A Guide to Using the Identity Selector
Interoperability Profile V1.0 within Web
Applications and Browsers

April 2007

Author

Michael B. Jones
Microsoft Corporation

Copyright Notice
© 2006-2007 Microsoft Corporation. All rights reserved.

Abstract

The Identity Metasystem allows users to manage their digital identities from various identity
providers and employ them in different contexts where they are accepted to access online
services. In the Identity Metasystem, identities are represented to users as “Information
Cards” (a.k.a. “InfoCards”). One important class of applications where Information Cards
can be used is applications hosted on web sites and accessed through web browsers.

This paper documents the web interfaces utilized by browsers and web applications that
support the Identity Metasystem. The information in this document is not specific to any
one browser or platform.

This document supplements the information provided in two other Identity Selector
Interoperability Profile references: the “Identity Selector Interoperability Profile V1.0" [ISIP-
V1], which provides the normative schema definitions and behaviors for Information Cards
and the interoperable Identity Selectors that use them and “"An Implementer’s Guide to the
Identity Selector Interoperability Profile V1.0” [InfoCard-Guide], which provides a non-
normative description of the overall Information Card model.

Status

The information presented in this document is informative; the normative definitions can be
found in [ISIP-V1].

The Identity Selector Interoperability Profile V1.0 was used to implement Windows
CardSpace V1.0, which is part of Microsoft .NET Framework 3.0 [.NET3.0] and Internet
Explorer 7. The Microsoft .NET Framework 3.0 ships in Windows Vista and is available as a
download to run on Windows XP SP2 or higher and Windows Server 2003. Other
implementations following these specifications should be able to interoperate with
Microsoft’s implementations.

Version 1.0 Page 1 of 14

http://www.microsoft.com/

Table of Contents

1. Introduction
2. Design Goals
3. Browser Behavior with Information Cards
3.1. Basic Protocol Flow when using an Information Card at a Web Site
3.2. Protocol Flow with Relying Party STS
3.3. User Perspective and Examples
3.4. Browser Perspective
3.5. Web Site Perspective
4. Invoking an Identity Selector from a Web Page
4.1. Syntax Alternatives: OBJECT and XHTML tags
4.1.1. OBJECT Syntax Examples
4.1.2. XHTML Syntax Example
4.2. Identity Selector Invocation Parameters
4.2.1. issuer (optional)
4.2.2. issuerPolicy (optional)
4.2.3. tokenType (optional)
4.2.4. requiredClaims (optional)
4.2.5. optionalClaims (optional)
4.2.6. privacyUrl (optional)
4.2.7. privacyVersion (optional)
4.3. Data Types for use with Scripting
4.4, Detecting and Utilizing an Information Card-enabled Browser
4.5. Behavior within Frames
5. References
Appendix A — HTTPS POST Sample Contents
Appendix B - Detecting Information Card Browser Support by Internet Explorer

1. Introduction

The Identity Metasystem allows users to manage their digital identities, whether they are
self-issued or issued by third-party identity providers, and employ them in contexts where
they are accepted to access online services. In the Identity Metasystem, identities are
represented to users as “Information Cards” (a.k.a. “InfoCards”). One important class of
applications where Information Cards can be used is applications hosted on web sites and
accessed through web browsers.

This paper documents the web interfaces utilized by browsers and web applications that
support the Identity Metasystem. The information in this document applies to all platforms,
browsers, and Identity Selectors. These mechanisms are documented here to enable web
sites and browsers on all platforms to implement and use these mechanisms so they can
utilize Information Cards.

Two other documents should be considered prerequisites for understanding this document:
“An Implementer’s Guide to the Identity Selector Interoperability Profile V1.0” [InfoCard-
Guide], which provides a non-normative description of the overall Information Card model,

Version 1.0 Page 2 of 14

and the “Identity Selector Interoperability Profile V1.0” [ISIP-V1], which provides the
normative schema definitions and behaviors referenced by this document.

The Identity Selector Interoperability Profile V1.0 was used to implement the Windows
CardSpace V1.0 software, which is part of Microsoft .NET Framework 3.0 [.NET3.0].
Windows CardSpace implements an Identity Selector that allows users to select Information
Cards to use for sites and applications that accept them. Internet Explorer 7 uses Windows
CardSpace, if installed. The information in this document corresponds to the features
supported in the Identity Selector Interoperability Profile V1.0.

2. Design Goals

Numerous alternatives were considered for ways of bringing Information Cards to web sites.
The design goals that led to the eventual decisions described in this document are:
¢ Browser independent: A goal was to ensure that the protocols developed for using
Information Cards on web sites could be implemented by a broad range of web
browsers on the platforms of their choice.

¢ Web server independent: A closely-related goal was to ensure that the protocols
developed for Information Cards on web sites could be used by web-based
applications running on a broad range of web servers on the platforms of their
choice.

¢ Minimal impact on web sites: A goal was to facilitate the adoption of Information
Cards on existing web sites by requiring as few changes to them as possible.

¢ Seamless browser integration: A goal was that Information Cards should be
viewed as a seamless security feature that is a natural extension of the browser(s)
being used.

e Seamless user experience: A goal was that the Information Card web integration
design should permit graceful fall-back when a browser or platform does not have
Information Card support available.

¢ Work with browser high security settings: A goal was that the mechanisms
chosen should remain enabled even when browser security settings are set to “high”.

The choices described in this document are an attempt to balance among all these
sometimes-competing goals and to achieve all of them as well as possible, given the
realities of how the web is used today.

3. Browser Behavior with Information Cards

This section explains the steps that a web browser takes when using an Information Card to
authenticate to a web site. Two cases are described. The basic case is where the web site
provides all the relying party functionality via HTML extensions transported over HTTPS.
The second case is where the relying party employs a relying party Security Token Server
(STS), which it references via HTML extensions transported over HTTPS.

3.1. Basic Protocol Flow when using an Information Card at a Web Site

This section explains the protocol flow when using an Information Card to authenticate at a
web site where no relying party STS is employed.

Version 1.0 Page 3 of 14

Browser w/ |dentity Selector
@ HTTP(S)/GET {Protected Page) > Web Site
' "~ 17 & Redirect to Login Page

@ HTTPS/GET (Login Page) >
mn Page wf Information Card Tags

VWeb Site Front End

& € Cookie + Browser Redirect

Identity Selector lights up
User selects card

Get token via @ Relying Party
WS-MetadataExchange
and WS-Trust

urity Token Server (STS)

Identity Provider (Managed or Self-lssued)

Figure 1. Basic protocol flow when using an Information Card to authenticate at a Web site

Figure 1 gives an example of the basic protocol flow when an Information Card is used to
authenticate at a web site that employs no relying party STS. Steps 1, 2, and 5 are
essentially the same as a typical forms-based login today: (1) The user navigates to a
protected page that requires authentication. (2) The site redirects the browser to a login
page, which presents a web form. (5) The browser posts the web form that includes the
login credentials supplied by the user back to the login page. The site then validates the
contents of the form including the user credentials, typically writes a client-side browser
cookie to the client for the protected page domain, and redirects the browser back to the
protected page.

The key difference between this scenario and today’s site login scenarios is that the login
page returned to the browser in step (2) contains an HTML tag that allows the user to
choose to use an Information Card to authenticate to the site. When the user selects this
tag, the browser invokes an Identity Selector, which implements the Information Card user
experience and protocols, and triggers steps (3) through (5).

In Step (3), the browser Information Card support code invokes the Identity Selector,
passing it parameter values supplied by the Information Card HTML tag supplied by the site
in Step (2). The user then uses the Identity Selector to choose an Information Card, which
represents a digital identity that can be used to authenticate at that site. Step (4) uses the
standard Identity Metasystem protocols [ISIP-V1] to retrieve a security token that
represents the digital identity selected by the user from the STS at the identity provider for
that identity.

In Step (5), the browser posts the token obtained back to the web site using a
HTTPS/POST. The web site validates the token, completing the user’s Information Card-

Version 1.0 Page 4 of 14

based authentication to the web site. Following authentication, the web site typically then
writes a client-side browser cookie and redirects the browser back to the protected page.

It is worth noting that this cookie is likely to be exactly the same cookie as the site would
have written back had the user authenticated via other means, such as a forms-based login
using username/password. This is one of the ways that the goal of "minimal impact on web
sites” is achieved. Other than its authentication subsystem, the bulk of a web site’s code
can remain completely unaware that Information Card-based authentication is even utilized.
It just uses the same kinds of cookies as always.

3.2. Protocol Flow with Relying Party STS

In the previous scenario, the web site communicated with the client Identity Selector using
only the HTML extensions enabling Information Card use, transported over the normal
browser HTTPS channel. In this scenario, the web site also employs a relying party STS to
do part of the work of authenticating the user, passing the result of that authentication on
to the login page via HTTPS POST.

There are several reasons that a site might factor its solution this way. One is that the
same relying party STS can be used to do the authentication work for both browser-based
applications and smart client applications that are using Web services. Second, it allows the
bulk of the authentication work to be done on servers dedicated to this purpose, rather than
on the web site front-end servers. Finally, this means that the front-end servers can accept
site-specific tokens, rather than the potentially more general or more complicated
authentication tokens issued by the identity providers.

Browser w{ |dentity Selector
- - @ HTTP(S)/GET {Protected Page) > Web Site

-1+ & Redirect to Login Page

@ HTTPS/GET (Login Page) >
mn Page wf Information Card Tags

_ __wTTPSIPOST Token to Target

& < Cookie + Browser Redirect *

- Web Site Front End

Identity Selector lights up Via Wg

User selects card @ "MefadaraEXC
Tolen gy Fge 3 .
Get token via @ Tokan €y 3 WS“TQJSURST ;
WS-MetadataExchange ‘a WShT%
and WS-Trust VRSTR

curity Token Server (STS)
- Relying Party

Identity Provider (Managed or Self-lssued)

Figure 2. Protocol flow when using an Information Card to authenticate
at a Web site, where the Web site employs a relying party STS

Version 1.0 Page 5 of 14

This scenario is similar to the previous one, with the addition of steps (3) and (6). The
differences start with the Information Card information supplied to the browser by the web
site in Step (2). In the previous scenario, the site encoded its WS-SecurityPolicy
information using Information Card HTML extensions and supplied them to the Information
Card-extended browser directly. In this scenario, the site uses different Information Card
HTML extensions in the Step (2) reply to specify which relying party STS should be
contacted to obtain the WS-SecurityPolicy information.

In Step (3), the Identity Selector contacts the relying party STS specified by the web site
and obtains its WS-SecurityPolicy information via WS-MetadataExchange. In Step (4) the
Identity Selector user interface is shown and the user selects an Information Card, which
represents a digital identity to use at the site. In Step (5), the identity provider is contacted
to obtain a security token for the selected digital identity. In Step (6), the security token is
sent to the web site’s relying party STS to authenticate the user and a site-specific
authentication token is returned to the Identity Selector. Finally, in Step (7), the browser
posts the token obtained in Step (6) back to the web site using HTTPS/POST. The web site
validates the token, completing the user’s Information Card-based authentication to the web
site. Following authentication, the web site typically then writes a client-side browser
cookie and redirects the browser back to the protected page.

3.3. User Perspective and Examples

The Information Card user experience at web sites is intended to be intuitive and natural
enough that users’ perspective on it will simply be “That’s how you log in”. Today, web
sites that require authentication typically ask the user to supply a username and password
at login time. With Information Cards, they instead ask users to choose an Information
Card. Some sites will choose to accept only Information Cards whereas others will give
users the choice of Information Cards or other forms of authentication.

A site that accepts Information Cards typically has a login screen that contains button with a
label such as “Sign in with an Information Card” or "Log in using an Information
Card”. Upon clicking this button, the user is presented with a choice of his Information
Cards that are accepted at the site, and is asked to choose one. Once a card is selected and
submitted to the site, the user is logged in and continues using the site, just as they would
after submitting a username and password to a site.

Sites that accept both Information Cards and other forms of authentication present users
with both an Information Card login choice and whatever other choices the site supports.
For instance, a site login screen might display both “Sign in with your username and
password” and "Sign in with an Information Card” buttons.

3.4. Browser Perspective

Very little additional support is required from today’s web browsers to also support
Information Cards. The main addition is that they must recognize special HTML and/or
XHTML tags for invoking the Identity Selector, pass encoded parameters on to the Identity
Selector on the platform, and POST back the token resulting from the user’s choice of an
Information Card.

3.5. Web Site Perspective

Web sites that employ Information Card-based authentication must support two new pieces
of functionality: adding HTML or XHTML tags to their login page to request an Information
Card-based login and code to log the user into the site using the POSTed credentials. In
response to the Information Card-based login, the web site typically writes the same client-
side browser cookie that it would have if the login had occurred via username/password
authentication or other mechanisms, and issue the same browser redirects. Thus, other

Version 1.0 Page 6 of 14

than the code directly involved with user authentication, the bulk of a web site can remain
unchanged and oblivious to the site’s acceptance of Information Cards as a means of
authentication.

4. Invoking an Identity Selector from a Web Page
4.1. Syntax Alternatives: OBJECT and XHTML tags

HTML extensions are used to signal to the browser when to invoke the Identity Selector.
However, not all HTML extensions are supported by all browsers, and some commonly
supported HTML extensions are disabled in browser high security configurations. For
example, while the OBJECT tag is widely supported, it is also disabled by high security
settings on some browsers, including Internet Explorer.

An alternative is to use an XHTML syntax that is not disabled by changing browser security
settings. However, not all browsers provide full support for XHTML.

To address this situation, two HTML extension formats are specified. Browsers may support
one or both of the extension formats.

4.1.1. OBJECT Syntax Examples

An example of the OBJECT syntax is as follows:

<html>
<head>
<title>Welcome to Fabrikam</title>
</head>
<body>

<form name="ctl00" id="ctl00" method="post"
action="https://www.fabrikam.com/InfoCard-Browser/Main.aspx">
<center>

<input type="submit" name="InfoCardSignin" wvalue="Log in"
id="InfoCardSignin" />
</center>
<OBJECT type="application/x-informationCard" name="xmlToken">
<PARAM Name="tokenType"
Value="urn:ocasis:names:tc:SAML:1.0:assertion">
<PARAM Name="issuer" Value=
"http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self">
<PARAM Name="requiredClaims" Value=
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname">
</OBJECT>
</form>
</body>
</html>

This is an example of a page that requests that the user log in using an Information Card.
The key portion of this page is the OBJECT of type “application/x-informationCard”.
Once a card is selected by the user, the resulting security token is included in the resulting
POST as the xmIToken value of the form. Appendix A shows a sample POST resulting from
using a login page similar to the preceding one. If the user cancels the authentication
request, the resulting POST contains an empty xmiIToken value.

Version 1.0 Page 7 of 14

Parameters of the Information Card OBJECT are used to encode the required WS-
SecurityPolicy information in HTML. In this example, the relying party is requesting a SAML
1.0 token from a self-issued identity provider, supplying the required claims

“emailaddress”, “givenname”, and “surname”. This example uses the basic protocol
described in Section 3.1 (without employing a relying party STS).

A second example of the OBJECT syntax is as follows:

<html>
<body>
<form name="ctl0l" method="post"
action="https://www.fabrikam.com/InfoCard-Browser-STS/login.aspx"
1id="ctl01" onSubmit="fnGetCard() ;">

<input type="submit" name="InfoCardSignin" value="Log in"
id="InfoCardSignin" />
<OBJECT type="application/x-informationCard" name="xmlToken"
ID="oCard" />

</form>
<script type="text/javascript">
Ll ==
function fnGetCard() {
oCard.issuer = "http://www.fabrikam.com/sts";
oCard.issuerPolicy = "https://www.fabrikam.com/sts/mex";
oCard.tokenType = "urn:fabricam:custom-token-type";
}
//==>
</script>
</body>
</html>

This example uses the enhanced protocol described in Section 3.2, which employs a relying
party STS. Note that in this case, the “issuer” points to a relying party STS. The
“issuerPolicy” points to an endpoint where the security policy of the STS (expressed via WS-
SecurityPolicy) is to be obtained using WS-MetadataExchange. Also, note that the
“tokenType” parameter requests a custom token type defined by the site for its own
purposes. The “tokenType” parameter could have been omitted as well, provided that the
web site is capable of understanding all token types issued by the specified STS or if the
STS has prior knowledge about the token type to issue for the web site.

The object parameters can be set in normal script code. This is equivalent to setting them
using the "PARAM” declarations in the previous example.

4.1.2. XHTML Syntax Example

An example of the XHTML syntax is as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml" xmlns:ic>
<head>
<title>Welcome to Fabrikam</title>
</head>
<body>

<form name="ctl00" id="ctl00" method="post"
action="https://www.fabrikam.com/InfoCard-Browser/Main.aspx">
<ic:informationCard name='xmlToken'
style='behavior:url (#default#informationCard) '
issuer="http://schemas.xmlsoap.org/ws/2005/05/identity/issuer/self"
tokenType="urn:oasis:names:tc:SAML:1.0:assertion">
<ic:add claimType=

Version 1.0 Page 8 of 14

"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress"
optional="false" />
<ic:add claimType=
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname"
optional="false" />
<ic:add claimType=
"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname"
optional="false" />
</ic:informationCard>
<center>
<input type="submit" name="InfoCardSignin" value="Log in"
id="InfoCardSignin" />
</center>
</form>
</body>
</html>

4.2. Identity Selector Invocation Parameters

The parameters to the OBJECT and XHTML Information Card objects are used to encode
information in HTML that is otherwise supplied as WS-SecurityPolicy information via WS-
MetadataExchange when an Identity Selector is used in a Web services context.

4.2.1. issuer (optional)

This parameter specifies the URL of the STS from which to obtain a token. If omitted, no
specific STS is requested. The special value
“http://schemas.xmlsocap.org/ws/2005/05/identity/issuer/self” specifies that the
token should come from a self-issued identity provider.

4.2.2. issuerPolicy (optional)

This parameter specifies the URL of an endpoint from which the STS’s WS-SecurityPolicy
can be retrieved using WS-MetadataExchange. If omitted, the value “<issuer>/mex” is
used. This endpoint must use HTTPS.

4.2.3. tokenType (optional)

This parameter specifies the type of the token to be requested from the STS as a URI. This
parameter can be omitted if the STS and the web site front-end have a mutual
understanding about what token type will be provided or if the web site is willing to accept
any token type.

4.2.4. requiredClaims (optional)

This parameter specifies the types of claims that must be supplied by the identity. If
omitted, there are no required claims. The value of requiredClaims is a space-separated
list of URIs, each specifying a required claim type.

4.2.5. optionalClaims (optional)

This parameter specifies the types of optional claims that may be supplied by the identity.
If omitted, there are no optional claims. The value of optionalClaims is a space-separated
list of URIs, each specifying a claim type that can be optionally submitted.

4.2.6. privacyUrl (optional)

This parameter specifies the URL of the human-readable privacy policy of the site, if
provided.

Version 1.0 Page 9 of 14

4.2.7. privacyVersion (optional)

This parameter specifies the privacy policy version. This must be a value greater than 0 if a
privacyUrl is specified. If this value changes, the UI notifies the user and allows them
review the change to the privacy policy.

4.3. Data Types for use with Scripting

The object used in the Information Card HTML extensions has the following type signature,
allowing it to be used by normal scripting code:
interface IInformationCardSigninHelper

{

string issuer; // URI specifying token issuer

string issuerPolicy; // MetadataExchange endpoint of issuer

string tokenType; // URI specifiying type of token to be requested
string [] requiredClaims; // Array of required claims

string [] optionalClaims; // Array of optional claims

string privacyUrl; // URL of the privacy policy of the site

string privacyVersion; // Version number of the privacy policy

boolean isInstalled; // True when an Identity Selector is available

// to the browser
}

4.4. Detecting and Utilizing an Information Card-enabled Browser

Web sites may choose to detect browser and Identity Selector support for Information Cards
and modify their login page contents depending upon whether Information Card support is
present, and which of the OBJECT and/or XHTML syntaxes are supported by the browser
and supported by the web site. This allows Information Card capabilities to be shown when
available to the user, and to be not displayed otherwise.

Detecting an Information Card-enabled browser may require detecting specific browser and
Identity Selector versions and being aware of the nature of their Information Card support.
A method of accomplishing this for Internet Explorer is described in Appendix B.

4.5. Behavior within Frames

When the object tag is specified in an embedded frame, the certificate of the root frame is
used. For this configuration to work, the scheme, domain, and security zone (for example
https, microsoft.com, and Intranet) of the URL of the embedded frame must be the same as
that of the root frame.

5. References

[InfoCard-Guide]
"An Implementer’s Guide to the Identity Selector Interoperability Profile V1.0", April
2007.

[ISIP-V1]
"Identity Selector Interoperability Profile V1.0", April 2007.

[.NET3.0]
“Microsoft .NET Framework 3.0 Community Web Site”, December 2006.

[WS-MetadataExchange]
"Web Services Metadata Exchange (WS-MetadataExchange)", August 2006.

[WS-SecurityPolicy]
"Web Services Security Policy Language (WS-SecurityPolicy)", July 2005.

Version 1.0 Page 10 of 14

http://msdn.microsoft.com/cardspace/
http://msdn.microsoft.com/cardspace/
http://www.netfx3.com/
http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf

[WS-Trust]
"Web Services Trust Language (WS-Trust)", February 2005.

Version 1.0 Page 11 of 14

http://specs.xmlsoap.org/ws/2005/02/trust/WS-Trust.pdf

Appendix A - HTTPS POST Sample Contents

The contents of an HTTPS POST generated by a page like the first example in Section 4.1.1
follow:

POST /test/s/TokenPage.aspx HTTP/1.1

Cache-Control: no-cache

Connection: Keep-Alive

Content-Length: 6478

Content-Type: application/x-www-form-urlencoded

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, application/x-sh
ockwave-flash, */*

Accept-Encoding: gzip, deflate

Accept-Language: en-us

Host: calebb-tst

Referer: https://localhost/test/s/

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR
2.0.50727; .NET CLR 3.0.04506.30)

UA-CPU: x86

InfoCardSignin=Log+in&xmlToken=%3Cenc%3AEncryptedData+Type%$3D%$22https3AS2FS2F
Wwww.W3.0rg%2F2001%2F04%2Fxmlenc%23Element$22+xmlnss3Aencs3D%22https3AS2FS52Fww
w.w3.0rg%2F2001%2F04%2Fxmlenc%23%22%3E%3Cenc%3AEncryptionMethod+Algorithm%3D%
22http%3A%2FS2Fwww.w3.0rg$2F2001%2F04%2Fxmlenc%23aes256-cbc%22+%2F%$3E$3CKeyIn
fo+xmlns$3D%22httpS3AS2FS$2Fwww.w3.0rg%2F2000%2F09%2Fxml1dsig%23%22%3E%$3Ce%3AEN
cryptedKey+xmlns%$3Ae$3D%22https3A%2F$2Fwww.w3.0rg%2F2001%2F04%2Fxmlenc$23%22%
3E%3Ce%3AEncryptionMethod+Algorithm®3D%22http%3AS2F$2Fwww. w3 .0rg%2F2001%2F04%
2Fxmlenc%23rsa-ocaep-mgflp%$22%3E$3CDigestMethod+Algorithm%3D%22http$3AS2FS2Fww
wW.w3.0rg%$2F2000%2F09%2Fxmldsig%23shal%22+%2F%3E%$3C%2Fe$3AEncryptionMethod%3E%
3CKeyInfo%3E%$3Co%$3ASecurityTokenReference+xmlns%$3A0%3D%22https3A%2F$2Fdocs.o0a
Ssis-open.org%$2Fwss$%$2F2004%2F01%2Foasis-200401-wss-wssecurity-secext-1.0.xsd%2
2%3E%3Co%3AKeyIdentifier+ValueType$3D%$22http%3A%2F%2Fdocs.ocasis—-open.org$2Fws
s%$2Foasis-wss—-soap-message-security-1.1%23ThumbprintSHA1%$22+EncodingType%3D%2
2http%3A%2F%2Fdocs.oasis-open.org%2Fwss%$2F2004%2F01%2Foasis-200401-wss—-soap-m
essage-security-1.0%23Base64Binary%22%3E%2BPYbznDaB%$2Fd1lhjIfqCQ458E72wAS$3D%3C
$2F0%3AKeyIdentifier%$3ES$3C%2Fo0%3ASecurityTokenReference%$3E$3C%2FKeyInfo%3ES$3C
e%3ACipherData%$3E%$3Ce%3ACipherValue$3EEqIUhAJ8CIK514Mr3gqmgX0XnyL1ChKs2PgMj0Sk
6snwS2FIRNtXgLzmgbj2Vd3vFA4Vx1hileSTygclkAsskgqpgBc4bMHT 61wl fONxULOHDor0D1NVCV
Dm%2FAfLcyLgEP%$2Boh05B%2B5ntVIJzL8Ro3typF0eoSm3S6UNINOHIjHaVWyg$3D$3C%2Fe$3AC
ipherValue$3E%3C%2Fe%3ACipherData%3E%3C%$2Fe%3AEncryptedKey$3E$3C%2FKeyInfos3E
%3Cenc%3ACipherData%3E%$3Cenc%$3ACipherValue%3ErBvpZydiyDzJdtz11%$2FjUFX9XAz0O1mOR
qO0ypPLIh%2FBagXcfZeYwiWD57v4JvnlOwGajadcDASCisazswnlskdkwgmd4 IUNJpPMRH7es9zY0U
vnS4ccsakgDemscg3pDYTrxbSBfhdvrzjDiHC2XCtowOveoHeB51C5N8UALE£18IxCNtkWO8y3wLH
VGdvwaDOSakK%2FK$2Fv1UgXIc51%2FtYv)eFGeGbbSNx0o8DTgqeDnAMQ%$2B4Y%$2B1aUGhIS2FtbSr
EyJECkDgtztcxhrumbupKO%$2BogWKUTTpSt851xJOFXxAMiVaPZ%$2FAM8VEH3ZLsR087sX$2FJ%2Bn
bPRgze%$2BfbdUwimN5pNoJDAMnFE%2BEDLass1dPsvhL4EXzulp5deGBagAIoaOMEUW7ssuhl PtwkEM
eqwlOzOhu%s2FHtwP1gh3D02U59MtyOnJIMDSUwIwO7sZ2J16%2BPg6Zp 9HHtKKUMnkguvFmhyXS4BFES
ZVxP118i%2BOMLO1um5dejEFd4nwGO%2FmNw6yEI8DAGVIXcYOT6JhPz9rHNh9%$2F%2F0])5snJfL6
32sg0EvIYoRs%2BhT4sdHZ95tGAIwMwT 6CcFOXDAQZUbYTr1Z0C6XPsfL2CFwiTM3mI%$2Blco4HcS2
F7IakIA8)JwAJAtnd2mGuV67Z2bYImzibM1LUAPpixZj59E1831ixctSQbV7iyywQ4IYN2CAgS2BCLMdL
R%$2BDHfgEe803IVaGBDUECd2MYimEiA7YwW3NIDrC14SbLzNvU702HpVIMeYvOq6S9IxIVGAPSrARswW
REXyMbkMDp5WIQaJEXon7gqLcsZONpdlX9bCcmaiikdpxmCeyS638te32FhGBLmYJSQ0st£7BhAGEQD
kwDRgdwsAa88bODiWHekOvDhAN4HIXFZ%2BCxp53LOMmvy$2FCAOI$2BI90kPL2yxS22yjWOxOomMS2F
yZuawsK98JHVShs IVmmbKvRM6xJwvHDS zuBAO1QKS$2FMHCFZn8vHZR4 1Mhm5nL3F$2B% 2BumMKh 0
vMuKk6J1iCgG90Ej996bVIIKkLzZESUSZ5vT6I1Kr9Brdx8ckDElipdH3x54WVEfaltHITYUS2BSxIR1T
25f19k%2FO0c%2FMX7Q%2B6NSDs4nGagkndrzgpez 9BUWNZw7caVOrDeao85f%2FiDCGymt10A3JaSZ
dTKfzHLGMUfSkCAlVeisdvB6R7uBw8tR$2BZ1gLIGS28wppFlnUYvSK7DnPrzId$2BGEHWLEL6WAS
2FEzBMMgppb5Vi%2BauHg%2BHxpCamlkrcUkzagbwNkGV8TfafkqUvRwWIbXRWNVPIS2F$2Fxs$2Fp

Version 1.0 Page 12 of 14

Lculdh6eKcmUO0%2FNx0zNOScd9XoeEU3zsV78PgvPIBT4EDugdv4bMR6AEXXVZB1$2F84b1gOMhK
ZRplF8t6EAC4LCct01lht7VOVNZ25NtP27ct9QPrDIc%S2FoxihT4Df6NV314v1Tnu%2B%$2BzVB%2BH
JAxNki109gx3uLUJIMIXEZCDzZKihaBk2y%$2F3RhsJpABVNneUd%$2B3sCRbOXhgKYNBHZ yRAUGPMDLhL
gpjoF9x%$2FNvUu]jQ5DBLIafxxzNVshG52JRz%$2B1 khCNhJdJDDbeASMQO8Q7Q0sYCcKDCODBFsewtWaA%2
FsKx13JU6bhyTotnFS%$2Fo0S2Ezb0OSvn25gqZuBERSZ3w$2B5WMkRzfQadyIYOSv2Df1Yol jubDKy119
St%2FbCIBgXbVIZKYtQ%2BLyepxxFjrN7cWo2aYFnB6YLurgdUSJwhXzcGevA3%2BRSART6Fr37U6
OcHc%2Fz2MaZmnlcQWiDGNxXxHtRVXEvirBclx47ThWfSRjrKzf3orL5LzgMlYc7Iwclw2rbeWl jCqOb
oV3d71ez%2FvNz1pxEMi4w8yUAQL8p$2FRCZ%2BpzvsgORU4RWKWiSwhbl7ANO0JI3]iWShyZgDmxd20
DDYffXJNiuHImQWnDTkJIX1ig88mgjhOYJEalOW6LOErwrRIy29t0OiAvXZANC8kAlHexulH0e38x8E
I0aVadtNz9mgrnmnp4GdzZ38txV$2BCUeWHOZaHLF4xkdtRxMAUS2FbzQ03YmUOhgxgkTfNzV6Ymne
v2nv5VsyQGJaQsNjb0OM4yOe6kX2gNTWKBN2%$2BpS$2Fz3f1518KuGCgBcfP%$2BP9xBizBeo7FbFtyo
2pfFhzBPmZeSOJ6kELF1yQKHYQAT51Z4SyTI fgamwGxsQpWMstx3qJF8aW8WFzU1gXcCllmgClgl9
rx9NYFaQshX4£f729B9Ue5MX7gTrMgwAnlXty9BsoP7nzGbr3HSXy8pR$2BimuAFW3c2NaQSbjSH5Z
FOr7PZdLHsNVJzFIsaufAwrOCAEtv1PJUt7%$2BS2FESMOsMsVgMoXFmefgdxbvY1lUeboMX1lwtudYY1
PAXT7MHTyRUR3RfJDO054E0f1VTWNEL fmocUXUhSrtFFuzy2T%$2F2Y6pLAARXzo8us1AuH67VkuXv$s
2BEMc7e30gbf5%2BROsgJirZS6qkcYpfEUwgHIQYLNSTIP4bt$2BWIS5j1bxs7yzcSCKkNZ2rd$2FHWr
A41AyGMfYzgxfGecrOaxHsds3JUcByB5Zwl 7TW58GBC32Tusqab9BFTPagEapMOFb5ChbTgXnWTNNBSJ
t40BVZvLv3u50y%$2BBRaMKXZhwnbT2WUTpOEbsnl7xvte52B%2BLM1SWIn96N15thd%$2Ft1D7P1WA
sUvpJAdOUHP1zCkY8VIhcXTrsSyEwer2J2I9TQTUosmssFjoP8Lx9gMfXo0eGVmneV8kVBtu4 J7N1
OmWEVS$2B%S2FK8vGhbCwIW3Gm$2FEU1004ZbbK39y0JgNQ7fshxHr5HAtd$2F6S$2FQkb6NPVDwn7Srh
Y0diWujXz501IYBSN7vDfMun3yF$%$2BGomMExZ8MkOthuYkgMS 9qiFoJGUXGYELsJfxbzdcRE91yIn
P88L4%2BCtcO0312IJxIhMAgx0Zx42RfAIDV1IGbpadf32F0urmWQ2VK7uzZ%2F1ViVrGAJ2kpHOEfwYE
Mbo2YYT8FFjogqEpDSJX48BLIh1TE4nMbgqQVG1lcksCGDc0XyGKaF5%7 kw4 93Xz0JQ0BZvaf2Kceb?
MUZ1sU1DSHcQQ9X%2Bxu9RcgUePJEe 9BgCMpZ5Kr6r43qyk79noBSgrsSkDhT5sg%2Fc20RHQB8OX
$2BC4r3XGQFWF2m2j0xTc%$2Boyl4xqUmSB2qJtuWGOXDJIspejDRP1IGIfFngDFdgSO3%2FkVIOACSEe
39iJGv8I%2B5nErtQao645bCytndB2bJah8R2fXLs8Dd4%$2BC2ykxVrLxTUmJaGqd2RKS$2Fot1E47
1%2B90VPp4WEzCOCEFXXt9XNqdV]jo2bZsXbfKQg02zT2g2qCsgwbxVzIF5y39R%2BrkSkX16uuz3gbw
n3I5RIOMB8HN3DCzzvoMs4rYxYuigxalcb7DgjI2fklbdyiiRjSxzpCHpK6CWIBD8DPQYdkgGrs2Bs
oWeSvHVPLMSDxEPzwlnaxysRXzKphHUeUa2CCgcpagux2mbKkwHSXemX9I3V3AhPePp5XI5eCRiy3
D4%2BcBX0Oydie94Nz9DIhW749hPiVDI9CioAgyqgAzZFWCXEEUCXKTzu9xXX4DXg9b3CULfGzwERLY 7%
TGT2y%2F917r5Xs01rKi9ftws4J0O5vS2Be3WUAEtWVOWS2FVKCL1WwTbVIxtx$2B4RZQ3%2Fewvv$
2F0GgiiSrhiVBGuCDaQs7stwgfkF3vEgGXmmODGTIkIxvYm2fzcEfgq4A6LRpSRkYyJyUTF87c56tn
Qa%2Bo3xeiX5WRIybpabrRou09vyWLA1khcUaBE1GWB71iYUJ9bCltByEANZNnuDV$2FX]1 fnmDARKpPS8
RVNQ028czIk57wOMuizgWrM6S9Ku20noDmLgbT554UBE£7FnjRWOb$2FFO90JuPpUcARBPrfugTcOsBg
tZr7AJ13zz%2F53mpyn9rgzw5gBLgkvrdbciabJOAacccTDEBSKkEzZCLuprC3S1VedhgY$2BMQS5%2F
xgN%$2Faf3TtJiBKFvb1V37BlbXXGosnPFcoH8I0XbgW5FSsxmcnpg48poJcB7)5eHg7Y%2F01RLb4
iMmzNap4%$2BFg2F3LrwOI0Wk7ueIjgFdS5KJ1iTdalivGUs2Fchr 9aTNpM5H1Lb2 fDWOpZ$2FFBJcI
XxpT9eNYS2FpV]SpnTW2ubpPnBulPOQTLCi1EOxb133wnhUIfnGiViWJdrls2j3GWggqOnrYUbPS$2FX
tNJgqIucnMYGgPbcGIF2QRuiwD%$2F1i TRMVCRCMACsSYES2FaXjOMhskX7KYC%$2B91G%2FT1wQRbfHSK
WD$2Fpv4500VDsfclAdg6FCrl1LesDNTew$s2FF8Z3S1iHNWS760VsNM2SBS2FhMP671uS5UWVkb3%2FQ
gqCN0aosOPs20X0XBCZFmN6p3FhFnXPbAbaGz9y6KzUiUxCO3UOfZcToK14y$2BwOP4IvxpjVt4t8b
8409hiBxd5xul%$2BRE973a%2FyIWO%2F1t1MdUSMxWakxWuGxDnOxwkNCN7ekL%2FQ%2B6FItm86b
wI9CccS2FMiI7g2fK7y7YAzM3tmamhF1%2FWJINJ11HOvh®2BhNehJ1L1b4Z2%2F9ZtxMWVA4ALVTyrFaF1l
zyCEQCcKUTkOjc$2FXDwyKZc%2FSVIEO0Pk2 fVnmzs3WkA74GB%S2BWt jdvQ) SmnJYtPkMNsikHwS2B
RyB1lhTkYbn3iQ6BUiJ0v97]7TMVZHxCalKS3t2gx8H7ts6Tfy51189xVUdiZwf]jO0w06gl99glAqUMZ
EWxh0%3D%3C%2Fenc%$3ACipherValue$3E%3C%$2Fenc$3ACipherData%3E$3C%2Fenc%3AEncryp
tedData%3E

An un-escaped and reformatted version of the preceding xmlToken value, with the
encrypted value elided, is as follows:

<enc:EncryptedData Type="http://www.w3.0rg/2001/04/xmlenc#Element” xmlns:enc=
"http://www.w3.0rg/2001/04/xmlenc#">

<enc:EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#aes256-cbc"
/>

<KeyInfo xmlns="http://www.w3.0rg/2000/09/xmldsig#">

<e:EncryptedKey xmlns:e="http://www.w3.0rg/2001/04/xmlenc#">
<e:EncryptionMethod Algorithm="http://www.w3.0rg/2001/04/xmlenc#rsa-oaep-mgfl
p">

Version 1.0 Page 13 of 14

<DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal"™ />
</e:EncryptionMethod>

<KeyInfo>

<o:SecurityTokenReference xmlns:o="http://docs.ocasis-open.org/wss/2004/01/0as
1s-200401-wss-wssecurity-secext-1.0.xsd">

<o:KeyIdentifier ValueType="http://docs.oasis-open.org/wss/oasis-wss—-soap-mes
sage-security-1.1#ThumbprintSHA1" EncodingType="http://docs.oasis-open.org/ws
s/2004/01/0asis-200401-wss—-soap-message-security-1.0#Base64Binary">
+PYbznDaB/dlhjIfgCQ458E72wA=

</o:KeyIdentifier>

</o:SecurityTokenReference>

</KeyInfo>

<e:CipherData>

<e:CipherValue>
Egq9UhAJ8CO9K514Mr3gmgX0XnyL1ChKs2PqMj0Sk6snw/IRNtXgLzmgbj2Vd3vFA4Vx1hileSTyqgcl
kAsskqpgBc4bMHT 61wl fONxULOHDor0DINVcVDm/AfLecyLgEP+oh05B+5ntVIJzL8Ro3typFO0eoSm
3S6UnINOHIjHaVWyg=

</e:CipherValue>

</e:CipherData>

</e:EncryptedKey>

</KeyInfo>

<enc:CipherData>

<enc:CipherValue>

</enc:CipherValue>
</enc:CipherData>
</enc:EncryptedData>

Appendix B - Detecting Information Card Browser Support
by Internet Explorer

Script code can detect browser support for Information Cards within Internet Explorer by
testing the userAgent string to determine whether the browser version is greater than or
equal to "Ms1E 7.0". A second issue with Internet Explorer 7 is that the Information Card
support might not be installed (because Microsoft .NET Framework 3.0 is not installed on
the machine). This can be detected within the browser by using the "isInstalled”
property on the Information Card OBJECT from scripting code. .NET 3.0 installation can be
detected on web servers by testing whether the userAgent string contains " .NET CLR 3.0".

For example, the userAgent string on a Windows XP machine using IE 7 and .NET 3.0 will
contain at least these elements:

MSIE 7.0; Windows NT 5.1; .NET CLR 3.0.04506.30

Version 1.0 Page 14 of 14

