

SQLCATõs Guide to:

High Availability and Disaster

Recovery

Microsoft SQLCAT Team

Summary : This ebook is a collection of some of the more popular technical content that

was available on the old SQLCAT.COM site. It covers SQL Server technology ranging from

SQL Server 2005 to SQL Server 2012. However, this is not all the content that was

available on SQLCAT.COM. To see additional content from that site you can follow the

SQLCAT blog which will point to additional content. For more comprehensive content

on SQL Server, see the MSDN library.

Category: Guide & Reference

Applies to : SQL Server High Availability and Disaster Recovery

Source: SQLCAT Blog

E-book publication date : September 2013

http://blogs.msdn.com/b/sqlcat/
http://msdn.microsoft.com/en-us/library/bb545450.aspx
http://blogs.msdn.com/b/sqlcat/

Copyright © 2013 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means

without the written permission of the publisher.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN -

US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events

depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,

logo, person, place, or event is intended or should be inferred.

This book expresses the authorõs views and opinions. The information contained in this book is provided without any

express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will

be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Contents
Section 1: SQL Server Failover Cluster .. 5

Impact of Adding a Node to a Windows Cluster on the Possible Owners property of existing SQL Server

Failover Cluster Instances ... 6

Six Failover Clustering Benefits Realized from Migrating to SQL Server 2008 12

Section 2: SQL Server Always On .. 15

DO NOT use Windows Failover Cluster Manager to perform Availability Group Failover 16

Comparing I/O characteristics in AlwaysOn Availability Groups and Database Mirroring 22

Section 3: SQL Server Mirroring .. 26

Mirroring a Large Number of Databases in a Single SQL Server Instance .. 27

Asynchronous Database Mirroring with Log Compression in SQL Server 2008 32

Section 1: SQL Server Failover Cluster

Impact of Adding a Node to a Windows Cluster on the

Possible Owners property of existing SQL Server Failover

Cluster Instances

It is common to have more than one SQL Server Failover Cluster Instance (FCI) within a

single Windows Server Failover Cluster (WSFC). It is also fairly common that not all

nodes in the WSFC are the possible owners of all the FCIs within that WSFC. One such

scenario is when you have a FCI + AG solution where multiple FCIs reside within a single

WSFC, and an availability group is created across the FCIs, as shown in the Figure 1

below:

(AlwaysOn Architecture Guide: Building a High Availability and Disaster Recovery

Solution by Using Failover Cluster Instances and Availability Groups),

Figure 1: An FCI+AG solution across two data centers (FCI being used for HA and AG being used for DR)

In this deployment,

¶ Possible owners of SMFCI601\SM_FCI_601 = {PE2970-01, PE2970-02}.

¶ Possible owners of SMFCI602\SM_FCI_602 = {R900-03, R900-04}.

High level steps to build such a solution are:

1. Step 1: Build the primary site failover cluster instance SMFCI601\SM_FCI_601 on nodes

PE2970-01 and PE2970-02.

2. Step 2: Add the DR site nodes R900-03 and R900-04, to the same Windows cluster, and

then create the secondary failover cluster instance SMFCI602\SM_FCI_602 on R900-03

and R900-04.

http://msdn.microsoft.com/en-us/library/jj215886
http://msdn.microsoft.com/en-us/library/jj215886
http://download.microsoft.com/download/D/2/0/D20E1C5F-72EA-4505-9F26-FEF9550EFD44/Building_a_HA_and_DR_Solution_using_AlwaysON_SQL_FCIs_and_AGs%20v1.docx)
http://sqlcat.com/cfs-file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-00-08-metablogapi/3681.image_5F00_6138E900.png

3. Step 3: Create the AG across the two instances SMFCI601\SM_FCI_601 and

SMFCI602\SM_FCI_602.

After building the primary site failover cluster instance (Step 1 above, shown in Figure 2

below), you will see the possible owners of the resources for the failover cluster instance

resource group SMFCI601\SM_FCI_601 as shown in the Figure 3.

Figure 2: Topology after Completing Step 1 (2 -node FCI created at the primary data center)

http://sqlcat.com/cfs-file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-00-08-metablogapi/2045.image_5F00_7C050F0C.png
http://sqlcat.com/cfs-file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-00-08-metablogapi/2465.image_5F00_14287968.png

Figure 3: Possible owners of the FCI network name resource after Completing Step 1 (2-node FCI created at the

primary data center)

This is correct, and as expected.

During Step 2, the two nodes from the DR site (R900-03 and R900-04) are first added to

the WSFC (Figure 4). Once these two nodes are added to the WSFC, you will see that the

newly added nodes have been unexpectedly added as possible owners (Figure 5) for all

the resources of the previously existing FCI (SMFCI601\SM_FCI_601).

Figure 4: Two nodes from the DR site added to the WSFC

http://sqlcat.com/cfs-file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-00-08-metablogapi/5224.image_5F00_1E0D6AD3.png

Figure 5: Possible owners list of the FCI ne twork name resource of the primary FCI, after adding two nodes

from the DR site to the WSFC

This is neither intended nor desired . R900-03 and R900-04 can never be the possible

owners of any resources of SMFCI601\SM_FCI_601. So, why does this happen? It is the

way SQL Server FCI setup works with Windows clustering. When a node is added to the

WSFC, the node is added as a possible owner for all existing FCIs. This works well in

some scenarios, but doesnõt work well in the scenario we are discussing in this article.

The possible owners list must be manually modified each time you add a node to the

WSFC. Figure 6 shows corrected possible owners list for one resource (the FCI network

name on the primary).

http://sqlcat.com/cfs-file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-00-08-metablogapi/6253.image_5F00_7D19F82B.png

Figure 6: Possible owners list of the FCI network name r esource of the primary FCI, after manually correcting

the list

Repeat this for all resources (other than disks, the disk resources donõt demonstrate this

behavior), such as:

¶ FCI network name

¶ FCI IP address

¶ SQL instance

¶ SQL Agent

¶ Any other resources part of the resource group must be checked for correct possible

owners.

And repeat this for each FCI in your topology. Note that the possible owners list for the

resources in each FCI will differ from other FCIs.

The possible owners list must be appropriately modified before proceeding to create

the availability group across the FCIs (Step 3 listed above), otherwise AG creation will

fail, because there will be overlap between the possible owners of the two instances

hosting the AG replicas.

http://sqlcat.com/cfs-file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-00-08-metablogapi/8244.image_5F00_5ECF4135.png

This should not be confused with the possible owners list for the availability group

resource. You should not alter the possible owners list for the availability group (DO

NOT use Windows Failover Cluster Manager to perform Availability Group Failover).

Six Failover Clustering Benefits Realized from Migrating to

SQL Server 2008

SQL Server 2008 failover clustering introduces several supportability, reliability, and availability improvements. The

following list details the more significant and immediate benefits of making the move to SQL Server 2008 Failover

Clustering.

1 - Reliable Setup

The installation process for SQL Server 2008 Failover Clusters has changed significantly. Essentially, you have two

options for installation, integrated install or advanced/enterprise install. Integrated install involves the installation of

a single-node SQL Server 2008 failover cluster instance. If you want the instance to be able to failover to other nodes,

you follow a separate òadd nodeó install for each node.

The advanced/enterprise install differs from the integrated install in that you prepare each node with SQL binaries and

services, and then select the active node that owns the SQL Server shared disk, and then bring the SQL Server

instance online in a separate step. The advanced/enterprise install is intended for third party enterprise deployment

solutions (yet to hit the market), or adding the ability to prepare each node prior to configuring the Windows Cluster.

You may decide to use the advance option if you prefer, but overall the integrated install option will provide less

steps and will allow you to make the SQL Server instance available sooner.

From a ònumber of stepsó perspective, the integrated install option requires less effort. For example, a two node

cluster integrated install would require one òInstalló step on the first node, and then an òAdd nodeó step on the

second node. An advanced/enterprise install would require a òprepareó operation on each node (two steps), followed

with a third step, òcompletingó the SQL Server instance and bringing it online.

At first blush, this seems like more work for the DBA, so where is the benefit to this new process? Unlike with SQL

Server 2005 failover clusters, SQL Server 2008 Failover Cluster installs do not involve remote-node operations. This

translates to more discrete install steps on your part, but helps reduce several installation and patching problems that

occur due to remote node permission issues, remote offline services, terminal services connections, and other

communication issues that can leave you with a partial or failed installation. By moving to a SQL Server 2008 Failover

Cluster, the reliability of your install will increase significantly by eliminating the several remote-node variables that

once hampered a solid install of a SQL Server failover cluster.

2 - Improved availability with rolling upgrades

Prior to SQL Server 2008, installing a service pack or cumulative update could require a several-minute outage for the

SQL Server instance. This is due to the fact that in order to update a SQL Server instance to the latest Service Pack or

Cumulative update, SQL Server services were stopped until the upgrade was completed. With SQL Server 2008

failover clustering, your outage period can be significantly reduced if you follow the proper òrolling updateó process.

Specifically, you can avoid prolonged outages of a SQL Server instance by applying Service Packs or Cumulative

Updates against the passive nodes of a failover cluster. After applying the patches to the passive nodes, you can then

failover the SQL Server instance to a newly upgraded node. Upon failover, the SQL Server instance is then upgraded.

You can then proceed with updating the formerly active (now passive) nodes.

In my own testing of a two -node cluster hosting a single SQL Server 2008 failover cluster instance, I started off my

patching process by installing a Cumulative Update on the passive node of the cluster. While this Cumulative Update

was installed, the SQL Server instance remained up. After applying the cumulative update, I failed over the instance of

SQL Server 2008 to the newly upgraded node, and then applied the cumulative update to the new passive node. The

total down time for the upgrade was 15 seconds, which was the amount of time it took to fail over the SQL Server

instance to the newly upgraded node.

3 - Availability with adding or removing nodes

As with SQL Server 2005, adding a new node for a SQL Server failover cluster instance or removing a node does not

require an outage of the SQL Server instance. Like all cluster setup actions, AddNode needs to be run on the node to

be added, as opposed to on the active node for 2005. This results in increased reliability since 2008 AddNode does

not rely on remote task scheduling and execution. The only user inputs to the 2008 AddNode are: instance selection,

service account passwords on the UI (service account names and passwords on the command line), Error and Usage

Reporting options. All feature selection is retrieved from the existing instance where the current node is being added.

Also, in my own testing when adding a new node to a SQL Server failover cluster, I received the following notification

during install:

 òThe current node TX147913-3 is at patch level [10.0.1600.22], which is lower than that of active node TX147913-2:

patch level [10.0.1763.0]. After completing setup, you must download and apply the latest SQL Server 2008 service

pack and/or patch and bring all nodes to the same version and patch level.ó

This helpful warning let me know that I needed to update the newly added SQL Server failover cluster to match the

existing and already-upgraded SQL Server failover cluster node. Patching the newly added passive node did not

require a restart of the SQL Server 2008 failover cluster.

4 - Service SIDs instead of Domain Groups on Windows Server 2008

A pain point for many DBAs was the introduced requirement in SQL Server 2005 Failover Clustering for using domain

groups for SQL Server services. These domain groups were used to manage the permissions of the SQL Server service

accounts; however they required that each domain group already contained the service accounts as members prior to

install. Changing the domain group for a clustered service, although possible, was not a trivial procedure (see KB

915846, òBest practices that you can use to set up domain groups and solutions to problems that may occur when

you set up a domain group when you install a SQL Server 2005 failover clusteró).

If you are creating a new SQL Server 2008 failover cluster on Windows Server 2008, you can now bypass the use of

domain groups by designating Service SIDs during the install. Service SID functionality was introduced in Windows

Vista and Windows Server 2008, and allows the provisioning of ACLs to server resources and permissions directly to a

Windows service. On the "Cluster Security Policy" dialog during install of a SQL Server failover cluster, you still have

the option to use domain groups, however selecting "Use service SIDS" is the recommended choice for SQL Server

2008 on Windows Server 2008 and allows you to bypass provisioning of domain groups and associated service

account membership additions prior to installation.

5 - Windows server 2008 Integration improvements

In addition to Service SIDs, running SQL Server 2008 on Windows Server 2008 provides other significant benefits. For

example, Windows Server 2008 clustering removes the requirement for having all hardware in a cluster solution be

listed in the Hardware Compatibility List (HCL). Finding and validating your exact cluster solution in the HCL was often

a difficult task. For Windows Server 2008, you no longer need to validate your exact solution in the HCL. Instead, your

Windows Server 2008 logo cluster solution must pass validation using the Windows Server 2008 Cluster Validation

Tool. Prior to configuration of your cluster, you can use this tool t o scan the server nodes and storage you plan on

using for your cluster solution. The tool checks for any issues that may impact support of a Failover Cluster. Any

blocking issues across the hardware, network components and configurations, storage resources, and Operating

System configurations will be identified in a final report and will allow you to address issues prior to deployment.

Windows Server 2008 Failover Clustering also added new quorum options, moving from a single-point -of-failure to a

consensus-based quorum model. Windows Server 2008 Failover Clustering also offers iSCSI disk support, up to 16-

node clusters, and ipv6 internet layer protocol support.

6 - ConfigurationFile.ini automatic generation

SQL Server 2008 Failover cluster allows for the use of a configuration file used in conjunction with a command line

setup. For example ð the following command line execution initiate s an integrated install of a single-node failover

cluster, referencing a configuration file with the required command line options:

 Setup.exe /q /ACTION=InstallFailoverCluster /Configurationfile="C:\ temp\ConfigurationFile.ini"

Whatõs more, performing a non-command line install of SQL Server 2008 automatically generates a

ConfigurationFile.ini which is saved to the following directory:

 <drive letter>: \Program Files\Microsoft SQL Server\100\Setup

Bootstrap\Log\<YYYYMMDD_HHMMSS\ConfigurationFile.ini.

Please note that as of this writing, ConfigurationFile.ini does not automatically include the

FAILOVERCLUSTERIPADDRESSES setup option ð however this is easy to add manually. For example:

 FAILOVERCLUSTERIPADDRESSES="IPv4;172.29.10.160;Cluster Network 1;255.255.248.0"

Using command-line setup in conjunction with a configuration file can help streamline your SQL Server 2008 failover

cluster installation process, particularly for large enterprise environments.

Section 2: SQL Server Always On

DO NOT use Windows Failover Cluster Manager to

perform Availability Group Failover

Author : Sanjay Mishra

Contributors : David P Smith (ServiceU)

Reviewers: Chuck Heinzelman, Mike Weiner, Prem Mehra, Kevin Cox, Jimmy May, Tim Wieman, Cephas Lin, Steve

Lindell, Goden Yao

Windows Server Failover Cluster (WSFC) is the foundation for SQL Server 2012 AlwaysOn Availability Group

functionality. The Availability Group (AG) is registered as a resource group within the Windows Server Failover Cluster.

Figure 1 shows an availability group in the Windows Failover Cluster Manager (FCM) interface.

Figure 1: Availability Group service in the Failover Cluster Manager interface

Even though Availability Group (AG) is a resource group within the Windows Server Failover Cluster, DO NOT use the

Failover Cluster Manager (FCM) to perform certain operations on the AG:

¶ DO NOT change the preferred owners and possible owners settings for the AG. When an AG is created, the

preferred owners and possible owners settings for the AG are established based on the primary and

secondary servers information provided to SQL Server. Whenever a failover happens, the preferred owners

and possible owners settings for the AG are reset based on the new primary. This is automatically done for

you by the AG, so do not try to manually configure these settings.

http://sqlcat.com/cfs-file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-00-22/0675.Fig1_5F00_Blog_5F00_FCM_5F00_AG.png

¶ DO NOT change the preferred owners and possible owners settings for the AG listener. Similar to the AG

discussion above the AG Listener settings are handled automatically.

¶ DO NOT move the AG between nodes using the Windows Failover Cluster Manager. The FCM doesnõt

provide or have any awareness as to the synchronization status of the secondary replicas. Therefore, if the

replica is not synchronized and the AG resource is failed over, the failover will then fail which can lead to

extended downtime. The recommended ways to perform AG failover include SQL Server Management Studio

and T-SQL statements.

¶ DO NOT add or remove resources in the AG resource group.

Note that the FCM does not prevent you from performing any of these operations. However, we recommend against

executing these actions through FCM, as doing so may result in unintended outcomes, including unexpected

downtime.

Database Mirroring Log Compression in SQL Server 2008 Improves

Throughput

Author: Sanjay Mishra

Reviewers: Peter Byrne, Don Vilen, Kaloian Manassiev, Burzin Patel, Eric Jacobsen

Overview

Database mirroring works by transferring and applying a stream of database log records from the principal database

to the mirror database. The log records are transferred over a network. For an application that generates lots of

transaction log (as measured by the perfmon counter Log Bytes Flushed / sec), the bandwidth of the network can be a

limiting factor. The efficiency of log transfer plays a significant role in achieving the best application throughput and

performance in a database mirroring environment.

SQL Server 2008 introduces a new feature called "Database Mirroring Log Compression". With SQL Server 2008, the

outgoing log stream from the principal to the mirror is compressed, thereby minimizing the network bandwidth used

by database mirroring. In a network constrained for bandwidth, compressing the log stream helps improve the

application performance and throughput.

In this study, we took a customer workload (an application at a stock exchange that captures stock quotes and

orders), with a high log generation rate (12 MB/sec) and ran performance tests with a pre-release build of SQL Server

2008. The results indicate a significant performance benefit of log compression, especially on lower bandwidth

networks.

What is Log Compression

Transferring transaction log records from the principal server to the mirror server over a network is central

to database mirroring implementation. The more transaction log an application generates, the more log records need

to be transferred from the princip al to the mirror. Higher log generation rate puts a higher demand on the network

bandwidth.

Synchronous database mirroring requires that the log records for each transaction be received and hardened by the

mirror database and a confirmation message sent to the principal, before the transaction is committed. Therefore, the

network plays a very important role in influencing the performance and throughput. As you can guess, the

throughput of an application can reduce under a lower bandwidth network. Refer to the white paper Database

Mirroring Best Practices and Performance Considerations for a discussion and performance results of applications

under database mirroring in networks with varying bandwidth with SQL Server 2005.

Compressing the log stream means that a significantly less amount of network packets are sent from the principal to

the mirror. Therefore more log records can be sent in a given time. This translates into improved throughput for the

application.

Test Workload and Test Environment

The workload used for the tests described in this paper consists of a 20 GB database, and 20 concurrent active user

connections.

The test hardware consisted of 2 Unisys x64 servers with 16 processors and 64 GB RAM each. The storage was EMC

Clariion SAN. The network between two servers 1 Gbps.

The SQL Server 2008 prerelease build 10.00.1049.00 was used.

Synchronous database mirroring was used for these tests.

Improved Throughput

With SQL Server 2008, the log stream is compressed by default. To measure the impact of log compression, we used

the trace flag 1462, which disables log compression. Disabling log compression is equivalent of SQL Server 2005

behavior.

Figure 1: With log compression, database mirroring throughput is improved

As shown in Figure 1, the log compression results in higher throughput compared to disabling log compression.

http://www.microsoft.com/technet/prodtechnol/sql/2005/technologies/dbm_best_pract.mspx
http://www.microsoft.com/technet/prodtechnol/sql/2005/technologies/dbm_best_pract.mspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/DatabaseMirroringLogCompressioninSQLServ_147AA/Sync_Fig1_2.jpg

Log Compression Helps Significantly on Lower Bandwidth Networks

The impact of log compression on throughput is much more pronounced on lower band width networks. We used a

network emulator software to simulate different network bandwidths between the principal and the mirror servers,

and measured the application throughput with and without log compression. Figure 2 indicates a very significant

improvement in throughput by having log compression.

Figure 2: The improvement is more pronounced on lower bandwidth networks

As can be observed in Figure 2 (the line chart), the percent of throughput improvement obtained by log compression

is usually higher for lower bandwidths. The throughput improvement experienced by an application is dependent

upon the data processed by the application.

Log Compression Ratio

Log compression ratio indicates the factor by which the log stream has been compressed. You can divide the perfmon

counter Log Bytes Sent/sec by the counter Log Compressed Bytes Sent/sec to get the compression ratio. Figure 3

illustrates the log compression ratio obtained in our test workload. The compression ratio depends upon the

application and t he data it processes. The compression ratio is not an externally configurable parameter; it is an

inherent property of the data.

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/DatabaseMirroringLogCompressioninSQLServ_147AA/image.png
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/DatabaseMirroringLogCompressioninSQLServ_147AA/image_1.png

Figure 3: Log compression ratio

Cost of Log Compression

The outstanding benefits of log compression come with some processing cost. The log records are compressed on

the principal before being sent to the mirror, where they are uncompressed before being applied to the mirror

database. The extra tasks of compressing and uncompressing the log adds some processing overhead on the

principal and mirror respectively, resulting in higher CPU usage. Figure 4 illustrates the CPU usage of the principal and

mirror servers at various network bandwidths, with and without log compression.

Figure 4: CPU Usage with log compression

As illustrated in Figure 4, the CPU usage on the principal and mirror servers goes up significantly with log

compression, sometimes by as much as twice the CPU usage without log compression. One reason for increased CPU

usage is the processing overhead introduced by compressing and uncompressing the log records. The other reason is

that the servers are now processing a much larger number of transactions.

It is important to note the tradeoff between the increased CPU usage and the improved throughput of the

application. If your application generates a significant amount of transaction log, you may notice reduced throughput

and reduced CPU usage when you configure synchronous database mirroring in SQL Server 2005 (Refer to the white

paper Database Mirroring Best Practices and Performance Considerations for some data points). The log compression

feature introduced in SQL Server 2008 will get you back some of that throughput, and some of that CPU load.

Summary

SQL Server 2008 introduces a new feature that compresses the log stream sent from the principal to the mirror in a

database mirroring configuration. Compressing the log stream results in improved application throughput, at the cost

of increased CPU load. The improvement in application throughput as well the increase in CPU load are both

dependent upon the workload. Some workloads may find that the throughput is constrained by CPU capacity. It is

http://www.microsoft.com/technet/prodtechnol/sql/2005/technologies/dbm_best_pract.mspx
http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/DatabaseMirroringLogCompressioninSQLServ_147AA/image_2.png

recommended that you test with appropriate workload to estimat e the expected improvement in application

throughput and increase in CPU load in your environment.

Comparing I/O characteristics in AlwaysOn Availability

Groups and Database Mirroring

Microsoft SQL Server 2012 introduces AlwaysOn Availability Groups, which is a high

availability and disaster recovery solution. The basic concept of AlwaysOn Availability

Groups is similar to Database Mirroring, which was introduced in SQL Server 2005 SP1.

AlwaysOn Availability Groups offers improvements over Database Mirroring; for

example, with AlwaysOn Availability Groups, you can have multiple databases in one

availability group, and you can have up to four secondary replicas for every primary

replica. For more information about AlwaysOn Availability Groups, see Overview of

AlwaysOn Availability Groups (http://technet.microsoft.com/en -

us/library/ff877884(v=SQL.110).aspx).

AlwaysOn Availability Groups not only extends the functionality of Database Mirroring, it

also provides performance enhancements. This paper provides some technical details on

two of these enhancements:

¶ The I/O efficiency of flushing data pages on the secondary replica

¶ Throughput improvements by opt imized I/O for transaction log file using log

pool

The paper also discusses the results of tests that we performed to demonstrate these

features and their effect on performance.

I/O Efficiency of Flushing Pages on the Secondary

One significant change in SQL Server 2012 is the improved I/O efficiency on the

secondary replica (also known as the mirror database in Database Mirroring). Database

Mirroring does a continual flush of the dirty pages, because to go from a ôrestoringõ

state to an ôonlineõ state (that is, from the mirror database to the principal database), all

pages are required to be on disk. To shorten recovery time at failover, Database

Mirroring writes dirty data pages to disk continuously. Because databases in AlwaysOn

Availability Groups are online in both primary and secondary replicas (regardless of

whether they are readable or not) , the flush is not required on a role change. Therefore

AlwaysOn Availability Groups does not need to force page flushes except at checkpoints

or buffer pool memory pressure. This change significantly reduces I/O for the secondary

replica, when there are multiple updates on same page.

To compare AlwaysOn Availability Groups and Database Mirroring, I used one OLTP-

type database and the same workload for AlwaysOn Availability Groups and Database

http://technet.microsoft.com/en-us/library/ff877884(v=SQL.110).aspx
http://technet.microsoft.com/en-us/library/ff877884(v=SQL.110).aspx

Mirroring. Each database had 12 data files (6 files on each file group) and one

transaction log file. The total size was approximately 80 GB allocated and 35 GB used at

the initial state. Both AlwaysOn Availability Groups and Database Mirroring were

configured as synchronous replicas or mirrors. The workloads were mixed, with INSERTs,

UPDATEs and READs. The concurrent connected user count was 1,000 users. On each

node, data files were placed on drive H:(direct attached SSD drive), and transaction log

files were on drive E:(SAN storage).

Figure 1: The Data Disk Write Byte /sec counter

In Figure 1, the red line shows the Disk Write Bytes/sec counter values on the secondary

node data disk. It shows that there were approximately 500 MB per second of write I/O

every minute for AlwaysOn Availability Groups; this write I/O occurred at the checkpoint.

There were continuously 200 MB per second of write I/O for Database Mirroring. Note:

The blue dotted line tracks the Disk Write Bytes/sec counter on the primary replica (in

AlwaysOn Availability Groups) or principal database (in Database Mirroring), showing

the checkpoint activity, which is a very similar pattern in both technologies. Average

Disk Write Bytes/sec is around 63 MB per second for AlwaysOn Availability Groups and

205 MB per second for Database Mirroring during workload. These test results show

that AlwaysOn Availability Groups reduces write I/O on the mirror significantly,

compared to Database Mirroring.

Throughput improvements by optimized I/O for transaction log file using the log pool

SQL Server 2012 Availability Groups introduces another improvement, the dynamic

cache capability of the log pool. This capability increases throughput capacity on the

AlwaysOn Availability Groups databases. The log pool is a new common cache

mechanism for log records consumers. When a transaction is run on the primary replica,

http://sqlcat.com/cfs-file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-00-08/1362.AGDBMIO_5F00_Figure11.png

the transaction log records are written to the log cache, and at the same time they are

sent to the log pool to be passed along to the secondary replica. Figure 2 shows an

example of this with a single secondary replica, although the logic is the same for

multiple secondary replicas. If an unsent log is not in cache, AlwaysOn Availability

Groups or Database Mirroring log capture threads have to read the log from the file.

The log pool serves as a dynamic cache that can grow until unsent log entries fit into the

cache, if there is no memory pressure. Then AlwaysOn Availability Groups adds less I/O

to the log file for read than Database Mirroring does.

Figure 2: Data movement architecture of AlwaysOn Availability Groups

In Figure 3, the red line shows Batch Requests/sec, the blue line shows Log write waits,

and the green line shows Disk Read Bytes/sec for the transaction log. These results are

all taken from the primary replica or the principal database.

http://sqlcat.com/cfs-file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-00-08/1732.AGDBMIO_5F00_Figure2.png

Figure 3: Batch Requests/sec

For AlwaysOn Availability Groups, the average value for Batch Requests/sec is about

5000, and for Database Mirroring, the average is 4000. This improvement in throughput

is caused by a difference in the Log writes waits counter and heavier read I/O (as

measured by the Disk Read Byes/sec counter) on the transaction log file for Database

Mirroring. This enhancement comes from the log pool with a dynamically sized log

cache. Database Mirroring, on the other hand, uses a fixed-size log cache. These log

pool changes enable AlwaysOn Availability Groups to handle spikes in log volume much

better, which results in an increase in capacity over Database Mirroring.

http://sqlcat.com/cfs-file.ashx/__key/communityserver-blogs-components-weblogfiles/00-00-00-00-08/4722.AGDBMIO_5F00_Figure31.png

Section 3: SQL Server Mirroring

Mirroring a Large Number of Databases in a Single SQL

Server Instance

Overview

A frequently asked question regarding database mirroring is: How many databases can be mirrored in a single

instance of Microsoft® SQL Server®? This question is often raised by customers who are consolidating many

databases into fewer instances and the high availability or disaster recovery service-level agreement (SLA) requires

deployment of database mirroring.

Sometimes the question is raised when readers misconstrue the restriction documented in the SQL Server Books

Online stating that òOn a 32-bit system, database mirroring can support a maximum of about 10 databases per server

instance because of the numbers of worker threads that are consumed by each database mirroring session.ó

It is important to mention two significant points:

¶ The restriction of 10 databases doesnõt apply to 64-bit systems. In SQL Server Books Online, there are no

such documented restrictions on the number of databases in a 64-bit system.

¶ Various customers have successfully deployed database mirroring with more than 10 databases in a 64-bit

environment.

This article explains the number of worker threads required for database mirroring for each database and illustrates

the observed performance of an application with many databases. System administrators and database administrators

may find this information useful as they examine, test, and deploy systems in the production environment.

Threads Used by Database Mirroring in SQL Server 2008

The number of threads used on a server for database mirroring depends upon:

¶ The role of the server ð principal or mirror

¶ The number of databases mirrored in an instance

¶ The number of logical processors on the mirror server

The following table summarizes the number of database mirroring threads used.

Role of server Thread function Number of threads for the specific function

Principal Database mirroring communications 1 per instance

 Event processing 1 per mirrored database

 Log send 1 per mirrored database

Mirror Database mirroring communications 1 per instance

http://technet.microsoft.com/en-us/library/ms366349.aspx
http://technet.microsoft.com/en-us/library/ms366349.aspx

 Event processing 1 per mirrored database

 Log hardening 1 per mirrored database

 Redo manager 1 per mirrored database

 Redo threads FLOOR ((number of logical processors +3) / 4)

In summary, the number of database mirroring threads:

¶ On a principal is equal to (2 * number of mirrored databases) + 1.

¶ On a mirror equals ((3 + FLOOR ((number of logical processors +3) / 4)) * number of mirrored databases) +

1.

For example: If your principal and mirror servers have 8 logical processors each, and you are mirroring 20 databases,

the total number of database mirroring threads used on the principal will be 41, and the total number of database

mirroring threads used on the mirror will be 101.

To view the threads used for database mirroring, query the DMV sys.dm_exec_requests.

SELECT SESSION_ID, STATUS, COMMAND, WAIT_TYPE

FROM SYS.DM_EXEC_REQUESTS WHERE COMMAND = 'DB MIRROR'

Here is sample output from this query on the mirror server with 8 logical processors, and with one mirrored database.

SESSION_ID STATUS COMMAND WAIT_TYPE

15 background DB MIRROR DBMIRROR_EVENTS_QUEUE Database mirroring communications

16 background DB MIRROR DBMIRROR_EVENTS_QUEUE Event processing

16 background DB MIRROR DBMIRROR_DBM_MUTEX Redo manager

16 background DB MIRROR DBMIRROR_DBM_MUTEX Redo thread

16 background DB MIRROR DBMIRROR_DBM_MUTEX Redo thread

17 background DB MIRROR DBMIRROR_SEND Log hardening

Test Results

To illustrate database mirroring in a consolidated environment, we ran tests with a workload that continuously

inserted data into a number of databases. The databases were deployed with synchronous mirroring between two

identical servers (for more information, see òTest Hardware and Softwareó in the Appendix). The application opened

20 connections to each database, and each connection continuously inserted 6,000 rows (one by one) into the

database. The insertion rate of the workload scales linearly as we added more databases.

The focus of our tests was to demonstrate the ability to mirror multiple databases in a consolidated database

environment. As an aside, we also observed linear scalability of the workload throughput. For more information about

database mirroring performance topics, see Database Mirroring Best Practices and Performance Considerations.

http://technet.microsoft.com/en-us/library/ms178531.aspx
http://technet.microsoft.com/en-us/library/ms178531.aspx
http://technet.microsoft.com/library/Cc917681

We measured the thread counts, percent of CPU used, and application throughput as we increased the number of

mirrored databases. For estimating CPU usage and throughput in your environment, we recommend that you test

with your workload.

Number of

databases

mirrored

Transaction

throughput (batch

requests/sec)

%CPU

(principal)

%CPU

(mirror)

Number of all

threads

(pr incipal)

Number of

DBM threads

(principal)

Number of

all threads

(mirror)

Number of

DBM

threads

(mirror)

20 2,680 15 13.9 212 41 187 101

40 5,244 27.3 24.4 342 81 296 201

60 7,814 42.1 32.5 603 121 391 301

80 10,251 55.1 38.6 612 161 492 401

100 12,102 63.5 42.9 612 201 592 501

The line òNumber of Threads (Mirror)ó shows the total number of threads used on the mirror server. This includes the

number of threads used by database mirroring represented by the line òNumber of DBM Threads (Mirror).ó

Additional Considerations

There are two additional considerations ð one on application throughput, and another on ping traffic.

Impact of Threads on Throughput

As an aside, note that the overall system performance may be impacted by the number of threads available for

processing the workload:

¶ The database mirroring sessions will consume some number of threads, as discussed above.

¶ The remaining threads are available to service user requests.

http://sqlcat.com/blogs/technicalnotes/image_507195AE.png

¶ If max_worker_threads is not set high enough, user requests might wait on worker threads even though

there are adequate CPU and other resources to service those requests.

¶ Monitor the wait statistics wait for the worker counter to find out whether you are running low on worker

threads, and set max_worker_threads appropriately.

Ping Traffic

For the database mirroring session for each database, the servers send and receive a ping from each other. When

several databases are mirrored, the servers will send each other many ping messages within a short interval. To keep

the database mirroring connection open, a server must receive and send a ping on that connection within the timeout

period.

If the database mirroring partner timeout interval has been set too low, false failove rs may occur (if a witness is

enabled), or the database mirroring session may switch between disconnected and synchronizing states (if there is no

witness).

We recommend that you set the timeout interval to a value of 10 seconds (default) or higher, and i f you see

unexpected timeouts, increase it to a higher value.

Recommendations

¶ When you set max worker threads (sp_configure option), make sure to accommodate threads needed by

database mirroring in addition to the threads needed by your workload.

¶ When you set max server memory, make sure to account for the memory consumed by the threads, which is

allocated from outside of the buffer pool memory. For more information, see 64-bit Solutions for SQL

Server.

¶ Set these options to the same value on both partners (principal as well as mirror), so that the experience is

consistent after a role change.

¶ Ensure that application performance is acceptable with an increased number of databases and the

associated workload on the consolidated server.

Conclusion

With proper planning, it is possible to mirror hundreds of databases in an instance. Use the information provided in

this article for planning, and perform thorough testing with your workload to ensure successful deployment.

Appendix A: Test Hardware and Software

http://msdn.microsoft.com/en-us/library/ms190732.aspx
http://technet.microsoft.com/en-us/library/ms190913.aspx
http://technet.microsoft.com/en-us/library/ms187024.aspx
http://technet.microsoft.com/en-us/library/ms178067.aspx
http://download.microsoft.com/download/b/8/f/b8f13247-b992-4f0e-846e-8f89fcaac0bd/64_bit_stuarto.ppt
http://download.microsoft.com/download/b/8/f/b8f13247-b992-4f0e-846e-8f89fcaac0bd/64_bit_stuarto.ppt

All the tests were performed in the following hardware and software environment.

Server

Two Dell PE6950 servers (used as principal and mirror), each with:

¶ 4-socket, dual-core AMD OpteronË processor 8220 @2.80 GHz

¶ 32 GB RAM

One Dell R805 server (used as client), with:

¶ 2-socket, quad-core AMD OpteronË processor 2354 @2.20 GHz

¶ 32 GB RAM

Storage

One 3PAR SAN, with:

¶ 240 disks, each 147 GB, 10K RPM

¶ 12 ports, 2 directly attached per server

¶ All LUNs are striped across all disks

¶ 16 GB data cache, 4 GB control cache; data cache is dynamically allocated based on I/O patterns

Purpose Drive RAID # LUNs Total GB

Data M: 1+0 1 2,000

Log N: 1+0 1 500

Software

¶ The 64-bit edition of Windows Server® 2008 Enterprise with Service Pack 1

¶ The 64-bit edition of SQL Server 2008 Enterprise with Service Pack 1

Asynchronous Database Mirroring with Log Compression in

SQL Server 2008

Author: Sanjay Mishra

Reviewers: Prem Mehra, Mike Ruthruff, Michael Thomassy, Peter Byrne, Kaloian Manassiev,

Burzin Patel, Juergen Thomas, Tom Davidson

Overview

With asynchronous database mirroring, committing a transaction doesnõt wait for the log records to be sent to the

mirror. Transactions are committed once the log records are written to the log disk on the principal. Therefore, with

asynchronous database mirroring, you will not observe significant impact on throughput resulting from the log

compression feature.

With asynchronous database mirroring, log compression helps reduce the send queue. In this study, we took a

customer workload (an application at a stock exchange that captures stock quotes and orders), with a high log

generation rate (12 MB/sec) and ran performance tests with a pre-release build of SQL Server 2008. The results

indicate reduced send queue with log compression.

Test Workload and Test Environment

The workload used for the tests described in this paper consists of a 20 GB database, and 20 concurrent, active user

connections.

The test hardware consisted of 2 Unisys x64 servers with 16 processors and 64 GB RAM each. The storage was EMC

Clariion SAN. The network between two servers is 1 Gbps, and we used network emulation software to simulate varied

network bandwidth between the two server s.

The SQL Server 2008 prerelease build 10.0.1068.0 was used.

Asynchronous database mirroring was used for these tests.

Reduced Send Queue with Log Compression

With asynchronous database mirroring, transactions are committed once the log records are written to the log disk

on the principal. The log records are then asynchronously sent to the mirror. Therefore, there could be some log

records at the principal that have not yet been sent to the mirror. Unsent log that has accumulated on the principal is

known as the send queue. This is reflected in the perfmon counter òSend Queue KBó of the òDatabase Mirroringó

object.

The principal could be generating transaction log records at a rate faster than it can send these log records to the

mirror over the network. Under lower bandwidth networks, the send queue can be more pronounced. With

asynchronous database mirroring, the send queue represents the data that can be lost if the principal goes down.

Therefore, reducing the send queue means reducing the potential data loss.

Compressing the log stream in SQL Server 2008 allows more transaction log records being packed in each packet

send to the mirror, and thereby reduces the send queue.

With SQL Server 2008, the log stream is compressed by default. To measure the impact of log compression, we used

the trace flag 1462, which disables log compression. Disabling log compression is equivalent of SQL Server 2005

behavior. Figure 1 illustrates the average send queue with and without log compression at various values of network

bandwidth.

Figure 1: Reduced send queue with log compression

As shown in Figure 1, the log compression results in lesser send queue compared to disabling log compression.

Log Compression Ratio

Log compression ratio indicates the factor by which the log stream has been compressed. One way to express the log

compression ratio is to divide the perfmon counter L og Bytes Sent/sec by the counter Log Compressed Bytes

Sent/sec. Another way to express the log compression ratio is to compute it as a percent using the following formula:

(Log Bytes Sent/sec- Log Compressed Bytes Sent/sec)*100 / (Log Bytes Sent/sec)

Figure 2 illustrates the percent log compression ratio obtained in our test workload.

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/AsynchronousDatabaseMirroringwithLogComp_B15E/image_2.png

Figure 2: Log compression ratio

The compression ratio depends upon the application and the data it processes. The compression ratio is not an

externally configurable parameter; it is an inherent property of the data. As you can observe in Figure 2, the

percentage compression achieved in our test workload is around 73% -- the network bandwidth has no impact on the

compression ratio.

The transaction log records generated by our test workload provide a very high percent compression ratio ð 73%. Not

all applications will exhibit as much compression. If the amount of compression achieved is less than 12.5%, then the

compressed log stream will not be sent to the mirror; instead the uncompressed log stream will be sent. Sending the

uncompressed log stream means that the mirror doesnõt need to uncompress the log stream it received, thereby

saving some CPU resources (CPU cost of log stream compression is discussed in the next section) on the mirror.

Please note that while deciding whether to send the compressed log stream or the uncompressed log stream, SQL

Server computes the percentage compression on a per packet basis ð it doesnõt use the perfmon counters shown in

Figure 2. The perfmon counters reflect the aggregated average of log bytes sent over time.

Cost of Log Compression

The benefits of log compression come with some processing cost. The log records are compressed on the principal

before being sent to the mirror, where the y are uncompressed before being applied to the mirror database. The extra

tasks of compressing and uncompressing the log adds some processing overhead on the principal and mirror

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/AsynchronousDatabaseMirroringwithLogComp_B15E/image_4.png

respectively, resulting in higher CPU usage. Figure 3 illustrates the CPU usage of the principal and mirror servers at

various network bandwidths, with and without log compression.

Figure 3: CPU Usage with log compression

As illustrated in Figure 3, the CPU utilization with log compression is slightly more than that without log compression.

As discussed in the earlier section òLog Compression Ratioó, if the compression ratio achieved is less than 12.5%, then

the uncompressed log stream will be sent to the mirror. In that case, the principal will incur the CPU overhead, but the

mirror will not.

Time to Flush the Send Queue

With asynchronous database mirroring over a low bandwidth network, when you execute a log intensive task (a task

that generates huge amount of transaction log), it may take a while for the send queue to die do wn after the task has

finished. You could see the send queue rise during the log intensive task, and then coming down after the task is

finished. If the send queue is monotonically increasing during the normal operations, then you may be having severe

network capacity (network latency and/or network bandwidth) limitations for the given workload.

Log compression helps not only in reducing the send queue at any given time, it also helps reducing the time it takes

for the send queue to die down after a log in tensive task. Figure 4 illustrates the time it took to flush the send queue

after a log intensive task over a 10Mbps network, with and without log compression. As it is obvious from Figure 4,

the log compression feature in SQL Server 2008 drastically reduces this time.

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/AsynchronousDatabaseMirroringwithLogComp_B15E/image16.png

Figure 4: Time to flush the send queue with 10 Mbps network bandwidth

Summary

SQL Server 2008 introduces a new feature that compresses the log stream sent from the principal to the mirror in a

database mirroring configuration. Compressing the log stream with asynchronous database mirroring results in

reduced send queue. Log compression causes the CPU utilization to increase on the principal as well as the mirror.

The reduction in send queue as well as the increase in CPU load are both dependent upon the workload and the

network capacity. It is recommended that you test with appropriate workload to estimate the expected impact of log

compression in your environment.

http://sqlcat.com/blogs/technicalnotes/WindowsLiveWriter/AsynchronousDatabaseMirroringwithLogComp_B15E/image22.png

