

SQLCATõs Guide to: Relational Engine

Microsoft SQLCAT Team

Summary : This ebook is a collection of the most popular technical notes, tools and blogs

authored by the SQLCAT team and posted to their blog over the course of several years.

It covers SQL technology from 2005 to 2012.

 Category: Guide & Reference

Applies to : SQL Server 2005 to 2012

Source: SQLCAT Blog

E-book publication date : September 2013

http://blogs.msdn.com/b/sqlcat/

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means

without the written permission of the publisher.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN -

US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events

depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,

logo, person, place, or event is intended or should be inferred.

This book expresses the authorõs views and opinions. The information contained in this book is provided without any

express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will

be held liable for any damages caused or alleged to be caused either directly o

Contents
Section 1: Administration ... 5

DBCC Checks and Terabyte-Scale Databases .. 6

Scheduling Sub-Minute Log Shipping in SQL Server 2008 .. 12

Tuning Backup Compression Part 2 .. 15

Restart SQL Audit Policy and Job .. 25

SQL DMVStats Toolkit ... 26

Section 2: Database Design ... 27

SQL Server Partition Management Tool ... 47

Character data types versus number data types: are there any performance benefits? 28

¢ƘŜ aŀƴȅ .ŜƴŜŦƛǘǎ ƻŦ aƻƴŜȅΧ5ŀǘŀ ¢ȅǇŜ! ... 38

How many files should a database have? - Part 1: OLAP workloads .. 43

Section 3: Fast-track .. 47

Lessons Learned and Findings from a Large Fast-Track POC .. 49

Section 4: Performance ... 70

Top Tips for Maximizing the Performance & Scalability of Dynamics AX 2009 systems on SQL Server

2008 .. 71

Introduction: ... 102

Conclusions: .. 111

Top SQL Server 2005 Performance Issues for OLTP Applications ... 112

Table-Valued Functions and tempdb Contention ... 114

Resolving PAGELATCH Contention on Highly Concurrent INSERT Workloads 130

SQL Server Indexing: Using a Low-Selectivity BIT Column First Can Be the Best Strategy 85

Tuning the Performance of Backup Compression in SQL Server 2008 ... 71

Maximizing Throughput with TVPs ... 130

Bulk Loading Data into a Table with Concurrent Queries ... 140

Section 5: Real World Scenarios ... 146

Lessons Learned from Benchmarking a Tier 1 Core Banking ISV Solution - Temenos T24 147

Section 6: Replication ... 155

Initializing a Transactional Replication Subscriber from an Array-Based Snapshot 156

Upgrading Replication from SQL Server 2000 32-Bit to SQL Server 2008 64-Bit without re-initialization

 .. 167

Section 7: Service Broker .. 168

SQL Server Service Broker: Maintaining Identity Uniqueness Across Database Copies 169

Section 8: Troubleshooting ... 172

Diagnosing Transaction Log Performance Issues and Limits of the Log Manager 173

Eliminating Deadlocks Caused By Foreign Keys with Large Transactions ... 180

Resolving scheduler contention for concurrent BULK INSERT .. 187

Response Time Analysis using Extended Events ... 191

Memory Error Recovery in SQL Server 2012 .. 192

Section 9: SQL Top 10 ... 195

Top 10 Hidden Gems in SQL 2008 R2 .. 196

Top 10 SQL Server 2008 Features for the Database Administrator (DBA) ... 209

Top 10 SQL Server 2008 Features for ISV Applications ... 221

Top 10 Hidden Gems in SQL Server 2005 ... 196

Top 10 Best Practices for Building a Large Scale Relational Data Warehouse 230

Storage Top 10 Best Practices ... 196

Top 10 Best Practices for SQL Server Maintenance for SAP ... 234

Section 1: Administration

DBCC Checks and Terabyte-Scale Databases

1. Overview:

Historically, the SQL Server product team and the support organization have recommended that all maintenance

plans for Microsoft® SQL Server® include running DBCC CHECKDB on a regular basis to detect and correct potential

corruption in the database. In the case of mission-critical applications such as trading systems, medical records, and

banking operations, many customers have interpreted this recommendation as requiring even a daily DBCC check to

ensure that no errors are present before performing a backup operation.

However, since the SQL Server 6.5 days, in which a daily DBCC CHECKDB may have been a best practice, there have

been several trends - both challenges and opportunities -- that make it worth reconsidering the way that DBCC

should fit into SQL Server database maintenance plans, especially for large databases.

Challenges:

¶ Many mission-critical databases have grown to massive size. It is not unusual to find databases in the 5-20

terabyte range on SQL Server, in which a DBCC operation requires many hours to complete. This is usually

incompatible with a daily maintenance window, if feasible at all on a 24x7 system.

¶ Every new version of SQL Server has expanded the range of logical checks performed by DBCC so that it has

become more time-consuming to execute. For example, SQL Server 2005 introduced data purity checks to

validate that data present in columns adheres to valid ranges for the data type. SQL Server 2005 also

introduced checks that verify the integrity of indexed views.

Opportunities:

¶ Enterprise-class storage subsystems and the widespread use of RAID, especially in mission-critical settings,

have made the storage tier much less prone to physical corruption.

¶ SQL Server has introduced new mechanisms to detect the most frequent forms of physical corruption

independent of DBCC. For example, torn page detection was introduced in SQL Server 7.0, checksum

verification of physical pages was introduced in SQL Server 2005, and checksum protection of tempdb

pages was introduced in SQL Server 2008.

¶ We continue to invest in technologies to automatically detect and correct sources of corruption - such as the

introduction in SQL Server 2005 of an in-memory page scan to find checksum violations due to ECC failures

that might occur during manipulation of read-only pages.

As more customers are deploying databases at the scale of terabytes or tens of terabytes, frequent DBCC checks are

becoming less practical. But the many advances in both SQL Server and enterprise-class hardware offerings are

enabling customers to back-away from the "Daily DBCC" best practices of the SQL Server 6.5 era, while still

maintaining high confidence in the integrity of their data.

2. Suggestions for customers

DBCC CHECKDB remains an important tool for detecting and correcting logical consistency problems and physical

corruption in the database. However, for large-scale databases utilizing a high quality SAN or storage subsystem, the

specific recommendations this technical note presents can reduce the frequency of DBCC and certainly relax the prior

standard of running such checks on daily basis.

SQL Server 2005 introduced an important new mechanism to proactively detect physical corruption in database

pages: a database option that adds a checksum to each page as it is written to the I/O system and validates the

checksum as it is read. This database option is called PAGE_VERIFY = CHECKSUM, and utilizing it by default is a

powerful alternative to scheduling frequent runs of DBCC CHECKDB. For more information, see ALTER DATABASE

SET Options (Transact-SQL) in SQL Server Books Online: http://msdn.microsoft.com/en -us/library/bb522682.aspx.

 A. Recommendations for new databases (created in SQL Server 2005 or SQL Server 2008):

We encourage customers who have created their databases in SQL Server 2005 or SQL Server 2008 to rely on a

strategy of using this PAGE_VERIFY = CHECKSUM feature and reduce the scheduled use of DBCC to a minimum.

Below are some guidelines on how to accomplish this.

1) Use PAGE_VERIFY = CHECKSUM on all new databases created in SQL Server 2005 or later (this is the default setting

for new databases).

2) Perform daily incremental or differential backup.

By performing an incremental/differential BACKUP WITH CHECKSUM operation each day (or even a full backup if

feasible), you are guaranteed to read each page that has been added or modified since the prior backup. Because the

reads performed during backup wi ll validate the page checksums, any corruption that has occurred due to I/O errors

http://msdn.microsoft.com/en-us/library/bb522682.aspx

will be detected, and can be corrected by using the current backup set to restore corrupt pages. (If the database is

using the bulk-logged or full recovery model, page -level restore can be used to minimize time for recovery.)

The steps above will ensure that most physical page corruption due to I/O errors will be detected on a daily basis and

can be promptly corrected. Because I/O errors have historically been the largest source of database corruption,

PAGE_VERIFY = CHECKSUM can significantly reduce the frequency of DBCC operations needed to maintain a high

level of confidence in the integrity of the physical database.

There are two other sources of corruption that can still arise even if PAGE_VERIFY = CHECKSUM is used, although they

are rare - and they are problems that only DBCC CHECKDB can discover proactively:

a) ôScribbler' induced errors - where in-memory pages are corrupted either by third -party code running inside the SQL

Server process or by drivers or other software with sufficient privileges executing in Windows® kernel mode.

SQL Server allows a variety of customer or third-party code to access the SQL Server address space, including

extended stored procedures (XPs), unsafe SQL CLR assemblies, EKM providers, and OLE DB drivers for linked servers.

Scribbler errors can arise as a result of bugs in these extensions, or from software such as malware protection tools or

I/O drivers running in the kernel.

b) Potential SQL Server bugs that create logical errors.

We are not aware of any bugs in the current version of SQL Server that lead to logical errors in database objects, but

the logical checks in DBCC can locate problems due to legacy errors or unknown errors in current versions of the

product. Logical errors can usually be repaired by rebuilding indexes or re-establishing foreign key constraints - they

are not typically fixed by restoring from a backup.

In addition, CHECKSUM cannot detect I/O problems if a page header itself is corrupt, but DBCC CHECKDB can.

These and other additional sources of errors, external to SQL Server, are reasons why customers should not eliminate

DBCC CHECKDB entirely from maintenance plans. But the fact that the majority of errors located by DBCC CHECKDB

result from I/O channel problems that are effectively caught using CHECKSUM allows customers to reduce the

frequency of complete DBCC CHECKDB executions.

 B. Recommendations for migrated databases:

If you are using a database that was created prior to SQL Server 2005, or if you are using a database that was created

with a more recent version but without using PAGE_VERIFY = CHECKSUM, you need to be aware that checksums are

added only as pages are added or modified. An initial run of DBCC CHECKDB using the PHYSICAL_ONLY option, after

enabling the PAGE_VERIFY = CHECKSUM option, will check the integrity of all legacy pages but will not add a

checksum.

Is there any risk that legacy pages from a migrated database can become corrupt and will not be detected by the

checksum mechanism? It turns out that there are rare circumstances in which data on storage media can become

corrupted in the absence of I/O ("bit rot") and not be detected by parity or RAID redundancy mechanisms, especially

on low-end storage systems. If this occurs on a page without a SQL Server checksum, it can lead to database

corruption that can only be detected by regular PHYSICAL_ONLY checks of DBCC CHECKDB.

So, in order to eliminate frequent DBCC CHECKDB runs for a database that was not originally created with

PAGE_VEIRFY = CHECKSUM, we recommend either:

¶ Rebuilding all clustered indexes and recreating any heaps. This will ensure that all data and index pages are

written once with CHECKSUM enabled.

¶ Or, less practically, creating a new database using PAGE_VEIRFY = CHECKSUM and migrating all objects to

the new database.

The alternative, in a legacy database for which not all pages have a CHECKSUM, is to run DBCC CHECKDB with the

PHYSICAL_ONLY option regularly prior to taking any full backup. If a problem is detected on a non-checksum page,

the prior backup set can be used to restore a correct image of that page.

3. Periodic DBCC Strategies

Even if daily DBCC checks need no longer be part of an enterprise-class maintenance strategy, periodic DBCC checks

remain an important tool. Frequency of DBCC checks should take into account whether scribbler errors are possible

due to third party extensions running in -process, the kinds of additional privileged software running on the server,

and the reliability and sophistication of the storage tier.

There are a variety of strategies to make DBCC compatible with shorter maintenance cycles and high availability

production environments. Among those that are popular for large-scale, mission-critical deployments are:

¶ Utilizing a SAN-based snapshot, mounted to another instance of SQL Server that runs DBCC independently

of the production system

¶ Performing DBCC on a per-filegroup basis, on a rotating schedule

¶ Using Resource Governor to adjust the degree of parallelism (MAXDOP) of the session running DBCC

operations, either to run highly parallelized during a short maintenance window, or single -threaded in the

background during non -critical production hours

¶ Using DBCC to perform the faster physical page validation checks (PHYSICAL_ONLY) more frequently than

the logical checks. Such tests will bypass time-consuming validation of foreign key references and

nonclustered indexes, but will ensure that all allocated pages are readable and will detect the majority of

problems that can arise from problems in the I/O channel.

Some of these, and other strategies for executing DBCC operations, can be found in the recent blogs by Paul Randal

and Bob Dorr, at:

http://www.sqlskills.com/blogs/paul/post/CHECKDB-From-Every-Angle-Consistency-Checking-Options-for-a-

VLDB.aspx

http://blogs.msdn.com/psssql/archive/2009/02/20/sql -server-is-checkdb-a-necessity.aspx

4. Conclusion

While the reliability of SQL Server has improved dramatically over the past decade, database integrity still depends on

the reliability of the storage tier and can be influenced by high -privileged, third -party code running in Windows

kernel mode or permitted inside the SQL Server address space. SQL Server has invested in significant technologies to

automatically detect and correct problems with data observed on -disk and in-memory, and this has reduced the need

for frequent complete database integrity checks using DBCC CHECKDB. Periodic scheduled DBCC operations remain a

best practice, but not at the near-daily frequency recommended in the past for mission-critical deployments. The

recommendations here for using CHECKSUM features, along with periodic DBCC CHECKDB strategies, can help

achieve a balance between a reasonable maintenance cycle and high confidence in database integrity.

http://www.sqlskills.com/blogs/paul/post/CHECKDB-From-Every-Angle-Consistency-Checking-Options-for-a-VLDB.aspx
http://www.sqlskills.com/blogs/paul/post/CHECKDB-From-Every-Angle-Consistency-Checking-Options-for-a-VLDB.aspx
http://blogs.msdn.com/psssql/archive/2009/02/20/sql-server-is-checkdb-a-necessity.aspx

Scheduling Sub-Minute Log Shipping in SQL Server 2008

Overview

Log shipping allows you to automatically take transaction log backups on a primary server, send them to one or more

secondary servers, and then restore the transaction log backups on each secondary server. Many Microsoft SQL Server

customers have asked for the ability to schedule the log shipping jobs with less than 1 minute frequency. In SQL

Server 2005, SQL Server Management Studio user interface allowed the frequency of the scheduled jobs to be 1

minute or more, which meant that the minimum latency of log shipping was as long as 3 min utes (1 minute each for

the backup, copy, and restore jobs). Many customers have asked for this latency to be less than 1 minute.

In this paper we introduce the new sub-minute log shipping capability in SQL Server 2008, and we discuss some

considerations you need to be aware of in scheduling frequent log shipping jobs.

Introducing Sub-Minute Log Shipping in SQL Server 2008

SQL Server 2008 enables log shipping jobs to be scheduled with frequency in seconds. In SQL Server 2008, SQL Server

Management Studio and the stored procedures sp_add_jobschedule and sp_add_schedule allow frequency settings in

seconds, minutes, and hours. The minimum frequency is 10 seconds.

http://technet.microsoft.com/en-us/library/ms187103.aspx
http://msdn.microsoft.com/en-us/library/ms366342(SQL.90).aspx
http://msdn.microsoft.com/en-us/library/ms187320(SQL.90).aspx

Figure 1: SQL Server 2008 Log Shipping user interface enables scheduling the jobs in hour, minute, or second

frequency

Considerations

There are some considerations you should be aware of when you set up too frequent log shipping jobs:

¶ The next execution of the job will not start until the previous execution has completed. Letõs assume you

have set the frequency interval of the log backup job to 10 seconds, but one execution of the log backup

takes 12 seconds to complete. The next backup job will start at the next scheduled time, which is 20 seconds

after the start of the previous backup job. One execution of the job is skipped in this case.

¶ Every time a log backup is completed, a message similar to the following is shown in the SQL Server

ERRORLOG:

2009-02-09 15:25:56.94 Backup Log was backed up. Database: Test_LS, creation date(time): 2009/02/09(14:27:24), first

LSN: 19:145:1, last LSN: 19:145:1, number of dump devices: 1, device information: (FILE=1, TYPE=DISK:

{'\ \PRIMARY_DL380\LSBackup\Test_LS_20090209232551.trn'}). This is an informational message only. No user action is

required.

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/SchedulingSubMinuteLogShippinginSQLServe_D96A/SMLS_Fig1_2.jpg

If you take a log backup every 10 or 15 seconds, the SQL Server ERRORLOG flooded with such messages.

If you donõt want these messages flooding the SQL Server ERRORLOG, you can enable trace flag 3226. This trace flag

doesnõt alter the behavior of backup jobs; it just suppresses the backup completion messages, preventing them from

getting into the SQL Server ERRORLOG. Note that this trace flag suppresses all backup messages ð database backup

as well as transaction log backup.

¶ Information about each backup is also recorded in the msdb database (the msdb.dbo.backupset,

msdb.dbo.backupmediaset, msdb.dbo.backupmediafamily, msdb.dbo.backupfile, and

msdb.dbo.backupfilegroup system tables). If you back up too frequently, you can expect these tables to

grow faster than usual. You should periodically check the size of these tables and delete or archive the old

information as necessary. To delete the old backup history, use the stored procedure

sp_delete_backuphistory.

¶ The backup compression feature in SQL Server 2008 provides significant space and time savings. Backup

compression results in smaller backups, and it helps improve the performance of all the operations

performed by log shipping by providing the following:

o Faster backup of the transaction log on the primary server.

o Faster copying of the transaction log backup file to the secondary over network.

o Faster restore of the log backup on the secondary.

However, the benefits of backup compression come with the cost of higher CPU utilization. If your log backup jobs

use compression and are scheduled too frequently, you may notice frequent spikes in CPU utilization on the primary.

Restoring from a compressed backup uses more CPU, and you could see frequent spikes in CPU utilization on the

secondary as well. For more information about backup compression, see Tuning the Performance of Backup

Compression in SQL Server 2008 and Tuning Backup Compression Part 2.

Conclusion

SQL Server 2008 provides the ability to schedule log shipping jobs as frequently as 10 seconds, which results in

reduced latency of log shipping. Reduced log shipping latency can result in reduced data loss in case of loss of

primary.

http://msdn.microsoft.com/en-us/library/ms188396.aspx
http://technet.microsoft.com/en-us/library/ms188328.aspx

Tuning Backup Compression Part 2

Overview

This is the second part of the article Tuning the Performance of Backup Compression in SQL Server 2008 In the first

part we described the benefits of backup compression, a methodology on how to tune backup compression for best

performance, and shared some best practices. In this second part, we describe some more considerations in tuning

backup compression, and how backup compression interacts with other important features in Microsoft SQL Server

2008. Specifically, we will discuss the following:

¶ Tuning BUFFERCOUNT and MAXTRANSFERSIZE

¶ Memory used by backup compression

¶ Backup compression and log shipping

¶ Backup compression and data compression

¶ Backup compression and transparent data encryption

Understanding the tuning techniques and the interoperability of backup compression with other features discussed in

this article can help you get the best out of the backup compression feature.

Tuning BUFFERCOUNT

As described in Part 1 of the article, default BUFFERCOUNT is determined by SQL Server based on the number of

database volumes and backup devices. If the database files are spread across several disk volumes and/or there are a

large number of backup devices, the default BUFFERCOUNT value may provide optimal backup performance, and you

may not need to tune BUFFERCOUNT further. As discussed in Part 1, you can use the trace flags 3605 and 3213 to find

out the default BUFFERCOUNT value used in your backup. However, if the database files are spread across too few

disk volumes and/or there are a small number of backup devices, the default BUFFERCOUNT value may not provide

optimal backup performance. Tuning BUFFERCOUNT explicitly may improve backup performance.

Figure 1: Backup time and CPU ut ilization with varying BUFFERCOUNT

http://sqlcat.com/technicalnotes/archive/2008/04/21/tuning-the-performance-of-backup-compression-in-sql-server-2008.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig1_2.jpg

As illustrated in Figure 1, increasing BUFFERCOUNT results in reduced backup time, at the cost of higher CPU

utilization. Your results may vary depending upon your database size, storage layout, and server capacity; however,

you will notice that the impact of increasing BUFFERCOUNT on backup performance tends to reduce as

BUFFERCOUNT is increased beyond a certain value. In our test, the curve tends to flatten out as we increase

BUFFERCOUNT beyond 50.

BUFFERCOUNT value impacts the amount of memory used for backup (discussed later in the section òMemory

Utilization by Backupó). Keep this in mind if you explicitly specify the BUFFERCOUNT value.

Tuning MAXTRANSFERSIZE

MAXTRANSFERSIZE refers to the size of the I/O operation issued to read data from the database files. The default

value of MAXTRANSFERSIZE is 1 MB. Performance of sequential I/O operations generally benefit from larger block

sizes, which is the reason the value is set to 1 MB by default. One drawback of larger I/O sizes is the potential impact

on performance of the smaller I/Os being issued concurrently by an OLTP workload. Because I/O queue structures are

shared, intermixing large I/O sizes with smaller concurrent I/O requests results in increased latency for both. In todayõs

shared storage network environments, there is potential for these operations to also impact other hosts sharing the

same physical devices. Tuning this parameter is likely unnecessary in hardware configurations using dedicated

storage, and it may be necessary only if it is determined that the backup operations impact concurrent workloads. As

recommended in Part 1 of the article, tuning MAXTRANSFERSIZE should be considered as a secondary tuning option,

and it should only to be utilized when it is determined to be beneficial through testing. In the majority of

deployments, the default value will be acceptable.

Figure 2 illustrates observations of backup performance using various transfer sizes.

Figure 2: Backup time and throughput with varying M AXTRANSFERSIZE (BUFFERCOUNT = 50, 1 Backup

Device)

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig2_2.jpg

As illustrated in Figure 2, smaller MAXTRANSFERSIZE (64 KB) results in lower backup throughput and hence longer

backup time, and as you increase MAXTRANSFERSIZE, you observe reduced backup time and higher throughput.

However, the impact of increasing MAXTRANSFERSIZE on backup performance tends to reduce as

MAXTRANSFERSIZE is increased beyond a certain value. In our tests, we observed optimal backup performance when

MAXTRANSFERSIZE was between 128 KB and 512 KB. Your results may vary based on your I/O configuration

(throughput and latency of your I/O subsystem).

Similar to the BUFFERCOUNT setting, the value chosen for MAXTRANSFERSIZE will also impact the amount of

memory used for backup operation (discussed later).

Memory Utilization by Backup

As discussed in Part 1 of the article, memory used by backup buffers comes from virtual address space outside the

buffer pool. On 32-bit systems, there is a fixed amount of virtual address space set aside outside of the buffer pool

(default of 384 MB); increasing BUFFERCOUNT and MAXTRANSFERSIZE options to high values may fail because the

memory for backup operations is calculated and set aside at the beginning of the operation.

On 64-bit systems, the virtual address space for any process can be up to 8 TB which is far beyond the physical

memory supported on current 64 -bit version of Windows. As a result, memory for allocations outside the buffer pool

does not have to be set aside at the time SQL Server is started and is potentially unlimited. Setting an appropriate

value for ômax server memoryõ using SP_CONFIGURE is recommended on 64-bit deployments of SQL Server to ensure

that enough physical memory will be available to support allocations outside the buffer pool for backup operations.

Trace flags 3605 and 3213 can be used to report the number of buffers used for backup operations to the SQL Server

ERRORLOG. The following example shows the information that is reported in the ERRORLOG when these trace flags

are enabled.

LogDate ProcessInfo T ext

2009 - 01- 16 12:42:13.700 spid53 Backup/Restore buffer configuration

parameters

2009 - 01- 16 12:42:13.700 spid53 Memory limit: 32761MB

2009 - 01- 16 12:42:13.700 spid53 BufferCount: 100

2009 - 01- 16 12:42:13.700 spid53 MaxTransferSize: 2048 KB

2009 - 01- 16 12:42:13.700 spid53 Min MaxTransferSize: 64 KB

2009 - 01- 16 12:42:13.700 spid53 Total buffer space: 200 MB

2009 - 01- 16 12:42:13.700 spid53 Tabular data device count: 1

2009 - 01- 16 12:42:13.700 spid53 Fulltext data device count : 0

2009 - 01- 16 12:42:13.700 spid53 Filestream device count: 0

2009 - 01- 16 12:42:13.700 spid53 TXF device count: 0

2009 - 01- 16 12:42:13.700 spid53 Filesystem i/o alignment: 512

2009 - 01- 16 12:42:13.700 spid53 Media Buffer count: 100

2009 - 01- 16 12:42:13.700 spid53 Media Buffer size: 2048KB

2009 - 01- 16 12:42:13.700 spid53 Encode Buffer count: 100

2009 - 01- 16 12:45:41.820 Backup Database backed up. Database: TESTPART,

creation date(time): 2008/11/06(12:31:03), pages dumped: 1295126 , first LSN:

158:223:37, last LSN: 158:239:1, number of dump devices: 1, device

information: (FILE=1, TYPE=DISK: {'R: \ Backup \ TESTPART_Compressed.bak'}). This

is an informational message only. No user action is required.

For an uncompressed backup, the total memory used by the backup buffers can be computed as BUFFERCOUNT

multiplied by MAXTRANSFERSIZE. Compressed backup needs three sets of buffers ð one set of buffers are used to

read from the database files, the second set of buffers are used to compress the data, and the third set of buffers are

used to write to the backup media. Therefore, a compressed backup will utilize three times as much memory as the

uncompressed backup.

You can observe the memory used by the backup task by monitoring the òProcess:Private Bytesó counter for the

òsqlservró process in the Reliability and Performance Monitor (also known as Perfmon). Figure 3 displays this Perfmon

counter for a compressed backup, with no other workload. As illustrated in Figure 3, you will see an increase in the

Private Bytes counter during the backup task. This increase is equal to (BUFFERCOUNT * MAXTRANSFERSIZE) for

uncompressed backups, and equal to (3 * BUFFERCOUNT * MAXTRANSFERSIZE) for compressed backups.

Figure 3: Memory used by a backup compressi on operation, as measured by Perfmon

Another observation from Figure 3 is that this memory is allocated at the beginning of the backup operation, and it is

released when the backup is complete.

Backup Compression and Log Shipping

Performance of log shipping will also benefit from compressed backups. Log shipping sends transaction log backups

from a primary server to a secondary server by copying log backup files to a network share to be applied to the

secondary server. When backup compression is used, transaction log backups are compressed. The reduction in file

size for log backups improves performance of all the operations performed by log shipping:

1. Backup the transaction log on the primary server.

2. Copy the transaction log backup file to the secondary server over the network.

3. Restore the log backup on the secondary server.

The transaction log backups during log shipping can be compressed in one of the following two ways:

¶ If you are using SQL Server Management Studio to setup log shipping, set the backup compression setting

by selecting Compress backup from the Set backup compression list, as shown in Figure 4. If you have set

backup compression as the default server level setting (sp_configure option backup compression default),

you can pick the òUse default server settingó option as well.

¶ If you are using the stored procedures to set up log shipping, set the parameter @backup_compression of

stored procedure sp_add_log_shipping_primary_database to 1. If you have set backup compression as the

default server level setting, you can set this parameter to 2.

http://technet.microsoft.com/en-us/library/ms187103.aspx
http://technet.microsoft.com/en-us/library/bb677250.aspx
http://technet.microsoft.com/en-us/library/ms182718.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig3_2.jpg

Figure 4: Compressing transaction log backups for log shipping

Figure 5 provides a data point from a customer deployment. The compressed log backup is significantly smaller and

faster.

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig4_4.jpg

Figure 5: Compression of transaction log backup for log shipping (default values for BUFFERCOUNT and

MAXTRANSFERSIZE, 1 backup device)

Backup Compression and Data Compression

Data compression is a feature of SQL Server 2008 that can save disk space by compressing data pages within the

database. A commonly asked question is òAre there additional benefits realized by the use of compressed backup

operations when data compression is used (both compression ratio and performance of the backup operation)?ó

In this test, all tables and indexes were compressed in the database, and then the performance of backup

compression was measured. Separate tests were run with no compression, ROW compression applied to all

tables/indexes, and PAGE compression applied to all tables/indexes. Figure 6 compares the size of the compressed

backup, backup compression ratio, and backup time for databases that contain NONE, ROW, and PAGE compressed

tables and indexes.

http://technet.microsoft.com/en-us/library/cc280449.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig5_2.jpg

Figure 6: Backup compression with data compression (BUFFERCOUNT = 50, MAXTRANSFERSIZE = default, 4

backup devices)

Some observations from the results of Figure 6:

¶ Backup compression can result in additional disk space savings even on databases that contain ROW or

PAGE compressed tables or indexes. The size of the compressed backup and the backup compression ratio

depend upon the characteristics of the data in the database, and they can vary from the results shown in

these examples.

¶ Backup operations on databases that use ROW or PAGE compression will likely result in shorter backup

times, because the smaller database size translates into less I/O.

¶ CPU consumption during the backup operation for databases that use ROW or PAGE compression may be

higher as a result of less I/O, which results in more CPU time for compression operations.

Backup Compression and Transparent Data Encryption

Transparent data encryption (TDE) is another very useful feature in SQL Server 2008. TDE provides encryption of data

in a database at the storage level without requiring any application changes. A common question related to this is

òHow does backup compression perform against an encrypted database?ó

In the example below, backup compression was performed against a database with TDE enabled. Figure 7 compares

the size of the backup, CPU consumption, and backup time for compressed and uncompressed backups on the TDE-

enabled database.

http://technet.microsoft.com/en-us/library/bb934049.aspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig6_4.jpg

Figure 7: Backup compression with TDE (BUFFERCOUNT = default, MAXTRANSFERSIZE = default, 1 backup

device)

We made the following observations when we performed compressed backup against TDE-enabled databases:

¶ On a TDE-enabled database, backup compression doesnõt help reduce the size of the backup. The backup

compression ratio is nearly 1.0, independent of the data in the database. This is due to the fact that

encrypted data does not lend it self well to backup compression.

¶ CPU utilization for the compressed backup is higher than the uncompressed backup, even though the

backup size is not much different. This is because CPU resources are wasted in the compressed backup

operation, because it attempts to compress the data, even though the data is not very compressible.

¶ On a TDE-enabled database, it takes longer to perform a compressed backup than it takes to perform an

uncompressed backup. This is due to the fact that I/O operations are not reduced, because the data does

not compress well. However, there is time spent attempting to compress the incoming data.

For these reasons, we do not recommend the use of backup compression on a TDE-enabled database.

Conclusion

Backup compression is one of the most popular features in SQL Server 2008 Enterprise. Most SQL Server deployments

will benefit from this feature; it can reduce both the time taken to perform the backup operation and the disk space

required to store database backups. Understanding the tuning techniques and considerations described in Part 1 of

the article as well as the interoperability of backup compression with other features discussed in this article can help

you get the best out of the backup compression feature.

Appendix A: Test Hardware and Software

All tests (except those in Figure 4 and Figure 6) were performed on the following hardware and software environment.

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TuningBackupCompressionPart2_921D/Part2Fig7_2.jpg

Server

HP DL380G5 with:

¶ 2 socket quad core

¶ Intel Xeon CPU E5345 @2.33 GHz

¶ 16 GB RAM

Storage

EMC Symmetrix DMX-4 2500

¶ Data volumes

o 4 data volumes from a disk group with

Á 32 disk drives, 300 GB each @15K RPM

Á RAID 1+0

¶ Backup volume

o 1 backup volume from a disk group (separate from data volumes) with

Á 32 disk drives, 300 GB each @15K RPM

Á RAID 1+0

¶ ~2 HBAs (4 Gb Fiber Channel)

Software

¶ The 64-bit edition of Windows Server 2008 Enterprise

¶ The 64-bit edition of SQL Server 2008 Enterprise

Restart SQL Audit Policy and Job

As noted within the Reaching Compliance: SQL Server 2008 Compliance Guide (you can also check the sqlauditcentral

codeplex project), an easier way to view and manage all of the audit logs within your SQL Server environment is to

place all of the audit logs in one central location. As per the guide, you can then use a SSIS package to import in all of

these logs files into a separate SQL database where you can then generate reports to view all of the audits within your

entire SQl Server environment.

The problem that we recently discovered is that if SQLAudit loses connectivity to the folder it places the audit files,

provided that you did not tell SQL Server to shutdown if it cannot write an audit:

¶ The auditõs is_state_enabled column in sys.server_audits will remain 1, meaning true, but the audit status in

sys.dm_server_audit_status will be òRUNTIME_FAILEDó and no events will be written to the audit log.

¶ Even when connectivity to the folder has returned, the audit will remain in the òRUNTIME_FAILEDó state -

meaning it still tries to write to the log but will al ways fail as it is using an old and now invalid handle, or

reference, to the audit log from before the connectivity loss. Currently the only way to get the audit to create

a new valid handle for the audit log is to stop and restart the audit ð which will create a new audit file.

There is a bug assigned to this issue and will be resolved in the future. But for us whom are working with SQL Audit

right now, to work around this problem, please go to the sqlauditNetworkConnectivity Codeplex project where you

can download the full Centralized Audit Framework project. Within this project is the Restart SQL Audit Policy and

Job folder. This folder contains three pieces of source code:

¶ Server Audit Status (Started).xml - Import this on -schedule policy into your server's Policy-Based

Management as it will determine if the audit is enabled and able to write to the file system.

¶ Create Audit Job.sql - This is a SQL Server Audit job that will execute the noted policy; you will need to

schedule this yourself

¶ Create Audit Alert.sql - This is a SQL Server Audit job that will create an audit alert.

Together these three source components will (whenever manually executed or scheduled) determine if all of the

audits on your server are able to write to the folder. If they are not, they will send out an alert as well as stop and

restart the audit job re -initializing it so that way the audits will start writin g again.

http://www.microsoft.com/downloads/details.aspx?FamilyId=6E1021DD-65B9-41C2-8385-438028F5ACC2&displaylang=en
http://sqlcat.codeplex.com/Wiki/View.aspx?title=sqlauditcentral&referringTitle=Home
http://sqlcat.codeplex.com/Wiki/View.aspx?title=sqlauditNetworkConnectivity

SQL DMVStats Toolkit

http://www.codeplex.com/sqldmvstats

A SQL Server 2005 Dynamic Management View Performance Data Warehouse

Introduction

Microsoft SQL Server 2005 provides Dynamic Management Views (DMVs) to expose valuable information that you

can use for performance analysis. DMVstats 1.0 is an application that can collect, analyze and report on SQL Server

2005 DMV performance data. DMVstats does not support Microsoft SQL Server 2000 and earlier versions.

Main Components

The three main components of DMVstats are:

Å DMV data collection

Å DMV data warehouse repository

Å Analysis and reporting.

Data collection is managed by SQL Agent jobs. The DMVstats data warehouse is called DMVstatsDB. Analysis and

reporting is provided by means of Reporting Services reports.

For more details, refer to the file attachment DMVStats.doc.

http://www.codeplex.com/sqldmvstats

Section 2: Database Design

Character data types versus number data types: are there

any performance benefits?

Introduction

Working on a recent project, I observed that some developers choosing between character and
number data types favored character data types. However, in my experience, this is not always
the best choice. In the example I discuss here, number data types turned out to the better
option. This paper describes a recent case in which we redesigned the data warehouse of a
telecommunications company. As part of the design process, we ran a series of tests to
compare performance of the two data types.

One of the tables had to store phone numbers in international format: + 1 234 5678910, where +1 was
the country code and 234 was the area code. In this case, using the character data type simplifies
development - you can use either of the following formats ŦƻǊ ǎǘƻǊƛƴƎ ǘƘŜ ŎƻǳƴǘǊȅ ŎƻŘŜΥ ǘƘŜ ΨҌΩ ƻǊ ǘƘŜ
ƭŜŀŘƛƴƎ ΨллΩΦ.ǳǘ ŦƻǊ ŎƻƳŦƻǊǘǎ ƛƴ ƻǳǊ ƭƛŦŜ ǿŜ ŀƭǿŀȅǎ ƘŀǾŜ ǘƻ ǇŀȅΦ Lǎ ǘƘƛǎ ŀƭǎƻ ǘǊǳŜ ƛƴ ǘƘƛǎ ŎŀǎŜΚ ¢ƘŜǊŜ ŀǊŜ
ŎƻƴǎƛŘŜǊŀǘƛƻƴǎ ƻǘƘŜǊ ǘƘŀƴ ŜŀǎŜ ƻŦ ŘŜǾŜƭƻǇƳŜƴǘΦ ²ƻǳƭŘƴΩǘ ǎǘƻǊŀƎŜ ǎƛȊŜΣ ŎƻƳǇǊŜǎǎƛōƛƭƛǘȅΣ ŀƴŘ ƛƳǇǊƻǾŜŘ
query performance outweigh the evident development simplicity?

What do we need to store really?

Before I discuss the tests we used to determine the benefits of using either numeric or
character data, I would like to talk about a best practice that helps solve many problems in
designing databases, and in deciding which data type to use.

This best practice is simple: talk to the business, and find out what they really need. In our
project there were many possible strategies to store phone numbers efficiently. For example,
we could split the number into separate columns for country code, city code, and number. Each
strategy had pros and cons.

However, we were able to identify the best and simplest decision after business users explained
that they always use one of two methods. They either look up the entire phone number in the
ŦƻǊƳŀǘ Ψм ноп рстуфмлΩΣ ǿƛǘƘƻǳǘ ŀƴȅ ƭŜŀŘƛƴƎ ȊŜǊƻǎ ŀƴŘ ǿƛǘƘƻǳǘ ŀƴȅ ƴƻƴ-numeric characters, or
they search a set of numbers with leading digits, like all phone numbers starting with
Ψмнопрс҈ΩΦ

bƻǘŜΥ LŦ ŜƴŘ ǳǎŜǊǎ ǿŀƴǘ ǘƻ ōŜ ŀōƭŜ ǘƻ ŎƘƻƻǎŜ ŜƛǘƘŜǊ ŦƻǊƳŀǘ όΩллм ноп рстуфмлΩ ƻǊ ΨҌм ноп
рстуфмлΩύΣ ȅƻǳ Ŏŀƴ ƭŜŀǾŜ ƛǘ ǳǇ ǘƻ ǘƘŜ ŀǇǇƭƛŎŀǘƛƻƴ ǘƻ ŜȄǘŜƴŘ ǘƘŜ ŘƛǎǇƭŀȅ ƻŦ ǘƘŜ ƴǳƳōŜǊ ǿƛǘƘ ǘƘŜ
ƭŜŀŘƛƴƎ ΨллΩ ƻǊ ΨҌΩΦ

After we agreed on the phone number format, we performed tests to compare character-based and
numeric formats. We chose to test varchar for the character-based storage and bigint for the numeric.
We could also have chosen to use the int data type, but in many cases international phone numbers
exceed the limits of digits that an int can store. Note that prior to compression considerations, a bigint
uses 8 bytes, and a varchar uses as many bytes as there are digits. For this company, the number of
digits in a call data record (CDR) usually averages 70-80% of the data in a row. Row sizes are generally
between 200,000 and 600,000 bytes.

Test preparation

Fact and dimension table

The customer scenario uses CDRs, which is the representation of the information that is stored
by telecom hardware for every call made. A CDR contains call details such as duration and
number dialed.

The CDR information ususally looks like this.

In the data warehouse, CDRs can be stored in a star schema; a fact table can store numbers, durations,
and so on, and dimesion tables can store attributes of the phone, subscriber, and so on.For testing we
used the following schema: two fact tables for comparison: one with a bigint column (FactInt) and
another with a varchar column representing the phone number (FactChar), as well as a few dimention
tables.

1. Fact table with bigint column:

CREATE TABLE [dbo] . [FactInt] (

 [RecordTypeOrPartial] [tinyint] NULL,

[IMEI] [bigint] NULL, -- Phone HW ID

[IMSI] [bigint] NULL,

[ChargingDateTime] [datetime] NOT NULL,

[ChargeableDuration] [smallint] NULL,

[CellID] [varbinary] (2) NULL,

é some other columns

[OriginalCalledNumber] [bigint] NULL, -- dialed number

[OriginalCalledNumberType] [varbinary] (20) NULL,

[SSRequest] [tinyint] NULL,

[MSISDN] [bigint] NOT NULL, -- subscriber phone number

[MSCID] [bigint] NULL,

[FileID] [int] NOT NULL)GO

2. Fact table with varchar column:

CREATE TABLE [dbo] . [FactChar] (

[RecordTypeOrPartial] [tinyint] NULL,

[IMEI] [varchar] (16) NULL,

[IMSI] [varchar] (16) NULL,

[ChargingDateTime] [datetime] NOT NULL,

[ChargeableDuration] [smallint] NULL,

[CellID] [varbinary] (2) NULL,

ésome other columns [OriginalCalledNumber] [varchar](40) NULL, -- dialed

number

[OriginalCalledNumberType] [varbinary] (20) NULL,

[SSRequest] [tinyint] NULL,

 [MSISDN] [varchar] (20) NOT NULL,

[MSCID] [varchar] (20)] NULL,

[FileID] [int] NOT NULL)

 Note: We could have used varchar (20) to store phone numbers [OriginalCalledNumber], which would in our

comparison correspond to the number of digits bigint can hold. We used varchar (40) because this is what the

customer actually used, and in this paper I prefer to be closer to a real case sceanrio. 3. Dimension table with
attributes on where the subscriber number is registered (phone number is stored as varchar (20)):

CREATE TABLE [dbo] . [DimDefinitionAChar] (

[MSISDN] [varchar] (20) NOT NULL,

[ARegionID] [varchar] (20) NULL,

[AFilialID] [varchar] (20) NULL,

[ACountryID] [varchar] (20) NULL,

CONSTRAINT [PK_MSISDN_Char] PRIMARY KEY CLUSTERED

(

 [MSISDN] ASC

)

The tables FactChar and FactInt were partitioned with six partitions for each 10,000,000 rows. The
generated dimension tables have 1,000 to 10,000 rows.

Queries

After we built the tables, we defined a set of queries to run. We identified three queries, representing
the most frequent or the most long-ǊǳƴƴƛƴƎ ǉǳŜǊƛŜǎ ƛƴ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǿƻǊƪƭƻŀŘΣ ǘƻ ǎŜŜ ǿƘŜǘƘŜǊ ǘƘŜ
data type choice influenced performance. The first query looked for a single phone number within a
specified time frame, the second looked for a range of numbers, and the third used a LIKE operator to
find the number or numbers.

We used the LIKE operator to look up phone numbers with some leading digits, where the
phone number is stored as a bigint. For example, users may need to check how many prepaid
phones, sold by a specified shop, made calls (and therefore were activated). Those phones may
have sequential numbers where only the last digit or two differ. The LIKE operator determines
character string matches; however, if any one of the arguments is not of character string data
type, the SQL Server Database Engine converts it to the character string data type, if possible.

Here are the queries:

1. Query type 1: Single phone number lookup in a specific time frame:

SELECT [IMEI]

, [ChargingDateTime] -- time the call was made

, [ChargeableDuration] -- call duration

, [OriginalCalledNumber] -- dialed number

, a. [MSISDN] -- subscriber phone number

, a. [AFilialID]

, a. [ACountryID]

, m. [MSCID]

, m. [MSCRegionID]

, m. [MCSCountryID]

, [FileID]

FROM . [dbo] . [FactInt]

INNER JOIN DimDefinitionA as a ON a.[MSISDN] = FactInt . [MSISDN]

INNER JOIN DimTableMSC as m ON m. [MSCID] = FactInt . [MSCID]

WHERE [ChargingDateTime] >'2010 - 01- 01 00:00' and [ChargingDateTime] < '2010 -

01- 02 00:00'

AND FactInt . MSISDN = 1234567899995324 -- subscriber phone number

2. Query type 2: Big report query where the range of phone numbers is looked up:

SELECT [IMEI] , [ChargingDateTime] , [ChargeableDuration]

, [OriginalCalledNumber] , Fact . [MSISDN] , a. [AFilialID]

, a. [ACountryID]

 , Fact . [MSCID] , m. [MSCRegionID] , m. [MCSCountryID]

, [FileID]

FROM [dbo] . [FactInt]

INNER JOIN DimDefinitionA as A ON A. [MSISDN] = FactInt . [MSISDN]

INNER JOIN DimDefinitionPosition as P ON P. [CellID] = FactInt . [CellID]

INNER JOIN DimTableMSC as M ON M. [MSCID] = FactInt . [MSCID] WHERE

[ChargingDateTime] >'2010 - 01- 01 00:00' and [ChargingDateTime] < '2010 - 01- 02

00:00' AND FactInt . MSISDN > 1234567899995324 and FactInt . MSISDN <

1234567899995924 AND FactInt . [MSCID] > 790300000705 and FactInt . [MSCID] <

790300000800

3. Query type 3: A lookup in which the LIKE operator is used:

SELECT [IMEI] , [ChargingDateTime] , [ChargeableDuration]

, [OriginalCalledNumber]

, FactInt . [MSISDN]

, a. [AFilialID]

, a. [ACountryID]

, FactInt . [MSCID]

, m. [MSCRegionID]

, m. [MCSCountryID]

, [FileID]

FROM [dbo] . [FactInt]

INNER JOIN DimDefinitionA as A ON A. [MSISDN] = FactInt . [MSISDN] INNER JOIN

DimDefinitionPosition as P ON P. [CellID] = FactInt . [CellID]

INNER JOIN DimTableMSC as M ON M. [MSCID] = FactInt . [MSCID]

WHERE [ChargingDateTime] >'2010 - 01- 01 00:00' and [ChargingDateTime] < '2010 -

01- 02 00:00'

AND FactInt . MSISDN Like '12345678999953%'

AND FactInt . [MSCID] Like '7903000007%'

 Because we needed to know the real query performance at the beginning of each query execution, we
compared queries with and without cache cleanup.D

DBCC FREESYSTEMCACHE ('ALL');

DBCC DROPCLEANBUFFERS;

DBCC FREEPROCCACHE Go

Test

 After all preparation was finished, we performed the following tests for each type of query:

1) Test 1. Query fact tables and dimension table, compression not enabled , cache is cleaned up (cold)

2) Test 2. Query fact tables and dimension table, compression not enabled, cache is warm

3) Test 3. Query fact tables and dimension table, fact table compressed, cache is cold

4) Test 4. Query fact tables and dimension table, fact table compressed, cache is warm Here are the
numbers the tests runs generated.

 Example of results from Tests 1 and 2

Cold Cache Warm Cache

Query 1 (FactChar, ms) Query1 (FactInt, ms) Query 1 (FactChar, ms) Query1 (FactInt, ms)

17631 6737 1144 418

21684 6548 1142 364

22179 6476 1158 351

17136 6646 1296 347

18198 6503 1135 383

Returned: 994 rows

Cold Cache Warm Cache

Query 2 (FactChar, ms) Query 2 (FactInt, ms) Query 2 (FactInt, ms) Query 2 (FactInt, ms)

86341 26510 6754 1343

86086 26394 5697 1431

85866 26560 5802 1456

84778 26676 5514 1551

85595 26279 5638 1259

 Returned: 56179 rows

Cold Cache Warm Cache

Query 3 (FactChar, ms) Query 3 (FactInt, ms) Query 3 (FactChar, ms) Query 2 (FactInt, ms)

98691 27850 1177 1063

98692 26984 1124 1087

99105 27127 1640 1017

98474 26989 1300 1011

Returned: 9991 rows

You can see that:

- Queries against the bigint table with a cold cache ran between about 54% and about 67% faster
than the queries against tables where data was stored as a character data type.- These queries also
showed significant performance gain for tables with bigint in comparison to varchar data type when run
against a warm cache. Queries against the FactInt table ran about 24% to about 70 % faster than queries
against the FactChar table.

Next, we enabled compression on the tables to see its effect on query performance.

Example of results from Tests 3 and 4

Cold Cache Warm Cache

Query 1 (FactChar, ms) Query 1 (FactInt, ms) Query 1 (FactChar, ms) Query 1 (FactInt, ms)

13538 5453 1121 423

13206 5164 1171 420

13153 5155 1185 470

13568 5598 1233 487

13561 5668 1179 397

Cold Cache Warm Cache

Query 2 (FactChar, ms) Query 2 (FactInt, ms) Query 2 (FactChar, ms) Query 2 (FactInt, ms)

20058 13195 2232 1548

20318 13327 2228 1766

19802 13546 1967 1657

19835 13276 1904 1714

19789 13326 2081 1617

Cold Cache Warm Cache

Query 3 (FactChar, ms) Query 3 (FactInt, ms) Query 3 (FactChar, ms) Query 3 (FactInt, ms)

24922 13924 1271 1138

33755 13692 1287 1262

32091 13883 1448 1071

31190 13879 1286 1137

31083 13659 1389 1138

The results indicated that after compression was enabled on the tables, performance of the
queries on the tables FactInt and FactChar was almost identical.

Compression did improve the performance for both queries, compared to the same test against the
noncompressed data. What was interesting was that average execution time dropped slightly. However,
the queries still took a relatively long time to execute. The only real difference appeared when the cache
was cold: queries against the FactInt table ran about 32% to 58% faster than queries against the
FactChar table.

Finally, we observed a significant space savings when bigint was used. The following table compares the
amount of space you need to store data using both a character type data format and a numeric data
format.

Name Rows Compressed? Data index_size

FactChar 60000000 no 9634,281 MB 2192,016 MB

FactChar 60000000 yes 4735,781 MB 2175,133 MB

FactInt 60000000 no 7324,219 MB 1597,125 MB

FactInt 60000000 yes 4077,320 MB 1585,586 MB

Conclusion

 When you design complex database solutions, you may be tempted to choose character-based data
types and save development time and efforts. However, this may not be the best choice for your

scenario. Talking to the business may help you identify the best data type and format for your customer,
based on the way the data is queried and the effects of different settings on performance. As our tests
indicate, apparent simplicity may cost you query performance and storage space. Choosing numeric
data types over character-based data types may offer performance gains, which could improve overall
system throughput.

The Many Benefits of MoneyéData Type!

Background

Our initial reason for looking at the money data type can be found within the Precision Considerations for Analysis

Services Users white paper. In this white paper, we provide extensive examples of the types of precision issues when

your SQL relational data source and your Microsoft® SQL Server® Analysis Services cube have different non-

matching data types (e.g., if you query one way you get the value 304253.3251, but run the query in another way and

you get the value 304253.325100001).

To avoid these types of problems, you need to ensure that your SQL relational data source and Analysis Services

measure groups have matching data types. By default, when you create an Analysis Services measure on a money

data type, Microsoft Visual Studio® Business Intelligence Development Studio will set the data type reference to

double . To avoid precision loss and have faster performance, you should change the data type to currency within the

Source Properties as noted in the screen shot below.

http://www.microsoft.com/downloads/details.aspx?familyid=bae8beec-9892-4ecd-a9db-292254895f9c
http://www.microsoft.com/downloads/details.aspx?familyid=bae8beec-9892-4ecd-a9db-292254895f9c
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TheManyBenefitsofMoneyDataType_9F7C/image_2.png

Show Me The Money! ...Data Type for Faster Processing Performance

Working on customer implementations, we found some interesting performance numbers concerning the money

data type. For example, when Analysis Services was set to the currency data type (from double) to match the SQL

Server money data type, there was a 13% improvement in processing speed (rows/sec). To get faster performance

within SQL Server Integration Services (SSIS) to load 1.18 TB in under thirty minutes, as noted in SSIS 2008 - world

record ETL performance, it was observed that changing the four decimal(9,2) columns with a size of 5 bytes in the

TPC-H LINEITEM table to money (8 bytes) improved bulk inserting speed by 20%. Note that within SSIS, the

equivalent of the money data type is DT_CY, which currently does not support fast parse. Hence, getting money out

of text files may incur additional cost.

Note that these tests were performed on 64-bit systems. Relative performance may be different in the 32-bit editions of

SQL Server because of differences in the way it performs 64-bit integer (or money) operations.

Money vs. Decimal vs. Float Decision Flowchart

Below is a high-level decision flowchart to help you decide which data type you should use. Note that this is a

generalization that may not be applicable to all situations. For a more in-depth understanding, you can always refer to

Donald Knuthõs The Art of Computer Programming ð Volume 1.

http://blogs.msdn.com/sqlcat/archive/2008/02/29/ssis-2008-world-record-etl-performance.aspx
http://blogs.msdn.com/sqlcat/archive/2008/02/29/ssis-2008-world-record-etl-performance.aspx
http://sunburn.stanford.edu/~knuth/taocp.html

As well, remember that different data types have different client API mappings. Some more in-depth references to this

include SQL Server Data Types and ADO.NET and A Money type for the CLR.

Money (Data Type) Internals

The reason for the performance improvement is because of SQL Serverõs Tabular Data Stream (TDS) protocol, which

has the key design principle to transfer data in compact binary form and as close as possible to the internal storage

format of SQL Server. Empirically, this was observed during the SSIS 2008 - world record ETL performance test using

Kernrate; the protocol dropped significantly when the data type was switched to money from decimal. This makes the

transfer of data as efficient as possible. A complex data type needs additional parsing and CPU cycles to handle than a

fixed-width type.

Letõs compare the different data types that are typically used with money (data types).

http://msdn.microsoft.com/en-us/library/ms172136.aspx
http://www.codeproject.com/KB/recipes/MoneyTypeForCLR.aspx
http://blogs.msdn.com/sqlcat/archive/2008/02/29/ssis-2008-world-record-etl-performance.aspx
http://www.microsoft.com/downloads/details.aspx?FamilyID=d6e95259-8d9d-4c22-89c4-fad382eddcd1&DisplayLang=en
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/TheManyBenefitsofMoneyDataType_9F7C/image_10.png

Breakdown

money

decimal

float

Simple/complex data type:

Simple data types align more

directly to native processor types.

Complex data types require CPU to

review type metadata and to

perform branching.

Simple

Complex

Simple

Fixed/variable length writers:

Because a variable-length data type

may incur a memcpy when moving,

causing additional CPU overhead,

use a fixed 8-byte or 4-byte integer

assignment if possible.

Fixed

Variable

Fixed

Storage format : Incurs less

overhead if the data type is

composed of native literals (e.g.,

int , uint , long , ulong) instead of

approximate data types (e.g., float).

8-byte integer

Scaled integer (one sign

byte plus one to four

ulong depending on

precision)

8-byte integer

Comments : This row lists other

issues of concern.

None

TDS wire format is always

packed, so extra

overhead is required to

pack and unpack this

data type.

Approximate data are

types more expensive to

compare/convert than

native literals; there may

be precision issues on

conversion.

The key here is that the money data type is a simple fixed-length integer -based value type with a fixed decimal point.

Composed of an 8-byte signed integer (note that small money is a single 4-byte integer) with the 4 -byte CPU

alignment, it is more efficient to process than its decimal and floating point counterparts. The other side of the coin

is that floating points (but not decimal) can be more quickly calculated in the floating point unit of your CPU than

money . However, bear in mind the precision issues of float as noted above.

Saving (Space for) Your Money!

In the context of SQL Server data compression, the money and small money data types tend to compress well when

the absolute value is low (e.g., values between -0.0128 and 0.0127 compress to 1 byte, while values between -3.2768

and 3.2767 compress to 2 bytes). It is the absolute value that matters for compression, not the number of significant

digits; both 1,000,000 and 1,234,567.8901 will take 5 bytes compressed. On the other hand, decimal will compress

better when there are fewer significant digits. For example, both 1,000,000 and .0001 will compress to 2 bytes, but

1,234,567.8901 will take several more bytes because it has more significant digits.

$ummary

There will be many scenarios where you preferred option will still be to use data types such as decimal and float . But

before skipping over this detail, take a look at your data and see if you can change your schema to the money data

type. After all, a 13% improvement in Analysis Services processing speed and 20% improvement in SSIS processing

isnõt chump change.

êand thatõs our $0.02.

How many files should a database have? - Part 1: OLAP

workloads

The subject - how many files a database should have - is a question that comes up often. The answer is
of course: it depends. But, what does it depend on?

Background information

If a filegroup in SQL Server contains more than ƻƴŜ ŦƛƭŜΣ {v[{ŜǊǾŜǊ ǿƛƭƭ άǎǘǊƛǇŜέ ŀƭƭƻŎŀǘƛƻƴǎ
across the files by using a proportional fill algorithm. If the files in the group have the same size
(which we recommend), the allocation is essentially a round-ǊƻōƛƴΦ ¢ƘŜ άǎǘǊƛǇŜ ǎƛȊŜέ ƻŦ ǘƘƛǎ
round-robin is by default one extent - 64KB. Hence, the first allocated extent goes to the first
file in a filegroup, the second extent to the second and so on. This striping mechanism can be
quite useful, because you can spread your I/O over several LUNs by allocating a data file to
each. You should strive to have all files in a filegroup be of equal size. Using Files and Filegroups
on TechNet rovides more background on filegroup and allocation.

EacƘ ŦƛƭŜ ƛƴ ǘƘŜ ŘŀǘŀōŀǎŜ Ƙŀǎ ƛǘǎ ƻǿƴ tC{Σ D!a ŀƴŘ {D!a ǇŀƎŜǎΦ ¢ƘŜǎŜ ǎǇŜŎƛŀƭ άŀŘƳƛƴƛǎǘǊŀǘƛƻƴ ǇŀƎŜǎέ
track the free space and allocation in the in the file. Every new allocation in the file will have to access a
PFS page and in some cases also the GAM/SGAM pages. (For more background on this see "Inside SQL
{ŜǊǾŜǊ нллрΥ ¢ƘŜ {ǘƻǊŀƎŜ 9ƴƎƛƴŜέ ōȅ YŀƭŜƴ 5ŜƭŀƴŜȅύΦ

In this Tech Note, we look at files from an OLAP / Data Warehouse workload perspective. Because OLAP
and OLTP workloads differ greatly, different recommendation for file allocation apply.

Too few files in a filegroup

If a filegroup receives a lot of insert activity, the pressure on the PFS and GAM/SGAM page
access becomes significant. At some point, this becomes a bottleneck, effectively slowing down
the insert throughput. In a data warehouse load, the contention is typically on PFS pages.

If PFS contention is present in a workload, it will show up as waiting for PAGELATCH_UP in
sys.dm_os_wait_stats. You can use sys.dm_os_waiting_tasks to see which pages you are waiting for.
You will see something like the following:

http://msdn2.microsoft.com/en-us/library/ms187087.aspx
http://sqlcat.com/blogs/technicalnotes/PFS Contention.gif

The format of the resource_description column is: DBID:FILEID:PAGEID. You can use the
resource_description to look up the page in sys.dm_os_buffer_descriptors to see if your wait is
on a PFS page.

If you discover that you have many waits for PFS pages, you probably need to add more files to the
affected filegroup. Because each file has its own administration pages ς the presence of more files
reduce contention on PFS pages.

Too many files in a filegroup

Increasing the number of files is useful if you ǳǎŜ ǘƘŜ ŦƛƭŜǎ ǘƻ άǎǘǊƛǇŜέ ŀŎǊƻǎǎ [¦bǎ ƻǊ ƛŦ ȅƻǳ Ǌǳƴ
into the PFS bottleneck as described above.

However, there is a disadvantage in having too many files. Remember that SQL Server will stripe the
extents over the files in stripe sizes of 64KB. Assume that you have great deal of insert activity on a
single filegroup that contains many files. Since SQL Server distributes the extents across the files, your
average I/O request will typically have a size of 64KB. If you instead had fewer files in the filegroup, SQL
{ŜǊǾŜǊ ŎƻǳƭŘ άōǳƴŘƭŜέ ǘƘŜ ŀƭƭƻŎŀǘƛƻƴǎ ŀƴŘ ƘŜƴŎŜΣ ŘǊƛǾŜ ƭŀǊƎŜǊ ōƭƻŎƪ ǎƛȊŜǎΦ aƻǎǘ Lκh ǎȅǎǘŜƳǎ ŘŜƭƛǾŜǊ ŀ
better throughput if you can drive large block sizes.

Testing with TPC-H LINEITEM data shows the following pattern when loading the database
using minimally logged operations:

Files in filegroup Avg I/O block size (KB)

1 256

2 196

4 132

8 64

16 64

32 64

The above numbers are for a single bulk stream to the file.

SQL Server is quite good at bundling I/O operations together in large blocks ς a process known
as scatter/gather. In our test, we tried to increase the concurrency of the bulk load to utilize
this functionality. With 64 bulk streams, we were able to drive block sizes up to 196 KB, even
with 32 files in a single filegroup. But still, with 1 file in each of multiple filegroups, we were
getting a faster, 256 KB block sized I/O.

So, while adding more files can benefit performance by eliminating PFS contention, it can make the I/O
pattern less efficient. You can measure the size of the block requests using the perfmon counter: Logical
Disk: Avg Disk Bytes / Write to gauge how efficient your block size is.

Having many filegroups in a database adds an administrative burden: you now have to balance
the space usage in the database between the filegroups. Therefore, you probably do not want
to go overboard in optimizing your I/O block sizes by adding filegroups with few files and
allocating your tables across them. In our TPC-H load test we only saw a 5% increase in disk
throughput from optimizing block sizes and the benefit was only realized above several
hundred MB / Sec insert speeds.

Another factor to consider, from an administrative perspective, is database startup recovery. File
recovery after server restart or after a SET ONLINE operation on the database are done sequentially. If
you have many files (hundreds) in your database, this recovery process can take a long time because
each file is opened sequentially.

The ïE startup flag

The SQL Server startup flag ςE forces SQL Server to allocate 4 extents at a time to each file,
essentially quadrupling the stripe size. In heavy insert scenarios, this drives larger block sizes to
the disk. Also, your pages allocation will be more sequential with the same data file, allowing
better sequential I/O for range and table scan operations (which are common in OLAP
workloads).

This startup flag provides most, but not all, of the above mentioned benefits to I/O system ς without the
overhead of managing multiple filegroups. Be aware that this flag is supported only in 64-bit
environments. You can find information about the ςE startup flag in File allocation extension in SQL
Server 2000 (64-bit) and SQL Server 2005 (KB329526).

So, how many database files should I have in my OLAP system?

To allocate the optimal number of files you must understand your database workload. The
amount of insert activity is the determining factor. You also must balance the following factors:

¶ PFS contention
¶ need for SQL based striping

¶ I/O pattern ς block sizes

¶ File recovery times

PFS contention and SQL-based striping drives you towards allocating more files. Optimizing I/O requests
and file recovery leans towards fewer files. If your work load is very insert heavily, you generally want
more files, but in a controlled manner. We have seen benefits of having up to half the amount of files as
you have cores ς and even more in the case of tempdb. If your data load is more read intensive, having
fewer files may benefit you, since PFS contention is not a problem in this case and your I/O will arrive in
larger bundles.

In extreme cases, when inserting hundreds of MB / Sec, you can benefit from partitioning your
table into filegroups, each with low number of files to bundle I/O requests together and create

http://support.microsoft.com/kb/329526
http://support.microsoft.com/kb/329526

larger block sizes with sequential disk access. But, by doing this you assign performance priority
over ease of administration.

{ƻ ǘƘŜ ŀƴǎǿŜǊ ǘƻ ǘƘŜ ǉǳŜǎǘƛƻƴΣ άIƻǿ Ƴŀƴȅ ŦƛƭŜǎ ǎƘƻǳƭŘ Ƴȅ Řŀǘŀ ǿŀǊŜƘƻǳǎŜ ƘŀǾŜΚέ ƛǎΥ ŀǎ ŦŜǿ ŀǎ ǇƻǎǎƛōƭŜΣ
without running into PFS contention and without sacrificing striping ability.

SQL Server Partition Management Tool

SQL Server Partition Management Tool is available at http://www.codeplex.com/SQLPartitionMgmt with source code.

This tool provides a set of commands (at the Command Line or via Powershell) to create a staging table on-demand

(including all appropriate indexes and constraints) based on a specific partitioned table and particular partition of

interest. By calling this executable, with parameters, from maintenance scripts or SSIS packages, DBAs can avoid

having to ôhard codeõ table and index definition scripts for staging tables. The tool eliminates the challenge of

keeping such scripts in synch with changes to partition tablesõ columns or indexes. It also provides a fast, single-

command shortcut for the operation of quickly deleting all data from a partition.

This tool supports SQL Server 2008, but is also fully compatible with SQL Server 2005. An earlier verison of the tool

(for SQL Server 2005) is also available on codeplex under the same project.

The latest version supports new features in SQL Server 2008 such as filtered indexes, new data
types, and partition-aligned indexed views.

http://www.codeplex.com/SQLPartitionMgmt

Section 3: Fast-track

Lessons Learned and Findings from a Large Fast-Track

POC

Executive Summary
¢ƻ ŀƛŘ /ƻƴǘƻǎƻΩǎ Ǝƻŀƭ ƛƴ ŜǎǘŀōƭƛǎƘƛƴƎ ŀƴ ŜƴǘŜǊǇǊƛǎŜ Řŀǘŀ ǿŀǊŜƘƻǳǎŜ ό95²ύ ǿƛǘƘ ǘƘŜ ƻōƧŜŎǘƛǾŜ ƻŦ ŎǊŜŀǘƛƴƎ
a single version of the truth, Microsoft has participated in a proof of concept (POC) to demonstrate the
performance, scalability, and value of the Microsoft SQL Server application platform. The Microsoft
team used our Fast Track Data Warehouse solution based on HP hardware and SQL Server 2008 R2
RDBMS. This involved conversion work from the current Oracle production system to the test SQL Server
system. In summary, we built a Fast Track configuration that scaled according to the demands put on it
by the requirements. We were able to deliver excellent performance numbers for both pre and post
optimization serial runs. Additionally the performance numbers for volumized data scaled according to
the growth in size of data. We did additional testing on different approaches for loading the data, that is,
BULK INSERT vs. the bcp utility. We also loaded data into databases with tables using nonclustered and
clustered primary keys and were able to show the workload performance numbers for both. The
compression scenario delivered impressive compression ratios and indicated areas where it could be
used for query performance optimization. The calculated compression ratio before compression was a
ƴŜŀǊ ŜǎǘƛƳŀǘŜ ƻŦ ǘƘŜ ŀŎǘǳŀƭ ǘŀōƭŜ ŎƻƳǇǊŜǎǎƛƻƴ ǎƛȊŜΦ ¢ƘŜ ŎǳǎǘƻƳŜǊΩǎ Řŀǘŀ ŎƻƳǇǊŜǎǎŜŘ ōŜǘǘŜǊ ǘƘŀƴ ǘƘŜ
estimate predicted. The backup scenario proved that the speed and backup compression will be key
wins for manageability of the data warehouse. When testing updates in place, we optimized the
performance numbers by setting the fill factor appropriately to avoid page splits. Early feedback
indicated that this was much faster than Oracle and other competing vendors, and an order of
magnitude faster than the current production system. Finally we were able to conclude that the
performance of the Fast Track configuration was better than current production by many orders of
magnitude across all the testing options. Given the opportunity to deliver the enterprise data
warehouse, the Microsoft Fast Track Data Warehouse can deliver workload performance far surpassing
expectations with the latest G7 hardware. We believe we can deliver the best performance through our
expertise in optimization and migrating code from different database platforms.

Introduction
Contoso, one of the biggest banks in Malaysia, called for a POC among Oracle (Teradata), IBM (DB2 on
zSeries), Greenplum, and Microsoft. They developed a very elaborate and complete POC scope that can
be broken into five tracks: 1. Track A is a simulation of the current environment. To create Track A,
load two months of information from an Oracle database. Migrate objects and data to SQL Server but do
not do any optimizations. That way, get a baseline of a direct migration by running serially specific
queries and stored procedures (six fixed queries, four stored procedures, and 20 or so ad hoc
queries)2. Track B. Apply optimizations to database and queries to Track A. Run the six queries and
four stored procedures in parallel while updating the customer master table. Also, switch in a new
partition and ensure that there are no issues with currently running queries or dirty data.3. Track C.
Start with Track B, and then multiply all the dimension tables by three and the fact details table to seven
years (that is, an additional 82 months). Record load times. 4. Track D. Modify queries from Track B to
get the new bigger data set.

Hardware Configuration

Configuration: HP DL785 G5 with 8 socket quad core: 32 AMD Opteron 8376 HE, 2300 MHz and 256 GB
ram. (NOTE: Even though this system is not in the list of the published HP Fast Track configurations, it
followed the rules of fast track to achieve a well-balanced system between cores and LUNs.)I/O: Five HP
Smart Array P411 controllers and 10 D2700 enclosures direct attached (DAS). Each enclosure had 25
disks x 146 GB each 10k rpm SAS 6G dual port. We used four controllers for FT with 32 RAID 1 LUNs of 2
disks each. The fifth controller, which was used for backup and other storage, had three RAID 5 LUNs of
8 disks each. Operating system: Windows Server 2008 R2 Enterprise with hotfixes KB 2155311, 977977,
976700, and 982383. These are all I/O related fixes for Windows Server2008 R2 and multi core
systems.DBMS: SQL Server 2008 R2 Enterprise plus Cumulative Update package 3. We used ςE and -
T1118 trace flags. Trace flag 1118 forces uniform extent allocations instead of mixed page allocations. It
is commonly used to assist in tempdb scalability by avoiding SGAM and other allocation contention
points. We allocated a maximum of 250 GB RAM to SQL Server. Database configuration we used one
filegroup for the Fast Track database with 32 data files of equal size, one in each LUN because we had 32
cores. We used the same configuration for tempdb. For the transaction log, we had four extra RAID 1
LUNS of two disks, one in each enclosure.

Track A ï Nonclustered Indexes as Primary Keys
Notes

¶ This test ensured adherence to the loading of data in waves. The PK indexes are nonclustered, in

ƪŜŜǇƛƴƎ ǿƛǘƘ /ƻƴǘƻǎƻΩǎ ǿƛǎƘŜǎΦ¶ Primary key duplicates are ignored by the process and not inserted

into the tables. There are other bad-data errors. These are logged in the error log files.¶ The data
errors were left in the load files and stripped on load to show the worst-case scenario.Here is an
example of the command we used to load data in from the command batch.bcp

TrackA.dbo.[<Table>] in <Table>.txt - c - F2 - r \ n - m 999999 - t"|" - b

100000 - U %USERNAME% - S %SERRVERNAME% - P %PASSWORD% - e

<Table>.txt_Errors.log - h "TABLOCK"

Loaded Row Count

Table Name
Actual Loaded Row

Count

ACCT_HT 5,592,356

ACCT_XREF 22,898,855

CARD_CREDIT_LINE_HT 1,217,097

CERT_DEPOSIT_HT 1,146,640

CODE_HT 39,796

COLLAT_ACCT_REL_HT 2,744,101

COLLAT_CONS_HT 71

COLLAT_CUST_REL_HT 3,955,228

COLLAT_FIN_HT 847,391

COLLAT_GUAR_HT 491,094

COLLAT_MACH_HT 7,059

COLLAT_MVEH_HT 1,246,607

COLLAT_OASST_HT 3,660

COLLAT_OVEH_HT 174

COLLAT_PROP_HT 205,294

COLLATERAL_HT 2,789,530

COMMERCIAL_LOAN_HT 225,983

CONSUMER_INST_LN_HT 1,254,016

CREDIT_PROVISIONS_HT 1,645,043

CUST_ACCT_REL_HT 7,642,494

CUST_CUST_REL_HT 1,073,973

CUST_HT 7,165,192

CUST_NON_PERS_HT 392,467

CUST_PERS_HT 6,773,268

CUST_XREF 12,311,195

PRD_DIMENSION 4,017

PRODUCT 1,497

RETAIL_CHECKING_HT 165,041

RETAIL_CREDIT_LN_HT 8,048

RETAIL_SAVING_HT 1,583,574

TRAN_DETAIL 19,107,244

Comments

The total load time was 6,393 seconds. This was due to the fact that all the indexes were kept and the
data was not pre-cleaned to remove corrupt rows and duplicate primary key data.

Track A - Clustered Indexes as Primary Keys ɀ FAST LOAD
Notes

¶ The primary key indexes were changed to clustered indexes, and primary key data and bad data

were removed from the files to ensure clean fast loads.¶ The nonclustered indexes were built on the
data after it was loaded in a parallel batch.Here is an example of the command we used to load data in
from the command batch.bcp TrackA.dbo.[<Table>] in <Table>.txt - c - F2 - r \ n - m

999999 - t"|" - b 100000 - U %USERNAME% - S %SERRVERNAME% - P %PASSWORD% - e

<Table>.txt_Errors.log - h "TABLOCK"

Comments
The total load time (to build the entire database) was 2,485 seconds. This time is made up of 2,166
seconds for the data load and 319 seconds for the creation of all the nonclustered indexes. This was
much faster than the 6,393 seconds it took to load the data using nonclustered indexes as primary keys.
The 2,166 seconds can be further reduced if the declarative referential integrity (DRI) constraints are
removed. This was not tested because Contoso had a requirement to keep the DRI constraints in the
database.

Track A - Best Practices
- Normally you should not have constraints on the DW tables. Foreign keys and logical integrity of
the data to be loaded should be handled at the ETL layer to minimize data load performance issues. In

our case, we could not avoid the constraints due to the POC requirements. - SQL Server
Integration Services can provide a better means of cleaning the data and taking care of slowly changing
dimensions. - You need to determine what you want to focus on: load performance for historical
data or query performance. Sometimes you cannot optimize for both at the same time. In our case, we
optimized for query performance.- Consider loading data into partitioned tables for incremental
loads.- Use the BCP utility to load data in and specify the TABLOCK and ORDER hints. Ensure that
the order of the data is the same as it is in the clustered index.

Query and Stored Procedure - Execution Summary

Results Before and After Optimization
This table shows the numbers before and after optimization for the execution of procedures and
queries. All executions were performed serially. That means the following:

1. Track A database was used for the before-optimization number, that is, where nonclustered
indexes used for primary keys. The queries and stored procedures were migrated from Oracle
and not optimized.

2. Track B database was used for the after-optimization number. The queries and stored
procedures were optimized for the after-optimization numbers.

Item Execution time in current

Oracle production

Execution time (before

optimization)

Hr:Min:Sec

Execution time (after

optimization)

Hr:Min:Sec

Q1 ς Coreplan 00:16:00 00:02:00 00:00:02

Q2 ς FINS_CASHDEP 00:05:00 00:03:02 00:00:02

Q3 ς FINS_FDPLACE 00:03:00 00:00:02 00:00:00 (1 ms)

Q4 ς MUTIARA_CPS 34:07:00 00:02:14 00:01:18

Q5 ς PIDM_APP1 > 48 hours 00:00:04 00:00:02

Q6 ς PIDM_APP2 > 48 hours 00:00:17 00:00:14

Stored Proc 1 -

CTSM_ME_PROD_PARTITION
00:23:00 00:01:06 00:00:35

Stored Proc 2 -

MUTIARA_MAIN_JUL10
02:51:00 00:11:39 00:06:40

Stored Proc 3 -

DCS_MERGED_IND_SP
03:20:00

Runs for over 3 hours -

terminated

00:03:00 - 00:05:00 (3-5

mins)

Stored Proc 4 - Kpi_Run_On_Age 00:27:00 01:15:41 00:02:00 - 00:04:00

Optimizations Performed ɀ High Level Summary
¶ Rewrite CASE and WHERE statements as joins.¶ Clean key join column to remove leading and

trailing spaces.¶ Add nonclustered indexes.¶ Create statistics.¶ Build derived columns for

substring joins.¶ Convert Oracle-like function calls from SQL Server Migration Assistant (SSMA) to
native function calls, such as:

ssma_oracle . to_char_date (sysdatetime (), 'DD - MON- YYYY HH:MI:SS AM')to

CONVERT(varchar (32), sysdatetime (), 109)

Results for Seven Years Data Serial Query Execution
Description Min:Sec

Q1 ς Coreplan 00:30

Q2 ς FINS_CASHDEP 39:36

Q3 ς FINS_FDPLACE 0:02

Q4 ς MUTIARA_CPS 10:1

Q5 ς PIDM_APP1 0:05

Q6 ς PIDM_APP2 10:50

 The results seem proportional to the data volume and the fact that the queries were run in parallel. A
data set expanded three times by account base and seven years by time will have an impact on the
number of rows to be scanned as well.

Description Hr:Min:Sec

Stored Procedure 1 - CTSM_ME_PROD_PARTITION 0:12:24

Stored Procedure 2 - MUTIARA_MAIN_JUL10 0:09:24

Stored Procedure 3 - DCS_MERGED_IND_SP 1:00:35

Stored Procedure 4 - Kpi_Run_On_Age 0:09:25

 The volumization of data seems proportional to the query run time in some instances. Heavy processing
via function calls in search conditions and the SELECT clause of the queries within procedures
lengthened the run time of procedures. NOTE: The Fins_Cashdep query has a time window of five days
on Tran_Detail but the substring function applied on TXD_ACCT_NO column of TRAN_DETAIL will cause
the table to be scanned. Generally, we have seen when that when functions such as CONVERT,
SUBSTRING, CAST, LTRIM, and RTRIM are used, the plan becomes serial and performance can be
affected negatively. For more information about queries and stored procedures execution plans and
optimizations, see Appendix B.

Volume Growth and Scalability
Notes

The purpose of Track C is to measure the load time for volumized data. The data volume was increased
in keeping with volumization rules set by Contoso.

Load Process
The diagram shows the load sequence of bulk copying of the files using the BCP

utility. After the BCP
files are loaded, the data is

switched. The file
load is synchronized using a flag-file method.

Results

STEP Table name TIME(ms) TIME(min)

STEP1

Parallel

ACCT_HT.LOG 1,913,961 32

CUST_HT.LOG 1,701,456 28

CUST_NON_PERS_HT.LOG 45,365 1

CUST_PERS_HT.LOG 772,750 13

Subtotal STEP1 1,913,961 32

STEP2 CUST_ACCT_REL_HT 2,807,191 47

Subtotal STEP2 2,807,191 47

STEP3 CARD_CREDIT_LINE_HT 800,581 13

Parallel CERT_DEPOSIT_HT 248,494 4

CONSUMER_INST_LN_HT 550,090 9

CREDIT_PROVISIONS_HT 413,043 7

RETAIL_CHECKING_HT - -

RETAIL_SAVING_HT 329,147 5

Subtotal STEP3 800,581 13

STEP4-1

Serial

TRAN_DETAIL_ACCT_83 1,923,914 32

TRAN_DETAIL_ACCT_84 1,446,005 24

Subtotal STEP4-1 3,369,919 56

Tran_Detail Import Performance

We did two passes of the import; the results are shown for both. Pass 1 uses BCP. Here is the
command.bcp %DB_NAME%.dbo.TRAN_DETAIL_ACCT_%NUM% in

%3\ TRAN_DETAIL_ACCT_%NUM%.txt - c - r \ n - t"|" - S %SERVER% - U%USER% - P %PASS%

- b 100000 - h "TABLOCK, order(TXD_CYC_DT ASC, TXD_CYC_FREQ ASC,

TXD_A_HLD_ORG_CD ASC, TXD_ACCT_ID ASC, TXD_A_FIN_INST_NO ASC , TXD_APPL_SYS_ID

ASC, TXD_ACCT_NO ASC, TXD_TRAN_DT ASC, TXD_TRAN_SEQ_NO ASC, TXD_TRAN_CD ASC)"

- o %LOG_DIR%\ STEP4_TRAN_DETAIL_ACCT_%NUM%.log- This test loads the data into the table
unsorted, and the server has to sort it.- The average import time per table was 1,945 seconds (that is,
32 minutes). The longest tables import was 5,006 seconds (that is, 83 minutes).Pass 2 uses BULK INSERT.
Here is the command.osql - S %SERRVERNAME% - d %DATABASE% - U %USERNAME% - P

%PASSWORD% - Q "BULK INSERT %D B_NAME%.dbo.tran_detail_acct_%NUM% FROM

'%3 \ TRAN_DETAIL_ACCT_%NUM%.txt' WITH (TABLOCK ,CODEPAGE =

'RAW',FIELDTERMINATOR ='|',ROWS_PER_BATCH = 100000, ORDER(TXD_CYC_DT ASC,

TXD_CYC_FREQ ASC, TXD_A_HLD_ORG_CD ASC, TXD_ACCT_ID ASC, TXD_A_FIN_INST_NO

ASC, TXD_ APPL_SYS_ID ASC, TXD_ACCT_NO ASC, TXD_TRAN_DT ASC, TXD_TRAN_SEQ_NO

ASC, TXD_TRAN_CD ASC))ò- The BULK INSERT time also includes the time it took to build the
index. The import tables have indexes defined. The average import time per table was 1,620 seconds
(that is, 27 minutes). ¢ƘŜ ƭƻƴƎŜǎǘ ǘŀōƭŜΩǎ ƛƳǇƻǊǘ ǿŀǎ нΣрфм ǎŜŎƻƴŘǎ όǘƘŀǘ ƛǎΣ по ƳƛƴǳǘŜǎύΦ- We used
the TABLOCK and ςƘ άhw59wόύέ ǇŀǊŀƳŜǘŜǊǎ ƛƴ ǘƘŜ ./t ŎƻƳƳŀƴŘ ŦƻǊ ƻǇǘƛƳƛȊŀǘƛƻƴΦ ¢Ƙƛǎ ŘŜŎǊŜŀǎŜŘ ǘƘŜ
load time almost by half.

Loaded Row Count

Table Name Loaded
Bulked Up

Row Count

ACCT_HT 5,592,356 16,777,068

CARD_CREDIT_LINE_HT 1,217,097 3,405,424

CERT_DEPOSIT_HT 1,146,640 3,220,152

CONSUMER_INST_LN_HT 1,254,016 3,501,549

CREDIT_PROVISIONS_HT 1,645,043 4,495,969

CUST_ACCT_REL_HT 7,642,494 23,276,637

CUST_HT 7,165,192 21,495,576

CUST_NON_PERS_HT 392,467 1,177,401

CUST_PERS_HT 6,773,268 20,319,804

RETAIL_CHECKING_HT 165,041 490,279

RETAIL_SAVING_HT 1,583,574 4,341,972

TRAN_DETAIL 19,107,244 2,300,000,000

Comments
The best approach is to use BULK INSERT with the primary key in place.

Fast Track Backup Performance ï Bonus Item
The performance we achieved was 2,107.8 MB per second.

Command
BACKUP DATABASE [TrackC] TO DISK =

N'C: \ MountR5 \ R5A\ Backups \ TrackC_F1.bak' , DISK =

N'C: \ MountR5 \ R5B\ Backups \ TrackC_F2.bak' , DISK =

N'C: \ MountR5 \ R5C\ Backups \ TrackC_F3.bak' WITH NOFORMAT, NOINIT , NAME =

N'TrackC - Full Database Backup' , SKIP, NOREWIND, NOUNLOAD, COMPRESSION, STATS

= 10GO

Results
We backed up a 1.3-terabyte database in 10:44 minutes. The size of the backup file was 203 GB.

Compression of Tables ï Extra Item
Compression Summary

A number of tables were compressed using page compression. The tables show the actual and
estimated compression ratio.

Track D - Compression of Big Tables

 Actual Values Estimated

 Before Compression After Compression

Actual Compression

Ratio
Before Compression

Estimated

Compression Size

Estimated

Compression Ratio

ACCT_HT 18757 7262 61% 18757 9446 50%

CUST_HT 17644 9241 48% 17644 10790 39%

CUST_ACCT_REL_HT 9762 1928 80% 9762 5451 44%

TRAN_DETAIL 2102900 277507 87% 2102900 699720 67%

Items in red show actual compression ratio and sizes. This is higher than the estimated compression.

 Note: For TRAN_DETAIL its actual size is 85 times the partition size, because there are 85 partitions.

Ad-hoc Query Performance
A set of ad-hoc queries ran in compressed and uncompressed state for the four tables.

Results

Description CompressedHr:Min:Sec
Uncompressed

Hr:Min:Sec

Query1 2:21:4 2:10:54

Query2 2:50:47 2:43:48

Query3 0:17:56 0:11:51

_ERR Fixed Sub query Track D

Query4
0:02:02 0:02:18

Query5 0:00:33 0:01:20

Query6 0:02:47 0:02:54

Query7 0:11:54 0:12:41

Query8 0:12:9 2:51:17

CUST_HT, ACCT_HT, and CUST_ACCT_REL_HT were uncompressed, and TRAN_DETAIL was compressed.

Comments
Different query characteristics and different tables being used in the joins impact the run time
differently. Query8 runs for a much shorter time with compression turned on, whereas other queries
display different behavior. In most cases, compression turned on for the four key tables seems to work
better.The key difference between Query1, Query2, and Query8 seems to be the additional
CUST_PERS_HT table involved in the join and the selection of different grouping sets. The compression
setting should be set based on the most common queries.

Conclusion
This paper discusses a Fast Track configuration that we built. The configuration scaled well according to
the demands put on it by the different tracks. We were able to deliver excellent performance numbers
for serial runs both before and after optimization. Additionally, the performance numbers for volumized
data scaled according to the growth in size of the data. We did additional testing on different
approaches for loading the data, that is, BULK INSERT vs. the bcp utility. We also loaded data into
databases with nonclustered and clustered primary keys and were able to show the workload
performance numbers for both. The compression scenario delivered impressive compression ratios and
indicated areas where it could be used for query performance optimization. The backup scenario proved
that the speed and backup compression will be key wins for manageability of the data warehouse.We
were able to conclude that the performance of the Fast Track configuration was better than current
production by many orders of magnitude.We were able to deliver all of the above with a small team of
six and complete the work of setting up the Fast Track config, translating the Oracle code, writing and
optimizing the code, running tests, and documenting results within a short span of time. The
performance was delivered by an older generation DL785 G5 Fast Track configuration. We believe we
have satisfied and even exceeded the criteria of the POC by demonstrating great performance, amazing
price/performance, and scalability.Given the opportunity to deliver the enterprise data warehouse, we
can deliver workload performance far surpassing your expectations with the latest G7 hardware. Fast
Track 3.0 specification with the G7 family of hardware takes advantage of the latest CPU technologies
such as additional cores, higher clock speeds and cache sizes, plus larger disk sizes (600 GB vs. 300 GB)
that provide more capacity with the same number of enclosures. This specification is expected to be out
soon.We believe we can deliver the best performance through our expertise in optimization and
migrating code from different database platforms.

Appendix B ï Fast Track Queries, Their Plans, and Tuning Suggestions

Q1 ɀ Coreplan ɀ QueryPlan ɀ Not Tuned

Execution Results
The execution time was 2 minutes.

Q1 ɀ Coreplan

Optimization - Data Fixes
Remove leading and trailing spaces ahead of time rather than as part of the query.

Query Plan

Execution Results

The execution time was 2 seconds.

Q2 ɀ FINS_CASHDEP - Query Plan ɀ Not Tuned

Execution Results

The execution time was 3 minutes and 2 seconds.

