

SQL Server 2012 Tutorials:
Writing Transact-SQL Statements
SQL Server 2012 Books Online

Summary: This tutorial is intended for users who are new to writing SQL statements. It
will help new users get started by reviewing some basic statements for creating tables
and inserting data. This tutorial uses Transact-SQL, the Microsoft implementation of the
SQL standard. This tutorial is intended as a brief introduction to the Transact-SQL
language and not as a replacement for a Transact-SQL class. The statements in this
tutorial are intentionally simple, and are not meant to represent the complexity found in
a typical production database.

Category: Quick Step-by-Step
Applies to: SQL Server 2012
Source: SQL Server Books Online (link to source content)
E-book publication date: June 2012

http://msdn.microsoft.com/en-us/library/ms365303.aspx�

Copyright © 2012 by Microsoft Corporation
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents
Tutorial: Writing Transact-SQL Statements ... 4

Lesson 1: Creating Database Objects .. 5
Creating a Database (Tutorial).. 6
Creating a Table (Tutorial) ... 7
Inserting and Updating Data in a Table (Tutorial) .. 8
Reading the Data in a Table (Tutorial) ... 10
Summary: Creating Database Objects .. 12

Lesson 2: Configuring Permissions on Database Objects ... 12
Creating a Login ... 13
Granting Access to a Database ... 14
Creating Views and Stored Procedures ... 15
Granting Access to a Database Object... 16
Summary: Configuring Permissions on Database Objects ... 17

Lesson 3: Deleting Database Objects ... 18
Deleting Database Objects ... 18

 4

Tutorial: Writing Transact-SQL Statements
Welcome to the Writing Transact-SQL Statements tutorial. This tutorial is intended for users who
are new to writing SQL statements. It will help new users get started by reviewing some basic
statements for creating tables and inserting data. This tutorial uses Transact-SQL, the Microsoft
implementation of the SQL standard. This tutorial is intended as a brief introduction to the
Transact-SQL language and not as a replacement for a Transact-SQL class. The statements in
this tutorial are intentionally simple, and are not meant to represent the complexity found in a
typical production database.

Novice users of databases will usually find it easier to work with SQL Server by using SQL
Server Management Studio, instead of writing Transact-SQL statements.

Finding More Information
To find more information about any specific statement, either search for the statement by name
in SQL Server Books Online, or use the Contents to browse the 1,800 language elements listed
alphabetically under Transact-SQL Reference (Database Engine). Another good strategy for
finding information is to search for key words that are related to the subject matter you are
interested in. For example, if you want to know how to return a part of a date (such as the
month), search the index for dates [SQL Server], and then select dateparts. This takes you to
the topic DATEPART (Transact-SQL). As another example, to find out how to work with strings,
search for string functions. This takes you to the topic String Functions (Transact-SQL).

What You Will Learn
This tutorial shows you how to create a database, create a table in the database, insert data into
the table, update the data, read the data, delete the data, and then delete the table. You will
create views and stored procedures and configure a user to the database and the data.
This tutorial is divided into three lessons:
Lesson 1: Creating Database Objects

In this lesson, you create a database, create a table in the database, insert data into the table,
update the data, and read the data.

Lesson 2: Configuring Permissions on Database Objects
In this lesson, you create a login and user. You will also create a view and a stored procedure,
and then grant the user permission to the stored procedure.

Lesson 3: Deleting Database Objects
In this lesson, you remove access to data, delete data from a table, delete the table, and then
delete the database.

Note

http://msdn.microsoft.com/en-us/library/dbba47d7-e08e-4435-b876-35dced1f325d(SQL.110)�
http://msdn.microsoft.com/en-us/library/15f1a5bc-4c0c-4c48-848d-8ec03473e6c1(SQL.110)�
http://msdn.microsoft.com/en-us/library/6940a83d-5374-4af3-bb27-5d89c8af83ac(SQL.110)�

 5

Requirements
To complete this tutorial, you do not have to know the SQL language, but you should
understand basic database concepts such as tables. During this tutorial, you will create a
database and create a Windows user. These tasks require a high level of permissions; therefore,
you should log in to the computer as an administrator.
Your system must have the following installed:
• Any edition of SQL Server.
• Either SQL Server Management Studio or Management Studio Express.
• Internet Explorer 6 or later.

When you review the tutorials, we recommend that you add the Next and Previous
buttons to the document viewer toolbar.

Lesson 1: Creating Database Objects
This lesson shows you how to create a database, create a table in the database, and then access
and change the data in the table. Because this lesson is an introduction to using Transact-SQL, it
does not use or describe the many options that are available for these statements.
Transact-SQL statements can be written and submitted to the Database Engine in the following
ways:
• By using SQL Server Management Studio. This tutorial assumes that you are using

Management Studio, but you can also use Management Studio Express, which is available as
a free download from the Microsoft Download Center.

• By using the sqlcmd utility.
• By connecting from an application that you create.
The code executes on the Database Engine in the same way and with the same permissions,
regardless of how you submit the code statements.
To run Transact-SQL statements in Management Studio, open Management Studio and connect
to an instance of the SQL Server Database Engine.
This lesson contains the following topics:
• Creating a Database (Tutorial)
• Creating a Table (Tutorial)
• Inserting and Updating Data In a Table (Tutorial)
• Reading the Data in a Table (Tutorial)
• Summary: Creating Database Objects

Note

http://go.microsoft.com/fwlink/?linkid=67359�
http://msdn.microsoft.com/en-us/library/e1728707-5215-4c04-8320-e36f161b834a(SQL.110)�

 6

Next Task in Lesson
Creating a Database (Tutorial)

Creating a Database (Tutorial)
Like many Transact-SQL statements, the CREATE DATABASE statement has a required
parameter: the name of the database. CREATE DATABASE also has many optional parameters,
such as the disk location where you want to put the database files. When you execute CREATE
DATABASE without the optional parameters, SQL Server uses default values for many of these
parameters. This tutorial uses very few of the optional syntax parameters.

Procedures

1. In a Query Editor window, type but do not execute the following code:

CREATE DATABASE TestData

GO

2. Use the pointer to select the words CREATE DATABASE, and then press F1. The CREATE
DATABASE topic in SQL Server Books Online should open. You can use this technique
to find the complete syntax for CREATE DATABASE and for the other statements that
are used in this tutorial.

3. In Query Editor, press F5 to execute the statement and create a database named
TestData.

When you create a database, SQL Server makes a copy of the model database, and renames the
copy to the database name. This operation should only take several seconds, unless you specify
a large initial size of the database as an optional parameter.

The keyword GO separates statements when more than one statement is submitted in a
single batch. GO is optional when the batch contains only one statement.

Next Task in Lesson
Creating a Table (Tutorial)

See Also
CREATE DATABASE (Transact-SQL)

To create a database

Note

http://msdn.microsoft.com/en-us/library/29ddac46-7a0f-4151-bd94-75c1908c89f8(SQL.110)�

 7

Creating a Table (Tutorial)
To create a table, you must provide a name for the table, and the names and data types of each
column in the table. It is also a good practice to indicate whether null values are allowed in each
column.
Most tables have a primary key, made up of one or more columns of the table. A primary key is
always unique. The Database Engine will enforce the restriction that any primary key value
cannot be repeated in the table.
For a list of data types and links for a description of each, see Data Types (Transact-SQL).

The Database Engine can be installed as case sensitive or non-case sensitive. If the
Database Engine is installed as case sensitive, object names must always have the same
case. For example, a table named OrderData is a different table from a table named
ORDERDATA. If the Database Engine is installed as non-case sensitive, those two table
names are considered to be the same table, and that name can only be used one time.

Procedures

• Enter the following code into a Query Editor window.
USE master;

GO

--Delete the TestData database if it exists.

IF EXISTS(SELECT * from sys.databases WHERE name='TestData')

BEGIN

 DROP DATABASE TestData;

END

--Create a new database called TestData.

CREATE DATABASE TestData;

Press the F5 key to execute the code and create the database.

• In a Query Editor window, type and execute the following code to change your
connection to the TestData database.

USE TestData

Note

To create a database to contain the new table

Switch the Query Editor connection to the TestData database

http://msdn.microsoft.com/en-us/library/a54f7373-b247-4d61-8fb8-7f2ec7a8d0a4(SQL.110)�

 8

GO

• In a Query Editor window, type and execute the following code to create a simple table
named Products. The columns in the table are named ProductID, ProductName,
Price, and ProductDescription. The ProductID column is the primary key of the
table. int, varchar(25), money, and text are all data types. Only the Price and
ProductionDescription columns can have no data when a row is inserted or
changed. This statement contains an optional element (dbo.) called a schema. The
schema is the database object that owns the table. If you are an administrator, dbo is
the default schema. dbo stands for database owner.

CREATE TABLE dbo.Products

 (ProductID int PRIMARY KEY NOT NULL,

 ProductName varchar(25) NOT NULL,

 Price money NULL,

 ProductDescription text NULL)

GO

Next Task in Lesson
Inserting and Updating Data In a Table (Tutorial)

See Also
CREATE TABLE (Transact-SQL)

Inserting and Updating Data in a Table (Tutorial)
Now that you have created the Products table, you are ready to insert data into the table by
using the INSERT statement. After the data is inserted, you will change the content of a row by
using an UPDATE statement. You will use the WHERE clause of the UPDATE statement to restrict
the update to a single row. The four statements will enter the following data.

ProductID ProductName Price ProductDescription

1 Clamp 12.48 Workbench clamp

50 Screwdriver 3.17 Flat head

75 Tire Bar Tool for changing tires.

3000 3mm Bracket .52

To create a table

http://msdn.microsoft.com/en-us/library/1e068443-b9ea-486a-804f-ce7b6e048e8b(SQL.110)�

 9

The basic syntax is: INSERT, table name, column list, VALUES, and then a list of the values to be
inserted. The two hyphens in front of a line indicate that the line is a comment and the text will
be ignored by the compiler. In this case, the comment describes a permissible variation of the
syntax.

Procedures

1. Execute the following statement to insert a row into the Products table that was
created in the previous task. This is the basic syntax.

-- Standard syntax

INSERT dbo.Products (ProductID, ProductName, Price,

ProductDescription)

 VALUES (1, 'Clamp', 12.48, 'Workbench clamp')

GO

2. The following statement shows how you can change the order in which the parameters
are provided by switching the placement of the ProductID and ProductName in both
the field list (in parentheses) and in the values list.

-- Changing the order of the columns

INSERT dbo.Products (ProductName, ProductID, Price,

ProductDescription)

 VALUES ('Screwdriver', 50, 3.17, 'Flat head')

GO

3. The following statement demonstrates that the names of the columns are optional, as
long as the values are listed in the correct order. This syntax is common but is not
recommended because it might be harder for others to understand your code. NULL is
specified for the Price column because the price for this product is not yet known.

-- Skipping the column list, but keeping the values in order

INSERT dbo.Products

 VALUES (75, 'Tire Bar', NULL, 'Tool for changing tires.')

GO

4. The schema name is optional as long as you are accessing and changing a table in your
default schema. Because the ProductDescription column allows null values and no
value is being provided, the ProductDescription column name and value can be

To insert data into a table

 10

dropped from the statement completely.

-- Dropping the optional dbo and dropping the ProductDescription

column

INSERT Products (ProductID, ProductName, Price)

 VALUES (3000, '3mm Bracket', .52)

GO

1. Type and execute the following UPDATE statement to change the ProductName of the
second product from Screwdriver, to Flat Head Screwdriver.

UPDATE dbo.Products

 SET ProductName = 'Flat Head Screwdriver'

 WHERE ProductID = 50

GO

Next Task in Lesson
Reading the Data in a Table (Tutorial)

See Also
INSERT (Transact-SQL)
UPDATE (Transact-SQL)

Reading the Data in a Table (Tutorial)
Use the SELECT statement to read the data in a table. The SELECT statement is one of the most
important Transact-SQL statements, and there are many variations in the syntax. For this tutorial,
you will work with five simple versions.

Procedures

1. Type and execute the following statements to read the data in the Products table.
-- The basic syntax for reading data from a single table

SELECT ProductID, ProductName, Price, ProductDescription

 FROM dbo.Products

GO

2. You can use an asterisk to select all the columns in the table. This is often used in ad

To update the products table

To read the data in a table

http://msdn.microsoft.com/en-us/library/1054c76e-0fd5-4131-8c07-a6c5d024af50(SQL.110)�
http://msdn.microsoft.com/en-us/library/40e63302-0c68-4593-af3e-6d190181fee7(SQL.110)�

 11

hoc queries. You should provide the column list in you permanent code so that the
statement will return the predicted columns, even if a new column is added to the table
later.
-- Returns all columns in the table

-- Does not use the optional schema, dbo

SELECT * FROM Products

GO

3. You can omit columns that you do not want to return. The columns will be returned in
the order that they are listed.

-- Returns only two of the columns from the table

SELECT ProductName, Price

 FROM dbo.Products

GO

4. Use a WHERE clause to limit the rows that are returned to the user.
-- Returns only two of the records in the table

SELECT ProductID, ProductName, Price, ProductDescription

 FROM dbo.Products

 WHERE ProductID < 60

GO

5. You can work with the values in the columns as they are returned. The following
example performs a mathematical operation on the Price column. Columns that have
been changed in this way will not have a name unless you provide one by using the AS
keyword.

-- Returns ProductName and the Price including a 7% tax

-- Provides the name CustomerPays for the calculated column

SELECT ProductName, Price * 1.07 AS CustomerPays

 FROM dbo.Products

GO

Functions That Are Useful in a SELECT Statement
For information about some functions that you can use to work with data in SELECT statements,
see the following topics:

 12

String Functions (Transact-SQL) Date and Time Functions (Transact-SQL)

Mathematical Functions (Transact-SQL) Text and Image Functions (Transact-SQL)

Next Task in Lesson
Summary: Creating Database Objects

See Also
SELECT (Transact-SQL)

Summary: Creating Database Objects
In this tutorial you have created a database, created a table in the database, inserted data into
the table, changed the data, and then read the data from the table. The syntax for the
statements that were used is only the basic syntax and many syntax options were not covered in
this tutorial. To learn more about these statements, read the complete syntax for the statements
in SQL Server Books Online, and review the many examples that are provided in those topics.

Next Lesson
Lesson 2: Configuring Permissions on Database Objects

See Also
CREATE DATABASE (Transact-SQL)

Lesson 2: Configuring Permissions on Database
Objects
Granting a user access to a database involves three steps. First, you create a login. The login lets
the user connect to the SQL Server Database Engine. Then you configure the login as a user in
the specified database. And finally, you grant that user permission to database objects. This
lesson shows you these three steps, and shows you how to create a view and a stored procedure
as the object.
This lesson contains the following topics:
• Creating a login
• Granting Access to a Database
• Creating Views and Stored Procedures
• Granting Access to a Database Object
• Summary: Configuring Permissions on Database Objects

http://msdn.microsoft.com/en-us/library/6940a83d-5374-4af3-bb27-5d89c8af83ac(SQL.110)�
http://msdn.microsoft.com/en-us/library/83e378a2-6e89-4c80-bc4f-644958d9e0a9(SQL.110)�
http://msdn.microsoft.com/en-us/library/46495a2e-81d0-4677-9d72-9db083cd1023(SQL.110)�
http://msdn.microsoft.com/en-us/library/b9c70488-1bf5-4068-a003-e548ccbc5199(SQL.110)�
http://msdn.microsoft.com/en-us/library/dc85caea-54d1-49af-b166-f3aa2f3a93d0(SQL.110)�
http://msdn.microsoft.com/en-us/library/29ddac46-7a0f-4151-bd94-75c1908c89f8(SQL.110)�

 13

Next Task in Lesson
Creating a login

Creating a Login
To access the Database Engine, users require a login. The login can represent the user's identity
as a Windows account or as a member of a Windows group, or the login can be a SQL Server
login that exists only in SQL Server. Whenever possible you should use Windows Authentication.
By default, administrators on your computer have full access to SQL Server. For this lesson, we
want to have a less privileged user; therefore, you will create a new local Windows
Authentication account on your computer. To do this, you must be an administrator on your
computer. Then you will grant that new user access to SQL Server.

Procedures

1. Click Start, click Run, in the Open box, type
%SystemRoot%\system32\compmgmt.msc /s, and then click OK to open the
Computer Management program.

2. Under System Tools, expand Local Users and Groups, right-click Users, and then click
New User.

3. In the User name box type Mary.
4. In the Password and Confirm password box, type a strong password, and then click

Create to create a new local Windows user.

1. In a Query Editor window of SQL Server Management Studio, type and execute the
following code replacing computer_name with the name of your computer. FROM
WINDOWS indicates that Windows will authenticate the user. The optional
DEFAULT_DATABASE argument connects Mary to the TestData database, unless her
connection string indicates another database. This statement introduces the semicolon
as an optional termination for a Transact-SQL statement.

CREATE LOGIN [computer_name\Mary]

 FROM WINDOWS

 WITH DEFAULT_DATABASE = [TestData];

GO

This authorizes a user name Mary, authenticated by your computer, to access this
instance of SQL Server. If there is more than one instance of SQL Server on the
computer, you must create the login on each instance that Mary must access.

To create a new Windows account

To create a login

 14

Note
Because Mary is not a domain account, this user name can only be
authenticated on this computer.

Next Task in Lesson
Granting Access to a Database

See Also
CREATE LOGIN (Transact-SQL)
Authentication Mode

Granting Access to a Database
Mary now has access to this instance of SQL Server, but does not have permission to access the
databases. She does not even have access to her default database TestData until you authorize
her as a database user.
To grant Mary access, switch to the TestData database, and then use the CREATE USER
statement to map her login to a user named Mary.

Procedures

1. Type and execute the following statements (replacing computer_name with the name
of your computer) to grant Mary access to the TestData database.

USE [TestData];

GO

CREATE USER [Mary] FOR LOGIN [computer_name\Mary];

GO

Now, Mary has access to both SQL Server and the TestData database.

Next Task in Lesson
Creating a Stored Procedure

To create a user in a database

http://msdn.microsoft.com/en-us/library/eb737149-7c92-4552-946b-91085d8b1b01(SQL.110)�
http://msdn.microsoft.com/en-us/library/ff7a6a48-3d38-4209-aa0f-7d6c0a8c64ef(SQL.110)�

 15

Creating Views and Stored Procedures
Now that Mary can access the TestData database, you may want to create some database
objects, such as a view and a stored procedure, and then grant Mary access to them. A view is a
stored SELECT statement, and a stored procedure is one or more Transact-SQL statements that
execute as a batch.
Views are queried like tables and do not accept parameters. Stored procedures are more
complex than views. Stored procedures can have both input and output parameters and can
contain statements to control the flow of the code, such as IF and WHILE statements. It is good
programming practice to use stored procedures for all repetitive actions in the database.
For this example, you will use CREATE VIEW to create a view that selects only two of the columns
in the Products table. Then, you will use CREATE PROCEDURE to create a stored procedure that
accepts a price parameter and returns only those products that cost less than the specified
parameter value.

Procedures

1. Execute the following statement to create a very simple view that executes a select
statement, and returns the names and prices of our products to the user.

CREATE VIEW vw_Names

 AS

 SELECT ProductName, Price FROM Products;

GO

1. Views are treated just like tables. Use a SELECT statement to access a view.

SELECT * FROM vw_Names;

GO

1. The following statement creates a stored procedure name pr_Names, accepts an input
parameter named @VarPrice of data type money. The stored procedure prints the
statement Products less than concatenated with the input parameter that is
changed from the money data type into a varchar(10) character data type. Then, the
procedure executes a SELECT statement on the view, passing the input parameter as
part of the WHERE clause. This returns all products that cost less than the input

To create a view

Test the view

To create a stored procedure

parameter value.

CREATE PROCEDURE pr_Names @VarPrice money

 AS

 BEGIN

 -- The print statement returns text to the user

 PRINT 'Products less than ' + CAST(@VarPrice AS

varchar(10));

 -- A second statement starts here

 SELECT ProductName, Price FROM vw_Names

 WHERE Price < @varPrice;

 END

GO

1. To test the stored procedure, type and execute the following statement. The procedure
should return the names of the two products entered into the Products table in
Lesson 1 with a price that is less than 10.00.

EXECUTE pr_Names 10.00;

GO

Next Task in Lesson
Granting Access to a Database Object

See Also
CREATE VIEW (Transact-SQL)
CREATE PROCEDURE (Transact-SQL)

Granting Access to a Database Object
As an administrator, you can execute the SELECT from the Products table and the vw_Names
view, and execute the pr_Names procedure; however, Mary cannot. To grant Mary the necessary
permissions, use the GRANT statement.

Procedures

Test the stored procedure

Procedure Title
 16

http://msdn.microsoft.com/en-us/library/aecc2f73-2ab5-4db9-b1e6-2f9e3c601fb9(SQL.110)�
http://msdn.microsoft.com/en-us/library/afe3d86d-c9ab-44e4-b74d-4e3dbd9cc58c(SQL.110)�

 17

1. Execute the following statement to give Mary the EXECUTE permission for the
pr_Names stored procedure.

GRANT EXECUTE ON pr_Names TO Mary;

GO

In this scenario, Mary can only access the Products table by using the stored procedure. If you
want Mary to be able to execute a SELECT statement against the view, then you must also
execute GRANT SELECT ON vw_Names TO Mary. To remove access to database objects, use the
REVOKE statement.

If the table, the view, and the stored procedure are not owned by the same schema,
granting permissions becomes more complex.

About GRANT
You must have EXECUTE permission to execute a stored procedure. You must have SELECT,
INSERT, UPDATE, and DELETE permissions to access and change data. The GRANT statement is
also used for other permissions, such as permission to create tables.

Next Task in Lesson
Summary: Configuring Permissions on Database Objects

See Also
GRANT (Transact-SQL)
REVOKE (Transact-SQL)

Summary: Configuring Permissions on Database
Objects
Logins give users permissions to connect to SQL Server. Users are logins that can access a
specific database. Use the GRANT statement to give users permission to read and to access and
change the data.
A view is a single SELECT statement and looks like a table to the user. A stored procedure is one
or more Transact-SQL statements that execute as a batch.

Next Lesson in Tutorial
Lesson 3: Deleting Database Objects

Note

http://msdn.microsoft.com/en-us/library/a760c16a-4d2d-43f2-be81-ae9315f38185(SQL.110)�
http://msdn.microsoft.com/en-us/library/9d31d3e7-0883-45cd-bf0e-f0361bbb0956(SQL.110)�

 18

Lesson 3: Deleting Database Objects
This short lesson removes the objects that you created in Lesson 1 and Lesson 2, and then drops
the database.
This lesson contains one topic:
• Deleting Database Objects

Next Task in Lesson
Deleting Database Objects

Deleting Database Objects
To remove all traces of this tutorial, you could just delete the database. However, in this topic,
you will go through the steps to reverse every action you took doing the tutorial.

Procedures

1. Before you delete objects, make sure you are in the correct database:
USE TestData;

GO

2. Use the REVOKE statement to remove execute permission for Mary on the stored
procedure:

REVOKE EXECUTE ON pr_Names FROM Mary;

GO

3. Use the DROP statement to remove permission for Mary to access the TestData
database:
DROP USER Mary;

GO

4. Use the DROP statement to remove permission for Mary to access this instance of SQL
Server 2005:

DROP LOGIN [<computer_name>\Mary];

GO

5. Use the DROP statement to remove the store procedure pr_Names:

Removing permissions and objects

 19

DROP PROC pr_Names;

GO

6. Use the DROP statement to remove the view vw_Names:

DROP View vw_Names;

GO

7. Use the DELETE statement to remove all rows from the Products table:

DELETE FROM Products;

GO

8. Use the DROP statement to remove the Products table:
DROP Table Products;

GO

9. You cannot remove the TestData database while you are in the database; therefore,
first switch context to another database, and then use the DROP statement to remove
the TestData database:

USE MASTER;

GO

DROP DATABASE TestData;

GO

This concludes the Writing Transact-SQL Statements tutorial. Remember, this tutorial is a brief
overview and it does not describe all the options to the statements that are used. Designing and
creating an efficient database structure and configuring secure access to the data requires a
more complex database than that shown in this tutorial.

Return to SQL Server Tools Portal
Tutorial: Writing Transact-SQL Statements

See Also
REVOKE (Transact-SQL)
DROP USER (Transact-SQL)
DROP LOGIN (Transact-SQL)
DROP PROCEDURE (Transact-SQL)

http://msdn.microsoft.com/en-us/library/9d31d3e7-0883-45cd-bf0e-f0361bbb0956(SQL.110)�
http://msdn.microsoft.com/en-us/library/d6e0e21a-7568-4321-b6d6-bcfba183a719(SQL.110)�
http://msdn.microsoft.com/en-us/library/acb5c3dc-7aa2-49f6-9330-573227ba9b1a(SQL.110)�
http://msdn.microsoft.com/en-us/library/1c2d7235-7b9b-4336-8f17-429e7d82c2c3(SQL.110)�

 20

DROP VIEW (Transact-SQL)
DELETE (Transact-SQL)
DROP TABLE (Transact-SQL)
DROP DATABASE (Transact-SQL)

http://msdn.microsoft.com/en-us/library/03cea355-e39c-46e1-b7db-8832038669dd(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed6b2105-0f35-408f-ba51-e36ade7ad5b2(SQL.110)�
http://msdn.microsoft.com/en-us/library/0b6f2b6f-3aa3-4767-943f-43df3c3c5cfd(SQL.110)�
http://msdn.microsoft.com/en-us/library/477396a9-92dc-43c9-9b97-42c8728ede8e(SQL.110)�

	Cover
	Contents
	Tutorial: Writing Transact-SQL Statements
	Lesson 1: Creating Database Objects
	Creating a Database (Tutorial)
	Creating a Table (Tutorial)
	Inserting and Updating Data in a Table (Tutorial)
	Reading the Data in a Table (Tutorial)
	Summary: Creating Database Objects

	Lesson 2: Configuring Permissions on Database Objects
	Creating a Login
	Granting Access to a Database
	Creating Views and Stored Procedures
	Granting Access to a Database Object
	Summary: Configuring Permissions on Database Objects

	Lesson 3: Deleting Database Objects
	Deleting Database Objects

