

© 2011 Microsoft. All rights reserved.

BSP Porting Guide for Windows Embedded
Compact 7

Writers: Wes Barcalow, Scott Johnston, Glen Langer, Ralph Brand, Jina Chan

Technical Reviewers: Travis Hobrla, Vincent Tam

Published: March 2011

Applies To: Windows Embedded Compact 7

Abstract

Documents changes in the Board Support Packages (BSPs) between Windows CE 5.0, Windows

Embedded CE 6.0, and Windows Embedded Compact 7 that include:

 Removal of the folder %_WINCEROOT%\Public\Common\Oak\Csp

 Separation of the kernel from the OEM adaption layer (OAL) and kernel independent transport layer

(KITL)

 Separation of drivers into kernel mode and user mode

 New locations for prebuilt binaries, RNE_MDD.lib, VBridge functionality, and some paths in the

Sources files

© 2011 Microsoft. All rights reserved.

Contents

Introduction .. 4

Differences Between CE 5.0 and CE 6.0 ... 4

Differences Between CE 6.0 and Compact 7 ... 5

Migrating from CE 5.0 to CE 6.0 ... 5

Required Changes .. 5

Working with Restructured Directories.. 5

Separating the Kernel from OAL and KITL ... 6

Production-Quality OAL (PQOAL) ... 6

Oal.exe... 8

Kernel.dll .. 10

Kitl.dll ... 10

Additional Steps for CEPC .. 12

Replacing Deprecated Header Files ... 13

Replacing Deprecated String Functions ... 13

Choosing Kernel Mode or User Mode .. 13

Kernel Mode ... 13

User Mode.. 14

Replacing MapCallerPtr and OEMEthGetSecs ... 14

MapCallerPtr .. 14

OEMEthGetSecs .. 14

Design-Dependent Changes .. 14

Updating the bProfileTimerRunning Variable ... 15

Cleanup ... 15

Removing Page Pool Flags .. 15

Removing Deprecated Functions .. 16

Removing Deprecated IOCTLs ... 16

IOCTL_HAL_GETREGSECUREKEYS .. 16

DEVFLAGS_TRUSTEDCALLERONLY ... 16

Migrating from CE 6.0 to Compact 7 ... 16

Required Changes .. 17

Updating Sources Paths .. 17

Copying Prebuild Binaries ... 17

Working with the Relocation of RNE_MDD.lib ... 17

Working with the Relocation of Vbridge ... 17

Changing GUID Initialization ... 18

Removing PFN_EDBG_XXXX .. 18

© 2011 Microsoft. All rights reserved.

Design-Dependent Changes ... 18

Removing PCMCIA/PC Card ... 18

Updating the ATAPI Driver Legacy Registry Setting ... 18

Adding ATAPI Driver Registry Settings for IRQ Sharing ... 19

Modifying OEMAddressTable and KITL Drivers .. 20

Updating HalAllocateCommonBuffer .. 20

Replacing Deprecated Drivers and Libraries .. 20

Removing ENABLE_OAL_ILTIMING .. 21

Adding ISR Header File ... 21

Linking to Battery Driver LIB and DEF Files .. 22

Removing Language DLLs ... 22

Enforcing the Location of System Hive File .. 22

Changing Linker Overrides .. 23

Changing Profiler Function Prototypes ... 23

Cleanup .. 23

Replacing Deprecated Flags and Macros ... 23

NOMIPS16CODE ... 23

Dim (Dimension) Macros .. 24

Updating Multimedia .. 24

Display: Video Memory ... 24

Camera .. 24

Conclusion ... 25

Additional Resources ... 25

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

4

Introduction

The goal of this porting guide is to aid board support package (BSP) developers who are porting a

Windows CE 5.0 or Windows Embedded CE 6.0 BSP to Windows Embedded Compact 7. If you want to

port a BSP Windows CE 5.0 to Windows Embedded Compact 7, you must first port your BSP from

Windows CE 5.0 to Windows Embedded CE 6.0 and then port from Windows Embedded CE 6.0 to

Windows Embedded Compact 7. Porting from Windows CE 5.0 to CE 6.0 represents about 90 percent

of the overall effort needed, because it is during this process that you must break the kernel into

separate libraries and evaluate the drivers as candidates for kernel mode or user mode. The specific

steps to port BSPs are listed below together with information about other porting issues.

This document is divided into two sections: porting a BSP from Windows CE 5.0 to Windows

Embedded CE 6.0 and porting a BSP from Windows Embedded CE 6.0 to Windows Embedded

Compact 7. Windows Embedded CE 6.0 was released in 2006, so additional resources now exist on

porting a BSP to Windows Embedded CE 6.0. MSDN, for example, is a good source for supplemental

information.

The time required to port a BSP varies depending on which kernel the BSP is being ported from. You

may be able to port from Windows Embedded CE 6.0 to Windows Embedded Compact 7 in just hours.

However, a full port will most likely take weeks—possibly even months—depending on the complexity

of your drivers and OEM adaptation layer (OAL). In general, though, you can port a BSP to a CEBASE

configuration in a few days.

Differences Between CE 5.0 and CE 6.0
Changes introduced in the Windows Embedded CE 6.0 kernel are the source of the greatest amount of

effort in porting to Windows Embedded CE 6.0. For the Windows Embedded CE 6.0 kernel, the kernel-

independent transport layer (KITL) was redesigned into a separate, optional DLL, and drivers are

separated into user mode and kernel mode. The result is that the kernel mode provides better

performance but at the cost of stability. A failure in a kernel-mode driver can bring down the kernel also.

A user-mode driver offers isolation from the kernel at the cost of performance.

MSDN has additional information on OAL and kernel separation, user-mode drivers, and kernel-mode

drivers.

Microsoft Showcase: Porting a BSP to Windows Embedded CE 6.0

(http://go.microsoft.com/fwlink/?LinkId=153790&clcid=0x409)

Microsoft Showcase: Porting Drivers to Windows Embedded CE 6.0

(http://go.microsoft.com/fwlink/?LinkId=157392&clcid=0x409)

Windows CE Base Team Blog - CE6 OAL: What You Need to Know

(http://go.microsoft.com/fwlink/?LinkId=153791&clcid=0x409)

Windows CE Base Team Blog - CE6 Drivers: What You Need to Know

(http://go.microsoft.com/fwlink/?LinkId=153792&clcid=0x409)

http://go.microsoft.com/fwlink/?LinkId=153790&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=157392&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=153791&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=153792&clcid=0x409

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

5

Windows CE Base Team Blog - The CE6 OS Differences in a Nutshell

(http://go.microsoft.com/fwlink/?LinkId=153793&clcid=0x409)

User Mode Driver Framework (http://go.microsoft.com/fwlink/?LinkId=153794&clcid=0x409)

Differences Between CE 6.0 and Compact 7
From a BSP point of view, there are few changes between Windows Embedded CE 6.0 and Windows

Embedded Compact 7. The changes consist primarily of the relocation of binaries during build and

some altered code.

Migrating from CE 5.0 to CE 6.0

The steps to port your BSP from Windows CE 5.0 to Windows Embedded CE 6.0 are presented in

three sections. The first section, Required Changes, contains updates that you must make to

successfully port your BSP. The second section, Design-Dependent Changes, covers changes that you

may need to address depending on the BSP that you are porting. The final section, Cleanup, covers the

cleanup of deprecated flags, functions, and so on.

The time required to port from the Windows CE 5.0 kernel to the Windows Embedded CE 6.0 kernel

varies depending on the complexity of the drivers and the code. Simple drivers, like GPIO and NLED,

port very quickly. However, more complex display drivers can take much longer.

Required Changes
You must make the following changes to your BSP before it will run on Windows Embedded CE 6.0.

These changes include directory restructuring, separation of the kernel from OAL and KITL, deprecated

header files and functions, dividing drivers into kernel mode and user mode, changes to the function

MapCallerPtr, and replacement of the function OEMEthGetSecs.

Important

Always back up data before making changes to code.

Working with Restructured Directories

Windows Embedded CE 6.0 removed the folder Public\Common\Oak\Csp and relocated its contents.

The new location provides a central location for system-on-chip (SOC) components to help OEMs and

silicon vendors (SV) develop and ship them more easily. The following table shows just two of the many

folders that have been moved and renamed:

http://go.microsoft.com/fwlink/?LinkId=153793&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=153794&clcid=0x409

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

6

Table 1: Examples of Relocated CSP and SOC Code

Windows CE 5.0 Windows Embedded CE 6.0

Public\Common\Oak\Csp\ Platform\Common\Src\SOC\

Platform\Common\Src\ARM\Intel\pxa27x\ Platform\Common\Src\SOC\pxa27x_ms _v1\

If your BSP makes use of any files in Public\Common\Oak\Csp, you must modify your code to look in

the new location. For more information about the new SOC directory, see BSP and SOC Directory

Layout (http://go.microsoft.com/fwlink/?LinkId=166647).

Separating the Kernel from OAL and KITL

In Windows CE 5.0, kern.exe incorporated both the Microsoft-supplied kernel and the OEM-supplied

OAL. Windows Embedded CE 6.0 separated these two libraries into OAL.exe and kern.dll to make

future ports easier, to encourage production-quality OAL (PQOAL) development, and to reduce

dependencies among the OAL, the kernel, and the KITL.

In Windows CE 5.0, the kernel was a single binary, but three versions existed for different build types:

kern.exe (OAL and kernel), kernkitl.exe (OAL, kernel, and KITL), and kernkitlprof.exe (OAL, kernel,

KITL, and profiler). In Windows Embedded CE 6.0, there are three separate binaries: oal.exe, kernel.dll,

and the optional kitl.dll. If you are doing production-quality OAL development, we highly recommend

separating the OAL and the KITL.

In Windows Embedded CE 6.0, the kernel is built as a DLL, and the oal.exe file contains the startup

process. For information about the startup process, see Windows Embedded Base Team Blog - How

Does Windows Embedded CE 6.0 Start? (http://go.microsoft.com/fwlink/?LinkId=153796&clcid=0x409)

The following sections contain procedures for porting your BSP from Windows CE 5.0 to Windows

Embedded CE 6.0. They must be followed in the order listed here.

Production-Quality OAL (PQOAL)

Before you start porting your BSP, decide whether to transition the structure of your code to

production–quality OAL (PQOAL). Transitioning your code takes a few additional hours to complete but

is worth the investment for code that you intend to reuse in other designs. For more information, see

Production-Quality OAL (http://go.microsoft.com/fwlink/?LinkId=203925&clcid=0x409).

To prepare your BSP for migration

1. Make a copy of the platform that you are porting by making a new folder, such as

%_WINCEROOT%\Platform\<Hardware Platform Name>-Original. Copy the platform into the

new folder and then delete the files in the \<Hardware Platform Name>\lib and \<Hardware

Platform Name>\target folders.

2. Run the blddemo -q command. The build will fail because you have not finished porting the

http://go.microsoft.com/fwlink/?LinkId=166647
http://go.microsoft.com/fwlink/?LinkId=166647
http://go.microsoft.com/fwlink/?LinkId=153796&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=153796&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=203925&clcid=0x409

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

7

BSP, but the command will create libraries that you need, like NKldr.lib and OemMain.lib.

3. Create the following new folders under %_WINCEROOT%\Platform\<Hardware Platform

Name>:

Src\Kitl

Src\Oal

Src\Oal\OalLib

Src\Oal\OalExe

4. Edit the Dirs file in %_WINCEROOT%\Platform\<Hardware Platform Name>\Src to include the

following lines:

DIRS= \

 Kitl \

 Oal

5. Edit the Src\dirs file to remove the kernel from the list.

6. Create a Dirs file in %_WINCEROOT%\Platform\<Hardware Platform Name>\Oal containing

the following lines:

DIRS= \

 OalLib \

 OalExe \

7. Move all your BSP code and build files from Src\Kernel to the Src\Oal folder by using the

following steps:

move src\kernel\oal -> src\oal\oallib

move src\kernel\kern -> src\oal\oalexe [*]

move src\kernel\kernkitl -> src\kitl [*]

Note

In Windows Embedded CE 6.0, you do not need to build a profiling versus non-profiling

version of the OAL. If your OAL supports profiling, always include it in the final or

shipping image. The kernel detects and uses OAL profiling if it is available. For more

information, see ―Implementing Profiling Support in the OAL‖ in the Windows

Embedded CE 6.0 Help documentation.

8. Delete the following folders:

Src\Kernel

Src\Kernel\Oal\

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

8

Src\Kernel\Kern

Src\Kernel\KernKitl

Src\Kernel\KernKitlProf

Oal.exe

The oal.exe file is the entry point into the kernel and uses the OEMGLOBAL structure to define

functions and variables that the kernel needs. The oemmain.lib library implements the function

OEMInitGlobals to populate this structure and to register the similar kernel structure, NKGLOBAL.

The oal.exe file links to the following libraries:

nkldr.lib (home of KernelStart)

nkstub.lib

oemmain.lib (if KITL is separately linked)

oemmain_statickitl.lib (if KITL is statically linked)

To remove KITL from the OAL

1. Remove any KITL stubs from the Src\Oal\OalExe folder.

2. Move any KITL-related files from the Src\Oal\OalLib folder to the Src\Kitl folder.

3. Remove KITL-related file names and libraries from the Src\Oal\OalLib Sources file.

4. Remove the following IOCTLs from your OAL IOCTL table (Oal_IOCTL_Tab.h):

IOCTL_VBRIDGE_ADD_MAC

IOCTL_VBRIDGE_CURRENT_PACKET_FILTER

IOCTL_VBRIDGE_GET_ETHERNET_MAC

IOCTL_VBRIDGE_GET_RX_PACKET

IOCTL_VBRIDGE_GET_RX_PACKET_COMPLETE

IOCTL_VBRIDGE_GET_TX_PACKET

IOCTL_VBRIDGE_GET_TX_PACKET_COMPLETE

IOCTL_VBRIDGE_SHARED_ETHERNET

IOCTL_VBRIDGE_WILD_CARD

IOCTL_VBRIDGE_WILD_CARD_RESET_BUFFER

IOCTL_VBRIDGE_WILD_CARD_VB_INITIALIZED

These IOCTLs are now handled by Kitl.dll (KitlIoCtl).

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

9

To create and build Oal.exe

1. Start by building oal.lib by running build –c in Oal\OalLib.

2. Modify the Sources file in the Oal\OalExe folder.

To do this, do the following tasks:

a. Change TARGETNAME from kern to oal.

b. Remove any KITL stub source file references.

c. Add the following TARGETLIBS:

$(_SYSGENOAKROOT)\lib\$(_CPUDEPPATH)\NkLdr.lib

$(_SYSGENOAKROOT)\lib\$(_CPUDEPPATH)\OEMMain.lib

d. Replace Nk.lib with NkStub.lib.

e. Remove TARGETLIB entries for anything besides NKStub with NK in the name.

f. If you are dynamically linking the KITL with the library, add

$(_SYSGENOAKROOT)\lib\$(_CPUDEPPATH)\oemmain.lib \.

g. If you are statically linking the KITL with the library, add

$(_SYSGENOAKROOT)\lib\$(_CPUDEPPATH)\oemmain_statickitl.lib.

3. Replace the call to OalKitlStart in OEMInit with the following function call:

KITLIoctl(IOCTL_KITL_STARTUP, NULL, 0, NULL, 0, NULL);

4. Replace all calls to EdbgOutputDebugString with KITLOutputDebugString.

5. Rename SC_GetTickCount to OEMGetTickCount.

6. In Src\Oal\Oalexe, run build –c and note the errors. Fix the errors using the information in the

section ―To resolve errors‖.

7. Run the build command again and verify that Oal.exe builds without any errors.

When you first build your BSP, you will inevitably encounter linking errors not covered by this guide.

To resolve linking errors

When you encounter a library linking error, search for the library in Public\Common\Oak or

Platform\Common\Src.

If you run into unresolved functions, search the same locations for their implementations and

include the missing libraries. If there is a function that you cannot find, look for an equivalent

function in the NKGLOBAL and OEMGLOBAL structures.

If you have unresolved external symbols, you may need to copy the declarations from the

existing location. For example, you may need to declare some global variables in both your

OAL and KITL code.

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

10

Kernel.dll

Similar to oal.exe, the kernel implements its own global structure, NKGLOBAL, which is populated with

functions and variables that the OAL needs.

Kernel.dll, which is provided by the OS, links to oemstub.lib.

In Windows Embedded CE 6.0, the profiler is no longer in the kernel. You can use the standard profiler

if the OAL exports a high-resolution timer. However, if you plan to port your BSP to Windows

Embedded Compact 7, you may want to skip this step: in Windows Embedded Compact 7, the kernel

defaults to using a 1-millisecond timer if no other is provided.

If you are only porting to Windows Embedded CE 6.0, you can find an example of a 1-millisecond

version on MSDN at Windows CE Base Team Blog - Poor Man's Monte Carlo

(http://go.microsoft.com/fwlink/?LinkId=153797&clcid=0x409). To export the timer, you must implement

functions of type PFN_QueryPerfCounter and PFN_QueryPerfFreq. For an example implementation,

see %_WINCEROOT%\Platform\BSPTemplate\Src\Oal\Oallib\timer.c.

Kitl.dll

Windows Embedded CE 6.0 uses the Kernel Independent Transport Layer (KITL) transport for

communication between the development computer and the target device over any hardware for which

the OEM supplies an appropriate transport.

The KITL Ethernet transport on the device reuses much of the Ethernet debug (EDBG) code. To map to

the new KITL names, the header file %_WINCEROOT%\Public\Common\Oak\Inc\Halether.h has been

included. It maps the KITL functions to the EDBG functions.

Kitl.dll links with the following libraries:

kitlcore.lib (replacement for kitl.lib and location of KitlDllMain)

nkstub.lib (if the KITL uses NKGLOBAL functions)

oemstub.lib (if the KITL uses OEMGLOBAL functions)

Moving the KITL source code from the OAL into Kitl.dll is typically a fairly straightforward process.

Kitl.dll must export the following new functions:

OEMKitlStartup

This function is called from the kernel when KITLIoctl(IOCTL_KITL_STARTUP, NULL, 0, NULL, 0,

NULL) is invoked by the OAL.

This function is equivalent to the OALKitlStart function, but it has been renamed to follow the

convention for public OEM functions. The Windows Embedded CE 6.0 kernel requires that you use

the new function name OEMKitlStartup.

OEMKitlIoctl

This function handles all KITL-related IOCTLs when KITL is removed from the OAL. In most cases,

you can use the common version of this function, which is implemented in Oal_Kitl.lib.

http://go.microsoft.com/fwlink/?LinkId=153797&clcid=0x409

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

11

OEMKitlInit

This function is called by the KitlInit function to initialize the KITL device and the KITLTRANSPORT

structure.

To create and build Kitl.dll

1. Copy the makefile from the Src\Oal\OalLib folder to the Src\Kitl folder.

2. Create the Sources file based on the KernKitl Sources file that you copied earlier.

To do this, use the following commands:

TARGETNAME=KITL

TARGETTYPE=DYNLINK

DLLENTRY=KitlDllMain

DEFFILE=

Delete entries for EXEENTRY and EXEBASE.

Delete nk.lib and oal_log.lib, if present.

Except for oal_kitl.lib (or oal_kitl_x86.lib on x86-based platforms), delete all OAL libraries.

Rename kitl.lib to kitlcore.lib.

Then, add the following TARGETLIBS: KitlCore.lib, OEMStub.lib, and NkStub.lib.

$(_SYSGENOAKROOT)\lib\$(_CPUDEPPATH)\nkstub.lib \.

$(_SYSGENOAKROOT)\lib\$(_CPUDEPPATH)\oemstub.lib \.

$(_PLATCOMMONLIB)\$(_CPUDEPPATH)\kitl_log.lib \.

These libraries are in addition to any other libraries required by your KITL implementation.

If you are porting to Compact 7, delete vbridge.lib.

If you are porting from Windows CE 5.0 to Windows Embedded CE 6.0 and not continuing

to Compact 7, add:

$(_SYSGENOAKLIB)\$(_CPUDEPPATH)\vbridge.lib \.

Except for ddk_io.lib and vbridge.lib, delete all.lib files that don’t have KITL in their name.

3. Rename OALKitlStart to OEMKitlStartup.

4. Initialize two KITL function pointers in OEMKitlInit.

To do this, use the following code example:

pKitl->pfnPowerOn = OALKitlPowerOn;

pKitl->pfnPowerOff = OALKitlPowerOff;

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

12

This step is required only if your OAL is implementing these functions.

5. In the Kitl directory, run build –c and troubleshoot errors following the same procedure as

you did when building Oal.exe.

Additional Steps for CEPC

A few additional steps are required to separate the kernel, OAL, and KITL for a Windows Embedded

Compact PC-based platform (CEPC). The files oal_cache_x86.lib and oal_kitl_x86.lib are specific to

x86-based hardware platforms. The file globals.c is specific to CEPC.

To divide the CEPC kernel into three pieces

1. Follow the preceding steps to prepare your BSP for migration and to remove KITL from the

OAL.

2. In addition to the preceding steps to create and build Oal.exe, edit the \Oal\Oalexe\Sources file

as follows:

a. Add the following line:

$(_PLATFORMCOMMON)\lib\$(_CPUDEPPATH)\oal_cache_x86.lib \.

b. Remove oal_cache.lib from the Sources file.

3. In addition to the preceding steps to create and build Kitl.dll:

a. Edit \Kitl\Sources to add globals.c to Sourceslist.

b. Copy \Oal\Oallib\globals.c to \Kitl\.

c. Edit globals.c as follows:

Remove all #include statements except the following:

#include <windows.h>.

#include <x86kitl.h>.

If these #include statements do not exist in globals.c, add them.

Delete all global variable declarations except g_oalIoCtlPlatformType and

g_ucDlftKitlAdaptorType.

d. Do not rename the OALKitlStart function to OEMKitlStartup.

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

13

Replacing Deprecated Header Files

The functionality that was in oal_nkxp.h and oal_profiler.h is now in two other header files, nkexport.h

and bcoemglobal.h. If your build fails due to the inclusion of either of these files, do the following:

To replace the deprecated header files

1. Delete the include statements for oal_nkxp.h and oal_profiler.h.

2. Include %_WINCEROOT%\Platform\Common\Src\Common\oal.h, which includes nkexport.h.

Nkexport.h contains the functionality that we are concerned with here.

3. Try to build your project.

4. If your build still fails, look for the missing functions in

%_WINCEROOT%\Public\Common\Oak\Inc\bcoemglobal.h and include this header file if

needed.

Replacing Deprecated String Functions

In Windows Embedded CE 6.0, a number of string function prototypes were deprecated. If your build

breaks on one of these missing functions, search strmisc.h or other public headers for a suitable

replacement function.

Choosing Kernel Mode or User Mode

Kernel-mode drivers are loaded by device.dll inside the kernel and have full access to kernel APIs

without having to go through the user-mode driver reflector. Kernel-mode drivers are faster than user-

mode drivers because they do not have to switch user processes, so they are well suited to read or

write to hardware registers. However, instability in the driver, such as incorrect or invalid memory use,

can cause the kernel to stop functioning.

User-mode drivers are loaded via udevice.exe. They improve system stability by isolating driver failures

to udevice.exe. The trade-off is performance. For user-mode drivers, the VirtualCopy function only

works for physical addresses that you declare in the registry. You must use the user-mode driver

reflector to forward I/O requests from the device manager. For more information on the reflector and

how it works, see User Mode Driver Reflector.

(http://go.microsoft.com/fwlink/?LinkId=153880&clcid=0x409)For information on porting a driver to

Windows Embedded CE 6.0, see the video Microsoft Showcase: Porting Drivers to Windows

Embedded CE 6.0 (http://go.microsoft.com/fwlink/?LinkId=157392&clcid=0x409).

Kernel Mode

To make your driver run in kernel mode, in the FLAGS registry key for the driver, clear the flag

DEVFLAGS_LOAD_AS_USERPROC (0x10) and then add the K flag to the binary image builder (.bib) file

entry, as shown in the following example:

http://go.microsoft.com/fwlink/?LinkId=153880&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=157392&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=157392&clcid=0x409

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

14

gpio.dll $(_FLATRELEASEDIR)\gpio.dll NK SHK

User Mode

To make your driver run in user mode, in the FLAGS registry key for the driver, set the flag

DEVFLAGS_LOAD_AS_USERPROC (0x10) and delete the K flag from the .bib file entry, as shown in the

following example:

decodeCombo.dll $(_FLATRELEASEDIR)\decodeCombo.dll NK SH

Replacing MapCallerPtr and OEMEthGetSecs

MapCallerPtr

Prior to Windows Embedded CE 6.0, you used the function MapCallerPtr for pointers embedded in

data structures that were passed into drivers. For pointers passed as function arguments, it was not

necessary to use MapCallerPtr, because Device Manager took care of mapping pointers passed in as

parameters.

In Windows Embedded CE 6.0 and Windows Embedded Compact 7, you must marshal an embedded

pointer with the CeOpenCallerBuffer and CeCloseCallerBuffer functions. As in prior releases, Device

Manager marshals pointers that are passed in as parameters, so you need to marshal only embedded

pointers. The CeAllocAsynchronousBuffer function is for drivers that need asynchronous access to

the data, for example, in situations where the driver needs to retry sending data while not blocking the

caller indefinitely. For more information about marshaling embedded pointers, see Marshalling for

Windows Embedded CE 6.0 Driver Migration

(http://go.microsoft.com/fwlink/?LinkId=153882&clcid=0x409).

OEMEthGetSecs

In Windows Embedded CE 6.0 and Windows Embedded Compact 7, the platform-specific function

OEMEthGetSecs has been replaced with the KITL implementation of OEMKITLGetSecs. If your BSP

relies on the header file e_to_k.h to map the two functions, then you must include halether.h in your

header file. If your BSP implements its own OEMEthGetSecs, then you do not need to make any

changes.

Design-Dependent Changes

If your BSP contains support for the bProfileTimerRunning variable, then you must make the following

changes to your BSP before it can run on Windows Embedded CE 6.0.

http://go.microsoft.com/fwlink/?LinkId=153882&clcid=0x409
http://go.microsoft.com/fwlink/?LinkId=153882&clcid=0x409

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

15

Updating the bProfileTimerRunning Variable

Windows Embedded CE 6.0 and Windows Embedded Compact 7 do not contain the

bProfileTimerRunning variable. If your BSP uses the bProfileTimerRunning variable, you must

declare bProfileTimerRunning as a global variable in the OAL. Set this variable in the

OEMProfileTimerEnable and OEMProfileTimerDisable functions to an appropriate value, as shown

in the following example:

BOOL bProfileTimerRunning = FALSE

OEMProfileTimerEnable ()

{

 // The rest of the code for this function.

 bProfileTimerRunning = TRUE;

}

OEMProfileTimerDisable ()

{

 bProfileTimerRunning = FALSE;

 // The rest of the code for this function.

}

Cleanup

You may need to make the following changes to your BSP before it can run on Windows Embedded CE

6.0. These cleanup changes include the removal of page pool flags and deprecation of several

functions and some IOCTLs.

Removing Page Pool Flags

In Windows Embedded CE 6.0 and Windows Embedded Compact 7, you specify the page pool by

adding and customizing the following fix-up variables within the config.bib file for the platform:

kernel.dll:LoaderPoolTarget 00000000 00300000 FIXUPVAR

kernel.dll:LoaderPoolMaximum 00000000 00800000 FIXUPVAR

kernel.dll:FilePoolTarget 00000000 00100000 FIXUPVAR

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

16

kernel.dll:FilePoolMaximum 00000000 00A00000 FIXUPVAR

Next, remove all references to IMGPAGINGPOOL and PAGINGPOOLSIZE from your BSP.

Removing Deprecated Functions

The following functions are deprecated because of the new memory model in Windows Embedded CE

6.0. You must remove these functions from your code base. Stub functions are present, so existing

code can continue to call these functions without generating compiler or linker errors.

CeZeroPointer

GetCurrentPermissions

MapPtrToProcess Replaced with CeOpenCallerBuffer and CeCloseCallerBuffer.

MapCallerPtr Replaced with CeOpenCallerBuffer, CeCloseCallerBuffer,

CeAllocAsynchronousBuffer, and CeFreeAsynchronousBuffer.

SetKMode

SetProcPermissions

UnMapPtr

For more information, see Unsupported Kernel APIs

(http://go.microsoft.com/fwlink/?LinkId=153885&clcid=0x409).

Removing Deprecated IOCTLs

The IOCTL_HAL_GETREGSECUREKEYS and DEVFLAGS_TRUSTEDCALLERONLY have been

deprecated due to changes in Windows Embedded CE 6.0.

IOCTL_HAL_GETREGSECUREKEYS

The Windows Embedded CE 6.0 security model eliminates the need for this IOCTL. You can remove it

from your code.

DEVFLAGS_TRUSTEDCALLERONLY

The Windows Embedded CE 6.0 security model eliminates the need for this IOCTL. The Device

Manager no longer checks the DEVFLAGS_TRUSTEDCALLERONLY flag to restrict access to the

drivers that use this flag.

Migrating from CE 6.0 to Compact 7

Now that you have enhanced the BSP to support the Windows Embedded CE 6.0 kernel, 90 percent of

the porting is complete. The final portion does not require source code changes.

http://go.microsoft.com/fwlink/?LinkId=153885&clcid=0x409

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

17

Required Changes
You must make the following changes to your BSP for it to run on Windows Embedded Compact 7.

These changes include updates to some paths in the Sources files, moving prebuilt binaries, updating

the path of RNE_MDD, removing Vbridge.lib, a change in GUID initialization, removal of the

PFN_EDBG_XXXX typedefs, and updating function prototypes.

Important

Always back up data before making changes to code.

Updating Sources Paths

You must update several paths in the Sources files to ensure that Windows Embedded CE 6.0 build

scripts continue to work in Windows Embedded Compact 7. For change instructions, refer to ―Updating

Paths in Sources Files‖ in the article titled Build Porting Guide for Windows Embedded Compact 7

(http://go.microsoft.com/fwlink/?LinkId=205658).

Copying Prebuild Binaries

If your build includes prebuilt binary files from BSP vendors, you must copy these files to the

appropriate directories to ensure that builds from Windows Embedded CE 6.0 continue to work in

Windows Embedded Compact 7. For instructions, refer to ―Copying Prebuilt Libraries‖ in the article titled

Build Porting Guide for Windows Embedded Compact 7

(http://go.microsoft.com/fwlink/?LinkId=205658).

Working with the Relocation of RNE_MDD.lib

In Windows Embedded CE 6.0, RNE_MDD.lib was moved from

Public\Common\Oak\Drivers\Ethdbg\Rne_mdd to Platform\Common\Src\Common\Ethdrv\Rne_mdd.

The result of this change is that the output binary is written to the environment path of

_PLATCOMMONLIB instead of _SYSGENOAKLIB. To update the path, edit all files that include

rne_mdd.lib and change the system variable _SYSGENOAKLIB to _PLATCOMMONLIB as follows:

$(_PLATCOMMONLIB)\$(_CPUDEPPATH)\rne_mdd.lib

Working with the Relocation of Vbridge

For Windows Embedded Compact 7, Vbridge functionality is in oal_kitl.lib instead of in a stand-alone

library. Include oal_kitl.lib or oal_kitl_pci.lib in the TARGETLIBS list when building KITL. Remove

Vbridge.lib from the TARGETLIBS list.

The new location for this functionality is

%_WINCEROOT%\Platform\Common\Src\Common\Kitl\Vbridge.

http://go.microsoft.com/fwlink/?LinkId=205658
http://go.microsoft.com/fwlink/?LinkId=205658

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

18

Changing GUID Initialization

In Windows Embedded CE 6.0, the DEFINE_GUID macro creates either a GUID declaration or a GUID

definition depending on the placement of the macro relative to the inclusion of initguid.h. In Windows

Embedded Compact 7, the DEFINE_GUID macro always defines a GUID. Therefore, code carried

forward from previous versions and compiled in Windows Embedded Compact 7 may contain multiple

conflicting GUID definitions. To fix this problem, delete redundant definitions or move them inside

include guards so GUIDs are defined only once.

Removing PFN_EDBG_XXXX

The following function typedefs have been removed from the code base in Windows Embedded

Compact 7. If you encounter build breaks, remove these from your BSP.

PFN_EDBG_GET_PENDING_INTS pfnEDbgGetPendingInts;

PFN_EDBG_READ_EEPROM pfnEDbgReadEEPROM;

PFN_EDBG_WRITE_EEPROM pfnEDbgWriteEEPROM;

Design-Dependent Changes
If your BSP includes the features in this section, then you must make the following changes to your

BSP for it to run on Windows Embedded Compact 7. These changes include modifying the kernel

independent transport layer (KITL) driver or the OEMAddressTable, removing deprecated drivers and

libraries and the ENABLE_OAL_ILTIMING variable, including header files for installable interrupt

service routines (IISR), changing the name of the battery driver library model device driver (MDD),

removing language DLLs, moving the SystemHive registry value and the associated system hive file to

a specified path, a change to linker overrides, and changes to the profiler function prototypes.

Removing PCMCIA/PC Card

PCMCIA, also known as PC Card, is no longer supported in Windows Embedded Compact 7. Although

previous versions of Windows Embedded Compact supported this bus type, Windows Embedded

Compact 7 supports alternative and more current buses like USB, which support the same set of

peripherals. The source code for these features has been removed from the OS. As a result, you may

experience some build difficulty if you are porting a platform that had previously supported these buses.

Removing references to the removed components should remedy this build difficulty.

Updating the ATAPI Driver Legacy Registry Setting

The ATAPI driver in Windows Embedded Compact 7 replaces the registry subkey

HKLM\Drivers\BuiltIn\PCI\Template\<Controller Key Name>\Legacy with the subkey

LegacyIRQ. You must replace any occurrence of Legacy in the registry with LegacyIRQ.

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

19

If LegacyIRQ is equal to IRQ (IRQ 14 for CEPC), the value of the secondary channel IRQ will be the

Primary IRQ plus 1 (IRQ 15 for PC). If LegacyIRQ is absent or equal to -1 (0xffffffff), the driver will

assume it is not using the legacy IRQ and both channels will use the same IRQ (IRQ sharing).

Adding ATAPI Driver Registry Settings for IRQ Sharing

The ATAPI driver in Windows Embedded Compact 7 uses the exported functions NativeConfig,

CreateNativePCIHD, and CreateNativePCIHDCD to support ATAPI controllers with IRQ sharing (such

as SATA). To support IRQ sharing, the Platform.reg file in %_WINCEROOT%\Platform\<your

platform>\files must contain the following settings:

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\PCI\Template\GenericIDE]

 "ConfigEntry"="NativeConfig" ; PCI configuration entry point

 "IsrDll"="giisr.dll" ; bus-agnostic; installable ISR

 "IsrHandler"="ISRHandler" ; bus-agnostic; installable ISR

 "SpawnFunction"="CreateNativePCIHDCD" or "CreateNativePCIHD" ; depends on HD

only or HD + CD/DVD

 "LegacyIRQ"=dword:ffffffff ; explicitly sets native mode; not necessary for

most cases

In most situations, you do not need to set the LegacyIRQ value to support IRQ sharing. The registry

contains the default setting of legacy mode, in either the

%_WINCEROOT%\Public\Common\Oak\Drivers\Block\ATAPI*.reg files or the Platform.reg file. The

ATAPI driver automatically detects the controller mode from the ProgIf value set by PCIbus.dll, and

overwrites the default registry value to native mode if needed. The default setting must be legacy mode

because the ATAPI driver can overwrite the LegacyIRQ value to support native mode, but it cannot

change the value from native to legacy mode.

If the ProgIf value does not report the controller mode (using the bit definitions described in the

NativeConfig function definition in

%_WINCEROOT%\Public\Common\Oak\Drivers\Block\atapi\pcicfg.cpp), you must set the LegacyIRQ

value explicitly, as follows:

To support native mode, set the LegacyIRQ value as in the preceding example.

To support legacy mode, set the LegacyIRQ value as follows:

 "LegacyIRQ"=dword:e ; explicitly sets legacy mode

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

20

Modifying OEMAddressTable and KITL Drivers

The Windows Embedded Compact 7 kernel supports a new option for the OEMAddressTable that

disables the uncached static mapping (from 0xA0000000 to 0xBFFFFFFF) and makes available more

kernel virtual memory space. You can enable this address table option for any ARM-based or x86-

based platform; the Windows Embedded Compact PC-based platform (CEPC) uses the new

OEMAddressTable model by default. For any platforms that use a KITL driver that predates Windows

Embedded Compact 7, there are two possible solutions:

1. (For any ARM-based or x86-based platform) Modify your KITL driver so it uses the direct memory

access (DMA) buffer passed from KITL, assuming it is already uncached; in other words, without

doing a cached-address to uncached-address conversion. The KITL driver must use the

OALVAtoPA function to obtain the physical address of the DMA buffer. It must not assume static

mapping of the kernel virtual memory, for either cached or uncached memory. We recommend this

solution because any KITL driver modified in this way will work in Compact 7, whether or not your

platform uses the new OEMAddressTable option.

2. (For CEPC only) Disable the new OEMAddressTable option by modifying the

%_WINCEROOT%\Platform\Cepc\Src\Oal\Oalexe\Sources file so that it links to oal_startup_x86.lib

instead of oal_startup_x86_newtable.lib. This solution is a workaround; if your platform is modified

later to use the new OEMAddressTable option, you must implement the first solution.

If your KITL driver does not assume the existence of uncached static mapping, and it always uses

OALxxxToyyy functions for address translation, your driver will work with either OEMAddressTable

option. It works because the OALCAtoUA and OALPAtoUA functions in Windows Embedded Compact

7 return the same address passed from KITL to ensure backward compatibility.

Updating HalAllocateCommonBuffer

The HalAllocateCommonBuffer function now supports the CacheEnabled parameter, which was

ignored in Windows Embedded CE 6.0. To ensure that your BSP and drivers are compatible with

Windows Embedded Compact 7, edit any calls to HalAllocateCommonBuffer so that CacheEnabled is

set to false.

Replacing Deprecated Drivers and Libraries

The following libraries were removed from the source tree. If you use any of these libraries in your

Sources files, you must update the Sources files to use new drivers.

Ethernet Drivers

3C90X

AM79C970 (replaced with AM79C973)

AM79C970 (replaced with AM79C973)

DP83815

NET2890

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

21

Bootloader Libraries

Edbgfrmt

Rndsmini

The following libraries are now located only in Platform/Common/Src/Common/Ethdbg. If your Sources

files include any of these libraries, you must update the files so that the linker can find the libraries, as

shown in the following example:

$(_PLATCOMMONLIB)\$(_CPUDEPPATH)\<name>.lib

Note

In Windows Embedded Compact 7, the library name for NE2000 is oal_ethdrv_ne2000.lib; in

previous versions it was ne2kdbg.lib.

Ethernet Drivers

AM79C973

CS8900A

DEC21140

RT8139

NE2000

Bootloader Libraries

blcommon

Eboot

Fallite

Kitleth

Removing ENABLE_OAL_ILTIMING

Instead of measuring interrupt latency by using the environment variable ENABLE_OAL_ILTIMING and

rebuilding the kernel, Windows Embedded CE 6.0 implements an OEM adaption layer (OAL) interrupt

latency IOCTL. Link the OAL to either OAL_ILT.lib and instrument your timer interrupt service routine

(ISR) or link to OAL_ilt_stub.lib.

Adding ISR Header File

Prior to Windows Embedded Compact 7, common Windows Embedded Compact device driver

development kit (CEDDK) header files have included giisr.h, which provided installable interrupt service

routines (IISR) functionality. In Windows Embedded Compact 7, if you need both CEDDK and IISR

functionality, you must include two header files: one for CEDDK functionality and one for IISR.

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

22

Linking to Battery Driver LIB and DEF Files

The battery driver library MDD has been updated and the name has been changed. If you link to

battdrvr_lib.lib in your Sources file, change the name to batterdrvr_mdd.lib, as shown in the following

example:

Windows Embedded CE 6.0

$(_SYSGENOAKROOT)\lib\$(_CPUINDPATH)\battdrvr_lib.lib \

Windows Embedded Compact 7

$(_SYSGENOAKROOT)\lib\$(_CPUINDPATH)\battdrvr_lib.lib \

The battdrvr.def file has been relocated from Platform\Common\Oak\Drivers\Battdrvr to

Platform\Common\Oak\Inc. You no longer need to use a relative path to link to it. Here is what the

change looks like:

Windows Embedded CE 6.0

DEFFILE=$(_PUBLICROOT)\common\oak\lib\$(_CPUINDPATH)\battdrvr.def

Windows Embedded Compact 7

DEFFILE=$(_SYSGENOAKROOT)\inc\battdrvr.def

Removing Language DLLs

The following language files have been removed from the Windows Embedded Compact 7 image.

KbdNopUs.dll

KbdNopJpn1.dll

KbdNopJpn2.dll

KbdNopKor.dll

They have been replaced by kbdNop.dll and kbdUs.dll. Both are common drivers, meaning that they

are located in %_WINCEROOT%\Public\Common\Oak\Drivers and are included by the Common.reg

and Common.bib files. Define SYSGEN_KBD_US=1 to build and include these language libraries.

Enforcing the Location of System Hive File

In prior versions of Windows Embedded Compact, the location of the system hive file has been left to

BSP architects. Starting with Windows Embedded Compact 7, the system hive file must be in the path

specified by Common.bib as shown in the following code example.

[HKEY_LOCAL_MACHINE\init\BootVars]

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

23

"SystemHive"="Windows\\Registry\\system.hv"

If you override the default location, you may encounter the following error when booting:

FSDMGR!ProcessRebootFlags: failed cleaning volume!

Changing Linker Overrides

In Windows Embedded CE 6.0 and previous versions, it was possible to override an object (.obj) file by

creating a second .obj file with the same filename. This technique was used in some places in the OS

source code for these versions. This technique does not work in Windows Embedded Compact 7,

because the build uses full file name paths. For information about overriding .obj files in the build, refer

to ―Changing Linker Overrides‖ in the article titled Build Porting Guide for Windows Embedded Compact

7 (http://go.microsoft.com/fwlink/?LinkId=205658).

Changing Profiler Function Prototypes

In previous versions of Windows Embedded Compact that used x86, SH, or MIPS processors,

OALProfileIntrHandler was defined as UINT32 OALProfileIntrHandler(VOID). Windows

Embedded Compact 7 defines this as UINT32 OALProfileIntrHandler(UINT32 ra).

This function does not have a prototype in any Microsoft code because only assembly code calls it.

Search your code base and ensure that it accepts ra (return address).

In your OALProfileIntrHandler function, call ProfilerHit(ra) instead of ProfilerHit(GetEPC).

Cleanup
You may need to make the following changes to your BSP for it to run on Windows Embedded

Compact 7. These maintenance and cleanup changes include removing the image flag

NOMIPS16CODE and the dimension macros.

Replacing Deprecated Flags and Macros

NOMIPS16CODE

The image flag NOMIPS16CODE from Windows Embedded CE 6.0 is replaced by the

NOIMPLICITIMPORT flag in Windows Embedded Compact 7. For information about this new flag, refer

to ―NOMIPS16CODE‖ in the article titled Build Porting Guide for Windows Embedded Compact 7

(http://go.microsoft.com/fwlink/?LinkId=205658).

http://go.microsoft.com/fwlink/?LinkId=205658
http://go.microsoft.com/fwlink/?LinkId=205658
http://go.microsoft.com/fwlink/?LinkId=205658

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

24

Dim (Dimension) Macros

The dim macro, #define dim(x) (sizeof(x)/sizeof(x[0])), has been deprecated. This code is still present

to prevent build breaks, but it now generates warnings. Replace the macro with _countof.

The following similar macros are also deprecated and should be replaced with _countof:

ARRAYSIZE

ARRAY_SIZE

ARRAYSIZEOF

ARRSIZE

SIZEOF_ARRAY

ARRAY_LENGTH

NUM_ELEMENTS

NELEMS

NUM

NUMBER_OF_ARRAY

TABLE_COUNT

COUNTOF

ItemCount

Dim

DIMOF

CCHSIZEOF

Updating Multimedia

If your BSP includes multimedia support, you must make the following changes. These changes include

access to the frame buffer and new locations for camera header files.

Display: Video Memory

In Windows Embedded CE 6.0 and previous versions, you could get a pointer to the frame buffer and

then update the display by writing directly to the frame buffer. However, hardware-accelerated graphics

systems do not guarantee the format or location of data stored in the frame buffer. Therefore, direct

pointers to the frame buffer are not supported in Windows Embedded Compact 7. Other than the

display driver, functions must not directly access the frame buffer. You must rewrite applications or

other drivers that directly access the frame buffer so that your applications use supported APIs.

Camera

The following camera header files have been renamed and moved in Windows Embedded Compact 7.

BSP Porting Guide for Windows Embedded Compact 7

© 2011 Microsoft. All rights reserved.

25

Table 3: Camera header file names

Windows Embedded CE 6.0 Names Compact 7 Names

Public\Common\Oak\Driver\Capture\

Camera\Layered\Inc\dgbSettings.h

Public\Common\Ddk\Inc\CameraDebug.h

Public\Common\Oak\Driver\Capture\

Camera\Layered\Inc\PinDriver.h

Public\Common\Ddk\Inc\CameraPinDriver.h

Scan through camera source files looking for these Windows Embedded CE 6.0 camera files and

replace the include names with the new Windows Embedded Compact 7 names.

Conclusion

You can port a BSP to Windows Embedded Compact in two stages: porting from Windows CE 5.0 to

Windows Embedded CE 6.0, and then from Windows Embedded CE 6.0 to Windows Embedded

Compact 7. The biggest changes occur when porting from Windows CE 5.0 to Windows Embedded CE

6.0: separating the kernel from OAL and KITL, and dividing the drivers into kernel mode and user

mode. You make fewer changes when porting from Windows Embedded CE 6.0 to Windows

Embedded Compact 7, and porting can be accomplished in hours. However, a full port of your BSP

from Windows CE 5.0 to Windows Embedded Compact 7 may take weeks or months, depending on the

complexity of your BSP. The focus of this document is to help you migrate a BSP as easily and

painlessly as possible.

Additional Resources

Windows Embedded website (http://go.microsoft.com/fwlink/?LinkId=183524)

http://go.microsoft.com/fwlink/?LinkId=183524

© 2011 Microsoft. All rights reserved.

This document is provided ―as-is.‖ Information and views expressed in this document, including URL

and other Internet Web site references, may change without notice. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft

product. You may copy and use this document for your internal, reference purposes.

© 2011 Microsoft. All rights reserved.

	BSP Porting Guide for Windows Embedded Compact 7
	Introduction
	Differences Between CE 5.0 and CE 6.0
	Differences Between CE 6.0 and Compact 7

	Migrating from CE 5.0 to CE 6.0
	Required Changes
	Working with Restructured Directories
	Separating the Kernel from OAL and KITL
	Production-Quality OAL (PQOAL)
	Oal.exe
	Kernel.dll
	Kitl.dll
	Additional Steps for CEPC

	Replacing Deprecated Header Files
	Replacing Deprecated String Functions
	Choosing Kernel Mode or User Mode
	Kernel Mode
	User Mode

	Replacing MapCallerPtr and OEMEthGetSecs
	MapCallerPtr
	OEMEthGetSecs

	Design-Dependent Changes
	Updating the bProfileTimerRunning Variable

	Cleanup
	Removing Page Pool Flags
	Removing Deprecated Functions
	Removing Deprecated IOCTLs
	IOCTL_HAL_GETREGSECUREKEYS
	DEVFLAGS_TRUSTEDCALLERONLY

	Migrating from CE 6.0 to Compact 7
	Required Changes
	Updating Sources Paths
	Copying Prebuild Binaries
	Working with the Relocation of RNE_MDD.lib
	Working with the Relocation of Vbridge
	Changing GUID Initialization
	Removing PFN_EDBG_XXXX

	Design-Dependent Changes
	Removing PCMCIA/PC Card
	Updating the ATAPI Driver Legacy Registry Setting
	Adding ATAPI Driver Registry Settings for IRQ Sharing
	Modifying OEMAddressTable and KITL Drivers
	Updating HalAllocateCommonBuffer
	Replacing Deprecated Drivers and Libraries
	Removing ENABLE_OAL_ILTIMING
	Adding ISR Header File
	Linking to Battery Driver LIB and DEF Files
	Removing Language DLLs
	Enforcing the Location of System Hive File
	Changing Linker Overrides
	Changing Profiler Function Prototypes

	Cleanup
	Replacing Deprecated Flags and Macros
	NOMIPS16CODE
	Dim (Dimension) Macros

	Updating Multimedia
	Display: Video Memory
	Camera

	Conclusion
	Additional Resources

