
97

Visual Studio .NET Macros
The macros facility in Microsoft Visual Studio .NET is arguably one of the most
compelling reasons for using the IDE. This facility exposes almost all the func-
tionality that you can access through the automation object model, but in an
easy-to-use, scriptable form.

In this chapter, we’ll introduce you to macros in Visual Studio .NET. We’ll
show you how to record macros and how to edit macro projects in the Macros
IDE. We’ll also show you how you can extend macros using .NET assemblies
and how to share your macros with others. In addition, we’ll explain how you
can turn a macro project into a full-fledged Visual Studio .NET add-in, using a
macro that ships with the Visual Studio .NET samples.

Macros: The Duct Tape of Visual Studio .NET
The macros facility of Visual Studio .NET uses Visual Basic .NET as its macro
language. This fit has a much better feel to it than the Visual Basic Scripting Edi-
tion (VBScript) facility built into Microsoft Visual C++ 6.0. The Visual Basic .NET
language can take full advantage of the .NET Framework and its own automa-
tion object model, so it offers an extremely powerful and compelling set of fea-
tures that you can use to automate tasks in the IDE. In fact, you can convert any
macro into a Visual Basic .NET–based add-in that you can compile and share
with other developers.

As we mentioned in Chapter 1, Visual Studio .NET macros are saved into
files with a .vsmacros extension. These macros are stored in the VSMacros71
folder in your default Visual Studio .NET projects folder. You can specify the
Visual Studio .NET projects folder in the Options dialog box, on the Projects

C04618747.fm Page 97 Friday, January 10, 2003 2:58 PM

98 Part I Visual Studio .NET as a Development Tool

and Solutions page in the Environment folder. By default, this path is My Doc-
uments\Visual Studio Projects. Macros are stored in the VSMacros71 subfolder.

Visual Studio .NET macros are usually created in one of two ways. You
can record a macro in the IDE (Ctrl+Shift+R); the code generated during the
recording session will be stored in the MyMacros.RecordingModule.Temporary-
Macro method. Alternatively, you can open the Macros IDE (Alt+F11) and cre-
ate a new method by writing it from scratch. One of the best things about
macros is that they’re designed to automate functionality in the Visual Studio
.NET IDE. This means you can often simply record a macro, copy the generated
code to a new method, and use that as the basis for your own automation
project. You can also use this technique to get code for the add-ins you create
for Visual Studio .NET.

Visual Studio .NET macros are accessed in the IDE just like any other
named command. You can enter the name of the macro in the Command Win-
dow (Ctrl+Alt+A), you can add the macro to a toolbar or a menu, you can assign
the macro a keystroke shortcut, you can run the macro by double-clicking it in
Macro Explorer, and you can run the macro directly from the Macros IDE.

Note When you run a macro by double-clicking it in the Macro
Explorer window, the focus returns to the last active window. As a
result, you can set the active document, open Macro Explorer, double-
click the macro and have it affect the last active document.

We consider macros the duct tape of Visual Studio .NET—in the best
sense of the term. Duct tape is made of an extremely strong material and can
help you accomplish tasks quickly and easily. We would describe macros in
the same way: they’re extremely powerful tools in the IDE that you don’t have
to spend a ton of time thinking about. You can create your macro to perform
your task and then tuck it away. If the macro is sufficiently important and pow-
erful, you can turn it into a full blown add-in and then polish that code to your
heart’s content.

Recording Visual Studio .NET Macros
To record a Visual Studio .NET macro, first press the Ctrl+Shift+R keyboard
shortcut. This combination brings up the Recorder toolbar and creates a macros
module named RecordingModule if one doesn’t already exist. You can see the

C04618747.fm Page 98 Friday, January 10, 2003 2:58 PM

Chapter 4 Visual Studio .NET Macros 99

Recorder toolbar in Figure 4-1. Notice that you can pause, stop, or even cancel
the recording session that you’ve started.

F04MO01Figure 4-1 The Recorder toolbar

The easiest way to get going with macros is to record a simple macro
that you might want to use repeatedly. For example, let’s say you want to find
the word Connects in your code files. You would normally use the Find or
Find In Files command for this purpose. But by using one of these commands
in the context of a macro, you can gain more flexibility and use the macro in
later sessions.

Here are the steps for recording the macro we have in mind:

1. Press Ctrl+Shift+R to start the macro recorder.

2. Press Ctrl+F to open the Find dialog box.

3. Type Connect in the Find What box.

4. Click Find Next.

5. Press Ctrl+Shift+R to stop recording.

We now have a TemporaryMacro method saved in the module Recording-
Module. You can see that macro in Figure 4-2.

F04MO02Figure 4-2 The Macro Explorer window

C04618747.fm Page 99 Friday, January 10, 2003 2:58 PM

100 Part I Visual Studio .NET as a Development Tool

Here’s the listing that’s generated by the preceding series of steps. Notice
that mouse movements and keystrokes (such as Tab for navigating to the
Replace dialog box) aren’t recorded. Visual Studio .NET limits macro recording
to actual named commands that are called during the recording session.

Imports EnvDTE
Imports System.Diagnostics
Public Module RecordingModule

Sub TemporaryMacro()
DTE.ExecuteCommand(“Edit.Find”)
DTE.Find.FindWhat = “Connect"
DTE.Windows.Item(“Connect.cpp”).Activate()
DTE.Find.FindWhat = “Connect"
DTE.Find.Target = vsFindTarget.vsFindTargetCurrentDocument
DTE.Find.MatchCase = False
DTE.Find.MatchWholeWord = False
DTE.Find.Backwards = False
DTE.Find.MatchInHiddenText = False
DTE.Find.PatternSyntax = _

vsFindPatternSyntax.vsFindPatternSyntaxLiteral
DTE.Find.Action = vsFindAction.vsFindActionFind
DTE.Find.Execute()

End Sub
End Module

To play back this macro, press Ctrl+Shift+P, which is simply a shortcut to
the Macros.Macros.RecordingModule.TemporaryMacro command. You should
see the Find dialog box open with the first instance of the word you’re search-
ing for selected. In our case, this is the first instance of Connect in a file named
Connect.cpp.

Take a look at the line DTE.Windows.Item(“Connect.cpp”).Activate(). If
Connect.cpp isn’t already open, this line will bring it into focus in the IDE, so
this macro won’t be very useful if you want to save it for use with a number of
different files or projects. Commenting out or removing this line from the listing
will cause the macro to work with the currently active document.

To save the recorded macro, you can either rename TemporaryMacro to
something else in Macro Explorer or you can copy and paste the recorded code
into another macro module or method.

Macro Commands
Macro Explorer lets you manage your macros from inside the Visual Studio
.NET IDE. You can access the commands related to macros in the IDE from the
Macros submenu of the Tools menu or through the shortcut menus within
Macro Explorer.

C04618747.fm Page 100 Friday, January 10, 2003 2:58 PM

Chapter 4 Visual Studio .NET Macros 101

Macros are divided into projects containing modules, which in turn con-
tain methods. Projects are represented hierarchically in Macro Explorer below
the Macro icon. Right-clicking the Macro icon brings up the shortcut menu con-
taining commands for creating and loading macro projects. You can access the
same functionality as named commands in the Command Window. Table 4-1
lists the macro commands related to macro projects.

You can navigate to Macro Explorer by pressing Alt+F8. Most commands
available from the shortcut menus in Macro Explorer are also available from the
Command Window (because the items in Macro Explorer lose focus when you
change to the Command Window). You can rename a macro project by right-
clicking on the project in Macro Explorer and then clicking Rename. Doing so
will allow you to edit the name of the macro project in place. You can delete a
macro project by choosing Delete from the shortcut menu. The same basic
shortcut menu items are available for renaming and deleting modules and
methods from within Macro Explorer.

Table 4-2 lists a few of the commands available from within a particular
macro project.

By right-clicking on a macro in Macro Explorer, you can bring up a shortcut
menu that lets you work with the macro directly. The Run command executes

Table 4-1 Macro Project Commands

Command Description

Tools.LoadMacroProject Brings up the Add Macro Project dialog box, where you
can select a macro project file.

Tools.NewMacroProject Brings up the New Macro Project dialog box, where you
can save your macros into specific projects.

Tools.MacrosIDE Brings up the Macros IDE. This command is mapped to
Alt+F11.

Table 4-2 Macro Project Commands

Command Description

Tools.Newmodule Brings up the New Module dialog box, where you can create a
new module from within Macro Explorer

Tools.Newmacro When enabled, this command brings up the Macros IDE with a
new macro method

Tools.Edit Brings up the Macros IDE open to the currently selected project
or module

C04618747.fm Page 101 Friday, January 10, 2003 2:58 PM

102 Part I Visual Studio .NET as a Development Tool

the Tools.Run command on the currently selected macro. The Rename com-
mand allows you to edit the name of the macro in place. The change you make
to the name is reflected in the method name in the Macros IDE. The Delete com-
mand deletes the currently selected macro. And finally, the Edit command opens
the current macro in the Macros IDE.

Macro Explorer is a powerful tool for organizing the macros you’ve created.
You’ll find that you can do quite a bit in Macro Explorer without having to go to
the Macros IDE. For example, you can record a macro, rename that macro to
save it, and even add that same macro to a toolbar or a menu in the IDE, all with-
out having to go to the Macros IDE. You’d probably find it limiting not to use the
IDE, but it is possible. To really get the most out of Visual Studio .NET macros,
you’ll want to be able to create and edit them from within the Macros IDE.

Editing Macros in the Macros IDE
Working with the Macros IDE is similar to working in Visual Studio .NET. Many
of the same shortcuts work in the Macros IDE. The Macros IDE editor features
IntelliSense, and the Help system for macros is integrated right into the IDE.

One difference you’ll notice right away is that all your loaded macro
projects show up in the Project Explorer window. Visual Studio .NET ships with
an extremely useful set of macros out of the box. You can see these macros if
you expand the Samples project in Project Explorer in the Macros IDE (as
shown in Figure 4-3).

F04MO03Figure 4-3 The Samples project in the Macros IDE

C04618747.fm Page 102 Friday, January 10, 2003 2:58 PM

Chapter 4 Visual Studio .NET Macros 103

The memory space for macro projects is separated, so if you want to uti-
lize functionality between different macros or if you want to take advantage of
a common set of environmental events, you must keep the macros that you
write inside the same project. If you want to access functionality from another
macro project, you simply copy the macros you want to access into the project
you’re working on. For example, you can copy modules from the Samples
project into your own project to take advantage of the functionality exposed
by those macros.

To create a new macro project, you need to start from the Visual Studio .NET
IDE. You can use the New Macro Project command on the shortcut menu in Macro
Explorer or you can enter Tools.NewMacroProject into the Command Window
to open the New Macro Project dialog box (shown in Figure 4-4). Enter a name
and location for your project, and then click OK. Pressing Alt+F11 will toggle you
back to the Macros IDE, where you can work on the code in the new project.

F04MO04Figure 4-4 The New Macro Project dialog box

If you take a look at the new macro project created in Project Explorer,
you’ll notice that a number of features are added to your project by default. The
References folder works similarly to the References folder in the Visual Studio
.NET IDE. Two new modules are added to get your macros up and running.
The EnvironmentEvents module contains generated code that gives you access
to the events in the IDE. The Module1 module provides a place where you can
start writing code.

C04618747.fm Page 103 Friday, January 10, 2003 2:58 PM

104 Part I Visual Studio .NET as a Development Tool

Lab: Navigating Between IDEs
To shift from the Macros IDE to the Visual Studio .NET IDE, you can click
the Visual Studio button on the Macros IDE toolbar. There’s no such but-
ton on any of the default Visual Studio .NET toolbars, so you’ll need to
add one if you want to get back to the Macros IDE in the same way. To do
so, right-click on a toolbar in the Visual Studio .NET IDE and click Cus-
tomize. On the Commands tab, find the Macros IDE command in the Tools
category and drag it to the toolbar you want to use it from. The button will
have the same infinity image used in the Macros IDE. This makes it easy
to navigate between the two IDEs while you work on your macros.

If you’ll be doing a lot of macro development, a better solution is to
run your machine with two monitors, keeping the Macros IDE in one
screen and Visual Studio .NET in the other.

Adding a reference to a macro project is slightly different from adding one
to a standard Visual Basic .NET project. If you look at the Add Reference dialog
box that’s used in the Macros IDE Project Explorer (shown in Figure 4-5), you’ll
notice that it doesn’t offer a way to add custom assemblies.

F04MO05Figure 4-5 Add Reference dialog box

C04618747.fm Page 104 Friday, January 10, 2003 2:58 PM

Chapter 4 Visual Studio .NET Macros 105

To add references to your own assemblies, you must copy them to the
C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\IDE\PublicAs-
semblies folder. You can then add your own reference to the assembly from the
Add Reference dialog box. Using assemblies, you can write your macro func-
tionality in any language you want and then access that functionality from a
fairly simple macro. You can also write assemblies that call to unmanaged code
and assemblies that act as COM wrappers to access COM functionality from
within your macros.

Let’s go over a few examples built from a new project.

A Simple Macro
Earlier in the book, we touched on the behavior of the File.NewFile command
in Visual Studio .NET. Some programmers haven’t been pleased that this com-
mand displays a dialog box by default, forcing them to resort to the mouse or
to a series of keystrokes to get an empty file up and running. But the solution
is simple: you just create a macro that does exactly what you want and then
assign that macro an alias in the Command Window. The following code is all
you really need to create a new text file in the IDE:

Imports EnvDTE
Imports System.Diagnostics

Public Module NewFile

Sub NewTextFile()
DTE.ItemOperations.NewFile(“General\Text File”)

End Sub

End Module

As you can see, this macro has been created in a module named NewFile.
It consists of a single method, NewTextFile. The single line of code in this macro
simply creates a new file of the type Text File in the General folder of the New
File dialog box. We’ll talk about the NewFile method that creates the new text
file in a minute. What’s important right now is that we have a macro that will
add just the functionality we want to the IDE. To make this macro a tool we’re
willing to spend some time with, we’ll want to make the macro as easy to get
to as possible.

To get to a macro you want to execute, you’ve got a few choices. One
approach is to run the macro from Macro Explorer in the Visual Studio .NET
IDE. This works fine, but it’s probably not the optimal solution for a macro that
you’re planning to use often. The second choice is to create an alias for the

C04618747.fm Page 105 Friday, January 10, 2003 2:58 PM

106 Part I Visual Studio .NET as a Development Tool

macro in the Command Window. This is probably the best choice for a com-
mand that you want to use while you’re typing. To alias this command, you can
type the alias command followed by the name of the macro. IntelliSense will
kick in when you start to type a macro, so the whole alias line might look some-
thing like this:

>alias nf Macros.InsideVSNET.Chapter04.NewFile.NewTextFile

Now you’ve got a new command you can use from the Command Win-
dow: nf. To create a new text file, you can simply press Ctrl+Alt+A and then
type nf to get your new file. Of course, if you want to take it a step further, you
can assign the macro a keystroke shortcut from the Options dialog box. In
keeping with the Ctrl+, initial chord introduced earlier in the book, Ctrl+,,Ctrl+N
might make a good shortcut. Finally, you can add a button to the toolbar that
initiates the macro (as described in Chapter 3).

The Imports statement in this sample is important. The API associated with
the Visual Studio .NET automation object model is contained in the EnvDTE
namespace. The automation object model is discussed in depth in Chapter 5
through Chapter 12. Here we simply want to familiarize you with this object
model and get you up and running with some of the more common function-
ality that you’ll use in your macro projects. Most of the subjects covered in the
chapters that comprise Part II of the book apply to both macros and add-ins. In
fact, you can use macros to quickly test add-in functionality that you’re writing.
You’ll save time because you normally test an add-in by compiling the add-in
and loading a second instance of the IDE. Using a macro, you can get to the
automation object model, write and test your routines, and then add them to
your add-in projects.

Working with Macros
The macros you build will use the automation object model to access and auto-
mate the different parts of the IDE. In this section, we’ll demonstrate how you
can use macros to automate some simple tasks and we’ll talk a bit about the
automation object model as it applies to documents and windows in the IDE.
We’ll also discuss events and provide some simple examples to help you get
going right away. Much of the material we’ll cover here is discussed in detail in
Part II of the book.

C04618747.fm Page 106 Friday, January 10, 2003 2:58 PM

Chapter 4 Visual Studio .NET Macros 107

Manipulating Documents and Text
Some of the most useful tasks you can perform with macros involve working
with text in documents. You might want to search for text, change a selection
in some way, or just insert text into a document. The Document object in the
DTE provides a good deal of functionality that makes it easy to manipulate text
in code documents.

Macros are often run on the document with the current focus. To get the
currently active document in the IDE, you use the DTE.ActiveDocument prop-
erty, which returns a Document object. (Recall that a Visual Studio .NET docu-
ment is an editor or a designer window that opens to the center of the IDE.) If
the document is an editor, it has an associated TextDocument object.

The TextDocument object has three properties of interest for programmers
who want to manipulate text inside the object. The StartPoint property returns
a TextPoint object that points to the beginning of the document. The EndPoint
property returns an object that points to the end of the document. And finally,
the Selection property returns a TextSelection object, which offers a number of
properties and methods you can use on selected text.

The TextPoint object provides location information for the editing function-
ality inside a document. You create a TextPoint in a document whenever you
want to insert or manipulate text in the document or when you want to get some
information about a particular document. TextPoint objects aren’t dependent on
text selection, and you can use multiple TextPoint objects in a single document.

Let’s look at a couple of examples that use the objects we’ve mentioned.
You should become familiar with this code because much of the macro auto-
mation code you’ll write will depend on it.

First, let’s get the ActiveDocument, create a couple of EditPoint objects,
and add some text to the ActiveDocument using that information:

Sub CommentWholeDoc()
Dim td As TextDocument = ActiveDocument.Object
Dim sp As TextPoint
Dim ep As TextPoint
sp = td.StartPoint.CreateEditPoint()
ep = td.EndPoint.CreateEditPoint()

sp.Insert(“/* “)
ep.Insert(“ */”)

End Sub

C04618747.fm Page 107 Friday, January 10, 2003 2:58 PM

108 Part I Visual Studio .NET as a Development Tool

Running this sample on a Visual C# or a Visual C++ code document will
comment out the entire document, unless the source already contains com-
ments. The macro isn’t very practical, but it does show you how to put those
parts together. You can use IntelliSense to make your way through the objects
created to experiment with some of the other functionality.

Let’s take a look at a second, more useful, example that inserts text into a
document based on a selection. The following example creates an HTML com-
ment in a document. This functionality doesn’t exist in Visual Studio .NET 2003,
so you might find this simple macro useful enough to add to your own toolbox.
Here we’ll declare ts as a TextSelection object and assign it the current selection
using DTE.ActiveDocument.Selection:

Sub HTMLComment()
Dim ts As TextSelection = DTE.ActiveDocument.Selection
ts.Insert(“<!-- “, vsInsertFlags.vsInsertFlagsInsertAtStart)
ts.Insert(“ -->", vsInsertFlags.vsInsertFlagsInsertAtEnd)

End Sub

This macro uses the TextSelection Insert method to insert text around the
Selection object. The Insert method takes two arguments. The first argument is
the string that you want to insert into the selection. The second argument is a
vsInsertFlags constant that defines where the insertion is to take place. The first
Insert call in the example uses vsInsertFlagsAtStart. The second uses vsInsert-
FlagsAtEnd. Table 4-3 lists these constants.

With a Selection, a TextPoint, and the methods available through the DTE,
you should have a good basis for the types of operations you can perform with
macros on source code.

Table 4-3 vsInsertFlags Constants

Constant Description

vsInsertFlagsCollapseToStart Collapses the insertion point from the end of the
selection to the current TextPoint

vsInsertFlagsCollapseToEnd Collapses the insertion point from beginning of the
selection to the current TextPoint

vsInsertFlagsContainNewText Replaces the current selection

vsInsertFlagsInsertAtStart Inserts the text before the start point of the selection

vsInsertFlagsInsertAtEnd Inserts text just after the end point of the selection

C04618747.fm Page 108 Friday, January 10, 2003 2:58 PM

Chapter 4 Visual Studio .NET Macros 109

Moving Windows
Windows in Visual Studio .NET are controlled through the Window object,
which is part of the DTE.Windows collection. The Window object provides
functionality based on the window type. Specifically, the CommandWindow,
OutputWindow, TaskList, TextWindow, and ToolBox derive from the Window
object.

Of the window objects, OutputWindow is among the most practical for
macro writing. You can use it to display and hold messages in much the same
way you would use printf or Console.Write in a console application, or in the
same way that you use MsgBox or MessageBox.Show in a Windows-based
application.

To use the OutputWindow object to display messages, you must create a
new method that takes a string argument. You can then call the method with
the argument in same way you use the MsgBox method to display a message.
The following example is a method named MsgWin. It takes only a string as an
argument. You can use this method in place of MsgBox when you want to
quickly see a bit of text information.

Sub MsgWin(ByVal msg As String)
Dim win As Window = DTE.Windows.Item(Constants.vsWindowKindOutput)
Dim cwin As Window =

DTE.Windows.Item(Constants.vsWindowKindCommandWindow)
Dim ow As OutputWindow = win.Object
Dim owp As OutputWindowPane
Dim cwp As CommandWindow = cwin.Object
Dim i As Integer
Dim exists As Boolean = False
’ Check to see if we’re running in the Command Window. If so,
’ we’ll send our output there. If not, we’ll send it to a Command
’ window.
If (DTE.ActiveWindow Is cwin) Then

cwp.OutputString(msg + vbCrLf)
Else

’ Determine if the output pane name exits. If it does, we need
’ to send our message there, or we end up with multiple windows of
’ the same name.
For i = 1 To ow.OutputWindowPanes.Count

If ow.OutputWindowPanes().Item(i).Name() = “MsgWin Output” Then
exists = True
Exit For

End If
Next

C04618747.fm Page 109 Friday, January 10, 2003 2:58 PM

110 Part I Visual Studio .NET as a Development Tool

’ If our output pane exits, we’ll use that to output the string,
’ otherwise, we’ll add it to the list.
If exists Then

owp = ow.OutputWindowPanes().Item(i)
Else

owp = ow.OutputWindowPanes.Add(“MsgWin Output”)
End If
’ Here we set the Output window to visible, activate the pane,
’ and send the string to the pane.
win.Visible = True
owp.Activate()
owp.OutputString(msg + vbCrLf)

End If
End Sub

MsgWin uses a pretty cool feature that’s found in the samples that ship
with Visual Studio .NET. The method determines whether the calling method
was invoked from the Command Window. If it was, the output is directed right
back to the user in the Command Window. If it’s called from a macro that was
run from a menu, shortcut, or button, MsgWin sends the output to an Output
window named MsgWin Output.

Tip The Samples macros project that ships with Visual Studio .NET
contains a lot of really good, functional macro code that you can use in
the macros you write.

To use the MsgWin macro, you must call it from another method. For this
example, we’ve created a method that lists all the currently open windows in
the IDE:

Sub MsgWinTest()
Dim wins As Windows = DTE.Windows()
Dim i As Integer

For i = 1 To wins.Count
MsgWin(wins.Item(i).Caption.ToString())

Next
End Sub

Figure 4-6 shows what the Visual Studio .NET IDE looks like after it has
been invoked from the MsgWinText macro in the IDE.

C04618747.fm Page 110 Friday, January 10, 2003 2:58 PM

Chapter 4 Visual Studio .NET Macros 111

F04MO06Figure 4-6 The MsgBox Output window in the IDE

You can do a lot of things with this basic MsgWin macro to improve it. It
would be pretty trivial to overload the MsgWin method to allow for such actions
as clearing the output pane or adding a heading to the list. For example, to cre-
ate an overload for the MsgWin function that clears the output pane, you can
make the method look something like this:

Sub MsgWin(ByVal msg As String, ByVal clr As Boolean)
§
’ If clr is True then we’ll clear the output pane.
If clr = True Then

owp.Clear()
End If
’ Here we set the Output window to visible, activate the pane,
’ and send the string to the pane.
win.Visible = True
owp.Activate()
owp.OutputString(msg + vbCrLf)

End If
End Sub

Of course, this overload won’t do you much good if you call the macro the way
we did in MsgBoxTest, but as you can see it’s easy enough to do what you want
with the macro.

C04618747.fm Page 111 Friday, January 10, 2003 2:58 PM

112 Part I Visual Studio .NET as a Development Tool

Another way to add this kind of functionality to your macros is to create
an assembly in the language of your choice and then reference that assembly
from within your macro project. We did this with the CommandWindowPaneEx
object.

Using Assemblies in Your Macros
A couple of things become apparent when you start to use macros a lot. The
first is that you can use macros as a place to test the functionality of .NET
assemblies. For example, if you want to test some bit of functionality in the
framework, all you need to do is reference the appropriate assembly and then
call the methods from within a macro. With a little practice, you’ll find that the
Macros IDE can work as a little laboratory that lets you try out functionality
without having to mess around with rebuilding your projects.

The second thing you’ll notice is that you have to write all this cool stuff
in Visual Basic, and if that’s not your preferred language, you might be spend-
ing a lot of time performing tasks you already know how to accomplish quickly
in another language. As we mentioned earlier, there is a way to write macro
functionality in languages other than Visual Basic—by building your function-
ality into an assembly and then referencing that assembly from within your
macro project.

We wrote a base set of utility functions for the book that you can take
advantage of in your own macros and add-ins. In the Utilities folder of the com-
panion content, you’ll find the Utilities solution. This solution contains the Out-
pu tWindowPaneEx ob jec t . Bu i ld the so lu t ion and copy the
InsideVSNET.Utilities.dll file from the bin\debug folder for the project into the
C:\Program Files\Microsoft Visual Studio .NET 2003\Common7\IDE\Public-
Assemblies folder.

Once you’ve copied that file into your Public Assemblies folder, you can
add a reference to the assembly from your macro project in the Macros IDE by
right-clicking on the References folder in the Project Explorer window and
choosing Add Reference, or by selecting the References folder and typing
Project.AddReference into the Macros IDE Command Window. On the .NET
tab of the Add Reference dialog box, you should see the new InsideVSNET.Util-
ities assembly. Select it in the list, click Select, and then click OK. You’ll see the
new assembly in the list of references if you expand the References folder.

After you add the reference to your project, it’s helpful to add the appro-
priate Imports statement to your module. In this case, you’ll add the following
to the top of the module:

Imports InsideVSNET.Utilities

C04618747.fm Page 112 Friday, January 10, 2003 2:58 PM

Chapter 4 Visual Studio .NET Macros 113

Once you add the reference, IntelliSense kicks in automatically as you cre-
ate an OutputWindowPaneEx object and use it. The really cool thing about this
object is that it lets you specify whether to send your output to the Output win-
dow in the Visual Studio .NET IDE or to the Macros IDE. In this example, we
specified the Macros IDE, passing DTE.MacrosIDE when we created the object.
We also changed the test a bit by enumerating the open windows in the Macros
IDE rather than the Visual Studio .NET IDE, as we did earlier.

Sub OutputWindowPaneExTest()
Dim owp As New OutputWindowPaneEx(DTE.MacrosIDE)
Dim wins As Windows = DTE.MacrosIDE.Windows()
Dim i As Integer

owp.Activate()

For i = 1 To wins.Count
owp.WriteLine(wins.Item(i).Caption.ToString())

Next
End Sub

In addition to letting you perform the tasks that you’re able to perform
with the OutputWindowPane object, OutputWindowPaneEx lets you do a num-
ber of things with text that you want to send to an Output window. As we men-
tioned, you can specify the IDE to which you want to send your output. The
Write method has three overloads, letting you specify an object, a string, or a
formatting string/parameter array. Using these overloads, you can specify for-
matting options, much like using the System.Console.Write and System.Con-
sole.WriteLine methods in the .NET Framework.

Macro Events
One of the most powerful features of macros in the IDE is an event model that
lets you fire macros based on events that take place in the IDE. You can use
events to fire macros that create logs, reset tests, or manipulate different parts of
the IDE in the ways we’ve already talked about in this chapter. In this short sec-
tion, we’ll show you how to create event handlers for different events in the
IDE. Using this information and the detailed information about the different
parts of the automation API discussed throughout the rest of the book, you
should have a good idea how to take advantage of events in your own projects.

The easiest way to get to the event handlers for a macros project is
through the Project Explorer window in the Macros IDE. Expand a project, and
you’ll see an EnvironmentEvents module listed. Open that file, and you’ll see

C04618747.fm Page 113 Friday, January 10, 2003 2:58 PM

114 Part I Visual Studio .NET as a Development Tool

a block of code that’s been generated automatically by the IDE. Here’s the
important part of the block. (The attributes have been removed to make this fit
the page.)

Public WithEvents DTEEvents As EnvDTE.DTEEvents
Public WithEvents DocumentEvents As EnvDTE.DocumentEvents
Public WithEvents WindowEvents As EnvDTE.WindowEvents
Public WithEvents TaskListEvents As EnvDTE.TaskListEvents
Public WithEvents FindEvents As EnvDTE.FindEvents
Public WithEvents OutputWindowEvents As EnvDTE.OutputWindowEvents
Public WithEvents SelectionEvents As EnvDTE.SelectionEvents
Public WithEvents BuildEvents As EnvDTE.BuildEvents
Public WithEvents SolutionEvents As EnvDTE.SolutionEvents
Public WithEvents SolutionItemsEvents As EnvDTE.ProjectItemsEvents
Public WithEvents MiscFilesEvents As EnvDTE.ProjectItemsEvents
Public WithEvents DebuggerEvents As EnvDTE.DebuggerEvents

As you can see from this listing, there are a lot of event types you can take
advantage of in the IDE. In fact, you can use all the DTE events, though they’re
not included by default. You can add these other events to this list to get to the
events that you’re interested in. To create a new event handler, you select the
event type you want to handle from the Class Name list at the top of the code
window. You can see how this looks in Figure 4-7.

F04MO07Figure 4-7 Selecting the event type you want to handle from the Class
Name list

C04618747.fm Page 114 Friday, January 10, 2003 2:58 PM

Chapter 4 Visual Studio .NET Macros 115

After you select an event type, the Method Name list in the upper-right por-
tion of the code pane will list the events you can handle, as shown in Figure 4-8.

F04MO08Figure 4-8 Selecting the event you want to handle from the Method
Name list

Select the event you want from the list, and your event handler will be
generated automatically. From this generated event handler, you can call a
method that you’ve created in the project, or you can add your event handling
functionality directly to the event handler code. In this example, we’ll call the
MsgWin function that we worked through earlier to display a message that indi-
cates that the build has completed.

Private Sub BuildEvents_OnBuildDone(ByVal Scope As EnvDTE.vsBuildScope, _
ByVal Action As EnvDTE.vsBuildAction) _
Handles BuildEvents.OnBuildDone

MsgWin(“Build is done!”)
End Sub

As you can imagine, these events open up all sorts of possibilities for
automation and customization in the IDE. One thing you should keep in mind
when working with events is that all the code in a single macro project shares
the same event module. This means that if you want to create different event
handlers for the same event, you’ll need to create the other event handlers in
other projects.

C04618747.fm Page 115 Friday, January 10, 2003 2:58 PM

116 Part I Visual Studio .NET as a Development Tool

Event Security
As you can imagine, executing event code in a powerful macros facility
such as the one in Visual Studio .NET has some potential security implica-
tions. The first time you load a macro project that contains event-handling
code, you see a dialog box that looks like this:

G04MO01You should be sure you know where your macros come from when
you load macro projects. If you’re not sure of the event-handling code in
the project, click Disable Event Handling Code in the Warning dialog box
and review the code in the module before you use it.

Sharing Macros with Others
If you want to share the macros that you’ve created, you have a number of
choices to make. Do you want to share the source? Do you want to share the
whole project or just part of it? The answers to these questions will determine
how to best share your work. Let’s take a look at the different ways that you can
share your macro functionality with others.

Exporting Modules and Projects
The easiest way to share your macros with other developers is to simply cut and
paste your source code into e-mail messages and Usenet postings. This approach
works well if the methods you’re sharing are fairly short and if they don’t span
multiple modules. If they do span multiple modules, you’ll probably want to
export the modules you want to share or simply pass on the whole project.

To export a macro module in Visual Studio .NET, you must open the Mac-
ros IDE and select the module you want to export from the Project Explorer
window. Pressing Ctrl+E will invoke the File.SaveSelectedItemsAs command,

C04618747.fm Page 116 Friday, January 10, 2003 2:58 PM

Chapter 4 Visual Studio .NET Macros 117

which brings up the Export File dialog box. This command is listed on the File
menu as Export.

The Export File dialog box lets you save the module as a .vb file that you
can easily import into another project using the File.AddExisitingItem command
(Shift+Alt+A). Don’t forget to include the code from the EnvironmentEvents
module if your macros rely on some sort of event functionality.

If your macros are very complicated, you might want to share an entire
macro project. You can do this in a couple of ways. You can copy the .vsmacros
file for the project and pass it along, or you can save your macro project as a
text-based project and share those files.

To make a macros project text-based, you change the StorageFormat
property in the Visual Studio .NET IDE for the project that you want to change.
Select the project in Macro Explorer and then change the StorageFormat prop-
erty in the Properties window from Binary (.vsmacros) to Text (UNICODE).
This change will create a number of files in the macro project’s folder that looks
much like a regular Visual Studio .NET project folder. In Figure 4-9, you can see
the folder for the Samples project after it has been converted to Text format.

F04MO09Figure 4-9 A macro project that has been stored in Text format

The advantage of passing along a text-based project is that it allows other
programmers to look at the source files in your project before loading them into
their IDE.

There’s always a security risk in opening unknown macro projects in any
application. Be sure you know where any binaries you open came from. At the
very least, check the EnvironmentEvents.vb module to make sure it doesn’t
include any unexpected code.

Also keep in mind that shipping a binary macro project does nothing to safe-
guard your source code. To do that, you’re better off adding your functionality to

C04618747.fm Page 117 Friday, January 10, 2003 2:58 PM

118 Part I Visual Studio .NET as a Development Tool

an assembly that gets called from a macro, as we demonstrated earlier. An even
better solution, where appropriate, is to turn your macro project into an add-in.

Turning Macros into Add-ins
Visual Studio .NET ships with a macro in the Samples project that lets you turn
a macro project into a Visual Studio .NET add-in, complete with an installer.
The macros in the MakeAddin module take a macro and turn it into an add-in
project that you can compile and install into your environment. Macros that
have been turned into add-ins can be shipped as binaries that are installed on
a user’s machine. Keep in mind, though, that you really should test the add-ins
that you create in this way to make sure they do what you expect.

For this example, we’ll take the AutoHideToggle macro that we created in
Chapter 1 and turn it into an add-in using the MakeAddin macros. To get
started, copy the macro you want to turn into an add-in into a new macro
project. You can give the project the same name as the method if you want. Just
be sure to build the new project to test it before you use it.

Next, you create a new add-in project in Visual Studio .NET by pressing
Ctrl+Shift+N to open the New Project dialog box. Expand the Other Projects
folder and then open the Extensibility Projects folder to get to the Visual Studio
.NET Add-in project template, as shown in Figure 4-10.

F04MO10Figure 4-10 Creating a new add-in project

Give your new add-in an appropriate name, and then go through the wiz-
ard to create a Visual Basic .NET add-in project that installs a menu command
in the IDE.

C04618747.fm Page 118 Friday, January 10, 2003 2:58 PM

Chapter 4 Visual Studio .NET Macros 119

After your new add-in project is complete, press Ctrl+Alt+A to bring up the
Command Window and then type Macros.Samples.MakeAddin.MakeAddin-
FromMacroProj. This will bring up the input box shown in Figure 4-11. In the
box, type the name of the macro project you want to turn into an add-in, and
then click OK.

F04MO11Figure 4-11 Specifying the macro project you want to turn into an add-in

At this point, if all the projects are of the right type, you should see a mes-
sage asking you to confirm that you want to run the macro on the current
project. Click OK, and the MakeAddin macro project will complete its work.
When the macro is finished, you’ll see the dialog box shown in Figure 4-12.
What the MakeAddin macro has done is add the macro functionality from your
project to the new add-in.

F04MO12Figure 4-12 The message box confirming completion and final instruc-
tions for the MakeAddin macro

To test the new add-in, press F5 to start debugging; you should see a sec-
ond instance of the Visual Studio .NET IDE open. On the Tools menu of that
second instance of the IDE, you should see a menu containing the name of
your project and the name of the macros that were in your original macro
project. You can see in Figure 4-13 that the AutoHideToggle add-in is ready to
go. Choosing this menu command does exactly what running the macro in the
IDE did in Chapter 1.

C04618747.fm Page 119 Friday, January 10, 2003 2:58 PM

120 Part I Visual Studio .NET as a Development Tool

Note If you use this add-in or the macro described in Chapter 1,
keep in mind that the layout you have open will become your default
layout. It won’t overwrite the layouts that ship with Visual Studio .NET,
but if you want to get back to one of those, you’ll need to go back to
the My Profile tab on the Start Page and select an alternative layout
in the Windows Layout list. Then select the layout you chose when
you originally created your profile and your windows should return to
that layout.

F04MO13Figure 4-13 The new AutoHideToggle add-in in the IDE

To use this new add-in in Visual Studio .NET, you build a release version
of the setup project that’s generated for the add-in and then you navigate to the
folder containing the setup program. Close all your instances of Visual Studio
.NET and run the Setup.exe program. When you open the IDE, you’ll find that
your new add-in has been installed and is ready for use.

C04618747.fm Page 120 Friday, January 10, 2003 2:58 PM

Chapter 4 Visual Studio .NET Macros 121

Looking Ahead

This chapter gave you some information about using the Visual Studio .NET
macro facility to perform some simple automation tasks. Part II of the book
should provide you with enough information to do just about anything you
want with automation in Visual Studio .NET.

C04618747.fm Page 121 Friday, January 10, 2003 2:58 PM

C04618747.fm Page 122 Friday, January 10, 2003 2:58 PM

