in process explorer.exe: A
heap starting at address 0x00070010 and a heap starting at address 0x000d0010. In the first heap, five
modules (ceshell.dll, explorer.exe, commctrl.dll, coredll.dll, and ole32.dIl) have allocated memory and
the total allocation size is 14214 bytes.

Process: explorer.exe Heaps: 2
Heap: 0x00070010 Size: 16 Allecc: 14214
Begiona:
170 blocks address: 0x00070000 - 0x0007&000

Per-module cconsumpticn:
33 blocks 2262 bytesa ceshell.dll
22 blocks 3820 bytes explorer.exe
27 blocks 2558 bytes commctrl.dll
52 blocks 3530 bytes coredll.dll
7 blocks 2044 bytes ole32.dll

141 blocksa 14214 bytea TOTAL ALLOC
29 blocks §048 bytes FREE

Heap: 0x00040010 Size: 16 Alloc: 1484
Regicns:
&8 blecks address: 0x00040000 - 0x000d4e000
Per-module consumpticon:
5 blecks 888 bytes imaging.dll
1 blocks 596 bytea coredll.dll

& blocksa 1484 bytes TOTAL ALLOC
2 blecks 47488 bytes FREE

Total per-module consumption for all heaps in explorer.exe:

5 blecks 888 bytes imaging.dll

53 blocks 4126 bytes coredll.dll

33 blocks 2262 bytes ceshell.dll

22 blocks 3820 bytes explorer.exe

27 blocks 2558 bytes commctrl.dll
7 blocks 2044 bytes ole32.dll

147 blocks 15698 bytes TOTAL ALLOC

31 blocks 53536 bytea TFREE

End process eiplorer.exe

The Heap Report also contains total heap allocations across the entire system on a module basis. The
following excerpt shows heap report data across the entire system.

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 17

Total per-module consumpticon acros3s entire syatem:

1 blocks 16 bytes devhealth&0.exe
367 blocks 25798 bytes coredll.dll

3 blocks 668 bytes udevice.exe

39 blocks 5144 bytes decomsad.dll

& blocks 208 bytes iphlpapi.dll

7 blocks 656 bytes ntlmssp svc.dll

4 blocks 676 bytea udevice.exe

3 blecks 1634 bytes netui.dll

4 blocks 64 bytes asofckb.dll

1 blocks 12 bytes largekb.dll

2 blocks 434 bytes notify.dll

794 blecks 559628 bytea devhealthdllé0.dll
454 blocka 135708 bytea k.coredll.dll
1418 blocks 280208 bytes gwes.dll
22 blocks 1464 bytes ipwvehlp.dll
& blocks 208 bytes k.iphlpapi.dll
36 blocks 1492 bytes tcpstk.dll
580 bleocks 454600 bytes cxport.dll
984 blocks 67996 bytea filesaya.dll
3 blocks 67348 bytea afd.dll
8 blocks 17916 bytes audevman.dll
& blocks 408 bytes 33c2410x wavedewv.dll
12 blocka 5504 bytes serial smdk2410.d11
286 blocks 30512 bytes busenum.dll
2 blocks 2104 bytes filterfad.dll

6774 blocks 3541316 bytes TOTAL ALLOC
637 blocks 384128 bytea FREE

Dependency Report

The DevHealth Dependency Report cross-references the reference counts between running processes
and loaded DLL modules. The Dependency Report contains two sections. The first section lists, for
each process, the number of references that the process has to each DLL module that the process is
using. The second section shows this information in the opposite way: for every loaded DLL, it lists
which running processes have references to that DLL.

An excerpt of a Dependency Report is shown below (many lines of content were removed for
readability).

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 18

Dependency Report

Process module dependencies

NE.EXE
- devhealthdll.dll Bef: 2
- gwes.dll Bef: 2
- k.coredll.dll Bef: 109
- k.teclhelp.dll Bef: 1
- cesghell.dll Bef: 1
- urlmon.dll Ref: 1
- k.iphlpapi.dll Ref: 3

ghell.exe
- locale.dll Ref: 1
- normalize.dll Bef: 1
— dllheapinfoext.dll Bef: 1
- toolhelp.dll Ref: 1
- coredll.dll Ref: 1
- relfadext.dll Bef: 1

udevice.exe
- locale.dll Ref: 1
- normalize.dll Bef: 1
- goftkb.dll Ref: 1
- rpcrtdlegacy.dll Ref: 1
- lpert.dll Bef: 1
- coredll.dll Bef: 1
- largekb.dll Bef: 1
- berypt.dll Ref: 1

Beference Counts

=
5
&
&

shell.exe | udevice.exe | explcorer.exe | compo3itor.exe
devhealthdll.dll | |

gwes.dll
ceshell.dll
kernel.dll
toolhelp.dll
dllheapinfeoext.dll
relfadext.dll
softkb.dll

ntlmasp svec.dll
notify.dll
credprov.dll
w32gerv.dll
gdicompoaitor.dll
ddraw.dll
gerviceafilter.dll
lpecd.dll
winascck.dll
commcetrl.dll
conacle.dll
locale.dll

1
1
1

e i i e el el e SR SR SO RS e e

(=]

[

1

Conclusion

By using the DevHealth tool, you can obtain an overview of the memory usage of a Windows
Embedded Compact 7 device at the moment that you run the tool. DevHealth produces several types of

© 2012 Microsoft. All rights reserved.

DevHealth Memory Usage Tool for Windows Embedded Compact 7 19

reports that show memory usage from multiple perspectives: from the amount of physical memory on
the device and how that memory is being consumed to the number and type of virtual memory pages
that are being used by each process and DLL module. DevHealth also provides information on heap
usage and reference counts for all processes and modules.

DevHealth is not designed to replace other Windows Embedded Compact 7 memory analysis tools.
However, it is easy to run from a Command Prompt window on your device without the need for a
connection to your development computer. Or, with a connection to your development computer, you
can run it from Platform Builder by using Target Control. DevHealth automatically saves its report as a
text file that you can read by using any text file viewer. Depending on the command-line options you
choose, the report can contain a variety of information that you can use to monitor memory usage and
as a start for memory issue investigations.

Additional Resources

Windows Embedded website (http://go.microsoft.com/fwlink/?Linkld=183524)
Remote Toals in Platform Builder (http://go.microsoft.com/fwlink/?Linkld=238314)

© 2012 Microsoft. All rights reserved.

http://go.microsoft.com/fwlink/?LinkId=183524
http://go.microsoft.com/fwlink/?LinkId=238314

This document is provided “as-is.” Information and views expressed in this document, including URL
and other Internet Web site references, may change without notice. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft
product. You may copy and use this document for your internal, reference purposes.

© 2011 Microsoft. All rights reserved.

© 2012 Microsoft. All rights reserved.

	DevHealth Memory Usage Tool for Windows Embedded Compact 7
	Introduction
	Using DevHealth
	Running DevHealth
	Interpreting the Report Data
	System Memory Report
	System Memory Map Report
	Process Report
	Module Report
	Heap Report
	Dependency Report

	Conclusion
	Additional Resources

