
259

Visual Studio .NET Wizards
Wizards, which are familiar to users of Microsoft Windows, provide a simple,
step-by-step way of making a complex task simple. In this chapter, we’ll discuss
how to create your own wizards to run within Microsoft Visual Studio .NET.

An Overview of Wizards
A programmer’s work can be repetitive. There’s plenty of new, innovative code
to write, but a lot of code is common to all projects. Rather than writing this
code over and over, you can use a wizard to generate the starter code and start
writing the core implementation of a project. A wizard can display a dialog box
to walk the user through a set of steps, asking questions, and it uses the
answers to make a complicated or often-repeated task easier to complete. Alter-
natively, a wizard can skip displaying a dialog box and simply generate code
without asking the user for any input. Windows is full of wizards, such as wiz-
ards that help connect to printers and networks and even ones to find help
when something goes wrong. Visual Studio .NET, on the other hand, uses wiz-
ards to generate code.

Types of Wizards
You can build and run three types of wizards in Visual Studio .NET. The type
that’s probably the most familiar to developers is the New Project wizard. A
New Project wizard, as its name suggests, generates the code for a project that
gives the user a starting point for a new program. New Project wizards are
invoked when the user selects an item in the right panel of the New Project dia-
log box, which is displayed by choosing File | New | Project.

C09618747.fm Page 259 Friday, January 10, 2003 3:44 PM

260 Part II Extending Visual Studio .NET

The second type of wizard is an Add New Item wizard. Once a project has
been created, a user often needs to add new files, such as classes, images, or
Web pages, to that project. An Add New Item wizard can be used to create these
new files. The common way to access this type of wizard is by right-clicking on
a project in the Solution Explorer window and choosing Add | Add New Item.
This displays the Add New Item dialog box, from which wizards can be run.

The third and least-often used wizard type is a Custom wizard. A Custom
wizard isn’t invoked directly by Visual Studio .NET; rather, it is explicitly called
by a macro, an add-in, or another wizard. A Custom wizard can’t be classified
as an Add New Item wizard or a New Project wizard, but it can walk the user
through a set of steps to accomplish some task. With a Custom wizard, you can
add wizard-like functionality anywhere within Visual Studio .NET and not be
limited only to creating new projects or adding new files to an existing project,
as you are with New Project or Add New Item wizards.

Whether you choose to create a New Project, Add New Item, or Custom
wizard, you implement it in the same basic way: you create a COM object that
implements the wizard, you create a .vsz file to let Visual Studio .NET know
about your wizard, and then you create the source code templates. We’ll discuss
each of these wizard types in this chapter as well as how to build them.

Creating the Wizard Object
Every wizard, whether it is a New Project wizard, an Add New Item wizard, or
a Custom wizard, is simply a COM object that implements the EnvDTE.IDTWiz-
ard interface. Execute, the only method of this interface, is called when Visual
Studio .NET loads the wizard. The signature for this interface is

public interface IDTWizard
{

public void Execute(object Application, int hwndOwner,
ref object[] ContextParams,
ref object[] CustomParams,
ref EnvDTE.wizardResult retval)

}

A number of arguments are supplied to the Execute method:

� Application The DTE object for the instance of Visual Studio .NET
in which the wizard is being run

� hwndOwner A handle to a window that the wizard can use as a
parent for any user interface elements that the wizard creates

C09618747.fm Page 260 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 261

� ContextParams An array of type object that describes the state
Visual Studio .NET is in when the wizard is run

� CustomParams An array of type object containing data defined
by the wizard writer and passed to the wizard object

The Execute method is where all the processing for a wizard takes place.
Within this method, a wizard has complete control over how it performs its
work. Visual Studio .NET places no restrictions on how a wizard is imple-
mented other than that it must implement the IDTWizard interface on a COM
object. A wizard can display a user interface to ask the user questions, or it can
use the information provided through the various arguments of the Execute
method to perform its work. You can think of the Execute method as similar to
the Main function of a Visual Basic or Visual C# console application: once
called, it can do whatever it wants.

The ContextParams argument passed to Execute is an array of elements
that’s populated with values the user enters in the Add New Item or New
Project dialog box. It also contains a number of other values, provided by
Visual Studio .NET, that give hints to your wizard about how it should generate
code. The values in the array change depending on whether the wizard is run
as a New Project wizard, an Add New Item wizard, or a Custom wizard. The
arguments for the various project types and the order in which those types
appear are listed in Table 9-1 and Table 9-2.

Table 9-1 ContextParams Array Values Passed to a
New Project Wizard

Value Description

Wizard Type The value EnvDTE.Constants.vsWizardNewProject.

Project Name The name of the project to create. This doesn’t include the
filename extension.

Local Directory The directory in which to create the project or solution.

Installation Directory The location on disk where Visual Studio .NET was
installed.

Exclusive If this value is true, a wizard should close the current solu-
tion and create a new one. If the value is false, the solution
shouldn’t be closed and the project should be added to the
currently open solution file.

(continued)

C09618747.fm Page 261 Friday, January 10, 2003 3:44 PM

262 Part II Extending Visual Studio .NET

We didn’t include a table that lists context parameters for a Custom wizard
because these are not determined by Visual Studio .NET—they’re supplied by
an add-in, a macro, or even another wizard. We’ll discuss the Custom wizard
type and the CustomParams that Custom wizards are passed in more detail later
in this chapter.

When run, a wizard should verify that the first element of the context
parameter array is the constant EnvDTE.Constants.vsWizardNewProject if the wiz-
ard is a New Project wizard or the constant EnvDTE.Constants.vsWizardAddItem
if the wizard is an Add New Item wizard. If the GUID doesn’t match the type of
wizard the object implements, the object should return the error code wizard-
Result.wizardResultFailure through the retval argument of IDTWizard.Execute.

Solution Name The name of the solution to create, if specified. This solu-
tion name is available if the Create Directory For Solution
check box is selected in the New Project dialog box.

Silent A Boolean flag indicating whether the wizard should run
without displaying any user interface elements to the user. If
this is true, use reasonable defaults when you generate code.

Table 9-2 ContextParams Array Values Passed to an
Add New Item Wizard

Value Description

Wizard Type The value EnvDTE.Constants.vsWizardAddItem.

Project Name The name of the project the item is being added to.

Project Items The EnvDTE.ProjectItems collection the item should be
added to.

New Item Location The folder on disk in which the item should be created.

New Item Name The name the user entered into the Name box in the Add
New Item dialog box.

Product Install Directory The folder in which the programming language is
installed.

Silent A Boolean flag indicating whether the wizard should run
without displaying any user interface elements to the
user. If this is true, use reasonable defaults when you
generate code.

Table 9-1 ContextParams Array Values Passed to a
New Project Wizard (continued)

Value Description

C09618747.fm Page 262 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 263

Note When you check the GUID that is passed as the wizard type,
you should perform a case-insensitive comparison because the con-
stants vsWizardNewProject and vsWizardAddItem might have a differ-
ent case than any value passed from Visual Studio .NET as the first
value in the ContextParams array.

An example implementation of a wizard and the code to extract the ele-
ments from the ContextParams array are shown in Listing 9-1.

Wizard.cs
using System;
using System.Runtime.InteropServices;

namespace BasicWizard
{

[GuidAttribute(“E5D0A8B2-A449-4d3b-B47B-99494D23A58B”),
ProgIdAttribute(“MyWizard.Wizard”)]
public class Wizard : EnvDTE.IDTWizard
{

public void Execute(object Application, int hwndOwner,
ref object[] ContextParams,
ref object[] CustomParams,
ref EnvDTE.wizardResult retval)

{
EnvDTE.DTE application = (EnvDTE.DTE)Application;
string wizardType = (string)ContextParams[0];

if(System.String.Compare(wizardType,
EnvDTE.Constants.vsWizardNewProject, true) == 0)

{
string newProjectName = (string)ContextParams[1];
string newProjectLocation = (string)ContextParams[2];
string visualStudioInstallDirectory =

(string)ContextParams[3];
bool exclusiveProject = (bool)ContextParams[4];
string newSolutionName = (string)ContextParams[5];
bool runSilent = (bool)ContextParams[6];

}
else if(System.String.Compare(wizardType,

EnvDTE.Constants.vsWizardAddItem, true) == 0)
{

Listing 9-1 The wizard add-in source code

C09618747.fm Page 263 Friday, January 10, 2003 3:44 PM

264 Part II Extending Visual Studio .NET

string projectName = (string)ContextParams[1];
EnvDTE.ProjectItems projectItems =

(EnvDTE.ProjectItems)ContextParams[2];
string newItemLocation = (string)ContextParams[3];
string newItemName = (string)ContextParams[4];
string productInstallDirectory = (string)ContextParams[5];
bool runSilent = (bool)ContextParams[6];

}
else
{

//ERROR! Unknown wizard type
}

}
}

}

Creating the .vsz File
As you saw in Chapter 6, to create an add-in you must provide information to
Visual Studio .NET to let it know that the add-in is available to be loaded. This
information, which is stored in the system registry, includes the programmatic
identifier (ProgID) as well as information detailing how the add-in should be
loaded. Likewise, a wizard needs a way to announce itself as being available;
but unlike with an add-in, you must rely on the file system to make a wizard
available. You do this by creating a hierarchy of folders in a specific location on
disk and placing files with the extension .vsz in within this folder hierarchy.

A .vsz file has a simple text-based file format. The file starts with the string
“VSWIZARD 7.0”, which tells Visual Studio .NET that the file declares a wizard
and that the wizard should be run in Visual Studio .NET version 7 or later. The
next line of text is a token that starts with “Wizard=” and is followed by the
ProgID or the class identifier (ClassID) of the COM object implemented by the
wizard. If we were to use the ProgID from the Wizard.cs code shown in Listing
7-1, the line in the .vsz file would appear as follows:

Wizard=MyWizard.Wizard

We could also use the ClassID format:

Wizard={E5D0A8B2-A449-4d3b-B47B-99494D23A58B}

After the line for the ProgID or ClassID, you can place a list of user-defined
data. This data can be any string data that you want to pass to your wizard, and

C09618747.fm Page 264 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 265

it can be static (hard-coded into the .vsz file during development) or generated
when your wizard is installed by a setup program. Each line of this data starts
with the token “Param=”, and your wizard can require any number of these
entries (including 0). Here’s an example of this data:

Param=Hello World
Param=Second line of data

Each of these Param tokens is passed as an element of the CustomParams
array when your wizard’s Execute method is invoked and can be found within
a wizard with code such as this C# snippet:

for(int i = 0 ; i < CustomParams.Length ; i++)
{

string data = (string)CustomParams[i];
System.Windows.Forms.MessageBox.Show(data);

}

When this code runs, the strings passed to CustomParams have the leading
“Param=” stripped from each string; only the raw data is specified.

Note Even if you’re using Visual Studio .NET 2003 (version 7.1), the
first line of a .vsz file must start with the string ‘VSWIZARD 7.0’, not
‘VSWIZARD 7.1’.

Where to Save .vsz Files
For a user to run your wizard, you must place the .vsz file in a specific location
on disk so the New Project or Add New Item dialog box can find it and make
that wizard available to be run. When the New Project or Add New Item dialog
box is shown, a folder or number of folders on disk are read for the subfolders
and files they contain. The names of these folders are inserted into the tree on
the left side of the dialog box, and any subfolders are inserted as subitems of
that tree node. As the user selects nodes in the tree, each file within the folder
corresponding to the selected node is displayed in the list on the right side of
the dialog box.

For example, Figure 9-1 shows the New Project dialog box with the file
system modified to add a folder called A Sub Folder under the Extensibility
Projects folder, which is the folder on disk where the .vsz files are stored for the
Add-in Wizard. When the contents of the Extensibility Projects folder are copied
into the A Sub Folder folder, they appear on the right side of the dialog box if

C09618747.fm Page 265 Friday, January 10, 2003 3:44 PM

266 Part II Extending Visual Studio .NET

this new folder is selected. The A Sub Folder folder was created in the folder
C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\IDE\Extensi-
bility Projects (using the default installation location).

F09MO01Figure 9-1 A new subfolder shown in the New Project dialog box

You can find the location to store your new project .vsz files programmat-
ically using the TemplatePath property of the Solution object. The following
macro displays message boxes showing the folder in which the .vsz files can be
stored so that they will appear within the Visual Basic Projects and Visual C#
Projects nodes on the right side of the New Project dialog box:

Sub VSZLocation()
’Display the .vsz path for Visual Basic Projects
MsgBox(DTE.Solution.TemplatePath(_

VSLangProj.PrjKind.prjKindVBProject))

’Display the .vsz path for C# Projects
MsgBox(DTE.Solution.TemplatePath(_

VSLangProj.PrjKind.prjKindCSharpProject))
End Sub

Note The TemplatePath property was poorly named—a better name
would be VSZFilePath. Don’t confuse the word Template in the prop-
erty name with file templates (which we’ll discuss later in this chapter).

C09618747.fm Page 266 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 267

The constants prjKindVBProject and prjKindCSharpProject, which are
defined in the metadata assembly VSLangProj.dll, are GUIDs in the form of a
string. There are, as you probably know, project types other than those for
Visual Basic and C#, but constants that can be passed to TemplatePath prop-
erty for those projects types aren’t found in any assembly. You can manually
find the project type GUIDs for these other project types by poking around in
the system registry. Under the registry key HKEY_LOCAL_MACHINE\SOFT-
WARE\Microsoft\VisualStudio\7.1\Projects is a list of GUIDs; each GUID
defines a project type that Visual Studio .NET supports. Replacing the argu-
ment to Solution.Template path with one of these GUIDs returns the path in
which to store your .vsz file so that an entry for the wizard appears in the New
Project dialog box for that project type. If we search through this area of the
registry for vcproj (the extension used for Visual C++ project files), we’ll find
that the GUID for the Visual C++ project type is {8BC9CEB8-8B4A-11D0-8D11-
00A0C91BC942}. We can use this GUID to locate the path to where we can
store .vsz files so they’ll appear in the Visual C++ Projects node of the New
Project dialog box:

Sub VSZLocation2()
’Display the .vsz path for Visual C++ Projects:
MsgBox(DTE.Solution.TemplatePath(_

 “{07CD18B1-3BA1-11d2-890A-0060083196C6}”))
End Sub

As you can see in Figure 9-1, a different image is shown for each .vsz file
found. You can associate an image with a .vsz file by placing an icon (.ico)
file in the same folder—one with the same name as the .vsz file but with the
.ico extension. For the Add-in Wizard, the .vsz file on disk is called Visual Stu-
dio .NET Add-in.vsz. When the user selects the folder, a file called Visual Stu-
dio .NET Add-in.ico is searched for and, if found, used as the display image.
If an icon for a .vsz file isn’t found, the default icon for files as defined by
Windows is used.

The Add New Item dialog box uses the directory structure in a similar way
to the New Project dialog box. You can add new folders, and any files with a
.vsz extension that the user selects will be run as a wizard. The only difference
between the Add New Item dialog box and the New Project dialog box is that
the template directories are located in different places. Figure 9-2 shows the
directory structure after it was modified for the Add New Item dialog box and
a text file template was placed in that folder.

C09618747.fm Page 267 Friday, January 10, 2003 3:44 PM

268 Part II Extending Visual Studio .NET

F09MO02Figure 9-2 A custom folder in the Add New Item dialog box

You retrieve the location where the .vsz files are stored for this dialog box
much like you retrieve the path for the New Project dialog box, but using a dif-
ferent method. Rather than using the Solution.TemplatePath method, you pass
the project type GUID to the Solution.ProjectItemsTemplatePath method. You
can use the following macro to find the path to where C# Add New Item .vsz
files can be stored:

Sub ProjectItemVSZLocation()
’Display the .vsz path for C# project items:
MsgBox(DTE.Solution.ProjectItemsTemplatePath(_

VSLangProj.PrjKind.prjKindCSharpProject))
End Sub

Creating Wizard Templates
A wizard’s purpose is to create a new project or add code files to an existing
project. But where does the code for these projects or project items come from?
The answer is template files. Templates are the source code files that a wizard
adds to a solution or an existing project. These files are placed on disk, and
when a wizard wants to add the project or file, the template project and the files
the project references or the file for an Add New Item wizard is copied into a
folder the user specifies and is then added to the solution or project.

Templates are normally created using one of the wizards for generating a
project or a project item, and then the file(s) of the new project are modified to

C09618747.fm Page 268 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 269

fit the requirements of the project or project item you’re trying to create. The
code that’s created and added to a solution when you run the Add-in Wizard is
generated in this way. We used the C# and Visual Basic Class Library Wizard to
generate the base project and then modified this project to implement the add-
in. The Add-in Wizard locates this project and adds it to the solution, and then
the files in this newly created project are modified to conform to the options the
user selected when running the wizard.

Using Template Files
Once you’ve created the template files, you need a way to add them to the solu-
tion or project. Visual Studio .NET supports a number of methods to accomplish
this. In Chapter 8, we explored the project model but purposely left out a dis-
cussion of two methods of the Solution object: AddFromFile and AddFromTem-
plate. These two methods are used to add project templates to a solution.
AddFromFile adds a reference in the solution file to the project, keeping the
project file where it exists on disk. Calling this method is analogous to right-
clicking on the solution node in the Solution Explorer window, choosing Add
| Add Existing Project, and browsing to a project file. Wizards, however, usually
want to add a copy of a project template to the solution; otherwise, the user of
the generated project would modify the template project and subsequent run-
ning of the wizard would add a reference to this same modified project. Wiz-
ards should normally use the AddFromTemplate method, which copies the
project template and its associated files to a destination folder and then adds a
reference of this copy to the solution. The signature for AddFromTemplate is

public EnvDTE.Project AddFromTemplate(string FileName, string Destination,
string ProjectName, bool Exclusive = false)

Here are the arguments:

� FileName The full path to the project template.

� Destination The location on disk to which the project and the files
it references are copied. The wizard should create this destination
path before AddFromTemplate is called.

� ProjectName The name assigned to the project file and the name
in Solution Explorer where it has been copied. Don’t attach the
extension of the project type to this argument.

� Exclusive If this parameter is set to true, the current solution is
closed and a new one created before the template project is added.
If this parameter is false, the solution isn’t closed and the newly cre-
ated project is added to the currently open solution.

C09618747.fm Page 269 Friday, January 10, 2003 3:44 PM

270 Part II Extending Visual Studio .NET

Note If the Exclusive parameter is set to true when AddFromFile or
AddFromTemplate is called, the existing project is closed without the
user being given the option to save any modified files. You should give
the user the option to save by calling the ItemOperations.Prompt-
ToSave property before calling AddFromTemplate or AddFromFile.

AddFromTemplate and AddFromFile will add a template project from any-
where on disk; that is, the files don’t need to be stored in a specific location—
just a place that is convenient to find. A common place to store the template
files is in a folder named Templates that has been placed in the same folder as
the COM object implementing the wizard. If the wizard is built using a language
supported by the .NET Framework, you can use reflection to calculate the path
to the templates using code like this:

string templatePath =
System.Reflection.Assembly.GetExecutingAssembly().Location;

templatePath = System.IO.Path.GetDirectoryName(templatePath) +
 “\\Templates\\";

The AddFromTemplate method adds a project template to a solution, but
the ProjectItems collection has a series of methods for adding files to an existing
project: AddFromDirectory, AddFromFileCopy, AddFromFile, and AddFrom-
Template. AddFromDirectory accepts as a parameter the path to a folder on disk;
this folder is searched recursively, causing all its contained files and subfolders to
be added to the project. AddFromFileCopy and AddFromFile both perform the
same basic operation, adding a reference to the specified file on disk to the
project. However, AddFromFileCopy copies the file into the project’s directory
structure before adding this reference. AddFromFileCopy differs from the
AddFromTemplate method of the ProjectItems collection (not to be confused
with the AddFromTemplate method of the Solution object) in that AddFrom-
Template copies the file into the folder on disk for the project and then the
project might make some modifications to the file after the files are added.

Here are the signatures and parameters for these methods:

public EnvDTE.ProjectItem AddFromDirectory(string Directory)
public EnvDTE.ProjectItem AddFromFileCopy(string FilePath)
public EnvDTE.ProjectItem AddFromFile(string FileName)
public EnvDTE.ProjectItem AddFromTemplate(string FileName, string Name)

� Directory The source folder on disk. Searches for files and sub-
folders begin with this folder.

C09618747.fm Page 270 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 271

� FilePath / FileName The location of the file to copy or add a
reference to.

� Name The resulting name of the file. This name should have the
extension of the file type.

Each of these methods returns a ProjectItem, an object that can be used to per-
form operations on the file that was added (such as opening the file or access-
ing the file’s contents).

Solution Filenames and the New Project Wizard
When a New Project wizard is run, a solution filename might or might not be
specified within the ContextParams array, depending on whether the user has
selected the Create Directory For Solution check box, which is visible after the
user clicks More in the New Project dialog box. If the check box is selected, the
New Solution Name box is enabled, allowing the user to specify a new directory
name for the solution. If the user doesn’t select the check box, when a project
is created using Solution.AddFromTemplate you should use the name specified
for the project in the ContextParams array as the name of the project, the name
of the solution file (if the exclusive argument in the ContextParams array is true
and a solution is not currently open), and the name of the folder on disk to con-
tain those files. These solution and project files should also be stored in the
same folder. If the user selects the check box, the solution name argument in
the list of context parameters is valid and you should name the root directory for
the solution and the solution file using the solution name argument.

To create and name a solution file, you can use the Solution.Create
method (as discussed in Chapter 8) by passing in the path for where to store the
solution file and the name of the solution as arguments. Under the directory for
the solution file, you should create a new folder to contain the project file, and
you should name both the folder and the project with the project name passed
into the ContextParams array.

Replacements
When you use a template to create a new project or a new file, the code that’s
generated will most likely not match the requirements for your wizard. For
example, if the C# Class Library Wizard is run, the class that is generated is
named Class1. The user can modify this class manually to give it a different
name, but it’s better to dynamically give the class a name that reflects the kind
of class the wizard is generating (such as the name Wizard if the class imple-
ments a wizard). You can do this by replacing specific textual tokens within the
template files after they’ve been added to the solution or project. To make a

C09618747.fm Page 271 Friday, January 10, 2003 3:44 PM

272 Part II Extending Visual Studio .NET

replacement, you use the editor object model to search for the token, and then
you modify the token’s text. Tokens can be just about any text that is placed in
the file, but normally they have a specific format that is distinguished from
other text within the file. A common token used as a placeholder for the class
name is %CLASSNAME%. The template for the class with the tokens added
would look something like this:

public class %CLASSNAME%
{

public %CLASSNAME%()
{

//
// TODO: Add constructor logic here
//

}
}

The following macro, named MakeReplacements, replaces tokens in a file.
Some of the concepts that this macro uses, such as the EnvDTE.TextPoint
objects, might be unfamiliar to you, but we’ll cover them in Chapter 11.

Sub MakeReplacements(ByVal projectItem As EnvDTE.ProjectItem, _
ByVal token As String, _
ByVal replaceWith As String)

Dim window As EnvDTE.Window
Dim textDocument As EnvDTE.TextDocument
Dim textRanges As EnvDTE.TextRanges
Dim findOptions As Integer
findOptions = EnvDTE.vsFindOptions.vsFindOptionsFromStart + _

EnvDTE.vsFindOptions.vsFindOptionsMatchCase + _
EnvDTE.vsFindOptions.vsFindOptionsMatchWholeWord

’Open the specified project item.
’ This will open the file but show it hidden:
window = projectItem.Open(EnvDTE.Constants.vsViewKindTextView)

’Find the TextDocument object for the project item:
textDocument = window.Document.Object(“TextDocument”)

’Replace all the text that matches token with the replaceWith text:
textDocument.ReplacePattern(token, replaceWith, _

findOptions, textRanges)
End Sub

Once you’ve opened the file that contains the class definition and made it
the active document (by using the ProjectItem object returned by the Add*
methods of the ProjectItems collection), you can call the following macro to
replace the %CLASSNAME% token with the class name MyClass:

C09618747.fm Page 272 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 273

Sub MakeReplacements()
MakeReplacements(DTE.ActiveWindow.ProjectItem, _

 “%CLASSNAME%", “MyClass”)
End Sub

Among the many variations on searching for tokens and replacing the text
is deleting the text between two separate tokens. This technique is useful if the
user selects an option in the user interface of a wizard that would cause a bit of
code not to be needed. The Add-in Wizard uses this technique to remove the
code for creating a command bar button when the Yes, Create A ‘Tools’ Menu
Item check box on the Choose Add-in Options page of the Add-in Wizard has
been cleared. The following macro deletes the text between two tokens:

Sub DeleteBetweenTokens(ByVal projectItem As EnvDTE.ProjectItem, _
ByVal token1 As String, _
ByVal token2 As String)

Dim window As EnvDTE.Window
Dim textDocument As EnvDTE.TextDocument
Dim tokenEndPoint As EditPoint
Dim tokenStartPoint As EditPoint
Dim findOptions As Integer
findOptions = EnvDTE.vsFindOptions.vsFindOptionsMatchCase + _

EnvDTE.vsFindOptions.vsFindOptionsMatchWholeWord

’Open the specified project item.
’ This will open the file, but show it hidden:
window = projectItem.Open(EnvDTE.Constants.vsViewKindTextView)

’Find the TextDocument object for the project item:
textDocument = window.Document.Object(“TextDocument”)

’Create edit points for searching:
tokenEndPoint = textDocument.StartPoint.CreateEditPoint()
tokenStartPoint = textDocument.StartPoint.CreateEditPoint()

’Loop while all start / end tokens can be found:
While (tokenStartPoint.FindPattern(token1, findOptions))

If (tokenEndPoint.FindPattern(token2, findOptions, tokenEndPoint)) _
Then

’Move the selection to bracket the start / end tokens:
textDocument.Selection.MoveToPoint(tokenStartPoint, False)
textDocument.Selection.MoveToPoint(tokenEndPoint, True)

’Delete the selection:
textDocument.Selection.Delete()

Else

C09618747.fm Page 273 Friday, January 10, 2003 3:44 PM

274 Part II Extending Visual Studio .NET

Exit While
End If

End While
End Sub

If our template code were modified to look like this

public class %CLASSNAME%
{

public %CLASSNAME%()
{

//
// TODO: Add constructor logic here
//

}

%BEGINOPTIONALCODE%
void SomeOptionalCode()
{
}

%ENDOPTIONALCODE%
}

after running this macro

Sub MakeReplacements2()
MakeReplacements(DTE.ActiveWindow.ProjectItem, _

 “%CLASSNAME%", “MyClass”)
DeleteBetweenTokens(DTE.ActiveWindow.ProjectItem, _

 “%BEGINOPTIONALCODE%", “%ENDOPTIONALCODE%”)
End Sub

the following code would result:

public class MyClass
{

public MyClass()
{

//
// TODO: Add constructor logic here
//

}
}

Raw Add New Item Templates
An Add New Item wizard is generally used to add a file to a project and then
modify the file by making replacements to it. However, sometimes a template
file doesn’t need to be modified after it’s been inserted into a project. An

C09618747.fm Page 274 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 275

example of this is a text file. When the user chooses to add a text file to a
project, a blank file is added. Creating a wizard object just to insert a blank file
is a waste of both disk space (to hold the wizard DLL) and time. To get around
this, Visual Studio .NET allows what are called raw templates. When displaying
the Add New Item dialog box, Visual Studio .NET not only searches for and
shows .vsz files in the right panel of that dialog box but it also shows any other
files within the folder where .vsz files can be placed. If the user selects one of
these raw template files in the Add New Item dialog box, the equivalent of an
AddFromFileCopy is performed on the file—the file is copied into the directory
structure for the project that the item is being added to, and then the file is
added to the project. To create a raw template, you simply create a file and
place that file into the path returned by calling the ProjectItemsTemplatePath
method and specifying the appropriate project type.

Custom Wizards
Visual Studio .NET has built-in support for creating only two types of wizards,
New Project and Add New Item wizards. However, at times you might need to
build a wizard that doesn’t fit either of these types. Visual Studio .NET supports an
extensible wizard architecture that allows you to create and invoke your own type
of wizard, called a Custom wizard. An example of a Custom wizard is a wizard
you can invoke to insert common code constructs, such as default implementa-
tions of classes, methods, or properties, directly into an existing source code file.

Why Custom Wizards?
The Visual Studio .NET automation group didn’t add the ability to create
Custom wizards simply to provide another way to extend a program with
your own software creations; Custom wizards were born out of necessity.
The Visual C++ group needed a way to add new functions and variables to
classes from within the Class View tool window, and they wanted to do it in
a wizard-like way. To make this possible, they added Custom wizards to the
list of wizard types. They created wizards to add both functions and vari-
ables, and by calling the DTE.LaunchWizard method with the proper
parameters to programmatically launch the wizards, they were able to allow
the user to modify a class in a way that is familiar to them. So when you
right-click on a C++ class within the Class View window and choose Add |
Add Function or Add | Add Variable, you’re really running a Custom wizard.

C09618747.fm Page 275 Friday, January 10, 2003 3:44 PM

276 Part II Extending Visual Studio .NET

To create a Custom wizard, you build a COM object that implements the
IDTWizard interface and you create a .vsz file for that wizard just as you would
for a New Project or Add New Item wizard. However, unlike with the other
types of wizards, you select the list of context parameters that your wizard
takes, and a Custom wizard is invoked through your own code rather than
through a dialog box. As you’ve seen, a list of context arguments is passed to a
wizard when it is run, supplying information about how the wizard should do
its work. If a wizard is to be run as a New Project or Add New Item wizard,
Visual Studio .NET calculates the proper context parameters array and passes
that array to the IDTWizard.Execute method. A Custom wizard is started pro-
grammatically, either from an add-in, a macro, or another wizard, and the call-
ing application fills in the context parameters array.

Note There are no restrictions on the context parameters that can
be passed to a Custom wizard, but we recommend that you make the
first argument a GUID that the caller and the wizard agree on before-
hand. The wizard should then verify that the GUID passed is the
expected GUID before proceeding. This approach helps keep the wiz-
ard from incorrectly using the context parameters and throwing an
exception or crashing.

Running a Custom Wizard Programmatically
Your program could manually load a wizard COM object, find the IDTWizard
interface of that wizard, and pass off the appropriate values to the Execute
method, but it would be easier to let Visual Studio .NET handle much of this
work for you. You can use the automation model to launch wizards program-
matically using the DTE.LaunchWizard method. This method takes as its argu-
ments the path to a .vsz file and an array of context parameters. Because the
path to the .vsz file is passed to this method, the .vsz file for a Custom wizard
can be stored anywhere on disk—it doesn’t have to be in a specific location, as
the other wizard types do. Once called, the LaunchWizard method instantiates
the wizard COM object defined within the .vsz file and creates the custom
parameters array that the .vsz file contains. The LaunchWizard method then
passes off all the necessary values to the Execute method of that wizard.

You can see the LaunchWizard method in use in the sample CustomWiz-
ard. This wizard first verifies that the first argument of the ContextParams array
is the expected wizard type GUID, and then it simply walks the list of context

C09618747.fm Page 276 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 277

and custom arguments that it is passed, displaying a message box for each item
that it finds in those arrays. Here’s the macro that starts this wizard running:

Sub CallCustomWizard()
Dim contextParams(1) As Object
contextParams(0) = “{9A4B2CFF-7A69-4671-BFA5-AE0D0C44AEFB}"
contextParams(1) = “Hello world!"
DTE.LaunchWizard(“C:\samples\CustomWizard.vsz", contextParams)

End Sub

If the wizard sample is placed in the folder C:\samples, this macro packs
the wizard type and the string “Hello world!” into an array of type object and
then calls LaunchWizard. The wizard defined the GUID {9A4B2CFF-7A69-4671-
BFA5-AE0D0C44AEFB} and expects this string as the first element of the Con-
textParams array; if the wizard doesn’t get this string, it will refuse to run and
will return immediately with an error.

Chaining Custom Wizards
You can use the LaunchWizard method to chain wizards together, which means
calling one wizard within another wizard to simplify creating a project. Suppose
you need a solution that contains an XML Web service and you need a Windows
Forms application to gather data from that XML Web service and display it to the
user. Creating the form project is simple enough: you run the Windows Form
Wizard to create the Windows Forms template project, and then you create the
wizard object that will add the form template to a solution. But creating the XML
Web service for the solution isn’t as easy as creating a template and adding it to
the solution. An XML Web service project, once created, is found only on a Web
server. None of the files for that XML Web service except the project file are
found on the local computer—the project file simply points to the server and the
location on the server where the files can be found. A wizard could talk to the
Web server through a protocol such as Front Page server extensions, giving it the
proper commands to store the files of an XML Web service, but it would be eas-
ier to call on the Web Service Wizard to create the and store those files for you.

The sample project ChainWizard, which is included with the sample files
for this book, demonstrates how to do this. Here’s a portion of the Execute
method of this wizard:

const string serviceName = “ChainWizardWebService";
object []contextParamsChain = new object[7];
EnvDTE.wizardResult wizardResultChain;
EnvDTE.DTE dte = (EnvDTE.DTE)Application;

// Add our web service by filling in the context parameters,
// and chain to the Web Service Wizard

C09618747.fm Page 277 Friday, January 10, 2003 3:44 PM

278 Part II Extending Visual Studio .NET

contextParamsChain[0] = EnvDTE.Constants.vsWizardNewProject;
contextParamsChain[1] = serviceName;
contextParamsChain[2] = “http://localhost/” + serviceName;
contextParamsChain[3] = System.IO.Path.GetDirectoryName(dte.FullName);
contextParamsChain[4] = (bool)ContextParams[4];
contextParamsChain[5] = “";
contextParamsChain[6] = false;
string webSvcTemplatePath = dte.Solution.get_TemplatePath(

VSLangProj.PrjKind.prjKindCSharpProject);
webSvcTemplatePath += “CSharpWebService.vsz";
wizardResultChain = dte.LaunchWizard(webSvcTemplatePath,

ref contextParamsChain);

This code creates and fills in the context parameters that are sent to the wiz-
ard object, which is run with the call to LaunchWizard. You calculate the location
of the .vsz file for the XML Web service by using the TemplatePath property and
passing the project type for the C# project language. Note that this code makes no
attempt to create a unique XML Web service name every time it is run. If the wiz-
ard is run multiple times, you should either delete the XML Web service created
on the server or change the variable value serviceName to a unique value.

The result of running the ChainWizard sample is a solution containing an
XML Web service project and a Windows Forms project that consumes the func-
tionality of the XML Web service.

Lab: Decoding Wizard Parameters
How do you determine which arguments to pass to a wizard during chain-
ing? You can do it by tricking Visual Studio .NET into calling a throwaway
wizard whose sole use is to capture and let you debug the custom and con-
text parameters passed to the wizard. This is what I did to find what should
be passed to the ASP.NET Web Service Wizard in the ChainWizard sample.

To start, run the Visual Basic .NET or C# Class Library wizard from
the New Project dialog box. Then modify that project to implement the
IDTWizard interface and register the library as a COM object by assigning
the code a GUID and a ProgID and setting the flag in the project Property
Pages dialog box to register as a COM object, just as you would for other
wizards. The next step is to change the .vsz file to point to this throwaway
wizard; because our example chains to the C# Web Service Wizard, we’ll
modify the .vsz file for that wizard. Search in the Visual Studio .NET
2003\VC#\CSharpProjects folder for the file named CSharpWebService.vsz
and open the file in Notepad. We’re about to modify this file, so it might
be a good idea to make a backup copy.

C09618747.fm Page 278 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 279

With this .vsz file open in Notepad, simply change the ProgID from
VsWizard.VsWizardEngine.7.1 to the ProgID of the throwaway wizard,
and then save the .vsz file. Now, back in Visual Studio .NET, where you
have the wizard project open, place a breakpoint on the Execute method
of your wizard and press F5. (You’ll need to set Visual Studio .NET, or
devenv.exe, as the debug target first.) In the new instance of Visual Studio
.NET that appears, open the New Project dialog box and run the C# ASP
.NET Web Service Wizard. Your wizard should be called in place of the
ASP.NET Web Service Wizard, and when the breakpoint on the Execute
method is hit, you can spy on what kind of data is passed to the wizard
through the custom and context parameters.

Don’t forget to restore the correct .vsz file—otherwise, the throwaway
wizard will be run when you actually want to create an XML Web service.

The Wizard Helper Library
As you’ve seen, creating wizards isn’t a very complicated task. By simply creat-
ing a COM object that implements the IDTWizard interface and placing a .vsz
file on disk, you can create a wizard that the user can run by using the New
Project or Add New Item dialog box. But creating and displaying the user inter-
face for a wizard can be tedious, which is why we’ve avoided the topic of wiz-
ard user interfaces until now. To create the user interface for a wizard, you must
create a Windows Form and the pages for the wizard. The Windows Form will
display the pages of the wizard, and the Next, Back, Finish, and Cancel buttons
must properly navigate between these pages.

Much of the code to display the user interface for a wizard is boilerplate
code and is similar for all wizards. To make creating wizards with a user inter-
face easier, we’ve included in the book’s sample files the source code for a
library that manages this user interface. Simply called WizardLibrary, the library
implements the IDTWizard interface and also handles splitting the Context-
Params array into separate variables, making wizard creation less error-prone.
To use this library to implement a wizard, you simply create a user control for
each page of the wizard, write a small amount of code to let the library know
which pages are available, and then implement wizard-specific functionality
such as creating and adding project code.

Let’s use this library to build a wizard that generates the code for a wiz-
ard—a “Wizard Wizard.” First, we create a C# class library project called Wiz-
ardBuilder, and then we can add a reference to the WizardLibrary assembly

C09618747.fm Page 279 Friday, January 10, 2003 3:44 PM

280 Part II Extending Visual Studio .NET

(you must load and build this project from the example source files first so that
the library code can be referenced) and then derive the class within our project
from InsideVSNet.WizardLibrary.WizardLibrary (the base class that imple-
ments the functionality for the library). After making the changes to register the
object for COM, our code will look like this:

[GuidAttribute(“1EF6B85C-FD5C-4fb4-BA4D-
5ED221195DBF”), ProgIdAttribute(“WizardBuilder.Wizard”)]
public class Wizard : InsideVSNet.WizardLibrary.WizardLibrary
{

public Wizard()
{
}

}

With this basic startup code, we can define the pages that the wizard dis-
plays to the user. The first page contains two options that the user can modify:
an option to create an Add New Item or New Project wizard and an option to
specify where the user can run the wizard. These options take care of creating
the .vsz file and placing it in the correct place for the wizard that WizardBuilder
generates. The second page allows the user to specify how many pages the
resulting wizard code has. Since the library uses .NET user controls to imple-
ment each page of our wizard, we can use the Add New Item dialog box to add
two user controls—Page1 and Page2—to our project and then add the appro-
priate windows controls to these forms.

With the two user controls, or pages, added to our project, we need some
way for the wizard library to communicate with each page to let it do the work
of generating the output project and modifying the source code files that are
generated. We can do this by having each page implement the interface
InsideVSNet.WizardLibrary.IWizardPage, which is defined by the library and
has this signature:

public interface IWizardPage
{

void PerformWork1(WizardLibrary WizardLibrary);
void PerformWork2(WizardLibrary WizardLibrary);
string HeadingLabel
{

get;
}
string DescriptionLabel
{

C09618747.fm Page 280 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 281

get;
}
System.Drawing.Image Icon
{

get;
}
void ShowHelp();
void Initialize (WizardLibrary wizardLibrary);

}

Here are the methods and properties of this interface:

� PerformWork1 This method is called when the user clicks the
Finish button and the wizard page should start generating code. Each
page is responsible for generating its own code within the project,
and that work is done within this method.

� PerformWork2 Each wizard page has its PerformWork1 method
called in the order that the pages are displayed. However, sometimes
one page’s output might depend on the output of another page.
Information can be generated in the PerformWork1 method, saved,
and retrieved for further processing during the PerformWork2
method. After the PerformWork1 method for each page has been
called, PerformWork2 is called in the display order of each page.

� HeadingLabel This read-only property allows your wizard page to
return information about the headline that’s displayed in the top line
of the wizard. In the Add-in Wizard’s user interface, the top portion,
or banner, of the user interface displays three pieces of information
to the user: a headline displayed in bold text, descriptive text, and an
icon for the page. This property returns the headline for the page.

� DescriptionLabel This property returns the description string to
be displayed in the wizard banner.

� Icon This property returns a picture in the format of a Sys-
tem.Drawing.Image type to display in the banner of the wizard.

� ShowHelp This method is called when the Help button in the
lower left of the wizard is clicked, signaling that the user is request-
ing help for the page.

� Initialize This method is called after the wizard page has been
added to the list of pages maintained by the library.

C09618747.fm Page 281 Friday, January 10, 2003 3:44 PM

282 Part II Extending Visual Studio .NET

With this interface implemented by each user control, we can tell the wiz-
ard library about the pages. The library implements the IDTWizard interface
and its Execute method for us, but when the wizard is first run, it calls a method
defined in the WizardLibrary class (from which we derived our wizard class),
which is declared as abstract and is also called Execute. This method, which
should be placed within the class that inherits from the WizardLibrary class, is
defined as follows:

public override void Execute(EnvDTE.DTE applicationObject);

This version of Execute is where we set up the wizard library to let it know
which pages are available to it. You add pages by calling the WizardLi-
brary.AddPage method, passing an instance of one of our user controls that
implements the IWizardPage interface in the order that they should appear in
the user interface for your wizard. We can create and add the two user controls
we created earlier (Page1 and Page2) within the Execute method using code
such as this:

public override void Execute(EnvDTE.DTE applicationObject)
{

Title = “Wizard Builder";
AddPage(new Page1());
AddPage(new Page2());

}

This code not only tells the library about the pages of our wizard but also
sets the title of the wizard dialog box to Wizard Builder. The WizardLibrary
class defines a property, Title, that sets the text of the user interface form for the
wizard. When this Execute method returns, the wizard library has all the infor-
mation it needs to run. The library then displays the Windows Form dialog box
with the user control pages displayed and implements the proper navigation
between pages of the wizard. The wizard library also manages the wizardResult
parameter of the IDTWizard.Execute method, returning wizardResultSuccess if
the Finish button is clicked, wizardResultCancel if the Cancel button is clicked,
wizardResultFailure if an exception is thrown, and wizardResultBackOut if the
first page of the wizard is displayed and the user clicks the Back button. With
this code written, when the wizard is run, the dialog box in Figure 9-3 is shown
with the first page of the wizard displayed.

C09618747.fm Page 282 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 283

F09MO03Figure 9-3 The first page of the WizardBuilder sample, with the first
page displayed

Wizard Variables
As we’ve discussed, when the IDTWizard.Execute method is called, information
is passed to the wizard through the ContextParams and CustomParams argu-
ments. But the Execute method that your wizard implements isn’t passed these
arguments because the wizard library handles extracting the variables from the
ContextParams array and storing them as member variables. The values of Cus-
tomParams aren’t extracted in the same way as ContextParams because these
variables are specific to your wizard and the library has no previous knowledge
about what it contains. Table 9-3 and Table 9-4 list the variable names you can
use, how they correspond to the values listed in Table 9-1 and Table 9-2, and
the context in which you can use them.

Table 9-3 New Project Wizard Library Variables and Their
Corresponding ContextAttribute Array Values

Variable Corresponding Value

wizardType Wizard Type

newProjectName Project Name

newProjectLocation Local Directory

(continued)

C09618747.fm Page 283 Friday, January 10, 2003 3:44 PM

284 Part II Extending Visual Studio .NET

The variables listed in Table 9-3 and Table 9-4 are generated by extracting
values from the context parameters array. Two other variables are available
within the wizard library, and they are available to either New Project or Add
New Item wizards:

� application The DTE object for the instance of Visual Studio .NET
in which the wizard is running

� CustomArguments A list of the custom parameters, copied verba-
tim from the CustomParam arguments passed to the IDTWizard.Exec
method

The wizard library provides one other variable that your wizard can use.
We mentioned earlier that the IWizardPage.PerformWork1 method can save
information for later use in the IWizardPage.PerformWork2 method. However,
one page of a wizard doesn’t have access to the data of another page because
they are separate objects. For storing information, the wizard library contains a
data member named customData that has the type System.Collections.Special-
ized.ListDictionary. This data member allows one page of the wizard to store a

visualStudioInstallDirectory Installation Directory

exclusiveProject Exclusive

newSolutionName Solution Name

runSilent Silent

Table 9-4 Add Item Wizard Library Variables and Their
Corresponding ContextAttribute Array Values

Variable Corresponding Value

wizardType Wizard Type

projectName Project Name

projectItems Project Items

newItemLocation New Item Location

newItemName New Item Name

productInstallDirectory Product Install Directory

runSilent Silent

Table 9-3 New Project Wizard Library Variables and Their
Corresponding ContextAttribute Array Values (continued)

Variable Corresponding Value

C09618747.fm Page 284 Friday, January 10, 2003 3:44 PM

Chapter 9 Visual Studio .NET Wizards 285

name and value pair for use by another page of the wizard. The sample wizard
we’re building here uses the customData member value to store information
such as the EnvDTE.Project object, which was created with the call to Create-
Project within the PerformWork1 method of the first page of the wizard.

Wizard Helper Methods
The wizard library supports four helper methods that a wizard can use when
generating the resulting project or file. You can use CreateProject, which has
the following signature, to create a project based on a project template.

public EnvDTE.Project CreateProject(string templatePath)

This method creates a solution file if one is needed and places the project
file in the correct folder on disk if the user specified creating separate folders
for the project and solution files. The only parameter this project accepts is the
path to the template project file. Values such as the name of the project and
solution, as well as whether the solution file should be closed or the new
project should be added to the currently open solution file, don’t need to be
passed to this method because these values are already known to the wizard.
The final two methods, DeleteBetweenTokens and MakeReplacements, are C#
versions of the macros of the same name shown earlier in this chapter; you can
use them to modify the source files you create.

Completing the WizardBuilder Sample
Now that we’ve covered the techniques for building wizards using the library,
we can complete the WizardBuilder sample. We’ve already created a class that
derives from the WizardLibrary class, created the Execute method, added two
pages in the form of user controls to the project, and implemented the IWizard-
Page interface in each of these pages. All that’s left to do is to generate the out-
put code. We’ll start by creating the template files. We’ll create a C# class library
called WizardTemplate, specify the project setting to register as a COM object,
and modify the code for the class to the following:

namespace %NAMESPACE%
{

/// <summary>
/// Summary description for Class1.
/// </summary>
[GuidAttribute(“%GUID%”), ProgIdAttribute(“%NAMESPACE%.Wizard”)]

public class Wizard : InsideVSNet.WizardLibrary.WizardLibrary
{

public Wizard()
{

C09618747.fm Page 285 Friday, January 10, 2003 3:44 PM

286 Part II Extending Visual Studio .NET

//
// TODO: Add constructor logic here
//

}

public override void Execute(EnvDTE.DTE application)
{

Title = “My Wizard";
%WIZARDPAGES%

}
}

}

When run, the wizard replaces %NAMESPACE% with the name of the
project specified in the New Project dialog box, and %GUID% is replaced with
a new GUID. The token %WIZARDPAGES% is replaced with code generated to
add an instance of the pages to the library. The next template to create is the
template for the pages of the wizard. We’ll do this by running the C# Windows
Control Library Wizard, modifying the generated user control to implement
IWizardPage, and changing the namespace and all instances of the class name
with the tokens %NAMESPACE% and %PAGENAME%, respectively. We’ll copy
the file for the user control into the templates folder for our wizard.

The last step is to fill out the PerformWork1 and PerformWork2 methods
for the two pages of the wizard. PerformWork1 for the first page handles creat-
ing the project and making replacements within the file, as outlined earlier.
PerformWork2 for this first page handles building the .vsz file, placing a copy in
the folder the user specified, and adding a reference to the WizardLibrary.dll
assembly. PerformWork1 for the second page isn’t used; PerformWork2 for this
page handles adding one copy of the user control template for each of the
number of pages the user specified while running the wizard, and then makes
the proper replacements in the newly added page. Finally, the PerformWork2
method sets up the code in the wizard.cs file to make the replacement to the
%WIZARDPAGES% token.

Looking Ahead

In this chapter and the previous one, we have dealt with projects and their
items—manipulating them through the object model and creating them using
wizards. Next we’ll move on to something a little different: windows within
Visual Studio .NET and how to program them.

C09618747.fm Page 286 Friday, January 10, 2003 3:44 PM

