SQLCAT's Guide to:

Relational Engine

Microsoft SQLCAT Team

Guide & Reference

s Microsoft



SQLCATOs Gui de t o:
Microsoft SQLCAT Team

Summary : This ebook is a collection of the most popular technical notes, tools and blogs
authored by the SQLCAT team and posted to their blog over the course of several years.
It covers SQL technology from 2005 to 2012.

Category: Guide & Reference
Applies to : SQL Server 2005 to 2012

Source: SQLCAT Blog
E-book publication date : September 2013

Re


http://blogs.msdn.com/b/sqlcat/

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN -
US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

The example companies organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended @ should be inferred.

This book expresses the authordés views and opinions. The inf
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distribtors will
be held liable for any damages caused or alleged to be caused either directly o



Contents

SeCtiON 1: AMINISIEALION. ... .. ettt e e e e e e e e st e e e e e e e s snr e e e e e e e e e annnnees 5
DBCC Checks and Terab$tale Databases...........c.cvvvviiiiiiiiiiiiee e 6
Scheduling Sublinute Log Shipping in SQL Server 2008.............cooiiiiiiiicciirvrveee e 12
Tuning Backup COmMPresSion PArL 2.t e e e e e e e e e e 15
Restart SQL Audit Policy and JOR...........uuuiiiiiiiiiiiiiie e 25
SQL DMVSTAS TOOIKIL......cceeieieieei it e e e e e e e e e e e eeeaeaeeeeeeaeeeeassassaaaaannnnnnnes 26

Section 2: DAtaDASE DESIGN........uuiiiiieiiiit ittt e e e e e e e e e e e e e e e 27
SQL Server Partition Management TOOL..........coooiiiiiiiiiiiiirrierierrerrerreerr e s eee e e e e e e e e e AT
Character data types versus number data types: are there any performance benefits?.......... 28
¢tKS alye .SySFTAalda.27F..a2ySeX5 L0 .¢2aLlls. . ... 38
How many files should a database hav@art 1: OLAP workloads..............cocoeeeccccnnviininnnnnn. 43

SECHON 31 FARTACK ...ttt e s e e e e e e e e e e e et e e e e e e e nnrrreeeeeeas 47
Lessons Learned and Findings from a LargeTFask POC..........cccccccciiiiiieie, 49

SECHON 41 PeITOIMMANCE. ......eiiiiitiiie ettt e et e e e e b e e e s s b e e e e st e e e e s nneeas 70

Top Tips for Maximizing the Performance & Scalability of Dynamics AX 268@aspn SQL Server

P24 0101 PSP PPPTPTRTR 1
[ oo (U111 o] o L PSP TP PP PPPPPPPI 102
(070] (o] 1151 o] o ST PP PU P PP PPPPPPPPPRPN 111
Top SQL Server 2005 Performance Issues for OLTP Applications............ooccvveeeeeeeiiiiiinenenn. 112
TableValued Functions and tempdb ConNteNtiON. ..........cuuviiiiiiiiiiiic e 114
Resolving PAGELATCH Contention on Highly ConcINGIERT Workloads...........cccccovvviiiieenen. 130
SQL Server Indexing: Using a {Selectivity BIT Column First Can Be the Best Strategy.......... 85
Tuning the Performance of Backup Compression in SQL Server.2008...........ccccvvveevvevveeeeeeeenn. 71
Maximizing Throughput With TVRS......ccooiiii e 130
Bulk Loading Data into a Table with Concurrent QUEHES........ccoeeieccueieeeieiiiiieiieieeeeeeeee e 140
Section 5: Real WOrld SCENANIDS. ........uviiiiiiie ittt e e e e 146
Lessons Learned from Benchmarking a Tier 1 Core Banking ISV Sdletienos T24................ 147
Y= Tox (o] o I T =T o] o= o U 155
Initializing a Transactional Replication Subscriber from an Aasgd Snapshat..............c........ 156
Upgrading Replication from SQL Server 2008820 SQL Server 2008-84t without re-initialization
................................................................................................................................................ 167
SECHON 72 SEIVICE BIOKEI ...ttt e e e e e e e e e e e e e 168

SQL Server Service Broker: Maintaining Identity Uniqueness Acrosm&m@opies................... 169



Section 8: TroubIESNOOLING........ccc i e e e e e e e e ar e 172

Diagnosing Transaction Log Performance Issues and Limits of the Log Manager................ 173
Eliminating Deadlocks Caused By Foreign Keys with Large Transactians..............cccoccvveee. 180
Resolvig scheduler contention for concurrent BULK INSERT............iiiiiiiiiiiiiiieeeeeeeee. 187
Response Time Analysis using Extended ENENLS...........cccccoiiiiiiiiiiiiiiiiccceeee e, 191
Memory Error Recovery in SQL Server 20L2........oooiviiiiiiiiii e 192
SECHION 9 SQL TOP L0 .. iiieiiieeieiit ittt e e e e e e e e e e e e e e e e e e e s b n e e e e e e e e e eean 195
Top 10 Hidden Gems in SQL 2008.R2........uuuuuiiiiiiiiiiieiieieeieeeeetaa e e e e e ee e aas s sseeeeeeenees 196
Top 10 SQL Server 2008 Features for the Database Administrator.(DBA)............ccccceevennnee 209
Top 10 SQL Server 2008 Features for ISV AppHBALIO............uviiiiiiiiiiiiiiiiieeieceeeeeeeeeee e, 221
Top 10 Hidden Gems in SQL Server 2005.........uuiiiiiiiiiiicerieiiieeeeee et 196
Top 10 Best Practices for Building a Large Scale Relational Data Warehouse...................... 230
Storage TOP 10 BESt PraCliCeS.....uuuuiiiiiiiiiiiiiieiiiiit e et eeeee e e e et e e s s s as e eeenaeeneeeeees 196

Top 10 Best Practices for SQL Server MaintenfMCRAP. .........c.oovviiiiiieieeeeee e, 234



Secti on 1: Admi ni strat.i



DBCC Checks and TerabyteScale Databases

1. Overview:

Historically, the SQL Server product team and the support organization have recommended that all maintenance
plans for Microsoft® SQL Server® include running DBCC CHECKDB on a regular basis to detect and correct potential
corruption in the database. In the case of missioncritical applications such as trading systems, medical records, and
banking operations, many customers have interpreted this recommendation as requiring even a daily DBCC check to
ensure that no errors are present before performing a backup operation.

However, since the SQL Server 6.5 days, in which a daily DBCC CHECKDB may have been a best practice, there have
been several trends- both challenges and opportunities -- that make it worth reconsidering the way that DBCC
should fit into SQL Server database maintenance plans, especially for large databases.

Challenges:

1 Many mission-critical databases have grown to massive size. It is not unusual to find databases in the 520
terabyte range on SQL Server, in which a DBCC operation requiresnany hours to complete. This is usually
incompatible with a daily maintenance window, if feasible at all on a 24x7 system.

9  Every new version of SQL Server has expanded the range of logical checks performed by DBCC so that it has
become more time-consuming to execute. For example, SQL Server 2005 introduced data purity checks to
validate that data present in columns adheres to valid ranges for the data type. SQL Server 2005 also
introduced checks that verify the integrity of indexed views.

Opportunities:

i Enterprise-class storage subsystems and the widespread use of RAID, especially in missiearitical settings,
have made the storage tier much less prone to physical corruption.

I SQL Server has introduced new mechanisms to detect the most frequent forms of physical corruption
independent of DBCC. For example, torn page detection was introduced in SQL Server 7.0, checksum
verification of physical pages was introduced in SQL Server 2005, and checksum protection otempdb
pages was introduced in SQL Server 2008.

I We continue to invest in technologies to automatically detect and correct sources of corruption - such as the
introduction in SQL Server 2005 of an inrmemory page scan to find checksum violations due to ECC failures
that might occur during manipulation of read-only pages.



As more customers are deploying databases at the scale of terabytes or tens of terabytes, frequent DBCC checks are
becoming less practical. But the many advances in both SQL Server and enterpris&lass hardware offerings are
enabling customers to back-away from the "Daily DBCC" best practices of the SQL Server 6.5 era, while still
maintaining high confidence in the integrity of their data.

2.  Suggestions for customers

DBCC CHECKDB remains an important tool for detecting and catecting logical consistency problems and physical
corruption in the database. However, for large-scale databases utilizing a high quality SAN or storage subsystem, the
specific recommendations this technical note presents can reduce the frequency of DBCC ad certainly relax the prior
standard of running such checks on daily basis.

SQL Server 2005 introduced an important new mechanism to proactively detect physical corruption in database
pages: a database option that adds a checksum to each page as it is witten to the I/O system and validates the
checksum as it is read.This database option is called PAGE_VERIFY = CHECKSUM, and utilizing it by default is a
powerful alternative to scheduling frequent runs of DBCC CHECKDB. For more information, see ALTER DAABASE
SET Options (TransaetSQL) in SQL Server Books Onlindittp://msdn.microsoft.com/en -us/library/bb522682.aspx.

A. Recommendations fonew databases (created in SQL Senzf05 or SQL Server 2008):

We encourage customers who have created their databases in SQL Server 2005 or SQL Server 2008 to rely on a
strategy of using this PAGE_VERIFY = CHECKSUM feature and reduce the scheduled use of DBCC to a minimum.
Below are some guidelines on how to accomplish this.

1) Use PAGE_VERIFY = CHECKSUM on all new databases created in SQL Server 2005 or later (this is the default setting
for new databases).

2) Perform daily incremental or differential backup.

By performing an incremental/differential BACKUP WITH CHECKSUM operation each day (or even a full backup if
feasible), you are guaranteed to read each page that has been added or modified since the prior backup. Because the
reads performed during backup will validate the page checksums, any corruption that has occurred due to I/O errors


http://msdn.microsoft.com/en-us/library/bb522682.aspx

will be detected, and can be corrected by using the current backup set to restore corrupt pages. (If the database is
using the bulk-logged or full recovery model, page -level restore can be used to minimize time for recovery.)

The steps above will ensure that most physical page corruption due to I/O errors will be detected on a daily basis and
can be promptly corrected. Because I/O errors have historically been the largest ®urce of database corruption,
PAGE_VERIFY = CHECKSUM can significantly reduce the frequency of DBCC operations needed to maintain a high
level of confidence in the integrity of the physical database.

There are two other sources of corruption that can still arise even if PAGE_VERIFY = CHECKSUM is used, although they
are rare - and they are problems that only DBCC CHECKDB can discover proactively:

a) O0Scri bbl er Wwheie mgnancos pages are apmrupted either by third -party code running inside the SQL
Server process or by drivers or other software with sufficient privileges executing in Windows® kernel mode.

SQL Server allows a variety of customer or thirdparty code to access the SQL Server address space, including
extended stored procedures (XPs), unsafe SQL CLR assemblies, EKM providers, and OLE DB drivers for linked servers.
Scribbler errors can arise as a result of bugs in these extensions, or from software such as malware protection tools or
I/O drivers running in the kernel.

b) Potential SQL Server bugs that create logical errors.

We are not aware of any bugs in the current version of SQL Server that lead to logical errors in database objects, but
the logical checks in DBCC can locate problems due to legacy errors or unknown errors incurrent versions of the
product. Logical errors can usually be repaired by rebuilding indexes or re-establishing foreign key constraints - they
are not typically fixed by restoring from a backup.

In addition, CHECKSUM cannot detect I/O problems if a pageheader itself is corrupt, but DBCC CHECKDB can.

These and other additional sources of errors, external to SQL Server, are reasons why customers should not eliminate
DBCC CHECKDB entirely from maintenance plans. But the fact that the majority of errorsocated by DBCC CHECKDB
result from 1/0 channel problems that are effectively caught using CHECKSUM allows customers to reduce the
frequency of complete DBCC CHECKDB executions.



B. Recommendations famigrated databases:

If you are using a database that was createdprior to SQL Server 2005, or if you are using a database that was created
with a more recent version but without using PAGE_VERIFY = CHECKSUM, you need to be aware that checksums are
added only as pages are added or modified. An initial run of DBCC CHECKDB using the PHYSICAL_ONLY option, after
enabling the PAGE_VERIFY = CHECKSUM option, will check the integrity of all legacy pages but will not add a
checksum.

Is there any risk that legacy pages from a migrated database can become corupt and will not be detected by the
checksum mechanism? It turns out that there are rare circumstances in which data on storage media can become
corrupted in the absence of I/O ("bit rot") and not be detected by parity or RAID redundancy mechanisms, especially
on low-end storage systems. If this occurs on a pagewithout a SQL Server checksum, it can lead to database
corruption that can only be detected by regular PHYSICAL_ONLY checks of DBCC CHECKDB.

So, in order to eliminate frequent DBCC CHECKDB runs foa database that wasnot originally created with
PAGE_VEIRFY = CHECKSUM, we recommend either:

Rebuilding all clustered indexes and recreating any heaps. This will ensure that all data and index pages are
written once with CHECKSUM enabled.

9  Or, less practically, creating a new database using PAGE_VEIRFY = CHECKSUM and migrating all objects to
the new database.

The alternative, in alegacy database for which not all pages have a CHECKSUM, is to run DBCC CHECKDB with the
PHYSICAL_ONLY optioregularly prior to taking any full backup. If a problem is detected on a non-checksum page,
the prior backup set can be used to restore a correct image of that page.

3.  Periodic DBCC Strategies

Even ifdaily DBCC checks need no longer be part ofan enterprise-class maintenance strategy,periodic DBCC checks
remain an important tool. Frequency of DBCC checks should take into account whether scribbler errors are possible
due to third party extensions running in -process, the kinds of additional privileged software running on the server,
and the reliability and sophistication of the storage tier.



There are a variety of strategies to make DBCC compatible with shorter maintenance cycles and high availability
production environments. Among those that are popular for large-scale, missionrcritical deployments are:

9 Utilizing a SAN-based snapshot, mounted to another instance of SQL Server that runs DBCC independently
of the production system

9 Performing DBCC on a petfilegroup basis, on a rotating schedule

Using Resource Governor to adjust the degree of parallelism (MAXDOP) of the session running DBCC
operations, either to run highly parallelized during a short maintenance window, or single -threaded in the
background during non -critical production hours

Using DBCC to perform the faster physical page validation checks (PHYSICAL_ONLY) more frequently than
the logical checks. Such tests will bypass timeconsuming validation of foreign key references and
nonclustered indexes, but will ensure that all allocated pages are readable and will detect the majority of
problems that can arise from problems in the 1/0O channel.

Some of these, and other strategies for executing DBCC operations, can be found in the recent blogs by Paul Randal
and Bob Dorr, at:

http://www.sqglskills.com/blogs/paul/post/ CHECKDB - From- Every Angle- Consistency Checking-Options-for-a-
VLDB.aspx

http://blogs.msdn.com/psssql/archive/2009/02/20/sqgl -server-is-checkdb-a-necessity.aspx

4. Conclusion

While the reliability of SQL Server hasimproved dramatically over the past decade, database integrity still depends on
the reliability of the storage tier and can be influenced by high -privileged, third -party code running in Windows

kernel mode or permitted inside the SQL Server address spaceSQL Server has invested in significant technologies to
automatically detect and correct problems with data observed on -disk and in-memory, and this has reduced the need
for frequent complete database integrity checks using DBCC CHECKDB. Periodic scheduledBCC operations remain a
best practice, but not at the near-daily frequency recommended in the past for mission-critical deployments. The
recommendations here for using CHECKSUM features, along with periodic DBCC CHECKDB strategies, can help
achieve a balace between a reasonable maintenance cycle and high confidence in database integrity.


http://www.sqlskills.com/blogs/paul/post/CHECKDB-From-Every-Angle-Consistency-Checking-Options-for-a-VLDB.aspx
http://www.sqlskills.com/blogs/paul/post/CHECKDB-From-Every-Angle-Consistency-Checking-Options-for-a-VLDB.aspx
http://blogs.msdn.com/psssql/archive/2009/02/20/sql-server-is-checkdb-a-necessity.aspx




Scheduling SubMinute Log Shipping in SQL Server 2008

Overview

Log shipping allows you to auto matically take transaction log backups on a primary server, send them to one or more
secondary servers, and then restore the transaction log backups on each secondary server. Many Microsoft SQL Server
customers have asked for the ability to schedule the log shipping jobs with less than 1 minute frequency. In SQL

Server 2005, SQL Server Management Studio user interface allowed the frequency of the scheduled jobs to be 1
minute or more, which meant that the minimum latency of log shipping was as long as 3 min utes (1 minute each for

the backup, copy, and restore jobs). Many customers have asked for this latency to be less than 1 minute.

In this paper we introduce the new sub-minute log shipping capability in SQL Server 2008, and we discuss some
considerations you need to be aware of in scheduling frequent log shipping jobs.

Introducing Sub-Minute Log Shipping in SQL Server 2008

SQL Server 2008 enables log shipping jobs to be scheduled with frequency in seconds. In SQL Server 2008, SQL Server
Management Studio and the stored procedures sp_add_jobscheduleand sp_add_scheduleallow frequency settings in
seconds, minutes, and hours. The minimum frequency is 10 seconds.



http://technet.microsoft.com/en-us/library/ms187103.aspx
http://msdn.microsoft.com/en-us/library/ms366342(SQL.90).aspx
http://msdn.microsoft.com/en-us/library/ms187320(SQL.90).aspx

B8 Job Schedule Properties - LSBackupSchedule_PRIMARY _DL380\PRODSQL1

Name: [(SBackupSchedus_PRIMARY_DL30\PRODSQLY Jobs n Schedue |

Schedule type: IHecutmg ;] W Enapled

Frequency

Regurs every:
Dady frequency

" Occurs once 3t

' Occurs every: | Swstngar ﬁm
Ending ot T
Duration
Start date: 2/2472003 ~ " End date:
* Ngend date:
Summaty
Descrgtion: Occurs every day every 10 second(s) between 12.00:00 AM and 11:53.00 PM. Schedule vl be _:_]

used starting on 2/24/2008.

Z
[ ok ] cowe | Hew |

4

Figure 1: SQL Server 2008 Log Shipping user interface enables scheduling the jobs in hour, minute, or second
frequency

Considerations

There are some considerations you should be aware of when youset up too frequent log shipping jobs:

f The next execution of the job wildl not start unt i

have set the frequency interval of the log backup job to 10 seconds, but one execution of the log backup

takes 12 seconds to complete. The next backup job will start at the next scheduled time, which is 20 seconds

after the start of the previous backup job. One execution of the job is skipped in this case.
9 Every time a log backup is completed, a message similar tothe following is shown in the SQL Server
ERRORLOG:

2009-02-09 15:25:56.94 Backup Log was backed up. Database: Test_LS, creation date(time): 2009/02/09(14:27:24), first

LSN: 19:145:1, last LSN: 19:145:1, number of dump devices: 1, device informatio(FILE=1, TYPE=DISK:

{\\PRIMARY_DL38QSBackupTest_LS 20090209232551.trn'}). This is an informational message only. No user action is

required.

t

he


http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/SchedulingSubMinuteLogShippinginSQLServe_D96A/SMLS_Fig1_2.jpg

If you take a log backup every 10 or 15 seconds, the SQL Server ERRORLOG flooded with such messages.

Ifyoudon6t want these messages flooding t htece8aQB2265THhis vacerflagE RRORL OG,
doesndét alter the behavior of backuponinesdages, préevénting themtfrons uppr es s e
getting into the SQL Server ERRORLOG. Note that this trace flag suppresses all backup messagésiatabase backup

as well as transaction log backup.

9 Information about each backup is also recorded in the msdb database (the msdb.dbo.backupset,
msdb.dbo.backupmediaset, msdb.dbo.backupmediafamily, msdb.dbo.backupfile, and
msdb.dbo.backupfilegroup system tables). If you back up too frequently, you can expect these tables to
grow faster than usual. You should periodically check the size of these tables and delete or archive the old
information as necessary. To delete the old backup history, use the stored procedure
sp_delete_backuphistory

1 The backup compresson feature in SQL Server 2008 provides significant space and time savings. Backup
compression results in smaller backups, and it helps improve the performance of all the operations
performed by log shipping by providing the following:

0 Faster backup of the transaction log on the primary server.
0 Faster copying of the transaction log backup file to the secondary over network.
0 Faster restore of the log backup on the secondary.

However, the benefits of backup compression come with the cost of higher CPU utilization. If your log backup jobs
use compression and are scheduled too frequently, you may notice frequent spikes in CPU utilization on the primary.
Restoring from a compressed backup uses more CPU, and you could see frequent spikes in CPU utilization on the
secondary as well. For more information about backup compression, seeTuning the Performance of Backup
Compression in SQL Serve”008 and Tuning Backup Compression Part 2

Conclusion

SQL Server 2008 provides the ability to schedule log shipping jobs as frequently as 10 seconds, which results in
reduced latency of log shipping. Reduced log shipping latency can result in reduced data loss in case of loss of
primary.


http://msdn.microsoft.com/en-us/library/ms188396.aspx
http://technet.microsoft.com/en-us/library/ms188328.aspx

Tuning Backup Compression Part 2

Overview

This is the second part of the article Tuning the Performance of Backup Compression in SQL Server 2008n the first
part we described the benefits of backup compression, a methodology on how to tune backup compression for best
performance, and shared some best practices. In this second part, we describe some more considerabns in tuning
backup compression, and how backup compression interacts with other important features in Microsoft SQL Server
2008. Specifically, we will discuss the following:

Tuning BUFFERCOUNT and MAXTRANSFERSIZE
Memory used by backup compression

Backup compression and log shipping

Backup compression and data compression

Backup compression and transparent data encryption

=A =4 =8 -4 =4

Understanding the tuning techniques and the interoperability of backup compression with other features discussed in
this article can help you get the best out of the backup compression feature.

Tuning BUFFERCOUNT

As described in Part 1 of the article, default BUFFERCOUNT is determined by SQL Server based on the number of
database volumes and backup devices. If the database files are spread across several disk volumes and/or there are a
large number of backup devices, the default BUFFERCOUNT valumay provide optimal backup performance, and you
may not need to tune BUFFERCOUNT further. As discussed in Part 1, you can use the trace flags 3605 and 3213 to find
out the default BUFFERCOUNT value used in your backup. However, if the database files ar@read across too few

disk volumes and/or there are a small number of backup devices, the default BUFFERCOUNT value may not provide
optimal backup performance. Tuning BUFFERCOUNT explicitly may improve backup performance.

Backup Time and CPU Utilization
Single Backup Device, 4 Data Volumes
2400 80
S 1800 el —& - 60
g s =
= 1200 - + — 0 S
o R
2
& 600 - 20
- Backup Time (Sec) ~#—% CPU
0 0
Default 0 100 150
BUFFERCOUNT

Figure 1: Backup time and CPU ut ilization with varying BUFFERCOUNT


http://sqlcat.com/technicalnotes/archive/2008/04/21/tuning-the-performance-of-backup-compression-in-sql-server-2008.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig1_2.jpg

As illustrated in Figure 1, increasing BUFFERCOUNT results in reduced backup time, at the cost of higher CPU
utilization. Your results may vary depending upon your database size, storage layout, and server capacity; howeer,
you will notice that the impact of increasing BUFFERCOUNT on backup performance tends to reduce as
BUFFERCOUNT is increased beyond a certain value. In our test, the curve tends to flatten out as we increase
BUFFERCOUNT beyond 50.

BUFFERCOUNT valueinpct s t he amount of memory used for backup (discus
Utilization by Backupd). Keep this in mind if you explicitly

Tuning MAXTRANSFERSIZE

MAXTRANSFERSIZE refers to the size of the I/O operation iged to read data from the database files. The default
value of MAXTRANSFERSIZE is 1 MB. Performance of sequential /0O operations generally benefit from larger block
sizes, which is the reason the value is set to 1 MB by default. One drawback of larger I/Csizes is the potential impact
on performance of the smaller 1/Os being issued concurrently by an OLTP workload. Because /O queue structures are
shared, intermixing large 1/O sizes with smaller concurrent I/O requests results in increased latency forboth.l n t oday d s
shared storage network environments, there is potential for these operations to also impact other hosts sharing the
same physical devices. Tuning this parameter is likely unnecessary in hardware configurations using dedicated
storage, and it may be necessary only if it is determined that the backup operations impact concurrent workloads. As
recommended in Part 1 of the article, tuning MAXTRANSFERSIZE should be considered as a secondary tuning option,
and it should only to be utilized when it is determined to be beneficial through testing. In the majority of

deployments, the default value will be acceptable.

Figure 2 illustrates observations of backup performance using various transfer sizes.

Backup Performance Varying MAXTRANSFERSIZE

1000 500
— 900 - ./._____.____—r = e T
b4 "
- )
: £
£ 800 300 5
o [-%
: ‘
- o0
2 — - 2 3
® 700 - ————+ 200 £

——Backup Time (Sec) -~ Throughput (MB/sec)
600 100
64KB 128KB 256KB 512K8 1MB 2MB amB
MAXTRANSFERSIZE

Figure 2: Backup time and throughput with varying M AXTRANSFERSIZE (BUFFERCOUNT = 50, 1 Backup
Device)


http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig2_2.jpg

As illustrated in Figure 2, smaller MAXTRANSFERSIZE (64 KB) results in lower backup throughput and hence longer
backup time, and as you increase MAXTRANSFERSIZE, you observe reduced backup time and higher throughput.
However, the impact of increasing MAXTRANSFERSIZE on backup performance tends to reduce as
MAXTRANSFERSIZE is increased beyond a certain value. In our tests, we observed optimal backup performance when
MAXTRANSFERSIZE was between 128 KB and 512 KB. Your results may vary based on your 1/0O camfigion

(throughput and latency of your I/O subsystem).

Similar to the BUFFERCOUNT setting, the value chosen for MAXTRANSFERSIZE will also impact the amount of
memory used for backup operation (discussed later).

Memory Utilization by Backup

As discussed in Part 1 of the article, memory used by backup buffers comes from virtual address space outside the
buffer pool. On 32-bit systems, there is a fixed amount of virtual address space set aside outside of the buffer pool
(default of 384 MB); increasing BUFFERCOUNT and MAXTRANSFERSIZE options to high values may fail because the
memory for backup operations is calculated and set aside at the beginning of the operation.

On 64-bit systems, the virtual address space for any process can be up to 8 TBvhich is far beyond the physical

memory supported on current 64 -bit version of Windows. As a result, memory for allocations outside the buffer pool

does not have to be set aside at the time SQL Server is started and is potentially unlimited. Setting an appopriate

value for Odmax server memoryd usi nitdepBymendNFSQIGSEREEto énsurer e ¢ 0 mme n
that enough physical memory will be available to support allocations outside the buffer pool for backup operations.

Trace flags 3605 and3213 can be used to report the number of buffers used for backup operations to the SQL Server
ERRORLOG. The following example shows the information that is reported in the ERRORLOG when these trace flags
are enabled.

LogDate Processinfo T ext

2009- 01- 16 12:42:13.700 spid53 Backup/Restore buffer configuration
parameters

2009- 01- 16 12:42:13.700 spid53 Memory limit: 32761MB

2009-01- 16 12:42:13.700 spid53 BufferCount: 100

2009- 01- 16 12:42:13.700 spid53 MaxTransferSize: 2048 KB
2009-01-16 12:42:13.700 spid53 Min MaxTransferSize: 64 KB

2009- 01- 16 12:42:13.700 spid53 Total buffer space: 200 MB
2009-01-16 12:42:13.700 spid53 Tabular data device count: 1
2009-01- 16 12:42:13.700 spid53 Fulltext data device count :0

2009- 01- 16 12:42:13.700 spid53 Filestream device count: O



2009-01-16 12:42:13.700 spid53 TXF device count: 0

2009- 01- 16 12:42:13.700 spid53 Filesystem i/o alignment: 512

2009- 01- 16 12:42:13.700 spid53 Media Buffer count: 100

2009- 01- 16 12:42:13.700 spid53 Media Buffer size: 2048KB

2009-01- 16 12:42:13.700 spid53 Encode Buffer count: 100

2009-01- 16 12:45:41.820 Backup Database backed up. Database: TESTPART,
creation date(time): 2008/11/06(12:31:03), pages dumped: 1295126 , first LSN:
158:223:37, last LSN: 158:239:1, number of dump devices: 1, device

information: (FILE=1, TYPE=DISK: {'R: \ Backup \ TESTPART_Compressed.bak'}). This

is an informational message only. No user action is required.

For an uncompressed backup, the totd memory used by the backup buffers can be computed as BUFFERCOUNT
multiplied by MAXTRANSFERSIZE. Compressed backup needs three sets of buffedone set of buffers are used to
read from the database files, the second set of buffers are used to compress the data, and the third set of buffers are
used to write to the backup media. Therefore, a compressed backup will utilize three times as much memory as the
uncompressed backup.

You can observe the memory used by t hevabtaec kBuypt etsads kc obuyn tneorn iftoor
0sql servrd process in the Reliability and Performance Monito
counter for a compressed backup, with no other workload. As illustrated in Figure 3, you will see an increasein the

Private Bytes counter during the backup task. This increase is equal to (BUFFERCOUNT * MAXTRANSFERSIZE) for

uncompressed backups, and equal to (3 * BUFFERCOUNT * MAXTRANSFERSIZE) for compressed backups.



&) Rekabiy and Perfoemance Manitor - 1D] %]

@ o Ackn Vew  Favertes Wandow, Heb =18
N ERE o
'aﬂMyU\dMtho MW . ij U .‘ ! " ”

100
# 3 Oata Collector Sets
£ .8 Reports

 I— | 1

0 o v
FIFAGPM 140 ZUSI0PM  RISSOPM 31630PM TAZIOPM 317S0PM IS30OPM  RN19:09PM 3194FPM 3:20:26 PM

T S¥%,130602  Maxdoum 1,168,773,120 Duration | 6:90

Figure 3: Memory used by a backup compressi on operation, as measured by Perfmon

Another observation from Figure 3 is that this memory is allocated at the beginning of the backup operation, and it is
released when the backup is complete.

Backup Compression and Log Shipping

Performance of log shipping will also benefit from compressed backups. Log shipping sends transaction log backups
from a primary server to a secondary server by copying log backup files to a network share to be applied to the
secondary server. When backup compression is used, transaction log backups are compressed. The reduction in file
size for log backups improves performance of all the operations performed by log shipping:

1. Backup the transaction log on the primary server.
2. Copy the transaction log backup file to the secondary server over the network.
3. Restore the log backup on the secondary server.

The transaction log backups during log shipping can be compressed in one of the following two ways:

9 If you are using SQL Server Management Studio to setup log shipping, set the backup compression setting

by selecting Compress backup from the Set backup compression list, as shown in Figure 4. If you have set

backup compression as the default server level setting (sp_configure option backup compression default),

you can pick the oUse default server settingd option as
9 If you are using the stored procedures to set up log shipping, set the parameter @backup_compression of

stored procedure sp_add_log_shipping_primary_databaséo 1. If you have set backup compression as the

default server level setting, you can set this parameter to 2.


http://technet.microsoft.com/en-us/library/ms187103.aspx
http://technet.microsoft.com/en-us/library/bb677250.aspx
http://technet.microsoft.com/en-us/library/ms182718.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig3_2.jpg

Transaction Log Backup Settings

Transaction log backups are perfaimed by a SOL Server Agent job running on the primary server instance.

Network path to backup folder (example: \\lleserver\backup)

If the backup folder is located on the pimary server, type a local path to the folder (example: c:\backup)

Note: you must grant read and wiite permission on this foldet to the SOL Server seivice account of this pamary seever instance.

‘You must also grant read permission to the proxy account for the copy job (usually the SOL Server Agent service account for
the secondary server instance).

Delete fles oldet than

(72 = [Hous) =~
Alett if no backup occurs within: 1 = [Hous) =]
Backup job
Job name: [[SBackup_TesiDB Schedue.. |
Schedule: Occurs every day every 15 minute(s) between 12.00:00AM I Disable this job
and 11:53:00 PM. Schedule wil be used statting on
2/1272008.
Compression
Set backup compression: / Use the defaul server setting ¥
Use the defaull server setl .
Note: If you backup the transaction logs of this dat Do not compeess backup will not
be able to restore the backups on the secondary server i
Help [ i | coca |

Figure 4: Compressing transaction log backups for log shipping

Figure 5 provides a data point from a customer deployment. The compressed log backup is significantly smaller and
faster.


http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig4_4.jpg

Transaction Log Backup

mm Backup Size (MB) -~ Backup Time (sec)
3000 ¢ r 150
8 T
?.— 2000 100 i.’-
& £
@ =
S o
£ 1000 50 2
T &
@ o
" — o
Uncompressed Compressed
Backup Type

Figure 5: Compression of transaction log backup for log shipping (default values for BUFFERCOUNT and
MAXTRANSFERSIZE, 1 backup device)

Backup Compression and Data Compression

Data compressionis a feature of SQL Server 2008 that can save disk space by compressing data pages within the
database. A commonly asked question is OAre there additional
operations when data compression is used (bothcompre s si on rati o and performance of the

In this test, all tables and indexes were compressed in the database, and then the performance of backup
compression was measured. Separate tests were run with no compression, ROW compression applietb all
tables/indexes, and PAGE compression applied to all tables/indexes. Figure 6 compares the size of the compressed
backup, backup compression ratio, and backup time for databases that contain NONE, ROW, and PAGE compressed
tables and indexes.


http://technet.microsoft.com/en-us/library/cc280449.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig5_2.jpg

Backup Compression and Data Compression

mmm Compressed Backup Size (GB) —~Backup Compression Ratio - Backup Time (min)

£

150 -15 E

£

= E
€ 120 4 + 12 :
VU — ]
@ 3
5

S 90 g @
F 2
@ <
T 60 6 ¢
2 S
: 3
£ 30 3 &
) £
L) [+
o

0 0 g.

4

=

[-+}

NONE ROW PAGE

Data Compression

Figure 6: Backup compression with data compression (BUFFERCOUNT = 50, MAXTRANSFERSIZE = default, 4
backup devices)

Some observations from the results of Figure 6:

9  Backup compression can result in additional disk space savings even on databases that contain ROW or
PAGE compressed tables or indexes. The size of the compressed backup and the backup compression ratio
depend upon the characteristics of the data in the database, and they can vary from the results shown in
these examples.

9  Backup operations on databases that use ROW or PAGE compression will likely result in shorter backup
times, because the smaller database size translates into less 1/0.

 CPU consumption during the backup operation for databases that use ROW or PAGE compression may be
higher as a result of less 1/0, which results in more CPU time for compression operations.

Backup Compression and Transparent Data Encryption

Transparent data encryption (TDE) is another very useful feature in SQL Server 2008. TDE provides encryption of data
in a database at the storage level without requiring any application changes. A common question related to this is
OHow does backup compression perform against an encrypted da

In the example below, backup compression was performed against a database with TDE enabled. Figure 7 compares
the size of the backup, CPU consumption, and backup time for compressed and uncompressed backups on the TDE
enabled database.


http://technet.microsoft.com/en-us/library/bb934049.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig6_4.jpg

Backup Compression with Transparent Data Encryption

s Backup Size (GB) Backup Time (min)  ~#i=~% CPU

400 60 z
(-9

ry &
] 300 45 =
8 £
@ 200 30 £
2 :
% 100 15 &
S s
S

0 0 &

Uncompressed Compressed
Backup Type

Figure 7: Backup compression with TDE (BUFFERCOUNT = default, MAXTRANSFERSIZE = default, 1 backup
device)

We made the following observations when we performed compressed backup against TDE-enabled databases:

f OnaTDEenabl ed database, backup compression doesnodt
compression ratio is nearly 1.0, independent of the data in the database. This is due to the fact that
encrypted data does not lend it self well to backup compression.

9 CPU utilization for the compressed backup is higher than the uncompressed backup, even though the
backup size is not much different. This is because CPU resources are wasted in the compressed backup
operation, because it attempts to compress the data, even though the data is not very compressible.

I On a TDEenabled database, it takes longer to perform a compressed backup than it takes to perform an
uncompressed backup. This is due to the fact that I/O operations are not reduced, because the data does
not compress well. However, there is time spent atempting to compress the incoming data.

For these reasons, we do not recommend the use of backup compression on a TDEenabled database.

Conclusion

Backup compression is one of the most popular features in SQL Server 2008 Enterprise. Most SQL Server deployents
will benefit from this feature; it can reduce both the time taken to perform the backup operation and the disk space
required to store database backups. Understanding the tuning techniques and considerations described in Part 1 of
the article as well as the interoperability of backup compression with other features discussed in this article can help
you get the best out of the backup compression feature.

Appendix A: Test Hardware and Software

All tests (except those in Figure 4 and Figure 6) were perbrmed on the following hardware and software environment.

hel


http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig7_2.jpg

Server

HP DL380G5 with:

1 2 socket quad core
9 Intel Xeon CPU E5345 @2.33 GHz
16 GB RAM

Storage

EMC Symmetrix DMX%4 2500

 Data volumes
0 4 data volumes from a disk group with
A 32 disk drives, 300 GB each @15K RPM
A RAID 1+0
1 Backup volume
0 1 backup volume from a disk group (separate from data volumes) with
A 32 disk drives, 300 GB each @15K RPM
A RAID 1+0
1 ~2HBAs (4 Gb Fiber Channel)

Software

i The 64-bit edition of Windows Server 2008 Enterprise
i The 64-bit edition of SQL Server 2008 Enterprise



Restart SQL Audit Policy and Job

As noted within the Reaching Compliance: SQL Server 2008 Compliance Guid@ou can also check thesglauditcentral
codeplex project), an easier way to view and manage all of the audit logs within your SQL Server environment is to
place all of the audit logs in one central location. As per the guide, you can then use a SSIS package to import in all of
these logs files into a separate SQL database where you can then generate reports to view all of the audits within your
entire SQI Server environment.

The problem that we recently discovered is that if SQLAudit loses connectivity to the folder it places the audit files,
provided that you did not tell SQL Server to shutdown if it cannot write an audit:

f The auditdés is_state_enabled column in sys.server _audits

sysdm_server _audit_status wil/ be ORUNTI ME_FAI LEDS®G
T Even when connectivity to the folder has retur-ned,

meaning it still tries to write to the log but will al ways fail as it is using an old and now invalid handle, or

reference, to the audit log from before the connectivity loss. Currently the only way to get the audit to create

a new valid handle for the audit log is to stop and restart the audit d which will create a new audit file.

There is a bug assigned to this issue and will be resolved in the future. But for us whom are working with SQL Audit
right now, to work around this problem, please go to the sglauditNetworkConnectivity Codeplex project where you
can download the full Centralized Audit Framework project. Within this project is the Restart SQL Audit Policy and
Job folder. This folder contains three pieces of source code:

9 Server Audit Status (Started).xml - Import this on -schedule policy into your server's Policy-Based
Management as it will determine if the audit is enabled and able to write to the file system.

9 Create Audit Job.sgl - This is a SQL Server Audit job that will execute the noted policy; you will need to
schedule this yourself

9 Create Audit Alert.sql - This is a SQL Server Audit job that will create an audit alert.

Together these three source components will (whenever manually executed or scheduled) determine if all of the
audits on your server are able to write to the folder. If they are not, they will send out an alert as well as stop and
restart the audit job re -initializing it so that way the audits will start writin g again.

and
t

he

no
a


http://www.microsoft.com/downloads/details.aspx?FamilyId=6E1021DD-65B9-41C2-8385-438028F5ACC2&displaylang=en
http://sqlcat.codeplex.com/Wiki/View.aspx?title=sqlauditcentral&referringTitle=Home
http://sqlcat.codeplex.com/Wiki/View.aspx?title=sqlauditNetworkConnectivity

SQL DMVStats Toolkit

http://www.codeplex.com/sgldmvstats

A SQL Server 2005 Dynamic Management View Performance Data Warehouse

Introduction

Microsoft SQL Server 2005 provides DynamidVlanagement Views (DMVs) to expose valuable information that you
can use for performance analysis. DMVstats 1.0 is an application that can collect, analyze and report on SQL Server

2005 DMV performance data. DMVstats does not support Microsoft SQL Server 2@0 and earlier versions.

Main Components

The three main components of DMVstats are:

A DMV data collection

A DMV data warehouse repository

A Analysis and reporting.

Data collection is managed by SQL Agent jobs. The DMVstats data warehouse is called DMVstaDB. Analysis and
reporting is provided by means of Reporting Services reports.

For more details, refer to the file attachment DMV Stats.doc.


http://www.codeplex.com/sqldmvstats

Secti on 2: Dat abase Des



Character data types versus number data types: are there
any performance benefits?

Introduction

Working on a recent project, | observed that some developers choosing between character and
number data types favored character data types. However, in my experience, this is not always
the best choice. In the example | discuss here, nundaga types turned out to the better

option. This paper describes a recent case in which we redesigned the data warehouse of a
telecommunications company. As part of the design process, we ran a series of tests to
compare performance of the two data types.

One of the tables had to store phone numbers in international format: + 1 234 5678910, where +1 was

the country code and 234 was the area code. In this case, using the character data type simplifies
development you can use either of the following formafs2 NJ a i 2 NAy 3 GKS O2dzy i NB O
f SFRAY3 WnnQd. dzi F2NJ O2YF2Nla Ay 2dz2NJ tATFS 6S | fgl
O2yaARSNI GA2ya 20KSNJ KIFIy SrasS 2F RS@OSt2LISyiod 22
query performance outweigh the evident development simplicity?

What do we need to store really?

Before | discuss the tests we used to determine the benefits of using either numeric or
character data, | would like to talk about a best practice that hetgge many problems in
designing databases, and in deciding which data type to use.

This best practice is simple: talk to the business, and find out whatrtéaly need. In our

project there were many possible strategies to store phone numbers effigiefdr example,

we could split the number into separate columns for country code, city code, and number. Each
strategy had pros and cons.

However, we were able to identify the best and simplest decision after business users explained
that they always useree of two methods. They either look up the entire phone number in the
F2NXI G Wm Hon pcTydmnQS ¢ A G K2 dalimeticytRaradte®sloRA y 3 1
they search a set of numbers with leading digits, like all phone numbers starting with

YPMH@ QRO

b2GSY LT SYyR dzaSNAR ¢y
pcTydmnQu: &2dz Oly f SI
f SIRAYI WnnQ 2N YbQo

m ~h
[a=tN

x [«=tN
U N



RecordT IMEI
1]
2

After we agreed on the phone number format, werformed tests to compare charactbased and
numeric formats. We chose to test varchar for the charat@sed storage and bigint for the numeric.
We could also have chosen to use the int data type, but in many cases international phone numbers
exceed he limits of digits that an int can storBlote that prior to compression considerations, a bigint
uses 8 bytes, and a varchar uses as many bytes as there are digits. For this company, the number of
digits in a call data record (CDR) usually averag&®%0of the data in a row. Row sizes are generally
between 200,000 and 600,000 bytes.

Test preparation

Fact and dimension table

The customer scenario uses CDRs, which is the representation of the information that is stored
by telecom hardware foevery call made. A CDR contains call details such as duration and
number dialed.

The CDR information ususally looks like this.

NS NSISDN ChargingDateTime Charpeal
IS0A6007 XT3 00T AN S I3 TODS XA 00879 06 02-:44.000 164
N1 TRED ST GG TODOALS YD 005320 05 05:19.000 17A

In the data warehouse, CDRSs can be stored in a star schema; a fact table can store numbers, durations,
and so on, and dimé&sn tables can store attributes of the phone, subscriber, and so on.For testing we
used the following schema: two fact tables for comparison: one with a bigint column (Factint) and
another with a varchar column representing the phone number (FactChakglhas a few dimention

tables.

1. Fact table with bigint column:

CREATETABLE [dbo] . [Factint] (
[RecordTypeOrPartial] [tinyint] NULL,

[IMEI] [bigint] NULL, Phone HW ID

[IMSI] [bigint] NULL,
[ChargingDateTime] [datetime] NOT NULL,

[ChargeableDuration] [smallint] NULL,



[CelllD] [varbinary] (2) NULL,

€ some other col umns

[OriginalCalledNumber] [bigint] NULL, -- dialed number
[OriginalCalledNumberType] [varbinary] (20) NULL,

[SSRequest] [tinyint] NULL,

[MSISDN] [bigint] NOT NULL, -- subscriber phone number
[MSCID] [bigint] NULL,

[FilelD] [int] NOT NULL)GO
2. Fact table with varchar column:

CREATETABLE [dbo] . [FactChar] (

[RecordTypeOrPartial] [tinyint] NULL,
[IMEI] [varchar] (16) NULL,

[IMSI] [varchar] (16) NULL,
[ChargingDateTime] [datetime] NOT NULL,
[ChargeableDuration] [smallint] NULL,
[CelllD] [varbinary] (2) NULL,

ésome other columns [ Original Cal(40e diNWLmb-e rdipledf var char ]
number

[OriginalCalledNumberType] [varbinary] (20) NULL,
[SSRequest] [tinyint] NULL,

[MSISDN] [varchar] (20) NOT NULL,
[MSCID] [varchar] (20) 1 NULL,

[FilelD] [int] NOT NULL)



Note: We could have used varchar (20) to store phone numbers [OriginalCalledNumber], which would in our
comparison correspond to thmumber of digits bigint can hold. We used varchar (40) because this is what the
customer actually used, and in this paper | prefer to be closer to a real case sc&nribimension table with
attributes on where the subscriber number is registerpddne number is stored as varchar (20)):

CREATETABLE [dbo] . [DimDefinitionAChar] (

[MSISDN] [varchar] (20) NOT NULL,

[ARegionID] [varchar] (20) NULL,
[AFiliallD] [varchar] (20) NULL,
[ACountrylD] [varchar] (20) NULL,

CONSTRAINT[PK_MSISDN_Char] PRIMARY KEY CLUSTERED

(

[MSISDN] ASC

)

The tables FactChar and Factint were partitioned with six partitions for each 10,000,000 rows. The
generated dimension tables have 1,000 to 10,000 rows.

Queries

After we built the tables, we defined a set of queriesuo. We identified three queries, representing

the most frequent or the most londzy Yy Ay 3 1j dzSNASE Ay (GKS Odzaidi2 YSNRa
data type choice influenced performance. The first query looked for a single phone number within a
specified time frame, the second looked for a range of numbers, and the third used a LIKE operator to

find the number or numbers.

We used the LIKE operator to look up phone numbers with some leading digits, where the
phone number is stored as a bigint. For exampsers may need to check how many prepaid
phones, sold by a specified shop, made calls (and therefore were activaterde phones may
have sequential numbers where only the last digit or two differ. The LIKE operator determines
character string matches;dwever, if any one of the arguments is not of character string data
type, the SQL Server Database Engine converts it to the character string data type, if possible.

Here are the queries:

1. Query type 1: Single phone number lookup in a specific tinfeame:
SELECT [IMEI]

, [ChargingDateTime] -- time the call was made



, [ChargeableDuration] -- call duration

, [OriginalCalledNumber] -- dialed number
, a. [MSISDN] -- subscriber phone number
, a. [AFiliallD]

, a. [ACountryID]

. m [MSCID]

, m [MSCRegionID]

, m [MCSCountrylD]

, [FileID]

FROM. [dbo] . [Factint]

INNER JOIN DimDefinitionA as a ON a.[MSISDN] = Factint . [MSISDN]
INNER JOIN DimTableMSC as m ON m [MSCID] = Factint . [MSCID]

WHERE[ChargingDateTime] >'2010 - 01- 01 00:00 and [ChargingDateTime] < '2010 -
01- 02 00:00'

AND Factint . MSISDN = 1234567899995324 -- subscriber phone number

2. Query type 2: Big report query where the range of phone numbers is looked up:
SELECT [IMEI] , [ChargingDateTime] , [ChargeableDuration]
, [OriginalCalledNumber] , Fact . [MSISDN] , a. [AFiliallD]
, a. [ACountryID]
, Fact . [MSCID] , m [MSCRegionID] , m [MCSCountryID]
, [FileID]
FROM[dbo] . [FactInt]

INNER JOIN DimDefinitionA as A ON A [MSISDN] = Factint . [MSISDN]

INNER JOIN DimDefinitionPosition as P ONP.[CelllD] = Factint . [CelllD]



INNER JOIN DimTableMSC as M ON M [MSCID] = Factint . [MSCID] WHERE
[ChargingDateTime] >'2010 - 01-0100:00' and [ChargingDateTime] < '2010 -01-02
00:00' AND Factint . MSISDN > 1234567899995324 and Factint . MSISDN <
1234567899995924 AND Factint . [MSCID] > 790300000705 and Factint .[MSCID] <
790300000800

3. Query type 3: A lookup in which the LIKE operator is used:
SELECT [IMEI] , [ChargingDateTime] , [ChargeableDuration]

, [OriginalCalledNumber]
. Factint . [MSISDN]

, a. [AFilialiD]

, a. [ACountryID]

, Factint . [MSCID]

, m [MSCRegionID]

, m [MCSCountrylID]

, [FileID]

FROM[dbo] . [Factint]

INNER JOIN DimDefinitionA as A ON A [MSISDN] = Factint . [MSISDN] INNER JOIN
DimDefinitionPosition as P ONP.[CelllD] = Factint . [CelllD]

INNER JOIN DimTableMSC as M ON M [MSCID] = Factint . [MSCID]

WHERE[ChargingDateTime] >'2010 - 01- 01 00:00 and [ChargingDateTime] < '2010 -
01- 02 00:00'

AND Factint . MSISDN Like '12345678999953%'

AND Factint . [MSCID] Like '7903000007%

Because we needed to know the repiery performance at the beginning of each query execution, we
compared queries with and without cache cleariip.

DBCC FREESYSTEMCACHEALL" );

DBCC DROPCLEANBUFFERS



DBCC FREEPROCCACHEO

Test

After all preparation was finished, we performed theldaling tests for each type of query:

1) Test 1.Query fact tables and dimension table, compression not enabled , cache is cleaned up (cold)
2) Test 2.Query fact tables and dimension table, compression not enabled, cache is warm
3) Test 3.Query fact tables and dimension table, fact table compressed, cache is cold

4) Test 4.Query fact tables and dimension table, fact table compressed, cache is warm Here are the
numbers the tests runs generated.

Example of results from Testsand 2

Cold Cache Warm Cache

Query 1 (FactChar, ms) Queryl (Factint, ms)

Query 1 (FactChar, ms) Queryl (Factint, ms)

17631

17136

18198

Returned: 994 rows

ColdCache Warm Cache

Query 2 (FactChar, ms) Query 2 (Factint, ms) Query 2 (Factint, ms) Query 2 (Factint, ms)




Returned: 56179 rows

ColdCache Warm Cache

Query 3 (FactChar, ms) Query 3 (Factint, ms) Query 3 (FactChar, ms) Query 2 (Factint, ms)
98691 1177 1063

98692 1124 1087

99105

98474 1300

Returned: 9991 rows
You can see that:

- Queries against the bigint table with a cold cache ran between about 54% and about 67% faster

than the queries against tables where data was stored as a character data tygéese queries also

showed significant performance gain fables with bigint in comparison to varchar data type when run
against a warm cache. Queries against the FactInt table ran about 24% to about 70 % faster than queries
against the FactChar table.

Next, we enabled compression on the tables to see its effeajuery performance.

Example of results from Tests 3 and 4

Cold Cache Warm Cache

Query 1 (FactChar, ms) Query 1 (Factint, ms) Query 1 (FactChar, ms) Query 1 (Factint, ms)
423
420
470
487
397

Cold Cache Warm Cache

Query 2 (FactChar, ms) Query 2 (Factint, ms) Query 2 (FactChar, ms) Query 2 (Factint, ms)

1766
1967 1657




1904

1714

1617

Cold Cache

Warm Cache

Query 3 (FactChar, ms)

24922

Query 3 (Factint, ms)

Query 3 (FactChar, ms)

1271

1287

1286

1389

Query 3 (Factint, ms)

1262

The results indicated that after compression was enabled on the tables, performance of the
gueries on the tables Factint and FactChar was almost identical.

Compression did improve the performance for both queries, compared to the same test against the
noncompressed data. What was interesting was that average execution time dropped slightly. However,
the queries still took a relatively long time to execute. The only real difference appeared when the cache
was cold: queries against the Factint table ran at®2% to 58% faster than queries against the

FactChar table.

Finally, we observed a significant space savings when bigint was used. The following table compares the
amount of space you need to store data using both a character type data format andeaioutata

format.

Name Rows Compressed? Data index_size
FactChar 60000000 no 9634,281 MB 2192,016 MB
FactChar 60000000 yes 4735,781 MB 2175,133 MB
Factint 60000000 no 7324,219 MB 1597,125 MB
Factint 60000000 yes 4077,320 MB 1585,586 MB
Conclusion

When you design complex database solutions, you may be tempted to choose chdvasterdata
types and save development time and efforts. However, this may not be the best choice for your



scenario. Talking to the business may help you idetii#ybest data type and format for your customer,
based on the way the data is queried and the effects of different settings on performance. As our tests
indicate, apparent simplicity may cost you query performance and storage space. Choosing numeric
datatypes over charactebased data types may offer performance gains, which could improve overall
system throughput.



The Many Benefits of MoneyéDat
Background

Our initial reason for looking at the money data type can be found within the Precision Considerations for Analysis
Services Userswvhite paper. In this white paper, we provide extensive examples of the types of precision issues when
your SQL relational data source and your Microsoft® SQL Server® Analysis Services cube have different non
matching data types (e.qg., if you query one way you get the value 304253.3251, but run the query in another way and
you get the value 304253.325100001)

To avoid these types of problems, you need to ensure that your SQL relational data source and Analysis Services
measure groups have matching data types. By default, when you create an Analysis Services measure onraoney
data type, Microsoft Visual Studio® Business Intelligence Development Studio will set the data type reference to
double . To avoid precision loss and have faster performance, you should change the data type tocurrency within the
Source Properties as noted in the screen shot below.

Currency Value Measure -
]
OvsplayFolder ]
MeasureExpression
Visble True
B Basic
Description
FormatString
Noeee Currency Value
B Source testFact.CurrencyValue (Currency)
8 Source testFact.CurrencyValue
DataType Currency ;‘
DatasSee 0
NIProcessng AR omat
Collation
Format
Irv b imiChar acters Preserve
Meme Type
Trienening Raght z
DataType
Spechies the data type used by Anslysis Services. The data type specified for ths
property can dffer from the data type in the dats source,



http://www.microsoft.com/downloads/details.aspx?familyid=bae8beec-9892-4ecd-a9db-292254895f9c
http://www.microsoft.com/downloads/details.aspx?familyid=bae8beec-9892-4ecd-a9db-292254895f9c
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TheManyBenefitsofMoneyDataType_9F7C/image_2.png

Show Me The Money! ...Data Type for Faster Processing Performance

Working on customer implementations, we found some interesting performance numbers concerning the money
data type. For example, when Analysis Services was set to theurrency data type (from double ) to match the SQL
Servermoney data type, there was a 13% improvement in processing speed (rows/sec). To get faster performance
within SQL Server Integration Services (SSIS) to load 1.18 TB in under thirty minutes, as noted i8SIS 2008 world
record ETL performance it was observed that changing the four decimal(9,2) columns with a size of 5 bytes in the
TPGH LINEITEM table tomoney (8 bytes) improved bulk inserting speed by 20%. Note that within SSIS, the
equivalent of the money data type is DT_CY, which currently does not support fast parse. Hence, gettingnoney out
of text files may incur additional cost.

Note that these tests were perfomed on 64-bit systems. Relative performance may be different in the 3it editions of
SQL Server because of differences in the way it performs-®it integer (or money) operations.

Money vs. Decimal vs. Float Decision Flowchart

Below is a high-level decision flowchart to help you decide which data type you should use. Note that this is a
generalization that may not be applicable to all situations. For a more in-depth understanding, you can always refer to
Donal d KheArt di Gomputer Programming 6 Volume 1.



http://blogs.msdn.com/sqlcat/archive/2008/02/29/ssis-2008-world-record-etl-performance.aspx
http://blogs.msdn.com/sqlcat/archive/2008/02/29/ssis-2008-world-record-etl-performance.aspx
http://sunburn.stanford.edu/~knuth/taocp.html

approximate:
Determining money vs.

decimal vs. real

As well, remember that different data types have different client APl mappings. Some more in-depth references to this
include SQL Server Data Types and ADO.NEAnd A Money type for the CLR.

Money (Data Type) Internals

The reason for the performance i mprovement i s because
has the key design principle to transfer data in compact binary form and as close as possible to the internal storage
format of SQL Server. Emgiically, this was observed during the SSIS 2008 world record ETL performancetest using
Kernrate; the protocol dropped significantly when the data type was switched to money from decimal. This makes the
transfer of data as efficient as possible. A complex data type needs additonal parsing and CPU cycles to handle than a
fixed-width type.

Letds compare the different data types that are typically

of

sSQL

us


http://msdn.microsoft.com/en-us/library/ms172136.aspx
http://www.codeproject.com/KB/recipes/MoneyTypeForCLR.aspx
http://blogs.msdn.com/sqlcat/archive/2008/02/29/ssis-2008-world-record-etl-performance.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=d6e95259-8d9d-4c22-89c4-fad382eddcd1&DisplayLang=en
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TheManyBenefitsofMoneyDataType_9F7C/image_10.png

Breakdown

decimal

Simple/complex data type:

Simple data types align more
directly to native processor types.
Complex data types require CPU to
review type metadata and to
perform branching.

Simple

Complex

Simple

Fixed/variable length writers:
Because a variablelength data type
may incur a memcpy when moving,
causing additional CPU overhead,
use a fixed 8-byte or 4-byte integer
assignment if possible.

Fixed

Variable

Fixed

Storage format : Incurs less
overhead if the data type is
composed of native literals (e.g.,
int, uint , long, ulong ) instead of

approximate data types (e.g.,float ).

8-byte integer

Scaled integer (one sign
byte plus one to four
ulong depending on
precision)

8-byte integer

Comments : This row lists other
issues of concern.

None

TDS wire format is always
packed, so extra
overhead is required to
pack and unpack this
data type.

Approximate data are
types more expensive to
compare/convert than
native literals; there may
be precision issues on
conversion.

The key here is that themoney data type is a simple fixed-length integer -based value type with a fixed decimal point.
Composed of an 8-byte signed integer (note that small money is a single 4-byte integer) with the 4 -byte CPU

alignment, it is more efficient to process than its decimal and floating point

counterparts. The other side of the coin

is that floating points (but not decimal ) can be more quickly calculated in the floating point unit of your CPU than
money . However, bear in mind the precision issues offloat as noted above.




Saving (Space foj Your Money!

In the context of SQL Server data compression, themoney and small money data types tend to compress well when
the absolute value is low (e.g., values between-0.0128 and 0.0127 compress to 1 byte, while values between3.2768
and 3.2767 compress to 2 bytes). It is the absolute value that matters for compression, not the number of significant
digits; both 1,000,000 and 1,234,567.8901 will take 5 bytes compressed. On the other handdecimal will compress
better when there are fewer significant digits. For example, both 1,000,000 and .0001 will compress to 2 bytes, but
1,234,5678901 will take several more bytes because it has more significant digits.

$ummary

There will be many scenarios where you preferred option will still be to use data types such asdecimal and float . But
before skipping over this detail, take a look at your data and see if you can change your schema to themoney data
type. After all, a 13% improvement in Analysis Services processing speed and 20% improvement in SSIS processing
i snét chump change.

éand thatdos our $0.02.



How many files should a database ha?- Part 1. OLAP
workloads

Thesubject- how many files a database should have a question that comes up often. The answer is
of course: it depends. But, what does it depend on?

Background information

If a filegroup in SQL Server contains more tAayiS FAf S

{v]

{ SNIDSNJ gAff

across the files by using a proportional fill algorithm. If the files in the group have the same size
(which we recommend), the allocation is essentially arcM@ o Ay ® ¢ KS aa i NA LIS &)
round-robin is by default one extert64KB. Hence, the first allocated extent goes to the first

file in a filegroup, the second extent to the second and so on. This striping mechanism can be

quite usefulbecause you can spread your I/O over several LUNs by alloeadiaig file to

each. You should strive to have all files in a filegroup be of equalusirey Files and Filegroups

on TechNet rovides more background on filegroup and allocation.

EaK FTA{S Ay

GKS RIGFolrasS Kra AGa 2¢y

tCc{= D!a IyR

track the free space and allocation in the in the file. Every new allocation in the file will have to access a
PFS page and in some cases also the GAM/SGgédd.f&or more background on this see "Inside SQL

{ SNBSNJ HnnpY ¢KS {{i2N¥3S

9y 3IAYySE

0e

YItSy 58t ySe

In this Tech Note, we look at files from an OLAP / Data Warehouse workload perspgetizase OLAP

and OLTP workloads differ greatly, different recoematation for file allocation apply.

Too few files in a filegroup

If a filegroup receives a lot of insert activity, the pressure on the PFS and GAM/SGAM page
access becomes significant. At some point, this becomes a bottleneck, effectively slowing down
the insert throughput. In a data warehouse load, the contention is typically on PFS pages.

If PFS contention is present in a workload, it will show up as waitif@XGELATCH_ WP
sys.dm_os_wait_statsYou can ussys.dm_os_waiting_taski see which pagegou are waiting for.
You will see something like the following:

sestion id | exec context id | wail_type tesource description
1 185 ] PAGELATCH_UP  B:1:2895504
2 122 0 PAGELATCH_UP  B:1:2895504
e | v Oy i DACI ATEW HID C-1- 200N A


http://msdn2.microsoft.com/en-us/library/ms187087.aspx
http://sqlcat.com/blogs/technicalnotes/PFS Contention.gif

The format of theaesource_descriptiorcolumn is: DBID:FILEID:PAGEID. You can use the
resource_descriptiorto look up the page isys.dm_os_buffer_descriptor® see if your wait is
on a PFS page.

If you discover that you have many waits for PFS pages, you probably need to add more files to the
affected filegroup. Because each file has its own administration patiespresence of more files
reduce contentioron PFS pages.

Too many files in a filegroup

Increasing the number of files is useful ifyazd S G KS FAfSa (2 GadNRARLSE |
into the PFSottleneck as described above.

However, there is a disadvantage in haviog manyfiles. Remembethat SQL Server will stripe the

extents over the files in stripe sizes of 64KB. Assume that you have great deal of insert activity on a

single filegroup that contains many files. Since SQL Server distributes the extents across the files, your
average I/Qequest will typically have a size of 64KB. If you instead had fewer files in the filegroup, SQL

{ SNIBSNJ O2dzA R aodzyRt S¢ GKS Ffft20FG4A2ya FyR KSyoOS:s
better throughput if you can drive large block sizes.

Testing with TP LINEITEM data shows the following pattern when loading the database
using minimally logged operations:

# Files in filegroup ‘ Avg /O block size (KB) ‘

1 256
2 196
4 132
8 64
16 64
32 64

The above numbers are for a single bulk straarthe file.

SQL Server is quite good at bundling 1/0 operations together in large lqlagiscess known
as scatter/gather. In our test, we tried to increase the concurrency of the bulk load to utilize
this functionality. With 64 bulk streams, we weable to drive block sizes up to 196 KB, even
with 32 files in a single filegroup. But still, with 1 file in each of multiple filegroups, we were
getting a faster, 256 KB block sized I/0O.

So, while adding more files can benefit performance by eliminatit ¢dntention, it can make the 1/0
pattern less efficient. You can measure the size of the block requests using the perfmon cbogiteal
Disk: Avg Disk Bytes / Writeo gauge how efficient your block size is.



Having manyilegroupsin a database adds an administrative burden: you now have to balance
the space usage in the database between the filegroups. Therefore, you probably do not want
to go overboard in optimizing your I/O block sizes by adding filegroups with few files and
allocating your tables across them. In our TP{®ad test we only saw a 5% increase in disk
throughput from optimizing block sizes and the benefit was only realized above several
hundred MB / Sec insert speeds.

Another factor to consider, from an administia perspective, is database startup recovery. File
recovery after server restart or afterSET ONLIN&peration on the database are done sequentially. If
you havemany files (hundreds) in your database, this recovery process can take a lorizptimese
each file is opened sequentially.

The T E startup flag

The SQL Server startup flelg forces SQL Server to allocate 4 extents at a time to each file,
essentially quadrupling the stripe size. In heavy insert scenarios, this drives larger block sizes to
the disk. Also, your pages allocation will be more sequential with the same data file, allowing
better sequential I/O for range and table scan operations (which are common in OLAP
workloads).

This startup flag provides most, but not all, of the above mentidmerkefits to I/O systeng without the
overhead of managing multiple filegroups. Be aware that this flag is supported onlbit 64
environments. You can find information about tQE startup flag irfhle allocation extension in SQL
Server 2000 (64it) and SQL Server 2005 (KB329526)

So, how many database files should | have in my OLAP system?

To allocate theoptimal numberof files you must understand your database workload. The
amount of insertactivity is the determining factor. Yalso must balance the following factors:

PFS contention

need for SQL based striping
I/0O pattern¢ block sizes

File recovery times

=A =4 =4 =4

PFS contention and S®hsed striping drives you towards allocating more files. @igthg I/O requests

and file recovery leans towards fewer files. If your work load is very insert heavily, you generally want
more files, but in a controlled manner. We have seen benefits of having up to half the amount of files as
you have coreg and eva more in the case oempdb. If your data load is more read intensive, having
fewer files may benefit you, since PFS contention is not a problem in this case and your I/O will arrive in
larger bundles.

In extreme cases, when inserting hundreds of MBd, §eu can benefit from partitioning your
table into filegroups, each with low number of files to bundle I/O requests together and create


http://support.microsoft.com/kb/329526
http://support.microsoft.com/kb/329526

larger block sizes with sequential disk access. But, by doing this you assign performance priority
over ease of admistration.

{2 GKS IyasgSN (2 GKS [[dSatArz2yr a4l 2¢6 Ylyeée FAfSa ack
without running into PFS contention and without sacrificing striping ability.



SQL Server Partition Management Tool

SQL Server Partition Management Tool is available ahttp://www.codeplex.com/SQLPartitionMgmt with source code.

This tool provides a set of commands (at the Command Line or via Powershell) to createa staging table on-demand

(including all appropriate indexes and constraints) based on a specific partitioned table and particular partition of

interest. By calling this executable, with parameters, from maintenance scripts or SSIS packages, DBAs can ado

having to 6hard coded tabl e and i Theteokeliniratesthe chaliergeof scr i pts f or
keeping such scripts in synch with c hlaasgmovidesafaspsanglé i ti on t abl
command shortcut for the operation of quickly deleting all data from a partition.

This tool supports SQL Server 2008, but is also fully compatible with SQL Server 2005. An earlier verison of the tool
(for SQL Server 2005) is also available on codeplex under the same project.

The latest version supports new features in SQL Server 2008 such as filtered indexes, new data
types, and patrtitioraligned indexed views.


http://www.codeplex.com/SQLPartitionMgmt

Secti ont r3dac kkast



Lessons Learned and Findings from a Large Fastrack
POC

Executive Summary

¢2 AR /2yG2a2Qa 321t Ay SadloftAaKAYy3d Iy SyidSNLINA
a single version of the truth, Microsoft has participated in a proof of concept (POC) to demonstrate the
performance, scalability, and value of the Misoft SQL Server application platform. The Microsoft

team used our Fast Track Data Warehouse solution based on HP hardware and SQL Server 2008 R2
RDBMS. This involved conversion work from the current Oracle production system to the test SQL Server
system.In summary, we built a Fast Track configuration that scaled according to the demands put on it

by the requirements. We were able to deliver excellent performance numbers for both pre and post
optimization serial runs. Additionally the performance numbersviolumized data scaled according to

the growth in size of data. We did additional testing on different approaches for loading the data, that is,
BULK INSERT vs. bop utility. We also loaded data into databases with tables using nonclustered and
clustered primary keys and were able to show the workload performance numbers for both. The
compression scenario delivered impressive compression ratios and indicated areas where it could be
used for query performance optimization. The calculated compressiam lbafore compression was a
YSENI SadAYrdiS 2F GKS FOGdzrf GFrofS O2YLINBaarzy aal
estimate predicted. The backup scenario proved that the speed and backup compression will be key
wins for manageability of theada warehouse. When testing updates in place, we optimized the
performance numbers by setting the fill factor appropriately to avoid page splits. Early feedback

indicated that this was much faster than Oracle and other competing vendors, and an order of

magnitude faster than the current production system. Finally we were able to conclude that the
performance of the Fast Track configuration was better than current production by many orders of
magnitude across all the testing options. Given the opportunityeliver the enterprise data

warehouse, the Microsoft Fast Track Data Warehouse can deliver workload performance far surpassing
expectations with the latest G7 hardware. We believe we can deliver the best performance through our
expertise in optimizatin and migrating code from different database platforms.

Introduction

Contoso, one of the biggest banks in Malaysia, called for a POC among Oracle (Teradata), IBM (DB2 on
zSeries), Greenplum, and Microsoft. They developed a very elaborate and completedp@that can

be broken into five trackst. Track A is a simulation of the current environment. To create Track A,

load two months of information from an Oracle database. Migrate objects and data to SQL Server but do
not do any optimizations. Thatay, get a baseline of a direct migration by running serially specific

gueries and stored procedures (six fixed queries, four stored procedures, and 20 or so ad hoc

queriesP. Track B. Apply optimizations to database and queries to Track A. Reix tipgeries and

four stored procedures in parallel while updating the customer master table. Also, switch in a new
partition and ensure that there are no issues with currently running queries or dirty3atarack C.

Start with Track B, and then ntiply all the dimension tables by three and the fact details table to seven
years (that is, an additional 82 months). Record load tifiesTrack D. Modify queries from Track B to

get the new bigger data set.

Hardware Configuration



Configuration: HBL785 G5 with 8 socket quad core: 32 AMD Opteron 8376 HE, 2300 MHz and 256 GB
ram. (NOTE: Even though this system is not in the list of the published HP Fast Track configurations, it
followed the rules of fast track to achieve a wadilanced system betves cores and LUNs.)I/O: Five HP
Smart Array P411 controllers and 10 D2700 enclosures direct attached (DAS). Each enclosure had 25
disks x 146 GB each 10k rpm SAS 6G dual port. We used four controllers for FT with 32 RAID 1 LUNs of 2
disks each. The fifthootroller, which was used for backup and other storage, had three RAID 5 LUNSs of

8 disks each. Operating system: Windows Server 2008 R2 Enterprise with hotfixes KB 2155311, 977977,
976700, and 982383. These are all I/0O related fixes for Windows ServeR2088 multi core
systems.DBMS: SQL Server 2008 R2 Enterprise plus Cumulative Update package 3¢B/andsed

T1118 trace flags. Trace flag 1118 forces uniform extent allocations instead of mixed page allocations. It
is commonly used to assisttempdb scalability by avoiding SGAM and other allocation contention

points. We allocated a maximum of 250 GB RAM to SQL SPatahase configurationve used one

filegroup for the Fast Track database with 32 data files of equal size, one in each LUN becaad@&32ve h
cores. We used the same configuration tempdb. For the transaction log, we had four extra RAID 1

LUNS of two disks, one in each enclosure.

Track A 7 Nonclustered Indexes as Primary Keys

Notes

9 This test ensured adherence to the loadofglata in waves. The PK indexes are nonclustered, in
1SSLIAY3I 6A0GK T Pyiniady &ey Qilicates arekigheret by the process and not inserted
into the tables. There are other batthta errors. These are logged in the error log fles.The data

errors were left in the load files and stripped on load to show the woaste scenariblere is an

example of the command we used to load data in from the command latch.

TrackA.dbo.[<Table>] in <Table>.txt -c -F2 -r \n -m999999 -t"|" -b
100000 - U %USERNAME%- S %SERRVERNAMEXP %PASSWORD%e
<Table>.txt_Errors.log - h "TABLOCK"

Loaded Row Count

Table Name Actual Loaded Row|
Count
ACCT_HT 5,592,356
ACCT_XREF 22,898,855
CARD_CREDIT_LINE_H 1,217,097
CERT_DEPOSIT_HT 1,146,640
CODE_HT 39,796
COLLAT ACCT_REL_H 2,744,101
COLLAT_CONS_HT 71
COLLAT _CUST _REL_H 3,955,228
COLLAT_FIN_HT 847,391
COLLAT_GUAR_HT 491,094
COLLAT_MACH_HT 7,059




COLLAT_MVEH_HT 1,246,607

COLLAT_OASST_HT 3,660
COLLAT_OVEH_HT 174
COLLAT_PROP_HT 205,294
COLLATERAL_HT 2,789,530
COMMERCIAL_LOAN_H 225,983

CONSUMER_INST_LN_| 1,254,016
CREDIT_PROVISIONS | 1,645,043
CUST_ACCT_REL_HT | 7,642,494
CUST_CUST_REL_HT | 1,073,973

CUST_HT 7,165,192
CUST_NON_PERS_HT| 392,467
CUST_PERS_HT 6,773,268
CUST_XREF 12,311,195
PRD_DIMENSION 4,017
PRODUCT 1,497
RETAIL_CHECKING_H1 165,041
RETAIL_CREDIT_LN_H 8,048
RETAIL_SAVING_HT | 1,583,574
TRAN_DETAIL 19,107,244
Comments

The total load time was 6,393 seconds. This was due to the fact that all the indexes were kept and the
data was nopre-cleaned to remove corrupt rows and duplicate primary key data.

Track A- Clustered Indexes as Primary KeyBAST LOAD
Notes
1 The primary key indexes were changed to clustered indexes, and primary key data and bad data

were removed from thdiles to ensure clean fast loafls. The nonclustered indexes were built on the
data after it was loaded in a parallel batelere is an example of the command we used to load data in

from the command batclhcp TrackA.dbo.[<Table>] in <Table>.txt -¢c -F2 -r \n -m
999999 -t"|" - b 100000 - U %USERNAME%- S %SERRVERNAMEYP %PASSWORD%e
<Table>.txt_Errors.log - h"TABLOCK"

Comments

The total load time (to build the entire database) was 2,485 seconds. This time is made up of 2,166
seconds for the data &d and 319 seconds for the creation of all the nonclustered indexes. This was
much faster than the 6,393 seconds it took to load the data using nonclustered indexes as primary keys.
The 2,166 seconds can be further reduced if the declarative refereriggrity (DRI) constraints are
removed. This was not tested because Contoso had a requirement to keep the DRI constraints in the
database.

Track A- Best Practices
- Normally you should not have constraints on the DW tables. Foreign keys and logical integrity of
the data to be loaded should be handled at the ETL layer to minimize data load performance issues. In



our case, we could not avoid the constraints due to tECPrequirements. SQL Server

Integration Services can provide a better means of cleaning the data and taking care of slowly changing
dimensions- You need to determine what you want to focus on: load performdncdistorical

data or query performance. Sometimes you cannot optimize for both at the same time. In our case, we
optimized for query performance. Consider loading data into partitioned tables for incremental
loads:- Use the BCP utility to load data in and specify the TABLOCK and ORDER hints. Ensure that
the order of the data is the same as it is in the clustered index.

Query and Stored Procedure- Execution Summary

Results Before and After Optimization
This able shows the numbers before and after optimization for the execution of procedures and
gueries.All executions were performed seriallyrhat means the following:

1. Track Adatabase was used for the befeoptimization number, that is, where nonclustered
indexes used for primary keys. The queries and stored procedures were migrated from Oracle
and not optimized.

2. Track Bdatabase was used for the afteptimization number. The queries and stored
procedures were optimized for the aft@ptimization numbers.

T Execution time (before | Execution time (after

Item Execution time in current S Lo

Oracle production optimization) optimization)

Hr:Min:Sec Hr:Min:Sec
Q1¢ Coreplan 00:16:00 00:02:00 00:00:02
Q2¢ FINS_CASHDEP 00:05:00 00:03:02 00:00:02
Q3¢ FINS_FDPLACE 00:03:00 00:00:02 00:00:00 (1 ms)
Q4¢MUTIARA_CPS 34:07:00 00:02:14 00:01:18
Q5¢ PIDM_APP1 > 48 hours 00:00:04 00:00:02
Q6¢ PIDM_APP2 > 48 hours 00:00:17 00:00:14
Stored Proc 1
:23: :01: :00:

CTSM_ME_PROD_PARTITION 00:23:00 00:01:08 00:00:35
Stored Proc 2

02:51:00 00:11:39 00:06:40
MUTIARA_MAIN_JUL10
Stored Proc 3 03:20-00 Runs for over 3 hours | 00:03:00- 00:05:00 (35
DCS_MERGED_IND_SP o terminated mins)
Stored Proc 4 Kpi_Run_On_Age | 00:27:00 01:15:41 00:02:00- 00:04:00

Optimizations Performed; High Level Summary

1 Rewrite CASE and WHERE statements asfjoinGlean key join column to remove leading and
trailing space§ Add nonclustered indexefs. Create statistic§. Build derived olumns for
substring joing] Convert Oracldike function calls from SQL Server Migration Assistant (SSMA) to
native function calls, such as:



ssma_oracle .to_char date (sysdatetime (), 'DD-MONYYYY HH:MI:SS AM' )to
CONVER(varchar (32), sysdatetime (), 109)

Results for Seven Years Data Serial Query Execution

Description Min:Sec
Q1¢ Coreplan 00:30
Q2¢ FINS_CASHDEP 39:36
Q3¢ FINS_FDPLACE 0:02
Q4¢ MUTIARA_CPS 10:1
Q5¢ PIDM_APP1 0:05
Q6¢ PIDM_APP2 10:50

The results seem proportional to tltata volume and the fact that the queries were run in parallel. A
data set expanded three times by account base and seven years by time will have an impact on the
number of rows to be scanned as well.

Description Hr:Min:Sec
Stored Procedure 1CTSM_ME_PROD_PARTITION 0:12:24
Stored Procedure 2 MUTIARA_MAIN_JUL10 0:09:24
Stored Procedure 3DCS_MERGED_IND_SP 1.00:35
Stored Procedure 4 Kpi_Run_On_Age 0:09:25

The volumization of data seems proportional to the query run time in simstances. Heavy processing

via function calls in search conditions and the SELECT clause of the queries within procedures
lengthened the run time of procedures. NOTE: The Fins_Cashdep query has a time window of five days
on Tran_Detail but the substringriction applied on TXD_ACCT_NO column of TRAN_DETAIL will cause
the table to be scanned. Generally, we have seen when that when functions such as CONVERT,
SUBSTRING, CAST, LTRIM, and RTRIM are used, the plan becomes serial and performance can be
affected regatively. For more information about queries and stored procedures execution plans and
optimizations, see Appendix B.

Volume Growth and Scalability

Notes
The purpose of Track C is to measure the load time for volumized data. The data volume wasdncrease
in keeping with volumization rules set by Contoso.



Load Process
The diagram shows the load sequence of bulk copying of the files using the BCP

BCP in Overview
STEPO

Set environment variables

STEP1 i

Parallel (4 threads)

Parallel (30 threads)

22 threads

| BCPin [ BCPin [ BCPin
8 threads

A »/

_)

STEP2
BCPin

’eI

Tables

Parallel (6 threads) | "™

utility. After the BCP
files are loaded, the data is

¢ Sequential flow

Switch Partition Overview

Switch_partition.bat switch_partition.sql
Execute following SQL script repeatedly

(1t082) ( Create foreign key constraint E

2 1 same definition of TRAN_DETAIL
| Executeswitch_partitionsal ' | | Named FK_TDX2 XX )

v

( Create check constraint h

Itis required toswitch partition
\ Named CK_XX )
( Switch partition 5

Switch Partition TRAN_DETAIL_ACCT_XX
\ to TRAN_DETAIL )
-

switched. The file
load is synchronized usinglag-file method.



How to Synchronize on BCP In

Parent process

START batchinparaliel o

Anyflag file exists

.

1 Sleep for 2seconds |

+

}_Check.‘éagfszee(isp |

exist

All fiag filesdonot

v

START batchinparaliel

Child process
Batch createflag file

¥

Batch do something

v

Batch deleteflag file

Results

STEP Table name TIME(mS) TIME(min)
ACCT_HT.LOG 1,913,961 32

STEP1 CUST_HT.LOG 1,701,456 28

Parallel CUST_NON_PERS_HT.LQ 45,365 1
CUST_PERS_HT.LOG 772,750 13

Subtotal STEP1 1,913,961 32

STEP2 CUST_ACCT_REL_HT 2,807,191 47

Subtotal STEP2 2,807,191 47

STEP3 CARD_CREDIT_LINE_HT| 800,581 13




Parallel CERT_DEPOSIT_HT 248,494 4
CONSUMER_INST_LN_H7 550,090 9
CREDIT_PROVISIONS_H] 413,043 7
RETAIL_CHECKING_HT | - -
RETAIL_SAVING_HT 329,147 5

Subtotal STEP3 800,581 13

STEP4 TRAN_DETAIL_ACCT_83]| 1,923,914 32

Serial TRAN_DETAIL_ACCT_84| 1,446,005 24

Subtotal STER4 3,369,919 56

Tran_Detail Import Performance

We did two passes of the import; the results are shown for both. Pass 1 uses BCPtlitere is

commandbcp %DB_NAME%.dbo. TRAN_DETAIL_ACCT_%NUM% in

%3 TRAN_DETAIL_ACCT_%NUM%.txt -c¢ -r \n -t"" - S SERVERY U%USER% P %PASS%

-b 100000 - h "TABLOCK, order(TXD_CYC_DT ASC, TXD_CYC_FREQ ASC,

TXD_A HLD_ORG_CD ASC, TXD_ACCT_ID ASC, TXD_A_FIN_INST_NO ASC, TXD_APPL_SYS_ID

ASC, TXD_ACCT_NO ASC, TXD_TRAN_DT ASC, TXD_TRAN_SEQ_NO ASC, TXD_TRAN_CD ASC)"

-0 %LOG_DIR% STEP4_TRAN_DETAIL_ACCT_%NUM%.log This test loads the data into the table
unsorted, and the server has to sortit. The averagémport time per table was 1,945 seconds (that is,

32 minutes).The longest tables import was 5,006 seconds (that is, 83 minBaes.2 uses BULK INSERT.
Here is the commandsgl - S %SERRVERNAMEYd %DATABASE% U %USERNAME%P

%PASSWORD® "BULK INSERT %D B_NAME%.dbo.tran_detail_acct_ %NUM% FROM

'%3\ TRAN_DETAIL_ACCT_%NUM%.txt' WITH (TABLOCK ,CODEPAGE =

'RAW',FIELDTERMINATOR ='|'ROWS_PER_BATCH = 100000, ORDER(TXD_CYC_DT ASC,

TXD_CYC_FREQ ASC, TXD_A_HLD_ORG_CD ASC, TXD_ACCT_ID ASC, TXD_A_FIN_INST_NO

ASC, TXD_APPL_SYS_ID ASC, TXD_ACCT_NO ASC, TXD_TRAN_DT ASC, TXD_TRAN_SEQ_NO

ASC, TXD_TRAN_<DThaBULK)INSERT time also includes the time it took to build the

index. The import tables have indexes definéte average import time per table was 106&conds
(thatis, 27 minutes)t KS f 2y 3Sad Gl oftSQa AYLRNIU ¢ Weuselphm &
the TABLOCK atk Gdhw59wo60¢ LI N YSGSNE Ay GKS ./t 0O2YYl
load time almost by half.

S0z
Y R



LoadedRow Count

Table Name Loaded Bulked Up

Row Count
ACCT_HT 5,592,356 16,777,068
CARD_CREDIT_LINE_HT 1,217,097 3,405,424
CERT_DEPOSIT_HT 1,146,640 3,220,152
CONSUMER_INST_LN_HT | 1,254,016 3,501,549
CREDIT_PROVISIONS_HT | 1,645,043 4,495,969
CUST_ACCT_REL_HT 7,642,494 23,276,637
CUST_HT 7,165,192 21,495,576
CUST_NON_PERS_HT 392,467 1,177,401
CUST_PERS_HT 6,773,268 20,319,804
RETAIL_CHECKING_HT 165,041 490,279
RETAIL_SAVING_HT 1,583,574 4,341,972
TRAN_DETAIL 19,107,244 2,300,000,000

Comments

The best approach is to use BULK INSERT with the primary key in place.

Fast Track Backup Performancei Bonus ltem

The performance we achieved wa407.8 MB per second.

Command

BACKUPDATABASE [TrackC] TO DISK =

N'C: \ MountR5\ R5A\ Backups \ TrackC_F1.bak' , DISK =

N'C: \ MountR5\ R5B\ Backups \ TrackC_F2.bak' , DISK =

N'C: \ MountR5\ R5Q Backups \ TrackC_F3.bak’ WITH NOFORMAT NOINIT, NAME=
N'TrackC - Full Database Backup' , SKIP, NOREWIND NOUNLOAD COMPRESSION STATS
= 10GO

Results

We backed up a.3-terabyte database irl0:44 minutes. The size of the backup file was 203 GB.



Compression of Tableg Extra Item

Compression Summary

A number of tables were compressed using page compression. The tables show the actual and
estimated compression ratio.

Track D- Compression of Big Tables

Actual Values Estimated

Before Compression| After Compression g(:tlij;l Compression Before Compression Eztrlnrr;)?;esiio
ACCT_HT 18757 7262 61% 18757 9446
CUST_HT 17644 9241 48% 17644 10790
CUST_ACCT_REL_HT | 9762 1928 80% 9762 5451
TRAN_DETAIL 2102900 277507 87% 2102900 699720

Items in red show actual compression ratio and sizes. Thigher than the estimated compression.
Note: For TRAN_DETAIL its actual size is 85 times the partition size, because there are 85 partitions.

Ad-hoc Query Performance

A set of aehoc queries ran in compressed and uncompressed state for thetdbles.

Results
Description CompressedHr:Min:Se Uncgmpressed
Hr:Min:Sec
Queryl 2:21:4 2:10:54
Query2 2:50:47 2:43:48
Query3 0:17:56 0:11:51
5Iil::?/‘rixed Sub query Track D 0:02:02 0:02:18
Query5 0:00:33 0:01:20
Query6 0:02:47 0:02:54
Query7 0:11:54 0:12:41
Query8 0:12:9 2:51:17

CUST_HT, ACCT_HT, and CUST_ACCT_REL_HT were uncompressed, and TRAN_DETAIL was compressed

Comments

Different query characteristics and different tables being used in the joins impact the run time

differently. Query8 runs for a muddhorter time with compression turned on, whereas other queries
display different behavior. In most cases, compression turned on for the four key tables seems to work
better.The key difference between Queryl, Query2, and Query8 seems to be the additional
CWBT_PERS_HT table involved in the join and the selection of different grouping sets. The compression
setting should be set based on the most common queries.



Conclusion

This paper discusses a Fast Track configuration that we built. The configuratiorvgeidksctording to

the demands put on it by the different tracks. We were able to deliver excellent performance numbers
for serial runs both before and after optimization. Additionally, the performance numbers for volumized
data scaled according to the grtwin size of the data. We did additional testing on different

approaches for loading the data, that is, BULK INSERT \W&pthdlity. We also loaded data into

databases with nonclustered and clustered primary keys and were able to show the workload
performance numbers for both. The compression scenario delivered impressive compression ratios and
indicated areas where it could be used for query performance optimization. The backup scenario proved
that the speed and backup compression will be key winsif@anageability of the data warehouse.We

were able to conclude that the performance of the Fast Track configuration was better than current
production by many orders of magnitude.We were able to deliver all of the above with a small team of
six and completéhe work of setting up the Fast Track config, translating the Oracle code, writing and
optimizing the code, running tests, and documenting results within a short span of time. The
performance was delivered by an older generation DL785 G5 Fast Trackitidig We believe we

have satisfied and even exceeded the criteria of the POC by demonstrating great performance, amazing
price/performance, and scalabilitgiven the opportunity to deliver the enterprise data warehouse, we

can deliver workload performane far surpassing your expectations with the latest G7 hardware. Fast
Track 3.0 specification with the G7 family of hardware tadsntage of the latest CPU technologies

such as additional cores, higher clock speeds and cache sizes, plus largers{@06i&B vs. 300 GB)

that provide more capacity with the same number of enclosures. This specification is expected to be out
soonWe believe we can deliver the best performance through our expertise in optimization and
migrating code from different datals& platforms.

Appendix BT Fast Track Queries, Their Plans, and Tuning Suggestions



Q1z Coreplanz QueryPlarg Not Tu
3 3 3 g 3

holod Dl G e " Bk o
b G M0 Cm: 00

ned
T

-----

b —rar 1
posts e I
G " Con
@ 3 @ Y . T
Ay et togs T v, T s tms T v s
e Copm B passions frovipied - o
Pt ok e o e
. -
o s S
e om0
i Table Jean
e e st
&
210 L b
oo
el

Execution Results
The execution time was 2 minutes.

Q1z Coreplan

Optimization - Data Fixes
Remove leading and trailirgpaces ahead of time rather than as part of the query.




Query Plan

3 L] L 3 X ] 3 ¥ g B _ 8 1 A % [ T
SR T TR T TR A TS SRR TR B BR] BR] e B ErTEET-ERTERT S

et ™ o e ol stored 000 ot

Execution Results
The execution time was 2 seconds.

Q27 FINS _CASHDERuery Plarg Not Tuned

Execution Results
The execution time was 3 minutes and 2 seconds.










































































































































































































































































































































































































































































































































