
Building and Testing Your Device Driver 1

 ©2011 Microsoft

Building and Testing Your Device Driver
Windows Embedded Compact 7 Technical Article

Writers: Michael Stahl, Jina Chan

Technical Reviewers: KS Huang and Michael Svob

Published: March 2011

Applies To: Windows Embedded Compact 7

Abstract
Windows Embedded Compact 7 includes a sample device driver that you can use to
begin writing your own driver. This article explains how to add the sample driver to
your board support package (BSP) and then modify your BSP configuration files to
include the driver as part of your run-time image. You learn how to dynamically load
and test your driver by using console applications and the Windows Embedded Compact
Test Kit (CTK). You also learn about debugging your driver by using some of the
debugging tools that are available as part of Windows Embedded Compact 7.

Building and Testing Your Device Driver 2

 ©2011 Microsoft

Introduction
This article describes the steps to copy, build, test, and debug a simple device driver.
You’ll work with source code that is included as part of Windows Embedded Compact 7.

A companion article, Planning Your Device Driver
(http://go.microsoft.com/fwlink/?LinkID=210236), suggests a process for planning and
implementing your device driver project. That article also explains the most important
functionality of the Windows Embedded Compact 7 device driver
architecture. Implementing Your Device Driver
(http://go.microsoft.com/fwlink/?LinkID=210237) helps you get started implementing
your device driver. Before planning and implementing a device driver project, you must
be familiar with Windows Embedded Compact 7 development, Platform Builder, and
device driver development concepts such as interrupt handling and direct memory
access.

Before you begin driver development, you must also have an OS design and be familiar
with how to load the run-time image onto a target device. For a quick guide about OS
design, see Developing an Operating System Design
(http://go.microsoft.com/fwlink/?LinkID=210187).

You may have a physical device to deploy to, but you might want to test your device
driver before you deploy it to your hardware. Windows Embedded Compact 7 provides a
way to test your code without hardware by using a virtual CEPC. For more information
about loading a run-time image by using a virtual CEPC, see Getting Started with
Virtual CEPC (http://go.microsoft.com/fwlink/?LinkId=190470).

The steps in this document were verified by using a cloned virtual PC board support
package (BSP) and deployed by using a virtual CEPC.

Adding and Building a Device Driver
Adding the sample stream driver to your BSP requires that you create a new driver
subfolder, copy existing source and configuration files, and modify your BSP
configuration files. Then you can build your driver as part of the run-time image.

The following sections include information for you to add and build the stream driver as
part of your run-time image. Review each section for detailed steps.

• Adding the stream driver sample files to your BSP.
• Updating the driver source code.
• Updating the DIRS file.
• Updating the stream driver registry file.
• Updating the platform registry file.
• Updating the platform binary image builder file.
• Building the driver.
• Setting alternate release directories.
• Using Dumpbin.exe to review driver functions.

When finished, you have a shell for a simple monolithic stream driver that is integrated
as part of your BSP. You can then add code to the empty functions that are provided in
the driver shell that add support specifically for your device.

http://go.microsoft.com/fwlink/?LinkID=210236�
http://go.microsoft.com/fwlink/?LinkID=210237�
http://go.microsoft.com/fwlink/?LinkID=210187�
http://go.microsoft.com/fwlink/?LinkId=190470�
http://go.microsoft.com/fwlink/?LinkId=190470�

Building and Testing Your Device Driver 3

 ©2011 Microsoft

Adding the Stream Driver Files to Your BSP
The files for each driver in your BSP are located in unique subfolders under the
following path:

C:\WINCE700\Platform\<Your BSP>\Src\Drivers

Before you can add new driver files to your BSP, you must create a new folder for your
driver. The generic sample driver that is included with Windows Embedded Compact 7
is called “Streamdriver” and can be an initial template for your driver.

To add the stream driver files to your BSP

1. Create a new subfolder in your BSP driver folder:
C:\WINCE700\Platform\<Your BSP>\Src\Drivers\Streamdriver

2. Copy the sample driver files to your Streamdriver folder from the following location:
C:\WINCE700\Platform\BSPTemplate\Src\Drivers\Streamdriver

When you finish, the following files are in your stream driver folder:

Makefile

Readme.html

Sources

Streamdriver.bib

Streamdriver.cpp

Streamdriver.def

Streamdriver.reg

Updating the Driver Source Code
Before you run tests on the sample stream driver, customize the driver source code to
return useful values.

To update the driver source code

1. In Solution Explorer, navigate to the following path:
C:\WINCE700\Platform\<Your BSP>\Src\Drivers\Streamdriver

2. Expand the Source files node, and then open the Streamdriver.cpp file.
3. Modify the functions SDT_Init and SDT_Open to return values other than 0 (zero

is the default value and indicates failure):

extern "C" DWORD SDT_Init(LPCTSTR pContext, DWORD dwBusContext)

{

 // Fill in initialization code here

 return 1;

}

extern "C" DWORD SDT_Open(

 DWORD hDeviceContext, DWORD AccessCode, DWORD ShareMode

Building and Testing Your Device Driver 4

 ©2011 Microsoft

)

{

 // Fill in open code here

 return 1;

You can now use this sample driver for testing, or you can modify it further to create a
fully-featured device driver.

Updating the DIRS File
For the build process to include the source files for your driver, you must update the
DIRS file in the driver directory. The build process uses the information that is specified
in this file to determine which subdirectories to include in the build.

To update the DIRS file

1. Go to the C:\WINCE700\Platform\<Your BSP>\Src\Drivers folder.
2. Open the DIRS file by using a text editor such as Notepad.

Note The DIRS file does not have a file name extension.

3. Add a line to the file to include the stream driver folder followed by a backslash, as
shown.

DIRS= \

Streamdriver \

wavedev2_sb16 \

ndis_dc21x4 \

keybd \

isr_vpcmouse \

The list of driver folders included in your DIRS file may vary, depending on the
functionality you selected during the process of designing your OS.

Updating the Stream Driver Registry File
By default, the Streamdriver.reg file includes the following registry subkey for its
settings:

HKEY_LOCAL_MACHINE\Drivers\BuiltIn\StreamDriver

When Device Manager loads, it enumerates and loads each of the drivers that are
located under the HKEY_LOCAL_MACHINE\Drivers\BuiltIn\ path. While you are
developing, testing, and debugging your driver, the process is much easier when the
driver is loaded dynamically from your test code. To prevent Device Manager from
automatically loading your driver, you must change the path that is specified in the
Streamdriver.reg file.

To change the path that is specified in the stream driver registry file

1. Go to the C:\WINCE700\Platform\<Your BSP>\Src\Drivers\Streamdriver folder.
2. Open the Streamdriver.reg file by using a text editor such as Notepad.
3. Change the registry subkey, as shown.

Building and Testing Your Device Driver 5

 ©2011 Microsoft

HKEY_LOCAL_MACHINE\Drivers\StreamDriver

Because the stream driver information has been removed from the BuiltIn folder,
Device Manager can no longer load it at boot time.

After your driver has been tested and debugged, change the path back to its original
value so that Device Manager can load the driver as it usually does.

For more information about the registry settings and Device Manager, see Planning
Your Device Driver (http://go.microsoft.com/fwlink/?LinkID=210236).

Updating the Platform Registry File
Each BSP has a registry file (Platform.reg) that defines the hardware registry settings
for the target device. In some cases, the hardware registry settings are defined directly
within the Platform.reg file itself. In the case of the stream driver, a separate registry
file (Streamdriver.reg) is provided for you. For your sample stream driver to be
configured correctly with your BSP, you must update the platform registry file to include
the stream driver registry information.

To include the stream driver registry settings in your platform registry

1. Go to the C:\WINCE700\Platform\<Your BSP>\Files folder.
2. Open the Platform.reg file by using a text editor such as Notepad.
3. Add a line that includes the stream driver registry file. Add the line to the beginning

of the Platform.reg file, as the following code shows.

#include "$(_winceroot)\platform\<Your BSP>\src\drivers\streamdriver\streamdriver.reg"

Updating the Platform Binary Image Builder
File

Each BSP includes a binary image builder file (Platform.bib) that defines which modules
and files are included in the run-time image. You need to add an entry to this file so
that your driver is included when the run-time image is loaded onto the target device.

To update the Platform.bib file

1. Go to the C:\WINCE700\Platform\<Your BSP>\Files folder.
2. Open the Platform.bib file by using a text editor such as Notepad.
3. Add a line to the MODULES section of the file that includes the sample driver DLL,

as shown.

streamdriver.dll $(_FLATRELEASEDIR)\streamdriver.dll NK SHK

For more information about the binary image builder flags and format, see Binary
Image Builder (.bib) File (http://go.microsoft.com/fwlink/?LinkID=210868) in Windows
Embedded Compact 7 Documentation.

Building the Driver
After you have the new driver files in place and have modified the previously mentioned
files, you can build your driver.

http://go.microsoft.com/fwlink/?LinkID=210236�
http://go.microsoft.com/fwlink/?LinkID=210236�
http://go.microsoft.com/fwlink/?LinkID=210868�
http://go.microsoft.com/fwlink/?LinkID=210868�

Building and Testing Your Device Driver 6

 ©2011 Microsoft

To build your driver by using Platform Builder

1. In Visual Studio, on the File menu click Open, and then click Project/Solution.
2. In the Open Project dialog box, select the solution file for your BSP.
3. In the Solution Explorer pane, expand the tree nodes as follows: C:/WINCE700,

platform, <Your BSP>, src, drivers, streamdriver.
4. Right-click the streamdriver node, and then click Build from the shortcut menu.

Note By default, the stream driver subproject is excluded from the build. To
include the sample driver as part of the BSP build project, right-click the
streamdriver node, and then click Include in Build.

Setting Alternate Release Directories
When you deploy the OS image to your device or when the Windows Embedded
Compact Test Kit (CTK) is connecting to your device, a Platform Builder dialog box may
appear that requests you specify the path of certain files. To prevent this dialog box
from appearing, set the alternate release directories.

To set the alternate release directories

1. Click the Target menu, and then click Alternate Release Directories.
2. In the dialog box that appears, click the Add new directory button, and then add

the directories that are shown in the following table.
Table 1: Paths for Platform Builder

File Path

Notify.dll C:\Wince700\OSDesigns\<My OS
Name>\RelDir\VirtualPC_x86_<Debug or Release>

Cetkdev.exe C:\Program
Files\WindowsEmbeddedCompact7TestKit\Device\Target\x86

Mscoree.dll C:\Windows\System32

Tux.exe C:\Program
Files\WindowsEmbeddedCompact7TestKit\Harnesses\Target\x86

Drivertuxtest.dll C:\WINCE700\OSDesigns\<Your
BSP>\DriverTUXTest\Obj\x86\Debug

Using Dumpbin.exe to Review Driver Functions
Dumpbin.exe is a command-line utility that is included with Windows Embedded
Compact 7. You can use it to review the functions that are exposed by your driver DLL.
By reviewing output that is generated by the Dumpbin tool, you can verify that you are
exporting the complete set of required functions for your driver.

To examine exposed functions from the driver

Building and Testing Your Device Driver 7

 ©2011 Microsoft

1. In Platform Builder, open the Build menu, and then click Open Release Directory
in Build Window.

2. At the command prompt, type dumpbin /exports streamdriver.dll
3. When you finish reviewing the output, close the command prompt window by typing

Exit.
The following output was generated by the Dumpbin tool when the exports flag was
used.

ordinal hint RVA name

 1 0 000010E6 SDT_Close = _SDT_Close

 2 1 000010DF SDT_Deinit = _SDT_Deinit

 3 2 000010FB SDT_IOControl = _SDT_IOControl

 4 3 000010DC SDT_Init = _SDT_Init

 5 4 000010E3 SDT_Open = _SDT_Open

 6 5 000010EA SDT_PreClose = _SDT_PreClose

 7 6 000010EE SDT_PreDeinit = _SDT_PreDeinit

 8 7 000010F2 SDT_Read = _SDT_Read

 9 8 000010F8 SDT_Seek = _SDT_Seek

 10 9 000010F5 SDT_Write = _SDT_Write

For more information about the Dumpbin tool, see DUMPBIN Tool
(http://go.microsoft.com/fwlink/?LinkID=210871) in Windows Embedded Compact 7
Documentation.

Testing Your Device Driver
There are several paths you can take to begin testing your device driver. A simple first
test that you can perform is to create a console application that loads and calls your
driver. Another way to test your driver is by using the Windows Embedded Compact
Test Kit (CTK) to make similar calls, but as part of a test suite. Writing a console
application is a quick way to get started with simple tests, and using the CTK is more
helpful for regression and stress testing.

This section details testing procedures using a console application and using the CTK,
and other tools that can help you during the testing process.

Testing Your Device Driver Using a Console
Application

Use a console application to quickly perform a unit test of a device driver that is under
development. This section provides the basic steps to create a console test application;
to use the proper call sequence to load and access the driver; and to show the
relationship between calls that are made from the console application to the driver
itself.

You can simplify your testing process by dynamically loading the device driver through
the console application, instead of by permitting Device Manager to load the driver for

http://go.microsoft.com/fwlink/?LinkID=210871�

Building and Testing Your Device Driver 8

 ©2011 Microsoft

you at boot time. By following this practice, you can preclude some of the difficulty that
is associated with testing and debugging your driver, particularly with driver
initialization. For more information about the registry settings that are required to
manually load your driver, see Planning Your Device Driver
(http://go.microsoft.com/fwlink/?LinkID=210236).

Note Testing with a console application was chosen here for simplicity. You can
also test your driver by using other application types.

Creating Your Console Application
Platform Builder provides an easy-to-use Subproject wizard that helps you quickly
create applications for your OS design. The resulting subproject contains a C++ source
file that serves as the starting point for your test application.

After creating the console application, building the OS design, and loading the run-time
image to your device, you can run this application on the device to test your driver.

To create a console application

1. Open your previously created OS design in Visual Studio.
2. In the Solution Explorer window, right-click the Subprojects folder, and then

click Add New Subproject from the shortcut menu.
3. In the Subproject Wizard window, select WCE Console Application from the

Available templates list.
4. In the Subproject name field, type StreamDriverTest for your test application,

and then click Next.
5. Select A simple console application, and then click Finish.
Your new subproject StreamDriverTest appears under the Subprojects folder in
Solution Explorer. To build the new project, right-click the subproject, and then click
Build.

Note If you later want to remove the subproject, right-click the subproject, and
then click Remove. Removing a subproject does not delete the subproject source
code; the subproject is only removed from the OS design. To delete the subproject
source code, you must manually navigate to the source location and delete the files.

Expanding the subproject node reveals the Source files folder. The folder contains a
single file, StreamDriverTest.cpp, which contains the following code.

#include "stdafx.h"

int _tmain(int argc, TCHAR *argv[], TCHAR *envp[])

{

 return 0;

}

You can use this code to begin writing your device driver tests.

http://go.microsoft.com/fwlink/?LinkID=210236�

Building and Testing Your Device Driver 9

 ©2011 Microsoft

Calling Driver Functions by Using Device Manager
As the Planning Your Device Driver (http://go.microsoft.com/fwlink/?LinkID=210236)
article explains, applications do not directly call the device driver exported functions.
Instead, calls that are made within the application cause Device Manager to call the
device driver for you.

Before you can test your driver, you must call ActivateDeviceEx (or ActivateDevice).
This call causes Device Manager to load your driver DLL. After the driver is successfully
loaded, you can open the driver by calling CreateFile.

The following code example shows how to load, open, close, and deactivate the driver.

#include "stdafx.h"

int _tmain(int argc, TCHAR *argv[], TCHAR *envp[])

{

 HANDLE hActiveDriver = NULL;

 HANDLE hDriver = NULL;

 bool bReturn = false;

 // Ask Device Manager to load the driver

 hActiveDriver = ActivateDeviceEx(L"\\Drivers\\streamdriver", NULL,

0, NULL);

 if (hActiveDriver == INVALID_HANDLE_VALUE)

 {

 ERRORMSG(1, (TEXT("Unable to load stream driver.")));

 return -1;

 }

 // Open the driver

 hDriver = CreateFile (L"SDT1:",

 GENERIC_READ| GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

 NULL);

 if (hDriver == INVALID_HANDLE_VALUE)

 {

 ERRORMSG(1, (TEXT("Unable to open stream driver.")));

 return 0;

 }

http://go.microsoft.com/fwlink/?LinkID=210236�

Building and Testing Your Device Driver 10

 ©2011 Microsoft

 // Add test code here

 // Close the driver

 if (hDriver != INVALID_HANDLE_VALUE)

 {

 bReturn = CloseHandle(hDriver);

 if (bReturn == FALSE)

 {

 ERRORMSG(1, (TEXT("Unable to close stream driver.")));

 }

 }

 // Ask Device Manager to unload the driver

 if (hActiveDriver != INVALID_HANDLE_VALUE)

 {

 bReturn = DeactivateDevice(hActiveDriver);

 if (bReturn == FALSE)

 {

 ERRORMSG(1, (TEXT("Unable to unload stream driver.")));

 }

 }

 return 0;

}

Running Your Console Application
After you add your test code and rebuild and deploy the operating system, you can then
begin testing by running your console application on the target device.

Note The first time you run your console application, you may want to set
breakpoints into the initialization source code for both the console application and
the stream driver. Setting breakpoints helps you verify that Device Manager is
loading the driver as expected when the console application calls ActivateDeviceEx.

To run your console application

1. On the target device or virtual CEPC, click the Start menu, and then click Run.
2. Type StreamDriverTest and then click OK.
This procedure launches your test application and halts Platform Builder on any
previously set breakpoints.

Building and Testing Your Device Driver 11

 ©2011 Microsoft

Mapping Between Console Functions and Driver
Functions

Because calls that are made from the console application are routed through Device
Manager, it is important to understand how application calls and driver functions
correspond to one another.

The following table shows the driver functions that are invoked by Device Manager
when core function calls are made from the console application.

Table 2: Console and Driver Function Mapping

Core function Driver function

ActivateDeviceEx (or ActivateDevice)
DLLMain
xxx_Init

CreateFile xxx_Open

WriteFile xxx_Write

ReadFile xxx_Read

SetFilePointer xxx_Seek

DeviceIoControl xxx_IOControl

NA xxx_Cancel

CloseHandle
xxx_PreClose
xxx_Close

DeactivateDevice
xxx_PreDeinit
xxx_Deinit

NA xxx_PowerDown

NA xxx_PowerUp

Notice that calling ActivateDeviceEx, CloseHandle, or DeactivateDevice from the console
application causes Device Manager to make more than one call to the driver. When
debugging for the first time, you might set breakpoints on each of these driver
functions in order to trace the code.

The driver functions are listed here in the order that they are called. For example, when
you call ActivateDeviceEx, DLLMain is called followed by xxx_Init.

When ActivateDeviceEx is called, Device Manager also calls xxx_Open, xxx_IOControl,
xxx_PreClose, and xxx_Close. This function sequence gives Device Manager an early
opportunity to query the device driver for power capabilities. If the device is turned off

Building and Testing Your Device Driver 12

 ©2011 Microsoft

prior to other calls being made to the driver, Device Manager can make appropriate
power management calls to the driver.

Note Microsoft recommends that you use the xxx_IOControl function instead of
xxx_PowerUp and xxx_PowerDown to implement power management functionality,
including suspend and resume functionality.

For more information about the relationship between driver functions and Device
Manager, see Planning Your Device Driver
(http://go.microsoft.com/fwlink/?LinkID=210236).

Testing Your Device Driver Using the CTK
Testing a driver by using the Windows Embedded Compact Test Kit (CTK) is slightly
more complicated than testing by using a simple console application. However, using
the CTK can help you build and manage large test suites for regression and stress
testing. Instead of adding a console application to your OS design and running that
application on the target device, you add a test DLL to your OS design that is called by
the CTK.

For more information about using the CTK, see Windows Embedded CTK User Guide
(http://go.microsoft.com/fwlink/?LinkID=210189).

Creating Your Test DLL for the CTK
Creating a test DLL for the CTK is similar to creating a console application; both are
subprojects of your OS design.

To create a CTK test DLL

1. Open your previously created OS design in Visual Studio.
2. In the Solution Explorer window, right-click the Subprojects folder, and then

click Add New Subproject from the shortcut menu.
3. In the Subproject Wizard window, select WCE TUX Dynamic-Link Library from

the Available templates list.
4. In the Subproject name field, type DriverTUXTest for your test application, and

then click Next.
5. Click Finish.
Your new subproject DriverTUXTest appears under the Subprojects folder in Solution
Explorer.

If you expand the subproject node, you find the Source files folder. The folder
contains three files: DriverTUXTest.cpp, Globals.cpp, and Test.cpp. Your test must be
added to Test.cpp, which contains the following code.

#include "main.h"

#include "globals.h"

TESTPROCAPI TestProc(UINT uMsg, TPPARAM tpParam, LPFUNCTION_TABLE_ENTRY

lpFTE)

{

 // The shell doesn't necessarily want us to execute the test.

http://go.microsoft.com/fwlink/?LinkID=210236�
http://go.microsoft.com/fwlink/?LinkID=210189�

Building and Testing Your Device Driver 13

 ©2011 Microsoft

 // Make sure first.

 if(uMsg != TPM_EXECUTE)

 {

 return TPR_NOT_HANDLED;

 }

 // TODO: Replace the following line with your own test code here.

 // Also, change the return value from TPR_SKIP to the appropriate

 // code.

 g_pKato->Log(LOG_COMMENT, TEXT("This test is not yet implemented."));

 return TPR_SKIP;

}

Modify the Test.cpp file to include calls to ActivateDeviceEx, CreateFile,
CloseHandle, and DeactivateDevice, just as you did in the console driver. You can
then add any additional calls that are specifically required for testing the driver, such as
WriteFile, ReadFile, and DeviceIoControl. For example, in the Test.cpp file, replace
the code lines after the “TODO” comment with the following code.

 g_pKato->Log(LOG_COMMENT, TEXT("Stream driver TUX test starting"));

 HANDLE hActiveDriver = NULL;

 HANDLE hDriver = NULL;

 bool bReturn = false;

 hActiveDriver = ActivateDeviceEx(L"\\Drivers\\Streamdriver", NULL,

0, NULL);

 if (hActiveDriver == INVALID_HANDLE_VALUE)

 {

 g_pKato->Log(LOG_COMMENT, TEXT("Unable to load stream

driver."));

 return TPR_FAIL;

 }

 // Open the driver

 hDriver = CreateFile (L"SDT1:",

 GENERIC_READ| GENERIC_WRITE,

 FILE_SHARE_READ | FILE_SHARE_WRITE,

 NULL,

 OPEN_EXISTING,

 FILE_ATTRIBUTE_NORMAL,

Building and Testing Your Device Driver 14

 ©2011 Microsoft

 NULL);

 if (hDriver == INVALID_HANDLE_VALUE)

 {

 g_pKato->Log(LOG_COMMENT, TEXT("Unable to open stream

driver."));

 return TPR_FAIL;

 }

 // Add test code here

 // Close the driver

 if (hDriver != INVALID_HANDLE_VALUE)

 {

 bReturn = CloseHandle(hDriver);

 if (bReturn == FALSE)

 {

 g_pKato->Log(LOG_COMMENT, TEXT("Unable to close stream

driver."));

 }

 }

 // Ask the Device Manager to unload the driver

 if (hActiveDriver != INVALID_HANDLE_VALUE)

 {

 bReturn = DeactivateDevice(hActiveDriver);

 if (bReturn == FALSE)

 {

 g_pKato->Log(LOG_COMMENT, TEXT("Unable to unload stream

driver."));

 }

 }

 return TPR_PASS;

To build the new project DriverTUXTest, right-click the subproject in Solution
Explorer, and then click Build.

Adding Your Test DLL to the CTK
After you successfully build your test DLL, you can then add it to the CTK.

To add a test DLL to the CTK

1. Open the Start menu, and run the Windows Embedded Compact Test Kit (CTK).

Building and Testing Your Device Driver 15

 ©2011 Microsoft

2. In the Getting Started pane, select Create a Custom Test Pass Template.
3. On the Test Pass Templates tab, select the My Templates node, and then click

New.
4. Rename the new template MyDriverTestTemplate, and then click Done.
5. In the Getting Started pane, select Create a Custom Test Case.
6. Click the New Category button, and then rename the new category My Category.
7. Click the New Test button, and then rename the new test MyDeviceDriverTest.
8. Verify that the value for Category is My Category.
9. In the Run type list, select Fully Automated.
10. In the Test harness list, select Tux.
11. In the Supported architectures list box, select x86 (Device), which opens the

Add/Remove Test Files dialog box.
12. Click the Browse button, navigate to the DriverTUXTest.dll file, select it, and then

click OK.
13. On the Test Case Information tab, click Save, and then click Done.

Running Your Test from Within the CTK
To execute your DLL test from within the CTK, you must have an active device
connection available. Before getting started with the next steps, ensure that you:

• Have a complete build of your OS image.
• Have loaded your run-time image on your target device or virtual CEPC.
After your debugging session is established, you are ready to run your test from the
CTK.

To run your test from within the CTK

1. Open the Start menu, and then run the Windows Embedded Compact Test Kit
(CTK).

2. In the Getting Started pane, select Connect to Device.
3. When the Select a Device dialog box appears, under the Platform Builder node,

select the name of your device, such as vCEPC, and then click OK.
Note The Connecting to device dialog box appears briefly while the CTK
attempts to establish a connection.

4. On the CTK toolbar, click Remove Test Pass from Selected Connection.
Note For development purposes, it is only necessary to include a single test as
part of the test pass.

5. In the Test Case Explorer pane, select the Test Case Explorer tab.
6. Expand the My Category node that you created in step 6 of Adding Your Test DLL

to the CTK.
7. Right-click MyDeviceDriverTest, and then click Add to Current Test Pass from

the shortcut menu.
Note You must now have a single test selected for your test run.

8. To save your test pass, click the File menu, and then click Save.
9. On the CTK toolbar, click Run Test Pass.

Building and Testing Your Device Driver 16

 ©2011 Microsoft

The CTK then executes your test, and at any breakpoints that you set in your source
code for either the driver or the test itself, the CTK halts execution so that you can
trace through your source code. You can verify that your driver is loading correctly and
that your driver functions are executing as expected.

Debugging Your Device Driver
Several tools are available to help you debug your device driver. The following sections
provide a brief overview of these tools.

Using Debug Zones
Debug zones help you to dynamically control categories of debugging output that are
reported by your device driver. These zones are essentially groups of messages that
you can enable and disable while you debug. Debug zones can help you to quickly and
precisely identify where your driver may be having unexpected problems.

To use debug zones, you must define them for your driver and then register your driver
with the kernel subsystem so that the zones may be toggled externally during testing.
You define the zones by using a special global variable, dpCurSettings. The sample
stream driver source already includes a definition for this variable, as shown.

#ifdef DEBUG

DBGPARAM dpCurSettings =

{

 TEXT("SDTDriver"),

 {

 TEXT("Init"), TEXT("Error"), TEXT("Warning"), TEXT("Info"),

 TEXT("Power"), TEXT("Zone6"), TEXT("Zone7"), TEXT("Zone8"),

 TEXT("Zone9"), TEXT("Zone10"), TEXT("Zone11"), TEXT("Zone12"),

 TEXT("Zone13"), TEXT("Zone14"), TEXT("Zone15"), TEXT("Zone16")

 },

 1 | 1 << 1 | 1 << 2

};

#endif

You define dpCurSettings in three parts: the module name, the zone names, and the bit
values that indicate which zones are initially active. You may define up to 16 individual
zones for your device driver. In the case of the stream driver example, the first three
zones are enabled by setting the first three bits inline. Alternatively, you can define
your flags by using a DEBUGMASK macro, as shown.

#ifdef DEBUG

#define DEBUGMASK(bit) (1 << (bit))

#define MASK_INIT DEBUGMASK(0)

#define MASK_ERROR DEBUGMASK(1)

#define MASK_WARNING DEBUGMASK(2)

#define MASK_INFO DEBUGMASK(3)

Building and Testing Your Device Driver 17

 ©2011 Microsoft

#define MASK_POWER DEBUGMASK(4)

#define ZONE_INIT DEBUGZONE(0)

#define ZONE_ERROR DEBUGZONE(1)

#define ZONE_WARNING DEBUGZONE(2)

#define ZONE_INFO DEBUGZONE(3)

#define ZONE_POWER DEBUGZONE(4)

DBGPARAM dpCurSettings =

{

 // Name of the debug module

 TEXT("SDTDriver"),

 {

 TEXT("Init"), TEXT("Error"), TEXT("Warning"), TEXT("Info"),

 TEXT("Power"), TEXT("Zone6"), TEXT("Zone7"), TEXT("Zone8"),

 TEXT("Zone9"), TEXT("Zone10"), TEXT("Zone11"), TEXT("Zone12"),

 TEXT("Zone13"), TEXT("Zone14"), TEXT("Zone15"), TEXT("Zone16")

 },

 MASK_INIT | MASK_ERROR | MASK_WARNING

};

#endif

After you define the zones, you must register your driver when the driver is loaded. The
sample stream driver provides an example of registering the driver by calling
DEBUGREGISTER when the driver is loaded.

extern "C" BOOL WINAPI DllMain(

 HANDLE hinstDLL, DWORD dwReason, LPVOID lpvReserved

)

{

 switch(dwReason)

 {

 case DLL_PROCESS_ATTACH:

 DEBUGREGISTER((HINSTANCE) hinstDLL);

 DisableThreadLibraryCalls ((HMODULE) hinstDLL);

 break;

 case DLL_PROCESS_DETACH:

 break;

 }

 return TRUE;

Building and Testing Your Device Driver 18

 ©2011 Microsoft

}

After the driver is registered, you can add debug messages throughout your driver
code, as needed.

extern "C" DWORD SDT_Open(

 DWORD hDeviceContext, DWORD AccessCode, DWORD ShareMode

)

{

 DEBUGMSG(ZONE_INFO, (TEXT("SDT_Open\r\n")));

 return 1;

}

Setting Debug Zones Using Platform Builder
You can also use Platform Builder to debug your driver and to set the debug zones that
are currently active. Initially, the active debug zones are defined by you in the
dpCurSettings variable; however, you can adjust the active zones as needed to isolate
the debug information that you currently need.

To set the current debug zones

1. Load Streamdriver.dll as part of a Platform Builder debugging session, either with
your test application or at device boot time.

2. In Platform Builder, click the Target menu, and then click CE Debug Zones.
3. When the Debug Zones dialog box finishes initializing the list of loaded libraries,

select Streamdriver.dll from the list.
4. Enable or disable the active debug zones by selecting them in the Debug Zones

list.
5. Click Apply to accept the changes; or click OK to accept the changes and close the

dialog box.

Setting Debug Zones Programmatically
At any time, you can also programmatically change the active debug zones in your code
by setting dpCurSettings.ulZoneMask. For example, if you want to output only
information, set the debug mask as follows.

dpCurSettings.ulZoneMask = MASK_INFO;

Removing Debug Zone Information for Release
When your driver is ready for release, compile the source code by using the
environment variable "WINCESHIP=1", which causes the dpCurSettings variable to be
excluded from the library. When you use WINCESHIP=1 to compile, no debug zone
output is generated.

For more information about debug zones, see Debug Messages and Debug Zones in
Windows CE (http://go.microsoft.com/fwlink/?LinkID=210872).

http://go.microsoft.com/fwlink/?LinkID=210872�
http://go.microsoft.com/fwlink/?LinkID=210872�

Building and Testing Your Device Driver 19

 ©2011 Microsoft

Levels of Debugging Support
When you create an OS design, the integrated development environment (IDE) creates
a Debug configuration and a Release configuration of the OS design, and then sets build
options for each configuration.

The level of support for debugging in a default Debug configuration differs from the
level of support for debugging in a default Release configuration. The choice of build
options in a configuration determines the level of debugging support in the run-time
image that you build. Like the OS design as a whole, these levels of debugging support
also apply to your driver.

The following table describes the levels of debugging support for the default
configurations that are provided by Platform Builder.

Table 3: Debug and Release Build Support

Configuration Description

Debug

• Uses .lib files from
%_WINCEROOT%\Public\Common\Oak\Lib\<CPU>\Debug.

• Places object files in directories that are named Debug.
• Uses Microsoft format to provide full symbolic debugging

information.
• Provides the ability to turn debug zones on and off.
• Does not provide optimization, which generally makes

debugging more difficult.
• Sets the environment variable WINCEDEBUG=debug.

Release

• Uses .lib files from
%_WINCEROOT%\Public\Common\Oak\Lib\<CPU>\Retail.

• Places object files in directories named Retail.
• Provides no symbolic debugging information.
• Optimizes for speed.
• Has a smaller run-time image than the run-time image that is

built from the Debug configuration of the same OS design.
• Sets the environment variable WINCEDEBUG=retail.

Building a Run-Time Image from a Debug
Configuration

A Debug configuration provides complete symbolic debugging information and complete
debugger access to processes, threads, and modules.

To build a run-time image from a Debug configuration

1. On the Project menu, click Properties.
2. In the navigation pane, expand Configuration Properties, and then click Build

Options.

Building and Testing Your Device Driver 20

 ©2011 Microsoft

3. In the Configuration box, select a Debug configuration.
4. In the Build Options window, set Enable kernel debugger to No

(IMGNODEBUGGER=1).
5. Click the Configuration Manager button.
6. In the Configuration Manager dialog box, verify that the active configuration set

for your OS design is a Debug configuration, and then close the Configuration
Manager dialog box.

7. Click OK to close both the Properties and Property Pages dialog boxes.
8. From the Build menu, select Advanced Build Commands, and then select

Sysgen (blddemo –q).

Building a Run-Time Image from a Release
Configuration

A Release configuration is optimized for speed and has a smaller run-time image than a
Debug configuration.

To build a run-time image from a Release configuration

1. On the Project menu, click Properties.
2. In the navigation pane, expand Configuration Properties, and then click Build

Options.
3. In the Configuration box, select a Release configuration.
4. In the Build Options window, set Enable kernel debugger to No

(IMGNODEBUGGER=1).
5. Click the Configuration Manager button.
6. In the Configuration Manager dialog box, verify that the active solution

configuration set for your OS design is a Release configuration, and then close the
Configuration Manager dialog box.

7. Click OK to close both the Properties and Property Pages dialog boxes.
8. From the Build menu, click Advanced Build Commands, and then select Sysgen.

Using the Kernel Debugger
The kernel debugger integrates functionality to configure a connection to a target
device and then to download a run-time image to the device. Platform Builder provides
platform settings that enable kernel debugging during the process of building a run-
time image. When you enable kernel debugging, Platform Builder includes the
debugging stub, KdStub, in the run-time image.

When enabled, the kernel debugger runs independently as a service under the Core
Connectivity infrastructure. The debugger starts automatically for your run-time image
and continues to run until you stop it.

Using the Kernel Debugger with a Run-Time Image
Built from a Release Configuration

You can use the kernel debugger together with a run-time image that is built from the
Release configuration that Platform Builder provides. However, a run-time image that is

Building and Testing Your Device Driver 21

 ©2011 Microsoft

built from a Release configuration provides more limited debugging because of
optimization. This debugging combination may not provide the level of debugging
support you require.

If you want complete symbolic debugging information that includes full debugger access
to processes, threads and modules, build a run-time image from the Debug
configuration that Platform Builder provides.

To use the kernel debugger with a run-time image built from a Release
configuration

1. On the Project menu, click Properties.
2. In the navigation pane, expand Configuration Properties, and then click Build

Options.
3. In the Build Options window, set Enable kernel debugger to No

(IMGNODEBUGGER=1).
4. Click OK to close the Properties dialog box.
When you apply these settings and then build your run-time image, support for the
kernel debugger is built into the run-time image.

Conclusion
This article describes how to integrate your own BSP with the monolithic stream driver
that is included with Windows Embedded Compact 7. The article also describes how to
include the device driver as part of your run-time image and dynamically load the
device driver by using your own test code. Finally, this article described how to debug
your driver by using some of the debugging tools and techniques that are available as
part of Windows Embedded Compact 7.

A companion article, Planning Your Device Driver
(http://go.microsoft.com/fwlink/?LinkID=210236), helps you plan and implement the
initial phases of your device driver project while it explains the important functionality
of the Windows Embedded Compact 7 device driver architecture. Implementing Your
Device Driver (http://go.microsoft.com/fwlink/?LinkID=210237) helps you get started
implementing your device driver.

Additional Resources
• Windows Embedded website (http://go.microsoft.com/fwlink/?LinkID=203338)
• Developing an Operating System Design

(http://go.microsoft.com/fwlink/?LinkID=210187)
• Getting Started with Virtual CEPC (http://go.microsoft.com/fwlink/?LinkId=190470)

http://go.microsoft.com/fwlink/?LinkID=210236�
http://go.microsoft.com/fwlink/?LinkID=210237�
http://go.microsoft.com/fwlink/?LinkID=210237�
http://go.microsoft.com/fwlink/?LinkID=203338�
http://go.microsoft.com/fwlink/?LinkID=210187�
http://go.microsoft.com/fwlink/?LinkId=190470�

Building and Testing Your Device Driver 22

 ©2011 Microsoft

Copyright
This document is provided “as-is.” Information and views expressed in this document,
including URL and other Internet Web site references, may change without notice. You
bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in
any Microsoft product. You may copy and use this document for your internal, reference
purposes.

© 2011 Microsoft. All rights reserved.

	Building and Testing Your Device Driver
	Abstract
	Introduction
	Adding and Building a Device Driver
	Adding the Stream Driver Files to Your BSP
	Updating the Driver Source Code
	Updating the DIRS File
	Updating the Stream Driver Registry File
	Updating the Platform Registry File
	Updating the Platform Binary Image Builder File
	Building the Driver
	Setting Alternate Release Directories
	Using Dumpbin.exe to Review Driver Functions

	Testing Your Device Driver
	Testing Your Device Driver Using a Console Application
	Creating Your Console Application
	Calling Driver Functions by Using Device Manager
	Running Your Console Application
	Mapping Between Console Functions and Driver Functions

	Testing Your Device Driver Using the CTK
	Creating Your Test DLL for the CTK
	Adding Your Test DLL to the CTK
	Running Your Test from Within the CTK

	Debugging Your Device Driver
	Using Debug Zones
	Setting Debug Zones Using Platform Builder
	Setting Debug Zones Programmatically
	Removing Debug Zone Information for Release

	Levels of Debugging Support
	Building a Run-Time Image from a Debug Configuration
	Building a Run-Time Image from a Release Configuration

	Using the Kernel Debugger
	Using the Kernel Debugger with a Run-Time Image Built from a Release Configuration

	Conclusion
	Additional Resources

