
THE MICROSOFT JOURNAL FOR DEVELOPERS

COLUMNS
CUTTING EDGE
Action Filters in ASP.NET MVC
Dino Esposito page 6

DATA POINTS
Entity Framework Preview: Code
First, ObjectSet and DbContext
Julie Lerman page 14

CLR INSIDE OUT
New Features and Improved
Performance in Silverlight 4
Justin Van Patten and
Andrew Pardoe page 20

FORECAST: CLOUDY
Performance-Based Scaling
in Windows Azure
Joseph Fultz page 86

THE WORKING PROGRAMMER
Multiparadigmatic .NET, Part 2
Ted Neward page 91

UI FRONTIERS
Multi-Touch Inertia
Charles Petzold page 95

DON’T GET ME STARTED
Devs and Designers
Should Be Friends
David Platt page 100

OCTOBER 2010 VOL 25 NO 10

DISTRIBUTED APPS
AppFabric Service Bus Discovery
Juval Lowy . 30

Runtime Data Sharing Through an
Enterprise Distributed Cache
Iqbal Khan . 42

Building a Real-Time Transit Application
Using the Bing Map App SDK
Luan Nguyen . 50

Connected Devices Using the .NET Micro Framework
Colin Miller . 60

PLUS:

Getting Started with Windows
Phone Development Tools
Joshua Partlow . 70

Scalable Multithreaded Programming
with Thread Pools
Ron Fosner . 80

Untitled-5 2 3/5/10 10:16 AM

www.infragistics.com

Sure, Visual Studio 2010 has a lot of great functionality—
we’re excited that it’s only making our User Interface
components even better! We’re here to help you go

beyond what Visual Studio 2010 gives you so you can create
Killer Apps quickly, easily and without breaking a sweat! Go

to infragistics.com/beyondthebox today to expand your
toolbox with the fastest, best-performing and most powerful

UI controls available. You’ll be surprised
by your own strength!

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055

Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

Untitled-5 3 3/5/10 10:16 AM

www.infragistics.com

magazine

Printed in the USA

LUCINDA ROWLEY Director
DIEGO DAGUM Editorial Director/mmeditor@microsoft.com
KERI GRASSL Site Manager

KEITH WARD Editor in Chief/mmeditor@microsoft.com
TERRENCE DORSEY Technical Editor
DAVID RAMEL Features Editor
WENDY GONCHAR Managing Editor
KATRINA CARRASCO Associate Managing Editor

SCOTT SHULTZ Creative Director
JOSHUA GOULD Art Director
ALAN TAO Senior Graphic Designer

CONTRIBUTING EDITORS K. Scott Allen, Dino Esposito, Julie Lerman, Juval
Lowy, Dr. James McCaffrey, Ted Neward, Charles Petzold, David S. Platt

Henry Allain President, Redmond Media Group
Matt Morollo Vice President, Publishing
Doug Barney Vice President, Editorial Director
Michele Imgrund Director, Marketing
Tracy Cook Online Marketing Director

ADVERTISING SALES: 508-532-1418/mmorollo@1105media.com

Matt Morollo VP, Publishing
Chris Kourtoglou Regional Sales Manager
William Smith National Accounts Director
Danna Vedder Microsoft Account Manager
Jenny Hernandez-Asandas Director Print Production
Serena Barnes Production Coordinator/msdnadproduction@1105media.com

Neal Vitale President & Chief Executive Officer
Richard Vitale Senior Vice President & Chief Financial Officer
Michael J. Valenti Executive Vice President

Abraham M. Langer Senior Vice President, Audience Development & Digital Media
Christopher M. Coates Vice President, Finance & Administration
Erik A. Lindgren Vice President, Information Technology & Application Development
Carmel McDonagh Vice President, Attendee Marketing
David F. Myers Vice President, Event Operations

Jeffrey S. Klein Chairman of the Board

MSDN Magazine (ISSN 1528-4859) is published monthly by 1105 Media, Inc., 9201 Oakdale Avenue,
Ste. 101, Chatsworth, CA 91311. Periodicals postage paid at Chatsworth, CA 91311-9998, and at
additional mailing offices. Annual subscription rates payable in US funds are: U.S. $35.00, International
$60.00. Annual digital subscription rates payable in U.S. funds are: U.S. $25.00, International $25.00.
Single copies/back issues: U.S. $10, all others $12. Send orders with payment to: MSDN Magazine,
P.O. Box 3167, Carol Stream, IL 60132, email MSDNmag@1105service.com or call (847) 763-9560.
POSTMASTER: Send address changes to MSDN Magazine, P.O. Box 2166, Skokie, IL 60076. Canada
Publications Mail Agreement No: 40612608. Return Undeliverable Canadian Addresses to Circulation
Dept. or IMS/NJ. Attn: Returns, 310 Paterson Plank Road, Carlstadt, NJ 07072.

Printed in the U.S.A. Reproductions in whole or part prohibited except by written permission. Mail requests
to “Permissions Editor,” c/o MSDN Magazine, 16261 Laguna Canyon Road, Ste. 130, Irvine, CA 92618.

Legal Disclaimer: The information in this magazine has not undergone any formal testing by 1105 Media,
Inc. and is distributed without any warranty expressed or implied. Implementation or use of any information
contained herein is the reader’s sole responsibility. While the information has been reviewed for accuracy,
there is no guarantee that the same or similar results may be achieved in all environments. Technical
inaccuracies may result from printing errors and/or new developments in the industry.

Corporate Address: 1105 Media, Inc., 9201 Oakdale Ave., Ste 101, Chatsworth, CA 91311, www.1105media.com

Media Kits: Direct your Media Kit requests to Matt Morollo, VP Publishing, 508-532-1418 (phone),
508-875-6622 (fax), mmorollo@1105media.com

Reprints: For single article reprints (in minimum quantities of 250-500), e-prints, plaques and posters contact:
PARS International, Phone: 212-221-9595, E-mail: 1105reprints@parsintl.com, www.magreprints.com/
QuickQuote.asp

List Rental: This publication’s subscriber list, as well as other lists from 1105 Media, Inc., is available
for rental. For more information, please contact our list manager, Merit Direct. Phone: 914-368-1000;
E-mail: 1105media@meritdirect.com; Web: www.meritdirect.com/1105

All customer service inquiries should be sent to MSDNmag@1105service.com or call 847-763-9560.

OCTOBER 2010 VOLUME 25 NUMBER 10

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
mailto:508-532-1418/mmorollo@1105media.com
mailto:msdnadproduction@1105media.com
mailto:MSDNmag@1105service.com
http://www.1105media.com
mailto:mmorollo@1105media.com
mailto:1105reprints@parsintl.com
http://www.magreprints.com/
mailto:1105media@meritdirect.com
http://www.meritdirect.com/1105
mailto:MSDNmag@1105service.com
www.dtSearch.com

programmersparadise.com

Your best source for
software development tools!

Prices subject to change. Not responsible for typographical errors.

®

programmers.com/theimagingsource

Download a demo today.

New
Service
Pack!

Professional Edition
Paradise #

T79 02101A02
$1,220.99

programmers.com/ca

CA ERwin® Data Modeler r7.3 – Product Plus 1 Year Enterprise Maintenance
CA ERwin Data Modeler is a data modeling solution that enables you to create and maintain
databases, data warehouses and enterprise data resource models. These models help you
visualize data structures so that you can effectively organize, manage and moderate data
complexities, database technologies and the deployment environment.

• .NET WinForms control for VB.NET and C#
• ActiveX for VB6, Delphi, VBScript/HTML, ASP
• File formats DOCX, DOC, RTF, HTML, XML, TXT
• PDF and PDF/A export, PDF text import
• Tables, headers & footers, text frames,

bullets, structured numbered lists, multiple
undo/redo, sections, merge fields, columns

• Ready-to-use toolbars and dialog boxes

TX Text Control 15.1
Word Processing Components
TX Text Control is royalty-free,
robust and powerful word processing
software in reusable component form.

programmers.com/pragma

“Pragma SSH for Windows”
Best SSH/SFTP/SCP Servers
and Clients for Windows
by Pragma Systems
Get all in one easy to use high performance
package. FIPS Certified and Certified for Windows.
• Certified for Windows Server 2008R2
• Compatible with Windows 7
• High-performance servers with

centralized management
• Active Directory & GSSAPI authentication
• Supports over 1000 sessions
• Hyper-V and PowerShell support
• Runs in Windows 2008R2/2008/2003/

7/Vista/XP/2000

Paradise #
P35 04201A01
$550.99

Paradise #
P26 04201E01
$3,931.99

programmers.com/vSphereprogrammers.com/LEAD

LEADTOOLS Recognition SDK
by LEAD Technologies
Develop desktop and server document imaging
and ECM applications that require high-speed
multi-threaded forms recognition and process-
ing, OCR, ICR, OMR, and barcode technology.
• Supports text, OMR, image, and

1D/2D barcode fields
• Recognize machine print and constrained

handwritten text
• Auto-registration and clean-up to

improve recognition results
• Latin character set support is included.

Arabic and Asian support is available
Paradise #
L05 26301A01
$3,214.99

Certified
for Windows
7/2008R2

VMware vSphere
Essentials Kit Bundle
vSphere Essentials provides an all-in-one
solution for small offices to virtualize three
physical servers for consolidating and
managing applications to reduce hardware
and operating costs with a low up-front
investment. vSphere Essentials includes:

• VMware ESXi and VMware ESX
(deployment-time choice)

• VMware vStorage VMFS
• Four-way virtual SMP
• VMware vCenter Server Agent
• VMware vStorage APIs/VCB
• VMware vCenter Update Manager
• VMware vCenter Server for Essentials

for 3 hosts
Paradise #

V55 85101A02

$446.99

ActiveReports 6
by GrapeCity
Integrate Business Intelligence/Reporting/Data
Analysis into your .NET applications using the
NEW ActiveReports 6.

• Fast and Flexible reporting engine

• Data Visualization and Layout Controls such
as Chart, Barcode and Table Cross Section
Controls

• Wide range of Export and Preview formats
including Windows Forms Viewer, Web
Viewer, Adobe Flash and PDF

• Royalty-Free Licensing for Web and
Windows applications

Professional Ed.
Paradise #
D03 04301A01
$1,310.99

NEW
VERSION

6!

BUILD ON
VMWARE ESXi
AND VSPHERE
for Centralized Management,
Continuous Application
Availability, and Maximum
Operational Efficiency in Your
Virtualized Datacenter.
Programmer’s Paradise invites you to take advantage
of this webinar series sponsored by our TechXtend
solutions division.

FREE VIRTUALIZATION WEBINAR SERIES:
REGISTER TODAY! TechXtend.com/Webinars

programmers.com/grapecity

programmers.com/flexera

InstallShield Professional
for Windows 2011
by Flexera Software
If your software targets Windows®,
InstallShield® is your solution. It makes it
easy to author high-quality reliable Windows
Installer (MSI) and InstallScript installations
and App-V™ virtual packages for Windows
platforms, including Windows 7. InstallShield,
the industry standard for MSI installations,
also supports the latest Microsoft technologies
including Visual Studio 2010, .NET
Framework 4.0, IIS7.0, SQL Server 2008
SP1, and Windows Server 2008 R2 and
Windows Installer 5, keeping your customers
happy and your support costs down.

Upg from any
Active IS Pro +

IS Pro Silver Mtn
Paradise #

I21H02401B01

$1,384.99

866-719-1528

FREE 30-DAY
PROOF OF CONCEPT

Learn more:
programmers.com/eliminate-wasteful-license-spend

STOP OVERBUYING SOFTWARE TODAY!
Eliminate Wasteful Software
License Spend:
• Control your software

licensing costs

• Stop paying for licenses
you’re not using

• Reduce your license spend
by $300+ per desktop user

NEW! Intel®
Parallel Studio 2011
by Intel
A comprehensive, all-in-one toolkit
for Microsoft Visual Studio® C/C++
developers, Intel® Parallel Studio
2011 simplifies the analysis,
compiling, debugging, error-checking,
and tuning of your serial and
threaded apps.

With Intel Parallel Studio, get
everything you need to optimize
legacy serial code, exploit multicore,
and scale for manycore.

programmers.com/intel

Single User DVD
Paradise #

I23 63101E03

$753.99

NEW
RELEASE!

programmers.com/microsoft

Microsoft Visual Studio
Professional 2010
by Microsoft
Microsoft Visual Studio 2010 Professional with
MSDN Essentials Subscription is an integrated
environment that simplifies creating, debugging
and deploying applications. Unleash your creativity
and bring your vision to life with powerful design
surfaces and innovative collaboration methods for
developers and designers. Work within a personal-
ized environment, targeting a growing number of
platforms, including Microsoft SharePoint and cloud
applications and accelerate the coding process by
using your existing skills. Integrated support for
Test-First Development and new debugging tools
let you find and fix bugs quickly and easily to
ensure high quality solutions.

FREE WEBINAR SERIES: MAXIMIZING DATA QUALITY FOR VALUE AND ROI
Data is a company’s greatest asset. Enterprises that can harness the power of their data will be strategically posi-
tioned for the next business evolution. But too often businesses get bogged down in defining a Data Management
process, awaiting some “magic bullet”, while the scope of their task grows larger and their data quality erodes.
Regardless of how your eventual data management solution is implemented, there are processes that need to
occur now to facilitate that process. In this new series, with a mixture of slides, demonstrations and Q&A sessions,
we will discuss how to use your existing Data Modeling assets to build the foundations of strong data quality.

REGISTER TODAY! programmers.com/CA

NEW
RELEASE!

with MSDN
Paradise #

M47 40201A02

$1,060.99

Untitled-1 1 9/1/10 11:39 AM

www.programmersparadise.com

msdn magazine4

A Few of My Favorite App Things

carefully; it may be the thing that makes or breaks your success
in the Windows Phone 7 market.

2. Stability. No matter how entertaining your game is, how
useful your password-management app is, or how revolution-
ary your guitar-tuner app, if it’s buggy from the beginning, it’s
likely to be unused. And worse, the negative comments on the
Microsoft app store (whatever form that store may take) could
be fatal. Version 1 apps built with the attitude of “we’ll fi x it with
version 2” may not make it to version 2.
 I have a GPS app on my smartphone (the manufacturer shall
remain anonymous—I’ll be getting Windows Phone 7 as soon
as it’s out) that works about half the time. When it does work, it’s
awesome. But it’s my least-favorite app, by a mile, because I never
know if I’ll be able to use it. Again, you’ll probably have many
competitors in your space; even if their apps are inferior to yours
in terms of features, they’ll get the sales because they just work.

3. Complexity, or lack thereof. Never, ever forget that these
apps will be on tiny screens, with users pushing fi ngers around. A
UI that tries to cram in too much is doomed. Simplicity wins the
day here. Ask yourself if every menu bar, button and icon must be
there. If not, be brutal and delete. You’re not going to get—nor do
users expect—the kind of UI choices and options available with a
typical desktop app. In fact, they’ll be expecting the opposite: a clean,
spare, easy-to-navigate UI that involves as little reading as possible.

4. Get it to market early. You have an opportunity to get your
app the kind of attention and publicity that’s simply not available
with apps from the “other guys.” Th is is a brand-new market, and
now’s the time to plant your fl ag. I’m not saying to rush development
and invalidate point No. 2, but instead to move resources around
to give your Windows Phone 7 development team the ability to
create a polished app that’s ready to go when the phone launches.
So get to work. I can’t wait

to see what you come up with.
Tell me about your app at
mmeditor@microsoft.com.

Windows Phone 7 will be out possibly as early as the month you
read this—October—although no firm release date had been
announced as of this writing. Obviously, Windows Phone 7 repre-
sents a lot of risk for Microsoft —and a lot of potential.

Th ere’s no getting around the fact that Microsoft is late to the
smartphone game, with the iPhone and Android gobbling up
market share. But, in my opinion, it’s not too late—not by a long
shot. Right now the aforementioned competitors are the main
game in town: HP hasn’t given any clues as to what will happen
with the Palm Pre phone since it bought Palm, and the BlackBerry
has no juice at all. That means there’s absolutely room for
another entry, and Microsoft is working hard to make sure Windows
Phone 7 becomes that third major player.

To do that, it will all be about—say it with me (and skip a little bit,
if you’re feeling brave)—developers, developers, developers, devel-
opers! Previews of the UI are encouraging, and I love the fact that
Microsoft hasn’t copied what Apple and Google have done with
their interfaces, coming up with something completely diff erent.

But at the end of the day, folks buy smartphones because of the apps
they can put on them. It will be crucial for the developer community to
have a heaping helping of apps ready to go at launch, and many more
soon aft er. If those apps aren’t outstanding—and they need to be, given
the competition’s head start—it will make the hill that much higher
to climb. So, putting on my consumer hat, here’s what I think are the
key features of any Windows Phone 7 app, in order of importance:
1. Price. Studies continue to show that the lowest-priced and

free apps are the most popular. Th at’s no revelation, but worth
keeping on the front burner of your go-to-market strategy. It’s
tempting, when you’ve put in six months of development on
something, to assume that customers will want to pony up for
your brilliant app. Th e reality is, however, that you’ll have more
competition in your space—whatever your space is —than you’ve
probably ever had before. Th at means making a calculation on
whether a competitive price will bring in enough downloads to
off set the lower price. I urge you to consider this point very, very

EDITOR’S NOTE KEITH WARD

© 2010 Microsoft Corporation. All rights reserved.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, you are not permitted to reproduce, store, or introduce into a retrieval system MSDN Magazine or any part of MSDN
Magazine. If you have purchased or have otherwise properly acquired a copy of MSDN Magazine in paper format, you are permitted to physically transfer this paper copy in unmodifi ed form. Otherwise, you are not permitted to transmit
copies of MSDN Magazine (or any part of MSDN Magazine) in any form or by any means without the express written permission of Microsoft Corporation.

A listing of Microsoft Corporation trademarks can be found at microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx. Other trademarks or trade names mentioned herein are the property of their respective owners.

MSDN Magazine is published by 1105 Media, Inc. 1105 Media, Inc. is an independent company not affi liated with Microsoft Corporation. Microsoft Corporation is solely responsible for the editorial contents of this magazine. The
recommendations and technical guidelines in MSDN Magazine are based on specifi c environments and confi gurations. These recommendations or guidelines may not apply to dissimilar confi gurations. Microsoft Corporation does not make
any representation or warranty, express or implied, with respect to any code or other information herein and disclaims any liability whatsoever for any use of such code or other information. MSDN Magazine, MSDN, and Microsoft logos are
used by 1105 Media, Inc. under license from owner.

Visit us at msdn.microsoft.com/magazine. Questions, comments or suggestions for MSDN Magazine? Send them to the editor: mmeditor@microsoft.com.

mailto:mmeditor@microsoft.com
mailto:mmeditor@microsoft.com
http://msdn.microsoft.com/magazine
http://microsoft.com/library/toolbar/3.0/trademarks/en-us.mspx

Untitled-1 1 9/1/10 10:08 AM

www.axosoft.com

msdn magazine6

Action Filters in ASP.NET MVC

ASP.NET MVC comes with a few predefi ned action fi lters such
as HandleError, Authorize and OutputCache. You use Handle-
Error to trap exceptions thrown during the execution of methods
on the target controller class. Th e programming interface of the
HandleError attribute lets you indicate the error view to associate
with a given exception type.

Th e Authorize attribute blocks the execution of a method for
unauthorized users. It doesn’t distinguish, however, between users
who just haven’t logged in yet and logged users lacking enough
permissions to perform a given action. In the confi guration of the
attribute, you can specify any roles required to execute a given action.

Th e OutputCache attribute caches the response of the controller’s
method for the specifi ed duration and requested list of parameters.

An action fi lter class implements several interfaces. Th e full list
of interfaces is presented in Figure 1.

In the most common scenarios, you’re mostly concerned with
IActionFilter and IResultFilter. Let’s get to know them more closely.
Here’s the defi nition of the IActionFilter interface:

public interface IActionFilter
{
 void OnActionExecuted(ActionExecutedContext filterContext);
 void OnActionExecuting(ActionExecutingContext filterContext);
}

You implement the OnActionExecuting method to execute code
before the controller’s action executes; you implement OnAction-
Executed to post-process the controller state a method has deter-
mined. Th e context objects provide a lot of runtime information.
Here’s the signature of ActionExecutingContext:

public class ActionExecutingContext : ControllerContext
{
 public ActionDescriptor ActionDescriptor { get; set; }
 public ActionResult Result { get; set; }
 public IDictionary<string, object> ActionParameters { get; set; }
}

Th e action descriptor, in particular, provides information about
the action method, such as its name, controller, parameters, attributes
and additional fi lters. Th e signature of ActionExecutedContext is
only a bit diff erent, as shown here:

public class ActionExecutedContext : ControllerContext
{
 public ActionDescriptor ActionDescriptor { get; set; }
 public ActionResult Result { get; set; }
 public bool Canceled { get; set; }
 public Exception Exception { get; set; }
 public bool ExceptionHandled { get; set; }
}

In addition to a reference to the action description and action
result, the class supplies information about an exception that could’ve
occurred and off ers two Boolean fl ags that deserve more attention.

Th e biggest challenge many soft ware architects face today is how
to design and implement an application that can meet all version
1 requirements plus all others that can show up aft erward. Main-
tainability has been one of the fundamental attributes of soft ware
design since the fi rst draft of the ISO/IEC 9126 paper, back in 1991.
(Th e paper provides a formal description of soft ware quality and
breaks it down into a set of characteristics and sub-characteristics,
one of which is maintainability. A PDF version of the paper can
be obtained at iso.org.)

Th e ability to serve a customer’s present and future needs certain ly
isn’t a new requirement for any piece of soft ware. However, what
many Web applications require today is a subtle and short-term
form of maintainability. Many times customers don’t want new
functions or a diff erent implementation of an existing feature. Th ey
just want you to add, replace, confi gure or remove small pieces of
functionality. A typical example is when Web sites with large
audiences launch specifi c advertising campaigns. Th e overall behav-
ior of the site doesn’t change, but extra actions must be performed
along with existing actions. Moreover, these changes usually aren’t
persistent. Th ey must be removed aft er a few weeks to then be
reincorporated a few months later, be confi gured diff erently and so
forth. You need the ability to program any required functionality by
composing small pieces together; you need to track dependencies
without greatly impacting the source code; and you need to move
toward an aspect-oriented design of soft ware. Th ese are some of
the primary reasons behind the rapid adoption of Inversion of
Control (IoC) frameworks in many enterprise projects.

So what’s this article all about? It isn’t meant to be a boring lec-
ture on how soft ware is changing today. Instead, it’s an in-depth
exploration of a powerful feature of ASP.NET MVC controllers
that can notably help you in the building of aspect-oriented Web
solutions: ASP.NET MVC action fi lters.

What’s an Action Filter, Anyway?
An action fi lter is an attribute that, when attached to a controller
class or a controller method, provides a declarative means to
attach some behavior to a requested action. By writing an action
fi lter, you can hook up the execution pipeline of an action method
and adapt it to your needs. In this way, you can also take out of the
controller class any logic that doesn’t strictly belong to the controller.
In doing so, you make this particular behavior reusable and,
more importantly, optional. Action fi lters are ideal for implementing
crosscutting concerns that aff ect the life of your controllers.

CUTTING EDGE DINO ESPOSITO

Untitled-1 1 9/15/10 12:07 PM

www.webuistudio.net/try

msdn magazine8 Cutting Edge

Th e ExceptionHandled fl ag indicates that your action fi lter is given a
chance to mark an occurred exception as handled. Th e Canceled fl ag
concerns the Result property of the ActionExecutingContext class.

Note that the Result property on the ActionExecutingContext
class exists only to move the burden of generating any action
response from the controller method to the list of registered action
fi lters. If any action fi lters assign a value to the Result property, the
target method on the controller class will never be invoked. In doing
this, you bypass the target method, moving the burden of producing
a response entirely to action filters. However, if multiple action
fi lters were registered for a controller method, then they’d share
the action result. When a fi lter sets the action result, all subsequent
fi lters in the chain will receive the ActionExecuteContext object
with the property Canceled set to true. Whether you set Canceled
programmatically in the action-executed step, or set the Result prop-
erty in the action-executing step, the target method will never be run.

Writing Action Filters
As mentioned, when it comes to writing custom fi lters, most of the
time you’re interested in fi lters that pre- and post-process the action
result and fi lters that run before and aft er the execution of the regular
controller method. Instead of implementing interfaces natively, an
action fi lter class is commonly derived from ActionFilterAttribute:

public abstract class ActionFilterAttribute :
 FilterAttribute, IActionFilter, IResultFilter
{
 public virtual void OnActionExecuted(
 ActionExecutedContext filterContext);
 public virtual void OnActionExecuting(
 ActionExecutingContext filterContext);
 public virtual void OnResultExecuted(
 ResultExecutedContext filterContext);
 public virtual void OnResultExecuting(
 ResultExecutingContext filterContext);
}

You override OnActionExecuted to add some custom code to the
execution of the method. You override OnActionExecuting as a pre-
condition to the execution of the target method. Finally, you override
OnResultExecuting and OnResultExecuted to place your code around
the internal step that governs the generation of the method response.

Figure 2 shows a sample action fi lter that adds compression
programmatically to the response of the method it’s applied to.

In ASP.NET, compression is commonly achieved by registering
an HTTP module that intercepts any requests and compresses
their responses. In the alternative, you can also enable compression
at the IIS level. ASP.NET MVC supports both scenarios well and
also off ers a third option: controlling compression on a per-method

basis. In this way, you can control the level of compression for a
specific URL without the need of writing, registering and main-
taining an HTTP module.

As you can see in Figure 2, the action filter overrides the
OnActionExecuting method. Th is may sound a bit weird at fi rst, as
you might expect compression to be a crosscutting concern you take
care of just before returning some response. Compression is imple-
mented through the Filter property of the intrinsic HttpResponse.
Any response being worked out by the runtime environment is
returned to the client browser through the HttpResponse object.
Subsequently, any custom streams mounted on the default output
stream through the Filter property can alter the output being sent.
Th us, in the course of the OnActionExecuting method, you just set
up additional streams on top of the default output stream.

When it comes to HTTP compression, however, the most
diffi cult part is taking into careful account the preferences of the
browser. Th e browser sends its compression preferences through
the Accept-Encoding header. Th e content of the header indicates
that the browser is able to handle only certain encodings—usually
gzip and defl ate. To be a good citizen, your action fi lter must try to

public class CompressAttribute : ActionFilterAttribute
{
 public override void OnActionExecuting(
 ActionExecutingContext filterContext)
 {
 // Analyze the list of acceptable encodings
 var preferred = GetPreferredEncoding(
 filterContext.HttpContext.Request);

 // Compress the response accordingly
 var response = filterContext.HttpContext.Response;
 response.AppendHeader("Content-encoding", preferred.ToString());

 if (preferredEncoding == CompressionScheme.Gzip)
 {
 response.Filter = new GZipStream(
 response.Filter, CompressionMode.Compress);
 }

 if (preferredEncoding == CompressionScheme.Deflate)
 {
 response.Filter = new DeflateStream(
 response.Filter, CompressionMode.Compress);
 }
 return;
 }

 static CompressionScheme GetPreferredEncoding(
 HttpRequestBase request)
 {
 var acceptableEncoding = request.Headers["Accept-Encoding"];
 acceptableEncoding = SortEncodings(acceptableEncoding);

 // Get the preferred encoding format
 if (acceptableEncoding.Contains("gzip"))
 return CompressionScheme.Gzip;
 if (acceptableEncoding.Contains("deflate"))
 return CompressionScheme.Deflate;

 return CompressionScheme.Identity;
 }

 static String SortEncodings(string header)
 {
 // Omitted for brevity
 }
}

Figure 2 A Sample Action Filter
for Compressing the Method Response

Filter Interfaces Description
IActionFilter Methods in the interface are invoked before and

after the execution of the controller method.
IAuthorizationFilter Methods in the interface are invoked before the

controller method executes.
IExceptionFilter Methods in the interface are invoked whenever an

exception is thrown during the execution of the
controller method.

IResultFilter Methods in the interface are invoked before and
after the processing of the action result.

Figure 1 Interfaces for an Action Filter

Toll Free USA (888) 774-3273 | Phone (913) 390-4797 | sales@spreadsheetgear.com

Download the FREE fully functional 30-Day
evaluation of SpreadsheetGear 2010 today at

www.SpreadsheetGear.com.

Microsoft Chose SpreadsheetGear...
“After carefully evaluating SpreadsheetGear, Excel Services, and other
3rd party options, we ultimately chose SpreadsheetGear for .NET
because it is the best fi t for MSN Money.”

Chris Donohue, MSN Money Program Manager.

ASP.NET Excel Reporting
Easily create richly formatted Excel reports without Excel using the
new generation of spreadsheet technology built from the ground up
for scalability and reliability.

Excel Compatible Windows Forms Control
Add powerful Excel compatible viewing, editing, formatting,
calculating,charting and printing to your Windows Forms applications
with the easy touse WorkbookView control.

Create Dashboards from Excel Charts and Ranges
You and your users can design dashboards, reports, charts, and
models in Excel rather than hard to learn developer tools and you can
easily deploy them with one line of code.

Untitled-1 1 9/15/10 11:35 AM

http://www.SpreadsheetGear.com
mailto:sales@spreadsheetgear.com

msdn magazine10 Cutting Edge

fi gure out exactly what the browser can handle. Th is can be a tricky
task. Th e role of the Accept-Encoding header is fully explained in
RFC 2616 (see w3.org/Protocols/rfc2616/rfc2616-sec14.html). In brief, the
content of the Accept-Encoding header can contain a q parameter
that’s meant to assign a priority to an acceptable value. For example,
consider that all the following strings are acceptable values for an
encoding, but even though gzip is apparently the fi rst choice in all
of them, only in the fi rst one is it the favorite choice:

gzip, deflate
gzip;q=.7,deflate
gzip;q=.5,deflate;q=.5,identity

A compression fi lter should take this into account, like the fi lter
in Figure 2 does. Th ese details should reinforce the idea that when
you write an action fi lter, you’re interfering with the handling of
the request. Subsequently, anything you do should be consistent
with the expectation of the client browser.

Applying an Action Filter
As mentioned, an action filter is just an attribute that can be
applied to individual methods as well as to the whole parent class.
Here’s how you would set it up:

[Compress]
public ActionResult List()
{
 // Some code here
 ...
}

If the attribute class contains some public properties, you can assign
values to them declaratively using the familiar notation of attributes:

[Compress(Level=1)]
public ActionResult List()
{
 ...
}

Figure 3 shows the compressed response as reported by Firebug.
An attribute is still a static way of confi guring a method. Th is

means that you need a second compile step to apply further changes.

However, action fi lters expressed in the form of attributes provide a key
benefi t: Th ey keep crosscutting concerns out of the core action method.

A Broader Look at Action Filters
To measure the real power of action fi lters, think of applications
that need a lot of customization work over time and applications
that require adaptation when installed for diff erent customers.

Imagine, for example, a Web site that at some point launches an
advertising campaign based on reward points a registered user may
gain if he performs some standard action within a site (buying goods,
answering questions, chatting, blogging and so on). As a developer,
you probably need some code that runs aft er the regular method of
executing a transaction, posting a comment or starting a chat has
run. Unfortunately, this code is come-and-go and should hardly be
part of the original implementation of the core action method. With
action fi lters, you can create distinct components for each required
scenario and, for example, arrange an action fi lter for adding reward
points. Next, you attach the reward fi lter to any methods where the
post action is required; then you recompile and go.

[Reward(Points=100)]
public ActionResult Post(String post)
{
 // Core logic for posting to a blog
 ...
}

As mentioned, attributes are static and require an additional
compile step. While this may not be desirable in all cases (say, in
sites with highly volatile features), it’s much better than nothing. At
the minimum, you gain the ability to update Web solutions quickly
and with a low impact on existing features, which is always good
to keep regression failures under strict control.

Dynamic Loading
Th is article demonstrated action fi lters in the context of controller ac-
tion methods. I demonstrated the canonical approach of writing fi lters
as attributes that you use to decorate action methods statically. Th ere’s an
underlying question, however: Can you load action fi lters dynamically?

Th e ASP.NET MVC framework is a well-written (and large)
piece of code, so it exposes a number of interfaces and overridable
methods with which you can customize nearly every aspect of it.
Happily, this trend is going to be reinforced by the upco ming Model-
View-Controller (MVC) 3. According to the public roadmap, one
of the team’s objectives for MVC 3 is enabling dependency injection
at all levels. Th e answer to the previous question about dynamic
loading, therefore, lies in the dependency-injection abilities of
the MVC framework. A possible winning strategy is customizing
the action invoker to gain access to the list of fi lters before the
execution of a method. Because the list of fi lters looks like a plain
read/write collection object, it shouldn’t be that hard to populate
it dynamically. But this is good fodder for a new column.

DINO ESPOSITO is the author of “Programming ASP.NET MVC” from Microsoft
Press (2010) and has coauthored “Microsoft .NET: Architecting Applications for the
Enterprise” (Microsoft Press, 2008). Based in Italy, Esposito is a frequent speaker
at industry events worldwide. You can join his blog at weblogs.asp.net/despos.

THANKS to the following technical expert for reviewing this article:
Scott Hanselman

Figure 3 A Compressed Response Obtained via
the Compress Attribute

http://w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://weblogs.asp.net/despos

Free 60 Day Evaluation!
www.leadtools.com/msdn
(800) 637-1840

Silverlight: 100% pure Silverlight 3 and 4 Imaging SDK.
Image Formats & Compression: Supports 150+ image formats and compressions

including TIFF, EXIF, PDF, JPEG2000, JBIG2 and CCITT G3/G4.
Display Controls: ActiveX, COM, Win Forms, Web Forms, WPF and Silverlight.
Image Processing:

supporting region of interest and extended grayscale data.
OCR/ICR/OMR: Full page or zonal recognition for multithreaded 32 and 64 bit

Forms Recognition & Processing: Automatically identify and classify forms and

Barcode:
development.
Document Cleanup/Preprocessing: Auto-

and border removal, inverted text correction and more for optimum results in OCR and
Barcode recognition.
PDF & PDF/A:

annotations.
Annotations: Interactive UI for document mark-up, redaction and image measurement

(including support for DICOM annotations).
Medical Web Viewer Framework:

PACS Workstation Framework: Set of .NET PACS components that can be used to
build a full featured PACS Workstation application.
Medical Image Viewer:

DICOM:

PACS Communications: Full support for DICOM messaging and secure communication

3D:
methods including MIP, MinIP, MRP, VRT and SSD.
Scanning:

speed scanning.
DVD: Play, create, convert and burn DVD images.
MPEG Transport Stream:
Multimedia: Capture, play, stream and convert MPEG, AVI, WMV, MP4, MP3, OGG, ISO,

DVD and more.

Microsoft, HP,
Sony, Canon, Kodak, GE, Siemens, the US Air Force and Veterans Affairs Hospitals.

color, grayscale, document, medical, vector and multimedia imaging development.

Vector

DICOM Medical

Form Recognition
& Processing

Multimedia

Barcode

DocumentSilverlight, .NET, WPF, WCF, WF, C API, C++ Class Lib, COM & more!

Untitled-2 1 8/11/10 11:24 AM

http://www.leadtools.com/msdn

Untitled-2 2 9/1/10 10:12 AM

www.telerik.com/orm

Untitled-2 3 9/1/10 10:12 AM

www.telerik.com/orm

msdn magazine14

You can fi nd a number of detailed walkthroughs on this CTP in
blog posts by the EF team (tinyurl.com/297xm3j), Scott Guthrie (tinyurl.
com/29r3qkb) and Scott Hanselman (tinyurl.com/253dl2g).

In this column, I want to focus on some of the particular features
and improvements in the CTP4 that have generated an incredible
amount of buzz around the EF because they simplify developing
with the EF—and the .NET Framework in general—so dramatically.

Improvements to Core API
One of the noteworthy improvements that the CTP4 adds to the
EF runtime is a lightweight version of two workhorse classes,
ObjectContext and ObjectSet. ObjectContext enables query-
ing, change-tracking and saving back to the database. ObjectSet
encapsulates sets of like objects.

Th e new classes, DbContext and DbSet, have the same essen-
tial functions, but don’t expose you to the entire feature set of
ObjectContext and ObjectSet. Not every coding scenario demands
access to all of the features in the more robust classes. DbContext
and DbSet are not derived from ObjectContext and ObjectSet,
but DbContext provides easy access to the full-featured version
through a property: DbContext.ObjectContext.

ObjectSet Basics and the Simplifi ed DbSet
An ObjectSet is a generic collection-like representation of a set of
entity types. For example, you can have an ObjectSet<Customer>
called Customers that’s a property of a context class. LINQ to
Entities queries are written against ObjectSets. Here’s a query against
the Customers ObjectSet:

from customer in context.Customers
where customer.LastName=="Lerman"
select customer

ObjectSet has an internal constructor and does not have a
parameterless constructor. Th e way to create an ObjectSet is through
the ObjectContext.CreateObjectSet method. In a typical context
class, the Customers property would be defi ned as:

public ObjectSet< Customer> Customers {
 get {
 return _ customers?? (_customers =
 CreateObjectSet< Customer >(" Customers"));
 }
}

private ObjectSet< Customer > _ customers;

Entity Framework Preview:
Code First, ObjectSet and DbContext

While the Entity Framework (EF) 4 was still in beta, the devel-
opment team began work on another way to use it. We had the
database-fi rst way of creating a model (by reverse engineering a
database into an Entity Data Model) and the new EF 4 model-
fi rst feature (defi ne an Entity Data Model, then create the data-
base from it). In addition, the team decided to create something
called “code fi rst.”

With code fi rst you begin with code—not the database and not the
model. In fact, with code fi rst there’s no visual model and no XML
describing that model. You simply create the classes for your
application domain and code fi rst will enable them to partici-
pate in the EF. You can use a context, write and execute LINQ to
Entities queries and take advantage of EF change-tracking. But
there’s no need to deal with a model in a designer. When you aren’t
building highly architected apps, you can almost forget that the
EF is even there, handling all of your database interaction and
change-tracking for you.

Domain-driven development (DDD) fans seem to love code fi rst.
In fact, it was a number of DDD gurus who helped the EF team
understand what code fi rst could do for DDD programmers. Check
out Danny Simmons’ blog post about the Data Programmability
Advisory Council for more about that (blogs.msdn.com/b/dsimmons/
archive/2008/06/03/dp-advisory-council.aspx).

But code fi rst wasn’t ready for inclusion in the Microsoft .NET
Framework 4 and Visual Studio 2010. In fact, it’s still evolving and
Microsoft is providing developers access to the bits to play with and
provide feedback through the Entity Framework Feature CTP (EF
Feature CTP). Th e fourth iteration of this community technology
preview (CTP4) was released in mid-July 2010. Th e changes in this
iteration were signifi cant.

In addition to including the code-first assembly in the CTP4,
Microsoft has been working on some great new ideas for the next
iteration of the EF. Th ose are also included in CTP4 so that people
can play with them and, again, provide feedback. More importantly,
code fi rst takes advantage of some of these new features.

DATA POINTS JULIE LERMAN

This article discusses a prerelease version of the Entity Framework.
All information is subject to change.

An ObjectSet is a generic
collection-like representation

of a set of entity types.

http://blogs.msdn.com/b/dsimmons/archive/2008/06/03/dp-advisory-council.aspx
http://blogs.msdn.com/b/dsimmons/archive/2008/06/03/dp-advisory-council.aspx
http://tinyurl.com/297xm3j
http://tinyurl.com/29r3qkb
http://tinyurl.com/29r3qkb
http://tinyurl.com/253dl2g

Untitled-1 1 9/15/10 12:08 PM

www.DevExpress.com/ASPxGrid

msdn magazine16 Data Points

Now you can write queries against Customers and manipulate
the set, adding, attaching and deleting objects as necessary.

DbSet is much simpler to work with. DbSet isn’t publicly
constructible (similar to ObjectSet) but it will auto-create DbSets
and assign them to any properties (with public setters) you declare
on your derived DbContext.

The ObjectSet collection methods are geared toward the EF
terminology—AddObject, Attach and DeleteObject:

context.Customers.AddObject(myCust)

DbSet simply uses Add, Attach and Remove, which is more in
line with other collection method names, so you don’t have to spend
time fi guring out “how to say that in the EF,” like so:

context.Customers.Add(MyCust)

Th e use of the Remove method instead of DeleteObject also more
clearly describes what the method is doing. It removes an item from
a collection. DeleteObject suggests that the data will be deleted from
the database, which has caused confusion for many developers.

By far my favorite feature of DbSet is that it lets you work more eas-
ily with derived types. ObjectSet wraps base types and all of the types
that inherit from it. If you have a base entity, Contact and a Customer
entity that derives from it, every time you want to work with custom-
ers, you’ll have to start with the Contacts ObjectSet. For example, to
query for customers, you write context.Contacts.OfType<Customer>.
That’s not only confusing, it’s also definitely not easily discover-
able. DbSet lets you wrap the derived types, so now you can create
a property Customers that returns DbSet<Customer> and enables
interaction with that directly rather than through the Contacts set.

DbContext—a Streamlined Context
DbContext exposes the most commonly used features of the
ObjectContext and provides some additional ones that are truly
beneficial. My two favorite features so far of DbContext are the
generic Set property and the OnModelCreating method.

All of those ObjectSets I’ve referred to so far are explicit prop-
erties of an ObjectContext instance. For example, say you have a
model called PatientHistory that has three entities in it: Patient,
Address and OfficeVisit. You’ll have
a class, PatientHistoryEntities, which
inherits ObjectContext. This class
contains a Patients property that’s
an ObjectSet<Patient> as well as an
Addresses property and an Offi ceVisits
property. If you want to write dynamic
code using generics, you must call
context.CreateObjectSet<T> where T
is one of your entity types. Again, this
is just not discoverable.

DbContext has a simpler method called Set that lets you simply
call context.Set<T>, which will return a DbSet<T>. It may only
look like 12 less letters, but to my coding brain, using the property
feels right, whereas calling a factory method doesn’t. You can also
use derived entities with this property.

Another DbContext member is OnModelCreating, which is
useful in code fi rst. Any additional confi gurations you want to
apply to your domain model can be defi ned in OnModelCreating
just before the EF builds the in-memory metadata based on the
domain classes. This is a big improvement over the previous
versions of code fi rst. You’ll see more about this further on.

Code First Gets Smarter and Easier
Code fi rst was fi rst presented to developers as part of the EF Feature
CTP1 in June 2009 with the name “code only.” Th e basic premise
behind this variation of using the EF was that developers simply
want to defi ne their domain classes and not bother with a physical
model. However, the EF runtime depends on that model’s XML to
coerce queries against the model into database queries and then
the query results from the database back into objects that are
described by the model. Without that metadata, the EF can’t do its
job. But the metadata does not need to be in a physical fi le. Th e EF
reads those XML fi les once during the application process, creates
strongly typed metadata objects based on that XML, and then does
all of that interaction with the in-memory XML.

Code fi rst creates in-memory metadata objects, too. But instead
of creating it by reading XML fi les, it infers the metadata from the
domain classes (see Figure 1). It uses convention to do this and
then provides a means by which you can add additional confi gu-
rations to further refi ne the model.

Another important job of code first is to use the metadata to
create a database schema and even the database itself. Code fi rst
has provided these features since its earliest public version.

Here’s an example of where you’d need a confi guration to overcome
some invalid assumptions. I have a class called ConferenceTrack
with an identity property called TrackId. Code-first convention

looks for “Id” or class name + “Id” as
an identity property to be used for an
entity’s EntityKey and a database table’s
primary key. But TrackId doesn’t fi t this
pattern, so I have to tell the EF that this
is my identity key.

Th e new code fi rst ModelBuilder class
builds the in-memory model based on
the classes described earlier. You can
further define configurations using
ModelBuilder. I’m able to specify that the

Figure 1 Code First Builds the Entity Data Model
Metadata at Run Time

Design Time Runtime

ObjectsDefine Classes
in Code

Define Additional
Configurations

In-Memory
Metadata

My favorite feature of DbSet is
that it lets you work more easily

with derived types.

The new code fi rst
ModelBuilder class builds the

in-memory model.

Untitled-1 1 9/15/10 12:10 PM

www.DevExpress.com/reports

msdn magazine18 Data Points

ConferenceTrack entity should use its TrackId property
as its key with the following ModelBuilder confi guration:

modelBuilder.Entity<ConferenceTrack>().HasKey(
 ct => ct.TrackId);

ModelBuilder will now take this additional informa-
tion into account as it’s creating the in-memory model
and working out the database schema.

Applying Confi gurations More Logically
Th is is where DbContext.OnModelCreating comes in so
nicely. You can place the confi gurations in this method
so that they’ll be applied as the model is being created
by the DbContext:

protected override void OnModelCreating(
 ModelBuilder modelBuilder) {
 modelBuilder.Entity<ConferenceTrack>().HasKey(
 ct => ct.TrackId);
}

Another new feature added in the CTP4 is an alter-
native way to apply confi gurations through attributes
in the classes. Th is technique is called data annotations.
Th e same confi guration can be achieved by applying the
Key annotation directly to the TrackId property in the
ConferenceTrack class:

[Key]
public int TrackId { get; set; }

Defi nitely simpler, however, my personal preference is
to use the programmatic confi gurations so that the classes
don’t have to have any EF-specifi c knowledge in them.

Using this approach also means DbContext will take care of
caching the model so constructing further DbContexts doesn’t
incur model discovery cost again.

Relationships Get Easier
One of the most noteworthy improvements to code fi rst is it’s much
smarter about making assumptions from the classes. While there
are many improvements to these conventions, I fi nd the enhanced
relationship conventions to have aff ected my code the most.

Even though relationships are defi ned in your classes, in previ-
ous CTPs it was necessary to provide confi guration information to
defi ne these relationships in the model. In addition, the confi gura-
tions were neither pretty nor logical. Now code fi rst can correctly
interpret the intent of most relationships defi ned in classes. In cases
where you need to tweak the model with some confi gurations, the
syntax is much simpler.

My domain classes have a number of relationships defi ned
through properties. ConferenceTrack for example, has this one-
to-many relationship:

public ICollection<Session> Sessions { get; set; }

Session has the converse relationship as well as a many-to-many:
public ConferenceTrack ConferenceTrack { get; set; }
public ICollection<Speaker> Speakers { get; set; }

Using my classes and a single confi guration (to defi ne the TrackId
as the key for conferences), the model builder created the database
with all of the relationships and inheritances shown in Figure 2.

Notice the Sessions_Speakers table created for the many-to-many
relationship. My domain has a Workshop class that inherits from
Session. By default, code fi rst assumes Table Per Hierarchy inheri-
tance, so it created a discriminator column in the Sessions table. I
can use a confi guration to change its name to IsWorkshop or even
to specify that it should create a Table per Type inheritance instead.

Planning Ahead for These New Features
Th ese compelling new features that you have early access to in CTP4
might be a source of frustration for developers who are saying “I
want it now!” It’s true that this is just a preview and you can’t put it
in production today, but certainly play with these bits if you’re able
to and provide your feedback to the EF team to help make it even
better. You can begin planning ahead for how you’ll use code fi rst
and the other new EF features in your upcoming applications.

JULIE LERMAN is a Microsoft MVP, .NET mentor and consultant who lives in the
hills of Vermont. You can fi nd her presenting on data access and other Microsoft
.NET topics at user groups and conferences around the world. Lerman blogs at
thedatafarm.com/blog and is the author of the highly acclaimed book, “Programming
Entity Framework” (O’Reilly Media, 2009). Follow her on Twitter.com: julielerman.

THANKS to the following technical expert for reviewing this article:
Rowan Miller

Figure 2 Model Building-Created Database Structure

Code fi rst can correctly interpret
the intent of most relationships

defi ned in classes.

http://Twitter.com/julielerman

Untitled-1 1 9/15/10 12:07 PM

www.DevExpress.com/analytics

msdn magazine20

garbage before collecting the unused memory. With a generational
GC we don’t need to look at the whole heap for every collection.
Because the duration of a collection is directly related to the size
of the generations being collected, the GC is optimized to only
collect Generation 2 (and the LOH) less frequently. Collections are
almost instant on small heaps and take longer as the heaps grow—
Generation 0 collections can take as little as tens of microseconds.

For most programs, Generation 2 and the LOH are much larger
than Generation 0 and Generation 1, so inspecting all the memory
on these heaps takes longer. Keep in mind that the GC always col-
lects Generation 0 when it collects Generation 1, and collects all of
the heaps when it collects Generation 2. Th is is why a Generation 2
collection is called a full collection. For more details on the perfor-
mance of the diff erent heap collections, see the October 2009 CLR
Inside Out column at msdn.microsoft.com/magazine/ee309515.

Concurrent GC
Th e straightforward algorithm to perform a garbage collection is
to have the execution engine pause all program threads while the
GC does its work. We refer to this kind of a collection as a blocking
collection. These allow the GC to move non-pinned memory
around—for example, to move it from one generation to the next
or to compact sparse memory segments—without the program
knowing that anything has changed. If memory were to move while
program threads are executing, it would look to the program like
memory had been corrupted.

But some of the work of a garbage collection doesn’t change
memory. Since the fi rst version of the CLR, we’ve provided a GC
mode that does concurrent collections. Th ese are collections that
do most of the work of a full GC without having to pause program
threads for the whole duration of that collection.

Th ere are a number of things the GC can do without changing
any state that’s visible to the program, for example, the GC can fi nd
all program-reachable memory. Program threads can continue to
execute while the GC inspects the heaps. Before doing the actual
collection, the GC just needs to discover what has changed while

New Features and Improved Performance
in Silverlight 4

One of the biggest changes in Silverlight 4 was moving to a new
version of the CLR for the core execution engine. Every release of
the .NET Framework has used the same CLR as its core, from the
Microsoft .NET Framework 2.0 through the .NET Framework 3.5
SP1 . Th e .NET Framework 4 made some changes—even some very
large changes, such as factoring out the easy-to-download Client
Profi le and decreasing startup time by optimizing layout of native
binaries—but we’ve always been restricted by the high compatibility
bar imposed by being an in-place update.

With the .NET Framework 4 release, we were able to make
major changes to the CLR itself, while still remaining highly
compatible with previous versions. Silverlight 4 uses the new CLR
as the basis for its CoreCLR and brings all of its improvements
from the desktop to the Web. Some of the most notable runtime
improvements are a change in the default garbage collector (GC)
behavior and the fact that we no longer just-in-time (JIT) compile
Silverlight Framework binaries every time a Silverlight program
executes. In the base classes we’ve made improvements through-
out, including enhancements to isolated storage and changes in
System.IO that enable direct access to the fi le system from Silver-
light applications running with elevated permissions.

Let’s start with a little background on how the CoreCLR GC works.

Generational GC
CoreCLR uses the same GC as the desktop CLR. It’s a generational
GC, which means that its operations are based upon the heuristic
that the most recently allocated objects are the most likely to be
garbage at the next collection time. Th is heuristic is apparent in
small scopes: Function locals are not program-reachable immedi-
ately aft er the function returns. Th is heuristic is generally applicable
for larger scopes as well: Programs usually hold some global state
in objects that live the length of the program’s execution.

Objects are usually allocated in the youngest generation—what
we refer to as Generation 0—and are promoted during garbage
collections (if they survive the collection) to older generations
until they reach the maximum generation (Generation 2 in the
current CLR GC implementation).

We have another generation in the CLR GC called the Large
Object Heap (LOH). Large objects—currently defi ned as objects
greater than 85,000 bytes—are allocated directly into the LOH. Th is
heap is collected at the same time as Generation 2.

Without a generational GC, the GC needs to inspect the entire
heap in order to know what memory is reachable and what memory is

CLR INSIDE OUT ANDREW PARDOE AND JUSTIN VAN PATTEN

CoreCLR uses the same garbage
collector as the desktop CLR.

http://msdn.microsoft.com/magazine/ee309515

Untitled-1 1 9/15/10 12:10 PM

www.DevExpress.com/scheduling

msdn magazine22 CLR Inside Out

it was inspecting memory—for example, if the program allocated
a new object, it needs to be marked as reachable. At the end of this,
the GC asks the execution engine to block all threads—just as in
a non-concurrent GC—and proceeds to fi nish all the reachable
memory at that point.

Background GC
Concurrent GC has always provided a great experience in most
scenarios, but there’s one scenario that we improved greatly. Remem-
ber that memory is allocated in the youngest generation or on the
LOH. Generations 0 and 1 are located on a single segment—we call
it the ephemeral segment because it holds short-lived objects. When
the ephemeral segment fi lls up, the program can no longer create
new objects because there’s no room for them on the ephemeral
segment. Th e GC needs to do a collection on the ephemeral seg-
ment to free some space and allow allocation to continue.

The problem with concurrent GC is that it can’t do either of
these things while a concurrent collection is taking place. Th e GC
thread can’t move any memory around while program threads are
running (so it can’t promote older objects to Generation 2) and
because there’s already a GC in progress it can’t start an ephemeral
collection. But the GC needs to free some memory on the ephemeral
segment before the program can continue. It’s pretty much stuck;
the program threads have to be paused, not because concurrent
GC is changing program-visible state, but because the program
can’t allocate. If a concurrent collection fi nds that the ephemeral
segment is full once it’s found all reachable memory, it will pause
all threads and do a blocking compaction.

Th is problem explains the motivation behind the development
of background GC. It works like the concurrent GC in that the
GC always does most of the work of a full collection on its own
thread in the background. Th e main diff erence is that it allows
an ephemeral collection to take place while the full collection
gathers data. Th is means programs can continue to execute when
the ephemeral segment fills. The GC just does an ephemeral
collection and everything goes on as expected.

Th e impact of background GC on program latency is signifi cant.
When running the background GC, we observed far fewer pauses in
program execution and those that remained were shorter in duration.

Background GC is the default mode for Silverlight 4 and is only
enabled on Windows platforms because OS X lacks some of the OS
support the GC needs to run in background or concurrent mode.

NGen Performance Improvements
Th e compilers for managed languages such as C# and Visual Basic
don’t directly produce code that can be executed on the user’s

machine. Th ese compilers produce an intermediate language called
MSIL that’s compiled to executable code at program execution
using a JIT compiler.

Using MSIL has a lot of benefi ts, ranging from security to porta-
bility, but there are two tradeoff s with JIT-compiled code. First, a lot
of .NET Framework code has to be compiled before your program’s
Main function can be compiled and executed. Th is means your user
has to wait for the JIT before the program starts running. Second, any
.NET Framework code that gets used has to be compiled for every
Silverlight program executing on the user’s machine.

NGen helps with both of these issues. NGen compiles the
.NET Framework code at install time so that it’s already compiled
when your program starts executing. Code that’s been compiled
with NGen can oft en be shared across multiple programs so the
working set on the user’s machine is reduced when running two
or more Silverlight programs. If you want to know more about
how NGen improves startup time and working set, see the May
2006 CLR Inside Out column at msdn.microsoft.com/magazine/cc163610.

Code from the .NET Framework makes up a large portion of
Silverlight programs, so not having NGen available in Silverlight
2 and 3 made a noticeable difference in startup time. The JIT
compiler was taking far too long to optimize and compile the
library code on the startup path of every program.

Our solution to this problem was to not have the JIT compiler
optimize code generation in Silverlight 2 and 3. Th e code still
needed to be compiled, but because the JIT compiler was produc-
ing simple code, it didn’t take very long to compile. Compared
to traditional desktop applications, most programs written for
rich Internet application Web scenarios are small and don’t run
for very long. Even more importantly, they’re usually interactive
programs, meaning they spend most of their time waiting for
the user’s input. In the scenarios targeted by Silverlight 2 and 3,
having quick startup time was far more important than gener-
ating optimized code.

As Silverlight Web apps have evolved, we’ve made changes to
keep the experience positive. For example, we added support for
installing and running Silverlight applications from the desktop in
Silverlight 3. Normally, these applications are larger and do more
work than the small, interactive applications found in the classic
Web scenario. Silverlight itself has added a lot of computationally
intensive functionality, such as support for touch input under
Windows 7 and rich photo manipulation as you see on the Bing
Maps Web site. All of these scenarios require that the code be
optimized to perform effi ciently.

Silverlight 4 gives you startup performance and optimized code.
Th e JIT compiler now uses the same optimizations in Silverlight

The impact of background
GC on program latency

is signifi cant.

Silverlight 4 gives you both
startup performance and

optimized code.

http://msdn.microsoft.com/magazine/cc163610

Untitled-1 1 9/15/10 12:09 PM

www.DevExpress.com/CodeRush

msdn magazine24 CLR Inside Out

as it does for desktop .NET applications. We’re able to do the op-
timizations because we’ve enabled NGen for the Silverlight .NET
Framework assemblies. When you install Silverlight, we automati-
cally compile all of the managed code that comes in the Silverlight
runtime and save it on your hard disk. When a user executes your
Silverlight program, it starts executing without having to wait for
any of the Framework code to compile. Just as importantly, we now
optimize the code in your Silverlight program so that your programs
run faster, and we can share the Framework code between multiple
Silverlight programs executing on the user’s machine.

Silverlight 4 creates native images for the .NET Framework
assemblies during installation. Th ere are some applications where
startup performance is the only performance that matters. Th ink
of Notepad as an example: it’s important that it starts quickly, but
once you start typing it doesn’t matter how fast Notepad runs
(provided it runs faster than you type). For this class of programs,
the time it takes to JIT compile the application startup code may
cause a performance decrease. Most applications will start up
400 ms to 700 ms more quickly in Silverlight 4 and will see up to a
60 percent performance improvement during execution.

Th e Base Class Library (BCL) is at the core of the managed APIs
that are now supported by NGen in Silverlight 4. Let’s take a look
at what’s new in the BCL.

New BCL Functionality
Many of the new BCL enhancements in Silverlight 4 are also new
in the .NET Framework 4 and have already been written about in
that context. I’ll give you a brief overview of what we’ve included
in Silverlight 4.

Code contracts provide a built-in way to express pre-conditions,
post-conditions and object invariants in your Silverlight code. Code
contracts can be used to better express assumptions in your code
and can help fi nd bugs early. Th ere are many additional benefi ts
to using code contracts. You can learn more in Melitta Andersen’s
August 2009 CLR Inside Out column at msdn.microsoft.com/magazine/
ee236408, on the Code Contracts DevLabs site at msdn.microsoft.com/
devlabs/dd491992, and on the BCL team blog at blogs.msdn.com/bclteam.

Tuples are most oft en used to return multiple values from a
method. They’re often used in functional languages such as F#
and dynamic languages like IronPython, but are just as easy to
use from Visual Basic and C#. You can learn more about the
design of tuples in Matt Ellis’ July 2009 CLR Inside Out column at
msdn.microsoft.com/magazine/dd942829.

Lazy<T> provides an easy way to lazily initialize objects. Lazy
initialization is a technique that applications can use to defer load-
ing or initializing data until it’s fi rst needed.

Th e new BigInteger and Complex numeric data types are avail-
able in the Silverlight 4 SDK in System.Numerics.dll. BigInteger
represents an arbitrary-precision integer and Complex represents
a complex number with real and imaginary components.

Enum, Guid and Version now support TryParse like many of
the other BCL data types, providing a more effi cient way to create
an instance from a string that doesn’t throw exceptions on errors.

Enum.HasFlag is a new convenience method that can be used to
easily check whether or not a fl ag is set on a Flags enum, without
having to remember how to use the bitwise operators.

String.IsNullOrWhiteSpace is a convenience method that checks
whether or not a string is null, empty or contains only white space.

String.Concat and Join overloads now take an IEnumerable<T>
parameter. Th ese new overloads to String.Concat and Join enable
concatenating any collection that implements IEnumerable<T>
without the need to fi rst convert the collection to an array.

Stream.CopyTo makes it easy to read from one stream and write
the contents to another stream in one line of code.

In addition to these new features, we’ve also made some enhance-
ments to isolated storage and enabled trusted Silverlight applica-
tions to directly access parts of the fi le system through System.IO.

Isolated Storage Enhancements
Isolated storage is a virtual fi le system that Silverlight applications
can use to store data on the client. To learn more about isolated
storage in Silverlight, refer to the March 2009 CLR Inside Out
column at msdn.microsoft.com/magazine/dd458794.

Th e most notable improvement to isolated storage in Silverlight 4
is in the area of performance. Since the release of Silverlight 2, we’ve
received a lot of feedback from developers regarding the perfor-
mance of isolated storage. In Silverlight 3, we made some changes
that signifi cantly improved the performance of reading data out
of isolated storage. In Silverlight 4, we’ve gone a step further and
addressed the performance bottlenecks that developers were seeing
when writing data to isolated storage. Overall, the performance of
isolated storage is much improved in Silverlight 4.

We also heard from developers that there was no easy way to
rename or copy fi les within isolated storage. In order to rename
a fi le, you had to manually read from the original fi le, create and
write to a new file, and then delete the original file. Renaming a
directory could be accomplished in a similar manner, but requires
even more lines of code, especially when the directory you want
to rename contains subdirectories. Th is works, but is more code
than you should have to write and isn’t as effi cient as telling the OS
to simply rename the fi le or directory on disk.

In Silverlight 4, we’ve added new metho ds to the IsolatedStorage-
File class that you can call to effi ciently perform these operations
in single line of code: CopyFile, MoveFile and MoveDirectory. We
also added new methods that provide additional information about
the fi les and directories within isolated storage: GetCreationTime,
GetLastAccessTime and GetLastWriteTime.

Another new API we added in Silverlight 4 is IsolatedStorage-
File.IsEnabled. Previously, the only way to determine whether iso-
lated storage was enabled was to try using it and then catching the
subsequent IsolatedStorageException, which is thrown if isolated

Isolated storage is a virtual
fi le system that Silverlight

applications can use.

http://msdn.microsoft.com/magazine/ee236408
http://msdn.microsoft.com/magazine/ee236408
http://msdn.microsoft.com/devlabs/dd491992
http://msdn.microsoft.com/devlabs/dd491992
http://blogs.msdn.com/bclteam
http://msdn.microsoft.com/magazine/dd942829
http://msdn.microsoft.com/magazine/dd458794

Untitled-1 1 9/15/10 12:09 PM

www.DevExpress.com/FreeASP

msdn magazine26 CLR Inside Out

storage is disabled. Th e new static IsEnabled property can be used
to more easily determine whether or not isolated storage is enabled.

Many browsers such as Internet Explorer, Firefox, Chrome and
Safari now support a private browsing mode where browsing
history, cookies and other data aren’t persisted. Silverlight 4 respects
private browsing settings, preventing apps from accessing isolated
storage and storing information on your local machine when the
browser is in private mode. In such circumstances, the IsEnabled
property will return false and any attempt to use isolated storage
will result in an IsolatedStorageException, the same behavior as if
isolated storage had been explicitly disabled by the user.

File System Access
Silverlight applications run in a partial-trust security sandbox. Th e
security sandbox restricts access to the local machine and places
a number of constraints on the application, preventing malicious
code from causing harm. For example, partial-trust Silverlight
applications cannot directly access the fi le system. If an app needs
to store data on the client, its only option is to store data within
isolated storage. Access to the broader file system can only be
accomplished through the OpenFileDialog or SaveFileDialog.

Silverlight 3 added the ability to install and run apps out-of-
browser. Th is enables some interesting offl ine scenarios, but such
apps still run within the same sandbox as apps running inside
the browser. Silverlight 4 allows out-of-browser applications to
confi gure themselves to run in elevated trust. Such trusted appli-
cations are able to bypass some of the restrictions of the sandbox
after installation. For example, trusted applications can access
user files, use networking without cross-domain access restric-
tions, bypass user consent and initiation requirements, and access
native OS functionality.

When a user installs an application that requires elevated trust,
the normal installation prompt is replaced with a warning that tells
users that the application can access user data and should only be
installed from trusted Web sites.

Trusted applications can use the APIs in System.IO to directly
access the following user directories on the file system: MyDoc-
uments, MyMusic, MyPictures and MyVideos. File operations
outside of these directories are currently not allowed and will
result in a SecurityException. Within these directories, all file
operations are allowed, including reading and writing. For example,
a trusted photo album application can directly access all fi les within
the MyPictures directory. A trusted video-editing app can save a
movie to the MyVideos directory.

It’s important not to hardcode fi le system paths to these directories
in your applications as the paths will be diff erent depending on the
underlying OS. File system paths are absolutely diff erent between
Windows and Mac OS X, but paths can also be diff erent between
versions of Windows. To work correctly across all platforms,
System.Environment.GetFolderPath should be used to get the fi le
system paths for these directories. Th e following code uses Environ-
ment.GetFolderPath to get the fi le system path to the MyPictures
directory, fi nds all fi les within MyPictures (and subdirectories) that
end with .jpg using the System.Directory.EnumerateFiles method,
and adds each fi le path to a ListBox:

if (Application.Current.HasElevatedPermissions) {
 string myPictures = Environment.GetFolderPath(
 Environment.SpecialFolder.MyPictures);
 IEnumerable<string> files =
 Directory.EnumerateFiles(myPictures, "*.jpg",
 SearchOption.AllDirectories);
 foreach (string file in files) {
 listBox1.Items.Add(file);
 }
}

Th is code shows how to create a text fi le in the user’s MyDocu-
ments directory from a trusted application:

if (Application.Current.HasElevatedPermissions) {
 string myDocuments = Environment.GetFolderPath(
 Environment.SpecialFolder.MyDocuments);
 string filename = "hello.txt";
 string file = Path.Combine(myDocuments, filename);

 try {
 File.WriteAllText(file, "Hello World!");
 }
 catch {
 MessageBox.Show("An error occurred.");
 }
}

System.IO.Path.Combine is used to combine the path to MyDoc-
uments with the name of the fi le, which will insert the appropriate
directory separator character for the underlying platform between
the two (Windows uses \, while Mac uses /). File.WriteAllText is
used to create the fi le (or overwrite it if it already exists) and write
the text “Hello World!” to the fi le.

Better Performance and More Capabilities
As you’ve seen, the new CLR in Silverlight 4 includes improve-
ments in both the runtime and base classes. Th e new GC behavior,
the fact that we now NGen the Silverlight Framework assemblies,
and the isolated storage performance improvements mean your
apps will start faster and run better on Silverlight 4. Enhance-
ments to the BCL enable apps to do more with less code, and new
capabilities, such as the ability for trusted applications to access the
fi le system, facilitate compelling new app scenarios.

ANDREW PARDOE is a program manager for CLR at Microsoft . He works on many
aspects of the execution engine for both the desktop and Silverlight runtimes. He
can be reached at andrew.pardoe@microsoft .com.

JUSTIN VAN PATTEN is a program manager on the CLR team at Microsoft , where
he works on the Base Class Libraries. You can reach him via the BCL team blog
at blogs.msdn.com/bclteam.

THANKS to the following technical experts for reviewing this article:
Surupa Biswas, Vance Morrison and Maoni Stephens

Silverlight 4 allows
out-of-browser applications
to confi gure themselves to

run in elevated trust.

mailto:andrew.pardoe@microsoft.com
http://blogs.msdn.com/bclteam

Project3 12/16/09 11:55 AM Page 1

www.nsoftware.com

© 1987-2010 ComponentOne LCC. All rights reserved. iPhone and iPod are trademarks of Apple Inc. While supplies last. Void where
prohibited or restricted by law. All other product and brand names are trademarks and/or registered trademarks of their respective holders.

Untitled-4 2 8/4/10 5:17 PM

www.componentone.com/devtopia

Untitled-4 3 8/4/10 5:17 PM

www.componentone.com/devtopia

msdn magazine30

WCF A RCHIT EC T UR E

AppFabric Service
Bus Discovery

In my January 2010 article, “Discover a New WCF with
Discovery” (msdn.microsoft.com/magazine/ee335779), I presented the valuable
discovery facility of Windows Communication Foundation (WCF) 4.
WCF Discovery is fundamentally an intranet-oriented technique, as
there’s no way to broadcast address information across the Internet.

Yet the benefi ts of dynamic addresses and decoupling clients and
services on the address axis would apply just as well to services that
rely on the service bus to receive client calls.

 Fortunately, you can use events relay binding to substitute
User Datagram Protocol (UDP) multicast requests and provide
for discovery and announcements. Th is enables you to combine

Juval Lowy

the benefi t of easy deployment of discoverable services with the
unhindered connectivity of the service bus. Th is article walks through
a small framework I wrote to support discovery over the service
bus—bringing it on par with the built-in support for discovery
in WCF—along with my set of helper classes. It also serves as an
example of rolling your own discovery mechanism.

AppFabric Service Bus Background
If you’re unfamiliar with the AppFabric Service Bus, you can read
these past articles:

• “Working With the .NET Service Bus,” April 2009
msdn.microsoft.com/magazine/dd569756

• “Service Bus Buff ers,” May 2010
msdn.microsoft.com/magazine/ee336313

Solution Architecture
For the built-in discovery of WCF, there are standard contracts for
the discovery exchange. Unfortunately, these contracts are defi ned
as internal. Th e fi rst step in a custom discovery mechanism is to
define the contracts used for discovery request and callbacks. I
defi ned the IServiceBusDiscovery contract as follows:

[ServiceContract]
public interface IServiceBusDiscovery
{
 [OperationContract(IsOneWay = true)]
 void OnDiscoveryRequest(string contractName,string contractNamespace,
 Uri[] scopesToMatch,Uri replayAddress);
}

This article discusses:
• Architecture of the discovery mechanism

• The discovery host

• The discovery client

• Helper classes

• Announcements

• The Metadata Explorer tool

Technologies discussed:
Windows Communication Foundation, AppFabric Service Bus

Code download available at:
code.msdn.microsoft.com/mag201010Discovery

http://msdn.microsoft.com/magazine/ee335779
http://msdn.microsoft.com/magazine/dd569756
http://msdn.microsoft.com/magazine/ee336313
http://code.msdn.microsoft.com/mag201010Discovery

31October 2010msdnmagazine.com

Th e single-operation IServiceBusDiscovery is supported by
the discovery endpoint. OnDiscoveryRequest allows the clients
to discover service endpoints that support a particular contract,
as with regular WCF. Th e clients can also pass in an optional set
of scopes to match.

Services should support the discovery endpoint over the events
relay binding. A client fi res requests at services that support the
discovery endpoint, requesting the services call back to the client’s
provided reply address.

 Th e services call back to the client using the IServiceBusDiscov-
eryCallback, defi ned as:

[ServiceContract]
public interface IServiceBusDiscoveryCallback
{
 [OperationContract(IsOneWay = true)]
 void DiscoveryResponse(Uri address,string contractName,
 string contractNamespace, Uri[] scopes);
}

The client provides an endpoint supporting IServiceBusDis-
coveryCallback whose address is the replayAddress parameter of
OnDiscoveryRequest. Th e binding used should be the one-way
relay binding to approximate unicast as much as possible. Figure 1
depicts the discovery sequence.

Th e fi rst step in Figure 1 is a client fi ring an event of discovery
request at the discovery endpoint supporting IServiceBusDis-
covery. Th anks to the events binding, this event is received by all
discoverable services. If a service supports the requested contract, it
calls back to the client through the service bus (step 2 in Figure 1).
Once the client receives the service endpoint (or endpoints)
addresses, it proceeds to call the service as with a regular service
bus call (step 3 in Figure 1).

Discoverable Host
Obviously a lot of work is involved in supporting such a discovery
mechanism, especially for the service. I was able to encapsulate that
with my DiscoverableServiceHost, defi ned as:

public class DiscoverableServiceHost : ServiceHost,...
{
 public const string DiscoveryPath = "DiscoveryRequests";

 protected string Namespace {get;}

 public Uri DiscoveryAddress {get;set;}

 public NetEventRelayBinding DiscoveryRequestBinding {get;set;}

 public NetOnewayRelayBinding DiscoveryResponseBinding {get;set;}

 public DiscoverableServiceHost(object singletonInstance,
 params Uri[] baseAddresses);
 public DiscoverableServiceHost(Type serviceType,
 params Uri[] baseAddresses);
}

Besides discovery, DiscoverableServiceHost always publishes the
service endpoints to the service bus registry. To enable discovery, just
as with regular WCF discovery, you must add a discovery behavior
and a WCF discovery endpoint. Th is is deliberate, so as to both avoid
adding yet another control switch and to have in one place a single con-
sistent confi guration where you turn on or off all modes of discovery.

You use DiscoverableServiceHost like any other service relying
on the service bus:

Uri baseAddress =
 new Uri("sb://MyServiceNamespace.servicebus.windows.net/MyService/");

ServiceHost host = new DiscoverableServiceHost(typeof(MyService),baseAddress);

// Address is dynamic
host.AddServiceEndpoint(typeof(IMyContract),new NetTcpRelayBinding(),
 Guid.NewGuid().ToString());

// A host extension method to pass creds to behavior
host.SetServiceBusCredentials(...);

host.Open();

Note that when using discovery, the service address can be
completely dynamic.

Figure 2 provides the partial implementation of pertinent
elements of DiscoverableServiceHost.

Th e helper property IsDiscoverable of DiscoverableServiceHost
returns true only if the service has a discovery behavior and at least
one discovery endpoint. DiscoverableServiceHost overrides the
OnOpening method of ServiceHost. If the service is to be discov-
erable, OnOpening calls the EnableDiscovery method.

EnableDiscovery is the heart of DiscoverableServiceHost. It
creates an internal host for a private singleton class called Discovery-
RequestService (see Figure 3).

Th e constructor of DiscoveryRequestService accepts the service
endpoints for which it needs to monitor discovery requests (these
are basically the endpoints of DiscoverableServiceHost).

EnableDiscovery then adds to the host an endpoint implement-
ing IServiceBusDiscovery, because DiscoveryRequestService
actually responds to the discovery requests from the clients. Th e
address of the discovery endpoint defaults to the URI “Discovery-
Requests” under the service namespace. However, you can change
that before opening DiscoverableServiceHost to any other URI
using the DiscoveryAddress property. Closing DiscoverableServiceHost
also closes the host for the discovery endpoint.

Figure 3 lists the implementation of DiscoveryRequestService.
OnDiscoveryRequest fi rst creates a proxy to call back the

discovering client. Th e binding used is a plain NetOnewayRe-
layBinding, but you can control that by setting the DiscoveryRe-

Figure 1 Discovery over the Service Bus

1

2

3

IServiceBusDiscovery

IServiceBusDiscoveryCallback

Client

Discovery Requests

Service

Relay ServiceRelay Service

Operation

Event

www.msdnmagazine.com

msdn magazine32 WCF Architecture

sponseBinding property. Note that DiscoverableServiceHost has a
corresponding property just for that purpose. OnDiscoveryRequest
then iterates over the collection of endpoints provided to the con-
structor. For each endpoint, it checks that the contract matches the
requested contract in the discovery request. If the contract matches,
OnDiscovery Request looks up the scopes associated with the end-
point and verifi es that those scopes match the optional scopes in the
discovery request. Finally, OnDiscoveryRequest calls back the
client with the address, contract and scope of the endpoint.

Discovery Client
For the client, I wrote the helper class ServiceBusDiscovery Client,
defi ned as:

public class ServiceBusDiscoveryClient : ClientBase<IServiceBusDiscovery>,...
{
 protected Uri ResponseAddress
 {get;}

 public ServiceBusDiscoveryClient(string serviceNamespace,string secret);

 public ServiceBusDiscoveryClient(string endpointName);
 public ServiceBusDiscoveryClient(NetOnewayRelayBinding binding,
 EndpointAddress address);

 public FindResponse Find(FindCriteria criteria);
}

I modeled ServiceBusDiscoveryClient aft er the WCF Discovery-
Client, and it’s used much the same way, as shown in Figure 4.

ServiceBusDiscoveryClient is a proxy for the IServiceBus Discovery
discovery events endpoint. Clients use it to fi re the discovery
request at the discoverable services. Th e discovery endpoint address
defaults to “DiscoveryRequests,” but you can specify a different
address using any of the constructors that take an endpoint name or
an endpoint address. It will use a plain instance of NetOneway-
RelayBinding for the discovery endpoint, but you can specify a dif-
ferent binding using any of the constructors that take an endpoint
name or a binding instance. ServiceBusDiscoveryClient supports
cardinality and discovery timeouts, just like DiscoveryClient.

Figure 5 shows partial implementation of ServiceBus-
DiscoveryClient.

Th e Find method needs to have a way of receiving callbacks
from the discovered services. To that end, every time it’s called,
Find opens and closes a host for an internal synchronized single-
ton class called DiscoveryResponseCallback. Find adds to the
host an endpoint supporting IServiceBusDiscoveryCallback. Th e
constructor of DiscoveryResponseCallback accepts a delegate of
the type Action<Uri,Uri[]>. Every time a service responds back,
the implementation of DiscoveryResponse invokes that delegate,

public class DiscoverableServiceHost : ServiceHost,...
{
 Uri m_DiscoveryAddress;
 ServiceHost m_DiscoveryHost;

 // Extracts the service namespace out of the endpoints or base addresses
 protected string Namespace
 {
 get
 {...}
 }

 bool IsDiscoverable
 {
 get
 {
 if(Description.Behaviors.Find<ServiceDiscoveryBehavior>() != null)
 {
 return Description.Endpoints.Any(endpoint =>
 endpoint is DiscoveryEndpoint);
 }
 return false;
 }
 }

 public Uri DiscoveryAddress
 {
 get
 {
 if(m_DiscoveryAddress == null)
 {
 m_DiscoveryAddress =
 ServiceBusEnvironment.CreateServiceUri("sb",Namespace,DiscoveryPath);
 }
 return m_DiscoveryAddress;
 }
 set
 {
 m_DiscoveryAddress = value;
 }
 }

 public DiscoverableServiceHost(Type serviceType,params Uri[]
 baseAddresses) : base(serviceType,baseAddresses)
 {}

 void EnableDiscovery()
 {
 // Launch the service to monitor discovery requests
 DiscoveryRequestService discoveryService =
 new DiscoveryRequestService(Description.Endpoints.ToArray());

 discoveryService.DiscoveryResponseBinding = DiscoveryResponseBinding;

 m_DiscoveryHost = new ServiceHost(discoveryService);

 m_DiscoveryHost.AddServiceEndpoint(typeof(IServiceBusDiscovery),
 DiscoveryRequestBinding, DiscoveryAddress.AbsoluteUri);

 m_DiscoveryHost.Open();
 }

 protected override void OnOpening()
 {
 if(IsDiscoverable)
 {
 EnableDiscovery();
 }

 base.OnOpening();
 }
 protected override void OnClosed()
 {
 if(m_DiscoveryHost != null)
 {
 m_DiscoveryHost.Close();
 }

 base.OnClosed();
 }

 [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,...]
 class DiscoveryRequestService : IServiceBusDiscovery
 {
 public DiscoveryRequestService(ServiceEndpoint[] endpoints);

 public NetOnewayRelayBinding DiscoveryResponseBinding
 {get;set;}
 }
}

Figure 2 Implementing DiscoverableServiceHost (Partial)

0810msdn_GrapeCity_Insert.indd 1 7/14/10 12:30 PM

www.GCPowerTools.com/ActNow

0810msdn_GrapeCity_Insert.indd 2 7/14/10 12:31 PM

www.GCPowerTools.com/ActNow

33October 2010msdnmagazine.com

providing it with the discovered address and scope. Th e Find method
uses a lambda expression to aggregate the responses in an instance
of FindResponse. Unfortunately, there’s no public constructor for
FindResponse, so Find uses the CreateFindResponse method of
DiscoveryHelper, which in turn uses reflection to instantiate it.
Find also creates a waitable event handle. The lambda expres-
sion signals that handle when the cardinality is met. Aft er calling
DiscoveryRequest, Find waits for the handle to be signaled, or for
the discovery duration to expire, and then it aborts the host to stop
processing any discovery responses in progress.

More Client-Side Helper Classes
Although I wrote ServiceBusDiscoveryClient to be functionally
identical to DiscoveryClient, it would benefi t from a streamlined
discovery experience off ered by my ServiceBusDiscoveryHelper:

public static class ServiceBusDiscoveryHelper
{
 public static EndpointAddress DiscoverAddress<T>(
 string serviceNamespace,string secret,Uri scope = null);

 public static EndpointAddress[] DiscoverAddresses<T>(
 string serviceNamespace,string secret,Uri scope = null);

 public static Binding DiscoverBinding<T>(
 string serviceNamespace,string secret,Uri scope = null);
}

DiscoverAddress<T> discovers a service with a cardinality of
one, DiscoverAddresses<T> discovers all available service end-
points (cardinality of all) and DiscoverBinding<T> uses the service
metadata endpoint to discover the endpoint binding.

Much the same way, I defi ned the class ServiceBusDiscoveryFactory:
public static class ServiceBusDiscoveryFactory
{
 public static T CreateChannel<T>(string serviceNamespace,string secret,
 Uri scope = null) where T : class;

 public static T[] CreateChannels<T>(string serviceNamespace,string secret,
 Uri scope = null) where T : class;
}

CreateChannel<T> assumes cardinality of one, and it uses the
metadata endpoint to obtain the service’s address and binding
used to create the proxy. CreateChannels<T> creates proxies to
all discovered services, using all discovered metadata endpoints.

public class DiscoverableServiceHost : ServiceHost
{
 [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,
 UseSynchronizationContext = false)]
 class DiscoveryRequestService : IServiceBusDiscovery
 {
 readonly ServiceEndpoint[] Endpoints;

 public NetOnewayRelayBinding DiscoveryResponseBinding
 {get;set;}

 public DiscoveryRequestService(ServiceEndpoint[] endpoints)
 {
 Endpoints = endpoints;
 }

 void IServiceBusDiscovery.OnDiscoveryRequest(string contractName,
 string contractNamespace, Uri[] scopesToMatch, Uri responseAddress)
 {
 ChannelFactory<IServiceBusDiscoveryCallback> factory =
 new ChannelFactory<IServiceBusDiscoveryCallback>(
 DiscoveryResponseBinding, new EndpointAddress(responseAddress));

 IServiceBusDiscoveryCallback callback = factory.CreateChannel();

 foreach(ServiceEndpoint endpoint in Endpoints)
 {
 if(endpoint.Contract.Name == contractName &&
 endpoint.Contract.Namespace == contractNamespace)
 {
 Uri[] scopes = DiscoveryHelper.LookupScopes(endpoint);

 if(scopesToMatch != null)
 {
 bool scopesMatched = true;
 foreach(Uri scope in scopesToMatch)
 {
 if(scopes.Any(uri => uri.AbsoluteUri == scope.AbsoluteUri)
 == false)

 {
 scopesMatched = false;
 break;
 }
 }
 if(scopesMatched == false)
 {
 continue;
 }
 }
 callback.DiscoveryResponse(endpoint.Address.Uri,contractName,
 contractNamespace,scopes);
 }
 }
 (callback as ICommunicationObject).Close();
 }
 }
}

public static class DiscoveryHelper
{
 static Uri[] LookupScopes(ServiceEndpoint endpoint)
 {
 Uri[] scopes = new Uri[]{};
 EndpointDiscoveryBehavior behavior =
 endpoint.Behaviors.Find<EndpointDiscoveryBehavior>();
 if(behavior != null)
 {
 if(behavior.Scopes.Count > 0)
 {
 scopes = behavior.Scopes.ToArray();
 }
 }
 return scopes;
 }
 // More members
}

Figure 3 The DiscoveryRequestService Class (Partial)

string serviceNamespace = "...";
string secret = "...";

ServiceBusDiscoveryClient discoveryClient =
 new ServiceBusDiscoveryClient(serviceNamespace,secret);

FindCriteria criteria = new FindCriteria(typeof(IMyContract));
FindResponse discovered = discoveryClient.Find(criteria);
discoveryClient.Close();

EndpointAddress address = discovered.Endpoints[0].Address;
Binding binding = new NetTcpRelayBinding();
ChannelFactory<IMyContract> factory =
 new ChannelFactory<IMyContract> (binding,address);
// A channel factory extension method to pass creds to behavior
factory.SetServiceBusCredentials(secret);

IMyContract proxy = factory.CreateChannel();
proxy.MyMethod();
(proxy as ICommunicationObject).Close();

Figure 4 Using ServiceBusDiscoveryClient

www.msdnmagazine.com

msdn magazine34 WCF Architecture

Announcements
To support announcements, you can again use the events relay
binding to substitute UDP multicast. First, I defi ned the IService-
BusAnnouncements announcement contract:

[ServiceContract]
public interface IServiceBusAnnouncements
{
 [OperationContract(IsOneWay = true)]
 void OnHello(Uri address, string contractName,
 string contractNamespace, Uri[] scopes);

 [OperationContract(IsOneWay = true)]
 void OnBye(Uri address, string contractName,
 string contractNamespace, Uri[] scopes);
}

As shown in Figure 6, this time, it’s up to the clients to expose an
event binding endpoint and monitor the announcements.

Th e services will announce their availability (over the one-way
relay binding) providing their address (step 1 in Figure 6), and the
clients will proceed to invoke them (step 2 in Figure 6).

Service-Side Announcements
My DiscoveryRequestService supports announcements:

public class DiscoverableServiceHost : ServiceHost,...
{
 public const string AnnouncementsPath = "AvailabilityAnnouncements";

 public Uri AnnouncementsAddress
 {get;set;}

 public NetOnewayRelayBinding AnnouncementsBinding
 {get;set;}

 // More members
}

However, on par with the built-in WCF announcements, by
default it won’t announce its availability. To enable announce-
ments, you need to configure an announcement endpoint with
the discovery behavior. In most cases, this is all you’ll need to do.
DiscoveryRequestService will fi re its availability events on the
“AvailabilityAnnouncements” URI under the service namespace.

public class ServiceBusDiscoveryClient : ClientBase<IServiceBusDiscovery>
{
 protected Uri ResponseAddress
 {get;private set;}

 public ServiceBusDiscoveryClient(string endpointName) : base(endpointName)
 {
 string serviceNamespace =
 ServiceBusHelper.ExtractNamespace(Endpoint.Address.Uri);
 ResponseAddress = ServiceBusEnvironment.CreateServiceUri(
 "sb",serviceNamespace,"DiscoveryResponses/"+Guid.NewGuid());
 }

 public FindResponse Find(FindCriteria criteria)
 {
 string contractName = criteria.ContractTypeNames[0].Name;
 string contractNamespace = criteria.ContractTypeNames[0].Namespace;

 FindResponse response = DiscoveryHelper.CreateFindResponse();

 ManualResetEvent handle = new ManualResetEvent(false);

 Action<Uri,Uri[]> addEndpoint = (address,scopes)=>
 {
 EndpointDiscoveryMetadata metadata = new EndpointDiscoveryMetadata();
 metadata.Address = new EndpointAddress(address);
 if(scopes != null)
 {
 foreach(Uri scope in scopes)
 {
 metadata.Scopes.Add(scope);
 }
 }
 response.Endpoints.Add(metadata);

 if(response.Endpoints.Count >= criteria.MaxResults)
 {
 handle.Set();
 }
 };

 DiscoveryResponseCallback callback =
 new DiscoveryResponseCallback(addEndpoint);

 ServiceHost host = new ServiceHost(callback);

 host.AddServiceEndpoint(typeof(IServiceBusDiscoveryCallback),
 Endpoint.Binding,ResponseAddress.AbsoluteUri);

 host.Open();

 try
 {

 DiscoveryRequest(criteria.ContractTypeNames[0].Name,
 criteria.ContractTypeNames[0].Namespace,
 criteria.Scopes.ToArray(),ResponseAddress);

 handle.WaitOne(criteria.Duration);
 }
 catch
 {}
 finally
 {
 host.Abort();
 }
 return response;
 }
 void DiscoveryRequest(string contractName,string contractNamespace,
 Uri[] scopesToMatch,Uri replayAddress)
 {
 Channel.OnDiscoveryRequest(contractName,contractNamespace,
 scopesToMatch, replayAddress);
 }

 [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single,
 UseSynchronizationContext = false)]
 class DiscoveryResponseCallback : IServiceBusDiscoveryCallback
 {
 readonly Action<Uri,Uri[]> Action;

 public DiscoveryResponseCallback(Action<Uri,Uri[]> action)
 {
 Action = action;
 }
 public void DiscoveryResponse(Uri address,string contractName,
 string contractNamespace,Uri[] scopes)
 {
 Action(address,scopes);
 }
 }
}

public static class DiscoveryHelper
{
 internal static FindResponse CreateFindResponse()
 {
 Type type = typeof(FindResponse);

 ConstructorInfo constructor =
 type.GetConstructors(BindingFlags.Instance|BindingFlags.NonPublic)[0];

 return constructor.Invoke(null) as FindResponse;
 }
 // More members
}

Figure 5 Implementing ServiceBusDiscoveryClient (Partial)

Windows Phone 7
from the experts.

Everything you need to

start developing apps for

the Windows Phone 7

platform today.

Join us on facebook where you can

connect with Wrox and learn more

about the latest books on

Windows Phone 7!

facebook.com/wroxpress

Coming Soon

Untitled-3 1 9/21/10 10:28 AM

www.facebook.com/wroxpress

msdn magazine36 WCF Architecture

You can change that default by setting the AnnouncementsAddress
property before opening the host. Th e events will be fi red by default
using a plain one-way relay binding, but you can provide an alter-
native using the AnnouncementsBinding property before opening
the host. DiscoveryRequestService will fire its availability events
asynchronously to avoid blocking operations during opening and
closing of the host. Figure 7 shows the announcement-support
elements of DiscoveryRequestService.

Th e CreateAvailabilityAnnouncementsClient helper method uses
a channel factory to create a proxy to the IServiceBusAnnounce-
ments announcements events endpoint. Aft er opening and before
closing DiscoveryRequestService, it fi res the notifi cations. Discov-
eryRequestService overrides both the OnOpened and OnClosed
methods of ServiceHost. If the host is configured to announce,
OnOpened and OnClosed call CreateAvailabilityAnnouncements-
Client to create a proxy and pass it to the PublishAvailabilityEvent
method to fi re the event asynchronously. Because the act of fi ring
the event is identical for both the hello and bye announcements,
and the only diff erence is which method of IServiceBusAnnounce-
ments to call, PublishAvailabilityEvent accepts a delegate for the
target method. For each endpoint of DiscoveryRequestService,

public class DiscoverableServiceHost : ServiceHost,...
{
 Uri m_AnnouncementsAddress;

 bool IsAnnouncing
 {
 get
 {
 ServiceDiscoveryBehavior behavior =
 Description.Behaviors.Find<ServiceDiscoveryBehavior>();
 if(behavior != null)
 {
 return behavior.AnnouncementEndpoints.Any();
 }
 return false;
 }
 }

 public Uri AnnouncementsAddress
 {
 get
 {
 if(m_AnnouncementsAddress == null)
 {
 m_AnnouncementsAddress = ServiceBusEnvironment.
 CreateServiceUri("sb",Namespace,AnnouncementsPath);
 }
 return m_AnnouncementsAddress;
 }
 set
 {
 m_AnnouncementsAddress = value;
 }
 }

 IServiceBusAnnouncements CreateAvailabilityAnnouncementsClient()
 {
 ChannelFactory<IServiceBusAnnouncements> factory =
 new ChannelFactory<IServiceBusAnnouncements>(
 AnnouncementsBinding,new EndpointAddress(AnnouncementsAddress));

 return factory.CreateChannel();
 }

 protected override void OnOpened()
 {
 base.OnOpened();

 if(IsAnnouncing)
 {
 IServiceBusAnnouncements proxy =
 CreateAvailabilityAnnouncementsClient();
 PublishAvailabilityEvent(proxy.OnHello);
 }
 }

 protected override void OnClosed()
 {
 if(IsAnnouncing)
 {
 IServiceBusAnnouncements proxy =
 CreateAvailabilityAnnouncementsClient();
 PublishAvailabilityEvent(proxy.OnBye);
 }
 ...
 }

 void PublishAvailabilityEvent(Action<Uri,string,string,Uri[]> notification)
 {
 foreach(ServiceEndpoint endpoint in Description.Endpoints)
 {
 if(endpoint is DiscoveryEndpoint || endpoint is
 ServiceMetadataEndpoint)
 {
 continue;
 }
 Uri[] scopes = LookupScopes(endpoint);

 WaitCallback fire = delegate
 {
 try
 {
 notification(endpoint.Address.Uri, endpoint.Contract.Name,
 endpoint.Contract.Namespace, scopes);
 (notification.Target as ICommunicationObject).Close();

 }
 catch
 {}
 };
 ThreadPool.QueueUserWorkItem(fire);
 }
 }
}

Figure 7 Supporting Announcements with DiscoveryRequestService

Figure 6 Availability Announcements over the Service Bus

1

2

IServiceBusAnnouncements

Client

Announcements

Service

Relay Service

Operation

Event

.NET ..NNNNEEETTTT ADO.NET Ajax ASP.NETAAADDDOOO.NNNEETTT AAAjaaxx AAASSPP.NNNEETT BizTalk BBizTTa k Client Development CCCClliieeennnntt DDDDeeevvvveeelloooopppmmmmmeeennnttt CloudCCClooouudd
Dependency Injection DDDeeeppeennddeeennccyyy Innjeeeccttioonn Enterprise Library EEEnnnttteeerrrppprriisseee LLLiibbbbrraaarryyyy Enterprise Service Bus Ennteerrprisee Serv ccee BBus MVCMMMMVVVCCC p&p pppp&&&&&ppp
Prism PPPPrrissmmmmm Rich ClientRRicchh CClieennnt RIA RRRRIIAAAA SOA SSOOOAAA Server Development ServicesSSSeeerrvvvveeerrr DDDDeeevvvveeelloooopppmmmmmeeeennnttt SSSeeerrvvvviccceeeess
Development DDDDDeeevvvveeelooopppmmmmmeeennnttt SharePoint SSShhaareeePPoooinnt SilverLight SSSilvvveeerrLLLiigggghhhtt Software Factory Sooffttwwaaree FFacctooryy Solution SSSoooluuuuttioooonnnn
Development Fundamentals DDDDDeeevvvveeelooopppmmmmmeeennnttt FFFuuunnnddddaaammmmmeeeennntttaaalsss SQL ServerSSSQQQLL SSeervvveerr Unity UUUnnnittyy VisualBasic VVisuaalBBaasicc Visual VVVissuuaaal
StudioSSttuuddioo n Web Services Windows Application n WWWWWeebbb SSeeervvicceeess WWWWWinnnddoowwwws AAAppppliccaattiooonn
WindWWWWWWinnnddd XMLXMMMMLL

Redmond
October 18-22, 2010

Register using
 ‘msdnmag’
 and save $150

For more info go to http://cut.ms/Ygu

elopment Fundamentalseelooopppmmmmmeeennnttt FFFuuunnnddddaaammmmmeeeennntttaaalss
o WCF WWWWWCCF WPFWWWWWWWPPPFFF Web Application WWWWeebb AAAApppppliccaattioon
dows Azure ooowwwwss AAAAzzzuuurreee Windows Forms WWWWinnddoowwws FFoormmms XXXX

Highlights

Keynote Sessions by Senior Microsoft
Executives and Technical Industry Leaders
including Jason Zander, Robert C. Martin,
Yousef Khalidi, and Charlie Kindel

3 Hands-on Developer Workshops
covering Enterprise Library, Prism and
Windows Azure

24 Thought-provoking sessions on
Windows Phone 7, SharePoint, ASP.NET,
Dependency Injection, Agile practices,
and much more including patterns for how
to apply these technologies in proven ways

Evening Networking Reception with
entertainment, food and drinks

Symposium Party on Thursday Night at
Lucky Strike Billiards in Bellevue

“Ask The Expert” Lunches and several
Open Space sessions

Untitled-1 1 9/9/10 11:52 AM

http://cut.ms/Ygu

msdn magazine38 WCF Architecture

PublishAvailabilityEvent looks up the scopes associated with that
endpoint and queues up the announcement to the Microsoft .NET
Framework thread pool using a WaitCallback anonymous method.
Th e anonymous method invokes the provided delegate and then
closes the underlying target proxy.

Receiving Announcements
I could have mimicked the WCF-provided AnnouncementService,
as described in my January article, but there’s a long list of things
I’ve improved upon with my AnnouncementSink<T>, and I didn’t
see a case where you would prefer to use AnnouncementService
in favor of AnnouncementSink<T>. I also wanted to leverage and
reuse the behavior of AnnouncementSink<T> and its base class.

class MyClient
{
 AddressesContainer<IMyContract> m_Addresses;

 public MyClient()
 {
 string serviceNamespace = "...";
 string secret = "...";

 m_Addresses = new ServiceBusAnnouncementSink<IMyContract>(
 serviceNamespace,secret);

 m_Addresses.Open();

 ...
 }
 public void OnCallService()
 {
 EndpointAddress address = m_Addresses[0];

 IMyContract proxy = ChannelFactory<IMyContract>.CreateChannel(
 new NetTcpRelayBinding(),address);
 proxy.MyMethod();
 (proxy as ICommunicationObject).Close();
 }
 ...
}

Figure 8 Receiving Announcements

[ServiceBehavior(UseSynchronizationContext = false,
 InstanceContextMode = InstanceContextMode.Single)]
public class ServiceBusAnnouncementSink<T> : AnnouncementSink<T>,
 IServiceBusAnnouncements
{
 Uri m_AnnouncementsAddress;

 readonly ServiceHost Host;
 readonly string ServiceNamespace;
 readonly string Owner;
 readonly string Secret;

 public ServiceBusAnnouncementSink(string serviceNamespace,
 string owner,string secret)
 {
 Host = new ServiceHost(this);
 ServiceNamespace = serviceNamespace;
 Owner = owner;
 Secret = secret;
 }

 public Uri AnnouncementsAddress
 {
 get
 {
 if(m_AnnouncementsAddress == null)
 {
 m_AnnouncementsAddress =
 ServiceBusEnvironment.CreateServiceUri(
 "sb",ServiceNamespace,
 DiscoverableServiceHost.AnnouncementsPath);
 }
 return m_AnnouncementsAddress;
 }
 set
 {
 m_AnnouncementsAddress = value;
 }
 }
 public override void Open()
 {
 base.Open();

 Host.AddServiceEndpoint(typeof(IServiceBusAnnouncements),
 AnnouncementsBinding, AnnouncementsAddress.AbsoluteUri);
 Host.SetServiceBusCredentials(Owner,Secret);
 Host.Open();
 }

 public override void Close()
 {
 Host.Close();

 base.Close();
 }

 void IServiceBusAnnouncements.OnHello(Uri address,string contractName,
 string contractNamespace,Uri[] scopes)
 {
 AnnouncementEventArgs args =
 DiscoveryHelper.CreateAnnouncementArgs(
 address,contractName,contractNamespace,scopes);
 OnHello(this,args); //In the base class AnnouncementSink<T>
 }

 void IServiceBusAnnouncements.OnBye(Uri address,string contractName,
 string contractNamespace,Uri[] scopes)
 {
 AnnouncementEventArgs args = DiscoveryHelper.CreateAnnouncementArgs(
 address,contractName,contractNamespace,scopes);
 OnBye(this,args); //In the base class AnnouncementSink<T>
 }
}

public static class DiscoveryHelper
{
 static AnnouncementEventArgs CreateAnnouncementArgs(Uri address,
 string contractName, string contractNamespace, Uri[] scopes)
 {
 Type type = typeof(AnnouncementEventArgs);
 ConstructorInfo constructor =
 type.GetConstructors(BindingFlags.Instance|BindingFlags.NonPublic)[0];

 ContractDescription contract =
 new ContractDescription(contractName,contractNamespace);

 ServiceEndpoint endpoint =
 new ServiceEndpoint(contract,null,new EndpointAddress(address));
 EndpointDiscoveryMetadata metadata =
 EndpointDiscoveryMetadata.FromServiceEndpoint(endpoint);

 return constructor.Invoke(
 new object[]{null,metadata}) as AnnouncementEventArgs;
 }
 // More members
}

Figure 9 Implementing ServiceBusAnnouncementSink<T> (Partial)

The events will be fi red by
default using a plain one-way

relay binding.

Contact: info@softfl uent.com
www.CodeFluentEntities.com

.NET (2 to 4), C#, Linq
ASP .NET (WebForms, MVC)

Silverlight (2 to 4)

WPF, WinForms
WCF, ASMX

SQL Server (2000 to 2008)

Oracle Database (9 to 11)

Offi ce (97 to 2010)

SharePoint (2007 to 2010)

Visual Studio (2005 to 2010)

FEATURED TECHNOLOGIES

SOA, SmartClient
Rich Client, RIA, Silverlight,
Web, Webparts
Client/Server, N-Tier
Offi ce
SharePoint
SaaS, Cloud

SUPPORTED ARCHITECTURES

HAND?
CODEFLUENT ENTITIES!

Need a

Use

CUSTOMER APPROVED MODEL-DRIVEN SOFTWARE FACTORY
We understand the challenges that come with today’s and tomorrow’s technology integration and evolution.
CodeFluent Entities is a fully integrated Model-Driven Software Factory which provides architects and developers a structured
method and the corresponding tools to develop .NET applications, based on any type of architecture, from an ever changing
business model and rules, at an unprecedented productivity level.

CodeFluent Entities is based on a pluggable producer logic, which, from a declarative model you designed, continuously generates
ready-to-use, state-of-the-art, scalable, high-performance, and easily debuggable source code, components, and everything you need.

Download your FREE trial today at:
www.CodeFluentEntities.com/Msdn

Localization
Data Binding
Rules and Validation
Concurrency
Security
Caching
Blob handling

APPLICATION BLOCKS

Untitled-4 1 9/14/10 1:21 PM

http://www.CodeFluentEntities.com
http://www.CodeFluentEntities.com/Msdn
http://www.CodeFluentEntities.com

msdn magazine40 WCF Architecture

Th erefore, for the client, I wrote ServiceBusAnnouncementSink<T>,
defi ned as:

[ServiceBehavior(UseSynchronizationContext = false,
 InstanceContextMode = InstanceContextMode.Single)]
public class ServiceBusAnnouncementSink<T> : AnnouncementSink<T>,
 IServiceBusAnnouncements, where T : class
{
 public ServiceBusAnnouncementSink(string serviceNamespace,string secret);

 public ServiceBusAnnouncementSink(string serviceNamespace,string owner,
 string secret);
 public Uri AnnouncementsAddress get;set;}

 public NetEventRelayBinding AnnouncementsBinding {get;set;}
}

Th e constructors of ServiceBusAnnouncementSink<T> require
the service namespace.

ServiceBusAnnouncementSink<T> supports IServiceBus An-
nouncements as a self-hosted singleton. ServiceBusAnnouncement-
Sink<T> also publishes itself to the service bus registry.
ServiceBusAnnouncementSink<T> subscribes by default to the
availability announcements on the “AvailabilityAnnouncements”
URI under the service namespace. You can change that (before
opening it) by setting the AnnouncementsAddress property.
ServiceBusAnnouncementSink<T> uses (by default) a plain
NetEventRelayBinding to receive the notifications, but you
can change that by setting the AnnouncementsBinding before
opening ServiceBusAnnouncementSink<T>. The clients of
ServiceBusAnnouncementSink<T> can subscribe to the delegates
of AnnouncementSink<T> to receive the announcements, or they
can just access the address in the base address container. For an
example, see Figure 8.

Figure 9 shows the partial implementation of ServiceBus -
An nouncementSink<T> without some of the error handling.

Th e constructor of ServiceBusAnnouncementSink<T> hosts
itself as a singleton and saves the service namespace. When you open

ServiceBusAnnouncementSink<T>,
it adds to its own host an endpoint
supporting IServiceBusAnnounce-
ments. The implementation of
the event handling methods of
IService BusAnnouncements cre-
ates an AnnouncementEventArgs
instance, populating it with the
announced service address, con-
tract and scopes, and then calls
the base class implementation
of the respective announcement
methods, as if it was called using
regular WCF discovery. This
both populates the base class of
the AddressesContainer<T> and
fires the appropriate events of
AnnouncementSink<T>. Note
that to create an instance of
AnnouncementEventArgs, you
must use refl ection due to the lack
of a public constructor.

The Metadata Explorer
Using my support for discovery for the service bus, I extended the
discovery feature of the Metadata Explorer tool (presented in pre-
vious articles) to support the service bus. If you click the Discover
button (see Figure 10), for every service namespace you have
already provided credentials for, the Metadata Explorer will try to
discover metadata exchange endpoints of discoverable services
and display the discovered endpoints in the tree.

Th e Metadata Explorer will default to using the URI “Discovery-
Requests” under the service namespace. You can change that path by
selecting Service Bus from the menu, then Discovery, to bring up the
Confi gure AppFabric Service Bus Discovery dialog (see Figure 10).

For each service namespace of interest, the dialog lets you
confi gure the desired relative path of the discovery events endpoint
in the Discovery Path text box.

Th e Metadata Explorer also supports announcements of service
bus metadata exchange endpoints. To enable receiving the
availability notification, bring up the discovery configuration
dialog box and check the Enable checkbox under Availability
Announcements. Th e Metadata Explorer will default to using the
“AvailabilityAnnouncements” URI under the specifi ed service
namespace, but you can confi gure for each service namespace any
other desired path for the announcements endpoint.

Th e support in the Metadata Explorer for announcements makes
it a simple, practical and useful service bus monitoring tool.

JUVAL LOWY is a soft ware architect with IDesign providing .NET and architecture
training and consulting. This article contains excerpts from his recent book,
“Programming WCF Services 3rd Edition” (O’Reilly, 2010). He’s also the Microsoft
regional director for the Silicon Valley. Contact Lowy at idesign.net.

THANKS to the following technical expert for reviewing this article:
Wade Wegner

Figure 10 Confi guring Discovery over the Service Bus

http://idesign.net

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

At Infragistics, we make sure our NetAdvantage for
.NET controls make every part of your User Interface
the very best it can be. That’s why we’ve tested and
re-tested to make sure our Data Grids are the very
fastest grids on the market and our Data Charts
outperform any you’ve ever experienced. Use our
controls and not only will you get the fastest load
times, but your apps will always look good too. Fast
and good-looking…that’s a killer app. Try them for
yourself at infragistics.com/wow.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Fast Data Chart

WPF Grid

Silverlight Grid

ASP.NET Grid

Untitled-12 1 4/9/10 2:27 PM

www.infragistics.com/wow

msdn magazine42

IN TE RO P ER AB I L I T Y

Runtime Data Sharing
Through an Enterprise
Distributed Cache

Many organizations use a combination of Microsoft
.NET Framework and Java applications, especially midsize to large
organizations that can’t commit to only one technology for various
reasons. Oft en, they employ Web applications, service-oriented
architecture (SOA) Web services and other server applications that
process lots of transactions.

Many of these applications need to share data with one another at
run time. Oft en, they’re all working on common business data that’s
stored in a database. Th ey typically deal with continuous streams of
data (for example, fi nancial trading applications), and they need to pro-
cess it and share results with other applications, again all at run time.

Although the database should be the master data store for per-
manent storage, it’s not well-suited for runtime data sharing. One

Iqbal Khan

reason for this is that performance isn’t always great when reading
data from the database. Furthermore, the database may not scale
nicely in terms of handling transactions, so it may quickly become
a bottleneck and slow down all the applications relying on it.

Moreover, you can’t effectively share data in real time. Real-
time data sharing requires that as soon as one application updates
some data, all other applications interested in that data should be
informed. Similarly, some applications may be waiting for certain
types of data to be created and made available, and when this hap-
pens, they should be notifi ed immediately.

Th ese problems are common whether the applications needing
to share data are all based on the .NET Framework or whether
some are .NET and others Java. In fact, if the applications are a
mix of .NET and Java, the problems are compounded because
there’s no automatic way for these applications to share data at the
app-to-app level in a native fashion.

The Solution: Enterprise Distributed Cache
Luckily, the enterprise distributed cache can resolve these problems.
Th is in-memory store spans multiple servers, pooling the memory
of the servers so that memory storage capacity is scalable. Transac-
tion capacity also becomes scalable, so the more servers you add,
the greater the transaction load you can handle.

Enterprise distributed caches also provide event notifi cation
mechanisms, allowing applications to alert one another when they
have updated data. Hence, you can have an asynchronous event
notification mechanism where one application produces some
data and others may consume it, creating a producer/consumer

This article discusses:
• How .NET and Java apps communicate via a cache

• Item-based event notifi cations

• App-generated custom event notifi cations

• Continuous query-based event notifi cations

• Read-through and write-through handlers

• Database synchronization

• High availability via a self-healing dynamic cluster

• Scalability via cache partitioning and replication

Technologies discussed:
Microsoft .NET Framework, Java

43October 2010msdnmagazine.com

model or publish/subscribe model. Multiple applications sub-
scribe to certain types of data and are notifi ed when it’s published.

Th ere’s also a read-through/write-through mechanism, which
means the enterprise distributed cache itself can read consider-
able data from the data source and the applications. Regardless of
whether those applications are Java or .NET, their code becomes
much simpler because they read the data from the enterprise
distributed cache. Th ey don’t need to have all that database access

code built into them. See Figure 1 for a simple example of a .NET
Framework app using an enterprise distributed cache.

Moreover, an enterprise distributed cache can synchronize itself
with any data changes in the database made by other third-party
applications. It has a connection with the database, allowing the
database to notify it whenever a certain type of data changes in
the database. Figure 2 illustrates how .NET and Java applications
can share data with one another at run time through an enterprise
distributed cache.

.NET and Java Apps Sharing Data
With an enterprise distributed cache, multiple applications—
both .NET and Java—can access the same cache and share data
through it. If it were only .NET applications (or only Java appli-
cations) sharing data through a distributed cache, they could
store the objects in a native binary form and serialize/deserialize
them. But when both types try to share data with each other,
they need a portable data format in which to store the data in
the distributed cache.

Th at’s because when a .NET application stores an object in the
distributed cache, it actually transforms the object into an XML
document and stores that XML. On the other side, when a Java
application reads that data from the distributed cache, it transforms
the XML into a Java object. In eff ect, the XML is used as a portable
data storage mechanism as a .NET object is transformed into XML
and then from XML into Java and vice versa.

A number of open source libraries can help you transform
your .NET or Java objects into XML and then back into the object
form. You can develop your own, of course, but I recommend
you pick an open source library. I personally like Web Objects
in XML (WOX), developed by Carlos Jaimez and Simon Lucas

using System;
...
using Alachisoft.NCache.Web.Caching;

namespace Client
{
 class Program
 {
 static string _sCacheName = "myAppCache";
 static Cache _sCache = NCache.InitializeCache(_sCacheName);

 static void Main(string[] args)
 {
 string employeeId = "1000";
 string key = "Employee:EmployeeId:" + employeeId;

 // First check the cache for this employee
 Employee emp = _sCache.Get(key);

 // If cache doesn't have it then make database call
 if (emp == null)
 {
 emp = LoadEmployeeFromDb(employeeId);

 // Now add it to the cache for next time
 _sCache.Insert(key, emp);
 }
 }
 }
}

Figure 1 A .NET App Using an Enterprise Distributed Cache

Figure 2 .NET and Java Apps Sharing Data Through a Distributed Cache

Grid Computing Apps (.NET or Java)Java Web ServicesJSP/Servlet AppsWCF ServicesASP.NET Apps

Memory Pooled from All Servers

ENTERPRISE DISTRIBUTED CACHE

Windows Server 2003/2008 (64-bit) .NET 3.5/4 Preferred
Scale Seamlessly

www.msdnmagazine.com

msdn magazine44 Interoperability

(woxserializer.sourceforge.net). I’ll use examples of Java-to-.NET trans-
formation from their Web site in this article (with their permis-
sion). Figure 3 shows Student and Course classes defined both
in Java and C#.

If we use .NET and Java apps to store these Student and Course
objects in an enterprise distributed cache, we can then use the
WOX library to transform them into XML. Th en, when an appli-
cation wants to read these objects from the enterprise distributed
cache, it reads the WOX library again to transform the XML back
into the Java or .NET object form. Figure 4 shows both Student
and Course classes transformed into XML.

Within your application, you should call WOX from your caching
layer or the data access layer.

Item-Based Event Notifi cations
Event notifi cations are a powerful mechanism that allows multi-
ple applications (both .NET and Java) to coordinate data sharing
asynchronously. Th is mechanism helps avoid the expensive poll-
ing of the database that applications would have to do if they didn’t
have such a facility. It’s shared among .NET and Java applications,
so they can notify one another seamlessly.

One common type of event notifi cation is item-based notifi ca-
tion. In this type, applications register interest in various cached
item keys (that may or may not exist in the cache yet), and they’re
notifi ed separately whenever that item is added, updated or re-
moved from the distributed cache by anybody for any reason.
For example, even if an item is removed due to expiration or
eviction, the item-remove event notifi cation is fi red.

Both .NET and Java applications can register interest for the
same cached items and be notified about them. The notification
usually includes the affected cached item as well, which, as we
saw in the previous section, is transformed into either .NET or
Java, depending on the type of application.

App-Generated Custom Event Notifi cations
An enterprise distributed cache is also a powerful event prop-
agation platform for both .NET and Java applications. Any
applications connected to an enterprise distributed cache can
fire custom events into the cache, and then all other applica-
tions that have registered interest in those custom events will
be notified by the cache, regardless of where those applications
are located. This by itself provides a powerful language- and
platform-independent event propagation mechanism in an
enterprise distributed cache.

Th is feature allows applications to collaborate in data sharing
asynchronously. For example, if one application puts some data
in the distributed cache, it can then fi re a custom event so other
applications that are supposed to consume or process this data
further are notifi ed immediately.

Continuous Query-Based Event Notifi cations
Item-based event notification is powerful but requires the
application to know the key of the cached item. If you combine
item-based event notifi cation with other grouping features com-
monly provided in an enterprise distributed cache (such as tags,
groups/subgroups and more), you can pretty much handle most

// Java classes
public class Student
{
 private String name;
 private int registrationNumber;
 private Course[] courses;
}
public class Course
{
 private int code;
 private String name;
 private int term;
}

// ***
// .NET classes in C#
public class Student
{
 private String name;
 private Int32 registrationNumber;
 private Course[] courses;
}
public class Course
{
 private Int32 code;
 private String name;
 private Int32 term;
}

Figure 3 Student and Course Classes in Java and C#

<object type="Student" id="0">
 <field name="name" type="string" value="Carlos Jaimez"/>
 <field name="registrationNumber" type="int" value="76453"/>
 <field name="courses">
 <object type="array" elementType="Course" length="3" id="1">
 <object type="Course" id="2">
 <field name="code" type="int" value="6756"/>
 <field name="name" type="string"
 value="XML and Related Technologies"/>
 <field name="term" type="int" value="2"/>
 </object>
 <object type="Course" id="3">
 <field name="code" type="int" value="9865"/>
 <field name="name" type="string"
 value="Object Oriented Programming"/>
 <field name="term" type="int" value="2"/>
 </object>
 <object type="Course" id="4">
 <field name="code" type="int" value="1134"/>
 <field name="name" type="string" value="E-Commerce Programming"/>
 <field name="term" type="int" value="3"/>
 </object>
 </object>
 </field>
</object>

Figure 4 Java and .NET Classes Transformed into XML

When a .NET application stores
an object in the distributed

cache, it actually transforms the
object into an XML document

and stores that XML.

http://woxserializer.sourceforge.net

Untitled-1 1 7/14/10 10:08 AM

www.aspose.com

msdn magazine46 Interoperability

of the cases where applications need to be notifi ed based on what
happens to various cached items.

However, there are two limitations with item-based events. First,
as noted, the application has to know all the keys of cached items
about which it wants to be notifi ed. Second, it will be notifi ed no
matter what change is made to these items. Th e application can’t
put more detailed criteria in place, so it’s notified only when
specifi c changes are made to the data.

To handle such cases, an enterprise distributed cache pro-
vides a continuous query—a SQL-like query that captures an
application’s business rules about data in which it’s interested. A
continuous query isn’t a search query but rather a “criteria” the
enterprise distributed cache keeps; anytime something is add-
ed or updated in the distributed cache, the operation is com-
pared to the continuous query criteria. If the criteria match, an
event is fired and the application issuing the continuous query
criteria is notified.

Continuous query allows applications to watch for more com-
plex and sophisticated changes and be notifi ed only when those
changes happen.

Read-Through and Write-Through Handlers
Many times, applications try to read data that doesn’t exist in the
enterprise distributed cache and must be read from a database. In
these situations, applications could go directly to the database and
read that data, but that would mean that all applications end up
having the same data access code duplicated (especially in both
.NET and Java). Or, they can ask the enterprise distributed cache
to read the data from the database for them when they need it.

Th e read-through/write-through feature allows an enterprise
distributed cache to read data directly from the data source. Th e
applications can simplify their code so they don’t have to go to the
database. Th ey can just ask the enterprise distributed cache to give
them the data, and if the cache doesn’t have the data, it will go and
read it from the data source. Figure 5 shows how read-through and
write-through fi t into an enterprise distributed cache.

I want to mention one point of caution here. Although there’s great
benefi t in having the distributed cache read the data from the database
for you, many types of data are best read directly from the database by
the application. If you’re reading collections of data that involve complex
joins, it’s best to read it yourself and then put it in the distributed cache.

Figure 5 How Read-Through/Write-Through Is Used

Grid Computing Apps (.NET or Java)Java Web ServicesJSP/Servlet AppsWCF ServicesASP.NET Apps

Memory Pooled from All Servers

ENTERPRISE DISTRIBUTED CACHE

Read-
Through
Handler

Read-
Through
Handler

Read-
Through
Handler

Read-
Through
Handler

Read-
Through
Handler

Read-
Through
Handler

File System Database Servers Mainframe

Windows Server 2003/2008 (64-bit)Windows Server 2003/2008 (64-bit)

ENTERPRISE

SNMP

POP

TCP

UDP

2IP

SSL

SFTP

SSH

HTTP

TELNET

EMULATION

FTPSMTP

WEB
UI

Internet Connectivity for the Enterprise

PowerSNMP for ActiveX and .NET
Create custom Manager, Agent and Trap applications with a set
of native ActiveX, .NET and Compact Framework components.
SNMPv1, SNMPv2, SNMPv3 (authentication/encryption) and
ASN.1 standards supported.

Since 1994, Dart has been a leading provider of high quality, high performance Internet connectivity components supporting a wide
range of protocols and platforms. Dart’s three product lines offer a comprehensive set of tools for the professional software developer.

PowerWEB for ASP.NET
AJAX enhanced user interface controls for responsive ASP.NET
applications. Develop unique solutions by including streaming file
upload and interactive image pan/zoom functionality within a page.

Download a fully functional product trial today!
Ask us about Mono Platform support. Contact sales@dart.com.

PowerTCP for ActiveX and .NET
Add high performance Internet connectivity to your ActiveX, .NET
and Compact Framework projects. Reduce integration costs with
detailed documentation, hundreds of samples and an expert
in-house support staff.

SSH
UDP
TCP
SSL

FTP
SFTP
HTTP
POP

SMTP
IMAP
S/MIME
Ping

DNS
Rlogin
Rsh
Rexec

Telnet
VT Emulation
ZIP Compression
more...

Untitled-1 1 1/11/10 11:10 AM

mailto:sales@dart.com
www.dart.com
www.dart.com

msdn magazine48 Interoperability

Database Synchronization
Because a lot of data is being put in the enterprise distributed cache,
it only makes sense to make sure this data is kept synchronized with
the master data source, usually a relational database. An enterprise
distributed cache provides such a feature.

Th is database synchronization feature allows applications to
specify a relationship (a dependency) between cached items and
rows in database tables. Whenever data in the
database changes, the database server fi res a
.NET event if it’s a SQL Server 2005/2008 da-
tabase and notifi es the enterprise distributed
cache of such a change. For other databases
that don’t support .NET events, an enterprise
distributed cache also provides confi gurable
polling, where it can poll the database (say,
once every 15 seconds) and synchronize if data
has changed there.

Th e distributed cache then either removes
that data from the cache or reads a fresh copy
of it if you’ve confi gured the read-through
feature. Figure 6 shows how an enterprise dis-
tributed cache synchronizes with SQL Server.

High Availability: Self-Healing
Dynamic Cluster
An enterprise distributed cache is used as a
runtime data sharing platform among multi-
ple applications (.NET to .NET, .NET to Java,
and Java to Java). In many cases, these appli-
cations are mission-critical for your business.

Th is means an enterprise distributed cache
must be highly available, because so many

mission-critical applications
depend on it. Th e enterprise dis-
tributed cache can’t go down or
stop working, and it should require
virtually no downtime for mainte-
nance or other normal operations.

An enterprise distributed cache
achieves high availability by
having a self-healing, dynamic
cluster of cache servers. Self-
healing here means the cluster is
aware of all its members and
adjusts dynamically if a member
leaves or joins. It also ensures that
data is replicated for reliability,
and if a cluster member leaves, its
backup data is made available to
the applications automatically. All
of this must be done quickly and
without causing any interruptions
in the applications using the
enterprise distributed cache.

Scalability: Cache Partitioning and Replication
Many applications using an enterprise distributed cache are high-
transaction apps. Th erefore, the load on the cache cluster can grow
rapidly; however, if the response time of the enterprise distributed
cache drops, it loses its value. In fact, this is an area where an
enterprise distributed cache is superior to relational databases; it
can handle a lot more transactions per second because it can keep

Figure 6 Database Synchronization in Distributed Cache

.NET Event Notification
(SqlCacheDependency)

Update Data

Memory Pooled from All Servers

ENTERPRISE DISTRIBUTED CACHE

Windows Server 2003/2008 (64-bit) .NET 3.5 Preferred

Third-Party Apps SQL Server 2005/2008

Read-ThroughRead-Through

Figure 7 Partitioned-Replication Topology for Reliable Scalability

Java Apps

ENTERPRISE DISTRIBUTED CACHE

Cache Server 1

1 2 3

Partition 1

Replica 3

7 8 9

Cache Server 2

4 5 6

Partition 2

Replica 1

1 2 3

Cache Server 3

7 8 9

Partition 3

Replica 2

4 5 6

Grid Computing Apps (.NET or Java).NET Apps

49October 2010msdnmagazine.com

adding more servers to the dynamic cluster. But scalability can’t
be achieved unless data in the distributed cache is stored intelli-
gently. Th is is accomplished through data partitioning, with each
partition replicated for reliability.

Thanks to the enterprise distributed cache, you’re allowed
to exploit the benefits of a partitioned topology for scalability.
Figure 7 shows a partitioned-replication topology.

An enterprise distributed cache automatically partitions all data
you’re storing in the cache. Every partition is stored on a diff erent
server, and a backup for this partition is created
and stored on yet another server. Th is ensures
that if any server goes down, no data is lost.

So, to summarize, partitioning allows you
to keep adding more cache servers to the dy-
namic cluster to grow storage capacity, and
it also increases the transaction-per-second
capacity as you add more servers. And rep-
lication ensures reliability of data because
no data loss occurs if a server goes down.

Capable and Collaborative
Wrapping up, an enterprise distributed
cache is an ideal way for high-transaction
.NET and Java applications to share data
with other apps. It ensures that data sharing
is done in real time because of its powerful
event propagation mechanisms, including
item-based event notifi cation, application-
generated custom event notifi cations and
continuous query-based event notifi cations.

An enterprise distributed cache is extremely
fast and scalable by design. It’s fast because it’s
in-memory. It’s scalable because it can grow
into multiple servers. It partitions the actual
storage and stores each partition on a diff erent
server, and it stores a backup of that partition
onto yet another server, like a RAID disk.

Today’s applications need to be much more
capable than in the past. Th ey need to work
in a more collaborative fashion to share data
and interact with one another. Th ey need to
be exceedingly fast while meeting the needs of
extremely high loads to avoid compromising
performance and scalability. Moreover, they
must perform across diff erent platforms so

.NET applications can transparently and eff ectively work with Java
apps. An enterprise distributed cache helps meet all these goals.

IQBAL KHAN is the president and technology evangelist of Alachisoft (alachi soft .com),
which provides NCache, a .NET-distributed cache for boosting performance and
scalability in enterprise applications. Khan received a master’s degree in computer
science from Indiana University in 1990. You can reach him at iqbal@alachisoft .com.

THANKS to the following technical expert for reviewing this article:
Stefan Schackow

An enterprise
distributed cache is
extremely fast and
scalable by design.

www.msdnmagazine.com
www.microsoft.com/dynamics/DynamicsAXtechnicalconference2011/msdn.html
mailto:iqbal@alachisoft.com

msdn magazine50

B IN G MAP APPS

Building a Real-Time
Transit Application Using
the Bing Map App SDK

During the Tech•Ed 2010 conference in June, Microsoft
announced the availability of the free Bing Map App SDK, which
enables developers to write map-centric applications on top of the
Bing Maps explore site located at bing.com/maps/explore/.

Th is presents ample opportunities for organizations, businesses
or hobbyists to create their own mapping experiences within Bing
Maps. Businesses can write apps to advertise their products or to
complement their online services. For example, bestparking.com de-
veloped a “Parking fi nder” app, which helps you fi nd all parking
facilities in your city using their database.

Luan Nguyen

To see what a map app looks like, go to the Bing Maps explore
site and click on the MAP APPS button located near the bottom
left corner of the page. Th e Map apps gallery will open, showing
the available apps. There are already many apps featured in the
gallery, and it continues to grow.

In this article, I’ll describe what it takes to write a map app using
the Bing Map App SDK. I’ll walk you through the development of
a sample app that shows real-time bus arrival information around
King County in Washington state. This app is inspired by the
popular One Bus Away app.

The Final Product
Before I delve into code, let’s take a look at what the fi nal map app
will look like. When activated, if the map is zoomed into the King
County area, my map app will show in the left panel the list of all
bus stops within the map viewport (see Figure 1).

Each bus stop has information about all buses serving that
stop. Clicking on the “Arrival times” hyperlink for each stop will
bring up the second panel, which displays upcoming arrival
times (see Figure 2).

Th e app also places a visually appealing pushpin (marked with
the letter B) at every bus stop on the map. You can interact with
the pushpins to activate a pop-up, from which you can invoke
common commands for a particular bus stop, such as getting driv-
ing or walking directions to or from it (see Figure 3).

This article discusses:
• Downloading the Bing Map App SDK

• The One Bus Away API

• Defi ning a map entity

• Writing a plug-in

• Using a layer to show content and pushpins

• Testing, debugging and submitting a map app

Technologies discussed:
The Bing Map App SDK

Code download available at:
code.msdn.microsoft.com/mag201010BingMap

http://bing.com/maps/explore/
http://code.msdn.microsoft.com/mag201010BingMap

51October 2010msdnmagazine.com

Download the Bing Map App SDK
Before starting to write your fi rst map app, you need to install the Bing
Map App SDK at connect.microsoft.com/bingmapapps. Th e SDK provides
the reference assemblies, one sample project and offl ine documenta-
tion. In addition, because the SDK is based on Silverlight 4, you also
need to install the Silverlight 4 Tools for Visual
Studio 2010, available at silverlight.net/getstarted/.

Map App Basics
Th e Bing Maps explore site was built with
extensibility as one of the top priorities. Th e
Bing Maps team wanted to enable develop-
ers around the world to easily add function-
ality that they would fi nd useful and that
would be potentially useful to others. In
that sense, a map app is a concrete feature
that makes use of the building block ser-
vices provided by the core of Bing Maps.
If you look at the default Bing Maps site,
the driving directions, business search and
location search features are all built from
the same building blocks.

With that goal in mind, the Bing Maps
team decided to build an extensible frame-
work to support the concept of map apps.
When written on top of the framework,
map apps take advantage of a dependency
injection-style approach to provide access
to functionality, similar to that found in the
Managed Extensibility Framework (MEF).

At the core of the framework is the concept
of plug-ins. A plug-in is a unit of extensibil-
ity that allows developers to add features in a
maintainable, decoupled way. It can be thought
of as the equivalent of a composable part in
MEF terminology. Th rough attributes, a plug-

in declares the imports it needs as
well as exports it wants to share. At
run time, the framework will resolve
dependencies among plug-ins and
match the imports with the exports
of the same contract.

To write a map app, you create a
Silverlight 4 class library that con-
tains exactly one subclass of the
base Plugin class. In order to do
anything useful, your plug-in will
likely import a number of built-in
contracts that allow you to access
various core services. Th e SDK doc-
umentation has a section listing all
of the built-in contracts exported
by the framework.

To reference the Plugin class and
all built-in contract types, your

project will need to reference the provided assemblies from the
SDK. Figure 4 briefl y describes these four assemblies.

Access the One Bus Away API
To obtain real-time bus arrival information, I’ll be making use of

the publicly available One Bus Away REST
API (simply referred to as Oba API for
the rest of this article). You’ll find details
about the Oba API at code.google.com/p/
onebusaway/wiki/OneBusAwayRestApi. (Note that
the API is currently free for noncom-
mercial use, but you’re required to regis-
ter for an application key before you can
access it. In the downloadable code for
this article, I’ve removed the key assigned
to me, so if you want to compile and try
the app yourself, you need to replace it
with your own key.)

When a Silverlight application tries to
access a Web service on a diff erent domain,
the Silverlight runtime mandates that
the service must explicitly opt in to allow
cross-domain access. A service indicates its
consent by placing either a clientaccesspol-
icy.xml or crossdomain.xml fi le at the root
of the domain where the service is hosted.
More details regarding the schemas of these
two fi les are documented at msdn.microsoft.com/
library/cc197955%28VS.95%29. Luckily, the Oba
API provides the crossdomain.xml fi le,
which allows my map app to call it in Sil-
verlight code.

In the downloadable solution, you’ll see
two library projects, ObaApp and ObaLib.
ObaApp is the main project, which con-
tains the map app plug-in, and it references

Figure 1 The OBA App Shows Bus Information on the Left Panel and Pushpins on the Map

Figure 2 Bus Arrival Times for a
Particular Bus Stop

Figure 3 Clicking on a Pushpin Shows a
Pop-Up UI with Extra Information

www.msdnmagazine.com
http://connect.microsoft.com/bingmapapps
http://silverlight.net/getstarted/
http://code.google.com/p/onebusaway/wiki/OneBusAwayRestApi
http://code.google.com/p/onebusaway/wiki/OneBusAwayRestApi
http://msdn.microsoft.com/library/cc197955%28VS.95%29
http://msdn.microsoft.com/library/cc197955%28VS.95%29

msdn magazine52 Bing Map Apps

ObaLib. ObaLib is another class library project that encapsulates
all helper classes to communicate with the Oba API. I made it
a separate library so I can easily reuse it in diff erent projects if
I need to. I won’t go into the details of every class in this library,
but you’re encouraged to examine the source code to learn more
about the classes in there.

Th e most important class to know is the ObaSearchHelper class,
which provides convenient methods and events to make queries
to the Oba API:

public sealed class ObaSearchHelper
{
 public void SearchArrivalTimesForStop(string stopId);
 public event EventHandler<BusTripsEventArgs>
 SearchArrivalTimesForStopCompleted;

 public void SearchStopsByLocation(double latitude, double longitude,
 double radius, int maxResultCount);
 public event EventHandler<BusStopsEventArgs>
 SearchStopsByLocationCompleted;

 // more method/event pairs
 // ...
}

It’s easy to spot the pattern used in this class. For every REST
endpoint of the Oba API, there’s one method to trigger the search
and one corresponding event to signal the completion of that

search. Subscribers of the events can obtain the results from event
argument objects.

With this handy class ready, let’s dissect the main classes in the
ObaApp project.

Defi ne the Map Entity
The first thing you need to do when writing a map app is to
defi ne your map entity. Here’s the defi nition of entity from the SDK
documentation: “An Entity is a geo-associated item on the map. A
map entity can be a point, a polyline, a polygon or an image over-
lay.” Th e simple rule of thumb is that if you want to place something
on the map, you need an instance of Entity to represent it. Usually,
you want to create a subclass of Entity to add extra properties and
custom logic for your entities. In my app, because I want to show
the locations of bus stops, I wrote a BusStopEntity class to repre-
sent a bus stop. Figure 5 shows the BusStopEntity class.

My BusStopEntity class exposes two properties, Name and
StopId, which I’ll later use to data-bind to UI controls. These
values come from the underlying BusStop instance. Defi ned in
the ObaLib project, the BusStop class encapsulates data of a bus
stop, which it gets from the Oba API.

In the constructor, I also set the Primitive and the Name proper-
ties. Th e Primitive property represents the type (for example, point,
polygon or polyline) and location of my entity. I set the location to
the longitude and latitude values of the BusStop instance. In addition,
setting the Primitive property to the returned value of Pushpin-
FactoryContract.CreateStandardPushpin gives my entity the look
and feel of the standard Bing Maps pushpins. Th e PushpinFactory-
Contract type provides handy methods for creating common push-
pin UI elements. You don’t have to use it if you want to create your
own custom pushpin shapes. Here I just simply put a letter B (for
bus) inside the pushpin, but you can use an image or any UIElement.

public class BusStopEntity : Entity
{
 private readonly DependencyProperty NamePropertyKey =
 Entity.RetrieveProperty("Name", typeof(string));

 private BusStop _busStop;

 // Short name of this bus stop
 public string Name
 {
 get { return _busStop.Name; }
 }

 // Unique id of this bus stop
 public string StopId
 {
 get { return _busStop.Id; }
 }

 public BusStopEntity(BusStop busStop,
 PushpinFactoryContract pushpinFactory)
 {
 _busStop = busStop;

 // Set the location of this Entity
 Location location =
 new Location(_busStop.Latitude, _busStop.Longitude);
 this.Primitive = pushpinFactory.CreateStandardPushpin(location, "B");

 // Set the name of this Entity
 this.SetValue(NamePropertyKey, _busStop.Name);
 }
}

Figure 5 The BusStopEntity Class

Assembly Name Description
Microsoft.Maps.Plugins.dll Contains the base Plugin class and related Import/Export attribute classes.
Microsoft.Maps.Core.dll Contains all the contract types that Bing Maps provides.
Microsoft.Maps.MapControl.Types.dll Contains the types required for working with the map control.
Microsoft.Maps.Extended.dll Contains the types to interact with the StreetSide map mode.

Figure 4 Reference Assemblies for a Map App Project

You can interact with the
pushpins to activate a pop-up,

from which you can invoke
common commands for a
particular bus stop, such as
getting driving or walking

directions to or from it.

You’ve got the data, but time, budget and staff
constraints can make it hard to present that valuable
information in a way that will impress. With Infragistics’
NetAdvantage for Silverlight Data Visualization and
NetAdvantage for WPF Data Visualization, you can
create Web-based data visualizations and dashboard-
driven applications on Microsoft Silverlight and WPF
that will not only impress decision makers, it actually
empowers them. Go to infragistics.com/sldv today and
get inspired to create killer apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics and the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc.

GeospatialMaps

Silverlight
Pivot
Grids

Fast
DataCharts

Untitled-1 1 8/3/10 10:45 AM

www.infragistics.com/sldv

msdn magazine54 Bing Map Apps

Although I defi ne the Name property in my subclass, it won’t be
recognized by other types in the SDK—those types simply have
no knowledge of my property. Th erefore, I also set the same value
to the Name dependency property, which I retrieve via the call
Entity.RetrieveProperty(“Name”, typeof(string)). By doing this, I
enable other features to retrieve the name of a bus stop entity.

Write the Main Plug-in
As explained earlier, you need a Plugin-derived class to represent
your map app. Figure 6 shows mine, which is aptly named Oba-
Plugin. My plug-in imports a total of six contracts. Notice that all
contracts provided by Bing Maps follow the naming convention of
Microsoft /*. Th e SDK documentation provides detailed descrip-
tions of all contracts that can be imported, shown in Figure 7.

Aft er declaring the imports, I override the virtual Initialize method:
public override void Initialize()
{
 // Obtain the application key from configuration file
 IDictionary<string, object> configs =
 ConfigurationContract.GetDictionary(this.Token);
 string appKey = (string)configs["ApplicationKey"];
 _searchHelper = new ObaSearchHelper(appKey);
 _searchHelper.SearchStopsByLocationCompleted +=
 OnSearchBusStopsCompleted;
 _searchHelper.SearchArrivalTimesForStopCompleted +=
 OnSearchArrivalTimesComplete;

 // Update the bus stop every time map view changes
 Map.TargetViewChangedThrottled += (s, e) => RefreshBusStops();
}

Th is method is called exactly once aft er the plug-in instance is
constructed and all the declared imports are satisfi ed. Th is is the
perfect place to do any initialization work that depends on the
imported contracts. If your plug-in has any exports, you also have
to make sure all the exported properties are fully instantiated by
the time Initialize returns.

I fi rst obtain the application key from the confi guration fi le via
the imported Confi gurationContract instance and pass it to the
ObaSearchHelper constructor. By putting the application key
in the confi guration fi le, I can easily change it at any time without
recompiling my project.

The second thing I do is hook up the event TargetView-
ChangedTh rottled from the MapContract instance. Th is event is
raised every time the map’s view is about to change, either program-
matically or through user interaction. As the name suggests, the
event is throttled internally so that it doesn’t fi re too many times
within a short duration. Th erefore, it’s a perfect event to consider
if you want to keep your entities in sync with the map view. In my
case, I call the RefreshBusStops method to refresh the list of bus
stops. Here’s the defi nition of RefreshBusStops:

internal void RefreshBusStops()
{
 if (Map.ZoomLevel >= 14)
 {
 // Search within the radius of 1km, maximum 150 results
 _searchHelper.SearchStopsByLocation(
 Map.Center.Latitude, Map.Center.Longitude, radius: 1000, 150);
 }
 else
 {
 // Clear all bus stops
 ClearBusStops();
 }
}

Here, I check that the current map zoom level is at least 14, then I
issue a call to the SearchStopsByLocation method, which will return
the list of all bus stops within a specifi ed radius around the map cen-
ter. Otherwise, if the zoom level is less than 14, meaning the map is
not zoomed in close enough to the city level, I clear out all bus stops.

public class ObaPlugin : Plugin
{

 #region Imports

 [ImportSingle("Microsoft/LayerManagerContract", ImportLoadPolicy.Synchronous)]
 public LayerManagerContract LayerManager { get; set; }

 [ImportSingle("Microsoft/PopupContract", ImportLoadPolicy.Synchronous)]
 public PopupContract PopupContract { get; set; }

 [ImportSingle("Microsoft/ConfigurationContract",
 ImportLoadPolicy.Synchronous)]
 public ConfigurationContract ConfigurationContract { get; set; }

 [ImportSingle("Microsoft/MapContract", ImportLoadPolicy.Synchronous)]
 public MapContract Map { get; set; }

 [ImportSingle("Microsoft/PushpinFactoryContract",
 ImportLoadPolicy.Synchronous)]
 public PushpinFactoryContract PushpinFactory { get; set; }

 [ImportSingle("Microsoft/ContributorHelperContract",
 ImportLoadPolicy.Synchronous)]
 public ContributorHelperContract ContributorHelper { get; set; }

 #endregion

Figure 6 Imports Declared in ObaPlugin Class

Contract Type Description
LayerManagerContract Allows a plug-in to add or remove map

layers.
PopupContract Allows a plug-in to show the pop-up

UI when user hovers or clicks on the
entities/pusphins.

Confi gurationContract Allows a plug-in to dynamically load
confi guration values from the confi guration
fi le at run time.

MapContract Allows a plug-in to control the map.
PushpinFactoryContract Allows a plug-in to render standard

pushpins for its entities.
ContributorHelperContract Allows a plug-in to create asynchronous

or demand-load contributors. (I’ll use this
helper to add “Driving directions” and
“StreetSide” contributor links to my
pop-up later.)

Figure 7 Contracts Imported by the ObaPlugin

The Bing Maps explore site was
built with extensibility being one

of the top priorities.

ADVERTISEMENT

VISUAL STUDIO PARTNER PROFILE

A Visual Studio 2010
Q&A with Pamela Szabo
of Stone Bond Technologies
Q What is Enterprise Enabler®?
A Enterprise Enabler is our established agile integration
software platform that automates complex bi-directional
data aggregation, transformation and migration of entities
among multiple line of business applications.

Q What makes Enterprise Enabler® diff erent?
A I think it is the holistic view in Enterprise Enabler of all the
diff erent aspects of integration. It is designed to cover the
full range of needs and possibilities in a single environment.
Our grass roots transformation engine that we built from
the ground up, is not an off the shelf XSLT engine, which we
have as well, but ours is far more fl exible. It gives us the
capability with our AppComm [Not Adapter] technology, to
reach out to applications live and “talk” among the diff erent
applications that we’re connecting. We do both: reading or
writing and can align the data, so in the end we’ve got
virtual relationships without having to stage data anywhere.

Q You call Enterprise Enabler “Agile Integration
Software”, what is that?
A That is really the end result of this holistic approach,
characterized by 10 key points:
 1. Off -the-shelf
 2. Can create virtual relationships
 3. Has embedded code editors and compilers
 4. Has Design Time Validation
 5. Has a transformation engine that is not limited to
 XML formats
 6. A Single environment for development, testing,
 deployment and monitoring
 7. Data Workfl ow logic
 8. Secure, Auditable environment
 9. Embeddable in software applications
 10. Integration infrastructure change management

Q What is diff erent for programmers?
A We don’t want them to have to keep doing the same
thing over and over again, so we have automated most
every repeatable task, allowing the programmers to be
innovative and do other things. Our Users love that they
don’t have to keep doing the same tedious tasks. Instead of
wasting time, they can enhance the tools or extend it or
drop in their own code, it becomes one with them in their
environment. So it becomes their tool to do whatever they
want with. Everything from building composite applications,
to ecommerce and so forth. They even create their own
reusable components they can drop into compilers right
from the User Interface they are already working in.

Q What systems and applications can Enterprise
Enabler extend connectivity for?
A Enterprise Enabler can be embedded in applications like
ADO.Net, WSS, SharePoint 2010 and connect with systems
like SAP, SalesForce, SQL, Oracle DB2, EDI. You name it, the
product can codelessly connect!

Q What business value does Enterprise Enabler
bring to an organization?
A There are so many benefi ts with Enterprise Enabler. For
example, it eliminates the need for staging databases by
providing real-time access to data aligned and merged
from multiple sources. It also improves business decision-
making by enhancing the capability of dashboards,
business intelligence, analytics and SharePoint. The bottom
line is a huge savings in resources and time to generate
complex integration.

Pamela Szabo
Executive Vice President & CTO

Stone Bond Technologies
www.agileintegrationsoftware.blogspot.com

VSP2

For more information please visit:
www.stonebond.com

Untitled-5 1 9/16/10 3:12 PM

http://www.agileintegrationsoftware.blogspot.com
http://www.stonebond.com
http://www.stonebond.com

msdn magazine56 Bing Map Apps

When the SearchStopsByLocation method completes (asynchro-
nously), it raises the SearchStopsByLocationCompleted event, shown
in Figure 8, which I subscribed to earlier in the Initialize method.

Note the object of type ObaLayer, which I’ll explain in the next
section. For now, suffi ce it to say that this object is responsible for
managing the left panel’s content and entities on the map.

Notice that I use a Dictionary<BusStop, int> object to help me
keep track of the current list of displayed bus stops. With the help
of this dictionary, every time I get a brand-new set of bus stops
from the service call, I can quickly determine the new stops that
aren’t already shown, as well as the old stops that are now out of
view due to the map view change.

You may wonder why I don’t just clear out all current bus stops
and show the new set of bus stops altogether. Well, the reason is
performance. If I did so, I’d force all the pushpin controls to be
re-created even if many of them were at the same location in both
the old and new map views. Even worse, users would see a short
fl ash when the pushpins were removed and quickly added back.
My approach eliminates both of these shortcomings.

Show Content and Pushpins with a Layer
The Plugin class represents your map app, but if you want to
show UI representations of it, you need to create layers. A layer is

an abstract concept that allows you to place entities on the map
as pushpins (or polylines, or polygons) and to show custom UI
content on the left panel. Optionally, it can also place an arbitrary
UI overlay on top of the map, but I don’t need that for my app. Most
apps have only one layer.

If you’ve used Photoshop, you’ll fi nd the concept very similar to
Photoshop layers. Th e History button (located at the bottom left
corner of the page) shows the list of all currently loaded layers. You
can choose to show or hide any layer, or you can set a layer to be-
come active. When a layer becomes active, its Panel UI element is
shown in the left panel and all of its entities are brought forward
in the z-index stack.

In code, a layer is a subclass of the abstract Layer class. As shown
in Figure 9, ObaPlugin creates and manages an instance of the
ObaLayer class, which derives from Layer.

In the constructor of ObaLayer, I set the title of my layer, which
will show at the top of the left panel. I also set the Panel property
to an instance of the BusStopsPanel user control, which will
occupy the entire left panel region if my layer becomes active.
Th e user control’s DataContext property is set to an instance of
ObservableCollection<Entity>.

So how does the layer get displayed? Th at’s done by ObaPlugin
as shown in Figure 10.

Th e override Activate method is called every time my map app
is activated through the Map apps gallery. To show my layer, I refer
to the LayerManagerContract type I imported earlier. Th e Layer-
ManagerContract class defi nes methods to work with layers. If my

internal class ObaLayer : Layer
{
 private ObaPlugin _parent;
 private BusStopsPanel _resultPanel;
 private ObservableCollection<BusStopEntity> _busStopEntities;

 public ObaLayer(ObaPlug-in parent) : base(parent.Token)
 {
 _parent = parent;

 // Contains the set of active bus stop entities
 // for data binding purpose
 _busStopEntities = new ObservableCollection<BusStopEntity>();
 _resultPanel = new BusStopsPanel(parent, this);
 _resultPanel.DataContext = _busStopEntities;

 this.Title = "Bus stops";
 this.Panel = _resultPanel;
 }
 ...
}

Figure 9 ObaLayer Class

private int _searchCount;
private Dictionary<BusStop, int> _busStopCache =
 new Dictionary<BusStop, int>();
private ObaLayer _layer;

private void OnSearchBusStopsCompleted(object sender, BusStopsEventArgs e)
{
 _searchCount++;

 // Contains new bus stops not present in the current view
 Collection<BusStopEntity> addedEntities =
 new Collection<BusStopEntity>();
 foreach (BusStop stop in e.BusStops)
 {
 // If this bus stop is not in the cache, it is a new one
 if (!_busStopCache.ContainsKey(stop))
 {
 addedEntities.Add(new BusStopEntity(stop, PushpinFactory));
 }

 // Marks this bus stop as being in the current search
 _busStopCache[stop] = _searchCount;
 }

 // Contains the old bus stops
 // that should be removed from the current view
 Collection<BusStopEntity> removedEntities =
 new Collection<BusStopEntity>();
 foreach (BusStopEntity bse in _layer.Entities)
 {
 // This bus stop belongs to the previous search,
 // add it to removed list
 if (_busStopCache[bse.BusStop] < _searchCount)
 {
 removedEntities.Add(bse);
 _busStopCache.Remove(bse.BusStop);
 }
 }

// Tells the layer to add new in-view entities
// and remove out-of-view ones
 _layer.RefreshEntities(addedEntities, removedEntities);
}

Figure 8 Handler for the SearchBusStopsCompleted Event

A plug-in is a unit of extensibility
that allows developers to add

functionalities in a maintainable,
decoupled way.

ALM Summit
Application Lifecycle Management
for the Microsoft platform
Register at www.alm-summit.com

November 16-18, 2010 - Microsoft Redmond

Sponsored by Microsoft

Sponsors:

Keynote speakers:

Ken Schwaber Brian Harry
Technical Fellow

Dave West
Forrester Research

Sam Guckenheimer
Microsoft

Tony Scott
CIO, Microsoft

Speakers:

Amit
Chopra

Eric
Willeke

John
Szurek

Peter
Provost

Austina
De Bonte

Grant
Holliday

Jon
Bach

Richard
Hundhausen

Cameron
Skinner

Jamie
Cool

Karel
Deman

Stephanie
Cuthbertson

Chris
Kinsman

JB
Brown

Mario
Cardinal

Stuart
McGill

David
Green

Jim
Newkirk

Mary
Czerwinski

Vinod
Malhotra

follow us on

Untitled-1 1 9/17/10 10:16 AM

Scrum.org

http://www.alm-summit.com

msdn magazine58 Bing Map Apps

layer is already added, I set it to active by calling the BringToFront
method. Attempting to add the same layer twice results in an exception.

In Figure 8, I called the ObaLayer.RefreshEntities method to
update the bus stops. Figure 11 shows its defi nition.

To add or remove an entity on the map, I use the Layer.Entities
collection property. And for every new BusStopEntity, I call the
PopupContract.Register method to register for the pop-up UI on
my bus stop pusphin. Th e Register method accepts the entity and
a callback method that gets invoked whenever the pop-up control
changes state on the entity (see Figure 12).

Inside the pop-up callback, the method argument of PopupState-
ChangeContext type gives me access to the current state of the pop-
up and the entity currently under pop-up. Based on those, I set the
pop-up title with the bus stop name and the pop-up content with
the BusStopEntity.BusRoutesAsString property, which returns a
comma-separated list of bus routes serving this particular bus stop.

If the pop-up is in Normal state, I also add three contributor
links to the pop-up via the Contributors collection property—the
“Arrival times” contributor shows the arrival times for this bus stop,
the Directions contributor invokes the driving directions feature
and the Streetside contributor switches to street-level map mode.

A contributor is represented by a hyperlink at the bottom of the
pop-up control. It allows map apps to invoke a certain core feature
of Bing Maps. To generate contributors, you call one of the two
methods of the ContributorHelperContract type: CreateAsync-
Contributor or CreateDemandLoadContributor. Both methods
return a proxy contributor synchronously and defer the loading
of the real contributor instance. Th e only diff erence is that the
CreateAsyncContributor loads the real contributor as soon as it
returns, whereas CreateDemandLoadContributor only does so
when the proxy contributor link is invoked the fi rst time.

BusStopsPanel UserControl
BusStopsPanel is a UserControl, which is responsible for showing
the list of in-view bus stops in the left panel (as shown in Figure
1). It contains an ItemsControl instance with the ItemTemplate

property set to a custom DataTemplate (see Figure 13). Notice that
I turn on UI virtualization mode for my ItemsControl by setting the
ItemsPanel property to use a VirtualizingStackPanel. Generally, it’s a
good practice to apply UI virtualization to ItemsControl if your app
may load hundreds of items into it.

Inside the bus stop DataTemplate I added a HyperlinkButton
control, which, when clicked, will trigger the search for the arrival
times of the corresponding bus stop:

private void OnBusStopClick(object sender, RoutedEventArgs e)
{
 FrameworkElement element = (FrameworkElement)sender;
 BusStopEntity entity = (BusStopEntity)element.DataContext;
 _plugin.SearchArrivalTimes(entity);
}

Notice that its Style property is set to an object from the Static-
Resource collection, with the key as “App.P2.Hyperlink.” Bing
Maps provides a default set of UI resources, such as Styles and
ControlTemplates of common controls, as well as standard Colors
and Brushes used by Bing Maps itself. Map app authors are encour-
aged to apply these resources to their UI elements so they have the
same look and feel as native UI elements. Refer to the documenta-
tion for all the resources provided by Bing Maps.

SearchArrivalTimes is an internal method of the ObaPlugin
class. It calls the ObaSearchHelper.SearchArrivalTimesForStop
method to retrieve arrival times for the specifi ed bus stop:

internal void SearchArrivalTimes(BusStopEntity _entity)
{
 _searchHelper.SearchArrivalTimesForStop(_entity.StopId, _entity);
}

When the search completes, the plug-in will instruct ObaLayer
to show the arrival times in the left panel. ObaLayer does so by
dynamically changing its Title and Panel properties.

Testing and Debugging the Map App
When you’re done coding, you’ll want to test your app. Th e Bing
Maps site has a developer mode that’s enabled by appending a “devel-
oper=1” query parameter to the URL, like this: http://www.bing.com/
maps/explore/?developer=1. When in developer mode, you test your
map app with the “Map app test tool,” which can be activated via the

public void RefreshEntities(
 ICollection<BusStopEntity> addedEntities,
 ICollection<BusStopEntity> removedEntities)
{
 foreach (BusStopEntity entity in removedEntities)
 {
 // Remove this pushpin from the map
 this.Entities.Remove(entity);
 // Remove this bus stop entry from the panel
 _busStopEntities.Remove(entity);
 }

 foreach (BusStopEntity entity in addedEntities)
 {
 // Add this pushpin to the map
 this.Entities.Add(entity);
 // Add this bus stop entry to the panel
 _busStopEntities.Add(entity);

 // Register this entity to have popup behavior
 _parent.PopupContract.Register(entity, OnPopupStateChangeHandler);
 }
}

Figure 11 The ObaLayer.RefreshEntities Method Defi nition

public override void Activate(IDictionary<string, string>
activationParameters)
{
 ShowResultLayer();
 RefreshBusStops();
}

private void ShowResultLayer()
{
 if (_layer == null)
 {
 _layer = new ObaLayer(this);
 }

 if (LayerManager.ContainsLayer(_layer))
 {
 LayerManager.BringToFront(_layer);
 }
 else
 {
 LayerManager.AddLayer(_layer);
 }
}

Figure 10 ShowResultLayer Method Shows the ObaLayer
Instance to the User

59October 2010msdnmagazine.com

same Map apps gallery. Th e Map app test tool allows you to select
the plug-in assemblies from your local hard drive. It then loads your
plug-in into the site just as it does with all native plug-ins. To debug

your code, attach VS.NET to your browser while your app is loaded.
Make sure you set the debug code type to Silverlight.

Submitting Your Map App
Finally, when you’re satisfi ed with your code, you can submit your
app to be published offi cially onto the Bing Maps site. You can submit
a new app and view the status of previous submissions at the Bing
Maps Account Center (bingmapsportal.com). Th e SDK documentation
has detailed instructions on submitting your app, and it lists the
requirements your apps must meet in order to be approved.

Call to Action
So there you have it: a full-fledged, real-time transit application
that didn’t require a lot of code. The SDK supplies the building
blocks that make writing map-centric applications an enjoyable
and rewarding experience. I encourage you to download the SDK
today, learn it, and start writing your own map apps.

LUAN NGUYEN worked as a developer on the Bing Maps team (formerly known
as Microsoft Virtual Earth) for almost four years. He was a member of the Shell
feature team, which was responsible for the framework shell of the Bing Maps
site and the Bing Map App SDK. He has recently switched to the ASP.NET team.

THANKS to the following technical experts for reviewing this article:
Alan Paulin, Chris Pendleton, Dan Polivy and Greg Schechter

<UserControl.Resources>
 <DataTemplate x:Key="BusStopTemplate">
 <Border Margin="2,0,2,12"
 <StackPanel>
 <TextBlock Text="{Binding Name}" FontSize="14" FontWeight="Bold"
 TextWrapping="Wrap" />
 <TextBlock Text="{Binding BusRoutesAsString, StringFormat='Bus numbers:
 {0}'}" FontSize="12" TextWrapping="Wrap" />
 <HyperlinkButton Content="Arrival times" Click="OnBusStopClick"
 Style="{StaticResource App.P2.Hyperlink}"
 HorizontalAlignment="Left" />
 </StackPanel>
 </Border>
 </DataTemplate>

 <ControlTemplate x:Key="ScrollableItemsControl"
 TargetType="ItemsControl">
 <ScrollViewer Style="{StaticResource App.ScrollViewer}"
 VerticalScrollBarVisibility="Auto">
 <ItemsPresenter />
 </ScrollViewer>
 </ControlTemplate>
</UserControl.Resources>

<ItemsControl
 ItemsSource="{Binding}"
 VirtualizingStackPanel.VirtualizationMode="Recycling"
 ItemTemplate="{StaticResource BusStopTemplate}"
 Template="{StaticResource ScrollableItemsControl}">
 <ItemsControl.ItemsPanel>
 <ItemsPanelTemplate>
 <VirtualizingStackPanel />
 </ItemsPanelTemplate>
 </ItemsControl.ItemsPanel>
</ItemsControl>

Figure 13 The BusStopsPanel UserControl

private void OnPopupStateChangeHandler(PopupStateChangeContext context)
{
 if (context.State == PopupState.Closed)
 {
 return;
 }

 BusStopEntity entity = (BusStopEntity)context.Entity;
 context.Title = entity.Name;
 context.Content = "Bus numbers: " + entity.BusRoutesAsString;

 // Only shows contributors link in the normal state of popup
 if (context.State == Pop-upState.Normal)
 {
 // Add Arrival times contributor
 context.Contributors.Add(new BusStopContributor(_parent, entity));

 Dictionary<string, object> parameter = new Dictionary<string, object>
 {
 {"Entity", entity}
 };
 var contributorHelper = _parent.ContributorHelper;

 // Add Directions contributor
 context.Contributors.Add(contributorHelper.
 CreateDemandLoadContributor(
 "Microsoft/DirectionsContributorFactoryContract",
 parameter, "Directions"));

 // Add Streetside contributor
 context.Contributors.Add(contributorHelper.CreateAsyncContributor(
 "Microsoft/StreetsideContributorFactoryContract", parameter));
 }
}

Figure 12 Changing the State of a Pop-Up Control

www.msdnmagazine.com
www.nwoods.com
http://bingmapsportal.com

msdn magazine60

E MB E DDED PR OG R AMMING

Connected Devices
Using the .NET
Micro Framework

Today, we see a proliferation of applications that include
connected devices. In fact, the “Internet of Things” (devices con-
nected over the Internet) is already estimated to be larger than the
World Wide Web in terms of endpoints and is projected to grow to
an order of magnitude larger in the next few years.

In the near future, we’ll be interacting with more intelligent devices
instead of recognizable computers. Just look around your house.
Th e things that can be usefully connected include your appliances
(for energy management, soft ware updates and maintenance); your

Colin Miller

car (for coordination on recharging your new electric vehicle
with the grid, automatic testing and maintenance and soft ware
updates); your irrigation system (for scheduling based on weather
reports and water management); your pets (to determine their
location and configure invisible fencing); your thermostat (for
remote control); and much more.

Th ese devices are connected to one another, to smart controllers,
to the router and to the cloud. What does this mean for Microsoft
.NET Framework developers? Right now, .NET developers can pro-
duce applications for all parts of the system to which small devices
connect. And with the .NET Micro Framework, .NET developers
can develop the full system right down to the small devices.

Th e .NET Micro Framework is an implementation of the .NET
Framework specifi cally targeting the smallest devices possible with
extensions for embedded programming needs. It runs directly on
the hardware without an underlying OS in order to minimize its
footprint. General information is available at microsoft.com/netmf and
the project’s open source community site: netmf.com.

Several months ago, I started a series of articles on the .NET
Micro Framework blog (blogs.msdn.com/b/netmfteam) that describes the
process of building one of these small devices—a bicycle computer—
from the ground up using only the .NET Micro Framework, Visual
Studio and a minimal amount of electronics. I wanted to demon-
strate how .NET Framework developers can build rich applications
on small devices. (Th e fi rst article in this series can be found at:
tinyurl.com/2dpy6rx.) Figure 1 shows the actual computer. I picked
a bicycle computer because everyone is a domain expert when it

This article discusses:
• The NETMF bicycle computer open source project

• Using the Web services model to connect devices

• The Devices Profi le for Web Services

• Confi guring a Wi-Fi radio

• Setting up a service connection

• Using WDSL to defi ne the service

• Generating code with MFSvcUtil.exe

• Uploading bicycle ride data

Technologies discussed:
.NET Micro Framework

Code download available at:
code.msdn.microsoft.com/mag201010Micro

http://code.msdn.microsoft.com/mag201010Micro
http://microsoft.com/netmf
http://netmf.com
http://blogs.msdn.com/b/netmfteam
http://tinyurl.com/2dpy6rx

61October 2010msdnmagazine.com

comes to bicycles. Th e application includes a
gesture- based UI, supports a number of sen-
sors and addresses issues like managing the
battery power supply.

Th e blog discusses each feature’s implemen-
tation, and the code for the project is available
on CodePlex at netmfbikecomputer.codeplex.com/.
However, I saved the best for last—in this
article, I’m going to connect this device to
a Microsoft Windows Azure-hosted Web
service over Wi-Fi. Here’s the scenario:
you’ve just finished your ride and brought
your bike into the garage. Your computer
contains data it collected during your ride:
distance, speed, cadence, incline, time and
so on. You flip over to the data view and
press the Upload button. The data for your
ride is uploaded to the cloud, where it can
be aggregated with all your other rides and
shared with your friends.

In this article, I’ll focus on making the connection and uploading
the data rather than discussing the form of the cloud service to
which you might connect. Check out examples like bikejournal.com

and cyclistats.com to see what the possibilities are for tracking your
bicycling progress and competing with your friends. I’ll discuss
how easy it is to make that connection.

First, a Little Background
Th e Web services model is great for connecting devices because it
supports a full range of device and service interactions that may not
be fully known at the time we create an application. On the device
side, we use a subset of the full Web service infrastructure called
Devices Profile for Web Services (DPWS)—see en.wikipedia.org/

wiki/Devices_Profi le_for_Web_Services to learn more about it. DPWS is
described as Universal Plug and Play (UPNP) for networked devices.
In the .NET Micro Framework, DPWS supports the WS-Addressing,
WS-Discovery, WS-MetaDataExchange and WS-Eventing inter-
faces, and is built on the underlying technologies of
SOAP, XML, HTTP, MTOM and Base64 encoding.

With DPWS, you can connect to devices that
are clients (devices that consume services from
others), or servers (devices that provide services
for others) or both. You can negotiate what you
provide and what you can consume through the
metadata, and you can publish and subscribe to
notifi cations of changes in other entities. Figure 2
shows the DPWS stack.

Th e implementation in the .NET Micro Frame-
work supports DPWS version 1.0—which is com-
patible with Windows 7—and DPWS version
1.1—which is compatible with Windows Commu-
nication Foundation (WCF) 4. You can specify the
binding you use for your connection: for example,
SOAP over HTTP (ws2007HttpBinding) or a cus-
tom binding that you want to support.

Our application for the bicycle computer is
really pretty simple—we’ll just be uploading
data to the cloud. DPWS can actually do so
much more. For example, let’s say my utility
company installs a smart service meter that
limits the resources I can use at any specifi c
time. Along with that, I install a local energy
management service that gives me control
over how I use those limited resources. I
can set priorities and heuristics that allow
the system to make decisions about how to
limit consumption—for example, hot water
for showers has a high priority.

Now I go out and buy a new dishwasher.
I bring it home and plug it in. In the back-
ground, the dishwasher finds the local
network and “discovers” the management
service. It informs the service of its power
consumption in various states and rules for

how it can be used. Later, when the dishwasher is running, I jump
in the shower and the hot water heater comes on. But once I start
the dishwasher, I don’t want it to just turn off and have the food
harden on the plates. To cut total consumption, the management
service tells the dishwasher to just rinse the dishes every 15 min-
utes to keep them from drying out, and to resume where it left off
in the washing cycle when I’m done with the shower. As you can
see, this entire scenario can support an arbitrary set of endpoints
with the functionality defi ned in DPWS.

Enough Background—Let’s Make It Work
Confi guring the Wi-Fi radio is easy enough. Th ere are two ways
to do this—one uses the MFDeploy.exe utility, and the other is a
programmatic interface supported by the GHI SDK (from GHI
Electronics). Let’s start with MFDeploy.exe, which is a tool that
comes with the .NET Micro Framework and can be found in the
tools section of the SDK installation. In the Target | Confi guration |
Network Confi guration dialog box (see Figure 3), I enable DHCP,

select the security mechanism and enter the pass
phrase and other confi guration aspects of my
home network.

DHCP will take care of fi lling in the Gateway
and DNS fi eld of the network settings. Th is infor-
mation is available to the managed application
through the NetworkInterface type and its child
Wireless80211. The HTTP stack will implicitly
use this information when sending and receiving
bytes, but it might need an additional piece of
information to enable using a proxy—something your
network might require. To help the HTTP stack use
the proxy correctly, it’s advisable to add the following
to a program as a further hint as to where to connect:
WebRequest.DefaultWebProxy =
 new WebProxy("<router IP Adress>");

If there’s no explicit proxy role in your network,
you can usually default to using the Gateway

Figure 1 The NETMF Bicycle Computer

Figure 2 The DPWS Stack

OSI Layers 2, 1 ...

SOAP

XML

IP

HTTP

TCP

Device-Specific

UDP

www.msdnmagazine.com
http://netmfbikecomputer.codeplex.com/
http://bikejournal.com
http://cyclistats.com
http://en.wikipedia.org/wiki/Devices_Profile_for_Web_Services
http://en.wikipedia.org/wiki/Devices_Profile_for_Web_Services

msdn magazine62 Embedded Programming

address. With the GHI programmatic
interface, you use some derivative of the
code shown in Figure 4.

Th e Figure 4 example assumes that you’re
using WPA or WPA2 security. WEP is also
supported. Th e fi rst thing you do is identify
the SPI port and control lines used by the
radio. This configuration represents the
connections for the hardware, a FEZ Cobra
board from GHI. All that’s required is to set
up the WiFiSettings, save the confi guration
and call EnableDHCP. Notice that some of
these calls are blocking, and this can take
some time, so you’ll need to ensure that the
user knows what’s happening. Also, there’s
no way in this programmatic interface to
enumerate the available networks so you
can select from them. I hard-coded the net-
work information in the Figure 4 example.

For a commercial implementation of
the bicycle computer, I need to write an
integrated Wi-Fi confi guration UI that
exposes the information entered into the
dialog shown in Figure 3, and an onscreen keyboard to enter it. I
may have time to write this up in another blog article before this
article is published. I’m working on a Time Service article that
shows how to use the Wi-Fi connection to get the date and time
when I start up the computer so that I don’t have to keep the
device running to maintain that information or have the user (me)
enter it on startup.

Setting up the Service Connection
All that remains is the DPWS implementation. As a reminder, I’m
going to focus on the device side. Th e Windows Azure service I’m
using provides a simple “Hello World” template. I start with this and

extend the contract by adding the fi elds
that I need to store and the operations by
writing the UpLoad and Get operations.
Th is creates a service that can accept my
data, store it and give me back the last data
stored. Obviously, a full service requires
much more work, but that’s another article.
Let’s look briefl y at the contract created for
this service. Th e ServiceContract contains
the two operations and the DataContract
contains the fi elds (see Figure 5).

Th e actual implementation of the con-
tract is minimal to support the bicycle
computer example (see Figure 6).

The WSDL Defi nes the Service
From the contract and schema that I cre-
ated, the Windows Azure service auto-gen-
erates a Web Service Defi nition Language
(WSDL) fi le. It contains the Ser vice Mod-
eling Language (SML) defi nition of the
service. Th e W3C specifi cation for the
WSDL document can be found at w3.org/

TR/wsdl. It defi nes the operations and messages that the service sup-
ports. Th e WSDL is stored as an XML description on a Web site,
where it’s accessible to anyone connecting to the service. Ours can
be found at netmfbikecomputerservice.cloud app.net/BikeComputerService.svc?wsdl.
Figure 7 shows a small snapshot of the WSDL fi le so you can see
what it looks like, but remember that this fi le is auto-generated and
is only consumed by other programs. You don’t need to ever write
this complex and touchy XML.

You can see that the WSDL includes the defi nitions for messages
for data input and output and operations for getting and uploading
data. Now that we have our simple interface to the service defi ned
and published, how do I program to that? Th at’s pretty easy as well.

Figure 3 The MFDeploy Network
Confi guration Dialog

// -- Set up the network connection -- //

WiFi.Enable(SPI.SPI_module.SPI2, (Cpu.Pin)2, (Cpu.Pin)26);

NetworkInterface[] networks = NetworkInterface.GetAllNetworkInterfaces();
Wireless80211 WiFiSettings = null;

for (int index = 0; index < networks.Length; ++index)
{
 if (networks[index] is Wireless80211)
 {
 WiFiSettings = (Wireless80211)networks[index];
 Debug.Print("Found network: " + WiFiSettings.Ssid.ToString());
 }
}

WiFiSettings.Ssid = "yourSSID";
WiFiSettings.PassPhrase = "yourPassphrase";
WiFiSettings.Encryption = Wireless80211.EncryptionType.WPA;
Wireless80211.SaveConfiguration(
 new Wireless80211[] { WiFiSettings }, false);

_networkAvailabilityBlocking = new ManualResetEvent(false);

if (!WiFi.IsLinkConnected)
{

 _networkAvailabilityBlocking.Reset();
 while (!_networkAvailabilityBlocking.WaitOne(5000, false))
 {
 if (!WiFi.IsLinkConnected)
 {
 Debug.Print("Waiting for Network");
 }
 else
 break;
 }
}
Debug.Print("Enable DHCP");
try
{
 if (!WiFiSettings.IsDhcpEnabled)
 WiFiSettings.EnableDhcp(); // This function is blocking
 else
 {
 WiFiSettings.RenewDhcpLease(); // This function is blocking
 }
}
catch
{
 Debug.Print("DHCP Failed");
}

Figure 4 Wi-Fi Confi guration with the GHI Programmatic Interface

http://netmfbikecomputerservice.cloudapp.net/BikeComputerService.svc?wsdl

(888) 850-9911
Sales Hotline - US & Canada:

/update/2010/10

US Headquarters
ComponentSource
650 Claremore Prof Way
Suite 100
Woodstock
GA 30188-5188
USA

© 1996-2010 ComponentSource. All Rights Reserved. All prices correct at the time of press. Online prices may vary from those shown due to daily fluctuations & online discounts.

European Headquarters
ComponentSource
30 Greyfriars Road
Reading
Berkshire
RG1 1PE
United Kingdom

Asia / Pacific Headquarters
ComponentSource
3F Kojimachi Square Bldg
3-3 Kojimachi Chiyoda-ku
Tokyo
Japan
102-0083 www.componentsource.com

www.componentsource.com

We accept purchase orders.
Contact us to apply for a credit account.

ContourCube from $900.00
OLAP component for interactive reporting and data analysis.

BEST SELLER

BEST SELLER TX Text Control .NET and .NET Server from $499.59
Word processing components for Visual Studio .NET.

BEST SELLER

FusionCharts from $195.02
Interactive Flash & JavaScript (HTML5) charts for web apps.

BEST SELLER

BEST SELLER LEADTOOLS Recognition SDK from $3,595.50
Add robust 32/64 bit document imaging & recognition functionality into your applications.

BEST SELLER

Untitled-1 1 9/1/10 10:11 AM

http://www.componentsource.com

msdn magazine64 Embedded Programming

Generating Code with MFSvcUtil.exe
On the desktop, there’s a utility called the ServiceModel Metadata-
Utility Tool (SvcUtil.exe) that can generate service model code
from metadata documents (like our WSDL) and vice versa. Th e
.NET Micro Framework has a similar utility called MFSvcUtil.exe.
Th is is a command-line tool that’s best run in the project directory.
So, we run it by pointing it at the published WSDL specifi cation:

<SDK_TOOLS_PATH>\MFSvcUtil.exe http://netmfbikecomputerservice.cloudapp.
net/BikeComputerService.svc?wsdl

Th e tool generates three fi les (see Figure 8).

Th e BikeComputerService.cs fi le contains the defi nition of the
data in the messages, the classes defi ning the operations supported
by the service (because our device is a client) and a number of helper
functions for serializing and de-serializing the data (see Figure 9).

Th e BikeComputerClientProxy.cs fi le contains the proxy inter-
faces for the Web service:

namespace BikeComputer.org
{
 public class IBikeComputerServiceClientProxy : DpwsClient
 {
 private IRequestChannel m_requestChannel = null;

 public IBikeComputerServiceClientProxy(Binding binding,
 ProtocolVersion version) : base(binding, version)...

 public virtual GetLastComputerDataResponse
 GetLastComputerData(GetLastComputerData req) ...

 public virtual UploadBikeComputerDataResponse
 UploadBikeComputerData(UploadBikeComputerData req) ...
 }
}

Th e third fi le that MFSvcUtil.exe creates is the BikeComputer-
ServiceHostedService.cs fi le; this contains the interface logic that
runs on the service side of the interface. In our case, the WSDL was
generated from the service and data contracts that were created, so
this fi le is a “throw away” for us. It’s generated to cover scenarios where
you get a published WSDL and you want to replicate a service from
it or where you want to run a service on another device. Remember
that devices can be clients, servers or both. Th e option to have devices
provide services for other devices enables some interesting applica-
tions. Th is is what BikeComputerServiceHostedService contains:

namespace BikeComputer.org
{
 public class IBikeComputerServiceClientProxy : DpwsHostedService
 {
 private IIBikeComputerService m_service;

 public IBikeComputerService(IIBikeComputerService service,
 ProtocolVersion version) : base(version) ...

 public IBikeComputerService(IIBikeComputerService service) :
 this(service, new ProtocolVersion10())...

 public virtual WsMessage GetLastComputerData(WsMessage request) ...

 public virtual WSMessage UploadBikeComputerData(WsMessage request) ...
 }
}

[ServiceContract]
 public interface IBikeComputerService
 {
 [OperationContract]
 BikeComputerData GetLastComputerData();

 [OperationContract]
 void UploadBikeComputerData(BikeComputerData rideData);
 }

 // Use a data contract as illustrated in the sample below
 // to add composite types to service operations.
 [DataContract]
 public class BikeComputerData
 {
 DateTime _Date;
 TimeSpan _StartTime;
 TimeSpan _TotalTime;
 TimeSpan _RidingTime;
 float _Distance;
 float _AverageSpeed;
 float _AverageCadence;
 float _AverageIncline;
 float _AverageTemperature;
 bool _TempIsCelcius;

 [DataMember]
 public DateTime Date…

 [DataMember]
 public TimeSpan StartTime…

 [DataMember]
 public TimeSpan TotalTime…

 [DataMember]
 public TimeSpan RidingTime…

 [DataMember]
 public float Distance…

 [DataMember]
 public float AverageSpeed…

 [DataMember]
 public float AverageCadence…

 [DataMember]
 public float AverageIncline…

 [DataMember]
 public float AverageTemperature…

 [DataMember]
 public bool TemperatureIsInCelcius…
 }

Figure 5 The Service Contract

public class BikeComputerService : IBikeComputerService
{
 static BikeComputerData _lastData = null;

 public BikeComputerData GetLastComputerData()
 {
 if (_lastData != null)
 {
 return _lastData;
 }
 return new BikeComputerData();
 }

 public void UploadBikeComputerData(BikeComputerData rideData)
 {
 _lastData = rideData;
 }
}

Figure 6 The Contract Implementation

Remember that devices can be
clients, servers or both.

Untitled-3 1 9/20/10 11:12 AM

www.microsoftplatformready.com

msdn magazine66 Embedded Programming

Uploading the Data
As you’ve seen, all the device application code so far has been
auto-generated from the WSDL. What code do you actually have to
write on the client to connect to the service and post your data and
read it back just to be sure that it’s been received? Just a few lines of
code are required. Here’s what I did in the bicycle computer project.

In the RideDataModel class, I added the following to the con-
structor to set up the DPWS connection:

public RideDataModel()
{
 _currentRideData = new CurrentRideData();
 _summaryRideData = new SummaryRideData();
 _today = DateTime.Now; //change this to the time service later.

 //--Setup the Web Service Connection
 WS2007HttpBinding binding = new WS2007HttpBinding(
 new HttpTransportBindingConfig(new Uri
 ("http://netmfbikecomputerservice.cloudapp.net/BikeComputerService.svc")

));

 m_proxy = new
 IBikeComputerServiceClientProxy(
 binding, new ProtocolVersion11());

 _upload = new
 UploadBikeComputerData();

 _upload.rideData = new
 schemas.datacontract.org.
 BikeComputerServiceWebRole.
 BikeComputerData();
 }

Next, I created a method in that
class for uploading the data to the
Web service. This routine puts
my summary data from the ride
into the fi elds for the Web service
schema (referenced in the WSDL
and reflected in BikeComputer-
Service.cs), which is designed to
match that data. Th en I invoke the
proxy’s UploadBikeComputerData
method with the upload data and
retrieve the date of the last ride on
the Web service to validate that my
data was received (see Figure 10).

Th is assumes that you take only
one ride a day, so if you do take

more rides, you need to change that comparison logic. I expect
to use the “Pause” feature on the bicycle computer and treat all
the rides in a day as one set of data. I already have the ability to
store the data in a fi le on an SD card on the bike as I described in a

previous article on the blog. I’ll add the ability to track which sets
of ride data have been posted to the Web service and post any that
are missing. Th is allows me to be out of range of my wireless con-
nection for some time and still be able to update the Web service

Figure 7 The WSDL File

Figure 8 Executing the MFSvcUtil.exe Command

Navigate to the Save Your Data
screen with a simple gesture.

Untitled-4 1 8/31/10 4:03 PM

www.techexcel.com/downloads

msdn magazine68 Embedded Programming

later. Another enhancement is to enable connecting to a PC as an
intermediary when my home network isn’t available.

So, 17 lines of code that I wrote in the application (most of it
mapping the summary data into the service schema fi elds) and
I’m uploading data to a service and doing validity checks. Not bad.

Now We End Our Ride Connected
At the end of a ride, as I come into my garage, I can navigate to the
Save Your Data screen with a simple gesture and post my data up
to the cloud.

Th ere’s still some work to do at that end to make the data more
useful, but that’s another story.

Embedded devices have been islands of specialized technology
where ease of programming and flexibility were traded off for
small footprint/low-cost and high-performance requirements.
More and more frequently, we’re seeing small devices connected
to other devices and to networks to create compelling solutions.
At the same time, the price of processors and memory continues
to go down to the point where we no longer have to give up the
productivity of desktop tools and languages to be able to make rich
and price-competitive devices. Th e result is that .NET program-
mers fi nd themselves with both the skills and the opportunities to
work on small devices.

Th e Web services model provides a strong option for connecting
these small devices, because discovering remote services, subscribing
to remote events and exchanging information about services
through metadata enables the fl exible connection of a number of
devices. Th e cost is that the connection—using SOAP and XML—
is verbose, so it may not be appropriate in all cases.

Th e bicycle computer project demonstrates that .NET Frame-
work programming skills enable you to write compelling UIs for
small devices, write drivers for a variety of sensors and connect those
devices with the cloud. As I showed you, the work involves defi ning
the Web service, and the majority of the code that runs on the device
is auto-generated by MFSvcUtil.exe. Just a few lines of additional
code were required to upload the data. Other applications may
require probing for the Web service (WS_Discovery), or subscribing
to events on other endpoints (WS_Eventing), or dealing with devices
and services of varying capabilities (WS_MetaDataExchange). All
of these can be added to the basic data exchange model as needed.

As a friend of mine once commented, .NET Framework
programmers can now add “Embedded Programmer” to their
business cards. We’d love to hear about the devices that you build
with .NET on the Discussions at netmf.com, where I can also answer
any questions that you have on this article or on the blog site.

Happy riding!

COLIN MILLER started his aff air with computing as a scientifi c programmer, building
8- and 16-bit experimental control systems. He strayed from small devices, work-
ing for 25 years (including 15 at Microsoft) on PC soft ware including databases,
desktop publishing, consumer products, Word, Internet Explorer, Passport (LiveID)
and online services. As the product unit manager of the .NET Micro Framework,
he has fi nally (and happily) been able to merge these disparate parts of his career.

THANKS to the following technical experts for reviewing this article:
Jane Lawrence and Patrick Butler Monterde

namespace BikeComputer.org
{
 [DataContract(Namespace="http://tempuri.org/")]
 public class GetLastComputerData ...

 public class GetLastComputerDataDataContractSerializer :
DataContractSerializer…

 [DataContract(Namespace="http://tempuri.org/")]
 public class GetLastComputerDataResponse ...

 public class GetLastComputerDataResponseDataContractSerializer :
DataContractSerializer…

 [DataContract(Namespace="http://tempuri.org/")]
 public class UploadBikeComputerData ...

 public class UploadBikeComputerDataDataContractSerializer :
DataContractSerializer…

 [ServiceContract(Namespace="http://tempuri.org/")]
 [PolicyAssertion(Namespace="http://schemas.xmlsoap.org/ws/2004/09/
policy",
 Name="ExactlyOne",
 PolicyID="WSHttpBinding_IBikeComputerService_policy")]
 public interface IIBikeComputerService ...
}
namespace schemas.datacontract.org.BikeComputerServiceWebRole...

Figure 9 The BikeComputerService.cs File

public bool postDataToWS()
{
 //-- Load the ride summary data into the upload fields --//

 _upload.rideData.AverageCadence = _summaryRideData.averageCadence;
 _upload.rideData.AverageIncline = _summaryRideData.averageIncline;
 _upload.rideData.AverageSpeed = _summaryRideData.averageSpeed;
 _upload.rideData.AverageTemperature =
 _summaryRideData.averageTemperature;
 _upload.rideData.Date = _summaryRideData.rideDate;
 _upload.rideData.Distance = _summaryRideData.distance;
 _upload.rideData.RidingTime = _summaryRideData.ridingTime;
 _upload.rideData.StartTime = _summaryRideData.startTime;

 //-- Upload the data --//

 m_proxy.UploadBikeComputerData(_upload);

 //-- Validate the upload by retrieving the data and comparing --//

 GetLastComputerData req = new GetLastComputerData();

 GetLastComputerDataResponse back = m_proxy.GetLastComputerData(req);

 if (back.GetLastComputerDataResult.Date == _upload.rideData.Date)
 {
 return false;
 }

 return true;
}

Figure 10 Uploading Data to the Web Service

.NET Framework
programmers can now add
“Embedded Programmer”

to their business cards.

http://netmf.com

Give your users an effective way to visualize and analyze their data

so they can make more informed decisions and solve business problems.

By subscribing to the Esri® Developer Network (EDNSM), you have access to the complete Esri

geographic information system (GIS) software suite for developing and testing applications on

every platform. Whether you’re a desktop, mobile, server, or Web developer, EDN provides the

tools you need to quickly and cost-effectively integrate mapping and GIS into your applications.

Subscribe to EDN and leverage the power of GIS to get more
from your data. Visit www.esri.com/edn.

Esri
®

 Developer Network
Integrate Mapping and GIS into Your Applications

Copyright © 2010 Esri. All rights reserved. The Esri globe logo, Esri, EDN, and www.esri.com are trademarks, registered trademarks, or service marks of Esri in the United States, the European Community, or
certain other jurisdictions. Other companies and products mentioned herein may be trademarks or registered trademarks of their respective trademark owners.

Untitled-3 1 8/11/10 3:48 PM

http://www.esri.com/edn
http://www.esri.com

msdn magazine70

MOB ILE APPS

Getting Started with
Windows Phone
Development Tools

Like many of you, I’ve spent the past year or so inundated by a
slew of post-apocalyptic, Terminator-esque ads telling me what Droid
Does. I’ve hummed along with the T-Mobile My Touch commercials.
I’ve read articles about how many apps Apple has sold for the iPhone.

Unlike many of you, I’ve also spent the past year repeatedly telling
friends and family that, yes, I do in fact work on a mobile phone,
but no, none of those are the phone that I work on.

So it’s fair to say that I was rather excited when Steve Ballmer and
Joe Belfi ore announced Windows Phone 7 at Mobile World Con-
gress (MWC) in Barcelona, Spain. It was 6 a.m. Redmond time on
Feb. 15, 2010, but I was sitting in a Microsoft conference room with
a few hundred coworkers, some still in pajamas, anxiously waiting
to watch a live feed of Belfi ore demoing our new vision for the phone
(microsoft.com/presspass/press/2010/feb10/02-15mwc10pr.mspx). I’ll probably
watch many more products launched in the years to come, but I’m

Joshua Partlow

sure this will remain one of the highlights. It was certainly the most
exciting moment I’ve had at Microsoft to date.

In an attempt to get you equally excited about the potential for
Windows Mobile app development, over the course of this article
I’m going to introduce you to the Windows Phone 7 application
platform. Specifi cally, I’ll talk about the basic components of the
application platform, give you an overview of the Windows Phone
Developer Tools, and walk you through the creation of a Windows
Phone application that accesses a Web service.

A Break from the Past
With Windows Phone 7, Microsoft acknowledged that there’s been
a change in the mobile landscape. Th ere’s a new expectation that,
beyond just allowing you to read e-mail and documents, a phone
should also be an integral part of your life. Allowing you to do things
like listen to music, share pictures and videos, and keep in touch
with friends. Apparently, business users enjoy Facebook, too, and
teenagers enjoy browsing the Web. It’s not that shocking, I know,
but it really does represent an evolution of the role a phone is
expected to play in our lives.

As potential customers, I hope you saw Belfiore’s demo and
walked away ready to buy a phone. More importantly, as developers,
I hope you came away curious about the application story. Aft er all,
creating a new OS is only part of competing in the crowded mobile
market. If our premise is that users want a phone that enables them
to merge their work and personal lives in new and exciting ways,
then it’s going to be a combination of the OS and an ecosystem of
awesome applications that makes that possible.

I won’t spend time describing the phone, because I’m sure you
can fi nd breakdowns on your favorite blog, but rather get to what I
imagine are two bigger questions for you as developers: What’s the
Microsoft application platform for Windows Phone 7, and how do
you get started building apps?

This article discusses a prerelease version of Windows Phone
Developer Tools. All information is subject to change.

This article discusses:
• Windows Phone 7 application platform architecture

• Using Windows Phone Developer Tools

• Creating a Windows Phone application project

• Formatting the application bar

• Implementing auto-generated event handlers for the
application bar buttons

Technologies discussed:
Windows Phone 7, Silverlight, XNA Framework, Visual Studio 2010
Express for Windows Phone

Code download available at:
code.msdn.microsoft.com/mag201010Phone

http://microsoft.com/presspass/press/2010/feb10/02-15mwc10pr.mspx
http://code.msdn.microsoft.com/mag201010Phone

71October 2010msdnmagazine.com

A New World for Developers
Well, if MWC started the revelation of Windows Phone 7, then the
Game Developers Conference (GDC) and MIX10 completed the
story. At GDC and MIX, Microsoft announced that the Windows
Phone 7 application platform is based on Silverlight and the XNA
Framework. If you’ve developed for Windows Mobile in the past,
then you know that this marks a fundamental divergence from
previous versions of the OS.

So why change things up? Well, my opinion is that the strength
of Microsoft lies in its broad suite of products, and that it’s never
more successful than when it ties them together. Prior to Windows
Phone 7, the mobile development story might have leveraged some
Microsoft assets, but not nearly to the extent you’ll see now.

Th e XNA Framework was designed to allow developers to create
complex and powerful 2D and 3D games that could span desktop,
console and mobile spaces. It was designed around a broad set of
hardware, from the graphics capabilities of the Xbox console to the
sensor and touch capabilities of the Zune HD. What’s more, it was
also designed with networked gameplay in mind.

Silverlight is the Microsoft desktop platform for Web-based media
and productivity applications. Here’s a platform that, when combined
with Expression Blend, is designed to enable the creation of compel-
ling UIs that can work well standing alone or tied into Web services.

Both the XNA Framework and Silverlight are strong platforms
in their own right. But when combined on the phone, they take
things to a whole new level, allowing for the development of
applications with beautiful UIs and stunning graphics that can
easily leverage the capabilities of a mobile device.

As I experimented with Silverlight and XNA applications early
in the Windows Phone 7 development cycle, I was quickly con-
vinced that it was a good direction. I was new to both platforms,
as well as to managed code, and the speed with which I could
develop visually cool applications impressed me.

Another notable feature of the new application platform is the
standardization of hardware and your programmatic access to it.
Specifi cally, another announcement that came out of MIX was that
Windows Phones would support a core set of hardware that devel-
opers could access in a consistent and reliable manner. Why is that
important? Historically, it has been diffi cult to develop applications
to run on multiple phones because you ended up having to create
device-specifi c versions of your application. Some phones wouldn’t
run your application without signifi cant rework, or wouldn’t work
at all because they didn’t support features needed by your app.

With Windows Phone 7, there won’t be a question of whether
the phone your app is running on has support for location
services—all of them will. Th ere won’t be a question of whether the
phone has an accelerometer and whether you can access it—all of
them will, and the access will be consistent. Th ere won’t be a
question of whether your phone is touch-enabled—all of them will
be, and again the access will be consistent. Th e list goes on, but I
hope you get the idea.

With the Windows Phone 7 application platform, you’ll be able
to develop a single application and know that what you test on your
phone will work on all of them. Th ere will still be diff erentiation of
hardware on Windows Phones, but there will also be a core foun-
dation of hardware that your applications will be able to rely upon.

Figure 1 Your Initial Windows Phone Project in Visual Studio

www.msdnmagazine.com

msdn magazine72 Mobile Apps

For more details on the Windows Phone
hardware and the architecture of the applica-
tion platform, you can refer to the application
platform and hardware overviews on MSDN
at msdn.microsoft.com/library/ff402531(v=VS.92) and
msdn.microsoft.com/library/ff637514(v=VS.92).

Getting Started
OK, now that we’ve talked briefly about
the application platform, let’s talk about
how you develop on it. Currently in beta,
the Windows Phone Developer Tools are
available for download from the Windows
Phone Developer Portal (developer.win-
dowsphone.com). If you don’t have Visual
Studio, the Developer Tools come with
Visual Studio 2010 Express for Windows
Phone. If you have Visual Studio 2010, the
tools will integrate directly with it. Either
way, you’ll have everything you need to
develop for Windows Phone 7.

Th e Developer Tools include a Windows
Phone Emulator and Microsoft Expression
Blend for Windows Phone. While not fi nal,
the beta is a good indication of what you’ll
have at launch. It’s possible you might need
to make some modifi cations to your code
between the beta and fi nal version of the
tools, but those changes should be minor
or at least well-documented.

I’ve installed the beta version of the
tools, using Visual Studio 2010 Express
for Windows Phone, and it’s what I’ll be
using for my example. If you want a slightly
simpler tutorial to start with, you can check
out the Windows Phone Getting Started Guide on MSDN at
msdn.micro soft.com/library/ff402529(v=VS.92).

So, what to create? Rather than do a general “hello world” or
“make that fl ashlight” app I know you’re dying to see, I thought I’d
share a portion of a fun little project I’ve been working on.

At MIX I happened to attend a session on a Windows Azure project:
Microsoft Codename “Dallas” (microsoft.com/windowsazure/dallas). Dallas
is basically a marketplace for developers interested in getting data for
their applications from Web services looking to sell it. Currently in its
second community technology preview (CTP), you can utilize both
the online portal and a number of free data sources provided as a trial
to experiment with what the service has to off er. While the current
list of providers isn’t huge, there’s still a bunch of stuff to play with.
I personally found the image data provided by NASA on the Mars
missions interesting and decided it would be cool to create a Windows
Phone application that could browse through Mars rover pictures.

As a warning, the code included here and available for download
is a working sample, but if you want to run it you’ll need to register
for the Dallas CTP to get an account key and user ID, which I’ve
left blank in my code (microsoft.com/windowsazure/developers/dallas).

Creating Your Project
Th e fi rst step to creating the Mars rover im-
age viewer is to create a Windows Phone
application project. Launching the express
version of Visual Studio 2010 for Windows
Phone, you’re presented with a standard
Visual Studio Start Page. From there, you can
select New Project, which will allow you to
choose from a number of diff erent project
templates. If you’ve only installed the
Windows Phone Developer Tools, your list
will be limited to Silverlight for
Windows Phone and XNA Game Studio 4.0.

I selected a Windows Phone app from the
Silverlight templates and named my project
MarsImageViewer. From there, Visual Studio
does its magic and generates a project for you.

If you’ve worked with Windows Presen-
tation Foundation (WPF) or Silverlight
before, you shouldn’t be all that surprised
by what you get. You’ll see that you’re pro-
vided a design surface with a cool phone
skin, a toolbox with some basic controls
and a number of XAML fi les with their
associated C# code-behind fi les (see Fig-
ure 1). If you care to learn about the exact
diff erences between Silverlight and XNA
on Windows and Silverlight and XNA on
Windows Phone, you can reference the
Windows Phone framework overview
on MSDN at msdn.microsoft.com/library/
ff402528(v=VS.92).

Understanding the XAML
As with Silverlight, the Windows Phone

application template provides an App.xaml fi le and a MainPage.xaml
fi le, which are the heart of your application. I won’t spend time going
over these in detail because they function in basically the same man-
ner as their Silverlight counterparts, but I would like to point out two
key diff erences before moving on to creating the application.

<phone:PhoneApplicationPage.ApplicationBar>
 <shell:ApplicationBar
 IsVisible="True" IsMenuEnabled="False">
 <shell:ApplicationBarIconButton
 x:Name="appbar_BackButton"
 IconUri="/Images/appbar.back.rest.png"
 Text="Back"
 Click="appbar_BackButton_Click">
 </shell:ApplicationBarIconButton>
 <shell:ApplicationBarIconButton
 x:Name="appbar_ForwardButton"
 IconUri="/Images/appbar.next.rest.png"
 Text="Next"
 Click="appbar_ForwardButton_Click">
 </shell:ApplicationBarIconButton>
 </shell:ApplicationBar>
</phone:PhoneApplicationPage.ApplicationBar>

Figure 3 Confi guring the App Bar

Figure 2 Adding Image Resources
to the Project

http://msdn.microsoft.com/library/ff402531(v=VS.92)
http://msdn.microsoft.com/library/ff637514(v=VS.92)
http://msdn.microsoft.com/library/ff402529(v=VS.92)
http://microsoft.com/windowsazure/dallas
http://microsoft.com/windowsazure/developers/dallas
http://msdn.microsoft.com/library/ff402528(v=VS.92)
http://msdn.microsoft.com/library/ff402528(v=VS.92)

WORD PROCESSING
COMPONENTS
WINDOWS FORMS / WPF / ASP.NET / ACTIVEX

MILES BEYOND RICH TEXT

TRUE WYSIWYG

POWERFUL MAIL MERGE

MS OFFICE NOT REQUIRED

PDF, DOCX, DOC, RTF & HTML

Word Processing Components
for Windows Forms & ASP.NET

TX Text Control Sales:
US +1 877 - 462 - 4772 (toll-free)
EU +49 421 - 4270671 - 0WWW.TEXTCONTROL.COM

MEET US AT

NOVEMBER 1-4, 2010, LAS VEGAS

BOOTH #514

Untitled-1 1 9/9/10 11:51 AM

www.textcontrol.com

msdn magazine74 Mobile Apps

Th e fi rst point of interest is in the default App.xaml fi le. You’ll
notice that while the majority of the auto-generated code is
the same as you’d see in a desktop Silverlight project, there’s an
additional section that contains a PhoneApplicationService object:

<shell:PhoneApplicationService
 Launching="Application_Launching" Closing="Application_Closing"
 Activated="Application_Activated" Deactivated="Application_Deactivated"/>

With the Windows Phone Developer Tools beta, there’s a new
execution model that dictates the behavior of applications; this sec-
tion of markup, combined with the code-behind in App.xaml.cs,
is one place where that model surfaces. If you’d like to better
understand the behavior of Windows Phone applications and this
object, you can refer to the topic Execution Model for Windows
Phone on MSDN at msdn.microsoft.com/library/ff769557(VS.92).

Th e second point of interest is in the MainPage.xaml fi le, and
actually where I’ll start creating the application. If you look closely,
much of the fi le is similar to Silverlight, but there’s a commented-out
XAML section for an application bar. Th e application bar is a system
control you can use to expose buttons and menu items. Not only does
it save you the trouble of creating your own, its use lends consistency
to the phone, as it appears and behaves exactly like
the one used in the core phone applications. While
I’ll modify this template markup to create my applica-
tion bar, you can also create one for a page using C#
(see msdn.microsoft.com/library/ff431786(VS.92) for details).

Steal My App Bar
Th e fi rst step to creating the application bar is to fi nd
the icons you want to use. You can create your own, or
you can use some of the ones included with the devel-
oper tools. By default, the included icons can be found
at C:\Program Files (x86)\Microsoft SDKs\Windows
Phone\v7.0\Icons\ for 64-bit Windows and C:\
Program Files\Microsoft SDKs\Windows Phone\v7.0\
Icons\ for 32-bit Windows. Th ey’re defi nitely worth
checking out because they match the look and feel
of the phone.

Once you’ve picked the images you want, create
an Images folder in your project and add the icons

to it. Th en set the properties for each icon: Build Action should be
“Content” and Copy to Output Directory should be “Copy always,”
as shown in Figure 2.

Th e next step is to uncomment the application bar markup and
modify it for your application. In this case, that entails creating two
buttons and their associated event handlers. Specifi cally, I created
a button for retrieving the next photo and a button for retrieving
the previous photo. I also added click events to the XAML and
allowed Visual Studio to generate the event handlers. Th e application
bar XAML should now look like the code in Figure 3.

Before moving to the code-behind, I also took the time to specify
an application title and page name and to add an image control to
the root grid of MainPage.xaml, as shown in Figure 4. Th is should
leave the design surface looking like Figure 5, where you’ll notice
a blank app bar of four circles.

With the application interface defi ned, it’s time to get some Mars
rover images. Th e Dallas portal is designed to be user-friendly
and allows you to experiment with queries. It also gives you the
appropriate Web service URL, shows you how to add parameters
and provides the appropriate header information for your queries.

What I discovered through the portal is that the NASA Web ser-
vice allows queries for image information based on parameters or
the retrieval of a specifi c JPEG image through an image ID. What
that implies for this program is that two operations are required.
The first is to query for image information, which includes the
image ID. Th e second is to parse the returned XML for the image
IDs, which can then be used to retrieve a specifi c image.

Calling Houston … I mean, Dallas
So let’s get started. In the default MainPage.xaml.cs file, I added
using statements for three namespaces:

using System.Xml.Linq;
using System.IO;
using System.Windows.Media.Imaging;

Th en I added a reference to the System.Xml.Linq DLL by right-
clicking References in Solution Explorer, selecting Add Reference,
selecting System.Xml.Linq and then clicking OK. System.Xml.Linq

provides access to classes that aid in loading XML
from streams and then querying that XML through
LINQ. Don’t worry if you’re not familiar with LINQ;
this example uses a minimal amount of LINQ
to XML and you can always refer to MSDN for
more information.

I also created two private variables for the page.
An IEnumerable of XElement objects called entries
to store the result of a LINQ to XML query, and an
integer index to keep track of the picture I’m on. I
then modifi ed the MainPage constructor to initial-
ize the index to 0 and call a getImageIDs function:
 private IEnumerable<XElement> entries;
 private int index;

 // Constructor
 public MainPage() {
 InitializeComponent();

 index = 0;
 getImageIDs();
 }

<!--TitlePanel contains the name of the application and page title-->
<StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12">
 <TextBlock x:Name="ApplicationTitle"
 Text="MarsImageViewer"
 Style="{StaticResource PhoneTextNormalStyle}"/>
 <TextBlock x:Name="PageTitle"
 Text="Images"
 Margin="-3,-8,0,0"
 Style="{StaticResource PhoneTextTitle1Style}"/>
</StackPanel>

<!--ContentPanel - place additional content here-->
<Grid x:Name="ContentGrid" Grid.Row="1">
 <Image Height="300"
 HorizontalAlignment="Left"
 Margin="36,104,0,0"
 Name="MarsImage"
 Stretch="Fill"
 VerticalAlignment="Top"
 Width="400" />
</Grid>

Figure 4 MainPage.xaml

Figure 5 The Confi gured
Design Surface

http://msdn.microsoft.com/library/ff769557(VS.92)
http://msdn.microsoft.com/library/ff431786(VS.92)

Untitled-1 1 1/11/10 10:55 AM

www.alexcorp.com

msdn magazine76 Mobile Apps

Th e getImageIDs function is designed to start the retrieval of
image information from the Web service. Th e function uses the
Web service URL and a WebClient to start an asynchronous
request for the image information:

private void getImageIDs() {
 Uri serviceUri = new Uri("https://api.sqlazureservices.com/
NasaService.svc/MER/Images?missionId=1&$format=raw");
 WebClient recDownloader = new WebClient();
 recDownloader.Headers["$accountKey"] = "<Your account key>”;
 recDownloader.Headers["$uniqueUserID"] = "<Your user ID>";
 recDownloader.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(recDownloader_OpenReadCompleted);
 recDownloader.OpenReadAsync(serviceUri);
}

You’ll notice that, for simplicity, I’ve hardcoded the missionId param-
eter to 1, which in this case represents the Opportunity mission. Ideally,
this parameter and others would be dynamically defi ned by the user.

With any asynchronous request, you need a handler. This
handler is called when the request for data completes. It then uses
the returned stream along with some basic LINQ to XML to access
all the “entry” tags in the returned XML; “entry” being the opening
tag for each image record:

private void recDownloader_OpenReadCompleted(
 object sender, OpenReadCompletedEventArgs e) {
 if (e.Error == null) {
 Stream responseStream = e.Result;
 XNamespace ns = "http://www.w3.org/2005/Atom";
 XElement marsStuff = XElement.Load(responseStream);
 entries = marsStuff.Elements(ns + "entry");
 string imageID =
 (string)entries.ElementAt<XElement>(index).Element(
 ns + "title").Value;
 getImage(imageID);
 }
}

Th e resulting collection is stored to the IEnumer-
able of XElement objects (entries), which I declared
earlier. With a fi nal bit of LINQ to XML, the handler
then retrieves the value of the title tag for the fi rst
XElement in entries. Th e value of the title tag in this
XML schema happens to correspond to the image
ID, which is then passed into a getImage function.

Th e getImage function is similar to the getImage-
IDs function. Th e only diff erence is the Web ser-
vice URL that’s used. Th is function asynchronously
retrieves a stream to the image identifi ed by the

ID parameter. Its handler then uses that stream to set the source
of the picture control I defi ned in MainPage.xaml (see Figure 6).

Buttoning up Buttons
At this point, the rest of the application is pretty simple, with only
the auto-generated event handlers for the application bar buttons
remaining to be implemented. Th ese are the buttons that will be used
to advance forward and backward through the Mars rover pictures.
As you can see, I basically just reused the getImage function and added
some logic to handle changing the index of the current record in the
entries collection. Here’s the handler for the back button:

private void appbar_BackButton_Click(
 object sender, EventArgs e) {
 if (index > 0) {
 index--;
 XNamespace ns = "http://www.w3.org/2005/Atom";
 string imageID = (string)entries.ElementAt<
 XElement>(index).Element(ns + "title").Value;
 getImage(imageID);
 }
}

Th e forward button handler is pretty much the same, except
for its indexing:

if ((index + 1) < entries.Count<XElement>()) {
 index++;
 ...

You can now run the program by using the included Windows
emulator. Select Windows Phone 7 Emulator from the target
device menu on the Standard toolbar. Press F5 and the program
is built and deployed to the emulator (see Figure 7).

Ready for Launch
Th is sample was relatively simple, but I hope it’s given you a rough
idea of what the developer tools look like and how easy it is to
pull together an application on Windows Phone. Th ere are a lot of
possibilities with Windows Phone 7, and you should take the time
to explore them more.

What you’ve seen here is only a small introductory glimpse of
what the application platform has to off er. As proof of that, con-
sider the simple application I laid out. With one more button and
roughly 12 lines of code, you could use the MediaLibrary class in

the Microsoft .Xna.Framework.Media name space
to save a given photo to the media library (see
msdn.microsoft.com/library/ff769549(v=VS.92)).

Yes, that’s right—you can use XNA APIs from within
your Windows Phone Silverlight-based applications.
Unfortunately, discussions about the interweaving
of Silverlight and XNA APIs in apps, along with much
more, will have to wait for a later date. So watch out
for some deeper, more-targeted articles and check
out the documentation and samples on MSDN at
msdn.microsoft.com/library/ff402535(v=VS.92).

JOSHUA PARTLOW is a programming writer on the Windows
Phone 7 team. He works on documenting the phone bring-up
process, device driver development and application develop-
ment for OEMs creating Windows Phones.

THANKS to the following technical expert for reviewing
this article: Windows Phone 7 Team

Figure 7 Running the App
in the Emulator

private void getImage(string ID) {
 Uri serviceUri = new Uri(
 "https://api.sqlazureservices.com/NasaService.svc/MER/Images/" +
 ID + "?$format=raw");
 WebClient imgDownloader = new WebClient();
 imgDownloader.Headers["$accountKey"] = "<Your account key>”;
 imgDownloader.Headers["$uniqueUserID"] = "<Your user ID>";
 imgDownloader.OpenReadCompleted +=
 new OpenReadCompletedEventHandler(imgDownloader_OpenReadCompleted);
 imgDownloader.OpenReadAsync(serviceUri);
}

private void imgDownloader_OpenReadCompleted(
 object sender, OpenReadCompletedEventArgs e) {
 if (e.Error == null) {
 Stream imageStream = e.Result;
 BitmapImage imgsrc = new BitmapImage();
 imgsrc.SetSource(imageStream);
 MarsImage.Source = imgsrc;
 }
}

Figure 6 Retrieving the Image

http://msdn.microsoft.com/library/ff769549(v=VS.92)
http://msdn.microsoft.com/library/ff402535(v=VS.92)

DynamicPDF Generator v6.0 for .NET

ceTe Software has been delivering quality software applications and components to our customers for over 10 years. Our
DynamicPDF product line has proven our commitment to delivering innovative software components and our ability to
respond to the changing needs of software developers. We back our products with a first class support team trained to
provide timely, accurate and thorough responses to any support needs.

 Easy-to-use Highly efficient
 Industry leading support Huge feature set

DynamicPDF…Proven .NET Components for Real-Time PDFs

Layout reports in DynamicPDF Designer with its Visual Studio look and feel.

.

Untitled-1 1 3/15/10 11:50 AM

www.cete.com

Supported by:Platinum Sponsor:

VISUAL STUDIO LIVE! FOCUS TOPICS:

Silverlight/WPF Web Visual Studio 2010 /
.NET 4 SharePoint Cloud Computing Data Management

VISUAL STUDIO LIVE! PRE-CONFERENCE WORKSHOPS:
SUNDAY, NOVEMBER 14, 2010 (SEPARATE ENTRY FEE REQUIRED)

Making Effective Use of Silverlight and WPF
Billy Hollis & Rockford Lhotka

SQL Server 2008 and 2008 R2 for Developer
Andrew Brust & Leonard Lobel

Better Process and Tools with TFS 2010
Brian Randell

VISUAL STUDIO LIVE! DAY 1: MONDAY, NOVEMBER 15, 2010
Getting started in Silverlight – A Jumpstart
to Productivity
Tim Huckaby

What’s new in ASP.NET 4 WebForms -
Wallace McClure

So Many Choices, So Little Time:
Understanding Your .NET 4.0 Data
Access Options
Leonard Lobel

Building Business Applications with
Visual Studio LightSwitch
Orville McDonald

Transitioning from Windows Forms to WPF
Miguel Castro

ASP.NET MVC Quick Primer
Gus Emery

Best Kept Secrets in Visual Studio 2010
and .NET 4.0
Deborah Kurata

Overview of .NET 4

WPF & Silverlight: Data Visualization, NUI,
and Next Generation of User Experience
Tim Huckaby

What’s this WebMatrix anyway?
Gus Emery

What’s New in the .NET 4.0 BCL
Jason Bock

C# 4.0 Language Features
Alexandru Ghiondea

Easing into Windows Phone 7 Development
Walt Ritscher

ASP.NET “Razor”
Miguel Castro

What’s New in Visual Studio 2010 Debugging
Brian Peek

Tips & Tricks: Visual Studio 2010 IDE
& Extensions
Chris Granger

DINE AROUND ORLANDO

VISUAL STUDIO LIVE! DAY 2: TUESDAY, NOVEMBER 16, 2010
CSLA 4, Silverlight and WPF
Rockford Lhotka

AJAX with the UpdatePanel, WebForms, and
the AJAX Control ToolkitX
Wallace McClure

New IDE and Languages Features in VS
2010 using VB and C#
Ken Getz

Visual Basic 2010 Overview

Silverlight, WCF RIA Services,
and Your Business Objects
Deborah Kurata

Leveraging Client Capabilities with jQuery in
Visual Studio and ASP.NET
Robert Boedigheimer

Windows Server AppFabric Caching
Jon Flanders

Designing & Developing for the
Rich Mobile Web
Joe Marini

Digging Deeper into Windows Phone 7
Walt Ritscher

JQuery for ASP.NET Developers - Part 1
Jeffrey McManus

Building RESTful Services Using Windows
Communication Foundation
Jon Flanders

Pragmatic .NET Development with
CodeFluent Entities
Omid Bayani

Bind Anything to Anything in Silverlight
and WPF
Ken Getz

jJQuery for ASP.NET Developers - Part 2
Jeffrey McManus

Building RESTful Applications with
the Open Data Protocol
Todd Anglin

Windows Phone 7 and Azure: Enhancing the
User Experience with the Cloud
Danilo Diaz

Gentle Introduction to 2D Animation
in SL/WPF
Ken Getz

ASP.NET Request Processing
Robert Boedigheimer

Can you use MEF too much? Hint - NO!
Jon Flanders

Sensors, Locations, Notifications Oh My;
Advance Topic in Windows Phone 7
Danilo Diaz

VISUAL STUDIO LIVE! AFTER DARK WITH DEVOPALOOZA

VISUAL STUDIO LIVE! DAY 3: WEDNESDAY, NOVEMBER 17, 2010
Generating Dynamic UI in WPF 4
and Silverlight 4
Billy Hollis

Azure Platform Overview
Vishwas Lele

Why Software Sucks
David Platt

Introduction to SharePoint Development with
Visual Studio 2010
Paul Yuknewicz

Design, Don’t Decorate
Billy Hollis

Architecting for Azure
Vishwas Lele

Building a Testable Data Access Layer
Todd Anglin

Creating Extensions for the Visual Studio
2010 SharePoint Tools
Jon Flanders

Using Microsoft Prism –
Loose Coupling for Application Development
David Platt

Developing an Azure based Monte Carlo
Simulator
Vishwas Lele

What’s New in VS 2010 for TFS?
Brian Randell

PowerPivot and Excel Services
Andrew Brust

Multi-touch Madness!
Brian Peek

What is Microsoft Dallas?
Michael Stiefel

Reserved for Late-Breaking Content Application Lifecycle Management for
Developers in SharePoint 2010
Paul Yuknewicz

Using WPF for Good and Not Evil
David Platt

How do you decide between Relational
Database or Table Storage in the Cloud?
Michael Stiefel

VS10 ALM Features
Brian Randell

SharePoint for ASP.NET Developers
Jon Flanders

VISIT US ONLINE AT VSLIVE.COM/ORLANDO
FOR DETAILS ON SESSIONS, SPEAKERS, AND MORE!

Untitled-5 2 9/21/10 11:38 AM

REGISTER BY OCTOBER 20TH AND SAVE $200!

USE PRIORITY CODE MSDOCT
VSLIVE.COM/ORLANDO

ARE YOU READY to take your code to
the next level? Expand your skillset and
maximize the development capabilities
of Visual Studio and .NET 4 during the
four action-packed days of Visual Studio
Live! Orlando!

Hard-hitting, real-world training on:

• VISUAL STUDIO 2010/.NET 4

• SILVERLIGHT/WPF

• SHAREPOINT

• WEB

• CLOUD COMPUTING

• DATA MANAGEMENT

FOUR DAYS THAT WILL
ROCK YOUR CODE

NOVEMBER 14–17, 2010
ORLANDO FLORIDA
HILTON IN THE WALT DISNEY WORLD RESORT

Untitled-5 3 9/21/10 11:38 AM

www.vslive.com/orlando

msdn magazine80

TH RE A D POOL S

Scalable Multithreaded
Programming with
Thread Pools
Ron Fosner

Programming is getting more challenging, particularly if
you’re working in a fi eld that requires you to tune your application
for the fastest possible throughput. One contributing factor is that
the last few years have seen a change in the way PCs are evolving.
Instead of relying on the ever-increasing speed of a single pro-
cessor, the computational power of PCs is now being distributed
across multiple cores. This is a good thing. Hefty increases in
latent processing power are now available at relatively low cost, and
oft en with much lower power consumption and cooling needs.

But there’s a downside to the increasing prevalence of multiple-
core systems. To use multiple processors, you need to delve into the
world of parallel processing. Th at means it takes more work—and
sometimes a signifi cant learning curve—for programmers to take
advantage of that latent processing power. It’s possible to throw a
few compiler hints into your project and get the compiler to write
some multithreaded code for you. However, to take advantage of
the full power of multicore PCs, you’ll need to make some changes
in the way that you program large jobs.

There are many different ways to distribute your work across
multiple cores. One of the easiest and most robust is called task-
based programming. Tasks allow you to take your application’s work
and spread it across some or all of the CPU cores that are available.
With a bit of thoughtful programming, you can minimize or even
eliminate any data-dependency or time-synchronization constraints.
To achieve this state of multicore bliss, you’ll have to reexamine
some of your preconceptions of how to attack a programming
problem and rethink them in terms of task-based programming.

To show you how this can work, I’ll walk you through the steps—
and the missteps—I took in converting a single-threaded appli-
cation to one that can scale up to using all of the CPUs available
in a computer. In this article, I’ll present some of the concepts of
multithreaded programming and show you some simple ways to
introduce threaded execution into your code with OpenMP and
thread pools. You’ll also see how to use Visual Studio 2010 to
measure the improvement in performance you gained from these
techniques. In a future article, I’ll build on that foundation to show
you more sophisticated multithreaded executing with tasks.

From Threads to Tasks
Th e major challenge with making a program scale to the number
of CPU cores is that you can’t just decide to throw some jobs onto
their own threads and let them run. In fact, this is what a lot of
folks do, but it only scales well to the number of cores for which
the app was designed. It doesn’t scale well with fewer or more than
the number of cores that were targeted, and it totally overlooks the
built-in obsolescence that such an approach engenders.

A better way to make sure that your application scales well with
a varying number of cores is to break larger jobs into smaller,
thread-friendly sub-jobs called tasks. Th e most challenging part of

This article discusses:
• Multithreading basics

• Using OpenMP

• Using thread pools

• Measuring core utilization

Technologies discussed:
Visual Studio 2010

Code download available at:
code.msdn.microsoft.com/mag201010Thread

http://code.msdn.microsoft.com/mag201010Thread

81October 2010msdnmagazine.com

converting a monolithic single-threaded program or a program
that has a few dedicated threads into a task-based job system is
actually breaking your jobs into tasks.

Th ere are a few guidelines to keep in mind when converting a
large single-threaded job into multithreaded tasks:

• Th e large job can be arbitrarily divided into 1 to n tasks.
• Th e tasks should be able to run in any order.
• Th e tasks should be independent of each other.
• Th e tasks must have associated context data.

If all these were easy, you’d have no problem making your appli-
cations run on any number of cores. Unfortunately not all problems
can be broken so neatly into tasks that meet these guidelines.

Th ese guidelines are important because, if followed, they enable
you to run each task independently on a thread, with no dependence
between tasks. Ideally tasks should be able to be run in any order,
so eliminating or reducing interdependencies is paramount to
getting a task-based system up and running.

Most real-world programs will go through various stages of pro-
cessing, with each stage required to complete prior to starting the
next stage. Th ese synchronization points are oft en unavoidable, but
with a task-based system the goal is to make sure you take advan-
tage of whatever CPU power is immediately available. With some
judicious breaking of large jobs into smaller ones, it’s oft en possible
to start intermingling some completed task results with their next
stage of processing while some of the initial tasks are still running.

Simple Multithreading with OpenMP
Before converting your entire application to use tasks, you should
be aware of other ways to get some the benefi ts of multithreading
without going through the rigorous exercise of making everything
a task. Th ere are numerous ways to incorporate multithreading
into your application—many that require little actual eff ort—but
that allow you to benefi t from adding multithreading to your code.

OpenMP is one of the simplest ways to add parallel processing
to your programs and has been supported by the Visual Studio
C++ compiler since 2005. You enable OpenMP by adding prag-
mas to your code that indicate where and what kind of parallelism
you’d like to add. For example, you can add parallelism to a simple
Hello World program:

#include <omp.h> // You need this or it won't work
#include <stdio.h>
int main (int argc, char *argv[]) {
 #pragma omp parallel
 printf("Hello World from thread %d on processor %d\n",
 ::GetCurrentThreadfID(),
 ::GetCurrentProcessorNumber());
 return 0;
}

Th e OpenMP pragma parallelizes the next block of code—in
this case it’s just the printf—and runs it simultaneously across all
hardware threads. Th e number of threads will depend on how
many hardware threads are available on the machine. Th e output
is a printf statement running on each hardware thread.

To get any OpenMP program to parallelize (and not silently
ignore your OpenMP pragmas), you need to enable OpenMP for
your program. First, you have to include the /openmp compiler
option (Properties | C/C++ | Language | Open MP Support).
Second, you need to include the omp.h header fi le.

Where OpenMP really shines is when your application spends
most of its time looping over functions or data and you want to add
multiprocessor support. For example, if you have a for loop that
takes a while to execute, you can use OpenMP to easily parallelize
the loop. Here’s an example that automatically breaks up array
calculations and distributes them across the number of cores that
are currently available:

#pragma omp parallel for
for (int i = 0; i < 50000; i++)
 array[i] = i * i;

OpenMP has other constructs that give you more control over
the number of threads created, whether the distributed work needs
to fi nish before the next block of code is executed, creating thread-
local data, synchronization points, critical sections and so on.

As you can see, OpenMP is an easy way to gently introduce
parallelism into an existing code base. However, while the simplicity
of OpenMP is attractive, there are times you need more control over
what your application is doing, such as when you want the program
to dynamically adjust what it’s doing or you need to make sure that
a thread stays on a particular core. OpenMP is designed to easily

Figure 1 A Thread Pool

Tasks Fed into Queue

CPU-0

CPU-1

Scheduler

Thread Queue

Threads

Figure 2 Sorting a String of Random Integers

38 27 41 4 9 82 10

38 27 41 4 9 82 10

38 27 41 4 9 82 10

38 27 41 4 9 82 10

27 38 4 41 9 82 10

4 27 38 41 9 10 82

4 9 10 27 38 41 82

www.msdnmagazine.com

msdn magazine82 Thread Pools

integrate some aspects of multithreaded programming into your
program, but it lacks some of the advanced features you’ll fi nd you
require to get optimal use of out multiple cores. Th is is where tasks
and thread pools come in.

Using the Thread Pool
Th reads require a lot of bookkeeping by the OS, so it’s not a good idea
to wantonly create and destroy them. Th ere are not-insignifi cant costs
associated with creating and destroying a thread, so if you do this
constantly, it’s easy to lose any advantage you gain by multithreading.

Instead, it’s best to use an existing set of threads, recycled as
needed, for all of your threaded activity. Th is design is called a
thread pool, and Windows provides one for you to use. Using this
thread pool relieves you of having to deal with thread creation,
destruction, and management, all of which is handled for you by
the thread pool. OpenMP uses a thread pool to distribute work
with threads, and both Windows Vista and Windows 7 provide
optimized versions of the thread pool for you to use directly.

While it’s entirely possible to create your own thread pool—
which you might need to do if you’ve got some unusual scheduling
requirements—you’re much better off using one provided by the
OS or the Microsoft .NET Framework.

At this point I need to clarify some terminology. When most people
talk about a thread, they’re referring to the flow of execution
through a single CPU core—in other words, a soft ware thread. On
a CPU, the fl ow of execution (the actual execution of instructions)
occurs on hardware threads. Th e number of hardware threads is
limited by the hardware your application is running on. In the old
days, this used to be a single-threaded CPU, but now it’s common
to fi nd systems that have at least dual-core processors. A four-core
CPU will have the ability to run four hardware threads, or eight if it’s
hyperthreaded. High-end desktop systems boast as much as 16 hard-
ware threads, and some server confi gurations have more than 100!

 While a hardware thread actually runs the instructions, a soft ware
thread refers to the entire context—register values, handles, security
attributes and so on—required to actually execute the job on a hard-

using System;
using System.Threading;
using System.Threading.Tasks;
using System.Diagnostics;

namespace ParallelSort {
 class Program {
 // For small arrays, use Insertion Sort
 private static void InsertionSort(
 int[] list, int left, int right) {

 for (int i = left; i < right; i++) {
 int temp = list[i];
 int j = i;

 while ((j > 0) && (list[j - 1] > temp)) {
 list[j] = list[j - 1];
 j = j - 1;
 }
 list[j] = temp;
 }
 }

 private static int Partition(
 int[] array, int i, int j) {

 int pivot = array[i];

 while (i < j) {
 while (array[j] >= pivot && i < j) {
 j--;
 }

 if (i < j) {
 array[i++] = array[j];
 }

 while (array[i] <= pivot && i < j) {
 i++;
 }

 if (i < j) {
 array[j--] = array[i];
 }
 }

 array[i] = pivot;
 return i;
 }

 static void QuickSort(

 int[] array, int left, int right) {

 // Single or 0 elements are already sorted
 if (left >= right)
 return;

 // For small arrays, use a faster serial routine
 if (right-left <= 32) {
 InsertionSort(array, left, right);
 return;
 }

 // Select a pivot, then quicksort each sub-array
 int pivot = Partition(array, left, right);

 QuickSort(array, left, pivot - 1);
 QuickSort(array, pivot + 1, right);
 }

 static void Main(string[] args) {

 const int ArraySize = 50000000;

 for (int iters = 0; iters < 1; iters++) {
 int[] array;
 Stopwatch stopwatch;

 array = new int[ArraySize];
 Random random1 = new Random(5);

 for (int i = 0; i < array.Length; ++i) {
 array[i] = random1.Next();
 }

 stopwatch = Stopwatch.StartNew();
 QuickSort(array, 0, array.Length - 1);
 stopwatch.Stop();

 // Verify it is sorted
 for (int i = 1; i < array.Length; ++i)
 if (array[i - 1] > array[i - 1])
 throw new ApplicationException("Sort Failed");

 Console.WriteLine("Serialt: {0} ms",
 stopwatch.ElapsedMilliseconds);
 }
 }
 }
}

Figure 3 Quick Sort

83October 2010msdnmagazine.com

ware thread. It’s important to note that you can have many more soft -
ware threads than hardware threads, and this is the underlying basis
of a thread pool. It allows you to queue up tasks with soft ware threads
and then schedule them to execute on the actual hardware threads.

Th e advantage of using a thread pool instead of creating your own
threads is that the OS will take care of scheduling tasks for you—your
job will be to keep feeding tasks into the thread pool so that the OS
will be able to keep all of the hardware threads busy. Th is is illustrated
in Figure 1. Everything in the box makes up the thread pool and is
out of the realm of the programmer. It’s up to the application to feed
tasks into the thread pool, where they are placed into the thread queue
and eventually scheduled to run on a hardware thread.

Now you get to the hard part: What’s the best way to structure
jobs to keep the cores busy and the CPU utilization at its maximum?
Th is depends on what your application needs to do.

I frequently work with video game companies and these are some
of the most challenging types of applications to work with because
there’s a lot of work to be done—usually some in a particular se-
rial order—and it’s sensitive to delays. There’s usually a certain
frame rate at which the program updates, so if the frame rates start
to fall behind, the game experience suff ers. As a result, there’s a lot
of incentive to maximize use of the hardware.

On the other hand, if your application does one large thing at
a time, it’s a little more obvious what you need to do, but it’s still
challenging to try to distribute a single job across multiple cores.

Multithreaded Sorting
First let’s take a look at a monolithic job that’s frequently found in
applications and see how you can go about transforming it into a
more multithread-friendly form. I’m thinking, of course, about
sorting. Sorting is a particularly good example because it’s got

one major obstacle: How do you sort something and spread out
the sorting across multiple cores so that the sorting on one core is
independent from what’s being sorted on another core?

A naïve approach frequently seen is to lock access to any data that
can be accessed by multiple cores using something like a mutex,
semaphore or critical section. Th is will work. However, if it’s used as
a panacea for not correctly scheduling access to shared data, at best
you’ll end up killing any gains you might have achieved by blocking
other threads from executing. At worst, you might introduce some
subtle race condition that will be excruciatingly diffi cult to track down.

Luckily, you can design the application to eliminate most of the
shared access to the data across threads by choosing the appro-
priate sorting algorithm.

A better approach is to give each core a subsection of the array
to sort. Th is divide-and-conquer method is an easy way to distrib-
ute work on the same data set across multiple cores. Algorithms
such as merge sort and quick sort work from a divide-and-conquer
strategy and are straightforward to implement in a way that takes
advantage of a multicore system.

Let’s look at how merge sort works on the string of random
integers shown in Figure 2. Th e fi rst step is to choose a midpoint
in the array and divide it into two sublists. Keep dividing until you
have lists that are zero or one element long.

In most implementations, there’s actually a list size limit below
which you have an effi cient algorithm designed for small lists, but
it also works if you just keep dividing until you can’t divide any
more. Th e important thing to note is that once you divide a list
into two sublists, the lists are independent. Th is is illustrated by the
dashed red lines in Figure 2. Once you divide the list into sublists,
each sublist is independent and you can give each one to a CPU to
manipulate as it likes without having to lock anything.

To make the sorting as effi cient as possible, choose an algorithm
that will take each sublist and sort it in place. Th is is important not
only to prevent unnecessary copying of the data, but also to keep
the data warm in the CPU’s L2 cache. As you strive to write more
and more effi cient parallel code, you eventually have to be aware
of how data gets swapped into and out of the L2 cache, which is
generally about 256KB in most modern processors.

There are many sorting algorithms that lend themselves to
parallelization. Quick sort, selection sort, merge sort, and radix
sort are all algorithms that subdivide the data and operate on it
independently. So let’s take a look at a serial implementation of a
sorting routine and convert it into a parallel one.

In theory, once you keep subdividing an array recursively you
will eventually end up with a single element. At this point, there’s

Figure 4 Core Utilization

Figure 5 Thread Work

www.msdnmagazine.com

msdn magazine84 Thread Pools

nothing to sort, so the algorithm moves onto the next step, which
is merging sorted sublists together. Th e individual elements are
merged into larger, sorted lists. Th ese sorted sublists are then
merged into even larger sorted lists until you have the original
array in a sorted order. As mentioned previously, it’s usually faster
to switch to an algorithm that’s optimized to sort small lists when
the list size reaches a certain threshold.

There are many ways to write a sorting algorithm, and I’ve
chosen to write a simple quick sort routine in C#, as shown in
Figure 3. Th is program fi lls a large array with the same sequence
of random numbers and then sorts them using a quick sort rou-
tine, reporting how long it took.

If you look at the QuicSort function, you’ll see that it recursively
divides the array in two until a threshold is reached, at which point
it sorts the list without further subdivision. If you change this to a
parallel version, all you have to do is change these two lines:

QuickSort(array, lo, pivot - 1);
QuickSort(array, pivot + 1, hi);

Th e parallelized version is:
Parallel.Invoke(
 delegate { QuickSort(array, left, pivot - 1); },
 delegate { QuickSort(array, pivot + 1, right); }
);

Th e Parallel.Invoke interface is part of the Systems.Th reading.Tasks
namespace found in the .NET Task Parallel Library. It allows you to
specify a function to be run asynchronously. In this case, I tell it that
I want to run each sorting function on a separate thread.

While it would be more effi cient to spawn only one new thread
and to use the current thread of execution to sort the other
sublist, I wanted to maintain symmetry and illustrate how easy it
is to convert a serial program into a parallel program.

Core Utilization
The next obvious question is: Has this parallelization improved
performance at all?

Visual Studio 2010 includes several tools to help you understand
where your program is spending its time and how it behaves as a
multithreaded application. Th ere’s a great introduction to using
these tools for measuring the performance of your multithreaded
app with Visual Studio 2010 in the September 2009 MSDN Maga-
zine article “Debugging Task-Based Parallel Applications in Visual
Studio 2010” by Stephen Toub and Daniel Moth (msdn.microsoft.com/
magazine/ee410778), plus there’s a good video introduction by Daniel
Moth on Channel 9 (channel9.msdn.com/posts/DanielMoth/Parallel-Tasks--
new-Visual-Studio-2010-debugger-window/).

Parallel programming requires you to actually make measure-
ments to verify that you’ve truly improved performance and are
utilizing all the hardware. To learn more about how parallelization
was being used in my example application, let’s use these tools to
measure the sorting routines in action. I launched the Visual Studio
2010 Performance Wizard to take concurrency measurements of
my sorting application while it runs.

Th e fi rst thing you want to look at is core utilization, which shows
how the application made use of the CPU cycles available. My test
program runs the serial sort, sleeps for a second, then runs the paral-
lel version of the sort. On my 4-core machine I get the graph of core
utilization shown in Figure 4. Th e green is my application, yellow

is the OS and other programs, and gray is idle. Th e fl at line at the 1-core
level shows that I totally saturate the processing on a single core when
I’m running the serial version, and that I get about 2.25 out of four
cores when running the parallel version. Not too surprisingly, the time
to execute the parallel sort is about 45 percent of the time required
for the serial sort. Not too shabby for changing two lines of code.

Now, let’s switch from looking at the CPU utilization chart to the
thread display shown in Figure 5, which shows how the application
utilized threads that were available. Notice that there is a single thread
for the majority of the execution time. It’s not until you start spawning
off tasks that more threads are created. In this display the salmon color
indicates a thread that’s been blocked by another thread.

In fact, the thread display shows that while I did get a signifi cant in-
crease in execution speed, I didn’t do it very effi ciently. It’s perfectly OK
to have a thread block, waiting for other threads as the main thread is
waiting for the tasks to complete. However, what you really want to see
is solid green on as many tasks as you have CPU cores. So even though
the CPU utilization chart shows improved utilization of the CPU cores,
when you take a closer look at how tasks were spread throughout the
thread pool, you see room for further optimization.

In fact, you should always measure your code for performance
aft er you’ve done some multithreading work—even work as simple
as I’ve done here. For small jobs, you don’t want to multithread
because the overhead will overwhelm any threading performance.
For larger jobs, you’d want to break the job up onto as many CPU
cores as are available to you so as not to oversubscribe the thread pool.

What Next?
Th ere are a number of ways to squeeze even better performance
out of the code, but that’s not the objective of this initial article.
But you did see how to get 80 percent CPU utilization by making
just a few changes to the code that make it thread-friendly. Rather
than optimizing this code further, however, we’re going to focus
on getting maximum performance out of the CPUs on a system
by architecting jobs a bit diff erently.

Sorting in the manner I’ve demonstrated here is particularly ame-
nable to multithreading. You can calculate how far you’re going to
divide the job and then give each sub-job to a thread. However, while
I did get a performance boost, I did leave some performance behind.

But in real applications you might run into a situation where you
either have many jobs giving you groups of unique tasks, or possibly
not knowing how long any particular task is going to run and
having to schedule tasks around this uncertainty. It’s a particularly
challenging problem. In my next article, I’m going to take a look at
an architecture that takes a holistic approach to threading, allowing
you to distribute multiple, perhaps dissimilar jobs. I’ll show you
how to architect an application to make it multicore-aware from
the start through the use of tasks and thread pools.

RON FOSNER has been optimizing high-performance applications and games
on Windows for 20 years and is starting to get the hang of it. He’s a graphics and
optimization expert at Intel and is happiest when he sees all CPU cores running
fl at out. You can reach him at Ron@directx.com.

THANKS to the following technical expert for reviewing this article:
Stephen Toub

mailto:Ron@directx.com
http://channel9.msdn.com/posts/DanielMoth/Parallel-Tasks--new-Visual-Studio-2010-debugger-window/
http://channel9.msdn.com/posts/DanielMoth/Parallel-Tasks--new-Visual-Studio-2010-debugger-window/
http://msdn.microsoft.com/magazine/ee410778
http://msdn.microsoft.com/magazine/ee410778

You have the vision, but time, budget and staff
constraints prevent you from seeing it through.
With rich user interface controls like Gantt Charts
that Infragistics NetAdvantage® for .NET adds to
your Visual Studio 2010 toolbox, you can go to market
faster with extreme functionality, complete usability
and the “Wow-factor!” Go to infragistics.com/spark
now to get innovative controls for creating Killer Apps.

Infragistics Sales 800 231 8588
Infragistics Europe Sales +44 (0) 800 298 9055
Infragistics India +91-80-6785-1111
twitter.com/infragistics

Copyright 1996-2010 Infragistics, Inc. All rights reserved. Infragistics, the Infragistics logo and NetAdvantage are registered trademarks of Infragistics, Inc. All other trademarks or registered trademarks are the property of their respective owner(s).

Gantt Chart

Untitled-12 1 4/9/10 2:29 PM

www.infragistics.com/spark

msdn magazine86

required to execute the REST call to change the instance count
in the confi guration. Moreover, the downloadable code sample
will contain a simple page that will make REST management calls
to force the instance count to change based on user input. Th e
scenario is something like the drawing in Figure 1.

Project Setup
To get things started, I created a Windows Azure Cloud Service proj-
ect that contains one Worker Role and one Web Role. I confi gured
the Web Role to publish performance counter data, specifi cally %
Processor Time, from the role and push it to storage every 20 sec-
onds. Th e code to get that going lives inside of the WebRole::OnStart
method and looks something like this:

var performanceConfiguration =
 new PerformanceCounterConfiguration();
performanceConfiguration.CounterSpecifier =
 @"\Processor(_Total)\% Processor Time";
performanceConfiguration.SampleRate =
 System.TimeSpan.FromSeconds(1.0);

// Add the new performance counter to the configuration
config.PerformanceCounters.DataSources.Add(
 performanceConfiguration);
config.PerformanceCounters.ScheduledTransferPeriod =
 System.TimeSpan.FromSeconds(20.0);

Performance-Based Scaling
in Windows Azure

Without a doubt, cloud computing is gaining lots of mindshare,
and its practical use is building momentum across technology plat-
forms and throughout the industry. Cloud computing isn’t a new or
revolutionary concept; indeed, it has been around for years in the
form of shared hosting and other such services. Now, however, ad-
vances in technology and years of experience running servers and
services have made cloud computing not only technically practical,
but increasingly interesting to both consumers and providers.

Progress in cloud computing will reach beyond IT and touch
every part of your company—from the people managing hardware and
services, to the developers and architects, to the executives who will
approve the budget and pay the bills. You’d better be prepared for it.

In this column I’ll focus primarily on the developers and archi-
tects who need to understand and leverage cloud computing in
their work. I’ll supply some guidance on how to accomplish a
given task, including notes on architecture considerations and their
impact on cost and performance. Please tell me what you think of
the topics I cover and, even more importantly, about topics that
are of particular interest in cloud computing.

Seeding the Cloud
One of the first benefits people focus on in cloud computing is
the idea that application owners don’t have to worry about infra-
structure setup, configuration or maintenance. Let’s be honest:
that’s pretty compelling.

However, I think it’s more important to focus on the ability to
scale up or down to serve the needs of the application owner, thereby
creating a more effi cient cost model without sacrifi cing perfor-
mance or wasting resources. In my experience, demand elasticity
is something that comes up in any conversation about the cloud,
regardless of the platform being discussed.

In this installment I’ll demonstrate how to use performance counter
data from running roles to automate the process of shrinking or grow-
ing the number of instances of a particular Web Role. To do this, I’ll
take a look at a broad cross-section of Windows Azure features and
functionality, including Windows Azure Compute, Windows Azure
Storage and the REST Management API.

Th e concept is quite simple: test collected performance data
against a threshold and then scale the number of instances up or
down accordingly. I won’t go into detail about collecting diagnostic
data—I’ll leave that to you or to a future installment. Instead, I’ll
examine performance counter data that has been dumped to a
table in Windows Azure Storage, as well as the code and setup

FORECAST: CLOUDY JOSEPH FULTZ

Code download available at code.msdn.microsoft.com/mag201010Cloudy.

F igure 1 Performance-Based Scaling

STORAGE

4

Modify
Configuration

COMPUTE

Add
Instances

REST Management API

COMPUTE

Worker
Role

Web Role
Instances

2

1

3

5

1. Performance data
 collected
2. Stored in storage table
3. Worker Role inspects
 performance data
4. Worker Role changes
 configuration
5. Instance counts in
 modified and instance
 scaled accordingly

http://code.msdn.microsoft.com/mag201010Cloudy

Untitled-1 1 6/9/10 11:03 AM

www.nevron.com

msdn magazine88 Forecast: Cloudy

Th is code registers the performance counter, sets the collection
interval for data and then pushes the data to storage. Th e values I
used for intervals work well for this sample, but are not representative
of values I’d use in a production system. In a production system,
the collection interval would be much longer as I’d be concerned
with 24/7 operations. Also, the interval to push to storage would be
longer in order to reduce the number of transactions against Win-
dows Azure Storage.

Next I create a self-signed certifi cate that I can use to make the Azure
REST Management API calls. Every request will have to be authenti-
cated and the certifi cate is the means to accomplish this. I followed the
instructions for creating a self-signed certifi cate in the TechNet Library
article “Create a Self-Signed Server Certifi cate in IIS 7” (technet.microsoft.
com/library/cc753127(WS.10)). I exported both a .cer fi le and a .pfx fi le. Th e
.cer fi le will be used to sign the requests I send to the management API
and the .pfx fi le will be imported into the compute role via the manage-
ment interface (see Figure 2).

I’ll come back later and grab the thumbprint to put it in the settings
of both the Web Roles and Worker Roles that I’m creating so they
can access the certifi cate store and retrieve the certifi cate.

Finally, to get this working in Windows Azure, I need a compute
project where I can publish the two roles and a storage project to
which I can transfer the performance data. With these elements
in place, I can move on to the meat of the work.

Is It Running Hot or Cold?
Now that I’ve got the Web Role confi gured and code added to
publish the performance counter data, the next step is to fetch that
data and compare it to a threshold value. I’ll create a TestPerfData
method in which I retrieve the data from the table and test the
values. I’ll write a LINQ statement similar to the following:

double AvgCPU = (
 from d in selectedData
 where d.CounterName ==
 @"\Processor(_Total)\% Processor Time"
 select d.CounterValue).Average();

By comparing the average utili-
zation, I can determine the current
application performance. If the in-
stances are running too hot, I can
add instances. If they’re running
cold and I’m wasting resources—
meaning money—by having run-
ning instances I don’t need, I can
reduce the number of instances.

You’ll find in-depth coverage
of the code and setup needed to
access the performance counter
table data in a blog post I wrote
at blogs.msdn.com/b/joseph_fultz/
archive/2010/06/30/querying-azure-perf-

counter-data-with-linq.aspx. I use a simple if-then-else block to asses
the state and determine the desired action. I’ll cover the details
after I’ve created the functions needed to change the running
service configuration.

Using the REST Management API
Before I can fi nish the TestPerfData method, I have a little more
work to do. I need a few methods to help me discover the number
of instances of a given role, create a new valid service confi guration
for that role with an adjusted instance count, and, fi nally, allow me
to update the confi guration.

To this end I’ve added a class fi le to my project and created the
six static methods shown in Figure 3.

The calls that interact with the REST Management API must
include a certifi cate. To accomplish this, the certifi cate is added to
the hosted service and the thumbprint is added to the role con-
fi guration and used to fetch the certifi cate at run time. Once the
service and role are confi gured properly, I use the following code
to grab the certifi cate from the Certifi cate Store:

string Thumbprint =
 RoleEnvironment.GetConfigurationSettingValue(
 ThumbprintSettingName);
X509Store certificateStore =
 new X509Store(StoreName.My, StoreLocation.LocalMachine);
certificateStore.Open(OpenFlags.ReadOnly);
X509Certificate2Collection certs =
 certificateStore.Certificates.Find(
 X509FindType.FindByThumbprint, Thumbprint, false);

Method Description
GetDeploymentInfo Retrieves the deployment confi guration,

including the encoded service confi guration.
GetServiceConfi g Retrieves and decodes the service confi guration

from the deployment info.
GetInstanceCount Fetches the instance count for a specifi ed role.
ChangeInstanceCount Updates the service confi guration and returns

the complete XML.
ChangeConfi gFile Updates the service confi guration with the

service confi guration provided to the function.
LookupCertifi cate Passes in the environment setting containing the

thumbprint and retrieves the certifi cate from the
certifi cate store.

Figure 3 Confi guration Methods

Figure 2 Importing Certifi cates

If the instances are running too
hot, I can add instances.

http://technet.microsoft.com/library/cc753127(WS.10)
http://technet.microsoft.com/library/cc753127(WS.10)
http://blogs.msdn.com/b/joseph_fultz/archive/2010/06/30/querying-azure-perf-counter-data-with-linq.aspx
http://blogs.msdn.com/b/joseph_fultz/archive/2010/06/30/querying-azure-perf-counter-data-with-linq.aspx

89October 2010msdnmagazine.com

Th is is the main code of the LookUpCertifi cate method and it’s
called in the methods where I want to interact with the REST API.
I’ll review the GetDeploymentInfo function as an example of how
calls are constructed. For this example, I’ve hardcoded some of the
variables needed to access the REST API:

string x_ms_version = "2009-10-01";
string SubscriptionID = "[your subscription ID]";
string ServiceName = "[your service name]";
string DeploymentSlot = "Production";

I need to create a HttpWebRequest with the proper URI, set the
request headers and add my certifi cate to it. Here I build the URI
string and create a new HttpWebRequest object using it:

string RequestUri = "https://management.core.windows.net/" +
 SubscriptionID + "/services/hostedservices/"+
 ServiceName + "/deploymentslots/" + DeploymentSlot;

HttpWebRequest RestRequest =
 (HttpWebRequest)HttpWebRequest.Create(RequestUri);

For the call to be valid, it must include the version in the header.
Thus, I create a name-value collection, add the version key and
data, and add that to the request headers collection:

NameValueCollection RequestHeaders =
 new NameValueCollection();
RequestHeaders.Add("x-ms-version", x_ms_version);
if (RequestHeaders != null) {
 RestRequest.Headers.Add(RequestHeaders);
}

Th e last thing to do to prepare this particular request is to add
the certifi cate to the request:

X509Certificate cert = LookupCertificate("RESTMgmtCert");
RestRequest.ClientCertificates.Add(cert);

Finally, I execute the request and read the response:
RestResponse = RestRequest.GetResponse();
using (StreamReader RestResponseStream = new StreamReader(RestResponse.
GetResponseStream(), true)) {
 ResponseBody = RestResponseStream.ReadToEnd();
 RestResponseStream.Close();
}

Th at’s the general pattern I used to construct requests made to the
REST Management API. Th e GetServiceConfi g function extracts
the Service Confi guration out of the deployment confi guration,
using LINQ to XML statements like the following:

XElement DeploymentInfo = XElement.Parse(DeploymentInfoXML);
string EncodedServiceConfig =
 (from element in DeploymentInfo.Elements()
where element.Name.LocalName.Trim().ToLower() == "configuration"
select (string) element.Value).Single();

In my code, the return of the GetServiceConfi g is passed on
to the GetInstanceCount or ChangeInstance count functions (or
both) to extract the information or update it. Th e return from the
ChangeInstance function is an updated Service Confi guration,
which is passed to ChangeConfi gFile. In turn, ChangeConfi gFile
pushes the update to the service by constructing a request similar
to the previous one used to fetch the deployment information, with
these important diff erences:

1. “/?comp=confi g” is added to the end of the URI
2. Th e PUT verb is used instead of GET
3. Th e updated confi guration is streamed as the request body

Putting It All Together
With the functions in place to look up and change the service confi gu-
ration, and having done the other preparatory work such as setting up
counters, confi guring the connection string settings for Storage, and
installing certifi cates, it’s time to implement the CPU threshold test.

Th e Visual Studio template produces a Worker Role that wakes up
every 10 seconds to execute code. To keep things simple, I’m leaving
that but adding a single timer that will run every fi ve minutes. In the
timer, a simple conditional statement tests whether utilization is higher
or lower than 85 percent, and I’ll create two instances of the Web Role.
By doing this I guarantee that the number of instances will defi nitely
decrease from the initial two instances to a single instance.

Inside the Worker Role I have a Run method that declares and
instantiates the timer. Inside of the timer-elapsed handler I add a
call to the TestPerfData function I created earlier. For this sample,

else if (AvgCPU < 85.0) {
 Trace.TraceInformation("in the AvgCPU < 25 test.");
 string deploymentInfo =
 AzureRESTMgmtHelper.GetDeploymentInfo();
 string svcconfig =
 AzureRESTMgmtHelper.GetServiceConfig(deploymentInfo);
 int InstanceCount =
 System.Convert.ToInt32(
 AzureRESTMgmtHelper.GetInstanceCount(
 svcconfig, "WebRole1"));
 if (InstanceCount > 1) {
 InstanceCount--;
 string UpdatedSvcConfig =
 AzureRESTMgmtHelper.ChangeInstanceCount(
 svcconfig, "WebRole1", InstanceCount.ToString());
 AzureRESTMgmtHelper.ChangeConfigFile(UpdatedSvcConfig);
 }
}

Figure 4 The Less-Than-85-Percent Block

Figure 5 Publishing the Project

A simple conditional statement
tests whether utilization is higher

or lower than 85 percent.

www.msdnmagazine.com

msdn magazine90 Forecast: Cloudy

I’m skipping the implementation of the greater-than condition
because I know that the CPU utilization will not be that high. I set
the less-than condition to be less than 85 percent as I’m sure the
counter average will be lower than that. Setting these contrived
conditions will allow me to see the change via the Web manage-
ment console or via Server Explorer in Visual Studio.

In the less-than-85-percent block I check the instance count,
modify the service confi guration and update the running service
confi guration, as shown in Figure 4.

I make sure to check the instance count before adjusting down,
because I don’t want it to go to zero, as this is not a valid confi gu-
ration and would fail.

Running the Sample
I’m now ready to execute the example and demonstrate elasticity
in Windows Azure. Knowing that my code is always right the fi rst
time—ahem—I right-click on the Cloud Service Project and click
Publish. Th e dialog gives you the option to confi gure your creden-
tials, which I’ve already done (see Figure 5).

I click OK and just have to wait
for the package to be copied up
and deployed. When deployment
is complete, I switch to the Web
management console and see two
Web Roles and one Worker Role
running, as shown in Figure 6.

I wait for the timer event to fi re,
executing the code that will deter-
mine that the average CPU utili-
zation is less than 85 percent, and
decrement the WebRole1 instance
count. Once this happens, the man-
agement page will refresh to refl ect
an update to the deployment.

Because I’m using small VMs,
changing the count by only one,
and the application is lightweight
(one .aspx page), the update doesn’t
take long and I see the fi nal, auto-
shrunk deployment as shown in
Figure 7.

Blue Skies
I want to share few fi nal thoughts
about the sample in the context of
considering a real implementation.
There are a few important points
to think about.

First, the test is trivial and con-
trived. In a real implementation
you’d need to evaluate more than
simple CPU utilization and you’ll
need to take into account the
quantum over which the collec-
tion occurred.

In addition, you need to evaluate the costs of using Windows Azure
Storage. Depending on the solution, it might be advisable to scrub
the records in the table for only ones that are of interest. You can
decrease the upload interval to lower transaction costs, or you
may want to move the data to SQL Azure to minimize that cost.

You also need to consider what happens during an update.
A direct update will cause users to lose connectivity. It may be
better to bring the new instances up in staging and then switch the
virtual IP address. In either case, however, you’ll have session and
viewstate problems. A better solution is to go stateless and disable
the test during scale adjustments.

Th at’s it for my implementation of elasticity in Windows Azure.
Download the code sample and start playing with it today.

JOSEPH FULTZ is an architect at the Microsoft Technology Center in Dallas where
he works with both Enterprise Customers and ISVs designing and prototyping
soft ware solutions to meet business and market demands. He’s spoken at events
such as Tech•Ed and similar internal training events.

THANKS to the following technical expert for reviewing this article: Suraj Puri

Figure 6 Two Web Roles and One Worker Role

Figure 7 Now One Web Role and One Worker Role

91October 2010

Commonalities are oft en the parts that are diffi cult to explicitly
identify, not because we don’t recognize them, but because they’re
so easily and intuitively recognizable it’s tough to spot them. For
example, if I say, “Vehicle,” what image pops into your head? If we
do this exercise with a group of people, each will have a diff erent
image, yet there will be vast commonality among them all. How-
ever, if we start listing the various vehicles imagined, the diff erent
kinds of variabilities begin to emerge and categorize themselves
(we hope), such that we can still have some set of commonalities
among the vehicles.

Positive and Negative Variability
Variability can come in two basic forms, one of which is easy to
recognize and the other much more diffi cult. Positive variability is
when the variability occurs in the form of adding to the basic com-
monality. For example, imagine the abstraction desired is that of
a message, such as a SOAP message or e-mail. If we decide that a
Message type has a header and body, and leave diff erent kinds of
messages to use that as the commonality, then a positive variabil-
ity on this is a message that carries a particular value in its header,
perhaps the date/time it was sent. Th is is usually easily captured
in language constructs—in the object-oriented paradigm, for
example, it’s relatively trivial to create a Message subclass that adds
the support for date/time sent.

Negative variability, however, is much trickier. As might be
inferred, a negative variability removes or contradicts some facet
of the commonality—a Message that has a header but no body
(such as an acknowledgement message used by the messaging
infrastructure) is a form of negative variability. And, as you can
probably already guess, capturing this in a language construct is
problematic—neither C# nor Visual Basic has a facility to remove
a member declared in a base class. Th e best we could do in this
case is return null or nothing from the Body member, which will
clearly play havoc with any code that expects a Body to be present,
such as verifi cation routines that run a CRC on the Body to ensure
it was transmitted correctly.

(Interestingly, XML Schema types off er negative variability in
their schema-validation defi nitions, something that no mainstream
programming language yet off ers, which is one of the ways that the
XML Schema Defi nition can mismatch against programming lan-
guages. Whether this will become a forthcoming feature in some
as-yet-unwritten programming language, and whether it would be a
Good Th ing To Have, is an interesting discussion best had over beer.)

Multiparadigmatic .NET, Part 2

In my previous article (msdn.microsoft.com/magazine/ff955611), the fi rst
of this series, I mentioned that the two languages central to the
Microsoft .NET Framework—C# and Visual Basic—are multipa-
radigm languages, just like C++, their syntactic (in the case of C#)
or conceptual (in the case of Visual Basic) predecessor. Using a
multiparadigmatic language can be confusing and diffi cult, par-
ticularly when the purposes of the diff erent paradigms aren’t clear.

Commonality and Variability
But before we can start taking apart the diff erent paradigms in
these languages, a bigger question comes to mind: What, precisely,
are we trying to do when we design a soft ware system? Forget the
“end result” goals—modularity, extensibility, simplicity and all that
jazz—for a moment, and focus more on the “how” of the language.
How, exactly, are we trying to create all those “end result” goals?

James O. Coplien—from his “Multi-Paradigm Design for C++”
(Addison-Wesley Professional, 1998)—has an answer for us:

When we think abstractly, we emphasize what is common while
suppressing detail. A good soft ware abstraction requires that
we understand the problem well enough in all of its breadth to
know what is common across related items of interest and to
know what details vary from item to item. Th e items of interest
are collectively called a family, and families—rather than indi-
vidual applications—are the scope of architecture and design.
We can use the commonality/variability model regardless of
whether family members are modules, classes, functions, pro-
cesses or types; it works for any paradigm. Commonality and
variability are at the heart of most design techniques.

Th ink about the traditional object paradigm for a moment. As
object-oriented developers, we’re taught from early on to “identify
the nouns” in the system and look for the things that make up
a particular entity—to fi nd all the things that pertain to being a
“teacher” within the system, for example, and put them into a class
called Teacher. But if several “nouns” have overlapping and related
behavior—such as a “student” having some data and operations
overlapping with a “person” but with some marked diff erences—
then we’re taught that rather than replicate the common code,
we should elevate the commonality into a base class, and relate
the types to one another through inheritance. In other words,
commonality is gathered together within a class, and variability is
captured by extending from that class and introducing the varia-
tions. Finding the commonalities and variabilities within a system,
and expressing them, forms the heart of design.

THE WORKING PROGRAMMER TED NEWARD

http://msdn.microsoft.com/magazine/ff955611

msdn magazine92 The Working Programmer

In many systems, negative variability is often handled using
explicit code constructs at the client level—meaning, it’s up to the
users of the Message type to do some kind of if/else test to see what
kind of Message it is before examining the Body, which renders
the work put into the Message family all but irrelevant. Too much
negative variability escaping the design is usually the underlying
cause of calls from developers to “pitch it all and start over.”

Binding Commonality and Variability
Th e actual moment that commonality and variability are set varies
with each paradigm, and in general, the closer to run time that we

can bind those decisions, the more control we give customers and
users over the system’s evolution and as a whole. When discussing a
particular paradigm or technique within a paradigm, it’s important to
recognize in which of these four “bind times” the variability kicks in:

1. Source time. Th is is the time before the compiler fi res
up, when the developer (or some other entity) is creating
the source fi les that will eventually be fed into the com-
piler. Code-generative techniques, such as the T4 template
engine—and to a lesser degree the ASP.NET system—
operate at a source-time binding.

2. Compile time. As its name implies, this binding occurs
during the compiler’s pass over the source code to render
it into compiled bytecode or executable CPU instructions.
A great deal of decision making is fi nalized here, though
not all of it, as we’ll see.

3. Link/load time. At the time the program loads and
runs, an additional point of variability kicks in, based on
the specifi c modules (assemblies, in the case of .NET; DLLs,
in the case of native Windows code) that are loaded. Th is
is commonly referred to as a plug-in- or add-in-style archi-
tecture when it’s applied at a whole-scale program level.

4. Run time. During the program’s execution, certain vari-
abilities may be captured based on user input and decision
making, and potentially diff erent code executed (or even
generated) based on those decisions/input.

In some cases, the design process will want to start from these
“bind times” and work backward to figure out what language
constructs can support the requirement; for example, a user may
want to have the ability to add/remove/modify variability at run
time (so that we don’t have to go back through a compile cycle or
reload code), which means that whatever paradigm the designer
uses, it must support a runtime variability binding.

Challenge
In my previous article, I left readers with a question:

As an exercise, consider this: Th e .NET Framework 2.0 introduced
generics (parameterized types). Why? From a design perspective,
what purpose do they serve? (And for the record, answers of
“It lets us have type-safe collections” are missing the point—
Windows Communication Foundation uses generics extensively,
clearly in ways that aren’t just about type-safe collections.)

Taking this a little further, look at the (partial) implementation
of a Point class in Figure 1, representing a Cartesian X/Y point, like
pixel coordinates on a screen, or a more classical graph.

In and of itself, it’s not really all that exciting. Th e rest of the
implementation is left to the reader’s imagination, because it’s not
central to the discussion.

Notice that this Point implementation has made a few assump-
tions about the way Points are supposed to be utilized. For example,
the X and Y elements of the Point are integers, meaning that this
Point class can’t represent fractional Points, such as Points at (0.5,0.5).
Initially, this may be an acceptable decision, but inevitably, a
request will come up asking to be able to represent “fractional
Points” (for whatever reason). Now, the developer has an interesting
problem: How to represent this new requirement?

Public Class PointD
 Public Sub New(ByVal XX As Double, ByVal YY As Double)
 Me.X = XX
 Me.y = YY
 End Sub

 Public Property X() As Double
 Public Property y() As Double

 Public Function Distance(ByVal other As Point) As Double
 Dim XDiff = Me.X - other.X
 Dim YDiff = Me.y - other.y
 Return System.Math.Sqrt((XDiff * XDiff) + (YDiff * YDiff))
 End Function

 Public Overrides Function Equals(ByVal obj As Object) As Boolean
 ' Are these the same type?
 If Me.GetType() = obj.GetType() Then
 Dim other As PointD = obj
 Return other.X = Me.X And other.y = Me.y
 End If
 Return False
 End Function

 Public Overrides Function ToString() As String
 Return String.Format("({0},{1}", Me.X, Me.y)
 End Function

End Class

Figure 2 A New Point Class with Floating-Point Members

Public Class Point
 Public Sub New(ByVal XX As Integer, ByVal YY As Integer)
 Me.X = XX
 Me.y = YY
 End Sub

 Public Property X() As Integer
 Public Property y() As Integer

 Public Function Distance(ByVal other As Point) As Double
 Dim XDiff = Me.X - other.X
 Dim YDiff = Me.y - other.y
 Return System.Math.Sqrt((XDiff * XDiff) + (YDiff * YDiff))
 End Function

 Public Overrides Function Equals(ByVal obj As Object) As Boolean
 ' Are these the same type?
 If Me.GetType() = obj.GetType() Then
 Dim other As Point = obj
 Return other.X = Me.X And other.y = Me.y
 End If
 Return False
 End Function

 Public Overrides Function ToString() As String
 Return String.Format("({0},{1}", Me.X, Me.y)
 End Function

End Class

Figure 1 Partial Implementation of a Point Class

msdnmagazine.com

Starting from the basics, let’s do the “Oh Lord don’t do that” thing
and simply create a new Point class that uses fl oating-point members
instead of integral members, and see what emerges (see Figure 2; note
that PointD is short for “Point-Double,” meaning it uses Doubles).
As is pretty clear, there’s a lot of conceptual overlap here between the
two Point types. According to the commonality/variability theory
of design, that means we need to somehow capture the common
parts and allow for variability. Classic object-orientation would
have us do it through inheritance, elevating the commonality
into a base class or interface (Point), then implementing that in
subclasses (PointI and PointD, perhaps).

Interesting problems emerge from attempting this, however.
First, the X and Y properties need a type associated with them, but
the variability in the two diff erent subclasses concerns how the X
and Y coordinates are stored, and thus represented, to users. Th e
designer could always simply opt for the largest/widest/most com-
prehensive representation, which in this case would be a Double,
but doing so means having a Point that can only have Integer
values is now lost as an option, and it undoes all of the work the
inheritance was intended to permit. Also, because they’re related
by inheritance now, the two Point-inheriting implementations are
now supposedly interchangeable, so we should be able to pass a
PointD into a PointI Distance method, which may or may not be
desirable. And is a PointD of (0.0, 0.0) equivalent (as in Equals) to
a PointI of (0,0)? All these issues have to be considered.

Even if these problems are somehow fi xed or made tractable,
other problems emerge. Later, we might want a Point that accepts
values larger than can be held in an Integer. Or only absolute-
positive values (meaning the origin is in the lower-left corner) are
deemed acceptable. Each of these diff erent requirements will mean
new subclasses of Point must be created.

Stepping back for a moment, the original desire was to reuse
the commonality of the implementation of Point but allow for
variability in the type/representation of the values that make up the

Public Class GPoint(Of Rep As {IComparable, IConvertible})
 Public Sub New(ByVal XX As Rep, ByVal YY As Rep)
 Me.X = XX
 Me.Y = YY
 End Sub

 Public Property X() As Rep
 Public Property Y() As Rep

 Public Function Distance(ByVal other As GPoint(Of Rep)) As Double
 Dim XDiff = (Me.X.ToDouble(Nothing)) - (other.X.ToDouble(Nothing))
 Dim YDiff = (Me.Y.ToDouble(Nothing)) - (other.Y.ToDouble(Nothing))
 Return System.Math.Sqrt((XDiff * XDiff) + (YDiff * YDiff))
 End Function

 Public Overrides Function Equals(ByVal obj As Object) As Boolean
 ' Are these the same type?
 If Me.GetType() = obj.GetType() Then
 Dim other As GPoint(Of Rep) = obj
 Return (other.X.CompareTo(Me.X) = 0) And (other.y.CompareTo(Me.Y) = 0)
 End If
 Return False
 End Function

 Public Overrides Function ToString() As String
 Return String.Format("({0},{1}", Me.X, Me.Y)
 End Function

End Class

Figure 3 A Generic Constraint on Type

www.msdnmagazine.com
www.scaleoutsoftware.com/eval

Point. In the ideal, depending on the kind of graph we’re working
with, we should be able to choose the representation at the time the
Point is created, and it would represent itself as an entirely distinct
and diff erent type, which is precisely what generics do.

Doing this, however, represents a problem: Th e compiler insists
that “Rep” types won’t necessarily have “+” and “-” operators defi ned
for it, because it thinks we want to put any possible type here—
Integers, Longs, Strings, Buttons, DatabaseConnections or what-
ever else comes to mind—and that’s clearly a little too variable. So,
once again, we need to express some commonality to the type that
can be used here, in the form of a generic constraint on what types
“Rep” can be (see Figure 3).

In this case, two constraints are imposed: one to ensure that
any “Rep” type can be converted to double values (to calculate the
distance between the two points), and the other to ensure that
the constituent X and Y values can be compared to see if they’re
greater-than/equal-to/less-than one another.

And now the reason for generics becomes clearer: they support
a diff erent “axis” of variability for design, one that’s drastically dif-
ferent from the traditional inheritance-based axis. It allows the
designer to render the implementation as commonalities, and the
types being operated upon by the implementation to be variabilities.

Note that this implementation assumes that the variability is
occurring at compile time, rather than at link/load time or run
time—if the user wants or needs to specify the type of the X/Y mem-
bers of the Point at run time, then a diff erent solution is needed.

Not Dead (or Done) Yet!
If all of software design is a giant exercise in commonality and
variability, then the need to understand multiparadigmatic design
becomes clear: Each of the diff erent paradigms off ers diff erent ways
to achieve this commonality/variability, and mixing the paradigms
creates confusion and leads to calls for a complete rewrite. Just as
the human brain starts to get confused when we try to map three-
dimensional constructs in our head into four and fi ve dimensions,
too many dimensions of variability in soft ware cause confusion.

In the next half-dozen or so articles, I’ll be looking at the diff erent ways
that each paradigm supported by C# and Visual Basic—the structural,
object-oriented, metaprogramming, functional and dynamic paradigms
being the principals—provide functionality to capture commonality
and allows for variability. When we’re through all of that, we’ll examine
how some of them can be combined in interesting ways to make your
designs more modular, extensible, maintainable and all that other stuff .

Happy coding!

TED NEWARD is a principal with Neward & Associates, an independent fi rm spe-
cializing in enterprise .NET Framework and Java platform systems. He’s written
more than 100 articles, is a C# MVP and INETA speaker and has authored and
coauthored a dozen books, including “Professional F# 2.0” (Wrox, 2010). He also
consults and mentors regularly. Reach him at ted@tedneward.com with questions
or consulting requests, and read his blog at blogs.tedneward.com.

THANKS to the following technical expert for reviewing this article:
Anthony Green

mailto:ted@tedneward.com
www.enterpriseenabler.com
http://blogs.tedneward.com

95October 2010

As you’ve seen in previous articles, a WPF element is informed of
the onset of multi-touch manipulation with two events: Manipu-
lationStarting (which is a good opportunity for performing some
initialization) and ManipulationStarted. Th ese two events are then
followed by potentially very many ManipulationDelta events, which
consolidate the action of one, two or more fi ngers into translation,
scaling and rotation information.

When all the fi ngers have lift ed from the element being manip-
ulated, a ManipulationInertiaStarting event occurs. Th is is your
program’s opportunity to specify how much inertia you want.
(I’ll discuss how, shortly.) The effect of inertia takes the form of
additional ManipulationDelta events until the object “runs down”
and a ManipulationCompleted event signals the end. If you don’t
do anything with ManipulationInertiaStarting, it’s followed imme-
diately by ManipulationCompleted.

Th e use of the ManipulationDelta event to indicate both direct
manipulations and inertia makes this whole scheme extremely easy
to use. Basically, you can implement inertia with a single statement
in the ManipulationInertiaStarting event. If necessary, you can
discern the diff erence between direct manipulation and inertia by
the IsInertial property of ManipulationDeltaEventArgs.

As you’ll see, you specify how much inertia you want in one of
two diff erent ways, but they both involve deceleration—a decrease
in velocity over a period of time until the velocity reaches zero and
the object stops moving. Th is involves some concepts in physics
that most programmers don’t encounter oft en, so perhaps a little
refresher course might help.

A Refresher on Acceleration
If something is moving, it is said to have a speed or velocity that can
be expressed in units of distance-per-time. If the velocity is itself
changing over the course of time, then the object has acceleration.

Multi-Touch and Inertia

UIs on computers seem to be most appealing when they mask the
digital nature of the underlying technology, and instead mimic
the analog feel of the real world. Th is trend began when graphical
interfaces started replacing command lines, and then continued
with the increased use of photographs, sound and other media.

Th e incorporation of multi-touch into video displays has given an
extra boost to the process of making user controls more lifelike and
intuitive. I think you’ve only begun to glimpse the potential of the touch
revolution to revamp your relationship with the computer screen.

Perhaps someday we will even eliminate one of the ugliest
vestiges of digital technology known to man: the push-button
volume control. Th e basic dial that controlled volume (and other
settings) on radios and televisions was delightfully simple, but has
been replaced with awkward push buttons on remote controls and
the appliances themselves.

Computer interfaces oft en off er sliders for volume control. Th ese
are almost as good as dials. But push-button volume controls are
still persistent. Even the multi-touch screen of the Zune HD wants
you to press plus and minus signs to increase and decrease volume.
More preferable would be a dial that responds to touch.

I like the dial for multi-touch. Perhaps that’s why I focused on
simulating dials in my article, “Finger Style: Exploring Multi-Touch
Support in Silverlight,” in the March 2010 issue of MSDN Maga-
zine (msdn.microsoft.com/magazine/ee336026), and why I’m returning to
dials to talk about handling multi-touch inertia in the Windows
Presentation Foundation (WPF).

The Inertia Event
One of the ways in which a multi-touch interface attempts to mimic
the real world is by introducing inertia—the tendency for objects
to maintain the same velocity unless acted upon by other forces,
such as friction. In multi-touch interfaces, inertia can keep a visual
object moving when the fingers have left the screen. The most
common application of touch inertia is in navigating lists, and
inertia is already built into the WPF ListBox.

Among the downloadable code for this article is a little program
called IntertialListBoxDemo that simply fi lls a WPF ListBox with
a bunch of items so you can test it out on your multi-touch display.

In your own WPF controls, you’ll need to decide how much
inertia you want, if any. Handling inertia is easiest if you just want
inertia to cause the same response from your program as direct
manipulation. Th e hard part is getting a good understanding of
the numeric values involved.

UI FRONTIERS CHARLES PETZOLD

Code download available at code.msdn.microsoft.com/mag201010UIFrontiers.

You’ve only begun to
glimpse the potential of the

touch revolution.

http://msdn.microsoft.com/magazine/ee336026
http://code.msdn.microsoft.com/mag201010UIFrontiers

msdn magazine96 UI Frontiers

A negative acceleration (indicating decreasing velocity) is oft en
called deceleration.

Th roughout this discussion, let’s assume that the acceleration or
deceleration itself is constant. A constant acceleration means that
velocity changes linearly—an equal amount per unit of time. If
acceleration is 0, the velocity remains constant.

For example, automobile manufacturers sometimes advertise
their cars as being able to accelerate from 0 to 60 mph in a certain
number of seconds, let’s say, 8 seconds. Th e car is initially at rest but
by the end of 8 seconds, it’s going at 60 mph, as shown in Figure 1.

Notice that the velocity increases by the same amount every sec-
ond. Th e acceleration is expressed as the change in velocity dur-
ing a particular period of time, or in this case, 7.5 mph per second.

Th at acceleration value is a little awkward because there are two
units of time involved: hours and seconds. Let’s get rid of hours
and just use seconds. Because 60 mph is 88 feet per second, the
car could equivalently be said to go from 0 to 88 feet per second
in 8 seconds. Th e acceleration is 11 feet per second per second, or
(as it’s oft en phrased) 11 feet per second squared.

We can go back to miles and hours, but the units get ridiculous
as the acceleration is calculated as 27,000 mph squared. Th is im-
plies that at the end of the hour, the car is traveling 27,000 mph.
Of course it doesn’t do that. In real life, as soon as the car gets up
to 60 mph or thereabouts, the velocity levels off and the accelera-
tion goes down to 0. Th at’s a change in acceleration, which in en-
gineering circles is referred to as a jerk.

But for this exercise we’re assuming constant acceleration. Start-
ing at a velocity of 0, as a result of acceleration a, the distance x
traveled during time t is:

x = 1 at2

x = 2

Th e ½ and square are necessary because the velocity
v is calculated as the fi rst derivative of the distance
with respect to time:

v = dx = at
v = dt

If a is 11 feet per second squared, then at t equal to
1 second, the velocity is 11 feet per second, but the car
has only traveled 5.5 feet. At t equal to 2 seconds, the
velocity is 22 feet per second, and the car has traveled
a total of 22 feet. During each second, the car travels
a distance based on the average velocity during that
second. At t equal to 8 seconds, the velocity is 88 feet
per second, and the car has traveled a total of 352 feet.

Multi-touch inertia is like watching the car in reverse: At the time
the fi ngers lift from the screen, the object has a certain velocity. Th e
application specifi es a deceleration that causes the velocity of the
object to decrease linearly down to 0. Th e higher the deceleration,
the quicker the object stops. A deceleration of 0 causes the object
to continue moving at the same velocity forever.

Two Ways to Decelerate
Th e ManipulationDelta event arguments include a Velocities prop-
erty of type ManipulationVelocities, which itself has three properties
corresponding to the three types of manipulation:

• LinearVelocity of type Vector
• ExpansionVelocity of type Vector
• AngularVelocity of type double

Th e fi rst two properties are expressed as device-independent units
per millisecond; the third is in angles (in degrees) per millisecond. Of
course, the millisecond is not an intuitively comprehensible period of
time, so if you need to look at these values and get a sense of what they
mean, you’ll want to multiply them by 1,000 to convert to seconds.

Applications don’t oft en make use of these Velocity properties, but
they provide initial velocities for inertia. When the user’s fi ngers leave
the screen, a ManipulationInertiaStarting event occurs. Th e event
arguments include these three properties that let you specify inertia
separately for those same three types of manipulation:

• TranslationBehavior of type InertiaTranslationBehavior
• ExpansionBehavior of type InertiaExpansionBehavior
• RotationBehavior of type InertiaRotationBehavior

Each of those classes has an InitialVelocity property, a Desired-
Deceleration property, and a third property named DesiredDisplace-
ment, DesiredExpansion or DesiredRotation, depending on the class.

For translation and rotation, all the Desired properties have
default values of Double.NaN, that special bit confi guration that

indicates “not a number.” For expansion, the Desired
properties are of type Vector with X and Y values of
Double.NaN, but the concept is the same.

Let’s focus on rotational inertia fi rst, because it’s
an eff ect familiar from the real world (such as a play-
ground roundabout), and you don’t have to worry
about objects fl ying off the screen.

By the time you get a ManipulationInertiaStarting
event, the InertiaRotationBehavior object has been
created, and the InitialVelocity value has been set
from the previous ManipulationDelta event. If the
InitialVelocity is 1.08, for example, that’s 1.08 degrees
per millisecond, or 1,080 degrees per second, or three
revolutions per second, or 180 rpm.

Seconds Velocity
0 0 mph
1 7.5
2 15
3 22.5
4 30
5 37.5
6 45
7 52.5
8 60

Figure 1 Acceleration

Let’s focus on rotational inertia
fi rst, because it’s an effect familiar

from the real world.

You specify how much
inertia you want in one of two

different ways.

You went to a developer conference and came back with no
usable, real-world training? Come to Visual Studio Live! If it’s
Visual Studio, Sharepoint, Silverlight, Data Management, or
Cloud education you need, we’ve got you covered. No kidding.

For more reasons on why you should attend
Visual Studio Live!, visit www.vslive.com/kidding.

Are you kidding?

NOVEMBER 14–17, 2010
ORLANDO, FL

Untitled-4 1 9/21/10 11:36 AM

http://www.vslive.com/kidding

msdn magazine98 UI Frontiers

To keep the object spinning, you set
either DesiredRotation or DesiredDecel-
eration but not both. If you try to set both,
the last one you set will be valid and the
other will be Double.NaN.

Th e fi rst option is to set DesiredRo-
tation to a value in degrees. Th is is the
number of degrees the object will spin
before it stops. If you set DesiredRota-
tion to 360, for example, the spinning
object will make just one additional
revolution, slowing down and stopping
in the process. Th e advantage is that you
get the same amount of inertial activity
regardless of the initial speed, so it’s easy
to predict what will happen. Th e disad-
vantage is that it’s not entirely natural.

Th e alternative is to set DesiredDecelera-
tion to a value in units of degrees per millisecond squared, and here’s
where it becomes a bit slippery because it’s hard to guess at a good value.

If InitialVelocity is 1.08 degrees per millisecond and you set
DesiredDeceleration to 0.01 degrees per millisecond squared, then
the velocity will decrease by 0.01 degrees every millisecond: to 1.07
degrees per millisecond at the end of the first millisecond, 1.06
degrees per millisecond at the end of the second millisecond, and
so forth linearly until the velocity gets down to 0. Th at whole pro-
cess will take 108 ms, or a little more than one-tenth of a second.

You probably want to set DesiredDeceleration to something less
than that, perhaps 0.001 degrees per millisecond squared, which
will cause the object to continue spinning for 1.08 seconds.

Watch out if you want to convert the deceleration units to some-
thing a little easier for the human mind to contemplate. A velocity of
1.08 degrees per millisecond is the same as 1,080 degrees per second,
but a deceleration of 0.001 degrees per millisecond squared is 1,000
degrees per second squared. To convert deceleration to seconds you
need to multiply by 1,000 twice because time is squared.

If you combine the two formulas shown earlier and eliminate
t, you get:

a = v
2

a = 2x

Th is implies that the two methods for setting deceleration are
equivalent and can be converted from one to the other. If the
InitialVelocity is 1.08 degrees per millisecond, and you set the
DesiredDeceleration to 0.001 degrees per millisecond squared,
that’s equivalent to setting DesiredRotation to 583.2 degrees. In
either case, rotation stops aft er 1,080 ms.

Experimentation
To get a feel for rotational inertia, I built the RotationalInertiaDemo
program shown in Figure 2.

Th e wheel on the left is what you turn with your fi nger, either
clockwise or counter-clockwise. It’s very simple: just a UserControl
derivative with two Ellipse elements in a Grid with all the Manipu-
lation events handled in MainWindow.

The ManipulationStarting event performs initialization by
restricting the manipulation to rotation only, allowing single-fi nger
rotation, and setting the center of rotation:

args.IsSingleTouchEnabled = true;
args.Mode = ManipulationModes.Rotate;
args.Pivot = new ManipulationPivot(
 new Point(ctrl.ActualWidth / 2,
 ctrl.ActualHeight / 2), 50);

Th e speedometer at the right is a class called ValueMeter, and
shows the current velocity of the wheel. If it looks vaguely familiar,
it’s only because it’s an enhanced version of a ProgressBar template
from an article I wrote for this magazine more than three years ago.
Th e enhancements involved some fl exibility with the labels so I
could use it to show velocity in four diff erent units. Th e GroupBox
in the middle of the window let you select those units.

When your finger is rotating the dial, the meter shows the
current angular velocity available from the Velocities.Angular-
Velocity sub-property of the ManipulationDelta event arguments.
But I found it wasn’t possible to funnel the velocity of the dial
directly to Value Meter. The result was too jittery. I had to write
a little ValueSmoother class to perform a weighted average of all
the values from the past quarter second. Th e ManipulationDelta
event handler also sets a RotateTransform object that actually
rotates the dial:

rotate.Angle += args.DeltaManipulation.Rotation;

Finally, the Slider at the bottom lets you select a deceleration
value. The value of the Slider is only read when the finger leaves
the dial and a ManipulationInertiaStarted event is fi red:

args.RotationBehavior.DesiredDeceleration = slider.Value;

Th at’s the entire body of the ManipulationInertiaStarted event
handler. During the inertial phase of the manipulation, the velocity

When your fi nger is rotating
the dial, the meter shows the

current angular velocity.

Figure 2 RotationalInertiaDemo Program in Action

99October 2010msdnmagazine.com

values are much more regular and don’t have to be smoothed, so
the ManipulationDelta handler uses the IsInertial property to
determine when to pass velocity values directly to the meter.

Boundaries and Bounce Back
Th e most common use of inertia with multi-touch is in moving
objects around the screen, such as scrolling through a long list or
fl icking elements to the side. Th e big problem is that it’s very easy
to cause an element to go fl ying right off the screen!

But in the process of handling that little problem, you’ll discover
that WPF has a built-in feature that makes manipulation inertia
even more realistic. You may have noticed earlier in the List-
BoxDemo program that when you let inertia scroll to the end or
beginning of the list, the entire window bounces a bit when the
ListBox reaches the end. Th at’s also an eff ect you can get in your
own applications (if you want it).

Th e BoundaryDemo program consists of just one ellipse with
an identity MatrixTransform set to its RenderTransform property
sitting in a Grid named mainGrid. Only translation is enabled
during the OnManipulationStarting override. Th e OnManipulation-
InertiaStarting method sets inertia deceleration like so:

args.TranslationBehavior.DesiredDeceleration = 0.0001;

Th at’s 0.0001 device-independent units per millisecond squared,
or 100 device-independent units per second squared, or about 1
inch per second squared.

Th e OnManipulationDelta override is shown in Figure 3. Notice
the special handling when the IsInertial is true. Th e idea behind the

code is that the translation factors should be attenuated when the
ellipse has drift ed partially off the screen. Th e attenuation factor is
0 if the ellipse is within mainGrid, and goes up to 1 when the ellipse
is halfway beyond the boundary of mainGrid. Th e attenuation fac-
tor is then applied to the translation vector delivered to the method
(called totalTranslate) to calculate usableTranslate, which provides
the values actually applied to the transform matrix.

Th e resulting eff ect is that the ellipse doesn’t stop immediately
when it hits the boundary, but slows down dramatically as if
encountering some thick sludge.

Th e OnManipulationDelta override also calls the ReportBound-
aryFeedback method, passing to it the unused portion of the transla-
tion vector, which is the vector totalTranslate minus usableTranslate.
By default, this is processed to make the window bounce a bit as
the ellipse slows down, demonstrating the physics principle that
for every action there’s an opposite and equal reaction.

Th is eff ect works best when the velocity on impact is fairly large.
If the ellipse has slowed down appreciably, there’s a vibration eff ect
that’s less satisfactory, but it’s something you might want to control
in more detail. If you don’t want the eff ect at all (or only want it in
some cases), you can simply avoid calling ReportBoundaryFeed-
back. Or you can handle the ManipulationBoundaryFeedback event
yourself. You can inhibit default processing by setting the Handled
property of the event arguments to true, or you can choose another
approach. I’ve left an empty OnManipulationBoundaryFeedback
method in the program for your experimentation.

CHARLES PETZOLD is a longtime contributing editor to MSDN Magazine. He’s
currently writing “Programming Windows Phone 7” (Microsoft Press), which will
be published as a free downloadable e-book in the fall of 2010. A preview edition
is currently available through his Web site charlespetzold.com.

THANKS to the following technical experts for reviewing this article:
Doug Kramer and Robert Levy

It’s very easy to cause an element
to go fl ying right off the screen!

protected override void OnManipulationDelta(
 ManipulationDeltaEventArgs args) {

 FrameworkElement element =
 args.Source as FrameworkElement;
 MatrixTransform xform =
 element.RenderTransform as MatrixTransform;
 Matrix matx = xform.Matrix;
 Vector totalTranslate =
 args.DeltaManipulation.Translation;
 Vector usableTranslate = totalTranslate;

 if (args.IsInertial) {
 double xAttenuation = 0, yAttenuation = 0, attenuation = 0;

 if (matx.OffsetX < 0)
 xAttenuation = -matx.OffsetX;
 else
 xAttenuation = matx.OffsetX +
 element.ActualWidth - mainGrid.ActualWidth;

 if (matx.OffsetY < 0)
 yAttenuation = -matx.OffsetY;
 else
 yAttenuation = matx.OffsetY +
 element.ActualHeight - mainGrid.ActualHeight;

 xAttenuation = Math.Max(0, Math.Min(

 1, xAttenuation / (element.ActualWidth / 2)));

 yAttenuation = Math.Max(0, Math.Min(
 1, yAttenuation / (element.ActualHeight / 2)));

 attenuation = Math.Max(xAttenuation, yAttenuation);

 if (attenuation > 0) {
 usableTranslate.X =
 (1 - attenuation) * totalTranslate.X;
 usableTranslate.Y =
 (1 - attenuation) * totalTranslate.Y;

 if (totalTranslate != usableTranslate)
 args.ReportBoundaryFeedback(
 new ManipulationDelta(totalTranslate –
 usableTranslate, 0, new Vector(), new Vector()));

 if (attenuation > 0.99)
 args.Complete();
 }
 }
 matx.Translate(usableTranslate.X, usableTranslate.Y);
 xform.Matrix = matx;

 args.Handled = true;
 base.OnManipulationDelta(args);
}

Figure 3 The OnManipulationDelta Event in BoundaryDemo

www.msdnmagazine.com
http://charlespetzold.com

msdn magazine100

Oh, the devs and the designers should be friends,
Oh, the devs and the designers should be friends.
One just bangs out code all day
Th e other wears a cool beret
But that’s no reason why they can’t be friends.

Soft ware folks should stick together,
Soft ware folks should all be friends.
Some get down with Visual C#
Others get high on Expression Blend.

Oh, the devs and the designers should be friends,
Oh, the devs and the designers should be friends.
One of them grinds his tooth enamel
Th e other knows how to think in XAML
But that’s no reason why they can’t be friends.

When I teach WPF or Silverlight at a company, I insist that each
class contain both developers and designers. And when I consult with
companies on UI projects, I insist that the design team contain both.
Usually the designer fi gures out what would make the user happy
and the developer fi gures out how to implement those ideas effi -
ciently, but a surprising amount of cross-fertilization runs both ways.

For example, at a recent session with a European client, I pro-
posed a classic dialog box for looking up a customer, with a text box
for government ID and a calendar control for date of birth, with
labels identifying each. Th e designer said, “Fine, but this operation
happens so frequently, how about a search box on the toolbar like
Google? Th e user types in whatever information she has, and we’ll
take it from there, like a search engine.” “Yes, I can parse out all the
possible inputs,” said the developer, “I have some good reusable
classes, it won’t take long.” (It did, but sic semper cum geeks.) “And
we can put a prompt string inside the text box, so the user knows
what it’s for,” I added. And—zing!—we had a prototype in front of
users for testing in just a few days.

Th at’s what we can accomplish when developers and designers
work together, assisted by a designated curmudgeon who keeps the
pot stirred. Now start doing it, or I’ll butcher that song again.

DAVID S. PLATT teaches Programming .NET at Harvard University Extension
School and at companies all over the world. He is the author of 11 programming
books, including “Why Soft ware Sucks” (Addison-Wesley Professional, 2006) and
“Introducing Microsoft .NET” (Microsoft Press, 2002). Microsoft named him a
Soft ware Legend in 2002. He wonders whether he should tape down two of his
daughter’s fi ngers so she learns how to count in octal. Contact him at rollthunder.com.

Devs and Designers Should Be Friends

Developers and designers don’t usually get along well, and they
need to. I fi rst encountered this antipathy at Tech·Ed 2007 in Bar-
celona, Spain—the fi rst time I’d seen a whole track of talks aimed at
designers. Th e attendees hated this track, panning it so badly that
management had to cancel it aft er the second day. I observed a few
of these talks and found their quality decent. I didn’t see any of the
usual causes of terrible evaluations, such as demos not working or
the speaker being more hungover than usual. Instead, I think that,
at that time, the developer community was not willing to hear the
fundamental message of the track: that these newfangled Windows
Presentation Foundation (WPF) and Silverlight graphical environ-
ments required the services of new team members, with diff erent
skills but with status equal to the developers’.

Their attitude toward each other hasn’t improved much. My
keynote talk at Dev Days in Amsterdam, Netherlands, in 2008
pleased both communities, but then the designers went off into their
own world and didn’t rejoin the developers until evening, when
the beer started fl owing (funny how that works). Th e same thing
happened with my keynote at ReMix in Milan in 2009, except that
in Italy they served wine.

Developers and designers hold diff erent worldviews, as do physi-
cians and surgeons. Both pairs make diff erent, incompatible uses of
similar environments; both take diff erent, incompatible approaches
to similar problems. And both developers and designers are now
necessary to any successful client program, as both physicians and
surgeons are necessary to any successful medical practice.

Th e antipathy between developers and designers reminds me of
the confl ict between cowboys and farmers in “Oklahoma!”—the
1943 Rodgers and Hammerstein stage musical (exclamation point
abuse didn’t start with Yahoo!). In the song “Th e Farmer and the
Cowman Should Be Friends,” Aunt Eller has to pull a gun to force
the two groups to mingle at a dance (you can see a YouTube clip at
tinyurl.com/pvu93l for an excellent performance).

I’d like to encourage better cooperation between the developer
and designer communities—ideally not requiring coercion with
fi rearms. Perhaps I’d update the lyrics:

DON’T GET ME STARTED DAVID PLATT

Developers and designers hold
different worldviews.

http://rollthunder.com
http://tinyurl.com/pvu93l

Untitled-2 1 7/14/10 11:22 AM

www.fpoint.com

Untitled-1 1 4/12/10 2:38 PM

www.dundas.com/dashboard

	Back
	Print
	MSDN Magazine, October 2010
	Contents
	CUTTING EDGE: Action Filters in ASP.NET MVC
	DATA POINTS: Entity Framework Preview: Code First, ObjectSet and DbContext
	CLR INSIDE OUT: New Features and Improved Performance in Silverlight 4
	DISTRIBUTED APPS:
	AppFabric Service Bus Discovery
	Runtime Data Sharing Through an Enterprise Distributed Cache
	Building a Real-Time Transit Application Using the Bing Map App SDK
	Connected Devices Using the .NET Micro Framework

	Getting Started with Windows Phone Development Tools
	Scalable Multithreaded Programming with Thread Pools
	FORECAST-CLOUDY: Performance-Based Scaling in Windows Azure
	THE WORKING PROGRAMMER: Multiparadigmatic .NET, Part 2
	UI FRONTIERS: Multi-Touch Inertia
	DON’T GET ME STARTED: Devs and Designers Should Be Friends

	GrapeCity Insert

