

Transact-SQL Data Definition
Language (DDL) Reference
SQL Server 2012 Books Online

Summary: Data Definition Language (DDL) is a vocabulary used to define data
structures in SQL Server 2012. Use these statements to create, alter, or drop data
structures in an instance of SQL Server.

Category: Reference
Applies to: SQL Server 2012
Source: SQL Server Books Online (link to source content)
E-book publication date: June 2012

http://msdn.microsoft.com/en-us/library/ff848799.aspx�

Copyright © 2012 by Microsoft Corporation
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of
the Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents
Data Definition Language (DDL) Statements (Transact-SQL) ... 7

ALTER Statements.. 7
ALTER APPLICATION ROLE ... 8
ALTER ASSEMBLY ... 11
ALTER ASYMMETRIC KEY .. 15
ALTER AUTHORIZATION ... 18
ALTER AVAILABILITY GROUP ... 22
ALTER BROKER PRIORITY .. 37
ALTER CERTIFICATE ... 40
ALTER CREDENTIAL ... 43
ALTER CRYPTOGRAPHIC PROVIDER ... 44
ALTER DATABASE .. 46

ALTER DATABASE File and Filegroup Options .. 51
ALTER DATABASE SET Options ... 64
ALTER DATABASE Database Mirroring .. 96
ALTER DATABASE SET HADR .. 102
ALTER DATABASE Compatibility Level .. 105

ALTER DATABASE AUDIT SPECIFICATION ... 116
ALTER DATABASE ENCRYPTION KEY... 119
ALTER ENDPOINT ... 120
ALTER EVENT SESSION ... 123
ALTER FULLTEXT CATALOG ... 133
ALTER FULLTEXT INDEX .. 135
ALTER FULLTEXT STOPLIST ... 144
ALTER FUNCTION ... 146
ALTER INDEX .. 157
ALTER LOGIN .. 174
ALTER MASTER KEY.. 178
ALTER MESSAGE TYPE... 180
ALTER PARTITION FUNCTION.. 182
ALTER PARTITION SCHEME .. 185
ALTER PROCEDURE .. 187
ALTER QUEUE ... 193
ALTER REMOTE SERVICE BINDING .. 197
ALTER RESOURCE GOVERNOR .. 198
ALTER RESOURCE POOL .. 203
ALTER ROLE ... 206
ALTER ROUTE ... 207
ALTER SCHEMA ... 211
ALTER SEARCH PROPERTY LIST ... 214
ALTER SEQUENCE ... 219

ALTER SERVER AUDIT .. 223
ALTER SERVER AUDIT SPECIFICATION ... 229
ALTER SERVER CONFIGURATION ... 231
ALTER SERVER ROLE .. 236
ALTER SERVICE ... 239
ALTER SERVICE MASTER KEY .. 241
ALTER SYMMETRIC KEY .. 244
ALTER TABLE ... 246

column_definition ... 273
column_constraint .. 277
computed_column_definition .. 283
table_constraint ... 287
index_option ... 292

ALTER TRIGGER .. 297
ALTER USER ... 303
ALTER VIEW ... 307
ALTER WORKLOAD GROUP .. 310
ALTER XML SCHEMA COLLECTION .. 315

CREATE Statements.. 322
CREATE AGGREGATE ... 323
CREATE APPLICATION ROLE ... 325
CREATE ASSEMBLY ... 327
CREATE ASYMMETRIC KEY .. 331
CREATE AVAILABILITY GROUP ... 335
CREATE BROKER PRIORITY .. 354
CREATE CERTIFICATE ... 361
CREATE COLUMNSTORE INDEX .. 366
CREATE CONTRACT ... 371
CREATE CREDENTIAL ... 374
CREATE CRYPTOGRAPHIC PROVIDER ... 376
CREATE DATABASE .. 378
CREATE DATABASE AUDIT SPECIFICATION .. 400
CREATE DATABASE ENCRYPTION KEY.. 403
CREATE DEFAULT .. 405
CREATE ENDPOINT .. 407
CREATE EVENT NOTIFICATION ... 414
CREATE EVENT SESSION .. 418
CREATE FULLTEXT CATALOG .. 425
CREATE FULLTEXT INDEX ... 427
CREATE FULLTEXT STOPLIST .. 434
CREATE FUNCTION .. 436
CREATE INDEX ... 457
CREATE LOGIN ... 482
CREATE MASTER KEY... 488
CREATE MESSAGE TYPE.. 489

CREATE PARTITION FUNCTION... 492
CREATE PARTITION SCHEME ... 497
CREATE PROCEDURE ... 501
CREATE QUEUE .. 524
CREATE REMOTE SERVICE BINDING ... 531
CREATE RESOURCE POOL ... 533
CREATE ROLE .. 536
CREATE ROUTE .. 538
CREATE RULE .. 543
CREATE SCHEMA .. 546
CREATE SEARCH PROPERTY LIST .. 550
CREATE SEQUENCE .. 553
CREATE SERVER AUDIT ... 559
CREATE SERVER AUDIT SPECIFICATION .. 565
CREATE SERVER ROLE ... 567
CREATE SERVICE .. 568
CREATE SPATIAL INDEX ... 571
CREATE STATISTICS.. 585
CREATE SYMMETRIC KEY ... 589
CREATE SYNONYM .. 594
CREATE TABLE .. 598

IDENTITY (Property) ... 627
CREATE TRIGGER ... 630
CREATE TYPE... 645
CREATE USER .. 651
CREATE VIEW .. 659
CREATE WORKLOAD GROUP ... 672
CREATE XML INDEX ... 675
CREATE XML SCHEMA COLLECTION ... 682

DISABLE TRIGGER ... 689

DROP Statements ... 692
DROP AGGREGATE ... 693
DROP APPLICATION ROLE .. 693
DROP ASSEMBLY .. 695
DROP ASYMMETRIC KEY ... 696
DROP AVAILABILITY GROUP .. 697
DROP BROKER PRIORITY ... 698
DROP CERTIFICATE .. 699
DROP CONTRACT ... 699
DROP CREDENTIAL .. 700
DROP CRYPTOGRAPHIC PROVIDER .. 701
DROP DATABASE .. 702
DROP DATABASE AUDIT SPECIFICATION ... 704
DROP DATABASE ENCRYPTION KEY ... 706
DROP DEFAULT ... 707

DROP ENDPOINT .. 708
DROP EVENT NOTIFICATION ... 709
DROP EVENT SESSION .. 711
DROP FULLTEXT CATALOG ... 711
DROP FULLTEXT INDEX .. 712
DROP FULLTEXT STOPLIST .. 713
DROP FUNCTION .. 714
DROP INDEX ... 715
DROP LOGIN... 725
DROP MASTER KEY .. 725
DROP MESSAGE TYPE ... 726
DROP PARTITION FUNCTION .. 727
DROP PARTITION SCHEME ... 728
DROP PROCEDURE... 729
DROP QUEUE.. 730
DROP REMOTE SERVICE BINDING ... 732
DROP RESOURCE POOL ... 732
DROP ROLE ... 733
DROP ROUTE .. 735
DROP RULE.. 735
DROP SCHEMA .. 737
DROP SEARCH PROPERTY LIST ... 738
DROP SEQUENCE .. 740
DROP SERVER AUDIT .. 741
DROP SERVER AUDIT SPECIFICATION .. 743
DROP SERVER ROLE... 744
DROP SERVICE ... 746
DROP SIGNATURE .. 746
DROP STATISTICS ... 748
DROP SYMMETRIC KEY .. 749
DROP SYNONYM .. 750
DROP TABLE ... 751
DROP TRIGGER .. 754
DROP TYPE .. 756
DROP USER ... 757
DROP VIEW ... 758
DROP WORKLOAD GROUP ... 760
DROP XML SCHEMA COLLECTION .. 761

ENABLE TRIGGER .. 763

UPDATE STATISTICS .. 765

TRUNCATE TABLE ... 769

 7

Data Definition Language (DDL) Statements
(Transact-SQL)
Data Definition Language (DDL) is a vocabulary used to define data structures in SQL Server
2012. Use these statements to create, alter, or drop data structures in an instance of SQL Server.

In this Section
ALTER Statements (Transact-SQL)
CREATE Statements (Transact-SQL)
DISABLE TRIGGER (Transact-SQL)
DISABLE TRIGGER (Transact-SQL)
DROP Statements (Transact-SQL)
ENABLE TRIGGER (Transact-SQL)
TRUNCATE TABLE (Transact-SQL)
UPDATE STATISTICS (Transact-SQL)

ALTER Statements
SQL Server Transact-SQL contains the following ALTER statements. Use ALTER statements to
modify the definition of existing entities. For example, use ALTER TABLE to add a new column to
a table, or use ALTER DATABASE to set database options.

In this Section

ALTER APPLICATION ROLE ALTER EVENT SESSION ALTER ROLE

ALTER ASSEMBLY ALTER FULLTEXT CATALOG ALTER ROUTE

ALTER ASYMMETRIC KEY ALTER FULLTEXT INDEX ALTER SCHEMA

ALTER AUTHORIZATION ALTER FULLTEXT STOPLIST ALTER SEARCH PROPERTY LIST
(Transact-SQL)

ALTER BROKER PRIORITY ALTER FUNCTION ALTER SEQUENCE (Transact-
SQL)

ALTER CERTIFICATE ALTER INDEX ALTER SERVER AUDIT

 8

ALTER CREDENTIAL ALTER LOGIN ALTER SERVER AUDIT
SPECIFICATION

ALTER CRYPTOGRAPHIC
PROVIDER

ALTER MASTER KEY ALTER SERVICE

ALTER DATABASE ALTER MESSAGE TYPE ALTER SERVICE MASTER KEY

ALTER DATABASE AUDIT
SPECIFICATION

ALTER PARTITION FUNCTION ALTER SYMMETRIC KEY

ALTER DATABASE Compatibility
Level

ALTER PARTITION SCHEME ALTER TABLE

ALTER DATABASE Database
Mirroring

ALTER PROCEDURE ALTER TRIGGER

ALTER DATABASE ENCRYPTION
KEY

ALTER QUEUE ALTER USER

ALTER DATABASE File and
Filegroup Options

ALTER REMOTE SERVICE
BINDING

ALTER VIEW

ALTER DATABASE SET Options ALTER RESOURCE
GOVERNOR

ALTER WORKLOAD GROUP

ALTER ENDPOINT ALTER RESOURCE POOL ALTER XML SCHEMA
COLLECTION

See Also
CREATE Statements (Transact-SQL)
DROP Statements

ALTER APPLICATION ROLE
Changes the name, password, or default schema of an application role.

 Transact-SQL Syntax Conventions

Syntax

ALTER APPLICATION ROLE application_role_name
 WITH <set_item> [,...n]

<set_item> ::=

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 9

 NAME = new_application_role_name
 | PASSWORD = 'password'
 | DEFAULT_SCHEMA = schema_name

Arguments
application_role_name

Is the name of the application role to be modified.

NAME = new_application_role_name

Specifies the new name of the application role. This name must not already be used to refer
to any principal in the database.

PASSWORD = 'password'

Specifies the password for the application role. password must meet the Windows password
policy requirements of the computer that is running the instance of SQL Server. You should
always use strong passwords.

DEFAULT_SCHEMA = schema_name

Specifies the first schema that will be searched by the server when it resolves the names of
objects. schema_name can be a schema that does not exist in the database.

Remarks
If the new application role name already exists in the database, the statement will fail. When the
name, password, or default schema of an application role is changed the ID associated with the
role is not changed.

 Password expiration policy is not applied to application role passwords. For this reason,
take extra care in selecting strong passwords. Applications that invoke application roles
must store their passwords.

Application roles are visible in the sys.database_principals catalog view.

In SQL Server 2005 the behavior of schemas changed from the behavior in earlier
versions of SQL Server. Code that assumes that schemas are equivalent to database users
may not return correct results. Old catalog views, including sysobjects, should not be
used in a database in which any of the following DDL statements has ever been used:
CREATE SCHEMA, ALTER SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP
USER, CREATE ROLE, ALTER ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE,
DROP APPROLE, ALTER AUTHORIZATION. In a database in which any of these statements
has ever been used, you must use the new catalog views. The new catalog views take
into account the separation of principals and schemas that is introduced in SQL Server
2005. For more information about catalog views, see EVENTDATA (Transact-SQL)).

Important

Caution

http://msdn.microsoft.com/en-us/library/13bccc2f-ed3c-4b58-abd0-ca8bf34a66b8(SQL.110)�

 10

Permissions
Requires ALTER ANY APPLICATION ROLE permission on the database. To change the default
schema, the user also needs ALTER permission on the application role. An application role can
alter its own default schema, but not its name or password.

Examples

A. Changing the name of application role
The following example changes the name of the application role weekly_receipts to
receipts_ledger.

USE AdventureWorks2012;

CREATE APPLICATION ROLE weekly_receipts

 WITH PASSWORD = '987Gbv8$76sPYY5m23' ,

 DEFAULT_SCHEMA = Sales;

GO

ALTER APPLICATION ROLE weekly_receipts

 WITH NAME = receipts_ledger;

GO

B. Changing the password of application role
The following example changes the password of the application role receipts_ledger.

ALTER APPLICATION ROLE receipts_ledger

 WITH PASSWORD = '897yUUbv867y$200nk2i';

GO

C. Changing the name, password, and default schema
The following example changes the name, password, and default schema of the application role
receipts_ledger all at the same time.

ALTER APPLICATION ROLE receipts_ledger

 WITH NAME = weekly_ledger,

 PASSWORD = '897yUUbv77bsrEE00nk2i',

 DEFAULT_SCHEMA = Production;

GO

See Also
Application Roles
CREATE APPLICATION ROLE (Transact-SQL)
DROP APPLICATION ROLE (Transact-SQL)
EVENTDATA (Transact-SQL)

http://msdn.microsoft.com/en-us/library/dca18b8a-ca03-4b7f-9a46-8474d5b66f76(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

 11

ALTER ASSEMBLY
Alters an assembly by modifying the SQL Server catalog properties of an assembly. ALTER
ASSEMBLY refreshes it to the latest copy of the Microsoft .NET Framework modules that hold its
implementation and adds or removes files associated with it. Assemblies are created by using
CREATE ASSEMBLY.

 Transact-SQL Syntax Conventions

Syntax

ALTER ASSEMBLY assembly_name
 [FROM <client_assembly_specifier> | <assembly_bits>]
 [WITH <assembly_option> [,...n]]
 [DROP FILE { file_name [,...n] | ALL }]
 [ADD FILE FROM
 {
 client_file_specifier [AS file_name]
 | file_bits AS file_name
 } [,...n]
] [;]
<client_assembly_specifier> :: =
 '\\computer_name\share-name\[path\]manifest_file_name'
 | '[local_path\]manifest_file_name'

<assembly_bits> :: =
 { varbinary_literal | varbinary_expression }

<assembly_option> :: =
 PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }
 | VISIBILITY = { ON | OFF }
 | UNCHECKED DATA

Arguments
assembly_name

Is the name of the assembly you want to modify. assembly_name must already exist in the
database.

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 12

FROM <client_assembly_specifier> | <assembly_bits>

Updates an assembly to the latest copy of the .NET Framework modules that hold its
implementation. This option can only be used if there are no associated files with the
specified assembly.

<client_assembly_specifier> specifies the network or local location where the assembly being
refreshed is located. The network location includes the computer name, the share name and
a path within that share. manifest_file_name specifies the name of the file that contains the
manifest of the assembly.

<assembly_bits> is the binary value for the assembly.

Separate ALTER ASSEMBLY statements must be issued for any dependent assemblies that
also require updating.

Note
This option is not available in a contained database.

PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }

Specifies the .NET Framework code access permission set property of the assembly. For more
information about this property, see EVENTDATA (Transact-SQL).

Note
The EXTERNAL_ACCESS and UNSAFE options are not available in a contained database.

VISIBILITY = { ON | OFF }

Indicates whether the assembly is visible for creating common language runtime (CLR)
functions, stored procedures, triggers, user-defined types, and user-defined aggregate
functions against it. If set to OFF, the assembly is intended to be called only by other
assemblies. If there are existing CLR database objects already created against the assembly,
the visibility of the assembly cannot be changed. Any assemblies referenced by
assembly_name are uploaded as not visible by default.

UNCHECKED DATA

By default, ALTER ASSEMBLY fails if it must verify the consistency of individual table rows.
This option allows postponing the checks until a later time by using DBCC CHECKTABLE. If
specified, SQL Server executes the ALTER ASSEMBLY statement even if there are tables in the
database that contain the following:

• Persisted computed columns that either directly or indirectly reference methods in the
assembly, through Transact-SQL functions or methods.

• CHECK constraints that directly or indirectly reference methods in the assembly.

• Columns of a CLR user-defined type that depend on the assembly, and the type
implements a UserDefined (non-Native) serialization format.

• Columns of a CLR user-defined type that reference views created by using WITH
SCHEMABINDING.

If any CHECK constraints are present, they are disabled and marked untrusted. Any tables

 13

containing columns depending on the assembly are marked as containing unchecked data
until those tables are explicitly checked.

Only members of the db_owner and db_ddlowner fixed database roles can specify this
option.

For more information, see Implementing Assemblies.

[DROP FILE { file_name[,...n] | ALL }]

Removes the file name associated with the assembly, or all files associated with the assembly,
from the database. If used with ADD FILE that follows, DROP FILE executes first. This lets you
to replace a file with the same file name.

Note
This option is not available in a contained database.

[ADD FILE FROM { client_file_specifier [AS file_name] | file_bitsAS file_name}

Uploads a file to be associated with the assembly, such as source code, debug files or other
related information, into the server and made visible in the sys.assembly_files catalog view.
client_file_specifier specifies the location from which to upload the file. file_bits can be used
instead to specify the list of binary values that make up the file. file_name specifies the name
under which the file should be stored in the instance of SQL Server. file_name must be
specified if file_bits is specified, and is optional if client_file_specifier is specified. If file_name
is not specified, the file_name part of client_file_specifier is used as file_name.

Note
This option is not available in a contained database.

Remarks
ALTER ASSEMBLY does not disrupt currently running sessions that are running code in the
assembly being modified. Current sessions complete execution by using the unaltered bits of
the assembly.
If the FROM clause is specified, ALTER ASSEMBLY updates the assembly with respect to the
latest copies of the modules provided. Because there might be CLR functions, stored
procedures, triggers, data types, and user-defined aggregate functions in the instance of SQL
Server that are already defined against the assembly, the ALTER ASSEMBLY statement rebinds
them to the latest implementation of the assembly. To accomplish this rebinding, the methods
that map to CLR functions, stored procedures, and triggers must still exist in the modified
assembly with the same signatures. The classes that implement CLR user-defined types and
user-defined aggregate functions must still satisfy the requirements for being a user-defined
type or aggregate.

If WITH UNCHECKED DATA is not specified, SQL Server tries to prevent ALTER ASSEMBLY
from executing if the new assembly version affects existing data in tables, indexes, or
other persistent sites. However, SQL Server does not guarantee that computed columns,

Caution

http://msdn.microsoft.com/en-us/library/c228d7bf-a906-4f37-a057-5d464d962ff8(SQL.110)�

 14

indexes, indexed views or expressions will be consistent with the underlying routines and
types when the CLR assembly is updated. Use caution when you execute ALTER
ASSEMBLY to make sure that there is not a mismatch between the result of an
expression and a value based on that expression stored in the assembly.

ALTER ASSEMBLY changes the assembly version. The culture and public key token of the
assembly remain the same.
ALTER ASSEMBLY statement cannot be used to change the following:
• The signatures of CLR functions, aggregate functions, stored procedures, and triggers in an

instance of SQL Server that reference the assembly. ALTER ASSEMBLY fails when SQL Server
cannot rebind .NET Framework database objects in SQL Server with the new version of the
assembly.

• The signatures of methods in the assembly that are called from other assemblies.
• The list of assemblies that depend on the assembly, as referenced in the DependentList

property of the assembly.
• The indexability of a method, unless there are no indexes or persisted computed columns

depending on that method, either directly or indirectly.
• The FillRow method name attribute for CLR table-valued functions.
• The Accumulate and Terminate method signature for user-defined aggregates.
• System assemblies.
• Assembly ownership. Use ALTER AUTHORIZATION (Transact-SQL) instead.
Additionally, for assemblies that implement user-defined types, ALTER ASSEMBLY can be used
for making only the following changes:
• Modifying public methods of the user-defined type class, as long as signatures or attributes

are not changed.
• Adding new public methods.
• Modifying private methods in any way.
Fields contained within a native-serialized user-defined type, including data members or base
classes, cannot be changed by using ALTER ASSEMBLY. All other changes are unsupported.
If ADD FILE FROM is not specified, ALTER ASSEMBLY drops any files associated with the
assembly.
If ALTER ASSEMBLY is executed without the UNCHECKED data clause, checks are performed to
verify that the new assembly version does not affect existing data in tables. Depending on the
amount of data that needs to be checked, this may affect performance.

Permissions
Requires ALTER permission on the assembly. Additional requirements are as follows:
• To alter an assembly whose existing permission set is EXTERNAL_ACCESS, the SQL Server

login must have EXTERNAL ACCESS permission on the server.

 15

• To alter an assembly whose existing permission set is UNSAFE requires membership in the
sysadmin fixed server role.

• To change the permission set of an assembly to EXTERNAL_ACCESS, the SQL Server login
must have EXTERNAL ACCESS ASSEMBLY permission on the server.

• To change the permission set of an assembly to UNSAFE requires membership in the
sysadmin fixed server role.

• Specifying WITH UNCHECKED DATA requires membership in the sysadmin fixed server role.
For more information about assembly permission sets, see Designing Assemblies.

Examples

A. Refreshing an assembly
The following example updates assembly ComplexNumber to the latest copy of the .NET
Framework modules that hold its implementation.

Assembly ComplexNumber can be created by running the UserDefinedDataType sample
scripts. For more information, see User-Defined Type (UDT) Sample.

ALTER ASSEMBLY ComplexNumber
FROM 'C:\Program Files\Microsoft SQL
Server\90\Tools\Samples\1033\Engine\Programmability\CLR\UserDefinedDataType\C
S\ComplexNumber\obj\Debug\ComplexNumber.dll'

B. Adding a file to associate with an assembly
The following example uploads the source code file Class1.cs to be associated with assembly
MyClass. This example assumes assembly MyClass is already created in the database.

ALTER ASSEMBLY MyClass

ADD FILE FROM 'C:\MyClassProject\Class1.cs';

C. Changing the permissions of an assembly
The following example changes the permission set of assembly ComplexNumber from SAFE to
EXTERNAL ACCESS.

ALTER ASSEMBLY ComplexNumber WITH PERMISSION_SET = EXTERNAL_ACCESS

See Also
CREATE ASSEMBLY
DROP ASSEMBLY
EVENTDATA (Transact-SQL)

ALTER ASYMMETRIC KEY
Changes the properties of an asymmetric key.

Note

http://msdn.microsoft.com/en-us/library/9c07f706-6508-41aa-a4d7-56ce354f9061(SQL.110)�
http://msdn.microsoft.com/en-us/library/a9b75f36-d7f5-47f7-94d6-b4448c6a2191(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

 16

 Transact-SQL Syntax Conventions

Syntax

ALTER ASYMMETRIC KEY Asym_Key_Name <alter_option>

<alter_option> ::=
 <password_change_option>
 |
 REMOVE PRIVATE KEY
<password_change_option> ::=
 WITH PRIVATE KEY (<password_option> [, <password_option>])
<password_option> ::=
 ENCRYPTION BY PASSWORD = 'strongPassword'
 |
 DECRYPTION BY PASSWORD = 'oldPassword'

Arguments
Asym_Key_Name

Is the name by which the asymmetric key is known in the database.

REMOVE PRIVATE KEY

Removes the private key from the asymmetric key The public key is not removed.

WITH PRIVATE KEY

Changes the protection of the private key.

ENCRYPTION BY PASSWORD = 'stongPassword'

Specifies a new password for protecting the private key. password must meet the Windows
password policy requirements of the computer that is running the instance of SQL Server. If
this option is omitted, the private key will be encrypted by the database master key.

DECRYPTION BY PASSWORD = 'oldPassword'

Specifies the old password, with which the private key is currently protected. Is not required if
the private key is encrypted with the database master key.

Remarks
If there is no database master key the ENCRYPTION BY PASSWORD option is required, and the
operation will fail if no password is supplied. For information about how to create a database
master key, see OPEN MASTER KEY (Transact-SQL).
You can use ALTER ASYMMETRIC KEY to change the protection of the private key by specifying
PRIVATE KEY options as shown in the following table.

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 17

Change protection from ENCRYPTION BY PASSWORD DECRYPTION BY PASSWORD

Old password to new
password

Required Required

Password to master key Omit Required

Master key to password Required Omit

The database master key must be opened before it can be used to protect a private key. For
more information, see OPEN MASTER KEY (Transact-SQL).
To change the ownership of an asymmetric key, use ALTER AUTHORIZATION.

Permissions
Requires CONTROL permission on the asymmetric key if the private key is being removed.

Examples

A. Changing the password of the private key
The following example changes the password used to protect the private key of asymmetric key
PacificSales09. The new password will be <enterStrongPasswordHere>.

ALTER ASYMMETRIC KEY PacificSales09

 WITH PRIVATE KEY (

 DECRYPTION BY PASSWORD = '<oldPassword>',

 ENCRYPTION BY PASSWORD = '<enterStrongPasswordHere>');

GO

B. Removing the private key from an asymmetric key
The following example removes the private key from PacificSales19, leaving only the public
key.

ALTER ASYMMETRIC KEY PacificSales19 REMOVE PRIVATE KEY;

GO

C. Removing password protection from a private key
The following example removes the password protection from a private key and protects it with
the database master key.

OPEN MASTER KEY;

ALTER ASYMMETRIC KEY PacificSales09 WITH PRIVATE KEY (

 DECRYPTION BY PASSWORD = '<enterStrongPasswordHere>');

GO

http://msdn.microsoft.com/en-us/library/1674753e-ca1e-4913-9ba4-b442e7106121(SQL.110)�

 18

See Also
CREATE ASYMMETRIC KEY (Transact-SQL)
DROP ASYMMETRIC KEY (Transact-SQL)
SQL Server and Database Encryption Keys (Database Engine)
Encryption Hierarchy
CREATE MASTER KEY (Transact-SQL)
OPEN MASTER KEY (Transact-SQL)
Understanding Extensible Key Management (EKM)

ALTER AUTHORIZATION
Changes the ownership of a securable.

 Transact-SQL Syntax Conventions

Syntax

ALTER AUTHORIZATION
 ON [<class_type>::] entity_name
 TO { SCHEMA OWNER | principal_name }
[;]

<class_type> ::=
 {
 OBJECT | ASSEMBLY | ASYMMETRIC KEY | CERTIFICATE
 | CONTRACT | TYPE | DATABASE | ENDPOINT | FULLTEXT CATALOG
 | FULLTEXT STOPLIST | MESSAGE TYPE | REMOTE SERVICE BINDING
 | ROLE | ROUTE | SCHEMA | SEARCH PROPERTY LIST | SERVER ROLE
 | SERVICE | SYMMETRIC KEY | XML SCHEMA COLLECTION
 }

Arguments
<class_type>

Is the securable class of the entity for which the owner is being changed. OBJECT is the
default.

entity_name

Is the name of the entity.

http://msdn.microsoft.com/en-us/library/15c0a5e8-9177-484c-ae75-8c552dc0dac0(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/1674753e-ca1e-4913-9ba4-b442e7106121(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 19

principal_name

Is the name of the principal that will own the entity.

Remarks
ALTER AUTHORIZATION can be used to change the ownership of any entity that has an owner.
Ownership of database-contained entities can be transferred to any database-level principal.
Ownership of server-level entities can be transferred only to server-level principals.

Beginning with SQL Server 2005, a user can own an OBJECT or TYPE that is contained by
a schema owned by another database user. This is a change of behavior from earlier
versions of SQL Server. For more information, see OBJECTPROPERTY (Transact-SQL) and
TYPEPROPERTY (Transact-SQL).

Ownership of the following schema-contained entities of type "object" can be transferred:
tables, views, functions, procedures, queues, and synonyms.
Ownership of the following entities cannot be transferred: linked servers, statistics, constraints,
rules, defaults, triggers, Service Broker queues, credentials, partition functions, partition
schemes, database master keys, service master key, and event notifications.
Ownership of members of the following securable classes cannot be transferred: server, login,
user, application role, and column.
The SCHEMA OWNER option is only valid when you are transferring ownership of a schema-
contained entity. SCHEMA OWNER will transfer ownership of the entity to the owner of the
schema in which it resides. Only entities of class OBJECT, TYPE, or XML SCHEMA COLLECTION
are schema-contained.
If the target entity is not a database and the entity is being transferred to a new owner, all
permissions on the target will be dropped.

In SQL Server 2005, the behavior of schemas changed from the behavior in earlier
versions of SQL Server. Code that assumes that schemas are equivalent to database users
may not return correct results. Old catalog views, including sysobjects, should not be
used in a database in which any of the following DDL statements has ever been used:
CREATE SCHEMA, ALTER SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP
USER, CREATE ROLE, ALTER ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE,
DROP APPROLE, ALTER AUTHORIZATION. In a database in which any of these statements
has ever been used, you must use the new catalog views. The new catalog views take
into account the separation of principals and schemas that was introduced in SQL Server
2005. For more information about catalog views, see Catalog Views (Transact-SQL).

Also, note the following:

Important

Caution

Important

http://msdn.microsoft.com/en-us/library/27569888-f8b5-4cec-a79f-6ea6d692b4ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc311c80-bac5-46ab-a5c8-68b1c6bbf24a(SQL.110)�
http://msdn.microsoft.com/en-us/library/13bccc2f-ed3c-4b58-abd0-ca8bf34a66b8(SQL.110)�

 20

The only reliable way to find the owner of a object is to query the sys.objects catalog
view. The only reliable way to find the owner of a type is to use the TYPEPROPERTY
function.

Special Cases and Conditions
The following table lists special cases, exceptions, and conditions that apply to altering
authorization.

Class Condition

DATABASE Cannot change the owner of system
databases master, model, tempdb, the
resource database, or a database that is
used as a distribution database. The
principal must be a login. If the principal is
a Windows login without a corresponding
SQL Server login, the principal must have
CONTROL SERVER permission and TAKE
OWNERSHIP permission on the database. If
the principal is a SQL Server login, the
principal cannot be mapped to a certificate
or asymmetric key. Dependent aliases will
be mapped to the new database owner.
The DBO SID will be updated in both the
current database and in sys.databases.

OBJECT Cannot change ownership of triggers,
constraints, rules, defaults, statistics, system
objects, queues, indexed views, or tables
with indexed views.

SCHEMA When ownership is transferred, permissions
on schema-contained objects that do not
have explicit owners will be dropped.
Cannot change the owner of sys, dbo, or
information_schema.

TYPE Cannot change ownership of a TYPE that
belongs to sys or information_schema.

CONTRACT, MESSAGE TYPE, or SERVICE Cannot change ownership of system
entities.

SYMMETRIC KEY Cannot change ownership of global
temporary keys.

 21

Class Condition

CERTIFICATE or ASYMMETRIC KEY Cannot transfer ownership of these entities
to a role or group.

ENDPOINT The principal must be a login.

Permissions
Requires TAKE OWNERSHIP permission on the entity. If the new owner is not the user that is
executing this statement, also requires either, 1) IMPERSONATE permission on the new owner if
it is a user or login; or 2) if the new owner is a role, membership in the role, or ALTER permission
on the role; or 3) if the new owner is an application role, ALTER permission on the application
role.

Examples

A. Transfer ownership of a table
The following example transfers ownership of table Sprockets to user MichikoOsada. The table
is located inside schema Parts.

ALTER AUTHORIZATION ON OBJECT::Parts.Sprockets TO MichikoOsada;

GO

The query could also look like the following:

ALTER AUTHORIZATION ON Parts.Sprockets TO MichikoOsada;

GO

B. Transfer ownership of a view to the schema owner
The following example transfers ownership the view ProductionView06 to the owner of the
schema that contains it. The view is located inside schema Production.

ALTER AUTHORIZATION ON OBJECT::Production.ProductionView06 TO SCHEMA OWNER;

GO

C. Transfer ownership of a schema to a user
The following example transfers ownership of the schema SeattleProduction11 to user
SandraAlayo.
ALTER AUTHORIZATION ON SCHEMA::SeattleProduction11 TO SandraAlayo;

GO

D. Transfer ownership of an endpoint to a SQL Server login
The following example transfers ownership of endpoint CantabSalesServer1 to JaePak.
Because the endpoint is a server-level securable, the endpoint can only be transferred to a
server-level principal.

 22

ALTER AUTHORIZATION ON ENDPOINT::CantabSalesServer1 TO JaePak;

GO

See Also
OBJECTPROPERTY (Transact-SQL)
TYPEPROPERTY (Transact-SQL)
EVENTDATA (Transact-SQL)

ALTER AVAILABILITY GROUP
Alters an existing AlwaysOn availability group in SQL Server 2012. Most ALTER AVAILABILITY
GROUP arguments are supported only on the server instance that hosts the current primary
replica. However the JOIN, FAILOVER, and FORCE_FAILOVER_ALLOW_DATA_LOSS arguments,
which can be run only on an secondary replica.

 Transact-SQL Syntax Conventions

Syntax

ALTER AVAILABILITY GROUP group_name
 {
 SET (<set_option_spec>)
 | ADD DATABASE database_name
 | REMOVE DATABASE database_name
 | ADD REPLICA ON <add_replica_spec>
 | MODIFY REPLICA ON <modify_replica_spec>
 | REMOVE REPLICA ON <server_instance>
 | JOIN
 | FAILOVER
 | FORCE_FAILOVER_ALLOW_DATA_LOSS
 | ADD LISTENER ‘dns_name’ (<add_listener_option>)
 | MODIFY LISTENER ‘dns_name’ (<modify_listener_option>)
 | RESTART LISTENER ‘dns_name’
 | REMOVE LISTENER ‘dns_name’
 }
[;]

<set_option_spec> ::=

http://msdn.microsoft.com/en-us/library/27569888-f8b5-4cec-a79f-6ea6d692b4ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc311c80-bac5-46ab-a5c8-68b1c6bbf24a(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 23

 AUTOMATED_BACKUP_PREFERENCE = { PRIMARY | SECONDARY_ONLY| SECONDARY | NONE
}
 | FAILURE_CONDITION_LEVEL = { 1 | 2 | 3 | 4 | 5 }
 | HEALTH_CHECK_TIMEOUT = milliseconds

<server_instance> ::=
 { 'system_name[\instance_name]' | 'FCI_network_name[\instance_name]' }

<add_replica_spec>::=
 <server_instance> WITH
 (
 ENDPOINT_URL = 'TCP://system-address:port',
 AVAILABILITY_MODE = { SYNCHRONOUS_COMMIT | ASYNCHRONOUS_COMMIT },
 FAILOVER_MODE = { AUTOMATIC | MANUAL }
 [, <add_replica_option> [,...n]]
)

 <add_replica_option>::=
 BACKUP_PRIORITY = n
 | SECONDARY_ROLE ({
 ALLOW_CONNECTIONS = { NO | READ_ONLY | ALL }
 | READ_ONLY_ROUTING_URL = 'TCP://system-address:port'
 })
 | PRIMARY_ROLE ({
 ALLOW_CONNECTIONS = { READ_WRITE | ALL }
 | READ_ONLY_ROUTING_LIST = { (‘<server_instance>’ [,...n]) | NONE }
 })
 | SESSION_TIMEOUT = seconds

<modify_replica_spec>::=
 <server_instance> WITH
 (
 ENDPOINT_URL = 'TCP://system-address:port'
 | AVAILABILITY_MODE = { SYNCHRONOUS_COMMIT | ASYNCHRONOUS_COMMIT }
 | FAILOVER_MODE = { AUTOMATIC | MANUAL }

 24

 | BACKUP_PRIORITY = n
 | SECONDARY_ROLE ({
 ALLOW_CONNECTIONS = { NO | READ_ONLY | ALL }
 | READ_ONLY_ROUTING_URL = 'TCP://system-address:port'
 })
 | PRIMARY_ROLE ({
 ALLOW_CONNECTIONS = { READ_WRITE | ALL }
 | READ_ONLY_ROUTING_LIST = { (‘<server_instance>’ [,...n]) | NONE }
 })
 | SESSION_TIMEOUT = seconds
)

<add_listener_option> ::=
 {
 WITH DHCP [ON (<network_subnet_option>)]
 | WITH IP ({ (<ip_address_option>) } [, ...n]) [, PORT = listener_port]
 }

 <network_subnet_option> ::=
 ‘four_part_ipv4_address’, ‘four_part_ipv4_mask’

 <ip_address_option> ::=
 {
 ‘four_part_ipv4_address’, ‘four_part_ipv4_mask’
 | ‘ipv6_address’
 }

<modify_listener_option>::=
 {
 ADD IP (<ip_address_option>)
 | PORT = listener_port
 }

Arguments

 25

group_name

Specifies the name of the new availability group. group_name must be a valid SQL Server
identifier, and it must be unique across all availability groups in the WSFC cluster.

AUTOMATED_BACKUP_PREFERENCE = { PRIMARY | SECONDARY_ONLY| SECONDARY | NONE
}

Specifies a preference about how a backup job should evaluate the primary replica when
choosing where to perform backups. You can script a given backup job to take the
automated backup preference into account. It is important to understand that the preference
is not enforced by SQL Server, so it has no impact on ad-hoc backups.

Supported only on the primary replica.

The values are as follows:

PRIMARY

Specifies that the backups should always occur on the primary replica. This option is useful
if you need backup features, such as creating differential backups, that are not supported
when backup is run on a secondary replica.

SECONDARY_ONLY

Specifies that backups should never be performed on the primary replica. If the primary
replica is the only replica online, the backup should not occur.

SECONDARY

Specifies that backups should occur on a secondary replica except when the primary
replica is the only replica online. In that case, the backup should occur on the primary
replica. This is the default behavior.

NONE

Specifies that you prefer that backup jobs ignore the role of the availability replicas when
choosing the replica to perform backups. Note backup jobs might evaluate other factors
such as backup priority of each availability replica in combination with its operational state
and connected state.

There is no enforcement of the AUTOMATED_BACKUP_PREFERENCE setting. The
interpretation of this preference depends on the logic, if any, that you script into back jobs
for the databases in a given availability group. For more information, see Backup on
Secondary Replicas (AlwaysOn Availability Groups).

Note
To view the automated backup preference of an existing availability group, select the
automated_backup_preference or automated_backup_preference_desc column of the
sys.availability_groups catalog view.

FAILURE_CONDITION_LEVEL = { 1 | 2 | 3 | 4 | 5 }

Specifies what failure conditions will trigger an automatic failover for this availability group.
FAILURE_CONDITION_LEVEL is set at the group level but is relevant only on availability

http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�
http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�
http://msdn.microsoft.com/en-us/library/da7fa55f-c008-45d9-bcfc-3513b02d9e71(SQL.110)�

 26

replicas that are configured for synchronous-commit availability mode (AVAILIBILITY_MODE
= SYNCHRONOUS_COMMIT). Furthermore, failure conditions can trigger an automatic
failover only if both the primary and secondary replicas are configured for automatic failover
mode (FAILOVER_MODE = AUTOMATIC) and the secondary replica is currently synchronized
with the primary replica.

Supported only on the primary replica.

The failure-condition levels (1–5) range from the least restrictive, level 1, to the most
restrictive, level 5. A given condition level encompasses all of the less restrictive levels. Thus,
the strictest condition level, 5, includes the four less restrictive condition levels (1-4), level 4
includes levels 1-3, and so forth. The following table describes the failure-condition that
corresponds to each level.

Level Failure Condition

1 Specifies that an automatic failover should
be initiated when any of the following
occurs:
• The SQL Server service is down.
• The lease of the availability group for

connecting to the WSFC cluster expires
because no ACK is received from the
server instance.

2 Specifies that an automatic failover should
be initiated when any of the following
occurs:
• The instance of SQL Server does not

connect to cluster, and the user-
specified HEALTH_CHECK_TIMEOUT
threshold of the availability group is
exceeded.

• The availability replica is in failed state.

3 Specifies that an automatic failover should
be initiated on critical SQL Server internal
errors, such as orphaned spinlocks, serious
write-access violations, or too much
dumping.
This is the default behavior.

4 Specifies that an automatic failover should
be initiated on moderate SQL Server
internal errors, such as a persistent out-of-

 27

memory condition in the SQL Server
internal resource pool.

5 Specifies that an automatic failover should
be initiated on any qualified failure
conditions, including:
• Exhaustion of SQL Engine worker-

threads.
• Detection of an unsolvable deadlock.

nNote
Lack of response by an instance of SQL Server to client requests is not relevant to availability groups.

The FAILURE_CONDITION_LEVEL and HEALTH_CHECK_TIMEOUT values, define a flexible
failover policy for a given group. This flexible failover policy provides you with granular
control over what conditions must cause an automatic failover. For more information, see
Flexible Failover Policy for Automatic Failover of an Availability Group (SQL
Server).

HEALTH_CHECK_TIMEOUT = milliseconds

Specifies the wait time (in milliseconds) for the sp_server_diagnostics system stored
procedure to return server-health information before WSFC cluster assumes that the server
instance is slow or hung. HEALTH_CHECK_TIMEOUT is set at the group level but is relevant
only on availability replicas that are configured for synchronous-commit availability mode
with automatic failover (AVAILIBILITY_MODE = SYNCHRONOUS_COMMIT). Furthermore, a
health-check timeout can trigger an automatic failover only if both the primary and
secondary replicas are configured for automatic failover mode (FAILOVER_MODE =
AUTOMATIC) and the secondary replica is currently synchronized with the primary replica.

The default HEALTH_CHECK_TIMEOUT value is 30000 milliseconds (30 seconds). The
minimum value is 15000 milliseconds (15 seconds), and the maximum value is 4294967295
milliseconds.

Supported only on the primary replica.

Important
sp_server_diagnostics does not perform health checks at the database level.

ADD DATABASE database_name

Specifies a list of one or more user databases that you want to add to the availability group.
These databases must reside on the instance of SQL Server that hosts the current primary
replica. You can specify multiple databases for an availability group, but each database can
belong to only one availability group. For information about the type of databases that an
availability group can support, see Prerequisites, Restrictions, and
Recommendations for AlwaysOn Availability Groups (SQL Server). To find out

http://msdn.microsoft.com/en-us/library/8c504c7f-5c1d-4124-b697-f735ef0084f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c504c7f-5c1d-4124-b697-f735ef0084f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/62658017-d089-459c-9492-c51e28f60efe(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�

 28

which local databases already belong to an availability group, see the replica_id column in
the sys.databases catalog view.

Supported only on the primary replica.

Note
After you have created the availability group, you will need connect to each server instance that hosts
a secondary replica and then prepare each secondary database and join it to the availability group. For
more information, see Start Data Movement on an AlwaysOn Secondary Database (SQL
Server).

REMOVE DATABASE database_name

Removes the specified primary database and the corresponding secondary databases from
the availability group. Supported only on the primary replica.

For information about the recommended follow up after removing an availability database
from an availability group, see Remove a Primary Database from an Availability
Group (SQL Server).

ADD REPLICA ON

Specifies from one to four SQL server instances to host secondary replicas in an availability
group. Each replica is specified by its server instance address followed by a WITH (…) clause.

Supported only on the primary replica.

You need to join every new secondary replica to the availability group. For more information,
see the description of the JOIN option, later in this section.

<server_instance>

Specifies the address of the instance of SQL Server that is the host for an replica. The address
format depends on whether the instance is the default instance or a named instance and
whether it is a standalone instance or a failover cluster instance (FCI). The syntax is as follows:

{ 'system_name[\instance_name]' | 'FCI_network_name[\instance_name]' }

The components of this address are as follows:

system_name

Is the NetBIOS name of the computer system on which the target instance of SQL Server
resides. This computer must be a WSFC node.

FCI_network_name

Is the network name that is used to access a SQL Server failover cluster. Use this if the
server instance participates as a SQL Server failover partner. Executing SELECT
@@SERVERNAME on an FCI server instance returns its entire
'FCI_network_name[\instance_name]' string (which is the full replica name).

instance_name

Is the name of an instance of a SQL Server that is hosted by system_name or
FCI_network_name and that has HADR service is enabled. For a default server instance,

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/498eb3fb-6a43-434d-ad95-68a754232c45(SQL.110)�
http://msdn.microsoft.com/en-us/library/498eb3fb-6a43-434d-ad95-68a754232c45(SQL.110)�
http://msdn.microsoft.com/en-us/library/6d4ca31e-ddf0-44bf-be5e-a5da060bf096(SQL.110)�
http://msdn.microsoft.com/en-us/library/6d4ca31e-ddf0-44bf-be5e-a5da060bf096(SQL.110)�
http://msdn.microsoft.com/en-us/library/b0ef33fb-954a-4294-b05b-a87c14ce25a3(SQL.110)�

 29

instance_name is optional. The instance name is case insensitive. On a stand-alone server
instance, this value name is the same as the value returned by executing SELECT
@@SERVERNAME.

\

Is a separator used only when specifying instance_name, in order to separate it from
system_name or FCI_network_name.

For information about the prerequisites for WSFC nodes and server instances, see
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability
Groups (SQL Server).

ENDPOINT_URL = 'TCP://system-address:port'

Specifies the URL path for the database mirroring endpoint on the instance of SQL
Server that will host the availability replica that you are adding or modifying.

ENDPOINT_URL is required in the ADD REPLICA ON clause and optional in the MODIFY
REPLICA ON clause. For more information, see Specify the Endpoint URL When
Adding or Modifying an Availability Replica.

'TCP://system-address:port'

Specifies a URL for specifying an endpoint URL or read-only routing URL. The URL parameters
are as follows:

system-address

Is a string, such as a system name, a fully qualified domain name, or an IP address, that
unambiguously identifies the destination computer system.

port

Is a port number that is associated with the mirroring endpoint of the server instance (for
the ENDPOINT_URL option) or the port number used by the Database Engine of the server
instance (for the READ_ONLY_ROUTING_URL option).

AVAILABILITY_MODE = { SYNCHRONOUS_COMMIT | ASYNCHRONOUS_COMMIT }

Specifies whether the primary replica has to wait for the secondary replica to acknowledge
the hardening (writing) of the log records to disk before the primary replica can commit the
transaction on a given primary database. The transactions on different databases on the
same primary replica can commit independently.

SYNCHRONOUS_COMMIT

Specifies that the primary replica will wait to commit transactions until they have been
hardened on this secondary replica (synchronous-commit mode). You can specify
SYNCHRONOUS_COMMIT for up to three replicas, including the primary replica.

ASYNCHRONOUS_COMMIT

Specifies that the primary replica commits transactions without waiting for this secondary
replica to harden the log (synchronous-commit availability mode). You can specify

http://msdn.microsoft.com/en-us/library/b0ef33fb-954a-4294-b05b-a87c14ce25a3(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/39332dc5-678e-4650-9217-6aa3cdc41635(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7520c13-a8ee-4ddc-9e9a-54cd3d27ef1c(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7520c13-a8ee-4ddc-9e9a-54cd3d27ef1c(SQL.110)�

 30

ASYNCHRONOUS_COMMIT for up to five availability replicas, including the primary replica.

AVAILABILITY_MODE is required in the ADD REPLICA ON clause and optional in the MODIFY
REPLICA ON clause. For more information, see Availability Modes (AlwaysOn
Availability Groups).

FAILOVER_MODE = { AUTOMATIC | MANUAL }

Specifies the failover mode of the availability replica that you are defining.

AUTOMATIC

Enables automatic failover. AUTOMATIC is supported only if you also specify
AVAILABILITY_MODE = SYNCHRONOUS_COMMIT. You can specify AUTOMATIC for two
availability replicas, including the primary replica.

Note
SQL Server Failover Cluster Instances (FCIs) do not support automatic failover by availability groups,
so any availability replica that is hosted by an FCI can only be configured for manual failover.

MANUAL

Enables manual failover or forced manual failover (forced failover) by the database
administrator.

FAILOVER_MODE is required in the ADD REPLICA ON clause and optional in the MODIFY
REPLICA ON clause. Two types of manual failover exist, manual failover without data loss and
forced failover (with possible data loss), which are supported under different conditions. For
more information, see Failover Modes (AlwaysOn Availability Groups).

BACKUP_PRIORITY = n

Specifies your priority for performing backups on this replica relative to the other replicas in
the same availability group. The value is an integer in the range of 0..100. These values have
the following meanings:

• 1..100 indicates that the availability replica could be chosen for performing backups. 1
indicates the lowest priority, and 100 indicates the highest priority. If BACKUP_PRIORITY
= 1, the availability replica would be chosen for performing backups only if no higher
priority availability replicas are currently available.

• 0 indicates that this availability replica will never be chosen for performing backups. This
is useful, for example, for a remote availability replica to which you never want backups
to fail over.

For more information, see Backup on Secondary Replicas (AlwaysOn Availability
Groups).

SECONDARY_ROLE (…)

Specifies role-specific settings that will take effect if this availability replica currently owns the
secondary role (that is, whenever it is a secondary replica). Within the parentheses, specify
either or both secondary-role options. If you specify both, use a comma-separated list.

http://msdn.microsoft.com/en-us/library/10e7bac7-4121-48c2-be01-10083a8c65af(SQL.110)�
http://msdn.microsoft.com/en-us/library/10e7bac7-4121-48c2-be01-10083a8c65af(SQL.110)�
http://msdn.microsoft.com/en-us/library/378d2d63-50b9-420b-bafb-d375543fda17(SQL.110)�
http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�
http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�

 31

The secondary role options are as follows:

ALLOW_CONNECTIONS = { NO | READ_ONLY | ALL }

Specifies whether the databases of a given availability replica that is performing the
secondary role (that is, is acting as a secondary replica) can accept connections from
clients, one of:

NO

No user connections are allowed to secondary databases of this replica. They are not
available for read access. This is the default behavior.

READ_ONLY

Only connections are allowed to the databases in the secondary replica where the
Application Intent property is set to ReadOnly. For more information about this
property, see Using Connection String Keywords with SQL Server Native
Client.

ALL

All connections are allowed to the databases in the secondary replica for read-only
access.

For more information, see Read-Only Access to Secondary Replicas.

READ_ONLY_ROUTING_URL = 'TCP://system-address:port'

Specifies the URL to be used for routing read-intent connection requests to this availability
replica. This is the URL on which the SQL Server Database Engine listens. Typically, the
default instance of the SQL Server Database Engine listens on TCP port 1433.

For a named instance, you can obtain the port number by querying the port and
type_desc columns of the sys.dm_tcp_listener_states dynamic management view. The
server instance uses the Transact-SQL listener (type_desc = 'TSQL').

Note
For a named instance of SQL Server, the Transact-SQL listener should be configured to use a specific
port. For more information, see Configure a Server to Listen on a Specific TCP Port (SQL
Server Configuration Manager).

PRIMARY_ROLE (…)

Specifies role-specific settings that will take effect if this availability replica currently owns the
primary role (that is, whenever it is the primary replica). Within the parentheses, specify
either or both primary-role options. If you specify both, use a comma-separated list.

The primary role options are as follows:

ALLOW_CONNECTIONS = { READ_WRITE | ALL }

Specifies the type of connection that the databases of a given availability replica that is
performing the primary role (that is, is acting as a primary replica) can accept from clients,
one of:

http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/78f3f81a-066a-4fff-b023-7725ff874fdf(SQL.110)�
http://msdn.microsoft.com/en-us/library/9997ffed-a4c1-428f-8bac-3b9e4b16d7cf(SQL.110)�
http://msdn.microsoft.com/en-us/library/2276a5ed-ae3f-4855-96d8-f5bf01890640(SQL.110)�
http://msdn.microsoft.com/en-us/library/2276a5ed-ae3f-4855-96d8-f5bf01890640(SQL.110)�

 32

READ_WRITE

Connections where the Application Intent connection property is set to ReadOnly are
disallowed. When the Application Intent property is set to ReadWrite or the Application
Intent connection property is not set, the connection is allowed. For more information
about Application Intent connection property, see Using Connection String
Keywords with SQL Server Native Client.

ALL

All connections are allowed to the databases in the primary replica. This is the default
behavior.

READ_ONLY_ROUTING_LIST = { (‘<server_instance>’ [,...n]) | NONE }

Specifies a comma-separated list of server instances that host availability replicas for this
availability group that meet the following requirements when running under the secondary
role:

• Be configured to allow all connections or read-only connections (see the
ALLOW_CONNECTIONS argument of the SECONDARY_ROLE option, above).

• Have their read-only routing URL defined (see the READ_ONLY_ROUTING_URL
argument of the SECONDARY_ROLE option, above).

The READ_ONLY_ROUTING_LIST values are as follows:

<server_instance>

Specifies the address of the instance of SQL Server that is the host for an availability
replica that is a readable secondary replica when running under the secondary role.

Use a comma-separated list to specify all of the server instances that might host a
readable secondary replica. Read-only routing will follow the order in which server
instances are specified in the list. If you include a replica's host server instance on the
replica's read-only routing list, placing this server instance at the end of the list is
typically a good practice, so that read-intent connections go to a secondary replica, if
one is available.

NONE

Specifies that when this availability replica is the primary replica, read-only routing will
not be supported. This is the default behavior. When used with MODIFY REPLICA ON,
this value disables an existing list, if any.

SESSION_TIMEOUT = seconds

Specifies the session-timeout period in seconds. If you do not specify this option, by default,
the time period is 10 seconds. The minimum value is 5 seconds.

Important
We recommend that you keep the time-out period at 10 seconds or greater.

For more information about the session-timeout period, see Overview of AlwaysOn
Availability Groups (SQL Server).

http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/04fd9d95-4624-420f-a3be-1794309b3a47(SQL.110)�
http://msdn.microsoft.com/en-us/library/04fd9d95-4624-420f-a3be-1794309b3a47(SQL.110)�

 33

MODIFY REPLICA ON

Modifies any of the replicas of the availability group. The list of replicas to be modified
contains the server instance address and a WITH (…) clause for each replica.

Supported only on the primary replica.

REMOVE REPLICA ON

Removes the specified secondary replica from the availability group. The current primary
replica cannot be removed from an availability group. On being removed, the replica stops
receiving data. Its secondary databases are removed from the availability group and enter the
RESTORING state.

Supported only on the primary replica.

Note
If you remove a replica while it is unavailable or failed, when it comes back online it will discover that it
no longer belongs the availability group.

JOIN

Causes the local server instance to host a secondary replica in the specified availability group.

Supported only on a secondary replica that has not yet been joined to the availability group.

For more information, see Join a Secondary Replica to an Availability Group (SQL
Server).

FAILOVER

Initiates a manual failover of the availability group without data loss to the secondary replica
to which you are connected. The secondary replica will take over the primary role and recover
its copy of each database and bring them online as the new primary databases. The former
primary replica concurrently transitions to the secondary role, and its databases become
secondary databases and are immediately suspended. Potentially, these roles can be
switched back and forth by a series of failures.

Note
A failover command returns as soon as the target secondary replica has accepted the command.
However, database recovery occurs asynchronously after the availability group has finished failing
over.

Supported only on a synchronous-commit secondary replica that is currently synchronized
with the primary replica. Note that for a secondary replica to be synchronized the primary
replica must also be running in synchronous-commit mode.

For information about the limitations, prerequisites and recommendations for a performing a
planned manual failover, see Perform a Planned Manual Failover of an Availability
Group (SQL Server).

http://msdn.microsoft.com/en-us/library/e5bd2489-097a-490e-8ea1-34fe48378ad1(SQL.110)�
http://msdn.microsoft.com/en-us/library/e5bd2489-097a-490e-8ea1-34fe48378ad1(SQL.110)�
http://msdn.microsoft.com/en-us/library/419f655d-3f9a-4e7d-90b9-f0bab47b3178(SQL.110)�
http://msdn.microsoft.com/en-us/library/419f655d-3f9a-4e7d-90b9-f0bab47b3178(SQL.110)�

 34

FORCE_FAILOVER_ALLOW_DATA_LOSS

ADD LISTENER ‘dns_name’ (<add_listener_option>)

Defines a new availability group listener for this availability group. Supported only on the
primary replica.

Important
• Before you create your first listener, we strongly recommend that you read

Prerequisites, Restrictions, and Recommendations for AlwaysOn
Client Connectivity (SQL Server).

• After you create a listener for a given availability group, we strongly recommend
that you do the following:

dns_name

Specifies the DNS host name of the availability group listener. The DNS name of the listener
must be unique in the domain and in NetBIOS.

dns_name is a string value. This name can contain only alphanumeric characters, dashes (-),
and hyphens (_), in any order. DNS host names are case insensitive. The maximum length is
63 characters.

We recommend that you specify a meaningful string. For example, for an availability group
named AG1, a meaningful DNS host name would be ag1-listener.

Important
NetBIOS recognizes only the first 15 chars in the dns_name. If you have two WSFC clusters that are

Caution

Forcing service, which might involve some data loss, is strictly a disaster recovery method. Therefore,
We strongly recommend that you force failover only if the primary replica is no longer running, you
are willing to risk losing data, and you must restore service to the availability group immediately.

Forces failover of the availability group, with possible data loss, to the secondary replica to
which you are connected. The secondary replica will take over the primary role and recover
its copy of each database and bring them online as the new primary databases. On any
remaining secondary replicas, every secondary database is suspended until manually
resumed. When the former primary replica becomes available, it will switch to the secondary
role, and its databases will become suspended secondary databases.

Supported only on a secondary replica.

Note
A failover command returns as soon as the target secondary replica has accepted the command.
However, database recovery occurs asynchronously after the availability group has finished failing
over.

For information about the limitations, prerequisites and recommendations for forcing failover
and the effect of a forced failover on the former primary databases, see Perform a Forced
Manual Failover of an Availability Group (SQL Server).

http://msdn.microsoft.com/en-us/library/b456448d-1757-48c8-8bbb-2d1c2d6d61e9(SQL.110)�
http://msdn.microsoft.com/en-us/library/b456448d-1757-48c8-8bbb-2d1c2d6d61e9(SQL.110)�
http://msdn.microsoft.com/en-us/library/222288fe-ffc0-4567-b624-5d91485d70f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/222288fe-ffc0-4567-b624-5d91485d70f0(SQL.110)�

 35

controlled by the same Active Directory and you try to create availability group listeners in both of
clusters using names with more than 15 characters and an identical 15 character prefix, you will get an
error reporting that the Virtual Network Name resource could not be brought online. For information
about prefix naming rules for DNS names, see Assigning Domain Names.

<add_listener_option>

ADD LISTENER takes one of the following options:

WITH DHCP [ON { (‘four_part_ipv4_address’, ‘four_part_ipv4_mask’) }]

Specifies that the availability group listener will use the Dynamic Host Configuration
Protocol (DHCP). Optionally, use the ON clause to identify the network on which this
listener will be created. DHCP is limited to a single subnet that is used for every server
instances that hosts an availability replica in the availability group.

Important
We do not recommend DHCP in production environment. If there is a down time and the DHCP IP
lease expires, extra time is required to register the new DHCP network IP address that is associated
with the listener DNS name and impact the client connectivity. However, DHCP is good for setting
up your development and testing environment to verify basic functions of availability groups and
for integration with your applications.

For example:

WITH DHCP ON ('10.120.19.0','255.255.254.0')

WITH IP ({ (‘four_part_ipv4_address’, ‘four_part_ipv4_mask’) | (‘ipv6_address’) } [,
...n]) [, PORT = listener_port]

Specifies that, instead of using DHCP, the availability group listener will use one or more
static IP addresses. To create an availability group across multiple subnets, each subnet
requires one static IP address in the listener configuration. For a given subnet, the static IP
address can be either an IPv4 address or an IPv6 address. Contact your network
administrator to get a static IP address for each subnet that will host an availability replica
for the new availability group.

For example:

WITH IP (('10.120.19.155','255.255.254.0'))

four_part_ipv4_address

Specifies an IPv4 four-part address for an availability group listener. For example,
10.120.19.155.

four_part_ipv4_mask

Specifies an IPv4 four-part mask for an availability group listener. For example,
255.255.254.0.

ipv6_address

Specifies an IPv6 address for an availability group listener. For example,
2001::4898:23:1002:20f:1fff:feff:b3a3.

http://technet.microsoft.com/en-us/library/cc731265(WS.10).aspx�

 36

PORT = listener_port

Specifies the port number—listener_port—to be used by an availability group listener that is
specified by a WITH IP clause. PORT is optional.

The default port number, 1433, is supported. However, if you have security concerns, we
recommend using a different port number.

For example: WITH IP (('2001::4898:23:1002:20f:1fff:feff:b3a3')
) , PORT = 7777

MODIFY LISTENER ‘dns_name’ (<modify_listener_option>)

Modifies an existing availability group listener for this availability group. Supported only on
the primary replica.

<modify_listener_option>

MODIFY LISTENER takes one of the following options:

ADD IP { (‘four_part_ipv4_address’, ‘four_part_ipv4_mask’) | (‘dns_nameipv6_address’
) }

Adds the specified IP address to the availability group listener specified by dns_name.

PORT = listener_port

See the description of this argument earlier in this section.

RESTART LISTENER ‘dns_name’

Restarts the listener that is associated with the specified DNS name. Supported only on the
primary replica.

REMOVE LISTENER ‘dns_name’

Removes the listener that is associated with the specified DNS name. Supported only on the
primary replica.

Prerequisites and Restrictions
For information about prerequisites and restrictions on availability replicas and on their host
server instances and computers, see Prerequisites, Restrictions, and Recommendations for
AlwaysOn Availability Groups (SQL Server).
For information about restrictions on the AVAILABILITY GROUP Transact-SQL statements, see
Overview of "HADR" Transact-SQL Statements (SQL Server).

Security

Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Examples

http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/184d0a81-2259-4db9-9d0d-01aac0b502c8(SQL.110)�

 37

• A. Joining a secondary replica to an availability group
• B. Forcing failover of an availability group

A. Joining a secondary replica to an availability group
The following example, joins a secondary replica to which you are connected to the AccountsAG
availability group.

ALTER AVAILABILITY GROUP AccountsAG JOIN;

GO

B. Forcing failover of an availability group
The following example forces the AccountsAG availability group to fail over to the secondary
replica to which you are connected.

ALTER AVAILABILITY GROUP AccountsAG FORCE_FAILOVER_ALLOW_DATA_LOSS;

GO

See Also
CREATE AVAILABILITY GROUP (Transact-SQL)
ALTER DATABASE SET HADR (Transact-SQL)
DROP AVAILABILITY GROUP (Transact-SQL)
sys.availability_replicas (Transact-SQL)
sys.availability_groups (Transact-SQL)
Troubleshooting AlwaysOn Availability Groups Configuration (SQL Server)
Overview of AlwaysOn Availability Groups (SQL Server)
Client Connectivity and Application Failover (AlwaysOn Availability Groups)

ALTER BROKER PRIORITY
Changes the properties of a Service Broker conversation priority.

 Transact-SQL Syntax Conventions

Syntax

ALTER BROKER PRIORITY ConversationPriorityName
FOR CONVERSATION
{ SET ([CONTRACT_NAME = {ContractName | ANY }]
 [[,] LOCAL_SERVICE_NAME = {LocalServiceName | ANY }]
 [[,] REMOTE_SERVICE_NAME = {'RemoteServiceName' | ANY }]
 [[,] PRIORITY_LEVEL = { PriorityValue | DEFAULT }]

http://msdn.microsoft.com/en-us/library/0a06e9b6-a1e4-4293-867b-5c3f5a8ff62c(SQL.110)�
http://msdn.microsoft.com/en-us/library/da7fa55f-c008-45d9-bcfc-3513b02d9e71(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c222f98-7392-4faf-b7ad-5fb60ffa237e(SQL.110)�
http://msdn.microsoft.com/en-us/library/04fd9d95-4624-420f-a3be-1794309b3a47(SQL.110)�
http://msdn.microsoft.com/en-us/library/76fb3eca-6b08-4610-8d79-64019dd56c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 38

)
}
[;]

Arguments
ConversationPriorityName

Specifies the name of the conversation priority to be changed. The name must refer to a
conversation priority in the current database.

SET

Specifies the criteria for determining if the conversation priority applies to a conversation.
SET is required and must contain at least one criterion: CONTRACT_NAME,
LOCAL_SERVICE_NAME, REMOTE_SERVICE_NAME, or PRIORITY_LEVEL.

CONTRACT_NAME = {ContractName | ANY}

Specifies the name of a contract to be used as a criterion for determining if the conversation
priority applies to a conversation. ContractName is a Database Engine identifier, and must
specify the name of a contract in the current database.

ContractName

Specifies that the conversation priority can be applied only to conversations where the
BEGIN DIALOG statement that started the conversation specified ON CONTRACT
ContractName.

ANY

Specifies that the conversation priority can be applied to any conversation, regardless of
which contract it uses.

If CONTRACT_NAME is not specified, the contract property of the conversation priority is not
changed.

LOCAL_SERVICE_NAME = {LocalServiceName | ANY}

Specifies the name of a service to be used as a criterion to determine if the conversation
priority applies to a conversation endpoint.

LocalServiceName is a Database Engine identifier and must specify the name of a service in
the current database.

LocalServiceName

Specifies that the conversation priority can be applied to the following:

• Any initiator conversation endpoint whose initiator service name matches
LocalServiceName.

• Any target conversation endpoint whose target service name matches
LocalServiceName.

 39

ANY

• Specifies that the conversation priority can be applied to any conversation endpoint,
regardless of the name of the local service used by the endpoint.

If LOCAL_SERVICE_NAME is not specified, the local service property of the conversation
priority is not changed.

REMOTE_SERVICE_NAME = {'RemoteServiceName' | ANY}

Specifies the name of a service to be used as a criterion to determine if the conversation
priority applies to a conversation endpoint.

RemoteServiceName is a literal of type nvarchar(256). Service Broker uses a byte-by-byte
comparison to match the RemoteServiceName string. The comparison is case-sensitive and
does not consider the current collation. The target service can be in the current instance of
the Database Engine, or a remote instance of the Database Engine.

'RemoteServiceName'

Specifies the conversation priority be assigned to the following:

• Any initiator conversation endpoint whose associated target service name matches
RemoteServiceName.

• Any target conversation endpoint whose associated initiator service name matches
RemoteServiceName.

ANY

Specifies that the conversation priority applies to any conversation endpoint, regardless of
the name of the remote service associated with the endpoint.

If REMOTE_SERVICE_NAME is not specified, the remote service property of the conversation
priority is not changed.

PRIORITY_LEVEL = { PriorityValue | DEFAULT }

Specifies the priority level to assign any conversation endpoint that use the contracts and
services that are specified in the conversation priority. PriorityValue must be an integer literal
from 1 (lowest priority) to 10 (highest priority).

If PRIORITY_LEVEL is not specified, the priority level property of the conversation priority is
not changed.

Remarks
No properties that are changed by ALTER BROKER PRIORITY are applied to existing
conversations. The existing conversations continue with the priority that was assigned when they
were started.
For more information, see CREATE BROKER PRIORITY (Transact-SQL).

Permissions

 40

Permission for creating a conversation priority defaults to members of the db_ddladmin or
db_owner fixed database roles, and to the sysadmin fixed server role. Requires ALTER
permission on the database.

Examples

A. Changing only the priority level of an existing conversation priority.
Changes the priority level, but does not change the contract, local service, or remote service
properties.

ALTER BROKER PRIORITY SimpleContractDefaultPriority

 FOR CONVERSATION

 SET (PRIORITY_LEVEL = 3);

B. Changing all of the properties of an existing conversation priority.
Changes the priority level, contract, local service, and remote service properties.

ALTER BROKER PRIORITY SimpleContractPriority

 FOR CONVERSATION

 SET (CONTRACT_NAME = SimpleContractB,

 LOCAL_SERVICE_NAME = TargetServiceB,

 REMOTE_SERVICE_NAME = N'InitiatorServiceB',

 PRIORITY_LEVEL = 8);

See Also
CREATE BROKER PRIORITY (Transact-SQL)
DROP BROKER PRIORITY (Transact-SQL)
sys.conversation_priorities (Transact-SQL)

ALTER CERTIFICATE
Changes the private key used to encrypt a certificate, or adds one if none is present. Changes
the availability of a certificate to Service Broker.

 Transact-SQL Syntax Conventions

Syntax

ALTER CERTIFICATE certificate_name
 REMOVE PRIVATE KEY
 |
 WITH PRIVATE KEY (<private_key_spec> [,...])
 |

http://msdn.microsoft.com/en-us/library/7cbb9171-3310-4aae-8458-755c882d6462(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 41

 WITH ACTIVE FOR BEGIN_DIALOG = [ON | OFF]

<private_key_spec> ::=
 FILE = 'path_to_private_key'
 |
 DECRYPTION BY PASSWORD = 'key_password'
 |
 ENCRYPTION BY PASSWORD = 'password'

Arguments
certificate_name

Is the unique name by which the certificate is known in database.

FILE = 'path_to_private_key'

Specifies the complete path, including file name, to the private key. This parameter can be a
local path or a UNC path to a network location. This file will be accessed within the security
context of the SQL Server service account. When you use this option, you must make sure
that the service account has access to the specified file.

DECRYPTION BY PASSWORD = 'key_password'

Specifies the password that is required to decrypt the private key.

ENCRYPTION BY PASSWORD = 'password'

Specifies the password used to encrypt the private key of the certificate in the database.
password must meet the Windows password policy requirements of the computer that is
running the instance of SQL Server. For more information, see EVENTDATA (Transact-
SQL).

REMOVE PRIVATE KEY

Specifies that the private key should no longer be maintained inside the database.

ACTIVE FOR BEGIN_DIALOG = { ON | OFF }

Makes the certificate available to the initiator of a Service Broker dialog conversation.

Remarks
The private key must correspond to the public key specified by certificate_name.
The DECRYPTION BY PASSWORD clause can be omitted if the password in the file is protected
with a null password.
When the private key of a certificate that already exists in the database is imported from a file,
the private key will be automatically protected by the database master key. To protect the
private key with a password, use the ENCRYPTION BY PASSWORD phrase.

http://msdn.microsoft.com/en-us/library/c0040c0a-a18f-45b9-9c40-0625685649b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/c0040c0a-a18f-45b9-9c40-0625685649b1(SQL.110)�

 42

The REMOVE PRIVATE KEY option will delete the private key of the certificate from the database.
You can do this when the certificate will be used to verify signatures or in Service Broker
scenarios that do not require a private key. Do not remove the private key of a certificate that
protects a symmetric key.
You do not have to specify a decryption password when the private key is encrypted by using
the database master key.

Always make an archival copy of a private key before removing it from a database. For
more information, see BACKUP CERTIFICATE (Transact-SQL).

The WITH PRIVATE KEY option is not available in a contained database.

Permissions
Requires ALTER permission on the certificate.

Examples

A. Changing the password of a certificate
ALTER CERTIFICATE Shipping04

 WITH PRIVATE KEY (DECRYPTION BY PASSWORD = 'pGF$5DGvbd2439587y',

 ENCRYPTION BY PASSWORD = '4-329578thlkajdshglXCSgf');

GO

B. Changing the password that is used to encrypt the private key
ALTER CERTIFICATE Shipping11

 WITH PRIVATE KEY (ENCRYPTION BY PASSWORD = '34958tosdgfkh##38',

 DECRYPTION BY PASSWORD = '95hkjdskghFDGGG4%');

GO

C. Importing a private key for a certificate that is already present in the database
ALTER CERTIFICATE Shipping13

 WITH PRIVATE KEY (FILE = 'c:\\importedkeys\Shipping13',

 DECRYPTION BY PASSWORD = 'GDFLKl8^^GGG4000%');

GO

D. Changing the protection of the private key from a password to the database
master key
ALTER CERTIFICATE Shipping15

 WITH PRIVATE KEY (DECRYPTION BY PASSWORD = '95hk000eEnvjkjy#F%');

GO

Important

http://msdn.microsoft.com/en-us/library/509b9462-819b-4c45-baae-3d2d90d14a1c(SQL.110)�

 43

See Also
CREATE CERTIFICATE (Transact-SQL)
DROP CERTIFICATE (Transact-SQL)
BACKUP CERTIFICATE (Transact-SQL)
Encryption Hierarchy
EVENTDATA (Transact-SQL)

ALTER CREDENTIAL
Changes the properties of a credential.

 Transact-SQL Syntax Conventions

Syntax

ALTER CREDENTIAL credential_name WITH IDENTITY = 'identity_name'
 [, SECRET = 'secret']

Arguments
credential_name

Specifies the name of the credential that is being altered.

IDENTITY = 'identity_name'

Specifies the name of the account to be used when connecting outside the server.

SECRET = 'secret'

Specifies the secret required for outgoing authentication. secret is optional.

Remarks
When a credential is changed, the values of both identity_name and secret are reset. If the
optional SECRET argument is not specified, the value of the stored secret will be set to NULL.
The secret is encrypted by using the service master key. If the service master key is regenerated,
the secret is reencrypted by using the new service master key.
Information about credentials is visible in the sys.credentials catalog view.

Permissions
Requires ALTER ANY CREDENTIAL permission. If the credential is a system credential, requires
CONTROL SERVER permission.

Examples

A. Changing the password of a credential

http://msdn.microsoft.com/en-us/library/509b9462-819b-4c45-baae-3d2d90d14a1c(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 44

The following example changes the secret stored in a credential called Saddles. The credential
contains the Windows login RettigB and its password. The new password is added to the
credential using the SECRET clause.
ALTER CREDENTIAL Saddles WITH IDENTITY = 'RettigB',

 SECRET = 'sdrlk8$40-dksli87nNN8';

GO

B. Removing the password from a credential
The following example removes the password from a credential named Frames. The credential
contains Windows login Aboulrus8 and a password. After the statement is executed, the
credential will have a NULL password because the SECRET option is not specified.
ALTER CREDENTIAL Frames WITH IDENTITY = 'Aboulrus8';

GO

See Also
sys.credentials (Transact-SQL)
CREATE CREDENTIAL (Transact-SQL)
DROP CREDENTIAL (Transact-SQL)
CREATE LOGIN (Transact-SQL)
sys.credentials (Transact-SQL)

ALTER CRYPTOGRAPHIC PROVIDER
Alters a cryptographic provider within SQL Server from an Extensible Key Management (EKM)
provider.

 Transact-SQL Syntax Conventions

Syntax

ALTER CRYPTOGRAPHIC PROVIDER provider_name
 [FROM FILE = path_of_DLL]
 ENABLE | DISABLE

Arguments
provider_name

Name of the Extensible Key Management provider.

Path_of_DLL

Path of the .dll file that implements the SQL Server Extensible Key Management interface.

http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea48cf80-904a-4273-a950-6d35b1b0a1b6(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 45

ENABLE | DISABLE

Enables or disables a provider.

Remarks
If the provider changes the .dll file that is used to implement Extensible Key Management in SQL
Server, you must use the ALTER CRYPTOGRAPHIC PROVIDER statement.
When the .dll file path is updated by using the ALTER CRYPTOGRAPHIC PROVIDER statement,
SQL Server performs the following actions:
• Disables the provider.
• Verifies the DLL signature and ensures that the .dll file has the same GUID as the one

recorded in the catalog.
• Updates the DLL version in the catalog.
When an EKM provider is set to DISABLE, any attempts on new connections to use the provider
with encryption statements will fail.
To disable a provider, all sessions that use the provider must be terminated.
When an EKM provider dll does not implement all of the necessary methods, ALTER
CRYPTOGRAPHIC PROVIDER can return error 33085:
One or more methods cannot be found in cryptographic provider library
'%.*ls'.
When the header file used to create the EKM provider dll is out of date, ALTER CRYPTOGRAPHIC
PROVIDER can return error 33032:
SQL Crypto API version '%02d.%02d' implemented by provider is not supported.
Supported version is '%02d.%02d'.

Permissions
Requires CONTROL permission on the cryptographic provider.

Examples
The following example alters a cryptographic provider, called SecurityProvider in SQL
Server, to a newer version of a .dll file. This new version is
named c:\SecurityProvider\SecurityProvider_v2.dll and is installed on the server. The
provider's certificate must be installed on the server.

/* First, disable the provider to perform the upgrade.

This will terminate all open cryptographic sessions */

ALTER CRYPTOGRAPHIC PROVIDER SecurityProvider

DISABLE;

GO

/* Upgrade the provider .dll file. The GUID must the same

 46

as the previous version, but the version can be different. */

ALTER CRYPTOGRAPHIC PROVIDER SecurityProvider

FROM FILE = 'c:\SecurityProvider\SecurityProvider_v2.dll';

GO

/* Enable the upgraded provider. */

ALTER CRYPTOGRAPHIC PROVIDER SecurityProvider

ENABLE;

GO

See Also
Understanding Extensible Key Management (EKM)
CREATE CRYPTOGRAPHIC PROVIDER (Transact-SQL)
DROP CRYPTOGRAPHIC PROVIDER (Transact-SQL)
CREATE SYMMETRIC KEY (Transact-SQL)

ALTER DATABASE
Modifies a database, or the files and filegroups associated with the database. Adds or removes
files and filegroups from a database, changes the attributes of a database or its files and
filegroups, changes the database collation, and sets database options. Database snapshots
cannot be modified. To modify database options associated with replication, use
sp_replicationdboption.
Because of its length, the ALTER DATABASE syntax is separated into the following topics:
ALTER DATABASE

The current topic provides the syntax for changing the name and the collation of a database.

ALTER DATABASE File and Filegroup Options
Provides the syntax for adding and removing files and filegroups from a database, and for
changing the attributes of the files and filegroups.

ALTER DATABASE SET Options
Provides the syntax for changing the attributes of a database by using the SET options of
ALTER DATABASE.

ALTER DATABASE Database Mirroring
Provides the syntax for the SET options of ALTER DATABASE that are related to database
mirroring.

ALTER DATABASE SET HADR
Provides the syntax for the AlwaysOn Availability Groups options of ALTER DATABASE for

http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/d021864e-3f21-4d1a-89df-6c1086f753bf(SQL.110)�

 47

configuring a secondary database on a secondary replica of an AlwaysOn availability group.

ALTER DATABASE Compatibility Level
Provides the syntax for the SET options of ALTER DATABASE that are related to database
compatibility levels.

 Transact-SQL Syntax Conventions

Syntax

ALTER DATABASE { database_name | CURRENT }
{
 MODIFY NAME = new_database_name
 | COLLATE collation_name
 | <file_and_filegroup_options>
 | <set_database_options>
}
[;]

<file_and_filegroup_options >::=
 <add_or_modify_files>::=
 <filespec>::=
 <add_or_modify_filegroups>::=
 <filegroup_updatability_option>::=

<set_database_options>::=
 <optionspec>::=
 <auto_option> ::=
 <change_tracking_option> ::=
 <cursor_option> ::=
 <database_mirroring_option> ::=
 <date_correlation_optimization_option> ::=
 <db_encryption_option> ::=
 <db_state_option> ::=
 <db_update_option> ::=
 <db_user_access_option> ::=
 <external_access_option> ::=
 <FILESTREAM_options> ::=

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 48

 <HADR_options> ::=
 <parameterization_option> ::=
 <recovery_option> ::=
 <service_broker_option> ::=
 <snapshot_option> ::=
 <sql_option> ::=
 <termination> ::=

Arguments
database_name

Is the name of the database to be modified.

Note
This option is not available in a Contained Database.

CURRENT

Designates that the current database in use should be altered.

CONTAINMENT

Specifies the containment status of the database. OFF = non-contained database. PARTIAL =
partially contained database.

MODIFY NAME = new_database_name

Renames the database with the name specified as new_database_name.

COLLATE collation_name

Specifies the collation for the database. collation_name can be either a Windows collation
name or a SQL collation name. If not specified, the database is assigned the collation of the
instance of SQL Server.

For more information about the Windows and SQL collation names, see COLLATE
(Transact-SQL).

<file_and_filegroup_options >::=
For more information, see ALTER DATABASE File and Filegroup Options (Transact-SQL).
<set_database_options >::=
For more information, see ALTER DATABASE SET Options (Transact-SQL), ALTER DATABASE
Database Mirroring (Transact-SQL), ALTER DATABASE SET HADR (Transact-SQL), and ALTER
DATABASE Compatibility Level (Transact-SQL).

Remarks
To remove a database, use DROP DATABASE.
To decrease the size of a database, use DBCC SHRINKDATABASE.

http://msdn.microsoft.com/en-us/library/76763ac8-3e0d-4bbb-aa53-f5e7da021daa(SQL.110)�
http://msdn.microsoft.com/en-us/library/76763ac8-3e0d-4bbb-aa53-f5e7da021daa(SQL.110)�
http://msdn.microsoft.com/en-us/library/fc976afd-1edb-4341-bf41-c4a42a69772b(SQL.110)�

 49

The ALTER DATABASE statement must run in autocommit mode (the default transaction
management mode) and is not allowed in an explicit or implicit transaction.
In SQL Server 2005 or later, the state of a database file (for example, online or offline), is
maintained independently from the state of the database. For more information, see File States.
The state of the files within a filegroup determines the availability of the whole filegroup. For a
filegroup to be available, all files within the filegroup must be online. If a filegroup is offline, any
try to access the filegroup by an SQL statement will fail with an error. When you build query
plans for SELECT statements, the query optimizer avoids nonclustered indexes and indexed
views that reside in offline filegroups. This enables these statements to succeed. However, if the
offline filegroup contains the heap or clustered index of the target table, the SELECT statements
fail. Additionally, any INSERT, UPDATE, or DELETE statement that modifies a table with any index
in an offline filegroup will fail.
When a database is in the RESTORING state, most ALTER DATABASE statements will fail. The
exception is setting database mirroring options. A database may be in the RESTORING state
during an active restore operation or when a restore operation of a database or log file fails
because of a corrupted backup file.
The plan cache for the instance of SQL Server is cleared by setting one of the following options:

OFFLINE READ_WRITE

ONLINE MODIFY FILEGROUP DEFAULT

MODIFY_NAME MODIFY FILEGROUP READ_WRITE

COLLATE MODIFY FILEGROUP READ_ONLY

READ_ONLY

Clearing the plan cache causes a recompilation of all subsequent execution plans and can cause
a sudden, temporary decrease in query performance. For each cleared cachestore in the plan
cache, the SQL Server error log contains the following informational message: "SQL Server has
encountered %d occurrence(s) of cachestore flush for the '%s' cachestore (part of plan cache)
due to some database maintenance or reconfigure operations". This message is logged every
five minutes as long as the cache is flushed within that time interval.

Changing the Database Collation
Before you apply a different collation to a database, make sure that the following conditions are
in place:
1. You are the only one currently using the database.
2. No schema-bound object depends on the collation of the database.

http://msdn.microsoft.com/en-us/library/b426474d-8954-4df0-b78b-887becfbe8d6(SQL.110)�

 50

If the following objects, which depend on the database collation, exist in the database, the
ALTER DATABASE database_name COLLATE statement will fail. SQL Server will return an
error message for each object blocking the ALTER action:
• User-defined functions and views created with SCHEMABINDING.
• Computed columns.
• CHECK constraints.
• Table-valued functions that return tables with character columns with collations inherited

from the default database collation.
Dependency information for non-schema-bound entities is automatically updated when the
database collation is changed.

Changing the database collation does not create duplicates among any system names for the
database objects. If duplicate names result from the changed collation, the following
namespaces may cause the failure of a database collation change:
• Object names such as a procedure, table, trigger, or view.
• Schema names
• Principals such as a group, role, or user.
• Scalar-type names such as system and user-defined types.
• Full-text catalog names.
• Column or parameter names within an object.
• Index names within a table.
Duplicate names resulting from the new collation will cause the change action to fail, and SQL
Server will return an error message specifying the namespace where the duplicate was found.

Viewing Database Information
You can use catalog views, system functions, and system stored procedures to return
information about databases, files, and filegroups.

Permissions
Requires ALTER permission on the database.

Examples

A. Changing the name of a database
The following example changes the name of the AdventureWorks2012 database to Northwind.

USE master;

GO

ALTER DATABASE AdventureWorks2012

Modify Name = Northwind ;

GO

 51

B. Changing the collation of a database
The following example creates a database named testdb with the
SQL_Latin1_General_CP1_CI_AS collation, and then changes the collation of the testdb
database to COLLATE French_CI_AI.
USE master;

GO

CREATE DATABASE testdb

COLLATE SQL_Latin1_General_CP1_CI_AS ;

GO

ALTER DATABASE testDB

COLLATE French_CI_AI ;

GO

See Also
CREATE DATABASE
DATABASEPROPERTYEX
DROP DATABASE
SET TRANSACTION ISOLATION LEVEL
EVENTDATA
sp_configure
sp_spaceused
sys.databases (Transact-SQL)
sys.database_files
sys.database_mirroring_witnesses
sys.data_spaces (Transact-SQL)
sys.filegroups
sys.master_files (Transact-SQL)
System Databases

ALTER DATABASE File and Filegroup Options
Modifies the files and filegroups associated with the database. Adds or removes files and
filegroups from a database, and changes the attributes of a database or its files and filegroups.
For other ALTER DATABASE options, see ALTER DATABASE (Transact-SQL).

 Transact-SQL Syntax Conventions

http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�
http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�
http://msdn.microsoft.com/en-us/library/c6253b48-29f5-4371-bfcd-3ef404060621(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/0f5b0aac-c17d-4e99-b8f7-d04efc9edf44(SQL.110)�
http://msdn.microsoft.com/en-us/library/0dd5b794-733b-4a3c-b5a4-62f9f1f0f22d(SQL.110)�
http://msdn.microsoft.com/en-us/library/f39d55fe-2c0f-472d-a77f-cebc6fea95b5(SQL.110)�
http://msdn.microsoft.com/en-us/library/9e851f72-1f8e-4515-a25d-152ebc12ed56(SQL.110)�
http://msdn.microsoft.com/en-us/library/803b22f2-0016-436b-a561-ce6f023d6b6a(SQL.110)�
http://msdn.microsoft.com/en-us/library/30468a7c-4225-4d35-aa4a-ffa7da4f1282(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 52

Syntax

ALTER DATABASE database_name
{
 <add_or_modify_files>
 | <add_or_modify_filegroups>
}
[;]

<add_or_modify_files>::=
{
 ADD FILE <filespec> [,...n]
 [TO FILEGROUP { filegroup_name }]
 | ADD LOG FILE <filespec> [,...n]
 | REMOVE FILE logical_file_name
 | MODIFY FILE <filespec>
}

<filespec>::=
(
 NAME = logical_file_name
 [, NEWNAME = new_logical_name]
 [, FILENAME = {'os_file_name' | 'filestream_path' }]
 [, SIZE = size [KB | MB | GB | TB]]
 [, MAXSIZE = { max_size [KB | MB | GB | TB] | UNLIMITED }]
 [, FILEGROWTH = growth_increment [KB | MB | GB | TB| %]]
 [, OFFLINE]
)

<add_or_modify_filegroups>::=
{
 | ADD FILEGROUP filegroup_name
 [CONTAINS FILESTREAM]
 | REMOVE FILEGROUP filegroup_name
 | MODIFY FILEGROUP filegroup_name

 53

 { <filegroup_updatability_option>
 | DEFAULT
 | NAME = new_filegroup_name
 }
}
<filegroup_updatability_option>::=
{
 { READONLY | READWRITE }
 | { READ_ONLY | READ_WRITE }
}

Arguments
<add_or_modify_files>::=
Specifies the file to be added, removed, or modified.
database_name

Is the name of the database to be modified.

ADD FILE

Adds a file to the database.

TO FILEGROUP { filegroup_name }

Specifies the filegroup to which to add the specified file. To display the current filegroups
and which filegroup is the current default, use the sys.filegroups catalog view.

ADD LOG FILE

Adds a log file be added to the specified database.

REMOVE FILE logical_file_name

Removes the logical file description from an instance of SQL Server and deletes the physical
file. The file cannot be removed unless it is empty.

logical_file_name

Is the logical name used in SQL Server when referencing the file.

MODIFY FILE

Specifies the file that should be modified. Only one <filespec> property can be changed at a
time. NAME must always be specified in the <filespec> to identify the file to be modified. If
SIZE is specified, the new size must be larger than the current file size.

To modify the logical name of a data file or log file, specify the logical file name to be
renamed in the NAME clause, and specify the new logical name for the file in the NEWNAME
clause. For example:

MODIFY FILE (NAME = logical_file_name, NEWNAME =

http://msdn.microsoft.com/en-us/library/9e851f72-1f8e-4515-a25d-152ebc12ed56(SQL.110)�

 54

new_logical_name)

To move a data file or log file to a new location, specify the current logical file name in the
NAME clause and specify the new path and operating system file name in the FILENAME
clause. For example:

MODIFY FILE (NAME = logical_file_name, FILENAME = '

new_path/os_file_name ')

When you move a full-text catalog, specify only the new path in the FILENAME clause. Do not
specify the operating-system file name.

For more information, see Moving Database Files.

For a FILESTREAM filegroup, NAME can be modified online. FILENAME can be modified
online; however, the change does not take effect until after the container is physically
relocated and the server is shutdown and then restarted.

You can set a FILESTREAM file to OFFLINE. When a FILESTREAM file is offline, its parent
filegroup will be internally marked as offline; therefore, all access to FILESTREAM data within
that filegroup will fail.

<add_or_modify_files> options are not available in a Contained Database.
<filespec>::=
Controls the file properties.
NAME logical_file_name

Specifies the logical name of the file.

logical_file_name

Is the logical name used in an instance of SQL Server when referencing the file.

NEWNAME new_logical_file_name

Specifies a new logical name for the file.

new_logical_file_name

Is the name to replace the existing logical file name. The name must be unique within the
database and comply with the rules for identifiers. The name can be a character or
Unicode constant, a regular identifier, or a delimited identifier.

FILENAME { 'os_file_name' | 'filestream_path' }

Specifies the operating system (physical) file name.

' os_file_name '

For a standard (ROWS) filegroup, this is the path and file name that is used by the
operating system when you create the file. The file must reside on the server on which SQL
Server is installed. The specified path must exist before executing the ALTER DATABASE
statement.

SIZE, MAXSIZE, and FILEGROWTH parameters cannot be set when a UNC path is specified

Note

http://msdn.microsoft.com/en-us/library/89f01b10-5fae-4ed8-b0fb-a4b9f540fd28(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 55

for the file.

Note
System databases cannot reside on UNC share directories.

Data files should not be put on compressed file systems unless the files are read-only
secondary files, or if the database is read-only. Log files should never be put on
compressed file systems.

If the file is on a raw partition, os_file_name must specify only the drive letter of an existing
raw partition. Only one file can be put on each raw partition.

'filestream_path'

For a FILESTREAM filegroup, FILENAME refers to a path where FILESTREAM data will be
stored. The path up to the last folder must exist, and the last folder must not exist. For
example, if you specify the path C:\MyFiles\MyFilestreamData, C:\MyFiles must exist before
you run ALTER DATABASE, but the MyFilestreamData folder must not exist.

The filegroup and file (<filespec>) must be created in the same statement.

The SIZEand FILEGROWTH properties do not apply to a FILESTREAM filegroup.

SIZE size

Specifies the file size. SIZE does not apply to FILESTREAM filegroups.

size

Is the size of the file.

When specified with ADD FILE, size is the initial size for the file. When specified with
MODIFY FILE, size is the new size for the file, and must be larger than the current file size.

When size is not supplied for the primary file, the SQL Server uses the size of the primary
file in the model database. When a secondary data file or log file is specified but size is not
specified for the file, the Database Engine makes the file 1 MB.

The KB, MB, GB, and TB suffixes can be used to specify kilobytes, megabytes, gigabytes, or
terabytes. The default is MB. Specify a whole number and do not include a decimal. To
specify a fraction of a megabyte, convert the value to kilobytes by multiplying the number
by 1024. For example, specify 1536 KB instead of 1.5 MB (1.5 x 1024 = 1536).

MAXSIZE { max_size| UNLIMITED }

Specifies the maximum file size to which the file can grow.

max_size

Is the maximum file size. The KB, MB, GB, and TB suffixes can be used to specify kilobytes,
megabytes, gigabytes, or terabytes. The default is MB. Specify a whole number and do not
include a decimal. If max_size is not specified, the file size will increase until the disk is full.

UNLIMITED

Specifies that the file grows until the disk is full. In SQL Server, a log file specified with
unlimited growth has a maximum size of 2 TB, and a data file has a maximum size of 16

 56

TB. There is no maximum size when this option is specified for a FILESTREAM container. It
continues to grow until the disk is full.

FILEGROWTH growth_increment

Specifies the automatic growth increment of the file. The FILEGROWTH setting for a file
cannot exceed the MAXSIZE setting. FILEGROWTH does not apply to FILESTREAM filegroups.

growth_increment

Is the amount of space added to the file every time new space is required.

The value can be specified in MB, KB, GB, TB, or percent (%). If a number is specified
without an MB, KB, or % suffix, the default is MB. When % is specified, the growth
increment size is the specified percentage of the size of the file at the time the increment
occurs. The size specified is rounded to the nearest 64 KB.

A value of 0 indicates that automatic growth is set to off and no additional space is
allowed.

If FILEGROWTH is not specified, the default value is 1 MB for data files and 10% for log
files, and the minimum value is 64 KB.

Note
Starting in SQL Server 2005, the default growth increment for data files has changed from 10% to 1
MB. The log file default of 10% remains unchanged.

OFFLINE

Sets the file offline and makes all objects in the filegroup inaccessible.

Caution
Use this option only when the file is corrupted and can be restored. A file set to OFFLINE can only be
set online by restoring the file from backup. For more information about restoring a single file, see
RESTORE (Transact-SQL).

<filespec> options are not available in a Contained Database.
<add_or_modify_filegroups>::=
Add, modify, or remove a filegroup from the database.
ADD FILEGROUP filegroup_name

Adds a filegroup to the database.

CONTAINS FILESTREAM

Specifies that the filegroup stores FILESTREAM binary large objects (BLOBs) in the file system.

REMOVE FILEGROUP filegroup_name

Removes a filegroup from the database. The filegroup cannot be removed unless it is empty.
Remove all files from the filegroup first. For more information, see "REMOVE FILE
logical_file_name," earlier in this topic.

Note

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 57

Note
Unless the FILESTREAM Garbage Collector has removed all the files from a FILESTREAM container, the
ALTER DATABASE REMOVE FILE operation to remove a FILESTREAM container will fail and return an
error. See the "Remove FILESTREAM Container" section in Remarks later in this topic.

MODIFY FILEGROUP filegroup_name { <filegroup_updatability_option> | DEFAULT | NAME =
new_filegroup_name }

Modifies the filegroup by setting the status to READ_ONLY or READ_WRITE, making the
filegroup the default filegroup for the database, or changing the filegroup name.

<filegroup_updatability_option>

Sets the read-only or read/write property to the filegroup.

DEFAULT

Changes the default database filegroup to filegroup_name. Only one filegroup in the
database can be the default filegroup. For more information, see Understanding Files
and Filegroups.

NAME = new_filegroup_name

Changes the filegroup name to the new_filegroup_name.

<filegroup_updatability_option>::=
Sets the read-only or read/write property to the filegroup.
READ_ONLY | READONLY

Specifies the filegroup is read-only. Updates to objects in it are not allowed. The primary
filegroup cannot be made read-only. To change this state, you must have exclusive access to
the database. For more information, see the SINGLE_USER clause.

Because a read-only database does not allow data modifications:

• Automatic recovery is skipped at system startup.

• Shrinking the database is not possible.

• No locking occurs in read-only databases. This can cause faster query performance.

Note
The keyword READONLY will be removed in a future version of Microsoft SQL Server. Avoid using
READONLY in new development work, and plan to modify applications that currently use READONLY.
Use READ_ONLY instead.

READ_WRITE | READWRITE

Specifies the group is READ_WRITE. Updates are enabled for the objects in the filegroup. To
change this state, you must have exclusive access to the database. For more information, see
the SINGLE_USER clause.

Note
The keyword READWRITE will be removed in a future version of Microsoft SQL Server. Avoid using

http://msdn.microsoft.com/en-us/library/9ca11918-480d-4838-9198-cec221ef6ad0(SQL.110)�
http://msdn.microsoft.com/en-us/library/9ca11918-480d-4838-9198-cec221ef6ad0(SQL.110)�

 58

READWRITE in new development work, and plan to modify applications that currently use READWRITE.
Use READ_WRITE instead.

The status of these options can be determined by examining the is_read_only column in the
sys.databases catalog view or the Updateability property of the DATABASEPROPERTYEX
function.
Remarks
To decrease the size of a database, use DBCC SHRINKDATABASE.
You cannot add or remove a file while a BACKUP statement is running.
A maximum of 32,767 files and 32,767 filegroups can be specified for each database.
In SQL Server 2005 or later, the state of a database file (for example, online or offline), is
maintained independently from the state of the database. For more information, see File States.
The state of the files within a filegroup determines the availability of the whole filegroup. For a
filegroup to be available, all files within the filegroup must be online. If a filegroup is offline, any
try to access the filegroup by an SQL statement will fail with an error. When you build query
plans for SELECT statements, the query optimizer avoids nonclustered indexes and indexed
views that reside in offline filegroups. This enables these statements to succeed. However, if the
offline filegroup contains the heap or clustered index of the target table, the SELECT statements
fail. Additionally, any INSERT, UPDATE, or DELETE statement that modifies a table with any index
in an offline filegroup will fail.
Moving Files
In SQL Server 2005 or later, you can move system or user-defined data and log files by
specifying the new location in FILENAME. This may be useful in the following scenarios:
• Failure recovery. For example, the database is in suspect mode or shutdown caused by

hardware failure
• Planned relocation
• Relocation for scheduled disk maintenance
For more information, see Moving Database Files.
Initializing Files
By default, data and log files are initialized by filling the files with zeros when you perform one
of the following operations:
• Create a database
• Add files to an existing database
• Increase the size of an existing file
• Restore a database or filegroup
Data files can be initialized instantaneously. This enables for fast execution of these file
operations.
Removing a FILESTREAM Container

http://msdn.microsoft.com/en-us/library/fc976afd-1edb-4341-bf41-c4a42a69772b(SQL.110)�
http://msdn.microsoft.com/en-us/library/b426474d-8954-4df0-b78b-887becfbe8d6(SQL.110)�
http://msdn.microsoft.com/en-us/library/89f01b10-5fae-4ed8-b0fb-a4b9f540fd28(SQL.110)�

 59

Even though FILESTREAM container may have been emptied using the “DBCC SHRINKFILE”
operation, the database may still need to maintain references to the deleted files for various
system maintenance reasons. sp_filestream_force_garbage_collection (Transact-SQL) will run the
FILESTREAM Garbage Collector to remove these files when it is safe to do so. Unless the
FILESTREAM Garbage Collector has removed all the files from a FILESTREAM container, the
ALTER DATABASEREMOVE FILE operation will fail to remove a FILESTREAM container and will
return an error. The following process is recommended to remove a FILESTREAM container.
1. Run DBCC SHRINKFILE with the EMPTYFILE option to move the active contents of this

container to other containers.
2. Ensure that Log backups have been taken, in the FULL or BULK_LOGGED recovery model.
3. Ensure that the replication log reader job has been run, if relevant.
4. Run sp_filestream_force_garbage_collection to force the garbage collector to delete any files

that are no longer needed in this container.
5. Execute ALTER DATABASE with the REMOVE FILE option to remove this container.
6. Repeat steps 2 through 4 once more to complete the garbage collection.
7. Use ALTER Database...REMOVE FILE to remove this container.
Examples
A. Adding a file to a database
The following example adds a 5-MB data file to the AdventureWorks2012 database.
USE master;

GO

ALTER DATABASE AdventureWorks2012

ADD FILE

(

 NAME = Test1dat2,

 FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL10_50.MSSQLSERVER\MSSQL\DATA\t1dat2.ndf',

 SIZE = 5MB,

 MAXSIZE = 100MB,

 FILEGROWTH = 5MB

);

GO

B. Adding a filegroup with two files to a database
The following example creates the filegroup Test1FG1 in the AdventureWorks2012 database
and adds two 5-MB files to the filegroup.
USE master

GO

http://msdn.microsoft.com/en-us/library/9d1efde6-8fa4-42ac-80e5-37456ffebd0b(SQL.110)�
http://msdn.microsoft.com/en-us/library/e02b2318-bee9-4d84-a61f-2fddcf268c9f(SQL.110)�
http://msdn.microsoft.com/en-us/library/9d1efde6-8fa4-42ac-80e5-37456ffebd0b(SQL.110)�

 60

ALTER DATABASE AdventureWorks2012

ADD FILEGROUP Test1FG1;

GO

ALTER DATABASE AdventureWorks2012

ADD FILE

(

 NAME = test1dat3,

 FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL10_50.MSSQLSERVER\MSSQL\DATA\t1dat3.ndf',

 SIZE = 5MB,

 MAXSIZE = 100MB,

 FILEGROWTH = 5MB

),

(

 NAME = test1dat4,

 FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL10_50.MSSQLSERVER\MSSQL\DATA\t1dat4.ndf',

 SIZE = 5MB,

 MAXSIZE = 100MB,

 FILEGROWTH = 5MB

)

TO FILEGROUP Test1FG1;

GO

C. Adding two log files to a database
The following example adds two 5-MB log files to the AdventureWorks2012 database.
USE master;

GO

ALTER DATABASE AdventureWorks2012

ADD LOG FILE

(

 NAME = test1log2,

 FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL10_50.MSSQLSERVER\MSSQL\DATA\test2log.ldf',

 SIZE = 5MB,

 MAXSIZE = 100MB,

 61

 FILEGROWTH = 5MB

),

(

 NAME = test1log3,

 FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL10_50.MSSQLSERVER\MSSQL\DATA\test3log.ldf',

 SIZE = 5MB,

 MAXSIZE = 100MB,

 FILEGROWTH = 5MB

);

GO

D. Removing a file from a database
The following example removes one of the files added in example B.
USE master;

GO

ALTER DATABASE AdventureWorks2012

REMOVE FILE test1dat4;

GO

E. Modifying a file
The following example increases the size of one of the files added in example B.
USE master;

GO

ALTER DATABASE AdventureWorks2012

MODIFY FILE

 (NAME = test1dat3,

 SIZE = 20MB);

GO

F. Moving a file to a new location
The following example moves the Test1dat2 file created in example A to a new directory.

Note

 62

You must physically move the file to the new directory before running this example.
Afterward, stop and start the instance of SQL Server or take the database OFFLINE
and then ONLINE to implement the change.

USE master;

GO

ALTER DATABASE AdventureWorks2012

MODIFY FILE

(

 NAME = Test1dat2,

 FILENAME = N'c:\t1dat2.ndf'

);

GO

G. Moving tempdb to a new location
The following example moves tempdb from its current location on the disk to another disk
location. Because tempdb is re-created each time the MSSQLSERVER service is started, you do
not have to physically move the data and log files. The files are created when the service is
restarted in step 3. Until the service is restarted, tempdb continues to function in its existing
location.
1. Determine the logical file names of the tempdb database and their current location on disk.

SELECT name, physical_name

FROM sys.master_files

WHERE database_id = DB_ID('tempdb');

GO

2. Change the location of each file by using ALTER DATABASE.

USE master;

GO

ALTER DATABASE tempdb

MODIFY FILE (NAME = tempdev, FILENAME = 'E:\SQLData\tempdb.mdf');

GO

ALTER DATABASE tempdb

MODIFY FILE (NAME = templog, FILENAME = 'E:\SQLData\templog.ldf');

GO

3. Stop and restart the instance of SQL Server.
4. Verify the file change.

SELECT name, physical_name

 63

FROM sys.master_files

WHERE database_id = DB_ID('tempdb');

5. Delete the tempdb.mdf and templog.ldf files from their original location.
H. Making a filegroup the default
The following example makes the Test1FG1 filegroup created in example B the default
filegroup. Then, the default filegroup is reset to the PRIMARY filegroup. Note that PRIMARY must
be delimited by brackets or quotation marks.
USE master;

GO

ALTER DATABASE AdventureWorks2012

MODIFY FILEGROUP Test1FG1 DEFAULT;

GO

ALTER DATABASE AdventureWorks2012

MODIFY FILEGROUP [PRIMARY] DEFAULT;

GO

I. Adding a Filegroup Using ALTER DATABASE
The following example adds a FILEGROUP that contains the FILESTREAM clause to the
FileStreamPhotoDB database.

--Create and add a FILEGROUP that CONTAINS the FILESTREAM clause to

--the FileStreamPhotoDB database.

ALTER database FileStreamPhotoDB

ADD FILEGROUP TodaysPhotoShoot

CONTAINS FILESTREAM

GO

--Add a file for storing database photos to FILEGROUP

ALTER database FileStreamPhotoDB

ADD FILE

(

 NAME= 'PhotoShoot1',

 FILENAME = 'C:\Users\Administrator\Pictures\TodaysPhotoShoot.ndf'

)

TO FILEGROUP TodaysPhotoShoot

GO

 64

See Also
CREATE DATABASE
DATABASEPROPERTYEX
DROP DATABASE
sp_spaceused
sys.databases (Transact-SQL)
sys.database_files
sys.data_spaces (Transact-SQL)
sys.filegroups
sys.master_files (Transact-SQL)
Designing and Implementing FILESTREAM Storage
DBCC SHRINKFILE
sp_filestream_force_garbage_collection

ALTER DATABASE SET Options
This topic contains the ALTER DATABASE syntax that is related to setting database options. For
other ALTER DATABASE syntax, see ALTER DATABASE (Transact-SQL). Database mirroring,
AlwaysOn Availability Groups, and compatibility levels are SET options but are described in
separate topics because of their length. For more information, see ALTER DATABASE Database
Mirroring (Transact-SQL), ALTER DATABASE SET HADR (Transact-SQL), and ALTER DATABASE
Compatibility Level (Transact-SQL).

 Transact-SQL Syntax Conventions
Syntax

ALTER DATABASE { database_name | CURRENT }
SET
{
 <optionspec> [,... n] [WITH <termination>]
}

<optionspec> ::=
{
 <auto_option>
 | <change_tracking_option>
 | <containment_option>

http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�
http://msdn.microsoft.com/en-us/library/c6253b48-29f5-4371-bfcd-3ef404060621(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/0f5b0aac-c17d-4e99-b8f7-d04efc9edf44(SQL.110)�
http://msdn.microsoft.com/en-us/library/f39d55fe-2c0f-472d-a77f-cebc6fea95b5(SQL.110)�
http://msdn.microsoft.com/en-us/library/9e851f72-1f8e-4515-a25d-152ebc12ed56(SQL.110)�
http://msdn.microsoft.com/en-us/library/803b22f2-0016-436b-a561-ce6f023d6b6a(SQL.110)�
http://msdn.microsoft.com/en-us/library/97509274-c3f8-43e5-a37c-52f1ffe0961a(SQL.110)�
http://msdn.microsoft.com/en-us/library/e02b2318-bee9-4d84-a61f-2fddcf268c9f(SQL.110)�
http://msdn.microsoft.com/en-us/library/9d1efde6-8fa4-42ac-80e5-37456ffebd0b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 65

 | <cursor_option>
 | <database_mirroring_option>
 | <date_correlation_optimization_option>
 | <db_encryption_option>
 | <db_state_option>
 | <db_update_option>
 | <db_user_access_option>
 | <external_access_option>
 | FILESTREAM (<FILESTREAM_option>)
 | <HADR_options>
 | <parameterization_option>
 | <recovery_option>
 | <target_recovery_time_option>
 | <service_broker_option>
 | <snapshot_option>
 | <sql_option>
}

<auto_option> ::=
{
 AUTO_CLOSE { ON | OFF }
 | AUTO_CREATE_STATISTICS { ON | OFF }
 | AUTO_SHRINK { ON | OFF }
 | AUTO_UPDATE_STATISTICS { ON | OFF }
 | AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }
}

<change_tracking_option> ::=
{
 CHANGE_TRACKING
 {
 = OFF
 | = ON [(<change_tracking_option_list > [,... n])]
 | (<change_tracking_option_list> [,... n])
 }

 66

}

 <change_tracking_option_list> ::=
 {
 AUTO_CLEANUP = { ON | OFF }
 | CHANGE_RETENTION = retention_period { DAYS | HOURS | MINUTES }
 }

<containment_option> ::=
 CONTAINMENT = { NONE | PARTIAL }

<cursor_option> ::=
{
 CURSOR_CLOSE_ON_COMMIT { ON | OFF }
 | CURSOR_DEFAULT { LOCAL | GLOBAL }
}

<database_mirroring_option>
 ALTER DATABASE Database Mirroring

<date_correlation_optimization_option> ::=
 DATE_CORRELATION_OPTIMIZATION { ON | OFF }

<db_encryption_option> ::=
 ENCRYPTION { ON | OFF }

<db_state_option> ::=
 { ONLINE | OFFLINE | EMERGENCY }

<db_update_option> ::=
 { READ_ONLY | READ_WRITE }

<db_user_access_option> ::=
 { SINGLE_USER | RESTRICTED_USER | MULTI_USER }

 67

<external_access_option> ::=
{
 DB_CHAINING { ON | OFF }
 | TRUSTWORTHY { ON | OFF }
 | DEFAULT_FULLTEXT_LANGUAGE = { <lcid> | <language name> | <language alias> }
 | DEFAULT_LANGUAGE = { <lcid> | <language name> | <language alias> }
 | NESTED_TRIGGERS = { OFF | ON }
 | TRANSFORM_NOISE_WORDS = { OFF | ON }
 | TWO_DIGIT_YEAR_CUTOFF = { 1753, ..., 2049, ..., 9999 }
}
<FILESTREAM_option> ::=
{
 NON_TRANSACTED_ACCESS = { OFF | READ_ONLY | FULL }
 | DIRECTORY_NAME = <directory_name>
}
<HADR_options> ::=
 ALTER DATABASE SET HADR

<parameterization_option> ::=
 PARAMETERIZATION { SIMPLE | FORCED }

<recovery_option> ::=
{
 RECOVERY { FULL | BULK_LOGGED | SIMPLE }
 | TORN_PAGE_DETECTION { ON | OFF }
 | PAGE_VERIFY { CHECKSUM | TORN_PAGE_DETECTION | NONE }
}

<target_recovery_time_option> ::=
 TARGET_RECOVERY_TIME = target_recovery_time { SECONDS | MINUTES }

<service_broker_option> ::=
{
 ENABLE_BROKER
 | DISABLE_BROKER

 68

 | NEW_BROKER
 | ERROR_BROKER_CONVERSATIONS
 | HONOR_BROKER_PRIORITY { ON | OFF}
}

<snapshot_option> ::=
{
 ALLOW_SNAPSHOT_ISOLATION { ON | OFF }
 | READ_COMMITTED_SNAPSHOT {ON | OFF }
}
<sql_option> ::=
{
 ANSI_NULL_DEFAULT { ON | OFF }
 | ANSI_NULLS { ON | OFF }
 | ANSI_PADDING { ON | OFF }
 | ANSI_WARNINGS { ON | OFF }
 | ARITHABORT { ON | OFF }
 | COMPATIBILITY_LEVEL = { 90 | 100 | 110 }
 | CONCAT_NULL_YIELDS_NULL { ON | OFF }
 | NUMERIC_ROUNDABORT { ON | OFF }
 | QUOTED_IDENTIFIER { ON | OFF }
 | RECURSIVE_TRIGGERS { ON | OFF }
}

<termination> ::=
{
 ROLLBACK AFTER integer [SECONDS]
 | ROLLBACK IMMEDIATE
 | NO_WAIT
}
Arguments
database_name | CURRENT

Is the name of the database to be modified. CURRENT performs the action in the current
database. CURRENT is not supported for all options in all contexts. If CURRENT fails, provide
the database name.

<auto_option> ::=

 69

Controls automatic options.

 70

AUTO_CLOSE { ON | OFF }

ON

The database is shut down cleanly and its resources are freed after the last user exits.

The database automatically reopens when a user tries to use the database again. For
example, by issuing a USE database_name statement. If the database is shut down cleanly
while AUTO_CLOSE is set to ON, the database is not reopened until a user tries to use the
database the next time the Database Engine is restarted.

OFF

The database remains open after the last user exits.

The AUTO_CLOSE option is useful for desktop databases because it allows for database files
to be managed as regular files. They can be moved, copied to make backups, or even e-
mailed to other users. The AUTO_CLOSE process is asynchronous; repeatedly opening and
closing the database does not reduce performance.

Note
The AUTO_CLOSE option is not available in a Contained Database.

The status of this option can be determined by examining the is_auto_close_on column in the
sys.databases catalog view or the IsAutoClose property of the DATABASEPROPERTYEX
function.

Note
When AUTO_CLOSE is ON, some columns in the sys.databases catalog view and
DATABASEPROPERTYEX function will return NULL because the database is unavailable to retrieve the
data. To resolve this, execute a USE statement to open the database.

Note
Database mirroring requires AUTO_CLOSE OFF.

When the database is set to AUTOCLOSE = ON, an operation that initiates an automatic
database shutdown clears the plan cache for the instance of SQL Server. Clearing the plan
cache causes a recompilation of all subsequent execution plans and can cause a sudden,
temporary decrease in query performance. In SQL Server 2005 Service Pack 2 and higher, for
each cleared cachestore in the plan cache, the SQL Server error log contains the following
informational message: "SQL Server has encountered %d occurrence(s) of cachestore flush
for the '%s' cachestore (part of plan cache) due to some database maintenance or
reconfigure operations". This message is logged every five minutes as long as the cache is
flushed within that time interval.

AUTO_CREATE_STATISTICS { ON | OFF }

ON

The query optimizer creates statistics on single columns in query predicates, as necessary,
to improve query plans and query performance. These single-column statistics are created
when the query optimizer compiles queries. The single-column statistics are created only

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�

 71

on columns that are not already the first column of an existing statistics object.

The default is ON. We recommend that you use the default setting for most databases.

OFF

The query optimizer does not create statistics on single columns in query predicates when
it is compiling queries. Setting this option to OFF can cause suboptimal query plans and
degraded query performance.

The status of this option can be determined by examining the is_auto_create_stats_on column
in the sys.databases catalog view or the IsAutoCreateStatistics property of the
DATABASEPROPERTYEX function.

For more information, see the section "Using the Database-Wide Statistics Options" in Using
Statistics to Improve Query Performance.

AUTO_SHRINK { ON | OFF }

ON

The database files are candidates for periodic shrinking.

Both data file and log files can be automatically shrunk. AUTO_SHRINK reduces the size of
the transaction log only if the database is set to SIMPLE recovery model or if the log is
backed up. When set to OFF, the database files are not automatically shrunk during
periodic checks for unused space.

The AUTO_SHRINK option causes files to be shrunk when more than 25 percent of the file
contains unused space. The file is shrunk to a size where 25 percent of the file is unused
space, or to the size of the file when it was created, whichever is larger.

You cannot shrink a read-only database.

OFF

The database files are not automatically shrunk during periodic checks for unused space.

The status of this option can be determined by examining the is_auto_shrink_on column in
the sys.databases catalog view or the IsAutoShrink property of the DATABASEPROPERTYEX
function.

Note
The AUTO_SHRINK option is not available in a Contained Database.

AUTO_UPDATE_STATISTICS { ON | OFF }

ON

Specifies that the query optimizer updates statistics when they are used by a query and
when they might be out-of-date. Statistics become out-of-date after insert, update, delete,
or merge operations change the data distribution in the table or indexed view. The query
optimizer determines when statistics might be out-of-date by counting the number of data
modifications since the last statistics update and comparing the number of modifications
to a threshold. The threshold is based on the number of rows in the table or indexed view.

http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�

 72

The query optimizer checks for out-of-date statistics before compiling a query and before
executing a cached query plan. Before compiling a query, the query optimizer uses the
columns, tables, and indexed views in the query predicate to determine which statistics
might be out-of-date. Before executing a cached query plan, the Database Engine verifies
that the query plan references up-to-date statistics.

The AUTO_UPDATE_STATISTICS option applies to statistics created for indexes, single-
columns in query predicates, and statistics that are created by using the CREATE
STATISTICS statement. This option also applies to filtered statistics.

The default is ON. We recommend that you use the default setting for most databases.

Use the AUTO_UPDATE_STATISTICS_ASYNC option to specify whether the statistics are
updated synchronously or asynchronously.

OFF

Specifies that the query optimizer does not update statistics when they are used by a query
and when they might be out-of-date. Setting this option to OFF can cause suboptimal
query plans and degraded query performance.

The status of this option can be determined by examining the is_auto_update_stats_on
column in the sys.databases catalog view or the IsAutoUpdateStatistics property of the
DATABASEPROPERTYEX function.

For more information, see the section "Using the Database-Wide Statistics Options" in Using
Statistics to Improve Query Performance.

AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }

ON

Specifies that statistics updates for the AUTO_UPDATE_STATISTICS option are
asynchronous. The query optimizer does not wait for statistics updates to complete before
it compiles queries.

Setting this option to ON has no effect unless AUTO_UPDATE_STATISTICS is set to ON.

By default, the AUTO_UPDATE_STATISTICS_ASYNC option is set to OFF, and the query
optimizer updates statistics synchronously.

OFF

Specifies that statistics updates for the AUTO_UPDATE_STATISTICS option are synchronous.
The query optimizer waits for statistcs updates to complete before it compiles queries.

Setting this option to OFF has no effect unless AUTO_UPDATE_STATISTICS is set to ON.

The status of this option can be determined by examining the is_auto_update_stats_async_on
column in the sys.databases catalog view.

For more information that describes when to use synchronous or asynchronous statistics
updates, see the section "Using the Database-Wide Statistics Options" in Using Statistics
to Improve Query Performance.

<change_tracking_option> ::=

http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�

 73

Controls change tracking options. You can enable change tracking, set options, change options,
and disable change tracking. For examples, see the Examples section later in this topic.
ON

Enables change tracking for the database. When you enable change tracking, you can also
set the AUTO CLEANUP and CHANGE RETENTION options.

AUTO_CLEANUP = { ON | OFF }

ON

Change tracking information is automatically removed after the specified retention period.

OFF

Change tracking data is not removed from the database.

CHANGE_RETENTION = retention_period { DAYS | HOURS | MINUTES }

Specifies the minimum period for keeping change tracking information in the database. Data
is removed only when the AUTO_CLEANUP value is ON.

retention_period is an integer that specifies the numerical component of the retention
period.

The default retention period is 2 days. The minimum retention period is 1 minute.

OFF

Disables change tracking for the database. You must disable change tracking on all tables
before you can disable change tracking off the database.

<containment_option> ::=
Controls database containment options.
CONTAINMENT = { NONE | PARTIAL}

NONE

The database is not a contained database.

PARTIAL

The database is a contained database. Setting database containment to partial will fail if
the database has replication, change data capture, or change tracking enabled. Error
checking stops after one failure. For more information about contained databases, see
Understanding Contained Databases.

<cursor_option> ::=
Controls cursor options.

http://msdn.microsoft.com/en-us/library/36af59d7-ce96-4a02-8598-ffdd78cdc948(SQL.110)�

 74

CURSOR_CLOSE_ON_COMMIT { ON | OFF }

ON

Any cursors open when a transaction is committed or rolled back are closed.

OFF

Cursors remain open when a transaction is committed; rolling back a transaction closes any
cursors except those defined as INSENSITIVE or STATIC.

Connection-level settings that are set by using the SET statement override the default
database setting for CURSOR_CLOSE_ON_COMMIT. By default, ODBC and OLE DB clients
issue a connection-level SET statement setting CURSOR_CLOSE_ON_COMMIT to OFF for the
session when connecting to an instance of SQL Server. For more information, see SET
CURSOR_CLOSE_ON_COMMIT (Transact-SQL).
The status of this option can be determined by examining the is_cursor_close_on_commit_on
column in the sys.databases catalog view or the IsCloseCursorsOnCommitEnabled property
of the DATABASEPROPERTYEX function.

CURSOR_DEFAULT { LOCAL | GLOBAL }

Controls whether cursor scope uses LOCAL or GLOBAL.

LOCAL

When LOCAL is specified and a cursor is not defined as GLOBAL when created, the scope
of the cursor is local to the batch, stored procedure, or trigger in which the cursor was
created. The cursor name is valid only within this scope. The cursor can be referenced by
local cursor variables in the batch, stored procedure, or trigger, or a stored procedure
OUTPUT parameter. The cursor is implicitly deallocated when the batch, stored procedure,
or trigger ends, unless it was passed back in an OUTPUT parameter. If the cursor is passed
back in an OUTPUT parameter, the cursor is deallocated when the last variable that
references it is deallocated or goes out of scope.

GLOBAL

When GLOBAL is specified, and a cursor is not defined as LOCAL when created, the scope
of the cursor is global to the connection. The cursor name can be referenced in any stored
procedure or batch executed by the connection.

The cursor is implicitly deallocated only at disconnect. For more information, see DECLARE
CURSOR.

The status of this option can be determined by examining the is_local_cursor_default column
in the sys.databases catalog view or the IsLocalCursorsDefault property of the
DATABASEPROPERTYEX function.

<database_mirroring>
For the argument descriptions, see ALTER DATABASE Database Mirroring (Transact-SQL).
<date_correlation_optimization_option> ::=
Controls the date_correlation_optimization option.

http://msdn.microsoft.com/en-us/library/7b976154-98ce-4a06-bbae-7e59c34211f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/7b976154-98ce-4a06-bbae-7e59c34211f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/5a3a27aa-03e8-4c98-a27e-809282379b21(SQL.110)�
http://msdn.microsoft.com/en-us/library/5a3a27aa-03e8-4c98-a27e-809282379b21(SQL.110)�

 75

DATE_CORRELATION_OPTIMIZATION { ON | OFF }

ON

SQL Server maintains correlation statistics between any two tables in the database that are
linked by a FOREIGN KEY constraint and have datetime columns.

OFF

Correlation statistics are not maintained.

To set DATE_CORRELATION_OPTIMIZATION to ON, there must be no active connections to
the database except for the connection that is executing the ALTER DATABASE statement.
Afterwards, multiple connections are supported.

The current setting of this option can be determined by examining the is_date_correlation_on
column in the sys.databases catalog view.

<db_encryption_option> ::=
Controls the database encryption state.
ENCRYPTION {ON | OFF}

Sets the database to be encrypted (ON) or not encrypted (OFF). For more information about
database encryption, see Understanding Transparent Data Encryption (TDE).

When encryption is enabled at the database level all filegroups will be encrypted. Any new
filegroups will inherit the encrypted property. If any filegroups in the database are set to READ
ONLY, the database encryption operation will fail.
You can see the encryption state of the database by using the sys.dm_database_encryption_keys
dynamic management view.
<db_state_option> ::=
Controls the state of the database.
OFFLINE

The database is closed, shut down cleanly, and marked offline. The database cannot be
modified while it is offline.

ONLINE

The database is open and available for use.

EMERGENCY

The database is marked READ_ONLY, logging is disabled, and access is limited to members of
the sysadmin fixed server role. EMERGENCY is primarily used for troubleshooting purposes.
For example, a database marked as suspect due to a corrupted log file can be set to the
EMERGENCY state. This could enable the system administrator read-only access to the
database. Only members of the sysadmin fixed server role can set a database to the
EMERGENCY state.

Note

http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/56fee8f3-06eb-4fff-969e-abeaa0c4b8e4(SQL.110)�

 76

Permissions: ALTER DATABASE permission for the subject database is required to
change a database to the offline or emergency state. The server level ALTER ANY
DATABASE permission is required to move a database from offline to online.

The status of this option can be determined by examining the state and state_desc columns in
the sys.databases catalog view or the Status property of the DATABASEPROPERTYEX function.
For more information, see Database States.
A database marked as RESTORING cannot be set to OFFLINE, ONLINE, or EMERGENCY. A
database may be in the RESTORING state during an active restore operation or when a restore
operation of a database or log file fails because of a corrupted backup file.
<db_update_option> ::=
Controls whether updates are allowed on the database.
READ_ONLY

Users can read data from the database but not modify it.

Note
To improve query performance, update statistics before setting a database to READ_ONLY. If
additional statistics are needed after a database is set to READ_ONLY, the Database Engine will create
statistics in tempdb. For more information about statistics for a read-only database, see Statistics.

READ_WRITE

The database is available for read and write operations.

To change this state, you must have exclusive access to the database. For more information, see
the SINGLE_USER clause.
<db_user_access_option> ::=
Controls user access to the database.
SINGLE_USER

Specifies that only one user at a time can access the database. If SINGLE_USER is specified
and there are other users connected to the database the ALTER DATABASE statement will be
blocked until all users disconnect from the specified database. To override this behavior, see
the WITH <termination> clause.

The database remains in SINGLE_USER mode even if the user that set the option logs off. At
that point, a different user, but only one, can connect to the database.

Before you set the database to SINGLE_USER, verify the AUTO_UPDATE_STATISTICS_ASYNC
option is set to OFF. When set to ON, the background thread used to update statistics takes a
connection against the database, and you will be unable to access the database in single-user
mode. To view the status of this option, query the is_auto_update_stats_async_on column in
the sys.databases catalog view. If the option is set to ON, perform the following tasks:

1. Set AUTO_UPDATE_STATISTICS_ASYNC to OFF.

2. Check for active asynchronous statistics jobs by querying the
sys.dm_exec_background_job_queue dynamic management view.

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�
http://msdn.microsoft.com/en-us/library/b7f1f111-ca73-4a89-b567-a98d64d6ecb3(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/05d9884f-b74c-4e3c-a23b-c90c1ea5ef02(SQL.110)�

 77

If there are active jobs, either allow the jobs to complete or manually terminate them by
using KILL STATS JOB.

RESTRICTED_USER

RESTRICTED_USER allows for only members of the db_owner fixed database role and
dbcreator and sysadmin fixed server roles to connect to the database, but does not limit their
number. All connections to the database are disconnected in the timeframe specified by the
termination clause of the ALTER DATABASE statement. After the database has transitioned to
the RESTRICTED_USER state, connection attempts by unqualified users are refused.

MULTI_USER

All users that have the appropriate permissions to connect to the database are allowed.

The status of this option can be determined by examining the user_access column in the
sys.databases catalog view or the UserAccess property of the DATABASEPROPERTYEX function.
<external_access_option> ::=
Controls whether the database can be accessed by external resources, such as objects from
another database.

http://msdn.microsoft.com/en-us/library/55a8f9f1-3259-45c0-8ab9-60b9c088b4b4(SQL.110)�

 78

DB_CHAINING { ON | OFF }

ON

Database can be the source or target of a cross-database ownership chain.

OFF

Database cannot participate in cross-database ownership chaining.

Important

The instance of SQL Server will recognize this setting when the cross db ownership chaining server
option is 0 (OFF). When cross db ownership chaining is 1 (ON), all user databases can participate in
cross-database ownership chains, regardless of the value of this option. This option is set by using
sp_configure.

To set this option, requires CONTROL SERVER permission on the database.

The DB_CHAINING option cannot be set on these system databases: master, model, and
tempdb.

The status of this option can be determined by examining the is_db_chaining_on column in
the sys.databases catalog view.

TRUSTWORTHY { ON | OFF }

ON

Database modules (for example, user-defined functions or stored procedures) that use an
impersonation context can access resources outside the database.

OFF

Database modules in an impersonation context cannot access resources outside the
database.

TRUSTWORTHY is set to OFF whenever the database is attached.

By default, all system databases except the msdb database have TRUSTWORTHY set to OFF.
The value cannot be changed for the model and tempdb databases. We recommend that you
never set the TRUSTWORTHY option to ON for the master database.

To set this option, requires CONTROL SERVER permission on the database.

The status of this option can be determined by examining the is_trustworthy_on column in
the sys.databases catalog view.

DEFAULT_FULLTEXT_LANGUAGE

Specifies the default language value for full-text indexed columns.

Important
This option is allowable only when CONTAINMENT has been set to PARTIAL. If CONTAINMENT is set
to NONE, errors will occur.

DEFAULT_LANGUAGE

Specifies the default language for all newly created logins. Language can be specified by

http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�

 79

providing the local id (lcid), the language name, or the language alias. For a list of acceptable
language names and aliases, see sys.syslanguages (Transact-SQL).

Important
This option is allowable only when CONTAINMENT has been set to PARTIAL. If CONTAINMENT is set
to NONE, errors will occur.

NESTED_TRIGGERS

Specifies whether an AFTER trigger can cascade; that is, perform an action that initiates
another trigger, which initiates another trigger, and so on.

Important
This option is allowable only when CONTAINMENT has been set to PARTIAL. If CONTAINMENT is set
to NONE, errors will occur.

TRANSFORM_NOISE_WORDS

Used to suppress an error message if noise words, or stopwords, cause a Boolean operation
on a full-text query to fail.

Important
This option is allowable only when CONTAINMENT has been set to PARTIAL. If CONTAINMENT is set
to NONE, errors will occur.

TWO_DIGIT_YEAR_CUTOFF

Specifies an integer from 1753 to 9999 that represents the cutoff year for interpreting two-
digit years as four-digit years.

Important
This option is allowable only when CONTAINMENT has been set to PARTIAL. If CONTAINMENT is set
to NONE, errors will occur.

<FILESTREAM_option> ::=
Controls the settings for FileTables.
NON_TRANSACTED_ACCESS = { OFF | READ_ONLY | FULL }

OFF

Non-transactional access to FileTable data is disabled.

READ_ONLY

FILESTREAM data in FileTables in this database can be read by non-transactional processes.

FULL

Full non-transactional access to FILESTREAM data in FileTables is enabled.

DIRECTORY_NAME = <directory_name>

A windows-compatible directory name. This name should be unique among all the database-
level directory names in the SQL Server instance. Uniqueness comparison is case-insensitive,

http://msdn.microsoft.com/en-us/library/f216d1cd-997c-42f0-a737-abbdfcd88383(SQL.110)�

 80

regardless of collation settings. This option must be set before creating a FileTable in this
database.

<parameterization_option> ::=
Controls the parameterization option.
PARAMETERIZATION { SIMPLE | FORCED }

SIMPLE

Queries are parameterized based on the default behavior of the database.

FORCED

SQL Server parameterizes all queries in the database.

The current setting of this option can be determined by examining the
is_parameterization_forced column in the sys.databases catalog view.

<recovery_option> ::=
Controls database recovery options and disk I/O error checking.
FULL

Provides full recovery after media failure by using transaction log backups. If a data file is
damaged, media recovery can restore all committed transactions. For more information, see
Recovery Models (SQL Server).

BULK_LOGGED

Provides recovery after media failure by combining the best performance and least amount
of log-space use for certain large-scale or bulk operations. For information about what
operations can be minimally logged, see Transaction Logs (SQL Server). Under the
BULK_LOGGED recovery model, logging for these operations is minimal. For more
information, see Recovery Models (SQL Server).

SIMPLE

A simple backup strategy that uses minimal log space is provided. Log space can be
automatically reused when it is no longer required for server failure recovery. For more
information, see Recovery Models (SQL Server).

Important
The simple recovery model is easier to manage than the other two models but at the expense of
greater data loss exposure if a data file is damaged. All changes since the most recent database or
differential database backup are lost and must be manually reentered.

The default recovery model is determined by the recovery model of the model database. For
more information about selecting the appropriate recovery model, see Database Recovery
Models (SQL Server).
The status of this option can be determined by examining the recovery_model and
recovery_model_desc columns in the sys.databases catalog view or the Recovery property of
the DATABASEPROPERTYEX function.

http://msdn.microsoft.com/en-us/library/8cfea566-8f89-4581-b30d-c53f1f2c79eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cfea566-8f89-4581-b30d-c53f1f2c79eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cfea566-8f89-4581-b30d-c53f1f2c79eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cfea566-8f89-4581-b30d-c53f1f2c79eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cfea566-8f89-4581-b30d-c53f1f2c79eb(SQL.110)�

 81

TORN_PAGE_DETECTION { ON | OFF }

ON

Incomplete pages can be detected by the Database Engine.

OFF

Incomplete pages cannot be detected by the Database Engine.

Important

The syntax structure TORN_PAGE_DETECTION ON | OFF will be removed in a future version of SQL
Server. Avoid using this syntax structure in new development work, and plan to modify applications
that currently use the syntax structure. Use the PAGE_VERIFY option instead.

PAGE_VERIFY { CHECKSUM | TORN_PAGE_DETECTION | NONE }

Discovers damaged database pages caused by disk I/O path errors. Disk I/O path errors can
be the cause of database corruption problems and are generally caused by power failures or
disk hardware failures that occur at the time the page is being written to disk.

CHECKSUM

Calculates a checksum over the contents of the whole page and stores the value in the
page header when a page is written to disk. When the page is read from disk, the
checksum is recomputed and compared to the checksum value stored in the page header.
If the values do not match, error message 824 (indicating a checksum failure) is reported to
both the SQL Server error log and the Windows event log. A checksum failure indicates an
I/O path problem. To determine the root cause requires investigation of the hardware,
firmware drivers, BIOS, filter drivers (such as virus software), and other I/O path
components.

TORN_PAGE_DETECTION

Saves a specific 2-bit pattern for each 512-byte sector in the 8-kilobyte (KB) database page
and stored in the database page header when the page is written to disk. When the page
is read from disk, the torn bits stored in the page header are compared to the actual page
sector information. Unmatched values indicate that only part of the page was written to
disk. In this situation, error message 824 (indicating a torn page error) is reported to both
the SQL Server error log and the Windows event log. Torn pages are typically detected by
database recovery if it is truly an incomplete write of a page. However, other I/O path
failures can cause a torn page at any time.

NONE

Database page writes will not generate a CHECKSUM or TORN_PAGE_DETECTION value.
SQL Server will not verify a checksum or torn page during a read even if a CHECKSUM or
TORN_PAGE_DETECTION value is present in the page header.

Consider the following important points when you use the PAGE_VERIFY option:

• The default is CHECKSUM.

• When a user or system database is upgraded to SQL Server 2005 or a later version, the

 82

PAGE_VERIFY value (NONE or TORN_PAGE_DETECTION) is retained. We recommend that
you use CHECKSUM.

Note
In earlier versions of SQL Server, the PAGE_VERIFY database option is set to NONE for the tempdb
database and cannot be modified. In SQL Server 2008 and later versions, the default value for the
tempdb database is CHECKSUM for new installations of SQL Server. When upgrading an
installation SQL Server, the default value remains NONE. The option can be modified. We
recommend that you use CHECKSUM for the tempdb database.

• TORN_PAGE_DETECTION may use fewer resources but provides a minimal subset of the
CHECKSUM protection.

• PAGE_VERIFY can be set without taking the database offline, locking the database, or
otherwise impeding concurrency on that database.

• CHECKSUM is mutually exclusive to TORN_PAGE_DETECTION. Both options cannot be
enabled at the same time.

When a torn page or checksum failure is detected, you can recover by restoring the data or
potentially rebuilding the index if the failure is limited only to index pages. If you encounter a
checksum failure, to determine the type of database page or pages affected, run DBCC
CHECKDB. For more information about restore options, see RESTORE Arguments
(Transact-SQL). Although restoring the data will resolve the data corruption problem, the
root cause, for example, disk hardware failure, should be diagnosed and corrected as soon as
possible to prevent continuing errors.

SQL Server will retry any read that fails with a checksum, torn page, or other I/O error four
times. If the read is successful in any one of the retry attempts, a message will be written to
the error log and the command that triggered the read will continue. If the retry attempts fail,
the command will fail with error message 824.

For more information about checksum, torn page, read-retry, error messages 823 and 824,
and other SQL Server I/O auditing features, see this Microsoft Web site.

The current setting of this option can be determined by examining the page_verify_option
column in the sys.databases catalog view or the IsTornPageDetectionEnabled property of
the DATABASEPROPERTYEX function.

<target_recovery_time_option> ::=
Specifies the frequency of indirect checkpoints on a per-database basis. The default is 0, which
indicates that the database will use automatic checkpoints, whose frequency depends on the
recovery interval setting of the server instance.

http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=47160�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�

 83

TARGET_RECOVERY_TIME = target_recovery_time { SECONDS | MINUTES }

target_recovery_time

Specifies the maximum bound on the time to recover the specified database in the event
of a crash.

SECONDS

Indicates that target_recovery_time is expressed as the number of seconds.

MINUTES

Indicates that target_recovery_time is expressed as the number of minutes.

For more information about indirect checkpoints, see Database Checkpoints (SQL Server).
<service_broker_option> ::=
Controls the following Service Broker options: enables or disables message delivery, sets a new
Service Broker identifier, or sets conversation priorities to ON or OFF.
ENABLE_BROKER

Specifies that Service Broker is enabled for the specified database. Message delivery is
started, and the is_broker_enabled flag is set to true in the sys.databases catalog view. The
database retains the existing Service Broker identifier.

Note
ENABLE_BROKER requires an exclusive database lock. If other sessions have locked resources in the
database, ENABLE_BROKER will wait until the other sessions release their locks. To enable Service
Broker in a user database, ensure that no other sessions are using the database before you run the
ALTER DATABASE SET ENABLE_BROKER statement, such as by putting the database in single user
mode. To enable Service Broker in the msdb database, first stop SQL Server Agent so that Service
Broker can obtain the necessary lock.

DISABLE_BROKER

Specifies that Service Broker is disabled for the specified database. Message delivery is
stopped, and the is_broker_enabled flag is set to false in the sys.databases catalog view. The
database retains the existing Service Broker identifier.

NEW_BROKER

Specifies that the database should receive a new broker identifier. Because the database is
considered to be a new service broker, all existing conversations in the database are
immediately removed without producing end dialog messages. Any route that references the
old Service Broker identifier must be re-created with the new identifier.

ERROR_BROKER_CONVERSATIONS

Specifies that Service Broker message delivery is enabled. This preserves the existing Service
Broker identifier for the database. Service Broker ends all conversations in the database with
an error. This enables applications to perform regular cleanup for existing conversations.

http://msdn.microsoft.com/en-us/library/98a80238-7409-4708-8a7d-5defd9957185(SQL.110)�

 84

HONOR_BROKER_PRIORITY {ON | OFF}

ON

Send operations take into consideration the priority levels that are assigned to
conversations. Messages from conversations that have high priority levels are sent before
messages from conversations that are assigned low priority levels.

OFF

Send operations run as if all conversations have the default priority level.

Changes to the HONOR_BROKER_PRIORITY option take effect immediately for new dialogs or
dialogs that have no messages waiting to be sent. Dialogs that have messages waiting to be
sent when ALTER DATABASE is run will not pick up the new setting until some of the
messages for the dialog have been sent. The amount of time before all dialogs start using the
new setting can vary considerably.

The current setting of this property is reported in the is_broker_priority_honored column in
the sys.databases catalog view.

<snapshot_option> ::=
Determines the transaction isolation level.

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�

 85

ALLOW_SNAPSHOT_ISOLATION { ON | OFF }

ON

Enables Snapshot option at the database level. When it is enabled, DML statements start
generating row versions even when no transaction uses Snapshot Isolation. Once this
option is enabled, transactions can specify the SNAPSHOT transaction isolation level. When
a transaction runs at the SNAPSHOT isolation level, all statements see a snapshot of data
as it exists at the start of the transaction. If a transaction running at the SNAPSHOT
isolation level accesses data in multiple databases, either ALLOW_SNAPSHOT_ISOLATION
must be set to ON in all the databases, or each statement in the transaction must use
locking hints on any reference in a FROM clause to a table in a database where
ALLOW_SNAPSHOT_ISOLATION is OFF.

OFF

Turns off the Snapshot option at the database level. Transactions cannot specify the
SNAPSHOT transaction isolation level.

When you set ALLOW_SNAPSHOT_ISOLATION to a new state (from ON to OFF, or from OFF
to ON), ALTER DATABASE does not return control to the caller until all existing transactions in
the database are committed. If the database is already in the state specified in the ALTER
DATABASE statement, control is returned to the caller immediately. If the ALTER DATABASE
statement does not return quickly, use
sys.dm_tran_active_snapshot_database_transactions to determine whether there
are long-running transactions. If the ALTER DATABASE statement is canceled, the database
remains in the state it was in when ALTER DATABASE was started. The sys.databases
catalog view indicates the state of snapshot-isolation transactions in the database. If
snapshot_isolation_state_desc = IN_TRANSITION_TO_ON, ALTER DATABASE
ALLOW_SNAPSHOT_ISOLATION OFF will pause six seconds and retry the operation.

You cannot change the state of ALLOW_SNAPSHOT_ISOLATION if the database is OFFLINE.

If you set ALLOW_SNAPSHOT_ISOLATION in a READ_ONLY database, the setting will be
retained if the database is later set to READ_WRITE.

You can change the ALLOW_SNAPSHOT_ISOLATION settings for the master, model, msdb,
and tempdb databases. If you change the setting for tempdb, the setting is retained every
time the instance of the Database Engine is stopped and restarted. If you change the setting
for model, that setting becomes the default for any new databases that are created, except
for tempdb.

The option is ON, by default, for the master and msdb databases.

The current setting of this option can be determined by examining the
snapshot_isolation_state column in the sys.databases catalog view.

READ_COMMITTED_SNAPSHOT { ON | OFF }

ON

Enables Read-Committed Snapshot option at the database level. When it is enabled, DML
statements start generating row versions even when no transaction uses Snapshot

http://msdn.microsoft.com/en-us/library/55b83f9c-da10-4e65-9846-f4ef3c0c0f36(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�

 86

Isolation. Once this option is enabled, the transactions specifying the read committed
isolation level use row versioning instead of locking. When a transaction runs at the read
committed isolation level, all statements see a snapshot of data as it exists at the start of
the statement.

OFF

Turns off Read-Committed Snapshot option at the database level. Transactions specifying
the READ COMMITTED isolation level use locking.

To set READ_COMMITTED_SNAPSHOT ON or OFF, there must be no active connections to
the database except for the connection executing the ALTER DATABASE command. However,
the database does not have to be in single-user mode. You cannot change the state of this
option when the database is OFFLINE.

If you set READ_COMMITTED_SNAPSHOT in a READ_ONLY database, the setting will be
retained when the database is later set to READ_WRITE.

READ_COMMITTED_SNAPSHOT cannot be turned ON for the master, tempdb, or msdb
system databases. If you change the setting for model, that setting becomes the default for
any new databases created, except for tempdb.

The current setting of this option can be determined by examining the
is_read_committed_snapshot_on column in the sys.databases catalog view.

<sql_option> ::=
Controls the ANSI compliance options at the database level.
ANSI_NULL_DEFAULT { ON | OFF }

Determines the default value, NULL or NOT NULL, of a column or CLR user-defined type
for which the nullability is not explicitly defined in CREATE TABLE or ALTER TABLE statements.
Columns that are defined with constraints follow constraint rules regardless of this setting.

ON

The default value is NULL.

OFF

The default value is NOT NULL.

Connection-level settings that are set by using the SET statement override the default
database-level setting for ANSI_NULL_DEFAULT. By default, ODBC and OLE DB clients issue a
connection-level SET statement setting ANSI_NULL_DEFAULT to ON for the session when
connecting to an instance of SQL Server. For more information, see SET
ANSI_NULL_DFLT_ON.

For ANSI compatibility, setting the database option ANSI_NULL_DEFAULT to ON changes the
database default to NULL.

The status of this option can be determined by examining the is_ansi_null_default_on column
in the sys.databases catalog view or the IsAnsiNullDefault property of the
DATABASEPROPERTYEX function.

http://msdn.microsoft.com/en-us/library/27c4889b-c543-47a8-a630-ad06804f92df(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c925924-a466-4c8b-aeb2-7e0d341f32db(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c925924-a466-4c8b-aeb2-7e0d341f32db(SQL.110)�

 87

ANSI_NULLS { ON | OFF }

ON

All comparisons to a null value evaluate to UNKNOWN.

OFF

Comparisons of non-UNICODE values to a null value evaluate to TRUE if both values are
NULL.

Important

In a future version of SQL Server, ANSI_NULLS will always be ON and any applications that explicitly
set the option to OFF will produce an error. Avoid using this feature in new development work, and
plan to modify applications that currently use this feature.

Connection-level settings that are set by using the SET statement override the default
database setting for ANSI_NULLS. By default, ODBC and OLE DB clients issue a connection-
level SET statement setting ANSI_NULLS to ON for the session when connecting to an
instance of SQL Server. For more information, see SET ANSI_NULLS.

SET ANSI_NULLS also must be set to ON when you create or make changes to indexes on
computed columns or indexed views.

The status of this option can be determined by examining the is_ansi_nulls_on column in the
sys.databases catalog view or the IsAnsiNullsEnabled property of the DATABASEPROPERTYEX
function.

ANSI_PADDING { ON | OFF }

ON

Strings are padded to the same length before conversion or inserting to a varchar or
nvarchar data type.

Trailing blanks in character values inserted into varchar or nvarchar columns and trailing
zeros in binary values inserted into varbinary columns are not trimmed. Values are not
padded to the length of the column.

OFF

Trailing blanks for varchar or nvarchar and zeros for varbinary are trimmed.

When OFF is specified, this setting affects only the definition of new columns.

Important
In a future version of SQL Server, ANSI_PADDING will always be ON and any applications that explicitly
set the option to OFF will produce an error. Avoid using this feature in new development work, and
plan to modify applications that currently use this feature. We recommend that you always set
ANSI_PADDING to ON. ANSI_PADDING must be ON when you create or manipulate indexes on
computed columns or indexed views.

char(n) and binary(n) columns that allow for nulls are padded to the length of the column
when ANSI_PADDING is set to ON, but trailing blanks and zeros are trimmed when

http://msdn.microsoft.com/en-us/library/aae263ef-a3c7-4dae-80c2-cc901e48c755(SQL.110)�

 88

ANSI_PADDING is OFF. char(n) and binary(n) columns that do not allow nulls are always
padded to the length of the column.

Connection-level settings that are set by using the SET statement override the default
database-level setting for ANSI_PADDING. By default, ODBC and OLE DB clients issue a
connection-level SET statement setting ANSI_PADDING to ON for the session when
connecting to an instance of SQL Server. For more information, see SET ANSI_PADDING.

Important

The status of this option can be determined by examining the is_ansi_padding_on column in
the sys.databases catalog view or the IsAnsiPaddingEnabled property of the
DATABASEPROPERTYEX function.

ANSI_WARNINGS { ON | OFF }

ON

Errors or warnings are issued when conditions such as divide-by-zero occur or null values
appear in aggregate functions.

OFF

No warnings are raised and null values are returned when conditions such as divide-by-
zero occur.

SET ANSI_WARNINGS must be set to ON when you create or make changes to indexes on
computed columns or indexed views.

Connection-level settings that are set by using the SET statement override the default
database setting for ANSI_WARNINGS. By default, ODBC and OLE DB clients issue a
connection-level SET statement setting ANSI_WARNINGS to ON for the session when
connecting to an instance of SQL Server. For more information, see SET
ANSI_WARNINGS.

The status of this option can be determined by examining the is_ansi_warnings_on column in
the sys.databases catalog view or the IsAnsiWarningsEnabled property of the
DATABASEPROPERTYEX function.

ARITHABORT { ON | OFF }

ON

A query is ended when an overflow or divide-by-zero error occurs during query execution.

OFF

A warning message is displayed when one of these errors occurs, but the query, batch, or
transaction continues to process as if no error occurred.

SET ARITHABORT must be set to ON when you create or make changes to indexes on
computed columns or indexed views.

The status of this option can be determined by examining the is_arithabort_on column in the

http://msdn.microsoft.com/en-us/library/92bd29a3-9beb-410e-b7e0-7bc1dc1ae6d0(SQL.110)�
http://msdn.microsoft.com/en-us/library/f82aaab0-334f-427b-89b0-de4af596b4fa(SQL.110)�
http://msdn.microsoft.com/en-us/library/f82aaab0-334f-427b-89b0-de4af596b4fa(SQL.110)�

 89

sys.databases catalog view or the IsArithmeticAbortEnabled property of the
DATABASEPROPERTYEX function.

COMPATIBILITY_LEVEL { 90 | 100 | 110 }

For more information, see ALTER DATABASE Compatibility Level (Transact-SQL).

 90

CONCAT_NULL_YIELDS_NULL { ON | OFF }

ON

The result of a concatenation operation is NULL when either operand is NULL. For example,
concatenating the character string "This is" and NULL causes the value NULL, instead of the
value "This is".

OFF

The null value is treated as an empty character string.

CONCAT_NULL_YIELDS_NULL must be set to ON when you create or make changes to
indexes on computed columns or indexed views.

Important
In a future version of SQL Server, CONCAT_NULL_YIELDS_NULL will always be ON and any applications
that explicitly set the option to OFF will produce an error. Avoid using this feature in new development
work, and plan to modify applications that currently use this feature.

Connection-level settings that are set by using the SET statement override the default
database setting for CONCAT_NULL_YIELDS_NULL. By default, ODBC and OLE DB clients issue
a connection-level SET statement setting CONCAT_NULL_YIELDS_NULL to ON for the session
when connecting to an instance of SQL Server. For more information, see SET
CONCAT_NULL_YIELDS_NULL.

The status of this option can be determined by examining the is_concat_null_yields_null_on
column in the sys.databases catalog view or the IsNullConcat property of the
DATABASEPROPERTYEX function.

QUOTED_IDENTIFIER { ON | OFF }

ON

Double quotation marks can be used to enclose delimited identifiers.

All strings delimited by double quotation marks are interpreted as object identifiers.
Quoted identifiers do not have to follow the Transact-SQL rules for identifiers. They can be
keywords and can include characters not generally allowed in Transact-SQL identifiers. If a
single quotation mark (') is part of the literal string, it can be represented by double
quotation marks (").

OFF

Identifiers cannot be in quotation marks and must follow all Transact-SQL rules for
identifiers. Literals can be delimited by either single or double quotation marks.

SQL Server also allows for identifiers to be delimited by square brackets ([]). Bracketed
identifiers can always be used, regardless of the setting of QUOTED_IDENTIFIER. For more
information, see Database Identifiers.

When a table is created, the QUOTED IDENTIFIER option is always stored as ON in the
metadata of the table, even if the option is set to OFF when the table is created.

Connection-level settings that are set by using the SET statement override the default

http://msdn.microsoft.com/en-us/library/3091b71c-6518-4eb4-88ab-acae49102bc5(SQL.110)�
http://msdn.microsoft.com/en-us/library/3091b71c-6518-4eb4-88ab-acae49102bc5(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 91

database setting for QUOTED_IDENTIFIER. By default, ODBC and OLE DB clients issue a
connection-level SET statement setting QUOTED_IDENTIFIER to ON when connecting to an
instance of SQL Server. For more information, see SET QUOTED_IDENTIFIER.

The status of this option can be determined by examining the is_quoted_identifier_on column
in the sys.databases catalog view or the IsQuotedIdentifiersEnabled property of the
DATABASEPROPERTYEX function.

NUMERIC_ROUNDABORT { ON | OFF }

ON

An error is generated when loss of precision occurs in an expression.

OFF

Losses of precision do not generate error messages and the result is rounded to the
precision of the column or variable storing the result.

NUMERIC_ROUNDABORT must be set to OFF when you create or make changes to indexes
on computed columns or indexed views.

The status of this option can be determined by examining the is_numeric_roundabort_on
column in the sys.databases catalog view or the IsNumericRoundAbortEnabled property of
the DATABASEPROPERTYEX function.

RECURSIVE_TRIGGERS { ON | OFF }

ON

Recursive firing of AFTER triggers is allowed.

OFF

Only direct recursive firing of AFTER triggers is not allowed. To also disable indirect
recursion of AFTER triggers, set the nested triggers server option to 0 by using
sp_configure.

Note

Only direct recursion is prevented when RECURSIVE_TRIGGERS is set to OFF. To disable indirect
recursion, you must also set the nested triggers server option to 0.

The status of this option can be determined by examining the is_recursive_triggers_on
column in the sys.databases catalog view or the IsRecursiveTriggersEnabled property of the
DATABASEPROPERTYEX function.

WITH <termination> ::=
Specifies when to roll back incomplete transactions when the database is transitioned from one
state to another. If the termination clause is omitted, the ALTER DATABASE statement waits
indefinitely if there is any lock on the database. Only one termination clause can be specified,
and it follows the SET clauses.

Note

http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�

 92

Not all database options use the WITH <termination> clause. For more information, see
the table under "Setting Options of the "Remarks" section of this topic.

ROLLBACK AFTER integer [SECONDS] | ROLLBACK IMMEDIATE

Specifies whether to roll back after the specified number of seconds or immediately.

NO_WAIT

Specifies that if the requested database state or option change cannot complete immediately
without waiting for transactions to commit or roll back on their own, the request will fail.

Remarks
Setting Options
To retrieve current settings for database options, use the sys.databases catalog view or
DATABASEPROPERTYEX
After you set a database option, the modification takes effect immediately.
To change the default values for any one of the database options for all newly created
databases, change the appropriate database option in the model database.
Not all database options use the WITH <termination> clause or can be specified in combination
with other options. The following table lists these options and their option and termination
status.

Options category Can be specified with other
options

Can use the WITH
<termination> clause

<db_state_option> Yes Yes

<db_user_access_option> Yes Yes

<db_update_option> Yes Yes

<external_access_option> Yes No

<cursor_option> Yes No

<auto_option> Yes No

<sql_option> Yes No

<recovery_option> Yes No

<target_recovery_time_option> No Yes

<database_mirroring_option> No No

ALLOW_SNAPSHOT_ISOLATION No No

READ_COMMITTED_SNAPSHOT No Yes

<service_broker_option> Yes No

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�

 93

Options category Can be specified with other
options

Can use the WITH
<termination> clause

DATE_CORRELATION_OPTIMIZATION Yes Yes

<parameterization_option> Yes Yes

<change_tracking_option> Yes Yes

<db_encryption> Yes No

The plan cache for the instance of SQL Server is cleared by setting one of the following options:

OFFLINE READ_WRITE

ONLINE MODIFY FILEGROUP DEFAULT

MODIFY_NAME MODIFY FILEGROUP READ_WRITE

COLLATE MODIFY FILEGROUP READ_ONLY

READ_ONLY

Clearing the plan cache causes a recompilation of all subsequent execution plans and can cause
a sudden, temporary decrease in query performance. For each cleared cachestore in the plan
cache, the SQL Server error log contains the following informational message: "SQL Server has
encountered %d occurrence(s) of cachestore flush for the '%s' cachestore (part of plan cache)
due to some database maintenance or reconfigure operations". This message is logged every
five minutes as long as the cache is flushed within that time interval.
Examples
A. Setting options on a database
The following example sets the recovery model and data page verification options for the
AdventureWorks2012 sample database.
USE master;

GO

ALTER DATABASE AdventureWorks2012

SET RECOVERY FULL, PAGE_VERIFY CHECKSUM;

GO

B. Setting the database to READ_ONLY
Changing the state of a database or filegroup to READ_ONLY or READ_WRITE requires exclusive
access to the database. The following example sets the database to SINGLE_USER mode to

 94

obtain exclusive access. The example then sets the state of the AdventureWorks2012 database
to READ_ONLY and returns access to the database to all users.

This example uses the termination option WITH ROLLBACK IMMEDIATE in the first ALTER
DATABASE statement. All incomplete transactions will be rolled back and any other
connections to the database will be immediately disconnected.

USE master;

GO

ALTER DATABASE AdventureWorks2012

SET SINGLE_USER

WITH ROLLBACK IMMEDIATE;

GO

ALTER DATABASE AdventureWorks2012

SET READ_ONLY;

GO

ALTER DATABASE AdventureWorks2012

SET MULTI_USER;

GO

C. Enabling snapshot isolation on a database
The following example enables the snapshot isolation framework option for the
AdventureWorks2012 database.
USE AdventureWorks2012;

GO

-- Check the state of the snapshot_isolation_framework

-- in the database.

SELECT name, snapshot_isolation_state,

 snapshot_isolation_state_desc AS description

FROM sys.databases

WHERE name = N'AdventureWorks2012';

GO

USE master;

GO

ALTER DATABASE AdventureWorks2012

 SET ALLOW_SNAPSHOT_ISOLATION ON;

GO

Note

 95

-- Check again.

SELECT name, snapshot_isolation_state,

 snapshot_isolation_state_desc AS description

FROM sys.databases

WHERE name = N'AdventureWorks2012';

GO

The result set shows that the snapshot isolation framework is enabled.
name snapshot_isolation_state description
-------------------- ------------------------ ----------
AdventureWorks2012 1 ON

D. Enabling, modifying, and disabling change tracking
The following example enables change tracking for the AdventureWorks2012 database and sets
the retention period to 4 days.
ALTER DATABASE AdventureWorks2012

SET CHANGE_TRACKING = ON

(AUTO_CLEANUP = ON, CHANGE_RETENTION = 2 DAYS);

The following example shows how to change the retention period to 3 days.
ALTER DATABASE AdventureWorks2012

SET CHANGE_TRACKING (CHANGE_RETENTION = 3 DAYS);

The following example shows how to disable change tracking for the AdventureWorks2012

database.
ALTER DATABASE AdventureWorks2012

SET CHANGE_TRACKING = OFF;

See Also
ALTER DATABASE Compatibility Level (Transact-SQL)
ALTER DATABASE Database Mirroring (Transact-SQL)
ALTER DATABASE SET HADR (Transact-SQL)
Using Statistics to Improve Query Performance
CREATE DATABASE
Configuring and Managing Change Tracking
DATABASEPROPERTYEX

http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/1c92ec7e-ae53-4498-8bfd-c66a42a24d54(SQL.110)�
http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�

 96

DROP DATABASE
SET TRANSACTION ISOLATION LEVEL
sp_configure
sys.databases (Transact-SQL)
sys.data_spaces (Transact-SQL)

ALTER DATABASE Database Mirroring

This feature will be removed in a future version of Microsoft SQL Server. Avoid using this
feature in new development work, and plan to modify applications that currently use this
feature. Use AlwaysOn Availability Groups instead.

Controls database mirroring for a database. Values specified with the database mirroring
options apply to both copies of the database and to the database mirroring session as a whole.
Only one <database_mirroring_option> is permitted per ALTER DATABASE statement.

We recommend that you configure database mirroring during off-peak hours because
configuration can affect performance.

For ALTER DATABASE options, see ALTER DATABASE (Transact-SQL). For ALTER DATABASE SET
options, see ALTER DATABASE SET Options (Transact-SQL).

 Transact-SQL Syntax Conventions
Syntax

ALTER DATABASE database_name
SET { <partner_option> | <witness_option> }
 <partner_option> ::=
 PARTNER { = 'partner_server'
 | FAILOVER
 | FORCE_SERVICE_ALLOW_DATA_LOSS
 | OFF
 | RESUME
 | SAFETY { FULL | OFF }
 | SUSPEND
 | TIMEOUT integer
 }
 <witness_option> ::=
 WITNESS { = 'witness_server'

Note

Note

http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/f39d55fe-2c0f-472d-a77f-cebc6fea95b5(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 97

 | OFF
 }

Arguments

A SET PARTNER or SET WITNESS command can complete successfully when entered, but
fail later.

ALTER DATABASE database mirroring options are not available for a contained database.
database_name

Is the name of the database to be modified.

PARTNER <partner_option>

Controls the database properties that define the failover partners of a database mirroring
session and their behavior. Some SET PARTNER options can be set on either partner; others
are restricted to the principal server or to the mirror server. For more information, see the
individual PARTNER options that follow. A SET PARTNER clause affects both copies of the
database, regardless of the partner on which it is specified.

To execute a SET PARTNER statement, the STATE of the endpoints of both partners must be
set to STARTED. Note, also, that the ROLE of the database mirroring endpoint of each partner
server instance must be set to either PARTNER or ALL. For information about how to specify
an endpoint, see How to: Create a Mirroring Endpoint for Windows
Authentication (Transact-SQL). To learn the role and state of the database mirroring
endpoint of a server instance, on that instance, use the following Transact-SQL statement:

SELECT role_desc, state_desc FROM

sys.database_mirroring_endpoints

<partner_option> ::=

Note
Only one <partner_option> is permitted per SET PARTNER clause.

'partner_server'

Specifies the server network address of an instance of SQL Server to act as a failover
partner in a new database mirroring session. Each session requires two partners: one starts
as the principal server, and the other starts as the mirror server. We recommend that these
partners reside on different computers.

This option is specified one time per session on each partner. Initiating a database
mirroring session requires two ALTER DATABASE database SET PARTNER = 'partner_server'
statements. Their order is significant. First, connect to the mirror server, and specify the
principal server instance as partner_server (SET PARTNER = 'principal_server'). Second,
connect to the principal server, and specify the mirror server instance as partner_server

Important

Note

http://msdn.microsoft.com/en-us/library/baf1a4b1-6790-4275-b261-490bca33bdb9(SQL.110)�
http://msdn.microsoft.com/en-us/library/baf1a4b1-6790-4275-b261-490bca33bdb9(SQL.110)�

 98

(SET PARTNER = 'mirror_server'); this starts a database mirroring session between these
two partners. For more information, see Overview of Setting Up Database
Mirroring (Transact-SQL).
The value of partner_server is a server network address. This has the following syntax:

TCP://<system-address>:<port>

where

• <system-address> is a string, such as a system name, a fully qualified domain name, or
an IP address, that unambiguously identifies the destination computer system.

• <port> is a port number that is associated with the mirroring endpoint of the partner
server instance.

For more information, see Specifying a Server Network Address (Database
Mirroring).
The following example illustrates the SET PARTNER = 'partner_server' clause:

'TCP://MYSERVER.mydomain.Adventure-Works.com:7777'

Important
If a session is set up by using the ALTER DATABASE statement instead of SQL Server Management
Studio, the session is set to full transaction safety by default (SAFETY is set to FULL) and runs in
high-safety mode without automatic failover. To allow automatic failover, configure a witness; to run
in high-performance mode, turn off transaction safety (SAFETY OFF).

FAILOVER

Manually fails over the principal server to the mirror server. You can specify FAILOVER only
on the principal server. This option is valid only when the SAFETY setting is FULL (the
default).

The FAILOVER option requires master as the database context.

FORCE_SERVICE_ALLOW_DATA_LOSS

Forces database service to the mirror database after the principal server fails with the
database in an unsynchronized state or in a synchronized state when automatic failover
does not occur.

We strongly recommend that you force service only if the principal server is no longer
running. Otherwise, some clients might continue to access the original principal database
instead of the new principal database.

FORCE_SERVICE_ALLOW_DATA_LOSS is available only on the mirror server and only under
all the following conditions:

• The principal server is down.

• WITNESS is set to OFF or the witness is connected to the mirror server.

Force service only if you are willing to risk losing some data in order to restore service to
the database immediately.

Forcing service suspends the session, temporarily preserving all the data in the original

http://msdn.microsoft.com/en-us/library/da45efed-55eb-4c71-be34-ac2589dfce8d(SQL.110)�
http://msdn.microsoft.com/en-us/library/da45efed-55eb-4c71-be34-ac2589dfce8d(SQL.110)�
http://msdn.microsoft.com/en-us/library/a64d4b6b-9016-4f1e-a310-b1df181dd0c6(SQL.110)�
http://msdn.microsoft.com/en-us/library/a64d4b6b-9016-4f1e-a310-b1df181dd0c6(SQL.110)�
www.MYSERVER.mydomain.Adventure-Works.com:7777

 99

principal database. Once the original principal is in service and able to communicate with
the new principal server, the database administrator can resume service. When the session
resumes, any unsent log records and the corresponding updates are lost.

OFF

Removes a database mirroring session and removes mirroring from the database. You can
specify OFF on either partner. For information, see about the impact of removing
mirroring, see Removing Database Mirroring.

RESUME

Resumes a suspended database mirroring session. You can specify RESUME only on the
principal server.

SAFETY { FULL | OFF }

Sets the level of transaction safety. You can specify SAFETY only on the principal server.

The default is FULL. With full safety, the database mirroring session runs synchronously (in
high-safety mode). If SAFETY is set to OFF, the database mirroring session runs
asynchronously (in high-performance mode).

The behavior of high-safety mode depends partly on the witness, as follows:

• When safety is set to FULL and a witness is set for the session, the session runs in
high-safety mode with automatic failover. When the principal server is lost, the session
automatically fails over if the database is synchronized and the mirror server instance
and witness are still connected to each other (that is, they have quorum). For more
information, see Quorum in Database Mirroring Sessions.

If a witness is set for the session but is currently disconnected, the loss of the mirror
server causes the principal server to go down.

• When safety is set to FULL and the witness is set to OFF, the session runs in high-
safety mode without automatic failover. If the mirror server instance goes down, the
principal server instance is unaffected. If the principal server instance goes down, you
can force service (with possible data loss) to the mirror server instance.

If SAFETY is set to OFF, the session runs in high-performance mode, and automatic failover
and manual failover are not supported. However, problems on the mirror do not affect the
principal, and if the principal server instance goes down, you can, if necessary, force service
(with possible data loss) to the mirror server instance—if WITNESS is set to OFF or the
witness is currently connected to the mirror. For more information on forcing service, see
"FORCE_SERVICE_ALLOW_DATA_LOSS" earlier in this section.

Important
High-performance mode is not intended to use a witness. However, whenever you set SAFETY to
OFF, we strongly recommend that you ensure that WITNESS is set to OFF.

SUSPEND

Pauses a database mirroring session.

http://msdn.microsoft.com/en-us/library/40c72091-8f03-4037-8b55-5e95309fe145(SQL.110)�
http://msdn.microsoft.com/en-us/library/a62d9dd7-3667-4751-a294-a61fc9caae7c(SQL.110)�

 100

You can specify SUSPEND on either partner.

TIMEOUT integer

Specifies the time-out period in seconds. The time-out period is the maximum time that a
server instance waits to receive a PING message from another instance in the mirroring
session before considering that other instance to be disconnected.

You can specify the TIMEOUT option only on the principal server. If you do not specify this
option, by default, the time period is 10 seconds. If you specify 5 or greater, the time-out
period is set to the specified number of seconds. If you specify a time-out value of 0 to 4
seconds, the time-out period is automatically set to 5 seconds.

Important
We recommend that you keep the time-out period at 10 seconds or greater. Setting the value to
less than 10 seconds creates the possibility of a heavily loaded system missing PINGs and declaring
a false failure.

For more information, see Possible Failures During Database Mirroring
Sessions.

WITNESS <witness_option>

Controls the database properties that define a database mirroring witness. A SET WITNESS
clause affects both copies of the database, but you can specify SET WITNESS only on the
principal server. If a witness is set for a session, quorum is required to serve the database,
regardless of the SAFETY setting; for more information, see Quorum in Database
Mirroring Sessions.

We recommend that the witness and failover partners reside on separate computers. For
information about the witness, see The Role of the Witness.

To execute a SET WITNESS statement, the STATE of the endpoints of both the principal and
witness server instances must be set to STARTED. Note, also, that the ROLE of the database
mirroring endpoint of a witness server instance must be set to either WITNESS or ALL. For
information about specifying an endpoint, see The Database Mirroring Endpoint.
To learn the role and state of the database mirroring endpoint of a server instance, on that
instance, use the following Transact-SQL statement:

SELECT role_desc, state_desc FROM

sys.database_mirroring_endpoints

Note
Database properties cannot be set on the witness.

<witness_option> ::=

Note
Only one <witness_option> is permitted per SET WITNESS clause.

'witness_server'

http://msdn.microsoft.com/en-us/library/d7031f58-5f49-4e6d-9a62-9b420f2bb17e(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7031f58-5f49-4e6d-9a62-9b420f2bb17e(SQL.110)�
http://msdn.microsoft.com/en-us/library/a62d9dd7-3667-4751-a294-a61fc9caae7c(SQL.110)�
http://msdn.microsoft.com/en-us/library/a62d9dd7-3667-4751-a294-a61fc9caae7c(SQL.110)�
http://msdn.microsoft.com/en-us/library/05606de8-90c3-451a-938d-1ed34211dad7(SQL.110)�
http://msdn.microsoft.com/en-us/library/39332dc5-678e-4650-9217-6aa3cdc41635(SQL.110)�

 101

Specifies an instance of the Database Engine to act as the witness server for a database
mirroring session. You can specify SET WITNESS statements only on the principal server.

In a SET WITNESS = 'witness_server' statement, the syntax of witness_server is the same as
the syntax of partner_server.

OFF

Removes the witness from a database mirroring session. Setting the witness to OFF
disables automatic failover. If the database is set to FULL SAFETY and the witness is set to
OFF, a failure on the mirror server causes the principal server to make the database
unavailable.

Remarks
Examples
A. Creating a database mirroring session with a witness
Setting up database mirroring with a witness requires configuring security and preparing the
mirror database, and also using ALTER DATABASE to set the partners. For an example of the
complete setup process, see Setting Up Database Mirroring .
B. Manually failing over a database mirroring session
Manual failover can be initiated from either database mirroring partner. Before failing over, you
should verify that the server you believe to be the current principal server actually is the
principal server. For example, for the database, on that server instance that you think is the
current principal server, execute the following query:

SELECT db.name, m.mirroring_role_desc

FROM sys.database_mirroring m

JOIN sys.databases db

ON db.database_id = m.database_id

WHERE db.name = N'AdventureWorks2012';

GO

If the server instance is in fact the principal, the value of mirroring_role_desc is Principal. If
this server instance were the mirror server, the SELECT statement would return Mirror.
The following example assumes that the server is the current principal.
1. Manually fail over to the database mirroring partner:

ALTER DATABASE AdventureWorks2012 SET PARTNER FAILOVER;

GO

2. To verify the results of the failover on the new mirror, execute the following query:

SELECT db.name, m.mirroring_role_desc

FROM sys.database_mirroring m

JOIN sys.databases db

http://msdn.microsoft.com/en-us/library/da45efed-55eb-4c71-be34-ac2589dfce8d(SQL.110)�

 102

ON db.database_id = m.database_id

WHERE db.name = N'AdventureWorks2012';

GO

The current value of mirroring_role_desc is now Mirror.
See Also
CREATE DATABASE
DATABASEPROPERTYEX
sys.database_mirroring_witnesses

ALTER DATABASE SET HADR
This topic contains the ALTER DATABASE syntax for setting AlwaysOn Availability Groups
options on a secondary database. Only one SET HADR option is permitted per ALTER DATABASE
statement. These options are supported only on secondary replicas.

 Transact-SQL Syntax Conventions
Syntax

ALTER DATABASE database_name
 SET HADR
 {
 { AVAILABILITY GROUP = group_name | OFF }
 | { SUSPEND | RESUME }
 }
;
Arguments
database_name

Is the name of the secondary database to be modified.

SET HADR

Executes the specified AlwaysOn Availability Groups command on the specified database.

{ AVAILABILITY GROUP = group_name | OFF }

Joins or removes the availability database from the specified availability group, as follows:

group_name

Joins the specified database on the secondary replica that is hosted by the server instance
on which you execute the command to the availability group specified by group_name.

The prerequisites for this operation are as follows:

• The database must already have been added to the availability group on the primary

http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�
http://msdn.microsoft.com/en-us/library/0dd5b794-733b-4a3c-b5a4-62f9f1f0f22d(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 103

replica.

• The primary replica must be active. For information about how troubleshoot an
inactive primary replica, see Troubleshooting AlwaysOn Availability Groups
Configuration (SQL Server).

• The primary replica must be online, and the secondary replica must be connected to
the primary replica.

• The secondary database must have been restored using WITH NORECOVERY from
recent database and log backups of the primary database, ending with a log backup
that is recent enough to permit the secondary database to catch up to the primary
database.

Note
To add a database to the availability group, connect to the server instance that hosts the
primary replica, and use the ALTER AVAILABILITY GROUP group_name ADD DATABASE
database_name statement.

For more information, see Joining a Secondary Database to an Availability
Group (SQL Server).

OFF

Removes the specified secondary database from the availability group.

Removing a secondary database can be useful if it has fallen far behind the primary
database, and you do not want to wait for the secondary database to catch up. After
removing the secondary database, you can update it by restoring a sequence of backups
ending with a recent log backup (using RESTORE … WITH NORECOVERY).

Important
To completely remove an availability database from an availability group, connect to the server
instance that hosts the primary replica, and use the ALTER AVAILABILITY GROUP group_name
REMOVE DATABASE availability_database_name statement. For more information, see Removing
an Availability Database from an Availability Group (SQL Server).

SUSPEND

Suspends data movement on a secondary database. A SUSPEND command returns as soon
as it has been accepted by the replica that hosts the target database, but actually suspending
the database occurs asynchronously.

The scope of the impact depends on where you execute the ALTER DATABASE statement:

• If you suspend a secondary database on a secondary replica, only the local secondary
database is suspended. Existing connections on the readable secondary remain usable.
New connections to the suspended database on the readable secondary are not allowed
until data movement is resumed.

• If you suspend a database on the primary replica, data movement is suspended to the
corresponding secondary databases on every secondary replica. Existing connections on

http://go.microsoft.com/fwlink/?LinkId=225834�
http://go.microsoft.com/fwlink/?LinkId=225834�
http://msdn.microsoft.com/en-us/library/fd7efe79-c1f9-497d-bfe7-b2a2b2321cf5(SQL.110)�
http://msdn.microsoft.com/en-us/library/fd7efe79-c1f9-497d-bfe7-b2a2b2321cf5(SQL.110)�
http://msdn.microsoft.com/en-us/library/6d4ca31e-ddf0-44bf-be5e-a5da060bf096(SQL.110)�
http://msdn.microsoft.com/en-us/library/6d4ca31e-ddf0-44bf-be5e-a5da060bf096(SQL.110)�

 104

a readable secondary remain usable and new connections can be made.

• When data movement is suspended due to a forced manual failover, connections to the
new secondary replica are not allowed while data movement is suspended.

When a database on a secondary replica is suspended, both the database and replica
become unsynchronized and are marked as NOT SYNCHRONIZED.

Important
While a secondary database is suspended, the send queue of the corresponding primary database will
accumulate unsent transaction log records. Connections to the secondary replica return data that was
available at the time the data movement was suspended.

Note
Suspending and resuming an AlwaysOn secondary database does not directly affect the availability of
the primary database, though suspending a secondary database can impact redundancy and failover
capabilities for the primary database, until the suspended secondary database is resumed. This is in
contrast to database mirroring, where the mirroring state is suspended on both the mirror database
and the principal database until mirroring is resumed. Suspending an AlwaysOn primary database
suspends data movement on all the corresponding secondary databases, and redundancy and failover
capabilities cease for that database until the primary database is resumed.

For more information, see Suspend a Secondary Database in an Availability
Group (SQL Server).

RESUME

Resumes suspended data movement on the specified secondary database. A RESUME
command returns as soon as it has been accepted by the replica that hosts the target
database, but actually resuming the database occurs asynchronously.

The scope of the impact depends on where you execute the ALTER DATABASE statement:

• If you resume a secondary database on a secondary replica, only the local secondary
database is resumed. Data movement is resumed unless the database has also been
suspended on the primary replica.

• If you resume a database on the primary replica, data movement is resumed to every
secondary replica on which the corresponding secondary database has not also been
suspended locally. To resume a secondary database that was individually suspended on
a secondary replica, connect to the server instance that hosts the secondary replica and
resume the database there.

Under synchronous-commit mode, the database state changes to SYNCHRONIZING. If
no other database is currently suspended, the replica state also changes to
SYNCHRONIZING.

For more information, see Resume a Secondary Database in an Availability
Group (SQL Server).

Database States

http://msdn.microsoft.com/en-us/library/86858982-6af1-4e80-9a93-87451f0d7ee9(SQL.110)�
http://msdn.microsoft.com/en-us/library/86858982-6af1-4e80-9a93-87451f0d7ee9(SQL.110)�
http://msdn.microsoft.com/en-us/library/20e9147b-e985-4caa-910e-fc4b38dbf9a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/20e9147b-e985-4caa-910e-fc4b38dbf9a1(SQL.110)�

 105

When a secondary database is joined to an availability group, the local secondary replica
changes the state of that secondary database from RESTORING to ONLINE. If a secondary
database is removed from the availability group, it is set back to the RESTORING state by the
local secondary replica. This allows you to apply subsequent log backups from the primary
database to that secondary database.
Restrictions
Execute ALTER DATABASE statements outside of both transactions and batches.
Security
Permissions
Requires ALTER permission on the database. Joining a database to an availability group requires
membership in the db_owner fixed database role.
Examples
The following example joins the secondary database, AccountsDb1, to the local secondary
replica of the AccountsAG availability group.

ALTER DATABASE AccountsDb1 SET HADR AVAILABILITY GROUP = AccountsAG;

To see this Transact-SQL statement used in context, see Example: Setting Up an
Availability Group Using Windows Authentication (Transact-SQL).

See Also
ALTER DATABASE (Transact-SQL)
ALTER AVAILABILITY GROUP (Transact-SQL)
CREATE AVAILABILITY GROUP (Transact-SQL)
Overview of AlwaysOn Availability Groups (SQL Server)
Troubleshoot AlwaysOn Availability Groups Configuration (SQL Server)

ALTER DATABASE Compatibility Level
Sets certain database behaviors to be compatible with the specified version of SQL Server. For
other ALTER DATABASE options, see ALTER DATABASE (Transact-SQL).

 Transact-SQL Syntax Conventions
Syntax

ALTER DATABASE database_name
SET COMPATIBILITY_LEVEL = { 90 | 100 | 110 }
Arguments
database_name

Is the name of the database to be modified.

Note

http://msdn.microsoft.com/en-us/library/8b0a6301-8b79-4415-b608-b40876f30066(SQL.110)�
http://msdn.microsoft.com/en-us/library/8b0a6301-8b79-4415-b608-b40876f30066(SQL.110)�
http://msdn.microsoft.com/en-us/library/04fd9d95-4624-420f-a3be-1794309b3a47(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c222f98-7392-4faf-b7ad-5fb60ffa237e(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 106

COMPATIBILITY_LEVEL { 90 | 100 | 110 }

Is the version of SQL Server with which the database is to be made compatible. The value
must be one of the following:

90 = SQL Server 2005

100 = SQL Server 2008 and SQL Server 2008 R2

110 = SQL Server 2012

Remarks
For all installations of SQL Server 2012, the default compatibility level is 110. Databases created
in SQL Server 2012 are set to this level unless the model database has a lower compatibility
level. When a database is upgraded to SQL Server 2012 from any earlier version of SQL Server,
the database retains its existing compatibility level if it is at least 90. Upgrading a database with
a compatibility level below 90 sets the database to compatibility level 90. This applies to both
system and user databases. Use ALTER DATABASE to change the compatibility level of the
database. To view the current compatibility level of a database, query the compatibility_level
column in the sys.databases catalog view.
Using Compatibility Level for Backward Compatibility
Compatibility level affects behaviors only for the specified database, not for the entire server.
Compatibility level provides only partial backward compatibility with earlier versions of SQL
Server. Use compatibility level as an interim migration aid to work around version differences in
the behaviors that are controlled by the relevant compatibility-level setting. If existing SQL
Server applications are affected by behavioral differences in SQL Server 2012, convert the
application to work properly. Then use ALTER DATABASE to change the compatibility level to
100. The new compatibility setting for a database takes effect when the database is next made
current (whether as the default database on login or on being specified in a USE statement).
Best Practices
Changing the compatibility level while users are connected to the database can produce
incorrect result sets for active queries. For example, if the compatibility level changes while a
query plan is being compiled, the compiled plan might be based on both the old and new
compatibility levels, resulting in an incorrect plan and potentially inaccurate results. Furthermore,
the problem may be compounded if the plan is placed in the plan cache and reused for
subsequent queries. To avoid inaccurate query results, we recommend the following procedure
to change the compatibility level of a database:
1. Set the database to single-user access mode by using ALTER DATABASE SET SINGLE_USER.
2. Change the compatibility level of the database.
3. Put the database in multiuser access mode by using ALTER DATABASE SET MULTI_USER.
4. For more information about setting the access mode of a database, see ALTER DATABASE

(Transact-SQL).
Compatibility Levels and Stored Procedures

 107

When a stored procedure executes, it uses the current compatibility level of the database in
which it is defined. When the compatibility setting of a database is changed, all of its stored
procedures are automatically recompiled accordingly.
Differences Between Compatibility Level 90 and Level 100
This section describes new behaviors introduced with compatibility level 100.

Compatibility-level setting of 90 Compatibility-level setting of 100 Possibility of
impact

The QUOTED_IDENTIFER setting is
always set to ON for multistatement
table-valued functions when they are
created regardless of the session level
setting.

The QUOTED IDENTIFIER session
setting is honored when
multistatement table-valued functions
are created.

Medium

When you create or alter a partition
function, datetime and smalldatetime
literals in the function are evaluated
assuming US_English as the language
setting.

The current language setting is used to
evaluate datetime and smalldatetime
literals in the partition function.

Medium

The FOR BROWSE clause is allowed
(and ignored) in INSERT and SELECT
INTO statements.

The FOR BROWSE clause is not allowed
in INSERT and SELECT INTO
statements.

Medium

Full-text predicates are allowed in the
OUTPUT clause.

Full-text predicates are not allowed in
the OUTPUT clause.

Low

CREATE FULLTEXT STOPLIST, ALTER
FULLTEXT STOPLIST, and DROP
FULLTEXT STOPLIST are not supported.
The system stoplist is automatically
associated with new full-text indexes.

CREATE FULLTEXT STOPLIST, ALTER
FULLTEXT STOPLIST, and DROP
FULLTEXT STOPLIST are supported.

Low

MERGE is not enforced as a reserved
keyword.

MERGE is a fully reserved keyword. The
MERGE statement is supported under
both 100 and 90 compatibility levels.

Low

Using the <dml_table_source>
argument of the INSERT statement
raises a syntax error.

You can capture the results of an
OUTPUT clause in a nested INSERT,
UPDATE, DELETE, or MERGE statement,
and insert those results into a target
table or view. This is done using the
<dml_table_source> argument of the
INSERT statement.

Low

 108

Compatibility-level setting of 90 Compatibility-level setting of 100 Possibility of
impact

Unless NOINDEX is specified, DBCC
CHECKDB or DBCC CHECKTABLE
performs both physical and logical
consistency checks on a single table or
indexed view and on all its
nonclustered and XML indexes. Spatial
indexes are not supported.

Unless NOINDEX is specified, DBCC
CHECKDB or DBCC CHECKTABLE
performs both physical and logical
consistency checks on a single table
and on all its nonclustered indexes.
However, on XML indexes, spatial
indexes, and indexed views, only
physical consistency checks are
performed by default.
If WITH EXTENDED_LOGICAL_CHECKS
is specified, logical checks are
performed on indexed views, XML
indexes, and spatial indexes, where
present. By default, physical
consistency checks are performed
before the logical consistency checks.
If NOINDEX is also specified, only the
logical checks are performed.

Low

When an OUTPUT clause is used with a
data manipulation language (DML)
statement and a run-time error occurs
during statement execution, the entire
transaction is terminated and rolled
back.

When an OUTPUT clause is used with a
data manipulation language (DML)
statement and a run-time error occurs
during statement execution, the
behavior depends on the SET
XACT_ABORT setting. If SET
XACT_ABORT is OFF, a statement abort
error generated by the DML statement
using the OUTPUT clause will
terminate the statement, but the
execution of the batch continues and
the transaction is not rolled back. If
SET XACT_ABORT is ON, all run-time
errors generated by the DML
statement using the OUTPUT clause
will terminate the batch, and the
transaction is rolled back.

Low

CUBE and ROLLUP are not enforced as
reserved keywords.

CUBE and ROLLUP are reserved
keywords within the GROUP BY clause.

Low

Strict validation is applied to elements Lax validation is applied to elements of Low

 109

Compatibility-level setting of 90 Compatibility-level setting of 100 Possibility of
impact

of the XML anyType type. the anyType type. For more
information, see Wildcard Components
and Content Validation.

The special attributes xsi:nil and
xsi:type cannot be queried or
modified by data manipulation
language statements.
This means that /e/@xsi:nil fails
while /e/@* ignores the xsi:nil and
xsi:type attributes. However, /e
returns the xsi:nil and xsi:type
attributes for consistency with SELECT
xmlCol, even if xsi:nil = "false".

The special attributes xsi:nil and
xsi:type are stored as regular
attributes and can be queried and
modified.
For example, executing the query
SELECT x.query('a/b/@*') returns
all attributes including xsi:nil and
xsi:type. To exclude these types in the
query, replace @* with @*[namespace-
uri(.) != "insert xsi namespace uri"
and not (local-name(.) = "type"
or local-name(.) ="nil".

Low

A user-defined function that converts
an XML constant string value to a SQL
Server datetime type is marked as
deterministic.

A user-defined function that converts
an XML constant string value to a SQL
Server datetime type is marked as non-
deterministic.

Low

The XML union and list types are not
fully supported.

The union and list types are fully
supported including the following
functionality:
• Union of list
• Union of union
• List of atomic types
• List of union

Low

The SET options required for an
xQuery method are not validated when
the method is contained in a view or
inline table-valued function.

The SET options required for an
xQuery method are validated when the
method is contained in a view or inline
table-valued function. An error is
raised if the SET options of the method
are set incorrectly.

Low

XML attribute values that contain end-
of-line characters (carriage return and
line feed) are not normalized
according to the XML standard. That is,
both characters are returned instead of

XML attribute values that contain end-
of-line characters (carriage return and
line feed) are normalized according to
the XML standard. That is, all line
breaks in external parsed entities

Low

http://msdn.microsoft.com/en-us/library/ffa7d974-3645-446c-8425-f0b22b6b060a(SQL.110)�
http://msdn.microsoft.com/en-us/library/ffa7d974-3645-446c-8425-f0b22b6b060a(SQL.110)�

 110

Compatibility-level setting of 90 Compatibility-level setting of 100 Possibility of
impact

a single line-feed character. (including the document entity) are
normalized on input by translating
both the two-character sequence #xD
#xA and any #xD that is not followed
by #xA to a single #xA character.
Applications that use attributes to
transport string values that contain
end-of-line characters will not receive
these characters back as they are
submitted. To avoid the normalization
process, use the XML numeric
character entities to encode all end-of-
line characters.

The column properties ROWGUIDCOL
and IDENTITY can be incorrectly
named as a constraint. For example the
statement CREATE TABLE T (C1 int
CONSTRAINT MyConstraint
IDENTITY) executes, but the
constraint name is not preserved and
is not accessible to the user.

The column properties ROWGUIDCOL
and IDENTITY cannot be named as a
constraint. Error 156 is returned.

Low

Updating columns by using a two-way
assignment such as UPDATE T1 SET
@v = column_name = <expression>
can produce unexpected results
because the live value of the variable
can be used in other clauses such as
the WHERE and ON clause during
statement execution instead of the
statement starting value. This can
cause the meanings of the predicates
to change unpredictably on a per-row
basis.
This behavior is applicable only when
the compatibility level is set to 90.

Updating columns by using a two-way
assignment produces expected results
because only the statement starting
value of the column is accessed during
statement execution.

Low

Variable assignment is allowed in a
statement containing a top-level
UNION operator, but returns

Variable assignment is not allowed in a
statement containing a top-level
UNION operator. Error 10734 is

Low

 111

Compatibility-level setting of 90 Compatibility-level setting of 100 Possibility of
impact

unexpected results. For example, in the
following statements, local variable @v
is assigned the value of the column
BusinessEntityID from the union of
two tables. By definition, when the
SELECT statement returns more than
one value, the variable is assigned the
last value that is returned. In this case,
the variable is correctly assigned the
last value, however, the result set of
the SELECT UNION statement is also
returned.

ALTER DATABASE

AdventureWorks2012

SET compatibility_level = 90;

GO

USE AdventureWorks2012;

GO

DECLARE @v int;

SELECT @v = BusinessEntityID

FROM HumanResources.Employee

UNION ALL

SELECT @v = BusinessEntityID

FROM

HumanResources.EmployeeAddress;

SELECT @v;

returned.
To resolve the error, rewrite the query
as shown in the following example.

DECLARE @v int;

SELECT @v = BusinessEntityID

FROM

 (SELECT BusinessEntityID

FROM HumanResources.Employee

 UNION ALL

 SELECT BusinessEntityID

FROM

HumanResources.EmployeeAddress)

AS Test;

SELECT @v;

The ODBC function {fn CONVERT()}
uses the default date format of the
language. For some languages, the
default format is YDM, which can result
in conversion errors when CONVERT()
is combined with other functions, such
as {fn CURDATE()}, that expect a YMD
format.

The ODBC function {fn CONVERT()}
uses style 121 (a language-
independent YMD format) when
converting to the ODBC data types
SQL_TIMESTAMP, SQL_DATE,
SQL_TIME, SQLDATE, SQL_TYPE_TIME,
and SQL_TYPE_TIMESTAMP.

Low

The ODBC function {fn CURDATE()}
returns only the date in the format

The ODBC function {fn CURDATE()}
returns both date and time, for

Low

 112

Compatibility-level setting of 90 Compatibility-level setting of 100 Possibility of
impact

'YYYY-MM-DD'. example 'YYYY-MM-DD hh:mm:ss.

Datetime intrinsics such as DATEPART
do not require string input values to
be valid datetime literals. For example,
SELECT DATEPART (year, '2007/05-30')
compiles successfully.

Datetime intrinsics such as DATEPART
require string input values to be valid
datetime literals. Error 241 is returned
when an invalid datetime literal is
used.

Low

Differences Between Lower Compatibility Levels and Level 110
This section describes new behaviors introduced with compatibility level 110.

Compatibility-level setting of 100 or lower Compatibility-level setting of 110

Common language runtime (CLR) database
objects are executed with version 4 of the
CLR. However, some behavior changes
introduced in version 4 of the CLR are
avoided. For more information, see What's
New in CLR Integration.

CLR database objects are executed with
version 4 of the CLR.

The XQuery functions string-length and
substring count each surrogate as two
characters.

The XQuery functions string-length and
substring count each surrogate as one
character.

PIVOT is allowed in a recursive common
table expression (CTE) query. However, the
query returns incorrect results when there
are multiple rows per grouping.

PIVOT is not allowed in a recursive
common table expression (CTE) query. An
error is returned.

The RC4 algorithm is only supported for
backward compatibility. New material can
only be encrypted using RC4 or RC4_128
when the database is in compatibility level
90 or 100. (Not recommended.) In SQL
Server 2012, material encrypted using RC4
or RC4_128 can be decrypted in any
compatibility level.

New material cannot be encrypted using
RC4 or RC4_128. Use a newer algorithm
such as one of the AES algorithms instead.
In SQL Server 2012, material encrypted
using RC4 or RC4_128 can be decrypted in
any compatibility level.

The default style for CAST and CONVERT
operations on time and datetime2 data
types is 121 except when either type is
used in a computed column expression. For

Under compatibility level 110, the default
style for CAST and CONVERT operations on
time and datetime2 data types is always
121. If your query relies on the old

http://msdn.microsoft.com/en-us/library/871fcccd-b726-4b13-9f95-d02b4b39d8ab(SQL.110)�
http://msdn.microsoft.com/en-us/library/871fcccd-b726-4b13-9f95-d02b4b39d8ab(SQL.110)�

 113

Compatibility-level setting of 100 or lower Compatibility-level setting of 110

computed columns, the default style is 0.
This behavior impacts computed columns
when they are created, used in queries
involving auto-parameterization, or used in
constraint definitions.
The following example shows the difference
between styles 0 and 121. It does not
demonstrate the behavior described above.
For more information about date and time
styles, see CAST and CONVERT (Transact-
SQL).
CREATE TABLE t1 (c1 time(7), c2

datetime2);

INSERT t1 (c1,c2) VALUES

(GETDATE(), GETDATE());

SELECT CONVERT(nvarchar(16),c1,0)

AS TimeStyle0

,CONVERT(nvarchar(16),c1,121)AS

TimeStyle121

 ,CONVERT(nvarchar(32),c2,0)

AS Datetime2Style0

,CONVERT(nvarchar(32),c2,121)AS

Datetime2Style121

FROM t1;

-- Returns values such as the

following.

TimeStyle0 TimeStyle121

Datetime2Style0

Datetime2Style121

---------------- ---------------- -

------------------- ---------------

behavior, use a compatibility level less than
110, or explicitly specify the 0 style in the
affected query.
Upgrading the database to compatibility
level 110 will not change user data that has
been stored to disk. You must manually
correct this data as appropriate. For
example, if you used SELECT INTO to create
a table from a source that contained a
computed column expression described
above, the data (using style 0) would be
stored rather than the computed column
definition itself. You would need to
manually update this data to match style
121.

http://msdn.microsoft.com/en-us/library/a87d0850-c670-4720-9ad5-6f5a22343ea8(SQL.110)�
http://msdn.microsoft.com/en-us/library/a87d0850-c670-4720-9ad5-6f5a22343ea8(SQL.110)�

 114

Compatibility-level setting of 100 or lower Compatibility-level setting of 110

3:15PM 15:15:35.8100000

Jun 7 2011 3:15PM 2011-06-07

15:15:35.8130000

Any columns in remote tables of type
smalldatetime that are referenced in a
partitioned view are mapped as datetime.
Corresponding columns in local tables (in
the same ordinal position in the select list)
must be of type datetime.

Any columns in remote tables of type
smalldatetime that are referenced in a
partitioned view are mapped as
smalldatetime. Corresponding columns in
local tables (in the same ordinal position in
the select list) must be of type
smalldatetime.
After upgrading to 110, the distributed
partitioned view will fail because of the
data type mismatch. You can resolve this by
changing the data type on the remote table
to datetime or setting the compatibility
level of the local database to 100 or lower.

SOUNDEX function implements the
following rules.
1. If character_expression has any double

letters, they are treated as one letter.
2. If a vowel (A, E, I, O, U) separates two

consonants that have the same soundex
code, the consonant to the right of the
vowel is coded.

SOUNDEX function implements the
following rules
1. If character_expression has any double

letters, they are treated as one letter.
2. If character_expression has different

letters side-by-side that have the same
number in the soundex coding guide,
they are treated as one letter.

3. If a vowel (A, E, I, O, U) separates two
consonants that have the same soundex
code, the consonant to the right of the
vowel is coded.

4. If H or W separate two consonants that
have the same soundex code, the
consonant to the right of the vowel is
not coded.

The additional rules may cause the values
computed by the SOUNDEX function to be
different than the values computed under
earlier compatibility levels. After upgrading
to compatibility level 110, you may need to

 115

Compatibility-level setting of 100 or lower Compatibility-level setting of 110

rebuild the indexes, heaps, or CHECK
constraints that use the SOUNDEX function.
For more information, see SOUNDEX
(Transact-SQL)

Reserved Keywords
The compatibility setting also determines the keywords that are reserved by the Database
Engine. The following table shows the reserved keywords that are introduced by each of the
compatibility levels.

Compatibility-level setting Reserved keywords

110 WITHIN GROUP, TRY_CONVERT,
SEMANTICKEYPHRASETABLE,
SEMANTICSIMILARITYDETAILSTABLE,
SEMANTICSIMILARITYTABLE

100 CUBE, MERGE, ROLLUP

90 EXTERNAL, PIVOT, UNPIVOT, REVERT,
TABLESAMPLE

At a given compatibility level, the reserved keywords include all of the keywords introduced at
or below that level. Thus, for instance, for applications at level 110, all of the keywords listed in
the preceding table are reserved. At the lower compatibility levels, level-100 keywords remain
valid object names, but the level-110 language features corresponding to those keywords are
unavailable.
Once introduced, a keyword remains reserved. For example, the reserved keyword PIVOT, which
was introduced in compatibility level 90, is also reserved in levels 100 and 110.
If an application uses an identifier that is reserved as a keyword for its compatibility level, the
application will fail. To work around this, enclose the identifier between either brackets ([]) or
quotation marks (" "); for example, to upgrade an application that uses the identifier EXTERNAL
to compatibility level 90, you could change the identifier to either [EXTERNAL] or "EXTERNAL".
For more information, see Reserved Keywords (Transact-SQL).
Permissions
Requires ALTER permission on the database.
Examples
A. Changing the compatibility level

http://msdn.microsoft.com/en-us/library/8f1ed34e-8467-4512-a211-e0f43dee6584(SQL.110)�
http://msdn.microsoft.com/en-us/library/8f1ed34e-8467-4512-a211-e0f43dee6584(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed8b3e27-6796-40f0-aef3-0cac5e0e2418(SQL.110)�

 116

The following example changes the compatibility level of the database to 110, SQL Server
2012.

ALTER DATABASE AdventureWorks2012

SET COMPATIBILITY_LEVEL = 110;

GO

See Also
ALTER DATABASE
Reserved Keywords
CREATE DATABASE
DATABASEPROPERTYEX
sys.databases (Transact-SQL)
sys.database_files

ALTER DATABASE AUDIT SPECIFICATION
Alters a database audit specification object using the SQL Server Audit feature. For more
information, see Understanding SQL Server Audit.

 Transact-SQL Syntax Conventions

Syntax

ALTER DATABASE AUDIT SPECIFICATION audit_specification_name
{
 [FOR SERVER AUDIT audit_name]
 [{ { ADD | DROP } (
 { <audit_action_specification> | audit_action_group_name }
)
 } [, ...n]]
 [WITH (STATE = { ON | OFF })]
}
[;]
<audit_action_specification>::=
{
 <action_specification>[,...n]ON [class ::] securable [(column [,...n])]
 BY principal [,...n]
}

http://msdn.microsoft.com/en-us/library/ed8b3e27-6796-40f0-aef3-0cac5e0e2418(SQL.110)�
http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/0f5b0aac-c17d-4e99-b8f7-d04efc9edf44(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 117

<action_specification>::=
{
 action [(column [,...n])]
}

Arguments
audit_specification_name

The name of the audit specification.

audit_name

The name of the audit to which this specification is applied.

audit_action_specification

Name of one or more database-level auditable actions. For a list of audit action groups, see
SQL Server Audit Action Groups and Actions.

audit_action_group_name

Name of one or more groups of database-level auditable actions. For a list of audit action
groups, see SQL Server Audit Action Groups and Actions.

class

Class name (if applicable) on the securable.

securable

Table, view, or other securable object in the database on which to apply the audit action or
audit action group. For more information, see Securables.

column

Column name (if applicable) on the securable.

principal

Name of SQL Server principal on which to apply the audit action or audit action group. For
more information, see Principals (Database Engine).

WITH (STATE = { ON | OFF })

Enables or disables the audit from collecting records for this audit specification. Audit
specification state changes must be done outside a user transaction and may not have other
changes in the same statement when the transition is ON to OFF.

Remarks
Database audit specifications are non-securable objects that reside in a given database. You
must set the state of an audit specification to the OFF option in order to make changes to a
database audit specification. If ALTER DATABASE AUDIT SPECIFICATION is executed when an
audit is enabled with any options other than STATE=OFF, you will receive an error message. For
more information, see tempdb Database.

http://msdn.microsoft.com/en-us/library/b7422911-7524-4bcd-9ab9-e460d5897b3d(SQL.110)�
http://msdn.microsoft.com/en-us/library/b7422911-7524-4bcd-9ab9-e460d5897b3d(SQL.110)�
http://msdn.microsoft.com/en-us/library/bfa748f0-70b0-453c-870a-04b7b205b9ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/3f7adbf7-6e40-4396-a8ca-71cbb843b5c2(SQL.110)�
http://msdn.microsoft.com/en-us/library/ce4053fb-e37a-4851-b711-8e504059a780(SQL.110)�

 118

Permissions
Users with the ALTER ANY DATABASE AUDIT permission can alter database audit specifications
and bind them to any audit.
After a database audit specification is created, it can be viewed by principals with the CONTROL
SERVER, or ALTER ANY DATABASE AUDIT permissions, the sysadmin account, or principals
having explicit access to the audit.

Examples
The following example alters a database audit specification called
HIPPA_Audit_DB_Specification that audits the SELECT statements by the dbo user, for a SQL
Server audit called HIPPA_Audit.

ALTER DATABASE AUDIT SPECIFICATION HIPPA_Audit_DB_Specification

FOR SERVER AUDIT HIPPA_Audit

 ADD (SELECT

 ON Table1(Column1)

 BY dbo)

 WITH STATE = ON;

GO

For a full example about how to create an audit, see Understanding SQL Server Audit.

Updated content

Corrected the Permissions section.

See Also
CREATE SERVER AUDIT (Transact-SQL)
ALTER SERVER AUDIT (Transact-SQL)
DROP SERVER AUDIT (Transact-SQL)
CREATE SERVER AUDIT SPECIFICATION (Transact-SQL)
ALTER SERVER AUDIT SPECIFICATION (Transact-SQL)
DROP SERVER AUDIT SPECIFICATION (Transact-SQL)
CREATE DATABASE AUDIT SPECIFICATION (Transact-SQL)
DROP DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER AUTHORIZATION (Transact-SQL)
fn_get_audit_file (Transact-SQL)
sys.server_audits (Transact-SQL)

http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2c4a000-1127-46a8-b1e9-947fd1136e1e(SQL.110)�

 119

sys.server_file_audits (Transact-SQL)
sys.server_audit_specifications (Transact-SQL)
sys.server_audit_specifications_details (Transact-SQL)
sys.database_ audit_specifications (Transact-SQL)
sys.audit_database_specification_details (Transact-SQL)
sys.dm_server_audit_status
sys.dm_audit_actions
Create a Server Audit and Server Audit Specification

ALTER DATABASE ENCRYPTION KEY
Alters an encryption key and certificate that is used for transparently encrypting a database. For
more information about transparent database encryption, see Understanding Transparent Data
Encryption (TDE).

 Transact-SQL Syntax Conventions

Syntax

ALTER DATABASE ENCRYPTION KEY
 REGENERATE WITH ALGORITHM = { AES_128 | AES_192 | AES_256 | TRIPLE_DES_3KEY }
 |
 ENCRYPTION BY SERVER
 {
 CERTIFICATE Encryptor_Name |
 ASYMMETRIC KEY Encryptor_Name
 }
[;]

Arguments
REGENERATE WITH ALGORITHM = { AES_128 | AES_192 | AES_256 | TRIPLE_DES_3KEY }

Specifies the encryption algorithm that is used for the encryption key.

ENCRYPTION BY SERVER CERTIFICATE Encryptor_Name

Specifies the name of the certificate used to encrypt the database encryption key.

ENCRYPTION BY SERVER ASYMMETRIC KEY Encryptor_Name

Specifies the name of the asymmetric key used to encrypt the database encryption key.

Remarks

http://msdn.microsoft.com/en-us/library/553288a0-be57-4d79-ae53-b7cbd065e127(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa496c6c-2a54-4fda-a238-db490c6b3afd(SQL.110)�
http://msdn.microsoft.com/en-us/library/792724dc-402e-4b17-9f2c-029d910bf88e(SQL.110)�
http://msdn.microsoft.com/en-us/library/bf80e5c6-0588-4eb7-86ff-aa7c73461335(SQL.110)�
http://msdn.microsoft.com/en-us/library/03fc60a9-1696-4109-b15e-a50046310859(SQL.110)�
http://msdn.microsoft.com/en-us/library/4aa32d54-2ae1-437e-bbaa-7f1df1404b44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b987c2b9-998a-4a5f-a82d-280dc6963cbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/6624b1ab-7ec8-44ce-8292-397edf644394(SQL.110)�
http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 120

The certificate or asymmetric key that is used to encrypt the database encryption key must be
located in the master system database.
The database encryption key does not have to be regenerated when a database owner (dbo) is
changed.
After a database encryption key has been modified twice, a log backup must be performed
before the database encryption key can be modified again.

Permissions
Requires CONTROL permission on the database and VIEW DEFINITION permission on the
certificate or asymmetric key that is used to encrypt the database encryption key.

Examples
The following example alters the database encryption key to use the AES_256 algorithm.
USE AdventureWorks2012;

GO

ALTER DATABASE ENCRYPTION KEY

REGENERATE WITH ALGORITHM = AES_256;

GO

See Also
Understanding Transparent Data Encryption (TDE)
SQL Server Encryption
SQL Server and Database Encryption Keys (Database Engine)
Encryption Hierarchy
ALTER DATABASE SET Options (Transact-SQL)
CREATE DATABASE ENCRYPTION KEY (Transact-SQL)
DROP DATABASE ENCRYPTION KEY (Transact-SQL)
sys.dm_database_encryption_keys

ALTER ENDPOINT
Enables modifying an existing endpoint in the following ways:
• By adding a new method to an existing endpoint.
• By modifying or dropping an existing method from the endpoint.
• By changing the properties of an endpoint.

Note

http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/ead0150e-4943-4ad5-84c8-36f85c7278f4(SQL.110)�
http://msdn.microsoft.com/en-us/library/15c0a5e8-9177-484c-ae75-8c552dc0dac0(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/56fee8f3-06eb-4fff-969e-abeaa0c4b8e4(SQL.110)�

 121

This topic describes the syntax and arguments that are specific to ALTER ENDPOINT. For
descriptions of the arguments that are common to both CREATE ENDPOINT and ALTER
ENDPOINT, see CREATE ENDPOINT (Transact-SQL).

Native XML Web Services (SOAP/HTTP endpoints) is removed beginning in SQL Server 2012.
 Transact-SQL Syntax Conventions

Syntax

ALTER ENDPOINT endPointName [AUTHORIZATION login]
[STATE = { STARTED | STOPPED | DISABLED }]
[AS { TCP } (<protocol_specific_items>)]
[FOR { TSQL | SERVICE_BROKER | DATABASE_MIRRORING } (
 <language_specific_items>
)]

<AS TCP_protocol_specific_arguments> ::=
AS TCP (
 LISTENER_PORT = listenerPort
 [[,] LISTENER_IP = ALL | (4-part-ip) | ("ip_address_v6")]
)
<FOR SERVICE_BROKER_language_specific_arguments> ::=
FOR SERVICE_BROKER (
 [AUTHENTICATION = {
 WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
 | CERTIFICATE certificate_name
 | WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }] CERTIFICATE certificate_name
 | CERTIFICATE certificate_name WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
 }]
 [, ENCRYPTION = { DISABLED
 |
 {{SUPPORTED | REQUIRED }
 [ALGORITHM { RC4 | AES | AES RC4 | RC4 AES }] }
]

 [, MESSAGE_FORWARDING = {ENABLED | DISABLED}]
 [, MESSAGE_FORWARD_SIZE = forwardSize

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 122

)

<FOR DATABASE_MIRRORING_language_specific_arguments> ::=
FOR DATABASE_MIRRORING (
 [AUTHENTICATION = {
 WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
 | CERTIFICATE certificate_name
 | WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }] CERTIFICATE certificate_name
 | CERTIFICATE certificate_name WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
 }]
 [, ENCRYPTION = { DISABLED
 |
 {{SUPPORTED | REQUIRED }
 [ALGORITHM { RC4 | AES | AES RC4 | RC4 AES }] }
]
 [,] ROLE = { WITNESS | PARTNER | ALL }
)

Arguments

The following arguments are specific to ALTER ENDPOINT. For descriptions of the
remaining arguments, see CREATE ENDPOINT (Transact-SQL).

AS { TCP }

You cannot change the transport protocol with ALTER ENDPOINT.

AUTHORIZATION login

The AUTHORIZATION option is not available in ALTER ENDPOINT. Ownership can only be
assigned when the endpoint is created.

FOR { TSQL | SERVICE_BROKER | DATABASE_MIRRORING }

You cannot change the payload type with ALTER ENDPOINT.

Remarks
When you use ALTER ENDPOINT, specify only those parameters that you want to update. All
properties of an existing endpoint remain the same unless you explicitly change them.
The ENDPOINT DDL statements cannot be executed inside a user transaction.
For information on choosing an encryption algorithm for use with an endpoint, see Choosing an
Encryption Algorithm.

Note

http://msdn.microsoft.com/en-us/library/8227028c-a9c9-489d-bd27-fbf8242634ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/8227028c-a9c9-489d-bd27-fbf8242634ae(SQL.110)�

 123

• The RC4 algorithm is only supported for backward compatibility. New material can only
be encrypted using RC4 or RC4_128 when the database is in compatibility level 90 or
100. (Not recommended.) Use a newer algorithm such as one of the AES algorithms
instead. In SQL Server 2012 material encrypted using RC4 or RC4_128 can be decrypted
in any compatibility level.

• RC4 is a relatively weak algorithm, and AES is a relatively strong algorithm. But AES is
considerably slower than RC4. If security is a higher priority for you than speed, we
recommend you use AES.

Permissions
User must be a member of the sysadmin fixed server role, the owner of the endpoint, or have
been granted ALTER ANY ENDPOINT permission.
To change ownership of an existing endpoint, you must use the ALTER AUTHORIZATION
statement. For more information, see ALTER AUTHORIZATION (Transact-SQL).
For more information, see GRANT Endpoint Permissions (Transact-SQL).

See Also
DROP ENDPOINT (Transact-SQL)
eventdata (Transact-SQL)

ALTER EVENT SESSION
Starts or stops an event session or changes an event session configuration.

 Transact-SQL Syntax Conventions

Syntax

ALTER EVENT SESSION event_session_name
ON SERVER
{
 [[{ <add_drop_event> [,...n] }
 | { <add_drop_event_target> [,...n] }]
 [WITH (<event_session_options> [,...n])]
]
 | [STATE = { START | STOP }]
}

<add_drop_event>::=

Note

http://msdn.microsoft.com/en-us/library/9eda885c-fc3a-4c9d-8de6-ce07fb35a934(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 124

{
 [ADD EVENT <event_specifier>
 [({
 [SET { event_customizable_attribute = <value> [,...n] }]
 [ACTION ({ [event_module_guid].event_package_name.action_name [,...n] })
]
 [WHERE <predicate_expression>]
 })]
]
 | DROP EVENT <event_specifier> }

<event_specifier> ::=
{
[event_module_guid].event_package_name.event_name
}

<predicate_expression> ::=
{
 [NOT] <predicate_factor> | {(<predicate_expression>) }
 [{ AND | OR } [NOT] { <predicate_factor> | (<predicate_expression>) }]
 [,...n]
}

<predicate_factor>::=
{
 <predicate_leaf> | (<predicate_expression>)
}

<predicate_leaf>::=
{
 <predicate_source_declaration> { = | < > | ! = | > | > = | < | < = } <value>
 | [event_module_guid].event_package_name.predicate_compare_name (
<predicate_source_declaration>, <value>)
}

<predicate_source_declaration>::=

 125

{
 event_field_name | (
[event_module_guid].event_package_name.predicate_source_name)
}

<value>::=
{
 number | 'string'
}

<add_drop_event_target>::=
{
 ADD TARGET <event_target_specifier>
 [(SET { target_parameter_name = <value> [,...n] })]
 | DROP TARGET <event_target_specifier>
}

<event_target_specifier>::=
{
 [event_module_guid].event_package_name.target_name
}

<event_session_options>::=
{
 [MAX_MEMORY = size [KB | MB]]
 [[,] EVENT_RETENTION_MODE = { ALLOW_SINGLE_EVENT_LOSS |
ALLOW_MULTIPLE_EVENT_LOSS | NO_EVENT_LOSS }]
 [[,] MAX_DISPATCH_LATENCY = { seconds SECONDS | INFINITE }]
 [[,] MAX_EVENT_SIZE = size [KB | MB]]
 [[,] MEMORY_PARTITION_MODE = { NONE | PER_NODE | PER_CPU }]
 [[,] TRACK_CAUSALITY = { ON | OFF }]
 [[,] STARTUP_STATE = { ON | OFF }]
}

Arguments

 126

Term Definition

event_session_name Is the name of an existing event
session.

STATE = START | STOP Starts or stops the event session.
This argument is only valid when
ALTER EVENT SESSION is applied to
an event session object.

ADD EVENT <event_specifier> Associates the event identified by
<event_specifier> with the event
session.

[event_module_guid].event_package_name.event_name Is the name of an event in an event
package, where:
• event_module_guid is the GUID

for the module that contains the
event.

• event_package_name is the
package that contains the action
object.

• event_name is the event object.
Events appear in the
sys.dm_xe_objects view as
object_type 'event'.

SET { event_customizable_attribute = <value> [,...n] } Specifies customizable attributes for
the event. Customizable attributes
appear in the
sys.dm_xe_object_columns view as
column_type 'customizable ' and
object_name = event_name.

ACTION ({
[event_module_guid].event_package_name.action_name [
,...n] })

Is the action to associate with the
event session, where:
• event_module_guid is the GUID

for the module that contains the
event.

• event_package_name is the
package that contains the action
object.

• action_name is the action object.
Actions appear in the

 127

sys.dm_xe_objects view as
object_type 'action'.

WHERE <predicate_expression> Specifies the predicate expression
used to determine if an event
should be processed. If
<predicate_expression> is true, the
event is processed further by the
actions and targets for the session.
If <predicate_expression> is false,
the event is dropped by the session
before being processed by the
actions and targets for the session.
Predicate expressions are limited to
3000 characters, which limits string
arguments.

event_field_name Is the name of the event field that
identifies the predicate source.

[event_module_guid].event_package_name.predicate_sour
ce_name

Is the name of the global predicate
source where:
• event_module_guid is the GUID

for the module that contains the
event.

• event_package_name is the
package that contains the
predicate object.

• predicate_source_name is
defined in the sys.dm_xe_objects
view as object_type
'pred_source'.

[event_module_guid].event_package_name.predicate_com
pare_name

Is the name of the predicate object
to associate with the event, where:
• event_module_guid is the GUID

for the module that contains the
event.

• event_package_name is the
package that contains the
predicate object.

• predicate_compare_name is a
global source defined in the

 128

sys.dm_xe_objects view as
object_type 'pred_compare'.

DROP EVENT <event_specifier> Drops the event identified by
<event_specifier>.
<event_specifier> must be valid in
the event session.

ADD TARGET <event_target_specifier> Associates the target identified by
<event_target_specifier> with the
event session.

[event_module_guid].event_package_name.target_name Is the name of a target in the event
session, where:
• event_module_guid is the GUID

for the module that contains the
event.

• event_package_name is the
package that contains the action
object.

• target_name is the action.
Actions appear in
sys.dm_xe_objects view as
object_type 'target'.

SET { target_parameter_name = <value> [, ...n] } Sets a target parameter. Target
parameters appear in the
sys.dm_xe_object_columns view as
column_type 'customizable' and
object_name = target_name.

Important
If you are using the ring
buffer target, we
recommend that you set the
max_memory target
parameter to 2048 kilobytes
(KB) to help avoid possible
data truncation of the XML
output. For more
information about when to
use the different target
types, see SQL Server
Extended Events Targets.

http://msdn.microsoft.com/en-us/library/e281684c-40d1-4cf9-a0d4-7ea1ecffa384(SQL.110)�
http://msdn.microsoft.com/en-us/library/e281684c-40d1-4cf9-a0d4-7ea1ecffa384(SQL.110)�

 129

DROP TARGET <event_target_specifier> Drops the target identified by
<event_target_specifier>.
<event_target_specifier> must be
valid in the event session.

EVENT_RETENTION_MODE = {
ALLOW_SINGLE_EVENT_LOSS |
ALLOW_MULTIPLE_EVENT_LOSS | NO_EVENT_LOSS }

Specifies the event retention mode
to use for handling event loss.
ALLOW_SINGLE_EVENT_
LOSS

An event can be lost
from the session. A
single event is only
dropped when all the
event buffers are full.
Losing a single event
when event buffers are
full allows for
acceptable SQL Server
performance
characteristics, while
minimizing the loss of
data in the processed
event stream.

ALLOW_MULTIPLE_EVEN
T_LOSS

Full event buffers
containing multiple
events can be lost from
the session. The
number of events lost is
dependent upon the
memory size allocated
to the session, the
partitioning of the
memory, and the size of
the events in the buffer.
This option minimizes
performance impact on
the server when event
buffers are quickly
filled, but large
numbers of events can

 130

be lost from the
session.

NO_EVENT_LOSS

No event loss is
allowed. This option
ensures that all events
raised will be retained.
Using this option forces
all tasks that fire events
to wait until space is
available in an event
buffer. This may cause
detectable performance
issues while the event
session is active. User
connections may stall
while waiting for events
to be flushed from the
buffer.

MAX_DISPATCH_LATENCY = { seconds SECONDS |
INFINITE }

Specifies the amount of time that
events are buffered in memory
before being dispatched to event
session targets. The minimum
latency value is 1 second. However,
0 can be used to specify INFINITE
latency. By default, this value is set
to 30 seconds.
seconds SECONDS

The time, in seconds, to
wait before starting to
flush buffers to targets.
seconds is a whole
number.

INFINITE

Flush buffers to targets
only when the buffers
are full, or when the
event session closes.

Note
MAX_DISPATCH_LATENCY = 0

 131

SECONDS is equivalent to
MAX_DISPATCH_LATENCY =
INFINITE.

MAX_EVENT_SIZE = size [KB | MB] Specifies the maximum allowable
size for events. MAX_EVENT_SIZE
should only be set to allow single
events larger than MAX_MEMORY;
setting it to less than
MAX_MEMORY will raise an error.
size is a whole number and can be a
kilobyte (KB) or a megabyte (MB)
value. If size is specified in kilobytes,
the minimum allowable size is 64
KB. When MAX_EVENT_SIZE is set,
two buffers of size are created in
addition to MAX_MEMORY. This
means that the total memory used
for event buffering is
MAX_MEMORY + 2 *
MAX_EVENT_SIZE.

MEMORY_PARTITION_MODE = { NONE | PER_NODE |
PER_CPU }

Specifies the location where event
buffers are created.
NONE

A single set of buffers is
created within the SQL
Server instance.

PER_NODE A set of
buffers is
created for
each NUMA
node.

PER_CPU A set of
buffers is
created for
each CPU.

 132

TRACK_CAUSALITY = { ON | OFF } Specifies whether or not causality is
tracked. If enabled, causality allows
related events on different server
connections to be correlated
together.

STARTUP_STATE = { ON | OFF } Specifies whether or not to start this
event session automatically when
SQL Server starts.

nNote
If STARTUP_STATE = ON, the
event session will only start if
SQL Server is stopped and
then restarted.

Term Definition

ON The event session
is started at
startup.

OFF The event session
is not started at
startup.

Remarks
The ADD and DROP arguments cannot be used in the same statement.

Permissions
Requires the ALTER ANY EVENT SESSION permission.

Examples
The following example starts an event session, obtains some live session statistics, and then
adds two events to the existing session.

-- Start the event session

ALTER EVENT SESSION test_session

ON SERVER

 133

STATE = start

GO

-- Obtain live session statistics

SELECT * FROM sys.dm_xe_sessions

SELECT * FROM sys.dm_xe_session_events

GO

-- Add new events to the session

ALTER EVENT SESSION test_session ON SERVER

ADD EVENT sqlserver.database_transaction_begin,

ADD EVENT sqlserver.database_transaction_end

GO

See Also
CREATE EVENT SESSION (Transact-SQL)
DROP EVENT SESSION (Transact-SQL)
Extended Event Targets
sys.server_event_sessions
sys.dm_xe_objects
sys.dm_xe_object_columns

ALTER FULLTEXT CATALOG
Changes the properties of a full-text catalog.

 Transact-SQL Syntax Conventions

Syntax

ALTER FULLTEXT CATALOG catalog_name
{ REBUILD [WITH ACCENT_SENSITIVITY = { ON | OFF }]
| REORGANIZE
| AS DEFAULT
}

Arguments
catalog_name

Specifies the name of the catalog to be modified. If a catalog with the specified name does

http://msdn.microsoft.com/en-us/library/e281684c-40d1-4cf9-a0d4-7ea1ecffa384(SQL.110)�
http://msdn.microsoft.com/en-us/library/796f3093-6a3e-4d67-8da6-b9810ae9ef5b(SQL.110)�
http://msdn.microsoft.com/en-us/library/5d944b99-b097-491b-8cbd-b0e42b459ec0(SQL.110)�
http://msdn.microsoft.com/en-us/library/d96a14f3-4284-45ff-b1fe-4858e540a013(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 134

not exist, Microsoft SQL Server returns an error and does not perform the ALTER operation.

REBUILD

Tells SQL Server to rebuild the entire catalog. When a catalog is rebuilt, the existing catalog is
deleted and a new catalog is created in its place. All the tables that have full-text indexing
references are associated with the new catalog. Rebuilding resets the full-text metadata in
the database system tables.

 WITH ACCENT_SENSITIVITY = {ON|OFF}

Specifies if the catalog to be altered is accent-sensitive or accent-insensitive for full-text
indexing and querying.

To determine the current accent-sensitivity property setting of a full-text catalog, use the
FULLTEXTCATALOGPROPERTY function with the accentsensitivity property value against
catalog_name. If the function returns '1', the full-text catalog is accent sensitive; if the
function returns '0', the catalog is not accent sensitive.

The catalog and database default accent sensitivity are the same.

REORGANIZE

Tells SQL Server to perform a master merge, which involves merging the smaller indexes
created in the process of indexing into one large index. Merging the full-text index
fragments can improve performance and free up disk and memory resources. If there are
frequent changes to the full-text catalog, use this command periodically to reorganize the
full-text catalog.

REORGANIZE also optimizes internal index and catalog structures.

Keep in mind that, depending on the amount of indexed data, a master merge may take
some time to complete. Master merging a large amount of data can create a long running
transaction, delaying truncation of the transaction log during checkpoint. In this case, the
transaction log might grow significantly under the full recovery model. As a best practice,
ensure that your transaction log contains sufficient space for a long-running transaction
before reorganizing a large full-text index in a database that uses the full recovery model. For
more information, see Managing the Size of the Transaction Log File.

AS DEFAULT

Specifies that this catalog is the default catalog. When full-text indexes are created with no
specified catalogs, the default catalog is used. If there is an existing default full-text catalog,
setting this catalog AS DEFAULT will override the existing default.

Permissions
User must have ALTER permission on the full-text catalog, or be a member of the db_owner,
db_ddladmin fixed database roles, or sysadmin fixed server role.

Note

http://msdn.microsoft.com/en-us/library/3a70e606-303f-47a8-96d4-2456a18d4297(SQL.110)�

 135

To use ALTER FULLTEXT CATALOG AS DEFAULT, the user must have ALTER permission on
the full-text catalog and CREATE FULLTEXT CATALOG permission on the database.

Examples
The following example changes the accentsensitivity property of the default full-text
catalog ftCatalog, which is accent sensitive.

--Change to accent insensitive

USE AdventureWorks;

GO

ALTER FULLTEXT CATALOG ftCatalog

REBUILD WITH ACCENT_SENSITIVITY=OFF;

GO

-- Check Accentsensitivity

SELECT FULLTEXTCATALOGPROPERTY('ftCatalog', 'accentsensitivity');

GO

--Returned 0, which means the catalog is not accent sensitive.

See Also
sys.fulltext_catalogs (Transact-SQL)
Full-Text Search
DROP FULLTEXT CATALOG
Full-Text Search

ALTER FULLTEXT INDEX
Changes the properties of a full-text index.

 Transact-SQL Syntax Conventions

Syntax

ALTER FULLTEXT INDEX ON table_name
 { ENABLE
 | DISABLE
 | SET CHANGE_TRACKING [=] { MANUAL | AUTO | OFF }
 | ADD (column_name
 [TYPE COLUMN type_column_name]
 [LANGUAGE language_term]
 [STATISTICAL_SEMANTICS]

http://msdn.microsoft.com/en-us/library/cf1489ff-4819-41fa-a62a-4ed797a16207(SQL.110)�
http://msdn.microsoft.com/en-us/library/a0ce315d-f96d-4e5d-b4eb-ff76811cab75(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 136

 [,...n])
 [WITH NO POPULATION]
 | ALTER COLUMN column_name
 { ADD | DROP } STATISTICAL_SEMANTICS
 [WITH NO POPULATION]
 | DROP (column_name [,...n])
 [WITH NO POPULATION]
 | START { FULL | INCREMENTAL | UPDATE } POPULATION
 | {STOP | PAUSE | RESUME } POPULATION
 | SET STOPLIST [=] { OFF| SYSTEM | stoplist_name }
 [WITH NO POPULATION]
 | SET SEARCH PROPERTY LIST [=] { OFF | property_list_name }
 [WITH NO POPULATION]
 }
[;]

Arguments
table_name

Is the name of the table or indexed view that contains the column or columns included in the
full-text index. Specifying database and table owner names is optional.

ENABLE | DISABLE

Tells SQL Server whether to gather full-text index data for table_name. ENABLE activates the
full-text index; DISABLE turns off the full-text index. The table will not support full-text
queries while the index is disabled.

Disabling a full-text index allows you to turn off change tracking but keep the full-text index,
which you can reactivate at any time using ENABLE. When the full-text index is disabled, the
full-text index metadata remains in the system tables. If CHANGE_TRACKING is in the enabled
state (automatic or manual update) when the full-text index is disabled, the state of the index
freezes, any ongoing crawl stops, and new changes to the table data are not tracked or
propagated to the index.

SET CHANGE_TRACKING {MANUAL | AUTO | OFF}

Specifies whether changes (updates, deletes, or inserts) made to table columns that are
covered by the full-text index will be propagated by SQL Server to the full-text index. Data
changes through WRITETEXT and UPDATETEXT are not reflected in the full-text index, and are
not picked up with change tracking.

Note
For information about the interaction of change tracking and WITH NO POPULATION, see "Remarks,"

 137

later in this topic.

MANUAL

Specifies that the tracked changes will be propagated manually by calling the ALTER
FULLTEXT INDEX … START UPDATE POPULATION Transact-SQL statement (manual
population). You can use SQL Server Agent to call this Transact-SQL statement periodically.

AUTO

Specifies that the tracked changes will be propagated automatically as data is modified in the
base table (automatic population). Although changes are propagated automatically, these
changes might not be reflected immediately in the full-text index. AUTO is the default.

OFF

Specifies that SQL Server will not keep a list of changes to the indexed data.

ADD | DROP column_name

Specifies the columns to be added or deleted from a full-text index. The column or columns
must be of type char, varchar, nchar, nvarchar, text, ntext, image, xml, varbinary, or
varbinary(max).

Use the DROP clause only on columns that have been enabled previously for full-text
indexing.

Use TYPE COLUMN and LANGUAGE with the ADD clause to set these properties on the
column_name. When a column is added, the full-text index on the table must be repopulated
in order for full-text queries against this column to work.

Note
Whether the full-text index is populated after a column is added or dropped from a full-text index
depends on whether change-tracking is enabled and whether WITH NO POPULATION is specified. For
more information, see "Remarks," later in this topic.

TYPE COLUMN type_column_name

Specifies the name of a table column, type_column_name, that is used to hold the document
type for a varbinary, varbinary(max), or image document. This column, known as the type
column, contains a user-supplied file extension (.doc, .pdf, .xls, and so forth). The type column
must be of type char, nchar, varchar, or nvarchar.

Specify TYPE COLUMN type_column_name only if column_name specifies a varbinary,
varbinary(max) or image column, in which data is stored as binary data; otherwise, SQL
Server returns an error.

Note
At indexing time, the Full-Text Engine uses the abbreviation in the type column of each table row to
identify which full-text search filter to use for the document in column_name. The filter loads the
document as a binary stream, removes the formatting information, and sends the text from the
document to the word-breaker component. For more information, see Full-Text Search Filters.

http://msdn.microsoft.com/en-us/library/7ccf2ee0-9854-4253-8cca-1faed43b7095(SQL.110)�

 138

LANGUAGE language_term

Is the language of the data stored in column_name.

language_term is optional and can be specified as a string, integer, or hexadecimal value
corresponding to the locale identifier (LCID) of a language. If language_term is specified, the
language it represents will be applied to all elements of the search condition. If no value is
specified, the default full-text language of the SQL Server instance is used.

Use the sp_configure stored procedure to access information about the default full-text
language of the SQL Server instance.

When specified as a string, language_term corresponds to the alias column value in the
syslanguages system table. The string must be enclosed in single quotation marks, as in
'language_term'. When specified as an integer, language_term is the actual LCID that
identifies the language. When specified as a hexadecimal value, language_term is 0x followed
by the hex value of the LCID. The hex value must not exceed eight digits, including leading
zeros.

If the value is in double-byte character set (DBCS) format, SQL Server will convert it to
Unicode.

Resources, such as word breakers and stemmers, must be enabled for the language specified
as language_term. If such resources do not support the specified language, SQL Server
returns an error.

For non-BLOB and non-XML columns containing text data in multiple languages, or for cases
when the language of the text stored in the column is unknown, use the neutral (0x0)
language resource. For documents stored in XML- or BLOB-type columns, the language
encoding within the document will be used at indexing time. For example, in XML columns,
the xml:lang attribute in XML documents will identify the language. At query time, the value
previously specified in language_term becomes the default language used for full-text
queries unless language_term is specified as part of a full-text query.

STATISTICAL_SEMANTICS

Creates the additional key phrase and document similarity indexes that are part of statistical
semantic indexing. For more information, see Semantic Search.

[,...n]

Indicates that multiple columns may be specified for the ADD, ALTER, or DROP clauses. When
multiple columns are specified, separate these columns with commas.

WITH NO POPULATION

Specifies that the full-text index will not be populated after an ADD or DROP column
operation or a SET STOPLIST operation. The index will only be populated if the user executes
a START...POPULATION command.

When NO POPULATION is specified, SQL Server does not populate an index. The index is
populated only after the user gives an ALTER FULLTEXT INDEX...START POPULATION
command. When NO POPULATION is not specified, SQL Server populates the index.

http://msdn.microsoft.com/en-us/library/cd8faa9d-07db-420d-93f4-a2ea7c974b97(SQL.110)�

 139

If CHANGE_TRACKING is enabled and WITH NO POPULATION is specified, SQL Server returns
an error. If CHANGE_TRACKING is enabled and WITH NO POPULATION is not specified, SQL
Server performs a full population on the index.

Note
For more information about the interaction of change tracking and WITH NO POPULATION, see
"Remarks," later in this topic.

{ADD | DROP } STATISTICAL_SEMANTICS

Enables or disables statistical semantic indexing for the specified columns. For more
information, see Semantic Search.

START {FULL|INCREMENTAL|UPDATE} POPULATION

Tells SQL Server to begin population of the full-text index of table_name. If a full-text index
population is already in progress, SQL Server returns a warning and does not start a new
population.

FULL

Specifies that every row of the table be retrieved for full-text indexing even if the rows
have already been indexed.

INCREMENTAL

Specifies that only the modified rows since the last population be retrieved for full-text
indexing. INCREMENTAL can be applied only if the table has a column of the type
timestamp. If a table in the full-text catalog does not contain a column of the type
timestamp, the table undergoes a FULL population.

UPDATE

Specifies the processing of all insertions, updates, or deletions since the last time the
change-tracking index was updated. Change-tracking population must be enabled on a
table, but the background update index or the auto change tracking should not be turned
on.

{STOP | PAUSE | RESUME } POPULATION

Stops, or pauses any population in progress; or stops or resumes any paused population.

STOP POPULATION does not stop auto change tracking or background update index. To
stop change tracking, use SET CHANGE_TRACKING OFF.

PAUSE POPULATION and RESUME POPULATION can only be used for full populations. They
are not relevant to other population types because the other populations resume crawls from
where the crawl stopped.

SET STOPLIST { OFF| SYSTEM | stoplist_name }

Changes the full-text stoplist that is associated with the index, if any.

OFF

http://msdn.microsoft.com/en-us/library/cd8faa9d-07db-420d-93f4-a2ea7c974b97(SQL.110)�

 140

Specifies that no stoplist be associated with the full-text index.

SYSTEM

Specifies that the default full-text system STOPLIST should be used for this full-text index.

stoplist_name

Specifies the name of the stoplist to be associated with the full-text index.

For more information, see Stopwords and Stoplists.

SET SEARCH PROPERTY LIST { OFF | property_list_name } [WITH NO POPULATION]

Changes the search property list that is associated with the index, if any.

OFF

Specifies that no property list be associated with the full-text index. When you turn off the
search property list of a full-text index (ALTER FULLTEXT INDEX … SET SEARCH PROPERTY
LIST OFF), property searching on the base table is no longer possible.

By default, when you turn off an existing search property list, the full-text index
automatically repopulates. If you specify WITH NO POPULATION when you turn off the
search property list, automatic repopulation does not occur. However, we recommend that
you eventually run a full population on this full-text index at your convenience.
Repopulating the full-text index removes the property-specific metadata of each dropped
search property, making the full-text index smaller and more efficient.

property_list_name

Specifies the name of the search property list to be associated with the full-text index.

Adding a search property list to a full-text index requires repopulating the index to index
the search properties that are registered for the associated search property list. If you
specify WITH NO POPULATION when adding the search property list, you will need to run
a population on the index, at an appropriate time.

Important
If the full-text index was previously associated with a different search it must be rebuilt property list
in order to bring the index into a consistent state. The index is truncated immediately and is empty
until the full population runs. For more information about when changing the search property list
causes rebuilding, see "Remarks," later in this topic.

Note
You can associate a given search property list with more than one full-text index in the same
database.

To find the search property lists on the current database

• sys.registered_search_property_lists

For more information about search property lists, see Using Property Lists to Search

http://msdn.microsoft.com/en-us/library/43b5ce7b-9f09-4443-8a5b-c3da6eb28bcc(SQL.110)�
http://msdn.microsoft.com/en-us/library/630d4caa-9bea-4cd3-a5b1-01098b0855fc(SQL.110)�
http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�

 141

for Document Properties.

Remarks

Interactions of Change Tracking and NO POPULATION Parameter
Whether the full-text index is populated depends on whether change-tracking is enabled and
whether WITH NO POPULATION is specified in the ALTER FULLTEXT INDEX statement. The
following table summarizes the result of their interaction.

Change Tracking WITH NO POPULATION Result

Not Enabled Not specified A full population is performed
on the index.

Not Enabled Specified No population of the index
occurs until an ALTER FULLTEXT
INDEX...START POPULATION
statement is issued.

Enabled Specified An error is raised, and the index
is not altered.

Enabled Not specified A full population is performed
on the index.

For more information about populating full-text indexes, see Full-Text Index Population.

Changing the Search Property List Causes Rebuilding the Index
The first time that a full-text index is associated with a search property list, the index must be
repopulated to index property-specific search terms. The existing index data is not truncated.
However, if you associate the full-text index with a different property list, the index is rebuilt.
Rebuilding immediately truncates the full-text index, removing all existing data, and the index
must be repopulated. While the population progresses, full-text queries on the base table search
only on the the table rows that have already been indexed by the population. The repopulated
index data will include metadata from the registered properties of the newly added search
property list.
Scenarios that cause rebuilding include:
• Switching directly to a different search property list (see "Scenario A," later in this section).
• Turning off the search property list and later associating the index with any search property

list (see "Scenario B," later in this section)

Note

http://msdn.microsoft.com/en-us/library/76767b20-ef55-49ce-8dc4-e77cb8ff618a(SQL.110)�
http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�

 142

For more information about how full-text search works with search property lists, see
Using Search Property Lists to Search for Properties (Full-Text Search). For information
about full populations, see Full-Text Index Population.

Scenario A: Switching Directly to a Different Search Property List
1. A full-text index is created on table_1 with a search property list spl_1:

CREATE FULLTEXT INDEX ON table_1 (column_name) KEY INDEX

unique_key_index

 WITH SEARCH PROPERTY LIST=spl_1,

 CHANGE_TRACKING OFF, NO POPULATION;

2. A full population is run on the full-text index:

ALTER FULLTEXT INDEX ON table_1 START FULL POPULATION;

3. The full-text index is later associated a different search property list, spl_2, using the
following statement:

ALTER FULLTEXT INDEX ON table_1 SET SEARCH PROPERTY LIST spl_2;

This statement causes a full population, the default behavior. However, before beginning
this population, the Full-Text Engine automatically truncates the index.

Scenario B: Turning Off the Search Property List and Later Associating the Index
with Any Search Property List
1. A full-text index is created on table_1 with a search property list spl_1, followed by an

automatic full population (the default behavior):

CREATE FULLTEXT INDEX ON table_1 (column_name) KEY INDEX

unique_key_index

 WITH SEARCH PROPERTY LIST=spl_1;

2. The search property list is turned off, as follows:

ALTER FULLTEXT INDEX ON table_1

 SET SEARCH PROPERTY LIST OFF WITH NO POPULATION;

3. The full-text index is once more associated either the same search property list or a different
one.
For example the following statement re-associates the full-text index with the original search
property list, spl_1:

ALTER FULLTEXT INDEX ON table_1 SET SEARCH PROPERTY LIST spl_1;

This statement starts a full population, the default behavior.

The rebuild would also be required for a different search property list, such as spl_2.

Permissions

Note

http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�
http://msdn.microsoft.com/en-us/library/76767b20-ef55-49ce-8dc4-e77cb8ff618a(SQL.110)�

 143

The user must have ALTER permission on the table or indexed view, or be a member of the
sysadmin fixed server role, or the db_ddladmin or db_owner fixed database roles.
If SET STOPLIST is specified, the user must have REFERENCES permission on the stoplist. If SET
SEARCH PROPERTY LIST is specified, the user must have REFERENCES permission on the search
property list. The owner of the specified stoplist or search property list can grant REFERENCES
permission, if the owner has ALTER FULLTEXT CATALOG permissions.

The public is granted REFERENCES permission to the default stoplist that is shipped with
SQL Server.

Examples

A. Setting manual change tracking
The following example sets manual change tracking on the full-text index on the JobCandidate
table of the AdventureWorks database.

USE AdventureWorks;

GO

ALTER FULLTEXT INDEX ON HumanResources.JobCandidate

 SET CHANGE_TRACKING MANUAL;

GO

B. Associating a property list with a full-text index
The following example associates the DocumentPropertyList property list with the full-text
index on the Production.Document table of the AdventureWorks database. This ALTER
FULLTEXT INDEX statement starts a full population, which is the default behavior of the SET
SEARCH PROPERTY LIST clause.

For an example that creates the DocumentPropertyList property list, see CREATE
SEARCH PROPERTY LIST (Transact-SQL).

USE AdventureWorks;

GO

ALTER FULLTEXT INDEX ON Production.Document

 SET SEARCH PROPERTY LIST DocumentPropertyList;

GO

C. Removing a search property list
The following example removes the DocumentPropertyList property list from the full-text
index on the Production.Document table of the AdventureWorks database. In this example,
there is no hurry for removing the properties from the index, so the WITH NO POPULATION

Note

Note

 144

option is specified. However, property-level searching is longer allowed against this full-text
index.

USE AdventureWorks;

GO

ALTER FULLTEXT INDEX ON Production.Document

 SET SEARCH PROPERTY LIST OFF WITH NO POPULATION;

GO

D. Starting a full population
The following example starts a full population on the full-text index on the JobCandidate table
of the AdventureWorks database.

USE AdventureWorks;

GO

ALTER FULLTEXT INDEX ON HumanResources.JobCandidate

 START FULL POPULATION;

GO

See Also
sys.fulltext_indexes (Transact-SQL)
CREATE FULLTEXT INDEX
DROP FULLTEXT INDEX
Full-Text Search
Full-Text Index Population

ALTER FULLTEXT STOPLIST
Inserts or deletes a stop word in the default full-text stoplist of the current database.

CREATE FULLTEXT STOPLIST is supported only for compatibility level 100. For
compatibility levels 80 and 90, the system stoplist is always assigned to the database.

 Transact-SQL Syntax Conventions

Syntax

ALTER FULLTEXT STOPLIST stoplist_name
{
 ADD [N] 'stopword' LANGUAGE language_term
 | DROP

Important

http://msdn.microsoft.com/en-us/library/7fc10fdc-370f-4927-bba0-b76108a7508e(SQL.110)�
http://msdn.microsoft.com/en-us/library/a0ce315d-f96d-4e5d-b4eb-ff76811cab75(SQL.110)�
http://msdn.microsoft.com/en-us/library/76767b20-ef55-49ce-8dc4-e77cb8ff618a(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 145

 {
 'stopword' LANGUAGE language_term
 | ALL LANGUAGE language_term
 | ALL
 }
;

Arguments
stoplist_name

Is the name of the stoplist being altered. stoplist_name can be a maximum of 128 characters.

'stopword'

Is a string that could be a word with linguistic meaning in the specified language or a token
that does not have a linguistic meaning. stopword is limited to the maximum token length
(64 characters). A stopword can be specified as a Unicode string.

LANGUAGE language_term

Specifies the language to associate with the stopword being added or dropped.

language_term can be specified as a string, integer, or hexadecimal value corresponding to
the locale identifier (LCID) of the language, as follows:

Format Description

String language_term corresponds to the alias
column value in the sys.syslanguages
(Transact-SQL) compatibility view. The
string must be enclosed in single quotation
marks, as in 'language_term'.

Integer language_term is the LCID of the language.

Hexadecimal language_term is 0x followed by the
hexadecimal value of the LCID. The
hexadecimal value must not exceed eight
digits, including leading zeros. If the value
is in double-byte character set (DBCS)
format, SQL Server converts it to Unicode.

ADD 'stopword' LANGUAGE language_term

Adds a stop word to the stoplist for the language specified by LANGUAGE language_term.

http://msdn.microsoft.com/en-us/library/f216d1cd-997c-42f0-a737-abbdfcd88383(SQL.110)�
http://msdn.microsoft.com/en-us/library/f216d1cd-997c-42f0-a737-abbdfcd88383(SQL.110)�

 146

If the specified combination of keyword and the LCID value of the language is not unique in
the STOPLIST, an error is returned. If the LCID value does not correspond to a registered
language, an error is generated.

DROP { 'stopword' LANGUAGE language_term | ALL LANGUAGE language_term | ALL }

Drops a stop word from the stop list.

'stopword' LANGUAGE language_term

Drops the specified stop word for the language specified by language_term.

ALL LANGUAGE language_term

Drops all of the stop words for the language specified by language_term.

ALL

Drops all of the stop words in the stoplist.

Remarks
None.

Permissions
To designate a stoplist as the default stoplist of the database requires ALTER DATABASE
permission. To otherwise alter a stoplist requires being the stoplist owner or membership in the
db_owner or db_ddladmin fixed database roles.

Examples
The following example alters a stoplist named CombinedFunctionWordList, adding the word
'en', first for Spanish and then for French.

ALTER FULLTEXT STOPLIST CombinedFunctionWordList ADD 'en' LANGUAGE 'Spanish';

ALTER FULLTEXT STOPLIST CombinedFunctionWordList ADD 'en' LANGUAGE 'French';

See Also
CREATE FULLTEXT STOPLIST (Transact-SQL)
DROP FULLTEXT STOPLIST (Transact-SQL)
Noise Words
sys.fulltext_stoplists (Transact-SQL)
sys.fulltext_stopwords (Transact-SQL)
Configure and Manage Stopwords and Stoplists for Full-Text Search

ALTER FUNCTION
Alters an existing Transact-SQL or CLR function that was previously created by executing the
CREATE FUNCTION statement, without changing permissions and without affecting any
dependent functions, stored procedures, or triggers.

http://msdn.microsoft.com/en-us/library/43b5ce7b-9f09-4443-8a5b-c3da6eb28bcc(SQL.110)�
http://msdn.microsoft.com/en-us/library/eb69fb8f-f6d9-446e-83c0-67afd05dfba0(SQL.110)�
http://msdn.microsoft.com/en-us/library/79787bb7-d729-448e-b56a-0a467bbb304f(SQL.110)�
http://msdn.microsoft.com/en-us/library/43b5ce7b-9f09-4443-8a5b-c3da6eb28bcc(SQL.110)�

 147

 Transact-SQL Syntax Conventions

Syntax

Scalar Functions
ALTER FUNCTION [schema_name.] function_name
([{ @parameter_name [AS][type_schema_name.] parameter_data_type
 [= default] }
 [,...n]
]
)
RETURNS return_data_type
 [WITH <function_option> [,...n]]
 [AS]
 BEGIN
 function_body
 RETURN scalar_expression
 END
[;]

Inline Table-valued Functions
ALTER FUNCTION [schema_name.] function_name
([{ @parameter_name [AS] [type_schema_name.] parameter_data_type
 [= default] }
 [,...n]
]
)
RETURNS TABLE
 [WITH <function_option> [,...n]]
 [AS]
 RETURN [(] select_stmt [)]
[;]

Multistatement Table-valued Functions
ALTER FUNCTION [schema_name.] function_name
([{ @parameter_name [AS] [type_schema_name.] parameter_data_type

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 148

 [= default] }
 [,...n]
]
)
RETURNS @return_variable TABLE <table_type_definition>
 [WITH <function_option> [,...n]]
 [AS]
 BEGIN
 function_body
 RETURN
 END
[;]

CLR Functions
ALTER FUNCTION [schema_name.] function_name
({ @parameter_name [AS] [type_schema_name.] parameter_data_type
 [= default] }
 [,...n]
)
RETURNS { return_data_type | TABLE <clr_table_type_definition> }
 [WITH <clr_function_option> [,...n]]
 [AS] EXTERNAL NAME <method_specifier>
[;]

<method_specifier>::=
 assembly_name.class_name.method_name

Function Options
<function_option>::=
{
 [ENCRYPTION]
 | [SCHEMABINDING]
 | [RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]
 | [EXECUTE_AS_Clause]
}

 149

<clr_function_option>::=
}
 [RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]
 | [EXECUTE_AS_Clause]
}

Table Type Definitions
<table_type_definition>:: =
({ <column_definition> <column_constraint>
 | <computed_column_definition> }
 [<table_constraint>] [,...n]
)

<clr_table_type_definition>:: =
({ column_name data_type } [,...n])

<column_definition>::=
{
 { column_name data_type }
 [[DEFAULT constant_expression]
 [COLLATE collation_name] | [ROWGUIDCOL]
]
 | [IDENTITY [(seed , increment)]]
 [<column_constraint> [...n]]
}
<column_constraint>::=
{
 [NULL | NOT NULL]
 { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 [WITH FILLFACTOR = fillfactor
 | WITH (< index_option > [, ...n])
 [ON { filegroup | "default" }]
 | [CHECK (logical_expression)] [,...n]

 150

}

<computed_column_definition>::=
column_name AS computed_column_expression

<table_constraint>::=
{
 { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 (column_name [ASC | DESC] [,...n])
 [WITH FILLFACTOR = fillfactor
 | WITH (<index_option> [, ...n])
 | [CHECK (logical_expression)] [,...n]
}

<index_option>::=
{
 PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | IGNORE_DUP_KEY = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS ={ ON | OFF }
}

Arguments
schema_name

Is the name of the schema to which the user-defined function belongs.

function_name

Is the user-defined function to be changed.

Note
Parentheses are required after the function name even if a parameter is not specified.

@parameter_name

Is a parameter in the user-defined function. One or more parameters can be declared.

A function can have a maximum of 2,100 parameters. The value of each declared parameter
must be supplied by the user when the function is executed, unless a default for the

 151

parameter is defined.

Specify a parameter name by using an at sign (@) as the first character. The parameter name
must comply with the rules for identifiers. Parameters are local to the function; the same
parameter names can be used in other functions. Parameters can take the place only of
constants; they cannot be used instead of table names, column names, or the names of other
database objects.

Note
ANSI_WARNINGS is not honored when passing parameters in a stored procedure, user-defined
function, or when declaring and setting variables in a batch statement. For example, if a variable is
defined as char(3), and then set to a value larger than three characters, the data is truncated to the
defined size and the INSERT or UPDATE statement succeeds.

[type_schema_name.] parameter_data_type

Is the parameter data type and optionally, the schema to which it belongs. For Transact-SQL
functions, all data types, including CLR user-defined types, are allowed except the timestamp
data type. For CLR functions, all data types, including CLR user-defined types, are allowed
except text, ntext, image, and timestamp data types. The nonscalar types cursor and table
cannot be specified as a parameter data type in either Transact-SQL or CLR functions.

If type_schema_name is not specified, the SQL Server 2005 Database Engine looks for the
parameter_data_type in the following order:

• The schema that contains the names of SQL Server system data types.

• The default schema of the current user in the current database.

• The dbo schema in the current database.

[= default]

Is a default value for the parameter. If a default value is defined, the function can be executed
without specifying a value for that parameter.

Note
Default parameter values can be specified for CLR functions except for varchar(max) and
varbinary(max) data types.

When a parameter of the function has a default value, the keyword DEFAULT must be
specified when calling the function to retrieve the default value. This behavior is different
from using parameters with default values in stored procedures in which omitting the
parameter also implies the default value.

return_data_type

Is the return value of a scalar user-defined function. For Transact-SQL functions, all data
types, including CLR user-defined types, are allowed except the timestamp data type. For
CLR functions, all data types, including CLR user-defined types, are allowed except text,
ntext, image, and timestamp data types. The nonscalar types cursor and table cannot be
specified as a return data type in either Transact-SQL or CLR functions.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 152

function_body

Specifies that a series of Transact-SQL statements, which together do not produce a side
effect such as modifying a table, define the value of the function. function_body is used only
in scalar functions and multistatement table-valued functions.

In scalar functions, function_body is a series of Transact-SQL statements that together
evaluate to a scalar value.

In multistatement table-valued functions, function_body is a series of Transact-SQL
statements that populate a TABLE return variable.

scalar_expression

Specifies that the scalar function returns a scalar value.

TABLE

Specifies that the return value of the table-valued function is a table. Only constants and
@local_variables can be passed to table-valued functions.

In inline table-valued functions, the TABLE return value is defined through a single SELECT
statement. Inline functions do not have associated return variables.

In multistatement table-valued functions, @return_variable is a TABLE variable used to store
and accumulate the rows that should be returned as the value of the function.
@return_variable can be specified only for Transact-SQL functions and not for CLR functions.

select-stmt

Is the single SELECT statement that defines the return value of an inline table-valued
function.

EXTERNAL NAME <method_specifier>assembly_name.class_name.method_name

Specifies the method of an assembly to bind with the function. assembly_name must match
an existing assembly in SQL Server in the current database with visibility on. class_name must
be a valid SQL Server identifier and must exist as a class in the assembly. If the class has a
namespace-qualified name that uses a period (.) to separate namespace parts, the class name
must be delimited by using brackets ([]) or quotation marks (" "). method_name must be a
valid SQL Server identifier and must exist as a static method in the specified class.

Note
By default, SQL Server cannot execute CLR code. You can create, modify, and drop database objects
that reference common language runtime modules; however, you cannot execute these references in
SQL Server until you enable the clr enabled option. To enable the option, use sp_configure.

Note
This option is not available in a contained database.

http://msdn.microsoft.com/en-us/library/0722d382-8fd3-4fac-b4a8-cd2b7a7e0293(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�

 153

<table_type_definition>({ <column_definition> <column_constraint> |
<computed_column_definition> } [<table_constraint>] [,...n])

Defines the table data type for a Transact-SQL function. The table declaration includes
column definitions and column or table constraints.

< clr_table_type_definition > ({ column_name data_type } [,...n])

Defines the table data types for a CLR function. The table declaration includes only column
names and data types.

<function_option>::= and <clr_function_option>::=
Specifies the function will have one or more of the following options.
ENCRYPTION

Indicates that the Database Engine encrypts the catalog view columns that contains the text
of the ALTER FUNCTION statement. Using ENCRYPTION prevents the function from being
published as part of SQL Server replication. ENCRYPTION cannot be specified for CLR
functions.

SCHEMABINDING

Specifies that the function is bound to the database objects that it references. This condition
will prevent changes to the function if other schema bound objects are referencing it.

The binding of the function to the objects it references is removed only when one of the
following actions occurs:

• The function is dropped.

• The function is modified by using the ALTER statement with the SCHEMABINDING
option not specified.

For a list of conditions that must be met before a function can be schema bound, see
EVENTDATA (Transact-SQL).

RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT

Specifies the OnNULLCall attribute of a scalar-valued function. If not specified, CALLED ON
NULL INPUT is implied by default. This means that the function body executes even if NULL is
passed as an argument.

If RETURNS NULL ON NULL INPUT is specified in a CLR function, it indicates that SQL Server
can return NULL when any of the arguments it receives is NULL, without actually invoking the
body of the function. If the method specified in <method_specifier> already has a custom
attribute that indicates RETURNS NULL ON NULL INPUT, but the ALTER FUNCTION statement
indicates CALLED ON NULL INPUT, the ALTER FUNCTION statement takes precedence. The
OnNULLCall attribute cannot be specified for CLR table-valued functions.

EXECUTE AS Clause

Specifies the security context under which the user-defined function is executed. Therefore,
you can control which user account SQL Server uses to validate permissions on any database
objects referenced by the function.

 154

Note
EXECUTE AS cannot be specified for inline user-defined functions.

For more information, see EXECUTE AS Clause (Transact-SQL).

< column_definition >::=
Defines the table data type. The table declaration includes column definitions and constraints.
For CLR functions, only column_name and data_type can be specified.
column_name

Is the name of a column in the table. Column names must comply with the rules for
identifiers and must be unique in the table. column_name can consist of 1 through 128
characters.

data_type

Specifies the column data type. For Transact-SQL functions, all data types, including CLR
user-defined types, are allowed except timestamp. For CLR functions, all data types,
including CLR user-defined types, are allowed except text, ntext, image, char, varchar,
varchar(max), and timestamp.The nonscalar type cursor cannot be specified as a column
data type in either Transact-SQL or CLR functions.

DEFAULT constant_expression

Specifies the value provided for the column when a value is not explicitly supplied during an
insert. constant_expression is a constant, NULL, or a system function value. DEFAULT
definitions can be applied to any column except those that have the IDENTITY property.
DEFAULT cannot be specified for CLR table-valued functions.

COLLATE collation_name

Specifies the collation for the column. If not specified, the column is assigned the default
collation of the database. Collation name can be either a Windows collation name or a SQL
collation name. For a list of and more information, see Windows Collation Name and
SQL Collation Name.

The COLLATE clause can be used to change the collations only of columns of the char,
varchar, nchar, and nvarchar data types.

COLLATE cannot be specified for CLR table-valued functions.

ROWGUIDCOL

Indicates that the new column is a row global unique identifier column. Only one
uniqueidentifier column per table can be designated as the ROWGUIDCOL column. The
ROWGUIDCOL property can be assigned only to a uniqueidentifier column.

The ROWGUIDCOL property does not enforce uniqueness of the values stored in the column.
It also does not automatically generate values for new rows inserted into the table. To
generate unique values for each column, use the NEWID function on INSERT statements. A
default value can be specified; however, NEWID cannot be specified as the default.

http://msdn.microsoft.com/en-us/library/bd517aa3-f06e-4356-87d8-70de5df4494a(SQL.110)�
http://msdn.microsoft.com/en-us/library/acceef84-2c68-46e2-a021-be019b7ab14e(SQL.110)�
http://msdn.microsoft.com/en-us/library/56483d24-add7-483d-9b96-c6fda460ddbc(SQL.110)�

 155

IDENTITY

Indicates that the new column is an identity column. When a new row is added to the table,
SQL Server provides a unique, incremental value for the column. Identity columns are
typically used together with PRIMARY KEY constraints to serve as the unique row identifier
for the table. The IDENTITY property can be assigned to tinyint, smallint, int, bigint,
decimal(p,0), or numeric(p,0) columns. Only one identity column can be created per table.
Bound defaults and DEFAULT constraints cannot be used with an identity column. You must
specify both the seed and increment or neither. If neither is specified, the default is (1,1).

IDENTITY cannot be specified for CLR table-valued functions.

seed

Is the integer value to be assigned to the first row in the table.

increment

Is the integer value to add to the seed value for successive rows in the table.

< column_constraint >::= and < table_constraint>::=
Defines the constraint for a specified column or table. For CLR functions, the only constraint type
allowed is NULL. Named constraints are not allowed.
NULL | NOT NULL

Determines whether null values are allowed in the column. NULL is not strictly a constraint
but can be specified just like NOT NULL. NOT NULL cannot be specified for CLR table-valued
functions.

PRIMARY KEY

Is a constraint that enforces entity integrity for a specified column through a unique index. In
table-valued user-defined functions, the PRIMARY KEY constraint can be created on only one
column per table. PRIMARY KEY cannot be specified for CLR table-valued functions.

UNIQUE

Is a constraint that provides entity integrity for a specified column or columns through a
unique index. A table can have multiple UNIQUE constraints. UNIQUE cannot be specified for
CLR table-valued functions.

CLUSTERED | NONCLUSTERED

Indicate that a clustered or a nonclustered index is created for the PRIMARY KEY or UNIQUE
constraint. PRIMARY KEY constraints use CLUSTERED, and UNIQUE constraints use
NONCLUSTERED.

CLUSTERED can be specified for only one constraint. If CLUSTERED is specified for a UNIQUE
constraint and a PRIMARY KEY constraint is also specified, the PRIMARY KEY uses
NONCLUSTERED.

CLUSTERED and NONCLUSTERED cannot be specified for CLR table-valued functions.

 156

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be
entered into a column or columns. CHECK constraints cannot be specified for CLR table-
valued functions.

logical_expression

Is a logical expression that returns TRUE or FALSE.

<computed_column_definition>::=
Specifies a computed column. For more information about computed columns, see CREATE
TABLE (Transact-SQL).
column_name

Is the name of the computed column.

computed_column_expression

Is an expression that defines the value of a computed column.

<index_option>::=
Specifies the index options for the PRIMARY KEY or UNIQUE index. For more information about
index options, see CREATE INDEX (Transact-SQL).
PAD_INDEX = { ON | OFF }

Specifies index padding. The default is OFF.

FILLFACTOR = fillfactor

Specifies a percentage that indicates how full the Database Engine should make the leaf level
of each index page during index creation or change. fillfactor must be an integer value from
1 to 100. The default is 0.

IGNORE_DUP_KEY = { ON | OFF }

Specifies the error response when an insert operation attempts to insert duplicate key values
into a unique index. The IGNORE_DUP_KEY option applies only to insert operations after the
index is created or rebuilt. The default is OFF.

STATISTICS_NORECOMPUTE = { ON | OFF }

Specifies whether distribution statistics are recomputed. The default is OFF.

ALLOW_ROW_LOCKS = { ON | OFF }

Specifies whether row locks are allowed. The default is ON.

ALLOW_PAGE_LOCKS = { ON | OFF }

Specifies whether page locks are allowed. The default is ON.

Remarks
ALTER FUNCTION cannot be used to change a scalar-valued function to a table-valued function,
or vice versa. Also, ALTER FUNCTION cannot be used to change an inline function to a

 157

multistatement function, or vice versa. ALTER FUNCTION cannot be used to change a Transact-
SQL function to a CLR function or vice-versa.
The following Service Broker statements cannot be included in the definition of a Transact-
SQL user-defined function:
• BEGIN DIALOG CONVERSATION
• END CONVERSATION
• GET CONVERSATION GROUP
• MOVE CONVERSATION
• RECEIVE
• SEND

Permissions
Requires ALTER permission on the function or on the schema. If the function specifies a user-
defined type, requires EXECUTE permission on the type.

See Also
CREATE FUNCTION (Transact-SQL)
DROP FUNCTION (Transact-SQL)
Making Schema Changes on Publication Databases
EVENTDATA (Transact-SQL)

ALTER INDEX
Modifies an existing table or view index (relational or XML) by disabling, rebuilding, or
reorganizing the index; or by setting options on the index.

 Transact-SQL Syntax Conventions

Syntax

ALTER INDEX { index_name | ALL }
 ON <object>
 { REBUILD
 [[PARTITION = ALL]
 [WITH (<rebuild_index_option> [,...n])]
 | [PARTITION = partition_number
 [WITH (<single_partition_rebuild_index_option>
 [,...n])
]
]

http://msdn.microsoft.com/en-us/library/926c88d7-a844-402f-bcb9-db49e5013b69(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 158

]
 | DISABLE
 | REORGANIZE
 [PARTITION = partition_number]
 [WITH (LOB_COMPACTION = { ON | OFF })]
 | SET (<set_index_option> [,...n])
 }
[;]

<object> ::=
{
 [database_name. [schema_name] . | schema_name.]
 table_or_view_name
}

<rebuild_index_option > ::=
{
 PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | SORT_IN_TEMPDB = { ON | OFF }
 | IGNORE_DUP_KEY = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | ONLINE = { ON | OFF }
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 | DATA_COMPRESSION = { NONE | ROW | PAGE }
 [ON PARTITIONS ({ <partition_number_expression> | <range> }
 [, ...n])]
}
<range> ::=
<partition_number_expression> TO <partition_number_expression>
}

<single_partition_rebuild_index_option> ::=

 159

{
 SORT_IN_TEMPDB = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 | DATA_COMPRESSION = { NONE | ROW | PAGE } }
}

<set_index_option>::=
{
 ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | IGNORE_DUP_KEY = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
}

Arguments
index_name

Is the name of the index. Index names must be unique within a table or view but do not have
to be unique within a database. Index names must follow the rules of identifiers.

ALL

Specifies all indexes associated with the table or view regardless of the index type. Specifying
ALL causes the statement to fail if one or more indexes are in an offline or read-only
filegroup or the specified operation is not allowed on one or more index types. The following
table lists the index operations and disallowed index types.

Specifying ALL with this operation Fails if the table has one or more

REBUILD WITH ONLINE = ON XML index
Spatial index
Large object data type columns: image,
text, ntext, varchar(max), nvarchar(max),
varbinary(max), and xml

REBUILD PARTITION = partition_number Nonpartitioned index, XML index, spatial
index, or disabled index

REORGANIZE Indexes with ALLOW_PAGE_LOCKS set to
OFF

REORGANIZE PARTITION =
partition_number

Nonpartitioned index, XML index, spatial
index, or disabled index

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 160

IGNORE_DUP_KEY = ON Spatial index
XML index

ONLINE = ON Spatial index
XML index

If ALL is specified with PARTITION = partition_number, all indexes must be aligned. This
means that they are partitioned based on equivalent partition functions. Using ALL with
PARTITION causes all index partitions with the same partition_number to be rebuilt or
reorganized. For more information about partitioned indexes, see Partitioned Tables and
Indexes.

database_name

Is the name of the database.

schema_name

Is the name of the schema to which the table or view belongs.

table_or_view_name

Is the name of the table or view associated with the index. To display a report of the indexes
on an object, use the sys.indexes catalog view.

REBUILD [WITH (<rebuild_index_option> [,... n])]

Specifies the index will be rebuilt using the same columns, index type, uniqueness attribute,
and sort order. This clause is equivalent to DBCC DBREINDEX. REBUILD enables a
disabled index. Rebuilding a clustered index does not rebuild associated nonclustered
indexes unless the keyword ALL is specified. If index options are not specified, the existing
index option values stored in sys.indexes are applied. For any index option whose value is
not stored in sys.indexes, the default indicated in the argument definition of the option
applies.

When you rebuild an XML index or a spatial index, the options ONLINE = ON and
IGNORE_DUP_KEY = ON are not valid.

If ALL is specified and the underlying table is a heap, the rebuild operation has no effect on
the table. Any nonclustered indexes associated with the table are rebuilt.

The rebuild operation can be minimally logged if the database recovery model is set to either
bulk-logged or simple.

Note
When you rebuild a primary XML index, the underlying user table is unavailable for the duration of the
index operation.

PARTITION

Specifies that only one partition of an index will be rebuilt or reorganized. PARTITION cannot

http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�
http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/6e929d09-ccb5-4855-a6af-b616022bc8f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�

 161

be specified if index_name is not a partitioned index.

PARTITION = ALL rebuilds all partitions.

Warning
Creating and rebuilding nonaligned indexes on a table with more than 1,000 partitions is possible, but
is not supported. Doing so may cause degraded performance or excessive memory consumption
during these operations. We recommend using only aligned indexes when the number of partitions
exceed 1,000.

partition_number

Is the partition number of a partitioned index that is to be rebuilt or reorganized.
partition_number is a constant expression that can reference variables. These include user-
defined type variables or functions and user-defined functions, but cannot reference a
Transact-SQL statement. partition_number must exist or the statement fails.

WITH (<single_partition_rebuild_index_option>)

SORT_IN_TEMPDB, MAXDOP, and DATA_COMPRESSION are the options that can be specified
when you rebuild a single partition (PARTITION = n). XML indexes cannot be specified in a
single partition rebuild operation.

Rebuilding a partitioned index cannot be performed online. The entire table is locked during
this operation.

DISABLE

Marks the index as disabled and unavailable for use by the Database Engine. Any index can
be disabled. The index definition of a disabled index remains in the system catalog with no
underlying index data. Disabling a clustered index prevents user access to the underlying
table data. To enable an index, use ALTER INDEX REBUILD or CREATE INDEX WITH
DROP_EXISTING. For more information, see Disable Indexes and Constraints and
Enable Indexes and Constraints.

REORGANIZE

Specifies the index leaf level will be reorganized. ALTER INDEX REORGANIZE statement is
always performed online. This means long-term blocking table locks are not held and queries
or updates to the underlying table can continue during the ALTER INDEX REORGANIZE
transaction. REORGANIZE cannot be specified for a disabled index or an index with
ALLOW_PAGE_LOCKS set to OFF.

WITH (LOB_COMPACTION = { ON | OFF })

Specifies that all pages that contain large object (LOB) data are compacted. The LOB data
types are image, text, ntext, varchar(max), nvarchar(max), varbinary(max), and xml.
Compacting this data can improve disk space use. The default is ON.

ON

All pages that contain large object data are compacted.

Reorganizing a specified clustered index compacts all LOB columns that are contained in

http://msdn.microsoft.com/en-us/library/2198f1af-fa44-47e9-92df-f4fde322ba18(SQL.110)�
http://msdn.microsoft.com/en-us/library/c55c8865-322e-4ab0-ba04-ea1f56735353(SQL.110)�

 162

the clustered index. Reorganizing a nonclustered index compacts all LOB columns that are
nonkey (included) columns in the index.

When ALL is specified, all indexes that are associated with the specified table or view are
reorganized, and all LOB columns that are associated with the clustered index, underlying
table, or nonclustered index with included columns are compacted.

OFF

Pages that contain large object data are not compacted.

OFF has no effect on a heap.

The LOB_COMPACTION clause is ignored if LOB columns are not present.

SET (<set_index option> [,... n])

Specifies index options without rebuilding or reorganizing the index. SET cannot be specified
for a disabled index.

PAD_INDEX = { ON | OFF }

Specifies index padding. The default is OFF.

ON

The percentage of free space that is specified by FILLFACTOR is applied to the
intermediate-level pages of the index. If FILLFACTOR is not specified at the same time
PAD_INDEX is set to ON, the fill factor value stored in sys.indexes is used.

OFF or fillfactor is not specified

The intermediate-level pages are filled to near capacity. This leaves sufficient space for at
least one row of the maximum size that the index can have, based on the set of keys on
the intermediate pages.

For more information, see CREATE INDEX (Transact-SQL).

FILLFACTOR = fillfactor

Specifies a percentage that indicates how full the Database Engine should make the leaf level
of each index page during index creation or alteration. fillfactor must be an integer value
from 1 to 100. The default is 0.

Note
Fill factor values 0 and 100 are the same in all respects.

An explicit FILLFACTOR setting applies only when the index is first created or rebuilt. The
Database Engine does not dynamically keep the specified percentage of empty space in the
pages. For more information, see CREATE INDEX.

To view the fill factor setting, use sys.indexes.

Important
Creating or altering a clustered index with a FILLFACTOR value affects the amount of storage space
the data occupies, because the Database Engine redistributes the data when it creates the clustered

http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�

 163

index.

SORT_IN_TEMPDB = { ON | OFF }

Specifies whether to store the sort results in tempdb. The default is OFF.

ON

The intermediate sort results that are used to build the index are stored in tempdb. If
tempdb is on a different set of disks than the user database, this may reduce the time
needed to create an index. However, this increases the amount of disk space that is used
during the index build.

OFF

The intermediate sort results are stored in the same database as the index.

If a sort operation is not required, or if the sort can be performed in memory, the
SORT_IN_TEMPDB option is ignored.

For more information, see tempdb and Index Creation.

IGNORE_DUP_KEY = { ON | OFF }

Specifies the error response when an insert operation attempts to insert duplicate key values
into a unique index. The IGNORE_DUP_KEY option applies only to insert operations after the
index is created or rebuilt. The default is OFF.

ON

A warning message will occur when duplicate key values are inserted into a unique index.
Only the rows violating the uniqueness constraint will fail.

OFF

An error message will occur when duplicate key values are inserted into a unique index.
The entire INSERT operation will be rolled back.

IGNORE_DUP_KEY cannot be set to ON for indexes created on a view, non-unique indexes,
XML indexes, spatial indexes, and filtered indexes.

To view IGNORE_DUP_KEY, use sys.indexes.

In backward compatible syntax, WITH IGNORE_DUP_KEY is equivalent to WITH
IGNORE_DUP_KEY = ON.

STATISTICS_NORECOMPUTE = { ON | OFF }

Specifies whether distribution statistics are recomputed. The default is OFF.

ON

Out-of-date statistics are not automatically recomputed.

OFF

Automatic statistics updating are enabled.

To restore automatic statistics updating, set the STATISTICS_NORECOMPUTE to OFF, or
execute UPDATE STATISTICS without the NORECOMPUTE clause.

http://msdn.microsoft.com/en-us/library/754a003f-fe51-4d10-975a-f6b8c04ebd35(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�

 164

Important
Disabling automatic recomputation of distribution statistics may prevent the query optimizer from
picking optimal execution plans for queries that involve the table.

ONLINE = { ON | OFF }

Specifies whether underlying tables and associated indexes are available for queries and data
modification during the index operation. The default is OFF.

For an XML index or spatial index, only ONLINE = OFF is supported, and if ONLINE is set to
ON an error is raised.

Note
Online index operations are not available in every edition of Microsoft SQL Server. For a list of features
that are supported by the editions of SQL Server, see Features Supported by the Editions of
SQL Server 2012.

ON

Long-term table locks are not held for the duration of the index operation. During the
main phase of the index operation, only an Intent Share (IS) lock is held on the source
table. This allows queries or updates to the underlying table and indexes to continue. At
the start of the operation, a Shared (S) lock is very briefly held on the source object. At the
end of the operation, an S lock is very briefly held on the source if a nonclustered index is
being created, or an SCH-M (Schema Modification) lock is acquired when a clustered index
is created or dropped online, or when a clustered or nonclustered index is being rebuilt.
ONLINE cannot be set to ON when an index is being created on a local temporary table.

OFF

Table locks are applied for the duration of the index operation. An offline index operation
that creates, rebuilds, or drops a clustered, spatial, or XML index, or rebuilds or drops a
nonclustered index, acquires a Schema modification (Sch-M) lock on the table. This
prevents all user access to the underlying table for the duration of the operation. An offline
index operation that creates a nonclustered index acquires a Shared (S) lock on the table.
This prevents updates to the underlying table but allows read operations, such as SELECT
statements.

For more information, see How Online Index Operations Work.

Indexes, including indexes on global temp tables, can be rebuilt online with the following
exceptions:

• XML indexes

• Indexes on local temp tables

• A subset of a partitioned index (An entire partitioned index can be rebuilt online.)

• Clustered indexes if the underlying table contains LOB data types

• Nonclustered indexes that are defined with the image, ntext, and text data type
columns

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/eef0c9d1-790d-46e4-a758-d0bf6742e6ae(SQL.110)�

 165

Nonclustered indexes can be rebuilt online if the table contains LOB data types but none of
these columns are used in the index definition as either key or nonkey columns.

ALLOW_ROW_LOCKS = { ON | OFF }

Specifies whether row locks are allowed. The default is ON.

ON

Row locks are allowed when accessing the index. The Database Engine determines when
row locks are used.

OFF

Row locks are not used.

ALLOW_PAGE_LOCKS = { ON | OFF }

Specifies whether page locks are allowed. The default is ON.

ON

Page locks are allowed when you access the index. The Database Engine determines when
page locks are used.

OFF

Page locks are not used.

Note

An index cannot be reorganized when ALLOW_PAGE_LOCKS is set to OFF.

MAXDOP = max_degree_of_parallelism

Overrides the max degree of parallelism configuration option for the duration of the index
operation. For more information, see Configure the max degree of parallelism
Server Configuration Option. Use MAXDOP to limit the number of processors used in a
parallel plan execution. The maximum is 64 processors.

Important
Although the MAXDOP option is syntactically supported for all XML indexes, for a spatial index or a
primary XML index, ALTER INDEX currently uses only a single processor.

max_degree_of_parallelism can be:

1

Suppresses parallel plan generation.

>1

Restricts the maximum number of processors used in a parallel index operation to the
specified number.

0 (default)

Uses the actual number of processors or fewer based on the current system workload.

For more information, see Configuring Parallel Index Operations.

http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�

 166

Note
Parallel index operations are not available in every edition of Microsoft SQL Server. For a list of
features that are supported by the editions of SQL Server, see Features Supported by the
Editions of SQL Server 2012.

DATA_COMPRESSION

Specifies the data compression option for the specified index, partition number, or range of
partitions. The options are as follows:

NONE

Index or specified partitions are not compressed.

ROW

Index or specified partitions are compressed by using row compression.

PAGE

Index or specified partitions are compressed by using page compression.

For more information about compression, see Creating Compressed Tables and
Indexes.

ON PARTITIONS ({ <partition_number_expression> | <range> } [,...n])

Specifies the partitions to which the DATA_COMPRESSION setting applies. If the index is not
partitioned, the ON PARTITIONS argument will generate an error. If the ON PARTITIONS
clause is not provided, the DATA_COMPRESSION option applies to all partitions of a
partitioned index.

<partition_number_expression> can be specified in the following ways:

• Provide the number for a partition, for example: ON PARTITIONS (2).

• Provide the partition numbers for several individual partitions separated by commas, for
example: ON PARTITIONS (1, 5).

• Provide both ranges and individual partitions: ON PARTITIONS (2, 4, 6 TO 8).

<range> can be specified as partition numbers separated by the word TO, for example: ON
PARTITIONS (6 TO 8).

To set different types of data compression for different partitions, specify the
DATA_COMPRESSION option more than once, for example:

REBUILD WITH

(

DATA_COMPRESSION = NONE ON PARTITIONS (1),

DATA_COMPRESSION = ROW ON PARTITIONS (2, 4, 6 TO 8),

DATA_COMPRESSION = PAGE ON PARTITIONS (3, 5)

)

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�

 167

Remarks
ALTER INDEX cannot be used to repartition an index or move it to a different filegroup. This
statement cannot be used to modify the index definition, such as adding or deleting columns or
changing the column order. Use CREATE INDEX with the DROP_EXISTING clause to perform
these operations.
When an option is not explicitly specified, the current setting is applied. For example, if a
FILLFACTOR setting is not specified in the REBUILD clause, the fill factor value stored in the
system catalog will be used during the rebuild process. To view the current index option
settings, use sys.indexes.

The values for ONLINE, MAXDOP, and SORT_IN_TEMPDB are not stored in the system
catalog. Unless specified in the index statement, the default value for the option is used.

On multiprocessor computers, just like other queries do, ALTER INDEX REBUILD automatically
uses more processors to perform the scan and sort operations that are associated with
modifying the index. When you run ALTER INDEX REORGANIZE, with or without
LOB_COMPACTION, the max degree of parallelism value is a single threaded operation. For
more information, see Configuring Parallel Index Operations.
An index cannot be reorganized or rebuilt if the filegroup in which it is located is offline or set to
read-only. When the keyword ALL is specified and one or more indexes are in an offline or read-
only filegroup, the statement fails.

Rebuilding Indexes
Rebuilding an index drops and re-creates the index. This removes fragmentation, reclaims disk
space by compacting the pages based on the specified or existing fill factor setting, and
reorders the index rows in contiguous pages. When ALL is specified, all indexes on the table are
dropped and rebuilt in a single transaction. FOREIGN KEY constraints do not have to be dropped
in advance. When indexes with 128 extents or more are rebuilt, the Database Engine defers the
actual page deallocations, and their associated locks, until after the transaction commits.
Rebuilding or reorganizing small indexes often does not reduce fragmentation. The pages of
small indexes are stored on mixed extents. Mixed extents are shared by up to eight objects, so
the fragmentation in a small index might not be reduced after reorganizing or rebuilding it.
In SQL Server 2012, statistics are not created by scanning all the rows in the table when a
partitioned index is created or rebuilt. Instead, the query optimizer uses the default sampling
algorithm to generate statistics. To obtain statistics on partitioned indexes by scanning all the
rows in the table, use CREATE STATISTICS or UPDATE STATISTICS with the FULLSCAN clause.
In earlier versions of SQL Server, you could sometimes rebuild a nonclustered index to correct
inconsistencies caused by hardware failures. In SQL Server 2008 and later, you may still be able
to repair such inconsistencies between the index and the clustered index by rebuilding a
nonclustered index offline. However, you cannot repair nonclustered index inconsistencies by
rebuilding the index online, because the online rebuild mechanism will use the existing
nonclustered index as the basis for the rebuild and thus persist the inconsistency. Rebuilding the

Note

http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�

 168

index offline, by contrast, will force a scan of the clustered index (or heap) and so remove the
inconsistency. As with earlier versions, we recommend recovering from inconsistencies by
restoring the affected data from a backup; however, you may be able to repair the index
inconsistencies by rebuilding the nonclustered index offline. For more information, see DBCC
CHECKDB (Transact-SQL).

Reorganizing Indexes
Reorganizing an index uses minimal system resources. It defragments the leaf level of clustered
and nonclustered indexes on tables and views by physically reordering the leaf-level pages to
match the logical, left to right, order of the leaf nodes. Reorganizing also compacts the index
pages. Compaction is based on the existing fill factor value. To view the fill factor setting, use
sys.indexes.
When ALL is specified, relational indexes, both clustered and nonclustered, and XML indexes on
the table are reorganized. Some restrictions apply when specifying ALL, see the definition for
ALL in the Arguments section.
For more information, see Reorganizing and Rebuilding Indexes.

Disabling Indexes
Disabling an index prevents user access to the index, and for clustered indexes, to the
underlying table data. The index definition remains in the system catalog. Disabling a
nonclustered index or clustered index on a view physically deletes the index data. Disabling a
clustered index prevents access to the data, but the data remains unmaintained in the B-tree
until the index is dropped or rebuilt. To view the status of an enabled or disabled index, query
the is_disabled column in the sys.indexes catalog view.
If a table is in a transactional replication publication, you cannot disable any indexes that are
associated with primary key columns. These indexes are required by replication. To disable an
index, you must first drop the table from the publication. For more information, see Publishing
Data and Database Objects.
Use the ALTER INDEX REBUILD statement or the CREATE INDEX WITH DROP_EXISTING
statement to enable the index. Rebuilding a disabled clustered index cannot be performed with
the ONLINE option set to ON. For more information, see Disable Indexes and Constraints.

Setting Options
You can set the options ALLOW_ROW_LOCKS, ALLOW_PAGE_LOCKS, IGNORE_DUP_KEY and
STATISTICS_NORECOMPUTE for a specified index without rebuilding or reorganizing that index.
The modified values are immediately applied to the index. To view these settings, use
sys.indexes. For more information, see Setting Index Options.

Row and Page Locks Options
When ALLOW_ROW_LOCKS = ON and ALLOW_PAGE_LOCK = ON, row-level, page-level, and
table-level locks are allowed when you access the index. The Database Engine chooses the
appropriate lock and can escalate the lock from a row or page lock to a table lock.

http://msdn.microsoft.com/en-us/library/2c506167-0b69-49f7-9282-241e411910df(SQL.110)�
http://msdn.microsoft.com/en-us/library/2c506167-0b69-49f7-9282-241e411910df(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/a28c684a-c4e9-4b24-a7ae-e248808b31e9(SQL.110)�
http://msdn.microsoft.com/en-us/library/d986032c-3387-4de1-a435-3ec5e82185a2(SQL.110)�
http://msdn.microsoft.com/en-us/library/d986032c-3387-4de1-a435-3ec5e82185a2(SQL.110)�
http://msdn.microsoft.com/en-us/library/2198f1af-fa44-47e9-92df-f4fde322ba18(SQL.110)�
http://msdn.microsoft.com/en-us/library/7969af33-e94c-41f7-ab89-9d9a2747cd5c(SQL.110)�

 169

When ALLOW_ROW_LOCKS = OFF and ALLOW_PAGE_LOCK = OFF, only a table-level lock is
allowed when you access the index.
If ALL is specified when the row or page lock options are set, the settings are applied to all
indexes. When the underlying table is a heap, the settings are applied in the following ways:

ALLOW_ROW_LOCKS = ON or OFF To the heap and any associated
nonclustered indexes.

ALLOW_PAGE_LOCKS = ON To the heap and any associated
nonclustered indexes.

ALLOW_PAGE_LOCKS = OFF Fully to the nonclustered indexes. This
means that all page locks are not allowed
on the nonclustered indexes. On the heap,
only the shared (S), update (U) and
exclusive (X) locks for the page are not
allowed. The Database Engine can still
acquire an intent page lock (IS, IU or IX) for
internal purposes.

Online Index Operations
When rebuilding an index and the ONLINE option is set to ON, the underlying objects, the
tables and associated indexes, are available for queries and data modification. Exclusive table
locks are held only for a very short amount of time during the alteration process.
Reorganizing an index is always performed online. The process does not hold locks long term
and, therefore, does not block queries or updates that are running.
You can perform concurrent online index operations on the same table only when doing the
following:
• Creating multiple nonclustered indexes.
• Reorganizing different indexes on the same table.
• Reorganizing different indexes while rebuilding nonoverlapping indexes on the same table.
All other online index operations performed at the same time fail. For example, you cannot
rebuild two or more indexes on the same table concurrently, or create a new index while
rebuilding an existing index on the same table.
For more information, see Performing Index Operations Online.

Spatial Index Restrictions
When you rebuild a spatial index, the underlying user table is unavailable for the duration of the
index operation because the spatial index holds a schema lock.

http://msdn.microsoft.com/en-us/library/1e43537c-bf67-4db3-9908-3cb45c6fdaa1(SQL.110)�

 170

The PRIMARY KEY constraint in the user table cannot be modified while a spatial index is
defined on a column of that table. To change the PRIMARY KEY constraint, first drop every
spatial index of the table. After modifying the PRIMARY KEy constraint, you can re-create each of
the spatial indexes.
In a single partition rebuild operation, you cannot specify any spatial indexes. However, you can
specify spatial indexes in a complete partition rebuild.
To change options that are specific to a spatial index, such as BOUNDING_BOX or GRID, you can
either use a CREATE SPATIAL INDEX statement that specifies DROP_EXISTING = ON, or drop the
spatial index and create a new one. For an example, see CREATE SPATIAL INDEX (Transact-SQL).

Columnstore Index Restrictions
Except for the REBUILD option, an xVelocity memory optimized columnstore index cannot be
altered. Drop and recreate the columnstore index instead.

Data Compression
For a more information about data compression, see Creating Compressed Tables and Indexes.
To evaluate how changing the compression state will affect a table, an index, or a partition, use
the sp_estimate_data_compression_savings stored procedure.
The following restrictions apply to partitioned indexes:
• When you use ALTER INDEX ALL ..., you cannot change the compression setting of a single

partition if the table has nonaligned indexes.
• The ALTER INDEX <index> ... REBUILD PARTITION ... syntax rebuilds the specified partition of

the index.
• The ALTER INDEX <index> ... REBUILD WITH ... syntax rebuilds all partitions of the index.

Statistics
When you execute ALTER INDEX ALL … on a table, only the statistics associates with indexes
are updated. Automatic or manual statistics created on the table (instead of an index) are not
updated.

Permissions
To execute ALTER INDEX, at a minimum, ALTER permission on the table or view is required.

Examples

A. Rebuilding an index
The following example rebuilds a single index on the Employee table.
USE AdventureWorks2012;

GO

ALTER INDEX PK_Employee_BusinessEntityID ON HumanResources.Employee

REBUILD;

GO

http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/6f6c7150-e788-45e0-9d08-d6c2f4a33729(SQL.110)�

 171

B. Rebuilding all indexes on a table and specifying options
The following example specifies the keyword ALL. This rebuilds all indexes associated with the
table. Three options are specified.
USE AdventureWorks2012;

GO

ALTER INDEX ALL ON Production.Product

REBUILD WITH (FILLFACTOR = 80, SORT_IN_TEMPDB = ON,

 STATISTICS_NORECOMPUTE = ON);

GO

C. Reorganizing an index with LOB compaction
The following example reorganizes a single clustered index. Because the index contains a LOB
data type in the leaf level, the statement also compacts all pages that contain the large object
data. Note that specifying the WITH (LOB_COMPACTION) option is not required because the
default value is ON.
USE AdventureWorks2012;

GO

ALTER INDEX PK_ProductPhoto_ProductPhotoID ON Production.ProductPhoto

REORGANIZE ;

GO

D. Setting options on an index
The following example sets several options on the index
AK_SalesOrderHeader_SalesOrderNumber.
USE AdventureWorks2012;

GO

ALTER INDEX AK_SalesOrderHeader_SalesOrderNumber ON

 Sales.SalesOrderHeader

SET (

 STATISTICS_NORECOMPUTE = ON,

 IGNORE_DUP_KEY = ON,

 ALLOW_PAGE_LOCKS = ON

) ;

GO

 172

E. Disabling an index
The following example disables a nonclustered index on the Employee table.
USE AdventureWorks2012;

GO

ALTER INDEX IX_Employee_OrganizationNode ON HumanResources.Employee

DISABLE ;

GO

F. Disabling constraints
The following example disables a PRIMARY KEY constraint by disabling the PRIMARY KEY index.
The FOREIGN KEY constraint on the underlying table is automatically disabled and warning
message is displayed.
USE AdventureWorks2012;

GO

ALTER INDEX PK_Department_DepartmentID ON HumanResources.Department

DISABLE ;

GO
The result set returns this warning message.
Warning: Foreign key 'FK_EmployeeDepartmentHistory_Department_DepartmentID'

on table 'EmployeeDepartmentHistory' referencing table 'Department'

was disabled as a result of disabling the index 'PK_Department_DepartmentID'.

G. Enabling constraints
The following example enables the PRIMARY KEY and FOREIGN KEY constraints that were
disabled in Example F.
The PRIMARY KEY constraint is enabled by rebuilding the PRIMARY KEY index.
USE AdventureWorks2012;

GO

ALTER INDEX PK_Department_DepartmentID ON HumanResources.Department

REBUILD ;

GO

The FOREIGN KEY constraint is then enabled.

 173

ALTER TABLE HumanResources.EmployeeDepartmentHistory

CHECK CONSTRAINT FK_EmployeeDepartmentHistory_Department_DepartmentID;

GO

H. Rebuilding a partitioned index
The following example rebuilds a single partition, partition number 5, of the partitioned index
IX_TransactionHistory_TransactionDate.

USE AdventureWorks;

GO

-- Verify the partitioned indexes.

SELECT *

FROM sys.dm_db_index_physical_stats

(DB_ID(),OBJECT_ID(N'Production.TransactionHistory'), NULL , NULL, NULL);

GO

--Rebuild only partition 5.

ALTER INDEX IX_TransactionHistory_TransactionDate

ON Production.TransactionHistory

REBUILD Partition = 5;

GO

I. Changing the compression setting of an index
The following example rebuilds an index on a nonpartitioned table.
ALTER INDEX IX_INDEX1

ON T1

REBUILD

WITH (DATA_COMPRESSION = PAGE)

GO

For additional data compression examples, see Creating Compressed Tables and Indexes.

See Also
CREATE INDEX
CREATE SPATIAL INDEX (Transact-SQL)
CREATE XML INDEX (Transact-SQL)
DROP INDEX (Transact-SQL)
Disable Indexes and Constraints
Indexes on xml Type columns

http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/2198f1af-fa44-47e9-92df-f4fde322ba18(SQL.110)�
http://msdn.microsoft.com/en-us/library/f5c9209d-b3f3-4543-b30b-01365a5e7333(SQL.110)�

 174

Performing Index Operations Online
Reorganizing and Rebuilding Indexes
sys.dm_db_index_physical_stats
EVENTDATA

ALTER LOGIN
Changes the properties of a SQL Server login account.

 Transact-SQL Syntax Conventions

Syntax

ALTER LOGIN login_name
 {
 <status_option>
 | WITH <set_option> [,...]
 | <cryptographic_credential_option>
 }

<status_option> ::=
 ENABLE | DISABLE

<set_option> ::=
 PASSWORD = 'password' | hashed_password HASHED
 [
 OLD_PASSWORD = 'oldpassword'
 | <password_option> [<password_option>]
]
 | DEFAULT_DATABASE = database
 | DEFAULT_LANGUAGE = language
 | NAME = login_name
 | CHECK_POLICY = { ON | OFF }
 | CHECK_EXPIRATION = { ON | OFF }
 | CREDENTIAL = credential_name
 | NO CREDENTIAL

<password_option> ::=

http://msdn.microsoft.com/en-us/library/1e43537c-bf67-4db3-9908-3cb45c6fdaa1(SQL.110)�
http://msdn.microsoft.com/en-us/library/a28c684a-c4e9-4b24-a7ae-e248808b31e9(SQL.110)�
http://msdn.microsoft.com/en-us/library/d294dd8e-82d5-4628-aa2d-e57702230613(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 175

 MUST_CHANGE | UNLOCK
<cryptographic_credentials_option> ::=
 ADD CREDENTIAL credential_name
 | DROP CREDENTIAL credential_name

Arguments
login_name

Specifies the name of the SQL Server login that is being changed. Domain logins must be
enclosed in brackets in the format [domain\user].

ENABLE | DISABLE

Enables or disables this login.

PASSWORD = 'password'

Applies only to SQL Server logins. Specifies the password for the login that is being changed.
Passwords are case-sensitive.

PASSWORD = hashed_password

Applies to the HASHED keyword only. Specifies the hashed value of the password for the
login that is being created.

HASHED

Applies to SQL Server logins only. Specifies that the password entered after the PASSWORD
argument is already hashed. If this option is not selected, the password is hashed before
being stored in the database. This option should only be used for login synchronization
between two servers. Do not use the HASHED option to routinely change passwords.

OLD_PASSWORD = 'oldpassword'

Applies only to SQL Server logins. The current password of the login to which a new
password will be assigned. Passwords are case-sensitive.

MUST_CHANGE

Applies only to SQL Server logins. If this option is included, SQL Server will prompt for an
updated password the first time the altered login is used.

DEFAULT_DATABASE = database

Specifies a default database to be assigned to the login.

DEFAULT_LANGUAGE = language

Specifies a default language to be assigned to the login.

NAME = login_name

The new name of the login that is being renamed. If this is a Windows login, the SID of the
Windows principal corresponding to the new name must match the SID associated with the

 176

login in SQL Server. The new name of a SQL Server login cannot contain a backslash
character (\).

CHECK_EXPIRATION = { ON | OFF }

Applies only to SQL Server logins. Specifies whether password expiration policy should be
enforced on this login. The default value is OFF.

CHECK_POLICY = { ON | OFF }

Applies only to SQL Server logins. Specifies that the Windows password policies of the
computer on which SQL Server is running should be enforced on this login. The default value
is ON.

CREDENTIAL = credential_name

The name of a credential to be mapped to a SQL Server login. The credential must already
exist in the server. For more information see EVENTDATA (Transact-SQL). A credential
cannot be mapped to the sa login.

NO CREDENTIAL

Removes any existing mapping of the login to a server credential. For more information see
Credentials.

UNLOCK

Applies only to SQL Server logins. Specifies that a login that is locked out should be
unlocked.

ADD CREDENTIAL

Adds an Extensible Key Management (EKM) provider credential to the login. For more
information, see Understanding Extensible Key Management (EKM).

DROP CREDENTIAL

Removes an Extensible Key Management (EKM) provider credential to the login. For more
information see Understanding Extensible Key Management (EKM).

Remarks
When CHECK_POLICY is set to ON, the HASHED argument cannot be used.
When CHECK_POLICY is changed to ON, the following behavior occurs:
• CHECK_EXPIRATION is also set to ON, unless it is explicitly set to OFF.
• The password history is initialized with the value of the current password hash.
When CHECK_POLICY is changed to OFF, the following behavior occurs:
• CHECK_EXPIRATION is also set to OFF.
• The password history is cleared.
• The value of lockout_time is reset.
If MUST_CHANGE is specified, CHECK_EXPIRATION and CHECK_POLICY must be set to ON.
Otherwise, the statement will fail.

http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�

 177

If CHECK_POLICY is set to OFF, CHECK_EXPIRATION cannot be set to ON. An ALTER LOGIN
statement that has this combination of options will fail.
You cannot use ALTER_LOGIN with the DISABLE argument to deny access to a Windows group.
For example, ALTER_LOGIN [domain\group] DISABLE will return the following error message:
"Msg 15151, Level 16, State 1, Line 1
"Cannot alter the login 'Domain\Group', because it does not exist or you do not have
permission."
This is by design.

Permissions
Requires ALTER ANY LOGIN permission.
If the CREDENTIAL option is used, also requires ALTER ANY CREDENTIAL permission.
If the login that is being changed is a member of the sysadmin fixed server role or a grantee of
CONTROL SERVER permission, also requires CONTROL SERVER permission when making the
following changes:
• Resetting the password without supplying the old password.
• Enabling MUST_CHANGE, CHECK_POLICY, or CHECK_EXPIRATION.
• Changing the login name.
• Enabling or disabling the login.
• Mapping the login to a different credential.
A principal can change the password, default language, and default database for its own login.

Examples

A. Enabling a disabled login
The following example enables the login Mary5.

ALTER LOGIN Mary5 ENABLE;

B. Changing the password of a login
The following example changes the password of login Mary5 to a strong password.

ALTER LOGIN Mary5 WITH PASSWORD = '<enterStrongPasswordHere>';

C. Changing the name of a login
The following example changes the name of login Mary5 to John2.

ALTER LOGIN Mary5 WITH NAME = John2;

D. Mapping a login to a credential
The following example maps the login John2 to the credential Custodian04.

ALTER LOGIN John2 WITH CREDENTIAL = Custodian04;

E. Mapping a login to an Extensible Key Management credential

 178

The following example maps the login Mary5 to the EKM credential EKMProvider1.

ALTER LOGIN Mary5

ADD CREDENTIAL EKMProvider1;

GO

F. Unlocking a login
To unlock a SQL Server login, execute the following statement, replacing **** with the desired
account password.
ALTER LOGIN [Mary5] WITH PASSWORD = '****' UNLOCK ;

GO

To unlock a login without changing the password, turn the check policy off and then on again.

ALTER LOGIN [Mary5] WITH CHECK_POLICY = OFF;

ALTER LOGIN [Mary5] WITH CHECK_POLICY = ON;

GO

G. Changing the password of a login using HASHED
The following example changes the password of the TestUser login to an already hashed value.

ALTER LOGIN TestUser WITH

PASSWORD = 0x01000CF35567C60BFB41EBDE4CF700A985A13D773D6B45B90900 HASHED ;

GO

See Also
Credentials
CREATE LOGIN (Transact-SQL)
DROP LOGIN (Transact-SQL)
CREATE CREDENTIAL (Transact-SQL)
EVENTDATA (Transact-SQL)
Understanding Extensible Key Management (EKM)

ALTER MASTER KEY
Changes the properties of a database master key.

 Transact-SQL Syntax Conventions

Syntax

ALTER MASTER KEY <alter_option>

http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 179

<alter_option> ::=
 <regenerate_option> | <encryption_option>

<regenerate_option> ::=
 [FORCE] REGENERATE WITH ENCRYPTION BY PASSWORD = 'password'

<encryption_option> ::=
 ADD ENCRYPTION BY { SERVICE MASTER KEY | PASSWORD = 'password' }
 |
 DROP ENCRYPTION BY { SERVICE MASTER KEY | PASSWORD = 'password' }

Arguments
PASSWORD = 'password'

Specifies a password with which to encrypt or decrypt the database master key. password
must meet the Windows password policy requirements of the computer that is running the
instance of SQL Server.

Remarks
The REGENERATE option re-creates the database master key and all the keys it protects. The
keys are first decrypted with the old master key, and then encrypted with the new master key.
This resource-intensive operation should be scheduled during a period of low demand, unless
the master key has been compromised.
SQL Server 2012 uses the AES encryption algorithm to protect the service master key (SMK) and
the database master key (DMK). AES is a newer encryption algorithm than 3DES used in earlier
versions. After upgrading an instance of the Database Engine to SQL Server 2012 the SMK and
DMK should be regenerated in order to upgrade the master keys to AES. For more information
about regenerating the SMK, see ALTER SERVICE MASTER KEY (Transact-SQL).
When the FORCE option is used, key regeneration will continue even if the master key is
unavailable or the server cannot decrypt all the encrypted private keys. If the master key cannot
be opened, use the RESTORE MASTER KEY statement to restore the master key from a backup.
Use the FORCE option only if the master key is irretrievable or if decryption fails. Information
that is encrypted only by an irretrievable key will be lost.
The DROP ENCRYPTION BY SERVICE MASTER KEY option removes the encryption of the
database master key by the service master key.
ADD ENCRYPTION BY SERVICE MASTER KEY causes a copy of the master key to be encrypted
using the service master key and stored in both the current database and in master.

Permissions
Requires CONTROL permission on the database. If the database master key has been encrypted
with a password, knowledge of that password is also required.

http://msdn.microsoft.com/en-us/library/70ceb951-31a2-4fc4-a0c1-e6c18eeb3ae7(SQL.110)�

 180

Examples
The following example creates a new database master key for AdventureWorks and reencrypts
the keys below it in the encryption hierarchy.

USE AdventureWorks2012;

ALTER MASTER KEY REGENERATE WITH ENCRYPTION BY PASSWORD =

'dsjdkflJ435907NnmM#sX003';

GO

See Also
Detaching and Attaching Databases
OPEN MASTER KEY (Transact-SQL)
CLOSE MASTER KEY (Transact-SQL)
BACKUP MASTER KEY (Transact-SQL)
RESTORE MASTER KEY (Transact-SQL)
DROP MASTER KEY (Transact-SQL)
Encryption Hierarchy
CREATE DATABASE (Transact-SQL)
Detaching and Attaching a Database

ALTER MESSAGE TYPE
Changes the properties of a message type.

 Transact-SQL Syntax Conventions

Syntax

ALTER MESSAGE TYPE message_type_name
 VALIDATION =
 { NONE
 | EMPTY
 | WELL_FORMED_XML
 | VALID_XML WITH SCHEMA COLLECTION schema_collection_name }
[;]

Arguments
message_type_name

The name of the message type to change. Server, database, and schema names cannot be
specified.

http://msdn.microsoft.com/en-us/library/1674753e-ca1e-4913-9ba4-b442e7106121(SQL.110)�
http://msdn.microsoft.com/en-us/library/bb04ef7a-9f3a-437e-a6f9-ba0204082cb9(SQL.110)�
http://msdn.microsoft.com/en-us/library/0e25fe22-2536-4d7e-ba4a-1921e880f367(SQL.110)�
http://msdn.microsoft.com/en-us/library/70ceb951-31a2-4fc4-a0c1-e6c18eeb3ae7(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/d0de0639-bc54-464e-98b1-6af22a27eb86(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 181

VALIDATION

Specifies how Service Broker validates the message body for messages of this type.

NONE

No validation is performed. The message body might contain any data, or might be NULL.

EMPTY

The message body must be NULL.

WELL_FORMED_XML

The message body must contain well-formed XML.

VALID_XML_WITH_SCHEMA = schema_collection_name

The message body must contain XML that complies with a schema in the specified schema
collection. The schema_collection_name must be the name of an existing XML schema
collection.

Remarks
Changing the validation of a message type does not affect messages that have already been
delivered to a queue.
To change the AUTHORIZATION for a message type, use the ALTER AUTHORIZATION statement.

Permissions
Permission for altering a message type defaults to the owner of the message type, members of
the db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server
role.
When the ALTER MESSAGE TYPE statement specifies a schema collection, the user executing the
statement must have REFERENCES permission on the schema collection specified.

Examples
The following example changes the message type //Adventure-
Works.com/Expenses/SubmitExpense to require that the message body contain a well-formed
XML document.

ALTER MESSAGE TYPE

 [//Adventure-Works.com/Expenses/SubmitExpense]

 VALIDATION = WELL_FORMED_XML ;

See Also
EVENTDATA (Transact-SQL)
CREATE MESSAGE TYPE
DROP MESSAGE TYPE
EVENTDATA (Transact-SQL)

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
www.Adventure-Works.com/Expenses/SubmitExpense
www.Adventure-Works.com/Expenses/SubmitExpense
www.Adventure-Works.com/Expenses/SubmitExpense

 182

ALTER PARTITION FUNCTION
Alters a partition function by splitting or merging its boundary values. By executing ALTER
PARTITION FUNCTION, one partition of any table or index that uses the partition function can
be split into two partitions, or two partitions can be merged into one less partition.

More than one table or index can use the same partition function. ALTER PARTITION
FUNCTION affects all of them in a single transaction.

 Transact-SQL Syntax Conventions

Syntax

ALTER PARTITION FUNCTION partition_function_name()
{
 SPLIT RANGE (boundary_value)
 | MERGE RANGE (boundary_value)
} [;]

Arguments
partition_function_name

Is the name of the partition function to be modified.

SPLIT RANGE (boundary_value)

Adds one partition to the partition function. boundary_value determines the range of the
new partition, and must differ from the existing boundary ranges of the partition function.
Based on boundary_value, the Database Engine splits one of the existing ranges into two. Of
these two, the one where the new boundary_value resides is considered the new partition.

A filegroup must exist online and be marked by the partition scheme that uses the partition
function as NEXT USED to hold the new partition. Filegroups are allocated to partitions in a
CREATE PARTITION SCHEME statement. If a CREATE PARTITION SCHEME statement allocates
more filegroups than necessary (fewer partitions are created in the CREATE PARTITION
FUNCTION statement than filegroups to hold them), then there are unassigned filegroups,
and one of them is marked NEXT USED by the partition scheme. This filegroup will hold the
new partition. If there are no filegroups marked NEXT USED by the partition scheme, you
must use ALTER PARTITION SCHEME to either add a filegroup, or designate an existing one,
to hold the new partition. A filegroup that already holds partitions can be designated to hold
additional partitions. Because a partition function can participate in more than one partition
scheme, all the partition schemes that use the partition function to which you are adding
partitions must have a NEXT USED filegroup. Otherwise, ALTER PARTITION FUNCTION fails
with an error that displays the partition scheme or schemes that lack a NEXT USED filegroup.

If you create all the partitions in the same filegroup, that filegroup is initially assigned to be

Caution

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 183

the NEXT USED filegroup automatically. However, after a split operation is performed, there is
no longer a designated NEXT USED filegroup. You must explicitly assign the filegroup to be
the NEXT USED filegroup by using ALTER PARITION SCHEME or a subsequent split operation
will fail.

MERGE [RANGE (boundary_value)]

Drops a partition and merges any values that exist in the partition into one of the remaining
partitions. RANGE (boundary_value) must be an existing boundary value, into which the
values from the dropped partition are merged. The filegroup that originally held
boundary_value is removed from the partition scheme unless it is used by a remaining
partition, or is marked with the NEXT USED property. The merged partition resides in the
filegroup that originally did not hold boundary_value. boundary_value is a constant
expression that can reference variables (including user-defined type variables) or functions
(including user-defined functions). It cannot reference a Transact-SQL expression.
boundary_value must either match or be implicitly convertible to the data type of its
corresponding partitioning column, and cannot be truncated during implicit conversion in a
way that the size and scale of the value does not match that of its corresponding
input_parameter_type.

Best Practices
Always keep empty partitions at both ends of the partition range to guarantee that the partition
split (before loading new data) and partition merge (after unloading old data) do not incur any
data movement. Avoid splitting or merging populated partitions. This can be extremely
inefficient, as this may cause as much as four times more log generation, and may also cause
severe locking.

Limitations and Restrictions
ALTER PARTITION FUNCTION repartitions any tables and indexes that use the function in a
single atomic operation. However, this operation occurs offline, and depending on the extent of
repartitioning, may be resource-intensive.
ALTER PARTITION FUNCTION can only be used for splitting one partition into two, or merging
two partitions into one. To change the way a table is otherwise partitioned (for example, from 10
partitions to 5 partitions), you can exercise any of the following options. Depending on the
configuration of your system, these options can vary in resource consumption:
• Create a new partitioned table with the desired partition function, and then insert the data

from the old table into the new table by using an INSERT INTO...SELECT FROM statement.
• Create a partitioned clustered index on a heap.

Dropping a partitioned clustered index results in a partitioned heap.
• Drop and rebuild an existing partitioned index by using the Transact-SQL CREATE INDEX

statement with the DROP EXISTING = ON clause.
• Perform a sequence of ALTER PARTITION FUNCTION statements.

Note

 184

All filegroups that are affected by ALTER PARITITION FUNCTION must be online.
ALTER PARTITION FUNCTION fails when there is a disabled clustered index on any tables that
use the partition function.
SQL Server does not provide replication support for modifying a partition function. Changes to a
partition function in the publication database must be manually applied in the subscription
database.

Permissions
Any one of the following permissions can be used to execute ALTER PARTITION FUNCTION:
• ALTER ANY DATASPACE permission. This permission defaults to members of the sysadmin

fixed server role and the db_owner and db_ddladmin fixed database roles.
• CONTROL or ALTER permission on the database in which the partition function was created.
• CONTROL SERVER or ALTER ANY DATABASE permission on the server of the database in

which the partition function was created.

Examples

A. Splitting a partition of a partitioned table or index into two partitions
The following example creates a partition function to partition a table or index into four
partitions. ALTER PARTITION FUNCTION splits one of the partitions into two to create a total of
five partitions.
IF EXISTS (SELECT * FROM sys.partition_functions

 WHERE name = 'myRangePF1')

DROP PARTITION FUNCTION myRangePF1;

GO

CREATE PARTITION FUNCTION myRangePF1 (int)

AS RANGE LEFT FOR VALUES (1, 100, 1000);

GO

--Split the partition between boundary_values 100 and 1000

--to create two partitions between boundary_values 100 and 500

--and between boundary_values 500 and 1000.

ALTER PARTITION FUNCTION myRangePF1 ()

SPLIT RANGE (500);

B. Merging two partitions of a partitioned table into one partition
The following example creates the same partition function as above, and then merges two of the
partitions into one partition, for a total of three partitions.
IF EXISTS (SELECT * FROM sys.partition_functions

 185

 WHERE name = 'myRangePF1')

DROP PARTITION FUNCTION myRangePF1;

GO

CREATE PARTITION FUNCTION myRangePF1 (int)

AS RANGE LEFT FOR VALUES (1, 100, 1000);

GO

--Merge the partitions between boundary_values 1 and 100

--and between boundary_values 100 and 1000 to create one partition

--between boundary_values 1 and 1000.

ALTER PARTITION FUNCTION myRangePF1 ()

MERGE RANGE (100);

See Also
Partitioned Tables and Indexes
sys.index_columns (Transact-SQL)
DROP PARTITION FUNCTION
CREATE PARTITION SCHEME
ALTER PARTITION SCHEME
DROP PARTITION SCHEME
CREATE INDEX
ALTER INDEX
CREATE TABLE
sys.partition_functions
sys.partition_parameters
sys.partition_range_values
sys.partitions
sys.tables
sys.indexes
sys.index_columns

ALTER PARTITION SCHEME
Adds a filegroup to a partition scheme or alters the designation of the NEXT USED filegroup for
the partition scheme.

 Transact-SQL Syntax Conventions

http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�
http://msdn.microsoft.com/en-us/library/96515727-728b-4bea-804a-36ce915b8b75(SQL.110)�
http://msdn.microsoft.com/en-us/library/2012ed9d-3ea3-4c29-9b78-dfa54a392dce(SQL.110)�
http://msdn.microsoft.com/en-us/library/9aee483e-61f3-4613-bec6-f084161f45ac(SQL.110)�
http://msdn.microsoft.com/en-us/library/1c19e1b1-c925-4dad-a652-581692f4ab5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c42eba1-c19f-4045-ac82-b97a5e994090(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/211471aa-558a-475c-9b94-5913c143ed12(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 186

Syntax

ALTER PARTITION SCHEME partition_scheme_name
NEXT USED [filegroup_name] [;]

Arguments
partition_scheme_name

Is the name of the partition scheme to be altered.

filegroup_name

Specifies the filegroup to be marked by the partition scheme as NEXT USED. This means the
filegroup will accept a new partition that is created by using an ALTER PARTITION
FUNCTION statement.

In a partition scheme, only one filegroup can be designated NEXT USED. A filegroup that is
not empty can be specified. If filegroup_name is specified and there currently is no filegroup
marked NEXT USED, filegroup_name is marked NEXT USED. If filegroup_name is specified,
and a filegroup with the NEXT USED property already exists, the NEXT USED property
transfers from the existing filegroup to filegroup_name.

If filegroup_name is not specified and a filegroup with the NEXT USED property already
exists, that filegroup loses its NEXT USED state so that there are no NEXT USED filegroups in
partition_scheme_name.

If filegroup_name is not specified, and there are no filegroups marked NEXT USED, ALTER
PARTITION SCHEME returns a warning.

Remarks
Any filegroup affected by ALTER PARTITION SCHEME must be online.

Permissions
Tthe following permissions can be used to execute ALTER PARTITION SCHEME:
• ALTER ANY DATASPACE permission. This permission defaults to members of the sysadmin

fixed server role and the db_owner and db_ddladmin fixed database roles.
• CONTROL or ALTER permission on the database in which the partition scheme was created.
• CONTROL SERVER or ALTER ANY DATABASE permission on the server of the database in

which the partition scheme was created.

Examples
The following example assumes the partition scheme MyRangePS1 and the filegroup test5fg
exist in the current database.

ALTER PARTITION SCHEME MyRangePS1

NEXT USED test5fg;

 187

Filegroup test5fg will receive any additional partition of a partitioned table or index as a result
of an ALTER PARTITION FUNCTION statement.

See Also
sys.index_columns (Transact-SQL)
DROP PARTITION SCHEME
CREATE PARTITION FUNCTION
ALTER PARTITION FUNCTION
DROP PARTITION FUNCTION
CREATE TABLE
CREATE INDEX
EVENTDATA
sys.partition_schemes
sys.data_spaces
sys.destination_data_spaces
sys.partitions
sys.tables
sys.indexes
sys.index_columns

ALTER PROCEDURE
Modifies a previously created procedure that was created by executing the CREATE PROCEDURE
statement in SQL Server 2012.

 Transact-SQL Syntax Conventions (Transact-SQL)

Syntax

--Transact-SQL Stored Procedure Syntax
ALTER { PROC | PROCEDURE } [schema_name.] procedure_name [; number]
 [{ @parameter [type_schema_name.] data_type }
 [VARYING] [= default] [OUT | OUTPUT] [READONLY]
] [,...n]
[WITH <procedure_option> [,...n]]
[FOR REPLICATION]
AS { [BEGIN] sql_statement [;] [...n] [END] }
[;]

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed557fd5-12b0-4cef-9e4f-440b02e99d1f(SQL.110)�
http://msdn.microsoft.com/en-us/library/f39d55fe-2c0f-472d-a77f-cebc6fea95b5(SQL.110)�
http://msdn.microsoft.com/en-us/library/92df932b-ad5c-43f8-81f4-b158823ab189(SQL.110)�
http://msdn.microsoft.com/en-us/library/1c19e1b1-c925-4dad-a652-581692f4ab5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c42eba1-c19f-4045-ac82-b97a5e994090(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/211471aa-558a-475c-9b94-5913c143ed12(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 188

<procedure_option> ::=
 [ENCRYPTION]
 [RECOMPILE]
 [EXECUTE AS Clause]

--CLR Stored Procedure Syntax
ALTER { PROC | PROCEDURE } [schema_name.] procedure_name [; number]
 [{ @parameter [type_schema_name.] data_type }
 [= default] [OUT | OUTPUT] [READONLY]
] [,...n]
[WITH EXECUTE AS Clause]
AS { EXTERNAL NAME assembly_name.class_name.method_name }
[;]

Arguments
schema_name

The name of the schema to which the procedure belongs.

procedure_name

The name of the procedure to change. Procedure names must comply with the rules for
identifiers.

; number

An existing optional integer that is used to group procedures of the same name so that they
can be dropped together by using one DROP PROCEDURE statement.

Note
 This feature will be removed in a future version of Microsoft SQL Server. Avoid using this feature in
new development work, and plan to modify applications that currently use this feature.

@ parameter

A parameter in the procedure. Up to 2,100 parameters can be specified.

[type_schema_name.] data_type

Is the data type of the parameter and the schema it belongs to.

For information about data type restrictions, see CREATE PROCEDURE (Transact-SQL).

VARYING

Specifies the result set supported as an output parameter. This parameter is constructed
dynamically by the stored procedure and its contents can vary. Applies only to cursor

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 189

parameters. This option is not valid for CLR procedures.

default

Is a default value for the parameter.

OUT | OUTPUT

Indicates that the parameter is a return parameter.

READONLY

Indicates that the parameter cannot be updated or modified within the body of the
procedure. If the parameter type is a table-value type, READONLY must be specified.

RECOMPILE

Indicates that the Database Engine does not cache a plan for this procedure and the
procedure is recompiled at run time.

ENCRYPTION

Indicates that the Database Engine will convert the original text of the ALTER PROCEDURE
statement to an obfuscated format. The output of the obfuscation is not directly visible in any
of the catalog views in SQL Server. Users that have no access to system tables or database
files cannot retrieve the obfuscated text. However, the text will be available to privileged
users that can either access system tables over the DAC port or directly access database
files. Also, users that can attach a debugger to the server process can retrieve the original
procedure from memory at runtime. For more information about accessing system metadata,
see Metadata Visibility Configuration.

Procedures created with this option cannot be published as part of SQL Server replication.

This option cannot be specified for common language runtime (CLR) stored procedures.

Note
During an upgrade, the Database Engine uses the obfuscated comments stored in sys.sql_modules to
re-create procedures.

EXECUTE AS

Specifies the security context under which to execute the stored procedure after it is
accessed.

For more information, see EXECUTE AS Clause (Transact-SQL).

FOR REPLICATION

Specifies that stored procedures that are created for replication cannot be executed on the
Subscriber. A stored procedure created with the FOR REPLICATION option is used as a stored
procedure filter and only executed during replication. Parameters cannot be declared if FOR
REPLICATION is specified. This option is not valid for CLR procedures. The RECOMPILE option
is ignored for procedures created with FOR REPLICATION.

Note

http://msdn.microsoft.com/en-us/library/993e0820-17f2-4c43-880c-d38290bf7abc(SQL.110)�
http://msdn.microsoft.com/en-us/library/50d2e015-05ae-4014-a1cd-4de7866ad651(SQL.110)�
http://msdn.microsoft.com/en-us/library/bd517aa3-f06e-4356-87d8-70de5df4494a(SQL.110)�

 190

This option is not available in a contained database.

{ [BEGIN] sql_statement [;] [...n] [END] }

One or more Transact-SQL statements comprising the body of the procedure. You can use
the optional BEGIN and END keywords to enclose the statements. For more information, see
the Best Practices, General Remarks, and Limitations and Restrictions sections in CREATE
PROCEDURE (Transact-SQL).

EXTERNAL NAME assembly_name.class_name.method_name

Specifies the method of a .NET Framework assembly for a CLR stored procedure to reference.
class_name must be a valid SQL Server identifier and must exist as a class in the assembly. If
the class has a namespace-qualified name uses a period (.) to separate namespace parts, the
class name must be delimited by using brackets ([]) or quotation marks (" "). The specified
method must be a static method of the class.

By default, SQL Server cannot execute CLR code. You can create, modify, and drop database
objects that reference common language runtime modules; however, you cannot execute
these references in SQL Server until you enable the clr enabled option. To enable the
option, use sp_configure.

Note
CLR procedures are not supported in a contained database.

General Remarks
Transact-SQL stored procedures cannot be modified to be CLR stored procedures and vice
versa.
ALTER PROCEDURE does not change permissions and does not affect any dependent stored
procedures or triggers. However, the current session settings for QUOTED_IDENTIFIER and
ANSI_NULLS are included in the stored procedure when it is modified. If the settings are
different from those in effect when stored procedure was originally created, the behavior of the
stored procedure may change.
If a previous procedure definition was created using WITH ENCRYPTION or WITH RECOMPILE,
these options are enabled only if they are included in ALTER PROCEDURE.
For more information about stored procedures, see CREATE PROCEDURE (Transact-SQL).

Security

Permissions
Requires ALTER permission on the procedure or requires membership in the db_ddladmin fixed
database role.

Examples
The following example creates the uspVendorAllInfo stored procedure. This procedure returns
the names of all the vendors that supply Adventure Works Cycles, the products they supply,

http://msdn.microsoft.com/en-us/library/0722d382-8fd3-4fac-b4a8-cd2b7a7e0293(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�

 191

their credit ratings, and their availability. After this procedure is created, it is then modified to
return a different result set.
USE AdventureWorks2012;

GO

IF OBJECT_ID ('Purchasing.uspVendorAllInfo', 'P') IS NOT NULL

 DROP PROCEDURE Purchasing.uspVendorAllInfo;

GO

CREATE PROCEDURE Purchasing.uspVendorAllInfo

WITH EXECUTE AS CALLER

AS

 SET NOCOUNT ON;

 SELECT v.Name AS Vendor, p.Name AS 'Product name',

 v.CreditRating AS 'Rating',

 v.ActiveFlag AS Availability

 FROM Purchasing.Vendor v

 INNER JOIN Purchasing.ProductVendor pv

 ON v.BusinessEntityID = pv.BusinessEntityID

 INNER JOIN Production.Product p

 ON pv.ProductID = p.ProductID

 ORDER BY v.Name ASC;

GO

The following example alters the uspVendorAllInfo stored procedure. It removes the EXECUTE
AS CALLER clause and modifies the body of the procedure to return only those vendors that
supply the specified product. The LEFT and CASE functions customize the appearance of the
result set.
USE AdventureWorks2012;

GO

ALTER PROCEDURE Purchasing.uspVendorAllInfo

 @Product varchar(25)

AS

 SET NOCOUNT ON;

 SELECT LEFT(v.Name, 25) AS Vendor, LEFT(p.Name, 25) AS 'Product name',

 'Rating' = CASE v.CreditRating

 WHEN 1 THEN 'Superior'

 WHEN 2 THEN 'Excellent'

 192

 WHEN 3 THEN 'Above average'

 WHEN 4 THEN 'Average'

 WHEN 5 THEN 'Below average'

 ELSE 'No rating'

 END

 , Availability = CASE v.ActiveFlag

 WHEN 1 THEN 'Yes'

 ELSE 'No'

 END

 FROM Purchasing.Vendor AS v

 INNER JOIN Purchasing.ProductVendor AS pv

 ON v.BusinessEntityID = pv.BusinessEntityID

 INNER JOIN Production.Product AS p

 ON pv.ProductID = p.ProductID

 WHERE p.Name LIKE @Product

 ORDER BY v.Name ASC;

GO

Here is the result set.
Vendor Product name Rating Availability

-------------------- ------------- ------- ------------

Proseware, Inc. LL Crankarm Average No

Vision Cycles, Inc. LL Crankarm Superior Yes

(2 row(s) affected)

See Also
CREATE PROCEDURE (Transact-SQL)
DROP PROCEDURE
EXECUTE (Transact-SQL)
EXECUTE AS (Transact-SQL)
EVENTDATA (Transact-SQL)
Stored Procedures (Database Engine)
sys.procedures (Transact-SQL)

http://msdn.microsoft.com/en-us/library/bc806b71-cc55-470a-913e-c5f761d5c4b7(SQL.110)�
http://msdn.microsoft.com/en-us/library/613b8271-7f7d-4378-b7a2-5a7698551dbd(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/cc6daf62-9663-4c3e-950a-ab42e2830427(SQL.110)�
http://msdn.microsoft.com/en-us/library/d17af274-b2dd-464e-9523-ee1f43e1455b(SQL.110)�

 193

ALTER QUEUE
Changes the properties of a queue.

 Transact-SQL Syntax Conventions

Syntax

ALTER QUEUE <object> WITH
 [STATUS = { ON | OFF } [,]]
 [RETENTION = { ON | OFF } [,]]
 [ACTIVATION (
 { [STATUS = { ON | OFF } [,]]
 [PROCEDURE_NAME = <procedure> [,]]
 [MAX_QUEUE_READERS = max_readers [,]]
 [EXECUTE AS { SELF | 'user_name' | OWNER }]
 | DROP }
) [,]]
 [POISON_MESSAGE_HANDLING (
 STATUS = { ON | OFF })
]
 [;]

<object> ::=
{
 [database_name. [schema_name] . | schema_name.]
 queue_name
}

<procedure> ::=
{
 [database_name. [schema_name] . | schema_name.]
 stored_procedure_name
}

Arguments

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 194

database_name (object)

Is the name of the database that contains the queue to be changed. When no
database_name is provided, this defaults to the current database.

schema_name (object)

Is the name of the schema to which the new queue belongs. When no schema_name is
provided, this defaults to the default schema for the current user.

queue_name

Is the name of the queue to be changed.

STATUS (Queue)

Specifies whether the queue is available (ON) or unavailable (OFF). When the queue is
unavailable, no messages can be added to the queue or removed from the queue.

RETENTION

Specifies the retention setting for the queue. If RETENTION = ON, all messages sent or
received on conversations using this queue are retained in the queue until the conversations
have ended. This allows you to retain messages for auditing purposes, or to perform
compensating transactions if an error occurs

Note
Setting RETENTION = ON can reduce performance. This setting should only be used if required to
meet the service level agreement for the application.

ACTIVATION

Specifies information about the stored procedure that is activated to process messages that
arrive in this queue.

STATUS (Activation)

Specifies whether or not the queue activates the stored procedure. When STATUS = ON, the
queue starts the stored procedure specified with PROCEDURE_NAME when the number of
procedures currently running is less than MAX_QUEUE_READERS and when messages arrive
on the queue faster than the stored procedures receive messages. When STATUS = OFF, the
queue does not activate the stored procedure.

PROCEDURE_NAME = <procedure>

Specifies the name of the stored procedure to activate when the queue contains messages to
be processed. This value must be a SQL Server identifier.

database_name (procedure)

Is the name of the database that contains the stored procedure.

schema_name (procedure)

Is the name of the schema that owns the stored procedure.

 195

stored_procedure_name

Is the name of the stored procedure.

MAX_QUEUE_READERS = max_reader

Specifies the maximum number of instances of the activation stored procedure that the
queue starts simultaneously. The value of max_readers must be a number between 0 and
32767.

EXECUTE AS

Specifies the SQL Server database user account under which the activation stored procedure
runs. SQL Server must be able to check the permissions for this user at the time that the
queue activates the stored procedure. For Windows domain user, the SQL Server must be
connected to the domain and able to validate the permissions of the specified user when the
procedure is activated or activation fails. For a SQL Server user, the server can always check
permissions.

SELF

Specifies that the stored procedure executes as the current user. (The database principal
executing this ALTER QUEUE statement.)

'user_name'

Is the name of the user that the stored procedure executes as. user_name must be a valid
SQL Server user specified as a SQL Server identifier. The current user must have
IMPERSONATE permission for the user_name specified.

OWNER

Specifies that the stored procedure executes as the owner of the queue.

DROP

Deletes all of the activation information associated with the queue.

POISON_MESSAGE_HANDLING

Specifies whether poison message handling is enabled. The default is ON.

A queue that has poison message handling set to OFF will not be disabled after five
consecutive transaction rollbacks. This allows for a custom poison message handing system
to be defined by the application.

Remarks
When a queue with a specified activation stored procedure contains messages, changing the
activation status from OFF to ON immediately activates the activation stored procedure. Altering
the activation status from ON to OFF stops the broker from activating instances of the stored
procedure, but does not stop instances of the stored procedure that are currently running.
Altering a queue to add an activation stored procedure does not change the activation status of
the queue. Changing the activation stored procedure for the queue does not affect instances of
the activation stored procedure that are currently running.

 196

Service Broker checks the maximum number of queue readers for a queue as part of the
activation process. Therefore, altering a queue to increase the maximum number of queue
readers allows Service Broker to immediately start more instances of the activation stored
procedure. Altering a queue to decrease the maximum number of queue readers does not affect
instances of the activation stored procedure currently running. However, Service Broker does not
start a new instance of the stored procedure until the number of instances for the activation
stored procedure falls below the configured maximum number.
When a queue is unavailable, Service Broker holds messages for services that use the queue in
the transmission queue for the database. The sys.transmission_queue catalog view provides a
view of the transmission queue.
If a RECEIVE statement or a GET CONVERSATION GROUP statement specifies an unavailable
queue, that statement fails with a Transact-SQL error.

Permissions
Permission for altering a queue defaults to the owner of the queue, members of the
db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server role.

Examples

A. Making a queue unavailable
The following example makes the ExpenseQueue queue unavailable to receive messages.

ALTER QUEUE ExpenseQueue WITH STATUS = OFF ;

B. Changing the activation stored procedure
The following example changes the stored procedure that the queue starts. The stored
procedure executes as the user who ran the ALTER QUEUE statement.

ALTER QUEUE ExpenseQueue

 WITH ACTIVATION (

 PROCEDURE_NAME = new_stored_proc,

 EXECUTE AS SELF) ;

C. Changing the number of queue readers
The following example sets to 7 the maximum number of stored procedure instances that
Service Broker starts for this queue.

ALTER QUEUE ExpenseQueue WITH ACTIVATION (MAX_QUEUE_READERS = 7) ;

D. Changing the activation stored procedure and the EXECUTE AS account
The following example changes the stored procedure that Service Broker starts. The stored
procedure executes as the user SecurityAccount.

ALTER QUEUE ExpenseQueue

 WITH ACTIVATION (

http://msdn.microsoft.com/en-us/library/f3515d1a-be8f-4a27-8058-8865f0919838(SQL.110)�

 197

 PROCEDURE_NAME = AdventureWorks2012.dbo.new_stored_proc ,

 EXECUTE AS 'SecurityAccount') ;

E. Setting the queue to retain messages
The following example sets the queue to retain messages. The queue retains all messages sent
to or from services that use this queue until the conversation that contains the message ends.

ALTER QUEUE ExpenseQueue WITH RETENTION = ON ;

F. Removing activation from a queue
The following example removes all activation information from the queue.

ALTER QUEUE ExpenseQueue WITH ACTIVATION (DROP) ;

See Also
CREATE QUEUE
DROP QUEUE
EVENTDATA

ALTER REMOTE SERVICE BINDING
Changes the user associated with a remote service binding, or changes the anonymous
authentication setting for the binding.

 Transact-SQL Syntax Conventions

Syntax

ALTER REMOTE SERVICE BINDING binding_name
 WITH [USER = <user_name>] [, ANONYMOUS = { ON | OFF }]
[;]

Arguments
binding_name

The name of the remote service binding to change. Server, database, and schema names
cannot be specified.

WITH USER = <user_name>

Specifies the database user that holds the certificate associated with the remote service for
this binding. The public key from this certificate is used for encryption and authentication of
messages exchanged with the remote service.

ANONYMOUS

Specifies whether anonymous authentication is used when communicating with the remote
service. If ANONYMOUS = ON, anonymous authentication is used and the credentials of the

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 198

local user are not transferred to the remote service. If ANONYMOUS = OFF, user credentials
are transferred. If this clause is not specified, the default is OFF.

Remarks
The public key in the certificate associated with user_name is used to authenticate messages
sent to the remote service and to encrypt a session key that is then used to encrypt the
conversation. The certificate for user_name must correspond to the certificate for a login in the
database that hosts the remote service.

Permissions
Permission for altering a remote service binding defaults to the owner of the remote service
binding, members of the db_owner fixed database role, and members of the sysadmin fixed
server role.
The user that executes the ALTER REMOTE SERVICE BINDING statement must have impersonate
permission for the user specified in the statement.
To alter the AUTHORIZATION for a remote service binding, use the ALTER AUTHORIZATION
statement.

Examples
The following example changes the remote service binding APBinding to encrypt messages by
using the certificates from the account SecurityAccount.

ALTER REMOTE SERVICE BINDING APBinding

 WITH USER = SecurityAccount ;

See Also
EVENTDATA (Transact-SQL)
DROP REMOTE SERVICE BINDING
EVENTDATA

ALTER RESOURCE GOVERNOR
This command is used to perform the following actions:
• Apply the configuration changes specified when the CREATE|ALTER|DROP WORKLOAD

GROUP or CREATE|ALTER|DROP RESOURCE POOL statements are issued.
• Enable or disable Resource Governor.
• Configure classification for incoming requests.
• Reset workload group and resource pool statistics.

 Transact-SQL Syntax Conventions

Syntax

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 199

ALTER RESOURCE GOVERNOR
 { DISABLE | RECONFIGURE }
|
 WITH (CLASSIFIER_FUNCTION = { schema_name.function_name | NULL })
|
 RESET STATISTICS
[;]

Arguments

Term Definition

DISABLE | RECONFIGURE DISABLE disables Resource Governor.
Disabling Resource Governor has the
following results:
• The classifier function is not executed.
• All new connections are automatically

classified into the default group.
• System-initiated requests are classified

into the internal workload group.
• All existing workload group and

resource pool settings are reset to their
default values. In this case, no events are
fired when limits are reached.

• Normal system monitoring is not
affected.

• Configuration changes can be made, but
the changes do not take effect until
Resource Governor is enabled.

• Upon restarting SQL Server, the
Resource Governor will not load its
configuration, but instead will have only
the default and internal groups and
pools.

When the Resource Governor is not
enabled, RECONFIGURE enables the
Resource Governor. Enabling Resource
Governor has the following results:
• The classifier function is executed for

new connections so that their workload

 200

can be assigned to workload groups.
• The resource limits that are specified in

the Resource Governor configuration are
honored and enforced.

• Requests that existed before enabling
Resource Governor are affected by any
configuration changes that were made
when Resource Governor was disabled.

When Resource Governor is running,
RECONFIGURE applies any configuration
changes requested when the
CREATE|ALTER|DROP WORKLOAD GROUP
or CREATE|ALTER|DROP RESOURCE POOL
statements are executed.

Important
ALTER RESOURCE GOVERNOR
RECONFIGURE must be issued in
order for any configuration changes
to take effect.

CLASSIFIER_FUNCTION = {
schema_name.function_name | NULL }

Registers the classification function specified
by schema_name.function_name. This
function classifies every new session and
assigns the session requests and queries to
a workload group. When NULL is used, new
sessions are automatically assigned to the
default workload group.

RESET STATISTICS Resets statistics on all workload groups and
resource pools. For more information, see
sys.dm_resource_governor_workload_groups
(Transact-SQL) and
sys.dm_resource_governor_resource_pools
(Transact-SQL).

Remarks
ALTER RESOURCE GOVERNOR DISABLE, ALTER RESOURCE GOVERNOR RECONFIGURE, and
ALTER RESOURCE GOVERNOR RESET STATISTICS cannot be used inside a user transaction.
The RECONFIGURE parameter is part of the Resource Governor syntax and should not be
confused with RECONFIGURE, which is a separate DDL statement.

http://msdn.microsoft.com/en-us/library/f63c4914-1272-43ef-b135-fe1aabd953e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/f63c4914-1272-43ef-b135-fe1aabd953e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfc926e-d8bc-40f8-9229-ab1f8a1e69c5(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfc926e-d8bc-40f8-9229-ab1f8a1e69c5(SQL.110)�
http://msdn.microsoft.com/en-us/library/2e6e4eeb-b70b-4f45-a253-28ac4e595d75(SQL.110)�

 201

We recommend being familiar with Resource Governor states before you execute DDL
statements. For more information, see Resource Governor.

Permissions
Requires CONTROL SERVER permission.

Examples

A. Starting the Resource Governor
When SQL Server is first installed Resource Governor is disabled. The following example starts
Resource Governor. After the statement executes, Resource Governor is running and can use the
predefined workload groups and resource pools.

ALTER RESOURCE GOVERNOR RECONFIGURE;

B. Assigning new sessions to the default group
The following example assigns all new sessions to the default workload group by removing any
existing classifier function from the Resource Governor configuration. When no function is
designated as a classifier function, all new sessions are assigned to the default workload group.
This change applies to new sessions only. Existing sessions are not affected.

ALTER RESOURCE GOVERNOR WITH (CLASSIFIER_FUNCTION = NULL);

GO

ALTER RESOURCE GOVERNOR RECONFIGURE;

C. Creating and registering a classifier function
The following example creates a classifier function named dbo.rgclassifier_v1. The function
classifies every new session based on either the user name or application name and assigns the
session requests and queries to a specific workload group. Sessions that do not map to the
specified user or application names are assigned to the default workload group. The classifier
function is then registered and the configuration change is applied.

-- Store the classifier function in the master database.

USE master;

GO

SET ANSI_NULLS ON;

GO

SET QUOTED_IDENTIFIER ON;

GO

CREATE FUNCTION dbo.rgclassifier_v1() RETURNS sysname

WITH SCHEMABINDING

AS

BEGIN

http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�

 202

-- Declare the variable to hold the value returned in sysname.

 DECLARE @grp_name AS sysname

-- If the user login is 'sa', map the connection to the groupAdmin

-- workload group.

 IF (SUSER_NAME() = 'sa')

 SET @grp_name = 'groupAdmin'

-- Use application information to map the connection to the groupAdhoc

-- workload group.

 ELSE IF (APP_NAME() LIKE '%MANAGEMENT STUDIO%')

 OR (APP_NAME() LIKE '%QUERY ANALYZER%')

 SET @grp_name = 'groupAdhoc'

-- If the application is for reporting, map the connection to

-- the groupReports workload group.

 ELSE IF (APP_NAME() LIKE '%REPORT SERVER%')

 SET @grp_name = 'groupReports'

-- If the connection does not map to any of the previous groups,

-- put the connection into the default workload group.

 ELSE

 SET @grp_name = 'default'

 RETURN @grp_name

END

GO

-- Register the classifier user-defined function and update the

-- the in-memory configuration.

ALTER RESOURCE GOVERNOR WITH (CLASSIFIER_FUNCTION=dbo.rgclassifier_v1);

GO

ALTER RESOURCE GOVERNOR RECONFIGURE;

GO

D. Resetting Statistics
The following example resets all workload group and pool statistics.

ALTER RESOURCE GOVERNOR RESET STATISTICS;

See Also
CREATE RESOURCE POOL (Transact-SQL)

 203

ALTER RESOURCE POOL (Transact-SQL)
DROP RESOURCE POOL (Transact-SQL)
CREATE WORKLOAD GROUP (Transact-SQL)
ALTER WORKLOAD GROUP (Transact-SQL)
DROP WORKLOAD GROUP (Transact-SQL)
Managing SQL Server Workloads with Resource Governor
sys.dm_resource_governor_workload_groups (Transact-SQL)
sys.dm_resource_governor_resource_pools (Transact-SQL)

ALTER RESOURCE POOL
Changes an existing Resource Governor resource pool configuration.

 Transact-SQL Syntax Conventions.The introduction is required.

Syntax

ALTER RESOURCE POOL { pool_name | "default" }
[WITH
 ([MIN_CPU_PERCENT = value]
 [[,] MAX_CPU_PERCENT = value]
 [[,] CAP_CPU_PERCENT = value]
 [[,] AFFINITY {SCHEDULER = AUTO | (Scheduler_range_spec) | NUMANODE =
(NUMA_node_range_spec)}]
 [[,] MIN_MEMORY_PERCENT = value]
 [[,] MAX_MEMORY_PERCENT = value])
]
[;]

Scheduler_range_spec::=
{SCHED_ID | SCHED_ID TO SCHED_ID}[,…n]
NUMA_node_range_spec::=
{NUMA_node_ID | NUMA_node_ID TO NUMA_node_ID}[,…n]

Arguments
{ pool_name | "default" }

Is the name of an existing user-defined resource pool or the default resource pool that is
created when SQL Server 2012 is installed.

"default" must be enclosed by quotation marks ("") or brackets ([]) when used with ALTER

http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�
http://msdn.microsoft.com/en-us/library/f63c4914-1272-43ef-b135-fe1aabd953e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfc926e-d8bc-40f8-9229-ab1f8a1e69c5(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 204

RESOURCE POOL to avoid conflict with DEFAULT, which is a system reserved word. For more
information, see Database Identifiers.

Note
Predefined workload groups and resource pools all use lowercase names, such as "default". This
should be taken into account for servers that use case-sensitive collation. Servers with case-insensitive
collation, such as SQL_Latin1_General_CP1_CI_AS, will treat "default" and "Default" as the same.

MIN_CPU_PERCENT = value

Specifies the guaranteed average CPU bandwidth for all requests in the resource pool when
there is CPU contention. value is an integer with a default setting of 0. The allowed range for
value is from 0 through 100.

MAX_CPU_PERCENT = value

Specifies the maximum average CPU bandwidth that all requests in the resource pool will
receive when there is CPU contention. value is an integer with a default setting of 100. The
allowed range for value is from 1 through 100.

CAP_CPU_PERCENT = value

Specifies a hard cap on the CPU bandwidth that all requests in the resource pool will receive.
Limits the maximum CPU bandwidth level to be the same as the specified value. value is an
integer with a default setting of 100. The allowed range for value is from 1 through 100.

AFFINITY {SCHEDULER = AUTO | (Scheduler_range_spec) | NUMANODE =
(NUMA_node_range_spec)}

Attach the resource pool to specific schedulers. The default value is AUTO.

MIN_MEMORY_PERCENT = value

Specifies the minimum amount of memory reserved for this resource pool that can not be
shared with other resource pools. value is an integer with a default setting of 0. The allowed
range for value is from 0 through 100.

MAX_MEMORY_PERCENT = value

Specifies the total server memory that can be used by requests in this resource pool. value is
an integer with a default setting of 100. The allowed range for value is from 1 through 100.

Remarks
MAX_CPU_PERCENT and MAX_MEMORY_PERCENT must be greater than or equal to
MIN_CPU_PERCENT and MIN_MEMORY_PERCENT, respectively.
CAP_CPU_PERCENT differs from MAX_CPU_PERCENT in that workloads associated with the pool
can use CPU capacity above the value of MAX_CPU_PERCENT if it is available, but not above the
value of CAP_CPU_PERCENT.
The total CPU percentage for each affinitized component (scheduler(s) or NUMA node(s)) should
not exceed 100%.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 205

When you are executing DDL statements, we recommend that you be familiar with Resource
Governor states. For more information, see Resource Governor.

Permissions
Requires CONTROL SERVER permission.

Examples
The following example keeps all the default resource pool settings on the default pool except
for MAX_CPU_PERCENT, which is changed to 25.

ALTER RESOURCE POOL "default"

WITH

 (MAX_CPU_PERCENT = 25)

GO

ALTER RESOURCE GOVERNOR RECONFIGURE

GO

In the following example, the CAP_CPU_PERCENT sets the hard cap to 80% and AFFINITY
SCHEDULER is set to an individual value of 8 and a range of 12 to 16.

ALTER RESOURCE POOL Pool25

WITH(

 MIN_CPU_PERCENT = 5,

 MAX_CPU_PERCENT = 10,

 CAP_CPU_PERCENT = 80,

 AFFINITY SCHEDULER = (8, 12 TO 16),

 MIN_MEMORY_PERCENT = 5,

 MAX_MEMORY_PERCENT = 15

);

GO

ALTER RESOURCE GOVERNOR RECONFIGURE

GO

See Also
Resource Governor
CREATE RESOURCE POOL (Transact-SQL)
DROP RESOURCE POOL (Transact-SQL)
CREATE WORKLOAD GROUP (Transact-SQL)

http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�
http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�

 206

ALTER WORKLOAD GROUP (Transact-SQL)
DROP WORKLOAD GROUP (Transact-SQL)
ALTER RESOURCE GOVERNOR (Transact-SQL)

ALTER ROLE
Adds members to a database role or changes the name of a user-defined database role.

 Transact-SQL Syntax Conventions

Syntax

ALTER ROLE role_name
{
 [ADD MEMBER database_principal]
 | [DROP MEMBER database_principal]
 | WITH NAME = new_name
}

Arguments
role_name

Is the name of the role to be changed.

ADD MEMBER database_principal

Adds the specified database principal to the database role. database_principal can be a user
or a user-defined database role. database_principal cannot be a fixed database role, or a
server principal.

DROP MEMBER database_principal

Removes the specified database principal from the database role. database_principal can be a
user or a user-defined database role. database_principal cannot be a fixed database role, a
server principal.

WITH NAME = new_name

Specifies the new name of the user-defined role. This name must not already exist in the
database. You cannot change the name of fixed database roles.

Remarks
Changing the name of a database role does not change ID number, owner, or permissions of the
role.
Database roles are visible in the sys.database_role_members and sys.database_principals catalog
views.

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 207

 Beginning with SQL Server 2005, the behavior of schemas changed. As a result, code
that assumes that schemas are equivalent to database users may no longer return
correct results. Old catalog views, including , should not be used in a database in which
any of the following DDL statements have ever been used: CREATE SCHEMA, ALTER
SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER
ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER
AUTHORIZATION. In such databases you must instead use the new catalog views. The
new catalog views take into account the separation of principals and schemas that was
introduced in SQL Server 2005. For more information about catalog views, see .

Permissions
Requires ALTER ANY ROLE permission on the database, or ALTER permission on the role, or
membership in the db_securityadmin.

Examples

A. Changing the Name of a Database Role
The following example changes the name of role buyers to purchasing.

USE AdventureWorks2012;

ALTER ROLE buyers WITH NAME = purchasing;

GO

B. Adding and Removing Role Members
The following example creates a role named Sales, adds and then removes a user named
Barry.
CREATE ROLE Sales;

ALTER ROLE Sales ADD MEMBER Barry;

ALTER ROLE Sales DROP MEMBER Barry;

See Also
CREATE ROLE (Transact-SQL)
Principals
DROP ROLE (Transact-SQL)
sp_addrolemember (Transact-SQL)
sys.database_role_members (Transact-SQL)
sys.database_principals (Transact-SQL)

ALTER ROUTE
Modifies route information for an existing route.

Caution

http://msdn.microsoft.com/en-us/library/3f7adbf7-6e40-4396-a8ca-71cbb843b5c2(SQL.110)�
http://msdn.microsoft.com/en-us/library/a583c087-bdb3-46d2-b9e5-3921b3e6d10b(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1b019d-ca48-4db3-85df-cf6d2db591cf(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cb239e9-eb8c-4109-9cec-0d35de95fa0e(SQL.110)�

 208

 Transact-SQL Syntax Conventions

Syntax

ALTER ROUTE route_name
WITH
 [SERVICE_NAME = 'service_name' [,]]
 [BROKER_INSTANCE = 'broker_instance' [,]]
 [LIFETIME = route_lifetime [,]]
 [ADDRESS = 'next_hop_address' [,]]
 [MIRROR_ADDRESS = 'next_hop_mirror_address']
[;]

Arguments
route_name

Is the name of the route to change. Server, database, and schema names cannot be specified.

WITH

Introduces the clauses that define the route being altered.

SERVICE_NAME = 'service_name'

Specifies the name of the remote service that this route points to. The service_name must
exactly match the name the remote service uses. Service Broker uses a byte-by-byte
comparison to match the service_name. In other words, the comparison is case sensitive and
does not consider the current collation. A route with a service name of
'SQL/ServiceBroker/BrokerConfiguration' is a route to a Broker Configuration Notice
service. A route to this service might not specify a broker instance.

If the SERVICE_NAME clause is omitted, the service name for the route is unchanged.

BROKER_INSTANCE = 'broker_instance'

Specifies the database that hosts the target service. The broker_instance parameter must be
the broker instance identifier for the remote database, which can be obtained by running the
following query in the selected database:

SELECT service_broker_guid

FROM sys.databases

WHERE database_id = DB_ID()

When the BROKER_INSTANCE clause is omitted, the broker instance for the route is
unchanged.

Note

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 209

This option is not available in a contained database.

LIFETIME = route_lifetime

Specifies the time, in seconds, that SQL Server retains the route in the routing table. At the
end of the lifetime, the route expires, and SQL Server no longer considers the route when
choosing a route for a new conversation. If this clause is omitted, the lifetime of the route is
unchanged.

ADDRESS = 'next_hop_address'

Specifies the network address for this route. The next_hop_address specifies a TCP/IP address
in the following format:

TCP:// { dns_name | netbios_name | ip_address } : port_number

The specified port_number must match the port number for the Service Broker endpoint of an
instance of SQL Server at the specified computer. This can be obtained by running the
following query in the selected database:

SELECT tcpe.port

FROM sys.tcp_endpoints AS tcpe

INNER JOIN sys.service_broker_endpoints AS ssbe

 ON ssbe.endpoint_id = tcpe.endpoint_id

WHERE ssbe.name = N'MyServiceBrokerEndpoint';

When a route specifies 'LOCAL' for the next_hop_address, the message is delivered to a
service within the current instance of SQL Server.

When a route specifies 'TRANSPORT' for the next_hop_address, the network address is
determined based on the network address in the name of the service. A route that specifies
'TRANSPORT' can specify a service name or broker instance.

When the next_hop_address is the principal server for a database mirror, you must also
specify the MIRROR_ADDRESS for the mirror server. Otherwise, this route does not
automatically failover to the mirror server.

Note
This option is not available in a contained database.

MIRROR_ADDRESS = 'next_hop_mirror_address'

Specifies the network address for the mirror server of a mirrored pair whose principal server
is at the next_hop_address. The next_hop_mirror_address specifies a TCP/IP address in the
following format:

TCP://{ dns_name | netbios_name | ip_address } : port_number

The specified port_number must match the port number for the Service Broker endpoint of an
instance of SQL Server at the specified computer. This can be obtained by running the
following query in the selected database:

SELECT tcpe.port

 210

FROM sys.tcp_endpoints AS tcpe

INNER JOIN sys.service_broker_endpoints AS ssbe

 ON ssbe.endpoint_id = tcpe.endpoint_id

WHERE ssbe.name = N'MyServiceBrokerEndpoint';

When the MIRROR_ADDRESS is specified, the route must specify the SERVICE_NAME clause
and the BROKER_INSTANCE clause. A route that specifies 'LOCAL' or 'TRANSPORT' for the
next_hop_address might not specify a mirror address.

Note
This option is not available in a contained database.

Remarks
The routing table that stores the routes is a meta-data table that can be read through the
sys.routes catalog view. The routing table can only be updated through the CREATE ROUTE,
ALTER ROUTE, and DROP ROUTE statements.
Clauses that are not specified in the ALTER ROUTE command remain unchanged. Therefore, you
cannot ALTER a route to specify that the route does not time out, that the route matches any
service name, or that the route matches any broker instance. To change these characteristics of a
route, you must drop the existing route and create a new route with the new information.
When a route specifies 'TRANSPORT' for the next_hop_address, the network address is
determined based on the name of the service. SQL Server can successfully process service
names that begin with a network address in a format that is valid for a next_hop_address.
Services with names that contain valid network addresses will route to the network address in
the service name.
The routing table can contain any number of routes that specify the same service, network
address, and/or broker instance identifier. In this case, Service Broker chooses a route using a
procedure designed to find the most exact match between the information specified in the
conversation and the information in the routing table.
To alter the AUTHORIZATION for a service, use the ALTER AUTHORIZATION statement.

Permissions
Permission for altering a route defaults to the owner of the route, members of the db_ddladmin
or db_owner fixed database roles, and members of the sysadmin fixed server role.

Examples

A. Changing the service for a route
The following example modifies the ExpenseRoute route to point to the remote service
//Adventure-Works.com/Expenses.

ALTER ROUTE ExpenseRoute

 WITH

www.Adventure-Works.com/Expenses

 211

 SERVICE_NAME = '//Adventure-Works.com/Expenses'

B. Changing the target database for a route
The following example changes the target database for the ExpenseRoute route to the
database identified by the unique identifier D8D4D268-00A3-4C62-8F91-634B89B1E317.

ALTER ROUTE ExpenseRoute

 WITH

 BROKER_INSTANCE = 'D8D4D268-00A3-4C62-8F91-634B89B1E317'

C. Changing the address for a route
The following example changes the network address for the ExpenseRoute route to TCP port
1234 on the host with the IP address 10.2.19.72.

ALTER ROUTE ExpenseRoute

 WITH

 ADDRESS = 'TCP://10.2.19.72:1234'

D. Changing the database and address for a route
The following example changes the network address for the ExpenseRoute route to TCP port
1234 on the host with the DNS name www.Adventure-Works.com. It also changes the target
database to the database identified by the unique identifier D8D4D268-00A3-4C62-8F91-
634B89B1E317.

ALTER ROUTE ExpenseRoute

 WITH

 BROKER_INSTANCE = 'D8D4D268-00A3-4C62-8F91-634B89B1E317',

 ADDRESS = 'TCP://www.Adventure-Works.com:1234'

See Also
CREATE ROUTE
DROP ROUTE
EVENTDATA

ALTER SCHEMA
Transfers a securable between schemas.

 Transact-SQL Syntax Conventions

Syntax

ALTER SCHEMA schema_name
 TRANSFER [<entity_type> ::] securable_name [;]

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://www.Adventure-Works.com
www.Adventure-Works.com/Expenses
www.Adventure-Works.com:1234

 212

<entity_type> ::=
 {
 Object | Type | XML Schema Collection
 }

Arguments
schema_name

Is the name of a schema in the current database, into which the securable will be moved.
Cannot be SYS or INFORMATION_SCHEMA.

<entity_type>

Is the class of the entity for which the owner is being changed. Object is the default.

securable_name

Is the one-part or two-part name of a schema-contained securable to be moved into the
schema.

Remarks
Users and schemas are completely separate.
ALTER SCHEMA can only be used to move securables between schemas in the same database.
To change or drop a securable within a schema, use the ALTER or DROP statement specific to
that securable.
If a one-part name is used for securable_name, the name-resolution rules currently in effect will
be used to locate the securable.
All permissions associated with the securable will be dropped when the securable is moved to
the new schema. If the owner of the securable has been explicitly set, the owner will remain
unchanged. If the owner of the securable has been set to SCHEMA OWNER, the owner will
remain SCHEMA OWNER; however, after the move SCHEMA OWNER will resolve to the owner of
the new schema. The principal_id of the new owner will be NULL.
To change the schema of a table or view by using SQL Server Management Studio, in Object
Explorer, right-click the table or view and then click Design. Press F4 to open the Properties
window. In the Schema box, select a new schema.

 Beginning with SQL Server 2005, the behavior of schemas changed. As a result, code
that assumes that schemas are equivalent to database users may no longer return
correct results. Old catalog views, including , should not be used in a database in which
any of the following DDL statements have ever been used: CREATE SCHEMA, ALTER
SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER
ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER
AUTHORIZATION. In such databases you must instead use the new catalog views. The

Caution

 213

new catalog views take into account the separation of principals and schemas that was
introduced in SQL Server 2005. For more information about catalog views, see .

Permissions
To transfer a securable from another schema, the current user must have CONTROL permission
on the securable (not schema) and ALTER permission on the target schema.
If the securable has an EXECUTE AS OWNER specification on it and the owner is set to SCHEMA
OWNER, the user must also have IMPERSONATION permission on the owner of the target
schema.
All permissions associated with the securable that is being transferred are dropped when it is
moved.

Examples

A. Transferring ownership of a table
The following example modifies the schema HumanResources by transferring the table Address
from schema Person into the schema.

USE AdventureWorks2012;

GO

ALTER SCHEMA HumanResources TRANSFER Person.Address;

GO

B. Transferring ownership of a type
The following example creates a type in the Production schema, and then transfers the type to
the Person schema.

USE AdventureWorks2012;

GO

CREATE TYPE Production.TestType FROM [varchar](10) NOT NULL ;

GO

-- Check the type owner.

SELECT sys.types.name, sys.types.schema_id, sys.schemas.name

 FROM sys.types JOIN sys.schemas

 ON sys.types.schema_id = sys.schemas.schema_id

 WHERE sys.types.name = 'TestType' ;

GO

 214

-- Change the type to the Person schema.

ALTER SCHEMA Person TRANSFER type::Production.TestType ;

GO

-- Check the type owner.

SELECT sys.types.name, sys.types.schema_id, sys.schemas.name

 FROM sys.types JOIN sys.schemas

 ON sys.types.schema_id = sys.schemas.schema_id

 WHERE sys.types.name = 'TestType' ;

GO

See Also
CREATE SCHEMA (Transact-SQL)
DROP SCHEMA (Transact-SQL)
eventdata (Transact-SQL)

ALTER SEARCH PROPERTY LIST
Adds a specified search property to, or drops it from the specified search property list.

CREATE SEARCH PROPERTY LIST, ALTER SEARCH PROPERTY LIST, and DROP SEARCH
PROPERTY LIST are supported only under compatibility level 110. Under lower
compatibility levels, these statements are not supported.

Syntax

ALTER SEARCH PROPERTY LIST list_name
{
 ADD 'property_name'
 WITH
 (
 PROPERTY_SET_GUID = 'property_set_guid'
 , PROPERTY_INT_ID = property_int_id
 [, PROPERTY_DESCRIPTION = 'property_description']
)
 | DROP 'property_name'
}

Important

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

 215

;

Arguments
list_name

Is the name of the property list being altered. list_name is an identifier.

To view the names of the existing property lists, use the
sys.registered_search_property_lists catalog view, as follows:

SELECT name FROM sys.registered_search_property_lists;

ADD

Adds a specified search property to the property list specified by list_name. The property is
registered for the search property list . Before newly added properties can be used for
property searching, the associated full-text index or indexes must be repopulated. For more
information, see ALTER FULLTEXT INDEX (Transact-SQL).

Note
To add a given search property to a search property list, you must provide its property-set GUID
(property_set_guid) and property int ID (property_int_id). For more information, see "Obtaining
Property Set GUIDS and Identifiers," later in this topic.

property_name

Specifies the name to be used to identify the property in full-text queries. property_name
must uniquely identify the property within the property set. A property name can contain
internal spaces. The maximum length of property_name is 256 characters. This name can be a
user-friendly name, such as Author or Home Address, or it can be the Windows canonical
name of the property, such as System.Author or System.Contact.HomeAddress.

Developers will need to use the value you specify for property_name to identify the property
in the CONTAINS predicate. Therefore, when adding a property it is important to specify a
value that meaningfully represents the property defined by the specified property set GUID
(property_set_guid) and property identifier (property_int_id). For more information about
property names, see "Remarks," later in this topic.

To view the names of properties that currently exist in a search property list of the current
database, use the sys.registered_search_properties catalog view, as follows:

SELECT property_name FROM sys.registered_search_properties;

PROPERTY_SET_GUID = 'property_set_guid'

Specifies the identifier of the property set to which the property belongs. This is a globally
unique identifier (GUID). For information about obtaining this value, see "Remarks," later in
this topic.

To view the property set GUID of any property that exists in a search property list of the
current database, use the sys.registered_search_properties catalog view, as follows:

http://msdn.microsoft.com/en-us/library/630d4caa-9bea-4cd3-a5b1-01098b0855fc(SQL.110)�
http://msdn.microsoft.com/en-us/library/996c72fc-b1ab-4c96-bd12-946be9c18f84(SQL.110)�
http://msdn.microsoft.com/en-us/library/1b9a7a5c-8c05-4819-83c3-7487dd08fcf7(SQL.110)�
http://msdn.microsoft.com/en-us/library/1b9a7a5c-8c05-4819-83c3-7487dd08fcf7(SQL.110)�

 216

SELECT property_set_guid FROM

sys.registered_search_properties;

PROPERTY_INT_ID = property_int_id

Specifies the integer that identifies the property within its property set. For information about
obtaining this value, see "Remarks."

To view the integer identifier of any property that exists in a search property list of the
current database, use the sys.registered_search_properties catalog view, as follows:

SELECT property_int_id FROM sys.registered_search_properties;

Note
A given combination of property_set_guid and property_int_id must be unique in a search property
list. If you try to add an existing combination, the ALTER SEARCH PROPERTY LIST operation fails and
issues an error. This means that you can define only one name for a given property.

PROPERTY_DESCRIPTION = 'property_description'

Specifies a user-defined description of the property. property_description is a string of up to
512 characters. This option is optional.

DROP

Drops the specified property from the property list specified by list_name. Dropping a
property unregisters it, so it is no longer searchable.

Remarks
Each full-text index can have only one search property list.
To enable querying on a given search property, you must add it to the search property list of the
full-text index and then repopulate the index.
When specifying a property you can arrange the PROPERTY_SET_GUID, PROPERTY_INT_ID, and
PROPERTY_DESCRIPTION clauses in any order, as a comma-separated list within parentheses, for
example:

ALTER SEARCH PROPERTY LIST CVitaProperties

ADD 'System.Author'

WITH (

 PROPERTY_DESCRIPTION = 'Author or authors of a given document.',

 PROPERTY_SET_GUID = 'F29F85E0-4FF9-1068-AB91-08002B27B3D9',

 PROPERTY_INT_ID = 4

);

This example uses the property name, System.Author, which is similar to the concept of
canonical property names introduced in Windows Vista (Windows canonical name).

Note

http://msdn.microsoft.com/en-us/library/1b9a7a5c-8c05-4819-83c3-7487dd08fcf7(SQL.110)�

 217

Obtaining Property Values
Full-text search maps a search property to a full-text index by using its property set GUID and
property integer ID. For information about how to obtain these for properties that have been
defined by Microsoft, see Find Property Set GUIDs and Property Integer IDs for Search
Properties. For information about properties defined by an independent software vendor (ISV),
see the documentation of that vendor.

Making Added Properties Searchable
Adding a search property to a search property list registers the property. A newly added
property can be immediately specified in CONTAINS queries. However, property-scoped full-text
queries on a newly added property will not return documents until the associated full-text index
is repopulated. For example, the following property-scoped query on a newly added property,
new_search_property, will not return any documents until the full-text index associated with the
target table (table_name) is repopulated:

SELECT column_name FROM table_name WHERE CONTAINS(PROPERTY(column_name,

'new_search_property'), 'contains_search_condition');

GO

To start a full population, use the following ALTER FULLTEXT INDEX (Transact-SQL) statement:
USE database_name;

GO

ALTER FULLTEXT INDEX ON table_name START FULL POPULATION;

GO

Repopulation is not needed after a property is dropped from a property list, because
only the properties that remain in the search property list are available for full-text
querying.

Related References
To create a property list
• CREATE SEARCH PROPERTY LIST (Transact-SQL)
To drop a property list
• DROP SEARCH PROPERTY LIST (Transact-SQL)
To add or remove a property list on a full-text index
• ALTER FULLTEXT INDEX (Transact-SQL)
To run a population on a full-text index
• ALTER FULLTEXT INDEX (Transact-SQL)

Permissions
Requires CONTROL permission on the property list.

Note

http://msdn.microsoft.com/en-us/library/7db79165-8bcc-4be6-8d40-12d44deda79f(SQL.110)�
http://msdn.microsoft.com/en-us/library/7db79165-8bcc-4be6-8d40-12d44deda79f(SQL.110)�
http://msdn.microsoft.com/en-us/library/996c72fc-b1ab-4c96-bd12-946be9c18f84(SQL.110)�

 218

Examples

A. Adding a property
The following example adds several properties—Title, Author, and Tags—to a property list
named DocumentPropertyList.

For an example that creates DocumentPropertyList property list, see CREATE SEARCH
PROPERTY LIST (Transact-SQL).

ALTER SEARCH PROPERTY LIST DocumentPropertyList

 ADD 'Title'

 WITH (PROPERTY_SET_GUID = 'F29F85E0-4FF9-1068-AB91-08002B27B3D9',

PROPERTY_INT_ID = 2,

 PROPERTY_DESCRIPTION = 'System.Title - Title of the item.');

ALTER SEARCH PROPERTY LIST DocumentPropertyList

 ADD 'Author'

 WITH (PROPERTY_SET_GUID = 'F29F85E0-4FF9-1068-AB91-08002B27B3D9',

PROPERTY_INT_ID = 4,

 PROPERTY_DESCRIPTION = 'System.Author - Author or authors of the item.'

);

ALTER SEARCH PROPERTY LIST DocumentPropertyList

 ADD 'Tags'

 WITH (PROPERTY_SET_GUID = 'F29F85E0-4FF9-1068-AB91-08002B27B3D9',

PROPERTY_INT_ID = 5,

 PROPERTY_DESCRIPTION = 'System.Keywords - Set of keywords (also known

as tags) assigned to the item.');

You must associate a given search property list with a full-text index before using it for
property-scoped queries. To do so, use an ALTER FULLTEXT INDEX statement and specify
the SET SEARCH PROPERTY LIST clause.

B. Dropping a property
The following example drops the Comments property from the DocumentPropertyList property
list.

ALTER SEARCH PROPERTY LIST DocumentPropertyList

Note

Note

 219

DROP 'Comments' ;

See Also
CREATE SEARCH PROPERTY LIST (Transact-SQL)
DROP SEARCH PROPERTY LIST (Transact-SQL)
sys.registered_search_properties (Transact-SQL)
sys.registered_search_property_lists (Transact-SQL)
sys.dm_fts_index_keywords_by_property (Transact-SQL)
Using Search Property Lists to Search for Properties (Full-Text Search)
Obtaining a Property Set GUID and Property Integer Identifier for a Search Property List (SQL
Server)

ALTER SEQUENCE
Modifies the arguments of an existing sequence object. If the sequence was created with the
CACHE option, altering the sequence will recreate the cache.
Sequences objects are created by using the CREATE SEQUENCE statement. Sequences are
integer values and can be of any data type that returns an integer. The data type cannot be
changed by using the ALTER SEQUENCE statement. To change the data type, drop and create
the sequence object.
A sequence is a user-defined schema bound object that generates a sequence of numeric values
according to a specification. New values are generated from a sequence by calling the NEXT
VALUE FOR function. Use sp_sequence_get_range to get multiple sequence numbers at once.
For information and scenarios that use both CREATE SEQUENCE, sp_sequence_get_range, and
the NEXT VALUE FOR function, see Creating and Using Sequence Numbers.

 Transact-SQL Syntax Conventions

Syntax

ALTER SEQUENCE [schema_name.] sequence_name
 [RESTART [WITH <constant>]]
 [INCREMENT BY <constant>]
 [{ MINVALUE <constant> } | { NO MINVALUE }]
 [{ MAXVALUE <constant> } | { NO MAXVALUE }]
 [CYCLE | { NO CYCLE }]
 [{ CACHE [<constant>] } | { NO CACHE }]
 [;]

Arguments

http://msdn.microsoft.com/en-us/library/1b9a7a5c-8c05-4819-83c3-7487dd08fcf7(SQL.110)�
http://msdn.microsoft.com/en-us/library/630d4caa-9bea-4cd3-a5b1-01098b0855fc(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa41e052-a79a-4194-9b1a-2885f7828500(SQL.110)�
http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�
http://msdn.microsoft.com/en-us/library/7db79165-8bcc-4be6-8d40-12d44deda79f(SQL.110)�
http://msdn.microsoft.com/en-us/library/7db79165-8bcc-4be6-8d40-12d44deda79f(SQL.110)�
http://msdn.microsoft.com/en-us/library/c900e30d-2fd3-4d5f-98ee-7832f37e79d1(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 220

sequence_name

Specifies the unique name by which the sequence is known in the database. Type is sysname.

RESTART [WITH <constant>]

The next value that will be returned by the sequence object. If provided, the RESTART WITH
value must be an integer that is less than or equal to the maximum and greater than or equal
to the minimum value of the sequence object. If the WITH value is omitted, the sequence
numbering restarts based on the original CREATE SEQUENCE options.

INCREMENT BY <constant>

The value that is used to increment (or decrement if negative) the sequence object’s base
value for each call to the NEXT VALUE FOR function. If the increment is a negative value the
sequence object is descending, otherwise, it is ascending. The increment can not be 0.

[MINVALUE <constant> | NO MINVALUE]

Specifies the bounds for sequence object. If NO MINVALUE is specified, the minimum
possible value of the sequence data type is used.

[MAXVALUE <constant> | NO MAXVALUE

Specifies the bounds for sequence object. If NO MAXVALUE is specified, the maximum
possible value of the sequence data type is used.

[CYCLE | NO CYCLE]

This property specifies whether the sequence object should restart from the minimum value
(or maximum for descending sequence objects) or throw an exception when its minimum or
maximum value is exceeded.

Note
After cycling the next value is the minimum or maximum value, not the START VALUE of the sequence.

[CACHE [<constant>] | NO CACHE]

Increases performance for applications that use sequence objects by minimizing the number
of IOs that are required to persist generated values to the system tables.

For more information about the behavior of the cache, see CREATE SEQUENCE
(Transact-SQL).

Remarks
For information about how sequences are created and how the sequence cache is managed, see
CREATE SEQUENCE (Transact-SQL).
The MINVALUE for ascending sequences and the MAXVALUE for descending sequences cannot
be altered to a value that does not permit the START WITH value of the sequence. To change
the MINVALUE of an ascending sequence to a number larger than the START WITH value or to
change the MAXVALUE of a descending sequence to a number smaller than the START WITH
value, include the RESTART WITH argument to restart the sequence at a desired point that falls
within the minimum and maximum range.

 221

Metadata
For information about sequences, query sys.sequences.

Security

Permissions
Requires ALTER permission on the sequence or ALTER permission on the schema. To grant
ALTER permission on the sequence, use ALTER ON OBJECT in the following format:

GRANT ALTER ON OBJECT::Test.TinySeq TO [AdventureWorks\Larry]

The ownership of a sequence object can be transferred by using the ALTER AUTHORIZATION
statement.

Audit
To audit ALTER SEQUENCE, monitor the SCHEMA_OBJECT_CHANGE_GROUP.

Examples
For examples of both creating sequences and using the NEXT VALUE FOR function to generate
sequence numbers, see Creating and Using Sequence Numbers.

A. Altering a sequence
The following example creates a schema named Test and a sequence named TestSeq using the
int data type, having a range from 0 to 255. The sequence starts with 125 and increments by 25
every time that a number is generated. Because the sequence is configure to cycle, when the
value exceeds the maximum value of 200, the sequence restarts at the minimum value of 100.
CREATE SCHEMA Test ;

GO

CREATE SEQUENCE Test.TestSeq

 AS int

 START WITH 125

 INCREMENT BY 25

 MINVALUE 100

 MAXVALUE 200

 CYCLE

 CACHE 3

;

GO

http://msdn.microsoft.com/en-us/library/0e1b0e32-1cce-40f7-83c8-860ec660138a(SQL.110)�
http://msdn.microsoft.com/en-us/library/c900e30d-2fd3-4d5f-98ee-7832f37e79d1(SQL.110)�

 222

The following example alters the TestSeq sequence to have a range from 0 to 255. The sequence
restarts the numbering series with 100 and increments by 50 every time that a number is
generated.
ALTER SEQUENCE Test. TestSeq

 RESTART WITH 100

 INCREMENT BY 50

 MINVALUE 50

 MAXVALUE 200

 NO CYCLE

 NO CACHE

;

GO

Because the sequence will not cycle, the NEXT VALUE FOR function will result in an error when
the sequence exceeds 200.

B. Restarting a sequence
The following example creates a sequence named CountBy1. The sequence uses the default
values.

CREATE SEQUENCE Test.CountBy1 ;

To generate a sequence value, the owner then executes the following statement:

SELECT NEXT VALUE FOR Test.CountBy1

The value returned of -9,223,372,036,854,775,808 is the lowest possible value for the bigint data
type. The owner realizes he wanted the sequence to start with 1, but did not indicate the START
WITH clause when he created the sequence. To correct this error, the owner executes the
following statement.

ALTER SEQUENCE Test.CountBy1 RESTART WITH 1 ;

Then the owner executes the following statement again to generate a sequence number.

SELECT NEXT VALUE FOR Test.CountBy1;

The number is now 1, as expected.
The CountBy1 sequence was created using the default value of NO CYCLE so it will stop
operating after generating number 9,223,372,036,854,775,807. Subsequent calls to the sequence
object will return error 11728. The following statement changes the sequence object to cycle
and sets a cache of 20.
ALTER SEQUENCE Test.CountBy1

 CYCLE

 CACHE 20 ;

 223

Now when the sequence object reaches 9,223,372,036,854,775,807 it will cycle, and the next
number after cycling will be the minimum of the data type, -9,223,372,036,854,775,808.
The owner realized that the bigint data type uses 8 bytes each time it is used. The int data type
that uses 4 bytes is sufficient. However the data type of a sequence object cannot be altered. To
change to an int data type, the owner must drop the sequence object and recreate the object
with the correct data type.

See Also
CREATE SEQUENCE (Transact-SQL)
DROP SEQUENCE (Transact-SQL)
NEXT VALUE FOR function (Transact-SQL)
Creating and Using Sequence Numbers
sp_sequence_get_range (Transact-SQL)

ALTER SERVER AUDIT
Alters a server audit object using the SQL Server Audit feature. For more information, see
Understanding SQL Server Audit.

 Transact-SQL Syntax Conventions

Syntax

ALTER SERVER AUDIT audit_name
{
 [TO { { FILE (<file_options> [, ...n]) } | APPLICATION_LOG | SECURITY_LOG }]
 [WITH (<audit_options> [, ...n])]
 [WHERE <predicate_expression>]
}
| REMOVE WHERE
| MODIFY NAME = new_audit_name
[;]

<file_options>::=
{
 FILEPATH = 'os_file_path'
 | MAXSIZE = { max_size { MB | GB | TB } | UNLIMITED }
 | MAX_ROLLOVER_FILES = { integer | UNLIMITED }
 | MAX_FILES = integer

http://msdn.microsoft.com/en-us/library/92632ed5-9f32-48eb-be28-a5e477ef9076(SQL.110)�
http://msdn.microsoft.com/en-us/library/c900e30d-2fd3-4d5f-98ee-7832f37e79d1(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ca6b0c6-8d9c-4eee-b02f-51ddffab4492(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 224

 | RESERVE_DISK_SPACE = { ON | OFF }
}

<audit_options>::=
{
 QUEUE_DELAY = integer
 | ON_FAILURE = { CONTINUE | SHUTDOWN | FAIL_OPERATION }
 | STATE = = { ON | OFF }
}

<predicate_expression>::=
{
 [NOT] <predicate_factor>
 [{ AND | OR } [NOT] { <predicate_factor> }]
 [,...n]
}

<predicate_factor>::=
 event_field_name { = | < > | ! = | > | > = | < | < = } { number | ' string ' }

Arguments
TO { FILE | APPLICATION_LOG | SECURITY }

Determines the location of the audit target. The options are a binary file, the Windows
application log, or the Windows security log.

FILEPATH = 'os_file_path'

The path of the audit trail. The file name is generated based on the audit name and audit
GUID.

MAXSIZE = max_size

Specifies the maximum size to which the audit file can grow. The max_size value must be an
integer followed by MB, GB, TB, or UNLIMITED. The minimum size that you can specify for
max_size is 2 MB and the maximum is 2,147,483,647 TB. When UNLIMITED is specified the
file grows until the disk is full. Specifying a value lower than 2 MB will raise the error
MSG_MAXSIZE_TOO_SMALL. The default value is UNLIMITED.

MAX_ROLLOVER_FILES = integer | UNLIMITED

Specifies the maximum number of files to retain in the file system. When the setting of
MAX_ROLLOVER_FILES=0 there is no limit imposed on the number of rollover files that will
be created. The default value is 0. The maximum number of files that can be specified is

 225

2,147,483,647.

MAX_FILES = integer

Specifies the maximum number of audit files that can be created. Does not rollover to the
first file when the limit is reached. When the MAX_FILES limit is reached, any action that
causes additional audit events to be generated will fail with an error.

RESERVE_DISK_SPACE = { ON | OFF }

This option pre-allocates the file on the disk to the MAXSIZE value. Only applies if MAXSIZE is
not equal to UNLIMITED. The default value is OFF.

QUEUE_DELAY = integer

Determines the time in milliseconds that can elapse before audit actions are forced to be
processed. A value of 0 indicates synchronous delivery. The minimum settable query delay
value is 1000 (1 second), which is the default. The maximum is 2,147,483,647 (2,147,483.647
seconds or 24 days, 20 hours, 31 minutes, 23.647 seconds). Specifying an invalid number will
raise the error MSG_INVALID_QUEUE_DELAY.

ON_FAILURE = { CONTINUE | SHUTDOWN | FAIL_OPERATION}

Indicates whether the instance writing to the target should fail, continue, or stop if SQL
Server cannot write to the audit log.

CONTINUE

SQL Server operations continue. Audit records are not retained. The audit continues to
attempt to log events and will resume if the failure condition is resolved. Selecting the
continue option can allow unaudited activity which could violate your security policies. Use
this option, when continuing operation of the Database Engine is more important than
maintaining a complete audit.

SHUTDOWN

Forces a server shut down when the server instance writing to the target cannot write data
to the audit target. The login issuing this must have the SHUTDOWN permission. If the
logon does not have this permission, this function will fail and an error message will be
raised. No audited events occur. Use the option when an audit failure could compromise
the security or integrity of the system.

FAIL_OPERATION

Database actions fail if they cause audited events. Actions which do not cause audited
events can continue, but no audited events can occur. The audit continues to attempt to
log events and will resume if the failure condition is resolved. Use this option when
maintaining a complete audit is more important than full access to the Database Engine.

STATE = { ON | OFF }

Enables or disables the audit from collecting records. Changing the state of a running audit
(from ON to OFF) creates an audit entry that the audit was stopped, the principal that
stopped the audit, and the time the audit was stopped.

 226

MODIFY NAME = new_audit_name

Changes the name of the audit. Cannot be used with any other option.

predicate_expression

Specifies the predicate expression used to determine if an event should be processed or not.
Predicate expressions are limited to 3000 characters, which limits string arguments.

event_field_name

Is the name of the event field that identifies the predicate source. Audit fields are described
in fn_get_audit_file (Transact-SQL). All fields can be audited except file_name and
audit_file_offset.

number

Is any numeric type including decimal. Limitations are the lack of available physical memory
or a number that is too large to be represented as a 64-bit integer.

' string '

Either an ANSI or Unicode string as required by the predicate compare. No implicit string
type conversion is performed for the predicate compare functions. Passing the wrong type
results in an error.

Remarks
You must specify at least one of the TO, WITH, or MODIFY NAME clauses when you call ALTER
AUDIT.
You must set the state of an audit to the OFF option in order to make changes to an audit. If
ALTER AUDIT is run when an audit is enabled with any options other than STATE=OFF, you will
receive a MSG_NEED_AUDIT_DISABLED error message.
You can add, alter, and remove audit specifications without stopping an audit.
You cannot change an audit’s GUID after the audit has been created.

Permissions
To create, alter, or drop a server audit principal, you must have ALTER ANY SERVER AUDIT or the
CONTROL SERVER permission.

Examples

A. Changing a server audit name
The following example changes the name of the server audit HIPPA_Audit to
HIPAA_Audit_Old.

USE master

GO

ALTER SERVER AUDIT HIPAA_Audit

WITH (STATE = OFF);

http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�

 227

GO

ALTER SERVER AUDIT HIPAA_Audit

MODIFY NAME = HIPAA_Audit_Old;

GO

ALTER SERVER AUDIT HIPAA_Audit_Old

WITH (STATE = ON);

GO

B. Changing a server audit target
The following example changes the server audit called HIPPA_Audit to a file target.

USE master

GO

ALTER SERVER AUDIT HIPAA_Audit

WITH (STATE = OFF);

GO

ALTER SERVER AUDIT HIPAA_Audit

TO FILE (FILEPATH ='\\SQLPROD_1\Audit\',

 MAXSIZE = 1000 MB,

 RESERVE_DISK_SPACE=OFF)

WITH (QUEUE_DELAY = 1000,

 ON_FAILURE = CONTINUE);

GO

ALTER SERVER AUDIT HIPAA_Audit

WITH (STATE = ON);

GO

C. Changing a server audit WHERE clause
The following example modifies the where clause created in example C of CREATE SERVER
AUDIT (Transact-SQL). The new WHERE clause filters for the user defined event if of 27.

ALTER SERVER AUDIT [FilterForSensitiveData] WITH (STATE = OFF)

GO

ALTER SERVER AUDIT [FilterForSensitiveData]

WHERE user_defined_event_id = 27;

GO

ALTER SERVER AUDIT [FilterForSensitiveData] WITH (STATE = ON);

 228

GO

D. Removing a WHERE clause
The following example removes a WHERE clause predicate expression.

ALTER SERVER AUDIT [FilterForSensitiveData] WITH (STATE = OFF)

GO

ALTER SERVER AUDIT [FilterForSensitiveData]

REMOVE WHERE;

GO

ALTER SERVER AUDIT [FilterForSensitiveData] WITH (STATE = ON);

GO

E. Renaming a server audit
The following example changes the server audit name from FilterForSensitiveData to
AuditDataAccess.

ALTER SERVER AUDIT [FilterForSensitiveData] WITH (STATE = OFF)

GO

ALTER SERVER AUDIT [FilterForSensitiveData]

MODIFY NAME = AuditDataAccess;

GO

ALTER SERVER AUDIT [AuditDataAccess] WITH (STATE = ON);

GO

See Also
DROP SERVER AUDIT (Transact-SQL)
CREATE SERVER AUDIT SPECIFICATION (Transact-SQL)
ALTER SERVER AUDIT SPECIFICATION (Transact-SQL)
DROP SERVER AUDIT SPECIFICATION (Transact-SQL)
CREATE DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER DATABASE AUDIT SPECIFICATION (Transact-SQL)
DROP DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER AUTHORIZATION (Transact-SQL)
fn_get_audit_file (Transact-SQL)
sys.server_audits (Transact-SQL)
sys.server_file_audits (Transact-SQL)
sys.server_audit_specifications (Transact-SQL)
sys.server_audit_specifications_details (Transact-SQL)

http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2c4a000-1127-46a8-b1e9-947fd1136e1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/553288a0-be57-4d79-ae53-b7cbd065e127(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa496c6c-2a54-4fda-a238-db490c6b3afd(SQL.110)�
http://msdn.microsoft.com/en-us/library/792724dc-402e-4b17-9f2c-029d910bf88e(SQL.110)�

 229

sys.database_ audit_specifications (Transact-SQL)
sys.audit_database_specification_details (Transact-SQL)
sys.dm_server_audit_status
sys.dm_audit_actions
Create a Server Audit and Server Audit Specification

ALTER SERVER AUDIT SPECIFICATION
Alters a server audit specification object using the SQL Server Audit feature. For more
information, see Understanding SQL Server Audit.

 Transact-SQL Syntax Conventions

Syntax

ALTER SERVER AUDIT SPECIFICATION audit_specification_name
{
 [FOR SERVER AUDIT audit_name]
 [{ { ADD | DROP } (audit_action_group_name)
 } [, ...n]]
 [WITH (STATE = { ON | OFF })]
}
[;]

Arguments
audit_specification_name

The name of the audit specification.

audit_name

The name of the audit to which this specification is applied.

audit_action_group_name

Name of a group of server-level auditable actions. For a list of Audit Action Groups, see SQL
Server Audit Action Groups and Actions.

WITH (STATE = { ON | OFF })

Enables or disables the audit from collecting records for this audit specification.

Remarks
You must set the state of an audit specification to the OFF option to make changes to an audit
specification. If ALTER SERVER AUDIT SPECIFICATION is executed when an audit specification is
enabled with any options other than STATE=OFF, you will receive an error message.

http://msdn.microsoft.com/en-us/library/bf80e5c6-0588-4eb7-86ff-aa7c73461335(SQL.110)�
http://msdn.microsoft.com/en-us/library/03fc60a9-1696-4109-b15e-a50046310859(SQL.110)�
http://msdn.microsoft.com/en-us/library/4aa32d54-2ae1-437e-bbaa-7f1df1404b44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b987c2b9-998a-4a5f-a82d-280dc6963cbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/6624b1ab-7ec8-44ce-8292-397edf644394(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/b7422911-7524-4bcd-9ab9-e460d5897b3d(SQL.110)�
http://msdn.microsoft.com/en-us/library/b7422911-7524-4bcd-9ab9-e460d5897b3d(SQL.110)�

 230

Permissions
Users with the ALTER ANY SERVER AUDIT permission can alter server audit specifications and
bind them to any audit.
After a server audit specification is created, it can be viewed by principals with the CONTROL
SERVER, or ALTER ANY SERVER AUDIT permissions, the sysadmin account, or principals having
explicit access to the audit.

Examples
The following example creates a server audit specification called HIPPA_Audit_Specification.
It drops the audit action group for failed logins, and adds an audit action group for Database
Object Access for a SQL Server audit called HIPPA_Audit.

ALTER SERVER AUDIT SPECIFICATION HIPPA_Audit_Specification

FOR SERVER AUDIT HIPPA_Audit

 DROP (FAILED_LOGIN_GROUP)

 ADD (DATABASE_OBJECT_ACCESS_GROUP);

GO

For a full example about how to create an audit, see Understanding SQL Server Audit.

Updated content

Corrected the Permissions section.

See Also
CREATE SERVER AUDIT (Transact-SQL)
ALTER SERVER AUDIT (Transact-SQL)
DROP SERVER AUDIT (Transact-SQL)
CREATE SERVER AUDIT SPECIFICATION (Transact-SQL)
DROP SERVER AUDIT SPECIFICATION (Transact-SQL)
CREATE DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER DATABASE AUDIT SPECIFICATION (Transact-SQL)
DROP DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER AUTHORIZATION (Transact-SQL)
fn_get_audit_file (Transact-SQL)
sys.server_audits (Transact-SQL)
sys.server_file_audits (Transact-SQL)
sys.server_audit_specifications (Transact-SQL)
sys.server_audit_specifications_details (Transact-SQL)

http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2c4a000-1127-46a8-b1e9-947fd1136e1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/553288a0-be57-4d79-ae53-b7cbd065e127(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa496c6c-2a54-4fda-a238-db490c6b3afd(SQL.110)�
http://msdn.microsoft.com/en-us/library/792724dc-402e-4b17-9f2c-029d910bf88e(SQL.110)�

 231

sys.database_ audit_specifications (Transact-SQL)
sys.audit_database_specification_details (Transact-SQL)
sys.dm_server_audit_status
sys.dm_audit_actions
Create a Server Audit and Server Audit Specification

ALTER SERVER CONFIGURATION
Modifies global configuration settings for the current server in SQL Server 2012.

 Transact-SQL Syntax Conventions

Syntax

ALTER SERVER CONFIGURATION
SET <optionspec>

<optionspec> ::=
{
 <process_affinity>
 | <diagnostic_log>
 | <failover_cluster_property>
}

<process_affinity> ::=
 PROCESS AFFINITY
{
 CPU = { AUTO | <CPU_range_spec> }
 | NUMANODE = <NUMA_node_range_spec>
}
 <CPU_range_spec> ::=
 { CPU_ID | CPU_ID TO CPU_ID } [,...n]

 <NUMA_node_range_spec> ::=
 { NUMA_node_ID | NUMA_node_ID TO NUMA_node_ID } [,...n]

<diagnostic_log> ::=
 DIAGNOSTICS LOG

http://msdn.microsoft.com/en-us/library/bf80e5c6-0588-4eb7-86ff-aa7c73461335(SQL.110)�
http://msdn.microsoft.com/en-us/library/03fc60a9-1696-4109-b15e-a50046310859(SQL.110)�
http://msdn.microsoft.com/en-us/library/4aa32d54-2ae1-437e-bbaa-7f1df1404b44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b987c2b9-998a-4a5f-a82d-280dc6963cbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/6624b1ab-7ec8-44ce-8292-397edf644394(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 232

 {
 ON
 | OFF
 | PATH = { 'os_file_path' | DEFAULT }
 | MAX_SIZE = { 'log_max_size' MB | DEFAULT }
 | MAX_FILES = { 'max_file_count' | DEFAULT }
 }

<failover_cluster_property> ::=
 FAILOVER CLUSTER PROPERTY <resource_property>

 <resource_property>::=
{
 VerboseLogging = { 'logging_detail' | DEFAULT }
 | SqlDumperDumpFlags = { 'dump_file_type' | DEFAULT }
 | SqlDumperDumpPath = { 'os_file_path'| DEFAULT }
 | SqlDumperDumpTimeOut = { 'dump_time-out' | DEFAULT }
 | FailureConditionLevel = { 'failure_condition_level' | DEFAULT }
 | HealthCheckTimeout = { 'health_check_time-out' | DEFAULT }
}

Arguments
<process_affinity> ::=
PROCESS AFFINITY

Enables hardware threads to be associated with CPUs.

CPU = { AUTO | <CPU_range_spec> }

Distributes SQL Server worker threads to each CPU within the specified range. CPUs outside
the specified range will not have assigned threads.

AUTO

Specifies that no thread is assigned a CPU. The operating system can freely move threads
among CPUs based on the server workload. This is the default and recommended setting.

<CPU_range_spec> ::=

Specifies the CPU or range of CPUs to assign threads to.

{ CPU_ID | CPU_ID TO CPU_ID } [,...n]

Is the list of one or more CPUs. CPU IDs begin at 0 and are integer values.

 233

NUMANODE = <NUMA_node_range_spec>

Assigns threads to all CPUs that belong to the specified NUMA node or range of nodes.

<NUMA_node_range_spec> ::=

Specifies the NUMA node or range of NUMA nodes.

{ NUMA_node_ID | NUMA_node_ID TO NUMA_node_ID } [,...n]

Is the list of one or more NUMA nodes. NUMA node IDs begin at 0 and are integer values.

<diagnostic_log> ::=
DIAGNOSTICS LOG

Starts or stops logging diagnostic data captured by the sp_server_diagnostics procedure, and
sets SQLDIAG log configuration parameters such as the log file rollover count, log file size,
and file location. For more information, see How to: View and Read SQL Server
Failover Cluster Diagnostics Log.

ON

Starts SQL Server logging diagnostic data in the location specified in the PATH file option.
This is the default.

OFF

Stops logging diagnostic data.

PATH = { 'os_file_path' | DEFAULT }

Path indicating the location of the diagnostic logs. The default location is <\MSSQL\Log>
within the installation folder of the SQL Server failover cluster instance.

MAX_SIZE = { 'log_max_size' MB | DEFAULT }

Maximum size in megabytes to which each diagnostic log can grow. The default is 100 MB.

MAX_FILES = { 'max_file_count' | DEFAULT }

Maximum number of diagnostic log files that can be stored on the computer before they are
recycled for new diagnostic logs.

<failover_cluster_property> ::=
FAILOVER CLUSTER PROPERTY

Modifies the SQL Server resource private failover cluster properties.

VERBOSE LOGGING = { 'logging_detail' | DEFAULT }

Sets the logging level for SQL Server Failover Clustering. It can be turned on to provide
additional details in the error logs for troubleshooting.

• 0 – Logging is turned off (default)

• 1 - Errors only

• 2 – Errors and warnings

http://msdn.microsoft.com/en-us/library/68074bd5-be9d-4487-a320-5b51ef8e2b2d(SQL.110)�
http://msdn.microsoft.com/en-us/library/68074bd5-be9d-4487-a320-5b51ef8e2b2d(SQL.110)�

 234

SQLDUMPEREDUMPFLAGS

Determines the type of dump files generated by SQL Server SQLDumper utility. The default
setting is 0. For more information, see SQL Server Dumper Utility Knowledgebase
article.

SQLDUMPERDUMPPATH = { 'os_file_path'| DEFAULT }

The location where the SQLDumper utility stores the dump files. For more information, see
SQL Server Dumper Utility Knowledgebase article.

SQLDUMPERDUMPTIMEOUT = { 'dump_time-out' | DEFAULT }

The time-out value in milliseconds for the SQLDumper utility to generate a dump in case of a
SQL Server failure. The default value is 0, which means there is no time limit to complete the
dump. For more information, see SQL Server Dumper Utility Knowledgebase
article.

FAILURECONDITIONLEVEL = { 'failure_condition_level' | DEFAULT }

Tthe conditions under which the SQL Server failover cluster instance should failover or
restart. The default value is 3, which means that the SQL Server resource will failover or
restart on critical server errors. For more information about this and other failure condition
levels, see How to: Configure FailureConditionLevel Property Settings.

HEALTHCHECKTIMEOUT = { 'health_check_time-out' | DEFAULT }

The time-out value for how long the SQL Server Database Engine resource DLL should wait
for the server health information before it considers the instance of SQL Server as
unresponsive. The time-out value is expressed in milliseconds. The default is 60000
milliseconds (60 seconds).

General Remarks
This statement does not require a restart of SQL Server. In the case of a SQL Server failover
cluster instance, it does not require a restart of the SQL Server cluster resource.

Limitations and Restrictions
This statement does not support DDL triggers.

Permissions
Requires ALTER SETTINGS permissions for the process affinity option; and ALTER SETTINGS and
VIEW SERVER STATE permissions for the diagnostic log and failover cluster property options.
The SQL Server Database Engine resource DLL runs under the Local System account. Therefore,
the Local System account must have read and write access to the specified path in the
Diagnostic Log option.

Examples

http://go.microsoft.com/fwlink/?LinkId=206173�
http://go.microsoft.com/fwlink/?LinkId=206173�
http://go.microsoft.com/fwlink/?LinkId=206173�
http://go.microsoft.com/fwlink/?LinkId=206173�
http://go.microsoft.com/fwlink/?LinkId=206173�
http://msdn.microsoft.com/en-us/library/513dd179-9a46-46da-9fdd-7632cf6d0816(SQL.110)�

 235

Category Featured syntax elements

Setting process affinity CPU • NUMANODE • AUTO

Setting diagnostic log options ON • OFF • PATH • MAX_SIZE

Setting failover cluster properties HealthCheckTimeout

Setting process affinity
The examples in this section show how to set process affinity to CPUs and NUMA nodes. The
examples assume that the server contains 256 CPUs that are arranged into four groups of 16
NUMA nodes each. Threads are not assigned to any NUMA node or CPU.
• Group 0: NUMA nodes 0 through 3, CPUs 0 to 63
• Group 1: NUMA nodes 4 through 7, CPUs 64 to 127
• Group 2: NUMA nodes 8 through 12, CPUs 128 to 191
• Group 3: NUMA nodes 13 through 16, CPUs 192 to 255

A. Setting affinity to all CPUs in groups 0 and 2
The following example sets affinity to all the CPUs in groups 0 and 2.

ALTER SERVER CONFIGURATION

SET PROCESS AFFINITY CPU=0 TO 63, 128 TO 191;

B. Setting affinity to all CPUs in NUMA nodes 0 and 7
The following example sets the CPU affinity to nodes 0 and 7 only.

ALTER SERVER CONFIGURATION

SET PROCESS AFFINITY NUMANODE=0, 7;

C. Setting affinity to CPUs 60 through 200
The following example sets affinity to CPUs 60 through 200.

ALTER SERVER CONFIGURATION

SET PROCESS AFFINITY CPU=60 TO 200;

D. Setting affinity to CPU 0 on a system that has two CPUs
The following example sets the affinity to CPU=0 on a computer that has two CPUs. Before the
following statement is executed the internal affinity bitmask is 00.

ALTER SERVER CONFIGURATION SET PROCESS AFFINITY CPU=0;

E. Setting affinity to AUTO
The following example sets affinity to AUTO.

ALTER SERVER CONFIGURATION

 236

SET PROCESS AFFINITY CPU=AUTO;

Setting diagnostic log options
The examples in this section show how to set the values for the diagnostic log option.

A. Starting diagnostic logging
The following example starts the logging of diagnostic data.

ALTER SERVER CONFIGURATION SET DIAGNOSTICS LOG ON;

B. Stopping diagnostic logging
The following example stops the logging of diagnostic data.

ALTER SERVER CONFIGURATION SET DIAGNOSTICS LOG OFF;

C. Specifying the location of the diagnostic logs
The following example sets the location of the diagnostic logs to the specified file path.

ALTER SERVER CONFIGURATION

SET DIAGNOSTICS LOG PATH = 'C:\logs';

D. Specifying the maximum size of each diagnostic log
The following example set the maximum size of each diagnostic log to 10 megabytes.

ALTER SERVER CONFIGURATION

SET DIAGNOSTICS LOG MAX_SIZE = 10 MB;

Setting failover cluster properties
The following example illustrates setting the values of the SQL Server failover cluster resource
properties.

A. Specifying the value for the HealthCheckTimeout property
The following example sets the HealthCheckTimeout option to 15,000 milliseconds (15
seconds).

ALTER SERVER CONFIGURATION

SET FAILOVER CLUSTER PROPERTY HealthCheckTimeout = 15000;

See Also
How to: Configure SQL Server to Use Soft-NUMA
sys.dm_os_schedulers (Transact-SQL)
sys.dm_os_memory_nodes (Transact-SQL)

ALTER SERVER ROLE
Changes the membership of a server role or changes name of a user-defined server role. Fixed
server roles cannot be renamed.

http://msdn.microsoft.com/en-us/library/1af22188-e08b-4c80-a27e-4ae6ed9ff969(SQL.110)�
http://msdn.microsoft.com/en-us/library/3a09d81b-55d5-416f-9cda-1a3a5492abe0(SQL.110)�
http://msdn.microsoft.com/en-us/library/bf4032fe-7db1-40e9-a62e-d69cebff4b44(SQL.110)�

 237

 Transact-SQL Syntax Conventions

Syntax

ALTER SERVER ROLE server_role_name
{
 [ADD MEMBER server_principal]
 | [DROP MEMBER server_principal]
 | [WITH NAME = new_server_role_name]
} [;]

Arguments
server_role_name

Is the name of the server role to be changed.

ADD MEMBER server_principal

Adds the specified server principal to the server role. server_principal can be a login or a user-
defined server role. server_principal cannot be a fixed server role, a database role, or sa.

DROP MEMBER server_principal

Removes the specified server principal from the server role. server_principal can be a login or
a user-defined server role. server_principal cannot be a fixed server role, a database role, or
sa.

WITH NAME = new_server_role_name

Specifies the new name of the user-defined server role. This name cannot already exist in the
server.

Remarks
Changing the name of a user-defined server role does not change ID number, owner, or
permissions of the role.
For changing role membership, ALTER SERVER ROLE replaces sp_addsrvrolemember and
sp_dropsrvrolemember. These stored procedures are deprecated.
You can view server roles by querying the sys.server_role_members and sys.server_principals
catalog views.
To change the owner of a user-defined server role, use ALTER AUTHORIZATION (Transact-SQL).

Permissions
Requires ALTER ANY SERVER ROLE permission on the server to change the name of a user-
defined server role.
Fixed server roles

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 238

To add a member to a fixed server role, you must be a member of that fixed server role, or be a
member of the sysadmin fixed server role.

The CONTROL SERVER and ALTER ANY SERVER ROLE permissions are not sufficient to
execute ALTER SERVER ROLE for a fixed server role, and ALTER permission cannot be
granted on a fixed server role.

User-defined server roles
To add a member to a user-defined server role, you must be a member of the sysadmin fixed
server role or have CONTROL SERVER or ALTER ANY SERVER ROLE permission. Or you must
have ALTER permission on that role.

Unlike fixed server roles, members of a user-defined server role do not inherently have
permission to add members to that same role.

Examples

A. Changing the name of a server role
The following example creates a server role named Product, and then changes the name of
server role to Production.

CREATE SERVER ROLE Product ;

ALTER SERVER ROLE Product WITH NAME = Production ;

GO

B. Adding a domain account to a server role
The following example adds a domain account named adventure-works\roberto0 to the
user-defined server role named Production.
ALTER SERVER ROLE Production ADD MEMBER [adventure-works\roberto0] ;

C. Adding a SQL Server login to a server role
The following example adds a SQL Server login named Ted to the diskadmin fixed server role.

ALTER SERVER ROLE diskadmin ADD MEMBER Ted ;

GO

D. Removing a domain account from a server role
The following example removes a domain account named adventure-works\roberto0 from
the user-defined server role named Production.
ALTER SERVER ROLE Production DROP MEMBER [adventure-works\roberto0] ;

E. Removing a SQL Server login from a server role
The following example removes the SQL Server login Ted from the diskadmin fixed server role.

Note

Note

 239

ALTER SERVER ROLE Production DROP MEMBER Ted ;

GO

F. Granting a login the permission to add logins to a user-defined server role
The following example allows Ted to add other logins to the user-defined server role named
Production.

GRANT ALTER ON SERVER ROLE::Production TO Ted ;

GO

G. To view role membership
To view role membership, use the Server Role (Members) page in SQL Server Management
Studio or execute the following query:

SELECT SRM.role_principal_id, SP.name AS Role_Name,

SRM.member_principal_id, SP2.name AS Member_Name

FROM sys.server_role_members AS SRM

JOIN sys.server_principals AS SP

 ON SRM.Role_principal_id = SP.principal_id

JOIN sys.server_principals AS SP2

 ON SRM.member_principal_id = SP2.principal_id

ORDER BY SP.name, SP2.name

See Also
CREATE SERVER ROLE (Transact-SQL)
DROP SERVER ROLE (Transact-SQL)
CREATE ROLE (Transact-SQL)
ALTER ROLE (Transact-SQL)
DROP ROLE (Transact-SQL)
Security Stored Procedures (Transact-SQL)
Security Functions (Transact-SQL)
Principals
sys.server_role_members (Transact-SQL)
sys.server_principals (Transact-SQL)

ALTER SERVICE
Changes an existing service.

 Transact-SQL Syntax Conventions

http://msdn.microsoft.com/en-us/library/62b72907-7e95-4c97-9891-0c45d5b678ce(SQL.110)�
http://msdn.microsoft.com/en-us/library/7773a87d-2f1b-4951-a225-baf159a7291b(SQL.110)�
http://msdn.microsoft.com/en-us/library/3f7adbf7-6e40-4396-a8ca-71cbb843b5c2(SQL.110)�
http://msdn.microsoft.com/en-us/library/efa20414-2c6b-45a2-a7a9-60110a24da18(SQL.110)�
http://msdn.microsoft.com/en-us/library/c5dbe0d8-a1c8-4dc4-b9b1-22af20effd37(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 240

Syntax

ALTER SERVICE service_name
 [ON QUEUE [schema_name .]queue_name]
 [(< opt_arg > [, ...n])]
[;]

<opt_arg> ::=
 ADD CONTRACT contract_name | DROP CONTRACT contract_name

Arguments
service_name

Is the name of the service to change. Server, database, and schema names cannot be
specified.

ON QUEUE [schema_name.] queue_name

Specifies the new queue for this service. Service Broker moves all messages for this service
from the current queue to the new queue.

ADD CONTRACT contract_name

Specifies a contract to add to the contract set exposed by this service.

DROP CONTRACT contract_name

Specifies a contract to delete from the contract set exposed by this service. Service Broker
sends an error message on any existing conversations with this service that use this contract.

Remarks
When the ALTER SERVICE statement deletes a contract from a service, the service can no longer
be a target for conversations that use that contract. Therefore, Service Broker does not allow
new conversations to the service on that contract. Existing conversations that use the contract
are unaffected.
To alter the AUTHORIZATION for a service, use the ALTER AUTHORIZATION statement.

Permissions
Permission for altering a service defaults to the owner of the service, members of the
db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server
role.

Examples

A. Changing the queue for a service
The following example changes the //Adventure-Works.com/Expenses service to use the
queue NewQueue.

www.Adventure-Works.com/Expenses

 241

ALTER SERVICE [//Adventure-Works.com/Expenses]

 ON QUEUE NewQueue ;

B. Adding a new contract to the service
The following example changes the //Adventure-Works.com/Expenses service to allow
dialogs on the contract //Adventure-Works.com/Expenses.

ALTER SERVICE [//Adventure-Works.com/Expenses]

 (ADD CONTRACT [//Adventure-Works.com/Expenses/ExpenseSubmission]) ;

C. Adding a new contract to the service, dropping existing contract
The following example changes the //Adventure-Works.com/Expenses service to allow
dialogs on the contract //Adventure-Works.com/Expenses/ExpenseProcessing and to
disallow dialogs on the contract //Adventure-Works.com/Expenses/ExpenseSubmission.

ALTER SERVICE [//Adventure-Works.com/Expenses]

 (ADD CONTRACT [//Adventure-Works.com/Expenses/ExpenseProcessing],

 DROP CONTRACT [//Adventure-Works.com/Expenses/ExpenseSubmission]) ;

See Also
DROP SERVICE (Transact-SQL)
DROP SERVICE
EVENTDATA

ALTER SERVICE MASTER KEY
Changes the service master key of an instance of SQL Server.

 Transact-SQL Syntax Conventions

Syntax

ALTER SERVICE MASTER KEY
 [{ <regenerate_option> | <recover_option> }] [;]

<regenerate_option> ::=
 [FORCE] REGENERATE

<recover_option> ::=
 { WITH OLD_ACCOUNT = 'account_name' , OLD_PASSWORD = 'password' }
 |
 { WITH NEW_ACCOUNT = 'account_name' , NEW_PASSWORD = 'password' }

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses/ExpenseSubmission
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses/ExpenseProcessing
www.Adventure-Works.com/Expenses/ExpenseSubmission
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses/ExpenseProcessing
www.Adventure-Works.com/Expenses/ExpenseSubmission

 242

Arguments
FORCE

Indicates that the service master key should be regenerated, even at the risk of data loss. For
more information, see Changing the SQL Server Service Account later in this topic.

REGENERATE

Indicates that the service master key should be regenerated.

OLD_ACCOUNT = 'account_name'

Specifies the name of the old Windows service account.

Warning
This option is obsolete. Do not use. Use SQL Server Configuration Manager instead.

OLD_PASSWORD = 'password'

Specifies the password of the old Windows service account.

Warning
This option is obsolete. Do not use. Use SQL Server Configuration Manager instead.

NEW_ACCOUNT = 'account_name'

Specifies the name of the new Windows service account.

Warning
This option is obsolete. Do not use. Use SQL Server Configuration Manager instead.

NEW_PASSWORD = 'password'

Specifies the password of the new Windows service account.

Warning
This option is obsolete. Do not use. Use SQL Server Configuration Manager instead.

Remarks
The service master key is automatically generated the first time it is needed to encrypt a linked
server password, credential, or database master key. The service master key is encrypted using
the local machine key or the Windows Data Protection API. This API uses a key that is derived
from the Windows credentials of the SQL Server service account.
The service master key can only be decrypted by the service account under which it was created
or by a principal that has access to the Windows credentials of that service account. Therefore, if
you change the Windows account under which the SQL Server service runs, you must also
enable decryption of the service master key by the new account.
SQL Server 2012 uses the AES encryption algorithm to protect the service master key (SMK) and
the database master key (DMK). AES is a newer encryption algorithm than 3DES used in earlier
versions. After upgrading an instance of the Database Engine to SQL Server 2012 the SMK and

 243

DMK should be regenerated in order to upgrade the master keys to AES. For more information
about regenerating the DMK, see ALTER MASTER KEY (Transact-SQL).

Changing the SQL Server Service Account
To change the SQL Server service account, use SQL Server Configuration Manager. To manage a
change of the service account, SQL Server stores a redundant copy of the service master key
protected by the machine account that has the necessary permissions granted to the SQL
Server service group. If the computer is rebuilt, the same domain user that was previously used
by the service account can recover the service master key. This does not work with local
accounts or the Local System, Local Service, or Network Service accounts. When you are
moving SQL Server to another computer, migrate the service master key by using backup and
restore.
The REGENERATE phrase regenerates the service master key. When the service master key is
regenerated, SQL Server decrypts all the keys that have been encrypted with it, and then
encrypts them with the new service master key. This is a resource-intensive operation. You
should schedule this operation during a period of low demand, unless the key has been
compromised. If any one of the decryptions fail, the whole statement fails.
The FORCE option causes the key regeneration process to continue even if the process cannot
retrieve the current master key, or cannot decrypt all the private keys that are encrypted with it.
Use FORCE only if regeneration fails and you cannot restore the service master key by using the
RESTORE SERVICE MASTER KEY statement.

The service master key is the root of the SQL Server encryption hierarchy. The service
master key directly or indirectly protects all other keys and secrets in the tree. If a
dependent key cannot be decrypted during a forced regeneration, the data the key
secures will be lost.

The MACHINE KEY options allow you to add or drop encryption using the machine key.

Permissions
Requires CONTROL SERVER permission on the server.

Examples
The following example regenerates the service master key.

ALTER SERVICE MASTER KEY REGENERATE;

GO

See Also
RESTORE SERVICE MASTER KEY (Transact-SQL)
BACKUP SERVICE MASTER KEY (Transact-SQL)
Encryption Hierarchy

Caution

http://msdn.microsoft.com/en-us/library/a68fd0ee-70ce-4104-aca0-fcae5f41fc38(SQL.110)�
http://msdn.microsoft.com/en-us/library/a68fd0ee-70ce-4104-aca0-fcae5f41fc38(SQL.110)�
http://msdn.microsoft.com/en-us/library/f8356683-6680-4f1c-9eaf-5c29a9a9020d(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�

 244

ALTER SYMMETRIC KEY
Changes the properties of a symmetric key.

 Transact-SQL Syntax Conventions

Syntax

ALTER SYMMETRIC KEY Key_name <alter_option>

<alter_option> ::=
 ADD ENCRYPTION BY <encrypting_mechanism> [, ... n]
 |
 DROP ENCRYPTION BY <encrypting_mechanism> [, ... n]
<encrypting_mechanism> ::=
 CERTIFICATE certificate_name
 |
 PASSWORD = 'password'
 |
 SYMMETRIC KEY Symmetric_Key_Name
 |
 ASYMMETRIC KEY Asym_Key_Name

Arguments
Key_name

Is the name by which the symmetric key to be changed is known in the database.

ADD ENCRYPTION BY

Adds encryption by using the specified method.

DROP ENCRYPTION BY

Drops encryption by the specified method. You cannot remove all the encryptions from a
symmetric key.

CERTIFICATE Certificate_name

Specifies the certificate that is used to encrypt the symmetric key. This certificate must
already exist in the database.

PASSWORD = 'password'

Specifies the password that is used to encrypt the symmetric key. password must meet the
Windows password policy requirements of the computer that is running the instance of SQL
Server.

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 245

SYMMETRIC KEY Symmetric_Key_Name

Specifies the symmetric key that is used to encrypt the symmetric key that is being changed.
This symmetric key must already exist in the database and must be open.

ASYMMETRIC KEY Asym_Key_Name

Specifies the asymmetric key that is used to encrypt the symmetric key that is being changed.
This asymmetric key must already exist in the database.

Remarks

When a symmetric key is encrypted with a password instead of with the public key of the
database master key, the TRIPLE_DES encryption algorithm is used. Because of this, keys
that are created with a strong encryption algorithm, such as AES, are themselves secured
by a weaker algorithm.

To change the encryption of the symmetric key, use the ADD ENCRYPTION and DROP
ENCRYPTION phrases. It is never possible for a key to be entirely without encryption. For this
reason, the best practice is to add the new form of encryption before removing the old form of
encryption.
To change the owner of a symmetric key, use ALTER AUTHORIZATION.

The RC4 algorithm is only supported for backward compatibility. New material can only
be encrypted using RC4 or RC4_128 when the database is in compatibility level 90 or
100. (Not recommended.) Use a newer algorithm such as one of the AES algorithms
instead. In SQL Server 2012 material encrypted using RC4 or RC4_128 can be decrypted
in any compatibility level.

Permissions
Requires ALTER permission on the symmetric key. If adding encryption by a certificate or
asymmetric key, requires VIEW DEFINITION permission on the certificate or asymmetric key. If
dropping encryption by a certificate or asymmetric key, requires CONTROL permission on the
certificate or asymmetric key.

Examples
The following example changes the encryption method that is used to protect a symmetric key.
The symmetric key JanainaKey043 is encrypted using certificate Shipping04 when the key was
created. Because the key can never be stored unencrypted, in this example, encryption is added
by password, and then encryption is removed by certificate.

CREATE SYMMETRIC KEY JanainaKey043 WITH ALGORITHM = AES_256

 ENCRYPTION BY CERTIFICATE Shipping04;

-- Open the key.

OPEN SYMMETRIC KEY JanainaKey043 DECRYPTION BY CERTIFICATE Shipping04

Caution

Note

 246

 WITH PASSWORD = '<enterStrongPasswordHere>';

-- First, encrypt the key with a password.

ALTER SYMMETRIC KEY JanainaKey043

 ADD ENCRYPTION BY PASSWORD = '<enterStrongPasswordHere>';

-- Now remove encryption by the certificate.

ALTER SYMMETRIC KEY JanainaKey043

 DROP ENCRYPTION BY CERTIFICATE Shipping04;

CLOSE SYMMETRIC KEY JanainaKey043;

See Also
Encryption Hierarchy
OPEN SYMMETRIC KEY (Transact-SQL)
CLOSE SYMMETRIC KEY (Transact-SQL)
DROP SYMMETRIC KEY (Transact-SQL)
Encryption Hierarchy

ALTER TABLE
Modifies a table definition by altering, adding, or dropping columns and constraints, reassigning
partitions, or disabling or enabling constraints and triggers.

 Transact-SQL Syntax Conventions

Syntax

ALTER TABLE [database_name . [schema_name] . | schema_name .] table_name
{
 ALTER COLUMN column_name
 {
 [type_schema_name.] type_name [({ precision [, scale]
 | max | xml_schema_collection })]
 [COLLATE collation_name]
 [NULL | NOT NULL] [SPARSE]
 | {ADD | DROP }
 { ROWGUIDCOL | PERSISTED | NOT FOR REPLICATION | SPARSE }
 }
 | [WITH { CHECK | NOCHECK }]

http://msdn.microsoft.com/en-us/library/ff019a7c-c373-46c7-ac43-ffb7e2ee60b3(SQL.110)�
http://msdn.microsoft.com/en-us/library/3b083cbb-3c6a-4f59-8d34-601db1efcc83(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 247

 | ADD
 {
 <column_definition>
 | <computed_column_definition>
 | <table_constraint>
 | <column_set_definition>
 } [,...n]

 | DROP
 {
 [CONSTRAINT] constraint_name
 [WITH (<drop_clustered_constraint_option> [,...n])]
 | COLUMN column_name
 } [,...n]

 | [WITH { CHECK | NOCHECK }] { CHECK | NOCHECK } CONSTRAINT
 { ALL | constraint_name [,...n] }

 | { ENABLE | DISABLE } TRIGGER
 { ALL | trigger_name [,...n] }

 | { ENABLE | DISABLE } CHANGE_TRACKING
 [WITH (TRACK_COLUMNS_UPDATED = { ON | OFF })]

 | SWITCH [PARTITION source_partition_number_expression]
 TO target_table
 [PARTITION target_partition_number_expression]

 | SET (FILESTREAM_ON = { partition_scheme_name | filegroup |
 "default" | "NULL" })

 | REBUILD
 [[PARTITION = ALL]
 [WITH (<rebuild_option> [,...n])]
 | [PARTITION = partition_number

 248

 [WITH (<single_partition_rebuild_option> [,...n])]
]
]

 | (<table_option>)

 | (<filetable_option>)

}
[;]

-- ALTER TABLE options

<column_set_definition> ::=
 column_set_name XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

<drop_clustered_constraint_option> ::=
 {
 MAXDOP = max_degree_of_parallelism
 | ONLINE = {ON | OFF }
 | MOVE TO { partition_scheme_name (column_name) | filegroup
 | "default" }
 }
<table_option> ::=
 {
 SET (LOCK_ESCALATION = { AUTO | TABLE | DISABLE })
 }

<filetable_option> ::=
 {
 [{ ENABLE | DISABLE } FILETABLE_NAMESPACE]
 [SET (FILETABLE_DIRECTORY = directory_name)]

 249

 }
<single_partition_rebuild__option> ::=
{
 SORT_IN_TEMPDB = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 | DATA_COMPRESSION = { NONE | ROW | PAGE} }
}

Arguments
database_name

Is the name of the database in which the table was created.

schema_name

Is the name of the schema to which the table belongs.

table_name

Is the name of the table to be altered. If the table is not in the current database or is not
contained by the schema owned by the current user, the database and schema must be
explicitly specified.

ALTER COLUMN

Specifies that the named column is to be changed or altered.

The modified column cannot be any one of the following:

• A column with a timestamp data type.

• The ROWGUIDCOL for the table.

• A computed column or used in a computed column.

• Used in an index, unless the column is a varchar, nvarchar, or varbinary data type, the
data type is not changed, the new size is equal to or larger than the old size, and the
index is not the result of a PRIMARY KEY constraint.

• Used in statistics generated by the CREATE STATISTICS statement unless the column is a
varchar, nvarchar, or varbinary data type, the data type is not changed, and the new
size is equal to or greater than the old size, or if the column is changed from not null to
null. First, remove the statistics using the DROP STATISTICS statement. Statistics that are
automatically generated by the query optimizer are automatically dropped by ALTER
COLUMN.

• Used in a PRIMARY KEY or [FOREIGN KEY] REFERENCES constraint.

• Used in a CHECK or UNIQUE constraint. However, changing the length of a variable-
length column used in a CHECK or UNIQUE constraint is allowed.

• Associated with a default definition. However, the length, precision, or scale of a column
can be changed if the data type is not changed.

 250

The data type of text, ntext and image columns can be changed only in the following
ways:

• text to varchar(max), nvarchar(max), or xml

• ntext to varchar(max), nvarchar(max), or xml

• image to varbinary(max)

Some data type changes may cause a change in the data. For example, changing an
nchar or nvarchar column to char or varchar may cause the conversion of extended
characters. For more information, see CAST and CONVERT. Reducing the precision
or scale of a column may cause data truncation.

The data type of a column of a partitioned table cannot be changed.

column_name

Is the name of the column to be altered, added, or dropped. column_name can be a
maximum of 128 characters. For new columns, column_name can be omitted for columns
created with a timestamp data type. The name timestamp is used if no column_name is
specified for a timestamp data type column.

[type_schema_name.] type_name

Is the new data type for the altered column, or the data type for the added column.
type_name cannot be specified for existing columns of partitioned tables. type_name can be
any one of the following:

• A SQL Server system data type.

• An alias data type based on a SQL Server system data type. Alias data types are created
with the CREATE TYPE statement before they can be used in a table definition.

• A .NET Framework user-defined type, and the schema to which it belongs. .NET
Framework user-defined types are created with the CREATE TYPE statement before they
can be used in a table definition.

The following are criteria for type_name of an altered column:

• The previous data type must be implicitly convertible to the new data type.

• type_name cannot be timestamp.

• ANSI_NULL defaults are always on for ALTER COLUMN; if not specified, the column is
nullable.

• ANSI_PADDING padding is always ON for ALTER COLUMN.

• If the modified column is an identity column, new_data_type must be a data type that
supports the identity property.

• The current setting for SET ARITHABORT is ignored. ALTER TABLE operates as if
ARITHABORT is set to ON.

Note
If the COLLATE clause is not specified, changing the data type of a column will cause a collation

http://msdn.microsoft.com/en-us/library/a87d0850-c670-4720-9ad5-6f5a22343ea8(SQL.110)�

 251

change to the default collation of the database.

precision

Is the precision for the specified data type. For more information about valid precision values,
see Precision, Scale, and Length.

scale

Is the scale for the specified data type. For more information about valid scale values, see
Precision, Scale, and Length.

max

Applies only to the varchar, nvarchar, and varbinary data types for storing 2^31-1 bytes of
character, binary data, and of Unicode data.

xml_schema_collection

Applies only to the xml data type for associating an XML schema with the type. Before typing
an xml column to a schema collection, the schema collection must first be created in the
database by using CREATE XML SCHEMA COLLECTION.

COLLATE < collation_name >

Specifies the new collation for the altered column. If not specified, the column is assigned the
default collation of the database. Collation name can be either a Windows collation name or
a SQL collation name. For a list and more information, see Windows Collation Name
and SQL Collation Name.

The COLLATE clause can be used to change the collations only of columns of the char,
varchar, nchar, and nvarchar data types. To change the collation of a user-defined alias data
type column, you must execute separate ALTER TABLE statements to change the column to a
SQL Server system data type and change its collation, and then change the column back to
an alias data type.

ALTER COLUMN cannot have a collation change if one or more of the following conditions
exist:

• If a CHECK constraint, FOREIGN KEY constraint, or computed columns reference the
column changed.

• If any index, statistics, or full-text index are created on the column. Statistics created
automatically on the column changed are dropped if the column collation is changed.

• If a schema-bound view or function references the column.

For more information, see COLLATE.

NULL | NOT NULL

Specifies whether the column can accept null values. Columns that do not allow null values
can be added with ALTER TABLE only if they have a default specified or if the table is empty.
NOT NULL can be specified for computed columns only if PERSISTED is also specified. If the
new column allows null values and no default is specified, the new column contains a null
value for each row in the table. If the new column allows null values and a default definition is

http://msdn.microsoft.com/en-us/library/fbc9ad2c-0d3b-4e98-8fdd-4d912328e40a(SQL.110)�
http://msdn.microsoft.com/en-us/library/fbc9ad2c-0d3b-4e98-8fdd-4d912328e40a(SQL.110)�
http://msdn.microsoft.com/en-us/library/acceef84-2c68-46e2-a021-be019b7ab14e(SQL.110)�
http://msdn.microsoft.com/en-us/library/56483d24-add7-483d-9b96-c6fda460ddbc(SQL.110)�
http://msdn.microsoft.com/en-us/library/76763ac8-3e0d-4bbb-aa53-f5e7da021daa(SQL.110)�

 252

added with the new column, WITH VALUES can be used to store the default value in the new
column for each existing row in the table.

If the new column does not allow null values and the table is not empty, a DEFAULT
definition must be added with the new column, and the new column automatically loads with
the default value in the new columns in each existing row.

NULL can be specified in ALTER COLUMN to force a NOT NULL column to allow null values,
except for columns in PRIMARY KEY constraints. NOT NULL can be specified in ALTER
COLUMN only if the column contains no null values. The null values must be updated to
some value before the ALTER COLUMN NOT NULL is allowed, for example:

UPDATE MyTable SET NullCol = N'some_value' WHERE NullCol IS

NULL;

ALTER TABLE MyTable ALTER COLUMN NullCOl NVARCHAR(20) NOT

NULL;

When you create or alter a table with the CREATE TABLE or ALTER TABLE statements, the
database and session settings influence and possibly override the nullability of the data type
that is used in a column definition. We recommend that you always explicitly define a column
as NULL or NOT NULL for noncomputed columns.

If you add a column with a user-defined data type, we recommend that you define the
column with the same nullability as the user-defined data type and specify a default value for
the column. For more information, see CREATE TABLE.

Note
If NULL or NOT NULL is specified with ALTER COLUMN, new_data_type [(precision [, scale])] must also
be specified. If the data type, precision, and scale are not changed, specify the current column values.

[{ADD | DROP} ROWGUIDCOL]

Specifies the ROWGUIDCOL property is added to or dropped from the specified column.
ROWGUIDCOL indicates that the column is a row GUID column. Only one uniqueidentifier
column per table can be designated as the ROWGUIDCOL column, and the ROWGUIDCOL
property can be assigned only to a uniqueidentifier column. ROWGUIDCOL cannot be
assigned to a column of a user-defined data type.

ROWGUIDCOL does not enforce uniqueness of the values that are stored in the column and
does not automatically generate values for new rows that are inserted into the table. To
generate unique values for each column, either use the NEWID function on INSERT
statements or specify the NEWID function as the default for the column.

[{ADD | DROP} PERSISTED]

Specifies that the PERSISTED property is added to or dropped from the specified column. The
column must be a computed column that is defined with a deterministic expression. For
columns specified as PERSISTED, the Database Engine physically stores the computed values
in the table and updates the values when any other columns on which the computed column
depends are updated. By marking a computed column as PERSISTED, you can create indexes

 253

on computed columns defined on expressions that are deterministic, but not precise. For
more information, see Creating Indexes on Computed Columns.

Any computed column that is used as a partitioning column of a partitioned table must be
explicitly marked PERSISTED.

DROP NOT FOR REPLICATION

Specifies that values are incremented in identity columns when replication agents perform
insert operations. This clause can be specified only if column_name is an identity column.

SPARSE

Indicates that the column is a sparse column. The storage of sparse columns is optimized for
null values. Sparse columns cannot be designated as NOT NULL. Converting a column from
sparse to nonsparse or from nonsparse to sparse locks the table for the duration of the
command execution. You may need to use the REBUILD clause to reclaim any space savings.
For additional restrictions and more information about sparse columns, see Using Sparse
Columns.

WITH CHECK | WITH NOCHECK

Specifies whether the data in the table is or is not validated against a newly added or re-
enabled FOREIGN KEY or CHECK constraint. If not specified, WITH CHECK is assumed for new
constraints, and WITH NOCHECK is assumed for re-enabled constraints.

If you do not want to verify new CHECK or FOREIGN KEY constraints against existing data,
use WITH NOCHECK. We do not recommend doing this, except in rare cases. The new
constraint will be evaluated in all later data updates. Any constraint violations that are
suppressed by WITH NOCHECK when the constraint is added may cause future updates to
fail if they update rows with data that does not comply with the constraint.

The query optimizer does not consider constraints that are defined WITH NOCHECK. Such
constraints are ignored until they are re-enabled by using ALTER TABLE table WITH
CHECK CHECK CONSTRAINT ALL.

ADD

Specifies that one or more column definitions, computed column definitions, or table
constraints are added.

DROP { [CONSTRAINT] constraint_name | COLUMN column_name }

Specifies that constraint_name or column_name is removed from the table. Multiple columns
and constraints can be listed.

The user-defined or system-supplied name of the constraint can be determined by querying
the sys.check_constraint, sys.default_constraints, sys.key_constraints, and
sys.foreign_keys catalog views.

A PRIMARY KEY constraint cannot be dropped if an XML index exists on the table.

A column cannot be dropped when it is:

• Used in an index.

http://msdn.microsoft.com/en-us/library/8d17ac9c-f3af-4bbb-9cc1-5cf647e994c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea7ddb87-f50b-46b6-9f5a-acab222a2ede(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea7ddb87-f50b-46b6-9f5a-acab222a2ede(SQL.110)�

 254

• Used in a CHECK, FOREIGN KEY, UNIQUE, or PRIMARY KEY constraint.

• Associated with a default that is defined with the DEFAULT keyword, or bound to a
default object.

• Bound to a rule.

Note
Dropping a column does not reclaim the disk space of the column. You may have to reclaim the disk
space of a dropped column when the row size of a table is near, or has exceeded, its limit. Reclaim
space by creating a clustered index on the table or rebuilding an existing clustered index by using
ALTER INDEX.

WITH <drop_clustered_constraint_option>

Specifies that one or more drop clustered constraint options are set.

MAXDOP = max_degree_of_parallelism

Overrides the max degree of parallelism configuration option only for the duration of the
operation. For more information, see Configure the max degree of parallelism
Server Configuration Option.

Use the MAXDOP option to limit the number of processors used in parallel plan execution.
The maximum is 64 processors.

max_degree_of_parallelism can be one of the following values:

1

Suppresses parallel plan generation.

>1

Restricts the maximum number of processors used in a parallel index operation to the
specified number.

0 (default)

Uses the actual number of processors or fewer based on the current system workload.

For more information, see Configuring Parallel Index Operations.

Note
Parallel index operations are not available in every edition of SQL Server. For more information, see
Features Supported by the Editions of SQL Server 2012.

ONLINE = { ON | OFF }

Specifies whether underlying tables and associated indexes are available for queries and data
modification during the index operation. The default is OFF. REBUILD can be performed as an
ONLINE operation.

ON

Long-term table locks are not held for the duration of the index operation. During the
main phase of the index operation, only an Intent Share (IS) lock is held on the source

http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�

 255

table. This enables queries or updates to the underlying table and indexes to continue. At
the start of the operation, a Shared (S) lock is held on the source object for a very short
time. At the end of the operation, for a short time, an S (Shared) lock is acquired on the
source if a nonclustered index is being created; or an SCH-M (Schema Modification) lock is
acquired when a clustered index is created or dropped online and when a clustered or
nonclustered index is being rebuilt. ONLINE cannot be set to ON when an index is being
created on a local temporary table. Only single-threaded heap rebuild operation is
allowed.

OFF

Table locks are applied for the duration of the index operation. An offline index operation
that creates, rebuilds, or drops a clustered index, or rebuilds or drops a nonclustered index,
acquires a Schema modification (Sch-M) lock on the table. This prevents all user access to
the underlying table for the duration of the operation. An offline index operation that
creates a nonclustered index acquires a Shared (S) lock on the table. This prevents updates
to the underlying table but allows read operations, such as SELECT statements. Multi-
threaded heap rebuild operations are allowed.

For more information, see How Online Index Operations Work.

Note
Online index operations are not available in every edition of SQL Server. For more information, see
Features Supported by the Editions of SQL Server 2012.

MOVE TO { partition_scheme_name (column_name [1, ... n]) | filegroup | "default" }

Specifies a location to move the data rows currently in the leaf level of the clustered index.
The table is moved to the new location. This option applies only to constraints that create a
clustered index.

Note
In this context, default is not a keyword. It is an identifier for the default filegroup and must be
delimited, as in MOVE TO "default" or MOVE TO [default]. If "default" is specified, the
QUOTED_IDENTIFIER option must be ON for the current session. This is the default setting. For more
information, see SET QUOTED_IDENTIFIER (Transact-SQL).

{ CHECK | NOCHECK } CONSTRAINT

Specifies that constraint_name is enabled or disabled. This option can only be used with
FOREIGN KEY and CHECK constraints. When NOCHECK is specified, the constraint is disabled
and future inserts or updates to the column are not validated against the constraint
conditions. DEFAULT, PRIMARY KEY, and UNIQUE constraints cannot be disabled.

ALL

Specifies that all constraints are either disabled with the NOCHECK option or enabled with
the CHECK option.

http://msdn.microsoft.com/en-us/library/eef0c9d1-790d-46e4-a758-d0bf6742e6ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�

 256

{ ENABLE | DISABLE } TRIGGER

Specifies that trigger_name is enabled or disabled. When a trigger is disabled it is still defined
for the table; however, when INSERT, UPDATE, or DELETE statements are executed against the
table, the actions in the trigger are not performed until the trigger is re-enabled.

ALL

Specifies that all triggers in the table are enabled or disabled.

trigger_name

Specifies the name of the trigger to disable or enable.

{ ENABLE | DISABLE } CHANGE_TRACKING

Specifies whether change tracking is enabled disabled for the table. By default, change
tracking is disabled.

This option is available only when change tracking is enabled for the database. For more
information, see ALTER DATABASE SET Options (Transact-SQL).
To enable change tracking, the table must have a primary key.

WITH (TRACK_COLUMNS_UPDATED = { ON | OFF })

Specifies whether the Database Engine tracks which change tracked columns were updated.
The default value is OFF.

SWITCH [PARTITION source_partition_number_expression] TO [schema_name.]
target_table [PARTITION target_ partition_number_expression]

Switches a block of data in one of the following ways:

• Reassigns all data of a table as a partition to an already-existing partitioned table.

• Switches a partition from one partitioned table to another.

• Reassigns all data in one partition of a partitioned table to an existing non-partitioned
table.

If table is a partitioned table, source_partition_number_expression must be specified. If
target_table is partitioned, target_partition_number_expression must be specified. If
reassigning a table's data as a partition to an already-existing partitioned table, or switching
a partition from one partitioned table to another, the target partition must exist and it must
be empty.

If reassigning one partition's data to form a single table, the target table must already be
created and it must be empty. Both the source table or partition, and the target table or
partition, must reside in the same filegroup. The corresponding indexes, or index partitions,
must also reside in the same filegroup. Many additional restrictions apply to switching
partitions. table and target_table cannot be the same. target_table can be a multi-part
identifier.

source_partition_number_expression and target_partition_number_expression are constant
expressions that can reference variables and functions. These include user-defined type
variables and user-defined functions. They cannot reference Transact-SQL expressions.

 257

For SWITCH restriction when using replication, see Replicate Partitioned Tables and
Indexes.

SET (FILESTREAM_ON = { partition_scheme_name | filestream_filegroup_name |
"default" | "NULL" })

Specifies where FILESTREAM data is stored.

ALTER TABLE with the SET FILESTREAM_ON clause will succeed only if the table has no
FILESTREAM columns. The FILESTREAM columns can be added by using a second ALTER
TABLE statement.

If partition_scheme_name is specified, the rules for CREATE TABLE apply. The table should
already be partitioned for row data, and its partition scheme must use the same partition
function and columns as the FILESTREAM partition scheme.

filestream_filegroup_name specifies the name of a FILESTREAM filegroup. The filegroup must
have one file that is defined for the filegroup by using a CREATE DATABASE or ALTER
DATABASE statement, or an error is raised.

"default" specifies the FILESTREAM filegroup with the DEFAULT property set. If there is no
FILESTREAM filegroup, an error is raised.

"NULL" specifies that all references to FILESTREAM filegroups for the table will be removed.
All FILESTREAM columns must be dropped first. You must use SET FILESTREAM_ON="NULL"
to delete all FILESTREAM data that is associated with a table.

SET (LOCK_ESCALATION = { AUTO | TABLE | DISABLE })

Specifies the allowed methods of lock escalation for a table.

AUTO

This option allows SQL Server Database Engine to select the lock escalation granularity that
is appropriate for the table schema.

• If the table is partitioned, lock escalation will be allowed to partition. After the lock is
escalated to the partition level, the lock will not be escalated later to TABLE
granularity.

• If the table is not partitioned, the lock escalation will be done to the TABLE granularity.

TABLE

Lock escalation will be done at table-level granularity regardless whether the table is
partitioned or not partitioned. This behavior is the same as in SQL Server 2005. TABLE is
the default value.

DISABLE

Prevents lock escalation in most cases. Table-level locks are not completely disallowed. For
example, when you are scanning a table that has no clustered index under the serializable
isolation level, Database Engine must take a table lock to protect data integrity.

REBUILD

Use the REBUILD WITH syntax to rebuild an entire table including all the partitions in a

http://msdn.microsoft.com/en-us/library/c9fa81b1-6c81-4c11-927b-fab16301a8f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c9fa81b1-6c81-4c11-927b-fab16301a8f5(SQL.110)�

 258

partitioned table. If the table has a clustered index, the REBUILD option rebuilds the clustered
index. REBUILD can be performed as an ONLINE operation.

Use the REBUILD PARTITION syntax to rebuild a single partition in a partitioned table.

PARTITION = ALL

Rebuilds all partitions when changing the partition compression settings.

REBUILD WITH (<rebuild_option>)

All options apply to a table with a clustered index. If the table does not have a clustered
index, the heap structure is only affected by some of the options.

When a specific compression setting is not specified with the REBUILD operation, the current
compression setting for the partition is used. To return the current setting, query the
data_compression column in the sys.partitions catalog view.

For complete descriptions of the rebuild options, see index_option (Transact-SQL).

DATA_COMPRESSION

Specifies the data compression option for the specified table, partition number, or range of
partitions. The options are as follows:

NONE

Table or specified partitions are not compressed.

ROW

Table or specified partitions are compressed by using row compression.

PAGE

Table or specified partitions are compressed by using page compression.

To rebuild multiple partitions at the same time, see index_option (Transact-SQL). If the
table does not have a clustered index, changing the data compression rebuilds the heap and
the nonclustered indexes. For more information about compression, see Data
Compression.

column_set_name XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

Is the name of the column set. A column set is an untyped XML representation that combines
all of the sparse columns of a table into a structured output. A column set cannot be added
to a table that contains sparse columns. For more information about column sets, see Using
Sparse Column Sets.

{ ENABLE | DISABLE } FILETABLE_NAMESPACE

Enables or disables the system-defined constraints on a FileTable. Can only be used with a
FileTable.

SET (FILETABLE_DIRECTORY = directory_name)

Specifies the Windows-compatible FileTable directory name. This name should be unique
among all the FileTable directory names in the database. Uniqueness comparison is case-

http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/a4f9de95-dc8f-4ad8-b957-137e32bfa500(SQL.110)�
http://msdn.microsoft.com/en-us/library/a4f9de95-dc8f-4ad8-b957-137e32bfa500(SQL.110)�

 259

insensitive, regardless of SQL collation settings. Can only be used with a FileTable.

Remarks
To add new rows of data, use INSERT. To remove rows of data, use DELETE or TRUNCATE TABLE.
To change the values in existing rows, use UPDATE.
If there are any execution plans in the procedure cache that reference the table, ALTER TABLE
marks them to be recompiled on their next execution.

Changing the Size of a Column
You can change the length, precision, or scale of a column by specifying a new size for the
column data type in the ALTER COLUMN clause. If data exists in the column, the new size cannot
be smaller than the maximum size of the data. Also, the column cannot be defined in an index,
unless the column is a varchar, nvarchar, or varbinary data type and the index is not the result
of a PRIMARY KEY constraint. See example P.

Locks and ALTER TABLE
The changes specified in ALTER TABLE are implemented immediately. If the changes require
modifications of the rows in the table, ALTER TABLE updates the rows. ALTER TABLE acquires a
schema modify (SCH-M) lock on the table to make sure that no other connections reference
even the metadata for the table during the change, except online index operations that require a
very short SCH-M lock at the end. In an ALTER TABLE…SWITCH operation, the lock is acquired
on both the source and target tables. The modifications made to the table are logged and fully
recoverable. Changes that affect all the rows in very large tables, such as dropping a column or,
on some editions of SQL Server, adding a NOT NULL column with a default value, can take a
long time to complete and generate many log records. These ALTER TABLE statements should
be executed with the same care as any INSERT, UPDATE, or DELETE statement that affects many
rows.

Adding NOT NULL Columns as an Online Operation
In SQL Server 2012 Enterprise Edition, adding a NOT NULL column with a default value is an
online operation when the default value is a runtime constant. This means that the operation is
completed almost instantaneously regardless of the number of rows in the table. This is because
the existing rows in the table are not updated during the operation; instead, the default value is
stored only in the metadata of the table and the value is looked up as needed in queries that
access these rows. This behavior is automatic; no additional syntax is required to implement the
online operation beyond the ADD COLUMN syntax. A runtime constant is an expression that
produces the same value at runtime for each row in the table regardless of its determinism. For
example, the constant expression "My temporary data", or the system function
GETUTCDATETIME() are runtime constants. In contrast, the functions NEWID() or
NEWSEQUENTIALID() are not runtime constants because a unique value is produced for each
row in the table. Adding a NOT NULL column with a default value that is not a runtime constant
is always performed offline and an exclusive (SCH-M) lock is acquired for the duration of the
operation.

http://msdn.microsoft.com/en-us/library/1054c76e-0fd5-4131-8c07-a6c5d024af50(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed6b2105-0f35-408f-ba51-e36ade7ad5b2(SQL.110)�
http://msdn.microsoft.com/en-us/library/40e63302-0c68-4593-af3e-6d190181fee7(SQL.110)�

 260

While the existing rows reference the value stored in metadata, the default value is stored on
the row for any new rows that are inserted and do not specify another value for the column. The
default value stored in metadata is moved to an existing row when the row is updated (even if
the actual column is not specified in the UPDATE statement), or if the table or clustered index is
rebuilt.
Columns of type varchar(max), nvarchar(max), varbinary(max), xml, text, ntext, image,
hierarchyid, geometry, geography, or CLR UDTS, cannot be added in an online operation. A
column cannot be added online if doing so causes the maximum possible row size to exceed the
8,060 byte limit. The column is added as an offline operation in this case.

Parallel Plan Execution
In Microsoft SQL Server 2012 Enterprise, the number of processors employed to run a single
ALTER TABLE ADD (index based) CONSTRAINT or DROP (clustered index) CONSTRAINT
statement is determined by the max degree of parallelism configuration option and the
current workload. If the Database Engine detects that the system is busy, the degree of
parallelism of the operation is automatically reduced before statement execution starts. You can
manually configure the number of processors that are used to run the statement by specifying
the MAXDOP option. For more information, see Configure the max degree of parallelism Server
Configuration Option.

Partitioned Tables
In addition to performing SWITCH operations that involve partitioned tables, ALTER TABLE can
be used to change the state of the columns, constraints, and triggers of a partitioned table just
like it is used for nonpartitioned tables. However, this statement cannot be used to change the
way the table itself is partitioned. To repartition a partitioned table, use ALTER PARTITION
SCHEME and ALTER PARTITION FUNCTION. Additionally, you cannot change the data type of a
column of a partitioned table.

Restrictions on Tables with Schema-Bound Views
The restrictions that apply to ALTER TABLE statements on tables with schema-bound views are
the same as the restrictions currently applied when modifying tables with a simple index. Adding
a column is allowed. However, removing or changing a column that participates in any schema-
bound view is not allowed. If the ALTER TABLE statement requires changing a column used in a
schema-bound view, ALTER TABLE fails and the Database Engine raises an error message. For
more information about schema binding and indexed views, see CREATE VIEW.
Adding or removing triggers on base tables is not affected by creating a schema-bound view
that references the tables.

Indexes and ALTER TABLE
Indexes created as part of a constraint are dropped when the constraint is dropped. Indexes that
were created with CREATE INDEX must be dropped with DROP INDEX. The ALTER INDEX
statement can be used to rebuild an index part of a constraint definition; the constraint does not
have to be dropped and added again with ALTER TABLE.

http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�

 261

All indexes and constraints based on a column must be removed before the column can be
removed.
When a constraint that created a clustered index is deleted, the data rows that were stored in
the leaf level of the clustered index are stored in a nonclustered table. You can drop the
clustered index and move the resulting table to another filegroup or partition scheme in a single
transaction by specifying the MOVE TO option. The MOVE TO option has the following
restrictions:
• MOVE TO is not valid for indexed views or nonclustered indexes.
• The partition scheme or filegroup must already exist.
• If MOVE TO is not specified, the table will be located in the same partition scheme or

filegroup as was defined for the clustered index.
When you drop a clustered index, you can specify ONLINE = ON option so the DROP INDEX
transaction does not block queries and modifications to the underlying data and associated
nonclustered indexes.
ONLINE = ON has the following restrictions:
• ONLINE = ON is not valid for clustered indexes that are also disabled. Disabled indexes must

be dropped by using ONLINE = OFF.
• Only one index at a time can be dropped.
• ONLINE = ON is not valid for indexed views, nonclustered indexes or indexes on local temp

tables.
Temporary disk space equal to the size of the existing clustered index is required to drop a
clustered index. This additional space is released as soon as the operation is completed.

The options listed under <drop_clustered_constraint_option> apply to clustered indexes
on tables and cannot be applied to clustered indexes on views or nonclustered indexes.

Replicating Schema Changes
By default, when you run ALTER TABLE on a published table at a SQL Server Publisher, that
change is propagated to all SQL Server Subscribers. This functionality has some restrictions and
can be disabled. For more information, see Making Schema Changes on Publication Databases.

Data Compression
System tables cannot be enabled for compression. . If the table is a heap, the rebuild operation
for ONLINE mode will be single threaded. Use OFFLINE mode for a multi-threaded heap rebuild
operation. For a more information about data compression, see Creating Compressed Tables
and Indexes.
To evaluate how changing the compression state will affect a table, an index, or a partition, use
the sp_estimate_data_compression_savings stored procedure.
The following restrictions apply to partitioned tables:

Note

http://msdn.microsoft.com/en-us/library/926c88d7-a844-402f-bcb9-db49e5013b69(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/6f6c7150-e788-45e0-9d08-d6c2f4a33729(SQL.110)�

 262

• You cannot change the compression setting of a single partition if the table has nonaligned
indexes.

• The ALTER TABLE <table> REBUILD PARTITION ... syntax rebuilds the specified partition.
• The ALTER TABLE <table> REBUILD WITH ... syntax rebuilds all partitions.

Compatibility Support
The ALTER TABLE statement allows only two-part (schema.object) table names. In SQL Server
2012, specifying a table name using the following formats fails at compile time with error 117.
• server.database.schema.table
• .database.schema.table
• ..schema.table
In earlier versions specifying the format server.database.schema.table returned error 4902.
Specifying the format .database.schema.table or the format ..schema.table succeeded.
To resolve the problem, remove the use of a 4-part prefix.

Permissions
Requires ALTER permission on the table.
ALTER TABLE permissions apply to both tables involved in an ALTER TABLE SWITCH statement.
Any data that is switched inherits the security of the target table.
If any columns in the ALTER TABLE statement are defined to be of a common language runtime
(CLR) user-defined type or alias data type, REFERENCES permission on the type is required.

Examples

A. Adding a new column
The following example adds a column that allows null values and has no values provided
through a DEFAULT definition. In the new column, each row will have NULL.
CREATE TABLE dbo.doc_exa (column_a INT) ;

GO

ALTER TABLE dbo.doc_exa ADD column_b VARCHAR(20) NULL ;

GO

EXEC sp_help doc_exa ;

GO

DROP TABLE dbo.doc_exa ;

GO

B. Dropping a column
The following example modifies a table to remove a column.
CREATE TABLE dbo.doc_exb (column_a INT, column_b VARCHAR(20) NULL) ;

GO

 263

ALTER TABLE dbo.doc_exb DROP COLUMN column_b ;

GO

EXEC sp_help doc_exb ;

GO

DROP TABLE dbo.doc_exb ;

GO

C. Changing the data type of a column
The following example changes a column of a table from INT to DECIMAL.
CREATE TABLE dbo.doc_exy (column_a INT) ;

GO

INSERT INTO dbo.doc_exy (column_a) VALUES (10) ;

GO

ALTER TABLE dbo.doc_exy ALTER COLUMN column_a DECIMAL (5, 2) ;

GO

DROP TABLE dbo.doc_exy ;

GO

D. Adding a column with a constraint
The following example adds a new column with a UNIQUE constraint.
CREATE TABLE dbo.doc_exc (column_a INT) ;

GO

ALTER TABLE dbo.doc_exc ADD column_b VARCHAR(20) NULL

 CONSTRAINT exb_unique UNIQUE ;

GO

EXEC sp_help doc_exc ;

GO

DROP TABLE dbo.doc_exc ;

GO

E. Adding an unverified CHECK constraint to an existing column
The following example adds a constraint to an existing column in the table. The column has a
value that violates the constraint. Therefore, WITH NOCHECK is used to prevent the constraint
from being validated against existing rows, and to allow for the constraint to be added.
CREATE TABLE dbo.doc_exd (column_a INT) ;

GO

INSERT INTO dbo.doc_exd VALUES (-1) ;

GO

 264

ALTER TABLE dbo.doc_exd WITH NOCHECK

ADD CONSTRAINT exd_check CHECK (column_a > 1) ;

GO

EXEC sp_help doc_exd ;

GO

DROP TABLE dbo.doc_exd ;

GO

F. Adding a DEFAULT constraint to an existing column
The following example creates a table with two columns and inserts a value into the first column,
and the other column remains NULL. A DEFAULT constraint is then added to the second column.
To verify that the default is applied, another value is inserted into the first column, and the table
is queried.
CREATE TABLE dbo.doc_exz (column_a INT, column_b INT) ;

GO

INSERT INTO dbo.doc_exz (column_a)VALUES (7) ;

GO

ALTER TABLE dbo.doc_exz

ADD CONSTRAINT col_b_def

DEFAULT 50 FOR column_b ;

GO

INSERT INTO dbo.doc_exz (column_a) VALUES (10) ;

GO

SELECT * FROM dbo.doc_exz ;

GO

DROP TABLE dbo.doc_exz ;

GO

G. Adding several columns with constraints
The following example adds several columns with constraints defined with the new column. The
first new column has an IDENTITY property. Each row in the table has new incremental values in
the identity column.
CREATE TABLE dbo.doc_exe (column_a INT CONSTRAINT column_a_un UNIQUE) ;

GO

ALTER TABLE dbo.doc_exe ADD

-- Add a PRIMARY KEY identity column.

column_b INT IDENTITY

 265

CONSTRAINT column_b_pk PRIMARY KEY,

-- Add a column that references another column in the same table.

column_c INT NULL

CONSTRAINT column_c_fk

REFERENCES doc_exe(column_a),

-- Add a column with a constraint to enforce that

-- nonnull data is in a valid telephone number format.

column_d VARCHAR(16) NULL

CONSTRAINT column_d_chk

CHECK

(column_d LIKE '[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]' OR

column_d LIKE

'([0-9][0-9][0-9]) [0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]'),

-- Add a nonnull column with a default.

column_e DECIMAL(3,3)

CONSTRAINT column_e_default

DEFAULT .081 ;

GO

EXEC sp_help doc_exe ;

GO

DROP TABLE dbo.doc_exe ;

GO

H. Adding a nullable column with default values
The following example adds a nullable column with a DEFAULT definition, and uses WITH
VALUES to provide values for each existing row in the table. If WITH VALUES is not used, each
row has the value NULL in the new column.
USE AdventureWorks2012 ;

GO

CREATE TABLE dbo.doc_exf (column_a INT) ;

GO

INSERT INTO dbo.doc_exf VALUES (1) ;

GO

 266

ALTER TABLE dbo.doc_exf

ADD AddDate smalldatetime NULL

CONSTRAINT AddDateDflt

DEFAULT GETDATE() WITH VALUES ;

GO

DROP TABLE dbo.doc_exf ;

GO

I. Disabling and re-enabling a constraint
The following example disables a constraint that limits the salaries accepted in the data.
NOCHECK CONSTRAINT is used with ALTER TABLE to disable the constraint and allow for an
insert that would typically violate the constraint. CHECK CONSTRAINT re-enables the constraint.
CREATE TABLE dbo.cnst_example

(id INT NOT NULL,

 name VARCHAR(10) NOT NULL,

 salary MONEY NOT NULL

 CONSTRAINT salary_cap CHECK (salary < 100000)

);

-- Valid inserts

INSERT INTO dbo.cnst_example VALUES (1,'Joe Brown',65000);

INSERT INTO dbo.cnst_example VALUES (2,'Mary Smith',75000);

-- This insert violates the constraint.

INSERT INTO dbo.cnst_example VALUES (3,'Pat Jones',105000);

-- Disable the constraint and try again.

ALTER TABLE dbo.cnst_example NOCHECK CONSTRAINT salary_cap;

INSERT INTO dbo.cnst_example VALUES (3,'Pat Jones',105000);

-- Re-enable the constraint and try another insert; this will fail.

ALTER TABLE dbo.cnst_example CHECK CONSTRAINT salary_cap;

INSERT INTO dbo.cnst_example VALUES (4,'Eric James',110000) ;

J. Dropping a constraint
The following example removes a UNIQUE constraint from a table.
CREATE TABLE dbo.doc_exc (column_a INT

 267

CONSTRAINT my_constraint UNIQUE) ;

GO

ALTER TABLE dbo.doc_exc DROP CONSTRAINT my_constraint ;

GO

DROP TABLE dbo.doc_exc ;

GO

K. Switching partitions between tables
The following example creates a partitioned table, assuming that partition scheme myRangePS1
is already created in the database. Next, a non-partitioned table is created with the same
structure as the partitioned table and on the same filegroup as PARTITION 2 of table
PartitionTable. The data of PARTITION 2 of table PartitionTable is then switched into
table NonPartitionTable.

CREATE TABLE PartitionTable (col1 int, col2 char(10))

ON myRangePS1 (col1) ;

GO

CREATE TABLE NonPartitionTable (col1 int, col2 char(10))

ON test2fg ;

GO

ALTER TABLE PartitionTable SWITCH PARTITION 2 TO NonPartitionTable ;

GO

L. Disabling and re-enabling a trigger
The following example uses the DISABLE TRIGGER option of ALTER TABLE to disable the trigger
and allow for an insert that would typically violate the trigger. ENABLE TRIGGER is then used to
re-enable the trigger.
CREATE TABLE dbo.trig_example

(id INT,

name VARCHAR(12),

salary MONEY) ;

GO

-- Create the trigger.

CREATE TRIGGER dbo.trig1 ON dbo.trig_example FOR INSERT

AS

IF (SELECT COUNT(*) FROM INSERTED

WHERE salary > 100000) > 0

BEGIN

 268

 print 'TRIG1 Error: you attempted to insert a salary > $100,000'

 ROLLBACK TRANSACTION

END ;

GO

-- Try an insert that violates the trigger.

INSERT INTO dbo.trig_example VALUES (1,'Pat Smith',100001) ;

GO

-- Disable the trigger.

ALTER TABLE dbo.trig_example DISABLE TRIGGER trig1 ;

GO

-- Try an insert that would typically violate the trigger.

INSERT INTO dbo.trig_example VALUES (2,'Chuck Jones',100001) ;

GO

-- Re-enable the trigger.

ALTER TABLE dbo.trig_example ENABLE TRIGGER trig1 ;

GO

-- Try an insert that violates the trigger.

INSERT INTO dbo.trig_example VALUES (3,'Mary Booth',100001) ;

GO

M. Creating a PRIMARY KEY constraint with index options
The following example creates the PRIMARY KEY constraint
PK_TransactionHistoryArchive_TransactionID and sets the options FILLFACTOR, ONLINE,
and PAD_INDEX. The resulting clustered index will have the same name as the constraint.
USE AdventureWorks2012;

GO

ALTER TABLE Production.TransactionHistoryArchive WITH NOCHECK

ADD CONSTRAINT PK_TransactionHistoryArchive_TransactionID PRIMARY KEY
CLUSTERED (TransactionID)

WITH (FILLFACTOR = 75, ONLINE = ON, PAD_INDEX = ON);

GO

N. Dropping a PRIMARY KEY constraint in the ONLINE mode
The following example deletes a PRIMARY KEY constraint with the ONLINE option set to ON.
USE AdventureWorks2012;

GO

ALTER TABLE Production.TransactionHistoryArchive

 269

DROP CONSTRAINT PK_TransactionHistoryArchive_TransactionID

WITH (ONLINE = ON);

GO

O. Adding and dropping a FOREIGN KEY constraint
The following example creates the table ContactBackup, and then alters the table, first by
adding a FOREIGN KEY constraint that references the table Person.Person, then by dropping
the FOREIGN KEY constraint.
USE AdventureWorks2012 ;

GO

CREATE TABLE Person.ContactBackup

(ContactID int) ;

GO

ALTER TABLE Person.ContactBackup

ADD CONSTRAINT FK_ContactBacup_Contact FOREIGN KEY (ContactID)

 REFERENCES Person.Person (BusinessEntityID) ;

ALTER TABLE Person.ContactBackup

DROP CONSTRAINT FK_ContactBacup_Contact ;

GO

DROP TABLE Person.ContactBackup ;

P. Changing the size of a column
The following example increases the size of a varchar column and the precision and scale of a
decimal column. Because the columns contain data, the column size can only be increased. Also
notice that col_a is defined in a unique index. The size of col_a can still be increased because
the data type is a varchar and the index is not the result of a PRIMARY KEY constraint.

IF OBJECT_ID ('dbo.doc_exy', 'U') IS NOT NULL

 DROP TABLE dbo.doc_exy;

GO

-- Create a two-column table with a unique index on the varchar column.

CREATE TABLE dbo.doc_exy (col_a varchar(5) UNIQUE NOT NULL, col_b decimal

(4,2));

GO

INSERT INTO dbo.doc_exy VALUES ('Test', 99.99);

GO

-- Verify the current column size.

SELECT name, TYPE_NAME(system_type_id), max_length, precision, scale

 270

FROM sys.columns WHERE object_id = OBJECT_ID(N'dbo.doc_exy');

GO

-- Increase the size of the varchar column.

ALTER TABLE dbo.doc_exy ALTER COLUMN col_a varchar(25);

GO

-- Increase the scale and precision of the decimal column.

ALTER TABLE dbo.doc_exy ALTER COLUMN col_b decimal (10,4);

GO

-- Insert a new row.

INSERT INTO dbo.doc_exy VALUES ('MyNewColumnSize', 99999.9999) ;

GO

-- Verify the current column size.

SELECT name, TYPE_NAME(system_type_id), max_length, precision, scale

FROM sys.columns WHERE object_id = OBJECT_ID(N'dbo.doc_exy');

Q. Allowing lock escalation on partitioned tables
The following example enables lock escalation to the partition level on a partitioned table. If the
table is not partitioned, lock escalation is to the TABLE level.

ALTER TABLE T1 SET (LOCK_ESCALATION = AUTO)

GO

R. Configuring change tracking on a table
The following example enables change tracking on the Person.Person table in the
AdventureWorks2012 database.
USE AdventureWorks2012;

ALTER TABLE Person.Person

ENABLE CHANGE_TRACKING;

The following example enables change tracking and enables the tracking of the columns that
are updated during a change.
USE AdventureWorks2012;

ALTER TABLE Person.Person

ENABLE CHANGE_TRACKING

WITH (TRACK_COLUMNS_UPDATED = ON)

The following example disables change tracking on the Person.Person table in the
AdventureWorks2012 database:
USE AdventureWorks2012;

ALTER TABLE Person.Person

 271

DISABLE CHANGE_TRACKING;

S. Modifying a table to change the compression
The following example changes the compression of a nonpartitioned table. The heap or
clustered index will be rebuilt. If the table is a heap, all nonclustered indexes will be rebuilt.
ALTER TABLE T1

REBUILD WITH (DATA_COMPRESSION = PAGE);

The following example changes the compression of a partitioned table. The REBUILD
PARTITION = 1 syntax causes only partition number 1 to be rebuilt.

ALTER TABLE PartitionTable1

REBUILD PARTITION = 1 WITH (DATA_COMPRESSION = NONE) ;

GO

The same operation using the following alternate syntax causes all partitions in the table to be
rebuilt.

ALTER TABLE PartitionTable1

REBUILD PARTITION = ALL

WITH (DATA_COMPRESSION = PAGE ON PARTITIONS(1)) ;

For additional data compression examples, see Creating Compressed Tables and Indexes.

T. Adding a sparse column
The following examples show adding and modifying sparse columns in table T1. The code to
create table T1 is as follows.

CREATE TABLE T1

(C1 int PRIMARY KEY,

C2 varchar(50) SPARSE NULL,

C3 int SPARSE NULL,

C4 int) ;

GO

To add an additional sparse column C5, execute the following statement.

ALTER TABLE T1

ADD C5 char(100) SPARSE NULL ;

GO

To convert the C4 non-sparse column to a sparse column, execute the following statement.

ALTER TABLE T1

ALTER COLUMN C4 ADD SPARSE ;

GO

http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�

 272

To convert the C4 sparse column to a nonsparse column, execute the following statement.

ALTER TABLE T1

ALTER COLUMN C4 DROP SPARSE;

GO

U. Adding a column set
The following examples show adding a column to table T2. A column set cannot be added to a
table that already contains sparse columns. The code to create table T2 is as follows.
CREATE TABLE T2

(C1 int PRIMARY KEY,

C2 varchar(50) NULL,

C3 int NULL,

C4 int) ;

GO

The following three statements add a column set named CS, and then modify columns C2 and
C3 to SPARSE.

ALTER TABLE T2

ADD CS XML COLUMN_SET FOR ALL_SPARSE_COLUMNS ;

GO

ALTER TABLE T2

ALTER COLUMN C2 ADD SPARSE ;

GO

ALTER TABLE T2

ALTER COLUMN C3 ADD SPARSE ;

GO

V. Changing column collation
The following example shows how to change the collation of a column. First we create table T3
with default user collations:

CREATE TABLE T3

(C1 int PRIMARY KEY,

C2 varchar(50) NULL,

C3 int NULL,

C4 int) ;

 273

GO

Next, column C2 collation is changed to Latin1_General_BIN. Note that the data type is required,
even though it is not changed.

ALTER TABLE T3

ALTER COLUMN C2 varchar(50) COLLATE Latin1_General_BIN;

GO

See Also
sys.tables (Transact-SQL)
sp_rename
CREATE TABLE
DROP TABLE
sp_help
ALTER PARTITION SCHEME
ALTER PARTITION FUNCTION
EVENTDATA

column_definition
Specifies the properties of a column that are added to a table by using ALTER TABLE.

 Transact-SQL Syntax Conventions
Syntax

column_name [type_schema_name.] type_name
 [
 ({ precision [, scale] | max |
 [{ CONTENT | DOCUMENT }] xml_schema_collection })
]
 [FILESTREAM]
 [
 [CONSTRAINT constraint_name] DEFAULT constant_expression
 [WITH VALUES]
 | IDENTITY [(seed , increment)] [NOT FOR REPLICATION]
]
 [ROWGUIDCOL]
 [COLLATE < collation_name >]

http://msdn.microsoft.com/en-us/library/8c42eba1-c19f-4045-ac82-b97a5e994090(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc3548f0-143f-404e-a2e9-0a15960fc8ed(SQL.110)�
http://msdn.microsoft.com/en-us/library/913cd5d4-39a3-4a4b-a926-75ed32878884(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 274

 [<column_constraint> [...n]]
Arguments
column_name

Is the name of the column to be altered, added, or dropped. column_name can consist of 1
through 128 characters. For new columns, created with a timestamp data type, column_name
can be omitted. If no column_name is specified for a timestamp data type column, the name
timestamp is used.

[type_schema_name.] type_name

Is the data type for the column that is added and the schema to which it belongs.

type_name can be:

• A Microsoft SQL Server system data type.

• An alias data type based on a SQL Server system data type. Alias data types must be
created by using CREATE TYPE before they can be used in a table definition.

• A Microsoft .NET Framework user-defined type and the schema to which it belongs. A
.NET Framework user-defined type must be created by using CREATE TYPE before it can
be used in a table definition.

If type_schema_name is not specified, the Microsoft Database Engine references type_name
in the following order:

• The SQL Server system data type.

• The default schema of the current user in the current database.

• The dbo schema in the current database.

precision

Is the precision for the specified data type. For more information about valid precision values,
see Precision, Scale, and Length.

scale

Is the scale for the specified data type. For more information about valid scale values, see
Controlling Constraints, Identities, and Triggers with NOT FOR REPLICATION.

max

Applies only to the varchar, nvarchar, and varbinary data types. These are used for storing
2^31 bytes of character and binary data, and 2^30 bytes of Unicode data.

CONTENT

Specifies that each instance of the xml data type in column_name can comprise multiple top-
level elements. CONTENT applies only to the xml data type and can be specified only if
xml_schema_collection is also specified. If this is not specified, CONTENT is the default
behavior.

DOCUMENT

Specifies that each instance of the xml data type in column_name can comprise only one

http://msdn.microsoft.com/en-us/library/fbc9ad2c-0d3b-4e98-8fdd-4d912328e40a(SQL.110)�
http://msdn.microsoft.com/en-us/library/fbc9ad2c-0d3b-4e98-8fdd-4d912328e40a(SQL.110)�

 275

top-level element. DOCUMENT applies only to the xml data type and can be specified only if
xml_schema_collection is also specified.

xml_schema_collection

Applies only to the xml data type for associating an XML schema collection with the type.
Before typing an xml column to a schema, the schema must first be created in the database
by using CREATE XML SCHEMA COLLECTION.

FILESTREAM

Optionally specifies the FILESTREAM storage attribute for column that has a type_name of
varbinary(max).

When FILESTREAM is specified for a column, the table must also have a column of the
uniqueidentifier data type that has the ROWGUIDCOL attribute. This column must not allow
null values and must have either a UNIQUE or PRIMARY KEY single-column constraint. The
GUID value for the column must be supplied either by an application when data is being
inserted, or by a DEFAULT constraint that uses the NEWID () function.

The ROWGUIDCOL column cannot be dropped and the related constraints cannot be
changed while there is a FILESTREAM column defined for the table. The ROWGUIDCOL
column can be dropped only after the last FILESTREAM column is dropped.

When the FILESTREAM storage attribute is specified for a column, all values for that column
are stored in a FILESTREAM data container on the file system.

For an example that shows how to use column definition, see FILESTREAM (SQL Server).

[CONSTRAINT constraint_name]

Specifies the start of a DEFAULT definition. To maintain compatibility with earlier versions of
SQL Server, a constraint name can be assigned to a DEFAULT. constraint_name must follow
the rules for identifiers, except that the name cannot start with a number sign (#). If
constraint_name is not specified, a system-generated name is assigned to the DEFAULT
definition.

DEFAULT

Is a keyword that specifies the default value for the column. DEFAULT definitions can be used
to provide values for a new column in the existing rows of data. DEFAULT definitions cannot
be applied to timestamp columns, or columns with an IDENTITY property. If a default value
is specified for a user-defined type column, the type should support an implicit conversion
from constant_expression to the user-defined type.

constant_expression

Is a literal value, a NULL, or a system function used as the default column value. If used in
conjunction with a column defined to be of a .NET Framework user-defined type, the
implementation of the type must support an implicit conversion from the
constant_expression to the user-defined type.

http://msdn.microsoft.com/en-us/library/9a5a8166-bcbe-4680-916c-26276253eafa(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 276

WITH VALUES

Specifies that the value given in DEFAULT constant_expression is stored in a new column
added to existing rows. If the added column allows null values and WITH VALUES is specified,
the default value is stored in the new column, added to existing rows. If WITH VALUES is not
specified for columns that allow nulls, the value NULL is stored in the new column in existing
rows. If the new column does not allow nulls, the default value is stored in new rows
regardless of whether WITH VALUES is specified.

IDENTITY

Specifies that the new column is an identity column. The SQL Server Database Engine
provides a unique, incremental value for the column. When you add identifier columns to
existing tables, the identity numbers are added to the existing rows of the table with the seed
and increment values. The order in which the rows are updated is not guaranteed. Identity
numbers are also generated for any new rows that are added.

Identity columns are commonly used in conjunction with PRIMARY KEY constraints to serve
as the unique row identifier for the table. The IDENTITY property can be assigned to a
tinyint, smallint, int, bigint, decimal(p,0), or numeric(p,0) column. Only one identity
column can be created per table. The DEFAULT keyword and bound defaults cannot be used
with an identity column. Either both the seed and increment must be specified, or neither. If
neither are specified, the default is (1,1). You cannot modify an existing table column to add
the IDENTITY property.

Note
Adding an identity column to a published table is not supported because it can result in
nonconvergence when the column is replicated to the Subscriber. The values in the identity column at
the Publisher depend on the order in which the rows for the affected table are physically stored. The
rows might be stored differently at the Subscriber; therefore, the value for the identity column can be
different for the same rows..

To disable the IDENTITY property of a column by allowing values to be explicitly inserted, use
SET IDENTITY_INSERT.

seed

Is the value used for the first row loaded into the table.

increment

Is the incremental value added to the identity value of the previous row that is loaded.

NOT FOR REPLICATION

Can be specified for the IDENTITY property. If this clause is specified for the IDENTITY
property, values are not incremented in identity columns when replication agents perform
insert operations.

ROWGUIDCOL

Specifies that the column is a row globally unique identifier column. ROWGUIDCOL can only

http://msdn.microsoft.com/en-us/library/a5dd49f2-45c7-44a8-b182-e0a5e5c373ee(SQL.110)�

 277

be assigned to a uniqueidentifier column, and only one uniqueidentifier column per table
can be designated as the ROWGUIDCOL column. ROWGUIDCOL cannot be assigned to
columns of user-defined data types.

ROWGUIDCOL does not enforce uniqueness of the values stored in the column. Also,
ROWGUIDCOL does not automatically generate values for new rows that are inserted into the
table. To generate unique values for each column, either use the NEWID function on INSERT
statements or specify the NEWID function as the default for the column. For more
information, see NEWID (Transact-SQL)and INSERT (Transact-SQL).

COLLATE < collation_name >

Specifies the collation of the column. If not specified, the column is assigned the default
collation of the database. Collation name can be either a Windows collation name or an SQL
collation name. For a list and more information, see Windows Collation Name and SQL
Collation Name.

The COLLATE clause can be used to specify the collations only of columns of the char,
varchar, nchar, and nvarchar data types.

For more information about the COLLATE clause, see COLLATE.

Remarks
If a column is added having a uniqueidentifier data type, it can be defined with a default that
uses the NEWID() function to supply the unique identifier values in the new column for each
existing row in the table.
The Database Engine does not enforce an order for specifying DEFAULT, IDENTITY,
ROWGUIDCOL, or column constraints in a column definition.
ALTER TABLE statement will fail if adding the column will cause the data row size to exceed 8060
bytes.
Examples
For examples, see ALTER TABLE (Transact-SQL).
See Also
ALTER TABLE

column_constraint
Specifies the properties of a PRIMARY KEY, FOREIGN KEY, UNIQUE, or CHECK constraint that is
part of a new column definition added to a table by using ALTER TABLE.

 Transact-SQL Syntax Conventions
Syntax

[CONSTRAINT constraint_name]
{
 [NULL | NOT NULL]

http://msdn.microsoft.com/en-us/library/f7014e60-96d5-457e-afc3-72b60ba20c0f(SQL.110)�
http://msdn.microsoft.com/en-us/library/1054c76e-0fd5-4131-8c07-a6c5d024af50(SQL.110)�
http://msdn.microsoft.com/en-us/library/acceef84-2c68-46e2-a021-be019b7ab14e(SQL.110)�
http://msdn.microsoft.com/en-us/library/56483d24-add7-483d-9b96-c6fda460ddbc(SQL.110)�
http://msdn.microsoft.com/en-us/library/56483d24-add7-483d-9b96-c6fda460ddbc(SQL.110)�
http://msdn.microsoft.com/en-us/library/76763ac8-3e0d-4bbb-aa53-f5e7da021daa(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 278

 { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 [WITH FILLFACTOR = fillfactor]
 [WITH (index_option [, ...n])]
 [ON { partition_scheme_name (partition_column_name)
 | filegroup | "default" }]
 | [FOREIGN KEY]
 REFERENCES [schema_name .] referenced_table_name
 [(ref_column)]
 [ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [NOT FOR REPLICATION]
 | CHECK [NOT FOR REPLICATION] (logical_expression)
}
Arguments
CONSTRAINT

Specifies the start of the definition for a PRIMARY KEY, UNIQUE, FOREIGN KEY, or CHECK
constraint.

constraint_name

Is the name of the constraint. Constraint names must follow the rules for identifiers, except
that the name cannot start with a number sign (#). If constraint_name is not supplied, a
system-generated name is assigned to the constraint.

NULL | NOT NULL

Specifies whether the column can accept null values. Columns that do not allow null values
can be added only if they have a default specified. If the new column allows null values and
no default is specified, the new column contains NULL for each row in the table. If the new
column allows null values and a default definition is added with the new column, the WITH
VALUES option can be used to store the default value in the new column for each existing
row in the table.

If the new column does not allow null values, a DEFAULT definition must be added with the
new column. The new column automatically loads with the default value in the new columns
in each existing row.

When the addition of a column requires physical changes to the data rows of a table, such as
adding DEFAULT values to each row, locks are held on the table while ALTER TABLE runs. This
affects the ability to change the content of the table while the lock is in place. In contrast,
adding a column that allows null values and does not specify a default value is a metadata
operation only, and involves no locks.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 279

When you use CREATE TABLE or ALTER TABLE, database and session settings influence and
possibly override the nullability of the data type that is used in a column definition. We
recommend that you always explicitly define noncomputed columns as NULL or NOT NULL
or, if you use a user-defined data type, that you allow the column to use the default
nullability of the data type. For more information, see Controlling Constraints,
Identities, and Triggers with NOT FOR REPLICATION.

PRIMARY KEY

Is a constraint that enforces entity integrity for a specified column or columns by using a
unique index. Only one PRIMARY KEY constraint can be created for each table.

UNIQUE

Is a constraint that provides entity integrity for a specified column or columns by using a
unique index.

CLUSTERED | NONCLUSTERED

Specifies that a clustered or nonclustered index is created for the PRIMARY KEY or UNIQUE
constraint. PRIMARY KEY constraints default to CLUSTERED. UNIQUE constraints default to
NONCLUSTERED.

If a clustered constraint or index already exists on a table, CLUSTERED cannot be specified. If
a clustered constraint or index already exists on a table, PRIMARY KEY constraints default to
NONCLUSTERED.

Columns that are of the ntext, text, varchar(max), nvarchar(max), varbinary(max), xml, or
image data types cannot be specified as columns for an index.

WITH FILLFACTOR = fillfactor

Specifies how full the Database Engine should make each index page used to store the index
data. User-specified fill factor values can be from 1 through 100. If a value is not specified,
the default is 0.

Important
Documenting WITH FILLFACTOR = fillfactor as the only index option that applies to PRIMARY KEY or
UNIQUE constraints is maintained for backward compatibility, but will not be documented in this
manner in future releases. Other index options can be specified in the index_option clause of ALTER
TABLE.

ON { partition_scheme_name (partition_column_name) | filegroup | "default" }

Specifies the storage location of the index created for the constraint. If
partition_scheme_name is specified, the index is partitioned and the partitions are mapped to
the filegroups that are specified by partition_scheme_name. If filegroup is specified, the index
is created in the named filegroup. If "default" is specified or if ON is not specified at all, the
index is created in the same filegroup as the table. If ON is specified when a clustered index is
added for a PRIMARY KEY or UNIQUE constraint, the whole table is moved to the specified
filegroup when the clustered index is created.

 280

In this context, default, is not a keyword. It is an identifier for the default filegroup and must
be delimited, as in ON "default" or ON [default]. If "default" is specified, the
QUOTED_IDENTIFIER option must be ON for the current session. This is the default setting.
For more information, see SET QUOTED_IDENTIFIER (Transact-SQL).

FOREIGN KEY REFERENCES

Is a constraint that provides referential integrity for the data in the column. FOREIGN KEY
constraints require that each value in the column exist in the specified column in the
referenced table.

schema_name

Is the name of the schema to which the table referenced by the FOREIGN KEY constraint
belongs.

referenced_table_name

Is the table referenced by the FOREIGN KEY constraint.

ref_column

Is a column in parentheses referenced by the new FOREIGN KEY constraint.

ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }

Specifies what action happens to rows in the table that is altered, if those rows have a
referential relationship and the referenced row is deleted from the parent table. The default is
NO ACTION.

NO ACTION

The SQL Server Database Engine raises an error and the delete action on the row in the
parent table is rolled back.

CASCADE

Corresponding rows are deleted from the referencing table if that row is deleted from the
parent table.

SET NULL

All the values that make up the foreign key are set to NULL when the corresponding row in
the parent table is deleted. For this constraint to execute, the foreign key columns must be
nullable.

SET DEFAULT

All the values that comprise the foreign key are set to their default values when the
corresponding row in the parent table is deleted. For this constraint to execute, all foreign
key columns must have default definitions. If a column is nullable and there is no explicit
default value set, NULL becomes the implicit default value of the column.

Do not specify CASCADE if the table will be included in a merge publication that uses logical
records. For more information about logical records, see Grouping Changes to Related
Rows with Logical Records.

http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�

 281

The ON DELETE CASCADE cannot be defined if an INSTEAD OF trigger ON DELETE already
exists on the table that is being altered.

For example, in the database, the ProductVendor table has a referential relationship
with the Vendor table. The ProductVendor.VendorID foreign key references the
Vendor.VendorID primary key.

If a DELETE statement is executed on a row in the Vendor table, and an ON DELETE CASCADE
action is specified for ProductVendor.VendorID, the Database Engine checks for one or
more dependent rows in the ProductVendor table. If any exist, the dependent rows in the
ProductVendor table will be deleted, in addition to the row referenced in the Vendor table.

Conversely, if NO ACTION is specified, the Database Engine raises an error and rolls back the
delete action on the Vendor row when there is at least one row in the ProductVendor table
that references it.

ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }

Specifies what action happens to rows in the table altered when those rows have a referential
relationship and the referenced row is updated in the parent table. The default is NO
ACTION.

NO ACTION

The Database Engine raises an error, and the update action on the row in the parent table
is rolled back.

CASCADE

Corresponding rows are updated in the referencing table when that row is updated in the
parent table.

SET NULL

All the values that make up the foreign key are set to NULL when the corresponding row in
the parent table is updated. For this constraint to execute, the foreign key columns must
be nullable.

SET DEFAULT

All the values that make up the foreign key are set to their default values when the
corresponding row in the parent table is updated. For this constraint to execute, all foreign
key columns must have default definitions. If a column is nullable and there is no explicit
default value set, NULL becomes the implicit default value of the column.

Do not specify CASCADE if the table will be included in a merge publication that uses logical
records. For more information about logical records, see Grouping Changes to Related
Rows with Logical Records.

ON UPDATE CASCADE, SET NULL, or SET DEFAULT cannot be defined if an INSTEAD OF
trigger ON UPDATE already exists on the table that is being altered.

For example, in the database, the ProductVendor table has a referential relationship
with the Vendor table. The ProductVendor.VendorID foreign key references the

http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�

 282

Vendor.VendorID primary key.

If an UPDATE statement is executed on a row in the Vendor table and an ON UPDATE
CASCADE action is specified for ProductVendor.VendorID, the Database Engine checks for
one or more dependent rows in the ProductVendor table. If any exist, the dependent row in
the ProductVendor table will be updated, in addition to the row referenced in the Vendor
table.

Conversely, if NO ACTION is specified, the Database Engine raises an error and rolls back the
update action on the Vendor row when there is at least one row in the ProductVendor table
that references it.

NOT FOR REPLICATION

Can be specified for FOREIGN KEY constraints and CHECK constraints. If this clause is
specified for a constraint, the constraint is not enforced when replication agents perform
insert, update, or delete operations.

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be
entered into a column or columns.

logical_expression

Is a logical expression used in a CHECK constraint and returns TRUE or FALSE.
logical_expression used with CHECK constraints cannot reference another table but can
reference other columns in the same table for the same row. The expression cannot reference
an alias data type.

Remarks
When FOREIGN KEY or CHECK constraints are added, all existing data is verified for constraint
violations unless the WITH NOCHECK option is specified. If any violations occur, ALTER TABLE
fails and an error is returned. When a new PRIMARY KEY or UNIQUE constraint is added to an
existing column, the data in the column or columns must be unique. If duplicate values are
found, ALTER TABLE fails. The WITH NOCHECK option has no effect when PRIMARY KEY or
UNIQUE constraints are added.
Each PRIMARY KEY and UNIQUE constraint generates an index. The number of UNIQUE and
PRIMARY KEY constraints cannot cause the number of indexes on the table to exceed 999
nonclustered indexes and 1 clustered index. Foreign key constraints do not automatically
generate an index. However, foreign key columns are frequently used in join criteria in queries
by matching the column or columns in the foreign key constraint of one table with the primary
or unique key column or columns in the other table. An index on the foreign key columns
enables the Database Engine to quickly find related data in the foreign key table.
Examples
For examples, see ALTER TABLE (Transact-SQL).
See Also
ALTER TABLE

 283

column_definition

computed_column_definition
Specifies the properties of a computed column that is added to a table by using ALTER TABLE.

 Transact-SQL Syntax Conventions
Syntax

column_name AS computed_column_expression
[PERSISTED [NOT NULL]]
[
 [CONSTRAINT constraint_name]
 { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 [WITH FILLFACTOR = fillfactor]
 [WITH (<index_option> [, ...n])]
 [ON { partition_scheme_name (partition_column_name) | filegroup
 | "default" }]
 | [FOREIGN KEY]
 REFERENCES ref_table [(ref_column)]
 [ON DELETE { NO ACTION | CASCADE }]
 [ON UPDATE { NO ACTION }]
 [NOT FOR REPLICATION]
 | CHECK [NOT FOR REPLICATION] (logical_expression)
]
Arguments
column_name

Is the name of the column to be altered, added, or dropped. column_name can be 1 through
128 characters. For new columns, column_name can be omitted for columns created with a
timestamp data type. If no column_name is specified for a timestamp data type column, the
name timestamp is used.

computed_column_expression

Is an expression that defines the value of a computed column. A computed column is a
virtual column that is not physically stored in the table but is computed from an expression
that uses other columns in the same table. For example, a computed column could have the
definition: cost AS price * qty. The expression can be a noncomputed column name, constant,
function, variable, and any combination of these connected by one or more operators. The

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 284

expression cannot be a subquery or include an alias data type.

Computed columns can be used in select lists, WHERE clauses, ORDER BY clauses, or any
other locations where regular expressions can be used, but with the following exceptions:

• A computed column cannot be used as a DEFAULT or FOREIGN KEY constraint definition
or with a NOT NULL constraint definition. However, if the computed column value is
defined by a deterministic expression and the data type of the result is allowed in index
columns, a computed column can be used as a key column in an index or as part of any
PRIMARY KEY or UNIQUE constraint.

For example, if the table has integer columns a and b, the computed column a + b may
be indexed, but computed column a + DATEPART(dd, GETDATE()) cannot be indexed,
because the value might change in subsequent invocations.

• A computed column cannot be the target of an INSERT or UPDATE statement.

Note
Because each row in a table can have different values for columns involved in a computed
column, the computed column may not have the same result for each row.

PERSISTED

Specifies that the Database Engine will physically store the computed values in the table, and
update the values when any other columns on which the computed column depends are
updated. Marking a computed column as PERSISTED allows an index to be created on a
computed column that is deterministic, but not precise. For more information, see
Controlling Constraints, Identities, and Triggers with NOT FOR REPLICATION.
Any computed columns used as partitioning columns of a partitioned table must be explicitly
marked PERSISTED. computed_column_expression must be deterministic when PERSISTED is
specified.

NULL | NOT NULL

Specifies whether null values are allowed in the column. NULL is not strictly a constraint but
can be specified like NOT NULL. NOT NULL can be specified for computed columns only if
PERSISTED is also specified.

CONSTRAINT

Specifies the start of the definition for a PRIMARY KEY or UNIQUE constraint.

constraint_name

Is the new constraint. Constraint names must follow the rules for identifiers, except that the
name cannot start with a number sign (#). If constraint_name is not supplied, a system-
generated name is assigned to the constraint.

PRIMARY KEY

Is a constraint that enforces entity integrity for a specified column or columns by using a
unique index. Only one PRIMARY KEY constraint can be created for each table.

http://msdn.microsoft.com/en-us/library/8d17ac9c-f3af-4bbb-9cc1-5cf647e994c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 285

UNIQUE

Is a constraint that provides entity integrity for a specific column or columns by using a
unique index.

CLUSTERED | NONCLUSTERED

Specifies that a clustered or nonclustered index is created for the PRIMARY KEY or UNIQUE
constraint. PRIMARY KEY constraints default to CLUSTERED. UNIQUE constraints default to
NONCLUSTERED.

If a clustered constraint or index already exists on a table, CLUSTERED cannot be specified. If
a clustered constraint or index already exists on a table, PRIMARY KEY constraints default to
NONCLUSTERED.

WITH FILLFACTOR = fillfactor

Specifies how full the SQL Server Database Engine should make each index page used to
store the index data. User-specified fillfactor values can be from 1 through 100. If a value is
not specified, the default is 0.

Important
Documenting WITH FILLFACTOR = fillfactor as the only index option that applies to PRIMARY KEY or
UNIQUE constraints is maintained for backward compatibility, but will not be documented in this
manner in future releases. Other index options can be specified in the index_option clause of ALTER
TABLE.

FOREIGN KEY REFERENCES

Is a constraint that provides referential integrity for the data in the column or columns.
FOREIGN KEY constraints require that each value in the column exists in the corresponding
referenced column or columns in the referenced table. FOREIGN KEY constraints can
reference only columns that are PRIMARY KEY or UNIQUE constraints in the referenced table
or columns referenced in a UNIQUE INDEX on the referenced table. Foreign keys on
computed columns must also be marked PERSISTED.

ref_table

Is the name of the table referenced by the FOREIGN KEY constraint.

(ref_column)

Is a column from the table referenced by the FOREIGN KEY constraint.

ON DELETE { NO ACTION | CASCADE }

Specifies what action happens to rows in the table if those rows have a referential
relationship and the referenced row is deleted from the parent table. The default is NO
ACTION.

NO ACTION

The Database Engine raises an error and the delete action on the row in the parent table is
rolled back.

 286

CASCADE

Corresponding rows are deleted from the referencing table if that row is deleted from the
parent table.

For example, in the database, the ProductVendor table has a referential relationship
with the Vendor table. The ProductVendor.BusinessEntityID foreign key references the
Vendor.BusinessEntityID primary key.

If a DELETE statement is executed on a row in the Vendor table, and an ON DELETE CASCADE
action is specified for ProductVendor.BusinessEntityID, the Database Engine checks for one or
more dependent rows in the ProductVendor table. If any exist, the dependent rows in the
ProductVendor table are deleted, in addition to the row referenced in the Vendor table.

Conversely, if NO ACTION is specified, the Database Engine raises an error and rolls back the
delete action on the Vendor row when there is at least one row in the ProductVendor table
that references it.

Do not specify CASCADE if the table will be included in a merge publication that uses logical
records. For more information about logical records, see Grouping Changes to Related
Rows with Logical Records.

ON UPDATE { NO ACTION }

Specifies what action happens to rows in the table created when those rows have a
referential relationship and the referenced row is updated in the parent table. When NO
ACTION is specified, the Database Engine raises an error and rolls back the update action on
the Vendor row if there is at least one row in the ProductVendor table that references it.

NOT FOR REPLICATION

Can be specified for FOREIGN KEY constraints and CHECK constraints. If this clause is
specified for a constraint, the constraint is not enforced when replication agents perform
insert, update, or delete operations.

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be
entered into a column or columns. CHECK constraints on computed columns must also be
marked PERSISTED.

logical_expression

Is a logical expression that returns TRUE or FALSE. The expression cannot contain a reference
to an alias data type.

ON { partition_scheme_name (partition_column_name) | filegroup| "default"}

Specifies the storage location of the index created for the constraint. If
partition_scheme_name is specified, the index is partitioned and the partitions are mapped to
the filegroups that are specified by partition_scheme_name. If filegroup is specified, the index
is created in the named filegroup. If "default" is specified or if ON is not specified at all, the
index is created in the same filegroup as the table. If ON is specified when a clustered index is

http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�

 287

added for a PRIMARY KEY or UNIQUE constraint, the whole table is moved to the specified
filegroup when the clustered index is created.

Note
In this context, default is not a keyword. It is an identifier for the default filegroup and must be
delimited, as in ON "default" or ON [default]. If "default" is specified, the QUOTED_IDENTIFIER option
must be ON for the current session. This is the default setting. For more information, see SET
QUOTED_IDENTIFIER (Transact-SQL).

Remarks
Each PRIMARY KEY and UNIQUE constraint generates an index. The number of UNIQUE and
PRIMARY KEY constraints cannot cause the number of indexes on the table to exceed 999
nonclustered indexes and 1 clustered index.
See Also
ALTER TABLE

table_constraint
Specifies the properties of a PRIMARY KEY, UNIQUE, FOREIGN KEY, or CHECK constraint, or a
DEFAULT definition added to a table by using ALTER TABLE.

 Transact-SQL Syntax Conventions
Syntax

[CONSTRAINT constraint_name]
{
 { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 (column [ASC | DESC] [,...n])
 [WITH FILLFACTOR = fillfactor
 [WITH (<index_option>[, ...n])]
 [ON { partition_scheme_name (partition_column_name ...)
 | filegroup | "default" }]
 | FOREIGN KEY
 (column [,...n])
 REFERENCES referenced_table_name [(ref_column [,...n])]
 [ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [NOT FOR REPLICATION]
 | DEFAULT constant_expression FOR column [WITH VALUES]

http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�
http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 288

 | CHECK [NOT FOR REPLICATION] (logical_expression)
}
Arguments
CONSTRAINT

Specifies the start of a definition for a PRIMARY KEY, UNIQUE, FOREIGN KEY, or CHECK
constraint, or a DEFAULT.

constraint_name

Is the name of the constraint. Constraint names must follow the rules for identifiers, except
that the name cannot start with a number sign (#). If constraint_name is not supplied, a
system-generated name is assigned to the constraint.

PRIMARY KEY

Is a constraint that enforces entity integrity for a specified column or columns by using a
unique index. Only one PRIMARY KEY constraint can be created for each table.

UNIQUE

Is a constraint that provides entity integrity for a specified column or columns by using a
unique index.

CLUSTERED | NONCLUSTERED

Specifies that a clustered or nonclustered index is created for the PRIMARY KEY or UNIQUE
constraint. PRIMARY KEY constraints default to CLUSTERED. UNIQUE constraints default to
NONCLUSTERED.

If a clustered constraint or index already exists on a table, CLUSTERED cannot be specified. If
a clustered constraint or index already exists on a table, PRIMARY KEY constraints default to
NONCLUSTERED.

Columns that are of the ntext, text, varchar(max), nvarchar(max), varbinary(max), xml, or
image data types cannot be specified as columns for an index.

column

Is a column or list of columns specified in parentheses that are used in a new constraint.

[ASC | DESC]

Specifies the order in which the column or columns participating in table constraints are
sorted. The default is ASC.

WITH FILLFACTOR = fillfactor

Specifies how full the Database Engine should make each index page used to store the index
data. User-specified fillfactor values can be from 1 through 100. If a value is not specified, the
default is 0.

Important
Documenting WITH FILLFACTOR = fillfactor as the only index option that applies to PRIMARY KEY or

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 289

UNIQUE constraints is maintained for backward compatibility, but will not be documented in this
manner in future releases. Other index options can be specified in the index_option clause of ALTER
TABLE.

ON { partition_scheme_name (partition_column_name) | filegroup | "default" }

Specifies the storage location of the index created for the constraint. If
partition_scheme_name is specified, the index is partitioned and the partitions are mapped to
the filegroups that are specified by partition_scheme_name. If filegroup is specified, the index
is created in the named filegroup. If "default" is specified or if ON is not specified at all, the
index is created in the same filegroup as the table. If ON is specified when a clustered index is
added for a PRIMARY KEY or UNIQUE constraint, the whole table is moved to the specified
filegroup when the clustered index is created.

In this context, default is not a keyword; it is an identifier for the default filegroup and must
be delimited, as in ON "default" or ON [default]. If "default" is specified, the
QUOTED_IDENTIFIER option must be ON for the current session. This is the default setting.

FOREIGN KEY REFERENCES

Is a constraint that provides referential integrity for the data in the column. FOREIGN KEY
constraints require that each value in the column exist in the specified column in the
referenced table.

referenced_table_name

Is the table referenced by the FOREIGN KEY constraint.

ref_column

Is a column or list of columns in parentheses referenced by the new FOREIGN KEY constraint.

ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }

Specifies what action happens to rows in the table that is altered, if those rows have a
referential relationship and the referenced row is deleted from the parent table. The default is
NO ACTION.

NO ACTION

The SQL Server Database Engine raises an error and the delete action on the row in the
parent table is rolled back.

CASCADE

Corresponding rows are deleted from the referencing table if that row is deleted from the
parent table.

SET NULL

All the values that make up the foreign key are set to NULL when the corresponding row in
the parent table is deleted. For this constraint to execute, the foreign key columns must be
nullable.

SET DEFAULT

 290

All the values that comprise the foreign key are set to their default values when the
corresponding row in the parent table is deleted. For this constraint to execute, all foreign
key columns must have default definitions. If a column is nullable and there is no explicit
default value set, NULL becomes the implicit default value of the column.

Do not specify CASCADE if the table will be included in a merge publication that uses logical
records. For more information about logical records, see Grouping Changes to Related
Rows with Logical Records.

ON DELETE CASCADE cannot be defined if an INSTEAD OF trigger ON DELETE already exists
on the table that is being altered.

For example, in the database, the ProductVendor table has a referential relationship
with the Vendor table. The ProductVendor.VendorID foreign key references the
Vendor.VendorID primary key.

If a DELETE statement is executed on a row in the Vendor table and an ON DELETE CASCADE
action is specified for ProductVendor.VendorID, the Database Engine checks for one or
more dependent rows in the ProductVendor table. If any exist, the dependent rows in the
ProductVendor table will be deleted, in addition to the row referenced in the Vendor table.

Conversely, if NO ACTION is specified, the Database Engine raises an error and rolls back the
delete action on the Vendor row when there is at least one row in the ProductVendor table
that references it.

ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }

Specifies what action happens to rows in the table altered when those rows have a referential
relationship and the referenced row is updated in the parent table. The default is NO
ACTION.

NO ACTION

The Database Engine raises an error, and the update action on the row in the parent table
is rolled back.

CASCADE

Corresponding rows are updated in the referencing table when that row is updated in the
parent table.

SET NULL

All the values that make up the foreign key are set to NULL when the corresponding row in
the parent table is updated. For this constraint to execute, the foreign key columns must
be nullable.

SET DEFAULT

All the values that make up the foreign key are set to their default values when the
corresponding row in the parent table is updated. For this constraint to execute, all foreign
key columns must have default definitions. If a column is nullable, and there is no explicit
default value set, NULL becomes the implicit default value of the column.

http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�

 291

Do not specify CASCADE if the table will be included in a merge publication that uses logical
records. For more information about logical records, see Grouping Changes to Related
Rows with Logical Records.

ON UPDATE CASCADE, SET NULL, or SET DEFAULT cannot be defined if an INSTEAD OF
trigger ON UPDATE already exists on the table that is being altered.

For example, in the database, the ProductVendor table has a referential relationship
with the Vendor table. The ProductVendor.VendorID foreign key references the
Vendor.VendorID primary key.

If an UPDATE statement is executed on a row in the Vendor table and an ON UPDATE
CASCADE action is specified for ProductVendor.VendorID, the Database Engine checks for
one or more dependent rows in the ProductVendor table. If any exist, the dependent row in
the ProductVendor table will be updated, as well as the row referenced in the Vendor table.

Conversely, if NO ACTION is specified, the Database Engine raises an error and rolls back the
update action on the Vendor row when there is at least one row in the ProductVendor table
that references it.

NOT FOR REPLICATION

Can be specified for FOREIGN KEY constraints and CHECK constraints. If this clause is
specified for a constraint, the constraint is not enforced when replication agents perform
insert, update, or delete operations.

DEFAULT

Specifies the default value for the column. DEFAULT definitions can be used to provide values
for a new column in the existing rows of data. DEFAULT definitions cannot be added to
columns that have a timestamp data type, an IDENTITY property, an existing DEFAULT
definition, or a bound default. If the column has an existing default, the default must be
dropped before the new default can be added. If a default value is specified for a user-
defined type column, the type should support an implicit conversion from
constant_expression to the user-defined type. To maintain compatibility with earlier versions
of SQL Server, a constraint name can be assigned to a DEFAULT.

constant_expression

Is a literal value, a NULL, or a system function that is used as the default column value. If
constant_expression is used in conjunction with a column defined to be of a Microsoft .NET
Framework user-defined type, the implementation of the type must support an implicit
conversion from the constant_expression to the user-defined type.

FOR column

Specifies the column associated with a table-level DEFAULT definition.

WITH VALUES

Specifies that the value given in DEFAULT constant_expression is stored in a new column that
is added to existing rows. WITH VALUES can be specified only when DEFAULT is specified in
an ADD column clause. If the added column allows null values and WITH VALUES is specified,

http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�

 292

the default value is stored in the new column that is added to existing rows. If WITH VALUES
is not specified for columns that allow nulls, NULL is stored in the new column in existing
rows. If the new column does not allow nulls, the default value is stored in new rows
regardless of whether WITH VALUES is specified.

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be
entered into a column or columns.

logical_expression

Is a logical expression used in a CHECK constraint and returns TRUE or FALSE.
logical_expression used with CHECK constraints cannot reference another table but can
reference other columns in the same table for the same row. The expression cannot reference
an alias data type.

Remarks
When FOREIGN KEY or CHECK constraints are added, all existing data is verified for constraint
violations unless the WITH NOCHECK option is specified. If any violations occur, ALTER TABLE
fails and an error is returned. When a new PRIMARY KEY or UNIQUE constraint is added to an
existing column, the data in the column or columns must be unique. If duplicate values are
found, ALTER TABLE fails. The WITH NOCHECK option has no effect when PRIMARY KEY or
UNIQUE constraints are added.
Each PRIMARY KEY and UNIQUE constraint generates an index. The number of UNIQUE and
PRIMARY KEY constraints cannot cause the number of indexes on the table to exceed 999
nonclustered indexes and 1 clustered index. Foreign key constraints do not automatically
generate an index. However, foreign key columns are frequently used in join criteria in queries
by matching the column or columns in the foreign key constraint of one table with the primary
or unique key column or columns in the other table. An index on the foreign key columns
enables the Database Engine to quickly find related data in the foreign key table.
Examples
For examples, see ALTER TABLE (Transact-SQL).
See Also
ALTER TABLE

index_option
Specifies a set of options that can be applied to an index that is part of a constraint definition
that is created by using ALTER TABLE.

 Transact-SQL Syntax Conventions
Syntax

{

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 293

 PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | IGNORE_DUP_KEY = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | SORT_IN_TEMPDB = { ON | OFF }
 | ONLINE = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 | DATA_COMPRESSION = { NONE |ROW | PAGE}
 [ON PARTITIONS ({ <partition_number_expression> | <range> }
 [, ...n])]
}

<range> ::=
<partition_number_expression> TO <partition_number_expression>

<single_partition_rebuild__option> ::=
{
 SORT_IN_TEMPDB = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 | DATA_COMPRESSION = {NONE | ROW | PAGE } }
}
Arguments
PAD_INDEX = { ON | OFF }

Specifies index padding. The default is OFF.

ON

The percentage of free space that is specified by FILLFACTOR is applied to the
intermediate-level pages of the index.

OFF or fillfactor is not specified

The intermediate-level pages are filled to near capacity, leaving enough space for at least
one row of the maximum size the index can have, given the set of keys on the intermediate
pages.

FILLFACTOR = fillfactor

Specifies a percentage that indicates how full the Database Engine should make the leaf level
of each index page during index creation or alteration. The value specified must be an

 294

integer value from 1 to 100. The default is 0.

Note
Fill factor values 0 and 100 are identical in all respects.

IGNORE_DUP_KEY = { ON | OFF }

Specifies the error response when an insert operation attempts to insert duplicate key values
into a unique index. The IGNORE_DUP_KEY option applies only to insert operations after the
index is created or rebuilt. The option has no effect when executing CREATE INDEX,
ALTER INDEX, or UPDATE. The default is OFF.

ON

A warning message will occur when duplicate key values are inserted into a unique index.
Only the rows violating the uniqueness constraint will fail.

OFF

An error message will occur when duplicate key values are inserted into a unique index.
The entire INSERT operation will be rolled back.

IGNORE_DUP_KEY cannot be set to ON for indexes created on a view, non-unique indexes,
XML indexes, spatial indexes, and filtered indexes.

To view IGNORE_DUP_KEY, use sys.indexes.

In backward compatible syntax, WITH IGNORE_DUP_KEY is equivalent to WITH
IGNORE_DUP_KEY = ON.

STATISTICS_NORECOMPUTE = { ON | OFF }

Specifies whether statistics are recomputed. The default is OFF.

ON

Out-of-date statistics are not automatically recomputed.

OFF

Automatic statistics updating are enabled.

ALLOW_ROW_LOCKS = { ON | OFF }

Specifies whether row locks are allowed. The default is ON.

ON

Row locks are allowed when accessing the index. The Database Engine determines when
row locks are used.

OFF

Row locks are not used.

ALLOW_PAGE_LOCKS = { ON | OFF }

Specifies whether page locks are allowed. The default is ON.

ON

http://msdn.microsoft.com/en-us/library/40e63302-0c68-4593-af3e-6d190181fee7(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�

 295

Page locks are allowed when accessing the index. The Database Engine determines when
page locks are used.

OFF

Page locks are not used.

SORT_IN_TEMPDB = { ON | OFF }

Specifies whether to store sort results in tempdb. The default is OFF.

ON

The intermediate sort results that are used to build the index are stored in tempdb. This
may reduce the time required to create an index if tempdb is on a different set of disks
than the user database. However, this increases the amount of disk space that is used
during the index build.

OFF

The intermediate sort results are stored in the same database as the index.

ONLINE = { ON | OFF }

Specifies whether underlying tables and associated indexes are available for queries and data
modification during the index operation. The default is OFF.

Note
Unique nonclustered indexes cannot be created online. This includes indexes that are created due to a
UNIQUE or PRIMARY KEY constraint.

ON

Long-term table locks are not held for the duration of the index operation. During the
main phase of the index operation, only an Intent Share (IS) lock is held on the source
table. This enables queries or updates to the underlying table and indexes to proceed. At
the start of the operation, a Shared (S) lock is held on the source object for a very short
period of time. At the end of the operation, for a short period of time, an S (Shared) lock is
acquired on the source if a nonclustered index is being created; or an SCH-M (Schema
Modification) lock is acquired when a clustered index is created or dropped online and
when a clustered or nonclustered index is being rebuilt. ONLINE cannot be set to ON when
an index is being created on a local temporary table.

OFF

Table locks are applied for the duration of the index operation. An offline index operation
that creates, rebuilds, or drops a clustered index, or rebuilds or drops a nonclustered index,
acquires a Schema modification (Sch-M) lock on the table. This prevents all user access to
the underlying table for the duration of the operation. An offline index operation that
creates a nonclustered index acquires a Shared (S) lock on the table. This prevents updates
to the underlying table but allows read operations, such as SELECT statements.

For more information, see How Online Index Operations Work.

http://msdn.microsoft.com/en-us/library/eef0c9d1-790d-46e4-a758-d0bf6742e6ae(SQL.110)�

 296

Note
Online index operations are not available in every edition of Microsoft SQL Server. For a list of features
that are supported by the editions of SQL Server, see Features Supported by the Editions of
SQL Server 2012.

MAXDOP = max_degree_of_parallelism

Overrides the max degree of parallelism configuration option for the duration of the index
operation. For more information, see Configure the max degree of parallelism
Server Configuration Option. Use MAXDOP to limit the number of processors used in a
parallel plan execution. The maximum is 64 processors.

max_degree_of_parallelism can be:

1

Suppresses parallel plan generation.

>1

Restricts the maximum number of processors used in a parallel index operation to the
specified number.

0 (default)

Uses the actual number of processors or fewer based on the current system workload.

For more information, see Configuring Parallel Index Operations.

Note
Parallel index operations are not available in every edition of Microsoft SQL Server. For a list of
features that are supported by the editions of SQL Server, see Features Supported by the
Editions of SQL Server 2012.

DATA_COMPRESSION

Specifies the data compression option for the specified table, partition number or range of
partitions. The options are as follows:

NONE

Table or specified partitions are not compressed.

ROW

Table or specified partitions are compressed by using row compression.

PAGE

Table or specified partitions are compressed by using page compression.

For more information about compression, see Creating Compressed Tables and
Indexes.

ON PARTITIONS ({ <partition_number_expression> | <range> } [,...n])

Specifies the partitions to which the DATA_COMPRESSION setting applies. If the table is not

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�

 297

partitioned, the ON PARTITIONS argument will generate an error. If the ON PARTITIONS
clause is not provided, the DATA_COMPRESSION option will apply to all partitions of a
partitioned table.

<partition_number_expression> can be specified in the following ways:

• Provide the number a partition, for example: ON PARTITIONS (2).

• Provide the partition numbers for several individual partitions separated by commas, for
example: ON PARTITIONS (1, 5).

• Provide both ranges and individual partitions, for example: ON PARTITIONS (2, 4, 6 TO
8).

<range> can be specified as partition numbers separated by the word TO, for example: ON
PARTITIONS (6 TO 8).

To set different types of data compression for different partitions, specify the
DATA_COMPRESSION option more than once, for example:

REBUILD WITH

(

DATA_COMPRESSION = NONE ON PARTITIONS (1),

DATA_COMPRESSION = ROW ON PARTITIONS (2, 4, 6 TO 8),

DATA_COMPRESSION = PAGE ON PARTITIONS (3, 5)

)

<single_partition_rebuild__option>

In most cases, rebuilding an index rebuilds all partitions of a partitioned index. The following
options, when applied to a single partition, do not rebuild all partitions.

• SORT_IN_TEMPDB

• MAXDOP

• DATA_COMPRESSION

Remarks
For a complete description of index options, see CREATE INDEX (Transact-SQL).
See Also
ALTER TABLE
column_constraint
computed_column_definition
table_constraint

ALTER TRIGGER
Modifies the definition of a DML, DDL, or logon trigger that was previously created by the
CREATE TRIGGER statement. Triggers are created by using CREATE TRIGGER. They can be

 298

created directly from Transact-SQL statements or from methods of assemblies that are created
in the Microsoft .NET Framework common language runtime (CLR) and uploaded to an instance
of SQL Server. For more information about the parameters that are used in the ALTER TRIGGER
statement, see Making Schema Changes on Publication Databases.

 Transact-SQL Syntax Conventions

Syntax

Trigger on an INSERT, UPDATE, or DELETE statement to a table or view (DML
Trigger)
ALTER TRIGGER schema_name.trigger_name
ON (table | view)
[WITH <dml_trigger_option> [,...n]]
(FOR | AFTER | INSTEAD OF)
{ [DELETE] [,] [INSERT] [,] [UPDATE] }
[NOT FOR REPLICATION]
AS { sql_statement [;] [...n] | EXTERNAL NAME <method specifier> [;] }

<dml_trigger_option> ::=
 [ENCRYPTION]
 [<EXECUTE AS Clause>]

<method_specifier> ::=
 assembly_name.class_name.method_name

Trigger on a CREATE, ALTER, DROP, GRANT, DENY, REVOKE, or UPDATE statement
(DDL Trigger)

ALTER TRIGGER trigger_name
ON { DATABASE | ALL SERVER }
[WITH <ddl_trigger_option> [,...n]]
{ FOR | AFTER } { event_type [,...n] | event_group }
AS { sql_statement [;] | EXTERNAL NAME <method specifier>
[;] }
}

<ddl_trigger_option> ::=

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 299

 [ENCRYPTION]
 [<EXECUTE AS Clause>]

<method_specifier> ::=
 assembly_name.class_name.method_name

Trigger on a LOGON event (Logon Trigger)
ALTER TRIGGER trigger_name
ON ALL SERVER
[WITH <logon_trigger_option> [,...n]]
{ FOR | AFTER } LOGON
AS { sql_statement [;] [,...n] | EXTERNAL NAME < method specifier > [;] }

<logon_trigger_option> ::=
 [ENCRYPTION]
 [EXECUTE AS Clause]

<method_specifier> ::=
 assembly_name.class_name.method_name

Arguments
schema_name

Is the name of the schema to which a DML trigger belongs. DML triggers are scoped to the
schema of the table or view on which they are created. schema_name is optional only if the
DML trigger and its corresponding table or view belong to the default schema. schema_name
cannot be specified for DDL or logon triggers.

trigger_name

Is the existing trigger to modify.

table | view

Is the table or view on which the DML trigger is executed. Specifying the fully-qualified name
of the table or view is optional.

DATABASE

Applies the scope of a DDL trigger to the current database. If specified, the trigger fires
whenever event_type or event_group occurs in the current database.

ALL SERVER

Applies the scope of a DDL or logon trigger to the current server. If specified, the trigger fires

 300

whenever event_type or event_group occurs anywhere in the current server.

WITH ENCRYPTION

Encrypts the sys.syscomments sys.sql_modules entries that contain the text of the ALTER
TRIGGER statement. Using WITH ENCRYPTION prevents the trigger from being published as
part of SQL Server replication. WITH ENCRYPTION cannot be specified for CLR triggers.

Note
If a trigger is created by using WITH ENCRYPTION, it must be specified again in the ALTER TRIGGER
statement for this option to remain enabled.

EXECUTE AS

Specifies the security context under which the trigger is executed. Enables you to control the
user account the instance of SQL Server uses to validate permissions on any database objects
that are referenced by the trigger.

For more information, see EXECUTE AS.

AFTER

Specifies that the trigger is fired only after the triggering SQL statement is executed
successfully. All referential cascade actions and constraint checks also must have been
successful before this trigger fires.

AFTER is the default, if only the FOR keyword is specified.

DML AFTER triggers may be defined only on tables.

INSTEAD OF

Specifies that the DML trigger is executed instead of the triggering SQL statement, therefore,
overriding the actions of the triggering statements. INSTEAD OF cannot be specified for DDL
or logon triggers.

At most, one INSTEAD OF trigger per INSERT, UPDATE, or DELETE statement can be defined
on a table or view. However, you can define views on views where each view has its own
INSTEAD OF trigger.

INSTEAD OF triggers are not allowed on views created by using WITH CHECK OPTION. SQL
Server raises an error when an INSTEAD OF trigger is added to a view for which WITH CHECK
OPTION was specified. The user must remove that option using ALTER VIEW before defining
the INSTEAD OF trigger.

{ [DELETE] [,] [INSERT] [,] [UPDATE] } | { [INSERT] [,] [UPDATE] }

Specifies the data modification statements, when tried against this table or view, activate the
DML trigger. At least one option must be specified. Any combination of these in any order is
allowed in the trigger definition. If more than one option is specified, separate the options
with commas.

For INSTEAD OF triggers, the DELETE option is not allowed on tables that have a referential
relationship specifying a cascade action ON DELETE. Similarly, the UPDATE option is not
allowed on tables that have a referential relationship specifying a cascade action ON

http://msdn.microsoft.com/en-us/library/bd517aa3-f06e-4356-87d8-70de5df4494a(SQL.110)�

 301

UPDATE. For more information, see ALTER TABLE (Transact-SQL).

event_type

Is the name of a Transact-SQL language event that, after execution, causes a DDL trigger to
fire. Valid events for DDL triggers are listed in DDL Events.

event_group

Is the name of a predefined grouping of Transact-SQL language events. The DDL trigger fires
after execution of any Transact-SQL language event that belongs to event_group. Valid event
groups for DDL triggers are listed in DDL Event Groups. After ALTER TRIGGER has
finished running, event_group also acts as a macro by adding the event types it covers to the
sys.trigger_events catalog view.

NOT FOR REPLICATION

Indicates that the trigger should not be executed when a replication agent modifies the table
involved in the trigger.

sql_statement

Is the trigger conditions and actions.

<method_specifier>

Specifies the method of an assembly to bind with the trigger. The method must take no
arguments and return void. class_name must be a valid SQL Server identifier and must exist
as a class in the assembly with assembly visibility. The class cannot be a nested class.

Remarks
For more information about ALTER TRIGGER, see Remarks in CREATE TRIGGER.

The EXTERNAL_NAME and ON_ALL_SERVER options are not available in a contained
database.

DML Triggers
ALTER TRIGGER supports manually updatable views through INSTEAD OF triggers on tables and
views. SQL Server applies ALTER TRIGGER the same way for all kinds of triggers (AFTER,
INSTEAD-OF).
The first and last AFTER triggers to be executed on a table can be specified by using
sp_settriggerorder. Only one first and one last AFTER trigger can be specified on a table. If there
are other AFTER triggers on the same table, they are randomly executed.
If an ALTER TRIGGER statement changes a first or last trigger, the first or last attribute set on the
modified trigger is dropped, and the order value must be reset by using sp_settriggerorder.
An AFTER trigger is executed only after the triggering SQL statement has executed successfully.
This successful execution includes all referential cascade actions and constraint checks
associated with the object updated or deleted. The AFTER trigger operation checks for the

Note

http://msdn.microsoft.com/en-us/library/62ef24b4-3553-4aed-b62a-670980bae501(SQL.110)�
http://msdn.microsoft.com/en-us/library/12b45cc3-2f91-4609-bb8a-3e82e28bf642(SQL.110)�

 302

effects of the triggering statement and also all referential cascade UPDATE and DELETE actions
that are caused by the triggering statement.
When a DELETE action to a child or referencing table is the result of a CASCADE on a DELETE
from the parent table, and an INSTEAD OF trigger on DELETE is defined on that child table, the
trigger is ignored and the DELETE action is executed.

DDL Triggers
Unlike DML triggers, DDL triggers are not scoped to schemas. Therefore, the OBJECT_ID,
OBJECT_NAME, OBJECTPROPERTY, and OBJECTPROPERTY(EX) cannot be used when querying
metadata about DDL triggers. Use the catalog views instead. For more information, see Getting
Information About DDL Triggers.

Permissions
To alter a DML trigger requires ALTER permission on the table or view on which the trigger is
defined.
To alter a DDL trigger defined with server scope (ON ALL SERVER) or a logon trigger requires
CONTROL SERVER permission on the server. To alter a DDL trigger defined with database scope
(ON DATABASE) requires ALTER ANY DATABASE DDL TRIGGER permission in the current
database.

Examples
The following example creates a DML trigger that prints a user-defined message to the client
when a user tries to add or change data in the SalesPersonQuotaHistory table. The trigger is
then modified by using ALTER TRIGGER to apply the trigger only on INSERT activities. This
trigger is helpful because it reminds the user that updates or inserts rows into this table to also
notify the Compensation department.
USE AdventureWorks2012;

GO

IF OBJECT_ID(N'Sales.bonus_reminder', N'TR') IS NOT NULL

 DROP TRIGGER Sales.bonus_reminder;

GO

CREATE TRIGGER Sales.bonus_reminder

ON Sales.SalesPersonQuotaHistory

WITH ENCRYPTION

AFTER INSERT, UPDATE

AS RAISERROR ('Notify Compensation', 16, 10);

GO

-- Now, change the trigger.

USE AdventureWorks2012;

GO

http://msdn.microsoft.com/en-us/library/462becea-292a-4b9e-bb98-533e89733911(SQL.110)�
http://msdn.microsoft.com/en-us/library/462becea-292a-4b9e-bb98-533e89733911(SQL.110)�

 303

ALTER TRIGGER Sales.bonus_reminder

ON Sales.SalesPersonQuotaHistory

AFTER INSERT

AS RAISERROR ('Notify Compensation', 16, 10);

GO

See Also
DROP TRIGGER
ENABLE TRIGGER
DISABLE TRIGGER
EVENTDATA
sp_helptrigger
Create a Stored Procedure
sp_addmessage (Transact-SQL)
Transactions
Getting Information About DML Triggers
Getting Information about DDL Triggers
sys.triggers
sys.trigger_events
sys.sql_modules
sys.assembly_modules
sys.server_triggers
sys.server_trigger_events
sys.server_sql_modules
sys.server_assembly_modules
Making Schema Changes on Publication Databases

ALTER USER
Renames a database user or changes its default schema.

 Transact-SQL Syntax Conventions

Syntax

ALTER USER userName
 WITH <set_item> [,...n]

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/e486d39b-771d-488d-a786-7136433a2203(SQL.110)�
http://msdn.microsoft.com/en-us/library/76e8a6ba-1381-4620-b356-4311e1331ca7(SQL.110)�
http://msdn.microsoft.com/en-us/library/54746d30-f944-40e5-a707-f2d9be0fb9eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/3b41e33a-c1ca-4b2a-9464-312b0ed3ca89(SQL.110)�
http://msdn.microsoft.com/en-us/library/37574aac-181d-4aca-a2cc-8abff64237dc(SQL.110)�
http://msdn.microsoft.com/en-us/library/462becea-292a-4b9e-bb98-533e89733911(SQL.110)�
http://msdn.microsoft.com/en-us/library/cefa4fc4-b8b9-4cd7-b124-eed5283acbfc(SQL.110)�
http://msdn.microsoft.com/en-us/library/92540447-131c-491c-b033-c064c7d950e1(SQL.110)�
http://msdn.microsoft.com/en-us/library/23d3ccd2-f356-4d89-a2cd-bee381243f99(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f9e644e-8065-49a2-b53d-db7df98f70d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/25926ff4-9271-45bf-bc32-d5d3344bd47a(SQL.110)�
http://msdn.microsoft.com/en-us/library/be7d8a59-3c00-4f1b-b4b0-3dcd5572e002(SQL.110)�
http://msdn.microsoft.com/en-us/library/9ef9a8b9-c470-4a61-b0c4-ee24ad871d63(SQL.110)�
http://msdn.microsoft.com/en-us/library/af799e38-2d16-49b2-bcf5-6f9199af899e(SQL.110)�
http://msdn.microsoft.com/en-us/library/926c88d7-a844-402f-bcb9-db49e5013b69(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 304

<set_item> ::=
 NAME = newUserName
 | DEFAULT_SCHEMA = { schemaName | NULL }
 | LOGIN = loginName
 | PASSWORD = 'password' [OLD_PASSWORD = 'oldpassword']
 | DEFAULT_LANGUAGE = { NONE | <lcid> | <language name> | <language alias> }

Arguments
userName

Specifies the name by which the user is identified inside this database.

LOGIN = loginName

Re-maps a user to another login by changing the user's Security Identifier (SID) to match the
login's SID.

NAME = newUserName

Specifies the new name for this user. newUserName must not already occur in the current
database.

DEFAULT_SCHEMA = { schemaName | NULL }

Specifies the first schema that will be searched by the server when it resolves the names of
objects for this user. Setting the default schema to NULL removes a default schema from a
Windows group. The NULL option cannot be used with a Windows user.

PASSWORD = 'password'

Specifies the password for the user that is being changed. Passwords are case-sensitive.

Note
This option is available only for contained users. See Understanding Contained Databases and
sp_migrate_user_to_contained for more information.

OLD_PASSWORD = 'oldpassword'

The current user password that will be replaced by 'password'. Passwords are case-sensitive.
OLD_PASSWORD is required to change a password, unless you have ALTER ANY USER
permission. Requiring OLD_PASSWORD prevents users with IMPERSONATION permission
from changing the password.

Note
This option is available only for contained users.

DEFAULT_LANGUAGE = { NONE | <lcid> | <language name> | <language alias> }

Specifies a default language to be assigned to the user. If this option is set to NONE, the
default language is set to the current default language of the database. If the default

http://msdn.microsoft.com/en-us/library/36af59d7-ce96-4a02-8598-ffdd78cdc948(SQL.110)�
http://msdn.microsoft.com/en-us/library/b3a49ff6-46ad-4ee7-b6fe-7e54213dc33e(SQL.110)�

 305

language of the database is later changed, the default language of the user will remain
unchanged. DEFAULT_LANGUAGE can be the local ID (lcid), the name of the language, or the
language alias.

Note
This option may only be specified in a contained database and only for contained users.

Remarks
The default schema will be the first schema that will be searched by the server when it resolves
the names of objects for this database user. Unless otherwise specified, the default schema will
be the owner of objects created by this database user.
If the user has a default schema, that default schema will used. If the user does not have a
default schema, but the user is a member of a group that has a default schema, the default
schema of the group will be used. If the user does not have a default schema, and is a member
of more than one group that has a default schema, the schema of the Windows group with the
lowest principle_id will be used. If no default schema can be determined for a user, the dbo
schema will be used.
DEFAULT_SCHEMA can be set to a schema that does not currently occur in the database.
Therefore, you can assign a DEFAULT_SCHEMA to a user before that schema is created.
DEFAULT_SCHEMA cannot be specified for a user who is mapped to a certificate, or an
asymmetric key.

The value of DEFAULT_SCHEMA is ignored if the user is a member of the sysadmin fixed
server role. All members of the sysadmin fixed server role have a default schema of dbo.

You can change the name of a user who is mapped to a Windows login or group only when the
SID of the new user name matches the SID that is recorded in the database. This check helps
prevent spoofing of Windows logins in the database.
The WITH LOGIN clause enables the remapping of a user to a different login. Users without a
login, users mapped to a certificate, or users mapped to an asymmetric key cannot be re-
mapped with this clause. Only SQL users and Windows users (or groups) can be remapped. The
WITH LOGIN clause cannot be used to change the type of user, such as changing a Windows
account to a SQL Server login.
The name of the user will be automatically renamed to the login name if the following
conditions are true.
• The user is a Windows user.
• The name is a Windows name (contains a backslash).
• No new name was specified.
• The current name differs from the login name.
Otherwise, the user will not be renamed unless the caller additionally invokes the NAME clause.

Important

 306

The name of a user mapped to a SQL Server login, a certificate, or an asymmetric key cannot
contain the backslash character (\).

 Beginning with SQL Server 2005, the behavior of schemas changed. As a result, code
that assumes that schemas are equivalent to database users may no longer return
correct results. Old catalog views, including , should not be used in a database in which
any of the following DDL statements have ever been used: CREATE SCHEMA, ALTER
SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER
ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER
AUTHORIZATION. In such databases you must instead use the new catalog views. The
new catalog views take into account the separation of principals and schemas that was
introduced in SQL Server 2005. For more information about catalog views, see .

Security

A user who has ALTER ANY USER permission can change the default schema of any
user. A user who has an altered schema might unknowingly select data from the wrong
table or execute code from the wrong schema.

Permissions
To change the name of a user or remap the user to a different login requires the ALTER ANY
USER permission.
To change the default schema or language requires ALTER permission on the user. Users can
change only their own default schema or language.

Examples

A. Changing the name of a database user
The following example changes the name of the database user Mary5 to Mary51.

USE AdventureWorks2012;

ALTER USER Mary5 WITH NAME = Mary51;

GO

B. Changing the default schema of a user
The following example changes the default schema of the user Mary51 to Purchasing.

USE AdventureWorks2012;

ALTER USER Mary51 WITH DEFAULT_SCHEMA = Purchasing;

GO

C. Changing several options at once
The following example changes several options for a contained database user in one statement.

Caution

Note

 307

USE AdventureWorks2012;

GO

ALTER USER Philip

WITH NAME = Philipe

 , DEFAULT_SCHEMA = Development

 , PASSWORD = 'W1r77TT98%ab@#’ OLD_PASSWORD = 'New Devel0per'

 , DEFAULT_LANGUAGE = French ;

GO

See Also
CREATE USER (Transact-SQL)
DROP USER (Transact-SQL)
Understanding Contained Databases
eventdata (Transact-SQL)
sp_migrate_user_to_contained

ALTER VIEW
Modifies a previously created view. This includes an indexed view. ALTER VIEW does not affect
dependent stored procedures or triggers and does not change permissions.

 Transact-SQL Syntax Conventions

Syntax

ALTER VIEW [schema_name .] view_name [(column [,...n])]
[WITH <view_attribute> [,...n]]
AS select_statement
[WITH CHECK OPTION] [;]

<view_attribute> ::=
{
 [ENCRYPTION]
 [SCHEMABINDING]
 [VIEW_METADATA]
}

Arguments

http://msdn.microsoft.com/en-us/library/36af59d7-ce96-4a02-8598-ffdd78cdc948(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b3a49ff6-46ad-4ee7-b6fe-7e54213dc33e(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 308

schema_name

Is the name of the schema to which the view belongs.

view_name

Is the view to change.

column

Is the name of one or more columns, separated by commas, that are to be part of the
specified view.

Important
Column permissions are maintained only when columns have the same name before and after ALTER
VIEW is performed.

Note
In the columns for the view, the permissions for a column name apply across a CREATE VIEW or ALTER
VIEW statement, regardless of the source of the underlying data. For example, if permissions are
granted on the SalesOrderID column in a CREATE VIEW statement, an ALTER VIEW statement can
rename the SalesOrderID column, such as to OrderRef, and still have the permissions associated with
the view using SalesOrderID.

ENCRYPTION

Encrypts the entries in sys.syscomments that contain the text of the ALTER VIEW
statement. WITH ENCRYPTION prevents the view from being published as part of SQL Server
replication.

SCHEMABINDING

Binds the view to the schema of the underlying table or tables. When SCHEMABINDING is
specified, the base tables cannot be modified in a way that would affect the view definition.
The view definition itself must first be modified or dropped to remove dependencies on the
table to be modified. When you use SCHEMABINDING, the select_statement must include the
two-part names (schema.object) of tables, views, or user-defined functions that are
referenced. All referenced objects must be in the same database.

Views or tables that participate in a view created with the SCHEMABINDING clause cannot be
dropped, unless that view is dropped or changed so that it no longer has schema binding.
Otherwise, the Database Engine raises an error. Also, executing ALTER TABLE statements on
tables that participate in views that have schema binding fail if these statements affect the
view definition.

VIEW_METADATA

Specifies that the instance of SQL Server will return to the DB-Library, ODBC, and OLE DB
APIs the metadata information about the view, instead of the base table or tables, when
browse-mode metadata is being requested for a query that references the view. Browse-
mode metadata is additional metadata that the instance of Database Engine returns to the
client-side DB-Library, ODBC, and OLE DB APIs. This metadata enables the client-side APIs to

http://msdn.microsoft.com/en-us/library/767dd410-6bc9-4c4a-ab0f-6d2cf6163426(SQL.110)�

 309

implement updatable client-side cursors. Browse-mode metadata includes information about
the base table that the columns in the result set belong to.

For views created with VIEW_METADATA, the browse-mode metadata returns the view name
and not the base table names when it describes columns from the view in the result set.

When a view is created by using WITH VIEW_METADATA, all its columns, except a timestamp
column, are updatable if the view has INSERT or UPDATE INSTEAD OF triggers. For more
information, see the Remarks section in CREATE VIEW.

AS

Are the actions the view is to take.

select_statement

Is the SELECT statement that defines the view.

WITH CHECK OPTION

Forces all data modification statements that are executed against the view to follow the
criteria set within select_statement.

Remarks
For more information about ALTER VIEW, see Remarks in CREATE VIEW.

If the previous view definition was created by using WITH ENCRYPTION or CHECK
OPTION, these options are enabled only if they are included in ALTER VIEW.

If a view currently used is modified by using ALTER VIEW, the Database Engine takes an
exclusive schema lock on the view. When the lock is granted, and there are no active users of
the view, the Database Engine deletes all copies of the view from the procedure cache. Existing
plans referencing the view remain in the cache but are recompiled when invoked.
ALTER VIEW can be applied to indexed views; however, ALTER VIEW unconditionally drops all
indexes on the view.

Permissions
To execute ALTER VIEW, at a minimum, ALTER permission on OBJECT is required.

Examples
The following example creates a view that contains all employees and their hire dates called
EmployeeHireDate. Permissions are granted to the view, but requirements are changed to
select employees whose hire dates fall before a certain date. Then, ALTER VIEW is used to
replace the view.
USE AdventureWorks2012 ;

GO

CREATE VIEW HumanResources.EmployeeHireDate

AS

Note

 310

SELECT p.FirstName, p.LastName, e.HireDate

FROM HumanResources.Employee AS e JOIN Person.Person AS p

ON e.BusinessEntityID = p.BusinessEntityID ;

GO

The view must be changed to include only the employees that were hired before 2002. If ALTER
VIEW is not used, but instead the view is dropped and re-created, the previously used GRANT
statement and any other statements that deal with permissions pertaining to this view must be
re-entered.
ALTER VIEW HumanResources.EmployeeHireDate

AS

SELECT p.FirstName, p.LastName, e.HireDate

FROM HumanResources.Employee AS e JOIN Person.Person AS p

ON e.BusinessEntityID = p.BusinessEntityID

WHERE HireDate < CONVERT(DATETIME,'20020101',101) ;

GO

See Also
CREATE TABLE
CREATE VIEW
DROP VIEW
Create a Stored Procedure
SELECT
EVENTDATA
Making Schema Changes on Publication Databases

ALTER WORKLOAD GROUP
Changes an existing Resource Governor workload group configuration, and optionally assigns it
to a to a Resource Governor resource pool.

 Transact-SQL Syntax Conventions.

Syntax

ALTER WORKLOAD GROUP { group_name | "default" }
[WITH
 ([IMPORTANCE = { LOW | MEDIUM | HIGH }]
 [[,] REQUEST_MAX_MEMORY_GRANT_PERCENT = value]
 [[,] REQUEST_MAX_CPU_TIME_SEC = value]

http://msdn.microsoft.com/en-us/library/76e8a6ba-1381-4620-b356-4311e1331ca7(SQL.110)�
http://msdn.microsoft.com/en-us/library/dc85caea-54d1-49af-b166-f3aa2f3a93d0(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/926c88d7-a844-402f-bcb9-db49e5013b69(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 311

 [[,] REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value]
 [[,] MAX_DOP = value]
 [[,] GROUP_MAX_REQUESTS = value])
]
[USING { pool_name | "default" }]
[;]

Arguments
group_name | "default"

Is the name of an existing user-defined workload group or the Resource Governor default
workload group.

Note
Resource Governor creates the "default" and internal groups when SQL Server is installed.

The option "default" must be enclosed by quotation marks ("") or brackets ([]) when used
with ALTER WORKLOAD GROUP to avoid conflict with DEFAULT, which is a system reserved
word. For more information, see Database Identifiers.

Note
Predefined workload groups and resource pools all use lowercase names, such as "default". This
should be taken into account for servers that use case-sensitive collation. Servers with case-insensitive
collation, such as SQL_Latin1_General_CP1_CI_AS, will treat "default" and "Default" as the same.

IMPORTANCE = { LOW | MEDIUM | HIGH }

Specifies the relative importance of a request in the workload group. Importance is one of
the following:

• LOW

• MEDIUM (default)

• HIGH

Note
Internally each importance setting is stored as a number that is used for calculations.

IMPORTANCE is local to the resource pool; workload groups of different importance inside
the same resource pool affect each other, but do not affect workload groups in another
resource pool.

REQUEST_MAX_MEMORY_GRANT_PERCENT = value

Specifies the maximum amount of memory that a single request can take from the pool. This
percentage is relative to the resource pool size specified by MAX_MEMORY_PERCENT.

Note
The amount specified only refers to query execution grant memory.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 312

value must be 0 or a positive integer. The allowed range for value is from 0 through 100. The
default setting for value is 25.

Note the following:

• Setting value to 0 prevents queries with SORT and HASH JOIN operations in user-
defined workload groups from running.

• We do not recommend setting value greater than 70 because the server may be unable
to set aside enough free memory if other concurrent queries are running. This may
eventually lead to query time-out error 8645.

Note
• If the query memory requirements exceed the limit that is specified by this

parameter, the server does the following:

• For user-defined workload groups, the server tries to reduce the query degree of
parallelism until the memory requirement falls under the limit, or until the degree of
parallelism equals 1. If the query memory requirement is still greater than the limit,
error 8657 occurs.

• For internal and default workload groups, the server permits the query to obtain the
required memory.

• Be aware that both cases are subject to time-out error 8645 if the server has
insufficient physical memory.

REQUEST_MAX_CPU_TIME_SEC = value

Specifies the maximum amount of CPU time, in seconds, that a request can use. value must
be 0 or a positive integer. The default setting for value is 0, which means unlimited.

Note
Resource Governor will not prevent a request from continuing if the maximum time is exceeded.
However, an event will be generated. For more information, see CPU Threshold Exceeded Event
Class.

REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value

Specifies the maximum time, in seconds, that a query can wait for memory grant (work buffer
memory) to become available.

Note
A query does not always fail when memory grant time-out is reached. A query will only fail if there are
too many concurrent queries running. Otherwise, the query may only get the minimum memory grant,
resulting in reduced query performance.

value must be a positive integer. The default setting for value, 0, uses an internal calculation
based on query cost to determine the maximum time.

MAX_DOP = value

Specifies the maximum degree of parallelism (DOP) for parallel requests. value must be 0 or a

http://msdn.microsoft.com/en-us/library/eb106f7d-baa3-4a2b-96b2-f9fe0844057d(SQL.110)�
http://msdn.microsoft.com/en-us/library/eb106f7d-baa3-4a2b-96b2-f9fe0844057d(SQL.110)�

 313

positive integer, 1 though 255. When value is 0, the server chooses the max degree of
parallelism. This is the default and recommended setting.

Note
The actual value that the Database Engine sets for MAX_DOP by might be less than the specified
value. The final value is determined by the formula min(255, number of CPUs).

Caution
Changing MAX_DOP can adversely affect a server's performance. If you must change MAX_DOP, we
recommend that it be set to a value that is less than or equal to the maximum number of hardware
schedulers that are present in a single NUMA node. We recommend that you do not set MAX_DOP to
a value greater than 8.

MAX_DOP is handled as follows:

• MAX_DOP as a query hint is honored as long as it does not exceed workload group
MAX_DOP.

• MAX_DOP as a query hint always overrides sp_configure 'max degree of parallelism'.

• Workload group MAX_DOP overrides sp_configure 'max degree of parallelism'.

• If the query is marked as serial (MAX_DOP = 1) at compile time, it cannot be changed
back to parallel at run time regardless of the workload group or sp_configure setting.

After DOP is configured, it can only be lowered on grant memory pressure. Workload group
reconfiguration is not visible while waiting in the grant memory queue.

GROUP_MAX_REQUESTS = value

Specifies the maximum number of simultaneous requests that are allowed to execute in the
workload group. value must be 0 or a positive integer. The default setting for value, 0, allows
unlimited requests. When the maximum concurrent requests are reached, a user in that
group can log in, but is placed in a wait state until concurrent requests are dropped below
the value specified.

USING { pool_name | "default" }

Associates the workload group with the user-defined resource pool identified by pool_name,
which in effect puts the workload group in the resource pool. If pool_name is not provided or
if the USING argument is not used, the workload group is put in the predefined Resource
Governor default pool.

The option "default" must be enclosed by quotation marks ("") or brackets ([]) when used
with ALTER WORKLOAD GROUP to avoid conflict with DEFAULT, which is a system reserved
word. For more information, see Database Identifiers.

Note
The option "default" is case-sensitive.

Remarks
ALTER WORKLOAD GROUP is allowed on the default group.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 314

Changes to the workload group configuration do not take effect until after ALTER RESOURCE
GOVERNOR RECONFIGURE is executed.
When you are executing DDL statements, we recommend that you be familiar with Resource
Governor states. For more information, see Resource Governor.
REQUEST_MEMORY_GRANT_PERCENT: In SQL Server 2005, index creation is allowed to use
more workspace memory than initially granted for improved performance. This special handling
is supported by Resource Governor in SQL Server 2012. However, the initial grant and any
additional memory grant are limited by resource pool and workload group settings.
Index Creation on a Partitioned Table
The memory consumed by index creation on non-aligned partitioned table is proportional to
the number of partitions involved. If the total required memory exceeds the per-query limit
(REQUEST_MAX_MEMORY_GRANT_PERCENT) imposed by the Resource Governor workload
group setting, this index creation may fail to execute. Because the "default" workload group
allows a query to exceed the per-query limit with the minimum required memory to start for
SQL Server 2005 compatibility, the user may be able to run the same index creation in "default"
workload group, if the "default" resource pool has enough total memory configured to run such
query.

Permissions
Requires CONTROL SERVER permission.

Examples
The following example shows how to change the importance of requests in the default group
from MEDIUM to LOW.

ALTER WORKLOAD GROUP "default"

WITH (IMPORTANCE = LOW)

GO

ALTER RESOURCE GOVERNOR RECONFIGURE

GO

The following example shows how to move a workload group from the pool that it is in to the
default pool.

ALTER WORKLOAD GROUP adHoc

USING [default];

GO

ALTER RESOURCE GOVERNOR RECONFIGURE

GO

See Also
Resource Governor

http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�
http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�

 315

CREATE WORKLOAD GROUP (Transact-SQL)
DROP WORKLOAD GROUP (Transact-SQL)
CREATE RESOURCE POOL (Transact-SQL)
ALTER RESOURCE POOL (Transact-SQL)
DROP RESOURCE POOL (Transact-SQL)
ALTER RESOURCE GOVERNOR (Transact-SQL)

ALTER XML SCHEMA COLLECTION
Adds new schema components to an existing XML schema collection.

 Transact-SQL Syntax Conventions

Syntax

ALTER XML SCHEMA COLLECTION [relational_schema.]sql_identifier ADD 'Schema
Component'

Arguments
relational_schema

Identifies the relational schema name. If not specified, the default relational schema is
assumed.

sql_identifier

Is the SQL identifier for the XML schema collection.

'Schema Component'

Is the schema component to insert.

Remarks
Use the ALTER XML SCHEMA COLLECTION to add new XML schemas whose namespaces are not
already in the XML schema collection, or add new components to existing namespaces in the
collection.
The following example adds a new <element> to the existing namespace
http://MySchema/test_xml_schema in the collection MyColl.
-- First create an XML schema collection.

CREATE XML SCHEMA COLLECTION MyColl AS '

 <schema

 xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://MySchema/test_xml_schema">

 <element name="root" type="string"/>

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://www.w3.org/2001/XMLSchema
http://MySchema/test_xml_schema
http://MySchema/test_xml_schema

 316

 </schema>'

-- Modify the collection.

ALTER XML SCHEMA COLLECTION MyColl ADD '

 <schema xmlns="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://MySchema/test_xml_schema">

 <element name="anotherElement" type="byte"/>

 </schema>'

ALTER XML SCHEMA adds element <anotherElement> to the previously defined namespace
http://MySchema/test_xml_schema.
Note that if some of the components you want to add in the collection reference components
that are already in the same collection, you must use <import
namespace="referenced_component_namespace" />. However, it is not valid to use the
current schema namespace in <xsd:import>, and therefore components from the same target
namespace as the current schema namespace are automatically imported.
To remove collections, use Guidelines and Limitations in Using XML Schema Collections on the
Server.
If the schema collection already contains a lax validation wildcard or an element of type
xs:anyType, adding a new global element, type, or attribute declaration to the schema
collection will cause a revalidation of all the stored data that is constrained by the schema
collection.

Permissions
To alter an XML SCHEMA COLLECTION requires ALTER permission on the collection.

Examples

A. Creating XML schema collection in the database
The following example creates the XML schema collection
ManuInstructionsSchemaCollection. The collection has only one schema namespace.

-- Create a sample database in which to load the XML schema collection.

CREATE DATABASE SampleDB

GO

USE SampleDB

GO

CREATE XML SCHEMA COLLECTION ManuInstructionsSchemaCollection AS

N'<?xml version="1.0" encoding="UTF-16"?>

<xsd:schema

targetNamespace="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelManuInstructions"

http://www.w3.org/2001/XMLSchema
http://MySchema/test_xml_schema
http://MySchema/test_xml_schema
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelManuInstructions
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelManuInstructions

 317

 xmlns ="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelManuInstructions"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

 <xsd:complexType name="StepType" mixed="true" >

 <xsd:choice minOccurs="0" maxOccurs="unbounded" >

 <xsd:element name="tool" type="xsd:string" />

 <xsd:element name="material" type="xsd:string" />

 <xsd:element name="blueprint" type="xsd:string" />

 <xsd:element name="specs" type="xsd:string" />

 <xsd:element name="diag" type="xsd:string" />

 </xsd:choice>

 </xsd:complexType>

 <xsd:element name="root">

 <xsd:complexType mixed="true">

 <xsd:sequence>

 <xsd:element name="Location" minOccurs="1"

maxOccurs="unbounded">

 <xsd:complexType mixed="true">

 <xsd:sequence>

 <xsd:element name="step" type="StepType"

minOccurs="1" maxOccurs="unbounded" />

 </xsd:sequence>

 <xsd:attribute name="LocationID" type="xsd:integer"

use="required"/>

 <xsd:attribute name="SetupHours" type="xsd:decimal"

use="optional"/>

 <xsd:attribute name="MachineHours" type="xsd:decimal"

use="optional"/>

 <xsd:attribute name="LaborHours" type="xsd:decimal"

use="optional"/>

http://www.w3.org/2001/XMLSchema
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelManuInstructions
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelManuInstructions

 318

 <xsd:attribute name="LotSize" type="xsd:decimal"

use="optional"/>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>' ;

GO

-- Verify - list of collections in the database.

SELECT *

FROM sys.xml_schema_collections

-- Verify - list of namespaces in the database.

SELECT name

FROM sys.xml_schema_namespaces

-- Use it. Create a typed xml variable. Note the collection name

-- that is specified.

DECLARE @x xml (ManuInstructionsSchemaCollection)

GO

--Or create a typed xml column.

CREATE TABLE T (

 i int primary key,

 x xml (ManuInstructionsSchemaCollection))

GO

-- Clean up.

DROP TABLE T

GO

DROP XML SCHEMA COLLECTION ManuInstructionsSchemaCollection

Go

USE master

GO

DROP DATABASE SampleDB

 319

Alternatively, you can assign the schema collection to a variable and specify the variable in the
CREATE XML SCHEMA COLLECTION statement as follows:

DECLARE @MySchemaCollection nvarchar(max)

Set @MySchemaCollection = N' copy the schema collection here'

CREATE XML SCHEMA COLLECTION AS @MySchemaCollection

The variable in the example is of nvarchar(max) type. The variable can also be of xml data
type, in which case, it is implicitly converted to a string.
For more information, see Viewing Stored XML Schema.
You can store schema collections in an xml type column. In this case, to create XML schema
collection, perform the following steps:
1. Retrieve the schema collection from the column by using a SELECT statement and assign it

to a variable of xml type, or a varchar type.
2. Specify the variable name in the CREATE XML SCHEMA COLLECTION statement.
The CREATE XML SCHEMA COLLECTION stores only the schema components that SQL Server
understands; everything in the XML schema is not stored in the database. Therefore, if you want
the XML schema collection back exactly the way it was supplied, we recommend that you save
your XML schemas in a database column or some other folder on your computer.

B. Specifying multiple schema namespaces in a schema collection
You can specify multiple XML schemas when you create an XML schema collection. For example:
CREATE XML SCHEMA COLLECTION N'

<xsd:schema>....</xsd:schema>

<xsd:schema>...</xsd:schema>'

The following example creates the XML schema collection
ProductDescriptionSchemaCollection that includes two XML schema namespaces.

CREATE XML SCHEMA COLLECTION ProductDescriptionSchemaCollection AS

'<xsd:schema

targetNamespace="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelWarrAndMain"

 xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelWarrAndMain"

 elementFormDefault="qualified"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

 <xsd:element name="Warranty" >

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="WarrantyPeriod" type="xsd:string" />

http://msdn.microsoft.com/en-us/library/e38031af-22df-4cd9-a14e-e316b822f91b(SQL.110)�
http://www.w3.org/2001/XMLSchema
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain

 320

 <xsd:element name="Description" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

 <xs:schema

targetNamespace="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription"

 xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription"

 elementFormDefault="qualified"

 xmlns:mstns="http://tempuri.org/XMLSchema.xsd"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wm="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelWarrAndMain" >

 <xs:import

namespace="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelWarrAndMain" />

 <xs:element name="ProductDescription" type="ProductDescription" />

 <xs:complexType name="ProductDescription">

 <xs:sequence>

 <xs:element name="Summary" type="Summary" minOccurs="0" />

 </xs:sequence>

 <xs:attribute name="ProductModelID" type="xs:string" />

 <xs:attribute name="ProductModelName" type="xs:string" />

 </xs:complexType>

 <xs:complexType name="Summary" mixed="true" >

 <xs:sequence>

 <xs:any processContents="skip"

namespace="http://www.w3.org/1999/xhtml" minOccurs="0" maxOccurs="unbounded"

/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>'

;

http://www.w3.org/2001/XMLSchema
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelDescription
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelDescription
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelDescription
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelDescription
http://tempuri.org/XMLSchema.xsd
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://www.w3.org/1999/xhtml

 321

GO

-- Clean up

DROP XML SCHEMA COLLECTION ProductDescriptionSchemaCollection

GO

C. Importing a schema that does not specify a target namespace
If a schema that does not contain a targetNamespace attribute is imported in a collection, its
components are associated with the empty string target namespace as shown in the following
example. Note that not associating one or more schemas imported in the collection results in
multiple schema components (potentially unrelated) being associated with the default empty
string namespace.

-- Create a collection that contains a schema with no target namespace.

CREATE XML SCHEMA COLLECTION MySampleCollection AS '

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:ns="http://ns">

<element name="e" type="dateTime"/>

</schema>'

GO

-- query will return the names of all the collections that

--contain a schema with no target namespace

SELECT sys.xml_schema_collections.name

FROM sys.xml_schema_collections

JOIN sys.xml_schema_namespaces

ON sys.xml_schema_collections.xml_collection_id =

 sys.xml_schema_namespaces.xml_collection_id

WHERE sys.xml_schema_namespaces.name=''

See Also
CREATE XML SCHEMA COLLECTION
DROP XML SCHEMA COLLECTION (Transact-SQL)
EVENTDATA (Transact-SQL)
Typed vs. Untyped XML
Guidelines and Limitations of XML Schemas on the Server

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bc50af9-2f7d-49df-bb01-854d080c72c7(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2314fd5-4c6d-40cb-a128-07e532b40946(SQL.110)�
http://www.w3.org/2001/XMLSchema

 322

CREATE Statements
SQL Server Transact-SQL contains the following CREATE statements. Use CREATE statements to
define new entities. For example, use CREATE TABLE to add a new table to a database.

In this Section

CREATE AGGREGATE CREATE FULLTEXT INDEX CREATE SEARCH PROPERTY
LIST (Transact-SQL)

CREATE APPLICATION ROLE CREATE FULLTEXT STOPLIST CREATE SEQUENCE (Transact-
SQL)

CREATE ASSEMBLY CREATE FUNCTION CREATE SERVER AUDIT

CREATE ASYMMETRIC KEY CREATE INDEX CREATE SERVER AUDIT
SPECIFICATION

CREATE BROKER PRIORITY CREATE LOGIN CREATE SERVICE

CREATE CERTIFICATE CREATE MASTER KEY CREATE SPATIAL INDEX

CREATE COLUMNSTORE INDEX CREATE MESSAGE TYPE CREATE STATISTICS

CREATE CONTRACT CREATE PARTITION
FUNCTION

CREATE SYMMETRIC KEY

CREATE CREDENTIAL CREATE PARTITION SCHEME CREATE SYNONYM

CREATE CRYPTOGRAPHIC
PROVIDER

CREATE PROCEDURE CREATE TABLE

CREATE DATABASE CREATE QUEUE CREATE TRIGGER

CREATE DATABASE AUDIT
SPECIFICATION

CREATE REMOTE SERVICE
BINDING

CREATE TYPE

CREATE DATABASE
ENCRYPTION KEY

CREATE RESOURCE POOL CREATE USER

CREATE DEFAULT CREATE ROLE CREATE VIEW

CREATE ENDPOINT CREATE ROUTE CREATE WORKLOAD GROUP

CREATE EVENT NOTIFICATION CREATE RULE CREATE XML INDEX

CREATE EVENT SESSION CREATE SCHEMA CREATE XML SCHEMA
COLLECTION

CREATE FULLTEXT CATALOG

 323

See Also
ALTER Statements (Transact-SQL)
DROP Statements

CREATE AGGREGATE
Creates a user-defined aggregate function whose implementation is defined in a class of an
assembly in the .NET Framework. For the Database Engine to bind the aggregate function to its
implementation, the .NET Framework assembly that contains the implementation must first be
uploaded into an instance of SQL Server by using a CREATE ASSEMBLY statement.

By default, the ability of SQL Server to run CLR code is off. You can create, modify, and
drop database objects that reference managed code modules, but the code in these
modules will not run in an instance of SQL Server unless the clr enabled option is
enabled by using sp_configure.

 Transact-SQL Syntax Conventions

Syntax

CREATE AGGREGATE [schema_name .] aggregate_name
 (@param_name <input_sqltype>
 [,...n])
RETURNS <return_sqltype>
EXTERNAL NAME assembly_name [.class_name]

<input_sqltype> ::=
 system_scalar_type | { [udt_schema_name.] udt_type_name }

<return_sqltype> ::=
 system_scalar_type | { [udt_schema_name.] udt_type_name }

Arguments
schema_name

Is the name of the schema to which the user-defined aggregate function belongs.

Note

http://msdn.microsoft.com/en-us/library/0722d382-8fd3-4fac-b4a8-cd2b7a7e0293(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 324

aggregate_name

Is the name of the aggregate function you want to create.

@param_name

One or more parameters in the user-defined aggregate. The value of a parameter must be
supplied by the user when the aggregate function is executed. Specify a parameter name by
using an "at" sign (@) as the first character. The parameter name must comply with the rules
for identifiers. Parameters are local to the function.

system_scalar_type

Is any one of the SQL Server system scalar data types to hold the value of the input
parameter or return value. All scalar data types can be used as a parameter for a user-defined
aggregate, except text, ntext, and image. Nonscalar types, such as cursor and table, cannot
be specified.

udt_schema_name

Is the name of the schema to which the CLR user-defined type belongs. If not specified, the
Database Engine references udt_type_name in the following order:

• The native SQL type namespace.

• The default schema of the current user in the current database.

• The dbo schema in the current database.

udt_type_name

Is the name of a CLR user-defined type already created in the current database. If
udt_schema_name is not specified, SQL Server assumes the type belongs to the schema of
the current user.

assembly_name [.class_name]

Specifies the assembly to bind with the user-defined aggregate function and, optionally, the
name of the schema to which the assembly belongs and the name of the class in the
assembly that implements the user-defined aggregate. The assembly must already have been
created in the database by using a CREATE ASSEMBLY statement. class_name must be a valid
SQL Server identifier and match the name of a class that exists in the assembly. class_name
may be a namespace-qualified name if the programming language used to write the class
uses namespaces, such as C#. If class_name is not specified, SQL Server assumes it is the
same as aggregate_name.

Remarks
The class of the assembly referenced in assembly_name and its methods, should satisfy all the
requirements for implementing a user-defined aggregate function in an instance of SQL Server.
For more information, see DROP AGGREGATE (Transact-SQL).

Permissions

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�
http://msdn.microsoft.com/en-us/library/bad9b7e8-5967-4afa-8dc8-6d840faf9372(SQL.110)�

 325

Requires CREATE AGGREGATE permission and also REFERENCES permission on the assembly
that is specified in the EXTERNAL NAME clause.

Examples
The following example assumes that a StringUtilities.csproj sample application is compiled. For
more information, see String Utilities Sample.
The example creates aggregate Concatenate. Before the aggregate is created, the assembly
StringUtilities.dll is registered in the local database.

USE AdventureWorks;

GO

DECLARE @SamplesPath nvarchar(1024)

-- You may have to modify the value of the this variable if you have

--installed the sample some location other than the default location.

SELECT @SamplesPath = REPLACE(physical_name, 'Microsoft SQL

Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\master.mdf', 'Microsoft SQL

Server\90\Samples\Engine\Programmability\CLR\')

 FROM master.sys.database_files

 WHERE name = 'master';

CREATE ASSEMBLY StringUtilities FROM @SamplesPath +

'StringUtilities\CS\StringUtilities\bin\debug\StringUtilities.dll'

WITH PERMISSION_SET=SAFE;

GO

CREATE AGGREGATE Concatenate(@input nvarchar(4000))

RETURNS nvarchar(4000)

EXTERNAL NAME [StringUtilities].[Microsoft.Samples.SqlServer.Concatenate];

GO

See Also
DROP AGGREGATE (Transact-SQL)

CREATE APPLICATION ROLE
Adds an application role to the current database.

 Transact-SQL Syntax Conventions

Syntax

http://msdn.microsoft.com/en-us/library/9623013f-15f1-4614-8dac-1155e57c880c(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 326

CREATE APPLICATION ROLE application_role_name
 WITH PASSWORD = 'password' [, DEFAULT_SCHEMA = schema_name]

Arguments
application_role_name

Specifies the name of the application role. This name must not already be used to refer to
any principal in the database.

PASSWORD = 'password'

Specifies the password that database users will use to activate the application role. You
should always use strong passwords. password must meet the Windows password policy
requirements of the computer that is running the instance of SQL Server.

DEFAULT_SCHEMA = schema_name

Specifies the first schema that will be searched by the server when it resolves the names of
objects for this role. If DEFAULT_SCHEMA is left undefined, the application role will use DBO
as its default schema. schema_name can be a schema that does not exist in the database.

Remarks

 Password complexity is checked when application role passwords are set. Applications
that invoke application roles must store their passwords. Application role passwords
should always be stored encrypted.

Application roles are visible in the sys.database_principals catalog view.
For information about how to use application roles, see Application Roles.

 Beginning with SQL Server 2005, the behavior of schemas changed. As a result, code
that assumes that schemas are equivalent to database users may no longer return
correct results. Old catalog views, including , should not be used in a database in which
any of the following DDL statements have ever been used: CREATE SCHEMA, ALTER
SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER
ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER
AUTHORIZATION. In such databases you must instead use the new catalog views. The
new catalog views take into account the separation of principals and schemas that was
introduced in SQL Server 2005. For more information about catalog views, see .

Permissions
Requires ALTER ANY APPLICATION ROLE permission on the database.

Examples
The following example creates an application role called weekly_receipts that has the
password 987Gbv876sPYY5m23 and Sales as its default schema.

Important

Caution

http://msdn.microsoft.com/en-us/library/8cb239e9-eb8c-4109-9cec-0d35de95fa0e(SQL.110)�
http://msdn.microsoft.com/en-us/library/dca18b8a-ca03-4b7f-9a46-8474d5b66f76(SQL.110)�

 327

CREATE APPLICATION ROLE weekly_receipts

 WITH PASSWORD = '987G^bv876sPY)Y5m23'

 , DEFAULT_SCHEMA = Sales;

GO

See Also
Application Roles
sp_setapprole (Transact-SQL)
ALTER APPLICATION ROLE (Transact-SQL)
DROP APPLICATION ROLE (Transact-SQL)
Password Complexity and Expiration
eventdata (Transact-SQL)

CREATE ASSEMBLY
Creates a managed application module that contains class metadata and managed code as an
object in an instance of SQL Server. By referencing this module, common language runtime
(CLR) functions, stored procedures, triggers, user-defined aggregates, and user-defined types
can be created in the database.

 Transact-SQL Syntax Conventions

Syntax

CREATE ASSEMBLY assembly_name
[AUTHORIZATION owner_name]
FROM { <client_assembly_specifier> | <assembly_bits> [,...n] }
[WITH PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }]
[;]
<client_assembly_specifier> :: =
 '[\\computer_name\]share_name\[path\]manifest_file_name'
 | '[local_path\]manifest_file_name'

<assembly_bits> :: =
{ varbinary_literal | varbinary_expression }

Arguments
assembly_name

Is the name of the assembly. The name must be unique within the database and a valid

http://msdn.microsoft.com/en-us/library/dca18b8a-ca03-4b7f-9a46-8474d5b66f76(SQL.110)�
http://msdn.microsoft.com/en-us/library/cf0901c0-5f90-42d4-9d5b-8772c904062d(SQL.110)�
http://msdn.microsoft.com/en-us/library/c0040c0a-a18f-45b9-9c40-0625685649b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 328

identifier.

AUTHORIZATION owner_name

Specifies the name of a user or role as owner of the assembly. owner_name must either be
the name of a role of which the current user is a member, or the current user must have
IMPERSONATE permission on owner_name. If not specified, ownership is given to the current
user.

<client_assembly_specifier>

Specifies the local path or network location where the assembly that is being uploaded is
located, and also the manifest file name that corresponds to the assembly.
<client_assembly_specifier> can be expressed as a fixed string or an expression evaluating to
a fixed string, with variables. CREATE ASSEMBLY does not support loading multimodule
assemblies. SQL Server also looks for any dependent assemblies of this assembly in the same
location and also uploads them with the same owner as the root level assembly. If these
dependent assemblies are not found and they are not already loaded in the current database,
CREATE ASSEMBLY fails. If the dependent assemblies are already loaded in the current
database, the owner of those assemblies must be the same as the owner of the newly created
assembly.

<client_assembly_specifier> cannot be specified if the logged in user is being impersonated.

<assembly_bits>

Is the list of binary values that make up the assembly and its dependent assemblies. The first
value in the list is considered the root-level assembly. The values corresponding to the
dependent assemblies can be supplied in any order. Any values that do not correspond to
dependencies of the root assembly are ignored.

Note
This option is not available in a contained database.

varbinary_literal

Is a varbinary literal.

varbinary_expression

Is an expression of type varbinary.

PERMISSION_SET { SAFE | EXTERNAL_ACCESS | UNSAFE }

Specifies a set of code access permissions that are granted to the assembly when it is
accessed by SQL Server. If not specified, SAFE is applied as the default.

We recommend using SAFE. SAFE is the most restrictive permission set. Code executed by an
assembly with SAFE permissions cannot access external system resources such as files, the
network, environment variables, or the registry.

EXTERNAL_ACCESS enables assemblies to access certain external system resources such as
files, networks, environmental variables, and the registry.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 329

Note
This option is not available in a contained database.

UNSAFE enables assemblies unrestricted access to resources, both within and outside an
instance of SQL Server. Code running from within an UNSAFE assembly can call unmanaged
code.

Note
This option is not available in a contained database.

noteDXDOC112778PADS Security Note
• SAFE is the recommended permission setting for assemblies that perform

computation and data management tasks without accessing resources outside an
instance of SQL Server.

• We recommend using EXTERNAL_ACCESS for assemblies that access resources
outside of an instance of SQL Server. EXTERNAL_ACCESS assemblies include the
reliability and scalability protections of SAFE assemblies, but from a security
perspective are similar to UNSAFE assemblies. This is because code in
EXTERNAL_ACCESS assemblies runs by default under the SQL Server service account
and accesses external resources under that account, unless the code explicitly
impersonates the caller. Therefore, permission to create EXTERNAL_ACCESS
assemblies should be granted only to logins that are trusted to run code under the
SQL Server service account. For more information about impersonation, see
EVENTDATA (Transact-SQL).

• Specifying UNSAFE enables the code in the assembly complete freedom to perform
operations in the SQL Server process space that can potentially compromise the
robustness of SQL Server. UNSAFE assemblies can also potentially subvert the
security system of either SQL Server or the common language runtime. UNSAFE
permissions should be granted only to highly trusted assemblies. Only members of
the sysadmin fixed server role can create and alter UNSAFE assemblies.

For more information about assembly permission sets, see Designing Assemblies.

Remarks
CREATE ASSEMBLY uploads an assembly that was previously compiled as a .dll file from
managed code for use inside an instance of SQL Server.
SQL Server does not allow registering different versions of an assembly with the same name,
culture and public key.
When attempting to access the assembly specified in <client_assembly_specifier>, SQL Server
impersonates the security context of the current Windows login. If <client_assembly_specifier>
specifies a network location (UNC path), the impersonation of the current login is not carried
forward to the network location because of delegation limitations. In this case, access is made
using the security context of the SQL Server service account. For more information, see
Credentials.

http://msdn.microsoft.com/en-us/library/05d7a471-c5d5-4730-b903-e4edc8157bb4(SQL.110)�
http://msdn.microsoft.com/en-us/library/9c07f706-6508-41aa-a4d7-56ce354f9061(SQL.110)�
http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�

 330

Besides the root assembly specified by assembly_name, SQL Server tries to upload any
assemblies that are referenced by the root assembly being uploaded. If a referenced assembly is
already uploaded to the database because of an earlier CREATE ASSEMBLY statement, this
assembly is not uploaded but is available to the root assembly. If a dependent assembly was not
previously uploaded, but SQL Server cannot locate its manifest file in the source directory,
CREATE ASSEMBLY returns an error.
If any dependent assemblies referenced by the root assembly are not already in the database
and are implicitly loaded together with the root assembly, they have the same permission set as
the root level assembly. If the dependent assemblies must be created by using a different
permission set than the root-level assembly, they must be uploaded explicitly before the root
level assembly with the appropriate permission set.

Assembly Validation
SQL Server performs checks on the assembly binaries uploaded by the CREATE ASSEMBLY
statement to guarantee the following:
• The assembly binary is well formed with valid metadata and code segments, and the code

segments have valid Microsoft Intermediate language (MSIL) instructions.
• The set of system assemblies it references is one of the following supported assemblies in

SQL Server: Microsoft.Visualbasic.dll, Mscorlib.dll, System.Data.dll, System.dll, System.Xml.dll,
Microsoft.Visualc.dll, Custommarshallers.dll, System.Security.dll, System.Web.Services.dll,
System.Data.SqlXml.dll, System.Core.dll, and System.Xml.Linq.dll. Other system assemblies
can be referenced, but they must be explicitly registered in the database.

• For assemblies created by using SAFE or EXTERNAL ACCESS permission sets:
• The assembly code should be type-safe. Type safety is established by running the

common language runtime verifier against the assembly.
• The assembly should not contain any static data members in its classes unless they are

marked as read-only.
• The classes in the assembly cannot contain finalizer methods.
• The classes or methods of the assembly should be annotated only with allowed code

attributes. For more information, see Custom Attributes for CLR Routines.
Besides the previous checks that are performed when CREATE ASSEMBLY executes, there are
additional checks that are performed at execution time of the code in the assembly:
• Calling certain Microsoft .NET Framework APIs that require a specific Code Access

Permission may fail if the permission set of the assembly does not include that permission.
• For SAFE and EXTERNAL_ACCESS assemblies, any attempt to call .NET Framework APIs that

are annotated with certain HostProtectionAttributes will fail.
For more information, see Designing Assemblies.

Permissions
Requires CREATE ASSEMBLY permission.

http://msdn.microsoft.com/en-us/library/95069d22-b05d-4670-b053-15ee2a664e33(SQL.110)�
http://msdn.microsoft.com/en-us/library/9c07f706-6508-41aa-a4d7-56ce354f9061(SQL.110)�

 331

If PERMISSION_SET = EXTERNAL_ACCESS is specified, the SQL Server login must have EXTERNAL
ACCESS ASSEMBLY permission on the server. If PERMISSION_SET = UNSAFE is specified,
membership in the sysadmin fixed server role is required.
User must be the owner of any assemblies that are referenced by the assembly that are to be
uploaded if the assemblies already exist in the database. To upload an assembly by using a file
path, the current user must be a Windows authenticated login or a member of the sysadmin
fixed server role. The Windows login of the user that executes CREATE ASSEMBLY must have
read permission on the share and the files being loaded in the statement.
For more information about assembly permission sets, see Designing Assemblies.

Examples
The following example assumes that the SQL Server Database Engine samples are installed in
the default location of the local computer and the HelloWorld.csproj sample application is
compiled. For more information, see Hello World Sample.
CREATE ASSEMBLY HelloWorld

FROM <system_drive>:\Program Files\Microsoft SQL

Server\100\Samples\HelloWorld\CS\HelloWorld\bin\debug\HelloWorld.dll

WITH PERMISSION_SET = SAFE;

See Also
ALTER ASSEMBLY
DROP ASSEMBLY
CREATE FUNCTION
CREATE PROCEDURE
CREATE TRIGGER
CREATE TYPE
CREATE AGGREGATE
EVENTDATA (Transact-SQL)
CLR Programmability Samples

CREATE ASYMMETRIC KEY
Creates an asymmetric key in the database.

 Transact-SQL Syntax Conventions

Syntax

CREATE ASYMMETRIC KEY Asym_Key_Name
 [AUTHORIZATION database_principal_name]

http://msdn.microsoft.com/en-us/library/9c07f706-6508-41aa-a4d7-56ce354f9061(SQL.110)�
http://msdn.microsoft.com/en-us/library/fed6c358-f5ee-4d4c-9ad6-089778383ba7(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/33aac25f-abb4-4f29-af88-4a0dacd80ae7(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 332

 {
 [FROM <Asym_Key_Source>]
 |
 WITH <key_option>
 [ENCRYPTION BY <encrypting_mechanism>]

<Asym_Key_Source>::=
 FILE = 'path_to_strong-name_file'
 |
 EXECUTABLE FILE = 'path_to_executable_file'
 |
 ASSEMBLY Assembly_Name
 |
 PROVIDER Provider_Name

<key_option> ::=
 ALGORITHM = <algorithm>
 |
 PROVIDER_KEY_NAME = 'key_name_in_provider'
 |
 CREATION_DISPOSITION = { CREATE_NEW | OPEN_EXISTING }

<algorithm> ::=
 { RSA_512 | RSA_1024 | RSA_2048 }

<encrypting_mechanism> ::=
 PASSWORD = 'password'

Arguments
FROM Asym_Key_Source

Specifies the source from which to load the asymmetric key pair.

AUTHORIZATION database_principal_name

Specifies the owner of the asymmetric key. The owner cannot be a role or a group. If this
option is omitted, the owner will be the current user.

FILE = 'path_to_strong-name_file'

Specifies the path of a strong-name file from which to load the key pair.

 333

Note
This option is not available in a contained database.

EXECUTABLE FILE = 'path_to_executable_file'

Specifies an assembly file from which to load the public key. Limited to 260 characters by
MAX_PATH from the Windows API.

Note
This option is not available in a contained database.

ASSEMBLY Assembly_Name

Specifies the name of an assembly from which to load the public key.

ENCRYPTION BY <key_name_in_provider>

Specifies how the key is encrypted. Can be a certificate, password, or asymmetric key.

KEY_NAME = 'key_name_in_provider'

Specifies the key name from the external provider. For more information about external key
management, see Understanding Extensible Key Management (EKM).

CREATION_DISPOSITION = CREATE_NEW

Creates a new key on the Extensible Key Management device. PROV_KEY_NAME must be
used to specify key name on the device. If a key already exists on the device the statement
fails with error.

CREATION_DISPOSITION = OPEN_EXISTING

Maps a SQL Server asymmetric key to an existing Extensible Key Management key.
PROV_KEY_NAME must be used to specify key name on the device. If
CREATION_DISPOSITION = OPEN_EXISTING is not provided, the default is CREATE_NEW.

PASSWORD = 'password'

Specifies the password with which to encrypt the private key. If this clause is not present, the
private key will be encrypted with the database master key. password is a maximum of 128
characters. password must meet the Windows password policy requirements of the computer
that is running the instance of SQL Server.

Remarks
An asymmetric key is a securable entity at the database level. In its default form, this entity
contains both a public key and a private key. When executed without the FROM clause, CREATE
ASYMMETRIC KEY generates a new key pair. When executed with the FROM clause, CREATE
ASYMMETRIC KEY imports a key pair from a file or imports a public key from an assembly.
By default, the private key is protected by the database master key. If no database master key
has been created, a password is required to protect the private key. If a database master key
does exist, the password is optional.
The private key can be 512, 1024, or 2048 bits long.

http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�

 334

Permissions
Requires CREATE ASYMMETRIC KEY permission on the database. If the AUTHORIZATION clause
is specified, requires IMPERSONATE permission on the database principal, or ALTER permission
on the application role. Only Windows logins, SQL Server logins, and application roles can own
asymmetric keys. Groups and roles cannot own asymmetric keys.

Examples

A. Creating an asymmetric key
The following example creates an asymmetric key named PacificSales09 by using the
RSA_2048 algorithm, and protects the private key with a password.

CREATE ASYMMETRIC KEY PacificSales09

 WITH ALGORITHM = RSA_2048

 ENCRYPTION BY PASSWORD = '<enterStrongPasswordHere>';

GO

B. Creating an asymmetric key from a file, giving authorization to a user
The following example creates the asymmetric key PacificSales19 from a key pair stored in a
file, and then authorizes user Christina to use the asymmetric key.

CREATE ASYMMETRIC KEY PacificSales19 AUTHORIZATION Christina

 FROM FILE = 'c:\PacSales\Managers\ChristinaCerts.tmp'

 ENCRYPTION BY PASSWORD = '<enterStrongPasswordHere>';

GO

C. Creating an asymmetric key from an EKM provider
The following example creates the asymmetric key EKM_askey1 from a key pair stored in a file. It
then encrypts it using an Extensible Key Management provider called EKMProvider1, and a key
on that provider called key10_user1.

CREATE ASYMMETRIC KEY EKM_askey1

 FROM PROVIDER EKM_Provider1

 WITH

 ALGORITHM = RSA_512,

 CREATION_DISPOSITION = CREATE_NEW

 , PROVIDER_KEY_NAME = 'key10_user1' ;

GO

See Also
Encryption Hierarchy
ALTER ASYMMETRIC KEY (Transact-SQL)

http://msdn.microsoft.com/en-us/library/8227028c-a9c9-489d-bd27-fbf8242634ae(SQL.110)�

 335

DROP ASYMMETRIC KEY (Transact-SQL)
Encryption Hierarchy

CREATE AVAILABILITY GROUP
Creates a new availability group, if the instance of SQL Server is enabled for the AlwaysOn
Availability Groups feature.

Execute CREATE AVAILABILITY GROUP on the instance of SQL Server that you intend to
use as the initial primary replica of your new availability group. This server instance must
reside on a Windows Server Failover Clustering (WSFC) node.

 Transact-SQL Syntax Conventions

Syntax

CREATE AVAILABILITY GROUP group_name
 WITH (<with_option_spec> [,...n])
 FOR [DATABASE database_name [,...n]]
 REPLICA ON <add_replica_spec> [,...n]
 [LISTENER ‘dns_name’ (<listener_option>)]
[;]

<with_option_spec>::=
 AUTOMATED_BACKUP_PREFERENCE = { PRIMARY | SECONDARY_ONLY| SECONDARY | NONE
}
 | FAILURE_CONDITION_LEVEL = { 1 | 2 | 3 | 4 | 5 }
 | HEALTH_CHECK_TIMEOUT = milliseconds

<add_replica_spec>::=
 <server_instance> WITH
 (
 ENDPOINT_URL = 'TCP://system-address:port',
 AVAILABILITY_MODE = { SYNCHRONOUS_COMMIT | ASYNCHRONOUS_COMMIT },
 FAILOVER_MODE = { AUTOMATIC | MANUAL }
 [, <add_replica_option> [,...n]]
)

Important

http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 336

 <add_replica_option>::=
 BACKUP_PRIORITY = n
 | SECONDARY_ROLE ({
 [ALLOW_CONNECTIONS = { NO | READ_ONLY | ALL }]
 [,] [READ_ONLY_ROUTING_URL = 'TCP://system-address:port']
 })
 | PRIMARY_ROLE ({
 [ALLOW_CONNECTIONS = { READ_WRITE | ALL }]
 [,] [READ_ONLY_ROUTING_LIST = { (‘<server_instance>’ [,...n]) | NONE }]
 })
 | SESSION_TIMEOUT = integer

<listener_option> ::=
 {
 WITH DHCP [ON (<network_subnet_option>)]
 | WITH IP ({ (<ip_address_option>) } [, ...n]) [, PORT = listener_port]
 }

 <network_subnet_option> ::=
 ‘four_part_ipv4_address’, ‘four_part_ipv4_mask’

 <ip_address_option> ::=
 {
 ‘four_part_ipv4_address’, ‘four_part_ipv4_mask’
 | ‘ipv6_address’
 }

Arguments
group_name

Specifies the name of the new availability group. group_name must be a valid SQL Server
identifier, and it must be unique across all availability groups in the WSFC cluster. The
maximum length for an availability group name is 128 characters.

AUTOMATED_BACKUP_PREFERENCE = { PRIMARY | SECONDARY_ONLY| SECONDARY | NONE
}

Specifies a preference about how a backup job should evaluate the primary replica when
choosing where to perform backups. You can script a given backup job to take the

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 337

automated backup preference into account. It is important to understand that the preference
is not enforced by SQL Server, so it has no impact on ad-hoc backups.

The supported values are as follows:

PRIMARY

Specifies that the backups should always occur on the primary replica. This option is useful
if you need backup features, such as creating differential backups, that are not supported
when backup is run on a secondary replica.

SECONDARY_ONLY

Specifies that backups should never be performed on the primary replica. If the primary
replica is the only replica online, the backup should not occur.

SECONDARY

Specifies that backups should occur on a secondary replica except when the primary
replica is the only replica online. In that case, the backup should occur on the primary
replica. This is the default behavior.

NONE

Specifies that you prefer that backup jobs ignore the role of the availability replicas when
choosing the replica to perform backups. Note backup jobs might evaluate other factors
such as backup priority of each availability replica in combination with its operational state
and connected state.

There is no enforcement of the AUTOMATED_BACKUP_PREFERENCE setting. The
interpretation of this preference depends on the logic, if any, that you script into back jobs
for the databases in a given availability group. For more information, see Backup on
Secondary Replicas (AlwaysOn Availability Groups).

Note
To view the automated backup preference of an existing availability group, select the
automated_backup_preference or automated_backup_preference_desc column of the
sys.availability_groups catalog view.

FAILURE_CONDITION_LEVEL = { 1 | 2 | 3 | 4 | 5 }

Specifies what failure conditions will trigger an automatic failover for this availability group.
FAILURE_CONDITION_LEVEL is set at the group level but is relevant only on availability
replicas that are configured for synchronous-commit availability mode (AVAILIBILITY_MODE
= SYNCHRONOUS_COMMIT). Furthermore, failure conditions can trigger an automatic
failover only if both the primary and secondary replicas are configured for automatic failover
mode (FAILOVER_MODE = AUTOMATIC) and the secondary replica is currently synchronized
with the primary replica.

The failure-condition levels (1–5) range from the least restrictive, level 1, to the most
restrictive, level 5. A given condition level encompasses all the less restrictive levels. Thus, the
strictest condition level, 5, includes the four less restrictive condition levels (1-4), level 4

http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�
http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�
http://msdn.microsoft.com/en-us/library/da7fa55f-c008-45d9-bcfc-3513b02d9e71(SQL.110)�

 338

includes levels 1-3, and so forth. The following table describes the failure-condition that
corresponds to each level.

Level Failure Condition

1 Specifies that an automatic failover should
be initiated when any of the following
occurs:
• The SQL Server service is down.
• The lease of the availability group for

connecting to the WSFC cluster expires
because no ACK is received from the
server instance.

2 Specifies that an automatic failover should
be initiated when any of the following
occurs:
• The instance of SQL Server does not

connect to cluster, and the user-
specified HEALTH_CHECK_TIMEOUT
threshold of the availability group is
exceeded.

• The availability replica is in failed state.

3 Specifies that an automatic failover should
be initiated on critical SQL Server internal
errors, such as orphaned spinlocks, serious
write-access violations, or too much
dumping.
This is the default behavior.

4 Specifies that an automatic failover should
be initiated on moderate SQL Server
internal errors, such as a persistent out-of-
memory condition in the SQL Server
internal resource pool.

5 Specifies that an automatic failover should
be initiated on any qualified failure
conditions, including:
• Exhaustion of SQL Engine worker-

threads.
• Detection of an unsolvable deadlock.

 339

nNote
Lack of response by an instance of SQL Server to client requests is not relevant to availability groups.

The FAILURE_CONDITION_LEVEL and HEALTH_CHECK_TIMEOUT values, define a flexible
failover policy for a given group. This flexible failover policy provides you with granular
control over what conditions must cause an automatic failover. For more information, see
Flexible Failover Policy for Automatic Failover of an Availability Group (SQL
Server).

HEALTH_CHECK_TIMEOUT = milliseconds

Specifies the wait time (in milliseconds) for the sp_server_diagnostics system stored
procedure to return server-health information before the WSFC cluster assumes that the
server instance is slow or hung. HEALTH_CHECK_TIMEOUT is set at the group level but is
relevant only on availability replicas that are configured for synchronous-commit availability
mode with automatic failover (AVAILIBILITY_MODE = SYNCHRONOUS_COMMIT).
Furthermore, a health-check timeout can trigger an automatic failover only if both the
primary and secondary replicas are configured for automatic failover mode (FAILOVER_MODE
= AUTOMATIC) and the secondary replica is currently synchronized with the primary replica.

The default HEALTH_CHECK_TIMEOUT value is 30000 milliseconds (30 seconds). The
minimum value is 15000 milliseconds (15 seconds), and the maximum value is 4294967295
milliseconds.

Important
sp_server_diagnostics does not perform health checks at the database level.

DATABASE database_name

Specifies a list of one or more user databases on the local SQL Server instance (that is, the
server instance on which you are creating the availability group). You can specify multiple
databases for an availability group, but each database can belong to only one availability
group. For information about the type of databases that an availability group can support,
see Prerequisites, Restrictions, and Recommendations for AlwaysOn
Availability Groups (SQL Server). To find out which local databases already belong to
an availability group, see the replica_id column in the sys.databases catalog view.

The DATABASE clause is optional. If you omit it, the new availability group will be empty.

After you have created the availability group, you will need connect to each server instance
that hosts a secondary replica and then prepare each secondary database and join it to the
availability group. For more information, see Start Data Movement on an AlwaysOn
Secondary Database (SQL Server).

Note
Later, you can add eligible databases on the server instance that hosts the current primary replica to
an availability group. You can also remove a database from an availability group. For more

http://msdn.microsoft.com/en-us/library/8c504c7f-5c1d-4124-b697-f735ef0084f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c504c7f-5c1d-4124-b697-f735ef0084f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/62658017-d089-459c-9492-c51e28f60efe(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/498eb3fb-6a43-434d-ad95-68a754232c45(SQL.110)�
http://msdn.microsoft.com/en-us/library/498eb3fb-6a43-434d-ad95-68a754232c45(SQL.110)�

 340

information, see ALTER AVAILABILITY GROUP (Transact-SQL).

REPLICA ON

Specifies from one to five SQL server instances to host availability replicas in the new
availability group. Each replica is specified by its server instance address followed by a WITH
(…) clause. Minimally, you must specify your local server instance, which will become the
initial primary replica. Optionally, you can also specify up to four secondary replicas.

You need to join every secondary replica to the availability group. For more information, see
ALTER AVAILABILITY GROUP (Transact-SQL).

Note
If you specify less than four secondary replicas when you create an availability group, you can an
additional secondary replica at any time by using the ALTER AVAILABILITY GROUP Transact-SQL
statement. You can also use this statement this remove any secondary replica from an existing
availability group.

<server_instance>

Specifies the address of the instance of SQL Server that is the host for an replica. The address
format depends on whether the instance is the default instance or a named instance and
whether it is a standalone instance or a failover cluster instance (FCI), as follows:

{ 'system_name[\instance_name]' | 'FCI_network_name[\instance_name]' }

The components of this address are as follows:

system_name

Is the NetBIOS name of the computer system on which the target instance of SQL Server
resides. This computer must be a WSFC node.

FCI_network_name

Is the network name that is used to access a SQL Server failover cluster. Use this if the
server instance participates as a SQL Server failover partner. Executing SELECT
@@SERVERNAME on an FCI server instance returns its entire
'FCI_network_name[\instance_name]' string (which is the full replica name).

instance_name

Is the name of an instance of a SQL Server that is hosted by system_name or
FCI_network_name and that has HADR service is enabled. For a default server instance,
instance_name is optional. The instance name is case insensitive. On a stand-alone server
instance, this value name is the same as the value returned by executing SELECT
@@SERVERNAME.

\

Is a separator used only when specifying instance_name, in order to separate it from
system_name or FCI_network_name.

For information about the prerequisites for WSFC nodes and server instances, see

http://msdn.microsoft.com/en-us/library/b0ef33fb-954a-4294-b05b-a87c14ce25a3(SQL.110)�
http://msdn.microsoft.com/en-us/library/b0ef33fb-954a-4294-b05b-a87c14ce25a3(SQL.110)�

 341

Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability
Groups (SQL Server).

ENDPOINT_URL = 'TCP://system-address:port'

Specifies the URL path for the database mirroring endpoint on the instance of SQL
Server that will host the availability replica that you are defining in your current REPICA ON
clause.

The ENDPOINT_URL clause is required. For more information, see Specify the Endpoint
URL When Adding or Modifying an Availability Replica.

'TCP://system-address:port'

Specifies a URL for specifying an endpoint URL or read-only routing URL. The URL parameters
are as follows:

system-address

Is a string, such as a system name, a fully qualified domain name, or an IP address, that
unambiguously identifies the destination computer system.

port

Is a port number that is associated with the mirroring endpoint of the partner server
instance (for the ENDPOINT_URL option) or the port number used by the Database Engine
of the server instance (for the READ_ONLY_ROUTING_URL option).

AVAILABILITY_MODE = { SYNCHRONOUS_COMMIT | ASYNCHRONOUS_COMMIT }

Specifies whether the primary replica has to wait for the secondary replica to acknowledge
the hardening (writing) of the log records to disk before the primary replica can commit the
transaction on a given primary database. The transactions on different databases on the
same primary replica can commit independently.

SYNCHRONOUS_COMMIT

Specifies that the primary replica will wait to commit transactions until they have been
hardened on this secondary replica (synchronous-commit mode). You can specify
SYNCHRONOUS_COMMIT for up to three replicas, including the primary replica.

ASYNCHRONOUS_COMMIT

Specifies that the primary replica commits transactions without waiting for this secondary
replica to harden the log (synchronous-commit availability mode). You can specify
ASYNCHRONOUS_COMMIT for up to five availability replicas, including the primary replica.

The AVAILABILITY_MODE clause is required. For more information, see Availability Modes
(AlwaysOn Availability Groups).

FAILOVER_MODE = { AUTOMATIC | MANUAL }

Specifies the failover mode of the availability replica that you are defining.

AUTOMATIC

Enables automatic failover. This option is supported only if you also specify

http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/39332dc5-678e-4650-9217-6aa3cdc41635(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7520c13-a8ee-4ddc-9e9a-54cd3d27ef1c(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7520c13-a8ee-4ddc-9e9a-54cd3d27ef1c(SQL.110)�
http://msdn.microsoft.com/en-us/library/10e7bac7-4121-48c2-be01-10083a8c65af(SQL.110)�
http://msdn.microsoft.com/en-us/library/10e7bac7-4121-48c2-be01-10083a8c65af(SQL.110)�

 342

AVAILABILITY_MODE = SYNCHRONOUS_COMMIT. You can specify AUTOMATIC for two
availability replicas, including the primary replica.

Note
SQL Server Failover Cluster Instances (FCIs) do not support automatic failover by availability groups,
so any availability replica that is hosted by an FCI can only be configured for manual failover.

MANUAL

Enables manual failover or forced manual failover (forced failover) by the database
administrator.

The FAILOVER_MODE clause is required. Two types of manual failover exist, manual failover
without data loss and forced failover (with possible data loss), which are supported under
different conditions. For more information, see Failover Modes (AlwaysOn
Availability Groups).

BACKUP_PRIORITY = n

Specifies your priority for performing backups on this replica relative to the other replicas in
the same availability group. The value is an integer in the range of 0..100. These values have
the following meanings:

• 1..100 indicates that the availability replica could be chosen for performing backups. 1
indicates the lowest priority, and 100 indicates the highest priority. If BACKUP_PRIORITY
= 1, the availability replica would be chosen for performing backups only if no higher
priority availability replicas are currently available.

• 0 indicates that this availability replica will never be chosen for performing backups. This
is useful, for example, for a remote availability replica to which you never want backups
to fail over.

For more information, see Backup on Secondary Replicas (AlwaysOn Availability
Groups).

SECONDARY_ROLE (…)

Specifies role-specific settings that will take effect if this availability replica currently owns the
secondary role (that is, whenever it is a secondary replica). Within the parentheses, specify
either or both secondary-role options. If you specify both, use a comma-separated list.

The secondary role options are as follows:

ALLOW_CONNECTIONS = { NO | READ_ONLY | ALL }

Specifies whether the databases of a given availability replica that is performing the
secondary role (that is, is acting as a secondary replica) can accept connections from
clients, one of:

NO

No user connections are allowed to secondary databases of this replica. They are not
available for read access. This is the default behavior.

READ_ONLY

http://msdn.microsoft.com/en-us/library/378d2d63-50b9-420b-bafb-d375543fda17(SQL.110)�
http://msdn.microsoft.com/en-us/library/378d2d63-50b9-420b-bafb-d375543fda17(SQL.110)�
http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�
http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�

 343

Only connections are allowed to the databases in the secondary replica where the
Application Intent property is set to ReadOnly. For more information about this
property, see Using Connection String Keywords with SQL Server Native
Client.

ALL

All connections are allowed to the databases in the secondary replica for read-only
access.

For more information, see Read-Only Access to Secondary Replicas.

READ_ONLY_ROUTING_URL = 'TCP://system-address:port'

Specifies the URL to be used for routing read-intent connection requests to this availability
replica. This is the URL on which the SQL Server Database Engine listens. Typically, the
default instance of the SQL Server Database Engine listens on TCP port 1433.

For a named instance, you can obtain the port number by querying the port and
type_desc columns of the sys.dm_tcp_listener_states dynamic management view. The
server instance uses the Transact-SQL listener (type_desc = 'TSQL').

Note
For a named instance of SQL Server, the Transact-SQL listener should be configured to use a specific
port. For more information, see Configure a Server to Listen on a Specific TCP Port (SQL
Server Configuration Manager).

PRIMARY_ROLE (…)

Specifies role-specific settings that will take effect if this availability replica currently owns the
primary role (that is, whenever it is the primary replica). Within the parentheses, specify
either or both primary-role options. If you specify both, use a comma-separated list.

The primary role options are as follows:

ALLOW_CONNECTIONS = { READ_WRITE | ALL }

Specifies the type of connection that the databases of a given availability replica that is
performing the primary role (that is, is acting as a primary replica) can accept from clients,
one of:

READ_WRITE

Connections where the Application Intent connection property is set to ReadOnly are
disallowed. When the Application Intent property is set to ReadWrite or the Application
Intent connection property is not set, the connection is allowed. For more information
about Application Intent connection property, see Using Connection String
Keywords with SQL Server Native Client.

ALL

All connections are allowed to the databases in the primary replica. This is the default
behavior.

http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/78f3f81a-066a-4fff-b023-7725ff874fdf(SQL.110)�
http://msdn.microsoft.com/en-us/library/9997ffed-a4c1-428f-8bac-3b9e4b16d7cf(SQL.110)�
http://msdn.microsoft.com/en-us/library/2276a5ed-ae3f-4855-96d8-f5bf01890640(SQL.110)�
http://msdn.microsoft.com/en-us/library/2276a5ed-ae3f-4855-96d8-f5bf01890640(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�

 344

READ_ONLY_ROUTING_LIST = { (‘<server_instance>’ [,...n]) | NONE }

Specifies a comma-separated list of server instances that host availability replicas for this
availability group that meet the following requirements when running under the secondary
role:

• Be configured to allow all connections or read-only connections (see the
ALLOW_CONNECTIONS argument of the SECONDARY_ROLE option, above).

• Have their read-only routing URL defined (see the READ_ONLY_ROUTING_URL
argument of the SECONDARY_ROLE option, above).

The READ_ONLY_ROUTING_LIST values are as follows:

<server_instance>

Specifies the address of the instance of SQL Server that is the host for an availability
replica that is a readable secondary replica when running under the secondary role.

Use a comma-separated list to specify all the server instances that might host a readable
secondary replica. Read-only routing will follow the order in which server instances are
specified in the list. If you include a replica's host server instance on the replica's read-
only routing list, placing this server instance at the end of the list is typically a good
practice, so that read-intent connections go to a secondary replica, if one is available.

NONE

Specifies that when this availability replica is the primary replica, read-only routing will
not be supported. This is the default behavior.

SESSION_TIMEOUT = integer

Specifies the session-timeout period in seconds. If you do not specify this option, by default,
the time period is 10 seconds. The minimum value is 5 seconds.

Important
We recommend that you keep the time-out period at 10 seconds or greater.

For more information about the session-timeout period, see Overview of AlwaysOn
Availability Groups (SQL Server).

LISTENER ‘dns_name’ (<listener_option>)

Defines a new availability group listener for this availability group. LISTENER is an optional
argument.

Important
• Before you create your first listener, we strongly recommend that you read

Prerequisites, Restrictions, and Recommendations for AlwaysOn
Client Connectivity (SQL Server).

• After you create a listener for a given availability group, we strongly recommend
that you do the following:

http://msdn.microsoft.com/en-us/library/04fd9d95-4624-420f-a3be-1794309b3a47(SQL.110)�
http://msdn.microsoft.com/en-us/library/04fd9d95-4624-420f-a3be-1794309b3a47(SQL.110)�
http://msdn.microsoft.com/en-us/library/b456448d-1757-48c8-8bbb-2d1c2d6d61e9(SQL.110)�
http://msdn.microsoft.com/en-us/library/b456448d-1757-48c8-8bbb-2d1c2d6d61e9(SQL.110)�

 345

dns_name

Specifies the DNS host name of the availability group listener. The DNS name of the listener
must be unique in the domain and in NetBIOS.

dns_name is a string value. This name can contain only alphanumeric characters, dashes (-),
and hyphens (_), in any order. DNS host names are case insensitive. The maximum length is
63 characters.

We recommend that you specify a meaningful string. For example, for an availability group
named AG1, a meaningful DNS host name would be ag1-listener.

Important
NetBIOS recognizes only the first 15 chars in the dns_name. If you have two WSFC clusters that are
controlled by the same Active Directory and you try to create availability group listeners in both of
clusters using names with more than 15 characters and an identical 15 character prefix, you will get an
error reporting that the Virtual Network Name resource could not be brought online. For information
about prefix naming rules for DNS names, see Assigning Domain Names.

<listener_option>

LISTENER takes one of the following <listener_option> options:

WITH DHCP [ON { (‘four_part_ipv4_address’, ‘four_part_ipv4_mask’) }]

Specifies that the availability group listener will use the Dynamic Host Configuration
Protocol (DHCP). Optionally, use the ON clause to identify the network on which this
listener will be created. DHCP is limited to a single subnet that is used for every server
instances that hosts an availability replica in the availability group.

Important
We do not recommend DHCP in production environment. If there is a down time and the DHCP IP
lease expires, extra time is required to register the new DHCP network IP address that is associated
with the listener DNS name and impact the client connectivity. However, DHCP is good for setting
up your development and testing environment to verify basic functions of availability groups and
for integration with your applications.

For example:

WITH DHCP ON ('10.120.19.0','255.255.254.0')

WITH IP ({ (‘four_part_ipv4_address’, ‘four_part_ipv4_mask’) | (‘ipv6_address’) } [,
...n]) [, PORT = listener_port]

Specifies that, instead of using DHCP, the availability group listener will use one or more
static IP addresses. To create an availability group across multiple subnets, each subnet
requires one static IP address in the listener configuration. For a given subnet, the static IP
address can be either an IPv4 address or an IPv6 address. Contact your network
administrator to get a static IP address for each subnet that will host an availability replica
for the new availability group.

For example:

http://technet.microsoft.com/en-us/library/cc731265(WS.10).aspx�

 346

WITH IP (('10.120.19.155','255.255.254.0'))

four_part_ipv4_address

Specifies an IPv4 four-part address for an availability group listener. For example,
10.120.19.155.

four_part_ipv4_mask

Specifies an IPv4 four-part mask for an availability group listener. For example,
255.255.254.0.

ipv6_address

Specifies an IPv6 address for an availability group listener. For example,
2001::4898:23:1002:20f:1fff:feff:b3a3.

PORT = listener_port

Specifies the port number—listener_port—to be used by an availability group listener that is
specified by a WITH IP clause. PORT is optional.

The default port number, 1433, is supported. However, if you have security concerns, we
recommend using a different port number.

For example: WITH IP (('2001::4898:23:1002:20f:1fff:feff:b3a3')
) , PORT = 7777

Prerequisites and Restrictions
For information about the prerequisites for creating an availability group, see Prerequisites,
Restrictions, and Recommendatoions for AlwaysOn Availability Groups.
For information about restrictions on the AVAILABILITY GROUP Transact-SQL statements, see
Overview of Transact-SQL Statements for AlwaysOn Availability Groups .

Security

Permissions
Requires membership in the sysadmin fixed server role and either CREATE AVAILABILITY GROUP
server permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL SERVER
permission.

Examples

A. Configuring Backup on Secondary Replicas, Flexible Failover Policy, and
Connection Access
The following example creates an availability group named MyAg for two user databases,
ThisDatabase and ThatDatabase. The following table summarizes the values specified for the
options that are set for the availability group as a whole.

http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/edbab896-42bb-4d17-8d75-e92ca11f7abb(SQL.110)�
http://msdn.microsoft.com/en-us/library/184d0a81-2259-4db9-9d0d-01aac0b502c8(SQL.110)�

 347

Group Option Setting Description

AUTOMATED_BACKUP_PREFERENCE SECONDARY This automated backup preference
indicates that backups should occur
on a secondary replica except when
the primary replica is the only replica
online (this is the default behavior).
For the
AUTOMATED_BACKUP_PREFERENCE
setting to have any effect, you need
to script backup jobs on the
availability databases to take the
automated backup preference into
account.

FAILURE_CONDITION_LEVEL 3 This failure condition level setting
specifies that an automatic failover
should be initiated on critical SQL
Server internal errors, such as
orphaned spinlocks, serious write-
access violations, or too much
dumping.

HEALTH_CHECK_TIMEOUT 600000 This health check timeout value, 60
seconds, specifies that the WSFC
cluster will wait 60000 milliseconds
for the sp_server_diagnostics system
stored procedure to return server-
health information about a server
instance that is hosting a
synchronous-commit replica with
automatic before the cluster assumes
that the host server instance is slow
or hung. (The default value is 30000
milliseconds).

Three availability replicas are to be hosted by the default server instances on computers named
COMPUTER01, COMPUTER02, and COMPUTER03. The following table summarizes the values
specified for the replica options of each replica.

http://msdn.microsoft.com/en-us/library/62658017-d089-459c-9492-c51e28f60efe(SQL.110)�

 348

Replica Option Setting on
COMPUTER01

Setting on
COMPUTER02

Setting on
COMPUTER03

Description

ENDPOINT_UR
L

TCP://COMPUTER01:
5022

TCP://COMPUTER02:
5022

TCP://COMPUTER03:
5022

In this
example,
the
systems
are the
same
domain, so
the
endpoint
URLs can
use the
name of
the
computer
system as
the system
address.

AVAILABILITY_
MODE

SYNCHRONOUS_CO
MMIT

SYNCHRONOUS_CO
MMIT

ASYNCHRONOUS_C
OMMIT

Two of the
replicas
use
synchrono
us-commit
mode.
When
synchroniz
ed, they
support
failover
without
data loss.
The third
replica,
which uses
asynchron
ous-
commit
availability
mode.

FAILOVER_MO AUTOMATIC AUTOMATIC MANUAL The

 349

Replica Option Setting on
COMPUTER01

Setting on
COMPUTER02

Setting on
COMPUTER03

Description

DE synchrono
us-commit
replicas
support
automatic
failover
and
planned
manual
failover.
The
synchrono
us-commit
availability
mode
replica
supports
only
forced
manual
failover.

BACKUP_PRIOR
ITY

30 30 90 A higher
priority,
90, is
assigned
to the
asynchron
ous-
commit
replica,
than to
the
synchrono
us-commit
replicas.
Backups
will tend
to occur
on the
server

 350

Replica Option Setting on
COMPUTER01

Setting on
COMPUTER02

Setting on
COMPUTER03

Description

instance
that hosts
the
asynchron
ous-
commit
replica.

SECONDARY_R
OLE

(
ALLOW_CONNECTI
ONS = NO,
READ_ONLY_ROUTI
NG_URL =
'TCP://COMPUTER01
:1433')

(
ALLOW_CONNECTI
ONS = NO,
READ_ONLY_ROUTI
NG_URL =
'TCP://COMPUTER02
:1433')

(
ALLOW_CONNECTI
ONS = READ_ONLY,
READ_ONLY_ROUTI
NG_URL =
'TCP://COMPUTER03
:1433')

Only the
asynchron
ous-
commit
replica
serves as a
readable
secondary
replica.
Specifies
the
computer
name and
default
Database
Engine
port
number
(1433).
 This
argument
is optional.

PRIMARY_ROLE (
ALLOW_CONNECTI
ONS = READ_WRITE,
READ_ONLY_ROUTI
NG_LIST =
(COMPUTER03))

(
ALLOW_CONNECTI
ONS = READ_WRITE,
READ_ONLY_ROUTI
NG_LIST =
(COMPUTER03))

(
ALLOW_CONNECTI
ONS = READ_WRITE,
READ_ONLY_ROUTI
NG_LIST = NONE)

In the
primary
role, all
the
replicas
will reject
read-
intent
connectio
n

 351

Replica Option Setting on
COMPUTER01

Setting on
COMPUTER02

Setting on
COMPUTER03

Description

attempts.
Read-
intent
connectio
n requests
will be
routed to
COMPUTE
R03 if the
local
replica is
running
under the
secondary
role. When
that
replica
runs under
the
primary
role, read-
only
routing is
disabled.
This
argument
is optional.

SESSION_TIME
OUT

10 10 10 This
example
specifies
the default
session
timeout
value (10).
This
argument
is optional.

 352

Finally, the example specifies the optional LISTENER clause to create an availability group
listener for the new availability group. A unique DNS name, MyAgListenerIvP6, is specified for
this listener. The two replicas are on different subnets, so the listener must use static IP
addresses. For each of the two availability replicas, the WITH IP clause specifies a static IP
address, 2001:4898:f0:f00f::cf3c and 2001:4898:e0:f213::4ce2, which use the IPv6
format. This example also specifies uses the optional PORT argument to specify port 60173 as
the listener port.

CREATE AVAILABILITY GROUP MyAg

 WITH (

 AUTOMATED_BACKUP_PREFERENCE = SECONDARY,

 FAILURE_CONDITION_LEVEL = 3,

 HEALTH_CHECK_TIMEOUT = 600000

)

 FOR

 DATABASE ThisDatabase, ThatDatabase

 REPLICA ON

 'COMPUTER01' WITH

 (

 ENDPOINT_URL = 'TCP://COMPUTER01:5022',

 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,

 FAILOVER_MODE = AUTOMATIC,

 BACKUP_PRIORITY = 30,

 SECONDARY_ROLE (ALLOW_CONNECTIONS = NO,

 READ_ONLY_ROUTING_LIST = (COMPUTER03)),

 PRIMARY_ROLE (ALLOW_CONNECTIONS = READ_WRITE,

 READ_ONLY_ROUTING_LIST = (COMPUTER03)),

 SESSION_TIMEOUT = 10

),

 'COMPUTER02' WITH

 (

 ENDPOINT_URL = 'TCP://COMPUTER02:5022',

 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,

 FAILOVER_MODE = AUTOMATIC,

 353

 BACKUP_PRIORITY = 30,

 SECONDARY_ROLE (ALLOW_CONNECTIONS = NO,

 READ_ONLY_ROUTING_URL = 'TCP://COMPUTER02:1433'),

 PRIMARY_ROLE (ALLOW_CONNECTIONS = READ_WRITE,

 READ_ONLY_ROUTING_LIST = (COMPUTER03)),

 SESSION_TIMEOUT = 10

),

 'COMPUTER03' WITH

 (

 ENDPOINT_URL = 'TCP://COMPUTER03:5022',

 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,

 FAILOVER_MODE = MANUAL,

 BACKUP_PRIORITY = 90,

 SECONDARY_ROLE (ALLOW_CONNECTIONS = READ_ONLY,

 READ_ONLY_ROUTING_URL = 'TCP://COMPUTER03:1433'),

 PRIMARY_ROLE (ALLOW_CONNECTIONS = READ_WRITE,

 READ_ONLY_ROUTING_LIST = NONE),

 SESSION_TIMEOUT = 10

)

LISTENER ‘MyAgListenerIvP6’ (WITH IP (

('2001:db88:f0:f00f::cf3c'),('2001:4898:e0:f213::4ce2')) , PORT = 60173);

GO

Related Tasks
• Create an Availability Group (Transact-SQL)
• Use the New Availability Group Wizard (SQL Server Management Studio)
• Use the New Availability Group Dialog Box (SQL Server Management Studio)
• Use the New Availability Group Wizard (SQL Server Management Studio)

See Also
ALTER AVAILABILITY GROUP (Transact-SQL)
ALTER DATABASE SET HADR (Transact-SQL)

http://msdn.microsoft.com/en-us/library/8b0a6301-8b79-4415-b608-b40876f30066(SQL.110)�
http://msdn.microsoft.com/en-us/library/e1f1dccc-9e65-471d-8fd1-b45085c9484a(SQL.110)�
http://msdn.microsoft.com/en-us/library/1b0a6421-fbd4-4bb4-87ca-657f4782c433(SQL.110)�
http://msdn.microsoft.com/en-us/library/e1f1dccc-9e65-471d-8fd1-b45085c9484a(SQL.110)�

 354

DROP AVAILABILITY GROUP (Transact-SQL)
Troubleshooting AlwaysOn Availability Groups Configuration (SQL Server)
Overview of AlwaysOn Availability Groups (SQL Server)
Client Connectivity and Application Failover (AlwaysOn Availability Groups)

CREATE BROKER PRIORITY
Defines a priority level and the set of criteria for determining which Service Broker conversations
to assign the priority level. The priority level is assigned to any conversation endpoint that
uses the same combination of contracts and services that are specified in the conversation
priority. Priorities range in value from 1 (low) to 10 (high). The default is 5.

 Transact-SQL Syntax Conventions

Syntax

CREATE BROKER PRIORITY ConversationPriorityName
FOR CONVERSATION
[SET ([CONTRACT_NAME = {ContractName | ANY }]
 [[,] LOCAL_SERVICE_NAME = {LocalServiceName | ANY }]
 [[,] REMOTE_SERVICE_NAME = {'RemoteServiceName' | ANY }]
 [[,] PRIORITY_LEVEL = {PriorityValue | DEFAULT }]
)
]
[;]

Arguments
ConversationPriorityName

Specifies the name for this conversation priority. The name must be unique in the current
database, and must conform to the rules for Database Engine identifiers.

SET

Specifies the criteria for determining if the conversation priority applies to a conversation. If
specified, SET must contain at least one criterion: CONTRACT_NAME, LOCAL_SERVICE_NAME,
REMOTE_SERVICE_NAME, or PRIORITY_LEVEL. If SET is not specified, the defaults are set for
all three criteria.

CONTRACT_NAME = {ContractName | ANY}

Specifies the name of a contract to be used as a criterion for determining if the conversation
priority applies to a conversation. ContractName is a Database Engine identifier, and must
specify the name of a contract in the current database.

http://msdn.microsoft.com/en-us/library/8c222f98-7392-4faf-b7ad-5fb60ffa237e(SQL.110)�
http://msdn.microsoft.com/en-us/library/04fd9d95-4624-420f-a3be-1794309b3a47(SQL.110)�
http://msdn.microsoft.com/en-us/library/76fb3eca-6b08-4610-8d79-64019dd56c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 355

ContractName

Specifies that the conversation priority can be applied only to conversations where the
BEGIN DIALOG statement that started the conversation specified ON CONTRACT
ContractName.

ANY

Specifies that the conversation priority can be applied to any conversation, regardless of
which contract it uses.

The default is ANY.

LOCAL_SERVICE_NAME = {LocalServiceName | ANY}

Specifies the name of a service to be used as a criterion to determine if the conversation
priority applies to a conversation endpoint.

LocalServiceName is a Database Engine identifier. It must specify the name of a service in the
current database.

LocalServiceName

Specifies that the conversation priority can be applied to the following:

• Any initiator conversation endpoint whose initiator service name matches
LocalServiceName.

• Any target conversation endpoint whose target service name matches
LocalServiceName.

ANY

• Specifies that the conversation priority can be applied to any conversation endpoint,
regardless of the name of the local service used by the endpoint.

The default is ANY.

REMOTE_SERVICE_NAME = {'RemoteServiceName' | ANY}

Specifies the name of a service to be used as a criterion to determine if the conversation
priority applies to a conversation endpoint.

RemoteServiceName is a literal of type nvarchar(256). Service Broker uses a byte-by-byte
comparison to match the RemoteServiceName string. The comparison is case-sensitive and
does not consider the current collation. The target service can be in the current instance of
the Database Engine, or a remote instance of the Database Engine.

'RemoteServiceName'

Specifies that the conversation priority can be applied to the following:

• Any initiator conversation endpoint whose associated target service name matches
RemoteServiceName.

• Any target conversation endpoint whose associated initiator service name matches
RemoteServiceName.

ANY

 356

Specifies that the conversation priority can be applied to any conversation endpoint,
regardless of the name of the remote service associated with the endpoint.

The default is ANY.

PRIORITY_LEVEL = { PriorityValue | DEFAULT }

Specifies the priority to assign any conversation endpoint that use the contracts and services
specified in the conversation priority. PriorityValue must be an integer literal from 1 (lowest
priority) to 10 (highest priority). The default is 5.

Remarks
Service Broker assigns priority levels to conversation endpoints. The priority levels control the
priority of the operations associated with the endpoint. Each conversation has two conversation
endpoints:
• The initiator conversation endpoint associates one side of the conversation with the initiator

service and initiator queue. The initiator conversation endpoint is created when the BEGIN
DIALOG statement is run. The operations associated with the initiator conversation endpoint
include:
• Sends from the initiator service.
• Receives from the initiator queue.
• Getting the next conversation group from the initiator queue.

• The target conversation endpoint associates the other side of the conversation with the
target service and queue. The target conversation endpoint is created when the conversation
is used to send a message to the target queue. The operations associated with the target
conversation endpoint include:
• Receives from the target queue.
• Sends from the target service.
• Getting the next conversation group from the target queue.

Service Broker assigns conversation priority levels when conversation endpoints are created. The
conversation endpoint retains the priority level until the conversation ends. New priorities or
changes to existing priorities are not applied to existing conversations.
Service Broker assigns a conversation endpoint the priority level from the conversation priority
whose contract and services criteria best match the properties of the endpoint. The following
table shows the match precedence:

Operation contract Operation local service Operation remote service

ContractName LocalServiceName RemoteServiceName

ContractName LocalServiceName ANY

ContractName ANY RemoteServiceName

 357

Operation contract Operation local service Operation remote service

ContractName ANY ANY

ANY LocalServiceName RemoteServiceName

ANY LocalServiceName ANY

ANY ANY RemoteServiceName

ANY ANY ANY

Service Broker first looks for a priority whose specified contract, local service, and remote service
matches those that the operation uses. If one is not found, Service Broker looks for a priority
with a contract and local service that matches those that the operation uses, and where the
remote service was specified as ANY. This continues for all the variations that are listed in the
precedence table. If no match is found, the operation is assigned the default priority of 5.
Service Broker independently assigns a priority level to each conversation endpoint. To have
Service Broker assign priority levels to both the initiator and target conversation endpoints, you
must ensure that both endpoints are covered by conversation priorities. If the initiator and
target conversation endpoints are in separate databases, you must create conversation priorities
in each database. The same priority level is usually specified for both of the conversation
endpoints for a conversation, but you can specify different priority levels.
Priority levels are always applied to operations that receive messages or conversation group
identifiers from a queue. Priority levels are also applied when transmitting messages from one
instance of the Database Engine to another.
 Priority levels are not used when transmitting messages:
• From a database where the HONOR_BROKER_PRIORITY database option is set to OFF. For

more information, see ALTER DATABASE SET Options (Transact-SQL).
• Between services in the same instance of the Database Engine.
• All Service Broker operations in a database are assigned default priorities of 5 if no

conversation priorities have been created in the database.

Permissions
Permission for creating a conversation priority defaults to members of the db_ddladmin or
db_owner fixed database roles, and to the sysadmin fixed server role. Requires ALTER permission
on the database.

Examples

A. Assigning a priority level to both directions of a conversation.
These two conversation priorities ensure that all operations that use SimpleContract between
TargetService and the InitiatorAService are assigned priority level 3.

CREATE BROKER PRIORITY InitiatorAToTargetPriority

 358

 FOR CONVERSATION

 SET (CONTRACT_NAME = SimpleContract,

 LOCAL_SERVICE_NAME = InitiatorServiceA,

 REMOTE_SERVICE_NAME = N'TargetService',

 PRIORITY_LEVEL = 3);

CREATE BROKER PRIORITY TargetToInitiatorAPriority

 FOR CONVERSATION

 SET (CONTRACT_NAME = SimpleContract,

 LOCAL_SERVICE_NAME = TargetService,

 REMOTE_SERVICE_NAME = N'InitiatorServiceA',

 PRIORITY_LEVEL = 3);

B. Setting the priority level for all conversations that use a contract
Assigns a priority level of 7 to all operations that use a contract named SimpleContract. This
assumes that there are no other priorities that specify both SimpleContract and either a local
or a remote service.

CREATE BROKER PRIORITY SimpleContractDefaultPriority

 FOR CONVERSATION

 SET (CONTRACT_NAME = SimpleContract,

 LOCAL_SERVICE_NAME = ANY,

 REMOTE_SERVICE_NAME = ANY,

 PRIORITY_LEVEL = 7);

C. Setting a base priority level for a database.
Defines conversation priorities for two specific services, and then defines a conversation priority
that will match all other conversation endpoints. This does not replace the default priority, which
is always 5, but does minimize the number of items that are assigned the default.

CREATE BROKER PRIORITY [//Adventure-Works.com/Expenses/ClaimPriority]

 FOR CONVERSATION

 SET (CONTRACT_NAME = ANY,

 LOCAL_SERVICE_NAME = //Adventure-Works.com/Expenses/ClaimService,

 REMOTE_SERVICE_NAME = ANY,

 PRIORITY_LEVEL = 9);

CREATE BROKER PRIORITY [//Adventure-Works.com/Expenses/ApprovalPriority]

 FOR CONVERSATION

 SET (CONTRACT_NAME = ANY,

www.Adventure-Works.com/Expenses/ClaimPriority
www.Adventure-Works.com/Expenses/ClaimService
www.Adventure-Works.com/Expenses/ApprovalPriority

 359

 LOCAL_SERVICE_NAME = //Adventure-Works.com/Expenses/ClaimService,

 REMOTE_SERVICE_NAME = ANY,

 PRIORITY_LEVEL = 6);

CREATE BROKER PRIORITY [//Adventure-Works.com/Expenses/BasePriority]

 FOR CONVERSATION

 SET (CONTRACT_NAME = ANY,

 LOCAL_SERVICE_NAME = ANY,

 REMOTE_SERVICE_NAME = ANY,

 PRIORITY_LEVEL = 3);

D. Creating three priority levels for a target service by using services
Supports a system that provides three levels of performance: Gold (high), Silver (medium), and
Bronze (low). There is one contract, but each level has a separate initiator service. All initiator
services communicate to a central target service.

CREATE BROKER PRIORITY GoldInitToTargetPriority

 FOR CONVERSATION

 SET (CONTRACT_NAME = SimpleContract,

 LOCAL_SERVICE_NAME = GoldInitiatorService,

 REMOTE_SERVICE_NAME = N'TargetService',

 PRIORITY_LEVEL = 6);

CREATE BROKER PRIORITY GoldTargetToInitPriority

 FOR CONVERSATION

 SET (CONTRACT_NAME = SimpleContract,

 LOCAL_SERVICE_NAME = TargetService,

 REMOTE_SERVICE_NAME = N'GoldInitiatorService',

 PRIORITY_LEVEL = 6);

CREATE BROKER PRIORITY SilverInitToTargetPriority

 FOR CONVERSATION

 SET (CONTRACT_NAME = SimpleContract,

 LOCAL_SERVICE_NAME = SilverInitiatorService,

 REMOTE_SERVICE_NAME = N'TargetService',

 PRIORITY_LEVEL = 4);

CREATE BROKER PRIORITY SilverTargetToInitPriority

 FOR CONVERSATION

 SET (CONTRACT_NAME = SimpleContract,

www.Adventure-Works.com/Expenses/ClaimService
www.Adventure-Works.com/Expenses/BasePriority

 360

 LOCAL_SERVICE_NAME = TargetService,

 REMOTE_SERVICE_NAME = N'SilverInitiatorService',

 PRIORITY_LEVEL = 4);

CREATE BROKER PRIORITY BronzeInitToTargetPriority

 FOR CONVERSATION

 SET (CONTRACT_NAME = SimpleContract,

 LOCAL_SERVICE_NAME = BronzeInitiatorService,

 REMOTE_SERVICE_NAME = N'TargetService',

 PRIORITY_LEVEL = 2);

CREATE BROKER PRIORITY BronzeTargetToInitPriority

 FOR CONVERSATION

 SET (CONTRACT_NAME = SimpleContract,

 LOCAL_SERVICE_NAME = TargetService,

 REMOTE_SERVICE_NAME = N'BronzeInitiatorService',

 PRIORITY_LEVEL = 2);

E. Creating three priority levels for multiple services using contracts
Supports a system that provides three levels of performance: Gold (high), Silver (medium), and
Bronze (low). Each level has a separate contract. These priorities apply to any services that are
referenced by conversations that use the contracts.

CREATE BROKER PRIORITY GoldPriority

 FOR CONVERSATION

 SET (CONTRACT_NAME = GoldContract,

 LOCAL_SERVICE_NAME = ANY,

 REMOTE_SERVICE_NAME = ANY,

 PRIORITY_LEVEL = 6);

CREATE BROKER PRIORITY SilverPriority

 FOR CONVERSATION

 SET (CONTRACT_NAME = SilverContract,

 LOCAL_SERVICE_NAME = ANY,

 REMOTE_SERVICE_NAME = ANY,

 PRIORITY_LEVEL = 4);

CREATE BROKER PRIORITY BronzePriority

 FOR CONVERSATION

 SET (CONTRACT_NAME = BronzeContract,

 361

 LOCAL_SERVICE_NAME = ANY,

 REMOTE_SERVICE_NAME = ANY,

 PRIORITY_LEVEL = 2);

See Also
ALTER BROKER PRIORITY (Transact-SQL)
BEGIN DIALOG CONVERSATION (Transact-SQL)
CREATE CONTRACT (Transact-SQL)
CREATE QUEUE (Transact-SQL)
CREATE SERVICE (Transact-SQL)
DROP BROKER PRIORITY (Transact-SQL)
GET CONVERSATION GROUP (Transact-SQL)
RECEIVE (Transact-SQL)
SEND (Transact-SQL)
sys.conversation_priorities (Transact-SQL)

CREATE CERTIFICATE
Adds a certificate to a database.

 Transact-SQL Syntax Conventions

Syntax

CREATE CERTIFICATE certificate_name [AUTHORIZATION user_name]
 { FROM <existing_keys> | <generate_new_keys> }
 [ACTIVE FOR BEGIN_DIALOG = { ON | OFF }]

<existing_keys> ::=
 ASSEMBLY assembly_name
 | {
 [EXECUTABLE] FILE = 'path_to_file'
 [WITH PRIVATE KEY (<private_key_options>)]
 }
 | {
 BINARY = asn_encoded_certificate
 [WITH PRIVATE KEY (<private_key_options>)]
 }

http://msdn.microsoft.com/en-us/library/8e814f9d-77c1-4906-b8e4-668a86fc94ba(SQL.110)�
http://msdn.microsoft.com/en-us/library/4da8a855-33c0-43b2-a49d-527487cb3b5c(SQL.110)�
http://msdn.microsoft.com/en-us/library/878c6c14-37ab-4b87-9854-7f8f42bac7dd(SQL.110)�
http://msdn.microsoft.com/en-us/library/b6e66aeb-1714-4c2b-b7c2-d386d77b0d46(SQL.110)�
http://msdn.microsoft.com/en-us/library/7cbb9171-3310-4aae-8458-755c882d6462(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 362

<generate_new_keys> ::=
 [ENCRYPTION BY PASSWORD = 'password']
 WITH SUBJECT = 'certificate_subject_name'
 [, <date_options> [,...n]]

<private_key_options> ::=
 {
 FILE = 'path_to_private_key'
 [, DECRYPTION BY PASSWORD = 'password']
 [, ENCRYPTION BY PASSWORD = 'password']
 }
 |
 {
 BINARY = private_key_bits
 [, DECRYPTION BY PASSWORD = 'password']
 [, ENCRYPTION BY PASSWORD = 'password']
 }

<date_options> ::=
 START_DATE = 'datetime' | EXPIRY_DATE = 'datetime'

Arguments
certificate_name

Is the name by which the certificate will be known in the database.

AUTHORIZATION user_name

Is the name of the user that will own this certificate.

ASSEMBLY assembly_name

Specifies a signed assembly that has already been loaded into the database.

[EXECUTABLE] FILE = 'path_to_file'

Specifies the complete path, including file name, to a DER-encoded file that contains the
certificate. If the EXECUTABLE option is used, the file is a DLL that has been signed by the
certificate. path_to_file can be a local path or a UNC path to a network location. The file will
be accessed in the security context of the SQL Server service account. This account must have
the required file-system permissions.

WITH PRIVATE KEY

Specifies that the private key of the certificate is loaded into SQL Server. This clause is only

 363

valid when the certificate is being created from a file. To load the private key of an assembly,
use ALTER CERTIFICATE.

FILE = 'path_to_private_key'

Specifies the complete path, including file name, to the private key. path_to_private_key can
be a local path or a UNC path to a network location. The file will be accessed in the security
context of the SQL Server service account. This account must have the necessary file-system
permissions.

Note
This option is not available in a contained database.

asn_encoded_certificate

ASN encoded certificate bits specified as a binary constant.

BINARY = private_key_bits

Private key bits specified as binary constant. These bits can be in encrypted form. If
encrypted, the user must provide a decryption password. Password policy checks are not
performed on this password. The private key bits should be in a PVK file format.

DECRYPTION BY PASSWORD = 'key_password'

Specifies the password required to decrypt a private key that is retrieved from a file. This
clause is optional if the private key is protected by a null password. Saving a private key to a
file without password protection is not recommended. If a password is required but no
password is specified, the statement will fail.

ENCRYPTION BY PASSWORD = 'password'

Specifies the password that will be used to encrypt the private key. Use this option only if you
want to encrypt the certificate with a password. If this clause is omitted, the private key will
be encrypted using the database master key. password must meet the Windows password
policy requirements of the computer that is running the instance of SQL Server. For more
information, see EVENTDATA (Transact-SQL).

SUBJECT = 'certificate_subject_name'

The term subject refers to a field in the metadata of the certificate as defined in the X.509
standard. The subject can be up to 128 characters long. Subjects that exceed 128 characters
will be truncated when they are stored in the catalog, but the binary large object (BLOB) that
contains the certificate will retain the full subject name.

START_DATE = 'datetime'

Is the date on which the certificate becomes valid. If not specified, START_DATE will be set
equal to the current date. START_DATE is in UTC time and can be specified in any format that
can be converted to a date and time.

EXPIRY_DATE = 'datetime'

Is the date on which the certificate expires. If not specified, EXPIRY_DATE will be set to a date

http://msdn.microsoft.com/en-us/library/c0040c0a-a18f-45b9-9c40-0625685649b1(SQL.110)�

 364

one year after START_DATE. EXPIRY_DATE is in UTC time and can be specified in any format
that can be converted to a date and time. SQL Server Service Broker checks the expiration
date; however, expiration is not enforced when the certificate is used for encryption.

ACTIVE FOR BEGIN_DIALOG = { ON | OFF }

Makes the certificate available to the initiator of a Service Broker dialog conversation. The
default value is ON.

Remarks
A certificate is a database-level securable that follows the X.509 standard and supports X.509 V1
fields. CREATE CERTIFICATE can load a certificate from a file or assembly. This statement can also
generate a key pair and create a self-signed certificate.
Private keys generated by SQL Server are 1024 bits long. Private keys imported from an external
source have a minimum length of 384 bits and a maximum length of 4,096 bits. The length of an
imported private key must be an integer multiple of 64 bits.
The private key must correspond to the public key specified by certificate_name.
When you create a certificate from a container, loading the private key is optional. But when SQL
Server generates a self-signed certificate, the private key is always created. By default, the
private key is encrypted using the database master key. If the database master key does not
exist and no password is specified, the statement will fail.
The ENCRYPTION BY PASSWORD option is not required when the private key will be encrypted
with the database master key. Use this option only when the private key will be encrypted with a
password. If no password is specified, the private key of the certificate will be encrypted using
the database master key. Omitting this clause will cause an error if the master key of the
database cannot be opened.
You do not have to specify a decryption password when the private key is encrypted with the
database master key.

Built-in functions for encryption and signing do not check the expiration dates of
certificates. Users of these functions must decide when to check certificate expiration.

A binary description of a certificate can be created by using the CERTENCODED (Transact-SQL)
and CERTPRIVATEKEY (Transact-SQL) functions. For an example that uses CERTPRIVATEKEY and
CERTENCODED to copy a certificate to another database, see example B in the topic
CERTENCODED (Transact-SQL).

Permissions
Requires CREATE CERTIFICATE permission on the database. Only Windows logins, SQL
Server logins, and application roles can own certificates. Groups and roles cannot own
certificates.

Examples

Note

http://msdn.microsoft.com/en-us/library/677a0719-7b9a-4f0b-bc61-41634563f924(SQL.110)�
http://msdn.microsoft.com/en-us/library/33e0f01e-39ac-46da-94ff-fe53b1116df4(SQL.110)�
http://msdn.microsoft.com/en-us/library/677a0719-7b9a-4f0b-bc61-41634563f924(SQL.110)�

 365

A. Creating a self-signed certificate
The following example creates a certificate called Shipping04. The private key of this certificate
is protected using a password.

USE AdventureWorks2012;

CREATE CERTIFICATE Shipping04

 ENCRYPTION BY PASSWORD = 'pGFD4bb925DGvbd2439587y'

 WITH SUBJECT = 'Sammamish Shipping Records',

 EXPIRY_DATE = '20121031';

GO

B. Creating a certificate from a file
The following example creates a certificate in the database, loading the key pair from files.
USE AdventureWorks2012;

CREATE CERTIFICATE Shipping11

 FROM FILE = 'c:\Shipping\Certs\Shipping11.cer'

 WITH PRIVATE KEY (FILE = 'c:\Shipping\Certs\Shipping11.pvk',

 DECRYPTION BY PASSWORD = 'sldkflk34et6gs%53#v00');

GO

C. Creating a certificate from a signed executable file
USE AdventureWorks2012;

CREATE CERTIFICATE Shipping19

 FROM EXECUTABLE FILE = 'c:\Shipping\Certs\Shipping19.dll';

GO

Alternatively, you can create an assembly from the dll file, and then create a certificate from the
assembly.

USE AdventureWorks2012;

CREATE ASSEMBLY Shipping19

 FROM ' c:\Shipping\Certs\Shipping19.dll'

 WITH PERMISSION_SET = SAFE;

GO

CREATE CERTIFICATE Shipping19 FROM ASSEMBLY Shipping19;

GO

See Also
ALTER CERTIFICATE (Transact-SQL)

 366

DROP CERTIFICATE (Transact-SQL)
BACKUP CERTIFICATE (Transact-SQL)
Encryption Hierarchy
EVENTDATA (Transact-SQL)
CERTENCODED (Transact-SQL)
CERTPRIVATEKEY (Transact-SQL)

CREATE COLUMNSTORE INDEX
Creates a columnstore index on a specified table. An xVelocity memory optimized columnstore
index, is a type of compressed non-clustered index. There is a limit of one columnstore index per
table. An index can be created before there is data in the table. A table with a columnstore index
cannot be updated. For information about using columnstore indexes, see Columnstore
Indexes.

For information about how to create a relational index, see CREATE INDEX (Transact-
SQL). For information about how to create an XML index, see CREATE XML INDEX
(Transact-SQL). For information about how to create a spatial index, see CREATE SPATIAL
INDEX (Transact-SQL).

 Transact-SQL Syntax Conventions

Syntax
CREATE [NONCLUSTERED] COLUMNSTORE INDEX index_name
 ON <object> (column [,...n])
 [WITH (<column_index_option> [,...n])]
 [ON {
 { partition_scheme_name (column_name) }
 | filegroup_name
 | "default"
 }
]
[;]

<object> ::=
{
 [database_name. [schema_name] . | schema_name .]
 table_name
{

Note

http://msdn.microsoft.com/en-us/library/509b9462-819b-4c45-baae-3d2d90d14a1c(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/677a0719-7b9a-4f0b-bc61-41634563f924(SQL.110)�
http://msdn.microsoft.com/en-us/library/33e0f01e-39ac-46da-94ff-fe53b1116df4(SQL.110)�
http://msdn.microsoft.com/en-us/library/f98af4a5-4523-43b1-be8d-1b03c3217839(SQL.110)�
http://msdn.microsoft.com/en-us/library/f98af4a5-4523-43b1-be8d-1b03c3217839(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 367

<column_index_option> ::=
{
 DROP_EXISTING = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 }

Arguments
NONCLUSTERED

Creates a columnstore index that specifies the logical ordering of a table. Clustered
columnstore indexes are not supported.

COLUMNSTORE

Indicates the index will be a columnstore index.

index_name

Is the name of the index. Index names must be unique within a table or view but do not have
to be unique within a database. Index names must follow the rules of identifiers.

column

Is the column or columns on which the index is based. A columnstore index is limited to 1024
columns.

ON partition_scheme_name (column_name)

Specifies the partition scheme that defines the filegroups onto which the partitions of a
partitioned index will be mapped. The partition scheme must exist within the database by
executing CREATE PARTITION SCHEME. column_name specifies the column against
which a partitioned index will be partitioned. This column must match the data type, length,
and precision of the argument of the partition function that partition_scheme_name is using.
column_name is not restricted to the columns in the index definition. When partitioning a
columnstore index, Database Engine adds the partitioning column as a column of the index,
if it is not already specified.

If partition_scheme_name or filegroup is not specified and the table is partitioned, the index
is placed in the same partition scheme, using the same partitioning column, as the underlying
table.

For more information about partitioning indexes, see Partitioned Tables and Indexes.

ON filegroup_name

Creates the specified index on the specified filegroup. If no location is specified and the table
or view is not partitioned, the index uses the same filegroup as the underlying table or view.
The filegroup must already exist.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�
http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�

 368

ON "default"

Creates the specified index on the default filegroup.

The term default, in this context, is not a keyword. It is an identifier for the default filegroup
and must be delimited, as in ON "default" or ON [default]. If "default" is specified, the
QUOTED_IDENTIFIER option must be ON for the current session. This is the default setting.
For more information, see SET QUOTED_IDENTIFIER (Transact-SQL).

<object>::=
Is the fully qualified or nonfully qualified object to be indexed.
database_name

Is the name of the database.

schema_name

Is the name of the schema to which the table belongs.

table_name

Is the name of the table to be indexed.

<column_index_option>::=
Specifies the options to use when you create the column store index.
DROP_EXISTING

Specifies that the named, preexisting index is dropped and rebuilt. The default is OFF.

ON

The existing index is dropped and rebuilt. The index name specified must be the same as a
currently existing index; however, the index definition can be modified. For example, you
can specify different columns, or index options.

OFF

An error is displayed if the specified index name already exists. The index type cannot be
changed by using DROP_EXISTING. In backward compatible syntax, WITH DROP_EXISTING
is equivalent to WITH DROP_EXISTING = ON.

MAXDOP = max_degree_of_parallelism

Overrides the Configure the max degree of parallelism Server Configuration
Option configuration option for the duration of the index operation. Use MAXDOP to limit
the number of processors used in a parallel plan execution. The maximum is 64 processors.

max_degree_of_parallelism can be:

1

Suppresses parallel plan generation.

>1

Restricts the maximum number of processors used in a parallel index operation to the
specified number or fewer based on the current system workload.

http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�

 369

0 (default)

Uses the actual number of processors or fewer based on the current system workload.

For more information, see Configuring Parallel Index Operations.

Note
Parallel index operations are not available in every edition of Microsoft SQL Server. For a list of
features that are supported by the editions of SQL Server, see Features Supported by the
Editions of SQL Server 2012.

Remarks
Indexes can be created on a temporary table. When the table is dropped or the session ends,
the indexes are dropped.
The common business data types can be included in a columnstore index. The following data
types can be included in a columnstore index.
• char and varchar
• nchar and nvarchar (except varchar(max) and nvarchar(max))
• decimal (and numeric) (Except with precision greater than 18 digits.)
• int, bigint, smallint, and tinyint
• float (and real)
• bit
• money and smallmoney
• All date and time data types (except datetimeoffset with scale greater than 2)
The following data types cannot be included in a columnstore index.
• binary and varbinary
• ntext, text, and image
• varchar(max) and nvarchar(max)
• uniqueidentifier
• rowversion (and timestamp)
• sql_variant
• decimal (and numeric) with precision greater than 18 digits
• datetimeoffset with scale greater than 2
• CLR types (hierarchyid and spatial types)
• xml
Basic Restrictions
A columnstore index:
• Cannot have more than 1024 columns.
• Cannot be clustered. Only nonclustered columnstore indexes are available.

http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�

 370

• Cannot be a unique index.
• Cannot be created on a view or indexed view.
• Cannot include a sparse column.
• Cannot act as a primary key or a foreign key.
• Cannot be changed using the ALTER INDEX statement. Drop and re-create the columnstore

index instead. (You can use ALTER INDEX to disable and rebuild a columnstore index.)
• Cannot be created by with the INCLUDE keyword.
• Cannot include the ASC or DESC keywords for sorting the index. Columnstore indexes are

ordered according to the compression algorithms. Sorting would eliminate many of the
performance benefits.

Columnstore indexes cannot be combined with the following features:
• Page and row compression, and vardecimal storage format (A columnstore index is already

compressed in a different format.)
• Replication
• Change tracking
• Change data capture
• Filestream
For information about the performance benefits and limitations of columnstore indexes, see
Understanding Columnstore Indexes.

Permissions
Requires ALTER permission on the table.

Examples

A. Creating a simple nonclustered index
The following example creates a simple table and clustered index, and then demonstrates the
syntax of creating a columnstore index.

CREATE TABLE SimpleTable

(ProductKey [int] NOT NULL,

OrderDateKey [int] NOT NULL,

DueDateKey [int] NOT NULL,

ShipDateKey [int] NOT NULL);

GO

CREATE CLUSTERED INDEX cl_simple ON SimpleTable (ProductKey);

GO

CREATE NONCLUSTERED COLUMNSTORE INDEX csindx_simple

ON SimpleTable

http://msdn.microsoft.com/en-us/library/f98af4a5-4523-43b1-be8d-1b03c3217839(SQL.110)�

 371

(OrderDateKey, DueDateKey, ShipDateKey);

GO

B. Creating a simple nonclustered index using all options
The following example creates a simple table and clustered index, and then demonstrates the
syntax of creating a columnstore index.

CREATE NONCLUSTERED COLUMNSTORE INDEX csindx_simple

ON SimpleTable

(OrderDateKey, DueDateKey, ShipDateKey)

WITH (DROP_EXISTING = ON,

 MAXDOP = 2)

ON "default"

GO

For a more complex example using partitioned tables, see Understanding Columnstore Indexes.

See Also
Understanding Columnstore Indexes
Columnstore Indexes
sys.column_store_dictionaries (Transact-SQL)
sys.column_store_segments (Transact-SQL)
ALTER INDEX (Transact-SQL)
CREATE PARTITION FUNCTION
CREATE PARTITION SCHEME
DROP INDEX
sys.indexes
sys.index_columns

CREATE CONTRACT
Creates a new contract. A contract defines the message types that are used in a Service Broker
conversation and also determines which side of the conversation can send messages of that
type. Each conversation follows a contract. The initiating service specifies the contract for the
conversation when the conversation starts. The target service specifies the contracts that the
target service accepts conversations for.

 Transact-SQL Syntax Conventions

Syntax

http://msdn.microsoft.com/en-us/library/f98af4a5-4523-43b1-be8d-1b03c3217839(SQL.110)�
http://msdn.microsoft.com/en-us/library/f98af4a5-4523-43b1-be8d-1b03c3217839(SQL.110)�
http://msdn.microsoft.com/en-us/library/f98af4a5-4523-43b1-be8d-1b03c3217839(SQL.110)�
http://msdn.microsoft.com/en-us/library/56efd563-2f72-4caf-94e3-8a182385c173(SQL.110)�
http://msdn.microsoft.com/en-us/library/1253448c-2ec9-4900-ae9f-461d6b51b2ea(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/211471aa-558a-475c-9b94-5913c143ed12(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 372

CREATE CONTRACT contract_name
 [AUTHORIZATION owner_name]
 ({ { message_type_name | [DEFAULT] }
 SENT BY { INITIATOR | TARGET | ANY }
 } [,...n])
[;]

Arguments
contract_name

Is the name of the contract to create. A new contract is created in the current database and
owned by the principal specified in the AUTHORIZATION clause. Server, database, and
schema names cannot be specified. The contract_name can be up to 128 characters.

Note
Do not create a contract that uses the keyword ANY for the contract_name. When you specify ANY for
a contract name in CREATE BROKER PRIORITY, the priority is considered for all contracts. It is not
limited to a contract whose name is ANY.

AUTHORIZATION owner_name

Sets the owner of the contract to the specified database user or role. When the current user
is dbo or sa, owner_name can be the name of any valid user or role. Otherwise, owner_name
must be the name of the current user, the name of a user that the current user has
impersonate permissions for, or the name of a role to which the current user belongs. When
this clause is omitted, the contract belongs to the current user.

message_type_name

Is the name of a message type to be included as part of the contract.

SENT BY

Specifies which endpoint can send a message of the indicated message type. Contracts
document the messages that services can use to have specific conversations. Each
conversation has two endpoints: the initiator endpoint, the service that started the
conversation, and the target endpoint, the service that the initiator is contacting.

INITIATOR

Indicates that only the initiator of the conversation can send messages of the specified
message type. A service that starts a conversation is referred to as the initiator of the
conversation.

TARGET

Indicates that only the target of the conversation can send messages of the specified
message type. A service that accepts a conversation that was started by another service is

 373

referred to as the target of the conversation.

ANY

Indicates that messages of this type can be sent by both the initiator and the target.

[DEFAULT]

Indicates that this contract supports messages of the default message type. By default, all
databases contain a message type named DEFAULT. This message type uses a validation of
NONE. In the context of this clause, DEFAULT is not a keyword, and must be delimited as an
identifier. Microsoft SQL Server also provides a DEFAULT contract which specifies the
DEFAULT message type.

Remarks
The order of message types in the contract is not significant. After the target has received the
first message, Service Broker allows either side of the conversation to send any message allowed
for that side of the conversation at any time. For example, if the initiator of the conversation can
send the message type //Adventure-Works.com/Expenses/SubmitExpense, Service Broker
allows the initiator to send any number of SubmitExpense messages during the conversation.
The message types and directions in a contract cannot be changed. To change the
AUTHORIZATION for a contract, use the ALTER AUTHORIZATION statement.
A contract must allow the initiator to send a message. The CREATE CONTRACT statement fails
when the contract does not contain at least one message type that is SENT BY ANY or SENT BY
INITIATOR.
Regardless of the contract, a service can always receive the message types
http://schemas.microsoft.com/SQL/ServiceBroker/DialogTimer,
http://schemas.microsoft.com/SQL/ServiceBroker/Error, and
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog. Service Broker uses these
message types for system messages to the application.
A contract cannot be a temporary object. Contract names starting with # are permitted, but are
permanent objects.

Permissions
By default, members of the db_ddladmin or db_owner fixed database roles and the sysadmin
fixed server role can create contracts.
By default, the owner of the contract, members of the db_ddladmin or db_owner fixed
database roles, and members of the sysadmin fixed server role have REFERENCES permission on
a contract.
The user executing the CREATE CONTRACT statement must have REFERENCES permission on all
message types specified.

Examples
A. Creating a contract

http://schemas.microsoft.com/SQL/ServiceBroker/DialogTimer
http://schemas.microsoft.com/SQL/ServiceBroker/Error
http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
http://www.Adventure-Works.com/Expenses/SubmitExpense

 374

The following example creates an expense reimbursement contract based on three message
types.

CREATE MESSAGE TYPE

 [//Adventure-Works.com/Expenses/SubmitExpense]

 VALIDATION = WELL_FORMED_XML ;

CREATE MESSAGE TYPE

 [//Adventure-Works.com/Expenses/ExpenseApprovedOrDenied]

 VALIDATION = WELL_FORMED_XML ;

CREATE MESSAGE TYPE

 [//Adventure-Works.com/Expenses/ExpenseReimbursed]

 VALIDATION= WELL_FORMED_XML ;

CREATE CONTRACT

 [//Adventure-Works.com/Expenses/ExpenseSubmission]

 ([//Adventure-Works.com/Expenses/SubmitExpense]

 SENT BY INITIATOR,

 [//Adventure-Works.com/Expenses/ExpenseApprovedOrDenied]

 SENT BY TARGET,

 [//Adventure-Works.com/Expenses/ExpenseReimbursed]

 SENT BY TARGET

) ;

See Also
DROP CONTRACT
EVENTDATA

CREATE CREDENTIAL
Creates a credential.

 Transact-SQL Syntax Conventions

Syntax

CREATE CREDENTIAL credential_name WITH IDENTITY = 'identity_name'

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
www.Adventure-Works.com/Expenses/SubmitExpense
www.Adventure-Works.com/Expenses/ExpenseApprovedOrDenied
www.Adventure-Works.com/Expenses/ExpenseReimbursed
www.Adventure-Works.com/Expenses/ExpenseSubmission
www.Adventure-Works.com/Expenses/SubmitExpense
www.Adventure-Works.com/Expenses/ExpenseApprovedOrDenied
www.Adventure-Works.com/Expenses/ExpenseReimbursed

 375

 [, SECRET = 'secret']
 [FOR CRYPTOGRAPHIC PROVIDER cryptographic_provider_name]

Arguments
credential_name

Specifies the name of the credential being created. credential_name cannot start with the
number (#) sign. System credentials start with ##.

IDENTITY = 'identity_name'

Specifies the name of the account to be used when connecting outside the server.

SECRET = 'secret'

Specifies the secret required for outgoing authentication. This clause is optional.

FOR CRYPTOGRAPHIC PROVIDER cryptographic_provider_name

Specifies the name of an Enterprise Key Management Provider (EKM). For more information
about Key Management, see Understanding Extensible Key Management (EKM).

Remarks
A credential is a record that contains the authentication information that is required to connect
to a resource outside SQL Server. Most credentials include a Windows user and password.
When IDENTITY is a Windows user, the secret can be the password. The secret is encrypted
using the service master key. If the service master key is regenerated, the secret is re-encrypted
using the new service master key.
After creating a credential, you can map it to a SQL Server login by using CREATE LOGIN or
ALTER LOGIN. A SQL Server login can be mapped to only one credential, but a single credential
can be mapped to multiple SQL Server logins. For more information, see sys.credentials
(Transact-SQL).
Information about credentials is visible in the sys.credentials catalog view.
If there is no login mapped credential for the provider, the credential mapped to SQL Server
service account is used.
A login can have multiple credentials mapped to it as long as they are used with distinctive
providers. There must be only one mapped credential per provider per login. The same
credential can be mapped to other logins.

Permissions
Requires ALTER ANY CREDENTIAL permission.

Examples
The following example creates the credential called AlterEgo. The credential contains the
Windows user Mary5 and a password.

CREATE CREDENTIAL AlterEgo WITH IDENTITY = 'Mary5',

http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea48cf80-904a-4273-a950-6d35b1b0a1b6(SQL.110)�

 376

 SECRET = '<EnterStrongPasswordHere>';

GO

The following example uses a previously created account called User1OnEKM on an EKM module
through the EKM’s Management tools, with a basic account type and password. The sysadmin
account on the server creates a credential that is used to connect to the EKM account, and
assigns it to the User1 SQL Server account:

CREATE CREDENTIAL CredentialForEKM

WITH IDENTITY='User1OnEKM'

, SECRET='<EnterStrongPasswordHere>'

 FOR CRYPTOGRAPHIC PROVIDER MyEKMProvider;

GO

/* Modify the login to assign the cryptographic provider credential */

ALTER LOGIN User1

ADD CREDENTIAL CredentialForEKM;

/* Modify the login to assign a non cryptographic provider credential */

ALTER LOGIN User1

WITH CREDENTIAL = AlterEgo;

GO

See Also
Credentials
ALTER CREDENTIAL (Transact-SQL)
DROP CREDENTIAL (Transact-SQL)
CREATE LOGIN (Transact-SQL)
ALTER LOGIN (Transact-SQL)
sys.credentials (Transact-SQL)

CREATE CRYPTOGRAPHIC PROVIDER
Creates a cryptographic provider within SQL Server from an Extensible Key Management (EKM)
provider.

 Transact-SQL Syntax Conventions

Syntax

CREATE CRYPTOGRAPHIC PROVIDER provider_name
 FROM FILE = path_of_DLL

http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea48cf80-904a-4273-a950-6d35b1b0a1b6(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 377

Arguments
provider_name

Is the name of the Extensible Key Management provider.

path_of_DLL

Is the path of the .dll file that implements the SQL Server Extensible Key Management
interface.

Remarks
All keys created by a provider will reference the provider by its GUID. The GUID is retained
across all versions of the DLL.
The DLL that implements SQLEKM interface must be digitally signed using any certificate. SQL
Server will verify the signature. This includes its certificate chain, which must have its root
installed at the Trusted Root Cert Authorities location on a Windows system. If the signature is
not verified correctly, the CREATE CRYPTOGRAPHIC PROVIDER statement will fail. For more
information about certificates and certificate chains, see SQL Server Certificates and Asymmetric
Keys.
When an EKM provider dll does not implement all of the necessary methods, CREATE
CRYPTOGRAPHIC PROVIDER can return error 33085:
One or more methods cannot be found in cryptographic provider library
'%.*ls'.
When the header file used to create the EKM provider dll is out of date, CREATE
CRYPTOGRAPHIC PROVIDER can return error 33032:
SQL Crypto API version '%02d.%02d' implemented by provider is not supported.
Supported version is '%02d.%02d'.

Permissions
Requires CONTROL permission on the symmetric key.

Examples
The following example creates a cryptographic provider called SecurityProvider in SQL Server
from a .dll file. The .dll file is named c:\SecurityProvider\SecurityProvider_v1.dll and it
is installed on the server. The provider's certificate must first be installed on the server.

-- Install the provider

CREATE CRYPTOGRAPHIC PROVIDER SecurityProvider

 FROM FILE = 'c:\SecurityProvider\SecurityProvider_v1.dll'

See Also
Understanding Extensible Key Management (EKM)
ALTER CRYPTOGRAPHIC PROVIDER (Transact-SQL)
DROP CRYPTOGRAPHIC PROVIDER (Transact-SQL)

http://msdn.microsoft.com/en-us/library/8519aa2f-f09c-4c1c-96b5-abc24811e60c(SQL.110)�
http://msdn.microsoft.com/en-us/library/8519aa2f-f09c-4c1c-96b5-abc24811e60c(SQL.110)�
http://msdn.microsoft.com/en-us/library/8519aa2f-f09c-4c1c-96b5-abc24811e60c(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�

 378

CREATE SYMMETRIC KEY (Transact-SQL)

CREATE DATABASE
Creates a new database and the files used to store the database, a database snapshot, or
attaches a database from the detached files of a previously created database.

 Transact-SQL Syntax Conventions

Syntax

CREATE DATABASE database_name
[CONTAINMENT = { NONE | PARTIAL }]
[ON
 [PRIMARY] <filespec> [,...n]
 [, <filegroup> [,...n]]
 [LOG ON <filespec> [,...n]]
]
[COLLATE collation_name]
[WITH <option> [,...n]]
[;]

<option> ::=
{
 FILESTREAM (<filestream_option> [,...n])
 | DEFAULT_FULLTEXT_LANGUAGE = { lcid | language_name | language_alias }
 | DEFAULT_LANGUAGE = { lcid | language_name | language_alias }
 | NESTED_TRIGGERS = { OFF | ON }
 | TRANSFORM_NOISE_WORDS = { OFF | ON}
 | TWO_DIGIT_YEAR_CUTOFF = <two_digit_year_cutoff>
 | DB_CHAINING { OFF | ON }
 | TRUSTWORTHY { OFF | ON }
}

<filestream_option> ::=
{
 NON_TRANSACTED_ACCESS = { OFF | READ_ONLY | FULL }
 | DIRECTORY_NAME = 'directory_name'

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 379

}

To attach a database
CREATE DATABASE database_name
 ON <filespec> [,...n]
 FOR { { ATTACH [WITH <attach_database_option> [, ...n]] }
 | ATTACH_REBUILD_LOG }
[;]

<filespec> ::=
{
(
 NAME = logical_file_name ,
 FILENAME = { 'os_file_name' | 'filestream_path' }
 [, SIZE = size [KB | MB | GB | TB]]
 [, MAXSIZE = { max_size [KB | MB | GB | TB] | UNLIMITED }]
 [, FILEGROWTH = growth_increment [KB | MB | GB | TB | %]]
)
}

<filegroup> ::=
{
FILEGROUP filegroup_name [CONTAINS FILESTREAM] [DEFAULT]
 <filespec> [,...n]
}

<attach_database_option> ::=
{
 <service_broker_option>
 | RESTRICTED_USER
 | FILESTREAM (DIRECTORY_NAME = { 'directory_name' | NULL })
}

<service_broker_option> ::=
{

 380

 ENABLE_BROKER
 | NEW_BROKER
 | ERROR_BROKER_CONVERSATIONS
}

Create a database snapshot
CREATE DATABASE database_snapshot_name
 ON
 (
 NAME = logical_file_name,
 FILENAME = 'os_file_name'
) [,...n]
 AS SNAPSHOT OF source_database_name
[;]

Arguments
database_name

Is the name of the new database. Database names must be unique within an instance of SQL
Server and comply with the rules for identifiers.

database_name can be a maximum of 128 characters, unless a logical name is not specified
for the log file. If a logical log file name is not specified, SQL Server generates the
logical_file_name and the os_file_name for the log by appending a suffix to database_name.
This limits database_name to 123 characters so that the generated logical file name is no
more than 128 characters.

If data file name is not specified, SQL Server uses database_name as both the
logical_file_name and as the os_file_name. The default path is obtained from the registry. The
default path can be changed by using the Server Properties (Database Settings Page) in
Management Studio. Changing the default path requires restarting SQL Server.

CONTAINMENT

Specifies the containment status of the database. NONE = non-contained database. PARTIAL
= partially contained database.

ON

Specifies that the disk files used to store the data sections of the database, data files, are
explicitly defined. ON is required when followed by a comma-separated list of <filespec>
items that define the data files for the primary filegroup. The list of files in the primary
filegroup can be followed by an optional, comma-separated list of <filegroup> items that
define user filegroups and their files.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 381

PRIMARY

Specifies that the associated <filespec> list defines the primary file. The first file specified in
the <filespec> entry in the primary filegroup becomes the primary file. A database can have
only one primary file. For more information, see Database Files and Filegroups.

If PRIMARY is not specified, the first file listed in the CREATE DATABASE statement becomes
the primary file.

LOG ON

Specifies that the disk files used to store the database log, log files, are explicitly defined.
LOG ON is followed by a comma-separated list of <filespec> items that define the log files. If
LOG ON is not specified, one log file is automatically created, which has a size that is 25
percent of the sum of the sizes of all the data files for the database, or 512 KB, whichever is
larger. This file is placed in the default log-file location. For information about this location,
see How to: View or Change the Default Locations for Database Files (SQL
Server Management Studio).
LOG ON cannot be specified on a database snapshot.

COLLATE collation_name

Specifies the default collation for the database. Collation name can be either a Windows
collation name or a SQL collation name. If not specified, the database is assigned the default
collation of the instance of SQL Server. A collation name cannot be specified on a database
snapshot.

A collation name cannot be specified with the FOR ATTACH or FOR ATTACH_REBUILD_LOG
clauses. For information about how to change the collation of an attached database, visit this
Microsoft Web site.

For more information about the Windows and SQL collation names, see COLLATE
(Transact-SQL).

Note
Contained databases are collated differently than non-contained databases. Please see Contained
Database Collations for more information.

WITH <option>

The following options are allowable only when CONTAINMENT has been set to PARTIAL. If
CONTAINMENT is set to NONE, errors will occur.

• <filestream_options>

NON_TRANSACTED_ACCESS = { OFF | READ_ONLY | FULL }

Specifies the level of non-transactional FILESTREAM access to the database.

Value Description

OFF Non-transactional access is disabled.

http://msdn.microsoft.com/en-us/library/9ca11918-480d-4838-9198-cec221ef6ad0(SQL.110)�
http://msdn.microsoft.com/en-us/library/70a57fda-fcfe-490f-9cf6-5df620e32b2a(SQL.110)�
http://msdn.microsoft.com/en-us/library/70a57fda-fcfe-490f-9cf6-5df620e32b2a(SQL.110)�
http://go.microsoft.com/fwlink/?linkid=16419&kbid=325335�
http://msdn.microsoft.com/en-us/library/76763ac8-3e0d-4bbb-aa53-f5e7da021daa(SQL.110)�
http://msdn.microsoft.com/en-us/library/76763ac8-3e0d-4bbb-aa53-f5e7da021daa(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b44f6b9-2359-452f-8bb1-5520f2528483(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b44f6b9-2359-452f-8bb1-5520f2528483(SQL.110)�

 382

READONLY FILESTREAM data in this database can be
read by non-transactional processes.

FULL Full non-transactional access to
FILESTREAM FileTables is enabled.

DIRECTORY_NAME = <directory_name>

A windows-compatible directory name. This name should be unique among all the
Database_Directory names in the SQL Server instance. Uniqueness comparison is
case-insensitive, regardless of SQL Server collation settings. This option should be set
before creating a FileTable in this database.

• DEFAULT_FULLTEXT_LANGUAGE = <lcid> | <language name> | <language alias>

See Configure the default full-text language Server Configuration Option
for a full description of this option.

• DEFAULT_LANGUAGE = <lcid> | <language name> | <language alias>

See Configure the default language Server Configuration Option for a full
description of this option.

• NESTED_TRIGGERS = { OFF | ON}

See Configure the nested triggers Server Configuration Option for a full
description of this option.

• TRANSFORM_NOISE_WORDS = { OFF | ON}

See transform noise words Option for a full description of this option.

• TWO_DIGIT_YEAR_CUTOFF = { 2049 | <any year between 1753 and 9999> }

Four digits representing a year. 2049 is the default value. See Configure the two
digit year cutoff Server Configuration Option for a full description of this
option.

• DB_CHAINING { OFF | ON }

When ON is specified, the database can be the source or target of a cross-database
ownership chain.

When OFF, the database cannot participate in cross-database ownership chaining. The
default is OFF.

Important
The instance of SQL Server will recognize this setting when the cross db ownership chaining
server option is 0 (OFF). When cross db ownership chaining is 1 (ON), all user databases can
participate in cross-database ownership chains, regardless of the value of this option. This option
is set by using sp_configure.

To set this option, requires membership in the sysadmin fixed server role. The
DB_CHAINING option cannot be set on these system databases: master, model, tempdb.

• TRUSTWORTHY { OFF | ON }

http://msdn.microsoft.com/en-us/library/0fa8785b-0830-4a52-aff5-fcf8268b72fc(SQL.110)�
http://msdn.microsoft.com/en-us/library/c08c26d8-5a62-487e-a4ee-4c529e4f9287(SQL.110)�
http://msdn.microsoft.com/en-us/library/29d7372b-d406-4a5b-80c6-a2d231d25211(SQL.110)�
http://msdn.microsoft.com/en-us/library/69bd388e-a86c-4de4-b5d5-d093424d9c57(SQL.110)�
http://msdn.microsoft.com/en-us/library/d94e81b6-f2e6-47ef-b497-ec3d827a1646(SQL.110)�
http://msdn.microsoft.com/en-us/library/d94e81b6-f2e6-47ef-b497-ec3d827a1646(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�

 383

When ON is specified, database modules (for example, views, user-defined functions, or
stored procedures) that use an impersonation context can access resources outside the
database.

When OFF, database modules in an impersonation context cannot access resources
outside the database. The default is OFF.

TRUSTWORTHY is set to OFF whenever the database is attached.

By default, all system databases except the msdb database have TRUSTWORTHY set to
OFF. The value cannot be changed for the model and tempdb databases. We
recommend that you never set the TRUSTWORTHY option to ON for the master
database.

To set this option, requires membership in the sysadmin fixed server role.

FOR ATTACH [WITH < attach_database_option >]

Specifies that the database is created by attaching an existing set of operating system files.
There must be a <filespec> entry that specifies the primary file. The only other <filespec>
entries required are those for any files that have a different path from when the database was
first created or last attached. A <filespec> entry must be specified for these files.

FOR ATTACH requires the following:

• All data files (MDF and NDF) must be available.

• If multiple log files exist, they must all be available.

If a read/write database has a single log file that is currently unavailable, and if the database
was shut down with no users or open transactions before the attach operation, FOR ATTACH
automatically rebuilds the log file and updates the primary file. In contrast, for a read-only
database, the log cannot be rebuilt because the primary file cannot be updated. Therefore,
when you attach a read-only database with a log that is unavailable, you must provide the
log files, or the files in the FOR ATTACH clause.

Note
A database created by a more recent version of SQL Server cannot be attached in earlier versions. The
source database must be at least version 90 (SQL Server 2005) to attach to SQL Server 2012. SQL
Server 2005 databases that have a compatibility level less than 90 will be set to compatibility 90 when
they are attached.

In SQL Server, any full-text files that are part of the database that is being attached will be
attached with the database. To specify a new path of the full-text catalog, specify the new
location without the full-text operating system file name. For more information, see the
Examples section.

Attaching a database that contains a FILESTREAM option of "Directory name", into a SQL
Server instance will prompt SQL Server to verify that the Database_Directory name is unique.
If it is not, the attach operation fails with the error, "FILESTREAM Database_Directory name
<name> is not unique in this SQL Server instance". To avoid this error, the optional
parameter, directory_name, should be passed in to this operation.

http://msdn.microsoft.com/en-us/library/d0de0639-bc54-464e-98b1-6af22a27eb86(SQL.110)�

 384

FOR ATTACH cannot be specified on a database snapshot.

FOR ATTACH can specify the RESTRICTED_USER option. RESTRICTED_USER allows for only
members of the db_owner fixed database role and dbcreator and sysadmin fixed server roles
to connect to the database, but does not limit their number. Attempts by unqualified users
are refused.

If the database uses Service Broker, use the WITH <service_broker_option> in your FOR
ATTACH clause:

<service_broker_option>

Controls Service Broker message delivery and the Service Broker identifier for the database.
Service Broker options can only be specified when the FOR ATTACH clause is used.

ENABLE_BROKER

Specifies that Service Broker is enabled for the specified database. That is, message
delivery is started, and is_broker_enabled is set to true in the sys.databases catalog view.
The database retains the existing Service Broker identifier.

NEW_BROKER

Creates a new service_broker_guid value in both sys.databases and the restored
database and ends all conversation endpoints with clean up. The broker is enabled, but
no message is sent to the remote conversation endpoints. Any route that references the
old Service Broker identifier must be re-created with the new identifier.

ERROR_BROKER_CONVERSATIONS

Ends all conversations with an error stating that the database is attached or restored.
The broker is disabled until this operation is completed and then enabled. The database
retains the existing Service Broker identifier.

When you attach a replicated database that was copied instead of being detached, consider
the following:

• If you attach the database to the same server instance and version as the original
database, no additional steps are required.

• If you attach the database to the same server instance but with an upgraded version, you
must execute sp_vupgrade_replication to upgrade replication after the attach
operation is complete.

• If you attach the database to a different server instance, regardless of version, you must
execute sp_removedbreplication to remove replication after the attach operation is
complete.

Note
Attach works with the vardecimal storage format, but the SQL Server Database Engine must be
upgraded to at least SQL Server 2005 Service Pack 2. You cannot attach a database using vardecimal
storage format to an earlier version of SQL Server. For more information about the vardecimal
storage format, see Data Compression.

http://msdn.microsoft.com/en-us/library/d2c0ed66-07d1-4adc-82e5-a654376879bc(SQL.110)�
http://msdn.microsoft.com/en-us/library/cb98d571-d1eb-467b-91f7-a6e091009672(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�

 385

When a database is first attached or restored to a new instance of SQL Server, a copy of the
database master key (encrypted by the service master key) is not yet stored in the server. You
must use the OPEN MASTER KEY statement to decrypt the database master key (DMK).
Once the DMK has been decrypted, you have the option of enabling automatic decryption in
the future by using the ALTER MASTER KEY REGENERATE statement to provision the server
with a copy of the DMK, encrypted with the service master key (SMK). When a database has
been upgraded from an earlier version, the DMK should be regenerated to use the newer
AES algorithm. For more information about regenerating the DMK, see ALTER MASTER
KEY (Transact-SQL). The time required to regenerate the DMK key to upgrade to AES
depends upon the number of objects protected by the DMK. Regenerating the DMK key to
upgrade to AES is only necessary once, and has no impact on future regenerations as part of
a key rotation strategy. For information about how to upgrade a database by using attach,
see How to: Upgrade a Database Using Detach and Attach (Transact-SQL).
Security Note We recommend that you do not attach databases from unknown or
untrusted sources. Such databases could contain malicious code that might execute
unintended Transact-SQL code or cause errors by modifying the schema or the physical
database structure. Before you use a database from an unknown or untrusted source, run
DBCC CHECKDB on the database on a nonproduction server, and also examine the code,
such as stored procedures or other user-defined code, in the database.

Note
The TRUSTWORTHY and DB_CHAINING options have no affect when attaching a database.

FOR ATTACH_REBUILD_LOG

Specifies that the database is created by attaching an existing set of operating system files.
This option is limited to read/write databases. There must be a <filespec> entry specifying
the primary file. If one or more transaction log files are missing, the log file is rebuilt. The
ATTACH_REBUILD_LOG automatically creates a new, 1 MB log file. This file is placed in the
default log-file location. For information about this location, see How to: View or
Change the Default Locations for Database Files (SQL Server Management
Studio).

Note
If the log files are available, the Database Engine uses those files instead of rebuilding the log files.

FOR ATTACH_REBUILD_LOG requires the following:

• A clean shutdown of the database.

• All data files (MDF and NDF) must be available.

Important
This operation breaks the log backup chain. We recommend that a full database backup be performed
after the operation is completed. For more information, see BACKUP.

Typically, FOR ATTACH_REBUILD_LOG is used when you copy a read/write database with a
large log to another server where the copy will be used mostly, or only, for read operations,

http://msdn.microsoft.com/en-us/library/99f66ed9-3a75-4e38-ad7d-6c27cc3529a9(SQL.110)�
http://msdn.microsoft.com/en-us/library/2c506167-0b69-49f7-9282-241e411910df(SQL.110)�
http://msdn.microsoft.com/en-us/library/70a57fda-fcfe-490f-9cf6-5df620e32b2a(SQL.110)�
http://msdn.microsoft.com/en-us/library/70a57fda-fcfe-490f-9cf6-5df620e32b2a(SQL.110)�
http://msdn.microsoft.com/en-us/library/70a57fda-fcfe-490f-9cf6-5df620e32b2a(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 386

and therefore requires less log space than the original database.

FOR ATTACH_REBUILD_LOG cannot be specified on a database snapshot.

For more information about attaching and detaching databases, see Detaching and
Attaching a Database.

<filespec>

Controls the file properties.

NAME logical_file_name

Specifies the logical name for the file. NAME is required when FILENAME is specified, except
when specifying one of the FOR ATTACH clauses. A FILESTREAM filegroup cannot be named
PRIMARY.

logical_file_name

Is the logical name used in SQL Server when referencing the file. Logical_file_name must be
unique in the database and comply with the rules for identifiers. The name can be a
character or Unicode constant, or a regular or delimited identifier.

FILENAME { 'os_file_name' | 'filestream_path' }

Specifies the operating system (physical) file name.

'os_file_name'

Is the path and file name used by the operating system when you create the file. The file
must reside on one of the following devices: the local server on which SQL Server is
installed, a Storage Area Network [SAN], or an iSCSI-based network. The specified path
must exist before executing the CREATE DATABASE statement. For more information, see
"Database Files and Filegroups" in the Remarks section.

SIZE, MAXSIZE, and FILEGROWTH parameters cannot be set when a UNC path is specified
for the file.

If the file is on a raw partition, os_file_name must specify only the drive letter of an existing
raw partition. Only one data file can be created on each raw partition.

Data files should not be put on compressed file systems unless the files are read-only
secondary files, or the database is read-only. Log files should never be put on compressed
file systems.

'filestream_path'

For a FILESTREAM filegroup, FILENAME refers to a path where FILESTREAM data will be
stored. The path up to the last folder must exist, and the last folder must not exist. For
example, if you specify the path C:\MyFiles\MyFilestreamData, C:\MyFiles must exist before
you run ALTER DATABASE, but the MyFilestreamData folder must not exist.

The filegroup and file (<filespec>) must be created in the same statement.

The SIZE and FILEGROWTH properties do not apply to a FILESTREAM filegroup.

http://msdn.microsoft.com/en-us/library/d0de0639-bc54-464e-98b1-6af22a27eb86(SQL.110)�
http://msdn.microsoft.com/en-us/library/d0de0639-bc54-464e-98b1-6af22a27eb86(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 387

SIZE size

Specifies the size of the file.

SIZE cannot be specified when the os_file_name is specified as a UNC path. SIZE does not
apply to a FILESTREAM filegroup.

size

Is the initial size of the file.

When size is not supplied for the primary file, the Database Engine uses the size of the
primary file in the model database. When a secondary data file or log file is specified, but
size is not specified for the file, the Database Engine makes the file 1 MB. The size specified
for the primary file must be at least as large as the primary file of the model database.

The kilobyte (KB), megabyte (MB), gigabyte (GB), or terabyte (TB) suffixes can be used. The
default is MB. Specify a whole number; do not include a decimal. Size is an integer value.
For values greater than 2147483647, use larger units.

MAXSIZE max_size

Specifies the maximum size to which the file can grow. MAXSIZE cannot be specified when
the os_file_name is specified as a UNC path.

max_size

Is the maximum file size. The KB, MB, GB, and TB suffixes can be used. The default is MB.
Specify a whole number; do not include a decimal. If max_size is not specified, the file
grows until the disk is full. Max_size is an integer value. For values greater than
2147483647, use larger units.

UNLIMITED

Specifies that the file grows until the disk is full. In SQL Server, a log file specified with
unlimited growth has a maximum size of 2 TB, and a data file has a maximum size of 16 TB.

Note
There is no maximum size when this option is specified for a FILESTREAM container. It continues to
grow until the disk is full.

FILEGROWTH growth_increment

Specifies the automatic growth increment of the file. The FILEGROWTH setting for a file
cannot exceed the MAXSIZE setting. FILEGROWTH cannot be specified when the os_file_name
is specified as a UNC path. FILEGROWTH does not apply to a FILESTREAM filegroup.

growth_increment

Is the amount of space added to the file every time new space is required.

The value can be specified in MB, KB, GB, TB, or percent (%). If a number is specified
without an MB, KB, or % suffix, the default is MB. When % is specified, the growth
increment size is the specified percentage of the size of the file at the time the increment
occurs. The size specified is rounded to the nearest 64 KB.

A value of 0 indicates that automatic growth is off and no additional space is allowed.

 388

If FILEGROWTH is not specified, the default value is 1 MB for data files and 10% for log
files, and the minimum value is 64 KB.

Note
In SQL Server, the default growth increment for data files has changed from 10% to 1 MB. The log
file default of 10% remains unchanged.

<filegroup>

Controls the filegroup properties. Filegroup cannot be specified on a database snapshot.

FILEGROUP filegroup_name

Is the logical name of the filegroup.

filegroup_name

filegroup_name must be unique in the database and cannot be the system-provided
names PRIMARY and PRIMARY_LOG. The name can be a character or Unicode constant, or
a regular or delimited identifier. The name must comply with the rules for identifiers.

CONTAINS FILESTREAM

Specifies that the filegroup stores FILESTREAM binary large objects (BLOBs) in the file
system.

DEFAULT

Specifies the named filegroup is the default filegroup in the database.

database_snapshot_name

Is the name of the new database snapshot. Database snapshot names must be unique within
an instance of SQL Server and comply with the rules for identifiers. database_snapshot_name
can be a maximum of 128 characters.

ON (NAME = logical_file_name, FILENAME = 'os_file_name') [,... n]

For creating a database snapshot, specifies a list of files in the source database. For the
snapshot to work, all the data files must be specified individually. However, log files are not
allowed for database snapshots. FILESTREAM filegroups are not supported by database
snapshots. If a FILESTREAM data file is included in a CREATE DATABASE ON clause, the
statement will fail and an error will be raised.

For descriptions of NAME and FILENAME and their values see the descriptions of the
equivalent <filespec> values.

Note
When you create a database snapshot, the other <filespec> options and the keyword PRIMARY are
disallowed.

AS SNAPSHOT OF source_database_name

Specifies that the database being created is a database snapshot of the source database
specified by source_database_name. The snapshot and source database must be on the same

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 389

instance.

For more information, see "Database Snapshots" in the Remarks section.

Remarks
The master database should be backed up whenever a user database is created, modified, or
dropped.
The CREATE DATABASE statement must run in autocommit mode (the default transaction
management mode) and is not allowed in an explicit or implicit transaction.
You can use one CREATE DATABASE statement to create a database and the files that store the
database. SQL Server implements the CREATE DATABASE statement by using the following
steps:
1. The SQL Server uses a copy of the model database to initialize the database and its

metadata.
2. A service broker GUID is assigned to the database.
3. The Database Engine then fills the rest of the database with empty pages, except for pages

that have internal data that records how the space is used in the database.
A maximum of 32,767 databases can be specified on an instance of SQL Server.
Each database has an owner that can perform special activities in the database. The owner is the
user that creates the database. The database owner can be changed by using
sp_changedbowner.

Database Files and Filegroups
Every database has at least two files, a primary file and a transaction log file, and at least one
filegroup. A maximum of 32,767 files and 32,767 filegroups can be specified for each database.
When you create a database, make the data files as large as possible based on the maximum
amount of data you expect in the database
We recommend that you use a Storage Area Network (SAN), iSCSI-based network, or locally
attached disk for the storage of your SQL Server database files, because this configuration
optimizes SQL Server performance and reliability.

Database Snapshots
You can use the CREATE DATABASE statement to create a read-only, static view, a database
snapshot of the source database. A database snapshot is transactionally consistent with the
source database as it existed at the time when the snapshot was created. A source database can
have multiple snapshots.

Note

http://msdn.microsoft.com/en-us/library/660e909f-61eb-406b-bbce-8864dd629ba0(SQL.110)�
http://msdn.microsoft.com/en-us/library/4e4f739b-fd27-4dce-8be6-3d808040d8d7(SQL.110)�
http://msdn.microsoft.com/en-us/library/516ef311-e83b-45c9-b9cd-0e0641774c04(SQL.110)�

 390

When you create a database snapshot, the CREATE DATABASE statement cannot
reference log files, offline files, restoring files, and defunct files.

If creating a database snapshot fails, the snapshot becomes suspect and must be deleted. For
more information, see DROP DATABASE.
Each snapshot persists until it is deleted by using DROP DATABASE.
For more information, see Database Snapshots.

Database Options
Several database options are automatically set whenever you create a database. For a list of
these options, see ALTER DATABASE SET Options (Transact-SQL).

The model Database and Creating New Databases
All user-defined objects in the model database are copied to all newly created databases. You
can add any objects, such as tables, views, stored procedures, data types, and so on, to the
model database to be included in all newly created databases.
When a CREATE DATABASE database_name statement is specified without additional size
parameters, the primary data file is made the same size as the primary file in the model
database.
Unless FOR ATTACH is specified, each new database inherits the database option settings from
the model database. For example, the database option auto shrink is set to true in model and in
any new databases you create. If you change the options in the model database, these new
option settings are used in any new databases you create. Changing operations in the model
database does not affect existing databases. If FOR ATTACH is specified on the CREATE
DATABASE statement, the new database inherits the database option settings of the original
database.

Viewing Database Information
You can use catalog views, system functions, and system stored procedures to return
information about databases, files, and filegroups. For more information, see System Views
(Transact-SQL).

Permissions
Requires CREATE DATABASE, CREATE ANY DATABASE, or ALTER ANY DATABASE permission.
To maintain control over disk use on an instance of SQL Server, permission to create databases
is typically limited to a few login accounts.

Permissions on Data and Log Files
In SQL Server, certain permissions are set on the data and log files of each database. The
following permissions are set whenever the following operations are applied to a database:

Created Modified to add a new file

http://msdn.microsoft.com/en-us/library/00179314-f23e-47cb-a35c-da6f180f86d3(SQL.110)�
http://msdn.microsoft.com/en-us/library/4e4f739b-fd27-4dce-8be6-3d808040d8d7(SQL.110)�
http://msdn.microsoft.com/en-us/library/35a6161d-7f43-4e00-bcd3-3091f2015e90(SQL.110)�
http://msdn.microsoft.com/en-us/library/35a6161d-7f43-4e00-bcd3-3091f2015e90(SQL.110)�

 391

Attached Backed up

Detached Restored

The permissions prevent the files from being accidentally tampered with if they reside in a
directory that has open permissions.

Microsoft SQL Server 2005 Express Edition does not set data and log file permissions.

Examples

A. Creating a database without specifying files
The following example creates the database mytest and creates a corresponding primary and
transaction log file. Because the statement has no <filespec> items, the primary database file is
the size of the model database primary file. The transaction log is set to the larger of these
values: 512KB or 25% the size of the primary data file. Because MAXSIZE is not specified, the files
can grow to fill all available disk space. This example also demonstrates how to drop the
database named mytest if it exists, before creating the mytest database.
USE master;

GO

CREATE DATABASE mytest;

GO

-- Verify the database files and sizes

SELECT name, size, size*1.0/128 AS [Size in MBs]

FROM sys.master_files

WHERE name = N'mytest';

GO

B. Creating a database that specifies the data and transaction log files
The following example creates the database Sales. Because the keyword PRIMARY is not used,
the first file (Sales_dat) becomes the primary file. Because neither MB nor KB is specified in the
SIZE parameter for the Sales_dat file, it uses MB and is allocated in megabytes. The Sales_log
file is allocated in megabytes because the MB suffix is explicitly stated in the SIZE parameter.

USE master;

GO

CREATE DATABASE Sales

ON

(NAME = Sales_dat,

Note

 392

 FILENAME = 'C:\Program Files\Microsoft SQL

Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\saledat.mdf',

 SIZE = 10,

 MAXSIZE = 50,

 FILEGROWTH = 5)

LOG ON

(NAME = Sales_log,

 FILENAME = 'C:\Program Files\Microsoft SQL

Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\salelog.ldf',

 SIZE = 5MB,

 MAXSIZE = 25MB,

 FILEGROWTH = 5MB) ;

GO

C. Creating a database by specifying multiple data and transaction log files
The following example creates the database Archive that has three 100-MB data files and two
100-MB transaction log files. The primary file is the first file in the list and is explicitly specified
with the PRIMARY keyword. The transaction log files are specified following the LOG ON
keywords. Note the extensions used for the files in the FILENAME option: .mdf is used for
primary data files, .ndf is used for the secondary data files, and .ldf is used for transaction log
files. This example places the database on the D: drive instead of with the master database.

USE master;

GO

CREATE DATABASE Archive

ON

PRIMARY

 (NAME = Arch1,

 FILENAME = 'D:\SalesData\archdat1.mdf',

 SIZE = 100MB,

 MAXSIZE = 200,

 FILEGROWTH = 20),

 (NAME = Arch2,

 FILENAME = 'D:\SalesData\archdat2.ndf',

 SIZE = 100MB,

 MAXSIZE = 200,

 FILEGROWTH = 20),

 393

 (NAME = Arch3,

 FILENAME = 'D:\SalesData\archdat3.ndf',

 SIZE = 100MB,

 MAXSIZE = 200,

 FILEGROWTH = 20)

LOG ON

 (NAME = Archlog1,

 FILENAME = 'D:\SalesData\archlog1.ldf',

 SIZE = 100MB,

 MAXSIZE = 200,

 FILEGROWTH = 20),

 (NAME = Archlog2,

 FILENAME = 'D:\SalesData\archlog2.ldf',

 SIZE = 100MB,

 MAXSIZE = 200,

 FILEGROWTH = 20) ;

GO

D. Creating a database that has filegroups
The following example creates the database Sales that has the following filegroups:
• The primary filegroup with the files Spri1_dat and Spri2_dat. The FILEGROWTH increments

for these files are specified as 15%.
• A filegroup named SalesGroup1 with the files SGrp1Fi1 and SGrp1Fi2.
• A filegroup named SalesGroup2 with the files SGrp2Fi1 and SGrp2Fi2.
This example places the data and log files on different disks to improve performance.

USE master;

GO

CREATE DATABASE Sales

ON PRIMARY

(NAME = SPri1_dat,

 FILENAME = 'D:\SalesData\SPri1dat.mdf',

 SIZE = 10,

 MAXSIZE = 50,

 FILEGROWTH = 15%),

(NAME = SPri2_dat,

 394

 FILENAME = 'D:\SalesData\SPri2dt.ndf',

 SIZE = 10,

 MAXSIZE = 50,

 FILEGROWTH = 15%),

FILEGROUP SalesGroup1

(NAME = SGrp1Fi1_dat,

 FILENAME = 'D:\SalesData\SG1Fi1dt.ndf',

 SIZE = 10,

 MAXSIZE = 50,

 FILEGROWTH = 5),

(NAME = SGrp1Fi2_dat,

 FILENAME = 'D:\SalesData\SG1Fi2dt.ndf',

 SIZE = 10,

 MAXSIZE = 50,

 FILEGROWTH = 5),

FILEGROUP SalesGroup2

(NAME = SGrp2Fi1_dat,

 FILENAME = 'D:\SalesData\SG2Fi1dt.ndf',

 SIZE = 10,

 MAXSIZE = 50,

 FILEGROWTH = 5),

(NAME = SGrp2Fi2_dat,

 FILENAME = 'D:\SalesData\SG2Fi2dt.ndf',

 SIZE = 10,

 MAXSIZE = 50,

 FILEGROWTH = 5)

LOG ON

(NAME = Sales_log,

 FILENAME = 'E:\SalesLog\salelog.ldf',

 SIZE = 5MB,

 MAXSIZE = 25MB,

 FILEGROWTH = 5MB) ;

GO

 395

E. Attaching a database
The following example detaches the database Archive created in example D, and then attaches
it by using the FOR ATTACH clause. Archive was defined to have multiple data and log files.
However, because the location of the files has not changed since they were created, only the
primary file has to be specified in the FOR ATTACH clause. Beginning with SQL Server 2005, any
full-text files that are part of the database that is being attached will be attached with the
database.
USE master;

GO

sp_detach_db Archive;

GO

CREATE DATABASE Archive

 ON (FILENAME = 'D:\SalesData\archdat1.mdf')

 FOR ATTACH ;

GO

F. Creating a database snapshot
The following example creates the database snapshot sales_snapshot0600. Because a
database snapshot is read-only, a log file cannot be specified. In conformance with the syntax,
every file in the source database is specified, and filegroups are not specified.
The source database for this example is the Sales database created in example D.

USE master;

GO

CREATE DATABASE sales_snapshot0600 ON

 (NAME = SPri1_dat, FILENAME = 'D:\SalesData\SPri1dat_0600.ss'),

 (NAME = SPri2_dat, FILENAME = 'D:\SalesData\SPri2dt_0600.ss'),

 (NAME = SGrp1Fi1_dat, FILENAME = 'D:\SalesData\SG1Fi1dt_0600.ss'),

 (NAME = SGrp1Fi2_dat, FILENAME = 'D:\SalesData\SG1Fi2dt_0600.ss'),

 (NAME = SGrp2Fi1_dat, FILENAME = 'D:\SalesData\SG2Fi1dt_0600.ss'),

 (NAME = SGrp2Fi2_dat, FILENAME = 'D:\SalesData\SG2Fi2dt_0600.ss')

AS SNAPSHOT OF Sales ;

GO

G. Creating a database and specifying a collation name and options
The following example creates the database MyOptionsTest. A collation name is specified and
the TRUSTYWORTHY and DB_CHAINING options are set to ON.
USE master;

 396

GO

IF DB_ID (N'MyOptionsTest') IS NOT NULL

DROP DATABASE MyOptionsTest;

GO

CREATE DATABASE MyOptionsTest

COLLATE French_CI_AI

WITH TRUSTWORTHY ON, DB_CHAINING ON;

GO

--Verifying collation and option settings.

SELECT name, collation_name, is_trustworthy_on, is_db_chaining_on

FROM sys.databases

WHERE name = N'MyOptionsTest';

GO

H. Attaching a full-text catalog that has been moved
The following example attaches the full-text catalog AdvWksFtCat along with the
AdventureWorks2012 data and log files. In this example, the full-text catalog is moved from its
default location to a new location c:\myFTCatalogs. The data and log files remain in their
default locations.

USE master;

GO

--Detach the AdventureWorks2012 database

sp_detach_db AdventureWorks2012;

GO

-- Physically move the full text catalog to the new location.

--Attach the AdventureWorks2012 database and specify the new location of the

full-text catalog.

CREATE DATABASE AdventureWorks2012 ON

 (FILENAME = 'c:\Program Files\Microsoft SQL

Server\MSSQL11.MSSQLSERVER\MSSQL\Data\AdventureWorks2012_data.mdf'),

 (FILENAME = 'c:\Program Files\Microsoft SQL

Server\MSSQL11.MSSQLSERVER\MSSQL\Data\AdventureWorks2012_log.ldf'),

 (FILENAME = 'c:\myFTCatalogs\AdvWksFtCat')

FOR ATTACH;

GO

 397

I. Creating a database that specifies a row filegroup and two FILESTREAM
filegroups
The following example creates the FileStreamDB database. The database is created with one
row filegroup and two FILESTREAM filegroups. Each filegroup contains one file:
• FileStreamDB_data contains row data. It contains one file, FileStreamDB_data.mdf with

the default path.
• FileStreamPhotos contains FILESTREAM data. It contains two FILESTREAM data containers,

FSPhotos, located at C:\MyFSfolder\Photos and FSPhotos2, located at
D:\MyFSfolder\Photos. It is marked as the default FILESTREAM filegroup.

• FileStreamResumes contains FILESTREAM data. It contains one FILESTREAM data container,
FSResumes, located at C:\MyFSfolder\Resumes.

USE master;

GO

-- Get the SQL Server data path.

DECLARE @data_path nvarchar(256);

SET @data_path = (SELECT SUBSTRING(physical_name, 1, CHARINDEX(N'master.mdf',

LOWER(physical_name)) - 1)

 FROM master.sys.master_files

 WHERE database_id = 1 AND file_id = 1);

 -- Execute the CREATE DATABASE statement.

EXECUTE ('CREATE DATABASE FileStreamDB

ON PRIMARY

 (

 NAME = FileStreamDB_data

 ,FILENAME = ''' + @data_path + 'FileStreamDB_data.mdf''

 ,SIZE = 10MB

 ,MAXSIZE = 50MB

 ,FILEGROWTH = 15%

),

FILEGROUP FileStreamPhotos CONTAINS FILESTREAM DEFAULT

 (

 NAME = FSPhotos

 ,FILENAME = ''C:\MyFSfolder\Photos''

-- SIZE and FILEGROWTH should not be specified here.

 398

-- If they are specified an error will be raised.

, MAXSIZE = 5000 MB

),

 (

 NAME = FSPhotos2

 , FILENAME = ''D:\MyFSfolder\Photos''

 , MAXSIZE = 10000 MB

),

FILEGROUP FileStreamResumes CONTAINS FILESTREAM

 (

 NAME = FileStreamResumes

 ,FILENAME = ''C:\MyFSfolder\Resumes''

)

LOG ON

 (

 NAME = FileStream_log

 ,FILENAME = ''' + @data_path + 'FileStreamDB_log.ldf''

 ,SIZE = 5MB

 ,MAXSIZE = 25MB

 ,FILEGROWTH = 5MB

)'

);

GO

J. Creating a database that has a FILESTREAM filegroup with multiple files
The following example creates the BlobStore1 database. The database is created with one row
filegroup and one FILESTREAM filegroup, FS. The FILESTREAM filegroup contains two files, FS1
and FS2. Then the database is altered by adding a third file, FS3, to the FILESTREAM filegroup.

USE [master]

GO

CREATE DATABASE [BlobStore1]

CONTAINMENT = NONE

ON PRIMARY

(

 399

 NAME = N'BlobStore1',

 FILENAME = N'C:\BlobStore\BlobStore1.mdf',

 SIZE = 100MB,

 MAXSIZE = UNLIMITED,

 FILEGROWTH = 1MB

),

FILEGROUP [FS] CONTAINS FILESTREAM DEFAULT

(

 NAME = N'FS1',

 FILENAME = N'C:\BlobStore\FS1',

 MAXSIZE = UNLIMITED

),

(

 NAME = N'FS2',

 FILENAME = N'C:\BlobStore\FS2',

 MAXSIZE = 100MB

)

LOG ON

(

 NAME = N'BlobStore1_log',

 FILENAME = N'C:\BlobStore\BlobStore1_log.ldf',

 SIZE = 100MB,

 MAXSIZE = 1GB,

 FILEGROWTH = 1MB

)

GO

ALTER DATABASE [BlobStore1]

ADD FILE

(

 NAME = N'FS3',

 FILENAME = N'C:\BlobStore\FS3',

 MAXSIZE = 100MB

 400

)

TO FILEGROUP [FS]

GO

See Also
ALTER DATABASE (Transact-SQL)
Detaching and Attaching a Database
DROP DATABASE
eventdata (Transact-SQL)
sp_changedbowner (Transact-SQL)
sp_detach_db (Transact-SQL)
sp_removedbreplication (Transact-SQL)
Database Snapshots
Moving Database Files
Databases
Designing and Implementing FILESTREAM Storage

CREATE DATABASE AUDIT SPECIFICATION
Creates a database audit specification object using the SQL Server audit feature. For more
information, see Understanding SQL Server Audit.

 Transact-SQL Syntax Conventions

Syntax

CREATE DATABASE AUDIT SPECIFICATION audit_specification_name
{
 FOR SERVER AUDIT audit_name
 [{ ADD ({ <audit_action_specification> | audit_action_group_name })
 } [, ...n]]
 [WITH (STATE = { ON | OFF })]
}
[;]
<audit_action_specification>::=
{
 action [,...n]ON [class ::] securable BY principal [,...n]
}

http://msdn.microsoft.com/en-us/library/d0de0639-bc54-464e-98b1-6af22a27eb86(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/516ef311-e83b-45c9-b9cd-0e0641774c04(SQL.110)�
http://msdn.microsoft.com/en-us/library/abcb1407-ff78-4c76-b02e-509c86574462(SQL.110)�
http://msdn.microsoft.com/en-us/library/cb98d571-d1eb-467b-91f7-a6e091009672(SQL.110)�
http://msdn.microsoft.com/en-us/library/00179314-f23e-47cb-a35c-da6f180f86d3(SQL.110)�
http://msdn.microsoft.com/en-us/library/89f01b10-5fae-4ed8-b0fb-a4b9f540fd28(SQL.110)�
http://msdn.microsoft.com/en-us/library/316eea58-81b8-4bf3-a1fc-801946740e94(SQL.110)�
http://msdn.microsoft.com/en-us/library/97509274-c3f8-43e5-a37c-52f1ffe0961a(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 401

Arguments
audit_specification_name

Is the name of the audit specification.

audit_name

Is the name of the audit to which this specification is applied.

audit_action_specification

Is the specification of actions on securables by principals that should be recorded in the
audit.

action

Is the name of one or more database-level auditable actions. For a list of audit actions, see
SQL Server Audit Action Groups and Actions.

audit_action_group_name

Is the name of one or more groups of database-level auditable actions. For a list of audit
action groups, see SQL Server Audit Action Groups and Actions.

class

Is the class name (if applicable) on the securable.

securable

Is the table, view, or other securable object in the database on which to apply the audit
action or audit action group. For more information, see Securables.

principal

Is the name of SQL Server principal on which to apply the audit action or audit action group.
For more information, see Principals (Database Engine).

WITH (STATE = { ON | OFF })

Enables or disables the audit from collecting records for this audit specification.

Remarks
Database audit specifications are non-securable objects that reside in a given database. When a
database audit specification is created, it is in a disabled state.

Permissions
Users with the ALTER ANY DATABASE AUDIT permission can create database audit specifications
and bind them to any audit.
After a database audit specification is created, it can be viewed by principals with the CONTROL
SERVER, ALTER ANY DATABASE AUDIT permissions, or the sysadmin account.

Examples

http://msdn.microsoft.com/en-us/library/b7422911-7524-4bcd-9ab9-e460d5897b3d(SQL.110)�
http://msdn.microsoft.com/en-us/library/b7422911-7524-4bcd-9ab9-e460d5897b3d(SQL.110)�
http://msdn.microsoft.com/en-us/library/bfa748f0-70b0-453c-870a-04b7b205b9ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/3f7adbf7-6e40-4396-a8ca-71cbb843b5c2(SQL.110)�

 402

The following example creates a server audit called Payrole_Security_Audit and then a
database audit specification called Payrole_Security_Audit that audits SELECT and INSERT
statements by the dbo user, for the HumanResources.EmployeePayHistory table in the
AdventureWorks2012 database.

USE master ;

GO

-- Create the server audit.

CREATE SERVER AUDIT Payrole_Security_Audit

 TO FILE (FILEPATH =

'C:\Program Files\Microsoft SQL Server\MSSQL10_50.MSSQLSERVER\MSSQL\DATA') ;

GO

-- Enable the server audit.

ALTER SERVER AUDIT Payrole_Security_Audit

WITH (STATE = ON) ;

GO

-- Move to the target database.

USE AdventureWorks2012 ;

GO

-- Create the database audit specification.

CREATE DATABASE AUDIT SPECIFICATION Audit_Pay_Tables

FOR SERVER AUDIT Payrole_Security_Audit

ADD (SELECT , INSERT

 ON HumanResources.EmployeePayHistory BY dbo)

WITH (STATE = ON) ;

GO

See Also
CREATE SERVER AUDIT (Transact-SQL)
ALTER SERVER AUDIT (Transact-SQL)
DROP SERVER AUDIT (Transact-SQL)
CREATE SERVER AUDIT SPECIFICATION (Transact-SQL)
ALTER SERVER AUDIT SPECIFICATION (Transact-SQL)
DROP SERVER AUDIT SPECIFICATION (Transact-SQL)
CREATE DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER DATABASE AUDIT SPECIFICATION (Transact-SQL)

 403

DROP DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER AUTHORIZATION (Transact-SQL)
fn_get_audit_file (Transact-SQL)
sys.server_audits (Transact-SQL)
sys.server_file_audits (Transact-SQL)
sys.server_audit_specifications (Transact-SQL)
sys.server_audit_specifications_details (Transact-SQL)
sys.database_ audit_specifications (Transact-SQL)
sys.audit_database_specification_details (Transact-SQL)
sys.dm_server_audit_status
sys.dm_audit_actions
Create a Server Audit and Server Audit Specification

CREATE DATABASE ENCRYPTION KEY
Creates an encryption key that is used for transparently encrypting a database. For more
information about transparent database encryption, see Understanding Transparent Data
Encryption (TDE).

 Transact-SQL Syntax Conventions

Syntax

CREATE DATABASE ENCRYPTION KEY
 WITH ALGORITHM = { AES_128 | AES_192 | AES_256 | TRIPLE_DES_3KEY }
 ENCRYPTION BY SERVER
 {
 CERTIFICATE Encryptor_Name |
 ASYMMETRIC KEY Encryptor_Name
 }
[;]

Arguments
WITH ALGORITHM = { AES_128 | AES_192 | AES_256 | TRIPLE_DES_3KEY }

Specifies the encryption algorithm that is used for the encryption key.

ENCRYPTION BY SERVER CERTIFICATE Encryptor_Name

Specifies the name of the encryptor used to encrypt the database encryption key.

http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2c4a000-1127-46a8-b1e9-947fd1136e1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/553288a0-be57-4d79-ae53-b7cbd065e127(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa496c6c-2a54-4fda-a238-db490c6b3afd(SQL.110)�
http://msdn.microsoft.com/en-us/library/792724dc-402e-4b17-9f2c-029d910bf88e(SQL.110)�
http://msdn.microsoft.com/en-us/library/bf80e5c6-0588-4eb7-86ff-aa7c73461335(SQL.110)�
http://msdn.microsoft.com/en-us/library/03fc60a9-1696-4109-b15e-a50046310859(SQL.110)�
http://msdn.microsoft.com/en-us/library/4aa32d54-2ae1-437e-bbaa-7f1df1404b44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b987c2b9-998a-4a5f-a82d-280dc6963cbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/6624b1ab-7ec8-44ce-8292-397edf644394(SQL.110)�
http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 404

ENCRYPTION BY SERVER ASYMMETRIC KEY Encryptor_Name

Specifies the name of the asymmetric key used to encrypt the database encryption key. In
order to encrypt the database encryption key with an asymmetric key, the asymmetric key
must reside on an extensible key management provider.

Remarks
A database encryption key is required before a database can be encrypted by using Transparent
Database Encryption (TDE). When a database is transparently encrypted, the whole database is
encrypted at the file level, without any special code modifications. The certificate or asymmetric
key that is used to encrypt the database encryption key must be located in the master system
database.
Database encryption statements are allowed only on user databases.
The database encryption key cannot be exported from the database. It is available only to the
system, to users who have debugging permissions on the server, and to users who have access
to the certificates that encrypt and decrypt the database encryption key.
The database encryption key does not have to be regenerated when a database owner (dbo) is
changed.

Permissions
Requires CONTROL permission on the database and VIEW DEFINITION permission on the
certificate or asymmetric key that is used to encrypt the database encryption key.

Examples
For additional examples using TDE, see Understanding Transparent Data Encryption (TDE) and
How to: Enable TDE using EKM.
The following example creates a database encryption key by using the AES_256 algorithm, and
protects the private key with a certificate named MyServerCert.

USE AdventureWorks2012;

GO

CREATE DATABASE ENCRYPTION KEY

WITH ALGORITHM = AES_256

ENCRYPTION BY SERVER CERTIFICATE MyServerCert;

GO

See Also
Understanding Transparent Data Encryption (TDE)
SQL Server Encryption
SQL Server and Database Encryption Keys (Database Engine)
Encryption Hierarchy
ALTER DATABASE SET Options (Transact-SQL)

http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/b892e7a7-95bd-4903-bf54-55ce08e225af(SQL.110)�
http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/ead0150e-4943-4ad5-84c8-36f85c7278f4(SQL.110)�
http://msdn.microsoft.com/en-us/library/15c0a5e8-9177-484c-ae75-8c552dc0dac0(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�

 405

ALTER DATABASE ENCRYPTION KEY (Transact-SQL)
DROP DATABASE ENCRYPTION KEY (Transact-SQL)
sys.dm_database_encryption_keys

CREATE DEFAULT
Creates an object called a default. When bound to a column or an alias data type, a default
specifies a value to be inserted into the column to which the object is bound (or into all
columns, in the case of an alias data type), when no value is explicitly supplied during an insert.

This feature will be removed in a future version of Microsoft SQL Server. Avoid using this
feature in new development work, and plan to modify applications that currently use this
feature. Instead, use default definitions created using the DEFAULT keyword of ALTER
TABLE or CREATE TABLE.

 Transact-SQL Syntax Conventions

Syntax

CREATE DEFAULT [schema_name .] default_name
AS constant_expression [;]

Arguments
schema_name

Is the name of the schema to which the default belongs.

default_name

Is the name of the default. Default names must conform to the rules for identifiers.
Specifying the default owner name is optional.

constant_expression

Is an expression that contains only constant values (it cannot include the names of any
columns or other database objects). Any constant, built-in function, or mathematical
expression can be used, except those that contain alias data types. User-defined functions
cannot be used.. Enclose character and date constants in single quotation marks (');
monetary, integer, and floating-point constants do not require quotation marks. Binary data
must be preceded by 0x, and monetary data must be preceded by a dollar sign ($). The
default value must be compatible with the column data type.

Remarks
A default name can be created only in the current database. Within a database, default names
must be unique by schema. When a default is created, use sp_bindefault to bind it to a column
or to an alias data type.

Important

http://msdn.microsoft.com/en-us/library/56fee8f3-06eb-4fff-969e-abeaa0c4b8e4(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�
http://msdn.microsoft.com/en-us/library/ee53c5c8-e36c-40f9-8cd1-d933791b98fa(SQL.110)�

 406

If the default is not compatible with the column to which it is bound, SQL Server generates an
error message when trying to insert the default value. For example, N/A cannot be used as a
default for a numeric column.
If the default value is too long for the column to which it is bound, the value is truncated.
CREATE DEFAULT statements cannot be combined with other Transact-SQL statements in a
single batch.
A default must be dropped before creating a new one of the same name, and the default must
be unbound by executing sp_unbindefault before it is dropped.
If a column has both a default and a rule associated with it, the default value must not violate
the rule. A default that conflicts with a rule is never inserted, and SQL Server generates an error
message each time it attempts to insert the default.
When bound to a column, a default value is inserted when:
• A value is not explicitly inserted.
• Either the DEFAULT VALUES or DEFAULT keywords are used with INSERT to insert default

values.
If NOT NULL is specified when creating a column and a default is not created for it, an error
message is generated when a user fails to make an entry in that column. The following table
illustrates the relationship between the existence of a default and the definition of a column as
NULL or NOT NULL. The entries in the table show the result.

Column definition No entry, no
default

No entry, default Enter NULL, no
default

Enter NULL, default

NULL NULL default NULL NULL

NOT NULL Error default error error

To rename a default, use sp_rename. For a report on a default, use sp_help.

Permissions
To execute CREATE DEFAULT, at a minimum, a user must have CREATE DEFAULT permission in
the current database and ALTER permission on the schema in which the default is being created.

Examples

A. Creating a simple character default
The following example creates a character default called unknown.
USE AdventureWorks2012;

GO

CREATE DEFAULT phonedflt AS 'unknown';

 407

B. Binding a default
The following example binds the default created in example A. The default takes effect only if no
entry is specified for the Phone column of the Contact table. Note that omitting any entry is
different from explicitly stating NULL in an INSERT statement.
Because a default named phonedflt does not exist, the following Transact-SQL statement fails.
This example is for illustration only.
USE AdventureWorks2012;

GO

sp_bindefault 'phonedflt', 'Person.PersonPhone.PhoneNumber';

See Also
ALTER TABLE
CREATE RULE
CREATE TABLE
DROP DEFAULT
DROP RULE
Expressions
INSERT
sp_bindefault
sp_help
sp_helptext
sp_rename
sp_unbindefault

CREATE ENDPOINT
Creates endpoints and defines their properties, including the methods available to client
applications. For related permissions information, see Sample XML Applications.
The syntax for CREATE ENDPOINT can logically be broken into two parts:
• The first part starts with AS and ends before the FOR clause.

In this part, you provide information specific to the transport protocol (TCP) and set a
listening port number for the endpoint, as well as the method of endpoint authentication
and/or a list of IP addresses (if any) that you want to restrict from accessing the endpoint.

• The second part starts with the FOR clause.
In this part, you define the payload that is supported on the endpoint. The payload can be
one of several supported types: Transact-SQL, service broker, database mirroring. In this
part, you also include language-specific information.

http://msdn.microsoft.com/en-us/library/ee53c5c8-e36c-40f9-8cd1-d933791b98fa(SQL.110)�
http://msdn.microsoft.com/en-us/library/1054c76e-0fd5-4131-8c07-a6c5d024af50(SQL.110)�
http://msdn.microsoft.com/en-us/library/3da70c10-68d0-4c16-94a5-9e84c4a520f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/913cd5d4-39a3-4a4b-a926-75ed32878884(SQL.110)�
http://msdn.microsoft.com/en-us/library/24135456-05f0-427c-884b-93cf38dd47a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc3548f0-143f-404e-a2e9-0a15960fc8ed(SQL.110)�
http://msdn.microsoft.com/en-us/library/c96a6c5e-f3ca-4c1e-b64b-0d8ef6986af8(SQL.110)�
http://msdn.microsoft.com/en-us/library/9eda885c-fc3a-4c9d-8de6-ce07fb35a934(SQL.110)�

 408

 Native XML Web Services (SOAP/HTTP endpoints) was removed in SQL Server 2012.
 Transact-SQL Syntax Conventions

Syntax

CREATE ENDPOINT endPointName [AUTHORIZATION login]
[STATE = { STARTED | STOPPED | DISABLED }]
AS { TCP } (
 <protocol_specific_arguments>
)
FOR { TSQL | SERVICE_BROKER | DATABASE_MIRRORING } (
 <language_specific_arguments>
)

<AS TCP_protocol_specific_arguments> ::=
AS TCP (
 LISTENER_PORT = listenerPort
 [[,] LISTENER_IP = ALL | (4-part-ip) | ("ip_address_v6")]

)

<FOR SERVICE_BROKER_language_specific_arguments> ::=
FOR SERVICE_BROKER (
 [AUTHENTICATION = {
 WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
 | CERTIFICATE certificate_name
 | WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }] CERTIFICATE certificate_name
 | CERTIFICATE certificate_name WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
 }]
 [[,] ENCRYPTION = { DISABLED | { { SUPPORTED | REQUIRED }
 [ALGORITHM { RC4 | AES | AES RC4 | RC4 AES }] }
]
 [[,] MESSAGE_FORWARDING = { ENABLED | DISABLED }]
 [[,] MESSAGE_FORWARD_SIZE = forward_size]
)

Note

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 409

<FOR DATABASE_MIRRORING_language_specific_arguments> ::=
FOR DATABASE_MIRRORING (
 [AUTHENTICATION = {
 WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
 | CERTIFICATE certificate_name
 | WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }] CERTIFICATE certificate_name
 | CERTIFICATE certificate_name WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]
 [[[,]] ENCRYPTION = { DISABLED | { { SUPPORTED | REQUIRED }
 [ALGORITHM { RC4 | AES | AES RC4 | RC4 AES }] }

]
 [,] ROLE = { WITNESS | PARTNER | ALL }
)

Arguments
endPointName

Is the assigned name for the endpoint you are creating. Use when updating or deleting the
endpoint.

AUTHORIZATION login

Specifies a valid SQL Server or Windows login that is assigned ownership of the newly
created endpoint object. If AUTHORIZATION is not specified, by default, the caller becomes
owner of the newly created object.

To assign ownership by specifying AUTHORIZATION, the caller must have IMPERSONATE
permission on the specified login.

To reassign ownership, see ALTER ENDPOINT (Transact-SQL).

STATE = { STARTED | STOPPED | DISABLED }

Is the state of the endpoint when it is created. If the state is not specified when the endpoint
is created, STOPPED is the default.

STARTED

Endpoint is started and is actively listening for connections.

DISABLED

Endpoint is disabled. In this state, the server listens to port requests but returns errors to

 410

clients.

STOPPED

Endpoint is stopped. In this state, the server does not listen to the endpoint port or
respond to any attempted requests to use the endpoint.

To change the state, use ALTER ENDPOINT.

AS { TCP }

Specifies the transport protocol to use.

FOR { TSQL | SERVICE_BROKER | DATABASE_MIRRORING }

Specifies the payload type.

Currently, there are no Transact-SQL language-specific arguments to pass in the
<language_specific_arguments> parameter.

TCP Protocol Option
The following arguments apply only to the TCP protocol option.
LISTENER_PORT = listenerPort

Specifies the port number listened to for connections by the service broker TCP/IP protocol.
By convention, 4022 is used but any number between 1024 and 32767 is valid.

LISTENER_IP = ALL | (4-part-ip) | ("ip_address_v6")

Specifies the IP address that the endpoint will listen on. The default is ALL. This means that
the listener will accept a connection on any valid IP address.

If you configure database mirroring with an IP address instead of a fully-qualified domain
name (ALTER DATABASE SET PARTNER = partner_IP_address or ALTER
DATABASE SET WITNESS = witness_IP_address), you have to specify
LISTENER_IP =IP_address instead of LISTENER_IP=ALL when you create
mirroring endpoints.

SERVICE_BROKER and DATABASE_MIRRORING Options
The following AUTHENTICATION and ENCRYPTION arguments are common to the
SERVICE_BROKER and DATABASE_MIRRORING options.

For options that are specific to SERVICE_BROKER, see "SERVICE_BROKER Options," later
in this section. For options that are specific to DATABASE_MIRRORING, see
"DATABASE_MIRRORING Options," later in this section.

AUTHENTICATION = <authentication_options>

Specifies the TCP/IP authentication requirements for connections for this endpoint. The
default is WINDOWS.

The supported authentication methods include NTLM and or Kerberos or both.

Important

Note

 411

All mirroring connections on a server instance use a single database mirroring endpoint. Any attempt
to create an additional database mirroring endpoint will fail.

<authentication_options> ::=

WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]

Specifies that the endpoint is to connect using Windows Authentication protocol to
authenticate the endpoints. This is the default.

If you specify an authorization method (NTLM or KERBEROS), that method is always used
as the authentication protocol. The default value, NEGOTIATE, causes the endpoint to use
the Windows negotiation protocol to choose either NTLM or Kerberos.

CERTIFICATE certificate_name

Specifies that the endpoint is to authenticate the connection using the certificate specified
by certificate_name to establish identity for authorization. The far endpoint must have a
certificate with the public key matching the private key of the specified certificate.

WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }] CERTIFICATE certificate_name

Specifies that endpoint is to try to connect by using Windows Authentication and, if that
attempt fails, to then try using the specified certificate.

CERTIFICATE certificate_name WINDOWS [{ NTLM | KERBEROS | NEGOTIATE }]

Specifies that endpoint is to try to connect by using the specified certificate and, if that
attempt fails, to then try using Windows Authentication.

ENCRYPTION = { DISABLED | SUPPORTED | REQUIRED } [ALGORITHM { RC4 | AES | AES RC4 |
RC4 AES }]

Specifies whether encryption is used in the process. The default is REQUIRED.

DISABLED

Specifies that data sent over a connection is not encrypted.

SUPPORTED

Specifies that the data is encrypted only if the opposite endpoint specifies either
SUPPORTED or REQUIRED.

REQUIRED

Specifies that connections to this endpoint must use encryption. Therefore, to connect to
this endpoint, another endpoint must have ENCRYPTION set to either SUPPORTED or
REQUIRED.

Optionally, you can use the ALGORITHM argument to specify the form of encryption used by
the endpoint, as follows:

RC4

Specifies that the endpoint must use the RC4 algorithm. This is the default.

Note

 412

The RC4 algorithm is only supported for backward compatibility. New material can only be
encrypted using RC4 or RC4_128 when the database is in compatibility level 90 or 100. (Not
recommended.) Use a newer algorithm such as one of the AES algorithms instead. In SQL Server
2012 material encrypted using RC4 or RC4_128 can be decrypted in any compatibility level.

AES

Specifies that the endpoint must use the AES algorithm.

AES RC4

Specifies that the two endpoints will negotiate for an encryption algorithm with this
endpoint giving preference to the AES algorithm.

RC4 AES

Specifies that the two endpoints will negotiate for an encryption algorithm with this
endpoint giving preference to the RC4 algorithm.

Note

The RC4 algorithm is deprecated. This feature will be removed in a future version of Microsoft SQL
Server. Do not use this feature in new development work, and modify applications that currently use
this feature as soon as possible. We recommend that you use AES.

If both endpoints specify both algorithms but in different orders, the endpoint accepting the
connection wins.

SERVICE_BROKER Options
The following arguments are specific to the SERVICE_BROKER option.
MESSAGE_FORWARDING = { ENABLED | DISABLED }

Determines whether messages received by this endpoint that are for services located
elsewhere will be forwarded.

ENABLED

Forwards messages if a forwarding address is available.

DISABLED

Discards messages for services located elsewhere. This is the default.

MESSAGE_FORWARD_SIZE = forward_size

Specifies the maximum amount of storage in megabytes to allocate for the endpoint to use
when storing messages that are to be forwarded.

DATABASE_MIRRORING Options
The following argument is specific to the DATABASE_MIRRORING option.
ROLE = { WITNESS | PARTNER | ALL }

Specifies the database mirroring role or roles that the endpoint supports.

WITNESS

 413

Enables the endpoint to perform in the role of a witness in the mirroring process.

Note
For SQL Server 2005 Express Edition, WITNESS is the only option available.

PARTNER

Enables the endpoint to perform in the role of a partner in the mirroring process.

ALL

Enables the endpoint to perform in the role of both a witness and a partner in the
mirroring process.

For more information about these roles, see Overview of Database Mirroring.

There is no default port for DATABASE_MIRRORING.

Remarks
ENDPOINT DDL statements cannot be executed inside a user transaction. ENDPOINT DDL
statements do not fail even if an active snapshot isolation level transaction is using the endpoint
being altered.
Requests can be executed against an ENDPOINT by the following:
• Members of sysadmin fixed server role
• The owner of the endpoint
• Users or groups that have been granted CONNECT permission on the endpoint

Permissions
Requires CREATE ENDPOINT permission, or membership in the sysadmin fixed server role. For
more information, see GRANT Endpoint Permissions (Transact-SQL).

Example

Creating a database mirroring endpoint
The following example creates a database mirroring endpoint. The endpoint uses port number
7022, although any available port number would work. The endpoint is configured to use
Windows Authentication using only Kerberos. The ENCRYPTION option is configured to the
nondefault value of SUPPORTED to support encrypted or unencrypted data. The endpoint is
being configured to support both the partner and witness roles.

CREATE ENDPOINT endpoint_mirroring

 STATE = STARTED

 AS TCP (LISTENER_PORT = 7022)

 FOR DATABASE_MIRRORING (

 AUTHENTICATION = WINDOWS KERBEROS,

Note

http://msdn.microsoft.com/en-us/library/a7f95ddc-5154-4ed5-8117-c9fcf2221f13(SQL.110)�
http://msdn.microsoft.com/en-us/library/9eda885c-fc3a-4c9d-8de6-ce07fb35a934(SQL.110)�

 414

 ENCRYPTION = SUPPORTED,

 ROLE=ALL);

GO

See Also
ALTER ENDPOINT (Transact-SQL)
Choosing an Encryption Algorithm
DROP ENDPOINT (Transact-SQL)
EVENTDATA (Transact-SQL)

CREATE EVENT NOTIFICATION
Creates an object that sends information about a database or server event to a service broker
service. Event notifications are created only by using Transact-SQL statements.

 Transact-SQL Syntax Conventions

Syntax

CREATE EVENT NOTIFICATION event_notification_name
ON { SERVER | DATABASE | QUEUE queue_name }
[WITH FAN_IN]
FOR { event_type | event_group } [,...n]
TO SERVICE 'broker_service' , { 'broker_instance_specifier' | 'current database' }
[;]

Arguments
event_notification_name

Is the name of the event notification. An event notification name must comply with the rules
for identifiers and must be unique within the scope in which they are created: SERVER,
DATABASE, or object_name.

SERVER

Applies the scope of the event notification to the current instance of SQL Server. If specified,
the notification fires whenever the specified event in the FOR clause occurs anywhere in the
instance of SQL Server.

Note
This option is not available in a contained database.

DATABASE

Applies the scope of the event notification to the current database. If specified, the

http://msdn.microsoft.com/en-us/library/8227028c-a9c9-489d-bd27-fbf8242634ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 415

notification fires whenever the specified event in the FOR clause occurs in the current
database.

QUEUE

Applies the scope of the notification to a specific queue in the current database. QUEUE can
be specified only if FOR QUEUE_ACTIVATION or FOR BROKER_QUEUE_DISABLED is also
specified.

queue_name

Is the name of the queue to which the event notification applies. queue_name can be
specified only if QUEUE is specified.

WITH FAN_IN

Instructs SQL Server to send only one message per event to any specified service for all event
notifications that:

• Are created on the same event.

• Are created by the same principal (as identified by the same SID).

• Specify the same service and broker_instance_specifier.

• Specify WITH FAN_IN.

For example, three event notifications are created. All event notifications specify FOR
ALTER_TABLE, WITH FAN_IN, the same TO SERVICE clause, and are created by the same SID.
When an ALTER TABLE statement is run, the messages that are created by these three event
notifications are merged into one. Therefore, the target service receives only one message of
the event.

event_type

Is the name of an event type that causes the event notification to execute. event_type can be
a Transact-SQL DDL event type, a SQL Trace event type, or a Service Broker event type. For a
list of qualifying Transact-SQL DDL event types, see DDL Events. Service Broker event types
are QUEUE_ACTIVATION and BROKER_QUEUE_DISABLED. For more information, see Event
Notifications.

event_group

Is the name of a predefined group of Transact-SQL or SQL Trace event types. An event
notification can fire after execution of any event that belongs to an event group. For a list of
DDL event groups, the Transact-SQL events they cover, and the scope at which they can be
defined, see DDL Event Groups.

event_group also acts as a macro, when the CREATE EVENT NOTIFICATION statement
finishes, by adding the event types it covers to the sys.events catalog view.

'broker_service'

Specifies the target service that receives the event instance data. SQL Server opens one or
more conversations to the target service for the event notification. This service must honor

http://msdn.microsoft.com/en-us/library/62ef24b4-3553-4aed-b62a-670980bae501(SQL.110)�
http://msdn.microsoft.com/en-us/library/4da73ca1-6c06-4e96-8ab8-2ecba30b6c86(SQL.110)�
http://msdn.microsoft.com/en-us/library/4da73ca1-6c06-4e96-8ab8-2ecba30b6c86(SQL.110)�
http://msdn.microsoft.com/en-us/library/12b45cc3-2f91-4609-bb8a-3e82e28bf642(SQL.110)�

 416

the same SQL Server Events message type and contract that is used to send the message.

The conversations remain open until the event notification is dropped. Certain errors could
cause the conversations to close earlier. Ending some or all conversations explicitly might
prevent the target service from receiving more messages.

{ 'broker_instance_specifier' | 'current database' }

Specifies a service broker instance against which broker_service is resolved. The value for a
specific service broker can be acquired by querying the service_broker_guid column of the
sys.databases catalog view. Use 'current database' to specify the service broker instance in
the current database. 'current database' is a case-insensitive string literal.

Note
This option is not available in a contained database.

Remarks
Service Broker includes a message type and contract specifically for event notifications.
Therefore, a Service Broker initiating service does not have to be created because one already
exists that specifies the following contract name:
http://schemas.microsoft.com/SQL/Notifications/PostEventNotification
The target service that receives event notifications must honor this preexisting contract.

Service Broker dialog security should be configured for event notifications that send
messages to a service broker on a remote server. Dialog security must be configured
manually according to the full security model. For more information, see Dialog Security
for Event Notifications.

If an event transaction that activates a notification is rolled back, the sending of the event
notification is also rolled back. Event notifications do not fire by an action defined in a trigger
when the transaction is committed or rolled back inside the trigger. Because trace events are not
bound by transactions, event notifications based on trace events are sent regardless of whether
the transaction that activates them is rolled back.
If the conversation between the server and the target service is broken after an event
notification fires, an error is reported and the event notification is dropped.
The event transaction that originally started the notification is not affected by the success or
failure of the sending of the event notification.
Any failure to send an event notification is logged.

Permissions
To create an event notification that is scoped to the database (ON DATABASE), requires CREATE
DATABASE DDL EVENT NOTIFICATION permission in the current database.
To create an event notification on a DDL statement that is scoped to the server (ON SERVER),
requires CREATE DDL EVENT NOTIFICATION permission in the server.

Important

http://msdn.microsoft.com/en-us/library/12afbc84-2d2a-4452-935e-e1c70e8c53c1(SQL.110)�
http://msdn.microsoft.com/en-us/library/12afbc84-2d2a-4452-935e-e1c70e8c53c1(SQL.110)�
http://schemas.microsoft.com/SQL/Notifications/PostEventNotification

 417

To create an event notification on a trace event, requires CREATE TRACE EVENT NOTIFICATION
permission in the server.
To create an event notification that is scoped to a queue, requires ALTER permission on the
queue.

Examples

• In Examples A and B below, the GUID in the TO SERVICE 'NotifyService' clause
('8140a771-3c4b-4479-8ac0-81008ab17984') is specific to the computer on which the
example was set up. For that instance, that was the GUID for the AdventureWorks2012
database.

• To copy and run these examples, you need to replace this GUID with one from your
computer and SQL Server instance. As explained in the Arguments section above, you
can acquire the 'broker_instance_specifier' by querying the service_broker_guid column
of the sys.databases catalog view.

A. Creating an event notification that is server scoped
The following example creates the required objects to set up a target service using Service
Broker. The target service references the message type and contract of the initiating service
specifically for event notifications. Then an event notification is created on that target service
that sends a notification whenever an Object_Created trace event happens on the instance of
SQL Server.
--Create a queue to receive messages.

CREATE QUEUE NotifyQueue ;

GO

--Create a service on the queue that references

--the event notifications contract.

CREATE SERVICE NotifyService

ON QUEUE NotifyQueue

([http://schemas.microsoft.com/SQL/Notifications/PostEventNotification]);

GO

--Create a route on the service to define the address

--to which Service Broker sends messages for the service.

CREATE ROUTE NotifyRoute

WITH SERVICE_NAME = 'NotifyService',

ADDRESS = 'LOCAL';

GO

--Create the event notification.

CREATE EVENT NOTIFICATION log_ddl1

Note

http://schemas.microsoft.com/SQL/Notifications/PostEventNotification

 418

ON SERVER

FOR Object_Created

TO SERVICE 'NotifyService',

 '8140a771-3c4b-4479-8ac0-81008ab17984' ;

B. Creating an event notification that is database scoped
The following example creates an event notification on the same target service as the previous
example. The event notification fires after an ALTER_TABLE event occurs on the
AdventureWorks2012 sample database.
CREATE EVENT NOTIFICATION Notify_ALTER_T1

ON DATABASE

FOR ALTER_TABLE

TO SERVICE 'NotifyService',

 '8140a771-3c4b-4479-8ac0-81008ab17984';

C. Getting information about an event notification that is server scoped
The following example queries the sys.server_event_notifications catalog view for
metadata about event notification log_ddl1 that was created with server scope.
SELECT * FROM sys.server_event_notifications

WHERE name = 'log_ddl1';

D. Getting information about an event notification that is database scoped
The following example queries the sys.event_notifications catalog view for metadata
about event notification Notify_ALTER_T1 that was created with database scope.
SELECT * FROM sys.event_notifications

WHERE name = 'Notify_ALTER_T1';

See Also
Event Notifications
DROP EVENT NOTIFICATION (Transact-SQL)
EVENTDATA (Transact-SQL)
sys.event_notifications (Transact-SQL)
sys.server_event_notifications (Transact-SQL)
sys.events (Transact-SQL)
sys.server_events (Transact-SQL)

CREATE EVENT SESSION
Creates an Extended Events session that identifies the source of the events, the event session
targets, and the event session options.

http://msdn.microsoft.com/en-us/library/4da73ca1-6c06-4e96-8ab8-2ecba30b6c86(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/136a76ee-2b35-4418-ab46-fda2d51f7d99(SQL.110)�
http://msdn.microsoft.com/en-us/library/1a83a044-3130-4551-95ca-162525846ff5(SQL.110)�
http://msdn.microsoft.com/en-us/library/f245a97a-80fc-43fb-a6e4-139420c9a47a(SQL.110)�
http://msdn.microsoft.com/en-us/library/996f6c9b-6426-4847-95d9-6b77541422be(SQL.110)�

 419

 Transact-SQL Syntax Conventions.

Syntax

CREATE EVENT SESSION event_session_name
ON SERVER
{
 <event_definition> [,...n]
 [<event_target_definition> [,...n]]
 [WITH (<event_session_options> [,...n])]
}
;

<event_definition>::=
{
 ADD EVENT [event_module_guid].event_package_name.event_name
 [({
 [SET { event_customizable_attribute = <value> [,...n] }]
 [ACTION ({ [event_module_guid].event_package_name.action_name [,...n] })]
 [WHERE <predicate_expression>]
 })]
}

<predicate_expression> ::=
{
 [NOT] <predicate_factor> | {(<predicate_expression>) }
 [{ AND | OR } [NOT] { <predicate_factor> | (<predicate_expression>) }]
 [,...n]
}

<predicate_factor>::=
{
 <predicate_leaf> | (<predicate_expression>)
}

<predicate_leaf>::=

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 420

{
 <predicate_source_declaration> { = | < > | ! = | > | > = | < | < = } <value>
 | [event_module_guid].event_package_name.predicate_compare_name (
<predicate_source_declaration>, <value>)
}

<predicate_source_declaration>::=
{
 event_field_name | (
[event_module_guid].event_package_name.predicate_source_name)
}

<value>::=
{
 number | 'string'
}

<event_target_definition>::=
{
 ADD TARGET [event_module_guid].event_package_name.target_name
 [(SET { target_parameter_name = <value> [,...n] })]
}

<event_session_options>::=
{
 [MAX_MEMORY = size [KB | MB]]
 [[,] EVENT_RETENTION_MODE = { ALLOW_SINGLE_EVENT_LOSS |
ALLOW_MULTIPLE_EVENT_LOSS | NO_EVENT_LOSS }]
 [[,] MAX_DISPATCH_LATENCY = { seconds SECONDS | INFINITE }]
 [[,] MAX_EVENT_SIZE = size [KB | MB]]
 [[,] MEMORY_PARTITION_MODE = { NONE | PER_NODE | PER_CPU }]
 [[,] TRACK_CAUSALITY = { ON | OFF }]
 [[,] STARTUP_STATE = { ON | OFF }]
}

Arguments

 421

event_session_name

Is the user-defined name for the event session. event_session_name is alphanumeric, can be
up to 128 characters, must be unique within an instance of SQL Server, and must comply with
the rules for Identifiers.

ADD EVENT [event_module_guid].event_package_name.event_name

Is the event to associate with the event session, where:

• event_module_guid is the GUID for the module that contains the event.

• event_package_name is the package that contains the action object.

• event_name is the event object.

Events appear in the sys.dm_xe_objects view as object_type 'event'.

SET { event_customizable_attribute = <value> [,...n] }

Allows customizable attributes for the event to be set. Customizable attributes appear in the
sys.dm_xe_object_columns view as column_type 'customizable ' and object_name =
event_name.

ACTION ({ [event_module_guid].event_package_name.action_name [,...n] })

Is the action to associate with the event session, where:

• event_module_guid is the GUID for the module that contains the event.

• event_package_name is the package that contains the action object.

• action_name is the action object.

Actions appear in the sys.dm_xe_objects view as object_type 'action'.

WHERE <predicate_expression>

Specifies the predicate expression used to determine if an event should be processed. If
<predicate_expression> is true, the event is processed further by the actions and targets for
the session. If <predicate_expression> is false, the event is dropped by the session before
being processed by the actions and targets for the session. Predicate expressions are limited
to 3000 characters, which limits string arguments.

event_field_name

Is the name of the event field that identifies the predicate source.

[event_module_guid].event_package_name.predicate_source_name

Is the name of the global predicate source where:

• event_module_guid is the GUID for the module that contains the event.

• event_package_name is the package that contains the predicate object.

• predicate_source_name is defined in the sys.dm_xe_objects view as object_type
'pred_source'.

[event_module_guid].event_package_name.predicate_compare_name

Is the name of the predicate object to associate with the event, where:

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 422

• event_module_guid is the GUID for the module that contains the event.

• event_package_name is the package that contains the predicate object.

• predicate_compare_name is a global source defined in the sys.dm_xe_objects view as
object_type 'pred_compare'.

number

Is any numeric type including decimal. Limitations are the lack of available physical memory
or a number that is too large to be represented as a 64-bit integer.

'string'

Either an ANSI or Unicode string as required by the predicate compare. No implicit string
type conversion is performed for the predicate compare functions. Passing the wrong type
results in an error.

ADD TARGET [event_module_guid].event_package_name.target_name

Is the target to associate with the event session, where:

• event_module_guid is the GUID for the module that contains the event.

• event_package_name is the package that contains the action object.

• target_name is the target. Targets appear in sys.dm_xe_objects view as object_type
'target'.

SET { target_parameter_name = <value> [, ...n] }

Sets a target parameter. Target parameters appear in the sys.dm_xe_object_columns view as
column_type 'customizable' and object_name = target_name.

Important
If you are using the ring buffer target, we recommend that you set the max_memory target parameter
to 2048 kilobytes (KB) to help avoid possible data truncation of the XML output. For more information
about when to use the different target types, see SQL Server Extended Events Targets.

WITH (<event_session_options> [,...n])

Specifies options to use with the event session.

MAX_MEMORY = size [KB | MB]

Specifies the maximum amount of memory to allocate to the session for event buffering. The
default is 4 MB. size is a whole number and can be a kilobyte (KB) or a megabyte (MB) value.

EVENT_RETENTION_MODE = { ALLOW_SINGLE_EVENT_LOSS | ALLOW_MULTIPLE_EVENT_LOSS
| NO_EVENT_LOSS }

Specifies the event retention mode to use for handling event loss.

ALLOW_SINGLE_EVENT_LOSS

An event can be lost from the session. A single event is only dropped when all the event
buffers are full. Losing a single event when event buffers are full allows for acceptable SQL
Server performance characteristics, while minimizing the loss of data in the processed

http://msdn.microsoft.com/en-us/library/e281684c-40d1-4cf9-a0d4-7ea1ecffa384(SQL.110)�

 423

event stream.

ALLOW_MULTIPLE_EVENT_LOSS

Full event buffers containing multiple events can be lost from the session. The number of
events lost is dependant upon the memory size allocated to the session, the partitioning of
the memory, and the size of the events in the buffer. This option minimizes performance
impact on the server when event buffers are quickly filled, but large numbers of events can
be lost from the session.

NO_EVENT_LOSS

No event loss is allowed. This option ensures that all events raised will be retained. Using
this option forces all tasks that fire events to wait until space is available in an event buffer.
This may cause detectable performance issues while the event session is active. User
connections may stall while waiting for events to be flushed from the buffer.

MAX_DISPATCH_LATENCY = { seconds SECONDS | INFINITE }

Specifies the amount of time that events will be buffered in memory before being dispatched
to event session targets. By default, this value is set to 30 seconds.

seconds SECONDS

The time, in seconds, to wait before starting to flush buffers to targets. seconds is a whole
number. The minimum latency value is 1 second. However, 0 can be used to specify
INFINITE latency.

INFINITE

Flush buffers to targets only when the buffers are full, or when the event session closes.

Note
MAX_DISPATCH_LATENCY = 0 SECONDS is equivalent to MAX_DISPATCH_LATENCY = INFINITE.

MAX_EVENT_SIZE = size [KB | MB]

Specifies the maximum allowable size for events. MAX_EVENT_SIZE should only be set to
allow single events larger than MAX_MEMORY; setting it to less than MAX_MEMORY will raise
an error. size is a whole number and can be a kilobyte (KB) or a megabyte (MB) value. If size
is specified in kilobytes, the minimum allowable size is 64 KB. When MAX_EVENT_SIZE is set,
two buffers of size are created in addition to MAX_MEMORY. This means that the total
memory used for event buffering is MAX_MEMORY + 2 * MAX_EVENT_SIZE.

MEMORY_PARTITION_MODE = { NONE | PER_NODE | PER_CPU }

Specifies the location where event buffers are created.

NONE

A single set of buffers are created within the SQL Server instance.

PER_NODE

A set of buffers are created for each NUMA node.

 424

PER_CPU

A set of buffers are created for each CPU.

TRACK_CAUSALITY = { ON | OFF }

Specifies whether or not causality is tracked. If enabled, causality allows related events on
different server connections to be correlated together.

STARTUP_STATE = { ON | OFF }

Specifies whether or not to start this event session automatically when SQL Server starts.

Note
• If STARTUP_STATE = ON, the event session will only start if SQL Server is stopped

and then restarted.

ON

The event session is started at startup.

OFF

The event session is not started at startup.

Remarks
The order of precedence for the logical operators is NOT (highest), followed by AND, followed
by OR.

Permissions
Requires the ALTER ANY EVENT SESSION permission.

Examples
The following example shows how to create an event session named test_session. This
example adds two events and uses the Event Tracing for Windows target.
IF EXISTS(SELECT * FROM sys.server_event_sessions WHERE name='test_session')

 DROP EVENT session test_session ON SERVER;

GO

CREATE EVENT SESSION test_session

ON SERVER

 ADD EVENT sqlos.async_io_requested,

 ADD EVENT sqlserver.lock_acquired

 ADD TARGET package0.etw_classic_sync_target

 (SET default_etw_session_logfile_path = N'C:\demo\traces\sqletw.etl'

)

 WITH (MAX_MEMORY=4MB, MAX_EVENT_SIZE=4MB);

GO

 425

See Also
ALTER EVENT SESSION (Transact-SQL)
DROP EVENT SESSION (Transact-SQL)
sys.server_event_sessions
sys.dm_xe_objects
sys.dm_xe_object_columns

CREATE FULLTEXT CATALOG
Creates a full-text catalog for a database. One full-text catalog can have several full-text indexes,
but a full-text index can only be part of one full-text catalog. Each database can contain zero or
more full-text catalogs.
You cannot create full-text catalogs in the master, model, or tempdb databases.

Beginning with SQL Server 2008, a full-text catalog is a virtual object and does not
belong to any filegroup. A full-text catalog is a logical concept that refers to a group of
full-text indexes.

 Transact-SQL Syntax Conventions

Syntax

CREATE FULLTEXT CATALOG catalog_name
 [ON FILEGROUP filegroup]
 [IN PATH 'rootpath']
 [WITH <catalog_option>]
 [AS DEFAULT]
 [AUTHORIZATION owner_name]

<catalog_option>::=
 ACCENT_SENSITIVITY = {ON|OFF}

Arguments
catalog_name

Is the name of the new catalog. The catalog name must be unique among all catalog names
in the current database. Also, the name of the file that corresponds to the full-text catalog
(see ON FILEGROUP) must be unique among all files in the database. If the name of the
catalog is already used for another catalog in the database, SQL Server returns an error.

Important

http://msdn.microsoft.com/en-us/library/796f3093-6a3e-4d67-8da6-b9810ae9ef5b(SQL.110)�
http://msdn.microsoft.com/en-us/library/5d944b99-b097-491b-8cbd-b0e42b459ec0(SQL.110)�
http://msdn.microsoft.com/en-us/library/d96a14f3-4284-45ff-b1fe-4858e540a013(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 426

The length of the catalog name cannot exceed 120 characters.

ON FILEGROUP filegroup

Beginning with SQL Server 2008, this clause has no effect.

IN PATH 'rootpath'

ACCENT_SENSITIVITY = {ON|OFF}

Specifies that the catalog is accent sensitive or accent insensitive for full-text indexing. When
this property is changed, the index must be rebuilt. The default is to use the accent-sensitivity
specified in the database collation. To display the database collation, use the sys.databases
catalog view.

To determine the current accent-sensitivity property setting of a full-text catalog, use the
FULLTEXTCATALOGPROPERTY function with the accentsensitivity property value against
catalog_name. If the value returned is '1', the full-text catalog is accent sensitive; if the value
is '0', the catalog is not accent-sensitive.

AS DEFAULT

Specifies that the catalog is the default catalog. When full-text indexes are created without a
full-text catalog explicitly specified, the default catalog is used. If an existing full-text catalog
is already marked AS DEFAULT, setting this new catalog AS DEFAULT will make this catalog
the default full-text catalog.

AUTHORIZATION owner_name

Sets the owner of the full-text catalog to the name of a database user or role. If owner_name
is a role, the role must be the name of a role that the current user is a member of, or the user
running the statement must be the database owner or system administrator.

If owner_name is a user name, the user name must be one of the following:

• The name of the user running the statement.

• The name of a user that the user executing the command has impersonate permissions
for.

• Or, the user executing the command must be the database owner or system
administrator.

owner_name must also be granted TAKE OWNERSHIP permission on the specified full-text
catalog.

Remarks
Full-text catalog IDs start at 00005 and are incremented by one for each new catalog created.

Note

This feature will be removed in a future version of Microsoft SQL Server. Avoid using this feature in
new development work, and plan to modify applications that currently use this feature.

Beginning with SQL Server 2008, this clause has no effect.

 427

Permissions
User must have CREATE FULLTEXT CATALOG permission on the database, or be a member of the
db_owner, or db_ddladmin fixed database roles.

Examples
The following example creates a full-text catalog and also a full-text index.
USE AdventureWorks;

GO

CREATE FULLTEXT CATALOG ftCatalog AS DEFAULT;

GO

CREATE FULLTEXT INDEX ON HumanResources.JobCandidate(Resume) KEY INDEX

PK_JobCandidate_JobCandidateID;

GO

See Also
sys.fulltext_catalogs (Transact-SQL)
New Full-Text Catalog (General Page)
DROP FULLTEXT CATALOG
Full-Text Search
New Full-Text Catalog (General Page)

CREATE FULLTEXT INDEX
Creates a full-text index on a table or indexed view in a database. Only one full-text index is
allowed per table or indexed view, and each full-text index applies to a single table or indexed
view.
A full-text index can contain up to 1024 columns.

 Transact-SQL Syntax Conventions

Syntax

CREATE FULLTEXT INDEX ON table_name
 [({ column_name
 [TYPE COLUMN type_column_name]
 [LANGUAGE language_term]
 [STATISTICAL_SEMANTICS]
 } [,...n]
)]

http://msdn.microsoft.com/en-us/library/cf1489ff-4819-41fa-a62a-4ed797a16207(SQL.110)�
http://msdn.microsoft.com/en-us/library/a0ce315d-f96d-4e5d-b4eb-ff76811cab75(SQL.110)�
http://msdn.microsoft.com/en-us/library/5ed6f7cd-d9af-4439-9f33-fc935b883d91(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 428

 KEY INDEX index_name
 [ON <catalog_filegroup_option>]
 [WITH [(] <with_option> [,...n] [)]]
[;]

<catalog_filegroup_option>::=
 {
 fulltext_catalog_name
 | (fulltext_catalog_name, FILEGROUP filegroup_name)
 | (FILEGROUP filegroup_name, fulltext_catalog_name)
 | (FILEGROUP filegroup_name)
 }

<with_option>::=
 {
 CHANGE_TRACKING [=] { MANUAL | AUTO | OFF [, NO POPULATION] }
 | STOPLIST [=] { OFF | SYSTEM | stoplist_name }
 | SEARCH PROPERTY LIST [=] property_list_name
 }

Arguments
table_name

Is the name of the table or indexed view that contains the column or columns included in the
full-text index.

column_name

Is the name of the column included in the full-text index. Only columns of type char, varchar,
nchar, nvarchar, text, ntext, image, xml, and varbinary(max) can be indexed for full-text
search. To specify multiple columns, repeat the column_name clause as follows:

CREATE FULLTEXT INDEX ON table_name (column_name1 […], column_name2 […]) …

TYPE COLUMN type_column_name

Specifies the name of a table column, type_column_name, that is used to hold the document
type for a varbinary(max) or image document. This column, known as the type column,
contains a user-supplied file extension (.doc, .pdf, .xls, and so forth). The type column must
be of type char, nchar, varchar, or nvarchar.

Specify TYPE COLUMN type_column_name only if column_name specifies a varbinary(max)
or image column, in which data is stored as binary data; otherwise, SQL Server returns an
error.

 429

Note
At indexing time, the Full-Text Engine uses the abbreviation in the type column of each table row to
identify which full-text search filter to use for the document in column_name. The filter loads the
document as a binary stream, removes the formatting information, and sends the text from the
document to the word-breaker component. For more information, see Full-Text Search Filters.

LANGUAGE language_term

Is the language of the data stored in column_name.

language_term is optional and can be specified as a string, integer, or hexadecimal value
corresponding to the locale identifier (LCID) of a language. If no value is specified, the default
language of the SQL Server instance is used.

If language_term is specified, the language it represents will be used to index data stored in
char, nchar, varchar, nvarchar, text, and ntext columns. This language is the default
language used at query time if language_term is not specified as part of a full-text predicate
against the column.

When specified as a string, language_term corresponds to the alias column value in the
syslanguages system table. The string must be enclosed in single quotation marks, as in
'language_term'. When specified as an integer, language_term is the actual LCID that
identifies the language. When specified as a hexadecimal value, language_term is 0x followed
by the hex value of the LCID. The hex value must not exceed eight digits, including leading
zeros.

If the value is in double-byte character set (DBCS) format, SQL Server will convert it to
Unicode.

Resources, such as word breakers and stemmers, must be enabled for the language specified
as language_term. If such resources do not support the specified language, SQL Server
returns an error.

Use the sp_configure stored procedure to access information about the default full-text
language of the Microsoft SQL Server instance. For more information, see sp_configure
(Transact-SQL).
For non-BLOB and non-XML columns containing text data in multiple languages, or for cases
when the language of the text stored in the column is unknown, it might be appropriate for
you to use the neutral (0x0) language resource. However, first you should understand the
possible consequences of using the neutral (0x0) language resource. For information about
the possible solutions and consequences of using the neutral (0x0) language resource, see
International Considerations for Full-Text Search.

For documents stored in XML- or BLOB-type columns, the language encoding within the
document will be used at indexing time. For example, in XML columns, the xml:lang attribute
in XML documents will identify the language. At query time, the value previously specified in
language_term becomes the default language used for full-text queries unless language_term
is specified as part of a full-text query.

http://msdn.microsoft.com/en-us/library/7ccf2ee0-9854-4253-8cca-1faed43b7095(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�
http://msdn.microsoft.com/en-us/library/670a5181-ab80-436a-be96-d9498fbe2c09(SQL.110)�

 430

STATISTICAL_SEMANTICS

Creates the additional key phrase and document similarity indexes that are part of statistical
semantic indexing. For more information, see Semantic Search.

KEY INDEX index_name

Is the name of the unique key index on table_name. The KEY INDEX must be a unique, single-
key, non-nullable column. Select the smallest unique key index for the full-text unique key.
For the best performance, we recommend an integer data type for the full-text key.

fulltext_catalog_name

Is the full-text catalog used for the full-text index. The catalog must already exist in the
database. This clause is optional. If it is not specified, a default catalog is used. If no default
catalog exists, SQL Server returns an error.

FILEGROUP filegroup_name

Creates the specified full-text index on the specified filegroup. The filegroup must already
exist. If the FILEGROUP clause is not specified, the full-text index is placed in the same
filegroup as base table or view for a nonpartitioned table or in the primary filegroup for a
partitioned table.

CHANGE_TRACKING [=] { MANUAL | AUTO | OFF [, NO POPULATION] }

Specifies whether changes (updates, deletes or inserts) made to table columns that are
covered by the full-text index will be propagated by SQL Server to the full-text index. Data
changes through WRITETEXT and UPDATETEXT are not reflected in the full-text index, and are
not picked up with change tracking.

MANUAL

Specifies that the tracked changes must be propagated manually by calling the ALTER
FULLTEXT INDEX … START UPDATE POPULATION Transact-SQL statement
(manual population). You can use SQL Server Agent to call this Transact-SQL statement
periodically.

AUTO

Specifies that the tracked changes will be propagated automatically as data is modified in
the base table (automatic population). Although changes are propagated automatically,
these changes might not be reflected immediately in the full-text index. AUTO is the
default.

OFF [, NO POPULATION]

Specifies that SQL Server does not keep a list of changes to the indexed data. When NO
POPULATION is not specified, SQL Server populates the index fully after it is created.

The NO POPULATION option can be used only when CHANGE_TRACKING is OFF. When
NO POPULATION is specified, SQL Server does not populate an index after it is created.
The index is only populated after the user executes the ALTER FULLTEXT INDEX command
with the START FULL POPULATION or START INCREMENTAL POPULATION clause.

http://msdn.microsoft.com/en-us/library/cd8faa9d-07db-420d-93f4-a2ea7c974b97(SQL.110)�

 431

STOPLIST [=] { OFF | SYSTEM | stoplist_name }

Associates a full-text stoplist with the index. The index is not populated with any tokens that
are part of the specified stoplist. If STOPLIST is not specified, SQL Server associates the
system full-text stoplist with the index.

OFF

Specifies that no stoplist be associated with the full-text index.

SYSTEM

Specifies that the default full-text system STOPLIST should be used for this full-text index.

stoplist_name

Specifies the name of the stoplist to be associated with the full-text index.

SEARCH PROPERTY LIST [=] property_list_name

Associates a search property list with the index.

OFF

Specifies that no property list be associated with the full-text index.

property_list_name

Specifies the name of the search property list to associate with the full-text index.

Remarks
For more information about full-text indexes, see Create and Manage Full-Text Indexes.
On xml columns, you can create a full-text index that indexes the content of the XML elements,
but ignores the XML markup. Attribute values are full-text indexed unless they are numeric
values. Element tags are used as token boundaries. Well-formed XML or HTML documents and
fragments containing multiple languages are supported. For more information, see Full-Text
Index on an XML Column.
We recommend that the index key column is an integer data type. This provides optimizations
at query execution time.

Interactions of Change Tracking and NO POPULATION Parameter
Whether the full-text index is populated depends on whether change-tracking is enabled and
whether WITH NO POPULATION is specified in the ALTER FULLTEXT INDEX statement. The
following table summarizes the result of their interaction.

Change Tracking WITH NO POPULATION Result

Not Enabled Not specified A full population is performed
on the index.

Not Enabled Specified No population of the index
occurs until an ALTER FULLTEXT

http://msdn.microsoft.com/en-us/library/f8a98486-5438-44a8-b454-9e6ecbc74f83(SQL.110)�
http://msdn.microsoft.com/en-us/library/8096cfc6-1836-4ed5-a769-a5d63b137171(SQL.110)�
http://msdn.microsoft.com/en-us/library/8096cfc6-1836-4ed5-a769-a5d63b137171(SQL.110)�

 432

Change Tracking WITH NO POPULATION Result

INDEX...START POPULATION
statement is issued.

Enabled Specified An error is raised, and the index
is not altered.

Enabled Not specified A full population is performed
on the index.

For more information about populating full-text indexes, see Full-Text Index Population.

Permissions
User must have REFERENCES permission on the full-text catalog and have ALTER permission on
the table or indexed view, or be a member of the sysadmin fixed server role, or db_owner, or
db_ddladmin fixed database roles.
If SET STOPLIST is specified, the user must have REFERENCES permission on the specified
stoplist. The owner of the STOPLIST can grant this permission.

The public is granted REFERENCE permission to the default stoplist that is shipped with
SQL Server.

Examples

A. Creating a unique index, a full-text catalog, and a full-text index
The following example creates a unique index on the JobCandidateID column of the
HumanResources.JobCandidate table of the AdventureWorks sample database. The example
then creates a default full-text catalog, ft. Finally, the example creates a full-text index on the
Resume column, using the ft catalog and the system stoplist.

USE AdventureWorks;

GO

CREATE UNIQUE INDEX ui_ukJobCand ON

HumanResources.JobCandidate(JobCandidateID);

CREATE FULLTEXT CATALOG ft AS DEFAULT;

CREATE FULLTEXT INDEX ON HumanResources.JobCandidate(Resume)

 KEY INDEX ui_ukJobCand

 WITH STOPLIST = SYSTEM;

GO

B. Creating a full-text index on several table columns

Note

http://msdn.microsoft.com/en-us/library/76767b20-ef55-49ce-8dc4-e77cb8ff618a(SQL.110)�

 433

The following example creates a full-text catalog, production_catalog, in the
AdventureWorks sample database. The example then creates a full-text index that uses this new
catalog. The full-text index is on the on the ReviewerName, EmailAddress, and Comments
columns of the Production.ProductReview table of the AdventureWorks sample database.
For each column, the example specifies the LCID of English, 1033, which is the language of the
data in the columns. This full-text index uses an existing unique key index,
PK_ProductReview_ProductReviewID. As recommended, this index key is on an integer
column, ProductReviewID.

USE AdventureWorks;

GO

CREATE FULLTEXT CATALOG production_catalog;

GO

CREATE FULLTEXT INDEX ON Production.ProductReview

 (

 ReviewerName

 Language 1033,

 EmailAddress

 Language 1033,

 Comments

 Language 1033

)

 KEY INDEX PK_ProductReview_ProductReviewID

 ON production_catalog;

GO

C. Creating a full-text index with a search property list without populating it
The following example creates a full-text index on the Title, DocumentSummary, and Document
columns of the Production.Document table. The example specifies the LCID of English, 1033,
which is the language of the data in the columns. This full-text index uses the default full-text
catalog and an existing unique key index, PK_Document_DocumentID. As recommended, this
index key is on an integer column, DocumentID.
The example specifies the SYSTEM stoplist. It also specifies a search property list,
DocumentPropertyList; for an example that creates this property list, see CREATE SEARCH
PROPERTY LIST (Transact-SQL).
The example specifies that change tracking is off with no population. Later, during off-peak
hours, the example uses an ALTER FULLTEXT INDEX statement to start a full population on the
new index and enable automatic change tracking.

USE AdventureWorks;

 434

GO

CREATE FULLTEXT INDEX ON Production.Document

 (

 Title

 Language 1033,

 DocumentSummary

 Language 1033,

 Document

 TYPE COLUMN FileExtension

 Language 1033

)

 KEY INDEX PK_Document_DocumentID

 WITH STOPLIST = SYSTEM, SEARCH PROPERTY LIST =

DocumentPropertyList, CHANGE_TRACKING OFF, NO POPULATION;

 GO

Later, at an off-peak time, the index is populated:

ALTER FULLTEXT INDEX ON Production.Document SET CHANGE_TRACKING AUTO;

GO

See Also
Create and Manage Full-Text Indexes
ALTER FULLTEXT INDEX
DROP FULLTEXT INDEX
Full-Text Search
GRANT
sys.fulltext_indexes (Transact-SQL)
Using Property Lists to Search for Document Properties

CREATE FULLTEXT STOPLIST
Creates a new full-text stoplist in the current database.
In SQL Server 2008 and later versions, stopwords are managed in databases by using objects
called stoplists. A stoplist is a list of stopwords that, when associated with a full-text index, is
applied to full-text queries on that index. For more information, see Stopwords and Stoplists.

http://msdn.microsoft.com/en-us/library/f8a98486-5438-44a8-b454-9e6ecbc74f83(SQL.110)�
http://msdn.microsoft.com/en-us/library/a0ce315d-f96d-4e5d-b4eb-ff76811cab75(SQL.110)�
http://msdn.microsoft.com/en-us/library/a760c16a-4d2d-43f2-be81-ae9315f38185(SQL.110)�
http://msdn.microsoft.com/en-us/library/7fc10fdc-370f-4927-bba0-b76108a7508e(SQL.110)�
http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�
http://msdn.microsoft.com/en-us/library/43b5ce7b-9f09-4443-8a5b-c3da6eb28bcc(SQL.110)�

 435

CREATE FULLTEXT STOPLIST, ALTER FULLTEXT STOPLIST, and DROP FULLTEXT STOPLIST
are supported only under compatibility level 100. Under compatibility levels 80 and 90,
these statements are not supported. However, under all compatibility levels the system
stoplist is automatically associated with new full-text indexes.

 Transact-SQL Syntax Conventions

Syntax

CREATE FULLTEXT STOPLIST stoplist_name
[FROM { [database_name.]source_stoplist_name } | SYSTEM STOPLIST]
[AUTHORIZATION owner_name]
;

Arguments
stoplist_name

Is the name of the stoplist. stoplist_name can be a maximum of 128 characters. stoplist_name
must be unique among all stoplists in the current database, and conform to the rules for
identifiers.

stoplist_name will be used when the full-text index is created.

database_name

Is the name of the database where the stoplist specified by source_stoplist_name is located. If
not specified, database_name defaults to the current database.

source_stoplist_name

Specifies that the new stoplist is created by copying an existing stoplist. If
source_stoplist_name does not exist, or the database user does not have correct permissions,
CREATE FULLTEXT STOPLIST fails with an error. If any languages specified in the stop words
of the source stoplist are not registered in the current database, CREATE FULLTEXT STOPLIST
succeeds, but warning(s) are returned and the corresponding stop words are not added.

SYSTEM STOPLIST

Specifies that the new stoplist is created from the stoplist that exists by default in the
Resource database.

AUTHORIZATION owner_name

Specifies the name of a database principal to own of the stoplist. owner_name must either be
the name of a principal of which the current user is a member, or the current user must have
IMPERSONATE permission on owner_name. If not specified, ownership is given to the current
user.

Remarks

Important

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/d592b2b4-bc36-4eb9-9385-8fe4dff0dced(SQL.110)�

 436

The creator of a stoplist is its owner.

Permissions
To create a STOPLIST requires CREATE FULLTEXT CATALOG permissions. The stoplist owner can
grant CONTROL permission explicitly on a stoplist to allow users to add and remove words and
to drop the stoplist.

Using a stoplist with a full-text index requires REFERENCE permission.

Examples

A. Creating a new full-text stoplist
The following example creates a new full-text stoplist named myStoplist.

CREATE FULLTEXT STOPLIST myStoplist;

GO

B. Copying a full-text stoplist from an existing full-text stoplist
The following example creates a new full-text stoplist named myStoplist2 by copying an
existing AdventureWorks stoplist named Customers.otherStoplist.

CREATE FULLTEXT STOPLIST myStoplist2 FROM AdventureWorks.otherStoplist;

GO

C. Copying a full-text stoplist from the system full-text stoplist
The following example creates a new full-text stoplist named myStoplist3 by copying from the
system stoplist.

CREATE FULLTEXT STOPLIST myStoplist3 FROM SYSTEM STOPLIST;

GO

See Also
ALTER FULLTEXT STOPLIST (Transact-SQL)
DROP FULLTEXT STOPLIST (Transact-SQL)
Noise Words
sys.fulltext_stoplists (Transact-SQL)
sys.fulltext_stopwords (Transact-SQL)
Configure and Manage Stopwords and Stoplists for Full-Text Search

CREATE FUNCTION
Creates a user-defined function in SQL Server 2012. A user-defined function is a Transact-SQL or
common language runtime (CLR) routine that accepts parameters, performs an action, such as a
complex calculation, and returns the result of that action as a value. The return value can either

Note

http://msdn.microsoft.com/en-us/library/43b5ce7b-9f09-4443-8a5b-c3da6eb28bcc(SQL.110)�
http://msdn.microsoft.com/en-us/library/eb69fb8f-f6d9-446e-83c0-67afd05dfba0(SQL.110)�
http://msdn.microsoft.com/en-us/library/79787bb7-d729-448e-b56a-0a467bbb304f(SQL.110)�
http://msdn.microsoft.com/en-us/library/43b5ce7b-9f09-4443-8a5b-c3da6eb28bcc(SQL.110)�

 437

be a scalar (single) value or a table. Use this statement to create a reusable routine that can be
used in these ways:
• In Transact-SQL statements such as SELECT
• In applications calling the function
• In the definition of another user-defined function
• To parameterize a view or improve the functionality of an indexed view
• To define a column in a table
• To define a CHECK constraint on a column
• To replace a stored procedure

 Transact-SQL Syntax Conventions

Syntax
--Transact-SQL Scalar Function Syntax
CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS][type_schema_name.] parameter_data_type
 [= default] [READONLY] }
 [,...n]
]
)
RETURNS return_data_type
 [WITH <function_option> [,...n]]
 [AS]
 BEGIN
 function_body
 RETURN scalar_expression
 END
[;]
--Transact-SQL Inline Table-Valued Function Syntax
CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS] [type_schema_name.] parameter_data_type
 [= default] [READONLY] }
 [,...n]
]
)
RETURNS TABLE
 [WITH <function_option> [,...n]]

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 438

 [AS]
 RETURN [(] select_stmt [)]
[;]

--Transact-SQL Multistatement Table-valued Function Syntax
CREATE FUNCTION [schema_name.] function_name
([{ @parameter_name [AS] [type_schema_name.] parameter_data_type
 [= default] [READONLY] }
 [,...n]
]
)
RETURNS @return_variable TABLE <table_type_definition>
 [WITH <function_option> [,...n]]
 [AS]
 BEGIN
 function_body
 RETURN
 END
[;]

--Transact-SQL Function Clauses
<function_option>::=
{
 [ENCRYPTION]
 | [SCHEMABINDING]
 | [RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]
 | [EXECUTE_AS_Clause]
}

<table_type_definition>:: =
({ <column_definition> <column_constraint>
 | <computed_column_definition> }
 [<table_constraint>] [,...n]
)

 439

<column_definition>::=
{
 { column_name data_type }
 [[DEFAULT constant_expression]
 [COLLATE collation_name] | [ROWGUIDCOL]
]
 | [IDENTITY [(seed , increment)]]
 [<column_constraint> [...n]]
}

<column_constraint>::=
{
 [NULL | NOT NULL]
 { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 [WITH FILLFACTOR = fillfactor
 | WITH (< index_option > [, ...n])
 [ON { filegroup | "default" }]
 | [CHECK (logical_expression)] [,...n]
}

<computed_column_definition>::=
column_name AS computed_column_expression

<table_constraint>::=
{
 { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 (column_name [ASC | DESC] [,...n])
 [WITH FILLFACTOR = fillfactor
 | WITH (<index_option> [, ...n])
 | [CHECK (logical_expression)] [,...n]
}

<index_option>::=

 440

{
 PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | IGNORE_DUP_KEY = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS ={ ON | OFF }
}
--CLR Scalar Function Syntax
CREATE FUNCTION [schema_name.] function_name
({ @parameter_name [AS] [type_schema_name.] parameter_data_type
 [= default] }
 [,...n]
)
RETURNS { return_data_type }
 [WITH <clr_function_option> [,...n]]
 [AS] EXTERNAL NAME <method_specifier>
[;]
--CLR Table-Valued Function Syntax
CREATE FUNCTION [schema_name.] function_name
({ @parameter_name [AS] [type_schema_name.] parameter_data_type
 [= default] }
 [,...n]
)
RETURNS TABLE <clr_table_type_definition>
 [WITH <clr_function_option> [,...n]]
 [ORDER (<order_clause>)]
 [AS] EXTERNAL NAME <method_specifier>
[;]
--CLR Function Clauses
<order_clause> ::=
{
 <column_name_in_clr_table_type_definition>
 [ASC | DESC]
} [,...n]

 441

<method_specifier>::=
 assembly_name.class_name.method_name

<clr_function_option>::=
}
 [RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT]
 | [EXECUTE_AS_Clause]
}

<clr_table_type_definition>::=
({ column_name data_type } [,...n])

Arguments
schema_name

Is the name of the schema to which the user-defined function belongs.

function_name

Is the name of the user-defined function. Function names must comply with the rules for
identifiers and must be unique within the database and to its schema.

Note
Parentheses are required after the function name even if a parameter is not specified.

@parameter_name

Is a parameter in the user-defined function. One or more parameters can be declared.

A function can have a maximum of 2,100 parameters. The value of each declared parameter
must be supplied by the user when the function is executed, unless a default for the
parameter is defined.

Specify a parameter name by using an at sign (@) as the first character. The parameter name
must comply with the rules for identifiers. Parameters are local to the function; the same
parameter names can be used in other functions. Parameters can take the place only of
constants; they cannot be used instead of table names, column names, or the names of other
database objects.

Note
ANSI_WARNINGS is not honored when you pass parameters in a stored procedure, user-defined
function, or when you declare and set variables in a batch statement. For example, if a variable is
defined as char(3), and then set to a value larger than three characters, the data is truncated to the
defined size and the INSERT or UPDATE statement succeeds.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 442

[type_schema_name.] parameter_data_type

Is the parameter data type, and optionally the schema to which it belongs. For Transact-SQL
functions, all data types, including CLR user-defined types and user-defined table types, are
allowed except the timestamp data type. For CLR functions, all data types, including CLR
user-defined types, are allowed except text, ntext, image, user-defined table types and
timestamp data types. The nonscalar types, cursor and table, cannot be specified as a
parameter data type in either Transact-SQL or CLR functions.

If type_schema_name is not specified, the Database Engine looks for the
scalar_parameter_data_type in the following order:

• The schema that contains the names of SQL Server system data types.

• The default schema of the current user in the current database.

• The dbo schema in the current database.

[= default]

Is a default value for the parameter. If a default value is defined, the function can be executed
without specifying a value for that parameter.

Note
Default parameter values can be specified for CLR functions except for the varchar(max) and
varbinary(max) data types.

When a parameter of the function has a default value, the keyword DEFAULT must be
specified when the function is called to retrieve the default value. This behavior is different
from using parameters with default values in stored procedures in which omitting the
parameter also implies the default value. However, the DEFAULT keyword is not required
when invoking a scalar function by using the EXECUTE statement.

READONLY

Indicates that the parameter cannot be updated or modified within the definition of the
function. If the parameter type is a user-defined table type, READONLY should be specified.

return_data_type

Is the return value of a scalar user-defined function. For Transact-SQL functions, all data
types, including CLR user-defined types, are allowed except the timestamp data type. For
CLR functions, all data types, including CLR user-defined types, are allowed except the text,
ntext, image, and timestamp data types. The nonscalar types, cursor and table, cannot be
specified as a return data type in either Transact-SQL or CLR functions.

function_body

Specifies that a series of Transact-SQL statements, which together do not produce a side
effect such as modifying a table, define the value of the function. function_body is used only
in scalar functions and multistatement table-valued functions.

In scalar functions, function_body is a series of Transact-SQL statements that together
evaluate to a scalar value.

 443

In multistatement table-valued functions, function_body is a series of Transact-SQL
statements that populate a TABLE return variable.

scalar_expression

Specifies the scalar value that the scalar function returns.

TABLE

Specifies that the return value of the table-valued function is a table. Only constants and
@local_variables can be passed to table-valued functions.

In inline table-valued functions, the TABLE return value is defined through a single SELECT
statement. Inline functions do not have associated return variables.

In multistatement table-valued functions, @return_variable is a TABLE variable, used to store
and accumulate the rows that should be returned as the value of the function.
@return_variable can be specified only for Transact-SQL functions and not for CLR functions.

Warning
Joining to a multistatement table valued function in a FROM clause is possible, but can give poor
performance. SQL Server is unable to use all the optimized techniques against some statements that
can be included in a multistatement function, resulting in a suboptimal query plan. To obtain the best
possible performance, whenever possible use joins between base tables instead of functions.

select_stmt

Is the single SELECT statement that defines the return value of an inline table-valued
function.

ORDER (<order_clause>)

Specifies the order in which results are being returned from the table-valued function. For
more information, see the section, "Guidance on Using Sort Order," later in this topic.

EXTERNAL NAME <method_specifier> assembly_name.class_name.method_name

Specifies the method of an assembly to bind with the function. assembly_name must match
an existing assembly in SQL Server in the current database with visibility on. class_name must
be a valid SQL Server identifier and must exist as a class in the assembly. If the class has a
namespace-qualified name that uses a period (.) to separate namespace parts, the class name
must be delimited by using brackets ([]) or quotation marks (" "). method_name must be a
valid SQL Server identifier and must exist as a static method in the specified class.

Note
By default, SQL Server cannot execute CLR code. You can create, modify, and drop database objects
that reference common language runtime modules; however, you cannot execute these references in
SQL Server until you enable the clr enabled option. To enable this option, use sp_configure.

Note
This option is not available in a contained database.

http://msdn.microsoft.com/en-us/library/0722d382-8fd3-4fac-b4a8-cd2b7a7e0293(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�

 444

<table_type_definition> ({ <column_definition> <column_constraint> |
<computed_column_definition> } [<table_constraint>] [,...n])

Defines the table data type for a Transact-SQL function. The table declaration includes
column definitions and column or table constraints. The table is always put in the primary
filegroup.

< clr_table_type_definition > ({ column_name data_type } [,...n])

Defines the table data types for a CLR function. The table declaration includes only column
names and data types. The table is always put in the primary filegroup.

<function_option>::= and <clr_function_option>::=
Specifies that the function will have one or more of the following options.
ENCRYPTION

Indicates that the Database Engine will convert the original text of the CREATE FUNCTION
statement to an obfuscated format. The output of the obfuscation is not directly visible in any
catalog views. Users that have no access to system tables or database files cannot retrieve the
obfuscated text. However, the text will be available to privileged users that can either access
system tables over the DAC port or directly access database files. Also, users that can
attach a debugger to the server process can retrieve the original procedure from memory at
runtime. For more information about accessing system metadata, see CLR User-Defined
Functions.

Using this option prevents the function from being published as part of SQL Server
replication. This option cannot be specified for CLR functions.

SCHEMABINDING

Specifies that the function is bound to the database objects that it references. When
SCHEMABINDING is specified, the base objects cannot be modified in a way that would affect
the function definition. The function definition itself must first be modified or dropped to
remove dependencies on the object that is to be modified.

The binding of the function to the objects it references is removed only when one of the
following actions occurs:

• The function is dropped.

• The function is modified by using the ALTER statement with the SCHEMABINDING
option not specified.

A function can be schema bound only if the following conditions are true:

• The function is a Transact-SQL function.

• The user-defined functions and views referenced by the function are also schema-
bound.

• The objects referenced by the function are referenced using a two-part name.

• The function and the objects it references belong to the same database.

• The user who executed the CREATE FUNCTION statement has REFERENCES permission

http://msdn.microsoft.com/en-us/library/993e0820-17f2-4c43-880c-d38290bf7abc(SQL.110)�
http://msdn.microsoft.com/en-us/library/50d2e015-05ae-4014-a1cd-4de7866ad651(SQL.110)�
http://msdn.microsoft.com/en-us/library/50d2e015-05ae-4014-a1cd-4de7866ad651(SQL.110)�

 445

on the database objects that the function references.

RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT

Specifies the OnNULLCall attribute of a scalar-valued function. If not specified, CALLED ON
NULL INPUT is implied by default. This means that the function body executes even if NULL is
passed as an argument.

If RETURNS NULL ON NULL INPUT is specified in a CLR function, it indicates that SQL Server
can return NULL when any of the arguments it receives is NULL, without actually invoking the
body of the function. If the method of a CLR function specified in <method_specifier>
already has a custom attribute that indicates RETURNS NULL ON NULL INPUT, but the
CREATE FUNCTION statement indicates CALLED ON NULL INPUT, the CREATE FUNCTION
statement takes precedence. The OnNULLCall attribute cannot be specified for CLR table-
valued functions.

EXECUTE AS Clause

Specifies the security context under which the user-defined function is executed. Therefore,
you can control which user account SQL Server uses to validate permissions on any database
objects that are referenced by the function.

Note
EXECUTE AS cannot be specified for inline user-defined functions.

For more information, see EXECUTE AS Clause (Transact-SQL).

< column_definition >::=
Defines the table data type. The table declaration includes column definitions and constraints.
For CLR functions, only column_name and data_type can be specified.
column_name

Is the name of a column in the table. Column names must comply with the rules for
identifiers and must be unique in the table. column_name can consist of 1 through 128
characters.

data_type

Specifies the column data type. For Transact-SQL functions, all data types, including CLR
user-defined types, are allowed except timestamp. For CLR functions, all data types,
including CLR user-defined types, are allowed except text, ntext, image, char, varchar,
varchar(max), and timestamp.The nonscalar type cursor cannot be specified as a column
data type in either Transact-SQL or CLR functions.

DEFAULT constant_expression

Specifies the value provided for the column when a value is not explicitly supplied during an
insert. constant_expression is a constant, NULL, or a system function value. DEFAULT
definitions can be applied to any column except those that have the IDENTITY property.
DEFAULT cannot be specified for CLR table-valued functions.

http://msdn.microsoft.com/en-us/library/bd517aa3-f06e-4356-87d8-70de5df4494a(SQL.110)�

 446

COLLATE collation_name

Specifies the collation for the column. If not specified, the column is assigned the default
collation of the database. Collation name can be either a Windows collation name or a SQL
collation name. For a list of and more information about collations, see Windows
Collation Name and SQL Collation Name.

The COLLATE clause can be used to change the collations only of columns of the char,
varchar, nchar, and nvarchar data types.

COLLATE cannot be specified for CLR table-valued functions.

ROWGUIDCOL

Indicates that the new column is a row globally unique identifier column. Only one
uniqueidentifier column per table can be designated as the ROWGUIDCOL column. The
ROWGUIDCOL property can be assigned only to a uniqueidentifier column.

The ROWGUIDCOL property does not enforce uniqueness of the values stored in the column.
It also does not automatically generate values for new rows inserted into the table. To
generate unique values for each column, use the NEWID function on INSERT statements. A
default value can be specified; however, NEWID cannot be specified as the default.

IDENTITY

Indicates that the new column is an identity column. When a new row is added to the table,
SQL Server provides a unique, incremental value for the column. Identity columns are
typically used together with PRIMARY KEY constraints to serve as the unique row identifier
for the table. The IDENTITY property can be assigned to tinyint, smallint, int, bigint,
decimal(p,0), or numeric(p,0) columns. Only one identity column can be created per table.
Bound defaults and DEFAULT constraints cannot be used with an identity column. You must
specify both the seed and increment or neither. If neither is specified, the default is (1,1).

IDENTITY cannot be specified for CLR table-valued functions.

seed

Is the integer value to be assigned to the first row in the table.

increment

Is the integer value to add to the seed value for successive rows in the table.

< column_constraint >::= and < table_constraint>::=
Defines the constraint for a specified column or table. For CLR functions, the only constraint type
allowed is NULL. Named constraints are not allowed.
NULL | NOT NULL

Determines whether null values are allowed in the column. NULL is not strictly a constraint
but can be specified just like NOT NULL. NOT NULL cannot be specified for CLR table-valued
functions.

PRIMARY KEY

Is a constraint that enforces entity integrity for a specified column through a unique index. In

http://msdn.microsoft.com/en-us/library/acceef84-2c68-46e2-a021-be019b7ab14e(SQL.110)�
http://msdn.microsoft.com/en-us/library/acceef84-2c68-46e2-a021-be019b7ab14e(SQL.110)�
http://msdn.microsoft.com/en-us/library/56483d24-add7-483d-9b96-c6fda460ddbc(SQL.110)�

 447

table-valued user-defined functions, the PRIMARY KEY constraint can be created on only one
column per table. PRIMARY KEY cannot be specified for CLR table-valued functions.

UNIQUE

Is a constraint that provides entity integrity for a specified column or columns through a
unique index. A table can have multiple UNIQUE constraints. UNIQUE cannot be specified for
CLR table-valued functions.

CLUSTERED | NONCLUSTERED

Indicate that a clustered or a nonclustered index is created for the PRIMARY KEY or UNIQUE
constraint. PRIMARY KEY constraints use CLUSTERED, and UNIQUE constraints use
NONCLUSTERED.

CLUSTERED can be specified for only one constraint. If CLUSTERED is specified for a UNIQUE
constraint and a PRIMARY KEY constraint is also specified, the PRIMARY KEY uses
NONCLUSTERED.

CLUSTERED and NONCLUSTERED cannot be specified for CLR table-valued functions.

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be
entered into a column or columns. CHECK constraints cannot be specified for CLR table-
valued functions.

logical_expression

Is a logical expression that returns TRUE or FALSE.

<computed_column_definition>::=
Specifies a computed column. For more information about computed columns, see CREATE
TABLE (Transact-SQL).
column_name

Is the name of the computed column.

computed_column_expression

Is an expression that defines the value of a computed column.

<index_option>::=
Specifies the index options for the PRIMARY KEY or UNIQUE index. For more information about
index options, see CREATE INDEX (Transact-SQL).
PAD_INDEX = { ON | OFF }

Specifies index padding. The default is OFF.

FILLFACTOR = fillfactor

Specifies a percentage that indicates how full the Database Engine should make the leaf level
of each index page during index creation or change. fillfactor must be an integer value from
1 to 100. The default is 0.

 448

IGNORE_DUP_KEY = { ON | OFF }

Specifies the error response when an insert operation attempts to insert duplicate key values
into a unique index. The IGNORE_DUP_KEY option applies only to insert operations after the
index is created or rebuilt. The default is OFF.

STATISTICS_NORECOMPUTE = { ON | OFF }

Specifies whether distribution statistics are recomputed. The default is OFF.

ALLOW_ROW_LOCKS = { ON | OFF }

Specifies whether row locks are allowed. The default is ON.

ALLOW_PAGE_LOCKS = { ON | OFF }

Specifies whether page locks are allowed. The default is ON.

Best Practices
If a user-defined function is not created with the SCHEMABINDING clause, changes that are
made to underlying objects can affect the definition of the function and produce unexpected
results when it is invoked. We recommend that you implement one of the following methods to
ensure that the function does not become outdated because of changes to its underlying
objects:
• Specify the WITH SCHEMABINDING clause when you are creating the function. This ensures

that the objects referenced in the function definition cannot be modified unless the function
is also modified.

• Execute the sp_refreshsqlmodule stored procedure after modifying any object that is
specified in the definition of the function.

Data Types
If parameters are specified in a CLR function, they should be SQL Server types as defined
previously for scalar_parameter_data_type. For information about comparing SQL Server system
data types to CLR integration data types or .NET Framework common language runtime data
types, see SQL Data Types and Their .NET Equivalents.
For SQL Server to reference the correct method when it is overloaded in a class, the method
indicated in <method_specifier> must have the following characteristics:
• Receive the same number of parameters as specified in [,...n].
• Receive all the parameters by value, not by reference.
• Use parameter types that are compatible with those specified in the SQL Server function.
If the return data type of the CLR function specifies a table type (RETURNS TABLE), the return
data type of the method in <method_specifier> should be of type IEnumerator or
IEnumerable, and it is assumed that the interface is implemented by the creator of the function.
Unlike Transact-SQL functions, CLR functions cannot include PRIMARY KEY, UNIQUE, or CHECK
constraints in <table_type_definition>. The data types of columns specified in
<table_type_definition> must match the types of the corresponding columns of the result set

http://msdn.microsoft.com/en-us/library/f0022a05-50dd-4620-961d-361b1681d375(SQL.110)�
http://msdn.microsoft.com/en-us/library/89b43ee9-b9ad-4281-a4bf-c7c8d116daa2(SQL.110)�

 449

returned by the method in <method_specifier> at execution time. This type-checking is not
performed at the time the function is created.
For more information about how to program CLR functions, see CLR User-defined Functions.

General Remarks
Scalar-valued functions can be invoked where scalar expressions are used. This includes
computed columns and CHECK constraint definitions. Scalar-valued functions can also be
executed by using the EXECUTE statement. Scalar-valued functions must be invoked by using at
least the two-part name of the function. For more information about multipart names, see
Transact-SQL Syntax Conventions (Transact-SQL). Table-valued functions can be invoked where
table expressions are allowed in the FROM clause of SELECT, INSERT, UPDATE, or DELETE
statements. For more information, see Executing User-Defined Functions (Database Engine).

Interoperability
The following statements are valid in a function:
• Assignment statements.
• Control-of-Flow statements except TRY...CATCH statements.
• DECLARE statements defining local data variables and local cursors.
• SELECT statements that contain select lists with expressions that assign values to local

variables.
• Cursor operations referencing local cursors that are declared, opened, closed, and

deallocated in the function. Only FETCH statements that assign values to local variables
using the INTO clause are allowed; FETCH statements that return data to the client are not
allowed.

• INSERT, UPDATE, and DELETE statements modifying local table variables.
• EXECUTE statements calling extended stored procedures.
• For more information, see Creating User-Defined Functions (Database Engine).

Computed Column Interoperability
In SQL Server 2005 and later, functions have the following properties. The values of these
properties determine whether functions can be used in computed columns that can be persisted
or indexed.

Property Description Notes

IsDeterministic Function is deterministic or
nondeterministic.

Local data access is allowed
in deterministic functions.
For example, functions that
always return the same result
any time they are called by
using a specific set of input

http://msdn.microsoft.com/en-us/library/6f7491f1-9a46-4146-ae09-056248634de2(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc806b71-cc55-470a-913e-c5f761d5c4b7(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/0de7744d-9b73-463f-ae80-e31a020004b5(SQL.110)�
http://msdn.microsoft.com/en-us/library/f0d5dd10-73fd-4e05-9177-07f56552bdf7(SQL.110)�

 450

Property Description Notes

values and with the same
state of the database would
be labeled deterministic.

IsPrecise Function is precise or
imprecise.

Imprecise functions contain
operations such as floating
point operations.

IsSystemVerified The precision and determinism
properties of the function can
be verified by SQL Server.

SystemDataAccess Function accesses system data
(system catalogs or virtual
system tables) in the local
instance of SQL Server.

UserDataAccess Function accesses user data in
the local instance of SQL
Server.

Includes user-defined tables
and temp tables, but not
table variables.

The precision and determinism properties of Transact-SQL functions are determined
automatically by SQL Server. The data access and determinism properties of CLR functions can
be specified by the user. For more information, see Overview of SQL CLR Routine Custom
Attributes.
To display the current values for these properties, use OBJECTPROPERTYEX.
A computed column that invokes a user-defined function can be used in an index when the
user-defined function has the following property values:
• IsDeterministic = true
• IsSystemVerified = true (unless the computed column is persisted)
• UserDataAccess = false
• SystemDataAccess = false
For more information, see Creating Indexes on Computed Columns.

Calling Extended Stored Procedures from Functions
The extended stored procedure, when it is called from inside a function, cannot return result sets
to the client. Any ODS APIs that return result sets to the client will return FAIL. The extended
stored procedure could connect back to an instance of SQL Server; however, it should not try to
join the same transaction as the function that invoked the extended stored procedure.
Similar to invocations from a batch or stored procedure, the extended stored procedure will be
executed in the context of the Windows security account under which SQL Server is running. The

http://msdn.microsoft.com/en-us/library/ecf5c097-0972-48e2-a9c0-b695b7dd2820(SQL.110)�
http://msdn.microsoft.com/en-us/library/ecf5c097-0972-48e2-a9c0-b695b7dd2820(SQL.110)�
http://msdn.microsoft.com/en-us/library/be36b3e3-3309-4332-bfb5-c7e9cf8dc8bd(SQL.110)�
http://msdn.microsoft.com/en-us/library/8d17ac9c-f3af-4bbb-9cc1-5cf647e994c4(SQL.110)�

 451

owner of the stored procedure should consider this when giving EXECUTE permission on it to
users.

Limitations and Restrictions
User-defined functions cannot be used to perform actions that modify the database state.
User-defined functions cannot contain an OUTPUT INTO clause that has a table as its target.
The following Service Broker statements cannot be included in the definition of a Transact-SQL
user-defined function:
• BEGIN DIALOG CONVERSATION
• END CONVERSATION
• GET CONVERSATION GROUP
• MOVE CONVERSATION
• RECEIVE
• SEND
User-defined functions can be nested; that is, one user-defined function can call another. The
nesting level is incremented when the called function starts execution, and decremented when
the called function finishes execution. User-defined functions can be nested up to 32 levels.
Exceeding the maximum levels of nesting causes the whole calling function chain to fail. Any
reference to managed code from a Transact-SQL user-defined function counts as one level
against the 32-level nesting limit. Methods invoked from within managed code do not count
against this limit.

Using Sort Order in CLR Table-valued Functions
When using the ORDER clause in CLR table-valued functions, follow these guidelines:
• You must ensure that results are always ordered in the specified order. If the results are not

in the specified order, SQL Server will generate an error message when the query is
executed.

• If an ORDER clause is specified, the output of the table-valued function must be sorted
according to the collation of the column (explicit or implicit). For example, if the column
collation is Chinese (either specified in the DDL for the table-valued function or obtained
from the database collation), the returned results must be sorted according to Chinese
sorting rules.

• The ORDER clause, if specified, is always verified by SQL Server while returning results,
whether or not it is used by the query processor to perform further optimizations. Only use
the ORDER clause if you know it is useful to the query processor.

• The SQL Server query processor takes advantage of the ORDER clause automatically in
following cases:
• Insert queries where the ORDER clause is compatible with an index.
• ORDER BY clauses that are compatible with the ORDER clause.
• Aggregates, where GROUP BY is compatible with ORDER clause.

 452

• DISTINCT aggregates where the distinct columns are compatible with the ORDER clause.
The ORDER clause does not guarantee ordered results when a SELECT query is executed, unless
ORDER BY is also specified in the query. See sys.function_order_columns (Transact-SQL) for
information on how to query for columns included in the sort-order for table-valued functions.

Metadata
The following table lists the system catalog views that you can use to return metadata about
user-defined functions.

System View Description

sys.sql_modules Displays the definition of Transact-SQL
user-defined functions. For example:
USE AdventureWorks2012;

GO

SELECT definition, type

FROM sys.sql_modules AS m

JOIN sys.objects AS o ON
m.object_id = o.object_id

 AND type IN ('FN', 'IF', 'TF');

GO

The definition of functions created by using
the ENCRYPTION option cannot be viewed
by using sys.sql_modules; however, other
information about the encrypted functions
is displayed.

sys.assembly_modules Displays information about CLR user-
defined functions.

sys.parameters Displays information about the parameters
defined in user-defined functions.

sys.sql_expression_dependencies Displays the underlying objects referenced
by a function.

Permissions
Requires CREATE FUNCTION permission in the database and ALTER permission on the schema
in which the function is being created. If the function specifies a user-defined type, requires
EXECUTE permission on the type.

Examples

http://msdn.microsoft.com/en-us/library/29287973-3125-4d35-8ca9-92cb45828854(SQL.110)�
http://msdn.microsoft.com/en-us/library/23d3ccd2-f356-4d89-a2cd-bee381243f99(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f9e644e-8065-49a2-b53d-db7df98f70d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/24e2764b-c8e5-4322-97a4-7407d8b8a92b(SQL.110)�
http://msdn.microsoft.com/en-us/library/78a218e4-bf99-4a6a-acbf-ff82425a5946(SQL.110)�

 453

A. Using a scalar-valued user-defined function that calculates the ISO week
The following example creates the user-defined function ISOweek. This function takes a date
argument and calculates the ISO week number. For this function to calculate correctly, SET
DATEFIRST 1 must be invoked before the function is called.
The example also shows using the EXECUTE AS clause to specify the security context in which a
stored procedure can be executed. In the example, the option CALLER specifies that the
procedure will be executed in the context of the user that calls it. The other options that you can
specify are SELF, OWNER, and user_name.
Here is the function call. Notice that DATEFIRST is set to 1.
USE AdventureWorks2012;

GO

IF OBJECT_ID (N'dbo.ISOweek', N'FN') IS NOT NULL

 DROP FUNCTION dbo.ISOweek;

GO

CREATE FUNCTION dbo.ISOweek (@DATE datetime)

RETURNS int

WITH EXECUTE AS CALLER

AS

BEGIN

 DECLARE @ISOweek int;

 SET @ISOweek= DATEPART(wk,@DATE)+1

 -DATEPART(wk,CAST(DATEPART(yy,@DATE) as CHAR(4))+'0104');

--Special cases: Jan 1-3 may belong to the previous year

 IF (@ISOweek=0)

 SET @ISOweek=dbo.ISOweek(CAST(DATEPART(yy,@DATE)-1

 AS CHAR(4))+'12'+ CAST(24+DATEPART(DAY,@DATE) AS CHAR(2)))+1;

--Special case: Dec 29-31 may belong to the next year

 IF ((DATEPART(mm,@DATE)=12) AND

 ((DATEPART(dd,@DATE)-DATEPART(dw,@DATE))>= 28))

 SET @ISOweek=1;

 RETURN(@ISOweek);

END;

GO

SET DATEFIRST 1;

SELECT dbo.ISOweek(CONVERT(DATETIME,'12/26/2004',101)) AS 'ISO Week';

Here is the result set.

http://msdn.microsoft.com/en-us/library/bd517aa3-f06e-4356-87d8-70de5df4494a(SQL.110)�

 454

ISO Week

52

B. Creating an inline table-valued function
The following example returns an inline table-valued function. It returns three columns
ProductID, Name and the aggregate of year-to-date totals by store as YTD Total for each
product sold to the store.
USE AdventureWorks2012;

GO

IF OBJECT_ID (N'Sales.ufn_SalesByStore', N'IF') IS NOT NULL

 DROP FUNCTION Sales.ufn_SalesByStore;

GO

CREATE FUNCTION Sales.ufn_SalesByStore (@storeid int)

RETURNS TABLE

AS

RETURN

(

 SELECT P.ProductID, P.Name, SUM(SD.LineTotal) AS 'Total'

 FROM Production.Product AS P

 JOIN Sales.SalesOrderDetail AS SD ON SD.ProductID = P.ProductID

 JOIN Sales.SalesOrderHeader AS SH ON SH.SalesOrderID = SD.SalesOrderID

 JOIN Sales.Customer AS C ON SH.CustomerID = C.CustomerID

 WHERE C.StoreID = @storeid

 GROUP BY P.ProductID, P.Name

);

GO

To invoke the function, run this query.
SELECT * FROM Sales.ufn_SalesByStore (602);

C. Creating a multi-statement table-valued function
The following example creates the table-valued function fn_FindReports(InEmpID). When
supplied with a valid employee ID, the function returns a table that corresponds to all the
employees that report to the employee either directly or indirectly. The function uses a recursive
common table expression (CTE) to produce the hierarchical list of employees. For more
information about recursive CTEs, see WITH common_table_expression (Transact-SQL).
USE AdventureWorks2012;

GO

http://msdn.microsoft.com/en-us/library/27cfb819-3e8d-4274-8bbe-cbbe4d9c2e23(SQL.110)�

 455

IF OBJECT_ID (N'dbo.ufn_FindReports', N'TF') IS NOT NULL

 DROP FUNCTION dbo.ufn_FindReports;

GO

CREATE FUNCTION dbo.ufn_FindReports (@InEmpID INTEGER)

RETURNS @retFindReports TABLE

(

 EmployeeID int primary key NOT NULL,

 FirstName nvarchar(255) NOT NULL,

 LastName nvarchar(255) NOT NULL,

 JobTitle nvarchar(50) NOT NULL,

 RecursionLevel int NOT NULL

)

--Returns a result set that lists all the employees who report to the

--specific employee directly or indirectly.*/

AS

BEGIN

WITH EMP_cte(EmployeeID, OrganizationNode, FirstName, LastName, JobTitle,
RecursionLevel) -- CTE name and columns

 AS (

 SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName,
p.LastName, e.JobTitle, 0 -- Get the initial list of Employees for Manager n

 FROM HumanResources.Employee e

 INNER JOIN Person.Person p

 ON p.BusinessEntityID = e.BusinessEntityID

 WHERE e.BusinessEntityID = @InEmpID

 UNION ALL

 SELECT e.BusinessEntityID, e.OrganizationNode, p.FirstName,
p.LastName, e.JobTitle, RecursionLevel + 1 -- Join recursive member to anchor

 FROM HumanResources.Employee e

 INNER JOIN EMP_cte

 ON e.OrganizationNode.GetAncestor(1) = EMP_cte.OrganizationNode

 INNER JOIN Person.Person p

 ON p.BusinessEntityID = e.BusinessEntityID

)

-- copy the required columns to the result of the function

 INSERT @retFindReports

 456

 SELECT EmployeeID, FirstName, LastName, JobTitle, RecursionLevel

 FROM EMP_cte

 RETURN

END;

GO

-- Example invocation

SELECT EmployeeID, FirstName, LastName, JobTitle, RecursionLevel

FROM dbo.ufn_FindReports(1);

GO

D. Creating a CLR function
The example creates CLR function len_s. Before the function is created, the assembly
SurrogateStringFunction.dll is registered in the local database.

DECLARE @SamplesPath nvarchar(1024);

-- You may have to modify the value of this variable if you have

-- installed the sample in a location other than the default location.

SELECT @SamplesPath = REPLACE(physical_name, 'Microsoft SQL

Server\MSSQL11.MSSQLSERVER\MSSQL\DATA\master.mdf', 'Microsoft SQL

Server\100\Samples\Engine\Programmability\CLR\')

 FROM master.sys.database_files

 WHERE name = 'master';

CREATE ASSEMBLY [SurrogateStringFunction]

FROM @SamplesPath +

'StringManipulate\CS\StringManipulate\bin\debug\SurrogateStringFunction.dll'

WITH PERMISSION_SET = EXTERNAL_ACCESS;

GO

CREATE FUNCTION [dbo].[len_s] (@str nvarchar(4000))

RETURNS bigint

AS EXTERNAL NAME

[SurrogateStringFunction].[Microsoft.Samples.SqlServer.SurrogateStringFunctio

n].[LenS];

GO

For an example of how to create a CLR table-valued function, see CLR Table-Valued Functions.

http://msdn.microsoft.com/en-us/library/9a6133ea-36e9-45bf-b572-1c0df3d6c194(SQL.110)�

 457

See Also
ALTER FUNCTION
DROP FUNCTION
OBJECTPROPERTYEX
sys.sql_modules (Transact-SQL)
sys.assembly_modules
EXECUTE (Transact-SQL)
CLR User-Defined Functions
EVENTDATA (Transact-SQL)

CREATE INDEX
Creates a relational index on a specified table or view on a specified table. An index can be
created before there is data in the table. Relational indexes can be created on tables or views in
another database by specifying a qualified database name.

 For information about how to create an XML index, see CREATE XML INDEX (Transact-
SQL). For information about how to create a spatial index, see CREATE SPATIAL INDEX
(Transact-SQL). For information about how to create an xVelocity memory optimized
columnstore index, see CREATE COLUMNSTORE INDEX (Transact-SQL).

 Transact-SQL Syntax Conventions

Syntax
CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
 ON <object> (column [ASC | DESC] [,...n])
 [INCLUDE (column_name [,...n])]
 [WHERE <filter_predicate>]
 [WITH (<relational_index_option> [,...n])]
 [ON { partition_scheme_name (column_name)
 | filegroup_name
 | default
 }
]
 [FILESTREAM_ON { filestream_filegroup_name | partition_scheme_name | "NULL" }]

[;]

Note

http://msdn.microsoft.com/en-us/library/be36b3e3-3309-4332-bfb5-c7e9cf8dc8bd(SQL.110)�
http://msdn.microsoft.com/en-us/library/23d3ccd2-f356-4d89-a2cd-bee381243f99(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f9e644e-8065-49a2-b53d-db7df98f70d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc806b71-cc55-470a-913e-c5f761d5c4b7(SQL.110)�
http://msdn.microsoft.com/en-us/library/6f7491f1-9a46-4146-ae09-056248634de2(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 458

<object> ::=
{
 [database_name. [schema_name] . | schema_name.]
 table_or_view_name
}

<relational_index_option> ::=
{
 PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | SORT_IN_TEMPDB = { ON | OFF }
 | IGNORE_DUP_KEY = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | DROP_EXISTING = { ON | OFF }
 | ONLINE = { ON | OFF }
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 | DATA_COMPRESSION = { NONE | ROW | PAGE}
 [ON PARTITIONS ({ <partition_number_expression> | <range> }
 [, ...n])]
}

<filter_predicate> ::=
 <conjunct> [AND <conjunct>]

<conjunct> ::=
 <disjunct> | <comparison>

<disjunct> ::=
 column_name IN (constant ,...n)

<comparison> ::=
 column_name <comparison_op> constant

 459

<comparison_op> ::=
 { IS | IS NOT | = | <> | != | > | >= | !> | < | <= | !< }

<range> ::=
<partition_number_expression> TO <partition_number_expression>

Backward Compatible Relational Index
Important The backward compatible relational index syntax structure will be removed in a
future version of SQL Server. Avoid using this syntax structure in new development work, and
plan to modify applications that currently use the feature. Use the syntax structure specified in
<relational_index_option> instead.

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
 ON <object> (column_name [ASC | DESC] [,...n])
 [WITH <backward_compatible_index_option> [,...n]]
 [ON { filegroup_name | "default" }]

<object> ::=
{
 [database_name. [owner_name] . | owner_name.]
 table_or_view_name
}

<backward_compatible_index_option> ::=
{
 PAD_INDEX
 | FILLFACTOR = fillfactor
 | SORT_IN_TEMPDB
 | IGNORE_DUP_KEY
 | STATISTICS_NORECOMPUTE
 | DROP_EXISTING
}

Arguments
UNIQUE

Creates a unique index on a table or view. A unique index is one in which no two rows are

 460

permitted to have the same index key value. A clustered index on a view must be unique.

The Database Engine does not allow creating a unique index on columns that already include
duplicate values, whether or not IGNORE_DUP_KEY is set to ON. If this is tried, the Database
Engine displays an error message. Duplicate values must be removed before a unique index
can be created on the column or columns. Columns that are used in a unique index should
be set to NOT NULL, because multiple null values are considered duplicates when a unique
index is created.

CLUSTERED

Creates an index in which the logical order of the key values determines the physical order of
the corresponding rows in a table. The bottom, or leaf, level of the clustered index contains
the actual data rows of the table. A table or view is allowed one clustered index at a time.

A view with a unique clustered index is called an indexed view. Creating a unique clustered
index on a view physically materializes the view. A unique clustered index must be created on
a view before any other indexes can be defined on the same view. For more information, see
Create Indexed Views.

Create the clustered index before creating any nonclustered indexes. Existing nonclustered
indexes on tables are rebuilt when a clustered index is created.

If CLUSTERED is not specified, a nonclustered index is created.

Note
Because the leaf level of a clustered index and the data pages are the same by definition, creating a
clustered index and using the ON partition_scheme_name or ON filegroup_name clause effectively
moves a table from the filegroup on which the table was created to the new partition scheme or
filegroup. Before creating tables or indexes on specific filegroups, verify which filegroups are available
and that they have enough empty space for the index.

In some cases creating a clustered index can enable previously disabled indexes. For more
information, see Enable Indexes and Constraints and Disable Indexes and
Constraints.

NONCLUSTERED

Creates an index that specifies the logical ordering of a table. With a nonclustered index, the
physical order of the data rows is independent of their indexed order.

Each table can have up to 999 nonclustered indexes, regardless of how the indexes are
created: either implicitly with PRIMARY KEY and UNIQUE constraints, or explicitly with
CREATE INDEX.

For indexed views, nonclustered indexes can be created only on a view that has a unique
clustered index already defined.

The default is NONCLUSTERED.

index_name

Is the name of the index. Index names must be unique within a table or view but do not have

http://msdn.microsoft.com/en-us/library/f86dd29f-52dd-44a9-91ac-1eb305c1ca8d(SQL.110)�
http://msdn.microsoft.com/en-us/library/c55c8865-322e-4ab0-ba04-ea1f56735353(SQL.110)�
http://msdn.microsoft.com/en-us/library/2198f1af-fa44-47e9-92df-f4fde322ba18(SQL.110)�
http://msdn.microsoft.com/en-us/library/2198f1af-fa44-47e9-92df-f4fde322ba18(SQL.110)�

 461

to be unique within a database. Index names must follow the rules of identifiers.

column

Is the column or columns on which the index is based. Specify two or more column names to
create a composite index on the combined values in the specified columns. List the columns
to be included in the composite index, in sort-priority order, inside the parentheses after
table_or_view_name.

Up to 16 columns can be combined into a single composite index key. All the columns in a
composite index key must be in the same table or view. The maximum allowable size of the
combined index values is 900 bytes.

Columns that are of the large object (LOB) data types ntext, text, varchar(max),
nvarchar(max), varbinary(max), xml, or image cannot be specified as key columns for an
index. Also, a view definition cannot include ntext, text, or image columns, even if they are
not referenced in the CREATE INDEX statement.

You can create indexes on CLR user-defined type columns if the type supports binary
ordering. You can also create indexes on computed columns that are defined as method
invocations off a user-defined type column, as long as the methods are marked deterministic
and do not perform data access operations. For more information about indexing CLR user-
defined type columns, see CLR User-defined Types.

[ASC | DESC]

Determines the ascending or descending sort direction for the particular index column. The
default is ASC.

INCLUDE (column [,... n])

Specifies the non-key columns to be added to the leaf level of the nonclustered index. The
nonclustered index can be unique or non-unique.

Column names cannot be repeated in the INCLUDE list and cannot be used simultaneously as
both key and non-key columns. Nonclustered indexes always contain the clustered index
columns if a clustered index is defined on the table. For more information, see Index with
Included Columns.

All data types are allowed except text, ntext, and image. The index must be created or
rebuilt offline (ONLINE = OFF) if any one of the specified non-key columns are varchar(max),
nvarchar(max), or varbinary(max) data types.

Computed columns that are deterministic and either precise or imprecise can be included
columns. Computed columns derived from image, ntext, text, varchar(max),
nvarchar(max), varbinary(max), and xml data types can be included in non-key columns as
long as the computed column data types is allowable as an included column. For more
information, see Creating Indexes on Computed Columns.

For information on creating an XML index, see CREATE XML INDEX (Transact-SQL).

WHERE <filter_predicate>

Creates a filtered index by specifying which rows to include in the index. The filtered index

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�
http://msdn.microsoft.com/en-us/library/27c4889b-c543-47a8-a630-ad06804f92df(SQL.110)�
http://msdn.microsoft.com/en-us/library/d198648d-fea5-416d-9f30-f9d4aebbf4ec(SQL.110)�
http://msdn.microsoft.com/en-us/library/d198648d-fea5-416d-9f30-f9d4aebbf4ec(SQL.110)�
http://msdn.microsoft.com/en-us/library/8d17ac9c-f3af-4bbb-9cc1-5cf647e994c4(SQL.110)�

 462

must be a nonclustered index on a table. Creates filtered statistics for the data rows in the
filtered index.

The filter predicate uses simple comparison logic and cannot reference a computed column,
a UDT column, a spatial data type column, or a hierarchyID data type column. Comparisons
using NULL literals are not allowed with the comparison operators. Use the IS NULL and IS
NOT NULL operators instead.

Here are some examples of filter predicates for the Production.BillOfMaterials
table:

WHERE StartDate > '20000101' AND EndDate <= '20000630'

WHERE ComponentID IN (533, 324, 753)

WHERE StartDate IN ('20000404', '20000905') AND EndDate IS
NOT NULL

Filtered indexes do not apply to XML indexes and full-text indexes. For UNIQUE indexes, only
the selected rows must have unique index values. Filtered indexes do not allow the
IGNORE_DUP_KEY option.

ON partition_scheme_name (column_name)

Specifies the partition scheme that defines the filegroups onto which the partitions of a
partitioned index will be mapped. The partition scheme must exist within the database by
executing either CREATE PARTITION SCHEME or ALTER PARTITION SCHEME.
column_name specifies the column against which a partitioned index will be partitioned. This
column must match the data type, length, and precision of the argument of the partition
function that partition_scheme_name is using. column_name is not restricted to the columns
in the index definition. Any column in the base table can be specified, except when
partitioning a UNIQUE index, column_name must be chosen from among those used as the
unique key. This restriction allows the Database Engine to verify uniqueness of key values
within a single partition only.

Note
When you partition a non-unique, clustered index, the Database Engine by default adds the
partitioning column to the list of clustered index keys, if it is not already specified. When partitioning a
non-unique, nonclustered index, the Database Engine adds the partitioning column as a non-key
(included) column of the index, if it is not already specified.

If partition_scheme_name or filegroup is not specified and the table is partitioned, the index
is placed in the same partition scheme, using the same partitioning column, as the underlying
table.

Note
You cannot specify a partitioning scheme on an XML index. If the base table is partitioned, the XML
index uses the same partition scheme as the table.

For more information about partitioning indexes, Partitioned Tables and Indexes.

http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�

 463

ON filegroup_name

Creates the specified index on the specified filegroup. If no location is specified and the table
or view is not partitioned, the index uses the same filegroup as the underlying table or view.
The filegroup must already exist.

ON "default"

Creates the specified index on the default filegroup.

The term default, in this context, is not a keyword. It is an identifier for the default filegroup
and must be delimited, as in ON "default" or ON [default]. If "default" is specified, the
QUOTED_IDENTIFIER option must be ON for the current session. This is the default setting.
For more information, see SET QUOTED_IDENTIFIER (Transact-SQL).

[FILESTREAM_ON { filestream_filegroup_name | partition_scheme_name | "NULL" }]

Specifies the placement of FILESTREAM data for the table when a clustered index is created.
The FILESTREAM_ON clause allows FILESTREAM data to be moved to a different FILESTREAM
filegroup or partition scheme.

filestream_filegroup_name is the name of a FILESTREAM filegroup. The filegroup must have
one file defined for the filegroup by using a CREATE DATABASE or ALTER DATABASE
statement; otherwise, an error is raised.

If the table is partitioned, the FILESTREAM_ON clause must be included and must specify a
partition scheme of FILESTREAM filegroups that uses the same partition function and
partition columns as the partition scheme for the table. Otherwise, an error is raised.

If the table is not partitioned, the FILESTREAM column cannot be partitioned. FILESTREAM
data for the table must be stored in a single filegroup that is specified in the FILESTREAM_ON
clause.

FILESTREAM_ON NULL can be specified in a CREATE INDEX statement if a clustered index is
being created and the table does not contain a FILESTREAM column.

For more information, see FILESTREAM (SQL Server).

<object>::=
Is the fully qualified or nonfully qualified object to be indexed.
database_name

Is the name of the database.

schema_name

Is the name of the schema to which the table or view belongs.

table_or_view_name

Is the name of the table or view to be indexed.

The view must be defined with SCHEMABINDING to create an index on it. A unique clustered
index must be created on a view before any nonclustered index is created. For more
information about indexed views, see the Remarks section.

http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�
http://msdn.microsoft.com/en-us/library/9a5a8166-bcbe-4680-916c-26276253eafa(SQL.110)�

 464

<relational_index_option>::=
Specifies the options to use when you create the index.
PAD_INDEX = { ON | OFF }

Specifies index padding. The default is OFF.

ON

The percentage of free space that is specified by fillfactor is applied to the intermediate-
level pages of the index.

OFF or fillfactor is not specified

The intermediate-level pages are filled to near capacity, leaving sufficient space for at least
one row of the maximum size the index can have, considering the set of keys on the
intermediate pages.

The PAD_INDEX option is useful only when FILLFACTOR is specified, because PAD_INDEX
uses the percentage specified by FILLFACTOR. If the percentage specified for FILLFACTOR is
not large enough to allow for one row, the Database Engine internally overrides the
percentage to allow for the minimum. The number of rows on an intermediate index page is
never less than two, regardless of how low the value of fillfactor.

In backward compatible syntax, WITH PAD_INDEX is equivalent to WITH PAD_INDEX = ON.

FILLFACTOR = fillfactor

Specifies a percentage that indicates how full the Database Engine should make the leaf level
of each index page during index creation or rebuild. fillfactor must be an integer value from 1
to 100. If fillfactor is 100, the Database Engine creates indexes with leaf pages filled to
capacity.

The FILLFACTOR setting applies only when the index is created or rebuilt. The Database
Engine does not dynamically keep the specified percentage of empty space in the pages. To
view the fill factor setting, use the sys.indexes catalog view.

Important
Creating a clustered index with a FILLFACTOR less than 100 affects the amount of storage space the
data occupies because the Database Engine redistributes the data when it creates the clustered index.

For more information, see Fill Factor.

SORT_IN_TEMPDB = { ON | OFF }

Specifies whether to store temporary sort results in tempdb. The default is OFF.

ON

The intermediate sort results that are used to build the index are stored in tempdb. This
may reduce the time required to create an index if tempdb is on a different set of disks
than the user database. However, this increases the amount of disk space that is used
during the index build.

OFF

http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/237a577e-b42b-4adb-90cf-aa7fb174f3ab(SQL.110)�

 465

The intermediate sort results are stored in the same database as the index.

In addition to the space required in the user database to create the index, tempdb must have
about the same amount of additional space to hold the intermediate sort results. For more
information, see tempdb and Index Creation.

In backward compatible syntax, WITH SORT_IN_TEMPDB is equivalent to WITH
SORT_IN_TEMPDB = ON.

IGNORE_DUP_KEY = { ON | OFF }

Specifies the error response when an insert operation attempts to insert duplicate key values
into a unique index. The IGNORE_DUP_KEY option applies only to insert operations after the
index is created or rebuilt. The option has no effect when executing CREATE INDEX,
ALTER INDEX, or UPDATE. The default is OFF.

ON

A warning message will occur when duplicate key values are inserted into a unique index.
Only the rows violating the uniqueness constraint will fail.

OFF

An error message will occur when duplicate key values are inserted into a unique index.
The entire INSERT operation will be rolled back.

IGNORE_DUP_KEY cannot be set to ON for indexes created on a view, non-unique indexes,
XML indexes, spatial indexes, and filtered indexes.

To view IGNORE_DUP_KEY, use sys.indexes.

In backward compatible syntax, WITH IGNORE_DUP_KEY is equivalent to WITH
IGNORE_DUP_KEY = ON.

STATISTICS_NORECOMPUTE = { ON | OFF }

Specifies whether distribution statistics are recomputed. The default is OFF.

ON

Out-of-date statistics are not automatically recomputed.

OFF

Automatic statistics updating are enabled.

To restore automatic statistics updating, set the STATISTICS_NORECOMPUTE to OFF, or
execute UPDATE STATISTICS without the NORECOMPUTE clause.

Important
Disabling automatic recomputation of distribution statistics may prevent the query optimizer from
picking optimal execution plans for queries involving the table.

In backward compatible syntax, WITH STATISTICS_NORECOMPUTE is equivalent to WITH
STATISTICS_NORECOMPUTE = ON.

http://msdn.microsoft.com/en-us/library/754a003f-fe51-4d10-975a-f6b8c04ebd35(SQL.110)�
http://msdn.microsoft.com/en-us/library/40e63302-0c68-4593-af3e-6d190181fee7(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�

 466

DROP_EXISTING = { ON | OFF }

Specifies that the named, preexisting clustered, or nonclustered is dropped and rebuilt. The
default is OFF.

ON

The existing index is dropped and rebuilt. The index name specified must be the same as a
currently existing index; however, the index definition can be modified. For example, you
can specify different columns, sort order, partition scheme, or index options.

OFF

An error is displayed if the specified index name already exists.

The index type cannot be changed by using DROP_EXISTING.

In backward compatible syntax, WITH DROP_EXISTING is equivalent to WITH DROP_EXISTING
= ON.

ONLINE = { ON | OFF }

Specifies whether underlying tables and associated indexes are available for queries and data
modification during the index operation. The default is OFF.

Note
Online index operations are not available in every edition of Microsoft SQL Server. For a list of features
that are supported by the editions of SQL Server, see Features Supported by the Editions of
SQL Server 2012.

ON

Long-term table locks are not held for the duration of the index operation. During the
main phase of the index operation, only an Intent Share (IS) lock is held on the source
table. This enables queries or updates to the underlying table and indexes to proceed. At
the start of the operation, a Shared (S) lock is held on the source object for a very short
period of time. At the end of the operation, for a short period of time, an S (Shared) lock is
acquired on the source if a nonclustered index is being created; or an SCH-M (Schema
Modification) lock is acquired when a clustered index is created or dropped online and
when a clustered or nonclustered index is being rebuilt. ONLINE cannot be set to ON when
an index is being created on a local temporary table.

OFF

Table locks are applied for the duration of the index operation. An offline index operation
that creates, rebuilds, or drops a clustered index, or rebuilds or drops a nonclustered index,
acquires a Schema modification (Sch-M) lock on the table. This prevents all user access to
the underlying table for the duration of the operation. An offline index operation that
creates a nonclustered index acquires a Shared (S) lock on the table. This prevents updates
to the underlying table but allows read operations, such as SELECT statements.

For more information, see How Online Index Operations Work.

Indexes, including indexes on global temp tables, can be created online with the following

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/eef0c9d1-790d-46e4-a758-d0bf6742e6ae(SQL.110)�

 467

exceptions:

• XML index

• Index on a local temp table.

• Initial unique clustered index on a view.

• Disabled clustered indexes.

• Clustered index if the underlying table contains LOB data types: image, ntext, text, and
spatial types.

For more information, see Performing Index Operations Online.

ALLOW_ROW_LOCKS = { ON | OFF }

Specifies whether row locks are allowed. The default is ON.

ON

Row locks are allowed when accessing the index. The Database Engine determines when
row locks are used.

OFF

Row locks are not used.

ALLOW_PAGE_LOCKS = { ON | OFF }

Specifies whether page locks are allowed. The default is ON.

ON

Page locks are allowed when accessing the index. The Database Engine determines when
page locks are used.

OFF

Page locks are not used.

MAXDOP = max_degree_of_parallelism

Overrides the Configure the max degree of parallelism Server Configuration
Option configuration option for the duration of the index operation. Use MAXDOP to limit
the number of processors used in a parallel plan execution. The maximum is 64 processors.

max_degree_of_parallelism can be:

1

Suppresses parallel plan generation.

>1

Restricts the maximum number of processors used in a parallel index operation to the
specified number or fewer based on the current system workload.

0 (default)

Uses the actual number of processors or fewer based on the current system workload.

For more information, see Configuring Parallel Index Operations.

http://msdn.microsoft.com/en-us/library/1e43537c-bf67-4db3-9908-3cb45c6fdaa1(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�

 468

Note
Parallel index operations are not available in every edition of Microsoft SQL Server. For a list of
features that are supported by the editions of SQL Server, see Features Supported by the
Editions of SQL Server 2012.

DATA_COMPRESSION

Specifies the data compression option for the specified index, partition number, or range of
partitions. The options are as follows:

NONE

Index or specified partitions are not compressed.

ROW

Index or specified partitions are compressed by using row compression.

PAGE

Index or specified partitions are compressed by using page compression.

For more information about compression, see Creating Compressed Tables and
Indexes.

ON PARTITIONS ({ <partition_number_expression> | <range> } [,...n])

Specifies the partitions to which the DATA_COMPRESSION setting applies. If the index is not
partitioned, the ON PARTITIONS argument will generate an error. If the ON PARTITIONS
clause is not provided, the DATA_COMPRESSION option applies to all partitions of a
partitioned index.

<partition_number_expression> can be specified in the following ways:

• Provide the number for a partition, for example: ON PARTITIONS (2).

• Provide the partition numbers for several individual partitions separated by commas, for
example: ON PARTITIONS (1, 5).

• Provide both ranges and individual partitions, for example: ON PARTITIONS (2, 4, 6 TO
8).

<range> can be specified as partition numbers separated by the word TO, for example: ON
PARTITIONS (6 TO 8).

To set different types of data compression for different partitions, specify the
DATA_COMPRESSION option more than once, for example:

REBUILD WITH

(

DATA_COMPRESSION = NONE ON PARTITIONS (1),

DATA_COMPRESSION = ROW ON PARTITIONS (2, 4, 6 TO 8),

DATA_COMPRESSION = PAGE ON PARTITIONS (3, 5)

)

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�

 469

Remarks
The CREATE INDEX statement is optimized like any other query. To save on I/O operations, the
query processor may choose to scan another index instead of performing a table scan. The sort
operation may be eliminated in some situations. On multiprocessor computers CREATE INDEX
can use more processors to perform the scan and sort operations associated with creating the
index, in the same way as other queries do. For more information, see Configuring Parallel Index
Operations.
The create index operation can be minimally logged if the database recovery model is set to
either bulk-logged or simple.
Indexes can be created on a temporary table. When the table is dropped or the session ends,
the indexes are dropped.
Indexes support extended properties.

Clustered Indexes
Creating a clustered index on a table (heap) or dropping and re-creating an existing clustered
index requires additional workspace to be available in the database to accommodate data
sorting and a temporary copy of the original table or existing clustered index data. For more
information about clustered indexes, see Creating Clustered Indexes.

Unique Indexes
When a unique index exists, the Database Engine checks for duplicate values each time data is
added by a insert operations. Insert operations that would generate duplicate key values are
rolled back, and the Database Engine displays an error message. This is true even if the insert
operation changes many rows but causes only one duplicate. If an attempt is made to enter data
for which there is a unique index and the IGNORE_DUP_KEY clause is set to ON, only the rows
violating the UNIQUE index fail.

Partitioned Indexes
Partitioned indexes are created and maintained in a similar manner to partitioned tables, but like
ordinary indexes, they are handled as separate database objects. You can have a partitioned
index on a table that is not partitioned, and you can have a nonpartitioned index on a table that
is partitioned.
If you are creating an index on a partitioned table, and do not specify a filegroup on which to
place the index, the index is partitioned in the same manner as the underlying table. This is
because indexes, by default, are placed on the same filegroups as their underlying tables, and
for a partitioned table in the same partition scheme that uses the same partitioning columns.
When the index uses the same partition scheme and partitioning column as the table, the index
is aligned with the table.

Creating and rebuilding nonaligned indexes on a table with more than 1,000 partitions is
possible, but is not supported. Doing so may cause degraded performance or excessive

Warning

http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�
http://msdn.microsoft.com/en-us/library/47148383-c2c7-4f08-a9e4-7016bf2d1d13(SQL.110)�

 470

memory consumption during these operations. We recommend using only aligned
indexes when the number of partitions exceed 1,000.

When partitioning a non-unique, clustered index, the Database Engine by default adds any
partitioning columns to the list of clustered index keys, if not already specified.
Indexed views can be created on partitioned tables in the same manner as indexes on tables. For
more information about partitioned indexes, see Partitioned Tables and Indexes.
In SQL Server 2012, statistics are not created by scanning all the rows in the table when a
partitioned index is created or rebuilt. Instead, the query optimizer uses the default sampling
algorithm to generate statistics. To obtain statistics on partitioned indexes by scanning all the
rows in the table, use CREATE STATISTICS or UPDATE STATISTICS with the FULLSCAN clause.

Filtered Indexes
A filtered index is an optimized nonclustered index, suited for queries that select a small
percentage of rows from a table. It uses a filter predicate to index a portion of the data in the
table. A well-designed filtered index can improve query performance, reduce storage costs, and
reduce maintenance costs.

Required SET Options for Filtered Indexes
The SET options in the Required Value column are required whenever any of the following
conditions occur:
• Create a filtered index.
• INSERT, UPDATE, DELETE, or MERGE operation modifies the data in a filtered index.
• The query optimizer uses the filtered index in the query execution plan.

SET options Required value

ANSI_NULLS ON

ANSI_PADDING ON

ANSI_WARNINGS* ON

ARITHABORT ON

CONCAT_NULL_YIELDS_NULL ON

NUMERIC_ROUNDABORT OFF

QUOTED_IDENTIFIER ON

*Setting ANSI_WARNINGS to ON implicitly sets ARITHABORT to ON when the database
compatibility level is set to 90 or higher. If the database compatibility level is set to 80 or
earlier, the ARITHABORT option must explicitly be set to ON.

If the SET options are incorrect, the following conditions can occur:

http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�

 471

• The filtered index is not created.
• The Database Engine generates an error and rolls back INSERT, UPDATE, DELETE, or MERGE

statements that change data in the index.
• Query optimizer does not consider the index in the execution plan for any Transact-SQL

statements.
For more information about Filtered Indexes, see Filtered Index Design Guidelines.

Spatial Indexes
For information about spatial indexes, see CREATE SPATIAL INDEX (Transact-SQL) and Working
with Spatial Indexes.

XML Indexes
For information about XML indexes see, CREATE XML INDEX (Transact-SQL) and Indexes on xml
Type columns.

Index Key Size
The maximum size for an index key is 900 bytes. Indexes on varchar columns that exceed 900
bytes can be created if the existing data in the columns do not exceed 900 bytes at the time the
index is created; however, subsequent insert or update actions on the columns that cause the
total size to be greater than 900 bytes will fail. The index key of a clustered index cannot contain
varchar columns that have existing data in the ROW_OVERFLOW_DATA allocation unit. If a
clustered index is created on a varchar column and the existing data is in the IN_ROW_DATA
allocation unit, subsequent insert or update actions on the column that would push the data off-
row will fail.
Nonclustered indexes can include non-key columns in the leaf level of the index. These columns
are not considered by the Database Engine when calculating the index key size . For more
information, see Index with Included Columns.

When tables are partitioned, if the partitioning key columns are not already present in a
non-unique clustered index, they are added to the index by the Database Engine. The
combined size of the indexed columns (not counting included columns), plus any added
partitioning columns cannot exceed 1800 bytes in a non-unique clustered index.

Computed Columns
Indexes can be created on computed columns. In addition, computed columns can have the
property PERSISTED. This means that the Database Engine stores the computed values in the
table, and updates them when any other columns on which the computed column depends are
updated. The Database Engine uses these persisted values when it creates an index on the
column, and when the index is referenced in a query.
To index a computed column, the computed column must deterministic and precise. However,
using the PERSISTED property expands the type of indexable computed columns to include:

Note

http://msdn.microsoft.com/en-us/library/25e1fcc5-45d7-4c53-8c79-5493dfaa1c74(SQL.110)�
http://msdn.microsoft.com/en-us/library/b1ae7b78-182a-459e-ab28-f743e43f8293(SQL.110)�
http://msdn.microsoft.com/en-us/library/b1ae7b78-182a-459e-ab28-f743e43f8293(SQL.110)�
http://msdn.microsoft.com/en-us/library/f5c9209d-b3f3-4543-b30b-01365a5e7333(SQL.110)�
http://msdn.microsoft.com/en-us/library/f5c9209d-b3f3-4543-b30b-01365a5e7333(SQL.110)�
http://msdn.microsoft.com/en-us/library/d198648d-fea5-416d-9f30-f9d4aebbf4ec(SQL.110)�

 472

• Computed columns based on Transact-SQL and CLR functions and CLR user-defined type
methods that are marked deterministic by the user.

• Computed columns based on expressions that are deterministic as defined by the Database
Engine but imprecise.

Persisted computed columns require the following SET options to be set as shown in the
previous section "Required SET Options for Indexed Views".
The UNIQUE or PRIMARY KEY constraint can contain a computed column as long as it satisfies
all conditions for indexing. Specifically, the computed column must be deterministic and precise
or deterministic and persisted. For more information about determinism, see Deterministic and
Nondeterministic Functions.
Computed columns derived from image, ntext, text, varchar(max), nvarchar(max),
varbinary(max), and xml data types can be indexed either as a key or included non-key column
as long as the computed column data type is allowable as an index key column or non-key
column. For example, you cannot create a primary XML index on a computed xml column. If the
index key size exceeds 900 bytes, a warning message is displayed.
Creating an index on a computed column may cause the failure of an insert or update operation
that previously worked. Such a failure may take place when the computed column results in
arithmetic error. For example, in the following table, although computed column c results in an
arithmetic error, the INSERT statement works.

CREATE TABLE t1 (a int, b int, c AS a/b);

INSERT INTO t1 VALUES (1, 0);

If, instead, after creating the table, you create an index on computed column c, the same
INSERT statement will now fail.
CREATE TABLE t1 (a int, b int, c AS a/b);

CREATE UNIQUE CLUSTERED INDEX Idx1 ON t1(c);

INSERT INTO t1 VALUES (1, 0);

For more information, see Creating Indexes on Computed Columns.

Included Columns in Indexes
Non-key columns, called included columns, can be added to the leaf level of a nonclustered
index to improve query performance by covering the query. That is, all columns referenced in
the query are included in the index as either key or non-key columns. This allows the query
optimizer to locate all the required information from an index scan; the table or clustered index
data is not accessed. For more information, see Index with Included Columns.

Specifying Index Options
SQL Server 2005 introduced new index options and also modifies the way in which options are
specified. In backward compatible syntax, WITH option_name is equivalent to WITH (
<option_name> = ON). When you set index options, the following rules apply:
• New index options can only be specified by using WITH (option_name = ON | OFF).

http://msdn.microsoft.com/en-us/library/2f3ce5f5-c81c-4470-8141-8144d4f218dd(SQL.110)�
http://msdn.microsoft.com/en-us/library/2f3ce5f5-c81c-4470-8141-8144d4f218dd(SQL.110)�
http://msdn.microsoft.com/en-us/library/8d17ac9c-f3af-4bbb-9cc1-5cf647e994c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/d198648d-fea5-416d-9f30-f9d4aebbf4ec(SQL.110)�

 473

• Options cannot be specified by using both the backward compatible and new syntax in the
same statement. For example, specifying WITH (DROP_EXISTING, ONLINE = ON) causes the
statement to fail.

• When you create an XML index, the options must be specified by using WITH (option_name
= ON | OFF).

DROP_EXISTING Clause
You can use the DROP_EXISTING clause to rebuild the index, add or drop columns, modify
options, modify column sort order, or change the partition scheme or filegroup.
If the index enforces a PRIMARY KEY or UNIQUE constraint and the index definition is not
altered in any way, the index is dropped and re-created preserving the existing constraint.
However, if the index definition is altered the statement fails. To change the definition of a
PRIMARY KEY or UNIQUE constraint, drop the constraint and add a constraint with the new
definition.
DROP_EXISTING enhances performance when you re-create a clustered index, with either the
same or different set of keys, on a table that also has nonclustered indexes. DROP_EXISTING
replaces the execution of a DROP INDEX statement on the old clustered index followed by the
execution of a CREATE INDEX statement for the new clustered index. The nonclustered indexes
are rebuilt once, and then only if the index definition has changed. The DROP_EXISTING clause
does not rebuild the nonclustered indexes when the index definition has the same index name,
key and partition columns, uniqueness attribute, and sort order as the original index.
Whether the nonclustered indexes are rebuilt or not, they always remain in their original
filegroups or partition schemes and use the original partition functions. If a clustered index is
rebuilt to a different filegroup or partition scheme, the nonclustered indexes are not moved to
coincide with the new location of the clustered index. Therefore, even the nonclustered indexes
previously aligned with the clustered index, they may no longer be aligned with it. For more
information about partitioned index alignment, see.
The DROP_EXISTING clause will not sort the data again if the same index key columns are used
in the same order and with the same ascending or descending order, unless the index statement
specifies a nonclustered index and the ONLINE option is set to OFF. If the clustered index is
disabled, the CREATE INDEX WITH DROP_EXISTING operation must be performed with ONLINE
set to OFF. If a nonclustered index is disabled and is not associated with a disabled clustered
index, the CREATE INDEX WITH DROP_EXISTING operation can be performed with ONLINE set
to OFF or ON.
When indexes with 128 extents or more are dropped or rebuilt, the Database Engine defers the
actual page deallocations, and their associated locks, until after the transaction commits.

ONLINE Option
The following guidelines apply for performing index operations online:
• The underlying table cannot be altered, truncated, or dropped while an online index

operation is in process.
• Additional temporary disk space is required during the index operation.

 474

• Online operations can be performed on partitioned indexes and indexes that contain
persisted computed columns, or included columns.

For more information, see Performing Index Operations Online.

Row and Page Locks Options
When ALLOW_ROW_LOCKS = ON and ALLOW_PAGE_LOCK = ON, row-, page-, and table-level
locks are allowed when accessing the index. The Database Engine chooses the appropriate lock
and can escalate the lock from a row or page lock to a table lock.
When ALLOW_ROW_LOCKS = OFF and ALLOW_PAGE_LOCK = OFF, only a table-level lock is
allowed when accessing the index.

Viewing Index Information
To return information about indexes, you can use catalog views, system functions, and system
stored procedures.

Data Compression
Data compression is described in the topic Creating Compressed Tables and Indexes. The
following are key points to consider:
• Compression can allow more rows to be stored on a page, but does not change the

maximum row size.
• Non-leaf pages of an index are not page compressed but can be row compressed.
• Each nonclustered index has an individual compression setting, and does not inherit the

compression setting of the underlying table.
• When a clustered index is created on a heap, the clustered index inherits the compression

state of the heap unless an alternative compression state is specified.
The following restrictions apply to partitioned indexes:
• You cannot change the compression setting of a single partition if the table has nonaligned

indexes.
• The ALTER INDEX <index> ... REBUILD PARTITION ... syntax rebuilds the specified partition of

the index.
• The ALTER INDEX <index> ... REBUILD WITH ... syntax rebuilds all partitions of the index.
To evaluate how changing the compression state will affect a table, an index, or a partition, use
the sp_estimate_data_compression_savings stored procedure.

Permissions
Requires ALTER permission on the table or view. User must be a member of the sysadmin fixed
server role or the db_ddladmin and db_owner fixed database roles.

Examples

A. Creating a simple nonclustered index

http://msdn.microsoft.com/en-us/library/1e43537c-bf67-4db3-9908-3cb45c6fdaa1(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/6f6c7150-e788-45e0-9d08-d6c2f4a33729(SQL.110)�

 475

The following example creates a nonclustered index on the VendorID column of the
Purchasing.ProductVendor table.
USE AdventureWorks2012;

GO

IF EXISTS (SELECT name FROM sys.indexes

 WHERE name = N'IX_ProductVendor_VendorID')

 DROP INDEX IX_ProductVendor_VendorID ON Purchasing.ProductVendor;

GO

CREATE INDEX IX_ProductVendor_VendorID

 ON Purchasing.ProductVendor (BusinessEntityID);

GO

B. Creating a simple nonclustered composite index
The following example creates a nonclustered composite index on the SalesQuota and
SalesYTD columns of the Sales.SalesPerson table.
USE AdventureWorks2012

GO

IF EXISTS (SELECT name FROM sys.indexes

 WHERE name = N'IX_SalesPerson_SalesQuota_SalesYTD')

 DROP INDEX IX_SalesPerson_SalesQuota_SalesYTD ON Sales.SalesPerson ;

GO

CREATE NONCLUSTERED INDEX IX_SalesPerson_SalesQuota_SalesYTD

 ON Sales.SalesPerson (SalesQuota, SalesYTD);

GO

C. Creating a unique nonclustered index
The following example creates a unique nonclustered index on the Name column of the
Production.UnitMeasure table. The index will enforce uniqueness on the data inserted into
the Name column.
USE AdventureWorks2012;

GO

IF EXISTS (SELECT name from sys.indexes

 WHERE name = N'AK_UnitMeasure_Name')

 DROP INDEX AK_UnitMeasure_Name ON Production.UnitMeasure;

GO

CREATE UNIQUE INDEX AK_UnitMeasure_Name

 ON Production.UnitMeasure(Name);

 476

GO

The following query tests the uniqueness constraint by attempting to insert a row with the same
value as that in an existing row.

--Verify the existing value.

SELECT Name FROM Production.UnitMeasure WHERE Name = N'Ounces';

GO

INSERT INTO Production.UnitMeasure (UnitMeasureCode, Name, ModifiedDate)

 VALUES ('OC', 'Ounces', GetDate());

The resulting error message is:

Server: Msg 2601, Level 14, State 1, Line 1

Cannot insert duplicate key row in object 'UnitMeasure' with unique index

'AK_UnitMeasure_Name'. The statement has been terminated.

D. Using the IGNORE_DUP_KEY option
The following example demonstrates the effect of the IGNORE_DUP_KEY option by inserting
multiple rows into a temporary table first with the option set to ON and again with the option set
to OFF. A single row is inserted into the #Test table that will intentionally cause a duplicate
value when the second multiple-row INSERT statement is executed. A count of rows in the table
returns the number of rows inserted.

USE AdventureWorks2012;

GO

CREATE TABLE #Test (C1 nvarchar(10), C2 nvarchar(50), C3 datetime);

GO

CREATE UNIQUE INDEX AK_Index ON #Test (C2)

 WITH (IGNORE_DUP_KEY = ON);

GO

INSERT INTO #Test VALUES (N'OC', N'Ounces', GETDATE());

INSERT INTO #Test SELECT * FROM Production.UnitMeasure;

GO

SELECT COUNT(*)AS [Number of rows] FROM #Test;

GO

DROP TABLE #Test;

GO

Here are the results of the second INSERT statement.

Server: Msg 3604, Level 16, State 1, Line 5 Duplicate key was ignored.

 477

Number of rows

38

Notice that the rows inserted from the Production.UnitMeasure table that did not violate the
uniqueness constraint were successfully inserted. A warning was issued and the duplicate row
ignored, but the entire transaction was not rolled back.
The same statements are executed again, but with IGNORE_DUP_KEY set to OFF.

USE AdentureWorks2012;

GO

CREATE TABLE #Test (C1 nvarchar(10), C2 nvarchar(50), C3 datetime);

GO

CREATE UNIQUE INDEX AK_Index ON #Test (C2)

 WITH (IGNORE_DUP_KEY = OFF);

GO

INSERT INTO #Test VALUES (N'OC', N'Ounces', GETDATE());

INSERT INTO #Test SELECT * FROM Production.UnitMeasure;

GO

SELECT COUNT(*)AS [Number of rows] FROM #Test;

GO

DROP TABLE #Test;

GO

Here are the results of the second INSERT statement.

Server: Msg 2601, Level 14, State 1, Line 5

Cannot insert duplicate key row in object '#Test' with unique index

'AK_Index'. The statement has been terminated.

Number of rows

1

Notice that none of the rows from the Production.UnitMeasure table were inserted into the
table even though only one row in the table violated the UNIQUE index constraint.

E. Using DROP_EXISTING to drop and re-create an index
The following example drops and re-creates an existing index on the ProductID column of the
Production.WorkOrder table by using the DROP_EXISTING option. The options FILLFACTOR
and PAD_INDEX are also set.

 478

USE AdventureWorks2012;

GO

CREATE NONCLUSTERED INDEX IX_WorkOrder_ProductID

 ON Production.WorkOrder(ProductID)

 WITH (FILLFACTOR = 80,

 PAD_INDEX = ON,

 DROP_EXISTING = ON);

GO

F. Creating an index on a view
The following example creates a view and an index on that view. Two queries are included that
use the indexed view.
USE AdventureWorks2012;

GO

--Set the options to support indexed views.

SET NUMERIC_ROUNDABORT OFF;

SET ANSI_PADDING, ANSI_WARNINGS, CONCAT_NULL_YIELDS_NULL, ARITHABORT,

 QUOTED_IDENTIFIER, ANSI_NULLS ON;

GO

--Create view with schemabinding.

IF OBJECT_ID ('Sales.vOrders', 'view') IS NOT NULL

DROP VIEW Sales.vOrders ;

GO

CREATE VIEW Sales.vOrders

WITH SCHEMABINDING

AS

 SELECT SUM(UnitPrice*OrderQty*(1.00-UnitPriceDiscount)) AS Revenue,

 OrderDate, ProductID, COUNT_BIG(*) AS COUNT

 FROM Sales.SalesOrderDetail AS od, Sales.SalesOrderHeader AS o

 WHERE od.SalesOrderID = o.SalesOrderID

 GROUP BY OrderDate, ProductID;

GO

--Create an index on the view.

CREATE UNIQUE CLUSTERED INDEX IDX_V1

 ON Sales.vOrders (OrderDate, ProductID);

GO

 479

--This query can use the indexed view even though the view is

--not specified in the FROM clause.

SELECT SUM(UnitPrice*OrderQty*(1.00-UnitPriceDiscount)) AS Rev,

 OrderDate, ProductID

FROM Sales.SalesOrderDetail AS od

 JOIN Sales.SalesOrderHeader AS o ON od.SalesOrderID=o.SalesOrderID

 AND ProductID BETWEEN 700 and 800

 AND OrderDate >= CONVERT(datetime,'05/01/2002',101)

GROUP BY OrderDate, ProductID

ORDER BY Rev DESC;

GO

--This query can use the above indexed view.

SELECT OrderDate, SUM(UnitPrice*OrderQty*(1.00-UnitPriceDiscount)) AS Rev

FROM Sales.SalesOrderDetail AS od

 JOIN Sales.SalesOrderHeader AS o ON od.SalesOrderID=o.SalesOrderID

 AND DATEPART(mm,OrderDate)= 3

 AND DATEPART(yy,OrderDate) = 2002

GROUP BY OrderDate

ORDER BY OrderDate ASC;

GO

G. Creating an index with included (non-key) columns
The following example creates a nonclustered index with one key column (PostalCode) and
four non-key columns (AddressLine1, AddressLine2, City, StateProvinceID). A query that is
covered by the index follows. To display the index that is selected by the query optimizer, on the
Query menu in SQL Server Management Studio, select Display Actual Execution Plan before
executing the query.
USE AdventureWorks2012;

GO

IF EXISTS (SELECT name FROM sys.indexes

 WHERE name = N'IX_Address_PostalCode')

 DROP INDEX IX_Address_PostalCode ON Person.Address;

GO

CREATE NONCLUSTERED INDEX IX_Address_PostalCode

 ON Person.Address (PostalCode)

 INCLUDE (AddressLine1, AddressLine2, City, StateProvinceID);

GO

 480

SELECT AddressLine1, AddressLine2, City, StateProvinceID, PostalCode

FROM Person.Address

WHERE PostalCode BETWEEN N'98000' and N'99999';

GO

H. Creating a partitioned index
The following example creates a nonclustered partitioned index on TransactionsPS1, an
existing partition scheme. This example assumes the partitioned index sample has been
installed.

USE AdentureWorks2012;

GO

IF EXISTS (SELECT name FROM sys.indexes

 WHERE name = N'IX_TransactionHistory_ReferenceOrderID'

 AND object_id = OBJECT_ID(N'Production.TransactionHistory'))

DROP INDEX IX_TransactionHistory_ReferenceOrderID

 ON Production.TransactionHistory;

GO

CREATE NONCLUSTERED INDEX IX_TransactionHistory_ReferenceOrderID

 ON Production.TransactionHistory (ReferenceOrderID)

 ON TransactionsPS1 (TransactionDate);

GO

I. Creating a filtered index
The following example creates a filtered index on the Production.BillOfMaterials table. The filter
predicate can include columns that are not key columns in the filtered index. The predicate in
this example selects only the rows where EndDate is non-NULL.
USE AdventureWorks2012;

GO

IF EXISTS (SELECT name FROM sys.indexes

 WHERE name = N'FIBillOfMaterialsWithEndDate'

 AND object_id = OBJECT_ID(N'Production.BillOfMaterials'))

DROP INDEX FIBillOfMaterialsWithEndDate

 ON Production.BillOfMaterials;

GO

CREATE NONCLUSTERED INDEX "FIBillOfMaterialsWithEndDate"

 ON Production.BillOfMaterials (ComponentID, StartDate)

 WHERE EndDate IS NOT NULL;

 481

GO

J. Creating a compressed index
The following example creates an index on a nonpartitioned table by using row compression.

CREATE NONCLUSTERED INDEX IX_INDEX_1

 ON T1 (C2)

WITH (DATA_COMPRESSION = ROW) ;

GO

The following example creates an index on a partitioned table by using row compression on all
partitions of the index.

CREATE CLUSTERED INDEX IX_PartTab2Col1

ON PartitionTable1 (Col1)

WITH (DATA_COMPRESSION = ROW) ;

GO

The following example creates an index on a partitioned table by using page compression on
partition 1 of the index and row compression on partitions 2 through 4 of the index.
CREATE CLUSTERED INDEX IX_PartTab2Col1

ON PartitionTable1 (Col1)

WITH (DATA_COMPRESSION = PAGE ON PARTITIONS(1),

 DATA_COMPRESSION = ROW ON PARTITIONS (2 TO 4)) ;

GO

See Also
ALTER INDEX (Transact-SQL)
CREATE PARTITION FUNCTION
CREATE PARTITION SCHEME
CREATE SPATIAL INDEX (Transact-SQL)
CREATE STATISTICS
CREATE TABLE
CREATE XML INDEX (Transact-SQL)
Data Types
DBCC SHOW_STATISTICS
DROP INDEX
Indexes on xml Type columns
sys.indexes

http://msdn.microsoft.com/en-us/library/a54f7373-b247-4d61-8fb8-7f2ec7a8d0a4(SQL.110)�
http://msdn.microsoft.com/en-us/library/12be2923-7289-4150-b497-f17e76a50b2e(SQL.110)�
http://msdn.microsoft.com/en-us/library/f5c9209d-b3f3-4543-b30b-01365a5e7333(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�

 482

sys.index_columns
sys.xml_indexes
EVENTDATA (Transact-SQL)

CREATE LOGIN
Creates a Database Engine login for SQL Server, Windows Azure SQL Database, and SQL Server
PDW.

The CREATE LOGIN options vary for SQL Server, SQL Database, and SQL Server PDW.
 Transact-SQL Syntax Conventions

Syntax

-- Syntax for SQL Server
CREATE LOGIN login_name { WITH <option_list1> | FROM <sources> }

<option_list1> ::=
 PASSWORD = { 'password' | hashed_password HASHED } [MUST_CHANGE]
 [, <option_list2> [,...]]

<option_list2> ::=
 SID = sid
 | DEFAULT_DATABASE = database
 | DEFAULT_LANGUAGE = language
 | CHECK_EXPIRATION = { ON | OFF}
 | CHECK_POLICY = { ON | OFF}
 | CREDENTIAL = credential_name

<sources> ::=
 WINDOWS [WITH <windows_options> [,...]]
 | CERTIFICATE certname
 | ASYMMETRIC KEY asym_key_name

<windows_options> ::=
 DEFAULT_DATABASE = database
 | DEFAULT_LANGUAGE = language

Note

http://msdn.microsoft.com/en-us/library/211471aa-558a-475c-9b94-5913c143ed12(SQL.110)�
http://msdn.microsoft.com/en-us/library/3408de72-b067-4fda-b5d5-8e856dfd9db3(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 483

Syntax
-- Syntax for SQL Database
CREATE LOGIN login_name { WITH <option_list3> }

<option_list3> ::=
 PASSWORD = { 'password' }

Syntax
-- Syntax for SQL Server PDW
CREATE LOGIN login_name { WITH <option_list4> }

< option_list4> ::=
 PASSWORD = { 'password' } [MUST_CHANGE]
 [, <option_list5> [,...]]

<option_list5> ::=
 CHECK_EXPIRATION = { ON | OFF}
 | CHECK_POLICY = { ON | OFF}

Arguments
login_name

Specifies the name of the login that is created. There are four types of logins: SQL Server
logins, Windows logins, certificate-mapped logins, and asymmetric key-mapped logins.
When you are creating logins that are mapped from a Windows domain account, you must
use the pre-Windows 2000 user logon name in the format [<domainName>\<login_name>].
You cannot use a UPN in the format login_name@DomainName. For an example, see
example D later in this topic. SQL Server authentication logins are type sysname and must
conform to the rules for Identifiers and cannot contain a '\'. Windows logins can contain a
'\'.

PASSWORD = 'password'

Applies to SQL Server logins only. Specifies the password for the login that is being created.
You should use a strong password. For more information see Strong Passwords and
Password Policy.

Passwords are case-sensitive. Passwords should always be at least 8 characters long, and
cannot exceed 128 characters. Passwords can include a-z, A-Z, 0-9, and most non-

http://msdn.microsoft.com/library/ms175874.aspx�
http://msdn.microsoft.com/en-us/library/338548f4-c4d8-47ca-b597-5c9c0f2fa205(SQL.110)�
http://msdn.microsoft.com/en-us/library/c0040c0a-a18f-45b9-9c40-0625685649b1(SQL.110)�

 484

alphanumeric characters. Passwords cannot contain single quotes, or the login_name.

PASSWORD = hashed_password

Applies to the HASHED keyword only. Specifies the hashed value of the password for the
login that is being created.

HASHED

Applies to SQL Server logins only. Specifies that the password entered after the PASSWORD
argument is already hashed. If this option is not selected, the string entered as password is
hashed before it is stored in the database. This option should only be used for migrating
databases from one server to another. Do not use the HASHED option to create new logins.

MUST_CHANGE

Applies to SQL Server logins only. If this option is included, SQL Server prompts the user for a
new password the first time the new login is used.

CREDENTIAL = credential_name

The name of a credential to be mapped to the new SQL Server login. The credential must
already exist in the server. Currently this option only links the credential to a login. A
credential cannot be mapped to the sa login.

SID = sid

Applies to SQL Server logins only. Specifies the GUID of the new SQL Server login. If this
option is not selected, SQL Server automatically assigns a GUID.

DEFAULT_DATABASE = database

Specifies the default database to be assigned to the login. If this option is not included, the
default database is set to master.

DEFAULT_LANGUAGE = language

Specifies the default language to be assigned to the login. If this option is not included, the
default language is set to the current default language of the server. If the default language
of the server is later changed, the default language of the login remains unchanged.

CHECK_EXPIRATION = { ON | OFF }

Applies to SQL Server logins only. Specifies whether password expiration policy should be
enforced on this login. The default value is OFF.

CHECK_POLICY = { ON | OFF }

Applies to SQL Server logins only. Specifies that the Windows password policies of the
computer on which SQL Server is running should be enforced on this login. The default value
is ON.

If the Windows policy requires strong passwords, passwords must contain at least three of
the following four characteristics:

• An uppercase character (A-Z).

 485

• A lowercase character (a-z).

• A digit (0-9).

• One of the non-alphanumeric characters, such as a space, _, @, *, ^, %, !, $, #, or &.

WINDOWS

Specifies that the login be mapped to a Windows login.

CERTIFICATE certname

Specifies the name of a certificate to be associated with this login. This certificate must
already occur in the master database.

ASYMMETRIC KEY asym_key_name

Specifies the name of an asymmetric key to be associated with this login. This key must
already occur in the master database.

Remarks
Passwords are case-sensitive.
Prehashing of passwords is supported only when you are creating SQL Server logins.
If MUST_CHANGE is specified, CHECK_EXPIRATION and CHECK_POLICY must be set to ON.
Otherwise, the statement will fail.
A combination of CHECK_POLICY = OFF and CHECK_EXPIRATION = ON is not supported.
When CHECK_POLICY is set to OFF, lockout_time is reset and CHECK_EXPIRATION is set to OFF.

CHECK_EXPIRATION and CHECK_POLICY are only enforced on Windows Server 2003 and
later. For more information, see Password Policy.

Logins created from certificates or asymmetric keys are used only for code signing. They cannot
be used to connect to SQL Server. You can create a login from a certificate or asymmetric key
only when the certificate or asymmetric key already exists in master.
For a script to transfer logins, see How to transfer the logins and the passwords between
instances of SQL Server 2005 and SQL Server 2008.
Creating a login automatically enables the new login and grants the login the server level
CONNECT SQL permission.

SQL Database Logins
In SQL Database, the CREATE LOGIN statement must be the only statement in a batch.
In some methods of connecting to SQL Database, such as sqlcmd, you must append the SQL
Database server name to the login name in the connection string by using the
<login>@<server> notation. For example, if your login is login1 and the fully qualified name of
the SQL Database server is servername.database.windows.net, the username parameter of
the connection string should be login1@servername. Because the total length of the username
parameter is 128 characters, login_name is limited to 127 characters minus the length of the

Important

http://msdn.microsoft.com/en-us/library/c0040c0a-a18f-45b9-9c40-0625685649b1(SQL.110)�
http://support.microsoft.com/kb/918992�
http://support.microsoft.com/kb/918992�

 486

server name. In the example, login_name can only be 117 characters long because servername
is 10 characters.
In SQL Database you must be connected to the master database to create a login.
For more information about SQL Database logins, see Managing Databases and Logins in
Windows Azure SQL Database.

Permissions
In SQL Server and SQL Server PDW, requires ALTER ANY LOGIN permission on the server or
membership in the securityadmin fixed server role.
In SQL Database, only the server-level principal login (created by the provisioning process) or
members of the loginmanager database role in the master database can create new logins.
If the CREDENTIAL option is used, also requires ALTER ANY CREDENTIAL permission on the
server.

Next Steps
After creating a login, the login can connect to the Database Engine, SQL Database, or SQL
Server PDW appliance, but only has the permissions granted to the public role. Consider
performing the some of the following activities.
• To connect to a database, create a database user for the login. For more information, see

CREATE USER (Transact-SQL).
• Create a user-defined server role by using CREATE SERVER ROLE (Transact-SQL). Use ALTER

SERVER ROLE … ADD MEMBER to add the new login to the user-defined server role. For
more information, see CREATE SERVER ROLE (Transact-SQL) and ALTER SERVER ROLE
(Transact-SQL).

• Use sp_addsrvrolemember to add the login to a fixed server role. For more information, see
Server-Level Roles and sp_addsrvrolemember (Transact-SQL).

• Use the GRANT statement, to grant server-level permissions to the new login or to a role
containing the login. For more information, see GRANT (Transact-SQL).

Examples

A. Creating a login with a password
Applies to all.
The following example creates a login for a particular user and assigns a password.

CREATE LOGIN <login_name> WITH PASSWORD = '<enterStrongPasswordHere>';

GO

B. Creating a login with a password
Applies to SQL Server and Advanced Data Warehouse.

http://msdn.microsoft.com/en-us/library/ee336235.aspx�
http://msdn.microsoft.com/en-us/library/ee336235.aspx�
http://msdn.microsoft.com/en-us/library/7adf2ad7-015d-4cbe-9e29-abaefd779008(SQL.110)�
http://msdn.microsoft.com/en-us/library/777f0e09-8ee5-4cb2-a3ac-939d02c3cd22(SQL.110)�
http://msdn.microsoft.com/en-us/library/a760c16a-4d2d-43f2-be81-ae9315f38185(SQL.110)�

 487

The following example creates a login for a particular user and assigns a password. The
MUST_CHANGE option requires users to change this password the first time they connect to the
server.
CREATE LOGIN <login_name> WITH PASSWORD = '<enterStrongPasswordHere>'

MUST_CHANGE;

GO

C. Creating a login mapped to a credential
Applies to SQL Server.
The following example creates the login for a particular user, using the user. This login is
mapped to the credential.
CREATE LOGIN <login_name> WITH PASSWORD = '<enterStrongPasswordHere>',

 CREDENTIAL = <credentialName>;

GO

D. Creating a login from a certificate
Applies to SQL Server.
The following example creates login for a particular user from a certificate in master.

USE MASTER;

CREATE CERTIFICATE <certificateName>

 WITH SUBJECT = '<login_name> certificate in master database',

 EXPIRY_DATE = '12/05/2025';

GO

CREATE LOGIN <login_name> FROM CERTIFICATE <certificateName>;

GO

E. Creating a login from a Windows domain account
Applies to SQL Server.
The following example creates a login from a Windows domain account.

CREATE LOGIN [<domainName>\<login_name>] FROM WINDOWS;

GO

See Also
Principals
Password Policy
ALTER LOGIN (Transact-SQL)
DROP LOGIN (Transact-SQL)
EVENTDATA (Transact-SQL)

http://msdn.microsoft.com/en-us/library/3f7adbf7-6e40-4396-a8ca-71cbb843b5c2(SQL.110)�
http://msdn.microsoft.com/en-us/library/c0040c0a-a18f-45b9-9c40-0625685649b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

 488

How to: Create A SQL Server Login

CREATE MASTER KEY
Creates a database master key.

 Transact-SQL Syntax Conventions

Syntax

CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'password'

Arguments
PASSWORD = 'password'

Is the password that is used to encrypt the master key in the database. password must meet
the Windows password policy requirements of the computer that is running the instance of
SQL Server.

Remarks
The database master key is a symmetric key used to protect the private keys of certificates and
asymmetric keys that are present in the database. When it is created, the master key is
encrypted by using the AES_256 algorithm and a user-supplied password. To enable the
automatic decryption of the master key, a copy of the key is encrypted by using the service
master key and stored in both the database and in master. Typically, the copy stored in master is
silently updated whenever the master key is changed. This default can be changed by using the
DROP ENCRYPTION BY SERVICE MASTER KEY option of ALTER MASTER KEY. A master key that is
not encrypted by the service master key must be opened by using the OPEN MASTER KEY
statement and a password.
The is_master_key_encrypted_by_server column of the sys.databases catalog view in master
indicates whether the database master key is encrypted by the service master key.
Information about the database master key is visible in the sys.symmetric_keys catalog view.

You should back up the master key by using BACKUP MASTER KEY and store the backup
in a secure, off-site location.

The service master key and database master keys are protected by using the AES-256 algorithm.

Permissions
Requires CONTROL permission on the database.

Examples
The following example creates a database master key for the AdventureWorks2012 database.
The key is encrypted using the password 23987hxJ#KL95234nl0zBe.

Important

http://msdn.microsoft.com/en-us/library/fb163e47-1546-4682-abaa-8c9494e9ddc7(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/1674753e-ca1e-4913-9ba4-b442e7106121(SQL.110)�
http://msdn.microsoft.com/en-us/library/0e25fe22-2536-4d7e-ba4a-1921e880f367(SQL.110)�

 489

USE AdventureWorks2012;

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '23987hxJ#KL95234nl0zBe';

GO

See Also
Encryption Hierarchy
sys.databases (Transact-SQL)
OPEN MASTER KEY (Transact-SQL)
ALTER MASTER KEY (Transact-SQL)
DROP MASTER KEY (Transact-SQL)
CLOSE MASTER KEY (Transact-SQL)
Encryption Hierarchy

CREATE MESSAGE TYPE
Creates a new message type. A message type defines the name of a message and the validation
that Service Broker performs on messages that have that name. Both sides of a conversation
must define the same message types.

 Transact-SQL Syntax Conventions

Syntax

CREATE MESSAGE TYPE message_type_name
 [AUTHORIZATION owner_name]
 [VALIDATION = { NONE
 | EMPTY
 | WELL_FORMED_XML
 | VALID_XML WITH SCHEMA COLLECTION
 schema_collection_name
 }]
[;]

Arguments
message_type_name

Is the name of the message type to create. A new message type is created in the current
database and owned by the principal specified in the AUTHORIZATION clause. Server,
database, and schema names cannot be specified. The message_type_name can be up to 128
characters.

http://msdn.microsoft.com/en-us/library/d410eae1-3a52-45de-b9a1-52d2bd93a8eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/1674753e-ca1e-4913-9ba4-b442e7106121(SQL.110)�
http://msdn.microsoft.com/en-us/library/bb04ef7a-9f3a-437e-a6f9-ba0204082cb9(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 490

AUTHORIZATION owner_name

Sets the owner of the message type to the specified database user or role. When the current
user is dbo or sa, owner_name can be the name of any valid user or role. Otherwise,
owner_name must be the name of the current user, the name of a user who the current user
has IMPERSONATE permission for, or the name of a role to which the current user belongs.
When this clause is omitted, the message type belongs to the current user.

VALIDATION

Specifies how Service Broker validates the message body for messages of this type. When
this clause is not specified, validation defaults to NONE.

NONE

Specifies that no validation is performed. The message body can contain data, or it can be
NULL.

EMPTY

Specifies that the message body must be NULL.

WELL_FORMED_XML

Specifies that the message body must contain well-formed XML.

VALID_XML WITH SCHEMA COLLECTION schema_collection_name

Specifies that the message body must contain XML that complies with a schema in the
specified schema collection The schema_collection_name must be the name of an existing
XML schema collection.

Remarks
Service Broker validates incoming messages. When a message contains a message body that
does not comply with the validation type specified, Service Broker discards the invalid message
and returns an error message to the service that sent the message.
Both sides of a conversation must define the same name for a message type. To help
troubleshooting, both sides of a conversation typically specify the same validation for the
message type, although Service Broker does not require that both sides of the conversation use
the same validation.
A message type can not be a temporary object. Message type names starting with # are allowed,
but are permanent objects.

Permissions
Permission for creating a message type defaults to members of the db_ddladmin or db_owner
fixed database roles and the sysadmin fixed server role.
REFERENCES permission for a message type defaults to the owner of the message type,
members of the db_owner fixed database role, and members of the sysadmin fixed server role.
When the CREATE MESSAGE TYPE statement specifies a schema collection, the user executing
the statement must have REFERENCES permission on the schema collection specified.

 491

Examples

A. Creating a message type containing well-formed XML
The following example creates a new message type that contains well-formed XML.

 CREATE MESSAGE TYPE

 [//Adventure-Works.com/Expenses/SubmitExpense]

 VALIDATION = WELL_FORMED_XML ;

B. Creating a message type containing typed XML
The following example creates a message type for an expense report encoded in XML. The
example creates an XML schema collection that holds the schema for a simple expense report.
The example then creates a new message type that validates messages against the schema.

CREATE XML SCHEMA COLLECTION ExpenseReportSchema AS

N'<?xml version="1.0" encoding="UTF-16" ?>

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 targetNamespace="http://Adventure-Works.com/schemas/expenseReport"

 xmlns:expense="http://Adventure-Works.com/schemas/expenseReport"

 elementFormDefault="qualified"

 >

 <xsd:complexType name="expenseReportType">

 <xsd:sequence>

 <xsd:element name="EmployeeName" type="xsd:string"/>

 <xsd:element name="EmployeeID" type="xsd:string"/>

 <xsd:element name="ItemDetail"

 type="expense:ItemDetailType" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:complexType name="ItemDetailType">

 <xsd:sequence>

 <xsd:element name="Date" type="xsd:date"/>

 <xsd:element name="CostCenter" type="xsd:string"/>

 <xsd:element name="Total" type="xsd:decimal"/>

 <xsd:element name="Currency" type="xsd:string"/>

 <xsd:element name="Description" type="xsd:string"/>

http://www.w3.org/2001/XMLSchema
http://Adventure-Works.com/schemas/expenseReport
http://Adventure-Works.com/schemas/expenseReport
www.Adventure-Works.com/Expenses/SubmitExpense

 492

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="ExpenseReport" type="expense:expenseReportType"/>

 </xsd:schema>' ;

 CREATE MESSAGE TYPE

 [//Adventure-Works.com/Expenses/SubmitExpense]

 VALIDATION = VALID_XML WITH SCHEMA COLLECTION ExpenseReportSchema ;

C. Creating a message type for an empty message
The following example creates a new message type with empty encoding.

 CREATE MESSAGE TYPE

 [//Adventure-Works.com/Expenses/SubmitExpense]

 VALIDATION = EMPTY ;

D. Creating a message type containing binary data
The following example creates a new message type to hold binary data. Because the message
will contain data that is not XML, the message type specifies a validation type of NONE. Notice
that, in this case, the application that receives a message of this type must verify that the
message contains data, and that the data is of the type expected.

CREATE MESSAGE TYPE

 [//Adventure-Works.com/Expenses/ReceiptImage]

 VALIDATION = NONE ;

See Also
EVENTDATA (Transact-SQL)
DROP MESSAGE TYPE
EVENTDATA

CREATE PARTITION FUNCTION
Creates a function in the current database that maps the rows of a table or index into partitions
based on the values of a specified column. Using CREATE PARTITION FUNCTION is the first step
in creating a partitioned table or index. In SQL Server 2012, a table or index can have a
maximum of 15,000 partitions.

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
www.Adventure-Works.com/Expenses/SubmitExpense
www.Adventure-Works.com/Expenses/SubmitExpense
www.Adventure-Works.com/Expenses/ReceiptImage

 493

 Transact-SQL Syntax Conventions

Syntax

CREATE PARTITION FUNCTION partition_function_name (input_parameter_type)
AS RANGE [LEFT | RIGHT]
FOR VALUES ([boundary_value [,...n]])
[;]

Arguments
partition_function_name

Is the name of the partition function. Partition function names must be unique within the
database and comply with the rules for identifiers.

input_parameter_type

Is the data type of the column used for partitioning. All data types are valid for use as
partitioning columns, except text, ntext, image, xml, timestamp, varchar(max),
nvarchar(max), varbinary(max), alias data types, or CLR user-defined data types.

The actual column, known as a partitioning column, is specified in the CREATE TABLE or
CREATE INDEX statement.

boundary_value

Specifies the boundary values for each partition of a partitioned table or index that uses
partition_function_name. If boundary_value is empty, the partition function maps the whole
table or index using partition_function_name into a single partition. Only one partitioning
column, specified in a CREATE TABLE or CREATE INDEX statement, can be used.

boundary_value is a constant expression that can reference variables. This includes user-
defined type variables, or functions and user-defined functions. It cannot reference Transact-
SQL expressions. boundary_value must either match or be implicitly convertible to the data
type supplied in input_parameter_type, and cannot be truncated during implicit conversion in
a way that the size and scale of the value does not match that of its corresponding
input_parameter_type.

Note
If boundary_value consists of datetime or smalldatetime literals, these literals are evaluated
assuming that us_english is the session language. This behavior is deprecated. To make sure the
partition function definition behaves as expected for all session languages, we recommend that you
use constants that are interpreted the same way for all language settings, such as the yyyymmdd
format; or explicitly convert literals to a specific style. To determine the language session of your
server, run SELECT @@LANGUAGE.

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 494

...n

Specifies the number of values supplied by boundary_value, not to exceed 14,999. The
number of partitions created is equal to n + 1. The values do not have to be listed in order. If
the values are not in order, the Database Engine sorts them, creates the function, and returns
a warning that the values are not provided in order. The Database Engine returns an error if n
includes any duplicate values.

LEFT | RIGHT

Specifies to which side of each boundary value interval, left or right, the boundary_value [,...n
] belongs, when interval values are sorted by the Database Engine in ascending order from
left to right. If not specified, LEFT is the default.

Remarks
The scope of a partition function is limited to the database that it is created in. Within the
database, partition functions reside in a separate namespace from the other functions.
Any rows whose partitioning column has null values are placed in the left-most partition, unless
NULL is specified as a boundary value and RIGHT is indicated. In this case, the left-most partition
is an empty partition, and NULL values are placed in the following partition.

Permissions
Any one of the following permissions can be used to execute CREATE PARTITION FUNCTION:
• ALTER ANY DATASPACE permission. This permission defaults to members of the sysadmin

fixed server role and the db_owner and db_ddladmin fixed database roles.
• CONTROL or ALTER permission on the database in which the partition function is being

created.
• CONTROL SERVER or ALTER ANY DATABASE permission on the server of the database in

which the partition function is being created.

Examples

A. Creating a RANGE LEFT partition function on an int column
The following partition function will partition a table or index into four partitions.
CREATE PARTITION FUNCTION myRangePF1 (int)

AS RANGE LEFT FOR VALUES (1, 100, 1000);

The following table shows how a table that uses this partition function on partitioning column
col1 would be partitioned.

Partition 1 2 3 4

Values col1 <= 1 col1 > 1 AND
col1 <= 100

col1 > 100 AND
col1 <= 1000

col1 > 1000

 495

B. Creating a RANGE RIGHT partition function on an int column
The following partition function uses the same values for boundary_value [,...n] as the previous
example, except it specifies RANGE RIGHT.
CREATE PARTITION FUNCTION myRangePF2 (int)

AS RANGE RIGHT FOR VALUES (1, 100, 1000);

The following table shows how a table that uses this partition function on partitioning column
col1 would be partitioned.

Partition 1 2 3 4

Values col1 < 1 col1 >= 1 AND
col1 < 100

col1 >= 100
AND col1 < 1000

col1 >= 1000

C. Creating a RANGE RIGHT partition function on a datetime column
The following partition function partitions a table or index into 12 partitions, one for each month
of a year's worth of values in a datetime column.
CREATE PARTITION FUNCTION [myDateRangePF1] (datetime)

AS RANGE RIGHT FOR VALUES ('20030201', '20030301', '20030401',

 '20030501', '20030601', '20030701', '20030801',

 '20030901', '20031001', '20031101', '20031201');

The following table shows how a table or index that uses this partition function on partitioning
column datecol would be partitioned.

Partition 1 2 ... 11 12

Values datecol <
February 1,
2003

datecol >=
February 1,
2003 AND
datecol <
March 1,
2003

 datecol >=
November 1,
2003 AND col1
< December 1,
2003

col1 >=
December 1,
2003

D. Creating a partition function on a char column
The following partition function partitions a table or index into four partitions.
CREATE PARTITION FUNCTION myRangePF3 (char(20))

AS RANGE RIGHT FOR VALUES ('EX', 'RXE', 'XR');

 496

The following table shows how a table that uses this partition function on partitioning column
col1 would be partitioned.

Partition 1 2 3 4

Values col1 < EX... col1 >= EX AND
col1 < RXE...

col1 >= RXE
AND col1 < XR...

col1 >= XR

E. Creating 15,000 partitions
The following partition function partitions a table or index into 15,000 partitions.
--Create integer partition function for 15,000 partitions.

DECLARE @IntegerPartitionFunction nvarchar(max) = N'CREATE PARTITION FUNCTION
IntegerPartitionFunction (int) AS RANGE RIGHT FOR VALUES (';

DECLARE @i int = 1;

WHILE @i < 14999

BEGIN

 SET @IntegerPartitionFunction += CAST(@i as nvarchar(10)) + N', ';

 SET @i += 1;

END

SET @IntegerPartitionFunction += CAST(@i as nvarchar(10)) + N');';

EXEC sp_executesql @IntegerPartitionFunction;

GO

F. Creating partitions for multiple years
The following partition function partitions a table or index into 50 partitions on a datetime2
column. There is one partitions for each month between January 2007 and January 2011.
--Create date partition function with increment by month.

DECLARE @DatePartitionFunction nvarchar(max) = N'CREATE PARTITION FUNCTION
DatePartitionFunction (datetime2) AS RANGE RIGHT FOR VALUES (';

DECLARE @i datetime2 = '20070101';

WHILE @i < '20110101'

BEGIN

 SET @DatePartitionFunction += '''' + CAST(@i as nvarchar(10)) + '''' +
N', ';

 SET @i = DATEADD(MM, 1, @i);

END

SET @DatePartitionFunction += '''' + CAST(@i as nvarchar(10))+ '''' + N');';

 497

EXEC sp_executesql @DatePartitionFunction;

GO

See Also
Partitioned Tables and Indexes
$partition
ALTER PARTITION FUNCTION
DROP PARTITION FUNCTION
CREATE PARTITION SCHEME
CREATE TABLE
CREATE INDEX
ALTER INDEX
EVENTDATA
sys.partition_functions
sys.partition_parameters
sys.partition_range_values
sys.partitions
sys.tables
sys.indexes
sys.index_columns

CREATE PARTITION SCHEME
Creates a scheme in the current database that maps the partitions of a partitioned table or index
to filegroups. The number and domain of the partitions of a partitioned table or index are
determined in a partition function. A partition function must first be created in a CREATE
PARTITION FUNCTION statement before creating a partition scheme.

 Transact-SQL Syntax Conventions

Syntax

CREATE PARTITION SCHEME partition_scheme_name
AS PARTITION partition_function_name
[ALL] TO ({ file_group_name | [PRIMARY] } [,...n])
[;]

Arguments
partition_scheme_name

Is the name of the partition scheme. Partition scheme names must be unique within the

http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�
http://msdn.microsoft.com/en-us/library/abc865d0-57a8-49da-8821-29457c808d2a(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/96515727-728b-4bea-804a-36ce915b8b75(SQL.110)�
http://msdn.microsoft.com/en-us/library/2012ed9d-3ea3-4c29-9b78-dfa54a392dce(SQL.110)�
http://msdn.microsoft.com/en-us/library/9aee483e-61f3-4613-bec6-f084161f45ac(SQL.110)�
http://msdn.microsoft.com/en-us/library/1c19e1b1-c925-4dad-a652-581692f4ab5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c42eba1-c19f-4045-ac82-b97a5e994090(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/211471aa-558a-475c-9b94-5913c143ed12(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 498

database and comply with the rules for identifiers.

partition_function_name

Is the name of the partition function using the partition scheme. Partitions created by the
partition function are mapped to the filegroups specified in the partition scheme.
partition_function_name must already exist in the database. A single partition cannot contain
both FILESTREAM and non-FILESTREAM filegroups.

ALL

Specifies that all partitions map to the filegroup provided in file_group_name, or to the
primary filegroup if [PRIMARY] is specified. If ALL is specified, only one file_group_name can
be specified.

file_group_name | [PRIMARY] [,...n]

Specifies the names of the filegroups to hold the partitions specified by
partition_function_name. file_group_name must already exist in the database.

If [PRIMARY] is specified, the partition is stored on the primary filegroup. If ALL is specified,
only one file_group_name can be specified. Partitions are assigned to filegroups, starting with
partition 1, in the order in which the filegroups are listed in [,...n]. The same file_group_name
can be specified more than one time in [,...n]. If n is not sufficient to hold the number of
partitions specified in partition_function_name, CREATE PARTITION SCHEME fails with an
error.

If partition_function_name generates less partitions than filegroups, the first unassigned
filegroup is marked NEXT USED, and an information message displays naming the NEXT
USED filegroup. If ALL is specified, the sole file_group_name maintains its NEXT USED
property for this partition_function_name. The NEXT USED filegroup will receive an additional
partition if one is created in an ALTER PARTITION FUNCTION statement. To create additional
unassigned filegroups to hold new partitions, use ALTER PARTITION SCHEME.

When you specify the primary filegroup in file_group_name [1,...n], PRIMARY must be
delimited, as in [PRIMARY], because it is a keyword.

Permissions
The following permissions can be used to execute CREATE PARTITION SCHEME:
• ALTER ANY DATASPACE permission. This permission defaults to members of the sysadmin

fixed server role and the db_owner and db_ddladmin fixed database roles.
• CONTROL or ALTER permission on the database in which the partition scheme is being

created.
• CONTROL SERVER or ALTER ANY DATABASE permission on the server of the database in

which the partition scheme is being created.

Examples

A. Creating a partition scheme that maps each partition to a different filegroup

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 499

The following example creates a partition function to partition a table or index into four
partitions. A partition scheme is then created that specifies the filegroups to hold each one of
the four partitions. This example assumes the filegroups already exist in the database.
CREATE PARTITION FUNCTION myRangePF1 (int)

AS RANGE LEFT FOR VALUES (1, 100, 1000);

GO

CREATE PARTITION SCHEME myRangePS1

AS PARTITION myRangePF1

TO (test1fg, test2fg, test3fg, test4fg);

The partitions of a table that uses partition function myRangePF1 on partitioning column col1
would be assigned as shown in the following table.

Filegroup test1fg test2fg test3fg test4fg

Partition 1 2 3 4

Values col1 <= 1 col1 > 1 AND
col1 <= 100

col1 > 100 AND
col1 <= 1000

col1 > 1000

B. Creating a partition scheme that maps multiple partitions to the same filegroup
If all the partitions map to the same filegroup, use the ALL keyword. But if multiple, but not all,
partitions are mapped to the same filegroup, the filegroup name must be repeated, as shown in
the following example.

CREATE PARTITION FUNCTION myRangePF2 (int)

AS RANGE LEFT FOR VALUES (1, 100, 1000);

GO

CREATE PARTITION SCHEME myRangePS2

AS PARTITION myRangePF2

TO (test1fg, test1fg, test1fg, test2fg);

The partitions of a table that uses partition function myRangePF2 on partitioning column col1
would be assigned as shown in the following table.

Filegroup test1fg test1fg test1fg test2fg

Partition 1 2 3 4

Values col1 <= 1 col1 > 1 AND
col1 <= 100

col1 > 100 AND
col1 <= 1000

col1 > 1000

 500

C. Creating a partition scheme that maps all partitions to the same filegroup
The following example creates the same partition function as in the previous examples, and a
partition scheme is created that maps all partitions to the same filegroup.
CREATE PARTITION FUNCTION myRangePF3 (int)

AS RANGE LEFT FOR VALUES (1, 100, 1000);

GO

CREATE PARTITION SCHEME myRangePS3

AS PARTITION myRangePF3

ALL TO (test1fg);

D. Creating a partition scheme that specifies a 'NEXT USED' filegroup
The following example creates the same partition function as in the previous examples, and a
partition scheme is created that lists more filegroups than there are partitions created by the
associated partition function.
CREATE PARTITION FUNCTION myRangePF4 (int)

AS RANGE LEFT FOR VALUES (1, 100, 1000);

GO

CREATE PARTITION SCHEME myRangePS4

AS PARTITION myRangePF4

TO (test1fg, test2fg, test3fg, test4fg, test5fg)

Executing the statement returns the following message.

Partition scheme 'myRangePS4' has been created successfully. 'test5fg' is

marked as the next used filegroup in partition scheme 'myRangePS4'.

If partition function myRangePF4 is changed to add a partition, filegroup test5fg receives the
newly created partition.

See Also
sys.index_columns (Transact-SQL)
ALTER PARTITION SCHEME
DROP PARTITION SCHEME
EVENTDATA
Creating Partitioned Tables and Indexes
sys.partition_schemes
sys.data_spaces
sys.destination_data_spaces
sys.partitions

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/7641df10-1921-42a7-ba6e-4cb03b3ba9c8(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed557fd5-12b0-4cef-9e4f-440b02e99d1f(SQL.110)�
http://msdn.microsoft.com/en-us/library/f39d55fe-2c0f-472d-a77f-cebc6fea95b5(SQL.110)�
http://msdn.microsoft.com/en-us/library/92df932b-ad5c-43f8-81f4-b158823ab189(SQL.110)�
http://msdn.microsoft.com/en-us/library/1c19e1b1-c925-4dad-a652-581692f4ab5e(SQL.110)�

 501

sys.tables
sys.indexes
sys.index_columns

CREATE PROCEDURE
Creates a Transact-SQL or common language runtime (CLR) stored procedure in SQL Server
2012. Stored procedures are similar to procedures in other programming languages in that they
can:
• Accept input parameters and return multiple values in the form of output parameters to the

calling procedure or batch.
• Contain programming statements that perform operations in the database, including calling

other procedures.
• Return a status value to a calling procedure or batch to indicate success or failure (and the

reason for failure).
Use this statement to create a permanent procedure in the current database or a temporary
procedure in the tempdb database.

 Transact-SQL Syntax Conventions

Syntax

--Transact-SQL Stored Procedure Syntax
CREATE { PROC | PROCEDURE } [schema_name.] procedure_name [; number]
 [{ @parameter [type_schema_name.] data_type }
 [VARYING] [= default] [OUT | OUTPUT] [READONLY]
] [,...n]
[WITH <procedure_option> [,...n]]
[FOR REPLICATION]
AS { [BEGIN] sql_statement [;] [...n] [END] }
[;]

<procedure_option> ::=
 [ENCRYPTION]
 [RECOMPILE]
 [EXECUTE AS Clause]

--CLR Stored Procedure Syntax

http://msdn.microsoft.com/en-us/library/8c42eba1-c19f-4045-ac82-b97a5e994090(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/211471aa-558a-475c-9b94-5913c143ed12(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 502

CREATE { PROC | PROCEDURE } [schema_name.] procedure_name [; number]
 [{ @parameter [type_schema_name.] data_type }
 [= default] [OUT | OUTPUT] [READONLY]
] [,...n]
[WITH EXECUTE AS Clause]
AS { EXTERNAL NAME assembly_name.class_name.method_name }
[;]

Arguments
schema_name

The name of the schema to which the procedure belongs. Procedures are schema-bound. If a
schema name is not specified when the procedure is created, the default schema of the user
who is creating the procedure is automatically assigned.

procedure_name

The name of the procedure. Procedure names must comply with the rules for identifiers
and must be unique within the schema.

Avoid the use of the sp_ prefix when naming procedures. This prefix is used by SQL Server to
designate system procedures. Using the prefix can cause application code to break if there is
a system procedure with the same name.

Local or global temporary procedures can be created by using one number sign (#)
before procedure_name (#procedure_name) for local temporary procedures, and two number
signs for global temporary procedures (##procedure_name). A local temporary procedure is
visible only to the connection that created it and is dropped when that connection is closed.
A global temporary procedure is available to all connections and is dropped at the end of the
last session using the procedure. Temporary names cannot be specified for CLR procedures.

The complete name for a procedure or a global temporary procedure, including ##, cannot
exceed 128 characters. The complete name for a local temporary procedure, including #,
cannot exceed 116 characters.

; number

An optional integer that is used to group procedures of the same name. These grouped
procedures can be dropped together by using one DROP PROCEDURE statement.

Note
This feature will be removed in a future version of Microsoft SQL Server. Avoid using this feature in
new development work, and plan to modify applications that currently use this feature.

Numbered procedures cannot use the xml or CLR user-defined types and cannot be used in
a plan guide.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 503

@ parameter

A parameter declared in the procedure. Specify a parameter name by using the at sign (@) as
the first character. The parameter name must comply with the rules for identifiers.
Parameters are local to the procedure; the same parameter names can be used in other
procedures.

One or more parameters can be declared; the maximum is 2,100. The value of each declared
parameter must be supplied by the user when the procedure is called unless a default value
for the parameter is defined or the value is set to equal another parameter. If a procedure
contains table-valued parameters, and the parameter is missing in the call, an empty
table is passed in. Parameters can take the place only of constant expressions; they cannot be
used instead of table names, column names, or the names of other database objects. For
more information, see EXECUTE.

Parameters cannot be declared if FOR REPLICATION is specified.

[type_schema_name.] data_type

The data type of the parameter and the schema to which the data type belongs.

Guidelines for Transact-SQL procedures:

• All Transact-SQL data types can be used as parameters.

• You can use the user-defined table type to create table-valued parameters. Table-valued
parameters can only be INPUT parameters and must be accompanied by the READONLY
keyword. For more information, see Table-valued Parameters (Database
Engine)

• cursor data types can only be OUTPUT parameters and must be accompanied by the
VARYING keyword.

Guidelines for CLR procedures:

• All of the native SQL Server data types that have an equivalent in managed code can be
used as parameters. For more information about the correspondence between CLR types
and SQL Server system data types, see SQL Data Types and Their .NET
Equivalents. For more information about SQL Server system data types and their
syntax, see Data Types.

• Table-valued or cursor data types cannot be used as parameters.

• If the data type of the parameter is a CLR user-defined type, you must have EXECUTE
permission on the type.

VARYING

Specifies the result set supported as an output parameter. This parameter is dynamically
constructed by the procedure and its contents may vary. Applies only to cursor parameters.
This option is not valid for CLR procedures.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�
http://msdn.microsoft.com/en-us/library/5e95a382-1e01-4c74-81f5-055612c2ad99(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc806b71-cc55-470a-913e-c5f761d5c4b7(SQL.110)�
http://msdn.microsoft.com/en-us/library/5e95a382-1e01-4c74-81f5-055612c2ad99(SQL.110)�
http://msdn.microsoft.com/en-us/library/5e95a382-1e01-4c74-81f5-055612c2ad99(SQL.110)�
http://msdn.microsoft.com/en-us/library/89b43ee9-b9ad-4281-a4bf-c7c8d116daa2(SQL.110)�
http://msdn.microsoft.com/en-us/library/89b43ee9-b9ad-4281-a4bf-c7c8d116daa2(SQL.110)�
http://msdn.microsoft.com/en-us/library/a54f7373-b247-4d61-8fb8-7f2ec7a8d0a4(SQL.110)�

 504

default

A default value for a parameter. If a default value is defined for a parameter, the procedure
can be executed without specifying a value for that parameter. The default value must be a
constant or it can be NULL. The constant value can be in the form of a wildcard, making it
possible to use the LIKE keyword when passing the parameter into the procedure. See
Example C below.

Default values are recorded in the sys.parameters.default column only for CLR procedures.
That column will be NULL for Transact-SQL procedure parameters.

OUT | OUTPUT

Indicates that the parameter is an output parameter. Use OUTPUT parameters to return
values to the caller of the procedure. text, ntext, and image parameters cannot be used as
OUTPUT parameters, unless the procedure is a CLR procedure. An output parameter can be a
cursor placeholder, unless the procedure is a CLR procedure. A table-value data type cannot
be specified as an OUTPUT parameter of a procedure.

READONLY

Indicates that the parameter cannot be updated or modified within the body of the
procedure. If the parameter type is a table-value type, READONLY must be specified.

RECOMPILE

Indicates that the Database Engine does not cache a query plan for this procedure, forcing it
to be compiled each time it is executed. For more information regarding the reasons for
forcing a recompile, see Recompiling Stored Procedures. This option cannot be used
when FOR REPLICATION is specified or for CLR procedures.

To instruct the Database Engine to discard query plans for individual queries inside a
procedure, use the RECOMPILE query hint in the definition of the query. For more
information, see Query Hint (Transact-SQL).

ENCRYPTION

Indicates that SQL Server will convert the original text of the CREATE PROCEDURE statement
to an obfuscated format. The output of the obfuscation is not directly visible in any of the
catalog views in SQL Server. Users who have no access to system tables or database files
cannot retrieve the obfuscated text. However, the text will be available to privileged users
who can either access system tables over the DAC port or directly access database files.
Also, users who can attach a debugger to the server process can retrieve the decrypted
procedure from memory at runtime. For more information about accessing system metadata,
see Metadata Visibility Configuration.

This option is not valid for CLR procedures.

Procedures created with this option cannot be published as part of SQL Server replication.

EXECUTE AS

Specifies the security context under which to execute the procedure.

http://msdn.microsoft.com/en-us/library/b90deb27-0099-4fe7-ba60-726af78f7c18(SQL.110)�
http://msdn.microsoft.com/en-us/library/66fb1520-dcdf-4aab-9ff1-7de8f79e5b2d(SQL.110)�
http://msdn.microsoft.com/en-us/library/993e0820-17f2-4c43-880c-d38290bf7abc(SQL.110)�
http://msdn.microsoft.com/en-us/library/50d2e015-05ae-4014-a1cd-4de7866ad651(SQL.110)�

 505

For more information, see EXECUTE AS Clause (Transact-SQL).

FOR REPLICATION

Specifies that the procedure is created for replication. Consequently, it cannot be executed
on the Subscriber. A procedure created with the FOR REPLICATION option is used as a
procedure filter and is executed only during replication. Parameters cannot be declared if
FOR REPLICATION is specified. FOR REPLICATION cannot be specified for CLR procedures.
The RECOMPILE option is ignored for procedures created with FOR REPLICATION.

A FOR REPLICATION procedure will have an object type RF in sys.objects and
sys.procedures.

{ [BEGIN] sql_statement [;] [...n] [END] }

One or more Transact-SQL statements comprising the body of the procedure. You can use
the optional BEGIN and END keywords to enclose the statements. For information, see the
Best Practices, General Remarks, and Limitations and Restrictions sections that follow.

EXTERNAL NAME assembly_name.class_name.method_name

Specifies the method of a .NET Framework assembly for a CLR procedure to reference.
class_name must be a valid SQL Server identifier and must exist as a class in the assembly. If
the class has a namespace-qualified name that uses a period (.) to separate namespace parts,
the class name must be delimited by using brackets ([]) or quotation marks (" "). The
specified method must be a static method of the class.

By default, SQL Server cannot execute CLR code. You can create, modify, and drop database
objects that reference common language runtime modules; however, you cannot execute
these references in SQL Server until you enable the clr enabled option. To enable the
option, use sp_configure.

Note
CLR procedures are not supported in a contained database.

Best Practices
Although this is not an exhaustive list of best practices, these suggestions may improve
procedure performance.
• Use the SET NOCOUNT ON statement as the first statement in the body of the procedure.

That is, place it just after the AS keyword. This turns off messages that SQL Server sends back
to the client after any SELECT, INSERT, UPDATE, MERGE, and DELETE statements are
executed. Overall performance of the database and application is improved by eliminating
this unnecessary network overhead. For information, see SET NOCOUNT (Transact-SQL).

• Use schema names when creating or referencing database objects in the procedure. It will
take less processing time for the Database Engine to resolve object names if it does not have
to search multiple schemas. It will also prevent permission and access problems caused by a
user’s default schema being assigned when objects are created without specifying the
schema.

http://msdn.microsoft.com/en-us/library/bd517aa3-f06e-4356-87d8-70de5df4494a(SQL.110)�
http://msdn.microsoft.com/en-us/library/0722d382-8fd3-4fac-b4a8-cd2b7a7e0293(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�
http://msdn.microsoft.com/en-us/library/eb3e6727-cb26-4bc2-84c7-171cbac02029(SQL.110)�

 506

• Avoid wrapping functions around columns specified in the WHERE and JOIN clauses. Doing
so makes the columns non-deterministic and prevents the query processor from using
indexes.

• Avoid using scalar functions in SELECT statements that return many rows of data. Because
the scalar function must be applied to every row, the resulting behavior is like row-based
processing and degrades performance.

• Avoid the use of SELECT *. Instead, specify the required column names. This can prevent
some Database Engine errors that stop procedure execution. For example, a SELECT *
statement that returns data from a 12 column table and then inserts that data into a 12
column temporary table will succeed until the number or order of columns in either table is
changed.

• Avoid processing or returning too much data. Narrow the results as early as possible in the
procedure code so that any subsequent operations performed by the procedure are done
using the smallest data set possible. Send just the essential data to the client application. It is
more efficient than sending extra data across the network and forcing the client application
to work through unnecessarily large result sets.

• Use explicit transactions by using BEGIN/END TRANSACTION and keep transactions as short
as possible. Longer transactions mean longer record locking and a greater potential for
deadlocking.

• Use the Transact-SQL TRY…CATCH feature for error handling inside a procedure.
TRY…CATCH can encapsulate an entire block of Transact-SQL statements. This not only
creates less performance overhead, it also makes error reporting more accurate with
significantly less programming.

• Use the DEFAULT keyword on all table columns that are referenced by CREATE TABLE or
ALTER TABLE Transact-SQL statements in the body of the procedure. This will prevent
passing NULL to columns that do not allow null values.

• Use NULL or NOT NULL for each column in a temporary table. The ANSI_DFLT_ON and
ANSI_DFLT_OFF options control the way the Database Engine assigns the NULL or NOT
NULL attributes to columns when these attributes are not specified in a CREATE TABLE or
ALTER TABLE statement. If a connection executes a procedure with different settings for
these options than the connection that created the procedure, the columns of the table
created for the second connection can have different nullability and exhibit different
behavior. If NULL or NOT NULL is explicitly stated for each column, the temporary tables are
created by using the same nullability for all connections that execute the procedure.

• Use modification statements that convert nulls and include logic that eliminates rows with
null values from queries. Be aware that in Transact-SQL, NULL is not an empty or “nothing”
value. It is a placeholder for an unknown value and can cause unexpected behavior,
especially when querying for result sets or using AGGREGATE functions.

• Use the UNION ALL operator instead of the UNION or OR operators, unless there is a
specific need for distinct values. The UNION ALL operator requires less processing overhead
because duplicates are not filtered out of the result set.

 507

General Remarks
There is no predefined maximum size of a procedure.
Variables specified in the procedure can be user-defined or system variables, such as @@SPID.
When a procedure is executed for the first time, it is compiled to determine an optimal access
plan to retrieve the data. Subsequent executions of the procedure may reuse the plan already
generated if it still remains in the plan cache of the Database Engine.
One or more procedures can execute automatically when SQL Server starts. The procedures
must be created by the system administrator in the master database and executed under the
sysadmin fixed server role as a background process. The procedures cannot have any input or
output parameters. For more information, see Executing Stored Procedures (Database Engine).
Procedures are nested when one procedure call another or executes managed code by
referencing a CLR routine, type, or aggregate. Procedures and managed code references can be
nested up to 32 levels. The nesting level increases by one when the called procedure or
managed code reference begins execution and decreases by one when the called procedure or
managed code reference completes execution. Methods invoked from within the managed code
do not count against the nesting level limit. However, when a CLR stored procedure performs
data access operations through the SQL Server managed provider, an additional nesting level is
added in the transition from managed code to SQL.
Attempting to exceed the maximum nesting level causes the entire calling chain to fail. You can
use the @@NESTLEVEL function to return the nesting level of the current stored procedure
execution.

Interoperability
The Database Engine saves the settings of both SET QUOTED_IDENTIFIER and SET ANSI_NULLS
when a Transact-SQL procedure is created or modified. These original settings are used when
the procedure is executed. Therefore, any client session settings for SET QUOTED_IDENTIFIER
and SET ANSI_NULLS are ignored when the procedure is running.
Other SET options, such as SET ARITHABORT, SET ANSI_WARNINGS, or SET ANSI_PADDINGS are
not saved when a procedure is created or modified. If the logic of the procedure depends on a
particular setting, include a SET statement at the start of the procedure to guarantee the
appropriate setting. When a SET statement is executed from a procedure, the setting remains in
effect only until the procedure has finished running. The setting is then restored to the value the
procedure had when it was called. This enables individual clients to set the options they want
without affecting the logic of the procedure.
Any SET statement can be specified inside a procedure, except SET SHOWPLAN_TEXT and SET
SHOWPLAN_ALL. These must be the only statements in the batch. The SET option chosen
remains in effect during the execution of the procedure and then reverts to its former setting.

SET ANSI_WARNINGS is not honored when passing parameters in a procedure, user-
defined function, or when declaring and setting variables in a batch statement. For

Note

http://msdn.microsoft.com/en-us/library/a0b1337d-2059-4872-8c62-3f967d8b170f(SQL.110)�

 508

example, if a variable is defined as char(3), and then set to a value larger than three
characters, the data is truncated to the defined size and the INSERT or UPDATE
statement succeeds.

Limitations and Restrictions
The CREATE PROCEDURE statement cannot be combined with other Transact-SQL statements in
a single batch.
The following statements cannot be used anywhere in the body of a stored procedure.

CREATE AGGREGATE CREATE SCHEMA SET SHOWPLAN_TEXT

CREATE DEFAULT CREATE or ALTER TRIGGER SET SHOWPLAN_XML

CREATE or ALTER FUNCTION CREATE or ALTER VIEW USE database_name

CREATE or ALTER
PROCEDURE

SET PARSEONLY

CREATE RULE SET SHOWPLAN_ALL

A procedure can reference tables that do not yet exist. At creation time, only syntax checking is
performed. The procedure is not compiled until it is executed for the first time. Only during
compilation are all objects referenced in the procedure resolved. Therefore, a syntactically
correct procedure that references tables that do not exist can be created successfully; however,
the procedure will fail at execution time if the referenced tables do not exist.
You cannot specify a function name as a parameter default value or as the value passed to a
parameter when executing a procedure. However, you can pass a function as a variable as
shown in the following example.

-- Passing the function value as a variable.

DECLARE @CheckDate datetime = GETDATE();

EXEC dbo.uspGetWhereUsedProductID 819, @CheckDate;

GO

If the procedure makes changes on a remote instance of SQL Server, the changes cannot be
rolled back. Remote procedures do not take part in transactions.
For the Database Engine to reference the correct method when it is overloaded in the .NET
Framework, the method specified in the EXTERNAL NAME clause must have the following
characteristics:
• Be declared as a static method.
• Receive the same number of parameters as the number of parameters of the procedure.

 509

• Use parameter types that are compatible with the data types of the corresponding
parameters of the SQL Server procedure. For information about matching SQL Server data
types to the .NET Framework data types, see SQL Data Types and Their .NET Equivalents.

Metadata
The following table lists the catalog views and dynamic management views that you can use to
return information about stored procedures.

View Description

sys.sql_modules Returns the definition of a Transact-SQL
procedure. The text of a procedure created
with the ENCRYPTION option cannot be
viewed by using the sys.sql_modules
catalog view.

sys.assembly_modules Returns information about a CLR
procedure.

sys.parameters Returns information about the parameters
that are defined in a procedure

sys.sql_expression_dependencies
sys.dm_sql_referenced_entities
sys.dm_sql_referencing_entities

Returns the objects that are referenced by a
procedure.

To estimate the size of a compiled procedure, use the following Performance Monitor Counters.

Performance Monitor object name Performance Monitor Counter name

SQLServer: Plan Cache Object Cache Hit Ratio

 Cache Pages

 Cache Object Counts*

*These counters are available for various categories of cache objects including ad hoc Transact-
SQL, prepared Transact-SQL, procedures, triggers, and so on. For more information, see SQL
Server, Plan Cache Object.

Security

Permissions

http://msdn.microsoft.com/en-us/library/89b43ee9-b9ad-4281-a4bf-c7c8d116daa2(SQL.110)�
http://msdn.microsoft.com/en-us/library/23d3ccd2-f356-4d89-a2cd-bee381243f99(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f9e644e-8065-49a2-b53d-db7df98f70d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/24e2764b-c8e5-4322-97a4-7407d8b8a92b(SQL.110)�
http://msdn.microsoft.com/en-us/library/78a218e4-bf99-4a6a-acbf-ff82425a5946(SQL.110)�
http://msdn.microsoft.com/en-us/library/077111cb-b860-4d61-916f-bac5d532912f(SQL.110)�
http://msdn.microsoft.com/en-us/library/c16f8f0a-483f-4feb-842e-da90426045ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/225e2b02-8d2f-4f29-9eba-f5847c36ea99(SQL.110)�
http://msdn.microsoft.com/en-us/library/225e2b02-8d2f-4f29-9eba-f5847c36ea99(SQL.110)�

 510

Requires CREATE PROCEDURE permission in the database and ALTER permission on the
schema in which the procedure is being created, or requires membership in the db_ddladmin
fixed database role.
For CLR stored procedures, requires ownership of the assembly referenced in the EXTERNAL
NAME clause, or REFERENCES permission on that assembly.

Examples

Category Featured syntax elements

Basic Syntax CREATE PROCEDURE

Passing parameters @parameter • = default • OUTPUT • table-
valued parameter type • CURSOR VARYING

Modifying data by using a stored
procedure

UPDATE

Error Handling TRY…CATCH

Obfuscating the procedure definition WITH ENCRYPTION

Forcing the Procedure to Recompile WITH RECOMPILE

Setting the Security Context EXECUTE AS

Basic Syntax
Examples in this section demonstrate the basic functionality of the CREATE PROCEDURE
statement using the minimum required syntax.

A. Creating a simple Transact-SQL procedure
The following example creates a stored procedure that returns all employees (first and last
names supplied), their job titles, and their department names from a view. This procedure does
not use any parameters. The example then demonstrates three methods of executing the
procedure.
USE AdventureWorks2012;

GO

IF OBJECT_ID ('HumanResources.uspGetAllEmployees', 'P') IS NOT NULL

 DROP PROCEDURE HumanResources.uspGetAllEmployees;

GO

CREATE PROCEDURE HumanResources.uspGetAllEmployees

AS

 SET NOCOUNT ON;

 511

 SELECT LastName, FirstName, Department

 FROM HumanResources.vEmployeeDepartmentHistory;

GO

The uspGetEmployees procedure can be executed in the following ways:
EXECUTE HumanResources.uspGetAllEmployees;

GO

-- Or

EXEC HumanResources.uspGetAllEmployees;

GO

-- Or, if this procedure is the first statement within a batch:

HumanResources.uspGetAllEmployees;

B. Returning more than one result set
The following procedure returns two result sets.
USE AdventureWorks2012;

GO

CREATE PROCEDURE dbo.uspMultipleResults

AS

SELECT TOP(10) BusinessEntityID, Lastname, FirstName FROM Person.Person;

SELECT TOP(10) CustomerID, AccountNumber FROM Sales.Customer;

GO

C. Creating a CLR stored procedure
The following example creates the GetPhotoFromDB procedure that references
the GetPhotoFromDB method of the LargeObjectBinary class in the HandlingLOBUsingCLR
assembly. Before the procedure is created, the HandlingLOBUsingCLR assembly is registered in
the local database.

CREATE ASSEMBLY HandlingLOBUsingCLR

FROM '\\MachineName\HandlingLOBUsingCLR\bin\Debug\HandlingLOBUsingCLR.dll';

GO

CREATE PROCEDURE dbo.GetPhotoFromDB

(

 @ProductPhotoID int,

 @CurrentDirectory nvarchar(1024),

 @FileName nvarchar(1024)

)

 512

AS EXTERNAL NAME HandlingLOBUsingCLR.LargeObjectBinary.GetPhotoFromDB;

GO

Passing Parameters
Examples in this section demonstrate how to use input and output parameters to pass values to
and from a stored procedure.

A. Creating a procedure with input parameters
The following example creates a stored procedure that returns information for a specific
employee by passing values for the employee's first name and last name. This procedure
accepts only exact matches for the parameters passed.
USE AdventureWorks2012;

GO

IF OBJECT_ID ('HumanResources.uspGetEmployees', 'P') IS NOT NULL

 DROP PROCEDURE HumanResources.uspGetEmployees;

GO

CREATE PROCEDURE HumanResources.uspGetEmployees

 @LastName nvarchar(50),

 @FirstName nvarchar(50)

AS

 SET NOCOUNT ON;

 SELECT FirstName, LastName, Department

 FROM HumanResources.vEmployeeDepartmentHistory

 WHERE FirstName = @FirstName AND LastName = @LastName;

GO

The uspGetEmployees procedure can be executed in the following ways:
EXECUTE HumanResources.uspGetEmployees N'Ackerman', N'Pilar';

-- Or

EXEC HumanResources.uspGetEmployees @LastName = N'Ackerman', @FirstName =
N'Pilar';

GO

-- Or

EXECUTE HumanResources.uspGetEmployees @FirstName = N'Pilar', @LastName =
N'Ackerman';

GO

-- Or, if this procedure is the first statement within a batch:

HumanResources.uspGetEmployees N'Ackerman', N'Pilar';

 513

B. Using a procedure with wildcard parameters
The following example creates a stored procedure that returns information for employees by
passing full or partial values for the employee's first name and last name. This procedure pattern
matches the parameters passed or, if not supplied, uses the preset default (last names that start
with the letter D).
USE AdventureWorks2012;

GO

IF OBJECT_ID ('HumanResources.uspGetEmployees2', 'P') IS NOT NULL

 DROP PROCEDURE HumanResources.uspGetEmployees2;

GO

CREATE PROCEDURE HumanResources.uspGetEmployees2

 @LastName nvarchar(50) = N'D%',

 @FirstName nvarchar(50) = N'%'

AS

 SET NOCOUNT ON;

 SELECT FirstName, LastName, Department

 FROM HumanResources.vEmployeeDepartmentHistory

 WHERE FirstName LIKE @FirstName AND LastName LIKE @LastName;

GO

The uspGetEmployees2 procedure can be executed in many combinations. Only a few possible
combinations are shown here.
Copy Code

EXECUTE HumanResources.uspGetEmployees2;

-- Or

EXECUTE HumanResources.uspGetEmployees2 N'Wi%';

-- Or

EXECUTE HumanResources.uspGetEmployees2 @FirstName = N'%';

-- Or

EXECUTE HumanResources.uspGetEmployees2 N'[CK]ars[OE]n';

-- Or

EXECUTE HumanResources.uspGetEmployees2 N'Hesse', N'Stefen';

-- Or

EXECUTE HumanResources.uspGetEmployees2 N'H%', N'S%';

C. Using OUTPUT parameters
The following example creates the uspGetList procedure. This procedures returns a list of
products that have prices that do not exceed a specified amount. The example shows using

 514

multiple SELECT statements and multiple OUTPUT parameters. OUTPUT parameters enable an
external procedure, a batch, or more than one Transact-SQL statement to access a value set
during the procedure execution.
USE AdventureWorks2012;

GO

IF OBJECT_ID ('Production.uspGetList', 'P') IS NOT NULL

 DROP PROCEDURE Production.uspGetList;

GO

CREATE PROCEDURE Production.uspGetList @Product varchar(40)

 , @MaxPrice money

 , @ComparePrice money OUTPUT

 , @ListPrice money OUT

AS

 SET NOCOUNT ON;

 SELECT p.[Name] AS Product, p.ListPrice AS 'List Price'

 FROM Production.Product AS p

 JOIN Production.ProductSubcategory AS s

 ON p.ProductSubcategoryID = s.ProductSubcategoryID

 WHERE s.[Name] LIKE @Product AND p.ListPrice < @MaxPrice;

-- Populate the output variable @ListPprice.

SET @ListPrice = (SELECT MAX(p.ListPrice)

 FROM Production.Product AS p

 JOIN Production.ProductSubcategory AS s

 ON p.ProductSubcategoryID = s.ProductSubcategoryID

 WHERE s.[Name] LIKE @Product AND p.ListPrice < @MaxPrice);

-- Populate the output variable @compareprice.

SET @ComparePrice = @MaxPrice;

GO

Execute uspGetList to return a list of Adventure Works products (Bikes) that cost less than
$700. The OUTPUT parameters @Cost and @ComparePrices are used with control-of-flow
language to return a message in the Messages window.

The OUTPUT variable must be defined when the procedure is created and also when the
variable is used. The parameter name and variable name do not have to match; however,
the data type and parameter positioning must match, unless @ListPrice = variable is
used.

Note

 515

USE AdventureWorks2012;

GO

IF OBJECT_ID ('Production.uspGetList', 'P') IS NOT NULL

 DROP PROCEDURE Production.uspGetList;

GO

CREATE PROCEDURE Production.uspGetList @Product varchar(40)

 , @MaxPrice money

 , @ComparePrice money OUTPUT

 , @ListPrice money OUT

AS

 SET NOCOUNT ON;

 SELECT p.[Name] AS Product, p.ListPrice AS 'List Price'

 FROM Production.Product AS p

 JOIN Production.ProductSubcategory AS s

 ON p.ProductSubcategoryID = s.ProductSubcategoryID

 WHERE s.[Name] LIKE @Product AND p.ListPrice < @MaxPrice;

-- Populate the output variable @ListPprice.

SET @ListPrice = (SELECT MAX(p.ListPrice)

 FROM Production.Product AS p

 JOIN Production.ProductSubcategory AS s

 ON p.ProductSubcategoryID = s.ProductSubcategoryID

 WHERE s.[Name] LIKE @Product AND p.ListPrice < @MaxPrice);

-- Populate the output variable @compareprice.

SET @ComparePrice = @MaxPrice;

GO

Here is the partial result set:
Product List Price
-------------------------- ----------
Road-750 Black, 58 539.99
Mountain-500 Silver, 40 564.99
Mountain-500 Silver, 42 564.99
...
Road-750 Black, 48 539.99
Road-750 Black, 52 539.99
(14 row(s) affected)

 516

These items can be purchased for less than $700.00.

D. Using a Table-Valued Parameter
The following example uses a table-valued parameter type to insert multiple rows into a table.
The example creates the parameter type, declares a table variable to reference it, fills the
parameter list, and then passes the values to a stored procedure. The stored procedure uses the
values to insert multiple rows into a table.

USE AdventureWorks2012;

GO

/* Create a table type. */

CREATE TYPE LocationTableType AS TABLE

(LocationName VARCHAR(50)

, CostRate INT);

GO

/* Create a procedure to receive data for the table-valued parameter. */

CREATE PROCEDURE usp_InsertProductionLocation

 @TVP LocationTableType READONLY

 AS

 SET NOCOUNT ON

 INSERT INTO [AdventureWorks2012].[Production].[Location]

 ([Name]

 ,[CostRate]

 ,[Availability]

 ,[ModifiedDate])

 SELECT *, 0, GETDATE()

 FROM @TVP;

GO

/* Declare a variable that references the type. */

DECLARE @LocationTVP

AS LocationTableType;

 517

/* Add data to the table variable. */

INSERT INTO @LocationTVP (LocationName, CostRate)

 SELECT [Name], 0.00

 FROM

 [AdventureWorks2012].[Person].[StateProvince];

/* Pass the table variable data to a stored procedure. */

EXEC usp_InsertProductionLocation @LocationTVP;

GO

E. Using an OUTPUT cursor parameter
The following example uses the OUTPUT cursor parameter to pass a cursor that is local to a
procedure back to the calling batch, procedure, or trigger.
First, create the procedure that declares and then opens a cursor on the Currency table:
USE AdventureWorks2012;

GO

IF OBJECT_ID ('dbo.uspCurrencyCursor', 'P') IS NOT NULL

 DROP PROCEDURE dbo.uspCurrencyCursor;

GO

CREATE PROCEDURE dbo.uspCurrencyCursor

 @CurrencyCursor CURSOR VARYING OUTPUT

AS

 SET NOCOUNT ON;

 SET @CurrencyCursor = CURSOR

 FORWARD_ONLY STATIC FOR

 SELECT CurrencyCode, Name

 FROM Sales.Currency;

 OPEN @CurrencyCursor;

GO

Next, run a batch that declares a local cursor variable, executes the procedure to assign the
cursor to the local variable, and then fetches the rows from the cursor.
USE AdventureWorks2012;

GO

DECLARE @MyCursor CURSOR;

EXEC dbo.uspCurrencyCursor @CurrencyCursor = @MyCursor OUTPUT;

WHILE (@@FETCH_STATUS = 0)

 518

BEGIN;

 FETCH NEXT FROM @MyCursor;

END;

CLOSE @MyCursor;

DEALLOCATE @MyCursor;

GO

Modifying Data by using a Stored Procedure
Examples in this section demonstrate how to insert or modify data in tables or views by
including a Data Manipulation Language (DML) statement in the definition of the procedure.

A. Using UPDATE in a stored procedure
The following example uses an UPDATE statement in a stored procedure. The procedure takes
one input parameter, @NewHours and one output parameter @RowCount. The @NewHours
parameter value is used in the UPDATE statement to update the column VacationHours in the
table HumanResources.Employee. The @RowCount output parameter is used to return the
number of rows affected to a local variable. A CASE expression is used in the SET clause to
conditionally determine the value that is set for VacationHours. When the employee is paid
hourly (SalariedFlag = 0), VacationHours is set to the current number of hours plus the value
specified in @NewHours; otherwise, VacationHours is set to the value specified in @NewHours.
USE AdventureWorks2012;

GO

CREATE PROCEDURE HumanResources.Update_VacationHours

@NewHours smallint

AS

SET NOCOUNT ON;

UPDATE HumanResources.Employee

SET VacationHours =

 (CASE

 WHEN SalariedFlag = 0 THEN VacationHours + @NewHours

 ELSE @NewHours

 END

)

WHERE CurrentFlag = 1;

GO

EXEC HumanResources.Update_VacationHours 40;

Error Handling

 519

Examples in this section demonstrate methods to handle errors that might occur when the
stored procedure is executed.

Using TRY…CATCH
The following example using the TRY…CATCH construct to return error information caught
during the execution of a stored procedure.

USE AdventureWorks2012;

GO

CREATE PROCEDURE Production.uspDeleteWorkOrder (@WorkOrderID int)

AS

SET NOCOUNT ON;

BEGIN TRY

 BEGIN TRANSACTION

 -- Delete rows from the child table, WorkOrderRouting, for the specified

work order.

 DELETE FROM Production.WorkOrderRouting

 WHERE WorkOrderID = @WorkOrderID;

 -- Delete the rows from the parent table, WorkOrder, for the specified

work order.

 DELETE FROM Production.WorkOrder

 WHERE WorkOrderID = @WorkOrderID;

 COMMIT

END TRY

BEGIN CATCH

 -- Determine if an error occurred.

 IF @@TRANCOUNT > 0

 ROLLBACK

 -- Return the error information.

 DECLARE @ErrorMessage nvarchar(4000), @ErrorSeverity int;

 SELECT @ErrorMessage = ERROR_MESSAGE(),@ErrorSeverity = ERROR_SEVERITY();

 520

 RAISERROR(@ErrorMessage, @ErrorSeverity, 1);

END CATCH;

GO

EXEC Production.uspDeleteWorkOrder 13;

/* Intentionally generate an error by reversing the order in which rows are

deleted from the

 parent and child tables. This change does not cause an error when the

procedure

 definition is altered, but produces an error when the procedure is

executed.

*/

ALTER PROCEDURE Production.uspDeleteWorkOrder (@WorkOrderID int)

AS

BEGIN TRY

 BEGIN TRANSACTION

 -- Delete the rows from the parent table, WorkOrder, for the specified

work order.

 DELETE FROM Production.WorkOrder

 WHERE WorkOrderID = @WorkOrderID;

 -- Delete rows from the child table, WorkOrderRouting, for the specified

work order.

 DELETE FROM Production.WorkOrderRouting

 WHERE WorkOrderID = @WorkOrderID;

 COMMIT TRANSACTION

END TRY

BEGIN CATCH

 -- Determine if an error occurred.

 IF @@TRANCOUNT > 0

 521

 ROLLBACK TRANSACTION

 -- Return the error information.

 DECLARE @ErrorMessage nvarchar(4000), @ErrorSeverity int;

 SELECT @ErrorMessage = ERROR_MESSAGE(),@ErrorSeverity = ERROR_SEVERITY();

 RAISERROR(@ErrorMessage, @ErrorSeverity, 1);

END CATCH;

GO

-- Execute the altered procedure.

EXEC Production.uspDeleteWorkOrder 15;

DROP PROCEDURE Production.uspDeleteWorkOrder;

Obfuscating the Procedure Definition
Examples in this section show how to obfuscate the definition of the stored procedure.

A. Using the WITH ENCRYPTION option
The following example creates the HumanResources.uspEncryptThis procedure.
USE AdventureWorks2012;

GO

IF OBJECT_ID ('HumanResources.uspEncryptThis', 'P') IS NOT NULL

 DROP PROCEDURE HumanResources.uspEncryptThis;

GO

CREATE PROCEDURE HumanResources.uspEncryptThis

WITH ENCRYPTION

AS

 SET NOCOUNT ON;

 SELECT BusinessEntityID, JobTitle, NationalIDNumber, VacationHours,
SickLeaveHours

 FROM HumanResources.Employee;

GO

The WITH ENCRYPTION option obfuscates the definition of the procedure when querying the
system catalog or using metadata functions, as shown by the following examples.
Run sp_helptext:

EXEC sp_helptext 'HumanResources.uspEncryptThis';

Here is the result set.

 522

The text for object 'HumanResources.uspEncryptThis' is encrypted.
Directly query the sys.sql_modules catalog view:

USE AdventureWorks2012;

GO

SELECT definition FROM sys.sql_modules

WHERE object_id = OBJECT_ID('HumanResources.uspEncryptThis');

Here is the result set.
definition

NULL

Forcing the Procedure to Recompile
Examples in this section use the WITH RECOMPILE clause to force the procedure to recompile
every time it is executed.

A. Using the WITH RECOMPILE option
The WITH RECOMPILE clause is helpful when the parameters supplied to the procedure will not
be typical, and when a new execution plan should not be cached or stored in memory.
USE AdventureWorks2012;

GO

IF OBJECT_ID ('dbo.uspProductByVendor', 'P') IS NOT NULL

 DROP PROCEDURE dbo.uspProductByVendor;

GO

CREATE PROCEDURE dbo.uspProductByVendor @Name varchar(30) = '%'

WITH RECOMPILE

AS

 SET NOCOUNT ON;

 SELECT v.Name AS 'Vendor name', p.Name AS 'Product name'

 FROM Purchasing.Vendor AS v

 JOIN Purchasing.ProductVendor AS pv

 ON v.BusinessEntityID = pv.BusinessEntityID

 JOIN Production.Product AS p

 ON pv.ProductID = p.ProductID

 WHERE v.Name LIKE @Name;

GO

Setting the Security Context

 523

Examples in this section use the EXECUTE AS clause to set the security context in which the
stored procedure executes.

A. Using the EXECUTE AS clause
The following example shows using the EXECUTE AS clause to specify the security context in
which a procedure can be executed. In the example, the option CALLER specifies that the
procedure can be executed in the context of the user that calls it.
USE AdventureWorks2012;

GO

IF OBJECT_ID ('Purchasing.uspVendorAllInfo', 'P') IS NOT NULL

 DROP PROCEDURE Purchasing.uspVendorAllInfo;

GO

CREATE PROCEDURE Purchasing.uspVendorAllInfo

WITH EXECUTE AS CALLER

AS

 SET NOCOUNT ON;

 SELECT v.Name AS Vendor, p.Name AS 'Product name',

 v.CreditRating AS 'Rating',

 v.ActiveFlag AS Availability

 FROM Purchasing.Vendor v

 INNER JOIN Purchasing.ProductVendor pv

 ON v.BusinessEntityID = pv.BusinessEntityID

 INNER JOIN Production.Product p

 ON pv.ProductID = p.ProductID

 ORDER BY v.Name ASC;

GO

B. Creating custom permission sets
The following example uses EXECUTE AS to create custom permissions for a database operation.
Some operations such as TRUNCATE TABLE, do not have grantable permissions. By
incorporating the TRUNCATE TABLE statement within a stored procedure and specifying that
procedure execute as a user that has permissions to modify the table, you can extend the
permissions to truncate the table to the user that you grant EXECUTE permissions on the
procedure.

CREATE PROCEDURE dbo.TruncateMyTable

WITH EXECUTE AS SELF

AS TRUNCATE TABLE MyDB..MyTable;

See Also

http://msdn.microsoft.com/en-us/library/bd517aa3-f06e-4356-87d8-70de5df4494a(SQL.110)�

 524

ALTER PROCEDURE
Control-of-Flow Language
Cursors (Database Engine)
Data Types (Transact-SQL)
DECLARE @local_variable
DROP PROCEDURE
EXECUTE (Transact-SQL)
EXECUTE AS (Transact-SQL)
Stored Procedures (Database Engine)
sp_procoption
sp_recompile
sys.sql_modules
sys.parameters
sys.procedures (Transact-SQL)
sys.sql_expression_dependencies (Transact-SQL)
sys.assembly_modules (Transact-SQL)
sys.numbered_procedures (Transact-SQL)
sys.numbered_procedure_parameters (Transact-SQL)
OBJECT_DEFINITION (Transact-SQL)
How to: Create a stored procedure (SQL Server Management Studio)
Table-valued Parameters (Database Engine)
sys.dm_sql_referenced_entities
sys.dm_sql_referencing_entities

CREATE QUEUE
Creates a new queue in a database. Queues store messages. When a message arrives for a
service, Service Broker puts the message on the queue associated with the service.

 Transact-SQL Syntax Conventions

Syntax

CREATE QUEUE <object>
 [WITH
 [STATUS = { ON | OFF } [,]]
 [RETENTION = { ON | OFF } [,]]
 [ACTIVATION (

http://msdn.microsoft.com/en-us/library/1115a779-484a-4f32-bcd2-d8f0675945b7(SQL.110)�
http://msdn.microsoft.com/en-us/library/e668b40c-bd4d-4415-850d-20fc4872ee72(SQL.110)�
http://msdn.microsoft.com/en-us/library/a54f7373-b247-4d61-8fb8-7f2ec7a8d0a4(SQL.110)�
http://msdn.microsoft.com/en-us/library/d1635ebb-f751-4de1-8bbc-cae161f90821(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc806b71-cc55-470a-913e-c5f761d5c4b7(SQL.110)�
http://msdn.microsoft.com/en-us/library/613b8271-7f7d-4378-b7a2-5a7698551dbd(SQL.110)�
http://msdn.microsoft.com/en-us/library/cc6daf62-9663-4c3e-950a-ab42e2830427(SQL.110)�
http://msdn.microsoft.com/en-us/library/6f0221bd-70b4-4b04-b15d-722235aceb3c(SQL.110)�
http://msdn.microsoft.com/en-us/library/6192ca87-febd-4075-8199-14b4fa609b8c(SQL.110)�
http://msdn.microsoft.com/en-us/library/23d3ccd2-f356-4d89-a2cd-bee381243f99(SQL.110)�
http://msdn.microsoft.com/en-us/library/24e2764b-c8e5-4322-97a4-7407d8b8a92b(SQL.110)�
http://msdn.microsoft.com/en-us/library/d17af274-b2dd-464e-9523-ee1f43e1455b(SQL.110)�
http://msdn.microsoft.com/en-us/library/78a218e4-bf99-4a6a-acbf-ff82425a5946(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f9e644e-8065-49a2-b53d-db7df98f70d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/5b6d6498-bac6-4266-94b9-d16ef5089cf0(SQL.110)�
http://msdn.microsoft.com/en-us/library/a441d46d-1f30-41c2-8d94-e9442f59786e(SQL.110)�
http://msdn.microsoft.com/en-us/library/2ac837c7-eca9-4d29-b06e-72e30450c68d(SQL.110)�
http://msdn.microsoft.com/en-us/library/76e8a6ba-1381-4620-b356-4311e1331ca7(SQL.110)�
http://msdn.microsoft.com/en-us/library/5e95a382-1e01-4c74-81f5-055612c2ad99(SQL.110)�
http://msdn.microsoft.com/en-us/library/077111cb-b860-4d61-916f-bac5d532912f(SQL.110)�
http://msdn.microsoft.com/en-us/library/c16f8f0a-483f-4feb-842e-da90426045ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 525

 [STATUS = { ON | OFF } ,]
 PROCEDURE_NAME = <procedure> ,
 MAX_QUEUE_READERS = max_readers ,
 EXECUTE AS { SELF | 'user_name' | OWNER }
) [,]]
 [POISON_MESSAGE_HANDLING (
 [STATUS = { ON | OFF })
]
 [ON { filegroup | [DEFAULT] }]
[;]

<object> ::=
{
 [database_name. [schema_name] . | schema_name.]
 queue_name
}

<procedure> ::=
{
 [database_name. [schema_name] . | schema_name.]
 stored_procedure_name
}

Arguments
database_name (object)

Is the name of the database within which to create the new queue. database_name must
specify the name of an existing database. When database_name is not provided, the queue is
created in the current database.

schema_name (object)

Is the name of the schema to which the new queue belongs. The schema defaults to the
default schema for the user that executes the statement. If the CREATE QUEUE statement is
executed by a member of the sysadmin fixed server role, or a member of the db_dbowner or
db_ddladmin fixed database roles in the database specified by database_name,
schema_name can specify a schema other than the one associated with the login of the
current connection. Otherwise, schema_name must be the default schema for the user who
executes the statement.

 526

queue_name

Is the name of the queue to create. This name must meet the guidelines for SQL Server
identifiers.

STATUS (Queue)

Specifies whether the queue is available (ON) or unavailable (OFF). When the queue is
unavailable, no messages can be added to the queue or removed from the queue. You can
create the queue in an unavailable state to keep messages from arriving on the queue until
the queue is made available with an ALTER QUEUE statement. If this clause is omitted, the
default is ON, and the queue is available.

RETENTION

Specifies the retention setting for the queue. If RETENTION = ON, all messages sent or
received on conversations that use this queue are retained in the queue until the
conversations have ended. This lets you retain messages for auditing purposes, or to perform
compensating transactions if an error occurs. If this clause is not specified, the retention
setting defaults to OFF.

Note
Setting RETENTION = ON can decrease performance. This setting should only be used if it is required
for the application.

ACTIVATION

Specifies information about which stored procedure you have to start to process messages in
this queue.

STATUS (Activation)

Specifies whether Service Broker starts the stored procedure. When STATUS = ON, the queue
starts the stored procedure specified with PROCEDURE_NAME when the number of
procedures currently running is less than MAX_QUEUE_READERS and when messages arrive
on the queue faster than the stored procedures receive messages. When STATUS = OFF, the
queue does not start the stored procedure. If this clause is not specified, the default is ON.

PROCEDURE_NAME = <procedure>

Specifies the name of the stored procedure to start to process messages in this queue. This
value must be a SQL Server identifier.

database_name(procedure)

Is the name of the database that contains the stored procedure.

schema_name(procedure)

Is the name of the schema that contains the stored procedure.

procedure_name

Is the name of the stored procedure.

 527

MAX_QUEUE_READERS = max_readers

Specifies the maximum number of instances of the activation stored procedure that the
queue starts at the same time. The value of max_readers must be a number between 0 and
32767.

EXECUTE AS

Specifies the SQL Server database user account under which the activation stored procedure
runs. SQL Server must be able to check the permissions for this user at the time that the
queue starts the stored procedure. For a domain user, the server must be connected to the
domain when the procedure is started or activation fails. For a SQL Server user, the server can
always check permissions.

SELF

Specifies that the stored procedure executes as the current user. (The database principal
executing this CREATE QUEUE statement.)

'user_name'

Is the name of the user who the stored procedure executes as. The user_name parameter
must be a valid SQL Server user specified as a SQL Server identifier. The current user must
have IMPERSONATE permission for the user_name specified.

OWNER

Specifies that the stored procedure executes as the owner of the queue.

POISON_MESSAGE_HANDLING

Specifies whether poison message handling is enabled for the queue. The default is ON.

A queue that has poison message handling set to OFF will not be disabled after five
consecutive transaction rollbacks. This allows for a custom poison message handing system
to be defined by the application.

ON filegroup | [DEFAULT]

Specifies the SQL Server filegroup on which to create this queue. You can use the filegroup
parameter to identify a filegroup, or use the DEFAULT identifier to use the default filegroup
for the service broker database. In the context of this clause, DEFAULT is not a keyword, and
must be delimited as an identifier. When no filegroup is specified, the queue uses the default
filegroup for the database.

Remarks
A queue can be the target of a SELECT statement. However, the contents of a queue can only be
modified using statements that operate on Service Broker conversations, such as SEND, RECEIVE,
and END CONVERSATION. A queue cannot be the target of an INSERT, UPDATE, DELETE, or
TRUNCATE statement.
A queue might not be a temporary object. Therefore, queue names starting with # are not valid.

 528

Creating a queue in an inactive state lets you get the infrastructure in place for a service before
allowing messages to be received on the queue.
Service Broker does not stop activation stored procedures when there are no messages on the
queue. An activation stored procedure should exit when no messages are available on the
queue for a short time.
Permissions for the activation stored procedure are checked when Service Broker starts the
stored procedure, not when the queue is created. The CREATE QUEUE statement does not verify
that the user specified in the EXECUTE AS clause has permission to execute the stored procedure
specified in the PROCEDURE NAME clause.
When a queue is unavailable, Service Broker holds messages for services that use the queue in
the transmission queue for the database. The sys.transmission_queue catalog view provides a
view of the transmission queue.
A queue is a schema-owned object. Queues appear in the sys.objects catalog view.
The following table lists the columns in a queue.

Column name Data type Description

status tinyint Status of the message. The
RECEIVE statement returns
all messages that have a
status of 1. If message
retention is on, the status is
then set to 0. If message
retention is off, the
message is deleted from
the queue. Messages in the
queue can contain one of
the following values:
0=Retained received
message
1=Ready to receive
2=Not yet complete
3=Retained sent message

priority tinyint The priority level that is
assigned to this message.

queuing_order bigint Message order number in
the queue.

conversation_group_id uniqueidentifier Identifier for the
conversation group that

 529

Column name Data type Description

this message belongs to.

conversation_handle uniqueidentifier Handle for the
conversation that this
message is part of.

message_sequence_number bigint Sequence number of the
message in the
conversation.

service_name nvarchar(512) Name of the service that
the conversation is to.

service_id int SQL Server object identifier
of the service that the
conversation is to.

service_contract_name nvarchar(256) Name of the contract that
the conversation follows.

service_contract_id int SQL Server object identifier
of the contract that the
conversation follows.

message_type_name nvarchar(256) Name of the message type
that describes the message.

message_type_id int SQL Server object identifier
of the message type that
describes the message.

validation nchar(2) Validation used for the
message.
E=Empty
N=None
X=XML

message_body varbinary(MAX) Content of the message.

message_id uniqueidentifier Unique identifier for the
message.

Permissions
Permission for creating a queue uses members of the db_ddladmin or db_owner fixed database
roles and the sysadmin fixed server role.

 530

REFERENCES permission for a queue defaults to the owner of the queue, members of the
db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server role.
RECEIVE permission for a queue defaults to the owner of the queue, members of the db_owner
fixed database role, and members of the sysadmin fixed server role.

Examples

A. Creating a queue with no parameters
The following example creates a queue that is available to receive messages. No activation
stored procedure is specified for the queue.
CREATE QUEUE ExpenseQueue ;

B. Creating an unavailable queue
The following example creates a queue that is unavailable to receive messages. No activation
stored procedure is specified for the queue.

CREATE QUEUE ExpenseQueue WITH STATUS=OFF ;

C. Creating a queue and specify internal activation information
The following example creates a queue that is available to receive messages. The queue starts
the stored procedure expense_procedure when a message enters the queue. The stored
procedure executes as the user ExpenseUser. The queue starts a maximum of 5 instances of the
stored procedure.
CREATE QUEUE ExpenseQueue

 WITH STATUS=ON,

 ACTIVATION (

 PROCEDURE_NAME = expense_procedure,

 MAX_QUEUE_READERS = 5,

 EXECUTE AS 'ExpenseUser') ;

D. Creating a queue on a specific filegroup
The following example creates a queue on the filegroup ExpenseWorkFileGroup.

CREATE QUEUE ExpenseQueue

 ON ExpenseWorkFileGroup ;

E. Creating a queue with multiple parameters
The following example creates a queue on the DEFAULT filegroup. The queue is unavailable.
Messages are retained in the queue until the conversation that they belong to ends. When the
queue is made available through ALTER QUEUE, the queue starts the stored procedure
2008R2.dbo.expense_procedure to process messages. The stored procedure executes as the
user who ran the CREATE QUEUE statement. The queue starts a maximum of 10 instances of the
stored procedure.

 531

CREATE QUEUE ExpenseQueue

 WITH STATUS = OFF,

 RETENTION = ON,

 ACTIVATION (

 PROCEDURE_NAME = AdventureWorks2012.dbo.expense_procedure,

 MAX_QUEUE_READERS = 10,

 EXECUTE AS SELF)

 ON [DEFAULT] ;

See Also
ALTER QUEUE
CREATE SERVICE (Transact-SQL)
DROP QUEUE
RECEIVE (Transact-SQL)
EVENTDATA (Transact-SQL)

CREATE REMOTE SERVICE BINDING
Creates a binding that defines the security credentials to use to initiate a conversation with a
remote service.

 Transact-SQL Syntax Conventions

Syntax

CREATE REMOTE SERVICE BINDING binding_name
 [AUTHORIZATION owner_name]
 TO SERVICE 'service_name'
 WITH USER = user_name [, ANONYMOUS = { ON | OFF }]
[;]

Arguments
binding_name

Is the name of the remote service binding to be created. Server, database, and schema names
cannot be specified. The binding_name must be a valid sysname.

AUTHORIZATION owner_name

Sets the owner of the binding to the specified database user or role. When the current user is
dbo or sa, owner_name can be the name of any valid user or role. Otherwise, owner_name
must be the name of the current user, the name of a user who the current user has

http://msdn.microsoft.com/en-us/library/878c6c14-37ab-4b87-9854-7f8f42bac7dd(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 532

IMPERSONATE permissions for, or the name of a role to which the current user belongs.

TO SERVICE 'service_name'

Specifies the remote service to bind to the user identified in the WITH USER clause.

USER = user_name

Specifies the database principal that owns the certificate associated with the remote service
identified by the TO SERVICE clause. This certificate is used for encryption and authentication
of messages exchanged with the remote service.

ANONYMOUS

Specifies whether anonymous authentication is used when communicating with the remote
service. If ANONYMOUS = ON, anonymous authentication is used and operations in the
remote database occur as a member of the public fixed database role. If ANONYMOUS =
OFF, operations in the remote database occur as a specific user in that database. If this clause
is not specified, the default is OFF.

Remarks
Service Broker uses a remote service binding to locate the certificate to use for a new
conversation. The public key in the certificate associated with user_name is used to authenticate
messages sent to the remote service and to encrypt a session key that is then used to encrypt
the conversation. The certificate for user_name must correspond to the certificate for a user in
the database that hosts the remote service.
A remote service binding is only necessary for initiating services that communicate with target
services outside of the SQL Server instance. A database that hosts an initiating service must
contain remote service bindings for any target services outside of the SQL Server instance. A
database that hosts a target service need not contain remote service bindings for the initiating
services that communicate with the target service. When the initiator and target services are in
the same instance of SQL Server, no remote service binding is necessary. However, if a remote
service binding is present where the service_name specified for TO SERVICE matches the name
of the local service, Service Broker will use the binding.
When ANONYMOUS = ON, the initiating service connects to the target service as a member of
the public fixed database role. By default, members of this role do not have permission to
connect to a database. To successfully send a message, the target database must grant the
public role CONNECT permission for the database and SEND permission for the target service.
When a user owns more than one certificate, Service Broker selects the certificate with the latest
expiration date from among the certificates that currently valid and marked as AVAILABLE FOR
BEGIN_DIALOG.

Permissions
Permissions for creating a remote service binding default to the user named in the USER clause,
members of the db_owner fixed database role, members of the db_ddladmin fixed database
role, and members of the sysadmin fixed server role.

 533

The user that executes the CREATE REMOTE SERVICE BINDING statement must have
impersonate permission for the principal specified in the statement.
A remote service binding may not be a temporary object. Remote service binding names
beginning with # are allowed, but are permanent objects.

Examples

A. Creating a remote service binding
The following example creates a binding for the service //Adventure-
Works.com/services/AccountsPayable. Service Broker uses the certificate owned by the
APUser database principal to authenticate to the remote service and to exchange the session
encryption key with the remote service.

CREATE REMOTE SERVICE BINDING APBinding

 TO SERVICE '//Adventure-Works.com/services/AccountsPayable'

 WITH USER = APUser ;

B. Creating a remote service binding using anonymous authentication
The following example creates a binding for the service //Adventure-
Works.com/services/AccountsPayable. Service Broker uses the certificate owned by the
APUser database principal to exchange the session encryption key with the remote service. The
broker does not authenticate to the remote service. In the database that hosts the remote
service, messages are delivered as the guest user.

CREATE REMOTE SERVICE BINDING APBinding

 TO SERVICE '//Adventure-Works.com/services/AccountsPayable'

 WITH USER = APUser, ANONYMOUS=ON ;

See Also
Certificates for Dialog Security
DROP REMOTE SERVICE BINDING
EVENTDATA

CREATE RESOURCE POOL
Creates a Resource Governor resource pool. Resource Governor is not available in every edition
of Microsoft SQL Server. For a list of features that are supported by the editions of SQL Server,
see Features Supported by the Editions of SQL Server 2012.

 Transact-SQL Syntax Conventions.

Syntax

CREATE RESOURCE POOL pool_name

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
www.Adventure-Works.com/services/AccountsPayable
www.Adventure-Works.com/services/AccountsPayable
www.Adventure-Works.com/services/AccountsPayable
www.Adventure-Works.com/services/AccountsPayable
www.Adventure-Works.com/services/AccountsPayable
www.Adventure-Works.com/services/AccountsPayable

 534

[WITH
 ([MIN_CPU_PERCENT = value]
 [[,] MAX_CPU_PERCENT = value]
 [[,] CAP_CPU_PERCENT = value]
 [[,] AFFINITY {SCHEDULER = AUTO | (Scheduler_range_spec) | NUMANODE =
(NUMA_node_range_spec)}]
 [[,] MIN_MEMORY_PERCENT = value]
 [[,] MAX_MEMORY_PERCENT = value])
]
[;]

Scheduler_range_spec::=
{SCHED_ID | SCHED_ID TO SCHED_ID}[,…n]
NUMA_node_range_spec::=
{NUMA_node_ID | NUMA_node_ID TO NUMA_node_ID}[,…n]

Arguments
pool_name

Is the user-defined name for the resource pool. pool_name is alphanumeric, can be up to 128
characters, must be unique within an instance of SQL Server, and must comply with the rules
for identifiers.

MIN_CPU_PERCENT = value

Specifies the guaranteed average CPU bandwidth for all requests in the resource pool when
there is CPU contention. value is an integer with a default setting of 0. The allowed range for
value is from 0 through 100.

MAX_CPU_PERCENT = value

Specifies the maximum average CPU bandwidth that all requests in resource pool will receive
when there is CPU contention. value is an integer with a default setting of 100. The allowed
range for value is from 1 through 100.

CAP_CPU_PERCENT = value

Specifies a hard cap on the CPU bandwidth that all requests in the resource pool will receive.
Limits the maximum CPU bandwidth level to be the same as the specified value. value is an
integer with a default setting of 100. The allowed range for value is from 1 through 100.

AFFINITY {SCHEDULER = AUTO | (Scheduler_range_spec) | NUMANODE =
(<NUMA_node_range_spec>)}

Attach the resource pool to specific schedulers. The default value is AUTO.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 535

MIN_MEMORY_PERCENT = value

Specifies the minimum amount of memory reserved for this resource pool that can not be
shared with other resource pools. value is an integer with a default setting of 0 The allowed
range for value is from 0 to 100.

MAX_MEMORY_PERCENT = value

Specifies the total server memory that can be used by requests in this resource pool. value is
an integer with a default setting of 100. The allowed range for value is from 1 through 100.

Remarks
The values for MAX_CPU_PERCENT and MAX_MEMORY_PERCENT must be greater than or equal
to the values for MIN_CPU_PERCENT and MIN_MEMORY_PERCENT, respectively.
CAP_CPU_PERCENT differs from MAX_CPU_PERCENT in that workloads associated with the pool
can use CPU capacity above the value of MAX_CPU_PERCENT if it is available, but not above the
value of CAP_CPU_PERCENT.
The total CPU percentage for each affinitized component (scheduler(s) or NUMA node(s)) should
not exceed 100%.

Permissions
Requires CONTROL SERVER permission.

Examples
The following example shows how to create a resource pool named bigPool. This pool uses the
default Resource Governor settings.

CREATE RESOURCE POOL bigPool;

GO

ALTER RESOURCE GOVERNOR RECONFIGURE;

GO

In the following example, the CAP_CPU_PERCENT sets the hard cap to 30% and AFFINITY
SCHEDULER is set to a range of 0 to 63, 128 to 191.

CREATE RESOURCE POOL PoolAdmin

WITH (

 MIN_CPU_PERCENT = 10,

 MAX_CPU_PERCENT = 20,

 CAP_CPU_PERCENT = 30,

 AFFINITY SCHEDULER = (0 TO 63, 128 TO 191),

 MIN_MEMORY_PERCENT = 5,

 MAX_MEMORY_PERCENT = 15);

 536

Remarks
The Resource Governor feature enables a database administrator to distribute server resources
among resource pools, up to a maximum of 64 pools.

See Also
ALTER RESOURCE POOL (Transact-SQL)
DROP RESOURCE POOL (Transact-SQL)
CREATE WORKLOAD GROUP (Transact-SQL)
ALTER WORKLOAD GROUP (Transact-SQL)
DROP WORKLOAD GROUP (Transact-SQL)
ALTER RESOURCE GOVERNOR (Transact-SQL)

CREATE ROLE
Creates a new database role in the current database.

 Transact-SQL Syntax Conventions

Syntax

CREATE ROLE role_name [AUTHORIZATION owner_name]

Arguments
role_name

Is the name of the role to be created.

AUTHORIZATION owner_name

Is the database user or role that is to own the new role. If no user is specified, the role will be
owned by the user that executes CREATE ROLE.

Remarks
Roles are database-level securables. After you create a role, configure the database-level
permissions of the role by using GRANT, DENY, and REVOKE. To add members to a database
role, use ALTER ROLE (Transact-SQL). For more information, see sys.database_principals
(Transact-SQL).
Database roles are visible in the sys.database_role_members and sys.database_principals catalog
views.

Caution

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/7f3fa5f6-6b50-43bb-9047-1544ade55e39(SQL.110)�
http://msdn.microsoft.com/en-us/library/7f3fa5f6-6b50-43bb-9047-1544ade55e39(SQL.110)�

 537

 Beginning with SQL Server 2005, the behavior of schemas changed. As a result, code
that assumes that schemas are equivalent to database users may no longer return
correct results. Old catalog views, including , should not be used in a database in which
any of the following DDL statements have ever been used: CREATE SCHEMA, ALTER
SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER
ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER
AUTHORIZATION. In such databases you must instead use the new catalog views. The
new catalog views take into account the separation of principals and schemas that was
introduced in SQL Server 2005. For more information about catalog views, see .

Permissions
Requires CREATE ROLE permission on the database or membership in the db_securityadmin
fixed database role. When you use the AUTHORIZATION option, the following permissions are
also required:
• To assign ownership of a role to another user, requires IMPERSONATE permission on that

user.
• To assign ownership of a role to another role, requires membership in the recipient role or

ALTER permission on that role.
• To assign ownership of a role to an application role, requires ALTER permission on the

application role.

Examples

A. Creating a database role that is owned by a database user
The following example creates the database role buyers that is owned by user BenMiller.

USE AdventureWorks2012;

CREATE ROLE buyers AUTHORIZATION BenMiller;

GO

B. Creating a database role that is owned by a fixed database role
The following example creates the database role auditors that is owned the
db_securityadmin fixed database role.
USE AdventureWorks2012;

CREATE ROLE auditors AUTHORIZATION db_securityadmin;

GO

See Also
Principals
ALTER ROLE (Transact-SQL)
DROP ROLE (Transact-SQL)
EVENTDATA (Transact-SQL)

http://msdn.microsoft.com/en-us/library/3f7adbf7-6e40-4396-a8ca-71cbb843b5c2(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

 538

sp_addrolemember (Transact-SQL)
sys.database_role_members (Transact-SQL)
sys.database_principals (Transact-SQL)

CREATE ROUTE
Adds a new route to the routing table for the current database. For outgoing messages, Service
Broker determines routing by checking the routing table in the local database. For messages on
conversations that originate in another instance, including messages to be forwarded, Service
Broker checks the routes in msdb.

 Transact-SQL Syntax Conventions

Syntax

CREATE ROUTE route_name
[AUTHORIZATION owner_name]
WITH
 [SERVICE_NAME = 'service_name',]
 [BROKER_INSTANCE = 'broker_instance_identifier' ,]
 [LIFETIME = route_lifetime ,]
 ADDRESS = 'next_hop_address'
 [, MIRROR_ADDRESS = 'next_hop_mirror_address']
[;]

Arguments
route_name

Is the name of the route to create. A new route is created in the current database and owned
by the principal specified in the AUTHORIZATION clause. Server, database, and schema
names cannot be specified. The route_name must be a valid sysname.

AUTHORIZATION owner_name

Sets the owner of the route to the specified database user or role. The owner_name can be
the name of any valid user or role when the current user is a member of either the db_owner
fixed database role or the sysadmin fixed server role. Otherwise, owner_name must be the
name of the current user, the name of a user that the current user has IMPERSONATE
permission for, or the name of a role to which the current user belongs. When this clause is
omitted, the route belongs to the current user.

WITH

Introduces the clauses that define the route being created.

http://msdn.microsoft.com/en-us/library/a583c087-bdb3-46d2-b9e5-3921b3e6d10b(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1b019d-ca48-4db3-85df-cf6d2db591cf(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cb239e9-eb8c-4109-9cec-0d35de95fa0e(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 539

SERVICE_NAME = 'service_name'

Specifies the name of the remote service that this route points to. The service_name must
exactly match the name the remote service uses. Service Broker uses a byte-by-byte
comparison to match the service_name. In other words, the comparison is case sensitive and
does not consider the current collation. If the SERVICE_NAME is omitted, this route matches
any service name, but has lower priority for matching than a route that specifies a
SERVICE_NAME. A route with a service name of 'SQL/ServiceBroker/BrokerConfiguration'
is a route to a Broker Configuration Notice service. A route to this service might not specify a
broker instance.

BROKER_INSTANCE = 'broker_instance_identifier'

Specifies the database that hosts the target service. The broker_instance_identifier parameter
must be the broker instance identifier for the remote database, which can be obtained by
running the following query in the selected database:

SELECT service_broker_guid

FROM sys.databases

WHERE database_id = DB_ID()

When the BROKER_INSTANCE clause is omitted, this route matches any broker instance. A
route that matches any broker instance has higher priority for matching than routes with an
explicit broker instance when the conversation does not specify a broker instance. For
conversations that specify a broker instance, a route with a broker instance has higher
priority than a route that matches any broker instance.

LIFETIME = route_lifetime

Specifies the time, in seconds, that SQL Server retains the route in the routing table. At the
end of the lifetime, the route expires, and SQL Server no longer considers the route when
choosing a route for a new conversation. If this clause is omitted, the route_lifetime is NULL
and the route never expires.

ADDRESS = 'next_hop_address'

Specifies the network address for this route. The next_hop_address specifies a TCP/IP address
in the following format:

 TCP://{ dns_name | netbios_name | ip_address } : port_number

The specified port_number must match the port number for the Service Broker endpoint of an
instance of SQL Server at the specified computer. This can be obtained by running the
following query in the selected database:

SELECT tcpe.port

FROM sys.tcp_endpoints AS tcpe

INNER JOIN sys.service_broker_endpoints AS ssbe

 ON ssbe.endpoint_id = tcpe.endpoint_id

WHERE ssbe.name = N'MyServiceBrokerEndpoint';

 540

When the service is hosted in a mirrored database, you must also specify the
MIRROR_ADDRESS for the other instance that hosts a mirrored database. Otherwise, this
route does not fail over to the mirror.

When a route specifies 'LOCAL' for the next_hop_address, the message is delivered to a
service within the current instance of SQL Server.

When a route specifies 'TRANSPORT' for the next_hop_address, the network address is
determined based on the network address in the name of the service. A route that specifies
'TRANSPORT' might not specify a service name or broker instance.

MIRROR_ADDRESS = 'next_hop_mirror_address'

Specifies the network address for a mirrored database with one mirrored database hosted at
the next_hop_address. The next_hop_mirror_address specifies a TCP/IP address in the
following format:

TCP://{ dns_name | netbios_name | ip_address } : port_number

The specified port_number must match the port number for the Service Broker endpoint of an
instance of SQL Server at the specified computer. This can be obtained by running the
following query in the selected database:

SELECT tcpe.port

FROM sys.tcp_endpoints AS tcpe

INNER JOIN sys.service_broker_endpoints AS ssbe

 ON ssbe.endpoint_id = tcpe.endpoint_id

WHERE ssbe.name = N'MyServiceBrokerEndpoint';

When the MIRROR_ADDRESS is specified, the route must specify the SERVICE_NAME clause
and the BROKER_INSTANCE clause. A route that specifies 'LOCAL' or 'TRANSPORT' for the
next_hop_address might not specify a mirror address.

Remarks
The routing table that stores the routes is a metadata table that can be read through the
sys.routes catalog view. This catalog view can only be updated through the CREATE ROUTE,
ALTER ROUTE, and DROP ROUTE statements.
By default, the routing table in each user database contains one route. This route is named
AutoCreatedLocal. The route specifies 'LOCAL' for the next_hop_address and matches any
service name and broker instance identifier.
When a route specifies 'TRANSPORT' for the next_hop_address, the network address is
determined based on the name of the service. SQL Server can successfully process service
names that begin with a network address in a format that is valid for a next_hop_address.
The routing table can contain any number of routes that specify the same service, network
address, and broker instance identifier. In this case, Service Broker chooses a route using a
procedure designed to find the most exact match between the information specified in the
conversation and the information in the routing table.

 541

Service Broker does not remove expired routes from the routing table. An expired route can be
made active using the ALTER ROUTE statement.
A route cannot be a temporary object. Route names that start with # are allowed, but are
permanent objects.

Permissions
Permission for creating a route defaults to members of the db_ddladmin or db_owner fixed
database roles and the sysadmin fixed server role.

Examples

A. Creating a TCP/IP route by using a DNS name
The following example creates a route to the service //Adventure-Works.com/Expenses. The
route specifies that messages to this service travel over TCP to port 1234 on the host identified
by the DNS name www.Adventure-Works.com. The target server delivers the messages upon
arrival to the broker instance identified by the unique identifier D8D4D268-00A3-4C62-8F91-
634B89C1E315.

CREATE ROUTE ExpenseRoute

 WITH

 SERVICE_NAME = '//Adventure-Works.com/Expenses',

 BROKER_INSTANCE = 'D8D4D268-00A3-4C62-8F91-634B89C1E315',

 ADDRESS = 'TCP://www.Adventure-Works.com:1234' ;

B. Creating a TCP/IP route by using a NetBIOS name
The following example creates a route to the service //Adventure-Works.com/Expenses. The
route specifies that messages to this service travel over TCP to port 1234 on the host identified
by the NetBIOS name SERVER02. Upon arrival, the target SQL Server delivers the message to the
database instance identified by the unique identifier D8D4D268-00A3-4C62-8F91-
634B89C1E315.

CREATE ROUTE ExpenseRoute

 WITH

 SERVICE_NAME = '//Adventure-Works.com/Expenses',

 BROKER_INSTANCE = 'D8D4D268-00A3-4C62-8F91-634B89C1E315',

 ADDRESS = 'TCP://SERVER02:1234' ;

C. Creating a TCP/IP route by using an IP address
The following example creates a route to the service //Adventure-Works.com/Expenses. The
route specifies that messages to this service travel over TCP to port 1234 on the host at the IP
address 192.168.10.2. Upon arrival, the target SQL Server delivers the message to the broker
instance identified by the unique identifier D8D4D268-00A3-4C62-8F91-634B89C1E315.

CREATE ROUTE ExpenseRoute

http://www.Adventure-Works.com
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses
www.Adventure-Works.com:1234
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses

 542

 WITH

 SERVICE_NAME = '//Adventure-Works.com/Expenses',

 BROKER_INSTANCE = 'D8D4D268-00A3-4C62-8F91-634B89C1E315',

 ADDRESS = 'TCP://192.168.10.2:1234' ;

D. Creating a route to a forwarding broker
The following example creates a route to the forwarding broker on the server
dispatch.Adventure-Works.com. Because both the service name and the broker instance
identifier are not specified, SQL Server uses this route for services that have no other route
defined.

CREATE ROUTE ExpenseRoute

 WITH

 ADDRESS = 'TCP://dispatch.Adventure-Works.com' ;

E. Creating a route to a local service
The following example creates a route to the service //Adventure-Works.com/LogRequests in
the same instance as the route.

CREATE ROUTE LogRequests

 WITH

 SERVICE_NAME = '//Adventure-Works.com/LogRequests',

 ADDRESS = 'LOCAL' ;

F. Creating a route with a specified lifetime
The following example creates a route to the service //Adventure-Works.com/Expenses. The
lifetime for the route is 259200 seconds, which equates to 72 hours.

CREATE ROUTE ExpenseRoute

 WITH

 SERVICE_NAME = '//Adventure-Works.com/Expenses',

 LIFETIME = 259200,

 ADDRESS = 'TCP://services.Adventure-Works.com:1234' ;

G. Creating a route to a mirrored database
The following example creates a route to the service //Adventure-Works.com/Expenses. The
service is hosted in a database that is mirrored. One of the mirrored databases is located at the
address services.Adventure-Works.com:1234, and the other database is located at the
address services-mirror.Adventure-Works.com:1234.

CREATE ROUTE ExpenseRoute

 WITH

www.Adventure-Works.com/Expenses
www.Adventure-Works.com
www.Adventure-Works.com
www.Adventure-Works.com/LogRequests
www.Adventure-Works.com/LogRequests
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses
www.Adventure-Works.com:1234
www.Adventure-Works.com/Expenses
www.Adventure-Works.com:1234
www.Adventure-Works.com:1234

 543

 SERVICE_NAME = '//Adventure-Works.com/Expenses',

 BROKER_INSTANCE = '69fcc80c-2239-4700-8437-1001ecddf933',

 ADDRESS = 'TCP://services.Adventure-Works.com:1234',

 MIRROR_ADDRESS = 'TCP://services-mirror.Adventure-Works.com:1234' ;

H. Creating a route that uses the service name for routing
The following example creates a route that uses the service name to determine the network
address to send the message to. Notice that a route that specifies 'TRANSPORT' as the network
address has lower priority for matching than other routes.

CREATE ROUTE TransportRoute

 WITH ADDRESS = 'TRANSPORT' ;

See Also
ALTER ROUTE
DROP ROUTE
EVENTDATA

CREATE RULE
Creates an object called a rule. When bound to a column or an alias data type, a rule specifies
the acceptable values that can be inserted into that column.

This feature will be removed in a future version of Microsoft SQL Server. Avoid using this
feature in new development work, and plan to modify applications that currently use this
feature. We recommend that you use check constraints instead. Check constraints are
created by using the CHECK keyword of CREATE TABLE or ALTER TABLE. For more
information, see Unique Constraints and Check Constraints.

A column or alias data type can have only one rule bound to it. However, a column can have
both a rule and one or more check constraints associated with it. When this is true, all
restrictions are evaluated.

 Transact-SQL Syntax Conventions

Syntax

CREATE RULE [schema_name .] rule_name
AS condition_expression
[;]

Arguments

Important

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/637098af-2567-48f8-90f4-b41df059833e(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
www.Adventure-Works.com/Expenses
www.Adventure-Works.com:1234
www.Adventure-Works.com:1234

 544

schema_name

Is the name of the schema to which the rule belongs.

rule_name

Is the name of the new rule. Rule names must comply with the rules for identifiers.
Specifying the rule owner name is optional.

condition_expression

Is the condition or conditions that define the rule. A rule can be any expression valid in a
WHERE clause and can include elements such as arithmetic operators, relational operators,
and predicates (for example, IN, LIKE, BETWEEN). A rule cannot reference columns or other
database objects. Built-in functions that do not reference database objects can be included.
User-defined functions cannot be used.

condition_expression includes one variable. The at sign (@) precedes each local variable. The
expression refers to the value entered with the UPDATE or INSERT statement. Any name or
symbol can be used to represent the value when creating the rule, but the first character
must be the at sign (@).

Note
Avoid creating rules on expressions that use alias data types. Although rules can be created on
expressions that use alias data types, after binding the rules to columns or alias data types, the
expressions fail to compile when referenced.

Remarks
CREATE RULE cannot be combined with other Transact-SQL statements in a single batch. Rules
do not apply to data already existing in the database at the time the rules are created, and rules
cannot be bound to system data types.
A rule can be created only in the current database. After you create a rule, execute sp_bindrule
to bind the rule to a column or to alias data type. A rule must be compatible with the column
data type. For example, "@value LIKE A%" cannot be used as a rule for a numeric column. A rule
cannot be bound to a text, ntext, image, varchar(max), nvarchar(max), varbinary(max), xml,
CLR user-defined type, or timestamp column. A rule cannot be bound to a computed column.
Enclose character and date constants with single quotation marks (') and precede binary
constants with 0x. If the rule is not compatible with the column to which it is bound, the SQL
Server Database Engine returns an error message when a value is inserted, but not when the rule
is bound.
A rule bound to an alias data type is activated only when you try to insert a value into, or to
update, a database column of the alias data type. Because rules do not test variables, do not
assign a value to an alias data type variable that would be rejected by a rule that is bound to a
column of the same data type.
To get a report on a rule, use sp_help. To display the text of a rule, execute sp_helptext with the
rule name as the parameter. To rename a rule, use sp_rename.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 545

A rule must be dropped by using DROP RULE before a new one with the same name is created,
and the rule must be unbound byusing sp_unbindrule before it is dropped. To unbind a rule
from a column, use sp_unbindrule.
You can bind a new rule to a column or data type without unbinding the previous one; the new
rule overrides the previous one. Rules bound to columns always take precedence over rules
bound to alias data types. Binding a rule to a column replaces a rule already bound to the alias
data type of that column. But binding a rule to a data type does not replace a rule bound to a
column of that alias data type. The following table shows the precedence in effect when rules
are bound to columns and to alias data types on which rules already exist.

New rule bound to Old rule bound to

alias data type

Old rule bound to

Column

Alias data type Old rule replaced No change

Column Old rule replaced Old rule replaced

If a column has both a default and a rule associated with it, the default must fall within the
domain defined by the rule. A default that conflicts with a rule is never inserted. The SQL Server
Database Engine generates an error message each time it tries to insert such a default.

Permissions
To execute CREATE RULE, at a minimum, a user must have CREATE RULE permission in the
current database and ALTER permission on the schema in which the rule is being created.

Examples

A. Creating a rule with a range
The following example creates a rule that restricts the range of integers inserted into the column
or columns to which this rule is bound.

CREATE RULE range_rule

AS

@range>= $1000 AND @range <$20000;

B. Creating a rule with a list
The following example creates a rule that restricts the actual values entered into the column or
columns (to which this rule is bound) to only those listed in the rule.

CREATE RULE list_rule

AS

@list IN ('1389', '0736', '0877');

C. Creating a rule with a pattern

 546

The following example creates a rule to follow a pattern of any two characters followed by a
hyphen (-), any number of characters or no characters, and ending with an integer from 0
through 9.
CREATE RULE pattern_rule

AS

@value LIKE '__-%[0-9]'

See Also
ALTER TABLE
CREATE DEFAULT
CREATE TABLE
DROP DEFAULT
DROP RULE
xpressions
sp_bindrule
sp_help
sp_helptext
sp_rename
sp_unbindrule
WHERE

CREATE SCHEMA
Creates a schema in the current database. The CREATE SCHEMA transaction can also create
tables and views within the new schema, and set GRANT, DENY, or REVOKE permissions on
those objects.

 Transact-SQL Syntax Conventions

Syntax

CREATE SCHEMA schema_name_clause [<schema_element> [...n]]

<schema_name_clause> ::=
 {
 schema_name
 | AUTHORIZATION owner_name
 | schema_name AUTHORIZATION owner_name
 }

http://msdn.microsoft.com/en-us/library/ee53c5c8-e36c-40f9-8cd1-d933791b98fa(SQL.110)�
http://msdn.microsoft.com/en-us/library/2606073e-c52f-498d-a923-5026b9d97e67(SQL.110)�
http://msdn.microsoft.com/en-us/library/913cd5d4-39a3-4a4b-a926-75ed32878884(SQL.110)�
http://msdn.microsoft.com/en-us/library/24135456-05f0-427c-884b-93cf38dd47a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc3548f0-143f-404e-a2e9-0a15960fc8ed(SQL.110)�
http://msdn.microsoft.com/en-us/library/f54ee155-c3c9-4f1a-952e-632a8339f0cc(SQL.110)�
http://msdn.microsoft.com/en-us/library/a8430421-7bce-4fab-a2d2-56c00a3c6fa4(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 547

<schema_element> ::=
 {
 table_definition | view_definition | grant_statement |
 revoke_statement | deny_statement
 }

Arguments
schema_name

Is the name by which the schema is identified within the database.

AUTHORIZATION owner_name

Specifies the name of the database-level principal that will own the schema. This principal
may own other schemas, and may not use the current schema as its default schema.

table_definition

Specifies a CREATE TABLE statement that creates a table within the schema. The principal
executing this statement must have CREATE TABLE permission on the current database.

view_definition

Specifies a CREATE VIEW statement that creates a view within the schema. The principal
executing this statement must have CREATE VIEW permission on the current database.

grant_statement

Specifies a GRANT statement that grants permissions on any securable except the new
schema.

revoke_statement

Specifies a REVOKE statement that revokes permissions on any securable except the new
schema.

deny_statement

Specifies a DENY statement that denies permissions on any securable except the new
schema.

Remarks

Statements that contain CREATE SCHEMA AUTHORIZATION but do not specify a name
are permitted for backward compatibility only.

CREATE SCHEMA can create a schema, the tables and views it contains, and GRANT, REVOKE, or
DENY permissions on any securable in a single statement. This statement must be executed as a
separate batch. Objects created by the CREATE SCHEMA statement are created inside the
schema that is being created.

Note

 548

CREATE SCHEMA transactions are atomic. If any error occurs during the execution of a CREATE
SCHEMA statement, none of the specified securables are created and no permissions are
granted.
Securables to be created by CREATE SCHEMA can be listed in any order, except for views that
reference other views. In that case, the referenced view must be created before the view that
references it.
Therefore, a GRANT statement can grant permission on an object before the object itself is
created, or a CREATE VIEW statement can appear before the CREATE TABLE statements that
create the tables referenced by the view. Also, CREATE TABLE statements can declare foreign
keys to tables that are defined later in the CREATE SCHEMA statement.

DENY and REVOKE are supported inside CREATE SCHEMA statements. DENY and
REVOKE clauses will be executed in the order in which they appear in the CREATE
SCHEMA statement.

The principal that executes CREATE SCHEMA can specify another database principal as the
owner of the schema being created. This requires additional permissions, as described in the
"Permissions" section later in this topic.
The new schema is owned by one of the following database-level principals: database user,
database role, or application role. Objects created within a schema are owned by the owner of
the schema, and have a NULL principal_id in sys.objects. Ownership of schema-contained
objects can be transferred to any database-level principal, but the schema owner always retains
CONTROL permission on objects within the schema.

 Beginning with SQL Server 2005, the behavior of schemas changed. As a result, code
that assumes that schemas are equivalent to database users may no longer return
correct results. Old catalog views, including , should not be used in a database in which
any of the following DDL statements have ever been used: CREATE SCHEMA, ALTER
SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER
ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER
AUTHORIZATION. In such databases you must instead use the new catalog views. The
new catalog views take into account the separation of principals and schemas that was
introduced in SQL Server 2005. For more information about catalog views, see .

When creating a database object, if you specify a valid domain principal (user or group) as the
object owner, the domain principal will be added to the database as a schema. The new schema
will be owned by that domain principal.

Deprecation Notice
CREATE SCHEMA statements that do not specify a schema name are currently supported for
backward compatibility. Such statements do not actually create a schema inside the database,
but they do create tables and views, and grant permissions. Principals do not need CREATE

Note

Caution

 549

SCHEMA permission to execute this earlier form of CREATE SCHEMA, because no schema is
being created. This functionality will be removed from a future release of SQL Server.

Permissions
Requires CREATE SCHEMA permission on the database.
To create an object specified within the CREATE SCHEMA statement, the user must have the
corresponding CREATE permission.
To specify another user as the owner of the schema being created, the caller must have
IMPERSONATE permission on that user. If a database role is specified as the owner, the caller
must have one of the following: membership in the role or ALTER permission on the role.

For the backward-compatible syntax, no permissions to CREATE SCHEMA are checked
because no schema is being created.

Examples
The following example creates schema Sprockets owned by Annik that contains table
NineProngs. The statement grants SELECT to Mandar and denies SELECT to Prasanna. Note
that Sprockets and NineProngs are created in a single statement.

USE AdventureWorks2012;

GO

CREATE SCHEMA Sprockets AUTHORIZATION Annik

 CREATE TABLE NineProngs (source int, cost int, partnumber int)

 GRANT SELECT ON SCHEMA::Sprockets TO Mandar

 DENY SELECT ON SCHEMA::Sprockets TO Prasanna;

GO

See Also
sys.schemas (Transact-SQL)
DROP SCHEMA (Transact-SQL)
GRANT (Transact-SQL)
DENY (Transact-SQL)
REVOKE (Transact-SQL)
CREATE VIEW (Transact-SQL)
EVENTDATA (Transact-SQL)
sys.schemas (Transact-SQL)
How to: Create a Database Schema

Note

http://msdn.microsoft.com/en-us/library/a760c16a-4d2d-43f2-be81-ae9315f38185(SQL.110)�
http://msdn.microsoft.com/en-us/library/c32d1e01-9ee9-4665-a516-fcfece58078e(SQL.110)�
http://msdn.microsoft.com/en-us/library/9d31d3e7-0883-45cd-bf0e-f0361bbb0956(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/29af5ce5-2af7-4103-8f08-3ec92603ba05(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed2a5522-f4d2-4111-95a4-d3e1e5081739(SQL.110)�

 550

CREATE SEARCH PROPERTY LIST
Creates a new search property list. A search property list is used to specify one or more search
properties that you want to include in a full-text index.

CREATE SEARCH PROPERTY LIST, ALTER SEARCH PROPERTY LIST, and DROP SEARCH
PROPERTY LIST are supported only under compatibility level 110. Under lower
compatibility levels, these statements are not supported.

 Transact-SQL Syntax Conventions

Syntax

CREATE SEARCH PROPERTY LIST new_list_name
 [FROM [database_name.] source_list_name]
 [AUTHORIZATION owner_name]
;

Arguments
new_list_name

Is the name of the new search property list. new_list_name is an identifier with a maximum of
128 characters. new_list_name must be unique among all property lists in the current
database, and conform to the rules for identifiers. new_list_name will be used when the full-
text index is created.

database_name

Is the name of the database where the property list specified by source_list_name is located.
If not specified, database_name defaults to the current database.

database_name must specify the name of an existing database. The login for the current
connection must be associated with an existing user ID in the database specified by
database_name. You must also have the required permissions on the database.

source_list_name

Specifies that the new property list is created by copying an existing property list from
database_name. If source_list_name does not exist, CREATE SEARCH PROPERTY LIST fails with
an error. The search properties in source_list_name are inherited by new_list_name.

AUTHORIZATION owner_name

Specifies the name of a user or role to own of the property list. owner_name must either be
the name of a role of which the current user is a member, or the current user must have
IMPERSONATE permission on owner_name. If not specified, ownership is given to the current
user.

Important

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 551

Note
The owner can be changed by using the ALTER AUTHORIZATION Transact-SQL statement.

Remarks

For information about property lists in general, see Search Document Properties with
Search Property Lists.

By default, a new search property list is empty and you must alter it to manually to add one or
more search properties. Alternatively, you can copy an existing search property list. In this case,
the new list inherits the search properties of its source, but you can alter the new list to add or
remove search properties. Any properties in the search property list at the time of the next full
population are included in the full-text index.
A CREATE SEARCH PROPERTY LIST statement fails under any of the following conditions:
• If the database specified by database_name does not exist.
• If the list specified by source_list_name does not exist.
• If you do not have the correct permissions.
To add or remove properties from a list
• ALTER SEARCH PROPERTY LIST (Transact-SQL)
• To drop a property list
• DROP SEARCH PROPERTY LIST (Transact-SQL)

Permissions
Requires CREATE FULLTEXT CATALOG permissions in the current database and REFERENCES
permissions on any database from which you copy a source property list.

REFERENCES permission is required to associate the list with a full-text index. CONTROL
permission is required to add and remove properties or drop the list. The property list
owner can grant REFERENCES or CONTROL permissions on the list. Users with CONTROL
permission can also grant REFERENCES permission to other users.

Examples

A. Creating an empty property list and associating it with an index
The following example creates a new search property list named DocumentPropertyList. The
example then uses an ALTER FULLTEXT INDEX statement to associate the new property list with
the full-text index of the Production.Document table in the AdventureWorks database,
without starting a population.

Note

Note

Note

http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�
http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�

 552

For an example that adds several predefined, well-known search properties to this search
property list, see ALTER SEARCH PROPERTY LIST. After adding search properties to the
list, the database administrator would need to use another ALTER FULLTEXT INDEX
statement with the START FULL POPULATION clause.

CREATE SEARCH PROPERTY LIST DocumentPropertyList;

GO

USE AdventureWorks;

ALTER FULLTEXT INDEX ON Production.Document

 SET SEARCH PROPERTY LIST DocumentPropertyList

 WITH NO POPULATION;

GO

B. Creating a property list from an existing one
The following example creates a new the search property list, JobCandidateProperties, from
the list created by Example A, DocumentPropertyList, which is associated with a full-text index
in the AdventureWorks database. The example then uses an ALTER FULLTEXT INDEX statement
to associate the new property list with the full-text index of the
HumanResources.JobCandidate table in the AdventureWorks database. This ALTER FULLTEXT
INDEX statement starts a full population, which is the default behavior of the SET SEARCH
PROPERTY LIST clause.

CREATE SEARCH PROPERTY LIST JobCandidateProperties FROM

AdventureWorks.DocumentPropertyList;

GO

ALTER FULLTEXT INDEX ON HumanResources.JobCandidate

 SET SEARCH PROPERTY LIST JobCandidateProperties;

GO

See Also
ALTER SEARCH PROPERTY LIST (Transact-SQL)
DROP SEARCH PROPERTY LIST (Transact-SQL)
sys.registered_search_properties (Transact-SQL)
sys.registered_search_property_lists (Transact-SQL)
sys.dm_fts_index_keywords_by_property (Transact-SQL)
Using Search Property Lists to Search for Properties (Full-Text Search)
Obtaining a Property Set GUID and Property Integer Identifier for a Search Property List (SQL
Server)

http://msdn.microsoft.com/en-us/library/1b9a7a5c-8c05-4819-83c3-7487dd08fcf7(SQL.110)�
http://msdn.microsoft.com/en-us/library/630d4caa-9bea-4cd3-a5b1-01098b0855fc(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa41e052-a79a-4194-9b1a-2885f7828500(SQL.110)�
http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�
http://msdn.microsoft.com/en-us/library/7db79165-8bcc-4be6-8d40-12d44deda79f(SQL.110)�
http://msdn.microsoft.com/en-us/library/7db79165-8bcc-4be6-8d40-12d44deda79f(SQL.110)�

 553

CREATE SEQUENCE
Creates a sequence object and specifies its properties. A sequence is a user-defined schema
bound object that generates a sequence of numeric values according to the specification with
which the sequence was created. The sequence of numeric values is generated in an ascending
or descending order at a defined interval and can be configured to restart (cycle) when
exhausted. Sequences, unlike identity columns, are not associated with specific tables.
Applications refer to a sequence object to retrieve its next value. The relationship between
sequences and tables is controlled by the application. User applications can reference a
sequence object and coordinate the values across multiple rows and tables.
Unlike identity columns values that are generated when rows are inserted, an application can
obtain the next sequence number without inserting the row by calling the NEXT VALUE FOR
function. Use sp_sequence_get_range to get multiple sequence numbers at once.
For information and scenarios that use both CREATE SEQUENCE and the NEXT VALUE FOR
function, see Creating and Using Sequence Numbers.

 Transact-SQL Syntax Conventions

Syntax

CREATE SEQUENCE [schema_name .] sequence_name
 [AS [built_in_integer_type | user-defined_integer_type]]
 [START WITH <constant>]
 [INCREMENT BY <constant>]
 [{ MINVALUE [<constant>] } | { NO MINVALUE }]
 [{ MAXVALUE [<constant>] } | { NO MAXVALUE }]
 [CYCLE | { NO CYCLE }]
 [{ CACHE [<constant>] } | { NO CACHE }]
 [;]

Arguments
sequence_name

Specifies the unique name by which the sequence is known in the database. Type is sysname.

[built_in_integer_type | user-defined_integer_type

A sequence can be defined as any integer type. The following types are allowed.

• tinyint - Range 0 to 255

• smallint - Range -32,768 to 32,767

• int - Range -2,147,483,648 to 2,147,483,647

• bigint - Range -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

• decimal and numeric with a scale of 0.

http://msdn.microsoft.com/en-us/library/92632ed5-9f32-48eb-be28-a5e477ef9076(SQL.110)�
http://msdn.microsoft.com/en-us/library/92632ed5-9f32-48eb-be28-a5e477ef9076(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ca6b0c6-8d9c-4eee-b02f-51ddffab4492(SQL.110)�
http://msdn.microsoft.com/en-us/library/c900e30d-2fd3-4d5f-98ee-7832f37e79d1(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 554

• Any user-defined data type (alias type) that is based on one of the allowed types.

If no data type is provided, the bigint data type is used as the default.

START WITH <constant>

The first value returned by the sequence object. The START value must be a value less than
or equal to the maximum and greater than or equal to the minimum value of the sequence
object. The default start value for a new sequence object is the minimum value for an
ascending sequence object and the maximum value for a descending sequence object.

INCREMENT BY <constant>

Value used to increment (or decrement if negative) the value of the sequence object for each
call to the NEXT VALUE FOR function. If the increment is a negative value, the sequence
object is descending; otherwise, it is ascending. The increment cannot be 0. The default
increment for a new sequence object is 1.

[MINVALUE <constant> | NO MINVALUE]

Specifies the bounds for the sequence object. The default minimum value for a new sequence
object is the minimum value of the data type of the sequence object. This is zero for the
tinyint data type and a negative number for all other data types.

[MAXVALUE <constant> | NO MAXVALUE

Specifies the bounds for the sequence object. The default maximum value for a new
sequence object is the maximum value of the data type of the sequence object.

[CYCLE | NO CYCLE]

Property that specifies whether the sequence object should restart from the minimum value
(or maximum for descending sequence objects) or throw an exception when its minimum or
maximum value is exceeded. The default cycle option for new sequence objects is NO CYCLE.

Note that cycling restarts from the minimum or maximum value, not from the start value.

[CACHE [<constant>] | NO CACHE]

Increases performance for applications that use sequence objects by minimizing the number
of disk IOs that are required to generate sequence numbers.

For example, if a cache size of 50 is chosen, SQL Server does not keep 50 individual values
cached. It only caches the current value and the number of values left in the cache. This
means that the amount of memory required to store the cache is always two instances of the
data type of the sequence object.

Note
If the cache option is enabled without specifying a cache size, the Database Engine will select a size.
However, users should not rely upon the selection being consistent. Microsoft might change the
method of calculating the cache size without notice.

When created with the CACHE option, an unexpected shutdown (such as a power failure)
may result in the loss of sequence numbers remaining in the cache.

 555

General Remarks
Sequence numbers are generated outside the scope of the current transaction. They are
consumed whether the transaction using the sequence number is committed or rolled back.

Cache management
To improve performance, SQL Server pre-allocates the number of sequence numbers specified
by the CACHE argument.
For an example, a new sequence is created with a starting value of 1 and a cache size of 15.
When the first value is needed, values 1 through 15 are made available from memory. The last
cached value (15) is written to the system tables on the disk. When all 15 numbers are used, the
next request (for number 16) will cause the cache to be allocated again. The new last cached
value (30) will be written to the system tables.
If the Database Engine is stopped after you use 22 numbers, the next intended sequence
number in memory (23) is written to the system tables, replacing the previously stored number.
After SQL Server restarts and a sequence number is needed, the starting number is read from
the system tables (23). The cache amount of 15 numbers (23-38) is allocated to memory and the
next non-cache number (39) is written to the system tables.
If the Database Engine stops abnormally for an event such as a power failure, the sequence
restarts with the number read from system tables (39). Any sequence numbers allocated to
memory (but never requested by a user or application) are lost. This functionality may leave
gaps, but guarantees that the same value will never be issued two times for a single sequence
object unless it is defined as CYCLE or is manually restarted.
The cache is maintained in memory by tracking the current value (the last value issued) and the
number of values left in the cache. Therefore, the amount of memory used by the cache is
always two instances of the data type of the sequence object.
Setting the cache argument to NO CACHE writes the current sequence value to the system
tables every time that a sequence is used. This might slow performance by increasing disk
access, but reduces the chance of unintended gaps. Gaps can still occur if numbers are
requested using the NEXT VALUE FOR or sp_sequence_get_range functions, but then the
numbers are either not used or are used in uncommitted transactions.
When a sequence object uses the CACHE option, if you restart the sequence object, or alter the
INCREMENT, CYCLE, MINVALUE, MAXVALUE, or the cache size properties, it will cause the
cache to be written to the system tables before the change occurs. Then the cache is reloaded
starting with the current value (i.e. no numbers are skipped). Changing the cache size takes
effect immediately.
CACHE option when cached values are available
The following process occurs every time that a sequence object is requested to generate the
next value for the CACHE option if there are unused values available in the in-memory cache for
the sequence object.
1. The next value for the sequence object is calculated.

 556

2. The new current value for the sequence object is updated in memory.
3. The calculated value is returned to the calling statement.
CACHE option when the cache is exhausted
The following process occurs every time a sequence object is requested to generate the next
value for the CACHE option if the cache has been exhausted:
1. The next value for the sequence object is calculated.
2. The last value for the new cache is calculated.
3. The system table row for the sequence object is locked, and the value calculated in step 2

(the last value) is written to the system table. A cache-exhausted xevent is fired to notify the
user of the new persisted value.

NO CACHE option
The following process occurs every time that a sequence object is requested to generate the
next value for the NO CACHE option:
1. The next value for the sequence object is calculated.
2. The new current value for the sequence object is written to the system table.
3. The calculated value is returned to the calling statement.

Metadata
For information about sequences, query sys.sequences.

Security

Permissions
Requires CREATE SEQUENCE, ALTER, or CONTROL permission on the SCHEMA.
• Members of the db_owner and db_ddladmin fixed database roles can create, alter, and drop

sequence objects.
• Members of the db_owner and db_datawriter fixed database roles can update sequence

objects by causing them to generate numbers.
The following example grants the user AdventureWorks\Larry permission to create sequences in
the Test schema.

GRANT CREATE SEQUENCE ON SCHEMA::Test TO [AdventureWorks\Larry]

Ownership of a sequence object can be transferred by using the ALTER AUTHORIZATION
statement.
If a sequence uses a user-defined data type, the creator of the sequence must have REFERENCES
permission on the type.

Audit
To audit CREATE SEQUENCE, monitor the SCHEMA_OBJECT_CHANGE_GROUP.

Examples

http://msdn.microsoft.com/en-us/library/0e1b0e32-1cce-40f7-83c8-860ec660138a(SQL.110)�

 557

For examples of creating sequences and using the NEXT VALUE FOR function to generate
sequence numbers, see Creating and Using Sequence Numbers.
Most of the following examples create sequence objects in a schema named Test.
To create the Test schema, execute the following statement.

-- CREATE SCHEMA Test ;

GO

A. Creating a sequence that increases by 1
In the following example, Thierry creates a sequence named CountBy1 that increases by one
every time that it is used.
CREATE SEQUENCE Test.CountBy1

 START WITH 1

 INCREMENT BY 1 ;

GO

B. Creating a sequence that decreases by 1
The following example starts at 0 and counts into negative numbers by one every time it is used.

CREATE SEQUENCE Test.CountByNeg1

 START WITH 0

 INCREMENT BY -1 ;

GO

C. Creating a sequence that increases by 5
The following example creates a sequence that increases by 5 every time it is used.

CREATE SEQUENCE Test.CountBy1

 START WITH 5

 INCREMENT BY 5 ;

GO

D. Creating a sequence that starts with a designated number
After importing a table, Thierry notices that the highest ID number used is 24,328. Thierry needs
a sequence that will generate numbers starting at 24,329. The following code creates a sequence
that starts with 24,329 and increments by 1.

CREATE SEQUENCE Test.ID_Seq

 START WITH 24329

 INCREMENT BY 1 ;

GO

E. Creating a sequence using default values

http://msdn.microsoft.com/en-us/library/c900e30d-2fd3-4d5f-98ee-7832f37e79d1(SQL.110)�

 558

The following example creates a sequence using the default values.

CREATE SEQUENCE Test.TestSequence ;

Execute the following statement to view the properties of the sequence.

SELECT * FROM sys.sequences WHERE name = 'TestSequence' ;

A partial list of the output demonstrates the default values.

start_value -9223372036854775808

increment 1

mimimum_value -9223372036854775808

maximum_value 9223372036854775807

is_cycling 0

is_cached 1

current_value -9223372036854775808

F. Creating a sequence with a specific data type
The following example creates a sequence using the smallint data type, with a range from -
32,768 to 32,767.

CREATE SEQUENCE SmallSeq

 AS smallint ;

G. Creating a sequence using all arguments
The following example creates a sequence named DecSeq using the decimal data type, having a
range from 0 to 255. The sequence starts with 125 and increments by 25 every time that a
number is generated. Because the sequence is configured to cycle when the value exceeds the
maximum value of 200, the sequence restarts at the minimum value of 100.

CREATE SEQUENCE Test.DecSeq

 AS decimal(3,0)

 START WITH 125

 INCREMENT BY 25

 MINVALUE 100

 MAXVALUE 200

 CYCLE

 CACHE 3

;

 559

Execute the following statement to see the first value; the START WITH option of 125.

SELECT NEXT VALUE FOR Test.DecSeq;

Execute the statement three more times to return 150, 175, and 200.
Execute the statement again to see how the start value cycles back to the MINVALUE option of
100.
Execute the following code to confirm the cache size and see the current value.

SELECT cache_size, current_value

FROM sys.sequences

WHERE name = 'DecSeq' ;

See Also
ALTER SEQUENCE (Transact-SQL)
DROP SEQUENCE (Transact-SQL)
NEXT VALUE FOR function (Transact-SQL)
Creating and Using Sequence Numbers

CREATE SERVER AUDIT
Creates a server audit object using SQL Server Audit. For more information, see Understanding
SQL Server Audit.

 Transact-SQL Syntax Conventions

Syntax

CREATE SERVER AUDIT audit_name
{
 TO { [FILE (<file_options> [, ...n])] | APPLICATION_LOG | SECURITY_LOG }
 [WITH (<audit_options> [, ...n])]
 [WHERE <predicate_expression>]
}
[;]

<file_options>::=
{
 FILEPATH = 'os_file_path'
 [, MAXSIZE = { max_size { MB | GB | TB } | UNLIMITED }]
 [, { MAX_ROLLOVER_FILES = { integer | UNLIMITED } } | { MAX_FILES = integer }]

http://msdn.microsoft.com/en-us/library/92632ed5-9f32-48eb-be28-a5e477ef9076(SQL.110)�
http://msdn.microsoft.com/en-us/library/c900e30d-2fd3-4d5f-98ee-7832f37e79d1(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 560

 [, RESERVE_DISK_SPACE = { ON | OFF }]
}

<audit_options>::=
{
 [QUEUE_DELAY = integer]
 [, ON_FAILURE = { CONTINUE | SHUTDOWN | FAIL_OPERATION }]
 [, AUDIT_GUID = uniqueidentifier]
}

<predicate_expression>::=
{
 [NOT] <predicate_factor>
 [{ AND | OR } [NOT] { <predicate_factor> }]
 [,...n]
}

<predicate_factor>::=
 event_field_name { = | < > | ! = | > | > = | < | < = } { number | ' string ' }

Arguments
TO { FILE | APPLICATION_LOG | SECURITY_LOG }

Determines the location of the audit target. The options are a binary file, The Windows
Application log, or the Windows Security log. SQL Server cannot write to the Windows
Security log without configuring additional settings in Windows. For more information, see
How to: Write Server Audit Events to the Security Log.

FILEPATH = 'os_file_path'

The path of the audit log. The file name is generated based on the audit name and audit
GUID.

MAXSIZE = { max_size }

Specifies the maximum size to which the audit file can grow. The max_size value must be an
integer followed by MB, GB, TB, or UNLIMITED. The minimum size that you can specify for
max_size is 2 MB and the maximum is 2,147,483,647 TB. When UNLIMITED is specified, the
file grows until the disk is full. Specifying a value lower than 2 MB will raise the error
MSG_MAXSIZE_TOO_SMALL. The default value is UNLIMITED.

http://msdn.microsoft.com/en-us/library/6fabeea3-7a42-4769-a0f3-7e04daada314(SQL.110)�

 561

MAX_ROLLOVER_FILES = { integer | UNLIMITED }

Specifies the maximum number of files to retain in the file system in addition to the current
file. The MAX_ROLLOVER_FILES value must be an integer or UNLIMITED. The default value is
UNLIMITED. This parameter is evaluated whenever the audit restarts (which can happen when
the instance of the Database Engine restarts or when the audit is turned off and then on
again) or when a new file is needed because the MAXSIZE has been reached. When
MAX_ROLLOVER_FILES is evaluated, if the number of files exceeds the
MAX_ROLLOVER_FILES setting, the oldest file is deleted. As a result, when the setting of
MAX_ROLLOVER_FILES is 0 a new file is created each time the MAX_ROLLOVER_FILES setting
is evaluated. Only one file is automatically deleted when MAX_ROLLOVER_FILES setting is
evaluated, so when the value of MAX_ROLLOVER_FILES is decreased, the number of files will
not shrink unless old files are manually deleted. The maximum number of files that can be
specified is 2,147,483,647.

MAX_FILES = integer

Specifies the maximum number of audit files that can be created. Does not rollover to the
first file when the limit is reached. When the MAX_FILES limit is reached, any action that
causes additional audit events to be generated will fail with an error.

RESERVE_DISK_SPACE = { ON | OFF }

This option pre-allocates the file on the disk to the MAXSIZE value. It applies only if MAXSIZE
is not equal to UNLIMITED. The default value is OFF.

QUEUE_DELAY = integer

Determines the time, in milliseconds, that can elapse before audit actions are forced to be
processed. A value of 0 indicates synchronous delivery. The minimum settable query delay
value is 1000 (1 second), which is the default. The maximum is 2,147,483,647 (2,147,483.647
seconds or 24 days, 20 hours, 31 minutes, 23.647 seconds). Specifying an invalid number will
raise the error MSG_INVALID_QUEUE_DELAY.

ON_FAILURE = { CONTINUE | SHUTDOWN | FAIL_OPERATION }

Indicates whether the instance writing to the target should fail, continue, or stop SQL Server
if the target cannot write to the audit log. The default value is CONTINUE.

CONTINUE

SQL Server operations continue. Audit records are not retained. The audit continues to
attempt to log events and will resume if the failure condition is resolved. Selecting the
continue option can allow unaudited activity which could violate your security policies. Use
this option, when continuing operation of the Database Engine is more important than
maintaining a complete audit.

SHUTDOWN

Forces a server shut down when the server instance writing to the target cannot write data
to the audit target. The login issuing this must have the SHUTDOWN permission. If the
logon does not have this permission, this function will fail and an error message will be

 562

raised. No audited events occur. Use the option when an audit failure could compromise
the security or integrity of the system.

FAIL_OPERATION

Database actions fail if they cause audited events. Actions which do not cause audited
events can continue, but no audited events can occur. The audit continues to attempt to
log events and will resume if the failure condition is resolved. Use this option when
maintaining a complete audit is more important than full access to the Database Engine.

AUDIT_GUID = uniqueidentifier

To support scenarios such as database mirroring, an audit needs a specific GUID that
matches the GUID found in the mirrored database. The GUID cannot be modified after the
audit has been created.

predicate_expression

Specifies the predicate expression used to determine if an event should be processed or not.
Predicate expressions are limited to 3000 characters, which limits string arguments.

event_field_name

Is the name of the event field that identifies the predicate source. Audit fields are described
in fn_get_audit_file (Transact-SQL). All fields can be audited except file_name and
audit_file_offset.

number

Is any numeric type including decimal. Limitations are the lack of available physical memory
or a number that is too large to be represented as a 64-bit integer.

' string '

Either an ANSI or Unicode string as required by the predicate compare. No implicit string
type conversion is performed for the predicate compare functions. Passing the wrong type
results in an error.

Remarks
When a server audit is created, it is in a disabled state.
The CREATE SERVER AUDIT statement is in a transaction's scope. If the transaction is rolled back,
the statement is also rolled back.

Permissions
To create, alter, or drop a server audit, principals require the ALTER ANY SERVER AUDIT or the
CONTROL SERVER permission.
When you are saving audit information to a file, to help prevent tampering, restrict access to the
file location.

Examples

A. Creating a server audit with a file target

http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�

 563

The following example creates a server audit called HIPPA_Audit with a binary file as the target
and no options.

CREATE SERVER AUDIT HIPAA_Audit

 TO FILE (FILEPATH ='\\SQLPROD_1\Audit\');

B. Creating a server audit with a Windows Application log target with options
The following example creates a server audit called HIPPA_Audit with the target set for the
Windows Application log. The queue is written every second and shuts down the SQL Server
engine on failure.

CREATE SERVER AUDIT HIPAA_Audit

 TO APPLICATION_LOG

 WITH (QUEUE_DELAY = 1000, ON_FAILURE = SHUTDOWN);

C. Creating a server audit containing a WHERE clause
The following example creates a database, schema, and two tables for the example. The table
named DataSchema.SensitiveData will contain confidential data and access to the table must
be recorded in the audit. The table named DataSchema.GeneralData does not contain
confidential data. The database audit specification audits access to all objects in the DataSchema
schema. The server audit is created with a WHERE clause that limits the server audit to only the
SensitiveData table. The server audit presumes a audit folder exists at C:\SQLAudit.

CREATE DATABASE TestDB;

GO

USE TestDB;

GO

CREATE SCHEMA DataSchema;

GO

CREATE TABLE DataSchema.GeneralData (ID int PRIMARY KEY, DataField

varchar(50) NOT NULL);

GO

CREATE TABLE DataSchema.SensitiveData (ID int PRIMARY KEY, DataField

varchar(50) NOT NULL);

GO

-- Create the server audit in the master database

USE master;

GO

CREATE SERVER AUDIT AuditDataAccess

 TO FILE (FILEPATH ='C:\SQLAudit\')

 564

 WHERE object_name = 'SensitiveData' ;

GO

ALTER SERVER AUDIT AuditDataAccess WITH (STATE = ON);

GO

-- Create the database audit specification in the TestDB database

USE TestDB;

GO

CREATE DATABASE AUDIT SPECIFICATION [FilterForSensitiveData]

FOR SERVER AUDIT [AuditDataAccess]

ADD (SELECT ON SCHEMA::[DataSchema] BY [public])

WITH (STATE = ON);

GO

-- Trigger the audit event by selecting from tables

SELECT ID, DataField FROM DataSchema.GeneralData;

SELECT ID, DataField FROM DataSchema.SensitiveData;

GO

-- Check the audit for the filtered content

SELECT * FROM

fn_get_audit_file('C:\SQLAudit\AuditDataAccess_*.sqlaudit',default,default);

GO

See Also
ALTER SERVER AUDIT (Transact-SQL)
DROP SERVER AUDIT (Transact-SQL)
CREATE SERVER AUDIT SPECIFICATION (Transact-SQL)
ALTER SERVER AUDIT SPECIFICATION (Transact-SQL)
DROP SERVER AUDIT SPECIFICATION (Transact-SQL)
CREATE DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER DATABASE AUDIT SPECIFICATION (Transact-SQL)
DROP DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER AUTHORIZATION (Transact-SQL)
fn_get_audit_file (Transact-SQL)
sys.server_audits (Transact-SQL)
sys.server_file_audits (Transact-SQL)
sys.server_audit_specifications (Transact-SQL)

http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2c4a000-1127-46a8-b1e9-947fd1136e1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/553288a0-be57-4d79-ae53-b7cbd065e127(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa496c6c-2a54-4fda-a238-db490c6b3afd(SQL.110)�

 565

sys.server_audit_specifications_details (Transact-SQL)
sys.database_ audit_specifications (Transact-SQL)
sys.database_audit_specification_details (Transact-SQL)
sys.dm_server_audit_status
sys.dm_audit_actions
sys.dm_audit_class_type_map
Create a Server Audit and Server Audit Specification

CREATE SERVER AUDIT SPECIFICATION
Creates a server audit specification object using the SQL Server Audit feature. For more
information, see Understanding SQL Server Audit.

 Transact-SQL Syntax Conventions

Syntax

CREATE SERVER AUDIT SPECIFICATION audit_specification_name
FOR SERVER AUDIT audit_name
{
 { ADD ({ audit_action_group_name })
 } [, ...n]
 [WITH (STATE = { ON | OFF })]
}
[;]

Arguments
audit_specification_name

Name of the server audit specification.

audit_name

Name of the audit to which this specification is applied.

audit_action_group_name

Name of a group of server-level auditable actions. For a list of Audit Action Groups, see SQL
Server Audit Action Groups and Actions.

WITH (STATE = { ON | OFF })

Enables or disables the audit from collecting records for this audit specification.

Remarks

http://msdn.microsoft.com/en-us/library/792724dc-402e-4b17-9f2c-029d910bf88e(SQL.110)�
http://msdn.microsoft.com/en-us/library/bf80e5c6-0588-4eb7-86ff-aa7c73461335(SQL.110)�
http://msdn.microsoft.com/en-us/library/03fc60a9-1696-4109-b15e-a50046310859(SQL.110)�
http://msdn.microsoft.com/en-us/library/4aa32d54-2ae1-437e-bbaa-7f1df1404b44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b987c2b9-998a-4a5f-a82d-280dc6963cbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/e10b5431-1bb0-47ca-8fd0-c04bd73a4410(SQL.110)�
http://msdn.microsoft.com/en-us/library/6624b1ab-7ec8-44ce-8292-397edf644394(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/b7422911-7524-4bcd-9ab9-e460d5897b3d(SQL.110)�
http://msdn.microsoft.com/en-us/library/b7422911-7524-4bcd-9ab9-e460d5897b3d(SQL.110)�

 566

An audit must exist before creating a server audit specification for it. When a server audit
specification is created, it is in a disabled state.

Permissions
Users with the ALTER ANY SERVER AUDIT permission can create server audit specifications and
bind them to any audit.
After a server audit specification is created, it can be viewed by principals with the, CONTROL
SERVER, or ALTER ANY SERVER AUDIT permissions, the sysadmin account, or principals having
explicit access to the audit.

Examples
The following example creates a server audit specification called HIPPA_Audit_Specification
that audits failed logins, for a SQL Server Audit called HIPPA_Audit.

CREATE SERVER AUDIT SPECIFICATION HIPPA_Audit_Specification

FOR SERVER AUDIT HIPPA_Audit

 ADD (FAILED_LOGIN_GROUP);

GO

For a full example about how to create an audit, see Understanding SQL Server Audit.

See Also
CREATE SERVER AUDIT (Transact-SQL)
ALTER SERVER AUDIT (Transact-SQL)
DROP SERVER AUDIT (Transact-SQL)
ALTER SERVER AUDIT SPECIFICATION (Transact-SQL)
DROP SERVER AUDIT SPECIFICATION (Transact-SQL)
CREATE DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER DATABASE AUDIT SPECIFICATION (Transact-SQL)
DROP DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER AUTHORIZATION (Transact-SQL)
fn_get_audit_file (Transact-SQL)
sys.server_audits (Transact-SQL)
sys.server_file_audits (Transact-SQL)
sys.server_audit_specifications (Transact-SQL)
sys.server_audit_specifications_details (Transact-SQL)
sys.database_ audit_specifications (Transact-SQL)
sys.audit_database_specification_details (Transact-SQL)
sys.dm_server_audit_status
sys.dm_audit_actions

http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2c4a000-1127-46a8-b1e9-947fd1136e1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/553288a0-be57-4d79-ae53-b7cbd065e127(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa496c6c-2a54-4fda-a238-db490c6b3afd(SQL.110)�
http://msdn.microsoft.com/en-us/library/792724dc-402e-4b17-9f2c-029d910bf88e(SQL.110)�
http://msdn.microsoft.com/en-us/library/bf80e5c6-0588-4eb7-86ff-aa7c73461335(SQL.110)�
http://msdn.microsoft.com/en-us/library/03fc60a9-1696-4109-b15e-a50046310859(SQL.110)�
http://msdn.microsoft.com/en-us/library/4aa32d54-2ae1-437e-bbaa-7f1df1404b44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b987c2b9-998a-4a5f-a82d-280dc6963cbe(SQL.110)�

 567

Create a Server Audit and Server Audit Specification

CREATE SERVER ROLE
Creates a new user-defined server role.

 Transact-SQL Syntax Conventions

Syntax

CREATE SERVER ROLE role_name [AUTHORIZATION server_principal]

Arguments
role_name

Is the name of the server role to be created.

AUTHORIZATION server_principal

Is the login that will own the new server role. If no login is specified, the server role will be
owned by the login that executes CREATE SERVER ROLE.

Remarks
Server roles are server-level securables. After you create a server role, configure the server-level
permissions of the role by using GRANT, DENY, and REVOKE. To add logins to or remove logins
from a server role, use ALTER SERVER ROLE. To drop a server role, use DROP SERVER ROLE. For
more information, see sys.server_principals (Transact-SQL).
You can view the server roles by querying the sys.server_role_members and sys.server_principals
catalog views.
Server roles cannot be granted permission on database-level securables. To create database
roles, see CREATE ROLE (Transact-SQL).

Permissions
Requires CREATE SERVER ROLE permission or membership in the sysadmin fixed server role.
Also requires IMPERSONATE on the server_principal for logins, ALTER permission for server roles
used as the server_principal, or membership in a Windows group that is used as the
server_principal.
This will fire the Audit Server Principal Management event with the object type set to server role
and event type to add.
When you use the AUTHORIZATION option to assign server role ownership, the following
permissions are also required:
• To assign ownership of a server role to another login, requires IMPERSONATE permission on

that login.

http://msdn.microsoft.com/en-us/library/6624b1ab-7ec8-44ce-8292-397edf644394(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/c5dbe0d8-a1c8-4dc4-b9b1-22af20effd37(SQL.110)�
http://msdn.microsoft.com/en-us/library/efa20414-2c6b-45a2-a7a9-60110a24da18(SQL.110)�
http://msdn.microsoft.com/en-us/library/c5dbe0d8-a1c8-4dc4-b9b1-22af20effd37(SQL.110)�

 568

• To assign ownership of a server role to another server role, requires membership in the
recipient server role or ALTER permission on that server role.

Examples

A. Creating a server role that is owned by a login
The following example creates the server role buyers that is owned by login BenMiller.

USE master;

CREATE SERVER ROLE buyers AUTHORIZATION BenMiller;

GO

B. Creating a server role that is owned by a fixed server role
The following example creates the server role auditors that is owned the securityadmin fixed
server role.

USE master;

CREATE SERVER ROLE auditors AUTHORIZATION securityadmin;

GO

See Also
DROP SERVER ROLE (Transact-SQL)
Principals
EVENTDATA (Transact-SQL)
sp_addrolemember (Transact-SQL)
sys.database_role_members (Transact-SQL)
sys.database_principals (Transact-SQL)

CREATE SERVICE
Creates a new service. A Service Broker service is a name for a specific task or set of tasks.
Service Broker uses the name of the service to route messages, deliver messages to the correct
queue within a database, and enforce the contract for a conversation.

 Transact-SQL Syntax Conventions

Syntax

CREATE SERVICE service_name
 [AUTHORIZATION owner_name]
 ON QUEUE [schema_name.]queue_name
 [(contract_name | [DEFAULT] [,...n])]
[;]

http://msdn.microsoft.com/en-us/library/3f7adbf7-6e40-4396-a8ca-71cbb843b5c2(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/a583c087-bdb3-46d2-b9e5-3921b3e6d10b(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1b019d-ca48-4db3-85df-cf6d2db591cf(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cb239e9-eb8c-4109-9cec-0d35de95fa0e(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 569

Arguments
service_name

Is the name of the service to create. A new service is created in the current database and
owned by the principal specified in the AUTHORIZATION clause. Server, database, and
schema names cannot be specified. The service_name must be a valid sysname.

Note
Do not create a service that uses the keyword ANY for the service_name. When you specify ANY for a
service name in CREATE BROKER PRIORITY, the priority is considered for all services. It is not limited to
a service whose name is ANY.

AUTHORIZATION owner_name

Sets the owner of the service to the specified database user or role. When the current user is
dbo or sa, owner_name may be the name of any valid user or role. Otherwise, owner_name
must be the name of the current user, the name of a user that the current user has
IMPERSONATE permission for, or the name of a role to which the current user belongs.

ON QUEUE [schema_name .] queue_name

Specifies the queue that receives messages for the service. The queue must exist in the same
database as the service. If no schema_name is provided, the schema is the default schema for
the user that executes the statement.

contract_name

Specifies a contract for which this service may be a target. Service programs initiate
conversations to this service using the contracts specified. If no contracts are specified, the
service may only initiate conversations.

[DEFAULT]

Specifies that the service may be a target for conversations that follow the DEFAULT contract.
In the context of this clause, DEFAULT is not a keyword, and must be delimited as an
identifier. The DEFAULT contract allows both sides of the conversation to send messages of
message type DEFAULT. Message type DEFAULT uses validation NONE.

Remarks
A service exposes the functionality provided by the contracts with which it is associated, so that
they can be used by other services. The CREATE SERVICE statement specifies the contracts that
this service is the target for. A service can only be a target for conversations that use the
contracts specified by the service. A service that specifies no contracts exposes no functionality
to other services.
Conversations initiated from this service may use any contract. You create a service without
specifying contracts when the service only initiates conversations.

 570

When Service Broker accepts a new conversation from a remote service, the name of the target
service determines the queue where the broker places messages in the conversation.

Permissions
Permission for creating a service defaults to members of the db_ddladmin or db_owner fixed
database roles and the sysadmin fixed server role. The user executing the CREATE SERVICE
statement must have REFERENCES permission on the queue and all contracts specified.
REFERENCES permission for a service defaults to the owner of the service, members of the
db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server
role. SEND permissions for a service default to the owner of the service, members of the
db_owner fixed database role, and members of the sysadmin fixed server role.
A service may not be a temporary object. Service names beginning with # are allowed, but are
permanent objects.

Examples

A. Creating a service with one contract
The following example creates the service //Adventure-Works.com/Expenses on the
ExpenseQueue queue in the dbo schema. Dialogs that target this service must follow the
contract //Adventure-Works.com/Expenses/ExpenseSubmission.

CREATE SERVICE [//Adventure-Works.com/Expenses]

 ON QUEUE [dbo].[ExpenseQueue]

 ([//Adventure-Works.com/Expenses/ExpenseSubmission]) ;

B. Creating a service with multiple contracts
The following example creates the service //Adventure-Works.com/Expenses on the
ExpenseQueue queue. Dialogs that target this service must either follow the contract
//Adventure-Works.com/Expenses/ExpenseSubmission or the contract //Adventure-
Works.com/Expenses/ExpenseProcessing.

CREATE SERVICE [//Adventure-Works.com/Expenses] ON QUEUE ExpenseQueue

 ([//Adventure-Works.com/Expenses/ExpenseSubmission],

 [//Adventure-Works.com/Expenses/ExpenseProcessing]) ;

C. Creating a service with no contracts
The following example creates the service //Adventure-Works.com/Expenses on the
ExpenseQueue queue. This service has no contract information. Therefore, the service can only
be the initiator of a dialog.

CREATE SERVICE [//Adventure-Works.com/Expenses] ON QUEUE ExpenseQueue ;

See Also
EVENTDATA (Transact-SQL)
DROP SERVICE

www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses/ExpenseSubmission
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses/ExpenseSubmission
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses/ExpenseSubmission
www.Adventure-Works.com/Expenses/ExpenseProcessing
www.Adventure-Works.com/Expenses/ExpenseProcessing
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses/ExpenseSubmission
www.Adventure-Works.com/Expenses/ExpenseProcessing
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses

 571

EVENTDATA

CREATE SPATIAL INDEX
Creates a spatial index on a specified table and column. An index can be created before there is
data in the table. Indexes can be created on tables or views in another database by specifying a
qualified database name. Spatial indexes require the table to have a clustered primary key.

For information about spatial indexes, see Spatial Indexes Overview.
 Transact-SQL Syntax Conventions

Syntax

Create Spatial Index
CREATE SPATIAL INDEX index_name
 ON <object> (spatial_column_name)
 {
 <geometry_tessellation> | <geography_tessellation>
 }
 [ON { filegroup_name | "default" }]
;

<object> ::=
 [database_name. [schema_name] . | schema_name.]
 table_name

<geometry_tessellation> ::=
{
 <geometry_automatic_grid_tessellation> | <geometry_manual_grid_tessellation>
}

<geometry_automatic_grid_tessellation> ::=
{
 [USING GEOMETRY_AUTO_GRID]
 WITH (
 <bounding_box>

Note

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b1ae7b78-182a-459e-ab28-f743e43f8293(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 572

 [[,] <tessellation_cells_per_object> [,…n]]
 [[,] <spatial_index_option> [,…n]]
)
}

<geometry_manual_grid_tessellation> ::=
{
 [USING GEOMETRY_GRID]
 WITH (
 <bounding_box>
 [[,]<tessellation_grid> [,…n]]
 [[,]<tessellation_cells_per_object> [,…n]]
 [[,]<spatial_index_option> [,…n]]
)
}

<geography_tessellation> ::=
{
 <geography_automatic_grid_tessellation> | <geography_manual_grid_tessellation>
}

<geography_automatic_grid_tessellation> ::=
{
 [USING GEOGRAPHY_AUTO_GRID]
 [WITH (
 [[,] <tessellation_cells_per_object> [,…n]]
 [[,] <spatial_index_option>]
)]
}

 573

<geography_manual_grid_tessellation> ::=
{
 [USING GEOGRAPHY_GRID]
 [WITH (
 [<tessellation_grid> [,…n]]
 [[,] <tessellation_cells_per_object> [,…n]]
 [[,] <spatial_index_option> [,…n]]
)]
}

<bounding_box> ::=
{
 BOUNDING_BOX = ({
 xmin, ymin, xmax, ymax
 | <named_bb_coordinate>, <named_bb_coordinate>, <named_bb_coordinate>,
<named_bb_coordinate>
 })
}

<named_bb_coordinate> ::= { XMIN = xmin | YMIN = ymin | XMAX = xmax | YMAX=ymax }

<tesselation_grid> ::=
{
 GRIDS = ({ <grid_level> [,...n] | <grid_size>, <grid_size>, <grid_size>, <grid_size> }
)
}
<tesseallation_cells_per_object> ::=
{
 CELLS_PER_OBJECT = n
}

<grid_level> ::=
{
 LEVEL_1 = <grid_size>
 | LEVEL_2 = <grid_size>

 574

 | LEVEL_3 = <grid_size>
 | LEVEL_4 = <grid_size>
}

<grid_size> ::= { LOW | MEDIUM | HIGH }

<spatial_index_option> ::=
{
 PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | SORT_IN_TEMPDB = { ON | OFF }
 | IGNORE_DUP_KEY = OFF
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | DROP_EXISTING = { ON | OFF }
 | ONLINE = OFF
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
 | DATA_COMPRESSION = { NONE | ROW | PAGE }
}

Arguments
index_name

Is the name of the index. Index names must be unique within a table but do not have to be
unique within a database. Index names must follow the rules of identifiers.

ON <object> (spatial_column_name)

Specifies the object (database, schema, or table) on which the index is to be created and the
name of spatial column.

spatial_column_name specifies the spatial column on which the index is based. Only one
spatial column can be specified in a single spatial index definition; however, multiple spatial
indexes can be created on a geometry or geography column.

USING

Indicates the tessellation scheme for the spatial index. This parameter uses the type-specific
value, shown in the following table:

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 575

Data type of column Tessellation scheme

geometry GEOMETRY_GRID

geometry GEOMETRY_AUTO_GRID

geography GEOGRAPY_GRID

geography GEOGRAPHY_AUTO_GRID

A spatial index can be created only on a column of type geometry or geography. Otherwise,
an error is raised. Also, if an invalid parameter for a given type is passed, an error is raised.

nNote
For information about how SQL Server implements tessellation, see Spatial Indexes Overview.

ON filegroup_name

Creates the specified index on the specified filegroup. If no location is specified and the table
is not partitioned, the index uses the same filegroup as the underlying table. The filegroup
must already exist.

ON "default"

Creates the specified index on the default filegroup.

The term default, in this context, is not a keyword. It is an identifier for the default filegroup
and must be delimited, as in ON "default" or ON [default]. If "default" is specified, the
QUOTED_IDENTIFIER option must be ON for the current session. This is the default setting.
For more information, see SET QUOTED_IDENTIFIER (Transact-SQL).

<object>::=
Is the fully qualified or non-fully qualified object to be indexed.
database_name

Is the name of the database.

schema_name

Is the name of the schema to which the table belongs.

table_name

Is the name of the table to be indexed.

USING Options
GEOMETRY_GRID

Specifies the geometry grid tessellation scheme that you are using. GEOMETRY_GRID can be
specified only on a column of the geometry data type. GEOMETRY_GRID allows for manual
adjusting of the tessellation scheme.

http://msdn.microsoft.com/en-us/library/b1ae7b78-182a-459e-ab28-f743e43f8293(SQL.110)�
http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�

 576

GEOMETRY_AUTO_GRID

Can be specified only on a column of the geometry data type. This is the default for this data
type and does not need to be specified.

GEOGRAPHY_GRID

Specifies the geography grid tessellation scheme. GEOGRAPHY_GRID can be specified only
on a column of the geography data type.

GEOGRAPHY_AUTO_GRID

Can be specified only on a column of the geography data type. This is the default for this
data type and does not need to be specified.

WITH Options
BOUNDING_BOX

Specifies a numeric four-tuple that defines the four coordinates of the bounding box: the x-
min and y-min coordinates of the lower-left corner, and the x-max and y-max coordinates of
the upper-right corner.

xmin

Specifies the x-coordinate of the lower-left corner of the bounding box.

ymin

Specifies the y-coordinate of the lower-left corner of the bounding box.

xmax

Specifies the x-coordinate of the upper-right corner of the bounding box.

ymax

Specifies the y-coordinate of the upper-right corner of the bounding box.

XMIN = xmin

Specifies the property name and value for the x-coordinate of the lower-left corner of the
bounding box.

YMIN = ymin

Specifies the property name and value for the y-coordinate of the lower-left corner of the
bounding box.

XMAX = xmax

Specifies the property name and value for the x-coordinate of the upper-right corner of
the bounding box.

YMAX = ymax

Specifies the property name and value for the y-coordinate of upper-right corner of the
bounding box

Bounding-box coordinates apply only within a USING GEOMETRY_GRID clause.

 577

xmax must be greater than xmin and ymax must be greater than ymin. You can specify any
valid float value representation, assuming that: xmax > xmin and ymax > ymin. Otherwise
the appropriate errors are raised.

There are no default values.

The bounding-box property names are case-insensitive regardless of the database collation.

To specify property names, you must specify each of them once and only once. You can
specify them in any order. For example, the following clauses are equivalent:

• BOUNDING_BOX = (XMIN = xmin, YMIN = ymin, XMAX = xmax, YMAX = ymax)

• BOUNDING_BOX = (XMIN = xmin, XMAX = xmax, YMIN = ymin, YMAX = ymax)

GRIDS

Defines the density of the grid at each level of a tessellation scheme. When
GEOMETRY_AUTO_GRID and GEOGRAPHY_AUTO_GRID are selected, this option is disabled.

Note
For information about tessellation, see Spatial Indexes Overview.

The GRIDS parameters are as follows:

LEVEL_1

Specifies the first-level (top) grid.

LEVEL_2

Specifies the second-level grid.

LEVEL_3

Specifies the third-level grid.

LEVEL_4

Specifies the fourth-level grid.

LOW

Specifies the lowest possible density for the grid at a given level. LOW equates to 16 cells
(a 4x4 grid).

MEDIUM

Specifies the medium density for the grid at a given level. MEDIUM equates to 64 cells (an
8x8 grid).

HIGH

Specifies the highest possible density for the grid at a given level. HIGH equates to 256
cells (a 16x16 grid).

Using level names allows you to specify the levels in any order and to omit levels. If you use
the name for any level, you must use the name of any other level that you specify. If you omit
a level, its density defaults to MEDIUM.

http://msdn.microsoft.com/en-us/library/08ea66b7-624e-4d8b-86bc-750ff76cdfc5(SQL.110)�
http://msdn.microsoft.com/en-us/library/b1ae7b78-182a-459e-ab28-f743e43f8293(SQL.110)�

 578

If an invalid density is specified, an error is raised.

CELLS_PER_OBJECT = n

Specifies the number of tessellation cells per object that can be used for a single spatial
object in the index by the tessellation process. n can be any integer between 1 and 8192,
inclusive. If an invalid number is passed or the number is larger than the maximum number of
cells for the specified tessellation, an error is raised.

CELLS_PER_OBJECT has the following default values:

USING option Default Cells per Object

GEOMETRY_GRID 16

GEOMETRY_AUTO_GRID 8

GEOGRAPHY_GRID 16

GEOGRAPHY_AUTO_GRID 12

At the top level, if an object covers more cells than specified by n, the indexing uses as many
cells as necessary to provide a complete top-level tessellation. In such cases, an object might
receive more than the specified number of cells. In this case, the maximum number is the
number of cells generated by the top-level grid, which depends on the density.

The CELLS_PER_OBJECT value is used by the cells-per-object tessellation rule. For information
about the tessellation rules, see Spatial Indexes Overview.

PAD_INDEX = { ON | OFF }

Specifies index padding. The default is OFF.

ON

Indicates that the percentage of free space that is specified by fillfactor is applied to the
intermediate-level pages of the index.

OFF or fillfactor is not specified

Indicates that the intermediate-level pages are filled to near capacity, leaving sufficient
space for at least one row of the maximum size the index can have, considering the set of
keys on the intermediate pages.

The PAD_INDEX option is useful only when FILLFACTOR is specified, because PAD_INDEX
uses the percentage specified by FILLFACTOR. If the percentage specified for FILLFACTOR is
not large enough to allow for one row, the Database Engine internally overrides the
percentage to allow for the minimum. The number of rows on an intermediate index page is
never less than two, regardless of how low the value of fillfactor.

FILLFACTOR = fillfactor

Specifies a percentage that indicates how full the Database Engine should make the leaf level

http://msdn.microsoft.com/en-us/library/b1ae7b78-182a-459e-ab28-f743e43f8293(SQL.110)�

 579

of each index page during index creation or rebuild. fillfactor must be an integer value from 1
to 100. The default is 0. If fillfactor is 100 or 0, the Database Engine creates indexes with leaf
pages filled to capacity.

Note
Fill factor values 0 and 100 are the same in all respects.

The FILLFACTOR setting applies only when the index is created or rebuilt. The Database
Engine does not dynamically keep the specified percentage of empty space in the pages. To
view the fill factor setting, use the sys.indexes catalog view.

Important
Creating a clustered index with a FILLFACTOR less than 100 affects the amount of storage space the
data occupies because the Database Engine redistributes the data when it creates the clustered index.

For more information, see Fill Factor.

SORT_IN_TEMPDB = { ON | OFF }

Specifies whether to store temporary sort results in tempdb. The default is OFF.

ON

The intermediate sort results that are used to build the index are stored in tempdb. This
may reduce the time required to create an index if tempdb is on a different set of disks
than the user database. However, this increases the amount of disk space that is used
during the index build.

OFF

The intermediate sort results are stored in the same database as the index.

In addition to the space required in the user database to create the index, tempdb must have
about the same amount of additional space to hold the intermediate sort results. For more
information, see tempdb and Index Creation.

IGNORE_DUP_KEY = OFF

Has no effect for spatial indexes because the index type is never unique. Do not set this
option to ON, or else an error is raised.

STATISTICS_NORECOMPUTE = { ON | OFF }

Specifies whether distribution statistics are recomputed. The default is OFF.

ON

Out-of-date statistics are not automatically recomputed.

OFF

Automatic statistics updating are enabled.

To restore automatic statistics updating, set the STATISTICS_NORECOMPUTE to OFF, or
execute UPDATE STATISTICS without the NORECOMPUTE clause.

http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/237a577e-b42b-4adb-90cf-aa7fb174f3ab(SQL.110)�
http://msdn.microsoft.com/en-us/library/754a003f-fe51-4d10-975a-f6b8c04ebd35(SQL.110)�

 580

Important
Disabling automatic recomputation of distribution statistics may prevent the query optimizer from
picking optimal execution plans for queries involving the table.

DROP_EXISTING = { ON | OFF }

Specifies that the named, preexisting spatial index is dropped and rebuilt. The default is OFF.

ON

The existing index is dropped and rebuilt. The index name specified must be the same as a
currently existing index; however, the index definition can be modified. For example, you
can specify different columns, sort order, partition scheme, or index options.

OFF

An error is displayed if the specified index name already exists.

The index type cannot be changed by using DROP_EXISTING.

ONLINE = OFF

Specifies that underlying tables and associated indexes are not available for queries and data
modification during the index operation. In this version of SQL Server, online index builds are
not supported for spatial indexes. If this option is set to ON for a spatial index, an error is
raised. Either omit the ONLINE option or set ONLINE to OFF.

An offline index operation that creates, rebuilds, or drops a spatial index, acquires a Schema
modification (Sch-M) lock on the table. This prevents all user access to the underlying table
for the duration of the operation.

Note
Online index operations are not available in every edition of Microsoft SQL Server. For a list of features
that are supported by the editions of SQL Server, see Features Supported by the Editions of
SQL Server 2012.

ALLOW_ROW_LOCKS = { ON | OFF }

Specifies whether row locks are allowed. The default is ON.

ON

Row locks are allowed when accessing the index. The Database Engine determines when
row locks are used.

OFF

Row locks are not used.

ALLOW_PAGE_LOCKS = { ON | OFF }

Specifies whether page locks are allowed. The default is ON.

ON

Page locks are allowed when accessing the index. The Database Engine determines when
page locks are used.

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�

 581

OFF

Page locks are not used.

MAXDOP = max_degree_of_parallelism

Overrides the max degree of parallelism configuration option for the duration of
the index operation. Use MAXDOP to limit the number of processors used in a parallel plan
execution. The maximum is 64 processors.

iImportant
Although the MAXDOP option is syntactically supported, CREATE SPATIAL INDEX currently always uses
only a single processor.

max_degree_of_parallelism can be:

1

Suppresses parallel plan generation.

>1

Restricts the maximum number of processors used in a parallel index operation to the
specified number or fewer based on the current system workload.

0 (default)

Uses the actual number of processors or fewer based on the current system workload.

For more information, see Configuring Parallel Index Operations.

Note
Parallel index operations are not available in every edition of Microsoft SQL Server. For a list of
features that are supported by the editions of SQL Server, see Features Supported by the
Editions of SQL Server 2012.

DATA_COMPRESSION = {NONE | ROW | PAGE}

Determines the level of data compression used by the index.

NONE

No compression used on data by the index

ROW

Row compression used on data by the index

PAGE

Page compression used on data by the index

Remarks
For an introduction to spatial indexing in SQL Server, see Spatial Indexes Overview.
Every option can be specified only once per CREATE SPATIAL INDEX statement. Specifying a
duplicate of any option raises an error.

http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/b1ae7b78-182a-459e-ab28-f743e43f8293(SQL.110)�

 582

You can create up to 249 spatial indexes on each spatial column in a table. Creating more than
one spatial index on specific spatial column can be useful, for example, to index different
tessellation parameters in a single column.

There are a number of other restrictions on creating a spatial index. For more
information, see Spatial Indexes Overview.

An index build cannot make use of available process parallelism.

Methods Supported on Spatial Indexes
Under certain conditions, spatial indexes support a number of set-oriented geometry methods.
For more information, see Spatial Indexes Overview.

Spatial Indexes and Partitioning
By default, if a spatial index is created on a partitioned table, the index is partitioned according
to the partition scheme of the table. This assures that index data and the related row are stored
in the same partition.
In this case, to alter the partition scheme of the base table, you would have to drop the spatial
index before you can repartition the base table. To avoid this restriction, when you are creating a
spatial index, you can specify the "ON filegroup" option. For more information, see "Spatial
Indexes and Filegroups," later in this topic.

Spatial Indexes and Filegroups
By default, spatial indexes are partitioned to the same filegroups as the table on which the index
is specified. This can be overridden by using the filegroup specification:
 [ON { filegroup_name | "default" }]
If you specify a filegroup for a spatial index, the index is placed on that filegroup, regardless of
the partitioning scheme of the table.

Catalog Views for Spatial Indexes
The following catalog views are specific to spatial indexes:
sys.spatial_indexes

Represents the main index information of the spatial indexes.

sys.spatial_index_tessellations
Represents the information about the tessellation scheme and parameters of each of the
spatial indexes.

Additional Remarks About Creating Indexes
For more information about creating indexes, see the "Remarks" section in CREATE INDEX
(Transact-SQL).

Permissions

Important

http://msdn.microsoft.com/en-us/library/b1ae7b78-182a-459e-ab28-f743e43f8293(SQL.110)�
http://msdn.microsoft.com/en-us/library/b1ae7b78-182a-459e-ab28-f743e43f8293(SQL.110)�
http://msdn.microsoft.com/en-us/library/40e967d5-2e8d-45af-bf5e-5251493cf7cb(SQL.110)�
http://msdn.microsoft.com/en-us/library/8b17a9a4-b57f-4220-8138-fc73581b1670(SQL.110)�

 583

The user must have ALTER permission on the table or view, or be a member of the sysadmin
fixed server role or the db_ddladmin and db_owner fixed database roles.

Examples

A. Creating a spatial index on a geometry column
The following example creates a table named SpatialTable that contains a geometry type
column, geometry_col. The example then creates a spatial index,
SIndx_SpatialTable_geometry_col1, on the geometry_col. The example uses the default
tessellation scheme and specifies the bounding box.

CREATE TABLE SpatialTable(id int primary key, geometry_col geometry);

CREATE SPATIAL INDEX SIndx_SpatialTable_geometry_col1

 ON SpatialTable(geometry_col)

 WITH (BOUNDING_BOX = (0, 0, 500, 200));

B. Creating a spatial index on a geometry column
The following example creates a second spatial index, SIndx_SpatialTable_geometry_col2,
on the geometry_col in the SpatialTable table. The example specifies GEOMETRY_GRID as the
tessellation scheme. The example also specifies the bounding box, different densities on
different grid levels, and 64 cells per object. The example also sets the index padding to ON.

CREATE SPATIAL INDEX SIndx_SpatialTable_geometry_col2

 ON SpatialTable(geometry_col)

 USING GEOMETRY_GRID

 WITH (

 BOUNDING_BOX = (xmin=0, ymin=0, xmax=500, ymax=200),

 GRIDS = (LOW, LOW, MEDIUM, HIGH),

 CELLS_PER_OBJECT = 64,

 PAD_INDEX = ON);

C. Creating a spatial index on a geometry column
The following example creates a third spatial index, SIndx_SpatialTable_geometry_col3, on
the geometry_col in the SpatialTable table. The example uses the default tessellation
scheme. The example specifies the bounding box and uses different cell densities on the third
and fourth levels, while using the default number of cells per object.

CREATE SPATIAL INDEX SIndx_SpatialTable_geometry_col3

 ON SpatialTable(geometry_col)

 WITH (

 BOUNDING_BOX = (0, 0, 500, 200),

 GRIDS = (LEVEL_4 = HIGH, LEVEL_3 = MEDIUM));

 584

D. Changing an option that is specific to spatial indexes
The following example rebuilds the spatial index created in the preceding example,
SIndx_SpatialTable_geography_col3, by specifying a new LEVEL_3 density with
DROP_EXISTING = ON.
CREATE SPATIAL INDEX SIndx_SpatialTable_geography_col3

 ON SpatialTable(geography_col)

 WITH (BOUNDING_BOX = (0, 0, 500, 200),

 GRIDS = (LEVEL_3 = LOW),

 DROP_EXISTING = ON);

E. Creating a spatial index on a geography column
The following example creates a table named SpatialTable2 that contains a geography type
column, geography_col. The example then creates a spatial index,
SIndx_SpatialTable_geography_col1, on the geography_col. The example uses the default
parameters values of the GEOGRAPHY_AUTO_GRID tessellation scheme.

CREATE TABLE SpatialTable2(id int primary key, object GEOGRAPHY);

CREATE SPATIAL INDEX SIndx_SpatialTable_geography_col1

 ON SpatialTable2(object);

For geography grid indexes, a bounding box cannot be specified.

F. Creating a spatial index on a geography column
The following example creates a second spatial index, SIndx_SpatialTable_geography_col2,
on the geography_col in the SpatialTable2 table. The example specifies GEOGRAPHY_GRID as
the tessellation scheme. The example also specifies different grid densities on different levels
and 64 cells per object. The example also sets the index padding to ON.

CREATE SPATIAL INDEX SIndx_SpatialTable_geography_col2

 ON SpatialTable2(object)

 USING GEOGRAPHY_GRID

 WITH (

 GRIDS = (MEDIUM, LOW, MEDIUM, HIGH),

 CELLS_PER_OBJECT = 64,

 PAD_INDEX = ON);

G. Creating a spatial index on a geography column
The example then creates a third spatial index, SIndx_SpatialTable_geography_col3, on the
geography_col in the SpatialTable2 table. The example uses the default tessellation scheme,
GEOGRAPHY_GRID, and the default CELLS_PER_OBJECT value (16).

Note

 585

CREATE SPATIAL INDEX SIndx_SpatialTable_geography_col3

 ON SpatialTable2(object)

 WITH (GRIDS = (LEVEL_3 = HIGH, LEVEL_2 = HIGH));

See Also
ALTER INDEX (Transact-SQL)
CREATE INDEX (Transact-SQL)
CREATE PARTITION FUNCTION
CREATE PARTITION SCHEME
CREATE STATISTICS
CREATE TABLE
Data Types
DBCC SHOW_STATISTICS
DROP INDEX
EVENTDATA (Transact-SQL)
sys.index_columns
sys.indexes
sys.spatial_index_tessellations (Transact-SQL)
sys.spatial_indexes (Transact-SQL)
Spatial Indexes Overview
Working with Spatial Indexes

CREATE STATISTICS
Creates query optimization statistics, including filtered statistics, on one or more columns of a
table or indexed view. For most queries, the query optimizer already generates the necessary
statistics for a high-quality query plan; in a few cases, you need to create additional statistics
with CREATE STATISTICS or modify the query design to improve query performance.
Filtered statistics can improve query performance for queries that select from well-defined
subsets of data. Filtered statistics use a filter predicate in the WHERE clause to select the subset
of data that is included in the statistics. CREATE STATISTICS can use tempdb to sort the sample
of rows for building statistics.
For more information about statistics, including when to use CREATE STATISTICS, see Using
Statistics to Improve Query Performance.

 Transact-SQL Syntax Conventions

Syntax

http://msdn.microsoft.com/en-us/library/a54f7373-b247-4d61-8fb8-7f2ec7a8d0a4(SQL.110)�
http://msdn.microsoft.com/en-us/library/12be2923-7289-4150-b497-f17e76a50b2e(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/211471aa-558a-475c-9b94-5913c143ed12(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/8b17a9a4-b57f-4220-8138-fc73581b1670(SQL.110)�
http://msdn.microsoft.com/en-us/library/40e967d5-2e8d-45af-bf5e-5251493cf7cb(SQL.110)�
http://msdn.microsoft.com/en-us/library/b1ae7b78-182a-459e-ab28-f743e43f8293(SQL.110)�
http://msdn.microsoft.com/en-us/library/b1ae7b78-182a-459e-ab28-f743e43f8293(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 586

CREATE STATISTICS statistics_name
ON { table_or_indexed_view_name } (column [,...n])
 [WHERE <filter_predicate>]
 [WITH
 [[FULLSCAN
 | SAMPLE number { PERCENT | ROWS }
 | STATS_STREAM = stats_stream] [,]]
 [NORECOMPUTE]
] ;

<filter_predicate> ::=
 <conjunct> [AND <conjunct>]

<conjunct> ::=
 <disjunct> | <comparison>

<disjunct> ::=
 column_name IN (constant ,…)

<comparison> ::=
 column_name <comparison_op> constant

<comparison_op> ::=
 IS | IS NOT | = | <> | != | > | >= | !> | < | <= | !<

Arguments
statistics_name

Is the name of the statistics to create.

table_or_indexed_view_name

Is the name of the table or indexed view to create the statistics on. Statistics can be created
on tables or indexed views in another database by specifying a qualified table name.

column [,…n]

Specifies the key column or list of key columns to create the statistics on. You can specify
any column that can be specified as an index key column with the following exceptions:

• Xml, full-text, and FILESTREAM columns cannot be specified.

• Computed columns can be specified only if the ARITHABORT and QUOTED_IDENTIFIER

 587

database settings are ON.

• CLR user-defined type columns can be specified if the type supports binary ordering.
Computed columns defined as method invocations of a user-defined type column can
be specified if the methods are marked deterministic.

WHERE <filter_predicate>

Specifies an expression for selecting a subset of rows to include when creating the statistics
object. Statistics that are created with a filter predicate are called filtered statistics. The filter
predicate uses simple comparison logic and cannot reference a computed column, a UDT
column, a spatial data type column, or a hierarchyID data type column. Comparisons using
NULL literals are not allowed with the comparison operators. Use the IS NULL and IS NOT
NULL operators instead.

Here are some examples of filter predicates for the Production.BillOfMaterials table:

WHERE StartDate > '20000101' AND EndDate <= '20000630'

WHERE ComponentID IN (533, 324, 753)

WHERE StartDate IN ('20000404', '20000905') AND EndDate IS
NOT NULL

For more information about filter predicates, see Filtered Index Design Guidelines.

FULLSCAN

Compute statistics by scanning all rows in the table or indexed view. FULLSCAN and SAMPLE
100 PERCENT have the same results. FULLSCAN cannot be used with the SAMPLE option.

SAMPLE number { PERCENT | ROWS }

Specifies the approximate percentage or number of rows in the table or indexed view for the
query optimizer to use when it creates statistics. For PERCENT, number can be from 0
through 100 and for ROWS, number can be from 0 to the total number of rows. The actual
percentage or number of rows the query optimizer samples might not match the percentage
or number specified. For example, the query optimizer scans all rows on a data page.

SAMPLE is useful for special cases in which the query plan, based on default sampling, is not
optimal. In most situations, it is not necessary to specify SAMPLE because the query
optimizer already uses sampling and determines the statistically significant sample size by
default, as required to create high-quality query plans.

SAMPLE cannot be used with the FULLSCAN option. When neither SAMPLE nor FULLSCAN is
specified, the query optimizer uses sampled data and computes the sample size by default.

We recommend against specifying 0 PERCENT or 0 ROWS. When 0 PERCENT or ROWS is
specified, the statistics object is created but does not contain statistics data.

NORECOMPUTE

Disable the automatic statistics update option, AUTO_STATISTICS_UPDATE, for
statistics_name. If this option is specified, the query optimizer will complete any in-progress
statistics updates for statistics_name and disable future updates.

http://msdn.microsoft.com/en-us/library/25e1fcc5-45d7-4c53-8c79-5493dfaa1c74(SQL.110)�

 588

To re-enable statistics updates, remove the statistics with DROP STATISTICS and then run
CREATE STATISTICS without the NORECOMPUTE option.

Warning
Using this option can produce suboptimal query plans. We recommend using this option sparingly,
and then only by a qualified system administrator.

For more information about the AUTO_STATISTICS_UPDATE option, see ALTER
DATABASE SET Options (Transact-SQL). For more information about disabling and
re-enabling statistics updates, see Using Statistics to Improve Query Performance.

STATS_STREAM = stats_stream

Identified for informational purposes only. Not supported. Future compatibility is not
guaranteed.

Remarks
You can list up to 32 columns per statistics object.

When to Use CREATE STATISTICS
For more information about when to use CREATE STATISTICS, see Using Statistics to Improve
Query Performance.

Referencing Dependencies for Filtered Statistics
The sys.sql_expression_dependencies catalog view tracks each column in the filtered statistics
predicate as a referencing dependency. Consider the operations that you perform on table
columns before creating filtered statistics because you cannot drop, rename, or alter the
definition of a table column that is defined in a filtered statistics predicate.

Permissions
Requires ALTER TABLE permission, or the user must be the owner of the table or indexed view,
or the user must be a member of the db_ddladmin fixed database role.

Examples

A. Using CREATE STATISTICS with SAMPLE number PERCENT
The following example creates the ContactMail1 statistics, using a random sample of 5 percent
of the ContactID and EmailAddress columns of the Contact table of the AdventureWorks
database.
USE AdventureWorks2012;

GO

CREATE STATISTICS ContactMail1

 ON Person.Person (BusinessEntityID, EmailPromotion)

 WITH SAMPLE 5 PERCENT;

B. Using CREATE STATISTICS with FULLSCAN and NORECOMPUTE

http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/78a218e4-bf99-4a6a-acbf-ff82425a5946(SQL.110)�

 589

The following example creates the ContactMail2 statistics for all rows in the ContactID and
EmailAddress columns of the Contact table and disables automatic recomputing of statistics.
CREATE STATISTICS NamePurchase

 ON AdventureWorks2012.Person.Person (BusinessEntityID, EmailPromotion)

 WITH FULLSCAN, NORECOMPUTE;

C. Using CREATE STATISTICS to create filtered statistics
The following example creates the filtered statistics ContactPromotion1. The Database Engine
samples 50 percent of the data and then selects the rows with EmailPromotion equal to 2.
CREATE STATISTICS NamePurchase

 ON AdventureWorks2012.Person.Person (BusinessEntityID, EmailPromotion)

 WITH FULLSCAN, NORECOMPUTE;

See Also
Using Statistics to Improve Query Performance
UPDATE STATISTICS (Transact-SQL)
sp_updatestats (Transact-SQL)
DBCC SHOW_STATISTICS (Transact-SQL)
DROP STATISTICS (Transact-SQL)
sys.stats (Transact-SQL)
sys.stats_columns (Transact-SQL)

CREATE SYMMETRIC KEY
Generates a symmetric key and specifies its properties.

 Transact-SQL Syntax Conventions

Syntax

CREATE SYMMETRIC KEY key_name [AUTHORIZATION owner_name]
 [FROM PROVIDER Provider_Name]
 WITH <key_options> [, ... n]
 |
 ENCRYPTION BY <encrypting_mechanism> [, ... n]
<key_options> ::=
 KEY_SOURCE = 'pass_phrase'
 |
 ALGORITHM = <algorithm>

http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/01184651-6e61-45d9-a502-366fecca0ee4(SQL.110)�
http://msdn.microsoft.com/en-us/library/12be2923-7289-4150-b497-f17e76a50b2e(SQL.110)�
http://msdn.microsoft.com/en-us/library/42605c80-126f-460a-befb-a0b7482fae6a(SQL.110)�
http://msdn.microsoft.com/en-us/library/93414d07-97e9-4501-8577-f35b8d68fbe9(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 590

 |
 IDENTITY_VALUE = 'identity_phrase'
 |
 PROVIDER_KEY_NAME = 'key_name_in_provider'
 |
 CREATION_DISPOSITION = {CREATE_NEW | OPEN_EXISTING }
<algorithm> ::=
 DES | TRIPLE_DES | TRIPLE_DES_3KEY | RC2 | RC4 | RC4_128
 | DESX | AES_128 | AES_192 | AES_256
<encrypting_mechanism> ::=
 CERTIFICATE certificate_name
 |
 PASSWORD = 'password'
 |
 SYMMETRIC KEY symmetric_key_name
 |
 ASYMMETRIC KEY asym_key_name

Arguments
Key_name

Specifies the unique name by which the symmetric key is known in the database. The names
of temporary keys should begin with one number (#) sign. For example,
#temporaryKey900007. You cannot create a symmetric key that has a name that starts with
more than one #. You cannot create a temporary symmetric key using an EKM provider.

AUTHORIZATION owner_name

Specifies the name of the database user or application role that will own this key.

FROM PROVIDER Provider_Name

Specifies an Extensible Key Management (EKM) provider and name. The key is not exported
from the EKM device. The provider must be defined first using the CREATE PROVIDER
statement. For more information about creating external key providers, see
Understanding Extensible Key Management (EKM).

Note
This option is not available in a contained database.

KEY_SOURCE = 'pass_phrase'

Specifies a pass phrase from which to derive the key.

http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�

 591

IDENTITY_VALUE = 'identity_phrase'

Specifies an identity phrase from which to generate a GUID for tagging data that is encrypted
with a temporary key.

PROVIDER_KEY_NAME='key_name_in_provider'

Specifies the name referenced in the Extensible Key Management provider.

Note
This option is not available in a contained database.

CREATION_DISPOSITION = CREATE_NEW

Creates a new key can on the Extensible Key Management device. If a key already exists on
the device, the statement fails with error.

CREATION_DISPOSITION = OPEN_EXISTING

Maps a SQL Server symmetric key to an existing Extensible Key Management key. If
CREATION_DISPOSITION = OPEN_EXISTING is not provided, this defaults to CREATE_NEW.

certificate_name

Specifies the name of the certificate that will be used to encrypt the symmetric key. The
certificate must already exist in the database.

'password'

Specifies a password from which to derive a TRIPLE_DES key with which to secure the
symmetric key. password must meet the Windows password policy requirements of the
computer that is running the instance of SQL Server. You should always use strong
passwords.

symmetric_key_name

Specifies a symmetric key to be used to encrypt the key that is being created. The specified
key must already exist in the database, and the key must be open.

asym_key_name

Specifies an asymmetric key to be used to encrypt the key that is being created. This
asymmetric key must already exist in the database.

Remarks
When a symmetric key is created, the symmetric key must be encrypted by using at least one of
the following: certificate, password, symmetric key, asymmetric key, or PROVIDER. The key can
have more than one encryption of each type. In other words, a single symmetric key can be
encrypted by using multiple certificates, passwords, symmetric keys, and asymmetric keys at the
same time.

When a symmetric key is encrypted with a password instead of the public key of the
database master key, the TRIPLE DES encryption algorithm is used. Because of this, keys

Caution

 592

that are created with a strong encryption algorithm, such as AES, are themselves secured
by a weaker algorithm.

The optional password can be used to encrypt the symmetric key before distributing the key to
multiple users.
Temporary keys are owned by the user that creates them. Temporary keys are only valid for the
current session.
IDENTITY_VALUE generates a GUID with which to tag data that is encrypted with the new
symmetric key. This tagging can be used to match keys to encrypted data. The GUID generated
by a specific phrase will always be the same. After a phrase has been used to generate a GUID,
the phrase cannot be reused as long as there is at least one session that is actively using the
phrase. IDENTITY_VALUE is an optional clause; however, we recommend using it when you are
storing data encrypted with a temporary key.
There is no default encryption algorithm.

We do not recommend using the RC4 and RC4_128 stream ciphers to protect sensitive
data. SQL Server does not further encode the encryption performed with such keys.

Information about symmetric keys is visible in the sys.symmetric_keys catalog view.
Symmetric keys cannot be encrypted by symmetric keys created from the encryption provider.
Clarification regarding DES algorithms:
• DESX was incorrectly named. Symmetric keys created with ALGORITHM = DESX actually use

the TRIPLE DES cipher with a 192-bit key. The DESX algorithm is not provided. This feature
will be removed in a future version of Microsoft SQL Server. Avoid using this feature in new
development work, and plan to modify applications that currently use this feature.

• Symmetric keys created with ALGORITHM = TRIPLE_DES_3KEY use TRIPLE DES with a 192-bit
key.

• Symmetric keys created with ALGORITHM = TRIPLE_DES use TRIPLE DES with a 128-bit key.
Deprecation of the RC4 algorithm:
Repeated use of the same RC4 or RC4_128 KEY_GUID on different blocks of data will result in
the same RC4 key because SQL Server does not provide a salt automatically. Using the same
RC4 key repeatedly is a well known error that will result in very weak encryption. Therefore we
have deprecated the RC4 and RC4_128 keywords. This feature will be removed in a future
version of Microsoft SQL Server. Do not use this feature in new development work, and modify
applications that currently use this feature as soon as possible.

The RC4 algorithm is only supported for backward compatibility. New material can only
be encrypted using RC4 or RC4_128 when the database is in compatibility level 90 or
100. (Not recommended.) Use a newer algorithm such as one of the AES algorithms
instead. In SQL Server 2012 material encrypted using RC4 or RC4_128 can be decrypted
in any compatibility level.

Important

Warning

http://msdn.microsoft.com/en-us/library/d410eae1-3a52-45de-b9a1-52d2bd93a8eb(SQL.110)�

 593

Permissions
Requires ALTER ANY SYMMETRIC KEY permission on the database. If AUTHORIZATION is
specified, requires IMPERSONATE permission on the database user or ALTER permission on the
application role. If encryption is by certificate or asymmetric key, requires VIEW DEFINITION
permission on the certificate or asymmetric key. Only Windows logins, SQL Server logins, and
application roles can own symmetric keys. Groups and roles cannot own symmetric keys.

Examples

A. Creating a symmetric key
The following example creates a symmetric key called JanainaKey09 by using the AES 256
algorithm, and then encrypts the new key with certificate Shipping04.

CREATE SYMMETRIC KEY JanainaKey09 WITH ALGORITHM = AES_256

 ENCRYPTION BY CERTIFICATE Shipping04;

GO

B. Creating a temporary symmetric key
The following example creates a temporary symmetric key called #MarketingXXV from the pass
phrase: The square of the hypotenuse is equal to the sum of the squares of the
sides. The key is provisioned with a GUID that is generated from the string Pythagoras and
encrypted with certificate Marketing25.

CREATE SYMMETRIC KEY #MarketingXXV

 WITH ALGORITHM = AES_128,

 KEY_SOURCE

 = 'The square of the hypotenuse is equal to the sum of the squares of

the sides',

 IDENTITY_VALUE = 'Pythagoras'

 ENCRYPTION BY CERTIFICATE Marketing25;

GO

C. Creating a symmetric key using an Extensible Key Management (EKM) device
The following example creates a symmetric key called MySymKey by using a provider called
MyEKMProvider and a key name of KeyForSensitiveData. It assigns authorization to User1
and assumes that the system administrator has already registered the provider called
MyEKMProvider in SQL Server.
CREATE SYMMETRIC KEY MySymKey

AUTHORIZATION User1

FROM PROVIDER EKMProvider

WITH

 594

PROVIDER_KEY_NAME='KeyForSensitiveData',

CREATION_DISPOSITION=OPEN_EXISTING;

GO

See Also
Choosing an Encryption Algorithm
ALTER SYMMETRIC KEY (Transact-SQL)
DROP SYMMETRIC KEY (Transact-SQL)
Encryption Hierarchy
sys.symmetric_keys (Transact-SQL)
Understanding Extensible Key Management (EKM)

CREATE SYNONYM
Creates a new synonym.

 Transact-SQL Syntax Conventions

Syntax

CREATE SYNONYM [schema_name_1.] synonym_name FOR <object>

<object> :: =
{
 [server_name.[database_name] . [schema_name_2].| database_name . [
schema_name_2].| schema_name_2.] object_name
}

Arguments
schema_name_1

Specifies the schema in which the synonym is created. If schema is not specified, SQL Server
uses the default schema of the current user.

synonym_name

Is the name of the new synonym.

server_name

Is the name of the server on which base object is located.

database_name

Is the name of the database in which the base object is located. If database_name is not
specified, the name of the current database is used.

http://msdn.microsoft.com/en-us/library/8227028c-a9c9-489d-bd27-fbf8242634ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/d410eae1-3a52-45de-b9a1-52d2bd93a8eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 595

schema_name_2

Is the name of the schema of the base object. If schema_name is not specified the default
schema of the current user is used.

object_name

Is the name of the base object that the synonym references.

Remarks
The base object need not exist at synonym create time. SQL Server checks for the existence of
the base object at run time.
Synonyms can be created for the following types of objects:

Assembly (CLR) Stored Procedure Assembly (CLR) Table-valued Function

Assembly (CLR) Scalar Function Assembly Aggregate (CLR) Aggregate
Functions

Replication-filter-procedure Extended Stored Procedure

SQL Scalar Function SQL Table-valued Function

SQL Inline-table-valued Function SQL Stored Procedure

View Table1 (User-defined)

1 Includes local and global temporary tables
Four-part names for function base objects are not supported.
Synonyms can be created, dropped and referenced in dynamic SQL.

Permissions
To create a synonym in a given schema, a user must have CREATE SYNONYM permission and
either own the schema or have ALTER SCHEMA permission.
The CREATE SYNONYM permission is a grantable permission.

You do not need permission on the base object to successfully compile the CREATE
SYNONYM statement, because all permission checking on the base object is deferred
until run time.

Examples

A. Creating a synonym for a local object
The following example first creates a synonym for the base object, Product in the
AdventureWorks2012 database, and then queries the synonym.

Note

 596

USE tempdb;

GO

-- Create a synonym for the Product table in AdventureWorks2012.

CREATE SYNONYM MyProduct

FOR AdventureWorks2012.Production.Product;

GO

-- Query the Product table by using the synonym.

USE tempdb;

GO

SELECT ProductID, Name

FROM MyProduct

WHERE ProductID < 5;

GO

Here is the result set.

ProductID Name
----------- --------------------------
1 Adjustable Race
2 Bearing Ball
3 BB Ball Bearing
4 Headset Ball Bearings
(4 row(s) affected)

B. Creating a synonym to remote object
In the following example, the base object, Contact, resides on a remote server named
Server_Remote.

EXEC sp_addlinkedserver Server_Remote;

GO

USE tempdb;

GO

CREATE SYNONYM MyEmployee FOR

Server_Remote.AdventureWorks2012.HumanResources.Employee;

GO

C. Creating a synonym for a user-defined function

 597

The following example creates a function named dbo.OrderDozen that increases order amounts
to an even dozen units. The example then creates the synonym dbo.CorrectOrder for the
dbo.OrderDozen function.
-- Creating the dbo.OrderDozen function

CREATE FUNCTION dbo.OrderDozen (@OrderAmt int)

RETURNS int

WITH EXECUTE AS CALLER

AS

BEGIN

IF @OrderAmt % 12 <> 0

BEGIN

 SET @OrderAmt += 12 - (@OrderAmt % 12)

END

RETURN(@OrderAmt);

END;

GO

-- Using the dbo.OrderDozen function

DECLARE @Amt int

SET @Amt = 15

SELECT @Amt AS OriginalOrder, dbo.OrderDozen(@Amt) AS ModifiedOrder

-- Create a synonym dbo.CorrectOrder for the dbo.OrderDozen function.

CREATE SYNONYM dbo.CorrectOrder

FOR dbo.OrderDozen;

GO

-- Using the dbo.CorrectOrder synonym.

DECLARE @Amt int

SET @Amt = 15

SELECT @Amt AS OriginalOrder, dbo.CorrectOrder(@Amt) AS ModifiedOrder

See Also
GRANT (Transact-SQL)
GRANT (Transact-SQL)

http://msdn.microsoft.com/en-us/library/a760c16a-4d2d-43f2-be81-ae9315f38185(SQL.110)�

 598

EVENTDATA (Transact-SQL)

CREATE TABLE
Creates a new table in SQL Server 2012.

 Transact-SQL Syntax Conventions

Syntax

CREATE TABLE
 [database_name . [schema_name] . | schema_name .] table_name
 [AS FileTable]
 ({ <column_definition> | <computed_column_definition>
 | <column_set_definition> | [<table_constraint>] [,...n] })
 [ON { partition_scheme_name (partition_column_name) | filegroup
 | "default" }]
 [{ TEXTIMAGE_ON { filegroup | "default" }]
 [FILESTREAM_ON { partition_scheme_name | filegroup
 | "default" }]
 [WITH (<table_option> [,...n])]
[;]

<column_definition> ::=
column_name <data_type>
 [FILESTREAM]
 [COLLATE collation_name]
 [NULL | NOT NULL]
 [
 [CONSTRAINT constraint_name] DEFAULT constant_expression]
 | [IDENTITY [(seed ,increment)] [NOT FOR REPLICATION]
]
 [ROWGUIDCOL] [<column_constraint> [...n]]
 [SPARSE]

<data type> ::=
[type_schema_name .] type_name
 [(precision [, scale] | max |

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 599

 [{ CONTENT | DOCUMENT }] xml_schema_collection)]

<column_constraint> ::=
[CONSTRAINT constraint_name]
{ { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 [
 WITH FILLFACTOR = fillfactor
 | WITH (< index_option > [, ...n])
]
 [ON { partition_scheme_name (partition_column_name)
 | filegroup | "default" }]
 | [FOREIGN KEY]
 REFERENCES [schema_name .] referenced_table_name [(ref_column)]
 [ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [NOT FOR REPLICATION]
 | CHECK [NOT FOR REPLICATION] (logical_expression)
}

<computed_column_definition> ::=
column_name AS computed_column_expression
[PERSISTED [NOT NULL]]
[
 [CONSTRAINT constraint_name]
 { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 [
 WITH FILLFACTOR = fillfactor
 | WITH (<index_option> [, ...n])
]
 | [FOREIGN KEY]
 REFERENCES referenced_table_name [(ref_column)]
 [ON DELETE { NO ACTION | CASCADE }]
 [ON UPDATE { NO ACTION }]

 600

 [NOT FOR REPLICATION]
 | CHECK [NOT FOR REPLICATION] (logical_expression)
 [ON { partition_scheme_name (partition_column_name)
 | filegroup | "default" }]
]

<column_set_definition> ::=
column_set_name XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

< table_constraint > ::=
[CONSTRAINT constraint_name]
{
 { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 (column [ASC | DESC] [,...n])
 [
 WITH FILLFACTOR = fillfactor
 |WITH (<index_option> [, ...n])
]
 [ON { partition_scheme_name (partition_column_name)
 | filegroup | "default" }]
 | FOREIGN KEY
 (column [,...n])
 REFERENCES referenced_table_name [(ref_column [,...n])]
 [ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }]
 [NOT FOR REPLICATION]
 | CHECK [NOT FOR REPLICATION] (logical_expression)
}
<table_option> ::=
{
 [DATA_COMPRESSION = { NONE | ROW | PAGE }
 [ON PARTITIONS ({ <partition_number_expression> | <range> }
 [, ...n])]]
 [FILETABLE_DIRECTORY = <directory_name>]

 601

 [FILETABLE_COLLATE_FILENAME = { <collation_name> | database_default }]
 [FILETABLE_PRIMARY_KEY_CONSTRAINT_NAME = <constraint_name>]
 [FILETABLE_STREAMID_UNIQUE_CONSTRAINT_NAME = <constraint_name>]
 [FILETABLE_FULLPATH_UNIQUE_CONSTRAINT_NAME = <constraint_name>]
}

<index_option> ::=
{
 PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | IGNORE_DUP_KEY = { ON | OFF }
 | STATISTICS_NORECOMPUTE = { ON | OFF }
 | ALLOW_ROW_LOCKS = { ON | OFF}
 | ALLOW_PAGE_LOCKS ={ ON | OFF}
 | DATA_COMPRESSION = { NONE | ROW | PAGE }
 [ON PARTITIONS ({ <partition_number_expression> | <range> }
 [, ...n])]
}
<range> ::=
<partition_number_expression> TO <partition_number_expression>

Arguments
database_name

Is the name of the database in which the table is created. database_name must specify the
name of an existing database. If not specified, database_name defaults to the current
database. The login for the current connection must be associated with an existing user ID in
the database specified by database_name, and that user ID must have CREATE TABLE
permissions.

schema_name

Is the name of the schema to which the new table belongs.

table_name

Is the name of the new table. Table names must follow the rules for identifiers. table_name
can be a maximum of 128 characters, except for local temporary table names (names prefixed
with a single number sign (#)) that cannot exceed 116 characters.

AS FileTable

Creates the new table as a FileTable. You do not specify columns because a FileTable has a
fixed schema. For more information about FileTables, see Storing Files with FileTables.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�
http://msdn.microsoft.com/en-us/library/a57b629c-e9ed-48fd-9a48-ed3787d80c8f(SQL.110)�

 602

column_name

Is the name of a column in the table. Column names must follow the rules for identifiers
and must be unique in the table. column_name can be up to 128 characters. column_name
can be omitted for columns that are created with a timestamp data type. If column_name is
not specified, the name of a timestamp column defaults to timestamp.

computed_column_expression

Is an expression that defines the value of a computed column. A computed column is a
virtual column that is not physically stored in the table, unless the column is marked
PERSISTED. The column is computed from an expression that uses other columns in the same
table. For example, a computed column can have the definition: cost AS price * qty. The
expression can be a noncomputed column name, constant, function, variable, and any
combination of these connected by one or more operators. The expression cannot be a
subquery or contain alias data types.

Computed columns can be used in select lists, WHERE clauses, ORDER BY clauses, or any
other locations in which regular expressions can be used, with the following exceptions:

• A computed column cannot be used as a DEFAULT or FOREIGN KEY constraint definition
or with a NOT NULL constraint definition. However, a computed column can be used as
a key column in an index or as part of any PRIMARY KEY or UNIQUE constraint, if the
computed column value is defined by a deterministic expression and the data type of
the result is allowed in index columns.

For example, if the table has integer columns a and b, the computed column a+b may
be indexed, but computed column a+DATEPART(dd, GETDATE()) cannot be indexed
because the value may change in subsequent invocations.

• A computed column cannot be the target of an INSERT or UPDATE statement.

Note
Each row in a table can have different values for columns that are involved in a computed column;
therefore, the computed column may not have the same value for each row.

Based on the expressions that are used, the nullability of computed columns is determined
automatically by the Database Engine. The result of most expressions is considered nullable
even if only nonnullable columns are present, because possible underflows or overflows also
produce NULL results. Use the COLUMNPROPERTY function with the AllowsNull property to
investigate the nullability of any computed column in a table. An expression that is nullable
can be turned into a nonnullable one by specifying ISNULL with the check_expression
constant, where the constant is a nonnull value substituted for any NULL result. REFERENCES
permission on the type is required for computed columns based on common language
runtime (CLR) user-defined type expressions.

PERSISTED

Specifies that the SQL Server Database Engine will physically store the computed values in
the table, and update the values when any other columns on which the computed column
depends are updated. Marking a computed column as PERSISTED lets you create an index on

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 603

a computed column that is deterministic, but not precise. For more information, see
sp_spaceused (Transact-SQL). Any computed columns that are used as partitioning
columns of a partitioned table must be explicitly marked PERSISTED.
computed_column_expression must be deterministic when PERSISTED is specified.

ON { <partition_scheme> | filegroup | "default" }

Specifies the partition scheme or filegroup on which the table is stored. If
<partition_scheme> is specified, the table is to be a partitioned table whose partitions are
stored on a set of one or more filegroups specified in <partition_scheme>. If filegroup is
specified, the table is stored in the named filegroup. The filegroup must exist within the
database. If "default" is specified, or if ON is not specified at all, the table is stored on the
default filegroup. The storage mechanism of a table as specified in CREATE TABLE cannot be
subsequently altered.

ON {<partition_scheme> | filegroup | "default"} can also be specified in a PRIMARY KEY or
UNIQUE constraint. These constraints create indexes. If filegroup is specified, the index is
stored in the named filegroup. If "default" is specified, or if ON is not specified at all, the
index is stored in the same filegroup as the table. If the PRIMARY KEY or UNIQUE constraint
creates a clustered index, the data pages for the table are stored in the same filegroup as the
index. If CLUSTERED is specified or the constraint otherwise creates a clustered index, and a
<partition_scheme> is specified that differs from the <partition_scheme> or filegroup of the
table definition, or vice-versa, only the constraint definition will be honored, and the other
will be ignored.

Note
In this context, default is not a keyword. It is an identifier for the default filegroup and must be
delimited, as in ON "default" or ON [default]. If "default" is specified, the QUOTED_IDENTIFIER option
must be ON for the current session. This is the default setting. For more information, see SET
QUOTED_IDENTIFIER (Transact-SQL).

Note
After you create a partitioned table, consider setting the LOCK_ESCALATION option for the table to
AUTO. This can improve concurrency by enabling locks to escalate to partition (HoBT) level instead of
the table. For more information, see ALTER TABLE (Transact-SQL).

TEXTIMAGE_ON { filegroup | "default" }

Indicates that the text, ntext, image, xml, varchar(max), nvarchar(max), varbinary(max),
and CLR user-defined type columns (including geometry and geography) are stored on the
specified filegroup.

TEXTIMAGE_ON is not allowed if there are no large value columns in the table.
TEXTIMAGE_ON cannot be specified if <partition_scheme> is specified. If "default" is
specified, or if TEXTIMAGE_ON is not specified at all, the large value columns are stored in
the default filegroup. The storage of any large value column data specified in CREATE TABLE
cannot be subsequently altered.

http://msdn.microsoft.com/en-us/library/8d17ac9c-f3af-4bbb-9cc1-5cf647e994c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�
http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�

 604

Note
In this context, default is not a keyword. It is an identifier for the default filegroup and must be
delimited, as in TEXTIMAGE_ON "default" or TEXTIMAGE_ON [default]. If "default" is specified, the
QUOTED_IDENTIFIER option must be ON for the current session. This is the default setting. For more
information, see SET QUOTED_IDENTIFIER (Transact-SQL).

FILESTREAM_ON { partition_scheme_name | filegroup | "default" }

Specifies the filegroup for FILESTREAM data.

If the table contains FILESTREAM data and the table is partitioned, the FILESTREAM_ON
clause must be included and must specify a partition scheme of FILESTREAM filegroups. This
partition scheme must use the same partition function and partition columns as the partition
scheme for the table; otherwise, an error is raised.

If the table is not partitioned, the FILESTREAM column cannot be partitioned. FILESTREAM
data for the table must be stored in a single filegroup. This filegroup is specified in the
FILESTREAM_ON clause.

If the table is not partitioned and the FILESTREAM_ON clause is not specified, the
FILESTREAM filegroup that has the DEFAULT property set is used. If there is no FILESTREAM
filegroup, an error is raised.

• As with ON and TEXTIMAGE_ON, the value set by using CREATE TABLE for
FILESTREAM_ON cannot be changed, except in the following cases:

• A CREATE INDEX statement converts a heap into a clustered index. In this case, a
different FILESTREAM filegroup, partition scheme, or NULL can be specified.

• A DROP INDEX statement converts a clustered index into a heap. In this case, a
different FILESTREAM filegroup, partition scheme, or "default" can be specified.

The filegroup in the FILESTREAM_ON <filegroup> clause, or each FILESTREAM filegroup that
is named in the partition scheme, must have one file defined for the filegroup. This file must
be defined by using a CREATE DATABASE or ALTER DATABASE statement; otherwise,
an error is raised.

For related FILESTREAM topics, see Designing and Implementing FILESTREAM
Storage.

[type_schema_name.] type_name

Specifies the data type of the column, and the schema to which it belongs. The data type can
be one of the following:

• A system data type.

• An alias type based on a SQL Server system data type. Alias data types are created with
the CREATE TYPE statement before they can be used in a table definition. The NULL or
NOT NULL assignment for an alias data type can be overridden during the CREATE
TABLE statement. However, the length specification cannot be changed; the length for
an alias data type cannot be specified in a CREATE TABLE statement.

• A CLR user-defined type. CLR user-defined types are created with the CREATE TYPE

http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�
http://msdn.microsoft.com/en-us/library/97509274-c3f8-43e5-a37c-52f1ffe0961a(SQL.110)�
http://msdn.microsoft.com/en-us/library/97509274-c3f8-43e5-a37c-52f1ffe0961a(SQL.110)�

 605

statement before they can be used in a table definition. To create a column on CLR user-
defined type, REFERENCES permission is required on the type.

If type_schema_name is not specified, the SQL Server Database Engine references type_name
in the following order:

• The SQL Server system data type.

• The default schema of the current user in the current database.

• The dbo schema in the current database.

precision

Is the precision for the specified data type. For more information about valid precision values,
see Precision, Scale, and Length.

scale

Is the scale for the specified data type. For more information about valid scale values, see
Precision, Scale, and Length.

max

Applies only to the varchar, nvarchar, and varbinary data types for storing 2^31 bytes of
character and binary data, and 2^30 bytes of Unicode data.

CONTENT

Specifies that each instance of the xml data type in column_name can contain multiple top-
level elements. CONTENT applies only to the xml data type and can be specified only if
xml_schema_collection is also specified. If not specified, CONTENT is the default behavior.

DOCUMENT

Specifies that each instance of the xml data type in column_name can contain only one top-
level element. DOCUMENT applies only to the xml data type and can be specified only if
xml_schema_collection is also specified.

xml_schema_collection

Applies only to the xml data type for associating an XML schema collection with the type.
Before typing an xml column to a schema, the schema must first be created in the database
by using CREATE XML SCHEMA COLLECTION.

DEFAULT

Specifies the value provided for the column when a value is not explicitly supplied during an
insert. DEFAULT definitions can be applied to any columns except those defined as
timestamp, or those with the IDENTITY property. If a default value is specified for a user-
defined type column, the type should support an implicit conversion from
constant_expression to the user-defined type. DEFAULT definitions are removed when the
table is dropped. Only a constant value, such as a character string; a scalar function (either a
system, user-defined, or CLR function); or NULL can be used as a default. To maintain
compatibility with earlier versions of SQL Server, a constraint name can be assigned to a

http://msdn.microsoft.com/en-us/library/fbc9ad2c-0d3b-4e98-8fdd-4d912328e40a(SQL.110)�
http://msdn.microsoft.com/en-us/library/fbc9ad2c-0d3b-4e98-8fdd-4d912328e40a(SQL.110)�

 606

DEFAULT.

constant_expression

Is a constant, NULL, or a system function that is used as the default value for the column.

IDENTITY

Indicates that the new column is an identity column. When a new row is added to the table,
the Database Engine provides a unique, incremental value for the column. Identity columns
are typically used with PRIMARY KEY constraints to serve as the unique row identifier for the
table. The IDENTITY property can be assigned to tinyint, smallint, int, bigint, decimal(p,0),
or numeric(p,0) columns. Only one identity column can be created per table. Bound defaults
and DEFAULT constraints cannot be used with an identity column. Both the seed and
increment or neither must be specified. If neither is specified, the default is (1,1).

seed

Is the value used for the very first row loaded into the table.

increment

Is the incremental value added to the identity value of the previous row loaded.

NOT FOR REPLICATION

In the CREATE TABLE statement, the NOT FOR REPLICATION clause can be specified for the
IDENTITY property, FOREIGN KEY constraints, and CHECK constraints. If this clause is
specified for the IDENTITY property, values are not incremented in identity columns when
replication agents perform inserts. If this clause is specified for a constraint, the constraint is
not enforced when replication agents perform insert, update, or delete operations.

ROWGUIDCOL

Indicates that the new column is a row GUID column. Only one uniqueidentifier column per
table can be designated as the ROWGUIDCOL column. Applying the ROWGUIDCOL property
enables the column to be referenced using $ROWGUID. The ROWGUIDCOL property can be
assigned only to a uniqueidentifier column. User-defined data type columns cannot be
designated with ROWGUIDCOL.

The ROWGUIDCOL property does not enforce uniqueness of the values stored in the column.
ROWGUIDCOL also does not automatically generate values for new rows inserted into the
table. To generate unique values for each column, either use the NEWID or
NEWSEQUENTIALID function on INSERT statements or use these functions as the
default for the column.

SPARSE

Indicates that the column is a sparse column. The storage of sparse columns is optimized for
null values. Sparse columns cannot be designated as NOT NULL. For additional restrictions
and more information about sparse columns, see Using Sparse Columns.

http://msdn.microsoft.com/en-us/library/f7014e60-96d5-457e-afc3-72b60ba20c0f(SQL.110)�
http://msdn.microsoft.com/en-us/library/e06d2cab-f1ff-42f1-8550-6aaec57be36f(SQL.110)�
http://msdn.microsoft.com/en-us/library/1054c76e-0fd5-4131-8c07-a6c5d024af50(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea7ddb87-f50b-46b6-9f5a-acab222a2ede(SQL.110)�

 607

FILESTREAM

Valid only for varbinary(max) columns. Specifies FILESTREAM storage for the
varbinary(max) BLOB data.

The table must also have a column of the uniqueidentifier data type that has the
ROWGUIDCOL attribute. This column must not allow null values and must have either a
UNIQUE or PRIMARY KEY single-column constraint. The GUID value for the column must be
supplied either by an application when inserting data, or by a DEFAULT constraint that uses
the NEWID () function.

The ROWGUIDCOL column cannot be dropped and the related constraints cannot be
changed while there is a FILESTREAM column defined for the table. The ROWGUIDCOL
column can be dropped only after the last FILESTREAM column is dropped.

When the FILESTREAM storage attribute is specified for a column, all values for that column
are stored in a FILESTREAM data container on the file system.

COLLATE collation_name

Specifies the collation for the column. Collation name can be either a Windows collation
name or an SQL collation name. collation_name is applicable only for columns of the char,
varchar, text, nchar, nvarchar, and ntext data types. If not specified, the column is assigned
either the collation of the user-defined data type, if the column is of a user-defined data type,
or the default collation of the database.

For more information about the Windows and SQL collation names, see Windows
Collation Name and SQL Collation Name.

For more information about the COLLATE clause, see COLLATE.

CONSTRAINT

Is an optional keyword that indicates the start of the definition of a PRIMARY KEY, NOT NULL,
UNIQUE, FOREIGN KEY, or CHECK constraint.

constraint_name

Is the name of a constraint. Constraint names must be unique within the schema to which the
table belongs.

NULL | NOT NULL

Determine whether null values are allowed in the column. NULL is not strictly a constraint but
can be specified just like NOT NULL. NOT NULL can be specified for computed columns only
if PERSISTED is also specified.

PRIMARY KEY

Is a constraint that enforces entity integrity for a specified column or columns through a
unique index. Only one PRIMARY KEY constraint can be created per table.

UNIQUE

Is a constraint that provides entity integrity for a specified column or columns through a
unique index. A table can have multiple UNIQUE constraints.

http://msdn.microsoft.com/en-us/library/acceef84-2c68-46e2-a021-be019b7ab14e(SQL.110)�
http://msdn.microsoft.com/en-us/library/acceef84-2c68-46e2-a021-be019b7ab14e(SQL.110)�
http://msdn.microsoft.com/en-us/library/56483d24-add7-483d-9b96-c6fda460ddbc(SQL.110)�
http://msdn.microsoft.com/en-us/library/76763ac8-3e0d-4bbb-aa53-f5e7da021daa(SQL.110)�

 608

CLUSTERED | NONCLUSTERED

Indicate that a clustered or a nonclustered index is created for the PRIMARY KEY or UNIQUE
constraint. PRIMARY KEY constraints default to CLUSTERED, and UNIQUE constraints default
to NONCLUSTERED.

In a CREATE TABLE statement, CLUSTERED can be specified for only one constraint. If
CLUSTERED is specified for a UNIQUE constraint and a PRIMARY KEY constraint is also
specified, the PRIMARY KEY defaults to NONCLUSTERED.

FOREIGN KEY REFERENCES

Is a constraint that provides referential integrity for the data in the column or columns.
FOREIGN KEY constraints require that each value in the column exists in the corresponding
referenced column or columns in the referenced table. FOREIGN KEY constraints can
reference only columns that are PRIMARY KEY or UNIQUE constraints in the referenced table
or columns referenced in a UNIQUE INDEX on the referenced table. Foreign keys on
computed columns must also be marked PERSISTED.

[schema_name .] referenced_table_name]

Is the name of the table referenced by the FOREIGN KEY constraint, and the schema to which
it belongs.

(ref_column [,... n])

Is a column, or list of columns, from the table referenced by the FOREIGN KEY constraint.

ON DELETE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }

Specifies what action happens to rows in the table created, if those rows have a referential
relationship and the referenced row is deleted from the parent table. The default is NO
ACTION.

NO ACTION

The Database Engine raises an error and the delete action on the row in the parent table is
rolled back.

CASCADE

Corresponding rows are deleted from the referencing table if that row is deleted from the
parent table.

SET NULL

All the values that make up the foreign key are set to NULL if the corresponding row in the
parent table is deleted. For this constraint to execute, the foreign key columns must be
nullable.

SET DEFAULT

All the values that make up the foreign key are set to their default values if the
corresponding row in the parent table is deleted. For this constraint to execute, all foreign
key columns must have default definitions. If a column is nullable, and there is no explicit

 609

default value set, NULL becomes the implicit default value of the column.

Do not specify CASCADE if the table will be included in a merge publication that uses logical
records. For more information about logical records, see Grouping Changes to Related
Rows with Logical Records.

ON DELETE CASCADE cannot be defined if an INSTEAD OF trigger ON DELETE already exists
on the table.

For example, in the database, the ProductVendor table has a referential relationship
with the Vendor table. The ProductVendor.BusinessEntityID foreign key references the
Vendor.BusinessEntityID primary key.

If a DELETE statement is executed on a row in the Vendor table, and an ON DELETE CASCADE
action is specified for ProductVendor.BusinessEntityID, the Database Engine checks for one
or more dependent rows in the ProductVendor table. If any exist, the dependent rows in the
ProductVendor table are deleted, and also the row referenced in the Vendor table.

Conversely, if NO ACTION is specified, the Database Engine raises an error and rolls back the
delete action on the Vendor row if there is at least one row in the ProductVendor table that
references it.

ON UPDATE { NO ACTION | CASCADE | SET NULL | SET DEFAULT }

Specifies what action happens to rows in the table altered when those rows have a referential
relationship and the referenced row is updated in the parent table. The default is NO
ACTION.

NO ACTION

The Database Engine raises an error, and the update action on the row in the parent table
is rolled back.

CASCADE

Corresponding rows are updated in the referencing table when that row is updated in the
parent table.

SET NULL

All the values that make up the foreign key are set to NULL when the corresponding row in
the parent table is updated. For this constraint to execute, the foreign key columns must
be nullable.

SET DEFAULT

All the values that make up the foreign key are set to their default values when the
corresponding row in the parent table is updated. For this constraint to execute, all foreign
key columns must have default definitions. If a column is nullable, and there is no explicit
default value set, NULL becomes the implicit default value of the column.

Do not specify CASCADE if the table will be included in a merge publication that uses logical
records. For more information about logical records, see Grouping Changes to Related
Rows with Logical Records.

http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�
http://msdn.microsoft.com/en-us/library/ad76799c-4486-4b98-9705-005433041321(SQL.110)�

 610

ON UPDATE CASCADE, SET NULL, or SET DEFAULT cannot be defined if an INSTEAD OF
trigger ON UPDATE already exists on the table that is being altered.

For example, in the database, the ProductVendor table has a referential relationship
with the Vendor table: ProductVendor.BusinessEntity foreign key references the
Vendor.BusinessEntityID primary key.

If an UPDATE statement is executed on a row in the Vendor table, and an ON UPDATE
CASCADE action is specified for ProductVendor.BusinessEntityID, the Database Engine
checks for one or more dependent rows in the ProductVendor table. If any exist, the
dependent rows in the ProductVendor table are updated, and also the row referenced in the
Vendor table.

Conversely, if NO ACTION is specified, the Database Engine raises an error and rolls back the
update action on the Vendor row if there is at least one row in the ProductVendor table
that references it.

CHECK

Is a constraint that enforces domain integrity by limiting the possible values that can be
entered into a column or columns. CHECK constraints on computed columns must also be
marked PERSISTED.

logical_expression

Is a logical expression that returns TRUE or FALSE. Alias data types cannot be part of the
expression.

column

Is a column or list of columns, in parentheses, used in table constraints to indicate the
columns used in the constraint definition.

[ASC | DESC]

Specifies the order in which the column or columns participating in table constraints are
sorted. The default is ASC.

partition_scheme_name

Is the name of the partition scheme that defines the filegroups onto which the partitions of a
partitioned table will be mapped. The partition scheme must exist within the database.

[partition_column_name.]

Specifies the column against which a partitioned table will be partitioned. The column must
match that specified in the partition function that partition_scheme_name is using in terms of
data type, length, and precision. A computed columns that participates in a partition function
must be explicitly marked PERSISTED.

Important
We recommend that you specify NOT NULL on the partitioning column of partitioned tables, and also
nonpartitioned tables that are sources or targets of ALTER TABLE...SWITCH operations. Doing this

 611

makes sure that any CHECK constraints on partitioning columns do not have to check for null values.

WITH FILLFACTOR = fillfactor

Specifies how full the Database Engine should make each index page that is used to store the
index data. User-specified fillfactor values can be from 1 through 100. If a value is not
specified, the default is 0. Fill factor values 0 and 100 are the same in all respects.

Important
Documenting WITH FILLFACTOR = fillfactor as the only index option that applies to PRIMARY KEY or
UNIQUE constraints is maintained for backward compatibility, but will not be documented in this
manner in future releases.

column_set_name XML COLUMN_SET FOR ALL_SPARSE_COLUMNS

Is the name of the column set. A column set is an untyped XML representation that combines
all of the sparse columns of a table into a structured output. For more information about
column sets, see Using Sparse Column Sets.

< table_option> ::=

Specifies one or more table options.

DATA_COMPRESSION

Specifies the data compression option for the specified table, partition number, or range of
partitions. The options are as follows:

NONE

Table or specified partitions are not compressed.

ROW

Table or specified partitions are compressed by using row compression.

PAGE

Table or specified partitions are compressed by using page compression.

For more information about compression, see Creating Compressed Tables and
Indexes.

ON PARTITIONS ({ <partition_number_expression> | <range> } [,...n])

Specifies the partitions to which the DATA_COMPRESSION setting applies. If the table is not
partitioned, the ON PARTITIONS argument will generate an error. If the ON PARTITIONS
clause is not provided, the DATA_COMPRESSION option will apply to all partitions of a
partitioned table.

<partition_number_expression> can be specified in the following ways:

• Provide the partition number of a partition, for example: ON PARTITIONS (2).

• Provide the partition numbers for several individual partitions separated by commas, for
example: ON PARTITIONS (1, 5).

• Provide both ranges and individual partitions, for example: ON PARTITIONS (2, 4, 6 TO 8)

http://msdn.microsoft.com/en-us/library/a4f9de95-dc8f-4ad8-b957-137e32bfa500(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�

 612

<range> can be specified as partition numbers separated by the word TO, for example: ON
PARTITIONS (6 TO 8).

To set different types of data compression for different partitions, specify the
DATA_COMPRESSION option more than once, for example:

WITH

(

DATA_COMPRESSION = NONE ON PARTITIONS (1),

DATA_COMPRESSION = ROW ON PARTITIONS (2, 4, 6 TO 8),

DATA_COMPRESSION = PAGE ON PARTITIONS (3, 5)

)

<index_option> ::=

Specifies one or more index options. For a complete description of these options, see
CREATE INDEX (Transact-SQL).

PAD_INDEX = { ON | OFF }

When ON, the percentage of free space specified by FILLFACTOR is applied to the
intermediate level pages of the index. When OFF or a FILLFACTOR value it not specified, the
intermediate level pages are filled to near capacity leaving enough space for at least one row
of the maximum size the index can have, considering the set of keys on the intermediate
pages. The default is OFF.

FILLFACTOR = fillfactor

Specifies a percentage that indicates how full the Database Engine should make the leaf level
of each index page during index creation or alteration. fillfactor must be an integer value
from 1 to 100. The default is 0. Fill factor values 0 and 100 are the same in all respects.

IGNORE_DUP_KEY = { ON | OFF }

Specifies the error response when an insert operation attempts to insert duplicate key values
into a unique index. The IGNORE_DUP_KEY option applies only to insert operations after the
index is created or rebuilt. The option has no effect when executing CREATE INDEX,
ALTER INDEX, or UPDATE. The default is OFF.

ON

A warning message will occur when duplicate key values are inserted into a unique index.
Only the rows violating the uniqueness constraint will fail.

OFF

An error message will occur when duplicate key values are inserted into a unique index.
The entire INSERT operation will be rolled back.

IGNORE_DUP_KEY cannot be set to ON for indexes created on a view, non-unique indexes,
XML indexes, spatial indexes, and filtered indexes.

http://msdn.microsoft.com/en-us/library/40e63302-0c68-4593-af3e-6d190181fee7(SQL.110)�

 613

To view IGNORE_DUP_KEY, use sys.indexes.

In backward compatible syntax, WITH IGNORE_DUP_KEY is equivalent to WITH
IGNORE_DUP_KEY = ON.

STATISTICS_NORECOMPUTE = { ON | OFF }

When ON, out-of-date index statistics are not automatically recomputed. When OFF,
automatic statistics updating are enabled. The default is OFF.

ALLOW_ROW_LOCKS = { ON | OFF }

When ON, row locks are allowed when you access the index. The Database Engine
determines when row locks are used. When OFF, row locks are not used. The default is ON.

ALLOW_PAGE_LOCKS = { ON | OFF }

When ON, page locks are allowed when you access the index. The Database Engine
determines when page locks are used. When OFF, page locks are not used. The default is ON.

FILETABLE_DIRECTORY = directory_name

Specifies the windows-compatible FileTable directory name. This name should be unique
among all the FileTable directory names in the database. Uniqueness comparison is case-
insensitive, regardless of collation settings. If this value is not specified, the name of the
filetable is used.

FILETABLE_COLLATE_FILENAME = { collation_name | database_default }

Specifies the name of the collation to be applied to the Name column in the FileTable. The
collation must be case-insensitive to comply with Windows file naming semantics. If this
value is not specified, the database default collation is used. If the database default collation
is case-sensitive, an error is raised and the CREATE TABLE operation fails.

collation_name

The name of a case-insensitive collation.

database_default

Specifies that the default collation for the database should be used. This collation must be
case-insensitive.

FILETABLE_PRIMARY_KEY_CONSTRAINT_NAME = constraint_name

Specifies the name to be used for the primary key constraint that is automatically created on
the FileTable. If this value is not specified, the system generates a name for the constraint.

FILETABLE_STREAMID_UNIQUE_CONSTRAINT_NAME = constraint_name

Specifies the name to be used for the unique constraint that is automatically created on the
stream_id column in the FileTable. If this value is not specified, the system generates a name
for the constraint.

FILETABLE_FULLPATH_UNIQUE_CONSTRAINT_NAME = constraint_name

Specifies the name to be used for the unique constraint that is automatically created on the

http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�

 614

parent_path_locator and name columns in the FileTable. If this value is not specified, the
system generates a name for the constraint.

Remarks
For information about the number of allowed tables, columns, constraints and indexes, see
Maximum Capacity Specifications for SQL Server.
Space is generally allocated to tables and indexes in increments of one extent at a time. When
the table or index is created, it is allocated pages from mixed extents until it has enough pages
to fill a uniform extent. After it has enough pages to fill a uniform extent, another extent is
allocated every time the currently allocated extents become full. For a report about the amount
of space allocated and used by a table, execute sp_spaceused.
The Database Engine does not enforce an order in which DEFAULT, IDENTITY, ROWGUIDCOL, or
column constraints are specified in a column definition.
When a table is created, the QUOTED IDENTIFIER option is always stored as ON in the metadata
for the table, even if the option is set to OFF when the table is created.

Temporary Tables
You can create local and global temporary tables. Local temporary tables are visible only in the
current session, and global temporary tables are visible to all sessions. Temporary tables cannot
be partitioned.
Prefix local temporary table names with single number sign (#table_name), and prefix global
temporary table names with a double number sign (##table_name).
SQL statements reference the temporary table by using the value specified for table_name in the
CREATE TABLE statement, for example:
CREATE TABLE #MyTempTable (cola INT PRIMARY KEY);

INSERT INTO #MyTempTable VALUES (1);

If more than one temporary table is created inside a single stored procedure or batch, they must
have different names.
If a local temporary table is created in a stored procedure or application that can be executed at
the same time by several users, the Database Engine must be able to distinguish the tables
created by the different users. The Database Engine does this by internally appending a numeric
suffix to each local temporary table name. The full name of a temporary table as stored in the
sysobjects table in tempdb is made up of the table name specified in the CREATE TABLE
statement and the system-generated numeric suffix. To allow for the suffix, table_name specified
for a local temporary name cannot exceed 116 characters.
Temporary tables are automatically dropped when they go out of scope, unless explicitly
dropped by using DROP TABLE:
• A local temporary table created in a stored procedure is dropped automatically when the

stored procedure is finished. The table can be referenced by any nested stored procedures
executed by the stored procedure that created the table. The table cannot be referenced by
the process that called the stored procedure that created the table.

http://msdn.microsoft.com/en-us/library/13e95046-0e76-4604-b561-d1a74dd824d7(SQL.110)�

 615

• All other local temporary tables are dropped automatically at the end of the current session.
• Global temporary tables are automatically dropped when the session that created the table

ends and all other tasks have stopped referencing them. The association between a task and
a table is maintained only for the life of a single Transact-SQL statement. This means that a
global temporary table is dropped at the completion of the last Transact-SQL statement that
was actively referencing the table when the creating session ended.

A local temporary table created within a stored procedure or trigger can have the same name as
a temporary table that was created before the stored procedure or trigger is called. However, if
a query references a temporary table and two temporary tables with the same name exist at that
time, it is not defined which table the query is resolved against. Nested stored procedures can
also create temporary tables with the same name as a temporary table that was created by the
stored procedure that called it. However, for modifications to resolve to the table that was
created in the nested procedure, the table must have the same structure, with the same column
names, as the table created in the calling procedure. This is shown in the following example.
CREATE PROCEDURE dbo.Test2

AS

 CREATE TABLE #t(x INT PRIMARY KEY);

 INSERT INTO #t VALUES (2);

 SELECT Test2Col = x FROM #t;

GO

CREATE PROCEDURE dbo.Test1

AS

 CREATE TABLE #t(x INT PRIMARY KEY);

 INSERT INTO #t VALUES (1);

 SELECT Test1Col = x FROM #t;

EXEC Test2;

GO

CREATE TABLE #t(x INT PRIMARY KEY);

INSERT INTO #t VALUES (99);

GO

EXEC

Here is the result set.
(1 row(s) affected)

 616

Test1Col

1

(1 row(s) affected)

Test2Col

2
When you create local or global temporary tables, the CREATE TABLE syntax supports constraint
definitions except for FOREIGN KEY constraints. If a FOREIGN KEY constraint is specified in a
temporary table, the statement returns a warning message that states the constraint was
skipped. The table is still created without the FOREIGN KEY constraints. Temporary tables cannot
be referenced in FOREIGN KEY constraints.
If a temporary table is created with a named constraint and the temporary table is created within
the scope of a user-defined transaction, only one user at a time can execute the statement that
creates the temp table. For example, if a stored procedure creates a temporary table with a
named primary key constraint, the stored procedure cannot be executed simultaneously by
multiple users.

Partitioned Tables
Before creating a partitioned table by using CREATE TABLE, you must first create a partition
function to specify how the table becomes partitioned. A partition function is created by using
CREATE PARTITION FUNCTION. Second, you must create a partition scheme to specify the
filegroups that will hold the partitions indicated by the partition function. A partition scheme is
created by using CREATE PARTITION SCHEME. Placement of PRIMARY KEY or UNIQUE
constraints to separate filegroups cannot be specified for partitioned tables. For more
information, see Partitioned Tables and Indexes.

PRIMARY KEY Constraints
• A table can contain only one PRIMARY KEY constraint.
• The index generated by a PRIMARY KEY constraint cannot cause the number of indexes on

the table to exceed 999 nonclustered indexes and 1 clustered index.
• If CLUSTERED or NONCLUSTERED is not specified for a PRIMARY KEY constraint, CLUSTERED

is used if there are no clustered indexes specified for UNIQUE constraints.
• All columns defined within a PRIMARY KEY constraint must be defined as NOT NULL. If

nullability is not specified, all columns participating in a PRIMARY KEY constraint have their
nullability set to NOT NULL.

• If a primary key is defined on a CLR user-defined type column, the implementation of the
type must support binary ordering. For more information, see CLR User-defined Types.

http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�
http://msdn.microsoft.com/en-us/library/27c4889b-c543-47a8-a630-ad06804f92df(SQL.110)�

 617

UNIQUE Constraints
• If CLUSTERED or NONCLUSTERED is not specified for a UNIQUE constraint, NONCLUSTERED

is used by default.
• Each UNIQUE constraint generates an index. The number of UNIQUE constraints cannot

cause the number of indexes on the table to exceed 999 nonclustered indexes and 1
clustered index.

• If a unique constraint is defined on a CLR user-defined type column, the implementation of
the type must support binary or operator-based ordering. For more information, see CLR
User-defined Types.

FOREIGN KEY Constraints
• When a value other than NULL is entered into the column of a FOREIGN KEY constraint, the

value must exist in the referenced column; otherwise, a foreign key violation error message
is returned.

• FOREIGN KEY constraints are applied to the preceding column, unless source columns are
specified.

• FOREIGN KEY constraints can reference only tables within the same database on the same
server. Cross-database referential integrity must be implemented through triggers. For more
information, see CREATE TRIGGER.

• FOREIGN KEY constraints can reference another column in the same table. This is referred to
as a self-reference.

• The REFERENCES clause of a column-level FOREIGN KEY constraint can list only one
reference column. This column must have the same data type as the column on which the
constraint is defined.

• The REFERENCES clause of a table-level FOREIGN KEY constraint must have the same
number of reference columns as the number of columns in the constraint column list. The
data type of each reference column must also be the same as the corresponding column in
the column list.

• CASCADE, SET NULL or SET DEFAULT cannot be specified if a column of type timestamp is
part of either the foreign key or the referenced key.

• CASCADE, SET NULL, SET DEFAULT and NO ACTION can be combined on tables that have
referential relationships with each other. If the Database Engine encounters NO ACTION, it
stops and rolls back related CASCADE, SET NULL and SET DEFAULT actions. When a DELETE
statement causes a combination of CASCADE, SET NULL, SET DEFAULT and NO ACTION
actions, all the CASCADE, SET NULL and SET DEFAULT actions are applied before the
Database Engine checks for any NO ACTION.

• The Database Engine does not have a predefined limit on either the number of FOREIGN KEY
constraints a table can contain that reference other tables, or the number of FOREIGN KEY
constraints that are owned by other tables that reference a specific table.

http://msdn.microsoft.com/en-us/library/27c4889b-c543-47a8-a630-ad06804f92df(SQL.110)�
http://msdn.microsoft.com/en-us/library/27c4889b-c543-47a8-a630-ad06804f92df(SQL.110)�

 618

Nevertheless, the actual number of FOREIGN KEY constraints that can be used is limited by
the hardware configuration and by the design of the database and application. We
recommend that a table contain no more than 253 FOREIGN KEY constraints, and that it be
referenced by no more than 253 FOREIGN KEY constraints. The effective limit for you may be
more or less depending on the application and hardware. Consider the cost of enforcing
FOREIGN KEY constraints when you design your database and applications.

• FOREIGN KEY constraints are not enforced on temporary tables.
• FOREIGN KEY constraints can reference only columns in PRIMARY KEY or UNIQUE

constraints in the referenced table or in a UNIQUE INDEX on the referenced table.
• If a foreign key is defined on a CLR user-defined type column, the implementation of the

type must support binary ordering. For more information, see CLR User-defined Types.
• A column of type varchar(max) can participate in a FOREIGN KEY constraint only if the

primary key it references is also defined as type varchar(max).

DEFAULT Definitions
• A column can have only one DEFAULT definition.
• A DEFAULT definition can contain constant values, functions, SQL-92 niladic functions, or

NULL. The following table shows the niladic functions and the values they return for the
default during an INSERT statement.

SQL-92 niladic function Value returned

CURRENT_TIMESTAMP Current date and time.

CURRENT_USER Name of user performing an insert.

SESSION_USER Name of user performing an insert.

SYSTEM_USER Name of user performing an insert.

USER Name of user performing an insert.

• constant_expression in a DEFAULT definition cannot refer to another column in the table, or

to other tables, views, or stored procedures.
• DEFAULT definitions cannot be created on columns with a timestamp data type or columns

with an IDENTITY property.
• DEFAULT definitions cannot be created for columns with alias data types if the alias data

type is bound to a default object.

CHECK Constraints
• A column can have any number of CHECK constraints, and the condition can include

multiple logical expressions combined with AND and OR. Multiple CHECK constraints for a
column are validated in the order they are created.

http://msdn.microsoft.com/en-us/library/27c4889b-c543-47a8-a630-ad06804f92df(SQL.110)�

 619

• The search condition must evaluate to a Boolean expression and cannot reference another
table.

• A column-level CHECK constraint can reference only the constrained column, and a table-
level CHECK constraint can reference only columns in the same table.
CHECK CONSTRAINTS and rules serve the same function of validating the data during
INSERT and UPDATE statements.

• When a rule and one or more CHECK constraints exist for a column or columns, all
restrictions are evaluated.

• CHECK constraints cannot be defined on text, ntext, or image columns.

Additional Constraint Information
• An index created for a constraint cannot be dropped by using DROP INDEX; the constraint

must be dropped by using ALTER TABLE. An index created for and used by a constraint can
be rebuilt by using DBCC DBREINDEX.

• Constraint names must follow the rules for identifiers, except that the name cannot start with
a number sign (#). If constraint_name is not supplied, a system-generated name is assigned
to the constraint. The constraint name appears in any error message about constraint
violations.

• When a constraint is violated in an INSERT, UPDATE, or DELETE statement, the statement is
ended. However, when SET XACT_ABORT is set to OFF, the transaction, if the statement is
part of an explicit transaction, continues to be processed. When SET XACT_ABORT is set to
ON, the whole transaction is rolled back. You can also use the ROLLBACK TRANSACTION
statement with the transaction definition by checking the @@ERROR system function.

• When ALLOW_ROW_LOCKS = ON and ALLOW_PAGE_LOCK = ON, row-, page-, and table-
level locks are allowed when you access the index. The Database Engine chooses the
appropriate lock and can escalate the lock from a row or page lock to a table lock. When
ALLOW_ROW_LOCKS = OFF and ALLOW_PAGE_LOCK = OFF, only a table-level lock is
allowed when you access the index.

• If a table has FOREIGN KEY or CHECK CONSTRAINTS and triggers, the constraint conditions
are evaluated before the trigger is executed.

For a report on a table and its columns, use sp_help or sp_helpconstraint. To rename a table,
use sp_rename. For a report on the views and stored procedures that depend on a table, use
sys.dm_sql_referenced_entities and sys.dm_sql_referencing_entities.

Nullability Rules Within a Table Definition
The nullability of a column determines whether that column can allow a null value (NULL) as the
data in that column. NULL is not zero or blank: NULL means no entry was made or an explicit
NULL was supplied, and it typically implies that the value is either unknown or not applicable.
When you use CREATE TABLE or ALTER TABLE to create or alter a table, database and session
settings influence and possibly override the nullability of the data type that is used in a column
definition. We recommend that you always explicitly define a column as NULL or NOT NULL for

http://msdn.microsoft.com/en-us/library/6e929d09-ccb5-4855-a6af-b616022bc8f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�
http://msdn.microsoft.com/en-us/library/077111cb-b860-4d61-916f-bac5d532912f(SQL.110)�
http://msdn.microsoft.com/en-us/library/c16f8f0a-483f-4feb-842e-da90426045ae(SQL.110)�

 620

noncomputed columns or, if you use a user-defined data type, that you allow the column to use
the default nullability of the data type. Sparse columns must always allow NULL.
When column nullability is not explicitly specified, column nullability follows the rules shown in
the following table.

Column data type Rule

Alias data type The Database Engine uses the nullability
that is specified when the data type was
created. To determine the default nullability
of the data type, use sp_help.

CLR user-defined type Nullability is determined according to the
column definition.

System-supplied data type If the system-supplied data type has only
one option, it takes precedence.
timestamp data types must be NOT NULL.
When any session settings are set ON by
using SET:
• ANSI_NULL_DFLT_ON = ON, NULL is

assigned.
• ANSI_NULL_DFLT_OFF = ON, NOT NULL

is assigned.
• When any database settings are

configured by using ALTER DATABASE:
• ANSI_NULL_DEFAULT_ON = ON, NULL

is assigned.
• ANSI_NULL_DEFAULT_OFF = ON, NOT

NULL is assigned.
• To view the database setting for

ANSI_NULL_DEFAULT, use the
sys.databases catalog view

When neither of the ANSI_NULL_DFLT options is set for the session and the database is set to
the default (ANSI_NULL_DEFAULTis OFF), the default of NOT NULL is assigned.
If the column is a computed column, its nullability is always automatically determined by the
Database Engine. To find out the nullability of this type of column, use the COLUMNPROPERTY
function with the AllowsNull property.

Note

 621

The SQL Server ODBC driver and Microsoft OLE DB Provider for SQL Server both default
to having ANSI_NULL_DFLT_ON set to ON. ODBC and OLE DB users can configure this in
ODBC data sources, or with connection attributes or properties set by the application.

Data Compression
System tables cannot be enabled for compression. When you are creating a table, data
compression is set to NONE, unless specified otherwise. If you specify a list of partitions or a
partition that is out of range, an error will be generated. For a more information about data
compression, see Creating Compressed Tables and Indexes.
To evaluate how changing the compression state will affect a table, an index, or a partition, use
the sp_estimate_data_compression_savings stored procedure.

Permissions
Requires CREATE TABLE permission in the database and ALTER permission on the schema in
which the table is being created.
If any columns in the CREATE TABLE statement are defined to be of a CLR user-defined type,
either ownership of the type or REFERENCES permission on it is required.
If any columns in the CREATE TABLE statement have an XML schema collection associated with
them, either ownership of the XML schema collection or REFERENCES permission on it is
required.
Any user can create temporary tables in tempdb.

Examples

A. Using PRIMARY KEY constraints
The following example shows the column definition for a PRIMARY KEY constraint with a
clustered index on the EmployeeID column of the Employee table (allowing the system to
supply the constraint name) in the AdventureWorks sample database.

EmployeeID int

PRIMARY KEY CLUSTERED

B. Using FOREIGN KEY constraints
A FOREIGN KEY constraint is used to reference another table. Foreign keys can be single-column
keys or multicolumn keys. This following example shows a single-column FOREIGN KEY
constraint on the SalesOrderHeader table that references the SalesPerson table. Only the
REFERENCES clause is required for a single-column FOREIGN KEY constraint.

SalesPersonID int NULL

REFERENCES SalesPerson(SalesPersonID)

You can also explicitly use the FOREIGN KEY clause and restate the column attribute. Note that
the column name does not have to be the same in both tables.

FOREIGN KEY (SalesPersonID) REFERENCES SalesPerson(SalesPersonID)

http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/6f6c7150-e788-45e0-9d08-d6c2f4a33729(SQL.110)�

 622

Multicolumn key constraints are created as table constraints. In the database, the
SpecialOfferProduct table includes a multicolumn PRIMARY KEY. The following example
shows how to reference this key from another table; an explicit constraint name is optional.
CONSTRAINT FK_SpecialOfferProduct_SalesOrderDetail FOREIGN KEY

 (ProductID, SpecialOfferID)

REFERENCES SpecialOfferProduct (ProductID, SpecialOfferID)

C. Using UNIQUE constraints
UNIQUE constraints are used to enforce uniqueness on nonprimary key columns. The following
example enforces a restriction that the Name column of the Product table must be unique.

Name nvarchar(100) NOT NULL

UNIQUE NONCLUSTERED

D. Using DEFAULT definitions
Defaults supply a value (with the INSERT and UPDATE statements) when no value is supplied.
For example, the database could include a lookup table listing the different jobs
employees can fill in the company. Under a column that describes each job, a character string
default could supply a description when an actual description is not entered explicitly.
DEFAULT 'New Position - title not formalized yet'

In addition to constants, DEFAULT definitions can include functions. Use the following example
to get the current date for an entry.

DEFAULT (getdate())

A niladic-function scan can also improve data integrity. To keep track of the user that inserted a
row, use the niladic-function for USER. Do not enclose the niladic-functions with parentheses.

DEFAULT USER

E. Using CHECK constraints
The following example shows a restriction made to values that are entered into the
CreditRating column of the Vendor table. The constraint is unnamed.
CHECK (CreditRating >= 1 and CreditRating <= 5)

This example shows a named constraint with a pattern restriction on the character data entered
into a column of a table.

CONSTRAINT CK_emp_id CHECK (emp_id LIKE

'[A-Z][A-Z][A-Z][1-9][0-9][0-9][0-9][0-9][FM]'

OR emp_id LIKE '[A-Z]-[A-Z][1-9][0-9][0-9][0-9][0-9][FM]')

This example specifies that the values must be within a specific list or follow a specified pattern.
CHECK (emp_id IN ('1389', '0736', '0877', '1622', '1756')

OR emp_id LIKE '99[0-9][0-9]')

 623

F. Showing the complete table definition
The following example shows the complete table definitions with all constraint definitions for
table PurchaseOrderDetail created in the database. Note that to run the sample, the
table schema is changed to dbo.
CREATE TABLE dbo.PurchaseOrderDetail

(

 PurchaseOrderID int NOT NULL

 REFERENCES Purchasing.PurchaseOrderHeader(PurchaseOrderID),

 LineNumber smallint NOT NULL,

 ProductID int NULL

 REFERENCES Production.Product(ProductID),

 UnitPrice money NULL,

 OrderQty smallint NULL,

 ReceivedQty float NULL,

 RejectedQty float NULL,

 DueDate datetime NULL,

 rowguid uniqueidentifier ROWGUIDCOL NOT NULL

 CONSTRAINT DF_PurchaseOrderDetail_rowguid DEFAULT (newid()),

 ModifiedDate datetime NOT NULL

 CONSTRAINT DF_PurchaseOrderDetail_ModifiedDate DEFAULT (getdate()),

 LineTotal AS ((UnitPrice*OrderQty)),

 StockedQty AS ((ReceivedQty-RejectedQty)),

 CONSTRAINT PK_PurchaseOrderDetail_PurchaseOrderID_LineNumber

 PRIMARY KEY CLUSTERED (PurchaseOrderID, LineNumber)

 WITH (IGNORE_DUP_KEY = OFF)

)

ON PRIMARY;

G. Creating a table with an xml column typed to an XML schema collection
The following example creates a table with an xml column that is typed to XML schema
collection HRResumeSchemaCollection. The DOCUMENT keyword specifies that each instance of
the xml data type in column_name can contain only one top-level element.
USE AdventureWorks2012;

GO

CREATE TABLE HumanResources.EmployeeResumes

 (LName nvarchar(25), FName nvarchar(25),

 Resume xml(DOCUMENT HumanResources.HRResumeSchemaCollection));

 624

H. Creating a partitioned table
The following example creates a partition function to partition a table or index into four
partitions. Then, the example creates a partition scheme that specifies the filegroups in which to
hold each of the four partitions. Finally, the example creates a table that uses the partition
scheme. This example assumes the filegroups already exist in the database.
CREATE PARTITION FUNCTION myRangePF1 (int)

 AS RANGE LEFT FOR VALUES (1, 100, 1000) ;

GO

CREATE PARTITION SCHEME myRangePS1

 AS PARTITION myRangePF1

 TO (test1fg, test2fg, test3fg, test4fg) ;

GO

CREATE TABLE PartitionTable (col1 int, col2 char(10))

 ON myRangePS1 (col1) ;

GO

Based on the values of column col1 of PartitionTable, the partitions are assigned in the
following ways.

Filegroup test1fg test2fg test3fg test4fg

Partition 1 2 3 4

Values col 1 <= 1 col1 > 1 AND
col1 <= 100

col1 > 100 AND
col1 <= 1,000

col1 > 1000

I. Using the uniqueidentifier data type in a column
The following example creates a table with a uniqueidentifier column. The example uses a
PRIMARY KEY constraint to protect the table against users inserting duplicated values, and it
uses the NEWSEQUENTIALID() function in the DEFAULT constraint to provide values for new
rows. The ROWGUIDCOL property is applied to the uniqueidentifier column so that it can be
referenced using the $ROWGUID keyword.
CREATE TABLE dbo.Globally_Unique_Data

 (guid uniqueidentifier CONSTRAINT Guid_Default DEFAULT NEWSEQUENTIALID()
ROWGUIDCOL,

 Employee_Name varchar(60)

 CONSTRAINT Guid_PK PRIMARY KEY (guid));

 625

J. Using an expression for a computed column
The following example shows the use of an expression ((low + high)/2) for calculating the
myavg computed column.
CREATE TABLE dbo.mytable

 (low int, high int, myavg AS (low + high)/2) ;

K. Creating a computed column based on a user-defined type column
The following example creates a table with one column defined as user-defined type
utf8string, assuming that the type's assembly, and the type itself, have already been created
in the current database. A second column is defined based on utf8string, and uses method
ToString() of type(class) utf8string to compute a value for the column.
CREATE TABLE UDTypeTable

 (u utf8string, ustr AS u.ToString() PERSISTED) ;

L. Using the USER_NAME function for a computed column
The following example uses the USER_NAME() function in the myuser_name column.
CREATE TABLE dbo.mylogintable

 (date_in datetime, user_id int, myuser_name AS USER_NAME()) ;

M. Creating a table that has a FILESTREAM column
The following example creates a table that has a FILESTREAM column Photo. If a table has one
or more FILESTREAM columns, the table must have one ROWGUIDCOL column.
CREATE TABLE dbo.EmployeePhoto

 (

 EmployeeId int NOT NULL PRIMARY KEY

 ,Photo varbinary(max) FILESTREAM NULL

 ,MyRowGuidColumn uniqueidentifier NOT NULL ROWGUIDCOL

 UNIQUE DEFAULT NEWID()

);

N. Creating a table that uses row compression
The following example creates a table that uses row compression.
CREATE TABLE dbo.T1

(c1 int, c2 nvarchar(200))

WITH (DATA_COMPRESSION = ROW);

For additional data compression examples, see Creating Compressed Tables and Indexes.

O. Creating a table that has sparse columns and a column set

http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�

 626

The following examples show to how to create a table that has a sparse column, and a table that
has two sparse columns and a column set. The examples use the basic syntax. For more complex
examples, see Using Sparse Columns and Using Sparse Column Sets.
This example creates a table that has a sparse column.
CREATE TABLE dbo.T1

 (c1 int PRIMARY KEY,

 c2 varchar(50) SPARSE NULL) ;

This example creates a table that has two sparse columns and a column set named CSet.
CREATE TABLE T1

 (c1 int PRIMARY KEY,

 c2 varchar(50) SPARSE NULL,

 c3 int SPARSE NULL,

 CSet XML COLUMN_SET FOR ALL_SPARSE_COLUMNS) ;

See Also
ALTER TABLE
COLUMNPROPERTY
CREATE INDEX
CREATE VIEW
Data Types
DROP INDEX
sys.dm_sql_referenced_entities
sys.dm_sql_referencing_entities
DROP TABLE
CREATE PARTITION FUNCTION
CREATE PARTITION SCHEME
CREATE TYPE
EVENTDATA
sp_help
sp_helpconstraint
sp_rename
sp_spaceused

http://msdn.microsoft.com/en-us/library/ea7ddb87-f50b-46b6-9f5a-acab222a2ede(SQL.110)�
http://msdn.microsoft.com/en-us/library/a4f9de95-dc8f-4ad8-b957-137e32bfa500(SQL.110)�
http://msdn.microsoft.com/en-us/library/2408c264-6eca-4120-bb71-df043c7c2792(SQL.110)�
http://msdn.microsoft.com/en-us/library/a54f7373-b247-4d61-8fb8-7f2ec7a8d0a4(SQL.110)�
http://msdn.microsoft.com/en-us/library/077111cb-b860-4d61-916f-bac5d532912f(SQL.110)�
http://msdn.microsoft.com/en-us/library/c16f8f0a-483f-4feb-842e-da90426045ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/913cd5d4-39a3-4a4b-a926-75ed32878884(SQL.110)�
http://msdn.microsoft.com/en-us/library/29d6cd36-535d-4765-bca8-62f9d9886ff5(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc3548f0-143f-404e-a2e9-0a15960fc8ed(SQL.110)�
http://msdn.microsoft.com/en-us/library/c6253b48-29f5-4371-bfcd-3ef404060621(SQL.110)�

 627

IDENTITY (Property)
Creates an identity column in a table. This property is used with the CREATE TABLE and ALTER
TABLE Transact-SQL statements.

The IDENTITY property is different from the SQL-DMO Identity property that exposes
the row identity property of a column.

 Transact-SQL Syntax Conventions
Syntax

IDENTITY [(seed , increment)]
Arguments
seed

Is the value that is used for the very first row loaded into the table.

increment

Is the incremental value that is added to the identity value of the previous row that was
loaded.

You must specify both the seed and increment or neither. If neither is specified, the default is
(1,1).
Remarks
If an identity column exists for a table with frequent deletions, gaps can occur between identity
values. If this is a concern, do not use the IDENTITY property. However, to make sure that no
gaps have been created or to fill an existing gap, evaluate the existing identity values before
explicitly entering one with SET IDENTITY_INSERT ON.
If you are reusing a removed identity value, use the sample code in Example B to look for the
next available identity value. Replace tablename, column_type, and MAX(column_type) - 1
with a table name, identity column data type, and numeric value of the maximum allowed value
(for that data type) -1.
Use DBCC CHECKIDENT to check the current identity value and compare it with the maximum
value in the identity column.
If a table with an identity column is published for replication, the identity column must be
managed in a way that is appropriate for the type of replication used. For more information, see
Replicating Identity Columns.

To create an automatically incrementing number that can be used in multiple tables or
that can be called from applications without referencing any table, see Creating and
Using Sequence Numbers.

Examples

Note

Note

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/eb2f23a8-7ec2-48af-9361-0e3cb87ebaf7(SQL.110)�
http://msdn.microsoft.com/en-us/library/c900e30d-2fd3-4d5f-98ee-7832f37e79d1(SQL.110)�
http://msdn.microsoft.com/en-us/library/c900e30d-2fd3-4d5f-98ee-7832f37e79d1(SQL.110)�

 628

A. Using the IDENTITY property with CREATE TABLE
The following example creates a new table using the IDENTITY property for an automatically
incrementing identification number.

USE AdventureWorks2012

IF OBJECT_ID ('dbo.new_employees', 'U') IS NOT NULL

 DROP TABLE new_employees;

GO

CREATE TABLE new_employees

(

 id_num int IDENTITY(1,1),

 fname varchar (20),

 minit char(1),

 lname varchar(30)

);

INSERT new_employees

 (fname, minit, lname)

VALUES

 ('Karin', 'F', 'Josephs');

INSERT new_employees

 (fname, minit, lname)

VALUES

 ('Pirkko', 'O', 'Koskitalo');

B. Using generic syntax for finding gaps in identity values
The following example shows generic syntax for finding gaps in identity values when data is
removed.

The first part of the following Transact-SQL script is designed for illustration only. You
can run the Transact-SQL script that starts with the comment: -- Create the img
table.

-- Here is the generic syntax for finding identity value gaps in data.

-- The illustrative example starts here.

Note

 629

SET IDENTITY_INSERT tablename ON

DECLARE @minidentval column_type

DECLARE @maxidentval column_type

DECLARE @nextidentval column_type

SELECT @minidentval = MIN($IDENTITY), @maxidentval = MAX($IDENTITY)

 FROM tablename

IF @minidentval = IDENT_SEED('tablename')

 SELECT @nextidentval = MIN($IDENTITY) + IDENT_INCR('tablename')

 FROM tablename t1

 WHERE $IDENTITY BETWEEN IDENT_SEED('tablename') AND

 @maxidentval AND

 NOT EXISTS (SELECT * FROM tablename t2

 WHERE t2.$IDENTITY = t1.$IDENTITY +

 IDENT_INCR('tablename'))

ELSE

 SELECT @nextidentval = IDENT_SEED('tablename')

SET IDENTITY_INSERT tablename OFF

-- Here is an example to find gaps in the actual data.

-- The table is called img and has two columns: the first column

-- called id_num, which is an increasing identification number, and the

-- second column called company_name.

-- This is the end of the illustration example.

-- Create the img table.

-- If the img table already exists, drop it.

-- Create the img table.

IF OBJECT_ID ('dbo.img', 'U') IS NOT NULL

 DROP TABLE img

GO

CREATE TABLE img (id_num int IDENTITY(1,1), company_name sysname)

INSERT img(company_name) VALUES ('New Moon Books')

INSERT img(company_name) VALUES ('Lucerne Publishing')

-- SET IDENTITY_INSERT ON and use in img table.

 630

SET IDENTITY_INSERT img ON

DECLARE @minidentval smallint

DECLARE @nextidentval smallint

SELECT @minidentval = MIN($IDENTITY) FROM img

 IF @minidentval = IDENT_SEED('img')

 SELECT @nextidentval = MIN($IDENTITY) + IDENT_INCR('img')

 FROM img t1

 WHERE $IDENTITY BETWEEN IDENT_SEED('img') AND 32766 AND

 NOT EXISTS (SELECT * FROM img t2

 WHERE t2.$IDENTITY = t1.$IDENTITY + IDENT_INCR('img'))

 ELSE

 SELECT @nextidentval = IDENT_SEED('img')

SET IDENTITY_INSERT img OFF

See Also
ALTER TABLE
CREATE TABLE
DBCC CHECKIDENT
IDENT_INCR
@@IDENTITY
IDENTITY (Function)
IDENT_SEED
SELECT
SET IDENTITY_INSERT
Replicating Identity Columns

CREATE TRIGGER
Creates a DML, DDL, or logon trigger in SQL Server 2012. A trigger is a special kind of stored
procedure that automatically executes when an event occurs in the database server. DML
triggers execute when a user tries to modify data through a data manipulation language (DML)
event. DML events are INSERT, UPDATE, or DELETE statements on a table or view. These triggers
fire when any valid event is fired, regardless of whether or not any table rows are affected. For
more information, see DML Triggers.
DDL triggers execute in response to a variety of data definition language (DDL) events. These
events primarily correspond to Transact-SQL CREATE, ALTER, and DROP statements, and certain

http://msdn.microsoft.com/en-us/library/2c00ee51-2062-4e47-8b19-d90f524c6427(SQL.110)�
http://msdn.microsoft.com/en-us/library/e13b491f-4f1f-4cb6-8b63-5084120f98cf(SQL.110)�
http://msdn.microsoft.com/en-us/library/912e4485-683c-41c2-97b3-8831c0289ee4(SQL.110)�
http://msdn.microsoft.com/en-us/library/ebec77eb-fc02-4feb-b6c5-f0098d43ccb6(SQL.110)�
http://msdn.microsoft.com/en-us/library/e4cb8eb8-affb-4810-a8a9-0110af3c247a(SQL.110)�
http://msdn.microsoft.com/en-us/library/dc85caea-54d1-49af-b166-f3aa2f3a93d0(SQL.110)�
http://msdn.microsoft.com/en-us/library/a5dd49f2-45c7-44a8-b182-e0a5e5c373ee(SQL.110)�
http://msdn.microsoft.com/en-us/library/eb2f23a8-7ec2-48af-9361-0e3cb87ebaf7(SQL.110)�
http://msdn.microsoft.com/en-us/library/298eafca-e01f-4707-8c29-c75546fcd6b0(SQL.110)�

 631

system stored procedures that perform DDL-like operations. Logon triggers fire in response to
the LOGON event that is raised when a user sessions is being established. Triggers can be
created directly from Transact-SQL statements or from methods of assemblies that are created
in the Microsoft .NET Framework common language runtime (CLR) and uploaded to an instance
of SQL Server. SQL Server allows for creating multiple triggers for any specific statement.

Malicious code inside triggers can run under escalated privileges. For more information
on how to mitigate this threat, see Using Large-Value Data Types.

 Transact-SQL Syntax Conventions

Syntax

Trigger on an INSERT, UPDATE, or DELETE statement to a table or view (DML Trigger)
CREATE TRIGGER [schema_name .]trigger_name
ON { table | view }
[WITH <dml_trigger_option> [,...n]]
{ FOR | AFTER | INSTEAD OF }
{ [INSERT] [,] [UPDATE] [,] [DELETE] }
[NOT FOR REPLICATION]
AS { sql_statement [;] [,...n] | EXTERNAL NAME <method specifier [;] > }

<dml_trigger_option> ::=
 [ENCRYPTION]
 [EXECUTE AS Clause]

<method_specifier> ::=
 assembly_name.class_name.method_name

Trigger on a CREATE, ALTER, DROP, GRANT, DENY, REVOKE, or UPDATE STATISTICS
statement (DDL Trigger)
CREATE TRIGGER trigger_name
ON { ALL SERVER | DATABASE }
[WITH <ddl_trigger_option> [,...n]]
{ FOR | AFTER } { event_type | event_group } [,...n]
AS { sql_statement [;] [,...n] | EXTERNAL NAME < method specifier > [;] }

<ddl_trigger_option> ::=

noteDXDOC112778PADS Security Note

http://msdn.microsoft.com/en-us/library/e94720a8-a3a2-4364-b0a3-bbe86e3ce4d5(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 632

 [ENCRYPTION]
 [EXECUTE AS Clause]

Trigger on a LOGON event (Logon Trigger)
CREATE TRIGGER trigger_name
ON ALL SERVER
[WITH <logon_trigger_option> [,...n]]
{ FOR | AFTER } LOGON
AS { sql_statement [;] [,...n] | EXTERNAL NAME < method specifier > [;] }

<logon_trigger_option> ::=
 [ENCRYPTION]
 [EXECUTE AS Clause]

Arguments
schema_name

Is the name of the schema to which a DML trigger belongs. DML triggers are scoped to the
schema of the table or view on which they are created. schema_name cannot be specified for
DDL or logon triggers.

trigger_name

Is the name of the trigger. A trigger_name must comply with the rules for identifiers, except
that trigger_name cannot start with # or ##.

table | view

Is the table or view on which the DML trigger is executed and is sometimes referred to as the
trigger table or trigger view. Specifying the fully qualified name of the table or view is
optional. A view can be referenced only by an INSTEAD OF trigger. DML triggers cannot be
defined on local or global temporary tables.

DATABASE

Applies the scope of a DDL trigger to the current database. If specified, the trigger fires
whenever event_type or event_group occurs in the current database.

ALL SERVER

Applies the scope of a DDL or logon trigger to the current server. If specified, the trigger fires
whenever event_type or event_group occurs anywhere in the current server.

WITH ENCRYPTION

Obfuscates the text of the CREATE TRIGGER statement. Using WITH ENCRYPTION prevents
the trigger from being published as part of SQL Server replication. WITH ENCRYPTION

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 633

cannot be specified for CLR triggers.

EXECUTE AS

Specifies the security context under which the trigger is executed. Enables you to control
which user account the instance of SQL Server uses to validate permissions on any database
objects that are referenced by the trigger.

For more information, see EXECUTE AS.

FOR | AFTER

AFTER specifies that the DML trigger is fired only when all operations specified in the
triggering SQL statement have executed successfully. All referential cascade actions and
constraint checks also must succeed before this trigger fires.

AFTER is the default when FOR is the only keyword specified.

AFTER triggers cannot be defined on views.

INSTEAD OF

Specifies that the DML trigger is executed instead of the triggering SQL statement, therefore,
overriding the actions of the triggering statements. INSTEAD OF cannot be specified for DDL
or logon triggers.

At most, one INSTEAD OF trigger per INSERT, UPDATE, or DELETE statement can be defined
on a table or view. However, you can define views on views where each view has its own
INSTEAD OF trigger.

INSTEAD OF triggers are not allowed on updatable views that use WITH CHECK OPTION. SQL
Server raises an error when an INSTEAD OF trigger is added to an updatable view WITH
CHECK OPTION specified. The user must remove that option by using ALTER VIEW before
defining the INSTEAD OF trigger.

{ [DELETE] [,] [INSERT] [,] [UPDATE] }

Specifies the data modification statements that activate the DML trigger when it is tried
against this table or view. At least one option must be specified. Any combination of these
options in any order is allowed in the trigger definition.

For INSTEAD OF triggers, the DELETE option is not allowed on tables that have a referential
relationship specifying a cascade action ON DELETE. Similarly, the UPDATE option is not
allowed on tables that have a referential relationship specifying a cascade action ON
UPDATE.

event_type

Is the name of a Transact-SQL language event that, after execution, causes a DDL trigger to
fire. Valid events for DDL triggers are listed in DDL Events.

event_group

Is the name of a predefined grouping of Transact-SQL language events. The DDL trigger fires
after execution of any Transact-SQL language event that belongs to event_group. Valid event

http://msdn.microsoft.com/en-us/library/bd517aa3-f06e-4356-87d8-70de5df4494a(SQL.110)�
http://msdn.microsoft.com/en-us/library/62ef24b4-3553-4aed-b62a-670980bae501(SQL.110)�

 634

groups for DDL triggers are listed in DDL Event Groups.

After the CREATE TRIGGER has finished running, event_group also acts as a macro by adding
the event types it covers to the sys.trigger_events catalog view.

NOT FOR REPLICATION

Indicates that the trigger should not be executed when a replication agent modifies the table
that is involved in the trigger.

sql_statement

Is the trigger conditions and actions. Trigger conditions specify additional criteria that
determine whether the tried DML, DDL, or logon events cause the trigger actions to be
performed.

The trigger actions specified in the Transact-SQL statements go into effect when the
operation is tried.

Triggers can include any number and kind of Transact-SQL statements, with exceptions. For
more information, see Remarks. A trigger is designed to check or change data based on a
data modification or definition statement; it should not return data to the user. The Transact-
SQL statements in a trigger frequently include control-of-flow language.

DML triggers use the deleted and inserted logical (conceptual) tables. They are structurally
similar to the table on which the trigger is defined, that is, the table on which the user action
is tried. The deleted and inserted tables hold the old values or new values of the rows that
may be changed by the user action. For example, to retrieve all values in the deleted table,
use:

SELECT * FROM deleted

For more information, see Using the inserted and deleted Tables.

DDL and logon triggers capture information about the triggering event by using the
eventdata (Transact-SQL) function. For more information, see Using the eventdata
Function.

SQL Server allows for the update of text, ntext, or image columns through the INSTEAD OF
trigger on tables or views.

Important
ntext, text, and image data types will be removed in a future version of Microsoft SQL Server. Avoid
using these data types in new development work, and plan to modify applications that currently use
them. Use nvarchar(max), varchar(max), and varbinary(max) instead. Both AFTER and
INSTEAD OF triggers support varchar(MAX), nvarchar(MAX), and varbinary(MAX) data in the
inserted and deleted tables.

< method_specifier >

For a CLR trigger, specifies the method of an assembly to bind with the trigger. The method
must take no arguments and return void. class_name must be a valid SQL Server identifier
and must exist as a class in the assembly with assembly visibility. If the class has a

http://msdn.microsoft.com/en-us/library/12b45cc3-2f91-4609-bb8a-3e82e28bf642(SQL.110)�
http://msdn.microsoft.com/en-us/library/1115a779-484a-4f32-bcd2-d8f0675945b7(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed84567f-7b91-4b44-b5b2-c400bda4590d(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/675b8320-9c73-4526-bd2f-91ba42c1b604(SQL.110)�
http://msdn.microsoft.com/en-us/library/675b8320-9c73-4526-bd2f-91ba42c1b604(SQL.110)�
http://msdn.microsoft.com/en-us/library/81ee5637-ee31-4c4d-96d0-56c26a742354(SQL.110)�
http://msdn.microsoft.com/en-us/library/282cd982-f4fb-4b22-b2df-9e8478f13f6a(SQL.110)�
http://msdn.microsoft.com/en-us/library/bcce65f9-10db-4b3e-bfaf-dfc06c6f820f(SQL.110)�

 635

namespace-qualified name that uses '.' to separate namespace parts, the class name must be
delimited by using [] or " " delimiters. The class cannot be a nested class.

Note
By default, the ability of SQL Server to run CLR code is off. You can create, modify, and drop database
objects that reference managed code modules, but these references will not execute in an instance of
SQL Server unless the clr enabled Option is enabled by using sp_configure.

Remarks

DML Triggers
DML triggers are frequently used for enforcing business rules and data integrity. SQL Server
provides declarative referential integrity (DRI) through the ALTER TABLE and CREATE TABLE
statements. However, DRI does not provide cross-database referential integrity. Referential
integrity refers to the rules about the relationships between the primary and foreign keys of
tables. To enforce referential integrity, use the PRIMARY KEY and FOREIGN KEY constraints in
ALTER TABLE and CREATE TABLE. If constraints exist on the trigger table, they are checked after
the INSTEAD OF trigger execution and before the AFTER trigger execution. If the constraints are
violated, the INSTEAD OF trigger actions are rolled back and the AFTER trigger is not fired.
The first and last AFTER triggers to be executed on a table can be specified by using
sp_settriggerorder. Only one first and one last AFTER trigger for each INSERT, UPDATE, and
DELETE operation can be specified on a table. If there are other AFTER triggers on the same
table, they are randomly executed.
If an ALTER TRIGGER statement changes a first or last trigger, the first or last attribute set on the
modified trigger is dropped, and the order value must be reset by using sp_settriggerorder.
An AFTER trigger is executed only after the triggering SQL statement has executed successfully.
This successful execution includes all referential cascade actions and constraint checks
associated with the object updated or deleted.
If an INSTEAD OF trigger defined on a table executes a statement against the table that would
ordinarily fire the INSTEAD OF trigger again, the trigger is not called recursively. Instead, the
statement is processed as if the table had no INSTEAD OF trigger and starts the chain of
constraint operations and AFTER trigger executions. For example, if a trigger is defined as an
INSTEAD OF INSERT trigger for a table, and the trigger executes an INSERT statement on the
same table, the INSERT statement executed by the INSTEAD OF trigger does not call the trigger
again. The INSERT executed by the trigger starts the process of performing constraint actions
and firing any AFTER INSERT triggers defined for the table.
If an INSTEAD OF trigger defined on a view executes a statement against the view that would
ordinarily fire the INSTEAD OF trigger again, it is not called recursively. Instead, the statement is
resolved as modifications against the base tables underlying the view. In this case, the view
definition must meet all the restrictions for an updatable view. For a definition of updatable
views, see Modifying Data Through a View.

http://msdn.microsoft.com/en-us/library/0722d382-8fd3-4fac-b4a8-cd2b7a7e0293(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�
http://msdn.microsoft.com/en-us/library/410e2812-4ebe-48b2-b95f-c7784f1c4336(SQL.110)�

 636

For example, if a trigger is defined as an INSTEAD OF UPDATE trigger for a view, and the trigger
executes an UPDATE statement referencing the same view, the UPDATE statement executed by
the INSTEAD OF trigger does not call the trigger again. The UPDATE executed by the trigger is
processed against the view as if the view did not have an INSTEAD OF trigger. The columns
changed by the UPDATE must be resolved to a single base table. Each modification to an
underlying base table starts the chain of applying constraints and firing AFTER triggers defined
for the table.

Testing for UPDATE or INSERT Actions to Specific Columns
You can design a Transact-SQL trigger to perform certain actions based on UPDATE or INSERT
modifications to specific columns. Use UPDATE() or COLUMNS_UPDATED in the body of the
trigger for this purpose. UPDATE() tests for UPDATE or INSERT tries on one column.
COLUMNS_UPDATED tests for UPDATE or INSERT actions that are performed on multiple
columns and returns a bit pattern that indicates which columns were inserted or updated.

Trigger Limitations
CREATE TRIGGER must be the first statement in the batch and can apply to only one table.
A trigger is created only in the current database; however, a trigger can reference objects
outside the current database.
If the trigger schema name is specified to qualify the trigger, qualify the table name in the same
way.
The same trigger action can be defined for more than one user action (for example, INSERT and
UPDATE) in the same CREATE TRIGGER statement.
INSTEAD OF DELETE/UPDATE triggers cannot be defined on a table that has a foreign key with a
cascade on DELETE/UPDATE action defined.
Any SET statement can be specified inside a trigger. The SET option selected remains in effect
during the execution of the trigger and then reverts to its former setting.
When a trigger fires, results are returned to the calling application, just like with stored
procedures. To prevent having results returned to an application because of a trigger firing, do
not include either SELECT statements that return results or statements that perform variable
assignment in a trigger. A trigger that includes either SELECT statements that return results to
the user or statements that perform variable assignment requires special handling; these
returned results would have to be written into every application in which modifications to the
trigger table are allowed. If variable assignment must occur in a trigger, use a SET NOCOUNT
statement at the start of the trigger to prevent the return of any result sets.
Although a TRUNCATE TABLE statement is in effect a DELETE statement, it does not activate a
trigger because the operation does not log individual row deletions. However, only those users
with permissions to execute a TRUNCATE TABLE statement need be concerned about
inadvertently circumventing a DELETE trigger this way.
The WRITETEXT statement, whether logged or unlogged, does not activate a trigger.
The following Transact-SQL statements are not allowed in a DML trigger:

http://msdn.microsoft.com/en-us/library/8e3be25b-2e3b-4d1f-a610-dcbbd8d72084(SQL.110)�
http://msdn.microsoft.com/en-us/library/765fde44-1f95-4015-80a4-45388f18a42c(SQL.110)�

 637

ALTER DATABASE CREATE DATABASE DROP DATABASE

RESTORE DATABASE RESTORE LOG RECONFIGURE

Additionally, the following Transact-SQL statements are not allowed inside the body of a DML
trigger when it is used against the table or view that is the target of the triggering action.

CREATE INDEX (including
CREATE SPATIAL INDEX and
CREATE XML INDEX)

ALTER INDEX DROP INDEX

DBCC DBREINDEX ALTER PARTITION FUNCTION DROP TABLE

ALTER TABLE when used to do
the following:
• Add, modify, or drop

columns.
• Switch partitions.
• Add or drop PRIMARY KEY

or UNIQUE constraints.

Because SQL Server does not support user-defined triggers on system tables, we
recommend that you do not create user-defined triggers on system tables.

DDL Triggers
DDL triggers, like standard triggers, execute stored procedures in response to an event. But
unlike standard triggers, they do not execute in response to UPDATE, INSERT, or DELETE
statements on a table or view. Instead, they primarily execute in response to data definition
language (DDL) statements. These include CREATE, ALTER, DROP, GRANT, DENY, REVOKE, and
UPDATE STATISTICS statements. Certain system stored procedures that perform DDL-like
operations can also fire DDL triggers.

Test your DDL triggers to determine their responses to system stored procedure
execution. For example, the CREATE TYPE statement and the sp_addtype and sp_rename
stored procedures will fire a DDL trigger that is created on a CREATE_TYPE event.

For more information about DDL triggers, see DDL Triggers.
DDL triggers do not fire in response to events that affect local or global temporary tables and
stored procedures.

Note

Important

http://msdn.microsoft.com/en-us/library/1a4a6564-9820-4a14-9305-2c0e9ea37454(SQL.110)�

 638

Unlike DML triggers, DDL triggers are not scoped to schemas. Therefore, functions such as
OBJECT_ID, OBJECT_NAME, OBJECTPROPERTY, and OBJECTPROPERTYEX cannot be used for
querying metadata about DDL triggers. Use the catalog views instead. For more information, see
Getting Information about DDL Triggers.

Server-scoped DDL triggers appear in the SQL Server Management Studio Object
Explorer in the Triggers folder. This folder is located under the Server Objects folder.
Database-scoped DDL Triggers appear in the Database Triggers folder. This folder is
located under the Programmability folder of the corresponding database.

Logon Triggers
Logon triggers execute stored procedures in response to a LOGON event. This event is raised
when a user session is established with an instance of SQL Server. Logon triggers fire after the
authentication phase of logging in finishes, but before the user session is actually established.
Therefore, all messages originating inside the trigger that would typically reach the user, such as
error messages and messages from the PRINT statement, are diverted to the SQL Server error
log. For more information, see Logon Triggers.
Logon triggers do not fire if authentication fails.
Distributed transactions are not supported in a logon trigger. Error 3969 is returned when a
logon trigger containing a distributed transaction is fired.

Disabling a Logon Trigger
A logon trigger can effectively prevent successful connections to the Database Engine for all
users, including members of the sysadmin fixed server role. When a logon trigger is preventing
connections, members of the sysadmin fixed server role can connect by using the dedicated
administrator connection, or by starting the Database Engine in minimal configuration mode (-f).
For more information, see Database Engine Service Startup Options.

General Trigger Considerations

Returning Results
The ability to return results from triggers will be removed in a future version of SQL Server.
Triggers that return result sets may cause unexpected behavior in applications that are not
designed to work with them. Avoid returning result sets from triggers in new development work,
and plan to modify applications that currently do this. To prevent triggers from returning result
sets, set the disallow results from triggers option to 1.
Logon triggers always disallow results sets to be returned and this behavior is not configurable.
If a logon trigger does generate a result set, the trigger fails to execute and the login attempt
that fired the trigger is denied.

Multiple Triggers
SQL Server allows for multiple triggers to be created for each DML, DDL, or LOGON event. For
example, if CREATE TRIGGER FOR UPDATE is executed for a table that already has an UPDATE

Note

http://msdn.microsoft.com/en-us/library/462becea-292a-4b9e-bb98-533e89733911(SQL.110)�
http://msdn.microsoft.com/en-us/library/2f0ebb2f-de10-482d-9806-1a5de5b312b8(SQL.110)�
http://msdn.microsoft.com/en-us/library/d373298b-f6cf-458a-849d-7083ecb54ef5(SQL.110)�
http://msdn.microsoft.com/en-us/library/47149073-307d-47a5-b7d2-66a737d3231d(SQL.110)�

 639

trigger, an additional update trigger is created. In earlier versions of SQL Server, only one trigger
for each INSERT, UPDATE, or DELETE data modification event is allowed for each table.

Recursive Triggers
SQL Server also allows for recursive invocation of triggers when the RECURSIVE_TRIGGERS
setting is enabled using ALTER DATABASE.
Recursive triggers enable the following types of recursion to occur:
• Indirect recursion

With indirect recursion, an application updates table T1. This fires trigger TR1, updating table
T2. In this scenario, trigger T2 then fires and updates table T1.

• Direct recursion
With direct recursion, the application updates table T1. This fires trigger TR1, updating table
T1. Because table T1 was updated, trigger TR1 fires again, and so on.

The following example uses both indirect and direct trigger recursion Assume that two update
triggers, TR1 and TR2, are defined on table T1. Trigger TR1 updates table T1 recursively. An
UPDATE statement executes each TR1 and TR2 one time. Additionally, the execution of TR1
triggers the execution of TR1 (recursively) and TR2. The inserted and deleted tables for a specific
trigger contain rows that correspond only to the UPDATE statement that invoked the trigger.

The previous behavior occurs only if the RECURSIVE_TRIGGERS setting is enabled by
using ALTER DATABASE. There is no defined order in which multiple triggers defined for
a specific event are executed. Each trigger should be self-contained.

Disabling the RECURSIVE_TRIGGERS setting only prevents direct recursions. To disable indirect
recursion also, set the nested triggers server option to 0 by using sp_configure.
If any one of the triggers performs a ROLLBACK TRANSACTION, regardless of the nesting level,
no more triggers are executed.

Nested Triggers
Triggers can be nested to a maximum of 32 levels. If a trigger changes a table on which there is
another trigger, the second trigger is activated and can then call a third trigger, and so on. If any
trigger in the chain sets off an infinite loop, the nesting level is exceeded and the trigger is
canceled. When a Transact-SQL trigger executes managed code by referencing a CLR routine,
type, or aggregate, this reference counts as one level against the 32-level nesting limit. Methods
invoked from within managed code do not count against this limit
To disable nested triggers, set the nested triggers option of sp_configure to 0 (off). The default
configuration allows for nested triggers. If nested triggers is off, recursive triggers is also
disabled, regardless of the RECURSIVE_TRIGGERS setting set by using ALTER DATABASE.
The first AFTER trigger nested inside an INSTEAD OF trigger fires even if the nested triggers
server configuration option is set to 0. However, under this setting, later AFTER triggers do not
fire. We recommend that you review your applications for nested triggers to determine whether

Note

 640

the applications comply with your business rules with regard to this behavior when the nested
triggers server configuration option is set to 0, and then make appropriate modifications.

Deferred Name Resolution
SQL Server allows for Transact-SQL stored procedures, triggers, and batches to refer to tables
that do not exist at compile time. This ability is called deferred name resolution.

Permissions
To create a DML trigger requires ALTER permission on the table or view on which the trigger is
being created.
To create a DDL trigger with server scope (ON ALL SERVER) or a logon trigger requires
CONTROL SERVER permission on the server. To create a DDL trigger with database scope (ON
DATABASE) requires ALTER ANY DATABASE DDL TRIGGER permission in the current database.

Examples

A. Using a DML trigger with a reminder message
The following DML trigger prints a message to the client when anyone tries to add or change
data in the Customer table.
USE AdventureWorks2012;

GO

IF OBJECT_ID ('Sales.reminder1', 'TR') IS NOT NULL

 DROP TRIGGER Sales.reminder1;

GO

CREATE TRIGGER reminder1

ON Sales.Customer

AFTER INSERT, UPDATE

AS RAISERROR ('Notify Customer Relations', 16, 10);

GO

B. Using a DML trigger with a reminder e-mail message
The following example sends an e-mail message to a specified person (MaryM) when the
Customer table changes.
USE AdventureWorks2012;

GO

IF OBJECT_ID ('Sales.reminder2','TR') IS NOT NULL

 DROP TRIGGER Sales.reminder2;

GO

CREATE TRIGGER reminder2

ON Sales.Customer

 641

AFTER INSERT, UPDATE, DELETE

AS

 EXEC msdb.dbo.sp_send_dbmail

 @profile_name = 'AdventureWorks2012 Administrator',

 @recipients = 'danw@Adventure-Works.com',

 @body = 'Don''t forget to print a report for the sales force.',

 @subject = 'Reminder';

GO

C. Using a DML AFTER trigger to enforce a business rule between the
PurchaseOrderHeader and Vendor tables
Because CHECK constraints can reference only the columns on which the column-level or table-
level constraint is defined, any cross-table constraints (in this case, business rules) must be
defined as triggers.
The following example creates a DML trigger. This trigger checks to make sure the credit rating
for the vendor is good when an attempt is made to insert a new purchase order into the
PurchaseOrderHeader table. To obtain the credit rating of the vendor, the Vendor table must
be referenced. If the credit rating is too low, a message is displayed and the insertion does not
execute.
USE AdventureWorks2012;

GO

IF OBJECT_ID ('Purchasing.LowCredit','TR') IS NOT NULL

 DROP TRIGGER Purchasing.LowCredit;

GO

-- This trigger prevents a row from being inserted in the
Purchasing.PurchaseOrderHeader table

-- when the credit rating of the specified vendor is set to 5 (below
average).

CREATE TRIGGER Purchasing.LowCredit ON Purchasing.PurchaseOrderHeader

AFTER INSERT

AS

IF EXISTS (SELECT *

 FROM Purchasing.PurchaseOrderHeader p

 JOIN inserted AS i

 ON p.PurchaseOrderID = i.PurchaseOrderID

 JOIN Purchasing.Vendor AS v

 ON v.BusinessEntityID = p.VendorID

 642

 WHERE v.CreditRating = 5

)

BEGIN

RAISERROR ('A vendor''s credit rating is too low to accept new

purchase orders.', 16, 1);

ROLLBACK TRANSACTION;

RETURN

END;

GO

-- This statement attempts to insert a row into the PurchaseOrderHeader table

-- for a vendor that has a below average credit rating.

-- The AFTER INSERT trigger is fired and the INSERT transaction is rolled
back.

INSERT INTO Purchasing.PurchaseOrderHeader (RevisionNumber, Status,
EmployeeID,

VendorID, ShipMethodID, OrderDate, ShipDate, SubTotal, TaxAmt, Freight)

VALUES (

2

,3

,261

,1652

,4

,GETDATE()

,GETDATE()

,44594.55

,3567.564

,1114.8638);

GO

D. Using a database-scoped DDL trigger
The following example uses a DDL trigger to prevent any synonym in a database from being
dropped.
USE AdventureWorks2012;

GO

IF EXISTS (SELECT * FROM sys.triggers

 643

 WHERE parent_class = 0 AND name = 'safety')

DROP TRIGGER safety

ON DATABASE;

GO

CREATE TRIGGER safety

ON DATABASE

FOR DROP_SYNONYM

AS

 RAISERROR ('You must disable Trigger "safety" to drop synonyms!',10, 1)

 ROLLBACK

GO

DROP TRIGGER safety

ON DATABASE;

GO

E. Using a server-scoped DDL trigger
The following example uses a DDL trigger to print a message if any CREATE DATABASE event
occurs on the current server instance, and uses the EVENTDATA function to retrieve the text of
the corresponding Transact-SQL statement.

For more examples that use EVENTDATA in DDL triggers, see Using the eventdata
Function.

IF EXISTS (SELECT * FROM sys.server_triggers

 WHERE name = 'ddl_trig_database')

DROP TRIGGER ddl_trig_database

ON ALL SERVER;

GO

CREATE TRIGGER ddl_trig_database

ON ALL SERVER

FOR CREATE_DATABASE

AS

 PRINT 'Database Created.'

 SELECT
EVENTDATA().value('(/EVENT_INSTANCE/TSQLCommand/CommandText)[1]','nvarchar(ma
x)')

GO

DROP TRIGGER ddl_trig_database

Note

http://msdn.microsoft.com/en-us/library/675b8320-9c73-4526-bd2f-91ba42c1b604(SQL.110)�
http://msdn.microsoft.com/en-us/library/675b8320-9c73-4526-bd2f-91ba42c1b604(SQL.110)�

 644

ON ALL SERVER;

GO

F. Using a logon trigger
The following logon trigger example denies an attempt to log in to SQL Server as a member of
the login_test login if there are already three user sessions running under that login.
USE master;

GO

CREATE LOGIN login_test WITH PASSWORD = '3KHJ6dhx(0xVYsdf' MUST_CHANGE,

 CHECK_EXPIRATION = ON;

GO

GRANT VIEW SERVER STATE TO login_test;

GO

CREATE TRIGGER connection_limit_trigger

ON ALL SERVER WITH EXECUTE AS 'login_test'

FOR LOGON

AS

BEGIN

IF ORIGINAL_LOGIN()= 'login_test' AND

 (SELECT COUNT(*) FROM sys.dm_exec_sessions

 WHERE is_user_process = 1 AND

 original_login_name = 'login_test') > 3

 ROLLBACK;

END;

G. Viewing the events that cause a trigger to fire
The following example queries the sys.triggers and sys.trigger_events catalog views to
determine which Transact-SQL language events cause trigger safety to fire. safety is created
in the previous example.
SELECT TE.*

FROM sys.trigger_events AS TE

JOIN sys.triggers AS T

ON T.object_id = TE.object_id

WHERE T.parent_class = 0

AND T.name = 'safety'

GO

See Also

 645

ALTER TABLE
ALTER TRIGGER
COLUMNS_UPDATED
CREATE TABLE
DROP TRIGGER
ENABLE TRIGGER
DISABLE TRIGGER
TRIGGER_NESTLEVEL
EVENTDATA
sys.dm_sql_referenced_entities
sys.dm_sql_referencing_entities
sys.sql_expression_dependencies (Transact-SQL)
sp_help
sp_helptrigger
sp_helptext
sp_rename
sp_settriggerorder
UPDATE()
Getting Information About DML Triggers
Getting Information about DDL Triggers
sys.triggers
sys.trigger_events
sys.sql_modules
sys.assembly_modules
sys.server_triggers
sys.server_trigger_events
sys.server_sql_modules
sys.server_assembly_modules

CREATE TYPE
Creates an alias data type or a user-defined type in the current database. The implementation of
an alias data type is based on a SQL Server native system type. A user-defined type is
implemented through a class of an assembly in the Microsoft .NET Framework common
language runtime (CLR). To bind a user-defined type to its implementation, the CLR assembly
that contains the implementation of the type must first be registered in SQL Server by using
CREATE ASSEMBLY.

http://msdn.microsoft.com/en-us/library/765fde44-1f95-4015-80a4-45388f18a42c(SQL.110)�
http://msdn.microsoft.com/en-us/library/6a33e74a-0cf9-4ae1-a1e4-4a137a3ea39d(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/077111cb-b860-4d61-916f-bac5d532912f(SQL.110)�
http://msdn.microsoft.com/en-us/library/c16f8f0a-483f-4feb-842e-da90426045ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/78a218e4-bf99-4a6a-acbf-ff82425a5946(SQL.110)�
http://msdn.microsoft.com/en-us/library/913cd5d4-39a3-4a4b-a926-75ed32878884(SQL.110)�
http://msdn.microsoft.com/en-us/library/e486d39b-771d-488d-a786-7136433a2203(SQL.110)�
http://msdn.microsoft.com/en-us/library/24135456-05f0-427c-884b-93cf38dd47a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc3548f0-143f-404e-a2e9-0a15960fc8ed(SQL.110)�
http://msdn.microsoft.com/en-us/library/8b75c906-7315-486c-bc59-293ef12078e8(SQL.110)�
http://msdn.microsoft.com/en-us/library/8e3be25b-2e3b-4d1f-a610-dcbbd8d72084(SQL.110)�
http://msdn.microsoft.com/en-us/library/37574aac-181d-4aca-a2cc-8abff64237dc(SQL.110)�
http://msdn.microsoft.com/en-us/library/462becea-292a-4b9e-bb98-533e89733911(SQL.110)�
http://msdn.microsoft.com/en-us/library/cefa4fc4-b8b9-4cd7-b124-eed5283acbfc(SQL.110)�
http://msdn.microsoft.com/en-us/library/92540447-131c-491c-b033-c064c7d950e1(SQL.110)�
http://msdn.microsoft.com/en-us/library/23d3ccd2-f356-4d89-a2cd-bee381243f99(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f9e644e-8065-49a2-b53d-db7df98f70d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/25926ff4-9271-45bf-bc32-d5d3344bd47a(SQL.110)�
http://msdn.microsoft.com/en-us/library/be7d8a59-3c00-4f1b-b4b0-3dcd5572e002(SQL.110)�
http://msdn.microsoft.com/en-us/library/9ef9a8b9-c470-4a61-b0c4-ee24ad871d63(SQL.110)�
http://msdn.microsoft.com/en-us/library/af799e38-2d16-49b2-bcf5-6f9199af899e(SQL.110)�

 646

The ability to run CLR code is off by default in SQL Server. You can create, modify and
drop database objects that reference managed code modules, but these references will
not execute in SQL Server unless the clr enabled Option is enabled by using
sp_configure.

 Transact-SQL Syntax Conventions

Syntax

CREATE TYPE [schema_name.] type_name
{
 FROM base_type
 [(precision [, scale])]
 [NULL | NOT NULL]
 | EXTERNAL NAME assembly_name [.class_name]
 | AS TABLE ({ <column_definition> | <computed_column_definition> }
 [<table_constraint>] [,...n])
} [;]

<column_definition> ::=
column_name <data_type>
 [COLLATE collation_name]
 [NULL | NOT NULL]
 [
 DEFAULT constant_expression]
 | [IDENTITY [(seed ,increment)]
]
 [ROWGUIDCOL] [<column_constraint> [...n]]

<data type> ::=
[type_schema_name .] type_name
 [(precision [, scale] | max |
 [{ CONTENT | DOCUMENT }] xml_schema_collection)]

<column_constraint> ::=
{ { PRIMARY KEY | UNIQUE }

Note

http://msdn.microsoft.com/en-us/library/0722d382-8fd3-4fac-b4a8-cd2b7a7e0293(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 647

 [CLUSTERED | NONCLUSTERED]
 [
 WITH (<index_option> [,...n])
]
 | CHECK (logical_expression)
}

<computed_column_definition> ::=
column_name AS computed_column_expression
[PERSISTED [NOT NULL]]
[
 { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 [
 WITH (<index_option> [,...n])
]
 | CHECK (logical_expression)
]

<table_constraint> ::=
{
 { PRIMARY KEY | UNIQUE }
 [CLUSTERED | NONCLUSTERED]
 (column [ASC | DESC] [,...n])
 [
 WITH (<index_option> [,...n])
]
 | CHECK (logical_expression)
}

<index_option> ::=
{
 IGNORE_DUP_KEY = { ON | OFF }
}

Arguments

 648

schema_name

Is the name of the schema to which the alias data type or user-defined type belongs.

type_name

Is the name of the alias data type or user-defined type. Type names must comply with the
rules for identifiers.

base_type

Is the SQL Server supplied data type on which the alias data type is based. base_type is
sysname, with no default, and can be one of the following values:

bigint binary(n) bit char(n)

date datetime datetime2 datetimeoffset

decimal float image int

money nchar(n) ntext numeric

nvarchar(n | max) real smalldatetime smallint

smallmoney sql_variant text time

tinyint uniqueidentifier varbinary(n | max) varchar(n | max)

base_type can also be any data type synonym that maps to one of these system data types.

precision

For decimal or numeric, is a non-negative integer that indicates the maximum total number
of decimal digits that can be stored, both to the left and to the right of the decimal point. For
more information, see decimal and numeric.

scale

For decimal or numeric, is a non-negative integer that indicates the maximum number of
decimal digits that can be stored to the right of the decimal point, and it must be less than or
equal to the precision. For more information, see decimal and numeric.

NULL | NOT NULL

Specifies whether the type can hold a null value. If not specified, NULL is the default.

assembly_name

Specifies the SQL Server assembly that references the implementation of the user-defined
type in the common language runtime. assembly_name should match an existing assembly in
SQL Server in the current database.

Note
EXTERNAL_NAME is not available in a contained database.

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�
http://msdn.microsoft.com/en-us/library/9d862a90-e6b7-4692-8605-92358dccccdf(SQL.110)�
http://msdn.microsoft.com/en-us/library/9d862a90-e6b7-4692-8605-92358dccccdf(SQL.110)�

 649

[.class_name]

Specifies the class within the assembly that implements the user-defined type. class_name
must be a valid identifier and must exist as a class in the assembly with assembly visibility.
class_name is case-sensitive, regardless of the database collation, and must exactly match the
class name in the corresponding assembly. The class name can be a namespace-qualified
name enclosed in square brackets ([]) if the programming language that is used to write the
class uses the concept of namespaces, such as C#. If class_name is not specified, SQL Server
assumes it is the same as type_name.

<column_definition>

Defines the columns for a user-defined table type.

<data type>

Defines the data type in a column for a user-defined table type. For more information about
data types, see Data Types (Transact-SQL). For more information about tables, see
CREATE TABLE (Transact-SQL).

<column_constraint>

Defines the column constraints for a user-defined table type. Supported constraints include
PRIMARY KEY, UNIQUE, and CHECK. For more information about tables, see CREATE
TABLE (Transact-SQL).

<computed_column_definition>

Defines a computed column expression as a column in a user-defined table type. For more
information about tables, see CREATE TABLE (Transact-SQL).

<table_constraint>

Defines a table constraint on a user-defined table type. Supported constraints include
PRIMARY KEY, UNIQUE, and CHECK.

<index_option>

Specifies the error response to duplicate key values in a multiple-row insert operation on a
unique clustered or unique nonclustered index. For more information about index options,
see CREATE INDEX (Transact-SQL).

Remarks
When CREATE TYPE is used to create a CLR user-defined type, the database compatibility must
be 90.
The class of the assembly that is referenced in assembly_name, together with its methods,
should satisfy all the requirements for implementing a user-defined type in SQL Server. For more
information about these requirements, see CLR User-defined Types.
Additional considerations include the following:
• The class can have overloaded methods, but these methods can be called only from within

managed code, not from Transact-SQL.

http://msdn.microsoft.com/en-us/library/a54f7373-b247-4d61-8fb8-7f2ec7a8d0a4(SQL.110)�
http://msdn.microsoft.com/en-us/library/27c4889b-c543-47a8-a630-ad06804f92df(SQL.110)�

 650

• Any static members must be declared as const or readonly if assembly_name is SAFE or
EXTERNAL_ACCESS.

Within a database, there can be only one user-defined type registered against any specified type
that has been uploaded in SQL Server from the CLR. If a user-defined type is created on a CLR
type for which a user-defined type already exists in the database, CREATE TYPE fails with an
error. This restriction is required to avoid ambiguity during SQL Type resolution if a CLR type can
be mapped to more than one user-defined type.
If any mutator method in the type does not return void, the CREATE TYPE statement does not
execute.
To modify a user-defined type, you must drop the type by using a DROP TYPE statement and
then re-create it.
Unlike user-defined types that are created by using sp_addtype, the public database role is not
automatically granted REFERENCES permission on types that are created by using CREATE TYPE.
This permission must be granted separately.
In user-defined table types, structured user-defined types that are used in column_name <data
type> are part of the database schema scope in which the table type is defined. To access
structured user-defined types in a different scope within the database, use two-part names.
In user-defined table types, the primary key on computed columns must be PERSISTED and NOT
NULL.

Permissions
Requires CREATE TYPE permission in the current database and ALTER permission on
schema_name. If schema_name is not specified, the default name resolution rules for
determining the schema for the current user apply. If assembly_name is specified, a user must
either own the assembly or have REFERENCES permission on it.

Examples

A. Creating an alias type based on the varchar data type
The following example creates an alias type based on the system-supplied varchar data type.

CREATE TYPE SSN

FROM varchar(11) NOT NULL ;

B. Creating a user-defined type
The following example creates a type Utf8String that references class utf8string in the
assembly utf8string. Before creating the type, assembly utf8string is registered in the local
database.

CREATE ASSEMBLY utf8string

FROM '\\ComputerName\utf8string\utf8string.dll' ;

GO

CREATE TYPE Utf8String

 651

EXTERNAL NAME utf8string.[Microsoft.Samples.SqlServer.utf8string] ;

GO

C. Creating a user-defined table type
The following example creates a user-defined table type that has two columns. For more
information about how to create and use table-valued parameters, see Table-valued Parameters
(Database Engine).

/* Create a user-defined table type */

CREATE TYPE LocationTableType AS TABLE

 (LocationName VARCHAR(50)

 , CostRate INT)

GO

See Also
CREATE ASSEMBLY
DROP TYPE (Transact-SQL)
EVENTDATA (Transact-SQL)

CREATE USER
Adds a user to the current database. There are eleven types of users:
Users based on logins in master This is the most common type of user.
• User based on a login based on a Windows user.
• User based on a login based on a Windows group.
• User based on a login using SQL Server authentication.
Users that authenticate at the database Only allowed in a contained database.
• User based on a Windows user that has no login.
• User based on a Windows group that has no login.
• Contained database user with password.
Users based on Windows principals that connect through Windows group logins
• User based on a Windows user that has no login, but can connect to the Database Engine

through membership in a Windows group.
• User based on a Windows group that has no login, but can connect to the Database Engine

through membership in a different Windows group.
Users that cannot authenticate These users cannot login to SQL Server.
• User without a login. Cannot login but can be granted permissions.
• User based on a certificate. Cannot login but can be granted permissions and can sign

modules.

http://msdn.microsoft.com/en-us/library/5e95a382-1e01-4c74-81f5-055612c2ad99(SQL.110)�
http://msdn.microsoft.com/en-us/library/5e95a382-1e01-4c74-81f5-055612c2ad99(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

 652

• User based on an asymmetric key. Cannot login but can be granted permissions and can
sign modules.

 Transact-SQL Syntax Conventions

Syntax

Users based on logins in master
CREATE USER user_name
 [
 { FOR | FROM } LOGIN login_name
]
 [WITH DEFAULT_SCHEMA = schema_name]
[;]

Users that authenticate at the database
CREATE USER
 {
 windows_principal [WITH <options_list> [,...]]
 | user_name WITH PASSWORD = 'password' [, <options_list> [,...]
 }
 [;]

Users based on Windows principals that connect through Windows group logins
CREATE USER
 {
 windows_principal [{ FOR | FROM } LOGIN windows_principal]
 | user_name { FOR | FROM } LOGIN windows_principal
 }
 [WITH DEFAULT_SCHEMA = schema_name]
[;]

Users that cannot authenticate
CREATE USER user_name
 {
 WITHOUT LOGIN [WITH DEFAULT_SCHEMA = schema_name]
 | { FOR | FROM } CERTIFICATE cert_name

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 653

 | { FOR | FROM } ASYMMETRIC KEY asym_key_name
 }
 [;]

<options_list> ::=
 DEFAULT_SCHEMA = schema_name
 | DEFAULT_LANGUAGE = { NONE | lcid | language name | language alias }
 | SID = sid

Arguments
user_name

Specifies the name by which the user is identified inside this database. user_name is a
sysname. It can be up to 128 characters long. When creating a user based on a Windows
principal, the Windows principal name becomes the user name unless another user name is
specified.

LOGIN login_name

Specifies the login for which the database user is being created. login_name must be a valid
login in the server. Can be a login based on a Windows principal (user or group), or a login
using SQL Server authentication. When this SQL Server login enters the database, it acquires
the name and ID of the database user that is being created. When creating a login mapped
from a Windows principal, use the format [<domainName>\<loginName>]. For examples,
see Syntax Summary.

WITH DEFAULT_SCHEMA = schema_name

Specifies the first schema that will be searched by the server when it resolves the names of
objects for this database user.

windows_principal'

Specifies the Windows principal for which the database user is being created. The
windows_principal can be a Windows user, or a Windows group. The user will be created
even if the windows_principal does not have a login. When connecting to SQL Server, if the
windows_principal does not have a login, the Windows principal must authenticate at the
Database Engine through membership in a Windows group that has a login, or the
connection string must specify the contained database as the initial catalog. When creating a
user from a Windows principal, use the format [<domainName>\<loginName>]. For
examples, see Syntax Summary.

WITH PASSWORD = 'password'

Can only be used in a contained database. Specifies the password for the user that is being
created.

 654

WITHOUT LOGIN

Specifies that the user should not be mapped to an existing login.

CERTIFICATE cert_name

Specifies the certificate for which the database user is being created.

ASYMMETRIC KEY asym_key_name

Specifies the asymmetric key for which the database user is being created.

DEFAULT_LANGUAGE = { NONE | <lcid> | <language name> | <language alias> }

Specifies the default language for the new user. If a default language is specified for the user
and the default language of the database is later changed, the users default language
remains as specified. If no default language is specified, the default language for the user will
be the default language of the database. If the default language for the user is not specified
and the default language of the database is later changed, the default language of the user
will change to the new default language for the database.

Important
DEFAULT_LANGUAGE is used only for a contained database user.

SID = sid

Applies only to users with passwords (SQL Server authentication) in a contained database.
Specifies the SID of the new database user. If this option is not selected, SQL Server
automatically assigns a SID. Use the SID parameter to create users in multiple databases that
have the same identity (SID). This is useful when creating users in multiple databases to
prepare for AlwaysOn failover. To determine the SID of a user, query sys.database_principals.

Remarks
If FOR LOGIN is omitted, the new database user will be mapped to the SQL Server login with the
same name.
The default schema will be the first schema that will be searched by the server when it resolves
the names of objects for this database user. Unless otherwise specified, the default schema will
be the owner of objects created by this database user.
If the user has a default schema, that default schema will used. If the user does not have a
default schema, but the user is a member of a group that has a default schema, the default
schema of the group will be used. If the user does not have a default schema, and is a member
of more than one group that has a default schema, the schema of the Windows group with the
lowest principle_id will be used. (It is not possible to explicitly select one of the available default
schemas as the preferred schema.) If no default schema can be determined for a user, the dbo
schema will be used.
DEFAULT_SCHEMA can be set before the schema that it points to is created.
DEFAULT_SCHEMA cannot be specified when you are creating a user mapped to a certificate, or
an asymmetric key.

 655

The value of DEFAULT_SCHEMA is ignored if the user is a member of the sysadmin fixed server
role. All members of the sysadmin fixed server role have a default schema of dbo.
The WITHOUT LOGIN clause creates a user that is not mapped to a SQL Server login. It can
connect to other databases as guest. Permissions can be assigned to this user without login and
when the security context is changed to a user without login, the original users receives the
permissions of the user without login. See example D. Creating and using a user without a login.
Only users that are mapped to Windows principals can contain the backslash character (\).
CREATE USER cannot be used to create a guest user because the guest user already exists inside
every database. You can enable the guest user by granting it CONNECT permission, as shown:

GRANT CONNECT TO guest;

GO

Information about database users is visible in the sys.database_principals catalog view.

Syntax Summary
Users based on logins in master
The following list shows possible syntax for users based on logins. The default schema options
are not listed.
• CREATE USER [Domain1\WindowsUserBarry]
• CREATE USER [Domain1\WindowsUserBarry] FOR LOGIN Domain1\WindowsUserBarry
• CREATE USER [Domain1\WindowsUserBarry] FROM LOGIN Domain1\WindowsUserBarry
• CREATE USER [Domain1\WindowsGroupManagers]
• CREATE USER [Domain1\WindowsGroupManagers] FOR LOGIN

[Domain1\WindowsGroupManagers]
• CREATE USER [Domain1\WindowsGroupManagers] FROM LOGIN

[Domain1\WindowsGroupManagers]
• CREATE USER SQLAUTHLOGIN
• CREATE USER SQLAUTHLOGIN FOR LOGIN SQLAUTHLOGIN
• CREATE USER SQLAUTHLOGIN FROM LOGIN SQLAUTHLOGIN
Users that authenticate at the database
The following list shows possible syntax for users that can only be used in a contained database.
The users created will not be related to any logins in the master database. The default schema
and language options are not listed.

This syntax grants users access to the database and also grants new access to the
Database Engine.

• CREATE USER [Domain1\WindowsUserBarry]
• CREATE USER [Domain1\WindowsGroupManagers]
• CREATE USER Barry WITH PASSWORD = 'sdjklalie8rew8337!$d'

noteDXDOC112778PADS Security Note

http://msdn.microsoft.com/en-us/library/8cb239e9-eb8c-4109-9cec-0d35de95fa0e(SQL.110)�

 656

Users based on Windows principals without logins in master
The following list shows possible syntax for users that have access to the Database Engine
through a Windows group but do not have a login in master. This syntax can be used in all
types of databases. The default schema and language options are not listed.
This syntax is similar to users based on logins in master, but this category of user does not have
a login in master. The user must have access to the Database Engine through a Windows group
login.
This syntax is similar to contained database users based on Windows principals, but this
category of user does not get new access to the Database Engine.
• CREATE USER [Domain1\WindowsUserBarry]
• CREATE USER [Domain1\WindowsUserBarry] FOR LOGIN Domain1\WindowsUserBarry
• CREATE USER [Domain1\WindowsUserBarry] FROM LOGIN Domain1\WindowsUserBarry
• CREATE USER [Domain1\WindowsGroupManagers]
• CREATE USER [Domain1\WindowsGroupManagers] FOR LOGIN

[Domain1\WindowsGroupManagers]
• CREATE USER [Domain1\WindowsGroupManagers] FROM LOGIN

[Domain1\WindowsGroupManagers]
Users that cannot authenticate
The following list shows possible syntax for users that cannot login to SQL Server.
• CREATE USER RIGHTSHOLDER WITHOUT LOGIN
• CREATE USER CERTUSER FOR CERTIFICATE SpecialCert
• CREATE USER CERTUSER FROM CERTIFICATE SpecialCert
• CREATE USER KEYUSER FOR ASYMMETRIC KEY SecureKey
• CREATE USER KEYUSER FROM ASYMMETRIC KEY SecureKey

Security
Creating a user grants access to a database but does not automatically grant any access to the
objects in a database. After creating a user, common actions are to add users to database roles
which have permission to access database objects, or grant object permissions to the user.

Special Considerations for Contained Databases
When connecting to a contained database, if the user does not have a login in the master
database, the connection string must include the contained database name as the initial catalog.
The initial catalog parameter is always required for a contained database user with password.
In a contained database, creating users helps separate the database from the instance of the
Database Engine so that the database can easily be moved to another instance of SQL Server.
For more information, see Understanding Contained Databases. To change a database user from
a user based on a SQL Server authentication login to a contained database user with password,
see sp_migrate_user_to_contained (Transact-SQL).

http://msdn.microsoft.com/en-us/library/36af59d7-ce96-4a02-8598-ffdd78cdc948(SQL.110)�
http://msdn.microsoft.com/en-us/library/b3a49ff6-46ad-4ee7-b6fe-7e54213dc33e(SQL.110)�

 657

In a contained database, users do not have to have logins in the master database. Database
Engine administrators should understand that access to a contained database can be granted at
the database level, instead of the Database Engine level. For more information, see Threats
Against Contained Databases.

Permissions
Requires ALTER ANY USER permission on the database.

Examples

A. Creating a database user based on a SQL Server login
The following example first creates a SQL Server login named AbolrousHazem, and then creates
a corresponding database user AbolrousHazem in AdventureWorks2012.

CREATE LOGIN AbolrousHazem

 WITH PASSWORD = '340$Uuxwp7Mcxo7Khy';

USE AdventureWorks2012;

GO

CREATE USER AbolrousHazem FOR LOGIN AbolrousHazem;

GO

B. Creating a database user with a default schema
The following example first creates a server login named WanidaBenshoof with a password, and
then creates a corresponding database user Wanida, with the default schema Marketing.

CREATE LOGIN WanidaBenshoof

 WITH PASSWORD = '8fdKJl3$nlNv3049jsKK';

USE AdventureWorks2012;

CREATE USER Wanida FOR LOGIN WanidaBenshoof

 WITH DEFAULT_SCHEMA = Marketing;

GO

C. Creating a database user from a certificate
The following example creates a database user JinghaoLiu from certificate
CarnationProduction50.

USE AdventureWorks2012;

CREATE CERTIFICATE CarnationProduction50

 WITH SUBJECT = 'Carnation Production Facility Supervisors',

 EXPIRY_DATE = '11/11/2011';

GO

CREATE USER JinghaoLiu FOR CERTIFICATE CarnationProduction50;

http://msdn.microsoft.com/en-us/library/026ca5fc-95da-46b6-b882-fa20f765b51d(SQL.110)�
http://msdn.microsoft.com/en-us/library/026ca5fc-95da-46b6-b882-fa20f765b51d(SQL.110)�

 658

GO

D. Creating and using a user without a login
The following example creates a database user CustomApp that does not map to a SQL Server
login. The example then grants a user adventure-works\tengiz0 permission to impersonate
the CustomApp user.

USE AdventureWorks2012 ;

CREATE USER CustomApp WITHOUT LOGIN ;

GRANT IMPERSONATE ON USER::CustomApp TO [adventure-works\tengiz0] ;

GO

To use the CustomApp credentials, the user adventure-works\tengiz0 executes the following
statement.

EXECUTE AS USER = 'CustomApp' ;

GO

To revert back to the adventure-works\tengiz0 credentials, the user executes the following
statement.

REVERT ;

GO

E. Creating a contained database user with password
The following example creates a contained database user with password. This example can only
be executed in a contained database.

USE AdventureWorks2012 ;

GO

CREATE USER Carlo

WITH PASSWORD='RN92piTCh%$!~3K9844 Bl*'

 , DEFAULT_LANGUAGE=[Brazilian]

 , DEFAULT_SCHEMA=[dbo]

GO

F. Creating a contained database user for a domain login
The following example creates a contained database user for a login named Fritz in a domain
named Contoso. This example can only be executed in a contained database.

USE AdventureWorks2012 ;

GO

CREATE USER [Contoso\Fritz] ;

GO

 659

G. Creating a contained database user with a specific SID
The following example creates a SQL Server authenticated contained database user named
CarmenW. This example can only be executed in a contained database.

USE AdventureWorks2012 ;

GO

CREATE USER CarmenW WITH PASSWORD = 'a8ea v*(Rd##+'

, SID = 0x01050000000000090300000063FF0451A9E7664BA705B10E37DDC4B7;

See Also
Creating a Database User
sys.database_principals (Transact-SQL)
ALTER USER (Transact-SQL)
DROP USER (Transact-SQL)
CREATE LOGIN (Transact-SQL)
eventdata (Transact-SQL)
Understanding Contained Databases

CREATE VIEW
Creates a virtual table whose contents (columns and rows) are defined by a query. Use this
statement to create a view of the data in one or more tables in the database. For example, a
view can be used for the following purposes:
• To focus, simplify, and customize the perception each user has of the database.
• As a security mechanism by allowing users to access data through the view, without granting

the users permissions to directly access the underlying base tables.
• To provide a backward compatible interface to emulate a table whose schema has changed.

 Transact-SQL Syntax Conventions

Syntax

CREATE VIEW [schema_name .] view_name [(column [,...n])]
[WITH <view_attribute> [,...n]]
AS select_statement
[WITH CHECK OPTION] [;]

<view_attribute> ::=
{

http://msdn.microsoft.com/en-us/library/782798d3-9552-4514-9f58-e87be4b264e4(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cb239e9-eb8c-4109-9cec-0d35de95fa0e(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/36af59d7-ce96-4a02-8598-ffdd78cdc948(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 660

 [ENCRYPTION]
 [SCHEMABINDING]
 [VIEW_METADATA] }

Arguments
schema_name

Is the name of the schema to which the view belongs.

view_name

Is the name of the view. View names must follow the rules for identifiers. Specifying the view
owner name is optional.

column

Is the name to be used for a column in a view. A column name is required only when a
column is derived from an arithmetic expression, a function, or a constant; when two or more
columns may otherwise have the same name, typically because of a join; or when a column in
a view is specified a name different from that of the column from which it is derived. Column
names can also be assigned in the SELECT statement.

If column is not specified, the view columns acquire the same names as the columns in the
SELECT statement.

Note
In the columns for the view, the permissions for a column name apply across a CREATE VIEW or ALTER
VIEW statement, regardless of the source of the underlying data. For example, if permissions are
granted on the SalesOrderID column in a CREATE VIEW statement, an ALTER VIEW statement can
name the SalesOrderID column with a different column name, such as OrderRef, and still have the
permissions associated with the view using SalesOrderID.

AS

Specifies the actions the view is to perform.

select_statement

Is the SELECT statement that defines the view. The statement can use more than one table
and other views. Appropriate permissions are required to select from the objects referenced
in the SELECT clause of the view that is created.

A view does not have to be a simple subset of the rows and columns of one particular table.
A view can be created that uses more than one table or other views with a SELECT clause of
any complexity.

In an indexed view definition, the SELECT statement must be a single table statement or a
multitable JOIN with optional aggregation.

The SELECT clauses in a view definition cannot include the following:

• An ORDER BY clause, unless there is also a TOP clause in the select list of the SELECT
statement

 661

Important
The ORDER BY clause is used only to determine the rows that are returned by the TOP or OFFSET
clause in the view definition. The ORDER BY clause does not guarantee ordered results when the
view is queried, unless ORDER BY is also specified in the query itself.

• The INTO keyword

• The OPTION clause

• A reference to a temporary table or a table variable.

Because select_statement uses the SELECT statement, it is valid to use <join_hint> and
<table_hint> hints as specified in the FROM clause. For more information, see View
Resolution and SELECT (Transact-SQL).
Functions and multiple SELECT statements separated by UNION or UNION ALL can be used
in select_statement.

CHECK OPTION

Forces all data modification statements executed against the view to follow the criteria set
within select_statement. When a row is modified through a view, the WITH CHECK OPTION
makes sure the data remains visible through the view after the modification is committed.

Note
Any updates performed directly to a view's underlying tables are not verified against the view, even if
CHECK OPTION is specified.

ENCRYPTION

Encrypts the entries in sys.syscomments that contain the text of the CREATE VIEW
statement. Using WITH ENCRYPTION prevents the view from being published as part of SQL
Server replication.

SCHEMABINDING

Binds the view to the schema of the underlying table or tables. When SCHEMABINDING is
specified, the base table or tables cannot be modified in a way that would affect the view
definition. The view definition itself must first be modified or dropped to remove
dependencies on the table that is to be modified. When you use SCHEMABINDING, the
select_statement must include the two-part names (schema.object) of tables, views, or user-
defined functions that are referenced. All referenced objects must be in the same database.

Views or tables that participate in a view created with the SCHEMABINDING clause cannot be
dropped unless that view is dropped or changed so that it no longer has schema binding.
Otherwise, the Database Engine raises an error. Also, executing ALTER TABLE statements on
tables that participate in views that have schema binding fail when these statements affect
the view definition.

VIEW_METADATA

Specifies that the instance of SQL Server will return to the DB-Library, ODBC, and OLE DB
APIs the metadata information about the view, instead of the base table or tables, when

http://msdn.microsoft.com/en-us/library/36b19e68-94f6-4539-aeb1-79f5312e4263(SQL.110)�
http://msdn.microsoft.com/en-us/library/36b19e68-94f6-4539-aeb1-79f5312e4263(SQL.110)�
http://msdn.microsoft.com/en-us/library/dc85caea-54d1-49af-b166-f3aa2f3a93d0(SQL.110)�
http://msdn.microsoft.com/en-us/library/767dd410-6bc9-4c4a-ab0f-6d2cf6163426(SQL.110)�

 662

browse-mode metadata is being requested for a query that references the view. Browse-
mode metadata is additional metadata that the instance of SQL Server returns to these
client-side APIs. This metadata enables the client-side APIs to implement updatable client-
side cursors. Browse-mode metadata includes information about the base table that the
columns in the result set belong to.

For views created with VIEW_METADATA, the browse-mode metadata returns the view name
and not the base table names when it describes columns from the view in the result set.

When a view is created by using WITH VIEW_METADATA, all its columns, except a timestamp
column, are updatable if the view has INSTEAD OF INSERT or INSTEAD OF UPDATE triggers.
For more information about updatable views, see Remarks.

Remarks
A view can be created only in the current database. The CREATE VIEW must be the first
statement in a query batch. A view can have a maximum of 1,024 columns.
When querying through a view, the Database Engine checks to make sure that all the database
objects referenced anywhere in the statement exist and that they are valid in the context of the
statement, and that data modification statements do not violate any data integrity rules. A check
that fails returns an error message. A successful check translates the action into an action
against the underlying table or tables.
If a view depends on a table or view that was dropped, the Database Engine produces an error
message when anyone tries to use the view. If a new table or view is created and the table
structure does not change from the previous base table to replace the one dropped, the view
again becomes usable. If the new table or view structure changes, the view must be dropped
and re-created.
If a view is not created with the SCHEMABINDING clause, sp_refreshview should be run when
changes are made to the objects underlying the view that affect the definition of the view.
Otherwise, the view might produce unexpected results when it is queried.
When a view is created, information about the view is stored in the following catalog views:
sys.views, sys.columns, and sys.sql_expression_dependencies. The text of the CREATE VIEW
statement is stored in the sys.sql_modules catalog view.
A query that uses an index on a view defined with numeric or float expressions may have a
result that is different from a similar query that does not use the index on the view. This
difference may be caused by rounding errors during INSERT, DELETE, or UPDATE actions on
underlying tables.
The Database Engine saves the settings of SET QUOTED_IDENTIFIER and SET ANSI_NULLS when
a view is created. These original settings are used to parse the view when the view is used.
Therefore, any client-session settings for SET QUOTED_IDENTIFIER and SET ANSI_NULLS do not
affect the view definition when the view is accessed.

Updatable Views

http://msdn.microsoft.com/en-us/library/9ce1d07c-ee66-4a83-8c73-cd2cc104dd08(SQL.110)�
http://msdn.microsoft.com/en-us/library/f8a8ea39-5a09-4662-801e-b43519467def(SQL.110)�
http://msdn.microsoft.com/en-us/library/323ac9ea-fc52-4b8c-8a7e-e0e44f8ed86c(SQL.110)�
http://msdn.microsoft.com/en-us/library/78a218e4-bf99-4a6a-acbf-ff82425a5946(SQL.110)�
http://msdn.microsoft.com/en-us/library/23d3ccd2-f356-4d89-a2cd-bee381243f99(SQL.110)�

 663

You can modify the data of an underlying base table through a view, as long as the following
conditions are true:
• Any modifications, including UPDATE, INSERT, and DELETE statements, must reference

columns from only one base table.
• The columns being modified in the view must directly reference the underlying data in the

table columns. The columns cannot be derived in any other way, such as through the
following:
• An aggregate function: AVG, COUNT, SUM, MIN, MAX, GROUPING, STDEV, STDEVP, VAR,

and VARP.
• A computation. The column cannot be computed from an expression that uses other

columns. Columns that are formed by using the set operators UNION, UNION ALL,
CROSSJOIN, EXCEPT, and INTERSECT amount to a computation and are also not
updatable.

• The columns being modified are not affected by GROUP BY, HAVING, or DISTINCT clauses.
• TOP is not used anywhere in the select_statement of the view together with the WITH CHECK

OPTION clause.
The previous restrictions apply to any subqueries in the FROM clause of the view, just as they
apply to the view itself. Generally, the Database Engine must be able to unambiguously trace
modifications from the view definition to one base table. For more information, see Modifying
Data Through a View.
If the previous restrictions prevent you from modifying data directly through a view, consider
the following options:
• INSTEAD OF Triggers

INSTEAD OF triggers can be created on a view to make a view updatable. The INSTEAD OF
trigger is executed instead of the data modification statement on which the trigger is
defined. This trigger lets the user specify the set of actions that must happen to process the
data modification statement. Therefore, if an INSTEAD OF trigger exists for a view on a
specific data modification statement (INSERT, UPDATE, or DELETE), the corresponding view is
updatable through that statement. For more information about INSTEAD OF triggers, see
DML Triggers.

• Partitioned Views
If the view is a partitioned view, the view is updatable, subject to certain restrictions. When it
is needed, the Database Engine distinguishes local partitioned views as the views in which all
participating tables and the view are on the same instance of SQL Server, and distributed
partitioned views as the views in which at least one of the tables in the view resides on a
different or remote server.

Partitioned Views

http://msdn.microsoft.com/en-us/library/410e2812-4ebe-48b2-b95f-c7784f1c4336(SQL.110)�
http://msdn.microsoft.com/en-us/library/410e2812-4ebe-48b2-b95f-c7784f1c4336(SQL.110)�
http://msdn.microsoft.com/en-us/library/298eafca-e01f-4707-8c29-c75546fcd6b0(SQL.110)�

 664

A partitioned view is a view defined by a UNION ALL of member tables structured in the same
way, but stored separately as multiple tables in either the same instance of SQL Server or in a
group of autonomous instances of SQL Server servers, called federated database servers.

The preferred method for partitioning data local to one server is through partitioned
tables. For more information, see Partitioned Tables and Indexes.

In designing a partitioning scheme, it must be clear what data belongs to each partition. For
example, the data for the Customers table is distributed in three member tables in three server
locations: Customers_33 on Server1, Customers_66 on Server2, and Customers_99 on
Server3.
A partitioned view on Server1 is defined in the following way:

--Partitioned view as defined on Server1

CREATE VIEW Customers

AS

--Select from local member table.

SELECT *

FROM CompanyData.dbo.Customers_33

UNION ALL

--Select from member table on Server2.

SELECT *

FROM Server2.CompanyData.dbo.Customers_66

UNION ALL

--Select from mmeber table on Server3.

SELECT *

FROM Server3.CompanyData.dbo.Customers_99;

Generally, a view is said to be a partitioned view if it is of the following form:

SELECT <select_list1>

FROM T1

UNION ALL

SELECT <select_list2>

FROM T2

UNION ALL

...

SELECT <select_listn>

FROM Tn;

Note

http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�

 665

Conditions for Creating Partitioned Views
1. The select list

• All columns in the member tables should be selected in the column list of the view
definition.

• The columns in the same ordinal position of each select list should be of the same
type, including collations. It is not sufficient for the columns to be implicitly convertible
types, as is generally the case for UNION.
Also, at least one column (for example <col>) must appear in all the select lists in the
same ordinal position. This <col> should be defined in a way that the member tables
T1, ..., Tn have CHECK constraints C1, ..., Cn defined on <col>, respectively.
Constraint C1 defined on table T1 must be of the following form:

C1 ::= < simple_interval > [OR < simple_interval > OR ...]

< simple_interval > :: =

< col > { < | > | <= | >= | = < value >}

| < col > BETWEEN < value1 > AND < value2 >

| < col > IN (value_list)

| < col > { > | >= } < value1 > AND

< col > { < | <= } < value2 >

• The constraints should be in such a way that any specified value of <col> can satisfy, at
most, one of the constraints C1, ..., Cn so that the constraints should form a set of
disjointed or nonoverlapping intervals. The column <col> on which the disjointed
constraints are defined is called the partitioning column. Note that the partitioning
column may have different names in the underlying tables. The constraints should be in
an enabled and trusted state for them to meet the previously mentioned conditions of
the partitioning column. If the constraints are disabled, re-enable constraint checking by
using the CHECK CONSTRAINT constraint_name option of ALTER TABLE, and using the
WITH CHECK option to validate them.
The following examples show valid sets of constraints:

{ [col < 10], [col between 11 and 20] , [col > 20] }

{ [col between 11 and 20], [col between 21 and 30], [col between 31 and

100] }

• The same column cannot be used multiple times in the select list.
2. Partitioning column

• The partitioning column is a part of the PRIMARY KEY of the table.
• It cannot be a computed, identity, default, or timestamp column.
• If there is more than one constraint on the same column in a member table, the

Database Engine ignores all the constraints and does not consider them when

 666

determining whether the view is a partitioned view. To meet the conditions of the
partitioned view, there should be only one partitioning constraint on the partitioning
column.

• There are no restrictions on the updatability of the partitioning column.
3. Member tables, or underlying tables T1, ..., Tn

• The tables can be either local tables or tables from other computers that are running SQL
Server that are referenced either through a four-part name or an OPENDATASOURCE- or
OPENROWSET-based name. The OPENDATASOURCE and OPENROWSET syntax can
specify a table name, but not a pass-through query. For more information, see
OPENDATASOURCE (Transact-SQL) and OPENROWSET (Transact-SQL).
If one or more of the member tables are remote, the view is called distributed
partitioned view, and additional conditions apply. They are described later in this section.

• The same table cannot appear two times in the set of tables that are being combined
with the UNION ALL statement.

• The member tables cannot have indexes created on computed columns in the table.
• The member tables should have all PRIMARY KEY constraints on the same number of

columns.
• All member tables in the view should have the same ANSI padding setting. This can be

set by using either the user options option in sp_configure or the SET statement.

Conditions for Modifying Data in Partitioned Views
The following restrictions apply to statements that modify data in partitioned views:
• The INSERT statement must supply values for all the columns in the view, even if the

underlying member tables have a DEFAULT constraint for those columns or if they allow for
null values. For those member table columns that have DEFAULT definitions, the statements
cannot explicitly use the keyword DEFAULT.

• The value being inserted into the partitioning column should satisfy at least one of the
underlying constraints; otherwise, the insert action will fail with a constraint violation.

• UPDATE statements cannot specify the DEFAULT keyword as a value in the SET clause, even
if the column has a DEFAULT value defined in the corresponding member table.

• Columns in the view that are an identity column in one or more of the member tables
cannot be modified by using an INSERT or UPDATE statement.

• If one of the member tables contains a timestamp column, the data cannot be modified by
using an INSERT or UPDATE statement.

• If one of the member tables contains a trigger or an ON UPDATE CASCADE/SET NULL/SET
DEFAULT or ON DELETE CASCADE/SET NULL/SET DEFAULT constraint, the view cannot be
modified.

• INSERT, UPDATE, and DELETE actions against a partitioned view are not allowed if there is a
self-join with the same view or with any of the member tables in the statement.

http://msdn.microsoft.com/en-us/library/5510b846-9cde-4687-8798-be9a273aad31(SQL.110)�
http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17(SQL.110)�

 667

• Bulk importing data into a partitioned view is unsupported by bcp or the BULK INSERT and
INSERT ... SELECT * FROM OPENROWSET(BULK...) statements. However, you can insert
multiple rows into a partitioned view by using the INSERT statement.

To update a partitioned view, the user must have INSERT, UPDATE, and DELETE
permissions on the member tables.

Additional Conditions for Distributed Partitioned Views
For distributed partitioned views (when one or more member tables are remote), the following
additional conditions apply:
• A distributed transaction will be started to guarantee atomicity across all nodes affected by

the update.
• The XACT_ABORT SET option should be set to ON for INSERT, UPDATE, or DELETE

statements to work.
• Any columns in remote tables of type smallmoney that are referenced in a partitioned view

are mapped as money. Therefore, the corresponding columns (in the same ordinal position
in the select list) in the local tables must also be of type money.

• Under database compatibility level 110, any columns in remote tables of type
smalldatetime that are referenced in a partitioned view are mapped as smalldatetime.
Corresponding columns (in the same ordinal position in the select list) in the local tables
must be smalldatetime. This is a change in behavior from earlier versions of SQL Server in
which any columns in remote tables of type smalldatetime that are referenced in a
partitioned view are mapped as datetime and corresponding columns in local tables must
be of type datetime. For more information, see ALTER DATABASE Compatibility Level
(Transact-SQL).

• Any linked server in the partitioned view cannot be a loopback linked server. This is a linked
server that points to the same instance of SQL Server.

The setting of the SET ROWCOUNT option is ignored for INSERT, UPDATE, and DELETE actions
that involve updatable partitioned views and remote tables.
When the member tables and partitioned view definition are in place, the SQL Server query
optimizer builds intelligent plans that use queries efficiently to access data from member tables.
With the CHECK constraint definitions, the query processor maps the distribution of key values
across the member tables. When a user issues a query, the query processor compares the map
to the values specified in the WHERE clause, and builds an execution plan with a minimal
amount of data transfer between member servers. Therefore, although some member tables
may be located in remote servers, the instance of SQL Server resolves distributed queries so that
the amount of distributed data that has to be transferred is minimal.

Considerations for Replication
To create partitioned views on member tables that are involved in replication, the following
considerations apply:

Note

http://msdn.microsoft.com/en-us/library/1054c76e-0fd5-4131-8c07-a6c5d024af50(SQL.110)�

 668

• If the underlying tables are involved in merge replication or transactional replication with
updating subscriptions, the uniqueidentifier column should also be included in the select
list.
Any INSERT actions into the partitioned view must provide a NEWID() value for the
uniqueidentifier column. Any UPDATE actions against the uniqueidentifier column must
supply NEWID() as the value because the DEFAULT keyword cannot be used.

• The replication of updates made by using the view is the same as when tables are replicated
in two different databases: the tables are served by different replication agents and the order
of the updates is not guaranteed.

Permissions
Requires CREATE VIEW permission in the database and ALTER permission on the schema in
which the view is being created.

Examples

A. Using a simple CREATE VIEW
The following example creates a view by using a simple SELECT statement. A simple view is
helpful when a combination of columns is queried frequently. The data from this view comes
from the HumanResources.Employee and Person.Person tables of the AdventureWorks2012
database. The data provides name and hire date information for the employees of Adventure
Works Cycles. The view could be created for the person in charge of tracking work anniversaries
but without giving this person access to all the data in these tables.
USE AdventureWorks2012 ;

GO

IF OBJECT_ID ('hiredate_view', 'V') IS NOT NULL

DROP VIEW hiredate_view ;

GO

CREATE VIEW hiredate_view

AS

SELECT p.FirstName, p.LastName, e.BusinessEntityID, e.HireDate

FROM HumanResources.Employee e

JOIN Person.Person AS p ON e.BusinessEntityID = p.BusinessEntityID ;

GO

B. Using WITH ENCRYPTION
The following example uses the WITH ENCRYPTION option and shows computed columns,
renamed columns, and multiple columns.
USE AdventureWorks2012 ;

GO

 669

IF OBJECT_ID ('Purchasing.PurchaseOrderReject', 'V') IS NOT NULL

 DROP VIEW Purchasing.PurchaseOrderReject ;

GO

CREATE VIEW Purchasing.PurchaseOrderReject

WITH ENCRYPTION

AS

SELECT PurchaseOrderID, ReceivedQty, RejectedQty,

 RejectedQty / ReceivedQty AS RejectRatio, DueDate

FROM Purchasing.PurchaseOrderDetail

WHERE RejectedQty / ReceivedQty > 0

AND DueDate > CONVERT(DATETIME,'20010630',101) ;

GO

C. Using WITH CHECK OPTION
The following example shows a view named SeattleOnly that references five tables and allows
for data modifications to apply only to employees who live in Seattle.
USE AdventureWorks2012 ;

GO

IF OBJECT_ID ('dbo.SeattleOnly', 'V') IS NOT NULL

 DROP VIEW dbo.SeattleOnly ;

GO

CREATE VIEW dbo.SeattleOnly

AS

SELECT p.LastName, p.FirstName, e.JobTitle, a.City, sp.StateProvinceCode

FROM HumanResources.Employee e

 INNER JOIN Person.Person p

 ON p.BusinessEntityID = e.BusinessEntityID

 INNER JOIN Person.BusinessEntityAddress bea

 ON bea.BusinessEntityID = e.BusinessEntityID

 INNER JOIN Person.Address a

 ON a.AddressID = bea.AddressID

 INNER JOIN Person.StateProvince sp

 ON sp.StateProvinceID = a.StateProvinceID

WHERE a.City = 'Seattle'

WITH CHECK OPTION ;

GO

 670

D. Using built-in functions within a view
The following example shows a view definition that includes a built-in function. When you use
functions, you must specify a column name for the derived column.
USE AdventureWorks2012 ;

GO

IF OBJECT_ID ('Sales.SalesPersonPerform', 'V') IS NOT NULL

 DROP VIEW Sales.SalesPersonPerform ;

GO

CREATE VIEW Sales.SalesPersonPerform

AS

SELECT TOP (100) SalesPersonID, SUM(TotalDue) AS TotalSales

FROM Sales.SalesOrderHeader

WHERE OrderDate > CONVERT(DATETIME,'20001231',101)

GROUP BY SalesPersonID;

GO

E. Using partitioned data
The following example uses tables named SUPPLY1, SUPPLY2, SUPPLY3, and SUPPLY4. These
tables correspond to the supplier tables from four offices, located in different countries/regions.
--Create the tables and insert the values.

CREATE TABLE dbo.SUPPLY1 (

supplyID INT PRIMARY KEY CHECK (supplyID BETWEEN 1 and 150),

supplier CHAR(50)

);

CREATE TABLE dbo.SUPPLY2 (

supplyID INT PRIMARY KEY CHECK (supplyID BETWEEN 151 and 300),

supplier CHAR(50)

);

CREATE TABLE dbo.SUPPLY3 (

supplyID INT PRIMARY KEY CHECK (supplyID BETWEEN 301 and 450),

supplier CHAR(50)

);

CREATE TABLE dbo.SUPPLY4 (

supplyID INT PRIMARY KEY CHECK (supplyID BETWEEN 451 and 600),

supplier CHAR(50)

);

 671

GO

INSERT dbo.SUPPLY1 VALUES ('1', 'CaliforniaCorp'), ('5', 'BraziliaLtd');

INSERT dbo.SUPPLY2 VALUES ('231', 'FarEast'), ('280', 'NZ');

INSERT dbo.SUPPLY3 VALUES ('321', 'EuroGroup'), ('442', 'UKArchip');

INSERT dbo.SUPPLY4 VALUES ('475', 'India'), ('521', 'Afrique');

GO

--Create the view that combines all supplier tables.

CREATE VIEW dbo.all_supplier_view

WITH SCHEMABINDING

AS

SELECT supplyID, supplier

FROM dbo.SUPPLY1

UNION ALL

SELECT supplyID, supplier

FROM dbo.SUPPLY2

UNION ALL

SELECT supplyID, supplier

FROM dbo.SUPPLY3

UNION ALL

SELECT supplyID, supplier

FROM dbo.SUPPLY4;

See Also
ALTER TABLE
ALTER VIEW
DELETE (Transact-SQL)
DROP VIEW
INSERT (Transact-SQL)
Create a Stored Procedure
sys.dm_sql_referenced_entities
sys.dm_sql_referencing_entities
sp_help (Transact-SQL)
sp_helptext (Transact-SQL)
sp_refreshview
sp_rename (Transact-SQL)

http://msdn.microsoft.com/en-us/library/ed6b2105-0f35-408f-ba51-e36ade7ad5b2(SQL.110)�
http://msdn.microsoft.com/en-us/library/1054c76e-0fd5-4131-8c07-a6c5d024af50(SQL.110)�
http://msdn.microsoft.com/en-us/library/76e8a6ba-1381-4620-b356-4311e1331ca7(SQL.110)�
http://msdn.microsoft.com/en-us/library/077111cb-b860-4d61-916f-bac5d532912f(SQL.110)�
http://msdn.microsoft.com/en-us/library/c16f8f0a-483f-4feb-842e-da90426045ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/913cd5d4-39a3-4a4b-a926-75ed32878884(SQL.110)�
http://msdn.microsoft.com/en-us/library/24135456-05f0-427c-884b-93cf38dd47a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/9ce1d07c-ee66-4a83-8c73-cd2cc104dd08(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc3548f0-143f-404e-a2e9-0a15960fc8ed(SQL.110)�

 672

sys.views (Transact-SQL)
UPDATE (Transact-SQL)
EVENTDATA (Transact-SQL)

CREATE WORKLOAD GROUP
Creates a Resource Governor workload group and associates the workload group with a
Resource Governor resource pool. Resource Governor is not available in every edition of
Microsoft SQL Server. For a list of features that are supported by the editions of SQL Server, see
Features Supported by the Editions of SQL Server 2012.

 Transact-SQL Syntax Conventions.

Syntax

CREATE WORKLOAD GROUP group_name
[WITH
 ([IMPORTANCE = { LOW | MEDIUM | HIGH }]
 [[,] REQUEST_MAX_MEMORY_GRANT_PERCENT = value]
 [[,] REQUEST_MAX_CPU_TIME_SEC = value]
 [[,] REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value]
 [[,] MAX_DOP = value]
 [[,] GROUP_MAX_REQUESTS = value])
]
[USING { pool_name | "default" }]
[;]

Arguments
group_name

Is the user-defined name for the workload group. group_name is alphanumeric, can be up to
128 characters, must be unique within an instance of SQL Server, and must comply with the
rules for identifiers.

IMPORTANCE = { LOW | MEDIUM | HIGH }

Specifies the relative importance of a request in the workload group. Importance is one of
the following, with MEDIUM being the default:

• LOW

• MEDIUM

• HIGH

Note

http://msdn.microsoft.com/en-us/library/f8a8ea39-5a09-4662-801e-b43519467def(SQL.110)�
http://msdn.microsoft.com/en-us/library/40e63302-0c68-4593-af3e-6d190181fee7(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 673

Internally each importance setting is stored as a number that is used for calculations.

IMPORTANCE is local to the resource pool; workload groups of different importance inside
the same resource pool affect each other, but do not affect workload groups in another
resource pool.

REQUEST_MAX_MEMORY_GRANT_PERCENT = value

Specifies the maximum amount of memory that a single request can take from the pool. This
percentage is relative to the resource pool size specified by MAX_MEMORY_PERCENT.

Note
The amount specified only refers to query execution grant memory.

value must be 0 or a positive integer. The allowed range for value is from 0 through 100. The
default setting for value is 25.

Note the following:

• Setting value to 0 prevents queries with SORT and HASH JOIN operations in user-
defined workload groups from running.

• We do not recommend setting value greater than 70 because the server may be unable
to set aside enough free memory if other concurrent queries are running. This may
eventually lead to query time-out error 8645.

Note
• If the query memory requirements exceed the limit that is specified by this

parameter, the server does the following:

• For user-defined workload groups, the server tries to reduce the query degree of
parallelism until the memory requirement falls under the limit, or until the degree of
parallelism equals 1. If the query memory requirement is still greater than the limit,
error 8657 occurs.

• For internal and default workload groups, the server permits the query to obtain the
required memory.

• Be aware that both cases are subject to time-out error 8645 if the server has
insufficient physical memory.

REQUEST_MAX_CPU_TIME_SEC = value

Specifies the maximum amount of CPU time, in seconds, that a request can use. value must
be 0 or a positive integer. The default setting for value is 0, which means unlimited.

Note
Resource Governor will not prevent a request from continuing if the maximum time is exceeded.
However, an event will be generated. For more information, see CPU Threshold Exceeded Event
Class.

REQUEST_MEMORY_GRANT_TIMEOUT_SEC = value

Specifies the maximum time, in seconds, that a query can wait for a memory grant (work

http://msdn.microsoft.com/en-us/library/eb106f7d-baa3-4a2b-96b2-f9fe0844057d(SQL.110)�
http://msdn.microsoft.com/en-us/library/eb106f7d-baa3-4a2b-96b2-f9fe0844057d(SQL.110)�

 674

buffer memory) to become available.

Note
A query does not always fail when memory grant time-out is reached. A query will only fail if there are
too many concurrent queries running. Otherwise, the query may only get the minimum memory grant,
resulting in reduced query performance.

value must be 0 or a positive integer. The default setting for value, 0, uses an internal
calculation based on query cost to determine the maximum time.

MAX_DOP = value

Specifies the maximum degree of parallelism (DOP) for parallel requests. value must be 0 or a
positive integer. The allowed range for value is from 0 through 64. The default setting for
value, 0, uses the global setting. MAX_DOP is handled as follows:

• MAX_DOP as a query hint is effective as long as it does not exceed workload group
MAX_DOP.

• MAX_DOP as a query hint always overrides sp_configure 'max degree of parallelism' in
SQL Server 2005.

• Workload group MAX_DOP overrides sp_configure 'max degree of parallelism'.

• If the query is marked as serial at compile time, it cannot be changed back to parallel at
run time regardless of the workload group or sp_configure setting.

• After DOP is configured, it can only be lowered on grant memory pressure. Workload
group reconfiguration is not visible while waiting in the grant memory queue.

GROUP_MAX_REQUESTS = value

Specifies the maximum number of simultaneous requests that are allowed to execute in the
workload group. value must be a 0 or a positive integer. The default setting for value, 0,
allows unlimited requests. When the maximum concurrent requests are reached, a user in
that group can log in, but is placed in a wait state until concurrent requests are dropped
below the value specified.

USING { pool_name | "default" }

Associates the workload group with the user-defined resource pool identified by pool_name.
This in effect puts the workload group in the resource pool. If pool_name is not provided, or
if the USING argument is not used, the workload group is put in the predefined Resource
Governor default pool.

"default" is a reserved word and when used with USING, must be enclosed by quotation
marks ("") or brackets ([]).

Note
Predefined workload groups and resource pools all use lower case names, such as "default". This
should be taken into account for servers that use case-sensitive collation. Servers with case-insensitive
collation, such as SQL_Latin1_General_CP1_CI_AS, will treat "default" and "Default" as the same.

 675

Remarks
REQUEST_MEMORY_GRANT_PERCENT: Index creation is allowed to use more workspace
memory than what is initially granted for improved performance. This special handling is
supported by Resource Governor in SQL Server 2012. However, the initial grant and any
additional memory grant are limited by resource pool and workload group settings.
Index Creation on a Partitioned Table
The memory consumed by index creation on non-aligned partitioned table is proportional to
the number of partitions involved. If the total required memory exceeds the per-query limit
(REQUEST_MAX_MEMORY_GRANT_PERCENT) imposed by the Resource Governor workload
group setting, this index creation may fail to execute. Because the "default" workload group
allows a query to exceed the per-query limit with the minimum required memory, the user may
be able to run the same index creation in "default" workload group, if the "default" resource
pool has enough total memory configured to run such query.

Permissions
Requires CONTROL SERVER permission.

Examples
The following example shows how to create a workload group named newReports. It uses the
Resource Governor default settings and is in the Resource Governor default pool. The example
specifies the default pool, but this is not required.

CREATE WORKLOAD GROUP newReports

 USING "default" ;

GO

See Also
ALTER WORKLOAD GROUP (Transact-SQL)
DROP WORKLOAD GROUP (Transact-SQL)
CREATE RESOURCE POOL (Transact-SQL)
ALTER RESOURCE POOL (Transact-SQL)
DROP RESOURCE POOL (Transact-SQL)
ALTER RESOURCE GOVERNOR (Transact-SQL)

CREATE XML INDEX
Creates an XML index on a specified table. An index can be created before there is data in the
table. XML indexes can be created on tables in another database by specifying a qualified
database name.

Note

 676

To create a relational index, see CREATE INDEX (Transact-SQL). For information about
how to create a spatial index, see CREATE SPATIAL INDEX (Transact-SQL).

 Transact-SQL Syntax Conventions

Syntax

Create XML Index
CREATE [PRIMARY] XML INDEX index_name
 ON <object> (xml_column_name)
 [USING XML INDEX xml_index_name
 [FOR { VALUE | PATH | PROPERTY }]]
 [WITH (<xml_index_option> [,...n])]
[;]

<object> ::=
{
 [database_name. [schema_name] . | schema_name.]
 table_name
}

<xml_index_option> ::=
{
 PAD_INDEX = { ON | OFF }
 | FILLFACTOR = fillfactor
 | SORT_IN_TEMPDB = { ON | OFF }
 | IGNORE_DUP_KEY = OFF
 | DROP_EXISTING = { ON | OFF }
 | ONLINE = OFF
 | ALLOW_ROW_LOCKS = { ON | OFF }
 | ALLOW_PAGE_LOCKS = { ON | OFF }
 | MAXDOP = max_degree_of_parallelism
}

Arguments
[PRIMARY] XML

Creates an XML index on the specified xml column. When PRIMARY is specified, a clustered

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 677

index is created with the clustered key formed from the clustering key of the user table and
an XML node identifier. Each table can have up to 249 XML indexes. Note the following when
you create an XML index:

• A clustered index must exist on the primary key of the user table.

• The clustering key of the user table is limited to 15 columns.

• Each xml column in a table can have one primary XML index and multiple secondary
XML indexes.

• A primary XML index on an xml column must exist before a secondary XML index can be
created on the column.

• An XML index can only be created on a single xml column. You cannot create an XML
index on a non-xml column, nor can you create a relational index on an xml column.

• You cannot create an XML index, either primary or secondary, on an xml column in a
view, on a table-valued variable with xml columns, or xml type variables.

• You cannot create a primary XML index on a computed xml column.

• The SET option settings must be the same as those required for indexed views and
computed column indexes. Specifically, the option ARITHABORT must be set to ON
when an XML index is created and when inserting, deleting, or updating values in the
xml column.

For more information, see Indexes on xml Type columns.

index_name

Is the name of the index. Index names must be unique within a table but do not have to be
unique within a database. Index names must follow the rules of identifiers.

Primary XML index names cannot start with the following characters: #, ##, @, or @@.

xml_column_name

Is the xml column on which the index is based. Only one xml column can be specified in a
single XML index definition; however, multiple secondary XML indexes can be created on an
xml column.

USING XML INDEX xml_index_name

Specifies the primary XML index to use in creating a secondary XML index.

FOR { VALUE | PATH | PROPERTY }

Specifies the type of secondary XML index.

VALUE

Creates a secondary XML index on columns where key columns are (node value and path)
of the primary XML index.

PATH

Creates a secondary XML index on columns built on path values and node values in the
primary XML index. In the PATH secondary index, the path and node values are key

http://msdn.microsoft.com/en-us/library/f5c9209d-b3f3-4543-b30b-01365a5e7333(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 678

columns that allow efficient seeks when searching for paths.

PROPERTY

Creates a secondary XML index on columns (PK, path and node value) of the primary XML
index where PK is the primary key of the base table.

<object>::=
Is the fully qualified or nonfully qualified object to be indexed.
database_name

Is the name of the database.

schema_name

Is the name of the schema to which the table belongs.

table_name

Is the name of the table to be indexed.

<xml_index_option> ::=
Specifies the options to use when you create the index.
PAD_INDEX = { ON | OFF }

Specifies index padding. The default is OFF.

ON

The percentage of free space that is specified by fillfactor is applied to the intermediate-
level pages of the index.

OFF or fillfactor is not specified

The intermediate-level pages are filled to near capacity, leaving sufficient space for at least
one row of the maximum size the index can have, considering the set of keys on the
intermediate pages.

The PAD_INDEX option is useful only when FILLFACTOR is specified, because PAD_INDEX
uses the percentage specified by FILLFACTOR. If the percentage specified for FILLFACTOR is
not large enough to allow for one row, the Database Engine internally overrides the
percentage to allow for the minimum. The number of rows on an intermediate index page is
never less than two, regardless of how low the value of fillfactor.

FILLFACTOR = fillfactor

Specifies a percentage that indicates how full the Database Engine should make the leaf level
of each index page during index creation or rebuild. fillfactor must be an integer value from 1
to 100. The default is 0. If fillfactor is 100 or 0, the Database Engine creates indexes with leaf
pages filled to capacity.

Note
Fill factor values 0 and 100 are the same in all respects.

The FILLFACTOR setting applies only when the index is created or rebuilt. The Database

 679

Engine does not dynamically keep the specified percentage of empty space in the pages. To
view the fill factor setting, use the sys.indexes catalog view.

Important
Creating a clustered index with a FILLFACTOR less than 100 affects the amount of storage space the
data occupies because the Database Engine redistributes the data when it creates the clustered index.

For more information, see Fill Factor.

SORT_IN_TEMPDB = { ON | OFF }

Specifies whether to store temporary sort results in tempdb. The default is OFF.

ON

The intermediate sort results that are used to build the index are stored in tempdb. This
may reduce the time required to create an index if tempdb is on a different set of disks
than the user database. However, this increases the amount of disk space that is used
during the index build.

OFF

The intermediate sort results are stored in the same database as the index.

In addition to the space required in the user database to create the index, tempdb must have
about the same amount of additional space to hold the intermediate sort results. For more
information, see tempdb and Index Creation.

IGNORE_DUP_KEY = OFF

Has no effect for XML indexes because the index type is never unique. Do not set this option
to ON, or else an error is raised.

DROP_EXISTING = { ON | OFF }

Specifies that the named, preexisting XML index is dropped and rebuilt. The default is OFF.

ON

The existing index is dropped and rebuilt. The index name specified must be the same as a
currently existing index; however, the index definition can be modified. For example, you
can specify different columns, sort order, partition scheme, or index options.

OFF

An error is displayed if the specified index name already exists.

The index type cannot be changed by using DROP_EXISTING. Also, a primary XML index
cannot be redefined as a secondary XML index, or vice versa.

ONLINE = OFF

Specifies that underlying tables and associated indexes are not available for queries and data
modification during the index operation. In this version of SQL Server, online index builds are
not supported for XML indexes. If this option is set to ON for a XML index, an error is raised.
Either omit the ONLINE option or set ONLINE to OFF.

http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/237a577e-b42b-4adb-90cf-aa7fb174f3ab(SQL.110)�
http://msdn.microsoft.com/en-us/library/754a003f-fe51-4d10-975a-f6b8c04ebd35(SQL.110)�

 680

An offline index operation that creates, rebuilds, or drops a XML index, acquires a Schema
modification (Sch-M) lock on the table. This prevents all user access to the underlying table
for the duration of the operation.

Note
Online index operations are not available in every edition of Microsoft SQL Server. For a list of features
that are supported by the editions of SQL Server, see Features Supported by the Editions of
SQL Server 2012.

ALLOW_ROW_LOCKS = { ON | OFF }

Specifies whether row locks are allowed. The default is ON.

ON

Row locks are allowed when accessing the index. The Database Engine determines when
row locks are used.

OFF

Row locks are not used.

ALLOW_PAGE_LOCKS = { ON | OFF }

Specifies whether page locks are allowed. The default is ON.

ON

Page locks are allowed when accessing the index. The Database Engine determines when
page locks are used.

OFF

Page locks are not used.

MAXDOP = max_degree_of_parallelism

Overrides the Configure the max degree of parallelism Server Configuration
Option configuration option for the duration of the index operation. Use MAXDOP to limit
the number of processors used in a parallel plan execution. The maximum is 64 processors.

Important
Although the MAXDOP option is syntactically supported for all XML indexes, for a primary XML index,
CREATE XML INDEX uses only a single processor.

max_degree_of_parallelism can be:

1

Suppresses parallel plan generation.

>1

Restricts the maximum number of processors used in a parallel index operation to the
specified number or fewer based on the current system workload.

0 (default)

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�

 681

Uses the actual number of processors or fewer based on the current system workload.

For more information, see Configuring Parallel Index Operations.

Note
Parallel index operations are not available in every edition of Microsoft SQL Server. For a list of
features that are supported by the editions of SQL Server, see Features Supported by the
Editions of SQL Server 2012.

Remarks
Computed columns derived from xml data types can be indexed either as a key or included
nonkey column as long as the computed column data type is allowable as an index key column
or nonkey column. You cannot create a primary XML index on a computed xml column.
To view information about XML indexes, use the sys.xml_indexes catalog view.
For more information about XML indexes, see Indexes on xml Type columns.

Additional Remarks on Index Creation
For more information about index creation, see the "Remarks" section in CREATE INDEX
(Transact-SQL).

Examples

A. Creating a primary XML index
The following example creates a primary XML index on the CatalogDescription column in the
Production.ProductModel table.
Copy Code

USE AdventureWorks2012;

GO

IF EXISTS (SELECT * FROM sys.indexes

 WHERE name = N'PXML_ProductModel_CatalogDescription')

 DROP INDEX PXML_ProductModel_CatalogDescription

 ON Production.ProductModel;

GO

CREATE PRIMARY XML INDEX PXML_ProductModel_CatalogDescription

 ON Production.ProductModel (CatalogDescription);

GO

B. Creating a secondary XML index
The following example creates a secondary XML index on the CatalogDescription column in
the Production.ProductModel table.
USE AdventureWorks2012;

http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/3408de72-b067-4fda-b5d5-8e856dfd9db3(SQL.110)�
http://msdn.microsoft.com/en-us/library/f5c9209d-b3f3-4543-b30b-01365a5e7333(SQL.110)�

 682

GO

IF EXISTS (SELECT name FROM sys.indexes

 WHERE name = N'IXML_ProductModel_CatalogDescription_Path')

 DROP INDEX IXML_ProductModel_CatalogDescription_Path

 ON Production.ProductModel;

GO

CREATE XML INDEX IXML_ProductModel_CatalogDescription_Path

 ON Production.ProductModel (CatalogDescription)

 USING XML INDEX PXML_ProductModel_CatalogDescription FOR PATH ;

GO

See Also
ALTER INDEX (Transact-SQL)
CREATE INDEX (Transact-SQL)
CREATE PARTITION FUNCTION
CREATE PARTITION SCHEME
CREATE SPATIAL INDEX (Transact-SQL)
CREATE STATISTICS
CREATE TABLE
Data Types
DBCC SHOW_STATISTICS
DROP INDEX
Indexes on xml Type columns
sys.indexes
sys.index_columns
sys.xml_indexes
EVENTDATA (Transact-SQL)
Indexes on xml Type columns

CREATE XML SCHEMA COLLECTION
Imports the schema components into a database.

 Transact-SQL Syntax Conventions

Syntax

http://msdn.microsoft.com/en-us/library/a54f7373-b247-4d61-8fb8-7f2ec7a8d0a4(SQL.110)�
http://msdn.microsoft.com/en-us/library/12be2923-7289-4150-b497-f17e76a50b2e(SQL.110)�
http://msdn.microsoft.com/en-us/library/f5c9209d-b3f3-4543-b30b-01365a5e7333(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/211471aa-558a-475c-9b94-5913c143ed12(SQL.110)�
http://msdn.microsoft.com/en-us/library/3408de72-b067-4fda-b5d5-8e856dfd9db3(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/f5c9209d-b3f3-4543-b30b-01365a5e7333(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 683

CREATE XML SCHEMA COLLECTION [<relational_schema>.]sql_identifier AS
Expression

Arguments
relational_schema

Identifies the relational schema name. If not specified, default relational schema is assumed.

sql_identifier

Is the SQL identifier for the XML schema collection.

Expression

Is a string constant or scalar variable. Is varchar, varbinary, nvarchar, or xml type.

Remarks
You can also add new namespaces to the collection or add new components to existing
namespaces in the collection by using ALTER XML SCHEMA COLLECTION.
To remove collections, use DROP XML SCHEMA COLLECTION (Transact-SQL).

Permissions
To create an XML SCHEMA COLLECTION requires at least one of the following sets of
permissions:
• CONTROL permission on the server
• ALTER ANY DATABASE permission on the server
• ALTER permission on the database
• CONTROL permission in the database
• ALTER ANY SCHEMA permission and CREATE XML SCHEMA COLLECTION permission in the

database
• ALTER or CONTROL permission on the relational schema and CREATE XML SCHEMA

COLLECTION permission in the database

Examples

A. Creating XML schema collection in the database
The following example creates the XML schema collection
ManuInstructionsSchemaCollection. The collection has only one schema namespace.

-- Create a sample database in which to load the XML schema collection.

CREATE DATABASE SampleDB

GO

USE SampleDB

GO

CREATE XML SCHEMA COLLECTION ManuInstructionsSchemaCollection AS

 684

N'<?xml version="1.0" encoding="UTF-16"?>

<xsd:schema

targetNamespace="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelManuInstructions"

 xmlns ="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelManuInstructions"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

 <xsd:complexType name="StepType" mixed="true" >

 <xsd:choice minOccurs="0" maxOccurs="unbounded" >

 <xsd:element name="tool" type="xsd:string" />

 <xsd:element name="material" type="xsd:string" />

 <xsd:element name="blueprint" type="xsd:string" />

 <xsd:element name="specs" type="xsd:string" />

 <xsd:element name="diag" type="xsd:string" />

 </xsd:choice>

 </xsd:complexType>

 <xsd:element name="root">

 <xsd:complexType mixed="true">

 <xsd:sequence>

 <xsd:element name="Location" minOccurs="1"

maxOccurs="unbounded">

 <xsd:complexType mixed="true">

 <xsd:sequence>

 <xsd:element name="step" type="StepType"

minOccurs="1" maxOccurs="unbounded" />

 </xsd:sequence>

 <xsd:attribute name="LocationID" type="xsd:integer"

use="required"/>

 <xsd:attribute name="SetupHours" type="xsd:decimal"

use="optional"/>

http://www.w3.org/2001/XMLSchema
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelManuInstructions
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelManuInstructions
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelManuInstructions
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelManuInstructions

 685

 <xsd:attribute name="MachineHours" type="xsd:decimal"

use="optional"/>

 <xsd:attribute name="LaborHours" type="xsd:decimal"

use="optional"/>

 <xsd:attribute name="LotSize" type="xsd:decimal"

use="optional"/>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>' ;

GO

-- Verify - list of collections in the database.

select *

from sys.xml_schema_collections

-- Verify - list of namespaces in the database.

select name

from sys.xml_schema_namespaces

-- Use it. Create a typed xml variable. Note collection name specified.

DECLARE @x xml (ManuInstructionsSchemaCollection)

GO

--Or create a typed xml column.

CREATE TABLE T (

 i int primary key,

 x xml (ManuInstructionsSchemaCollection))

GO

-- Clean up

DROP TABLE T

GO

DROP XML SCHEMA COLLECTION ManuInstructionsSchemaCollection

Go

USE Master

 686

GO

DROP DATABASE SampleDB

Alternatively, you can assign the schema collection to a variable and specify the variable in the
CREATE XML SCHEMA COLLECTION statement as follows:

DECLARE @MySchemaCollection nvarchar(max)

Set @MySchemaCollection = N' copy the schema collection here'

CREATE XML SCHEMA COLLECTION MyCollection AS @MySchemaCollection

The variable in the example is of nvarchar(max) type. The variable can also be of xml data
type, in which case, it is implicitly converted to a string.
For more information, see Viewing Stored XML Schema.
You may store schema collections in an xml type column. In this case, to create XML schema
collection, perform the following:
1. Retrieve the schema collection from the column by using a SELECT statement and assign it

to a variable of xml type, or a varchar type.
2. Specify the variable name in the CREATE XML SCHEMA COLLECTION statement.
The CREATE XML SCHEMA COLLECTION stores only the schema components that SQL Server
understands; everything in the XML schema is not stored in the database. Therefore, if you want
the XML schema collection back exactly the way it was supplied, we recommend that you save
your XML schemas in a database column or some other folder on your computer.

B. Specifying multiple schema namespaces in a schema collection
You can specify multiple XML schemas when you create an XML schema collection. For example:
CREATE XML SCHEMA COLLECTION MyCollection AS N'

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- Contents of schema here -->

</xsd:schema>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<!-- Contents of schema here -->

</xsd:schema>'

The following example creates the XML schema collection
ProductDescriptionSchemaCollection that includes two XML schema namespaces.

CREATE XML SCHEMA COLLECTION ProductDescriptionSchemaCollection AS

'<xsd:schema

targetNamespace="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelWarrAndMain"

 xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelWarrAndMain"

http://msdn.microsoft.com/en-us/library/e38031af-22df-4cd9-a14e-e316b822f91b(SQL.110)�
http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain

 687

 elementFormDefault="qualified"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

 <xsd:element name="Warranty" >

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="WarrantyPeriod" type="xsd:string" />

 <xsd:element name="Description" type="xsd:string" />

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

 <xs:schema

targetNamespace="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription"

 xmlns="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelDescription"

 elementFormDefault="qualified"

 xmlns:mstns="http://tempuri.org/XMLSchema.xsd"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:wm="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelWarrAndMain" >

 <xs:import

namespace="http://schemas.microsoft.com/sqlserver/2004/07/adventure-

works/ProductModelWarrAndMain" />

 <xs:element name="ProductDescription" type="ProductDescription" />

 <xs:complexType name="ProductDescription">

 <xs:sequence>

 <xs:element name="Summary" type="Summary" minOccurs="0" />

 </xs:sequence>

 <xs:attribute name="ProductModelID" type="xs:string" />

 <xs:attribute name="ProductModelName" type="xs:string" />

 </xs:complexType>

 <xs:complexType name="Summary" mixed="true" >

 <xs:sequence>

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelDescription
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelDescription
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelDescription
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelDescription
http://tempuri.org/XMLSchema.xsd
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain
http://schemas.microsoft.com/sqlserver/2004/07/adventure-works/ProductModelWarrAndMain

 688

 <xs:any processContents="skip"

namespace="http://www.w3.org/1999/xhtml" minOccurs="0" maxOccurs="unbounded"

/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>'

;

GO -- Clean up

DROP XML SCHEMA COLLECTION ProductDescriptionSchemaCollection

GO

C. Importing a schema that does not specify a target namespace
If a schema that does not contain a targetNamespace attribute is imported in a collection, its
components are associated with the empty string target namespace as shown in the following
example. Note that not associating one or more schemas imported in the collection causes
multiple schema components (potentially unrelated) to be associated with the default empty
string namespace.

-- Create a collection that contains a schema with no target namespace.

CREATE XML SCHEMA COLLECTION MySampleCollection AS '

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:ns="http://ns">

<element name="e" type="dateTime"/>

</schema>'

go

-- Query will return the names of all the collections that

--contain a schema with no target namespace.

SELECT sys.xml_schema_collections.name

FROM sys.xml_schema_collections

JOIN sys.xml_schema_namespaces

ON sys.xml_schema_collections.xml_collection_id =

 sys.xml_schema_namespaces.xml_collection_id

WHERE sys.xml_schema_namespaces.name=''

D. Using an XML schema collection and batches
A schema collection cannot be referenced in the same batch where it is created. If you try to
reference a collection in the same batch where it was created, you will get an error saying the
collection does not exist. The following example works; however, if you remove GO and,

http://www.w3.org/2001/XMLSchema
http://www.w3.org/1999/xhtml

 689

therefore, try to reference the XML schema collection to type an xml variable in the same batch,
it will return an error.

CREATE XML SCHEMA COLLECTION mySC AS '

<schema xmlns="http://www.w3.org/2001/XMLSchema">

 <element name="root" type="string"/>

</schema>

'

GO

CREATE TABLE T (Col1 xml (mySC))

GO

See Also
ALTER XML SCHEMA COLLECTION (Transact-SQL)
DROP XML SCHEMA COLLECTION (Transact-SQL)
EVENTDATA (Transact-SQL)
Typed vs. Untyped XML
DROP XML SCHEMA COLLECTION (Transact-SQL)
Guidelines and Limitations of XML Schemas on the Server

DISABLE TRIGGER
Disables a trigger.

 Transact-SQL Syntax Conventions

Syntax

DISABLE TRIGGER { [schema_name .] trigger_name [,...n] | ALL }
ON { object_name | DATABASE | ALL SERVER } [;]

Arguments
schema_name

Is the name of the schema to which the trigger belongs. schema_name cannot be specified
for DDL or logon triggers.

trigger_name

Is the name of the trigger to be disabled.

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bc50af9-2f7d-49df-bb01-854d080c72c7(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2314fd5-4c6d-40cb-a128-07e532b40946(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://www.w3.org/2001/XMLSchema

 690

ALL

Indicates that all triggers defined at the scope of the ON clause are disabled.

Caution
SQL Server creates triggers in databases that are published for merge replication. Specifying ALL in
published databases disables these triggers, which disrupts replication. Verify that the current
database is not published for merge replication before specifying ALL.

object_name

Is the name of the table or view on which the DML trigger trigger_name was created to
execute.

DATABASE

For a DDL trigger, indicates that trigger_name was created or modified to execute with
database scope.

ALL SERVER

For a DDL trigger, indicates that trigger_name was created or modified to execute with server
scope. ALL SERVER also applies to logon triggers.

Note
This option is not available in a contained database.

Remarks
Triggers are enabled by default when they are created. Disabling a trigger does not drop it. The
trigger still exists as an object in the current database. However, the trigger does not fire when
any Transact-SQL statements on which it was programmed are executed. Triggers can be re-
enabled by using ENABLE TRIGGER. DML triggers defined on tables can be also be disabled or
enabled by using ALTER TABLE.

Permissions
To disable a DML trigger, at a minimum, a user must have ALTER permission on the table or
view on which the trigger was created.
To disable a DDL trigger with server scope (ON ALL SERVER) or a logon trigger, a user must have
CONTROL SERVER permission on the server. To disable a DDL trigger with database scope (ON
DATABASE), at a minimum, a user must have ALTER ANY DATABASE DDL TRIGGER permission in
the current database.

Examples

A. Disabling a DML trigger on a table
The following example disables trigger uAddress that was created on table Address.
USE AdventureWorks2012;

 691

GO

DISABLE TRIGGER Person.uAddress ON Person.Address;

GO

B. Disabling a DDL trigger
The following example creates a DDL trigger safety with database scope, and then disables it.
IF EXISTS (SELECT * FROM sys.triggers

 WHERE parent_class = 0 AND name = 'safety')

DROP TRIGGER safety ON DATABASE;

GO

CREATE TRIGGER safety

ON DATABASE

FOR DROP_TABLE, ALTER_TABLE

AS

 PRINT 'You must disable Trigger "safety" to drop or alter tables!'

 ROLLBACK;

GO

DISABLE TRIGGER safety ON DATABASE;

GO

C. Disabling all triggers that were defined with the same scope
The following example disables all DDL triggers that were created at the server scope.
USE AdventureWorks2012;

GO

DISABLE Trigger ALL ON ALL SERVER;

GO

See Also
sys.triggers (Transact-SQL)
ALTER TRIGGER
CREATE TRIGGER
DROP TRIGGER
sys.triggers

http://msdn.microsoft.com/en-us/library/cefa4fc4-b8b9-4cd7-b124-eed5283acbfc(SQL.110)�

 692

DROP Statements
SQL Server Transact-SQL contains the following DROP statements. Use DROP statements to
remove existing entities. For example, use DROP TABLE to remove a table from a database.

In this Section

DROP AGGREGATE DROP FULLTEXT INDEX DROP SEARCH PROPERTY LIST
(Transact-SQL)

DROP APPLICATION ROLE DROP FULLTEXT STOPLIST DROP SEQUENCE (Transact-
SQL)

DROP ASSEMBLY DROP FUNCTION DROP SERVER AUDIT

DROP ASYMMETRIC KEY DROP INDEX DROP SERVER AUDIT
SPECIFICATION

DROP BROKER PRIORITY DROP LOGIN DROP SERVICE

DROP CERTIFICATE DROP MASTER KEY DROP SIGNATURE

DROP CONTRACT DROP MESSAGE TYPE DROP STATISTICS

DROP CREDENTIAL DROP PARTITION FUNCTION DROP SYMMETRIC KEY

DROP CRYPTOGRAPHIC
PROVIDER

DROP PARTITION SCHEME DROP SYNONYM

DROP DATABASE DROP PROCEDURE DROP TABLE

DROP DATABASE AUDIT
SPECIFICATION

DROP QUEUE DROP TRIGGER

DROP DATABASE ENCRYPTION
KEY

DROP REMOTE SERVICE
BINDING

DROP TYPE

DROP DEFAULT DROP RESOURCE POOL DROP USER

DROP ENDPOINT DROP ROLE DROP VIEW

DROP EVENT NOTIFICATION DROP ROUTE DROP WORKLOAD GROUP

DROP EVENT SESSION DROP RULE DROP XML SCHEMA
COLLECTION

DROP FULLTEXT CATALOG DROP SCHEMA

 693

See Also
ALTER Statements (Transact-SQL)
CREATE Statements (Transact-SQL)

DROP AGGREGATE
Removes a user-defined aggregate function from the current database. User-defined aggregate
functions are created by using CREATE AGGREGATE.

 Transact-SQL Syntax Conventions

Syntax

DROP AGGREGATE [schema_name .] aggregate_name

Arguments
schema_name

Is the name of the schema to which the user-defined aggregate function belongs.

aggregate_name

Is the name of the user-defined aggregate function you want to drop.

Remarks
DROP AGGREGATE does not execute if there are any views, functions, or stored procedures
created with schema binding that reference the user-defined aggregate function you want to
drop.

Permissions
To execute DROP AGGREGATE, at a minimum, a user must have ALTER permission on the
schema to which the user-defined aggregate belongs, or CONTROL permission on the
aggregate.

Examples
The following example drops the aggregate Concatenate.

DROP AGGREGATE dbo.Concatenate

See Also
Creating User-defined Aggregates
Creating User-Defined Aggregate Functions

DROP APPLICATION ROLE
Removes an application role from the current database.

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/c278b746-6323-4b32-b460-239915acc067(SQL.110)�

 694

 Transact-SQL Syntax Conventions

Syntax

DROP APPLICATION ROLE rolename

Arguments
 rolename

Specifies the name of the application role to be dropped.

Remarks
If the application role owns any securables it cannot be dropped. Before dropping an application
role that owns securables, you must first transfer ownership of the securables, or drop them.

 Beginning with SQL Server 2005, the behavior of schemas changed. As a result, code
that assumes that schemas are equivalent to database users may no longer return
correct results. Old catalog views, including , should not be used in a database in which
any of the following DDL statements have ever been used: CREATE SCHEMA, ALTER
SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER
ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER
AUTHORIZATION. In such databases you must instead use the new catalog views. The
new catalog views take into account the separation of principals and schemas that was
introduced in SQL Server 2005. For more information about catalog views, see .

Permissions
Requires ALTER ANY APPLICATION ROLE permission on the database.

Examples
Drop application role "weekly_ledger" from the database.

DROP APPLICATION ROLE weekly_ledger;

GO

See Also
Application Roles
CREATE APPLICATION ROLE (Transact-SQL)
ALTER APPLICATION ROLE (Transact-SQL)
eventdata (Transact-SQL)

Caution

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/dca18b8a-ca03-4b7f-9a46-8474d5b66f76(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

 695

DROP ASSEMBLY
Removes an assembly and all its associated files from the current database. Assemblies are
created by using CREATE ASSEMBLY and modified by using ALTER ASSEMBLY.

 Transact-SQL Syntax Conventions

Syntax

DROP ASSEMBLY assembly_name [,...n]
[WITH NO DEPENDENTS]
[;]

Arguments
assembly_name

Is the name of the assembly you want to drop.

WITH NO DEPENDENTS

If specified, drops only assembly_name and none of the dependent assemblies that are
referenced by the assembly. If not specified, DROP ASSEMBLY drops assembly_name and all
dependent assemblies.

Remarks
Dropping an assembly removes an assembly and all its associated files, such as source code and
debug files, from the database.
If WITH NO DEPENDENTS is not specified, DROP ASSEMBLY drops assembly_name and all
dependent assemblies. If an attempt to drop any dependent assemblies fails, DROP ASSEMBLY
returns an error.
DROP ASSEMBLY returns an error if the assembly is referenced by another assembly that exists
in the database or if it is used by common language runtime (CLR) functions, procedures,
triggers, user-defined types or aggregates in the current database.
DROP ASSEMBLY does not interfere with any code referencing the assembly that is currently
running. However, after DROP ASSEMBLY executes, any attempts to invoke the assembly code
will fail.

Permissions
Requires ownership of the assembly, or CONTROL permission on it.

Examples
The following example assumes the assembly HelloWorld is already created in the instance of
SQL Server.

DROP ASSEMBLY Helloworld

See Also

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 696

Getting Information About Assemblies
ALTER ASSEMBLY
EVENTDATA (Transact-SQL)
Getting Information About Assemblies

DROP ASYMMETRIC KEY
Removes an asymmetric key from the database.

 Transact-SQL Syntax Conventions

Syntax

DROP ASYMMETRIC KEY key_name [REMOVE PROVIDER KEY]

Arguments
key_name

Is the name of the asymmetric key to be dropped from the database.

REMOVE PROVIDER KEY

Removes an Extenisble Key Management (EKM) key from an EKM device. For more
information about Extensible Key Management, see Understanding Extensible Key
Management (EKM).

Remarks
An asymmetric key with which a symmetric key in the database has been encrypted, or to which
a user or login is mapped, cannot be dropped. Before you drop such a key, you must drop any
user or login that is mapped to the key. You must also drop or change any symmetric key
encrypted with the asymmetric key. You can use the DROP ENCRYPTION option of ALTER
SYMMETRIC KEY to remove encryption by an asymmetric key.
Metadata of asymmetric keys can be accessed by using the sys.asymmetric_keys catalog view.
The keys themselves cannot be directly viewed from inside the database.
If the asymmetric key is mapped to an Extensible Key Management (EKM) key on an EKM device
and the REMOVE PROVIDER KEY option is not specified, the key will be dropped from the
database but not the device. A warning will be issued.

Permissions
Requires CONTROL permission on the asymmetric key.

Examples
The following example removes the asymmetric key MirandaXAsymKey6 from the
AdventureWorks2012 database.

USE AdventureWorks2012;

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/6aa7f18e-baad-4481-9777-8c3b230b392f(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/bbca796a-9bb5-4a62-9ca8-1d255984553d(SQL.110)�

 697

DROP ASYMMETRIC KEY MirandaXAsymKey6;

See Also
ALTER SYMMETRIC KEY (Transact-SQL)
ALTER ASYMMETRIC KEY (Transact-SQL)
Encryption Hierarchy
ALTER SYMMETRIC KEY (Transact-SQL)

DROP AVAILABILITY GROUP
Removes the specified availability group and all of its replicas. Dropping an availability group
also deletes the associated availability group listener, if any.

 Transact-SQL Syntax Conventions

Syntax

DROP AVAILABILITY GROUP group_name
[;]

Arguments
group_name

Specifies the name of the availability group to be dropped.

Limitations and Restrictions
Executing DROP AVAILABILITY GROUP requires that HADR service is enabled on the server
instance. For more information, see The HADR Service (SQL Server).
DROP AVAILABILITY GROUP cannot be executed as part of batches or within transactions. Also,
expressions and variables are not supported.
You can drop an availability group from any Windows Server Failover Clustering (WSFC) node
that possesses the correct security credentials for the availability group. This enables you to
delete an availability group when none of its availability replicas remain.
For more information, see Deleting an Availability Group (SQL Server).

Security

Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission. To drop an availability group that is not hosted by the local server instance
you need CONTROL SERVER permission or CONTROL permission on that availability group.

Examples

http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/7c326958-5ae9-4761-9c57-905972276a8f(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b7f7f62-43a3-49db-a72e-22d4d7c2ddbb(SQL.110)�

 698

The following example drops the AccountsAG availability group.

DROP AVAILABILITY GROUP AccountsAG;

See Also
ALTER AVAILABILITY GROUP (Transact-SQL)
CREATE AVAILABILITY GROUP (Transact-SQL)
Delete an Availability Group (SQL Server)

DROP BROKER PRIORITY
Removes a conversation priority from the current database.

 Transact-SQL Syntax Conventions

Syntax

DROP BROKER PRIORITY ConversationPriorityName
[;]

Arguments
ConversationPriorityName

Specifies the name of the conversation priority to be removed.

Remarks
When you drop a conversation priority, any existing conversations continue to operate with the
priority levels they were assigned from the conversation priority.

Permissions
Permission for creating a conversation priority defaults to members of the db_ddladmin or
db_owner fixed database roles, and to the sysadmin fixed server role. Requires ALTER permission
on the database.

Examples
The following example drops the conversation priority named InitiatorAToTargetPriority.

DROP BROKER PRIORITY InitiatorAToTargetPriority;

See Also
ALTER BROKER PRIORITY (Transact-SQL)
CREATE BROKER PRIORITY (Transact-SQL)
sys.conversation_priorities (Transact-SQL)

http://msdn.microsoft.com/en-us/library/4b7f7f62-43a3-49db-a72e-22d4d7c2ddbb(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/7cbb9171-3310-4aae-8458-755c882d6462(SQL.110)�

 699

DROP CERTIFICATE
Removes a certificate from the database.

 Transact-SQL Syntax Conventions

Syntax

DROP CERTIFICATE certificate_name

Arguments
certificate_name

Is the unique name by which the certificate is known in the database.

Remarks
Certificates can only be dropped if no entities are associated with them.

Permissions
Requires CONTROL permission on the certificate.

Examples
The following example drops the certificate Shipping04 from the AdventureWorks database.

USE AdventureWorks2012;

DROP CERTIFICATE Shipping04;

See Also
EVENTDATA (Transact-SQL)
CREATE CERTIFICATE (Transact-SQL)
ALTER CERTIFICATE (Transact-SQL)
Encryption Hierarchy
EVENTDATA (Transact-SQL)

DROP CONTRACT
Drops an existing contract from a database.

 Transact-SQL Syntax Conventions

Syntax

DROP CONTRACT contract_name
[;]

Arguments

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/509b9462-819b-4c45-baae-3d2d90d14a1c(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 700

contract_name

The name of the contract to drop. Server, database, and schema names cannot be specified.

Remarks
You cannot drop a contract if any services or conversation priorities refer to the contract.
When you drop a contract, Service Broker ends any existing conversations that use the contract
with an error.

Permissions
Permission for dropping a contract defaults to the owner of the contract, members of the
db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server role.

Examples
The following example removes the contract //Adventure-
Works.com/Expenses/ExpenseSubmission from the database.
DROP CONTRACT

 [//Adventure-Works.com/Expenses/ExpenseSubmission] ;

See Also
ALTER BROKER PRIORITY (Transact-SQL)
ALTER SERVICE (Transact-SQL)
CREATE CONTRACT
DROP BROKER PRIORITY (Transact-SQL)
DROP SERVICE (Transact-SQL)
EVENTDATA (Transact-SQL)

DROP CREDENTIAL
Removes a credential from the server.

 Transact-SQL Syntax Conventions

Syntax

DROP CREDENTIAL credential_name

Arguments
credential_name

Is the name of the credential to remove from the server.

Remarks

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
www.Adventure-Works.com/Expenses/ExpenseSubmission
www.Adventure-Works.com/Expenses/ExpenseSubmission
www.Adventure-Works.com/Expenses/ExpenseSubmission

 701

To drop the secret associated with a credential without dropping the credential itself, use ALTER
CREDENTIAL.
Information about credentials is visible in the sys.credentials catalog view.

Permissions
Requires ALTER ANY CREDENTIAL permission. If dropping a system credential, requires
CONTROL SERVER permission.

Examples
The following example removes the credential called Saddles.

DROP CREDENTIAL Saddles;

GO

See Also
sys.credentials (Transact-SQL)
CREATE CREDENTIAL (Transact-SQL)
ALTER CREDENTIAL (Transact-SQL)
sys.credentials (Transact-SQL)

DROP CRYPTOGRAPHIC PROVIDER
Drops a cryptographic provider within SQL Server.

 Transact-SQL Syntax Conventions

Syntax

DROP CRYPTOGRAPHIC PROVIDER provider_name

Arguments
provider_name

Is the name of the Extensible Key Management provider.

Remarks
To delete an Extensible Key Management (EKM) provider, all sessions that use the provider must
be stopped.
An EKM provider can only be dropped if there are no credentials mapped to it.
If there are keys mapped to an EKM provider when it is dropped the GUIDs for the keys remain
stored in SQL Server. If a provider is created later with the same key GUIDs, the keys will be
reused.

Permissions

http://msdn.microsoft.com/en-us/library/c8df6022-e0b4-46b8-9670-3f86938d3177(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea48cf80-904a-4273-a950-6d35b1b0a1b6(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 702

Requires CONTROL permission on the symmetric key.

Examples
The following example drops a cryptographic provider called SecurityProvider.

/* First, disable provider to perform the upgrade.

This will terminate all open cryptographic sessions. */

ALTER CRYPTOGRAPHIC PROVIDER SecurityProvider

SET ENABLED = OFF;

GO

/* Drop the provider. */

DROP CRYPTOGRAPHIC PROVIDER SecurityProvider;

GO

See Also
Understanding Extensible Key Management (EKM)
CREATE CRYPTOGRAPHIC PROVIDER (Transact-SQL)
ALTER CRYPTOGRAPHIC PROVIDER (Transact-SQL)
CREATE SYMMETRIC KEY (Transact-SQL)

DROP DATABASE
Removes one or more databases or database snapshots from an instance of SQL Server.

 Transact-SQL Syntax Conventions

Syntax

DROP DATABASE { database_name | database_snapshot_name } [,...n]
[;]

Arguments
database_name

Specifies the name of the database to be removed. To display a list of databases, use the
sys.databases catalog view.

database_snapshot_name

Specifies the name of a database snapshot to be removed.

Remarks
To use DROP DATABASE, the database context of the connection cannot be the same as the
database or database snapshot to be dropped.

http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�

 703

The DROP DATABASE statement must run in autocommit mode and is not allowed in an explicit
or implicit transaction. Autocommit mode is the default transaction management mode.

Dropping a Database
System databases cannot be dropped.
Dropping a database deletes the database from an instance of SQL Server and deletes the
physical disk files used by the database. If the database or any one of its files is offline when it is
dropped, the disk files are not deleted. These files can be deleted manually by using Windows
Explorer. To remove a database from the current server without deleting the files from the file
system, use sp_detach_db.
You cannot drop a database currently being used. This means open for reading or writing by
any user. To remove users from the database, use ALTER DATABASE to set the database to
SINGLE_USER.
Any database snapshots on a database must be dropped before the database can be dropped.
If the database is involved in log shipping, remove log shipping before dropping the database.
For more information, see Log Shipping Overview.
A database can be dropped regardless of its state: offline, read-only, suspect, and so on. To
display the current state of a database, use the sys.databases catalog view.
A dropped database can be re-created only by restoring a backup. Database snapshots cannot
be backed up and, therefore, cannot be restored.
When a database is dropped, the master database should be backed up.

Dropping a Database Snapshot
Dropping a database snapshot deletes the database snapshot from an instance of SQL Server
and deletes the physical NTFS File System sparse files used by the snapshot. For information
about using sparse files by database snapshots, see Database Snapshots (SQL Server).
Dropping a database snapshot clears the plan cache for the instance of SQL Server. Clearing the
plan cache causes a recompilation of all subsequent execution plans and can cause a sudden,
temporary decrease in query performance. For each cleared cachestore in the plan cache, the
SQL Server error log contains the following informational message: "SQL Server has encountered
%d occurrence(s) of cachestore flush for the '%s' cachestore (part of plan cache) due to some
database maintenance or reconfigure operations". This message is logged every five minutes as
long as the cache is flushed within that time interval.

Dropping a Database Used in Replication
To drop a database published for transactional replication, or published or subscribed to merge
replication, you must first remove replication from the database. If a database is damaged or
replication cannot first be removed or both, in most cases you still can drop the database by
using ALTER DATABASE to set the database offline and then dropping it.

Permissions

http://msdn.microsoft.com/en-us/library/30468a7c-4225-4d35-aa4a-ffa7da4f1282(SQL.110)�
http://msdn.microsoft.com/en-us/library/abcb1407-ff78-4c76-b02e-509c86574462(SQL.110)�
http://msdn.microsoft.com/en-us/library/55da6b94-3a4b-4bae-850f-4bf7f6e918ca(SQL.110)�
http://msdn.microsoft.com/en-us/library/660e909f-61eb-406b-bbce-8864dd629ba0(SQL.110)�
http://msdn.microsoft.com/en-us/library/00179314-f23e-47cb-a35c-da6f180f86d3(SQL.110)�

 704

Requires the CONTROL permission on the database, or ALTER ANY DATABASE permission, or
membership in the db_owner fixed database role.

Examples

A. Dropping a single database
The following example removes the Sales database.

DROP DATABASE Sales;

B. Dropping multiple databases
The following example removes each of the listed databases.

DROP DATABASE Sales, NewSales;

C. Dropping a database snapshot
The following example drops a database snapshot, named sales_snapshot0600, without
affecting the source database.

DROP DATABASE sales_snapshot0600;

See Also
ALTER DATABASE
CREATE DATABASE
EVENTDATA (Transact-SQL)
sys.databases (Transact-SQL)

DROP DATABASE AUDIT SPECIFICATION
Drops a database audit specification object using the SQL Server Audit feature. For more
information, see Understanding SQL Server Audit.

 Transact-SQL Syntax Conventions

Syntax

DROP DATABASE AUDIT SPECIFICATION audit_specification_name
[;]

Arguments
audit_specification_name

Name of an existing audit specification object.

Remarks
A DROP DATABASE AUDIT SPECIFICATION removes the metadata for the audit specification, but
not the audit data collected before the DROP command was issued. You must set the state of a

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 705

database audit specification to OFF using ALTER DATABASE AUDIT SPECIFICATION before it
can be dropped.

Permissions
Users with the ALTER ANY DATABASE AUDIT permission can drop database audit
specifications.

Examples

A. Dropping a Database Audit Specification
The following example drops an audit called HIPAA_Audit_DB_Specification.

DROP DATABASE AUDIT SPECIFICATION HIPAA_Audit_DB_Specification;

GO

For a full example of creating an audit, see Understanding SQL Server Audit.

See Also
CREATE SERVER AUDIT (Transact-SQL)
ALTER SERVER AUDIT (Transact-SQL)
DROP SERVER AUDIT (Transact-SQL)
CREATE SERVER AUDIT SPECIFICATION (Transact-SQL)
ALTER SERVER AUDIT SPECIFICATION (Transact-SQL)
DROP SERVER AUDIT SPECIFICATION (Transact-SQL)
CREATE DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER AUTHORIZATION (Transact-SQL)
fn_get_audit_file (Transact-SQL)
sys.server_audits (Transact-SQL)
sys.server_file_audits (Transact-SQL)
sys.server_audit_specifications (Transact-SQL)
sys.server_audit_specifications_details (Transact-SQL)
sys.database_ audit_specifications (Transact-SQL)
sys.database_audit_specification_details (Transact-SQL)
sys.dm_server_audit_status
sys.dm_audit_actions
sys.dm_audit_class_type_map
Create a Server Audit and Server Audit Specification

http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2c4a000-1127-46a8-b1e9-947fd1136e1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/553288a0-be57-4d79-ae53-b7cbd065e127(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa496c6c-2a54-4fda-a238-db490c6b3afd(SQL.110)�
http://msdn.microsoft.com/en-us/library/792724dc-402e-4b17-9f2c-029d910bf88e(SQL.110)�
http://msdn.microsoft.com/en-us/library/bf80e5c6-0588-4eb7-86ff-aa7c73461335(SQL.110)�
http://msdn.microsoft.com/en-us/library/03fc60a9-1696-4109-b15e-a50046310859(SQL.110)�
http://msdn.microsoft.com/en-us/library/4aa32d54-2ae1-437e-bbaa-7f1df1404b44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b987c2b9-998a-4a5f-a82d-280dc6963cbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/e10b5431-1bb0-47ca-8fd0-c04bd73a4410(SQL.110)�
http://msdn.microsoft.com/en-us/library/6624b1ab-7ec8-44ce-8292-397edf644394(SQL.110)�

 706

DROP DATABASE ENCRYPTION KEY
Drops a database encryption key that is used in transparent database encryption. For more
information about transparent database encryption, see Understanding Transparent Data
Encryption (TDE).

 Transact-SQL Syntax Conventions

Syntax

DROP DATABASE ENCRYPTION KEY

Remarks
If the database is encrypted, you must first remove encryption from the database by using the
ALTER DATABASE statement. Wait for decryption to complete before removing the database
encryption key. For more information about the ALTER DATABASE statement, see ALTER
DATABASE SET Options (Transact-SQL). To view the state of the database, use the
sys.dm_database_encryption_keys dynamic management view.

Permissions
Requires CONTROL permission on the database.

Examples
The following example removes the database encryption and drops the database encryption
key.
ALTER DATABASE AdventureWorks2012;

SET ENCRYPTION OFF;

GO

/* Wait for decryption operation to complete, look for a

value of 1 in the query below. */

SELECT encryption_state

FROM sys.dm_database_encryption_keys;

GO

USE AdventureWorks2012;

GO

DROP DATABASE ENCRYPTION KEY;

GO

See Also
Understanding Transparent Data Encryption (TDE)
SQL Server Encryption

http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/56fee8f3-06eb-4fff-969e-abeaa0c4b8e4(SQL.110)�
http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/ead0150e-4943-4ad5-84c8-36f85c7278f4(SQL.110)�

 707

SQL Server and Database Encryption Keys (Database Engine)
Encryption Hierarchy
ALTER DATABASE SET Options (Transact-SQL)
CREATE DATABASE ENCRYPTION KEY (Transact-SQL)
ALTER DATABASE ENCRYPTION KEY (Transact-SQL)
sys.dm_database_encryption_keys

DROP DEFAULT
Removes one or more user-defined defaults from the current database.

DROP DEFAULT will be removed in the next version of Microsoft SQL Server. Do not use
DROP DEFAULT in new development work, and plan to modify applications that currently
use them. Instead, use default definitions that you can create by using the DEFAULT
keyword of ALTER TABLE or CREATE TABLE.

 Transact-SQL Syntax Conventions

Syntax

DROP DEFAULT { [schema_name .] default_name } [,...n] [;]

Arguments
schema_name

Is the name of the schema to which the default belongs.

default_name

Is the name of an existing default. To see a list of defaults that exist, execute sp_help.
Defaults must comply with the rules for identifiers. Specifying the default schema name is
optional.

Remarks
Before dropping a default, unbind the default by executing sp_unbindefault if the default is
currently bound to a column or an alias data type.
After a default is dropped from a column that allows for null values, NULL is inserted in that
position when rows are added and no value is explicitly supplied. After a default is dropped from
a NOT NULL column, an error message is returned when rows are added and no value is
explicitly supplied. These rows are added later as part of the typical INSERT statement behavior.

Permissions
To execute DROP DEFAULT, at a minimum, a user must have ALTER permission on the schema
to which the default belongs.

Important

http://msdn.microsoft.com/en-us/library/15c0a5e8-9177-484c-ae75-8c552dc0dac0(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/56fee8f3-06eb-4fff-969e-abeaa0c4b8e4(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 708

Examples

A. Dropping a default
If a default has not been bound to a column or to an alias data type, it can just be dropped
using DROP DEFAULT. The following example removes the user-created default named
datedflt.

USE AdventureWorks2012;

GO

IF EXISTS (SELECT name FROM sys.objects

 WHERE name = 'datedflt'

 AND type = 'D')

 DROP DEFAULT datedflt

GO

B. Dropping a default that has been bound to a column
The following example unbinds the default associated with the EmergencyContactPhone
column of the Contact table and then drops the default named phonedflt.

USE AdventureWorks2012;

GO

IF EXISTS (SELECT name FROM sys.objects

 WHERE name = 'phonedflt'

 AND type = 'D')

 BEGIN

 EXEC sp_unbindefault 'Person.Contact.Phone'

 DROP DEFAULT phonedflt

 END

GO

See Also
CREATE DEFAULT
sp_helptext
sp_help
sp_unbindefault

DROP ENDPOINT
Drops an existing endpoint.

http://msdn.microsoft.com/en-us/library/24135456-05f0-427c-884b-93cf38dd47a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/913cd5d4-39a3-4a4b-a926-75ed32878884(SQL.110)�
http://msdn.microsoft.com/en-us/library/c96a6c5e-f3ca-4c1e-b64b-0d8ef6986af8(SQL.110)�

 709

 Transact-SQL Syntax Conventions

Syntax

DROP ENDPOINT endPointName

Arguments
endPointName

Is the name of the endpoint to be removed.

Remarks
The ENDPOINT DDL statements cannot be executed inside a user transaction.

Permissions
User must be a member of the sysadmin fixed server role, the owner of the endpoint, or have
been granted CONTROL permission on the endpoint.

Examples
The following example removes a previously created endpoint called sql_endpoint.

DROP ENDPOINT sql_endpoint;

See Also
CREATE ENDPOINT (Transact-SQL)
ALTER ENDPOINT (Transact-SQL)
EVENTDATA (Transact-SQL)

DROP EVENT NOTIFICATION
Removes an event notification trigger from the current database.

 Transact-SQL Syntax Conventions

Syntax

DROP EVENT NOTIFICATION notification_name [,...n]
ON { SERVER | DATABASE | QUEUE queue_name }
[;]

Arguments
notification_name

Is the name of the event notification to remove. Multiple event notifications can be specified.
To see a list of currently created event notifications, use sys.events (Transact-SQL).

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/136a76ee-2b35-4418-ab46-fda2d51f7d99(SQL.110)�

 710

SERVER

Indicates the scope of the event notification applies to the current server. SERVER must be
specified if it was specified when the event notification was created.

DATABASE

Indicates the scope of the event notification applies to the current database. DATABASE must
be specified if it was specified when the event notification was created.

QUEUE queue_name

Indicates the scope of the event notification applies to the queue specified by queue_name.
QUEUE must be specified if it was specified when the event notification was created.
queue_name is the name of the queue and must also be specified.

Remarks
If an event notification fires within a transaction and is dropped within the same transaction, the
event notification instance is sent, and then the event notification is dropped.

Permissions
To drop an event notification that is scoped at the database level, at a minimum, a user must be
the owner of the event notification or have ALTER ANY DATABASE EVENT NOTIFICATION
permission in the current database.
To drop an event notification that is scoped at the server level, at a minimum, a user must be the
owner of the event notification or have ALTER ANY EVENT NOTIFICATION permission in the
server.
To drop an event notification on a specific queue, at a minimum, a user must be the owner of
the event notification or have ALTER permission on the parent queue.

Examples
The following example creates a database-scoped event notification, then drops it:
USE AdventureWorks2012;

GO

CREATE EVENT NOTIFICATION NotifyALTER_T1

ON DATABASE

FOR ALTER_TABLE

TO SERVICE 'NotifyService',

 '8140a771-3c4b-4479-8ac0-81008ab17984';

GO

DROP EVENT NOTIFICATION NotifyALTER_T1

ON DATABASE;

 711

See Also
CREATE EVENT NOTIFICATION
EVENTDATA (Transact-SQL)
sys.event_notifications (Transact-SQL)
sys.events (Transact-SQL)

DROP EVENT SESSION
Drops an event session.

 Transact-SQL Syntax Conventions

Syntax

DROP EVENT SESSION event_session_name
ON SERVER

Arguments
event_session_name

Is the name of an existing event session.

Remarks
When you drop an event session, all configuration information, such as targets and session
parameters, is completely removed.

Permissions
Requires the ALTER ANY EVENT SESSION permission.

Examples
The following example shows how to drop an event session.

DROP EVENT SESSION evt_spin_lock_diagnosis

ON SERVER

See Also
CREATE EVENT SESSION (Transact-SQL)
ALTER EVENT SESSION (Transact-SQL)
sys.server_event_sessions

DROP FULLTEXT CATALOG
Removes a full-text catalog from a database. You must drop all full-text indexes associated with
the catalog before you drop the catalog.

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/136a76ee-2b35-4418-ab46-fda2d51f7d99(SQL.110)�
http://msdn.microsoft.com/en-us/library/f245a97a-80fc-43fb-a6e4-139420c9a47a(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/796f3093-6a3e-4d67-8da6-b9810ae9ef5b(SQL.110)�

 712

 Transact-SQL Syntax Conventions

Syntax

DROP FULLTEXT CATALOG catalog_name

Arguments
catalog_name

Is the name of the catalog to be removed. If catalog_name does not exist, Microsoft SQL
Server returns an error and does not perform the DROP operation. The filegroup of the full-
text catalog must not be marked OFFLINE or READONLY for the command to succeed.

Permissions
User must have DROP permission on the full-text catalog or be a member of the db_owner, or
db_ddladmin fixed database roles.

See Also
sys.fulltext_catalogs (Transact-SQL)
 Full-Text Search
CREATE FULLTEXT CATALOG
Full-Text Search

DROP FULLTEXT INDEX
Removes a full-text index from a specified table or indexed view.

 Transact-SQL Syntax Conventions

Syntax

DROP FULLTEXT INDEX ON table_name

Arguments
table_name

Is the name of the table or indexed view containing the full-text index to be removed.

Remarks
You do not need to drop all columns from the full-text index before using the DROP FULLTEXT
INDEX command.

Permissions
The user must have ALTER permission on the table or indexed view, or be a member of the
sysadmin fixed server role, or db_owner or db_ddladmin fixed database roles.

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/cf1489ff-4819-41fa-a62a-4ed797a16207(SQL.110)�
http://msdn.microsoft.com/en-us/library/a0ce315d-f96d-4e5d-b4eb-ff76811cab75(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 713

Examples
The following example drops the full-text index that exists on the JobCandidate table.

USE AdventureWorks;

GO

DROP FULLTEXT INDEX ON HumanResources.JobCandidate;

GO

See Also
sys.fulltext_indexes (Transact-SQL)
Full-Text Search
CREATE FULLTEXT INDEX
Full-Text Search

DROP FULLTEXT STOPLIST
Drops a full-text stoplist from the database.

 Transact-SQL Syntax Conventions

CREATE FULLTEXT STOPLIST is supported only for compatibility level 100. For
compatibility levels 80 and 90, the system stoplist is always assigned to the database.

Syntax

DROP FULLTEXT STOPLIST stoplist_name
;

Arguments
stoplist_name

Is the name of the full-text stoplist to drop from the database.

Remarks
DROP FULLTEXT STOPLIST fails if any full-text indexes refer to the full-text stoplist being
dropped.

Permissions
To drop a stoplist requires having DROP permission on the stoplist or membership in the
db_owner or db_ddladmin fixed database roles.

Examples
The following example drops a full-text stoplist named myStoplist.

Important

http://msdn.microsoft.com/en-us/library/7fc10fdc-370f-4927-bba0-b76108a7508e(SQL.110)�
http://msdn.microsoft.com/en-us/library/a0ce315d-f96d-4e5d-b4eb-ff76811cab75(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 714

DROP FULLTEXT STOPLIST myStoplist;

See Also
ALTER FULLTEXT STOPLIST (Transact-SQL)
CREATE FULLTEXT STOPLIST (Transact-SQL)
sys.fulltext_stoplists (Transact-SQL)
sys.fulltext_stopwords (Transact-SQL)

DROP FUNCTION
Removes one or more user-defined functions from the current database. User-defined functions
are created by using CREATE FUNCTION and modified by using ALTER FUNCTION.

 Transact-SQL Syntax Conventions

Syntax

DROP FUNCTION { [schema_name.] function_name } [,...n]

Arguments
schema_name

Is the name of the schema to which the user-defined function belongs.

function_name

Is the name of the user-defined function or functions to be removed. Specifying the schema
name is optional. The server name and database name cannot be specified.

Remarks
DROP FUNCTION will fail if there are Transact-SQL functions or views in the database that
reference this function and were created by using SCHEMABINDING, or if there are computed
columns, CHECK constraints, or DEFAULT constraints that reference the function.
DROP FUNCTION will fail if there are computed columns that reference this function and have
been indexed.

Permissions
To execute DROP FUNCTION, at a minimum, a user must have ALTER permission on the schema
to which the function belongs, or CONTROL permission on the function.

Examples

A. Dropping a function
The following example drops the fn_SalesByStore user-defined function from the Sales
schema in the AdventureWorks sample database. To create this function, see Example B in
User-defined Functions (Database Engine).

http://msdn.microsoft.com/en-us/library/eb69fb8f-f6d9-446e-83c0-67afd05dfba0(SQL.110)�
http://msdn.microsoft.com/en-us/library/79787bb7-d729-448e-b56a-0a467bbb304f(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 715

USE AdventureWorks2012;

GO

IF OBJECT_ID (N'Sales.fn_SalesByStore', N'IF') IS NOT NULL

 DROP FUNCTION Sales.fn_SalesByStore;

GO

See Also
ALTER FUNCTION
CREATE FUNCTION
OBJECT_ID (Transact-SQL)
EVENTDATA (Transact-SQL)
sys.sql_modules
sys.parameters

DROP INDEX

The syntax defined in <drop_backward_compatible_index> will be removed in a future
version of Microsoft SQL Server. Avoid using this syntax in new development work, and
plan to modify applications that currently use the feature. Use the syntax specified under
<drop_relational_or_xml_index> instead. XML indexes cannot be dropped using
backward compatible syntax.

Removes one or more relational, spatial, filtered, or XML indexes from the current database. You
can drop a clustered index and move the resulting table to another filegroup or partition
scheme in a single transaction by specifying the MOVE TO option.
The DROP INDEX statement does not apply to indexes created by defining PRIMARY KEY or
UNIQUE constraints. To remove the constraint and corresponding index, use ALTER TABLE with
the DROP CONSTRAINT clause.

 Transact-SQL Syntax Conventions

Syntax

DROP INDEX
{ <drop_relational_or_xml_or_spatial_index> [,...n]
| <drop_backward_compatible_index> [,...n]
}

<drop_relational_or_xml_or_spatial_index> ::=

Important

http://msdn.microsoft.com/en-us/library/f89286db-440f-4218-a828-30881ce3077a(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/23d3ccd2-f356-4d89-a2cd-bee381243f99(SQL.110)�
http://msdn.microsoft.com/en-us/library/24e2764b-c8e5-4322-97a4-7407d8b8a92b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 716

 index_name ON <object>
 [WITH (<drop_clustered_index_option> [,...n])]

<drop_backward_compatible_index> ::=
 [owner_name.] table_or_view_name.index_name

<object> ::=
{
 [database_name. [schema_name] . | schema_name.]
 table_or_view_name
}

<drop_clustered_index_option> ::=
{
 MAXDOP = max_degree_of_parallelism
 | ONLINE = { ON | OFF }
 | MOVE TO { partition_scheme_name (column_name)
 | filegroup_name
 | "default"
 }
 [FILESTREAM_ON { partition_scheme_name
 | filestream_filegroup_name
 | "default" }]
}

Arguments
index_name

Is the name of the index to be dropped.

database_name

Is the name of the database.

schema_name

Is the name of the schema to which the table or view belongs.

table_or_view_name

Is the name of the table or view associated with the index. Spatial indexes are supported only
on tables.

To display a report of the indexes on an object, use the sys.indexes catalog view.

http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�

 717

<drop_clustered_index_option>

Controls clustered index options. These options cannot be used with other index types.

MAXDOP = max_degree_of_parallelism

Overrides the max degree of parallelism configuration option for the duration of the index
operation. For more information, see Configure the max degree of parallelism
Server Configuration Option. Use MAXDOP to limit the number of processors used in a
parallel plan execution. The maximum is 64 processors.

Important
MAXDOP is not allowed for spatial indexes or XML indexes.

max_degree_of_parallelism can be:

1

Suppresses parallel plan generation.

>1

Restricts the maximum number of processors used in a parallel index operation to the
specified number.

0 (default)

Uses the actual number of processors or fewer based on the current system workload.

For more information, see Configuring Parallel Index Operations.

Note
Parallel index operations not available in every edition of Microsoft SQL Server. For a list of features
that are supported by the editions of SQL Server, see Features Supported by the Editions of
SQL Server 2012.

ONLINE = ON | OFF

Specifies whether underlying tables and associated indexes are available for queries and data
modification during the index operation. The default is OFF.

ON

Long-term table locks are not held. This allows queries or updates to the underlying table
to continue.

OFF

Table locks are applied and the table is unavailable for the duration of the index operation.

The ONLINE option can only be specified when you drop clustered indexes. For more
information, see the Remarks section.

Note
Online index operations are not available in every edition of Microsoft SQL Server. For a list of features
that are supported by the editions of SQL Server, see Features Supported by the Editions of

http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032(SQL.110)�
http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�

 718

SQL Server 2012.

MOVE TO { partition_scheme_name (column_name) | filegroup_name | "default"

Specifies a location to move the data rows that currently are in the leaf level of the clustered
index. The data is moved to the new location in the form of a heap. You can specify either a
partition scheme or filegroup as the new location, but the partition scheme or filegroup must
already exist. MOVE TO is not valid for indexed views or nonclustered indexes. If a partition
scheme or filegroup is not specified, the resulting table will be located in the same partition
scheme or filegroup as was defined for the clustered index.

If a clustered index is dropped by using MOVE TO, any nonclustered indexes on the base
table are rebuilt, but they remain in their original filegroups or partition schemes. If the base
table is moved to a different filegroup or partition scheme, the nonclustered indexes are not
moved to coincide with the new location of the base table (heap). Therefore, even if the
nonclustered indexes were previously aligned with the clustered index, they might no longer
be aligned with the heap. For more information about partitioned index alignment, see
Partitioned Tables and Indexes.

partition_scheme_name (column_name)

Specifies a partition scheme as the location for the resulting table. The partition scheme
must have already been created by executing either CREATE PARTITION SCHEME or
ALTER PARTITION SCHEME. If no location is specified and the table is partitioned, the
table is included in the same partition scheme as the existing clustered index.

The column name in the scheme is not restricted to the columns in the index definition.
Any column in the base table can be specified.

filegroup_name

Specifies a filegroup as the location for the resulting table. If no location is specified and
the table is not partitioned, the resulting table is included in the same filegroup as the
clustered index. The filegroup must already exist.

"default"

Specifies the default location for the resulting table.

Note
In this context, default is not a keyword. It is an identifier for the default filegroup and must be
delimited, as in MOVE TO "default" or MOVE TO [default]. If "default" is specified, the
QUOTED_IDENTIFIER option must be set ON for the current session. This is the default setting. For
more information, see SET QUOTED_IDENTIFIER (Transact-SQL).

FILESTREAM_ON { partition_scheme_name | filestream_filegroup_name | "default" }

Specifies a location to move the FILESTREAM table that currently is in the leaf level of the
clustered index. The data is moved to the new location in the form of a heap. You can specify
either a partition scheme or filegroup as the new location, but the partition scheme or
filegroup must already exist. FILESTREAM ON is not valid for indexed views or nonclustered
indexes. If a partition scheme is not specified, the data will be located in the same partition

http://msdn.microsoft.com/en-us/library/cc5bf181-18a0-44d5-8bd7-8060d227c927(SQL.110)�
http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)

 719

scheme as was defined for the clustered index.

partition_scheme_name

Specifies a partition scheme for the FILESTREAM data. The partition scheme must have
already been created by executing either CREATE PARTITION SCHEME or ALTER
PARTITION SCHEME. If no location is specified and the table is partitioned, the table is
included in the same partition scheme as the existing clustered index.

If you specify a partition scheme for MOVE TO, you must use the same partition scheme
for FILESTREAM ON.

filestream_filegroup_name

Specifies a FILESTREAM filegroup for FILESTREAM data. If no location is specified and the
table is not partitioned, the data is included in the default FILESTREAM filegroup.

"default"

Specifies the default location for the FILESTREAM data.

Note
In this context, default is not a keyword. It is an identifier for the default filegroup and must be
delimited, as in MOVE TO "default" or MOVE TO [default]. If "default" is specified, the
QUOTED_IDENTIFIER option must be ON for the current session. This is the default setting. For
more information, see SET QUOTED_IDENTIFIER (Transact-SQL).

Remarks
When a nonclustered index is dropped, the index definition is removed from metadata and the
index data pages (the B-tree) are removed from the database files. When a clustered index is
dropped, the index definition is removed from metadata and the data rows that were stored in
the leaf level of the clustered index are stored in the resulting unordered table, a heap. All the
space previously occupied by the index is regained. This space can then be used for any
database object.
An index cannot be dropped if the filegroup in which it is located is offline or set to read-only.
When the clustered index of an indexed view is dropped, all nonclustered indexes and auto-
created statistics on the same view are automatically dropped. Manually created statistics are
not dropped.
The syntax table_or_view_name.index_name is maintained for backward compatibility. An XML
index or spatial index cannot be dropped by using the backward compatible syntax.
When indexes with 128 extents or more are dropped, the Database Engine defers the actual
page deallocations, and their associated locks, until after the transaction commits.
Sometimes indexes are dropped and re-created to reorganize or rebuild the index, such as to
apply a new fill factor value or to reorganize data after a bulk load. To do this, using ALTER
INDEXis more efficient, especially for clustered indexes. ALTER INDEX REBUILD has optimizations
to prevent the overhead of rebuilding the nonclustered indexes.

Using Options with DROP INDEX

http://msdn.microsoft.com/en-us/library/10f66b71-9241-4a3a-9292-455ae7252565(SQL.110)�

 720

You can set the following index options when you drop a clustered index: MAXDOP, ONLINE,
and MOVE TO.
Use MOVE TO to drop the clustered index and move the resulting table to another filegroup or
partition scheme in a single transaction.
When you specify ONLINE = ON, queries and modifications to the underlying data and
associated nonclustered indexes are not blocked by the DROP INDEX transaction. Only one
clustered index can be dropped online at a time. For a complete description of the ONLINE
option, see CREATE INDEX (Transact-SQL).
You cannot drop a clustered index online if the index is disabled on a view, or contains text,
ntext, image, varchar(max), nvarchar(max), varbinary(max), or xml columns in the leaf-level
data rows.
Using the ONLINE = ON and MOVE TO options requires additional temporary disk space.
After an index is dropped, the resulting heap appears in the sys.indexes catalog view with NULL
in the name column. To view the table name, join sys.indexes with sys.tables on object_id. For
an example query, see example D.
On multiprocessor computers that are running SQL Server 2005 Enterprise Edition or later,
DROP INDEX may use more processors to perform the scan and sort operations associated with
dropping the clustered index, just like other queries do. You can manually configure the number
of processors that are used to run the DROP INDEX statement by specifying the MAXDOP index
option. For more information, see Configuring Parallel Index Operations.
When a clustered index is dropped, the corresponding heap partitions retain their data
compression setting unless the partitioning scheme is modified. If the partitioning scheme is
changed, all partitions are rebuilt to an uncompressed state (DATA_COMPRESSION = NONE). To
drop a clustered index and change the partitioning scheme requires the following two steps:
1. Drop the clustered index.
2. Modify the table by using an ALTER TABLE ... REBUILD ... option specifying the compression

option.
When a clustered index is dropped OFFLINE, only the upper levels of clustered indexes are
removed; therefore, the operation is quite fast. When a clustered index is dropped ONLINE, SQL
Server rebuilds the heap two times, once for step 1 and once for step 2. For more information
about data compression, see Creating Compressed Tables and indexes.

XML Indexes
Options cannot be specified when you drop an XML index. Also, you cannot use the
table_or_view_name.index_name syntax. When a primary XML index is dropped, all associated
secondary XML indexes are automatically dropped. For more information, see Indexes on xml
Type columns.

Spatial Indexes
Spatial indexes are supported only on tables. When you drop a spatial index, you cannot specify
any options or use .index_name. The correct syntax is as follows:

http://msdn.microsoft.com/en-us/library/8ec8c71e-5fc1-443a-92da-136ee3fc7f88(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f33e686-e115-4687-bd39-a00c48646513(SQL.110)�
http://msdn.microsoft.com/en-us/library/f5c9209d-b3f3-4543-b30b-01365a5e7333(SQL.110)�
http://msdn.microsoft.com/en-us/library/f5c9209d-b3f3-4543-b30b-01365a5e7333(SQL.110)�

 721

DROP INDEX spatial_index_name ON spatial_table_name;
For more information about spatial indexes, see Working with Spatial Indexes.

Permissions
To execute DROP INDEX, at a minimum, ALTER permission on the table or view is required. This
permission is granted by default to the sysadmin fixed server role and the db_ddladmin and
db_owner fixed database roles.

Examples

A. Dropping an index
The following example deletes the index IX_ProductVendor_VendorID on the ProductVendor
table.
USE AdventureWorks2012;

GO

DROP INDEX IX_ProductVendor_BusinessEntityID

 ON Purchasing.ProductVendor;

GO

B. Dropping multiple indexes
The following example deletes two indexes in a single transaction.
USE AdventureWorks2012;

GO

DROP INDEX

 IX_PurchaseOrderHeader_EmployeeID ON Purchasing.PurchaseOrderHeader,

 IX_Address_StateProvinceID ON Person.Address;

GO

C. Dropping a clustered index online and setting the MAXDOP option
The following example deletes a clustered index with the ONLINE option set to ON and MAXDOP
set to 8. Because the MOVE TO option was not specified, the resulting table is stored in the
same filegroup as the index.

This example can be executed only in SQL Server 2005 Enterprise Edition or later.
USE AdventureWorks2012;

GO

DROP INDEX AK_BillOfMaterials_ProductAssemblyID_ComponentID_StartDate

 ON Production.BillOfMaterials WITH (ONLINE = ON, MAXDOP = 2);

GO

Note

http://msdn.microsoft.com/en-us/library/b1ae7b78-182a-459e-ab28-f743e43f8293(SQL.110)�

 722

D. Dropping a clustered index online and moving the table to a new filegroup
The following example deletes a clustered index online and moves the resulting table (heap) to
the filegroup NewGroup by using the MOVE TO clause. The sys.indexes, sys.tables, and
sys.filegroups catalog views are queried to verify the index and table placement in the
filegroups before and after the move.
USE AdventureWorks2012;

GO

--Create a clustered index on the PRIMARY filegroup if the index does not
exist.

IF NOT EXISTS (SELECT name FROM sys.indexes WHERE name =

 N'AK_BillOfMaterials_ProductAssemblyID_ComponentID_StartDate')

 CREATE UNIQUE CLUSTERED INDEX

 AK_BillOfMaterials_ProductAssemblyID_ComponentID_StartDate

 ON Production.BillOfMaterials (ProductAssemblyID, ComponentID,

 StartDate)

 ON 'PRIMARY';

GO

-- Verify filegroup location of the clustered index.

SELECT t.name AS [Table Name], i.name AS [Index Name], i.type_desc,

 i.data_space_id, f.name AS [Filegroup Name]

FROM sys.indexes AS i

 JOIN sys.filegroups AS f ON i.data_space_id = f.data_space_id

 JOIN sys.tables as t ON i.object_id = t.object_id

 AND i.object_id = OBJECT_ID(N'Production.BillOfMaterials','U')

GO

--Create filegroup NewGroup if it does not exist.

IF NOT EXISTS (SELECT name FROM sys.filegroups

 WHERE name = N'NewGroup')

 BEGIN

 ALTER DATABASE AdventureWorks2012

 ADD FILEGROUP NewGroup;

 ALTER DATABASE AdventureWorks2012

 ADD FILE (NAME = File1,

 FILENAME = 'C:\Program Files\Microsoft SQL
Server\MSSQL10.MSSQLSERVER\MSSQL\DATA\File1.ndf')

 TO FILEGROUP NewGroup;

 723

 END

GO

--Verify new filegroup

SELECT * from sys.filegroups;

GO

-- Drop the clustered index and move the BillOfMaterials table to

-- the Newgroup filegroup.

-- Set ONLINE = OFF to execute this example on editions other than Enterprise
Edition.

DROP INDEX AK_BillOfMaterials_ProductAssemblyID_ComponentID_StartDate

 ON Production.BillOfMaterials

 WITH (ONLINE = ON, MOVE TO NewGroup);

GO

-- Verify filegroup location of the moved table.

SELECT t.name AS [Table Name], i.name AS [Index Name], i.type_desc,

 i.data_space_id, f.name AS [Filegroup Name]

FROM sys.indexes AS i

 JOIN sys.filegroups AS f ON i.data_space_id = f.data_space_id

 JOIN sys.tables as t ON i.object_id = t.object_id

 AND i.object_id = OBJECT_ID(N'Production.BillOfMaterials','U');

GO

E. Dropping a PRIMARY KEY constraint online
Indexes that are created as the result of creating PRIMARY KEY or UNIQUE constraints cannot be
dropped by using DROP INDEX. They are dropped using the ALTER TABLE DROP CONSTRAINT
statement. For more information, see ALTER TABLE.
The following example deletes a clustered index with a PRIMARY KEY constraint by dropping the
constraint. The ProductCostHistory table has no FOREIGN KEY constraints. If it did, those
constraints would have to be removed first.
USE AdventureWorks2012;

GO

-- Set ONLINE = OFF to execute this example on editions other than Enterprise
Edition.

ALTER TABLE Production.TransactionHistoryArchive

DROP CONSTRAINT PK_TransactionHistoryArchive_TransactionID

WITH (ONLINE = ON);

 724

GO

F. Dropping an XML index
The following example drops an XML index on the ProductModel table.
USE AdventureWorks2012;

GO

DROP INDEX PXML_ProductModel_CatalogDescription

 ON Production.ProductModel;

GO

G. Dropping a clustered index on a FILESTREAM table
The following example deletes a clustered index online and moves the resulting table (heap) and
FILESTREAM data to the MyPartitionScheme partition scheme by using both the MOVE TO
clause and the FILESTREAM ON clause.

USE MyDatabase;

GO

DROP INDEX PK_MyClusteredIndex

 ON dbo.MyTable

 MOVE TO MyPartitionScheme

 FILESTREAM_ON MyPartitionScheme;

GO

See Also
ALTER INDEX (Transact-SQL)
ALTER PARTITION SCHEME
ALTER TABLE
CREATE INDEX
CREATE PARTITION SCHEME
CREATE SPATIAL INDEX (Transact-SQL)
CREATE XML INDEX (Transact-SQL)
EVENTDATA (Transact-SQL)
sys.indexes
sys.tables
sys.filegroups
sp_spaceused

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c42eba1-c19f-4045-ac82-b97a5e994090(SQL.110)�
http://msdn.microsoft.com/en-us/library/9e851f72-1f8e-4515-a25d-152ebc12ed56(SQL.110)�
http://msdn.microsoft.com/en-us/library/c6253b48-29f5-4371-bfcd-3ef404060621(SQL.110)�

 725

DROP LOGIN
Removes a SQL Server login account.

 Transact-SQL Syntax Conventions

Syntax

DROP LOGIN login_name

Arguments
login_name

Specifies the name of the login to be dropped.

Remarks
A login cannot be dropped while it is logged in. A login that owns any securable, server-level
object, or SQL Server Agent job cannot be dropped.
You can drop a login to which database users are mapped; however, this will create orphaned
users. For more information, see EVENTDATA (Transact-SQL).

Permissions
Requires ALTER ANY LOGIN permission on the server.

Examples
The following example drops the login WilliJo.

DROP LOGIN WilliJo;

GO

See Also
CREATE LOGIN (Transact-SQL)
ALTER LOGIN (Transact-SQL)
EVENTDATA (Transact-SQL)

DROP MASTER KEY
Removes the master key from the current database.

 Transact-SQL Syntax Conventions

Syntax

DROP MASTER KEY

Arguments

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/11eefa97-a31f-4359-ba5b-e92328224133(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 726

This statement takes no arguments.

Remarks
The drop will fail if any private key in the database is protected by the master key.

Permissions
Requires CONTROL permission on the database.

Examples
The following example removes the master key for the AdventureWorks2012 database.

USE AdventureWorks2012;

DROP MASTER KEY;

GO

See Also
Encryption Hierarchy
OPEN MASTER KEY (Transact-SQL)
CLOSE MASTER KEY (Transact-SQL)
BACKUP MASTER KEY (Transact-SQL)
RESTORE MASTER KEY (Transact-SQL)
ALTER MASTER KEY (Transact-SQL)
Encryption Hierarchy

DROP MESSAGE TYPE
Drops an existing message type.

 Transact-SQL Syntax Conventions

Syntax

DROP MESSAGE TYPE message_type_name
[;]

Arguments
message_type_name

The name of the message type to delete. Server, database, and schema names cannot be
specified.

Permissions

http://msdn.microsoft.com/en-us/library/1674753e-ca1e-4913-9ba4-b442e7106121(SQL.110)�
http://msdn.microsoft.com/en-us/library/bb04ef7a-9f3a-437e-a6f9-ba0204082cb9(SQL.110)�
http://msdn.microsoft.com/en-us/library/0e25fe22-2536-4d7e-ba4a-1921e880f367(SQL.110)�
http://msdn.microsoft.com/en-us/library/70ceb951-31a2-4fc4-a0c1-e6c18eeb3ae7(SQL.110)�
http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 727

Permission for dropping a message type defaults to the owner of the message type, members of
the db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server
role.

Remarks
You cannot drop a message type if any contracts refer to the message type.

Examples
The following example deletes the //Adventure-Works.com/Expenses/SubmitExpense
message type from the database.
DROP MESSAGE TYPE [//Adventure-Works.com/Expenses/SubmitExpense] ;

See Also
EVENTDATA (Transact-SQL)
CREATE MESSAGE TYPE
EVENTDATA

DROP PARTITION FUNCTION
Removes a partition function from the current database. Partition functions are created by using
CREATE PARTITION FUNCTION and modified by using ALTER PARTITION FUNCTION.

 Transact-SQL Syntax Conventions

Syntax

DROP PARTITION FUNCTION partition_function_name [;]

Arguments
partition_function_name

Is the name of the partition function that is to be dropped.

Remarks
A partition function can be dropped only if there are no partition schemes currently using the
partition function. If there are partition schemes using the partition function, DROP PARTITION
FUNCTION returns an error.

Permissions
Any one of the following permissions can be used to execute DROP PARTITION FUNCTION:
• ALTER ANY DATASPACE permission. This permission defaults to members of the sysadmin

fixed server role and the db_owner and db_ddladmin fixed database roles.
• CONTROL or ALTER permission on the database in which the partition function was created.

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
www.Adventure-Works.com/Expenses/SubmitExpense
www.Adventure-Works.com/Expenses/SubmitExpense

 728

• CONTROL SERVER or ALTER ANY DATABASE permission on the server of the database in
which the partition function was created.

Examples
The following example assumes the partition function myRangePF has been created in the
current database.

DROP PARTITION FUNCTION myRangePF;

See Also
sys.index_columns (Transact-SQL)
ALTER PARTITION FUNCTION
EVENTDATA
sys.partition_functions
sys.partition_parameters
sys.partition_range_values
sys.partitions
sys.tables
sys.indexes
sys.index_columns

DROP PARTITION SCHEME
Removes a partition scheme from the current database. Partition schemes are created by using
CREATE PARTITION SCHEME and modified by using ALTER PARTITION SCHEME.

 Transact-SQL Syntax Conventions

Syntax

DROP PARTITION SCHEME partition_scheme_name [;]

Arguments
partition_scheme_name

Is the name of the partition scheme to be dropped.

Remarks
A partition scheme can be dropped only if there are no tables or indexes currently using the
partition scheme. If there are tables or indexes using the partition scheme, DROP PARTITION
SCHEME returns an error. DROP PARTITION SCHEME does not remove the filegroups
themselves.

Permissions

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/96515727-728b-4bea-804a-36ce915b8b75(SQL.110)�
http://msdn.microsoft.com/en-us/library/2012ed9d-3ea3-4c29-9b78-dfa54a392dce(SQL.110)�
http://msdn.microsoft.com/en-us/library/9aee483e-61f3-4613-bec6-f084161f45ac(SQL.110)�
http://msdn.microsoft.com/en-us/library/1c19e1b1-c925-4dad-a652-581692f4ab5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c42eba1-c19f-4045-ac82-b97a5e994090(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/211471aa-558a-475c-9b94-5913c143ed12(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 729

The following permissions can be used to execute DROP PARTITION SCHEME:
• ALTER ANY DATASPACE permission. This permission defaults to members of the sysadmin

fixed server role and the db_owner and db_ddladmin fixed database roles.
• CONTROL or ALTER permission on the database in which the partition scheme was created.
• CONTROL SERVER or ALTER ANY DATABASE permission on the server of the database in

which the partition scheme was created.

Examples
The following example drops the partition scheme myRangePS1 from the current database:

DROP PARTITION SCHEME myRangePS1;

See Also
sys.index_columns (Transact-SQL)
ALTER PARTITION SCHEME
sys.partition_schemes
EVENTDATA (Transact-SQL)
sys.data_spaces
sys.destination_data_spaces
sys.partitions
sys.tables
sys.indexes
sys.index_columns

DROP PROCEDURE
Removes one or more stored procedures or procedure groups from the current database in SQL
Server 2012.

 Transact-SQL Syntax Conventions

Syntax

DROP { PROC | PROCEDURE } { [schema_name.] procedure } [,...n]

Arguments
schema_name

The name of the schema to which the procedure belongs. A server name or database name
cannot be specified.

procedure

The name of the stored procedure or stored procedure group to be removed. Individual

http://msdn.microsoft.com/en-us/library/ed557fd5-12b0-4cef-9e4f-440b02e99d1f(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/f39d55fe-2c0f-472d-a77f-cebc6fea95b5(SQL.110)�
http://msdn.microsoft.com/en-us/library/92df932b-ad5c-43f8-81f4-b158823ab189(SQL.110)�
http://msdn.microsoft.com/en-us/library/1c19e1b1-c925-4dad-a652-581692f4ab5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c42eba1-c19f-4045-ac82-b97a5e994090(SQL.110)�
http://msdn.microsoft.com/en-us/library/066bd9ac-6554-4297-88fe-d740de1f94a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/211471aa-558a-475c-9b94-5913c143ed12(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 730

procedures within a numbered procedure group cannot be dropped; the whole procedure
group is dropped.

Best Practices
Before removing any stored procedure, check for dependent objects and modify these objects
accordingly. Dropping a stored procedure can cause dependent objects and scripts to fail when
these objects are not updated. For more information, see How to: View the dependencies of a
stored procedure (SQL Server Management Studio)

Metadata
To display a list of existing procedures, query the sys.objects catalog view. To display the
procedure definition, query the sys.sql_modules catalog view.

Security

Permissions
Requires CONTROL permission on the procedure, or ALTER permission on the schema to which
the procedure belongs, or membership in the db_ddladmin fixed server role.

Examples
The following example removes the dbo.uspMyProc stored procedure in the current database.

DROP PROCEDURE dbo.uspMyProc;

GO

The following example removes several stored procedures in the current database.

DROP PROCEDURE dbo.uspGetSalesbyMonth, dbo.uspUpdateSalesQuotes,

dbo.uspGetSalesByYear;

See Also
ALTER PROCEDURE
CREATE PROCEDURE
sys.objects
sys.sql_modules
How to: Delete a stored procedure (SQL Server Management Studio)

DROP QUEUE
Drops an existing queue.

 Transact-SQL Syntax Conventions

Syntax

http://msdn.microsoft.com/en-us/library/6ae0a369-1bc7-4ae4-be89-2b483697cd1f(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ae0a369-1bc7-4ae4-be89-2b483697cd1f(SQL.110)�
http://msdn.microsoft.com/en-us/library/f8d6163a-2474-410c-a794-997639f31b3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/23d3ccd2-f356-4d89-a2cd-bee381243f99(SQL.110)�
http://msdn.microsoft.com/en-us/library/232dbf4d-392a-406f-af3a-579518cd8e46(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 731

DROP QUEUE <object>
[;]

<object> ::=
{
 [database_name . [schema_name] . | schema_name .]
 queue_name
}

Arguments
database_name

The name of the database that contains the queue to drop. When no database_name is
provided, defaults to the current database.

schema_name (object)

The name of the schema that owns the queue to drop. When no schema_name is provided,
defaults to the default schema for the current user.

queue_name

The name of the queue to drop.

Remarks
You cannot drop a queue if any services refer to the queue.

Permissions
Permission for dropping a queue defaults to the owner of the queue, members of the
db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server
role.

Examples
The following example drops the ExpenseQueue queue from the current database.

DROP QUEUE ExpenseQueue ;

See Also
Queues
ALTER QUEUE
EVENTDATA

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

 732

DROP REMOTE SERVICE BINDING
Drops a remote service binding.

 Transact-SQL Syntax Conventions

Syntax

DROP REMOTE SERVICE BINDING binding_name
[;]

Arguments
binding_name

Is the name of the remote service binding to drop. Server, database, and schema names
cannot be specified.

Permissions
Permission for dropping a remote service binding defaults to the owner of the remote service
binding, members of the db_owner fixed database role, and members of the sysadmin fixed
server role.

Examples
The following example deletes the remote service binding APBinding from the database.

DROP REMOTE SERVICE BINDING APBinding ;

See Also
EVENTDATA (Transact-SQL)
ALTER REMOTE SERVICE BINDING
EVENTDATA

DROP RESOURCE POOL
Drops a user-defined Resource Governor resource pool.

 Transact-SQL Syntax Conventions.

Syntax

DROP RESOURCE POOL pool_name
[;]

Arguments

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 733

pool_name

Is the name of an existing user-defined resource pool.

Remarks
You cannot drop a resource pool if it contains workload groups.
You cannot drop the Resource Governor default or internal pools.
When you are executing DDL statements, we recommend that you be familiar with Resource
Governor states. For more information, see Resource Governor.

Permissions
Requires CONTROL SERVER permission.

Examples
The following example drops the resource pool named big_pool.

DROP RESOURCE POOL big_pool

GO

ALTER RESOURCE GOVERNOR RECONFIGURE

GO

See Also
Resource Governor
CREATE RESOURCE POOL (Transact-SQL)
ALTER RESOURCE POOL (Transact-SQL)
CREATE WORKLOAD GROUP (Transact-SQL)
ALTER WORKLOAD GROUP (Transact-SQL)
DROP WORKLOAD GROUP (Transact-SQL)
ALTER RESOURCE GOVERNOR (Transact-SQL)

DROP ROLE
Removes a role from the database.

 Transact-SQL Syntax Conventions

Syntax

DROP ROLE role_name

Arguments
role_name

Specifies the role to be dropped from the database.

http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�
http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 734

Remarks
Roles that own securables cannot be dropped from the database. To drop a database role that
owns securables, you must first transfer ownership of those securables or drop them from the
database. Roles that have members cannot be dropped from the database. To drop a role that
has members, you must first remove members of the role.
To remove members from a database role, use ALTER ROLE (Transact-SQL).
You cannot use DROP ROLE to drop a fixed database role.
Information about role membership can be viewed in the sys.database_role_members catalog
view.

 Beginning with SQL Server 2005, the behavior of schemas changed. As a result, code
that assumes that schemas are equivalent to database users may no longer return
correct results. Old catalog views, including , should not be used in a database in which
any of the following DDL statements have ever been used: CREATE SCHEMA, ALTER
SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER
ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER
AUTHORIZATION. In such databases you must instead use the new catalog views. The
new catalog views take into account the separation of principals and schemas that was
introduced in SQL Server 2005. For more information about catalog views, see .

To remove a server role, use DROP SERVER ROLE (Transact-SQL).

Permissions
Requires ALTER ANY ROLE permission on the database, or CONTOL permission on the role, or
membership in the db_securityadmin.

Examples
The following example drops the database role purchasing from AdventureWorks2012.

USE AdventureWorks2012;

DROP ROLE purchasing;

GO

See Also
CREATE ROLE (Transact-SQL)
ALTER ROLE (Transact-SQL)
Principals
eventdata (Transact-SQL)
sp_addrolemember (Transact-SQL)
sys.database_role_members (Transact-SQL)
sys.database_principals (Transact-SQL)

Caution

http://msdn.microsoft.com/en-us/library/3f7adbf7-6e40-4396-a8ca-71cbb843b5c2(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/a583c087-bdb3-46d2-b9e5-3921b3e6d10b(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1b019d-ca48-4db3-85df-cf6d2db591cf(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cb239e9-eb8c-4109-9cec-0d35de95fa0e(SQL.110)�

 735

Security Functions (Transact-SQL)

DROP ROUTE
Drops a route, deleting the information for the route from the routing table of the current
database.

 Transact-SQL Syntax Conventions

Syntax

DROP ROUTE route_name
[;]

Arguments
route_name

The name of the route to drop. Server, database, and schema names cannot be specified.

Remarks
The routing table that stores the routes is a metadata table that can be read through the catalog
view sys.routes. The routing table can only be updated through the CREATE ROUTE, ALTER
ROUTE, and DROP ROUTE statements.
You can drop a route regardless of whether any conversations use the route. However, if there is
no other route to the remote service, messages for those conversations will remain in the
transmission queue until a route to the remote service is created or the conversation times out.

Permissions
Permission for dropping a route defaults to the owner of the route, members of the
db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server role.

Examples
The following example deletes the ExpenseRoute route.

DROP ROUTE ExpenseRoute ;

See Also
sys.routes (Transact-SQL)
CREATE ROUTE
EVENTDATA
sys.routes (Transact-SQL)

DROP RULE
Removes one or more user-defined rules from the current database.

http://msdn.microsoft.com/en-us/library/7773a87d-2f1b-4951-a225-baf159a7291b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/8fc65915-8bd6-425b-95d9-6a8468cb1e48(SQL.110)�

 736

DROP RULE will be removed in the next version of Microsoft SQL Server. Do not use
DROP RULE in new development work, and plan to modify applications that currently use
them. Instead, use CHECK constraints that you can create by using the CHECK keyword
of CREATE TABLE or ALTER TABLE. For more information, see Unique Constraints and
Check Constraints.

 Transact-SQL Syntax Conventions

Syntax

DROP RULE { [schema_name .] rule_name } [,...n] [;]

Arguments
schema_name

Is the name of the schema to which the rule belongs.

rule

Is the rule to be removed. Rule names must comply with the rules for identifiers. Specifying
the rule schema name is optional.

Remarks
To drop a rule, first unbind it if the rule is currently bound to a column or to an alias data type.
To unbind the rule, use sp_unbindrule. If the rule is bound when you try to drop it, an error
message is displayed and the DROP RULE statement is canceled.
After a rule is dropped, new data entered into the columns previously governed by the rule is
entered without the constraints of the rule. Existing data is not affected in any way.
The DROP RULE statement does not apply to CHECK constraints. For more information about
dropping CHECK constraints, see ALTER TABLE (Transact-SQL).

Permissions
To execute DROP RULE, at a minimum, a user must have ALTER permission on the schema to
which the rule belongs.

Examples
The following example unbinds and then drops the rule named VendorID_rule.
USE AdventureWorks;

GO

IF EXISTS (SELECT name FROM sysobjects

 WHERE name = 'VendorID_rule'

 AND type = 'R')

 BEGIN

Important

http://msdn.microsoft.com/en-us/library/637098af-2567-48f8-90f4-b41df059833e(SQL.110)�
http://msdn.microsoft.com/en-us/library/637098af-2567-48f8-90f4-b41df059833e(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�

 737

 EXEC sp_unbindrule 'Production.ProductVendor.VendorID'

 DROP RULE VendorID_rule

 END

GO

See Also
CREATE RULE
sp_bindrule
sp_help
sp_helptext
sp_unbindrule
USE

DROP SCHEMA
Removes a schema from the database.

 Transact-SQL Syntax Conventions

Syntax

DROP SCHEMA schema_name

Arguments
schema_name

Is the name by which the schema is known within the database.

Remarks
The schema that is being dropped must not contain any objects. If the schema contains objects,
the DROP statement fails.
Information about schemas is visible in the sys.schemas catalog view.
Caution Beginning with SQL Server 2005, the behavior of schemas changed. As a result,
code that assumes that schemas are equivalent to database users may no longer return correct
results. Old catalog views, including , should not be used in a database in which any of the
following DDL statements have ever been used: CREATE SCHEMA, ALTER SCHEMA, DROP
SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER ROLE, DROP ROLE,
CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER AUTHORIZATION. In such databases
you must instead use the new catalog views. The new catalog views take into account the
separation of principals and schemas that was introduced in SQL Server 2005. For more
information about catalog views, see .

Permissions

http://msdn.microsoft.com/en-us/library/2606073e-c52f-498d-a923-5026b9d97e67(SQL.110)�
http://msdn.microsoft.com/en-us/library/913cd5d4-39a3-4a4b-a926-75ed32878884(SQL.110)�
http://msdn.microsoft.com/en-us/library/24135456-05f0-427c-884b-93cf38dd47a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/f54ee155-c3c9-4f1a-952e-632a8339f0cc(SQL.110)�
http://msdn.microsoft.com/en-us/library/c05acac8-c063-4770-8e36-d7f71d500b10(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/29af5ce5-2af7-4103-8f08-3ec92603ba05(SQL.110)�

 738

Requires CONTROL permission on the schema or ALTER ANY SCHEMA permission on the
database.

Examples
The following example starts with a single CREATE SCHEMA statement. The statement creates the
schema Sprockets that is owned by Krishna and a table Sprockets.NineProngs, and then
grants SELECT permission to Anibal and denies SELECT permission to Hung-Fu.

USE AdventureWorks2012;

GO

CREATE SCHEMA Sprockets AUTHORIZATION Krishna

 CREATE TABLE NineProngs (source int, cost int, partnumber int)

 GRANT SELECT TO Anibal

 DENY SELECT TO Hung-Fu;

GO

The following statements drop the schema. Note that you must first drop the table that is
contained by the schema.

DROP TABLE Sprockets.NineProngs;

DROP SCHEMA Sprockets;

GO

See Also
CREATE SCHEMA (Transact-SQL)
ALTER SCHEMA (Transact-SQL)
DROP SCHEMA (Transact-SQL)
eventdata (Transact-SQL)

DROP SEARCH PROPERTY LIST
Drops a property list from the current database if the search property list is currently not
associated with any full-text index in the database.

CREATE SEARCH PROPERTY LIST, ALTER SEARCH PROPERTY LIST, and DROP SEARCH
PROPERTY LIST are supported only under compatibility level 110. Under lower
compatibility levels, these statements are not supported.

Syntax

DROP SEARCH PROPERTY LIST property_list_name

Important

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

 739

;

Arguments
property_list_name

Is the name of the search property list to be dropped. property_list_name is an identifier.

To view the names of the existing property lists, use the
sys.registered_search_property_lists catalog view, as follows:

SELECT name FROM sys.registered_search_property_lists;

Remarks
You cannot drop a search property list from a database while the list is associated with any full-
text index, and attempts to do so fail. To drop a search property list from a given full-text index,
use the ALTER FULLTEXT INDEX statement, and specify the SET SEARCH PROPERTY LIST clause
with either OFF or the name of another search property list.
To view the property lists on a server instance
• sys.registered_search_property_lists (Transact-SQL)
To view the property lists associated with full-text indexes
• sys.fulltext_indexes (Transact-SQL)
To remove a property list from a full-text index
• ALTER FULLTEXT INDEX (Transact-SQL)

Permissions
Requires CONTROL permission on the search property list.

The property list owner can grant CONTROL permissions on the list. By default, the user
who creates a search property list is its owner. The owner can be changed by using the
ALTER AUTHORIZATION Transact-SQL statement.

Examples
The following example drops the JobCandidateProperties property list from the
AdventureWorks database.

USE AdventureWorks;

GO

DROP SEARCH PROPERTY LIST JobCandidateProperties;

GO

See Also
ALTER SEARCH PROPERTY LIST (Transact-SQL)
CREATE SEARCH PROPERTY LIST (Transact-SQL)

Note

http://msdn.microsoft.com/en-us/library/630d4caa-9bea-4cd3-a5b1-01098b0855fc(SQL.110)�
http://msdn.microsoft.com/en-us/library/630d4caa-9bea-4cd3-a5b1-01098b0855fc(SQL.110)�
http://msdn.microsoft.com/en-us/library/7fc10fdc-370f-4927-bba0-b76108a7508e(SQL.110)�

 740

Search Properties and Property Lists
sys.registered_search_properties (Transact-SQL)
sys.registered_search_property_lists (Transact-SQL)
sys.registered_search_property_lists (Transact-SQL)

DROP SEQUENCE
Removes a sequence object from the current database.

 Transact-SQL Syntax Conventions

Syntax

DROP SEQUENCE { [database_name . [schema_name] . | schema_name.] sequence_name } [
,...n]
 [;]

Arguments
database_name

Is the name of the database in which the sequence object was created.

schema_name

Is the name of the schema to which the sequence object belongs.

sequence_name

Is the name of the sequence to be dropped. Type is sysname.

Remarks
After generating a number, a sequence object has no continuing relationship to the number it
generated, so the sequence object can be dropped, even though the number generated is still in
use.
A sequence object can be dropped while it is referenced by a stored procedure, or trigger,
because it is not schema bound. A sequence object cannot be dropped if it is referenced as a
default value in a table. The error message will list the object referencing the sequence.
To list all sequence objects in the database, execute the following statement.
SELECT sch.name + '.' + seq.name AS [Sequence schema and name]

 FROM sys.sequences AS seq

 JOIN sys.schemas AS sch

 ON seq.schema_id = sch.schema_id ;

GO

Security

http://msdn.microsoft.com/en-us/library/ffae5914-b1b2-4267-b927-37e8382e0a9e(SQL.110)�
http://msdn.microsoft.com/en-us/library/1b9a7a5c-8c05-4819-83c3-7487dd08fcf7(SQL.110)�
http://msdn.microsoft.com/en-us/library/630d4caa-9bea-4cd3-a5b1-01098b0855fc(SQL.110)�
http://msdn.microsoft.com/en-us/library/630d4caa-9bea-4cd3-a5b1-01098b0855fc(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 741

Permissions
Requires ALTER or CONTROL permission on the schema.

Audit
To audit DROP SEQUENCE, monitor the SCHEMA_OBJECT_CHANGE_GROUP.

Examples
The following example removes a sequence object named CountBy1 from the current database.
DROP SEQUENCE CountBy1 ;

GO

See Also
ALTER SEQUENCE (Transact-SQL)
CREATE SEQUENCE (Transact-SQL)
NEXT VALUE FOR function (Transact-SQL)
Creating and Using Sequence Numbers

DROP SERVER AUDIT
Drops a Server Audit Object using the SQL Server Audit feature. For more information on SQL
Server Audit, see Understanding SQL Server Audit.

 Transact-SQL Syntax Conventions

Syntax

DROP SERVER AUDIT audit_name
 [;]

Remarks
You must set the State of an audit to the OFF option in order to make any changes to an Audit.
If DROP AUDIT is run while an audit is enabled with any options other than STATE=OFF, you will
receive a MSG_NEED_AUDIT_DISABLED error message.
A DROP SERVER AUDIT removes the metadata for the Audit, but not the audit data that was
collected before the command was issued.
DROP SERVER AUDIT does not drop associated server or database audit specifications. These
specifications must be dropped manually or left orphaned and later mapped to a new server
audit.

Permissions
To create, alter or drop a Server Audit Principals require the ALTER ANY SERVER AUDIT or the
CONTROL SERVER permission.

http://msdn.microsoft.com/en-us/library/92632ed5-9f32-48eb-be28-a5e477ef9076(SQL.110)�
http://msdn.microsoft.com/en-us/library/c900e30d-2fd3-4d5f-98ee-7832f37e79d1(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 742

Examples
The following example drops an audit called HIPAA_Audit.

ALTER SERVER AUDIT HIPAA_Audit

STATE = OFF;

GO

DROP SERVER AUDIT HIPAA_Audit;

GO

Updated content

Corrected the Permissions section.

See Also
CREATE SERVER AUDIT (Transact-SQL)
ALTER SERVER AUDIT (Transact-SQL)
CREATE SERVER AUDIT SPECIFICATION (Transact-SQL)
ALTER SERVER AUDIT SPECIFICATION (Transact-SQL)
DROP SERVER AUDIT SPECIFICATION (Transact-SQL)
CREATE DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER DATABASE AUDIT SPECIFICATION (Transact-SQL)
DROP DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER AUTHORIZATION (Transact-SQL)
fn_get_audit_file (Transact-SQL)
sys.server_audits (Transact-SQL)
sys.server_file_audits (Transact-SQL)
sys.server_audit_specifications (Transact-SQL)
sys.server_audit_specifications_details (Transact-SQL)
sys.database_ audit_specifications (Transact-SQL)
sys.database_audit_specification_details (Transact-SQL)
sys.dm_server_audit_status
sys.dm_audit_actions
sys.dm_audit_class_type_map
Create a Server Audit and Server Audit Specification

http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2c4a000-1127-46a8-b1e9-947fd1136e1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/553288a0-be57-4d79-ae53-b7cbd065e127(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa496c6c-2a54-4fda-a238-db490c6b3afd(SQL.110)�
http://msdn.microsoft.com/en-us/library/792724dc-402e-4b17-9f2c-029d910bf88e(SQL.110)�
http://msdn.microsoft.com/en-us/library/bf80e5c6-0588-4eb7-86ff-aa7c73461335(SQL.110)�
http://msdn.microsoft.com/en-us/library/03fc60a9-1696-4109-b15e-a50046310859(SQL.110)�
http://msdn.microsoft.com/en-us/library/4aa32d54-2ae1-437e-bbaa-7f1df1404b44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b987c2b9-998a-4a5f-a82d-280dc6963cbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/e10b5431-1bb0-47ca-8fd0-c04bd73a4410(SQL.110)�
http://msdn.microsoft.com/en-us/library/6624b1ab-7ec8-44ce-8292-397edf644394(SQL.110)�

 743

DROP SERVER AUDIT SPECIFICATION
Drops a server audit specification object using the SQL Server Audit feature. For more
information, see Understanding SQL Server Audit.

 Transact-SQL Syntax Conventions

Syntax

DROP SERVER AUDIT SPECIFICATION audit_specification_name
[;]

Arguments
audit_specification_name

Name of an existing server audit specification object.

Remarks
A DROP SERVER AUDIT SPECIFICATION removes the metadata for the audit specification, but
not the audit data collected before the DROP command was issued. You must set the state of a
server audit specification to OFF using ALTER SERVER AUDIT SPECIFICATION before it can be
dropped.

Permissions
Users with the ALTER ANY SERVER AUDIT permission can drop server audit specifications.

Examples
The following example drops a server audit specification called HIPAA_Audit_Specification.

DROP SERVER AUDIT SPECIFICATION HIPAA_Audit_Specification;

GO

For a full example about how to create an audit, see Understanding SQL Server Audit.

Updated content

Corrected the Permissions section.

See Also
CREATE SERVER AUDIT (Transact-SQL)
ALTER SERVER AUDIT (Transact-SQL)
DROP SERVER AUDIT (Transact-SQL)
CREATE SERVER AUDIT SPECIFICATION (Transact-SQL)
ALTER SERVER AUDIT SPECIFICATION (Transact-SQL)

http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/0c1fca2e-f22b-4fe8-806f-c87806664f00(SQL.110)�

 744

CREATE DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER DATABASE AUDIT SPECIFICATION (Transact-SQL)
DROP DATABASE AUDIT SPECIFICATION (Transact-SQL)
ALTER AUTHORIZATION (Transact-SQL)
fn_get_audit_file (Transact-SQL)
sys.server_audits (Transact-SQL)
sys.server_file_audits (Transact-SQL)
sys.server_audit_specifications (Transact-SQL)
sys.server_audit_specifications_details (Transact-SQL)
sys.database_ audit_specifications (Transact-SQL)
sys.database_audit_specification_details (Transact-SQL)
sys.dm_server_audit_status
sys.dm_audit_actions
sys.dm_audit_class_type_map
Create a Server Audit and Server Audit Specification

DROP SERVER ROLE
Removes a user-defined server role.
User-defined server roles are new in SQL Server 2012.

 Transact-SQL Syntax Conventions

Syntax

DROP SERVER ROLE role_name

Arguments
role_name

Specifies the user-defined server role to be dropped from the server.

Remarks
User-defined server roles that own securables cannot be dropped from the server. To drop a
user-defined server role that owns securables, you must first transfer ownership of those
securables or delete them.
User-defined server roles that have members cannot be dropped. To drop a user-defined server
role that has members, you must first remove members of the role by using ALTER SERVER
ROLE.
Fixed server roles cannot be removed.

http://msdn.microsoft.com/en-us/library/d6a78d14-bb1f-4987-b7b6-579ddd4167f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2c4a000-1127-46a8-b1e9-947fd1136e1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/553288a0-be57-4d79-ae53-b7cbd065e127(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa496c6c-2a54-4fda-a238-db490c6b3afd(SQL.110)�
http://msdn.microsoft.com/en-us/library/792724dc-402e-4b17-9f2c-029d910bf88e(SQL.110)�
http://msdn.microsoft.com/en-us/library/bf80e5c6-0588-4eb7-86ff-aa7c73461335(SQL.110)�
http://msdn.microsoft.com/en-us/library/03fc60a9-1696-4109-b15e-a50046310859(SQL.110)�
http://msdn.microsoft.com/en-us/library/4aa32d54-2ae1-437e-bbaa-7f1df1404b44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b987c2b9-998a-4a5f-a82d-280dc6963cbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/e10b5431-1bb0-47ca-8fd0-c04bd73a4410(SQL.110)�
http://msdn.microsoft.com/en-us/library/6624b1ab-7ec8-44ce-8292-397edf644394(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 745

You can view information about role membership by querying the sys.server_role_members
catalog view.

Permissions
Requires CONTROL permission on the server role or ALTER ANY SERVER ROLE permission.

Examples

A. To drop a server role
The following example drops the server role purchasing.

DROP SERVER ROLE purchasing;

GO

B. To view role membership
To view role membership, use the Server Role (Members) page in SQL Server Management
Studio or execute the following query:

SELECT SRM.role_principal_id, SP.name AS Role_Name,

SRM.member_principal_id, SP2.name AS Member_Name

FROM sys.server_role_members AS SRM

JOIN sys.server_principals AS SP

 ON SRM.Role_principal_id = SP.principal_id

JOIN sys.server_principals AS SP2

 ON SRM.member_principal_id = SP2.principal_id

ORDER BY SP.name, SP2.name

C. To view role membership
To determine whether a server role owns another server role, execute the following query:

SELECT SP1.name AS RoleOwner, SP2.name AS Server_Role

FROM sys.server_principals AS SP1

JOIN sys.server_principals AS SP2

 ON SP1.principal_id = SP2.owning_principal_id

ORDER BY SP1.name ;

See Also
ALTER ROLE (Transact-SQL)
CREATE ROLE (Transact-SQL)
Principals
DROP ROLE (Transact-SQL)
eventdata (Transact-SQL)

http://msdn.microsoft.com/en-us/library/efa20414-2c6b-45a2-a7a9-60110a24da18(SQL.110)�
http://msdn.microsoft.com/en-us/library/3f7adbf7-6e40-4396-a8ca-71cbb843b5c2(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

 746

sp_addrolemember (Transact-SQL)
sys.database_role_members (Transact-SQL)
sys.database_principals (Transact-SQL)

DROP SERVICE
Drops an existing service.

 Transact-SQL Syntax Conventions

Syntax

DROP SERVICE service_name
[;]

Arguments
service_name

The name of the service to drop. Server, database, and schema names cannot be specified.

Remarks
You cannot drop a service if any conversation priorities refer to it.
Dropping a service deletes all messages for the service from the queue that the service uses.
Service Broker sends an error to the remote side of any open conversations that use the service.

Permissions
Permission for dropping a service defaults to the owner of the service, members of the
db_ddladmin or db_owner fixed database roles, and members of the sysadmin fixed server role.

Examples
The following example drops the service //Adventure-Works.com/Expenses.

DROP SERVICE [//Adventure-Works.com/Expenses] ;

See Also
ALTER BROKER PRIORITY (Transact-SQL)
ALTER SERVICE (Transact-SQL)
CREATE SERVICE (Transact-SQL)
DROP BROKER PRIORITY (Transact-SQL)
EVENTDATA (Transact-SQL)

DROP SIGNATURE
Drops a digital signature from a stored procedure, function, trigger, or assembly.

http://msdn.microsoft.com/en-us/library/a583c087-bdb3-46d2-b9e5-3921b3e6d10b(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1b019d-ca48-4db3-85df-cf6d2db591cf(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cb239e9-eb8c-4109-9cec-0d35de95fa0e(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
www.Adventure-Works.com/Expenses
www.Adventure-Works.com/Expenses

 747

 Transact-SQL Syntax Conventions

Syntax

DROP [COUNTER] SIGNATURE FROM module_name
 BY <crypto_list> [,...n]

<crypto_list> ::=
 CERTIFICATE cert_name
 | ASYMMETRIC KEY Asym_key_name

Arguments
module_name

Is the name of a stored procedure, function, assembly, or trigger.

CERTIFICATE cert_name

Is the name of a certificate with which the stored procedure, function, assembly, or trigger is
signed.

ASYMMETRIC KEY Asym_key_name

Is the name of an asymmetric key with which the stored procedure, function, assembly, or
trigger is signed.

Remarks
Information about signatures is visible in the sys.crypt_properties catalog view.

Permissions
Requires ALTER permission on the object and CONTROL permission on the certificate or
asymmetric key. If an associated private key is protected by a password, the user also must have
the password.

Examples
The following example removes the signature of certificate HumanResourcesDP from the stored
procedure HumanResources.uspUpdateEmployeeLogin.

USE AdventureWorks2012;

DROP SIGNATURE FROM HumanResources.uspUpdateEmployeeLogin

 BY CERTIFICATE HumanResourcesDP;

GO

See Also
sys.crypt_properties (Transact-SQL)
ADD SIGNATURE (Transact-SQL)

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/d5684f5a-30b1-418e-ae4d-ab040db9257e(SQL.110)�
http://msdn.microsoft.com/en-us/library/64d8b682-6ec1-4e5b-8aee-3ba11e72d21f(SQL.110)�

 748

DROP STATISTICS
Drops statistics for multiple collections within the specified tables in the current database.

 Transact-SQL Syntax Conventions

Syntax

DROP STATISTICS table.statistics_name | view.statistics_name [,...n]

Arguments
table | view

Is the name of the target table or indexed view for which statistics should be dropped. Table
and view names must comply with the rules for identifiers. Specifying the table or view
owner name is optional.

statistics_name

Is the name of the statistics group to drop. Statistics names must comply with the rules for
identifiers

Remarks
Be careful when you drop statistics. Doing so may affect the execution plan chosen by the query
optimizer.
Statistics on indexes cannot be dropped by using DROP STATISTICS. Statistics remain as long as
the index exists.
For more information about displaying statistics, see DBCC SHOW_STATISTICS (Transact-SQL).

Permissions
Requires ALTER permission on the table or view.

Examples
The following example drops the statistics groups (collections) of two tables. The VendorCredit
statistics group (collection) of the Vendor table and the CustomerTotal statistics (collection) of
the SalesOrderHeader table are dropped.
-- Create the statistics groups.

USE AdventureWorks2012;

GO

CREATE STATISTICS VendorCredit

 ON Purchasing.Vendor (Name, CreditRating)

 WITH SAMPLE 50 PERCENT

CREATE STATISTICS CustomerTotal

 ON Sales.SalesOrderHeader (CustomerID, TotalDue)

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c(SQL.110)�
http://msdn.microsoft.com/en-us/library/12be2923-7289-4150-b497-f17e76a50b2e(SQL.110)�

 749

 WITH FULLSCAN;

GO

DROP STATISTICS Purchasing.Vendor.VendorCredit,
Sales.SalesOrderHeader.CustomerTotal;

See Also
ALTER DATABASE
CREATE INDEX
CREATE STATISTICS
sys.stats
sys.stats_columns
DBCC SHOW_STATISTICS
sp_autostats
sp_createstats
UPDATE STATISTICS
EVENTDATA
USE

DROP SYMMETRIC KEY
Removes a symmetric key from the current database.

 Transact-SQL Syntax Conventions

Syntax

DROP SYMMETRIC KEY symmetric_key_name [REMOVE PROVIDER KEY]

Arguments
symmetric_key_name

Is the name of the symmetric key to be dropped.

REMOVE PROVIDER KEY

Removes an Extensible Key Management (EKM) key from an EKM device. For more
information about Extensible Key Management, see Understanding Extensible Key
Management (EKM).

Remarks
If the key is open in the current session the statement will fail.

http://msdn.microsoft.com/en-us/library/42605c80-126f-460a-befb-a0b7482fae6a(SQL.110)�
http://msdn.microsoft.com/en-us/library/93414d07-97e9-4501-8577-f35b8d68fbe9(SQL.110)�
http://msdn.microsoft.com/en-us/library/12be2923-7289-4150-b497-f17e76a50b2e(SQL.110)�
http://msdn.microsoft.com/en-us/library/d1df8c15-ee73-49eb-9d13-6e98943c3e38(SQL.110)�
http://msdn.microsoft.com/en-us/library/8204f6f2-5704-40a7-8d51-43fc832eeb54(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/c05acac8-c063-4770-8e36-d7f71d500b10(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�

 750

If the asymmetric key is mapped to an Extensible Key Management (EKM) key on an EKM device
and the REMOVE PROVIDER KEY option is not specified, the key will be dropped from the
database but not the device, and a warning will be issued.

Permissions
Requires CONTROL permission on the symmetric key.

Examples
The following example removes a symmetric key named GailSammamishKey6 from the current
database.
CLOSE SYMMETRIC KEY GailSammamishKey6;

DROP SYMMETRIC KEY GailSammamishKey6;

GO

See Also
CREATE SYMMETRIC KEY (Transact-SQL)
CLOSE SYMMETRIC KEY (Transact-SQL)
ALTER SYMMETRIC KEY (Transact-SQL)
Encryption Hierarchy
CLOSE SYMMETRIC KEY (Transact-SQL)
Understanding Extensible Key Management (EKM)

DROP SYNONYM
Removes a synonym from a specified schema.

 Transact-SQL Syntax Conventions

Syntax

DROP SYNONYM [schema.] synonym_name

Arguments
schema

Specifies the schema in which the synonym exists. If schema is not specified, SQL Server uses
the default schema of the current user.

synonym_name

Is the name of the synonym to be dropped.

Remarks
References to synonyms are not schema-bound; therefore, you can drop a synonym at any time.
References to dropped synonyms will be found only at run time.

http://msdn.microsoft.com/en-us/library/96c276d5-1bba-4e95-b678-10f059f1fbcf(SQL.110)�
http://msdn.microsoft.com/en-us/library/3b083cbb-3c6a-4f59-8d34-601db1efcc83(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bfaf500-2d1e-4c02-b041-b8761a9e695b(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 751

Synonyms can be created, dropped and referenced in dynamic SQL.

Permissions
To drop a synonym, a user must satisfy at least one of the following conditions. The user must
be:
• The current owner of a synonym.
• A grantee holding CONTROL on a synonym.
• A grantee holding ALTER SCHEMA permission on the containing schema.

Examples
The following example first creates a synonym, MyProduct, and then drops the synonym.

USE tempdb;

GO

-- Create a synonym for the Product table in AdventureWorks2012.

CREATE SYNONYM MyProduct

FOR AdventureWorks2012.Production.Product;

GO

-- Drop synonym MyProduct.

USE tempdb;

GO

DROP SYNONYM MyProduct;

GO

See Also
CREATE SYNONYM
EVENTDATA

DROP TABLE
Removes one or more table definitions and all data, indexes, triggers, constraints, and
permission specifications for those tables. Any view or stored procedure that references the
dropped table must be explicitly dropped by using DROP VIEW or DROP PROCEDURE. To report
the dependencies on a table, use sys.dm_sql_referencing_entities.

Syntax

DROP TABLE [database_name . [schema_name] . | schema_name .]
 table_name [,...n] [;]

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/c16f8f0a-483f-4feb-842e-da90426045ae(SQL.110)�

 752

Arguments
database_name

Is the name of the database in which the table was created.

schema_name

Is the name of the schema to which the table belongs.

table_name

Is the name of the table to be removed.

Remarks
DROP TABLE cannot be used to drop a table that is referenced by a FOREIGN KEY constraint.
The referencing FOREIGN KEY constraint or the referencing table must first be dropped. If both
the referencing table and the table that holds the primary key are being dropped in the same
DROP TABLE statement, the referencing table must be listed first.
Multiple tables can be dropped in any database. If a table being dropped references the primary
key of another table that is also being dropped, the referencing table with the foreign key must
be listed before the table holding the primary key that is being referenced.
When a table is dropped, rules or defaults on the table lose their binding, and any constraints or
triggers associated with the table are automatically dropped. If you re-create a table, you must
rebind the appropriate rules and defaults, re-create any triggers, and add all required
constraints.
If you delete all rows in a table by using DELETE tablename or use the TRUNCATE TABLE
statement, the table exists until it is dropped.
Large tables and indexes that use more than 128 extents are dropped in two separate phases:
logical and physical. In the logical phase, the existing allocation units used by the table are
marked for deallocation and locked until the transaction commits. In the physical phase, the IAM
pages marked for deallocation are physically dropped in batches.
If you drop a table that contains a VARBINARY(MAX) column with the FILESTREAM attribute, any
data stored in the file system will not be removed.

DROP TABLE and CREATE TABLE should not be executed on the same table in the same
batch. Otherwise an unexpected error may occur.

Permissions
Requires ALTER permission on the schema to which the table belongs, CONTROL permission on
the table, or membership in the db_ddladmin fixed database role.

Examples

A. Dropping a table in the current database

Important

 753

The following example removes the ProductVendor1 table and its data and indexes from the
current database.

DROP TABLE ProductVendor1 ;

B. Dropping a table in another database
The following example drops the SalesPerson2 table in the database. The example can
be executed from any database on the server instance.

DROP TABLE AdventureWorks2012.dbo.SalesPerson2 ;

C. Dropping a temporary table
The following example creates a temporary table, tests for its existence, drops it, and tests again
for its existence.
USE AdventureWorks2012;

GO

CREATE TABLE #temptable (col1 int);

GO

INSERT INTO #temptable

VALUES (10);

GO

SELECT * FROM #temptable;

GO

IF OBJECT_ID(N'tempdb..#temptable', N'U') IS NOT NULL

DROP TABLE #temptable;

GO

--Test the drop.

SELECT * FROM #temptable;

See Also
ALTER TABLE
CREATE TABLE
DELETE (Transact-SQL)
sp_help (Transact-SQL)
sp_spaceused (Transact-SQL)
TRUNCATE TABLE (Transact-SQL)
DROP VIEW (Transact-SQL)
DROP PROCEDURE (Transact-SQL)
EVENTDATA (Transact-SQL)
sys.sql_expression_dependencies (Transact-SQL)

http://msdn.microsoft.com/en-us/library/ed6b2105-0f35-408f-ba51-e36ade7ad5b2(SQL.110)�
http://msdn.microsoft.com/en-us/library/913cd5d4-39a3-4a4b-a926-75ed32878884(SQL.110)�
http://msdn.microsoft.com/en-us/library/c6253b48-29f5-4371-bfcd-3ef404060621(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/78a218e4-bf99-4a6a-acbf-ff82425a5946(SQL.110)�

 754

DROP TRIGGER
Removes one or more DML or DDL triggers from the current database.

 Transact-SQL Syntax Conventions

Syntax

Trigger on an INSERT, UPDATE, or DELETE statement to a table or view (DML Trigger)
DROP TRIGGER [schema_name.]trigger_name [,...n] [;]

Trigger on a CREATE, ALTER, DROP, GRANT, DENY, REVOKE or UPDATE statement (DDL
Trigger)
DROP TRIGGER trigger_name [,...n]
ON { DATABASE | ALL SERVER }
[;]

Trigger on a LOGON event (Logon Trigger)

DROP TRIGGER trigger_name [,...n]
ON ALL SERVER

Arguments
schema_name

Is the name of the schema to which a DML trigger belongs. DML triggers are scoped to the
schema of the table or view on which they are created. schema_name cannot be specified for
DDL or logon triggers.

trigger_name

Is the name of the trigger to remove. To see a list of currently created triggers, use
sys.server_assembly_modules or sys.server_triggers.

DATABASE

Indicates the scope of the DDL trigger applies to the current database. DATABASE must be
specified if it was also specified when the trigger was created or modified.

ALL SERVER

Indicates the scope of the DDL trigger applies to the current server. ALL SERVER must be
specified if it was also specified when the trigger was created or modified. ALL SERVER also
applies to logon triggers.

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/cefa4fc4-b8b9-4cd7-b124-eed5283acbfc(SQL.110)�
http://msdn.microsoft.com/en-us/library/25926ff4-9271-45bf-bc32-d5d3344bd47a(SQL.110)�

 755

Note
This option is not available in a contained database.

Remarks
You can remove a DML trigger by dropping it or by dropping the trigger table. When a table is
dropped, all associated triggers are also dropped.
When a trigger is dropped, information about the trigger is removed from the sys.objects,
sys.triggers and sys.sql_modules catalog views.
Multiple DDL triggers can be dropped per DROP TRIGGER statement only if all triggers were
created using identical ON clauses.
To rename a trigger, use DROP TRIGGER and CREATE TRIGGER. To change the definition of a
trigger, use ALTER TRIGGER.
For more information about determining dependencies for a specific trigger, see
sys.sql_expression_dependencies, sys.dm_sql_referenced_entities, and
sys.dm_sql_referencing_entities.
For more information about viewing the text of the trigger, see sp_helptext and sys.sql_modules.
For more information about viewing a list of existing triggers, see sys.triggers and
sys.server_triggers.

Permissions
To drop a DML trigger requires ALTER permission on the table or view on which the trigger is
defined.
To drop a DDL trigger defined with server scope (ON ALL SERVER) or a logon trigger requires
CONTROL SERVER permission in the server. To drop a DDL trigger defined with database scope
(ON DATABASE) requires ALTER ANY DATABASE DDL TRIGGER permission in the current
database.

Examples

A. Dropping a DML trigger
The following example drops the employee_insupd trigger.
USE AdventureWorks2012;

GO

IF OBJECT_ID ('employee_insupd', 'TR') IS NOT NULL

 DROP TRIGGER employee_insupd;

GO

B. Dropping a DDL trigger
The following example drops DDL trigger safety.

Important

http://msdn.microsoft.com/en-us/library/78a218e4-bf99-4a6a-acbf-ff82425a5946(SQL.110)�
http://msdn.microsoft.com/en-us/library/077111cb-b860-4d61-916f-bac5d532912f(SQL.110)�
http://msdn.microsoft.com/en-us/library/c16f8f0a-483f-4feb-842e-da90426045ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/24135456-05f0-427c-884b-93cf38dd47a8(SQL.110)�
http://msdn.microsoft.com/en-us/library/23d3ccd2-f356-4d89-a2cd-bee381243f99(SQL.110)�
http://msdn.microsoft.com/en-us/library/cefa4fc4-b8b9-4cd7-b124-eed5283acbfc(SQL.110)�
http://msdn.microsoft.com/en-us/library/25926ff4-9271-45bf-bc32-d5d3344bd47a(SQL.110)�

 756

Because DDL triggers are not schema-scoped and, therefore do not appear in the
sys.objects catalog view, the OBJECT_ID function cannot be used to query whether they
exist in the database. Objects that are not schema-scoped must be queried by using the
appropriate catalog view. For DDL triggers, use sys.triggers.

USE AdventureWorks2012;

GO

IF EXISTS (SELECT * FROM sys.triggers

 WHERE parent_class = 0 AND name = 'safety')

DROP TRIGGER safety

ON DATABASE;

GO

See Also
ALTER TRIGGER (Transact-SQL)
CREATE TRIGGER (Transact-SQL)
ENABLE TRIGGER (Transact-SQL)
DISABLE TRIGGER (Transact-SQL)
eventdata (Transact-SQL)
Getting Information About DML Triggers
sp_help (Transact-SQL)
sp_helptrigger (Transact-SQL)
sys.triggers (Transact-SQL)
sys.trigger_events (Transact-SQL)
sys.sql_modules (Transact-SQL)
sys.assembly_modules (Transact-SQL)
sys.server_triggers (Transact-SQL)
sys.server_trigger_events (Transact-SQL)
sys.server_sql_modules (Transact-SQL)
sys.server_assembly_modules (Transact-SQL)

DROP TYPE
Removes an alias data type or a common language runtime (CLR) user-defined type from the
current database.

 Transact-SQL Syntax Conventions

Syntax

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/37574aac-181d-4aca-a2cc-8abff64237dc(SQL.110)�
http://msdn.microsoft.com/en-us/library/913cd5d4-39a3-4a4b-a926-75ed32878884(SQL.110)�
http://msdn.microsoft.com/en-us/library/e486d39b-771d-488d-a786-7136433a2203(SQL.110)�
http://msdn.microsoft.com/en-us/library/cefa4fc4-b8b9-4cd7-b124-eed5283acbfc(SQL.110)�
http://msdn.microsoft.com/en-us/library/92540447-131c-491c-b033-c064c7d950e1(SQL.110)�
http://msdn.microsoft.com/en-us/library/23d3ccd2-f356-4d89-a2cd-bee381243f99(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f9e644e-8065-49a2-b53d-db7df98f70d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/25926ff4-9271-45bf-bc32-d5d3344bd47a(SQL.110)�
http://msdn.microsoft.com/en-us/library/be7d8a59-3c00-4f1b-b4b0-3dcd5572e002(SQL.110)�
http://msdn.microsoft.com/en-us/library/9ef9a8b9-c470-4a61-b0c4-ee24ad871d63(SQL.110)�
http://msdn.microsoft.com/en-us/library/af799e38-2d16-49b2-bcf5-6f9199af899e(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 757

DROP TYPE [schema_name.] type_name [;]

Arguments
schema_name

Is the name of the schema to which the alias or user-defined type belongs.

type_name

Is the name of the alias data type or the user-defined type you want to drop.

Remarks
The DROP TYPE statement will not execute when any of the following is true:
• There are tables in the database that contain columns of the alias data type or the user-

defined type. Information about alias or user-defined type columns can be obtained by
querying the sys.columns or sys.column_type_usages catalog views.

• There are computed columns, CHECK constraints, schema-bound views, and schema-bound
functions whose definitions reference the alias or user-defined type. Information about these
references can be obtained by querying the sys.sql_expression_dependencies catalog view.

• There are functions, stored procedures, or triggers created in the database, and these
routines use variables and parameters of the alias or user-defined type. Information about
alias or user-defined type parameters can be obtained by querying the sys.parameters or
sys.parameter_type_usages catalog views.

Permissions
Requires either CONTROL permission on type_name or ALTER permission on schema_name.

Examples
The following example assumes a type named ssn is already created in the current database.

DROP TYPE ssn ;

See Also
CREATE TYPE (Transact-SQL)
EVENTDATA (Transact-SQL)

DROP USER
Removes a user from the current database.

 Transact-SQL Syntax Conventions

Syntax

DROP USER user_name

http://msdn.microsoft.com/en-us/library/323ac9ea-fc52-4b8c-8a7e-e0e44f8ed86c(SQL.110)�
http://msdn.microsoft.com/en-us/library/1ead375e-f662-4837-903f-8947496c51e4(SQL.110)�
http://msdn.microsoft.com/en-us/library/78a218e4-bf99-4a6a-acbf-ff82425a5946(SQL.110)�
http://msdn.microsoft.com/en-us/library/24e2764b-c8e5-4322-97a4-7407d8b8a92b(SQL.110)�
http://msdn.microsoft.com/en-us/library/af0e167b-bffb-4525-84ec-3607f9268d3d(SQL.110)�
http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 758

Arguments
user_name

Specifies the name by which the user is identified inside this database.

Remarks
Users that own securables cannot be dropped from the database. Before dropping a database
user that owns securables, you must first drop or transfer ownership of those securables.
The guest user cannot be dropped, but guest user can be disabled by revoking its CONNECT
permission by executing REVOKE CONNECT FROM GUEST within any database other than
master or tempdb.

 Beginning with SQL Server 2005, the behavior of schemas changed. As a result, code
that assumes that schemas are equivalent to database users may no longer return
correct results. Old catalog views, including , should not be used in a database in which
any of the following DDL statements have ever been used: CREATE SCHEMA, ALTER
SCHEMA, DROP SCHEMA, CREATE USER, ALTER USER, DROP USER, CREATE ROLE, ALTER
ROLE, DROP ROLE, CREATE APPROLE, ALTER APPROLE, DROP APPROLE, ALTER
AUTHORIZATION. In such databases you must instead use the new catalog views. The
new catalog views take into account the separation of principals and schemas that was
introduced in SQL Server 2005. For more information about catalog views, see .

Permissions
Requires ALTER ANY USER permission on the database.

Examples
The following example removes database user AbolrousHazem from the AdventureWorks2012
database.

USE AdventureWorks2012;

DROP USER AbolrousHazem;

GO

See Also
CREATE USER (Transact-SQL)
ALTER USER (Transact-SQL)
eventdata (Transact-SQL)

DROP VIEW
Removes one or more views from the current database. DROP VIEW can be executed against
indexed views.

Caution

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�

 759

 Transact-SQL Syntax Conventions

Syntax

DROP VIEW [schema_name .] view_name [...,n] [;]

Arguments
schema_name

Is the name of the schema to which the view belongs.

view_name

Is the name of the view to remove.

Remarks
When you drop a view, the definition of the view and other information about the view is
deleted from the system catalog. All permissions for the view are also deleted.
Any view on a table that is dropped by using DROP TABLE must be dropped explicitly by using
DROP VIEW.
When executed against an indexed view, DROP VIEW automatically drops all indexes on a view.
To display all indexes on a view, use sp_helpindex.
When querying through a view, the Database Engine checks to make sure that all the database
objects referenced in the statement exist and that they are valid in the context of the statement,
and that data modification statements do not violate any data integrity rules. A check that fails
returns an error message. A successful check translates the action into an action against the
underlying table or tables. If the underlying tables or views have changed since the view was
originally created, it may be useful to drop and re-create the view.
For more information about determining dependencies for a specific view, see USE (Transact-
SQL).
For more information about viewing the text of the view, see sp_helptext.

Permissions
Requires CONTROL permission on the view, ALTER permission on the schema containing the
view, or membership in the db_ddladmin fixed server role.

Examples
The following example removes the view Reorder.
USE AdventureWorks2012 ;

GO

IF OBJECT_ID ('dbo.Reorder', 'V') IS NOT NULL

DROP VIEW dbo.Reorder ;

GO

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/c7f73ba0-ec35-4b10-aa5f-f1487e51fbf7(SQL.110)�
http://msdn.microsoft.com/en-us/library/1779aa87-a0b8-470a-a286-d7cc0b93ad2e(SQL.110)�
http://msdn.microsoft.com/en-us/library/1779aa87-a0b8-470a-a286-d7cc0b93ad2e(SQL.110)�
http://msdn.microsoft.com/en-us/library/24135456-05f0-427c-884b-93cf38dd47a8(SQL.110)�

 760

See Also
ALTER VIEW
CREATE VIEW
EVENTDATA
sys.columns
sys.objects
USE
sys.sql_expression_dependencies (Transact-SQL)

DROP WORKLOAD GROUP
Drops an existing user-defined Resource Governor workload group.

 Transact-SQL Syntax Conventions.

Syntax

DROP WORKLOAD GROUP group_name
[;]

Arguments
group_name

Is the name of an existing user-defined workload group.

Remarks
The DROP WORKLOAD GROUP statement is not allowed on the Resource Governor internal or
default groups.
When you are executing DDL statements, we recommend that you be familiar with Resource
Governor states. For more information, see Resource Governor.
If a workload group contains active sessions, dropping or moving the workload group to a
different resource pool will fail when the ALTER RESOURCE GOVERNOR RECONFIGURE
statement is called to apply the change. To avoid this problem, you can take one of the
following actions:
• Wait until all the sessions from the affected group have disconnected, and then rerun the

ALTER RESOURCE GOVERNOR RECONFIGURE statement.
• Explicitly stop sessions in the affected group by using the KILL command, and then rerun the

ALTER RESOURCE GOVERNOR RECONFIGURE statement.
• Restart the server. After the restart process is completed, the deleted group will not be

created, and a moved group will use the new resource pool assignment.

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/323ac9ea-fc52-4b8c-8a7e-e0e44f8ed86c(SQL.110)�
http://msdn.microsoft.com/en-us/library/f8d6163a-2474-410c-a794-997639f31b3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/c05acac8-c063-4770-8e36-d7f71d500b10(SQL.110)�
http://msdn.microsoft.com/en-us/library/78a218e4-bf99-4a6a-acbf-ff82425a5946(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�
http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�

 761

• In a scenario in which you have issued the DROP WORKLOAD GROUP statement but decide
that you do not want to explicitly stop sessions to apply the change, you can re-create the
group by using the same name that it had before you issued the DROP statement, and then
move the group to the original resource pool. To apply the changes, run the ALTER
RESOURCE GOVERNOR RECONFIGURE statement.

Permissions
Requires CONTROL SERVER permission.

Examples
The following example drops the workload group named adhoc.

DROP WORKLOAD GROUP adhoc

GO

ALTER RESOURCE GOVERNOR RECONFIGURE

GO

See Also
Resource Governor
CREATE WORKLOAD GROUP (Transact-SQL)
ALTER WORKLOAD GROUP (Transact-SQL)
CREATE RESOURCE POOL (Transact-SQL)
ALTER RESOURCE POOL (Transact-SQL)
DROP RESOURCE POOL (Transact-SQL)
ALTER RESOURCE GOVERNOR (Transact-SQL)

DROP XML SCHEMA COLLECTION
Deletes the whole XML schema collection and all of its components.

 Transact-SQL Syntax Conventions

Syntax

DROP XML SCHEMA COLLECTION [relational_schema.]sql_identifier

Arguments
relational_schema

Identifies the relational schema name. If not specified, the default relational schema is
assumed.

sql_identifier

Is the name of the XML schema collection to drop.

http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 762

Remarks
Dropping an XML schema collection is a transactional operation. This means when you drop an
XML schema collection inside a transaction and later roll back the transaction, the XML schema
collection is not dropped.
You cannot drop an XML schema collection when it is in use. This means that the collection
being dropped cannot be any of the following:
• Associated with any xml type parameter or column.
• Specified in any table constraints.
• Referenced in a schema-bound function or stored procedure. For example, the following

function will lock the XML schema collection MyCollection because the function specifies
WITH SCHEMABINDING. If you remove it, there is no lock on the XML SCHEMA COLLECTION.

CREATE FUNCTION dbo.MyFunction()

RETURNS int

WITH SCHEMABINDING

AS

BEGIN

 ...

 DECLARE @x XML(MyCollection)

 ...

END

Permissions
To drop an XML SCHEMA COLLECTION requires DROP permission on the collection.

Examples
The following example shows removing an XML schema collection.
DROP XML SCHEMA COLLECTION ManuInstructionsSchemaCollection

GO

See Also
CREATE XML SCHEMA COLLECTION (Transact-SQL)
ALTER XML SCHEMA COLLECTION (Transact-SQL)
EVENTDATA (Transact-SQL)
Typed vs. Untyped XML
Guidelines and Limitations of XML Schemas on the Server

http://msdn.microsoft.com/en-us/library/03a80e63-6f37-4b49-bf13-dc35cfe46c44(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bc50af9-2f7d-49df-bb01-854d080c72c7(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2314fd5-4c6d-40cb-a128-07e532b40946(SQL.110)�

 763

ENABLE TRIGGER
Enables a DML, DDL, or logon trigger.

 Transact-SQL Syntax Conventions

Syntax

ENABLE TRIGGER { [schema_name .] trigger_name [,...n] | ALL }
ON { object_name | DATABASE | ALL SERVER } [;]

Arguments
schema_name

Is the name of the schema to which the trigger belongs. schema_name cannot be specified
for DDL or logon triggers.

trigger_name

Is the name of the trigger to be enabled.

ALL

Indicates that all triggers defined at the scope of the ON clause are enabled.

object_name

Is the name of the table or view on which the DML trigger trigger_name was created to
execute.

DATABASE

For a DDL trigger, indicates that trigger_name was created or modified to execute with
database scope.

ALL SERVER

For a DDL trigger, indicates that trigger_name was created or modified to execute with server
scope. ALL SERVER also applies to logon triggers.

Note
This option is not available in a contained database.

Remarks
Enabling a trigger does not re-create it. A disabled trigger still exists as an object in the current
database, but does not fire. Enabling a trigger causes it to fire when any Transact-SQL
statements on which it was originally programmed are executed. Triggers are disabled by using
DISABLE TRIGGER. DML triggers defined on tables can be also be disabled or enabled by using
ALTER TABLE.

http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 764

Permissions
To enable a DML trigger, at a minimum, a user must have ALTER permission on the table or view
on which the trigger was created.
To enable a DDL trigger with server scope (ON ALL SERVER) or a logon trigger, a user must have
CONTROL SERVER permission on the server. To enable a DDL trigger with database scope (ON
DATABASE), at a minimum, a user must have ALTER ANY DATABASE DDL TRIGGER permission in
the current database.

Examples

A. Enabling a DML trigger on a table
The following example disables trigger uAddress that was created on table Address, and then
enables it.
USE AdventureWorks2012;

GO

DISABLE TRIGGER Person.uAddress ON Person.Address;

GO

ENABLE Trigger Person.uAddress ON Person.Address;

GO

B. Enabling a DDL trigger
The following example creates a DDL trigger safety with database scope, and then disables it.
IF EXISTS (SELECT * FROM sys.triggers

 WHERE parent_class = 0 AND name = 'safety')

DROP TRIGGER safety ON DATABASE;

GO

CREATE TRIGGER safety

ON DATABASE

FOR DROP_TABLE, ALTER_TABLE

AS

 PRINT 'You must disable Trigger "safety" to drop or alter tables!'

 ROLLBACK;

GO

DISABLE TRIGGER safety ON DATABASE;

GO

ENABLE TRIGGER safety ON DATABASE;

GO

 765

C. Enabling all triggers that were defined with the same scope
The following example enables all DDL triggers that were created at the server scope.
USE AdventureWorks2012;

GO

ENABLE Trigger ALL ON ALL SERVER;

GO

See Also
sys.triggers (Transact-SQL)
ALTER TRIGGER
CREATE TRIGGER
DROP TRIGGER
sys.triggers

UPDATE STATISTICS
Updates query optimization statistics on a table or indexed view. By default, the query optimizer
already updates statistics as necessary to improve the query plan; in some cases you can
improve query performance by using UPDATE STATISTICS or the stored procedure
sp_updatestats to update statistics more frequently than the default updates.
Updating statistics ensures that queries compile with up-to-date statistics. However, updating
statistics causes queries to recompile. We recommend not updating statistics too frequently
because there is a performance tradeoff between improving query plans and the time it takes to
recompile queries. The specific tradeoffs depend on your application. UPDATE STATISTICS can
use tempdb to sort the sample of rows for building statistics.

 Transact-SQL Syntax Conventions

Syntax

UPDATE STATISTICS table_or_indexed_view_name
 [
 {
 { index_or_statistics__name }
 | ({ index_or_statistics_name } [,...n])
 }
]
 [WITH

http://msdn.microsoft.com/en-us/library/cefa4fc4-b8b9-4cd7-b124-eed5283acbfc(SQL.110)�
http://msdn.microsoft.com/en-us/library/01184651-6e61-45d9-a502-366fecca0ee4(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 766

 [
 FULLSCAN
 | SAMPLE number { PERCENT | ROWS }
 | RESAMPLE
 | <update_stats_stream_option> [,...n]
]
 [[,] [ALL | COLUMNS | INDEX]
 [[,] NORECOMPUTE]
] ;

<update_stats_stream_option> ::=
 [STATS_STREAM = stats_stream]
 [ROWCOUNT = numeric_constant]
 [PAGECOUNT = numeric_contant]

Arguments
table_or_indexed_view_name

Is the name of the table or indexed view to update statistics on.

index_or_statistics_name

Is the name of the index to update statistics on or name of the statistics to update. If
index_or_statistics_name is not specified, the query optimizer updates all statistics for the
table or indexed view. This includes statistics created using the CREATE STATISTICS
statement, single-column statistics created when AUTO_CREATE_STATISTICS is on, and
statistics created for indexes.

For more information about AUTO_CREATE_STATISTICS, see ALTER DATABASE SET
Options (Transact-SQL). To view all indexes for a table or view, you can use
sp_helpindex.

FULLSCAN

Compute statistics by scanning all rows in the table or indexed view. FULLSCAN and SAMPLE
100 PERCENT have the same results. FULLSCAN cannot be used with the SAMPLE option.

SAMPLE number { PERCENT | ROWS }

Specifies the approximate percentage or number of rows in the table or indexed view for the
query optimizer to use when it updates statistics. For PERCENT, number can be from 0
through 100 and for ROWS, number can be from 0 to the total number of rows. The actual
percentage or number of rows the query optimizer samples might not match the percentage
or number specified. For example, the query optimizer scans all rows on a data page.

SAMPLE is useful for special cases in which the query plan, based on default sampling, is not

http://msdn.microsoft.com/en-us/library/c7f73ba0-ec35-4b10-aa5f-f1487e51fbf7(SQL.110)�

 767

optimal. In most situations, it is not necessary to specify SAMPLE because the query
optimizer uses sampling and determines the statistically significant sample size by default, as
required to create high-quality query plans.

SAMPLE cannot be used with the FULLSCAN option. When neither SAMPLE nor FULLSCAN is
specified, the query optimizer uses sampled data and computes the sample size by default.

We recommend against specifying 0 PERCENT or 0 ROWS. When 0 PERCENT or ROWS is
specified, the statistics object is updated but does not contain statistics data.

RESAMPLE

Update each statistic using its most recent sample rate.

Using RESAMPLE can result in a full-table scan. For example, statistics for indexes use a full-
table scan for their sample rate. When none of the sample options (SAMPLE, FULLSCAN,
RESAMPLE) are specified, the query optimizer samples the data and computes the sample
size by default.

ALL | COLUMNS | INDEX

Update all existing statistics, statistics created on one or more columns, or statistics created
for indexes. If none of the options are specified, the UPDATE STATISTICS statement updates
all statistics on the table or indexed view.

NORECOMPUTE

Disable the automatic statistics update option, AUTO_UPDATE_STATISTICS, for the specified
statistics. If this option is specified, the query optimizer completes this statistics update and
disables future updates.

To re-enable the AUTO_UPDATE_STATISTICS option behavior, run UPDATE STATISTICS again
without the NORECOMPUTE option or run sp_autostats.

Warning
Using this option can produce suboptimal query plans. We recommend using this option sparingly,
and then only by a qualified system administrator.

For more information about the AUTO_STATISTICS_UPDATE option, see ALTER
DATABASE SET Options (Transact-SQL).

<update_stats_stream_option>

Identified for informational purposes only. Not supported. Future compatibility is not
guaranteed.

Remarks

When to Use UPDATE STATISTICS
For more information about when to use UPDATE STATISTICS, see Statistics.

http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�

 768

Updating All Statistics with sp_updatestats
For information about how to update statistics for all user-defined and internal tables in the
database, see the stored procedure sp_updatestats (Transact-SQL). For example, the following
command calls sp_updatestats to update all statistics for the database.
EXEC sp_updatestats;

Determining the Last Statistics Update
To determine when statistics were last updated, use the STATS_DATE function.

Permissions
Requires ALTER permission on the table or view.

Examples

A. Update all statistics on a table
The following example updates the statistics for all indexes on the SalesOrderDetail table.
USE AdventureWorks2012;

GO

UPDATE STATISTICS Sales.SalesOrderDetail;

GO B. Update the statistics for an index
The following example updates the statistics for the AK_SalesOrderDetail_rowguid index of
the SalesOrderDetail table.
USE AdventureWorks2012;

GO

UPDATE STATISTICS Sales.SalesOrderDetail AK_SalesOrderDetail_rowguid;

GO

C. Update statistics by using 50 percent sampling
The following example creates and then updates the statistics for the Name and ProductNumber
columns in the Product table.
USE AdventureWorks2012;

GO

CREATE STATISTICS Products

 ON Production.Product ([Name], ProductNumber)

 WITH SAMPLE 50 PERCENT

-- Time passes. The UPDATE STATISTICS statement is then executed.

UPDATE STATISTICS Production.Product(Products)

http://msdn.microsoft.com/en-us/library/01184651-6e61-45d9-a502-366fecca0ee4(SQL.110)�
http://msdn.microsoft.com/en-us/library/f9ec3101-1e41-489d-b519-496a0d6089fb(SQL.110)�

 769

 WITH SAMPLE 50 PERCENT;

D. Update statistics by using FULLSCAN and NORECOMPUTE
The following example updates the Products statistics in the Product table, forces a full scan of
all rows in the Product table, and turns off automatic statistics for the Products statistics.
USE AdventureWorks2012;

GO

UPDATE STATISTICS Production.Product(Products)

 WITH FULLSCAN, NORECOMPUTE;

GO

See Also
Statistics
ALTER DATABASE
CREATE STATISTICS
DBCC SHOW_STATISTICS
DROP STATISTICS
sp_autostats
sp_updatestats
STATS_DATE

TRUNCATE TABLE
Removes all rows from a table without logging the individual row deletions. TRUNCATE TABLE is
similar to the DELETE statement with no WHERE clause; however, TRUNCATE TABLE is faster and
uses fewer system and transaction log resources.

 Transact-SQL Syntax Conventions

Syntax

TRUNCATE TABLE
 [{ database_name .[schema_name] . | schema_name . }]
 table_name
[;]

http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/12be2923-7289-4150-b497-f17e76a50b2e(SQL.110)�
http://msdn.microsoft.com/en-us/library/d1df8c15-ee73-49eb-9d13-6e98943c3e38(SQL.110)�
http://msdn.microsoft.com/en-us/library/01184651-6e61-45d9-a502-366fecca0ee4(SQL.110)�
http://msdn.microsoft.com/en-us/library/f9ec3101-1e41-489d-b519-496a0d6089fb(SQL.110)�
http://msdn.microsoft.com/en-us/library/35fbcf7f-8b55-46cd-a957-9b8c7b311241(SQL.110)�

 770

Arguments
database_name

Is the name of the database.

schema_name

Is the name of the schema to which the table belongs.

table_name

Is the name of the table to truncate or from which all rows are removed.

Remarks
Compared to the DELETE statement, TRUNCATE TABLE has the following advantages:
• Less transaction log space is used.

The DELETE statement removes rows one at a time and records an entry in the transaction
log for each deleted row. TRUNCATE TABLE removes the data by deallocating the data
pages used to store the table data and records only the page deallocations in the
transaction log.

• Fewer locks are typically used.
When the DELETE statement is executed using a row lock, each row in the table is locked for
deletion. TRUNCATE TABLE always locks the table and page but not each row.

• Without exception, zero pages are left in the table.
After a DELETE statement is executed, the table can still contain empty pages. For example,
empty pages in a heap cannot be deallocated without at least an exclusive (LCK_M_X) table
lock. If the delete operation does not use a table lock, the table (heap) will contain many
empty pages. For indexes, the delete operation can leave empty pages behind, although
these pages will be deallocated quickly by a background cleanup process.

TRUNCATE TABLE removes all rows from a table, but the table structure and its columns,
constraints, indexes, and so on remain. To remove the table definition in addition to its data, use
the DROP TABLE statement.
If the table contains an identity column, the counter for that column is reset to the seed value
defined for the column. If no seed was defined, the default value 1 is used. To retain the identity
counter, use DELETE instead.

Restrictions
You cannot use TRUNCATE TABLE on tables that:
• Are referenced by a FOREIGN KEY constraint. (You can truncate a table that has a foreign key

that references itself.)
• Participate in an indexed view.
• Are published by using transactional replication or merge replication.
For tables with one or more of these characteristics, use the DELETE statement instead.

 771

TRUNCATE TABLE cannot activate a trigger because the operation does not log individual row
deletions. For more information, see CREATE TRIGGER (Transact-SQL).

Truncating Large Tables
Microsoft SQL Server has the ability to drop or truncate tables that have more than 128 extents
without holding simultaneous locks on all the extents required for the drop.

Permissions
The minimum permission required is ALTER on table_name. TRUNCATE TABLE permissions
default to the table owner, members of the sysadmin fixed server role, and the db_owner and
db_ddladmin fixed database roles, and are not transferable. However, you can incorporate the
TRUNCATE TABLE statement within a module, such as a stored procedure, and grant appropriate
permissions to the module using the EXECUTE AS clause.

Examples
The following example removes all data from the JobCandidate table. SELECT statements are
included before and after the TRUNCATE TABLE statement to compare results.

USE AdventureWorks2012;

GO

SELECT COUNT(*) AS BeforeTruncateCount

FROM HumanResources.JobCandidate;

GO

TRUNCATE TABLE HumanResources.JobCandidate;

GO

SELECT COUNT(*) AS AfterTruncateCount

FROM HumanResources.JobCandidate;

GO

See Also
DELETE (Transact-SQL)
DROP TABLE (Transact-SQL)
IDENTITY (Property) (Transact-SQL)

http://msdn.microsoft.com/en-us/library/ed6b2105-0f35-408f-ba51-e36ade7ad5b2(SQL.110)�

	Cover
	Contents
	Data Definition Language (DDL) Statements (Transact-SQL)
	ALTER Statements
	ALTER APPLICATION ROLE
	ALTER ASSEMBLY
	ALTER ASYMMETRIC KEY
	ALTER AUTHORIZATION
	ALTER AVAILABILITY GROUP
	ALTER BROKER PRIORITY
	ALTER CERTIFICATE
	ALTER CREDENTIAL
	ALTER CRYPTOGRAPHIC PROVIDER
	ALTER DATABASE
	ALTER DATABASE File and Filegroup Options
	ALTER DATABASE SET Options
	ALTER DATABASE Database Mirroring
	ALTER DATABASE SET HADR
	ALTER DATABASE Compatibility Level

	ALTER DATABASE AUDIT SPECIFICATION
	ALTER DATABASE ENCRYPTION KEY
	ALTER ENDPOINT
	ALTER EVENT SESSION
	ALTER FULLTEXT CATALOG
	ALTER FULLTEXT INDEX
	ALTER FULLTEXT STOPLIST
	ALTER FUNCTION
	ALTER INDEX
	ALTER LOGIN
	ALTER MASTER KEY
	ALTER MESSAGE TYPE
	ALTER PARTITION FUNCTION
	ALTER PARTITION SCHEME
	ALTER PROCEDURE
	ALTER QUEUE
	ALTER REMOTE SERVICE BINDING
	ALTER RESOURCE GOVERNOR
	ALTER RESOURCE POOL
	ALTER ROLE
	ALTER ROUTE
	ALTER SCHEMA
	ALTER SEARCH PROPERTY LIST
	ALTER SEQUENCE
	ALTER SERVER AUDIT
	ALTER SERVER AUDIT SPECIFICATION
	ALTER SERVER CONFIGURATION
	ALTER SERVER ROLE
	ALTER SERVICE
	ALTER SERVICE MASTER KEY
	ALTER SYMMETRIC KEY
	ALTER TABLE
	Column_definition
	Column_constraint
	Computed_column_definition
	Table_constraint
	Index_option

	ALTER TRIGGER
	ALTER USER
	ALTER VIEW
	ALTER WORKLOAD GROUP
	ALTER XML SCHEMA COLLECTION

	CREATE Statements
	CREATE AGGREGATE
	CREATE APPLICATION ROLE
	CREATE ASSEMBLY
	CREATE ASYMMETRIC KEY
	CREATE AVAILABILITY GROUP
	CREATE BROKER PRIORITY
	CREATE CERTIFICATE
	CREATE COLUMNSTORE INDEX
	CREATE CONTRACT
	CREATE CREDENTIAL
	CREATE CRYPTOGRAPHIC PROVIDER
	CREATE DATABASE
	CREATE DATABASE AUDIT SPECIFICATION
	CREATE DATABASE ENCRYPTION KEY
	CREATE DEFAULT
	CREATE ENDPOINT
	CREATE EVENT NOTIFICATION
	CREATE EVENT SESSION
	CREATE FULLTEXT CATALOG
	CREATE FULLTEXT INDEX
	CREATE FULLTEXT STOPLIST
	CREATE FUNCTION
	CREATE INDEX
	CREATE LOGIN
	CREATE MASTER KEY
	CREATE MESSAGE TYPE
	CREATE PARTITION FUNCTION
	CREATE PARTITION SCHEME
	CREATE PROCEDURE
	CREATE QUEUE
	CREATE REMOTE SERVICE BINDING
	CREATE RESOURCE POOL
	CREATE ROLE
	CREATE ROUTE
	CREATE RULE
	CREATE SCHEMA
	CREATE SEARCH PROPERTY LIST
	CREATE SEQUENCE
	CREATE SERVER AUDIT
	CREATE SERVER AUDIT SPECIFICATION
	CREATE SERVER ROLE
	CREATE SERVICE
	CREATE SPATIAL INDEX
	CREATE STATISTICS
	CREATE SYMMETRIC KEY
	CREATE SYNONYM
	CREATE TABLE
	IDENTITY (Property)

	CREATE TRIGGER
	CREATE TYPE
	CREATE USER
	CREATE VIEW
	CREATE WORKLOAD GROUP
	CREATE XML INDEX
	CREATE XML SCHEMA COLLECTION

	DISABLE TRIGGER
	DROP Statements
	DROP AGGREGATE
	DROP APPLICATION ROLE
	DROP ASSEMBLY
	DROP ASYMMETRIC KEY
	DROP AVAILABILITY GROUP
	DROP BROKER PRIORITY
	DROP CERTIFICATE
	DROP CONTRACT
	DROP CREDENTIAL
	DROP CRYPTOGRAPHIC PROVIDER
	DROP DATABASE
	DROP DATABASE AUDIT SPECIFICATION
	DROP DATABASE ENCRYPTION KEY
	DROP DEFAULT
	DROP ENDPOINT
	DROP EVENT NOTIFICATION
	DROP EVENT SESSION
	DROP FULLTEXT CATALOG
	DROP FULLTEXT INDEX
	DROP FULLTEXT STOPLIST
	DROP FUNCTION
	DROP INDEX
	DROP LOGIN
	DROP MASTER KEY
	DROP MESSAGE TYPE
	DROP PARTITION FUNCTION
	DROP PARTITION SCHEME
	DROP PROCEDURE
	DROP QUEUE
	DROP REMOTE SERVICE BINDING
	DROP RESOURCE POOL
	DROP ROLE
	DROP ROUTE
	DROP RULE
	DROP SCHEMA
	DROP SEARCH PROPERTY LIST
	DROP SEQUENCE
	DROP SERVER AUDIT
	DROP SERVER AUDIT SPECIFICATION
	DROP SERVER ROLE
	DROP SERVICE
	DROP SIGNATURE
	DROP STATISTICS
	DROP SYMMETRIC KEY
	DROP SYNONYM
	DROP TABLE
	DROP TRIGGER
	DROP TYPE
	DROP USER
	DROP VIEW
	DROP WORKLOAD GROUP
	DROP XML SCHEMA COLLECTION

	ENABLE TRIGGER
	UPDATE STATISTICS
	TRUNCATE TABLE

