

Microsoft SQL Server 2012
Transact-SQL DML Reference
SQL Server Books Online

Summary: Data Manipulation Language (DML) is a vocabulary used to
retrieve and work with data in SQL Server 2012. Use these statements to
add, modify, query, or remove data from a SQL Server database.

Category: Reference
Applies to: SQL Server 2012
Source: SQL Server 2012 Books Online(link to source content)
E-book publication date: May 2012
263 pages

http://msdn.microsoft.com/en-us/library/ff848766.aspx�

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents
Data Manipulation Language (DML) Statements .. 3

BULK INSERT... 4

DELETE .. 16

FROM ... 27

Hints ... 43
Join Hints ... 43
Query Hints .. 45
Table Hints .. 58

INSERT... 74

MERGE... 100

OPTION Clause .. 114

OUTPUT Clause ... 114

READTEXT ... 130

Search Condition ... 132

SELECT .. 137
SELECT Clause ... 140
SELECT Examples .. 143
FOR Clause ... 157
GROUP BY .. 163
HAVING ... 173
INTO Clause .. 174
ORDER BY Clause .. 179
OVER Clause .. 190

Table Value Constructor .. 201

TOP .. 205

UPDATE ... 212

UPDATETEXT .. 240

WHERE .. 244

WITH common_table_expression .. 246

WRITETEXT ... 257

Transact-SQL Syntax Conventions .. 260

3

Data Manipulation Language (DML)
Statements
Data Manipulation Language (DML) is a vocabulary used to retrieve and work with data in SQL
Server 2012. Use these statements to add, modify, query, or remove data from a SQL Server
database.

In This Section
The following table lists the DML statements that SQL Server uses.

BULK INSERT (Transact-SQL) SELECT (Transact-SQL)

DELETE (Transact-SQL) UPDATE (Transact-SQL)

INSERT (Transact-SQL) UPDATETEXT (Transact-SQL)

MERGE (Transact-SQL) WRITETEXT (Transact-SQL)

READTEXT (Transact-SQL)

The following table lists the clauses that are used in multiple DML statements or clauses.

Clause Can be used in these statements

FROM (Transact-SQL) DELETE, SELECT, UPDATE

Hints (Transact-SQL) DELETE, INSERT, SELECT, UPDATE

OPTION Clause (Transact-SQL) DELETE, SELECT, UPDATE

OUTPUT Clause (Transact-SQL) DELETE, INSERT, MERGE, UPDATE

Search Condition (Transact-SQL) DELETE, MERGE, SELECT, UPDATE

Table Value Constructor (Transact-SQL) FROM, INSERT, MERGE

TOP (Transact-SQL) DELETE, INSERT, MERGE, SELECT,
UPDATE

WHERE (Transact-SQL) DELETE, SELECT, UPDATE

WITH common_table_expression (Transact-
SQL)

DELETE, INSERT, MERGE, SELECT,
UPDATE

4

BULK INSERT
Imports a data file into a database table or view in a user-specified format.

Transact-SQL Syntax Conventions

Syntax

BULK INSERT

 [database_name. [schema_name] . | schema_name.] [table_name | view_name]

 FROM 'data_file'
 [WITH

 (
 [[,] BATCHSIZE =batch_size]

 [[,] CHECK_CONSTRAINTS]

 [[,] CODEPAGE = { 'ACP' | 'OEM' | 'RAW' | 'code_page' }]
 [[,] DATAFILETYPE =

 { 'char' | 'native'| 'widechar' | 'widenative' }]
 [[,] FIELDTERMINATOR = 'field_terminator']
 [[,] FIRSTROW = first_row]

 [[,] FIRE_TRIGGERS]

 [[,] FORMATFILE ='format_file_path']
 [[,] KEEPIDENTITY]

 [[,] KEEPNULLS]

 [[,] KILOBYTES_PER_BATCH =kilobytes_per_batch]

 [[,] LASTROW =last_row]

 [[,] MAXERRORS =max_errors]
 [[,] ORDER ({ column [ASC | DESC] } [,...n])]

 [[,] ROWS_PER_BATCH =rows_per_batch]

 [[,] ROWTERMINATOR ='row_terminator']
 [[,] TABLOCK]

 [[,] ERRORFILE ='file_name']
)]

Arguments
database_name

Is the database name in which the specified table or view resides. If not specified, this is

5

the current database.

schema_name

Is the name of the table or view schema.schema_name is optional if the default schema
for the user performing the bulk-import operation is schema of the specified table or
view. If schema is not specified and the default schema of the user performing the bulk-
import operation is different from the specified table or view, SQL Server returns an
error message, and the bulk-import operation is canceled.

table_name

Is the name of the table or view to bulk import data into. Only views in which all columns
refer to the same base table can be used. For more information about the restrictions
for loading data into views, see INSERT (Transact-SQL).

'data_file'

Is the full path of the data file that contains data to import into the specified table or
view. BULK INSERT can import data from a disk (including network, floppy disk, hard
disk, and so on).

data_file must specify a valid path from the server on which SQL Server is running. If
data_file is a remote file, specify the Universal Naming Convention (UNC) name. A UNC
name has the form \\Systemname\ShareName\Path\FileName. For example,
\\SystemX\DiskZ\Sales\update.txt.

BATCHSIZE = batch_size

Specifies the number of rows in a batch. Each batch is copied to the server as one
transaction. If this fails, SQL Server commits or rolls back the transaction for every
batch. By default, all data in the specified data file is one batch. For information about
performance considerations, see "Remarks," later in this topic.

CHECK_CONSTRAINTS

Specifies that all constraints on the target table or view must be checked during the
bulk-import operation. Without the CHECK_CONSTRAINTS option, any CHECK and
FOREIGN KEY constraints are ignored, and after the operation, the constraint on the
table is marked as not-trusted.

Note
UNIQUE, PRIMARY KEY, and NOT NULL constraints are always enforced.

At some point, you must examine the constraints on the whole table. If the table was
non-empty before the bulk-import operation, the cost of revalidating the constraint may

6

exceed the cost of applying CHECK constraints to the incremental data.

A situation in which you might want constraints disabled (the default behavior) is if the
input data contains rows that violate constraints. With CHECK constraints disabled, you
can import the data and then use Transact-SQL statements to remove the invalid data.

Note
The MAXERRORS option does not apply to constraint checking.

Note
In SQL Server 2005 and later versions, BULK INSERT enforces new data validation and data
checks that could cause existing scripts to fail when they are executed on invalid data in a data
file.

CODEPAGE = { 'ACP' | 'OEM' | 'RAW' | 'code_page' }

Specifies the code page of the data in the data file. CODEPAGE is relevant only if the
data contains char, varchar, or text columns with character values greater than 127 or
less than 32.

Note
Microsoft recommends that you specify a collation name for each column in a format file.

CODEPAGE value Description

ACP Columns of char, varchar, or text data type
are converted from the ANSI/Microsoft
Windows code page (ISO 1252) to the SQL
Server code page.

OEM (default) Columns of char, varchar, or text data type
are converted from the system OEM code
page to the SQL Server code page.

RAW No conversion from one code page to
another occurs; this is the fastest option.

code_page Specific code page number, for example,
850.

iImportant
SQL Server does not support code
page 65001 (UTF-8 encoding).

http://msdn.microsoft.com/en-us/library/2956df78-833f-45fa-8a10-41d6522562b9

7

DATAFILETYPE = { 'char' | 'native' | 'widechar' | 'widenative' }

Specifies that BULK INSERT performs the import operation using the specified data-file
type value.

DATAFILETYPE value All data represented in:

char (default) Character format.

For more information, see Using Character
Format to Import or Export Data.

native Native (database) data types. Create the
native data file by bulk importing data from
SQL Server using the bcp utility.

The native value offers a higher performance
alternative to the char value.

For more information, see Using Native
Format to Import or Export Data.

widechar Unicode characters.

For more information, see Using Unicode
Character Format to Import or Export Data.

widenative Native (database) data types, except in char,
varchar, and text columns, in which data is
stored as Unicode. Create the widenative
data file by bulk importing data from SQL
Server using the bcp utility.

The widenative value offers a higher
performance alternative to widechar. If the
data file contains ANSI extended characters,
specify widenative.

For more information, see Using Unicode
Native Format to Import or Export Data.

FIELDTERMINATOR = 'field_terminator'

Specifies the field terminator to be used for char and widechar data files. The default
field terminator is \t (tab character). For more information, see Specifying Field and
Row Terminators.

http://msdn.microsoft.com/en-us/library/d925e66a-1a73-43cd-bc06-1cbdf8174a4d
http://msdn.microsoft.com/en-us/library/d925e66a-1a73-43cd-bc06-1cbdf8174a4d
http://msdn.microsoft.com/en-us/library/eb279b2f-0f1f-428f-9b8f-2a7fc495b79f
http://msdn.microsoft.com/en-us/library/eb279b2f-0f1f-428f-9b8f-2a7fc495b79f
http://msdn.microsoft.com/en-us/library/74342a11-c1c0-4746-b482-7f3537744a70
http://msdn.microsoft.com/en-us/library/74342a11-c1c0-4746-b482-7f3537744a70
http://msdn.microsoft.com/en-us/library/a6213308-f3d5-406e-9029-19d8bb3367f3
http://msdn.microsoft.com/en-us/library/a6213308-f3d5-406e-9029-19d8bb3367f3
http://msdn.microsoft.com/en-us/library/f68b6782-f386-4947-93c4-e89110800704
http://msdn.microsoft.com/en-us/library/f68b6782-f386-4947-93c4-e89110800704

8

FIRSTROW = first_row

Specifies the number of the first row to load. The default is the first row in the specified
data file. FIRSTROW is 1-based.

Note
The FIRSTROW attribute is not intended to skip column headers. Skipping headers is not
supported by the BULK INSERT statement. When skipping rows, the SQL Server Database
Engine looks only at the field terminators, and does not validate the data in the fields of skipped
rows.

FIRE_TRIGGERS

Specifies that any insert triggers defined on the destination table execute during the
bulk-import operation. If triggers are defined for INSERT operations on the target table,
they are fired for every completed batch.

If FIRE_TRIGGERS is not specified, no insert triggers execute.

FORMATFILE = 'format_file_path'

Specifies the full path of a format file. A format file describes the data file that contains
stored responses created by using the bcp utility on the same table or view. The format
file should be used if:

• The data file contains greater or fewer columns than the table or view.

• The columns are in a different order.

• The column delimiters vary.

• There are other changes in the data format. Format files are typically created by
using the bcp utility and modified with a text editor as needed. For more
information, see bcp Utility.

KEEPIDENTITY

Specifies that identity value or values in the imported data file are to be used for the
identity column. If KEEPIDENTITY is not specified, the identity values for this column
are verified but not imported and SQL Server automatically assigns unique values
based on the seed and increment values specified during table creation. If the data file
does not contain values for the identity column in the table or view, use a format file to
specify that the identity column in the table or view is to be skipped when importing
data; SQL Server automatically assigns unique values for the column. For more
information, see DBCC CHECKIDENT.

For more information, see about keeping identify values see Keeping Identity Values
When Bulk Importing Data.

http://msdn.microsoft.com/en-us/library/c0af54f5-ca4a-4995-a3a4-0ce39c30ec38
http://msdn.microsoft.com/en-us/library/2c00ee51-2062-4e47-8b19-d90f524c6427
http://msdn.microsoft.com/en-us/library/45894a3f-2d8a-4edd-9568-afa7d0d3061f
http://msdn.microsoft.com/en-us/library/45894a3f-2d8a-4edd-9568-afa7d0d3061f

9

KEEPNULLS

Specifies that empty columns should retain a null value during the bulk-import
operation, instead of having any default values for the columns inserted. For more
information, see Keeping Nulls or Using Default Values During Bulk Import.

KILOBYTES_PER_BATCH = kilobytes_per_batch

Specifies the approximate number of kilobytes (KB) of data per batch as
kilobytes_per_batch. By default, KILOBYTES_PER_BATCH is unknown. For
information about performance considerations, see "Remarks," later in this topic.

LASTROW = last_row

Specifies the number of the last row to load. The default is 0, which indicates the last
row in the specified data file.

MAXERRORS = max_errors

Specifies the maximum number of syntax errors allowed in the data before the bulk-
import operation is canceled. Each row that cannot be imported by the bulk-import
operation is ignored and counted as one error. If max_errors is not specified, the default
is 10.

Note
The MAX_ERRORS option does not apply to constraint checks or to converting money and
bigint data types.

ORDER ({ column [ASC | DESC] } [,... n])

Specifies how the data in the data file is sorted. Bulk import performance is improved if
the data being imported is sorted according to the clustered index on the table, if any. If
the data file is sorted in a different order, that is other than the order of a clustered index
key or if there is no clustered index on the table, the ORDER clause is ignored. The
column names supplied must be valid column names in the destination table. By
default, the bulk insert operation assumes the data file is unordered. For optimized bulk
import, SQL Server also validates that the imported data is sorted.

n

Is a placeholder that indicates that multiple columns can be specified.

ROWS_PER_BATCH = rows_per_batch

Indicates the approximate number of rows of data in the data file.

http://msdn.microsoft.com/en-us/library/6b91d762-337b-4345-a159-88abb3e64a81

10

By default, all the data in the data file is sent to the server as a single transaction, and
the number of rows in the batch is unknown to the query optimizer. If you specify
ROWS_PER_BATCH (with a value > 0) the server uses this value to optimize the bulk-
import operation. The value specified for ROWS_PER_BATCH should approximately
the same as the actual number of rows. For information about performance
considerations, see "Remarks," later in this topic.

ROWTERMINATOR = 'row_terminator'

Specifies the row terminator to be used for char and widechar data files. The default
row terminator is \r\n (newline character). For more information, see Specifying Field
and Row Terminators.

TABLOCK

Specifies that a table-level lock is acquired for the duration of the bulk-import operation.
A table can be loaded concurrently by multiple clients if the table has no indexes and
TABLOCK is specified. By default, locking behavior is determined by the table option
table lock on bulk load. Holding a lock for the duration of the bulk-import operation
reduces lock contention on the table, in some cases can significantly improve
performance. For information about performance considerations, see "Remarks," later
in this topic.

ERRORFILE = 'file_name'

Specifies the file used to collect rows that have formatting errors and cannot be
converted to an OLE DB rowset. These rows are copied into this error file from the data
file "as is."

The error file is created when the command is executed. An error occurs if the file
already exists. Additionally, a control file that has the extension .ERROR.txt is created.
This references each row in the error file and provides error diagnostics. As soon as the
errors have been corrected, the data can be loaded.

Compatibility
BULK INSERT enforces strict data validation and data checks of data read from a file that could
cause existing scripts to fail when they are executed on invalid data. For example, BULK INSERT
verifies that:

• The native representations of float or real data types are valid.

• Unicode data has an even-byte length.

http://msdn.microsoft.com/en-us/library/f68b6782-f386-4947-93c4-e89110800704
http://msdn.microsoft.com/en-us/library/f68b6782-f386-4947-93c4-e89110800704

11

Data Types

String-to-Decimal Data Type Conversions
The string-to-decimal data type conversions used in BULK INSERT follow the same rules as the
Transact-SQL CONVERT function, which rejects strings representing numeric values that use
scientific notation. Therefore, BULK INSERT treats such strings as invalid values and reports
conversion errors.

To work around this behavior, use a format file to bulk import scientific notation float data into a
decimal column. In the format file, explicitly describe the column as real or float data. For more
information about these data types, see float and real (Transact-SQL).

Format files represent real data as the SQLFLT4 data type and float data as the
SQLFLT8 data type. For information about non-XML format files, see Specifying File
Storage Type by Usingbcp.

Example of Importing a Numeric Value that Uses Scientific Notation
This example uses the following table:

CREATE TABLE t_float(c1 float, c2 decimal (5,4))

The user wants to bulk import data into the t_float table. The data file, C:\t_float-c.dat, contains
scientific notation float data; for example:

8.0000000000000002E-28.0000000000000002E-2

However, BULK INSERT cannot import this data directly into t_float, because its second
column, c2, uses the decimal data type. Therefore, a format file is necessary. The format file must
map the scientific notation float data to the decimal format of column c2.

The following format file uses the SQLFLT8 data type to map the second data field to the second
column:

<?xml version="1.0"?>

<BCPFORMAT xmlns="http://schemas.microsoft.com/sqlserver/2004/bulkload/format"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<RECORD>

<FIELD ID="1" xsi:type="CharTerm" TERMINATOR="\t" MAX_LENGTH="30"/>

<FIELD ID="2" xsi:type="CharTerm" TERMINATOR="\r\n" MAX_LENGTH="30"/></RECORD><ROW>

<COLUMN SOURCE="1" NAME="c1" xsi:type="SQLFLT8"/>

<COLUMN SOURCE="2" NAME="c2" xsi:type="SQLFLT8"/></ROW></BCPFORMAT>

To use this format file (using the file name C:\t_floatformat-c-xml.xml) to import the test data
into the test table, issue the following Transact-SQL statement:

BULK INSERT bulktest..t_float

FROM 'C:\t_float-c.dat' WITH (FORMATFILE='C:\t_floatformat-c-xml.xml');

Note

http://msdn.microsoft.com/en-us/library/a87d0850-c670-4720-9ad5-6f5a22343ea8
http://msdn.microsoft.com/en-us/library/08ea66b7-624e-4d8b-86bc-750ff76cdfc5
http://msdn.microsoft.com/en-us/library/85e12df8-1be7-4bdc-aea9-05aade085c06
http://msdn.microsoft.com/en-us/library/85e12df8-1be7-4bdc-aea9-05aade085c06
http://schemas.microsoft.com/sqlserver/2004/bulkload/format"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
http://schemas.microsoft.com/sqlserver/2004/bulkload/format"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance

12

GO

Data Types for Bulk Exporting or Importing SQLXML Documents
To bulk export or import SQLXML data, use one of the following data types in your format file:

Data type Effect

SQLCHAR or SQLVARYCHAR The data is sent in the client code page or in
the code page implied by the collation). The
effect is the same as specifying the
DATAFILETYPE ='char' without specifying a
format file.

SQLNCHAR or SQLNVARCHAR The data is sent as Unicode. The effect is the
same as specifying the DATAFILETYPE =
'widechar' without specifying a format file.

SQLBINARY or SQLVARYBIN The data is sent without any conversion.

General Remarks
For a comparison of the BULK INSERT statement, the INSERT ... SELECT * FROM
OPENROWSET(BULK...) statement, and the bcp command, see Bulk Import and Export of Data
(SQL Server).

For information about preparing data for bulk import, see Preparing Data for Bulk Export or
Import.

The BULK INSERT statement can be executed within a user-defined transaction to import data
into a table or view. Optionally, to use multiple matches for bulk importing data, a transaction can
specify the BATCHSIZE clause in the BULK INSERT statement. If a multiple-batch transaction is
rolled back, every batch that the transaction has sent to SQL Server is rolled back.

Interoperability

Importing Data from a CSV file
Comma-separated value (CSV) files are not supported by SQL Server bulk-import operations.
However, in some cases, a CSV file can be used as the data file for a bulk import of data into
SQL Server. For information about the requirements for importing data from a CSV data file,
see Preparing Data for Bulk Export or Import.

http://msdn.microsoft.com/en-us/library/19049021-c048-44a2-b38d-186d9f9e4a65
http://msdn.microsoft.com/en-us/library/19049021-c048-44a2-b38d-186d9f9e4a65
http://msdn.microsoft.com/en-us/library/783fd581-2e5f-496b-b79c-d4de1e09ea30
http://msdn.microsoft.com/en-us/library/783fd581-2e5f-496b-b79c-d4de1e09ea30
http://msdn.microsoft.com/en-us/library/783fd581-2e5f-496b-b79c-d4de1e09ea30

13

Logging Behavior
For information about when row-insert operations that are performed by bulk import are logged in
the transaction log, see Prerequisites for Minimal Logging in Bulk Import.

Restrictions
When using a format file with BULK INSERT, you can specify up to 1024 fields only. This is same
as the maximum number of columns allowed in a table. If you use BULK INSERT with a data file
that contains more than 1024 fields, BULK INSERT generates the 4822 error. The bcp utility does
not have this limitation, so for data files that contain more than 1024 fields, use the bcp
command.

Performance Considerations
If the number of pages to be flushed in a single batch exceeds an internal threshold, a full scan of
the buffer pool might occur to identify which pages to flush when the batch commits. This full scan
can hurt bulk-import performance. A likely case of exceeding the internal threshold occurs when a
large buffer pool is combined with a slow I/O subsystem. To avoid buffer overflows on large
machines, either do not use the TABLOCK hint (which will remove the bulk optimizations) or use
a smaller batch size (which preserves the bulk optimizations).

Because computers vary, we recommend that you test various batch sizes with your data load to
find out what works best for you.

Security

Security Account Delegation (Impersonation)
If a SQL Server user is logged in using Windows Authentication, the user can read only the files
accessible to the user account, independent of the security profile of the SQL Server process.

When executing the BULK INSERT statement by using sqlcmd or osql, from one computer,
inserting data into SQL Server on a second computer, and specifying a data_file on third
computer by using a UNC path, you may receive a 4861 error.

To resolve this error, use SQL Server Authentication and specify a SQL Server login that uses
the security profile of the SQL Server process account, or configure Windows to enable security
account delegation. For information about how to enable a user account to be trusted for
delegation, see Windows Help.

For more information about this and other security considerations for using BULK INSERT,
see Importing Bulk Data by Using BULK INSERT or OPENROWSET(BULK...).

Permissions
Requires INSERT and ADMINISTER BULK OPERATIONS permissions. Additionally, ALTER
TABLE permission is required if one or more of the following is true:

http://msdn.microsoft.com/en-us/library/bd1dac6b-6ef8-4735-ad4e-67bb42dc4f66
http://msdn.microsoft.com/en-us/library/c0af54f5-ca4a-4995-a3a4-0ce39c30ec38
http://msdn.microsoft.com/en-us/library/18a64236-0285-46ea-8929-6ee9bcc020b9

14

• Constraints exist and the CHECK_CONSTRAINTS option is not specified.

Disabling constraints is the default behavior. To check constraints explicitly, use the
CHECK_CONSTRAINTS option.

• Triggers exist and the FIRE_TRIGGER option is not specified.

By default, triggers are not fired. To fire triggers explicitly, use the FIRE_TRIGGER
option.

• You use the KEEPIDENTITY option to import identity value from data file.

Examples

A. Using pipes to import data from a file
The following example imports order detail information into the
AdventureWorks.Sales.SalesOrderDetail table from the specified data file by using a pipe (|) as
the field terminator and |\n as the row terminator.

BULK INSERT AdventureWorks.Sales.SalesOrderDetail

 FROM 'f:\orders\lineitem.tbl'

 WITH

 (

 FIELDTERMINATOR =' |',

 ROWTERMINATOR =' |\n'

)

B. Using the FIRE_TRIGGERS argument
The following example specifies the FIRE_TRIGGERS argument.

BULK INSERT AdventureWorks.Sales.SalesOrderDetail

 FROM 'f:\orders\lineitem.tbl'

 WITH

 (

 FIELDTERMINATOR =' |',

 ROWTERMINATOR = ':\n',

 FIRE_TRIGGERS

)

Note

Note

15

C. Using line feed as a row terminator
The following example imports a file that uses the line feed as a row terminator such as a UNIX
output:

DECLARE @bulk_cmd varchar(1000)

SET @bulk_cmd = 'BULK INSERT AdventureWorks.Sales.SalesOrderDetail

FROM ''<drive>:\<path>\<filename>''

WITH (ROWTERMINATOR = '''+CHAR(10)+''')'

EXEC(@bulk_cmd)

Due to how Microsoft Windows treats text files (\n automatically gets replaced with \r\n).

Additional Examples
Other BULK INSERT examples are provided in the following topics:

• Bulk Importing and Exporting XML Documents

• Keeping Identity Values When Bulk Importing Data

• Keeping Nulls or Using Default Values During Bulk Import

• Specifying Field and Row Terminators

• Using a Format File to Bulk Import Data

• Using Character Format to Import or Export Data

• Using Native Format to Import or Export Data

• Using Unicode Character Format to Import or Export Data

• Using Unicode Native Format to Import or Export Data

• Using a Format File to Skip a Table Column

• Using a Format File to Map Table Columns to Data-File Fields

See Also
Bulk Import and Export of Data (SQL Server)

bcp Utility

Format Files for Importing or Exporting Data

INSERT (Transact-SQL)

OPENROWSET

Preparing Data for Bulk Export or Import

sp_tableoption

Note

http://msdn.microsoft.com/en-us/library/dff99404-a002-48ee-910e-f37f013d946d
http://msdn.microsoft.com/en-us/library/45894a3f-2d8a-4edd-9568-afa7d0d3061f
http://msdn.microsoft.com/en-us/library/6b91d762-337b-4345-a159-88abb3e64a81
http://msdn.microsoft.com/en-us/library/f68b6782-f386-4947-93c4-e89110800704
http://msdn.microsoft.com/en-us/library/2956df78-833f-45fa-8a10-41d6522562b9
http://msdn.microsoft.com/en-us/library/d925e66a-1a73-43cd-bc06-1cbdf8174a4d
http://msdn.microsoft.com/en-us/library/eb279b2f-0f1f-428f-9b8f-2a7fc495b79f
http://msdn.microsoft.com/en-us/library/74342a11-c1c0-4746-b482-7f3537744a70
http://msdn.microsoft.com/en-us/library/a6213308-f3d5-406e-9029-19d8bb3367f3
http://msdn.microsoft.com/en-us/library/30e0e7b9-d131-46c7-90a4-6ccf77e3d4f3
http://msdn.microsoft.com/en-us/library/e7ee4f7e-24c4-4eb7-84d2-41e57ccc1ef1
http://msdn.microsoft.com/en-us/library/19049021-c048-44a2-b38d-186d9f9e4a65
http://msdn.microsoft.com/en-us/library/c0af54f5-ca4a-4995-a3a4-0ce39c30ec38
http://msdn.microsoft.com/en-us/library/b7b97d68-4336-4091-aee4-1941fab568e3
http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17
http://msdn.microsoft.com/en-us/library/783fd581-2e5f-496b-b79c-d4de1e09ea30
http://msdn.microsoft.com/en-us/library/0a57462c-1057-4c7d-bce3-852cc898341d

16

DELETE
Removes one or more rows from a table or view in SQL Server 2012.

Transact-SQL Syntax Conventions

Syntax

[WITH <common_table_expression> [,...n]]
DELETE

 [TOP (expression) [PERCENT]]

 [FROM]

 { { table_alias

 | <object>

 | rowset_function_limited

 [WITH (table_hint_limited [...n])] }

 | @table_variable

 }

 [<OUTPUT Clause>]

 [FROM table_source [,...n]]

 [WHERE { <search_condition>

 | { [CURRENT OF

 { { [GLOBAL] cursor_name }

 | cursor_variable_name

 }

]

 }

 }

]

 [OPTION (<Query Hint> [,...n])]
[;]

<object> ::=

{

 [server_name.database_name.schema_name.
 | database_name. [schema_name] .
 | schema_name.

17

]

 table_or_view_name

}

Arguments
WITH <common_table_expression>

Specifies the temporary named result set, also known as common table expression,
defined within the scope of the DELETE statement. The result set is derived from a
SELECT statement.

Common table expressions can also be used with the SELECT, INSERT, UPDATE, and
CREATE VIEW statements. For more information, see WITH Common.

TOP (expression) [PERCENT]

Specifies the number or percent of random rows that will be deleted. expression can be
either a number or a percent of the rows. The rows referenced in the TOP expression
used with INSERT, UPDATE, or DELETE are not arranged in any order. For more
information, see TOP (Transact-SQL).

FROM

An optional keyword that can be used between the DELETE keyword and the target
table_or_view_name, or rowset_function_limited.

table_alias

The alias specified in the FROM table_source clause representing the table or view
from which the rows are to be deleted.

server_name

The name of the server (using a linked server name or the OPENDATASOURCE
function as the server name) on which the table or view is located. If server_name is
specified, database_name and schema_name are required.

database_name

The name of the database.

schema_name

The name of the schema to which the table or view belongs.

http://msdn.microsoft.com/en-us/library/5510b846-9cde-4687-8798-be9a273aad31

18

table_orview_name

The name of the table or view from which the rows are to be removed.

A table variable, within its scope, also can be used as a table source in a DELETE
statement.

The view referenced by table_or_view_name must be updatable and reference exactly
one base table in the FROM clause of the view definition. For more information about
updatable views, see CREATE VIEW (Transact-SQL).

rowset_function_limited

Either the OPENQUERY or OPENROWSET function, subject to provider capabilities.

WITH (<table_hint_limited> [... n])

Specifies one or more table hints that are allowed for a target table. The WITH keyword
and the parentheses are required. NOLOCK and READUNCOMMITTED are not
allowed. For more information about table hints, see Table Hint (Transact-SQL).

<OUTPUT_Clause>

Returns deleted rows, or expressions based on them, as part of the DELETE operation.
The OUTPUT clause is not supported in any DML statements targeting views or remote
tables. For more information, see OUTPUT Clause (Transact-SQL).

FROM table_source

Specifies an additional FROM clause. This Transact-SQL extension to DELETE allows
specifying data from <table_source> and deleting the corresponding rows from the table
in the first FROM clause.

This extension, specifying a join, can be used instead of a subquery in the WHERE
clause to identify rows to be removed.

For more information, see FROM (Transact-SQL).

WHERE

Specifies the conditions used to limit the number of rows that are deleted. If a WHERE
clause is not supplied, DELETE removes all the rows from the table.

There are two forms of delete operations based on what is specified in the WHERE
clause:

• Searched deletes specify a search condition to qualify the rows to delete. For
example, WHERE column_name = value.

http://msdn.microsoft.com/en-us/library/aecc2f73-2ab5-4db9-b1e6-2f9e3c601fb9
http://msdn.microsoft.com/en-us/library/b805e976-f025-4be1-bcb0-3a57b0c57717
http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17

19

• Positioned deletes use the CURRENT OF clause to specify a cursor. The delete
operation occurs at the current position of the cursor. This can be more accurate
than a searched DELETE statement that uses a WHERE search_condition clause
to qualify the rows to be deleted. A searched DELETE statement deletes multiple
rows if the search condition does not uniquely identify a single row.

<search_condition>

Specifies the restricting conditions for the rows to be deleted. There is no limit to the
number of predicates that can be included in a search condition. For more information,
see Search Condition.

CURRENT OF

Specifies that the DELETE is performed at the current position of the specified cursor.

GLOBAL

Specifies that cursor_name refers to a global cursor.

cursor_name

Is the name of the open cursor from which the fetch is made. If both a global and a local
cursor with the name cursor_name exist, this argument refers to the global cursor if
GLOBAL is specified; otherwise, it refers to the local cursor. The cursor must allow
updates.

cursor_variable_name

The name of a cursor variable. The cursor variable must reference a cursor that allows
updates.

OPTION (<query_hint> [,... n])

Keywords that indicate which optimizer hints are used to customize the way the
Database Engine processes the statement. For more information, see Query Hint
(Transact-SQL).

Best Practices
To delete all the rows in a table, use TRUNCATE TABLE. TRUNCATE TABLE is faster than
DELETE and uses fewer system and transaction log resources.

http://msdn.microsoft.com/en-us/library/3d544eed-3993-4055-983d-ea334f8c5c58

20

Use the @@ROWCOUNT function to return the number of deleted rows to the client application.
For more information, see @@ROWCOUNT (Transact-SQL).

Error Handling
You can implement error handling for the DELETE statement by specifying the statement in a
TRY…CATCH construct.

The DELETE statement may fail if it violates a trigger or tries to remove a row referenced by data
in another table with a FOREIGN KEY constraint. If the DELETE removes multiple rows, and any
one of the removed rows violates a trigger or constraint, the statement is canceled, an error is
returned, and no rows are removed.

When a DELETE statement encounters an arithmetic error (overflow, divide by zero, or a domain
error) occurring during expression evaluation, the Database Engine handles these errors as if
SET ARITHABORT is set ON. The rest of the batch is canceled, and an error message is
returned.

Interoperability
DELETE can be used in the body of a user-defined function if the object modified is a table
variable.

When you delete a row that contains a FILESTREAM column, you also delete its underlying file
system files. The underlying files are removed by the FILESTREAM garbage collector. For more
information, see Managing FILESTREAM Data by Using Transact-SQL.

The FROM clause cannot be specified in a DELETE statement that references, either directly or
indirectly, a view with an INSTEAD OF trigger defined on it. For more information about INSTEAD
OF triggers, see CREATE TRIGGER (Transact-SQL).

Limitations and Restrictions
When TOP is used with DELETE, the referenced rows are not arranged in any order and the
ORDER BY clause can not be directly specified in this statement. If you need to use TOP to
delete rows in a meaningful chronological order, you must use TOP together with an ORDER BY
clause in a subselect statement. See the Examples section that follows in this topic.

TOP cannot be used in a DELETE statement against partitioned views.

Locking Behavior
By default, a DELETE statement always acquires an exclusive (X) lock on the table it modifies,
and holds that lock until the transaction completes. With an exclusive (X) lock, no other
transactions can modify data; read operations can take place only with the use of the NOLOCK
hint or read uncommitted isolation level. You can specify table hints to override this default
behavior for the duration of the DELETE statement by specifying another locking method,
however, we recommend that hints be used only as a last resort by experienced developers and
database administrators. For more information, see Table Hints (Transact-SQL).

http://msdn.microsoft.com/en-us/library/97a47998-81d9-4331-a244-9eb8b6fe4a56
http://msdn.microsoft.com/en-us/library/a6bf0ce7-7e5e-4a07-8917-ee526c9d0a05
http://msdn.microsoft.com/en-us/library/edeced03-decd-44c3-8c74-2c02f801d3e7

21

When rows are deleted from a heap the Database Engine may use row or page locking for the
operation. As a result, the pages made empty by the delete operation remain allocated to the
heap. When empty pages are not deallocated, the associated space cannot be reused by other
objects in the database.

To delete rows in a heap and deallocate pages, use one of the following methods.

• Specify the TABLOCK hint in the DELETE statement. Using the TABLOCK hint causes the
delete operation to take a shared lock on the table instead of a row or page lock. This allows
the pages to be deallocated. For more information about the TABLOCK hint, see Table Hints
(Transact-SQL).

• Use TRUNCATE TABLE if all rows are to be deleted from the table.

• Create a clustered index on the heap before deleting the rows. You can drop the clustered
index after the rows are deleted. This method is more time consuming than the previous
methods and uses more temporary resources.

Logging Behavior
The DELETE statement is always fully logged.

Security

Permissions
DELETE permissions are required on the target table. SELECT permissions are also required if
the statement contains a WHERE clause.

DELETE permissions default to members of the sysadmin fixed server role, the db_owner and
db_datawriter fixed database roles, and the table owner. Members of the sysadmin, db_owner,
and the db_securityadmin roles, and the table owner can transfer permissions to other users.

Examples

Category Featured syntax elements

Basic syntax DELETE

Limiting the rows deleted WHERE • FROM • cursor •

Deleting rows from a remote table Linked server • OPENQUERY rowset function •
OPENDATASOURCE rowset function

Overriding the default behavior of the query
optimizer by using hints

Table hints • query hints

Capturing the results of the DELETE statement OUTPUT clause

22

Basic Syntax
Examples in this section demonstrate the basic functionality of the DELETE statement using the
minimum required syntax.

A. Using DELETE with no WHERE clause
The following example deletes all rows from the SalesPersonQuotaHistory table because a
WHERE clause is not used to limit the number of rows deleted.

USE AdventureWorks2012;

GO

DELETE FROM Sales.SalesPersonQuotaHistory;

GO

Limiting the Rows Deleted
Examples in this section demonstrate how to limit the number of rows that will be deleted.

A. Using the WHERE clause to delete a set of rows
The following example deletes all rows from the ProductCostHistory table in which the value in
the StandardCost column is more than 1000.00.

USE AdventureWorks2012;

GO

DELETE FROM Production.ProductCostHistory

WHERE StandardCost > 1000.00;

GO

The following example shows a more complex WHERE clause. The WHERE clause defines two
conditions that must be met to determine the rows to delete. The value in the StandardCost
column must be between 12.00 and 14.00 and the value in the column SellEndDate must be null.
The example also prints the value from the @@ROWCOUNT function to return the number of
deleted rows.

USE AdventureWorks2012;

GO

DELETE Production.ProductCostHistory

WHERE StandardCost BETWEEN 12.00 AND 14.00

 AND EndDate IS NULL;

PRINT 'Number of rows deleted is ' + CAST(@@ROWCOUNT as char(3));

B. Using a cursor to determine the row to delete
The following example deletes a single row from the EmployeePayHistory table using a cursor
named my_cursor. The delete operation affects only the single row currently fetched from the
cursor.

USE AdventureWorks2012;

23

GO

DECLARE complex_cursor CURSOR FOR

 SELECT a.BusinessEntityID

 FROM HumanResources.EmployeePayHistory AS a

 WHERE RateChangeDate <>

 (SELECT MAX(RateChangeDate)

 FROM HumanResources.EmployeePayHistory AS b

 WHERE a.BusinessEntityID = b.BusinessEntityID) ;

OPEN complex_cursor;

FETCH FROM complex_cursor;

DELETE FROM HumanResources.EmployeePayHistory

WHERE CURRENT OF complex_cursor;

CLOSE complex_cursor;

DEALLOCATE complex_cursor;

GO

C. Using joins and subqueries to data in one table to delete rows in another table
The following examples show two ways to delete rows in one table based on data in another
table. In both examples, rows from the SalesPersonQuotaHistory table based are deleted based
on the year-to-date sales stored in the SalesPerson table. The first DELETE statement shows the
ISO-compatible subquery solution, and the second DELETE statement shows the Transact-
SQL FROM extension to join the two tables.

-- SQL-2003 Standard subquery

USE AdventureWorks2012;

GO

DELETE FROM Sales.SalesPersonQuotaHistory

WHERE BusinessEntityID IN

 (SELECT BusinessEntityID

 FROM Sales.SalesPerson

 WHERE SalesYTD > 2500000.00);

GO

-- Transact-SQL extension

USE AdventureWorks2012;

GO

DELETE FROM Sales.SalesPersonQuotaHistory

FROM Sales.SalesPersonQuotaHistory AS spqh

INNER JOIN Sales.SalesPerson AS sp

ON spqh.BusinessEntityID = sp.BusinessEntityID

WHERE sp.SalesYTD > 2500000.00;

24

GO

D. Using TOP to limit the number of rows deleted
When a TOP (n) clause is used with DELETE, the delete operation is performed on a random
selection of n number of rows. The following example deletes 20 random rows from the
PurchaseOrderDetail table that have due dates that are earlier than July 1, 2006.

USE AdventureWorks2012;

GO

DELETE TOP (20)

FROM Purchasing.PurchaseOrderDetail

WHERE DueDate < '20020701';

GO

If you have to use TOP to delete rows in a meaningful chronological order, you must use TOP
together with ORDER BY in a subselect statement. The following query deletes the 10 rows of
the PurchaseOrderDetail table that have the earliest due dates. To ensure that only 10 rows are
deleted, the column specified in the subselect statement (PurchaseOrderID) is the primary key of
the table. Using a nonkey column in the subselect statement may result in the deletion of more
than 10 rows if the specified column contains duplicate values.

USE AdventureWorks2012;

GO

DELETE FROM Purchasing.PurchaseOrderDetail

WHERE PurchaseOrderDetailID IN

 (SELECT TOP 10 PurchaseOrderDetailID

 FROM Purchasing.PurchaseOrderDetail

 ORDER BY DueDate ASC);

GO

Deleting Rows From a Remote Table
Examples in this section demonstrate how to delete rows from a remote table by using a linked
server or a rowset function to reference the remote table. A remote table exists on a different
server or instance of SQL Server.

A. Deleting data from a remote table by using a linked server
The following example deletes rows from a remote table. The example begins by creating a link
to the remote data source by using sp_addlinkedserver. The linked server name, MyLinkServer, is
then specified as part of the four-part object name in the form server.catalog.schema.object.

USE master;

GO

-- Create a link to the remote data source.

http://msdn.microsoft.com/en-us/library/fed3adb0-4c15-4a1a-8acd-1b184aff558f
http://msdn.microsoft.com/en-us/library/fed3adb0-4c15-4a1a-8acd-1b184aff558f
http://msdn.microsoft.com/en-us/library/ac24d700-3144-4ab5-9fa8-8c014001cc71
http://msdn.microsoft.com/en-us/library/fed3adb0-4c15-4a1a-8acd-1b184aff558f

25

-- Specify a valid server name for @datasrc as 'server_name' or

'server_name\instance_name'.

EXEC sp_addlinkedserver @server = N'MyLinkServer',

 @srvproduct = N' ',

 @provider = N'SQLNCLI',

 @datasrc = N'server_name',

 @catalog = N'AdventureWorks2012';

GO

-- Specify the remote data source using a four-part name

-- in the form linked_server.catalog.schema.object.

DELETE MyLinkServer.AdventureWorks2012.HumanResources.Department WHERE DepartmentID > 16;

GO

B. Deleting data from a remote table by using the OPENQUERY function
The following example deletes rows from a remote table by specifying the OPENQUERYrowset
function. The linked server name created in the previous example is used in this example.

DELETE OPENQUERY (MyLinkServer, 'SELECT Name, GroupName FROM

AdventureWorks2012.HumanResources.Department

WHERE DepartmentID = 18');

GO

C. Deleting data from a remote table by using the OPENDATASOURCE function
The following example deletes rows from a remote table by specifying
the OPENDATASOURCErowset function. Specify a valid server name for the data source by
using the format server_name or server_name\instance_name.

DELETE FROM OPENDATASOURCE('SQLNCLI',

 'Data Source= <server_name>; Integrated Security=SSPI')

 .AdventureWorks2012.HumanResources.Department

WHERE DepartmentID = 17;'

Capturing the results of the DELETE statement

A. Using DELETE with the OUTPUT clause
The following example shows how to save the results of a DELETE statement to a table variable.

USE AdventureWorks2012;

GO

DELETE Sales.ShoppingCartItem

OUTPUT DELETED.*

http://msdn.microsoft.com/en-us/library/b805e976-f025-4be1-bcb0-3a57b0c57717
http://msdn.microsoft.com/en-us/library/5510b846-9cde-4687-8798-be9a273aad31

26

WHERE ShoppingCartID = 20621;

--Verify the rows in the table matching the WHERE clause have been deleted.

SELECT COUNT(*) AS [Rows in Table] FROM Sales.ShoppingCartItem WHERE ShoppingCartID =

20621;

GO

B. Using OUTPUT with <from_table_name> in a DELETE statement
The following example deletes rows in the ProductProductPhoto table based on search criteria
defined in the FROM clause of the DELETE statement. The OUTPUT clause returns columns from the
table being deleted, DELETED.ProductID, DELETED.ProductPhotoID, and columns from the Product
table. This is used in the FROM clause to specify the rows to delete.

USE AdventureWorks2012;

GO

DECLARE @MyTableVar table (

 ProductID int NOT NULL,

 ProductName nvarchar(50)NOT NULL,

 ProductModelID int NOT NULL,

 PhotoID int NOT NULL);

DELETE Production.ProductProductPhoto

OUTPUT DELETED.ProductID,

 p.Name,

 p.ProductModelID,

 DELETED.ProductPhotoID

 INTO @MyTableVar

FROM Production.ProductProductPhoto AS ph

JOIN Production.Product as p

 ON ph.ProductID = p.ProductID

 WHERE p.ProductModelID BETWEEN 120 and 130;

--Display the results of the table variable.

SELECT ProductID, ProductName, ProductModelID, PhotoID

FROM @MyTableVar

ORDER BY ProductModelID;

GO

See Also
CREATE TRIGGER

INSERT

SELECT

TRUNCATE TABLE

http://msdn.microsoft.com/en-us/library/edeced03-decd-44c3-8c74-2c02f801d3e7
http://msdn.microsoft.com/en-us/library/3d544eed-3993-4055-983d-ea334f8c5c58

27

UPDATE

WITH common_table_expression (Transact-SQL)

@@ROWCOUNT (Transact-SQL)

FROM
Specifies the tables, views, derived tables, and joined tables used in DELETE, SELECT, and
UPDATE statements in SQL Server 2012. In the SELECT statement, the FROM clause is
required except when the select list contains only constants, variables, and arithmetic
expressions (no column names).

Transact-SQL Syntax Conventions

Syntax

[FROM { <table_source> } [,...n]]

<table_source> ::=

{

 table_or_view_name [[AS] table_alias] [<tablesample_clause>]

 [WITH (< table_hint > [[,]...n])]

 | rowset_function [[AS] table_alias]

 [(bulk_column_alias [,...n])]

 | user_defined_function [[AS] table_alias]]

 | OPENXML <openxml_clause>

 | derived_table [AS] table_alias [(column_alias [,...n])]

 | <joined_table>

 | <pivoted_table>

 | <unpivoted_table>

 | @variable [[AS] table_alias]

 | @variable.function_call (expression [,...n]) [[AS] table_alias] [(column_alias [,...n])]

}

<tablesample_clause> ::=

 TABLESAMPLE [SYSTEM] (sample_number [PERCENT | ROWS])

 [REPEATABLE (repeat_seed)]

<joined_table> ::=

{

http://msdn.microsoft.com/en-us/library/97a47998-81d9-4331-a244-9eb8b6fe4a56

28

 <table_source><join_type><table_source> ON <search_condition>

 | <table_source> CROSS JOIN <table_source>

 | left_table_source { CROSS | OUTER } APPLY right_table_source

 | [(] <joined_table> [)]

}

<join_type> ::=

 [{ INNER

Arguments

 | { { LEFT | RIGHT | FULL } [OUTER] } } [<join_hint>]]

 JOIN

<pivoted_table> ::=

 table_source PIVOT <pivot_clause> [AS] table_alias

<pivot_clause> ::=

(aggregate_function(value_column [[,]...n])

 FOR pivot_column

 IN (<column_list>)

)

<unpivoted_table> ::=

 table_source UNPIVOT <unpivot_clause> [AS] table_alias

<unpivot_clause> ::=

(value_column FOR pivot_column IN (<column_list>))

<column_list> ::=

column_name [,...n]

<table_source>

Specifies a table, view, table variable, or derived table source, with or without an alias,
to use in the Transact-SQL statement. Up to 256 table sources can be used in a
statement, although the limit varies depending on available memory and the complexity
of other expressions in the query. Individual queries may not support up to 256 table
sources.

Note
Query performance may suffer with lots of tables referenced in a query. Compilation and

29

optimization time is also affected by additional factors. These include the presence of indexes
and indexed views on each <table_source> and the size of the <select_list> in the SELECT
statement.

The order of table sources after the FROM keyword does not affect the result set that is
returned. SQL Server returns errors when duplicate names appear in the FROM clause.

table_or_view_name

Is the name of a table or view.

If the table or view exists in another database on the same instance of SQL Server, use
a fully qualified name in the form database.schema.object_name.

If the table or view exists outside the instance of SQL Serverl, use a four-part name in
the form linked_server.catalog.schema.object. For more information,
see sp_addlinkedserver (Transact-SQL). A four-part name that is constructed by
using the OPENDATASOURCEfunction as the server part of the name can also be
used to specify the remote table source. When OPENDATASOURCE is specified,
database_name and schema_name may not apply to all data sources and is subject to
the capabilities of the OLE DB provider that accesses the remote object.

[AS] table_alias

Is an alias for table_source that can be used either for convenience or to distinguish a
table or view in a self-join or subquery. An alias is frequently a shortened table name
used to refer to specific columns of the tables in a join. If the same column name exists
in more than one table in the join, SQL Server requires that the column name be
qualified by a table name, view name, or alias. The table name cannot be used if an
alias is defined.

When a derived table, rowset or table-valued function, or operator clause (such as
PIVOT or UNPIVOT) is used, the required table_alias at the end of the clause is the
associated table name for all columns, including grouping columns, returned.

WITH (<table_hint>)

Specifies that the query optimizer use an optimization or locking strategy with this table
and for this statement. For more information, see Table Hints.

rowset_function

Specifies one of the rowset functions, such as OPENROWSET, that returns an object
that can be used instead of a table reference. For more information about a list of
rowset functions, see Rowset Functions.

Using the OPENROWSET and OPENQUERY functions to specify a remote object
depends on the capabilities of the OLE DB provider that accesses the object.

http://msdn.microsoft.com/en-us/library/fed3adb0-4c15-4a1a-8acd-1b184aff558f
http://msdn.microsoft.com/en-us/library/5510b846-9cde-4687-8798-be9a273aad31
http://msdn.microsoft.com/en-us/library/ac24d700-3144-4ab5-9fa8-8c014001cc71

30

bulk_column_alias

Is an optional alias to replace a column name in the result set. Column aliases are
allowed only in SELECT statements that use the OPENROWSET function with the
BULK option. When you use bulk_column_alias, specify an alias for every table column
in the same order as the columns in the file.

Note
This alias overrides the NAME attribute in the COLUMN elements of an XML format file, if
present.

user_defined_function

Specifies a table-valued function.

OPENXML <openxml_clause>

Provides a rowset view over an XML document. For more information, see OPENXML.

derived_table

Is a subquery that retrieves rows from the database.derived_table is used as input to
the outer query.

derived_table can use the Transact-SQL table value constructor feature to specify
multiple rows. For example, SELECT * FROM (VALUES (1, 2), (3, 4), (5, 6), (7,
8), (9, 10)) AS MyTable(a, b);. For more information, see Table Value
Constructor (Transact-SQL).

column_alias

Is an optional alias to replace a column name in the result set of the derived table.
Include one column alias for each column in the select list, and enclose the complete
list of column aliases in parentheses.

<tablesample_clause>

Specifies that a sample of data from the table is returned. The sample may be
approximate. This clause can be used on any primary or joined table in a SELECT,
UPDATE, or DELETE statement. TABLESAMPLE cannot be specified with views.

Note
When you use TABLESAMPLE against databases that are upgraded to SQL Server, the
compatibility level of the database is set to 110 or higher, PIVOT is not allowed in a recursive
common table expression (CTE) query. For more information, see ALTER DATABASE

http://msdn.microsoft.com/en-us/library/8088b114-7d01-435a-8e0d-b81abacc86d6
http://msdn.microsoft.com/en-us/library/ca5fd220-d5ea-4182-8950-55d4101a86f6

31

Compatibility Level (Transact-SQL)

SYSTEM

.

Is an implementation-dependent sampling method specified by ISO standards. In SQL
Server, this is the only sampling method available and is applied by default. SYSTEM
applies a page-based sampling method in which a random set of pages from the table
is chosen for the sample, and all the rows on those pages are returned as the sample
subset.

sample_number

Is an exact or approximate constant numeric expression that represents the percent or
number of rows. When specified with PERCENT, sample_number is implicitly converted
to a float value; otherwise, it is converted to bigint. PERCENT is the default.

PERCENT

Specifies that a sample_number percent of the rows of the table should be retrieved
from the table. When PERCENT is specified, SQL Server returns an approximate of the
percent specified. When PERCENT is specified the sample_number expression must
evaluate to a value from 0 to 100.

ROWS

Specifies that approximately sample_number of rows will be retrieved. When ROWS is
specified, SQL Server returns an approximation of the number of rows specified. When
ROWS is specified, the sample_numberexpression must evaluate to an integer value
greater than zero.

REPEATABLE

Indicates that the selected sample can be returned again. When specified with the
same repeat_seed value, SQL Server will return the same subset of rows as long as no
changes have been made to any rows in the table. When specified with a different
repeat_seed value, SQL Server will likely return some different sample of the rows in
the table. The following actions to the table are considered changes: insert, update,
delete, index rebuild or defragmentation, and database restore or attach.

repeat_seed

Is a constant integer expression used by SQL Server to generate a random
number.repeat_seed is bigint. If repeat_seed is not specified, SQL Server assigns a
value at random. For a specific repeat_seed value, the sampling result is always the

32

same if no changes have been applied to the table. The repeat_seed expression must
evaluate to an integer greater than zero.

<joined_table>

Is a result set that is the product of two or more tables. For multiple joins, use
parentheses to change the natural order of the joins.

<join_type>

Specifies the type of join operation.

INNER

Specifies all matching pairs of rows are returned. Discards unmatched rows from both
tables. When no join type is specified, this is the default.

FULL [OUTER]

Specifies that a row from either the left or right table that does not meet the join
condition is included in the result set, and output columns that correspond to the other
table are set to NULL. This is in addition to all rows typically returned by the INNER
JOIN.

LEFT [OUTER]

Specifies that all rows from the left table not meeting the join condition are included in
the result set, and output columns from the other table are set to NULL in addition to all
rows returned by the inner join.

RIGHT [OUTER]

Specifies all rows from the right table not meeting the join condition are included in the
result set, and output columns that correspond to the other table are set to NULL, in
addition to all rows returned by the inner join.

<join_hint>

Specifies that the SQL Server query optimizer use one join hint, or execution algorithm,
per join specified in the query FROM clause. For more information, see Join Hints.

JOIN

Indicates that the specified join operation should occur between the specified table

33

sources or views.

ON <search_condition>

Specifies the condition on which the join is based. The condition can specify any
predicate, although columns and comparison operators are frequently used, for
example:

USE AdventureWorks2012 ;

GO

SELECT p.ProductID, v.BusinessEntityID

FROM Production.Product AS p

JOIN Purchasing.ProductVendor AS v

ON (p.ProductID = v.ProductID);

When the condition specifies columns, the columns do not have to have the same name
or same data type; however, if the data types are not the same, they must be either
compatible or types that SQL Server can implicitly convert. If the data types cannot be
implicitly converted, the condition must explicitly convert the data type by using the
CONVERT function.

There can be predicates that involve only one of the joined tables in the ON clause.
Such predicates also can be in the WHERE clause in the query. Although the
placement of such predicates does not make a difference for INNER joins, they might
cause a different result when OUTER joins are involved. This is because the predicates
in the ON clause are applied to the table before the join, whereas the WHERE clause is
semantically applied to the result of the join.

For more information about search conditions and predicates, see Search Condition.

CROSS JOIN

Specifies the cross-product of two tables. Returns the same rows as if no WHERE
clause was specified in an old-style, non-SQL-92-style join.

left_table_source{ CROSS | OUTER } APPLY right_table_source

Specifies that the right_table_source of the APPLY operator is evaluated against every
row of the left_table_source. This functionality is useful when the right_table_source
contains a table-valued function that takes column values from the left_table_source as
one of its arguments.

Either CROSS or OUTER must be specified with APPLY. When CROSS is specified, no
rows are produced when the right_table_source is evaluated against a specified row of
the left_table_source and returns an empty result set.

When OUTER is specified, one row is produced for each row of the

34

left_table_sourceeven when the right_table_source evaluates against that row and
returns an empty result set.

For more information, see the Remarks section.

left_table_source

Is a table source as defined in the previous argument. For more information, see the
Remarks section.

right_table_source

Is a table source as defined in the previous argument. For more information, see the
Remarks section.

table_source PIVOT <pivot_clause>

Specifies that the table_source is pivoted based on the pivot_column. table_source is a
table or table expression. The output is a table that contains all columns of the
table_source except the pivot_column and value_column. The columns of the
table_source, except the pivot_column and value_column, are called the grouping
columns of the pivot operator.

PIVOT performs a grouping operation on the input table with regard to the grouping
columns and returns one row for each group. Additionally, the output contains one
column for each value specified in the column_list that appears in the pivot_column of
the input_table.

For more information, see the Remarks section that follows.

aggregate_function

Is a system or user-defined aggregate function that accepts one or more inputs. The
aggregate function should be invariant to null values. An aggregate function invariant to
null values does not consider null values in the group while it is evaluating the
aggregate value.

The COUNT(*) system aggregate function is not allowed.

value_column

Is the value column of the PIVOT operator. When used with UNPIVOT, value_column
cannot be the name of an existing column in the input table_source.

FOR pivot_column

Is the pivot column of the PIVOT operator.pivot_column must be of a type implicitly or

35

explicitly convertible to nvarchar(). This column cannot be image or rowversion.

When UNPIVOT is used, pivot_column is the name of the output column that becomes
narrowed from the table_source. There cannot be an existing column in table_source
with that name.

IN (column_list)

In the PIVOT clause, lists the values in the pivot_column that will become the column
names of the output table. The list cannot specify any column names that already exist
in the input table_source that is being pivoted.

In the UNPIVOT clause, lists the columns in table_source that will be narrowed into a
single pivot_column.

table_alias

Is the alias name of the output table.pivot_table_alias must be specified.

UNPIVOT <unpivot_clause>

Specifies that the input table is narrowed from multiple columns in column_list into a
single column called pivot_column.

Remarks
The FROM clause supports the SQL-92-SQL syntax for joined tables and derived tables. SQL-92
syntax provides the INNER, LEFT OUTER, RIGHT OUTER, FULL OUTER, and CROSS join
operators.

UNION and JOIN within a FROM clause are supported within views and in derived tables and
subqueries.

A self-join is a table that is joined to itself. Insert or update operations that are based on a self-join
follow the order in the FROM clause.

Because SQL Server considers distribution and cardinality statistics from linked servers that
provide column distribution statistics, the REMOTE join hint is not required to force evaluating a
join remotely. The SQL Server query processor considers remote statistics and determines
whether a remote-join strategy is appropriate. REMOTE join hint is useful for providers that do not
provide column distribution statistics.

Using APPLY
Both the left and right operands of the APPLY operator are table expressions. The main
difference between these operands is that the right_table_source can use a table-valued function
that takes a column from the left_table_source as one of the arguments of the function. The

36

left_table_source can include table-valued functions, but it cannot contain arguments that are
columns from the right_table_source.

The APPLY operator works in the following way to produce the table source for the FROM
clause:

1. Evaluates right_table_source against each row of the left_table_source to produce rowsets.

The values in the right_table_source depend on left_table_source. right_table_source can be
represented approximately this way: TVF(left_table_source.row), where TVF is a table-valued
function.

2. Combines the result sets that are produced for each row in the evaluation of
right_table_source with the left_table_source by performing a UNION ALL operation.

The list of columns produced by the result of the APPLY operator is the set of columns from
the left_table_source that is combined with the list of columns from the right_table_source.

Using PIVOT and UNPIVOT
The pivot_column and value_column are grouping columns that are used by the PIVOT operator.
PIVOT follows the following process to obtain the output result set:

1. Performs a GROUP BY on its input_table against the grouping columns and produces one
output row for each group.

The grouping columns in the output row obtain the corresponding column values for that
group in the input_table.

2. Generates values for the columns in the column list for each output row by performing the
following:

a. Grouping additionally the rows generated in the GROUP BY in the previous step against
the pivot_column.

For each output column in the column_list, selecting a subgroup that satisfies the
condition:

pivot_column = CONVERT(<data type of pivot_column>, 'output_column')

b. aggregate_function is evaluated against the value_column on this subgroup and its result
is returned as the value of the corresponding output_column. If the subgroup is empty,
SQL Server generates a null value for that output_column. If the aggregate function is
COUNT and the subgroup is empty, zero (0) is returned.

Permissions
Requires the permissions for the DELETE, SELECT, or UPDATE statement.

37

Examples

A. Using a simple FROM clause
The following example retrieves the TerritoryID and Name columns from the SalesTerritory table
in the AdventureWorks2012 sample database.

USE AdventureWorks2012 ;

GO

SELECT TerritoryID, Name

FROM Sales.SalesTerritory

ORDER BY TerritoryID ;

Here is the result set.

TerritoryID Name

----------- ------------------------------

1 Northwest

2 Northeast

3 Central

4 Southwest

5 Southeast

6 Canada

7 France

8 Germany

9 Australia

10 United Kingdom

(10 row(s) affected)

B. Using the TABLOCK and HOLDLOCK optimizer hints
The following partial transaction shows how to place an explicit shared table lock on Employee and
how to read the index. The lock is held throughout the whole transaction.

USE AdventureWorks2012 ;

GO

BEGIN TRAN

SELECT COUNT(*)

FROM HumanResources.Employee WITH (TABLOCK, HOLDLOCK) ;

C. Using the SQL-92 CROSS JOIN syntax
The following example returns the cross product of the two tables Employee and Department. A list
of all possible combinations of BusinessEntityID rows and all Department name rows are
returned.

USE AdventureWorks2012 ;

38

GO

SELECT e.BusinessEntityID, d.Name AS Department

FROM HumanResources.Employee AS e

CROSS JOIN HumanResources.Department AS d

ORDER BY e.BusinessEntityID, d.Name ;

D. Using the SQL-92 FULL OUTER JOIN syntax
The following example returns the product name and any corresponding sales orders in the
SalesOrderDetail table. It also returns any sales orders that have no product listed in the Product
table, and any products with a sales order other than the one listed in the Product table.

USE AdventureWorks2012 ;

GO

-- The OUTER keyword following the FULL keyword is optional.

SELECT p.Name, sod.SalesOrderID

FROM Production.Product AS p

FULL OUTER JOIN Sales.SalesOrderDetail AS sod

ON p.ProductID = sod.ProductID

WHERE p.ProductID IS NULL OR sod.ProductID IS NULL

ORDER BY p.Name ;

E. Using the SQL-92 LEFT OUTER JOIN syntax
The following example joins two tables on ProductID and preserves the unmatched rows from the
left table. The Product table is matched with the SalesOrderDetail table on the ProductID columns
in each table. All products, ordered and not ordered, appear in the result set.

USE AdventureWorks2012 ;

GO

SELECT p.Name, sod.SalesOrderID

FROM Production.Product AS p

LEFT OUTER JOIN Sales.SalesOrderDetail AS sod

ON p.ProductID = sod.ProductID

ORDER BY p.Name ;

F. Using the SQL-92 INNER JOIN syntax
The following example returns all product names and sales order IDs.

USE AdventureWorks2012 ;

GO

-- By default, SQL Server performs an INNER JOIN if only the JOIN

-- keyword is specified.

SELECT p.Name, sod.SalesOrderID

FROM Production.Product AS p

INNER JOIN Sales.SalesOrderDetail AS sod

39

ON p.ProductID = sod.ProductID

ORDER BY p.Name ;

\G. Using the SQL-92 RIGHT OUTER JOIN syntax
The following example joins two tables on TerritoryID and preserves the unmatched rows from
the right table. The SalesTerritory table is matched with the SalesPerson table on the
TerritoryID column in each table. All salespersons appear in the result set, whether or not they
are assigned a territory.

USE AdventureWorks2012 ;

GO

SELECT st.Name AS Territory, sp.BusinessEntityID

FROM Sales.SalesTerritory AS st

RIGHT OUTER JOIN Sales.SalesPerson AS sp

ON st.TerritoryID = sp.TerritoryID ;

H. Using HASH and MERGE join hints
The following example performs a three-table join among the Product, ProductVendor, and Vendor
tables to produce a list of products and their vendors. The query optimizer joins Product and
ProductVendor (p and pv) by using a MERGE join. Next, the results of the Product and
ProductVendor MERGE join (p and pv) are HASH joined to the Vendor table to produce (p and pv)
and v.

After a join hint is specified, the INNER keyword is no longer optional and must be
explicitly stated for an INNER JOIN to be performed.

USE AdventureWorks2012 ;

GO

SELECT p.Name AS ProductName, v.Name AS VendorName

FROM Production.Product AS p

INNER MERGE JOIN Purchasing.ProductVendor AS pv

ON p.ProductID = pv.ProductID

INNER HASH JOIN Purchasing.Vendor AS v

ON pv.BusinessEntityID = v.BusinessEntityID

ORDER BY p.Name, v.Name ;

I. Using a derived table
The following example uses a derived table, a SELECT statement after the FROM clause, to return
the first and last names of all employees and the cities in which they live.

USE AdventureWorks2012 ;

GO

SELECT RTRIM(p.FirstName) + ' ' + LTRIM(p.LastName) AS Name, d.City

Important

40

FROM Person.Person AS p

INNER JOIN HumanResources.Employee e ON p.BusinessEntityID = e.BusinessEntityID

INNER JOIN

 (SELECT bea.BusinessEntityID, a.City

 FROM Person.Address AS a

 INNER JOIN Person.BusinessEntityAddress AS bea

 ON a.AddressID = bea.AddressID) AS d

ON p.BusinessEntityID = d.BusinessEntityID

ORDER BY p.LastName, p.FirstName;

J. Using TABLESAMPLE to read data from a sample of rows in a table
The following example uses TABLESAMPLE in the FROM clause to return approximately 10 percent of
all the rows in the Customer table.

USE AdventureWorks2012 ;

GO

SELECT *

FROM Sales.Customer TABLESAMPLE SYSTEM (10 PERCENT) ;

K. Using APPLY
The following example assumes that the following tables with the following schema exist in the
database:

• Departments: DeptID, DivisionID, DeptName, DeptMgrID

• EmpMgr: MgrID, EmpID

• Employees: EmpID, EmpLastName, EmpFirstName, EmpSalary

There is also a table-valued function, GetReports(MgrID) that returns the list of all employees
(EmpID, EmpLastName, EmpSalary) that report directly or indirectly to the specified MgrID.

The example uses APPLY to return all departments and all employees in that department. If a
particular department does not have any employees, there will not be any rows returned for that
department.

SELECT DeptID, DeptName, DeptMgrID, EmpID, EmpLastName, EmpSalary

FROM Departments d CROSS APPLY dbo.GetReports(d.DeptMgrID) ;

If you want the query to produce rows for those departments without employees, which will
produce null values for the EmpID, EmpLastName and EmpSalary columns, use OUTER APPLY instead.

SELECT DeptID, DeptName, DeptMgrID, EmpID, EmpLastName, EmpSalary

FROM Departments d OUTER APPLY dbo.GetReports(d.DeptMgrID) ;

L. Using PIVOT and UNPIVOT
The following example returns the number of purchase orders placed by employee IDs 164, 198,
223, 231, and 233, categorized by vendor ID.

41

USE AdventureWorks2012;

GO

SELECT VendorID, [250] AS Emp1, [251] AS Emp2, [256] AS Emp3, [257] AS Emp4, [260] AS

Emp5

FROM

(SELECT PurchaseOrderID, EmployeeID, VendorID

FROM Purchasing.PurchaseOrderHeader) AS p

PIVOT

(

COUNT (PurchaseOrderID)

FOR EmployeeID IN

([250], [251], [256], [257], [260])

) AS pvt

ORDER BY VendorID;

Here is a partial result set:

VendorID Emp1 Emp2 Emp3 Emp4 Emp5

--

1 4 3 5 4 4

2 4 1 5 5 5

3 4 3 5 4 4

4 4 2 5 5 4

5 5 1 5 5 5

To unpivot the table, assume the result set produced in the previous example is stored as pvt.
The query looks like the following.

--Create the table and insert values as portrayed in the previous example.

CREATE TABLE dbo.pvt (VendorID int, Emp1 int, Emp2 int,

Emp3 int, Emp4 int, Emp5 int);

GO

INSERT INTO dbo.pvt VALUES

 (1,4,3,5,4,4)

,(2,4,1,5,5,5)

,(3,4,3,5,4,4)

,(4,4,2,5,5,4)

,(5,5,1,5,5,5);

GO

--Unpivot the table.

SELECT VendorID, Employee, Orders

FROM

 (SELECT VendorID, Emp1, Emp2, Emp3, Emp4, Emp5

 FROM dbo.pvt) AS p

42

UNPIVOT

 (Orders FOR Employee IN

 (Emp1, Emp2, Emp3, Emp4, Emp5)

)AS unpvt

GO

Here is a partial result set:

VendorID Employee Orders

1 Emp1 4

1 Emp2 3

1 Emp3 5

1 Emp4 4

1 Emp5 4

2 Emp1 4

2 Emp2 1

2 Emp3 5

2 Emp4 5

2 Emp5 5

M. Using CROSS APPLY
The following example retrieves a snapshot of all query plans residing in the plan cache, by
querying the sys.dm_exec_cached_plans dynamic management view to retrieve the plan handles of
all query plans in the cache. Then the CROSS APPLY operator is specified to pass the plan handles
to sys.dm_exec_query_plan. The XML Showplan output for each plan currently in the plan cache is
in the query_plan column of the table that is returned.

USE master;

GO

SELECT dbid, object_id, query_plan

FROM sys.dm_exec_cached_plans AS cp

CROSS APPLY sys.dm_exec_query_plan(cp.plan_handle);

GO

See Also
CONTAINSTABLE

DELETE

FREETEXTTABLE

INSERT

OPENQUERY

OPENROWSET

http://msdn.microsoft.com/en-us/library/e580c210-cf57-419d-9544-7f650f2ab814
http://msdn.microsoft.com/en-us/library/4523ae15-4260-40a7-a53c-8df15e1fee79
http://msdn.microsoft.com/en-us/library/b805e976-f025-4be1-bcb0-3a57b0c57717
http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17

43

Operators

UPDATE

WHERE

Hints
Hints are options or strategies specified for enforcement by the SQL Server query processor on
SELECT, INSERT, UPDATE, or DELETE statements. The hints override any execution plan the
query optimizer might select for a query.

Because the SQL Server query optimizer typically selects the best execution plan for a
query, we recommend that <join_hint>, <query_hint>, and <table_hint> be used only as a
last resort by experienced developers and database administrators.

The following hints are described in this section:

• Join Hints

• Query Hints

• Table Hint

Join Hints
Join hints specify that the query optimizer enforce a join strategy between two tables.

Because the SQL Server query optimizer typically selects the best execution plan for a
query, we recommend that hints, including <join_hint>, be used only as a last resort by
experienced developers and database administrators.

Applies to:
DELETE

SELECT

UPDATE

Transact-SQL Syntax Conventions

Syntax

<join_hint> ::=
 { LOOP | HASH | MERGE | REMOTE }

Caution

Important

http://msdn.microsoft.com/en-us/library/1fc2de8b-e7e0-4c61-9a02-4776a7d93ab7

44

Arguments
LOOP | HASH | MERGE

Specifies that the join in the query should use looping, hashing, or merging. Using
LOOP |HASH | MERGE JOIN enforces a particular join between two tables. LOOP
cannot be specified together with RIGHT or FULL as a join type.

REMOTE

Specifies that the join operation is performed on the site of the right table. This is useful
when the left table is a local table and the right table is a remote table. REMOTE should
be used only when the left table has fewer rows than the right table.

If the right table is local, the join is performed locally. If both tables are remote but from
different data sources, REMOTE causes the join to be performed on the site of the right
table. If both tables are remote tables from the same data source, REMOTE is not
required.

REMOTE cannot be used when one of the values being compared in the join predicate
is cast to a different collation using the COLLATE clause.

REMOTE can be used only for INNER JOIN operations.

Remarks
Join hints are specified in the FROM clause of a query. Join hints enforce a join strategy between
two tables. If a join hint is specified for any two tables, the query optimizer automatically enforces
the join order for all joined tables in the query, based on the position of the ON keywords. When a
CROSS JOIN is used without the ON clause, parentheses can be used to indicate the join order.

Examples

A. Using HASH
The following example specifies that the JOIN operation in the query is performed by a HASH join.

USE AdventureWorks2012;

GO

SELECT p.Name, pr.ProductReviewID

FROM Production.Product AS p

LEFT OUTER HASH JOIN Production.ProductReview AS pr

ON p.ProductID = pr.ProductID

ORDER BY ProductReviewID DESC;

B. Using LOOP
The following example specifies that the JOIN operation in the query is performed by a LOOP join.

45

USE AdventureWorks2012;

GO

DELETE FROM Sales.SalesPersonQuotaHistory

FROM Sales.SalesPersonQuotaHistory AS spqh

 INNER LOOP JOIN Sales.SalesPerson AS sp

 ON spqh.SalesPersonID = sp.SalesPersonID

WHERE sp.SalesYTD > 2500000.00;

GO

C. Using MERGE
The following example specifies that the JOIN operation in the query is performed by a MERGE join.

USE AdventureWorks2012;

GO

SELECT poh.PurchaseOrderID, poh.OrderDate, pod.ProductID, pod.DueDate, poh.VendorID

FROM Purchasing.PurchaseOrderHeader AS poh

INNER MERGE JOIN Purchasing.PurchaseOrderDetail AS pod

 ON poh.PurchaseOrderID = pod.PurchaseOrderID;

GO

See Also
Hints (Transact-SQL)

Query Hints
Query hints specify that the indicated hints should be used throughout the query. They affect all
operators in the statement. If UNION is involved in the main query, only the last query involving a
UNION operation can have the OPTION clause. Query hints are specified as part of the OPTION
clause. If one or more query hints cause the query optimizer not to generate a valid plan, error
8622 is raised.

Because the SQL Server query optimizer typically selects the best execution plan for a
query, we recommend only using hints as a last resort for experienced developers and
database administrators.

Applies to:
DELETE

INSERT

SELECT

UPDATE

MERGE

Transact-SQL Syntax Conventions

Caution

46

Syntax

<query_hint > ::=
{ { HASH | ORDER } GROUP

 | { CONCAT | HASH | MERGE } UNION

 | { LOOP | MERGE | HASH } JOIN

 | EXPAND VIEWS

 | FAST number_rows

 | FORCE ORDER

 | IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX

 | KEEP PLAN

 | KEEPFIXED PLAN

 | MAXDOP number_of_processors

 | MAXRECURSION number

 | OPTIMIZE FOR (@variable_name { UNKNOWN | = literal_constant } [, ...n])
 | OPTIMIZE FOR UNKNOWN

 | PARAMETERIZATION { SIMPLE | FORCED }

 | RECOMPILE

 | ROBUST PLAN

 | USE PLAN N'xml_plan'
 | TABLE HINT (exposed_object_name [,<table_hint> [[,]...n]])
}

<table_hint> ::=

[NOEXPAND] {

 INDEX (index_value [,...n]) | INDEX = (index_value)
 | FORCESEEK [(index_value(index_column_name [,...]))]
 | FORCESCAN

 | HOLDLOCK

 | NOLOCK

 | NOWAIT

 | PAGLOCK

 | READCOMMITTED

 | READCOMMITTEDLOCK

 | READPAST

 | READUNCOMMITTED

47

 | REPEATABLEREAD

 | ROWLOCK

 | SERIALIZABLE

 | SPATIAL_WINDOW_MAX_CELLS = integer

 | TABLOCK

 | TABLOCKX

 | UPDLOCK

 | XLOCK

}

Arguments
{ HASH | ORDER } GROUP

Specifies that aggregations described in the GROUP BY, or DISTINCT clause of the
query should use hashing or ordering.

{ MERGE | HASH | CONCAT } UNION

Specifies that all UNION operations are performed by merging, hashing, or
concatenating UNION sets. If more than one UNION hint is specified, the query
optimizer selects the least expensive strategy from those hints specified.

{ LOOP | MERGE | HASH } JOIN

Specifies that all join operations are performed by LOOP JOIN, MERGE JOIN, or HASH
JOIN in the whole query. If more than one join hint is specified, the optimizer selects the
least expensive join strategy from the allowed ones.

If, in the same query, a join hint is also specified in the FROM clause for a specific pair
of tables, this join hint takes precedence in the joining of the two tables, although the
query hints still must be honored. Therefore, the join hint for the pair of tables may only
restrict the selection of allowed join methods in the query hint. For more information,
see Join Hints (Transact-SQL).

EXPAND VIEWS

Specifies that the indexed views are expanded and the query optimizer will not consider
any indexed view as a substitute for any part of the query. A view is expanded when the
view name is replaced by the view definition in the query text.

This query hint virtually disallows direct use of indexed views and indexes on indexed
views in the query plan.

The indexed view is not expanded only if the view is directly referenced in the SELECT

48

part of the query and WITH (NOEXPAND) or WITH (NOEXPAND, INDEX(index_value [
,...n])) is specified. For more information about the query hint WITH (NOEXPAND),
see FROM.

Only the views in the SELECT part of statements, including those in INSERT, UPDATE,
MERGE, and DELETE statements are affected by the hint.

FAST number_rows

Specifies that the query is optimized for fast retrieval of the first number_rows. This is a
nonnegative integer. After the first number_rows are returned, the query continues
execution and produces its full result set.

FORCE ORDER

Specifies that the join order indicated by the query syntax is preserved during query
optimization. Using FORCE ORDER does not affect possible role reversal behavior of
the query optimizer.

Note
In a MERGE statement, the source table is accessed before the target table as the default join
order, unless the WHEN SOURCE NOT MATCHED clause is specified. Specifying FORCE
ORDER preserves this default behavior.

KEEP PLAN

Forces the query optimizer to relax the estimated recompile threshold for a query. The
estimated recompile threshold is the point at which a query is automatically recompiled
when the estimated number of indexed column changes have been made to a table by
running UPDATE, DELETE, MERGE, or INSERT statements. Specifying KEEP PLAN
makes sure that a query will not be recompiled as frequently when there are multiple
updates to a table.

KEEPFIXED PLAN

Forces the query optimizer not to recompile a query due to changes in statistics.
Specifying KEEPFIXED PLAN makes sure that a query will be recompiled only if the
schema of the underlying tables is changed or if sp_recompile is executed against
those tables.

IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX

Prevents the query from using a nonclusteredxVelocity memory optimized columnstore
index. If the query contains the query hint to avoid use of the columnstore index and an
index hint to use a columnstore index, the hints are in conflict and the query returns an

49

error.

MAXDOP number

Overrides the max degree of parallelism configuration option of sp_configure and
Resource Governor for the query specifying this option. The MAXDOP query hint can
exceed the value configured with sp_configure. If MAXDOP exceeds the value
configured with Resource Governor, the Database Engine uses the Resource Governor
MAXDOP value, described in ALTER WORKLOAD GROUP (Transact-SQL). All
semantic rules used with the max degree of parallelism configuration option are
applicable when you use the MAXDOP query hint. For more information,
see Configure the max degree of parallelism Server Configuration Option.

Warning
If MAXDOP is set to zero then the server chooses the max degree of parallelism.

MAXRECURSION number

Specifies the maximum number of recursions allowed for this query. number is a
nonnegative integer between 0 and 32767. When 0 is specified, no limit is applied. If
this option is not specified, the default limit for the server is 100.

When the specified or default number for MAXRECURSION limit is reached during
query execution, the query is ended and an error is returned.

Because of this error, all effects of the statement are rolled back. If the statement is a
SELECT statement, partial results or no results may be returned. Any partial results
returned may not include all rows on recursion levels beyond the specified maximum
recursion level.

For more information, see WITH common_table_expression (Transact-SQL).

OPTIMIZE FOR (@variable_name { UNKNOWN | = literal_constant } [, ...n])

Instructs the query optimizer to use a particular value for a local variable when the
query is compiled and optimized. The value is used only during query optimization, and
not during query execution.

@variable_name

Is the name of a local variable used in a query, to which a value may be assigned for
use with the OPTIMIZE FOR query hint.

UNKNOWN

Specifies that the query optimizer use statistical data instead of the initial value to
determine the value for a local variable during query optimization.

http://msdn.microsoft.com/en-us/library/957addce-feb0-4e54-893e-5faca3cd184c
http://msdn.microsoft.com/en-us/library/86b65bf1-a6a1-4670-afc0-cdfad1558032

50

literal_constant

Is a literal constant value to be assigned @variable_name for use with the OPTIMIZE
FOR query hint.literal_constant is used only during query optimization, and not as the
value of @variable_name during query execution. literal_constant can be of any SQL
Server system data type that can be expressed as a literal constant. The data type of
literal_constant must be implicitly convertible to the data type that @variable_name
references in the query.

OPTIMIZE FOR can counteract the default parameter detection behavior of the
optimizer or can be used when you create plan guides. For more information,
see Recompiling a Stored Procedure.

OPTIMIZE FOR UNKNOWN

Instructs the query optimizer to use statistical data instead of the initial values for all
local variables when the query is compiled and optimized, including parameters created
with forced parameterization.

If OPTIMIZE FOR @variable_name = literal_constant and OPTIMIZE FOR UNKNOWN
are used in the same query hint, the query optimizer will use the literal_constant that is
specified for a specific value and UNKNOWN for the remaining variable values. The
values are used only during query optimization, and not during query execution.

PARAMETERIZATION { SIMPLE | FORCED }

Specifies the parameterization rules that the SQL Server query optimizer applies to the
query when it is compiled.

Important
The PARAMETERIZATION query hint can only be specified inside a plan guide. It cannot be
specified directly within a query.

SIMPLE instructs the query optimizer to attempt simple parameterization. FORCED
instructs the optimizer to attempt forced parameterization. The PARAMETERIZATION
query hint is used to override the current setting of the PARAMETERIZATION database
SET option inside a plan guide. For more information, see Specifying Query
Parameterization Behavior Using Plan Guides.

RECOMPILE

Instructs the SQL Server Database Engine to discard the plan generated for the query
after it executes, forcing the query optimizer to recompile a query plan the next time the
same query is executed. Without specifying RECOMPILE, the Database Engine caches
query plans and reuses them. When compiling query plans, the RECOMPILE query hint
uses the current values of any local variables in the query and, if the query is inside a

http://msdn.microsoft.com/en-us/library/b90deb27-0099-4fe7-ba60-726af78f7c18
http://msdn.microsoft.com/en-us/library/f0f738ff-2819-4675-a8c8-1eb6c210a7e6
http://msdn.microsoft.com/en-us/library/f0f738ff-2819-4675-a8c8-1eb6c210a7e6

51

stored procedure, the current values passed to any parameters.

RECOMPILE is a useful alternative to creating a stored procedure that uses the WITH
RECOMPILE clause when only a subset of queries inside the stored procedure, instead
of the whole stored procedure, must be recompiled. For more information,
see Recompiling a Stored Procedure. RECOMPILE is also useful when you create
plan guides.

ROBUST PLAN

Forces the query optimizer to try a plan that works for the maximum potential row size,
possibly at the expense of performance. When the query is processed, intermediate
tables and operators may have to store and process rows that are wider than any one
of the input rows. The rows may be so wide that, sometimes, the particular operator
cannot process the row. If this occurs, the Database Engine produces an error during
query execution. By using ROBUST PLAN, you instruct the query optimizer not to
consider any query plans that may encounter this problem.

If such a plan is not possible, the query optimizer returns an error instead of deferring
error detection to query execution. Rows may contain variable-length columns; the
Database Engine allows for rows to be defined that have a maximum potential size
beyond the ability of the Database Engine to process them. Generally, despite the
maximum potential size, an application stores rows that have actual sizes within the
limits that the Database Engine can process. If the Database Engine encounters a row
that is too long, an execution error is returned.

USE PLAN N'xml_plan'

Forces the query optimizer to use an existing query plan for a query that is specified by
'xml_plan'. USE PLAN cannot be specified with INSERT, UPDATE, MERGE, or
DELETE statements.

TABLE HINT (exposed_object_name [, <table_hint> [[,]...n]])

Applies the specified table hint to the table or view that corresponds to
exposed_object_name. We recommend using a table hint as a query hint only in the
context of a plan guide.

exposed_object_name can be one of the following references:

• When an alias is used for the table or view in the FROM clause of the query,
exposed_object_name is the alias.

• When an alias is not used, exposed_object_name is the exact match of the table or
view referenced in the FROM clause. For example, if the table or view is referenced
using a two-part name, exposed_object_name is the same two-part name.

When exposed_object_name is specified without also specifying a table hint, any

http://msdn.microsoft.com/en-us/library/b90deb27-0099-4fe7-ba60-726af78f7c18
http://msdn.microsoft.com/en-us/library/bfc97632-c14c-4768-9dc5-a9c512f6b2bd

52

indexes specified in the query as part of a table hint for the object are disregarded and
index usage is determined by the query optimizer. You can use this technique to
eliminate the effect of an INDEX table hint when you cannot modify the original query.
See Example J.

<table_hint> ::= { [NOEXPAND] { INDEX (index_value [,...n]) | INDEX = (
index_value) | FORCESEEK [(index_value (index_column_name [,...]))]|
FORCESCAN | HOLDLOCK | NOLOCK | NOWAIT | PAGLOCK | READCOMMITTED |
READCOMMITTEDLOCK | READPAST | READUNCOMMITTED | REPEATABLEREAD
| ROWLOCK | SERIALIZABLE |SPATIAL_WINDOW_MAX_CELLS | TABLOCK |
TABLOCKX | UPDLOCK | XLOCK }

Is the table hint to apply to the table or view that corresponds to exposed_object_name
as a query hint. For a description of these hints, see Table Hints (Transact-SQL).

Table hints other than INDEX, FORCESCAN, and FORCESEEK are disallowed as
query hints unless the query already has a WITH clause specifying the table hint. For
more information, see Remarks.

Caution
Specifying FORCESEEK with parameters limits the number of plans that can be considered by
the optimizer more than when specifying FORCESEEK without parameters. This may cause a
"Plan cannot be generated" error to occur in more cases. In a future release, internal
modifications to the optimizer may allow more plans to be considered.

Remarks
Query hints cannot be specified in an INSERT statement except when a SELECT clause is used
inside the statement.

Query hints can be specified only in the top-level query, not in subqueries. When a table hint is
specified as a query hint, the hint can be specified in the top-level query or in a subquery;
however, the value specified for exposed_object_name in the TABLE HINT clause must match
exactly the exposed name in the query or subquery.

Specifying Table Hints as Query Hints
We recommend using the INDEX, FORCESCAN or FORCESEEK table hint as a query hint only
in the context of a plan guide. Plan guides are useful when you cannot modify the original query,
for example, because it is a third-party application. The query hint specified in the plan guide is
added to the query before it is compiled and optimized. For ad-hoc queries, use the TABLE HINT
clause only when testing plan guide statements. For all other ad-hoc queries, we recommend
specifying these hints only as table hints.

When specified as a query hint, the INDEX, FORCESCAN, and FORCESEEK table hints are
valid for the following objects:

http://msdn.microsoft.com/en-us/library/bfc97632-c14c-4768-9dc5-a9c512f6b2bd

53

• Tables

• Views

• Indexed views

• Common table expressions (the hint must be specified in the SELECT statement whose
result set populates the common table expression)

• Dynamic management views

• Named subqueries

The INDEX, FORCESCAN, and FORCESEEK table hints can be specified as query hints for a
query that does not have any existing table hints, or they can be used to replace existing INDEX,
FORCESCAN or FORCESEEK hints in the query, respectively. Table hints other than INDEX,
FORCESCAN, and FORCESEEK are disallowed as query hints unless the query already has a
WITH clause specifying the table hint. In this case, a matching hint must also be specified as a
query hint by using TABLE HINT in the OPTION clause to preserve the semantics of the query.
For example, if the query contains the table hint NOLOCK, the OPTION clause in the @hints
parameter of the plan guide must also contain the NOLOCK hint. See Example K. When a table
hint other than INDEX, FORCESCAN, or FORCESEEK is specified by using TABLE HINT in the
OPTION clause without a matching query hint, or vice versa; error 8702 is raised (indicating that
the OPTION clause can cause the semantics of the query to change) and the query fails.

Examples

A. Using MERGE JOIN
The following example specifies that the JOIN operation in the query is performed by MERGE JOIN.

USE AdventureWorks2012;

GO

SELECT *

FROM Sales.Customer AS c

INNER JOIN Sales.vStoreWithAddresses AS sa

 ON c.CustomerID = sa.BusinessEntityID

WHERE TerritoryID = 5

OPTION (MERGE JOIN);

GO

B. Using OPTIMIZE FOR
The following example instructs the query optimizer to use the value 'Seattle' for local variable
@city_name and to use statistical data to determine the value for the local variable @postal_code
when optimizing the query.

USE AdventureWorks2012;

54

GO

DECLARE @city_name nvarchar(30);

DECLARE @postal_code nvarchar(15);

SET @city_name = 'Ascheim';

SET @postal_code = 86171;

SELECT * FROM Person.Address

WHERE City = @city_name AND PostalCode = @postal_code

OPTION (OPTIMIZE FOR (@city_name = 'Seattle', @postal_code UNKNOWN));

GO

C. Using MAXRECURSION
MAXRECURSION can be used to prevent a poorly formed recursive common table expression
from entering into an infinite loop. The following example intentionally creates an infinite loop and
uses the MAXRECURSION hint to limit the number of recursion levels to two.

USE AdventureWorks2012;

GO

--Creates an infinite loop

WITH cte (CustomerID, PersonID, StoreID) AS

(

 SELECT CustomerID, PersonID, StoreID

 FROM Sales.Customer

 WHERE PersonID IS NOT NULL

 UNION ALL

 SELECT cte.CustomerID, cte.PersonID, cte.StoreID

 FROM cte

 JOIN Sales.Customer AS e

 ON cte.PersonID = e.CustomerID

)

--Uses MAXRECURSION to limit the recursive levels to 2

SELECT CustomerID, PersonID, StoreID

FROM cte

OPTION (MAXRECURSION 2);

GO

After the coding error is corrected, MAXRECURSION is no longer required.

D. Using MERGE UNION
The following example uses the MERGE UNION query hint.

USE AdventureWorks2012;

55

GO

SELECT BusinessEntityID, JobTitle, HireDate, VacationHours, SickLeaveHours

FROM HumanResources.Employee AS e1

UNION

SELECT BusinessEntityID, JobTitle, HireDate, VacationHours, SickLeaveHours

FROM HumanResources.Employee AS e2

OPTION (MERGE UNION);

GO

E. Using HASH GROUP and FAST
The following example uses the HASH GROUP and FAST query hints.

USE AdventureWorks2012;

GO

SELECT ProductID, OrderQty, SUM(LineTotal) AS Total

FROM Sales.SalesOrderDetail

WHERE UnitPrice < $5.00

GROUP BY ProductID, OrderQty

ORDER BY ProductID, OrderQty

OPTION (HASH GROUP, FAST 10);

GO

F. Using MAXDOP
The following example uses the MAXDOP query hint.

USE AdventureWorks2012 ;

GO

SELECT ProductID, OrderQty, SUM(LineTotal) AS Total

FROM Sales.SalesOrderDetail

WHERE UnitPrice < $5.00

GROUP BY ProductID, OrderQty

ORDER BY ProductID, OrderQty

OPTION (MAXDOP 2);

GO

G. Using INDEX
The following examples use the INDEX hint. The first example specifies a single index. The
second example specifies multiple indexes for a single table reference. In both examples,
because the INDEX hint is applied on a table that uses an alias, the TABLE HINT clause must
also specify the same alias as the exposed object name.

USE AdventureWorks2012;

GO

EXEC sp_create_plan_guide

56

 @name = N'Guide1',

 @stmt = N'SELECT c.LastName, c.FirstName, e.JobTitle

 FROM HumanResources.Employee AS e

 JOIN Person.Person AS c ON e.BusinessEntityID = c.BusinessEntityID

 WHERE e.OrganizationLevel = 2;',

 @type = N'SQL',

 @module_or_batch = NULL,

 @params = NULL,

 @hints = N'OPTION (TABLE HINT(e, INDEX

(IX_Employee_OrganizationLevel_OrganizationNode)))';

GO

EXEC sp_create_plan_guide

 @name = N'Guide2',

 @stmt = N'SELECT c.LastName, c.FirstName, e.JobTitle

 FROM HumanResources.Employee AS e

 JOIN Person.Person AS c ON e.BusinessEntityID = c.BusinessEntityID

 WHERE e.OrganizationLevel = 2;',

 @type = N'SQL',

 @module_or_batch = NULL,

 @params = NULL,

 @hints = N'OPTION (TABLE HINT(e, INDEX(PK_Employee_BusinessEntityID,

IX_Employee_OrganizationLevel_OrganizationNode)))';

GO

H. Using FORCESEEK
The following example uses the FORCESEEK table hint. Because the INDEX hint is applied on a
table that uses a two-part name, the TABLE HINT clause must also specify the same two-part
name as the exposed object name.

USE AdventureWorks2012;

GO

EXEC sp_create_plan_guide

 @name = N'Guide3',

 @stmt = N'SELECT c.LastName, c.FirstName, HumanResources.Employee.JobTitle

 FROM HumanResources.Employee

 JOIN Person.Person AS c ON HumanResources.Employee.BusinessEntityID =

c.BusinessEntityID

 WHERE HumanResources.Employee.OrganizationLevel = 3

 ORDER BY c.LastName, c.FirstName;',

 @type = N'SQL',

 @module_or_batch = NULL,

 @params = NULL,

 @hints = N'OPTION (TABLE HINT(HumanResources.Employee, FORCESEEK))';

GO

57

I. Using multiple table hints
The following example applies the INDEX hint to one table and the FORCESEEK hint to another.

USE AdventureWorks2012;

GO

EXEC sp_create_plan_guide

 @name = N'Guide4',

 @stmt = N'SELECT c.LastName, c.FirstName, e.JobTitle

 FROM HumanResources.Employee AS e

 JOIN Person.Person AS c ON e.BusinessEntityID = c.BusinessEntityID

 WHERE OrganizationLevel = 3;',

 @type = N'SQL',

 @module_or_batch = NULL,

 @params = NULL,

 @hints = N'OPTION (TABLE HINT (e, INDEX(

IX_Employee_OrganizationLevel_OrganizationNode))

 , TABLE HINT (c, FORCESEEK))';

GO

J. Using TABLE HINT to override an existing table hint
The following example shows how to use the TABLE HINT hint without specifying a hint to
override the behavior of the INDEX table hint specified in the FROM clause of the query.

USE AdventureWorks2012;

GO

EXEC sp_create_plan_guide

 @name = N'Guide5',

 @stmt = N'SELECT c.LastName, c.FirstName, e.JobTitle

 FROM HumanResources.Employee AS e WITH (INDEX

(IX_Employee_OrganizationLevel_OrganizationNode))

 JOIN Person.Person AS c ON e.BusinessEntityID = c.BusinessEntityID

 WHERE OrganizationLevel = 3;',

 @type = N'SQL',

 @module_or_batch = NULL,

 @params = NULL,

 @hints = N'OPTION (TABLE HINT(e))';

GO

K. Specifying semantics-affecting table hints
The following example contains two table hints in the query: NOLOCK, which is semantic-
affecting, and INDEX, which is non-semantic-affecting. To preserve the semantics of the query,
the NOLOCK hint is specified in the OPTIONS clause of the plan guide. In addition to the
NOLOCK hint, the INDEX and FORCESEEK hints are specified and replace the non-semantic-
affecting INDEX hint in the query when the statement is compiled and optimized.

58

USE AdventureWorks2012;

GO

EXEC sp_create_plan_guide

 @name = N'Guide6',

 @stmt = N'SELECT c.LastName, c.FirstName, e.JobTitle

 FROM HumanResources.Employee AS e

 JOIN Person.Person AS c ON e.BusinessEntityID = c.BusinessEntityID

 WHERE OrganizationLevel = 3;',

 @type = N'SQL',

 @module_or_batch = NULL,

 @params = NULL,

 @hints = N'OPTION (TABLE HINT (e, INDEX(

IX_Employee_OrganizationLevel_OrganizationNode) , NOLOCK, FORCESEEK))';

GO

The following example shows an alternative method to preserving the semantics of the query and
allowing the optimizer to choose an index other than the index specified in the table hint. This is
done by specifying the NOLOCK hint in the OPTIONS clause (because it is semantic-affecting)
and specifying the TABLE HINT keyword with only a table reference and no INDEX hint.

USE AdventureWorks2012;

GO

EXEC sp_create_plan_guide

 @name = N'Guide7',

 @stmt = N'SELECT c.LastName, c.FirstName, e.JobTitle

 FROM HumanResources.Employee AS e

 JOIN Person.Person AS c ON e.BusinessEntityID = c.BusinessEntityID

 WHERE OrganizationLevel = 2;',

 @type = N'SQL',

 @module_or_batch = NULL,

 @params = NULL,

 @hints = N'OPTION (TABLE HINT (e, NOLOCK))';

GO

See Also
Hints (Transact-SQL)

sp_create_plan_guide (Transact-SQL)

sp_control_plan_guide (Transact-SQL)

Table Hints
Table hints override the default behavior of the query optimizer for the duration of the data
manipulation language (DML) statement by specifying a locking method, one or more indexes, a

http://msdn.microsoft.com/en-us/library/5a8c8040-4f96-4c74-93ab-15bdefd132f0
http://msdn.microsoft.com/en-us/library/c96d43d5-6507-4d66-b3f5-f44c0617cb5c

59

query-processing operation such as a table scan or index seek, or other options. Table hints are
specified in the FROM clause of the DML statement and affect only the table or view referenced
in that clause.

Because the SQL Server query optimizer typically selects the best execution plan for a
query, we recommend that hints be used only as a last resort by experienced developers
and database administrators.

Applies to:
DELETE

INSERT

SELECT

UPDATE

MERGE

Transact-SQL Syntax Conventions

Syntax

WITH (<table_hint> [[,]...n])

<table_hint> ::=

[NOEXPAND] {

 INDEX (index_value [,...n]) | INDEX = (index_value) | FORCESEEK
[(index_value(index_column_name [,...]))]
 | FORCESCAN

 | FORCESEEK

 | HOLDLOCK

 | NOLOCK

 | NOWAIT

 | PAGLOCK

 | READCOMMITTED

 | READCOMMITTEDLOCK

 | READPAST

 | READUNCOMMITTED

 | REPEATABLEREAD

 | ROWLOCK

 | SERIALIZABLE

Caution

60

 | SPATIAL_WINDOW_MAX_CELLS = integer

 | TABLOCK

 | TABLOCKX

 | UPDLOCK

 | XLOCK

}

<table_hint_limited> ::=

{

 KEEPIDENTITY

 | KEEPDEFAULTS

 | HOLDLOCK

 | IGNORE_CONSTRAINTS

 | IGNORE_TRIGGERS

 | NOLOCK

 | NOWAIT

 | PAGLOCK

 | READCOMMITTED

 | READCOMMITTEDLOCK

 | READPAST

 | REPEATABLEREAD

 | ROWLOCK

 | SERIALIZABLE

 | TABLOCK

 | TABLOCKX

 | UPDLOCK

 | XLOCK

}

Arguments
WITH (<table_hint>) [[,]...n]

With some exceptions, table hints are supported in the FROM clause only when the
hints are specified with the WITH keyword. Table hints also must be specified with
parentheses.

Important
Omitting the WITH keyword is a deprecated feature: This feature will be removed in a future

61

version of Microsoft SQL Server. Avoid using this feature in new development work, and plan to
modify applications that currently use this feature.

The following table hints are allowed with and without the WITH keyword: NOLOCK,
READUNCOMMITTED, UPDLOCK, REPEATABLEREAD, SERIALIZABLE,
READCOMMITTED, TABLOCK, TABLOCKX, PAGLOCK, ROWLOCK, NOWAIT,
READPAST, XLOCK, and NOEXPAND. When these table hints are specified without
the WITH keyword, the hints should be specified alone. For example:

FROM t (TABLOCK)

When the hint is specified with another option, the hint must be specified with the WITH
keyword:

FROM t WITH (TABLOCK, INDEX(myindex))

We recommend using commas between table hints.

Important
Separating hints by spaces rather than commas is a deprecated feature: This feature will be
removed in a future version of Microsoft SQL Server. Do not use this feature in new development
work, and modify applications that currently use this feature as soon as possible.

The restrictions apply when the hints are used in queries against databases with the
compatibility level of 90 and higher.

NOEXPAND

Specifies that any indexed views are not expanded to access underlying tables when
the query optimizer processes the query. The query optimizer treats the view like a
table with clustered index. NOEXPAND applies only to indexed views. For more
information, see Remarks.

INDEX (index_value [,... n]) | INDEX = (index_value)

The INDEX() syntax specifies the names or IDs of one or more indexes to be used by
the query optimizer when it processes the statement. The alternative INDEX = syntax
specifies a single index value. Only one index hint per table can be specified.

If a clustered index exists, INDEX(0) forces a clustered index scan and INDEX(1) forces
a clustered index scan or seek. If no clustered index exists, INDEX(0) forces a table
scan and INDEX(1) is interpreted as an error.

If multiple indexes are used in a single hint list, the duplicates are ignored and the rest
of the listed indexes are used to retrieve the rows of the table. The order of the indexes
in the index hint is significant. A multiple index hint also enforces index ANDing, and the
query optimizer applies as many conditions as possible on each index accessed. If the
collection of hinted indexes do not include all columns referenced by the query, a fetch
is performed to retrieve the remaining columns after the SQL Server Database Engine
retrieves all the indexed columns.

62

Note
When an index hint referring to multiple indexes is used on the fact table in a star join, the
optimizer ignores the index hint and returns a warning message. Also, index ORing is not
allowed for a table with an index hint specified.

The maximum number of indexes in the table hint is 250 nonclustered indexes.

KEEPIDENTITY

Is applicable only in an INSERT statement when the BULK option is used
with OPENROWSET.

Specifies that identity value or values in the imported data file are to be used for the
identity column. If KEEPIDENTITY is not specified, the identity values for this column
are verified but not imported and the query optimizer automatically assigns unique
values based on the seed and increment values specified during table creation.

Important
If the data file does not contain values for the identity column in the table or view, and the identity
column is not the last column in the table, you must skip the identity column. For more
information, see sys.foreign_keys (Transact-SQL). If an identity column is skipped
successfully, the query optimizer automatically assigns unique values for the identity column into
the imported table rows.

For an example that uses this hint in an INSERT ... SELECT * FROM
OPENROWSET(BULK...) statement, see Keeping Identity Values When Bulk
Importing Data.

For information about checking the identity value for a table, see DBCC
CHECKIDENT.

KEEPDEFAULTS

Is applicable only in an INSERT statement when the BULK option is used
with OPENROWSET.

Specifies insertion of a table column's default value, if any, instead of NULL when the
data record lacks a value for the column.

For an example that uses this hint in an INSERT ... SELECT * FROM
OPENROWSET(BULK...) statement, see Keeping Nulls or Using Default Values
During Bulk Import.

FORCESEEK [(index_value (index_column_name [,... n]))]

Specifies that the query optimizer use only an index seek operation as the access path
to the data in the table or view. Starting with SQL Server 2008 R2 SP1, index
parameters can also be specified. In that case, the query optimizer considers only index

http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17
http://msdn.microsoft.com/en-us/library/6a76517e-983b-47a1-8f02-661b99859a8b
http://msdn.microsoft.com/en-us/library/45894a3f-2d8a-4edd-9568-afa7d0d3061f
http://msdn.microsoft.com/en-us/library/45894a3f-2d8a-4edd-9568-afa7d0d3061f
http://msdn.microsoft.com/en-us/library/2c00ee51-2062-4e47-8b19-d90f524c6427
http://msdn.microsoft.com/en-us/library/2c00ee51-2062-4e47-8b19-d90f524c6427
http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17
http://msdn.microsoft.com/en-us/library/6b91d762-337b-4345-a159-88abb3e64a81
http://msdn.microsoft.com/en-us/library/6b91d762-337b-4345-a159-88abb3e64a81

63

seek operations through the specified index using at least the specified index columns.

index_value

Is the index name or index ID value. The index ID 0 (heap) cannot be specified. To
return the index name or ID, query the sys.indexes catalog view.

index_column_name

Is the name of the index column to include in the seek operation. Specifying
FORCESEEK with index parameters is similar to using FORCESEEK with an INDEX
hint. However, you can achieve greater control over the access path used by the
query optimizer by specifying both the index to seek on and the index columns to
consider in the seek operation. The optimizer may consider additional columns if
needed. For example, if a nonclustered index is specified, the optimizer may choose
to use clustered index key columns in addition to the specified columns.

The FORCESEEK hint can be specified in the following ways.

Syntax Example Description

Without an index or INDEX
hint

FROM dbo.MyTable WITH

(FORCESEEK)
The query optimizer
considers only index seek
operations to access the
table or view through any
relevant index.

Combined with an INDEX hint FROM dbo.MyTable WITH

(FORCESEEK, INDEX

(MyIndex))

The query optimizer
considers only index seek
operations to access the
table or view through the
specified index.

Parameterized by specifying
an index and index columns

FROM dbo.MyTable WITH

(FORCESEEK (MyIndex (col1,

col2, col3)))

The query optimizer
considers only index seek
operations to access the
table or view through the
specified index using at least
the specified index columns.

When using the FORCESEEK hint (with or without index parameters), consider the
following guidelines.

• The hint can be specified as a table hint or as a query hint. For more information
about query hints, see Query Hints (Transact-SQL).

64

• To apply FORCESEEK to an indexed view, the NOEXPAND hint must also be
specified.

• The hint can be applied at most once per table or view.

• The hint cannot be specified for a remote data source. Error 7377 is returned when
FORCESEEK is specified with an index hint and error 8180 is returned when
FORCESEEK is used without an index hint.

• If FORCESEEK causes no plan to be found, error 8622 is returned.

When FORCESEEK is specified with index parameters, the following guidelines and
restrictions apply.

• The hint cannot be specified in combination with either an INDEX hint or another
FORCESEEK hint.

• At least one column must be specified and it must be the leading key column.

• Additional index columns can be specified, however, key columns cannot be
skipped. For example, if the specified index contains the key columns a, b, and c,
valid syntax would include FORCESEEK (MyIndex (a)) and FORCESEEK (MyIndex
(a, b). Invalid syntax would include FORCESEEK (MyIndex (c)) and FORCESEEK
(MyIndex (a, c).

• The order of column names specified in the hint must match the order of the
columns in the referenced index.

• Columns that are not in the index key definition cannot be specified. For example,
in a nonclustered index, only the defined index key columns can be specified.
Clustered key columns that are automatically included in the index cannot be
specified, but may be used by the optimizer.

• An xVelocity memory optimized columnstore index cannot be specified as an index
parameter. Error 366 is returned.

• Modifying the index definition (for example, by adding or removing columns) may
require modifications to the queries that reference that index.

• The hint prevents the optimizer from considering any spatial or XML indexes on the
table.

• The hint cannot be specified in combination with the FORCESCAN hint.

• For partitioned indexes, the partitioning column implicitly added by SQL Server
cannot be specified in the FORCESEEK hint.

cCaution
Specifying FORCESEEK with parameters limits the number of plans that can be considered by
the optimizer more than when specifying FORCESEEK without parameters. This may cause a
"Plan cannot be generated" error to occur in more cases. In a future release, internal
modifications to the optimizer may allow more plans to be considered.

65

FORCESCAN

Introduced in SQL Server 2008 R2 SP1, this hint specifies that the query optimizer use
only an index scan operation as the access path to the referenced table or view. The
FORCESCAN hint can be useful for queries in which the optimizer underestimates the
number of affected rows and chooses a seek operation rather than a scan operation.
When this occurs, the amount of memory granted for the operation is too small and
query performance is impacted.

FORCESCAN can be specified with or without an INDEX hint. When combined with an
index hint, (INDEX = index_name, FORCESCAN), the query optimizer considers only
scan access paths through the specified index when accessing the referenced table.
FORCESCAN can be specified with the index hint INDEX(0) to force a table scan
operation on the base table.

For partitioned tables and indexes, FORCESCAN is applied after partitions have been
eliminated through query predicate evaluation. This means that the scan is applied only
to the remaining partitions and not to the entire table.

The FORCESCAN hint has the following restrictions.

• The hint cannot be specified for a table that is the target of an INSERT, UPDATE,
or DELETE statement.

• The hint cannot be used with more than one index hint.

• The hint prevents the optimizer from considering any spatial or XML indexes on the
table.

• The hint cannot be specified for a remote data source.

• The hint cannot be specified in combination with the FORCESEEK hint.

HOLDLOCK

Is equivalent to SERIALIZABLE. For more information, see SERIALIZABLE later in this
topic. HOLDLOCK applies only to the table or view for which it is specified and only for
the duration of the transaction defined by the statement that it is used in. HOLDLOCK
cannot be used in a SELECT statement that includes the FOR BROWSE option.

IGNORE_CONSTRAINTS

Is applicable only in an INSERT statement when the BULK option is used
with OPENROWSET.

Specifies that any constraints on the table are ignored by the bulk-import operation. By
default, INSERT checks Unique Constraints and Check Constraints and Primary
and Foreign Key Constraints. When IGNORE_CONSTRAINTS is specified for a
bulk-import operation, INSERT must ignore these constraints on a target table. Note
that you cannot disable UNIQUE, PRIMARY KEY, or NOT NULL constraints.

You might want to disable CHECK and FOREIGN KEY constraints if the input data

http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17
http://msdn.microsoft.com/en-us/library/637098af-2567-48f8-90f4-b41df059833e
http://msdn.microsoft.com/en-us/library/31fbcc9f-2dc5-4bf9-aa50-ed70ec7b5bcd
http://msdn.microsoft.com/en-us/library/31fbcc9f-2dc5-4bf9-aa50-ed70ec7b5bcd

66

contains rows that violate constraints. By disabling the CHECK and FOREIGN KEY
constraints, you can import the data and then use Transact-SQL statements to clean up
the data.

However, when CHECK and FOREIGN KEY constraints are ignored, each ignored
constraint on the table is marked as is_not_trusted in the sys.check_constraints
or sys.foreign_keys catalog view after the operation. At some point, you should check
the constraints on the whole table. If the table was not empty before the bulk import
operation, the cost of revalidating the constraint may exceed the cost of applying
CHECK and FOREIGN KEY constraints to the incremental data.

IGNORE_TRIGGERS

Is applicable only in an INSERT statement when the BULK option is used
with OPENROWSET.

Specifies that any triggers defined on the table are ignored by the bulk-import operation.
By default, INSERT applies triggers.

Use IGNORE_TRIGGERS only if your application does not depend on any triggers and
maximizing performance is important.

NOLOCK

Is equivalent to READUNCOMMITTED. For more information, see
READUNCOMMITTED later in this topic.

Note
For UPDATE or DELETE statements: This feature will be removed in a future version of
Microsoft SQL Server. Avoid using this feature in new development work, and plan to modify
applications that currently use this feature.

NOWAIT

Instructs the Database Engine to return a message as soon as a lock is encountered on
the table. NOWAIT is equivalent to specifying SET LOCK_TIMEOUT 0 for a specific
table.

PAGLOCK

Takes page locks either where individual locks are ordinarily taken on rows or keys, or
where a single table lock is ordinarily taken. By default, uses the lock mode appropriate
for the operation. When specified in transactions operating at the SNAPSHOT isolation
level, page locks are not taken unless PAGLOCK is combined with other table hints that
require locks, such as UPDLOCK and HOLDLOCK.

http://msdn.microsoft.com/en-us/library/940ebc5e-44ba-4dae-8b29-da94f2d1d6c4
http://msdn.microsoft.com/en-us/library/e960df1a-13fc-43ee-ba91-34c1b719ac2c
http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17

67

READCOMMITTED

Specifies that read operations comply with the rules for the READ COMMITTED
isolation level by using either locking or row versioning. If the database option
READ_COMMITTED_SNAPSHOT is OFF, the Database Engine acquires shared locks
as data is read and releases those locks when the read operation is completed. If the
database option READ_COMMITTED_SNAPSHOT is ON, the Database Engine does
not acquire locks and uses row versioning. For more information about isolation levels,
see SET TRANSACTION ISOLATION LEVEL.

Note
For UPDATE or DELETE statements: This feature will be removed in a future version of
Microsoft SQL Server. Avoid using this feature in new development work, and plan to modify
applications that currently use this feature.

READCOMMITTEDLOCK

Specifies that read operations comply with the rules for the READ COMMITTED
isolation level by using locking. The Database Engine acquires shared locks as data is
read and releases those locks when the read operation is completed, regardless of the
setting of the READ_COMMITTED_SNAPSHOT database option. For more information
about isolation levels, see SET TRANSACTION ISOLATION LEVEL. This hint
cannot be specified on the target table of an INSERT statement; error 4140 is returned.

READPAST

Specifies that the Database Engine not read rows that are locked by other transactions.
When READPAST is specified, row-level locks are skipped. That is, the Database
Engine skips past the rows instead of blocking the current transaction until the locks are
released. For example, assume table T1 contains a single integer column with the
values of 1, 2, 3, 4, 5. If transaction A changes the value of 3 to 8 but has not yet
committed, a SELECT * FROM T1 (READPAST) yields values 1, 2, 4, 5. READPAST is
primarily used to reduce locking contention when implementing a work queue that uses
a SQL Server table. A queue reader that uses READPAST skips past queue entries
locked by other transactions to the next available queue entry, without having to wait
until the other transactions release their locks.

READPAST can be specified for any table referenced in an UPDATE or DELETE
statement, and any table referenced in a FROM clause. When specified in an UPDATE
statement, READPAST is applied only when reading data to identify which records to
update, regardless of where in the statement it is specified. READPAST cannot be
specified for tables in the INTO clause of an INSERT statement. Read operations that
use READPAST do not block. Update or delete operations that use READPAST may
block when reading foreign keys or indexed views, or when modifying secondary
indexes.

http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd
http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd

68

READPAST can only be specified in transactions operating at the READ COMMITTED
or REPEATABLE READ isolation levels. When specified in transactions operating at the
SNAPSHOT isolation level, READPAST must be combined with other table hints that
require locks, such as UPDLOCK and HOLDLOCK.

The READPAST table hint cannot be specified when the
READ_COMMITTED_SNAPSHOT database option is set to ON and either of the
following conditions is true.

• The transaction isolation level of the session is READ COMMITTED.

• The READCOMMITTED table hint is also specified in the query.

To specify the READPAST hint in these cases, remove the READCOMMITTED table
hint if present, and include the READCOMMITTEDLOCK table hint in the query.

READUNCOMMITTED

Specifies that dirty reads are allowed. No shared locks are issued to prevent other
transactions from modifying data read by the current transaction, and exclusive locks
set by other transactions do not block the current transaction from reading the locked
data. Allowing dirty reads can cause higher concurrency, but at the cost of reading data
modifications that then are rolled back by other transactions. This may generate errors
for your transaction, present users with data that was never committed, or cause users
to see records twice (or not at all).

READUNCOMMITTED and NOLOCK hints apply only to data locks. All queries,
including those with READUNCOMMITTED and NOLOCK hints, acquire Sch-S
(schema stability) locks during compilation and execution. Because of this, queries are
blocked when a concurrent transaction holds a Sch-M (schema modification) lock on
the table. For example, a data definition language (DDL) operation acquires a Sch-M
lock before it modifies the schema information of the table. Any concurrent queries,
including those running with READUNCOMMITTED or NOLOCK hints, are blocked
when attempting to acquire a Sch-S lock. Conversely, a query holding a Sch-S lock
blocks a concurrent transaction that attempts to acquire a Sch-M lock.

READUNCOMMITTED and NOLOCK cannot be specified for tables modified by insert,
update, or delete operations. The SQL Server query optimizer ignores the
READUNCOMMITTED and NOLOCK hints in the FROM clause that apply to the target
table of an UPDATE or DELETE statement.

Note
Support for use of the READUNCOMMITTED and NOLOCK hints in the FROM clause that apply
to the target table of an UPDATE or DELETE statement will be removed in a future version of
SQL Server. Avoid using these hints in this context in new development work, and plan to modify
applications that currently use them.

You can minimize locking contention while protecting transactions from dirty reads of
uncommitted data modifications by using either of the following:

69

• The READ COMMITTED isolation level with the READ_COMMITTED_SNAPSHOT
database option set ON.

• The SNAPSHOT isolation level.

For more information about isolation levels, see SET TRANSACTION ISOLATION
LEVEL.

Note
If you receive the error message 601 when READUNCOMMITTED is specified, resolve it as you
would a deadlock error (1205), and retry your statement.

REPEATABLEREAD

Specifies that a scan is performed with the same locking semantics as a transaction
running at REPEATABLE READ isolation level. For more information about isolation
levels, see SET TRANSACTION ISOLATION LEVEL (Transact-SQL).

ROWLOCK

Specifies that row locks are taken when page or table locks are ordinarily taken. When
specified in transactions operating at the SNAPSHOT isolation level, row locks are not
taken unless ROWLOCK is combined with other table hints that require locks, such as
UPDLOCK and HOLDLOCK.

SPATIAL_WINDOW_MAX_CELLS = integer

Specifies the maximum number of cells to use for tessellating a geometry or geography
object. number is a value between 1 and 8192.

This option allows for fine-tuning of query execution time by adjusting the tradeoff
between primary and secondary filter execution time. A larger number reduces
secondary filter execution time, but increases primary execution filter time and a smaller
number decreases primary filter execution time, but increase secondary filter execution.
For denser spatial data, a higher number should produce a faster execution time by
giving a better approximation with the primary filter and reducing secondary filter
execution time. For sparser data, a lower number will decrease the primary filter
execution time.

This option works for both manual and automatic grid tessellations.

SERIALIZABLE

Is equivalent to HOLDLOCK. Makes shared locks more restrictive by holding them until
a transaction is completed, instead of releasing the shared lock as soon as the required
table or data page is no longer needed, whether the transaction has been completed or
not. The scan is performed with the same semantics as a transaction running at the

http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd
http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd
http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd

70

SERIALIZABLE isolation level. For more information about isolation levels, see SET
TRANSACTION ISOLATION LEVEL.

TABLOCK

Specifies that the acquired lock is applied at the table level. The type of lock that is
acquired depends on the statement being executed. For example, a SELECT statement
may acquire a shared lock. By specifying TABLOCK, the shared lock is applied to the
entire table instead of at the row or page level. If HOLDLOCK is also specified, the table
lock is held until the end of the transaction.

When importing data into a heap by using the INSERT INTO <target_table> SELECT
<columns> FROM <source_table> statement, you can enable optimized logging and
locking for the statement by specifying the TABLOCK hint for the target table. In
addition, the recovery model of the database must be set to simple or bulk-logged. For
more information, see INSERT (Transact-SQL).

When used with the OPENROWSET bulk rowset provider to import data into a table,
TABLOCK enables multiple clients to concurrently load data into the target table with
optimized logging and locking. For more information, see Prerequisites for Minimal
Logging in Bulk Import.

TABLOCKX

Specifies that an exclusive lock is taken on the table.

UPDLOCK

Specifies that update locks are to be taken and held until the transaction completes.
UPDLOCK takes update locks for read operations only at the row-level or page-level. If
UPDLOCK is combined with TABLOCK, or a table-level lock is taken for some other
reason, an exclusive (X) lock will be taken instead.

When UPDLOCK is specified, the READCOMMITTED and READCOMMITTEDLOCK
isolation level hints are ignored. For example, if the isolation level of the session is set
to SERIALIZABLE and a query specifies (UPDLOCK, READCOMMITTED), the
READCOMMITTED hint is ignored and the transaction is run using the SERIALIZABLE
isolation level.

XLOCK

Specifies that exclusive locks are to be taken and held until the transaction completes. If
specified with ROWLOCK, PAGLOCK, or TABLOCK, the exclusive locks apply to the
appropriate level of granularity.

http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd
http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd
http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17
http://msdn.microsoft.com/en-us/library/bd1dac6b-6ef8-4735-ad4e-67bb42dc4f66
http://msdn.microsoft.com/en-us/library/bd1dac6b-6ef8-4735-ad4e-67bb42dc4f66

71

Remarks
The table hints are ignored if the table is not accessed by the query plan. This may be caused by
the optimizer choosing not to access the table at all, or because an indexed view is accessed
instead. In the latter case, accessing an indexed view can be prevented by using the OPTION
(EXPAND VIEWS) query hint.

All lock hints are propagated to all the tables and views that are accessed by the query plan,
including tables and views referenced in a view. Also, SQL Server performs the corresponding
lock consistency checks.

Lock hints ROWLOCK, UPDLOCK, AND XLOCK that acquire row-level locks may place locks on
index keys rather than the actual data rows. For example, if a table has a nonclustered index, and
a SELECT statement using a lock hint is handled by a covering index, a lock is acquired on the
index key in the covering index rather than on the data row in the base table.

If a table contains computed columns that are computed by expressions or functions accessing
columns in other tables, the table hints are not used on those tables and are not propagated. For
example, a NOLOCK table hint is specified on a table in the query. This table has computed
columns that are computed by a combination of expressions and functions that access columns
in another table. The tables referenced by the expressions and functions do not use the NOLOCK
table hint when accessed.

SQL Server does not allow for more than one table hint from each of the following groups for
each table in the FROM clause:

• Granularity hints: PAGLOCK, NOLOCK, READCOMMITTEDLOCK, ROWLOCK, TABLOCK,
or TABLOCKX.

• Isolation level hints: HOLDLOCK, NOLOCK, READCOMMITTED, REPEATABLEREAD,
SERIALIZABLE.

Filtered Index Hints
A filtered index can be used as a table hint, but will cause the query optimizer to generate error
8622 if it does not cover all of the rows that the query selects. The following is an example of an
invalid filtered index hint. The example creates the filtered index
FIBillOfMaterialsWithComponentID and then uses it as an index hint for a SELECT statement.
The filtered index predicate includes data rows for ComponentIDs 533, 324, and 753. The query
predicate also includes data rows for ComponentIDs 533, 324, and 753 but extends the result set
to include ComponentIDs 855 and 924, which are not in the filtered index. Therefore, the query
optimizer cannot use the filtered index hint and generates error 8622. For more information,
see Filtered Index Design Guidelines.

USE AdventureWorks2012;

GO

IF EXISTS (SELECT name FROM sys.indexes

 WHERE name = N'FIBillOfMaterialsWithComponentID'

 AND object_id = OBJECT_ID(N'Production.BillOfMaterials'))

DROP INDEX FIBillOfMaterialsWithComponentID

http://msdn.microsoft.com/en-us/library/25e1fcc5-45d7-4c53-8c79-5493dfaa1c74

72

 ON Production.BillOfMaterials;

GO

CREATE NONCLUSTERED INDEX "FIBillOfMaterialsWithComponentID"

 ON Production.BillOfMaterials (ComponentID, StartDate, EndDate)

 WHERE ComponentID IN (533, 324, 753);

GO

SELECT StartDate, ComponentID FROM Production.BillOfMaterials

 WITH(INDEX (FIBillOfMaterialsWithComponentID))

 WHERE ComponentID in (533, 324, 753, 855, 924);

GO

The query optimizer will not consider an index hint if the SET options do not have the required
values for filtered indexes. For more information, see CREATE INDEX (Transact-SQL).

Using NOEXPAND
NOEXPAND applies only to indexed views. An indexed view is a view with a unique clustered
index created on it. If a query contains references to columns that are present both in an indexed
view and base tables, and the query optimizer determines that using the indexed view provides
the best method for executing the query, the query optimizer uses the index on the view. This
function is called indexed view matching. Automatic use of indexed view by query optimizer is
supported only in specific editions of SQL Server. For a list of features that are supported by the
editions of SQL Server, see Features Supported by the Editions of SQL Server 2012
(http://go.microsoft.com/fwlink/?linkid=232473).

However, for the optimizer to consider indexed views for matching, or use an indexed view that is
referenced with the NOEXPAND hint, the following SET options must be set to ON.

ANSI_NULLS ANSI_WARNINGS CONCAT_NULL_YIELDS_NULL

ANSI_PADDING ARITHABORT1 QUOTED_IDENTIFIERS

1 ARITHABORT is implicitly set to ON when ANSI_WARNINGS is set to ON. Therefore, you do
not have to manually adjust this setting.

Also, the NUMERIC_ROUNDABORT option must be set to OFF.

To force the optimizer to use an index for an indexed view, specify the NOEXPAND option. This
hint can be used only if the view is also named in the query. SQL Server does not provide a hint
to force a particular indexed view to be used in a query that does not name the view directly in the
FROM clause; however, the query optimizer considers using indexed views, even if they are not
referenced directly in the query.

http://go.microsoft.com/fwlink/?linkid=232473
http://msdn.microsoft.com/en-us/library/d2297805-412b-47b5-aeeb-53388349a5b9
http://go.microsoft.com/fwlink/?linkid=232473

73

Using a Table Hint as a Query Hint
Table hints can also be specified as a query hint by using the OPTION (TABLE HINT) clause. We
recommend using a table hint as a query hint only in the context of a plan guide. For ad-hoc
queries, specify these hints only as table hints. For more information, see Query Hints (Transact-
SQL).

Permissions
The KEEPIDENTITY, IGNORE_CONSTRAINTS, and IGNORE_TRIGGERS hints require ALTER
permissions on the table.

Examples

A. Using the TABLOCK hint to specify a locking method
The following example specifies that a shared lock is taken on the Production.Product table and
is held until the end of the UPDATE statement.

USE AdventureWorks2012;

GO

UPDATE Production.Product

WITH (TABLOCK)

SET ListPrice = ListPrice * 1.10

WHERE ProductNumber LIKE 'BK-%';

GO

B. Using the FORCESEEK hint to specify an index seek operation
The following example uses the FORCESEEK hint without specifying an index to force the query
optimizer to perform an index seek operation on the Sales.SalesOrderDetail table.

USE AdventureWorks2012;

GO

SELECT *

FROM Sales.SalesOrderHeader AS h

INNER JOIN Sales.SalesOrderDetail AS d WITH (FORCESEEK)

 ON h.SalesOrderID = d.SalesOrderID

WHERE h.TotalDue > 100

AND (d.OrderQty > 5 OR d.LineTotal < 1000.00);

GO

The following example uses the FORCESEEK hint with an index to force the query optimizer to
perform an index seek operation on the specified index and index column.

USE AdventureWorks2012;

GO

http://msdn.microsoft.com/en-us/library/bfc97632-c14c-4768-9dc5-a9c512f6b2bd

74

SELECT h.SalesOrderID, h.TotalDue, d.OrderQty

FROM Sales.SalesOrderHeader AS h

 INNER JOIN Sales.SalesOrderDetail AS d

 WITH (FORCESEEK (PK_SalesOrderDetail_SalesOrderID_SalesOrderDetailID (SalesOrderID)))

 ON h.SalesOrderID = d.SalesOrderID

WHERE h.TotalDue > 100

AND (d.OrderQty > 5 OR d.LineTotal < 1000.00);

GO

C. Using the FORCECAN hint to specify an index scan operation
The following example uses the FORCESCAN hint to force the query optimizer to perform a scan
operation on the Sales.SalesOrderDetail table.

USE AdventureWorks2012;

GO

SELECT h.SalesOrderID, h.TotalDue, d.OrderQty

FROM Sales.SalesOrderHeader AS h

 INNER JOIN Sales.SalesOrderDetail AS d

 WITH (FORCESCAN)

 ON h.SalesOrderID = d.SalesOrderID

WHERE h.TotalDue > 100

AND (d.OrderQty > 5 OR d.LineTotal < 1000.00);

See Also
OPENROWSET

Hints (Transact-SQL)

Query Hints (Transact-SQL)

INSERT
Adds one or more rows to a table or a view in SQL Server 2012. For examples, see Examples.

Transact-SQL Syntax Conventions

Syntax

[WITH <common_table_expression> [,...n]]

INSERT

{

http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17

75

 [TOP (expression) [PERCENT]]

 [INTO]

 { <object> | rowset_function_limited

 [WITH (<Table_Hint_Limited> [...n])]

 }

 {

 [(column_list)]

 [<OUTPUT Clause>]

 { VALUES ({ DEFAULT | NULL | expression } [,...n]) [,...n]

 | derived_table

 | execute_statement

 | <dml_table_source>

 | DEFAULT VALUES

 }

 }

}

[;]

<object> ::=

{

 [server_name . database_name . schema_name .

 | database_name .[schema_name] .

 | schema_name .

]

 table_or_view_name

}

<dml_table_source> ::=

 SELECT <select_list>

 FROM (<dml_statement_with_output_clause>)

 [AS] table_alias [(column_alias [,...n])]

 [WHERE <search_condition>]

 [OPTION (<query_hint> [,...n])]

<column_definition> ::=

 column_name <data_type>

76

 [COLLATE collation_name]

 [NULL | NOT NULL]

<data type> ::=

[type_schema_name .] type_name

 [(precision [, scale] | max]

-- External tool only syntax

INSERT

{

 [BULK]

 [database_name . [schema_name] . | schema_name .]

 [table_name | view_name]

 (<column_definition>)

 [WITH (

 [[,] CHECK_CONSTRAINTS]

 [[,] FIRE_TRIGGERS]

 [[,] KEEP_NULLS]

 [[,] KILOBYTES_PER_BATCH = kilobytes_per_batch]

 [[,] ROWS_PER_BATCH = rows_per_batch]

 [[,] ORDER ({ column [ASC | DESC] } [,...n])]

 [[,] TABLOCK]

)]

}

[;]

Arguments
WITH <common_table_expression>

Specifies the temporary named result set, also known as common table expression,
defined within the scope of the INSERT statement. The result set is derived from a
SELECT statement. For more information, see WITH common_table_expression
(Transact-SQL).

TOP (expression) [PERCENT]

Specifies the number or percent of random rows that will be inserted. expression can be
either a number or a percent of the rows. For more information, see TOP (Transact-
SQL).

77

INTO

Is an optional keyword that can be used between INSERT and the target table.

server_name

Is the name of the linked server on which the table or view is located.server_name can
be specified as a linked server name, or by using the OPENDATASOURCE function.

When server_name is specified as a linked server, database_name and schema_name
are required. When server_name is specified with OPENDATASOURCE,
database_name and schema_name may not apply to all data sources and is subject to
the capabilities of the OLE DB provider that accesses the remote object.

database_name

Is the name of the database.

schema_name

Is the name of the schema to which the table or view belongs.

table_orview_name

Is the name of the table or view that is to receive the data.

A table variable, within its scope, can be used as a table source in an INSERT
statement.

The view referenced by table_or_view_name must be updatable and reference exactly
one base table in the FROM clause of the view. For example, an INSERT into a multi-
table view must use a column_list that references only columns from one base table.
For more information about updatable views, see CREATE VIEW (Transact-SQL).

rowset_function_limited

Is either the OPENQUERY or OPENROWSET function. Use of these functions is
subject to the capabilities of the OLE DB provider that accesses the remote object.

WITH (<table_hint_limited> [... n])

Specifies one or more table hints that are allowed for a target table. The WITH keyword
and the parentheses are required.

READPAST, NOLOCK, and READUNCOMMITTED are not allowed. For more
information about table hints, see Table Hint (Transact-SQL).

http://msdn.microsoft.com/en-us/library/fed3adb0-4c15-4a1a-8acd-1b184aff558f
http://msdn.microsoft.com/en-us/library/5510b846-9cde-4687-8798-be9a273aad31
http://msdn.microsoft.com/en-us/library/1ef0b60e-a64c-4e97-847b-67930e3973ef
http://msdn.microsoft.com/en-us/library/aecc2f73-2ab5-4db9-b1e6-2f9e3c601fb9
http://msdn.microsoft.com/en-us/library/b805e976-f025-4be1-bcb0-3a57b0c57717
http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17

78

Important
The ability to specify the HOLDLOCK, SERIALIZABLE, READCOMMITTED,
REPEATABLEREAD, or UPDLOCK hints on tables that are targets of INSERT statements will be
removed in a future version of SQL Server. These hints do not affect the performance of INSERT
statements. Avoid using them in new development work, and plan to modify applications that
currently use them.

Specifying the TABLOCK hint on a table that is the target of an INSERT statement has
the same effect as specifying the TABLOCKX hint. An exclusive lock is taken on the
table.

(column_list)

Is a list of one or more columns in which to insert data.column_list must be enclosed in
parentheses and delimited by commas.

If a column is not in column_list, the Database Engine must be able to provide a value
based on the definition of the column; otherwise, the row cannot be loaded. The
Database Engine automatically provides a value for the column if the column:

• Has an IDENTITY property. The next incremental identity value is used.

• Has a default. The default value for the column is used.

• Has a timestamp data type. The current timestamp value is used.

• Is nullable. A null value is used.

• Is a computed column. The calculated value is used.

column_list must be used when explicit values are inserted into an identity column, and
the SET IDENTITY_INSERT option must be ON for the table.

OUTPUT Clause

Returns inserted rows as part of the insert operation. The results can be returned to the
processing application or inserted into a table or table variable for further processing.

The OUTPUT clause is not supported in DML statements that reference local
partitioned views, distributed partitioned views, or remote tables, or INSERT statements
that contain an execute_statement. The OUTPUT INTO clause is not supported in
INSERT statements that contain a <dml_table_source> clause.

VALUES

Introduces the list or lists of data values to be inserted. There must be one data value
for each column in column_list, if specified, or in the table. The value list must be
enclosed in parentheses.

If the values in the Value list are not in the same order as the columns in the table or do
not have a value for each column in the table, column_list must be used to explicitly

79

specify the column that stores each incoming value.

You can use the Transact-SQL row constructor (also called a table value constructor) to
specify multiple rows in a single INSERT statement. The row constructor consists of a
single VALUES clause with multiple value lists enclosed in parentheses and separated
by a comma. For more information, see Table Value Constructor (Transact-SQL).

DEFAULT

Forces the Database Engine to load the default value defined for a column. If a default
does not exist for the column and the column allows null values, NULL is inserted. For a
column defined with the timestamp data type, the next timestamp value is inserted.
DEFAULT is not valid for an identity column.

expression

Is a constant, a variable, or an expression. The expression cannot contain an
EXECUTE statement.

When referencing the Unicode character data types nchar, nvarchar, and ntext,
'expression' should be prefixed with the capital letter 'N'. If 'N' is not specified, SQL
Server converts the string to the code page that corresponds to the default collation of
the database or column. Any characters not found in this code page are lost.

derived_table

Is any valid SELECT statement that returns rows of data to be loaded into the table.
The SELECT statement cannot contain a common table expression (CTE).

execute_statement

Is any valid EXECUTE statement that returns data with SELECT or READTEXT
statements. For more information, see EXECUTE (Transact-SQL).

The RESULT SETS options of the EXECUTE statement cannot be specified in an
INSERT…EXEC statement.

If execute_statement is used with INSERT, each result set must be compatible with the
columns in the table or in column_list.

execute_statement can be used to execute stored procedures on the same server or a
remote server. The procedure in the remote server is executed, and the result sets are
returned to the local server and loaded into the table in the local server. In a distributed
transaction, execute_statement cannot be issued against a loopback linked server
when the connection has multiple active result sets (MARS) enabled.

If execute_statement returns data with the READTEXT statement, each READTEXT
statement can return a maximum of 1 MB (1024 KB) of data. execute_statement can
also be used with extended procedures. execute_statement inserts the data returned by

http://msdn.microsoft.com/en-us/library/bc806b71-cc55-470a-913e-c5f761d5c4b7

80

the main thread of the extended procedure; however, output from threads other than the
main thread are not inserted.

You cannot specify a table-valued parameter as the target of an INSERT EXEC
statement; however, it can be specified as a source in the INSERT EXEC string or
stored-procedure. For more information, see Table-valued Parameters (Database
Engine).

<dml_table_source>

Specifies that the rows inserted into the target table are those returned by the OUTPUT
clause of an INSERT, UPDATE, DELETE, or MERGE statement, optionally filtered by a
WHERE clause. If <dml_table_source> is specified, the target of the outer INSERT
statement must meet the following restrictions:

• It must be a base table, not a view.

• It cannot be a remote table.

• It cannot have any triggers defined on it.

• It cannot participate in any primary key-foreign key relationships.

• It cannot participate in merge replication or updatable subscriptions for
transactional replication.

The compatibility level of the database must be set to 100 or higher. For more
information, see OUTPUT Clause (Transact-SQL).

<select_list>

Is a comma-separated list specifying which columns returned by the OUTPUT clause to
insert. The columns in <select_list> must be compatible with the columns into which
values are being inserted. <select_list> cannot reference aggregate functions or
TEXTPTR.

Note
Any variables listed in the SELECT list refer to their original values, regardless of any changes
made to them in <dml_statement_with_output_clause>.

<dml_statement_with_output_clause>

Is a valid INSERT, UPDATE, DELETE, or MERGE statement that returns affected rows
in an OUTPUT clause. The statement cannot contain a WITH clause, and cannot target
remote tables or partitioned views. If UPDATE or DELETE is specified, it cannot be a
cursor-based UPDATE or DELETE. Source rows cannot be referenced as nested DML
statements.

http://msdn.microsoft.com/en-us/library/5e95a382-1e01-4c74-81f5-055612c2ad99
http://msdn.microsoft.com/en-us/library/5e95a382-1e01-4c74-81f5-055612c2ad99

81

WHERE <search_condition>

Is any WHERE clause containing a valid <search_condition> that filters the rows
returned by <dml_statement_with_output_clause>. For more information, see Search
Condition (Transact-SQL). When used in this context, <search_condition> cannot
contain subqueries, scalar user-defined functions that perform data access, aggregate
functions, TEXTPTR, or full-text search predicates.

DEFAULT VALUES

Forces the new row to contain the default values defined for each column.

BULK

Used by external tools to upload a binary data stream. This option is not intended for
use with tools such as SQL Server Management Studio, SQLCMD, OSQL, or data
access application programming interfaces such as SQL Server Native Client.

FIRE_TRIGGERS

Specifies that any insert triggers defined on the destination table execute during the
binary data stream upload operation. For more information, see BULK INSERT
(Transact-SQL).

CHECK_CONSTRAINTS

Specifies that all constraints on the target table or view must be checked during the
binary data stream upload operation. For more information, see BULK INSERT
(Transact-SQL).

KEEPNULLS

Specifies that empty columns should retain a null value during the binary data stream
upload operation. For more information, see Keeping Nulls or Using Default Values
During Bulk Import.

KILOBYTES_PER_BATCH = kilobytes_per_batch

Specifies the approximate number of kilobytes (KB) of data per batch as
kilobytes_per_batch. For more information, see BULK INSERT (Transact-SQL).

ROWS_PER_BATCH = rows_per_batch

Indicates the approximate number of rows of data in the binary data stream. For more
information, see BULK INSERT (Transact-SQL).

http://msdn.microsoft.com/en-us/library/6b91d762-337b-4345-a159-88abb3e64a81
http://msdn.microsoft.com/en-us/library/6b91d762-337b-4345-a159-88abb3e64a81

82

Note A syntax error is raised if a column list is not provided.

Best Practices
Use the @@ROWCOUNT function to return the number of inserted rows to the client application.
For more information, see @@ROWCOUNT (Transact-SQL).

Best Practices for Bulk Importing Data

Using INSERT INTO…SELECT to Bulk Import Data with Minimal Logging
You can use INSERT INTO <target_table> SELECT <columns> FROM <source_table> to
efficiently transfer a large number of rows from one table, such as a staging table, to another
table with minimal logging. Minimal logging can improve the performance of the statement and
reduce the possibility of the operation filling the available transaction log space during the
transaction.

Minimal logging for this statement has the following requirements:

• The recovery model of the database is set to simple or bulk-logged.

• The target table is an empty or nonempty heap.

• The target table is not used in replication.

• The TABLOCK hint is specified for the target table.

Rows that are inserted into a heap as the result of an insert action in a MERGE statement may
also be minimally logged.

Unlike the BULK INSERT statement, which holds a less restrictive Bulk Update lock, INSERT
INTO…SELECT with the TABLOCK hint holds an exclusive (X) lock on the table. This means that
you cannot insert rows using parallel insert operations.

Using OPENROWSET and BULK to Bulk Import Data
The OPENROWSET function can accept the following table hints, which provide bulk-load
optimizations with the INSERT statement:

• The TABLOCK hint can minimize the number of log records for the insert operation. The
recovery model of the database must be set to simple or bulk-logged and the target table
cannot be used in replication. For more information, see Prerequisites for Minimal Logging in
Bulk Import.

• The IGNORE_CONSTRAINTS hint can temporarily disable FOREIGN KEY and CHECK
constraint checking.

• The IGNORE_TRIGGERS hint can temporarily disable trigger execution.

• The KEEPDEFAULTS hint allows the insertion of a table column's default value, if any,
instead of NULL when the data record lacks a value for the column.

• The KEEPIDENTITY hint allows the identity values in the imported data file to be used for the
identity column in the target table.

http://msdn.microsoft.com/en-us/library/97a47998-81d9-4331-a244-9eb8b6fe4a56
http://msdn.microsoft.com/en-us/library/bd1dac6b-6ef8-4735-ad4e-67bb42dc4f66
http://msdn.microsoft.com/en-us/library/bd1dac6b-6ef8-4735-ad4e-67bb42dc4f66

83

These optimizations are similar to those available with the BULK INSERT command. For more
information, see Table Hints (Transact-SQL).

Data Types
When you insert rows, consider the following data type behavior:

• If a value is being loaded into columns with a char, varchar, or varbinary data type, the
padding or truncation of trailing blanks (spaces for char and varchar, zeros for varbinary) is
determined by the SET ANSI_PADDING setting defined for the column when the table was
created. For more information, see SET ANSI_PADDING (Transact-SQL).

The following table shows the default operation for SET ANSI_PADDING OFF.

Data type Default operation

char Pad value with spaces to the defined width of
column.

varchar Remove trailing spaces to the last non-space
character or to a single-space character for
strings made up of only spaces.

varbinary Remove trailing zeros.

• If an empty string (' ') is loaded into a column with a varchar or text data type, the default
operation is to load a zero-length string.

• Inserting a null value into a text or image column does not create a valid text pointer, nor
does it preallocate an 8-KB text page.

• Columns created with the uniqueidentifier data type store specially formatted 16-byte binary
values. Unlike with identity columns, the Database Engine does not automatically generate
values for columns with the uniqueidentifier data type. During an insert operation, variables
with a data type of uniqueidentifier and string constants in the form xxxxxxxx-xxxx-xxxx-
xxxx-xxxxxxxxxxxx (36 characters including hyphens, where x is a hexadecimal digit in the
range 0-9 or a-f) can be used for uniqueidentifier columns. For example, 6F9619FF-8B86-
D011-B42D-00C04FC964FF is a valid value for a uniqueidentifier variable or column. Use
the NEWID() function to obtain a globally unique ID (GUID).

Inserting Values into User-Defined Type Columns
You can insert values in user-defined type columns by:

• Supplying a value of the user-defined type.

• Supplying a value in a SQL Server system data type, as long as the user-defined type
supports implicit or explicit conversion from that type. The following example shows how to
insert a value in a column of user-defined type Point, by explicitly converting from a string.

http://msdn.microsoft.com/en-us/library/92bd29a3-9beb-410e-b7e0-7bc1dc1ae6d0
http://msdn.microsoft.com/en-us/library/f7014e60-96d5-457e-afc3-72b60ba20c0f

84

INSERT INTO Cities (Location)

VALUES (CONVERT(Point, '12.3:46.2'));

A binary value can also be supplied without performing explicit conversion, because all user-
defined types are implicitly convertible from binary.

• Calling a user-defined function that returns a value of the user-defined type. The following
example uses a user-defined function CreateNewPoint() to create a new value of user-defined
type Point and insert the value into the Cities table.

INSERT INTO Cities (Location)

VALUES (dbo.CreateNewPoint(x, y));

Error Handling
You can implement error handling for the INSERT statement by specifying the statement in a
TRY…CATCH construct.

If an INSERT statement violates a constraint or rule, or if it has a value incompatible with the data
type of the column, the statement fails and an error message is returned.

If INSERT is loading multiple rows with SELECT or EXECUTE, any violation of a rule or
constraint that occurs from the values being loaded causes the statement to be stopped, and no
rows are loaded.

When an INSERT statement encounters an arithmetic error (overflow, divide by zero, or a domain
error) occurring during expression evaluation, the Database Engine handles these errors as if
SET ARITHABORT is set to ON. The batch is stopped, and an error message is returned. During
expression evaluation when SET ARITHABORT and SET ANSI_WARNINGS are OFF, if an
INSERT, DELETE or UPDATE statement encounters an arithmetic error, overflow, divide-by-
zero, or a domain error, SQL Server inserts or updates a NULL value. If the target column is not
nullable, the insert or update action fails and the user receives an error.

Interoperability
When an INSTEAD OF trigger is defined on INSERT actions against a table or view, the trigger
executes instead of the INSERT statement. For more information about INSTEAD OF triggers,
see CREATE TRIGGER (Transact-SQL).

Limitations and Restrictions
When you insert values into remote tables and not all values for all columns are specified, you
must identify the columns to which the specified values are to be inserted.

When TOP is used with INSERT the referenced rows are not arranged in any order and the
ORDER BY clause can not be directly specified in this statements. If you need to use TOP to
insert rows in a meaningful chronological order, you must use TOP together with an ORDER BY
clause that is specified in a subselect statement. See the Examples section that follows in this
topic.

http://msdn.microsoft.com/en-us/library/edeced03-decd-44c3-8c74-2c02f801d3e7

85

Locking Behavior
An INSERT statement always acquires an exclusive (X) lock on the table it modifies, and holds
that lock until the transaction completes. With an exclusive lock, no other transactions can modify
data; read operations can take place only with the use of the NOLOCK hint or read uncommitted
isolation level. You can specify table hints to override this default behavior for the duration of the
INSERT statement by specifying another locking method, however, we recommend that hints be
used only as a last resort by experienced developers and database administrators. For more
information, see Table Hints (Transact-SQL).

Logging Behavior
The INSERT statement is always fully logged except when using the OPENROWSET function
with the BULK keyword or when using INSERT INTO <target_table> SELECT <columns> FROM
<source_table>. These operations can be minimally logged. For more information, see the
section "Best Practices for Bulk Loading Data" earlier in this topic.

Security
During a linked server connection, the sending server provides a login name and password to
connect to the receiving server on its behalf. For this connection to work, you must create a login
mapping between the linked servers by using sp_addlinkedsrvlogin.

When you use OPENROWSET(BULK…), it is important to understand how SQL Server handles
impersonation. For more information, see "Security Considerations" in Importing Bulk Data by
Using BULK INSERT or OPENROWSET(BULK...).

Permissions
INSERT permission is required on the target table.

INSERT permissions default to members of the sysadmin fixed server role, the db_owner and
db_datawriter fixed database roles, and the table owner. Members of the sysadmin, db_owner,
and the db_securityadmin roles, and the table owner can transfer permissions to other users.

To execute INSERT with the OPENROWSET function BULK option, you must be a member of
the sysadmin fixed server role or of the bulkadmin fixed server role.

Examples

Category Featured syntax elements

Basic syntax INSERT • table value constructor

Handling column values IDENTITY • NEWID • default values • user-
defined types

Inserting data from other tables INSERT…SELECT • INSERT…EXECUTE •

http://msdn.microsoft.com/en-us/library/eb69f303-1adf-4602-b6ab-f62e028ed9f6
http://msdn.microsoft.com/en-us/library/18a64236-0285-46ea-8929-6ee9bcc020b9
http://msdn.microsoft.com/en-us/library/18a64236-0285-46ea-8929-6ee9bcc020b9
http://msdn.microsoft.com/en-us/library/18a64236-0285-46ea-8929-6ee9bcc020b9

86

Category Featured syntax elements

WITH common table expression • TOP •
OFFSET FETCH

Specifying target objects other than standard
tables

Views • table variables

Inserting rows into a remote table Linked server • OPENQUERY rowset function •
OPENDATASOURCE rowset function

Bulk loading data from tables or data files INSERT…SELECT • OPENROWSET function

Overriding the default behavior of the query
optimizer by using hints

Table hints

Capturing the results of the INSERT statement OUTPUT clause

Basic Syntax
Examples in this section demonstrate the basic functionality of the INSERT statement using the
minimum required syntax.

A. Inserting a single row of data
The following example inserts one row into the Production.UnitMeasure table. The columns in this
table are UnitMeasureCode, Name, and ModifiedDate. Because values for all columns are supplied
and are listed in the same order as the columns in the table, the column names do not have to be
specified in the column list.

USE AdventureWorks2012;

GO

INSERT INTO Production.UnitMeasure

VALUES (N'FT', N'Feet', '20080414');

GO

B. Inserting multiple rows of data
The following example uses the table value constructor to insert three rows into the
Production.UnitMeasure table in a single INSERT statement. Because values for all columns are
supplied and are listed in the same order as the columns in the table, the column names do not
have to be specified in the column list.

USE AdventureWorks2012;

GO

INSERT INTO Production.UnitMeasure

VALUES (N'FT2', N'Square Feet ', '20080923'), (N'Y', N'Yards', '20080923'), (N'Y3',

N'Cubic Yards', '20080923');

87

GO

C. Inserting data that is not in the same order as the table columns
The following example uses a column list to explicitly specify the values that are inserted into
each column. The column order in the Production.UnitMeasure table is UnitMeasureCode, Name,
ModifiedDate; however, the columns are not listed in that order in column_list.

USE AdventureWorks2012;

GO

INSERT INTO Production.UnitMeasure (Name, UnitMeasureCode,

 ModifiedDate)

VALUES (N'Square Yards', N'Y2', GETDATE());

GO

Handling Column Values
Examples in this section demonstrate methods of inserting values into columns that are defined
with an IDENTITY property, DEFAULT value, or are defined with data types such as
uniqueidentifer or user-defined type columns.

A. Inserting data into a table with columns that have default values
The following example shows inserting rows into a table with columns that automatically generate
a value or have a default value. Column_1 is a computed column that automatically generates a
value by concatenating a string with the value inserted into column_2. Column_2 is defined with a
default constraint. If a value is not specified for this column, the default value is used. Column_3 is
defined with the rowversion data type, which automatically generates a unique, incrementing
binary number. Column_4 does not automatically generate a value. When a value for this column is
not specified, NULL is inserted. The INSERT statements insert rows that contain values for some
of the columns but not all. In the last INSERT statement, no columns are specified and only the
default values are inserted by using the DEFAULT VALUES clause.

USE AdventureWorks2012;

GO

IF OBJECT_ID ('dbo.T1', 'U') IS NOT NULL

 DROP TABLE dbo.T1;

GO

CREATE TABLE dbo.T1

(

 column_1 AS 'Computed column ' + column_2,

 column_2 varchar(30)

 CONSTRAINT default_name DEFAULT ('my column default'),

 column_3 rowversion,

 column_4 varchar(40) NULL

);

GO

INSERT INTO dbo.T1 (column_4)

88

 VALUES ('Explicit value');

INSERT INTO dbo.T1 (column_2, column_4)

 VALUES ('Explicit value', 'Explicit value');

INSERT INTO dbo.T1 (column_2)

 VALUES ('Explicit value');

INSERT INTO T1 DEFAULT VALUES;

GO

SELECT column_1, column_2, column_3, column_4

FROM dbo.T1;

GO

B. Inserting data into a table with an identity column
The following example shows different methods of inserting data into an identity column. The first
two INSERT statements allow identity values to be generated for the new rows. The third INSERT
statement overrides the IDENTITY property for the column with the SET IDENTITY_INSERT
statement and inserts an explicit value into the identity column.

USE AdventureWorks2012;

GO

IF OBJECT_ID ('dbo.T1', 'U') IS NOT NULL

 DROP TABLE dbo.T1;

GO

CREATE TABLE dbo.T1 (column_1 int IDENTITY, column_2 VARCHAR(30));

GO

INSERT T1 VALUES ('Row #1');

INSERT T1 (column_2) VALUES ('Row #2');

GO

SET IDENTITY_INSERT T1 ON;

GO

INSERT INTO T1 (column_1,column_2)

 VALUES (-99, 'Explicit identity value');

GO

SELECT column_1, column_2

FROM T1;

GO

C. Inserting data into a uniqueidentifier column by using NEWID()
The following example uses the NEWID() function to obtain a GUID for column_2. Unlike for
identity columns, the Database Engine does not automatically generate values for columns with
the uniqueidentifier data type, as shown by the second INSERT statement.

USE AdventureWorks2012;

GO

IF OBJECT_ID ('dbo.T1', 'U') IS NOT NULL

 DROP TABLE dbo.T1;

http://msdn.microsoft.com/en-us/library/f7014e60-96d5-457e-afc3-72b60ba20c0f
http://msdn.microsoft.com/en-us/library/b026035b-f3d2-4d70-989d-3884b4ca0233

89

GO

CREATE TABLE dbo.T1

(

 column_1 int IDENTITY,

 column_2 uniqueidentifier,

);

GO

INSERT INTO dbo.T1 (column_2)

 VALUES (NEWID());

INSERT INTO T1 DEFAULT VALUES;

GO

SELECT column_1, column_2

FROM dbo.T1;

GO

D. Inserting data into user-defined type columns
The following Transact-SQL statements insert three rows into the PointValue column of the
Points table. This column uses a CLR user-defined type (UDT). The Point data type consists of X
and Y integer values that are exposed as properties of the UDT. You must use either the CAST
or CONVERT function to cast the comma-delimited X and Y values to the Point type. The first
two statements use the CONVERT function to convert a string value to the Point type, and the
third statement uses the CAST function. For more information, see Manipulating UDT Data.

INSERT INTO dbo.Points (PointValue) VALUES (CONVERT(Point, '3,4'));

INSERT INTO dbo.Points (PointValue) VALUES (CONVERT(Point, '1,5'));

INSERT INTO dbo.Points (PointValue) VALUES (CAST ('1,99' AS Point));

Inserting Data from Other Tables
Examples in this section demonstrate methods of inserting rows from one table into another table.

A. Using the SELECT and EXECUTE options to insert data from other tables
The following example shows how to insert data from one table into another table by using
INSERT…SELECT or INSERT…EXECUTE. Each is based on a multi-table SELECT statement
that includes an expression and a literal value in the column list.

The first INSERT statement uses a SELECT statement to derive the data from the source tables
(Employee, SalesPerson, and Person) and store the result set in the EmployeeSales table. The
second INSERT statement uses the EXECUTE clause to call a stored procedure that contains
the SELECT statement, and the third INSERT uses the EXECUTE clause to reference the
SELECT statement as a literal string.

USE AdventureWorks2012;

GO

IF OBJECT_ID ('dbo.EmployeeSales', 'U') IS NOT NULL

 DROP TABLE dbo.EmployeeSales;

http://msdn.microsoft.com/en-us/library/27c4889b-c543-47a8-a630-ad06804f92df
http://msdn.microsoft.com/en-us/library/51b1a5f2-7591-4e11-bfe2-d88e0836403f

90

GO

IF OBJECT_ID ('dbo.uspGetEmployeeSales', 'P') IS NOT NULL

 DROP PROCEDURE uspGetEmployeeSales;

GO

CREATE TABLE dbo.EmployeeSales

(DataSource varchar(20) NOT NULL,

 BusinessEntityID varchar(11) NOT NULL,

 LastName varchar(40) NOT NULL,

 SalesDollars money NOT NULL

);

GO

CREATE PROCEDURE dbo.uspGetEmployeeSales

AS

 SET NOCOUNT ON;

 SELECT 'PROCEDURE', sp.BusinessEntityID, c.LastName,

 sp.SalesYTD

 FROM Sales.SalesPerson AS sp

 INNER JOIN Person.Person AS c

 ON sp.BusinessEntityID = c.BusinessEntityID

 WHERE sp.BusinessEntityID LIKE '2%'

 ORDER BY sp.BusinessEntityID, c.LastName;

GO

--INSERT...SELECT example

INSERT INTO dbo.EmployeeSales

 SELECT 'SELECT', sp.BusinessEntityID, c.LastName, sp.SalesYTD

 FROM Sales.SalesPerson AS sp

 INNER JOIN Person.Person AS c

 ON sp.BusinessEntityID = c.BusinessEntityID

 WHERE sp.BusinessEntityID LIKE '2%'

 ORDER BY sp.BusinessEntityID, c.LastName;

GO

--INSERT...EXECUTE procedure example

INSERT INTO dbo.EmployeeSales

EXECUTE dbo.uspGetEmployeeSales;

GO

--INSERT...EXECUTE('string') example

INSERT INTO dbo.EmployeeSales

EXECUTE

('

SELECT ''EXEC STRING'', sp.BusinessEntityID, c.LastName,

 sp.SalesYTD

 FROM Sales.SalesPerson AS sp

 INNER JOIN Person.Person AS c

91

 ON sp.BusinessEntityID = c.BusinessEntityID

 WHERE sp.BusinessEntityID LIKE ''2%''

 ORDER BY sp.BusinessEntityID, c.LastName

');

GO

--Show results.

SELECT DataSource,BusinessEntityID,LastName,SalesDollars

FROM dbo.EmployeeSales;

GO

B. Using WITH common table expression to define the data inserted
The following example creates the NewEmployee table. A common table expression (EmployeeTemp)
defines the rows from one or more tables to be inserted into the NewEmployee table. The INSERT
statement references the columns in the common table expression.

USE AdventureWorks2012;

GO

IF OBJECT_ID (N'HumanResources.NewEmployee', N'U') IS NOT NULL

 DROP TABLE HumanResources.NewEmployee;

GO

CREATE TABLE HumanResources.NewEmployee

(

 EmployeeID int NOT NULL,

 LastName nvarchar(50) NOT NULL,

 FirstName nvarchar(50) NOT NULL,

 PhoneNumber Phone NULL,

 AddressLine1 nvarchar(60) NOT NULL,

 City nvarchar(30) NOT NULL,

 State nchar(3) NOT NULL,

 PostalCode nvarchar(15) NOT NULL,

 CurrentFlag Flag

);

GO

WITH EmployeeTemp (EmpID, LastName, FirstName, Phone,

 Address, City, StateProvince,

 PostalCode, CurrentFlag)

AS (SELECT

 e.BusinessEntityID, c.LastName, c.FirstName, pp.PhoneNumber,

 a.AddressLine1, a.City, sp.StateProvinceCode,

 a.PostalCode, e.CurrentFlag

 FROM HumanResources.Employee e

 INNER JOIN Person.BusinessEntityAddress AS bea

 ON e.BusinessEntityID = bea.BusinessEntityID

 INNER JOIN Person.Address AS a

92

 ON bea.AddressID = a.AddressID

 INNER JOIN Person.PersonPhone AS pp

 ON e.BusinessEntityID = pp.BusinessEntityID

 INNER JOIN Person.StateProvince AS sp

 ON a.StateProvinceID = sp.StateProvinceID

 INNER JOIN Person.Person as c

 ON e.BusinessEntityID = c.BusinessEntityID

)

INSERT INTO HumanResources.NewEmployee

 SELECT EmpID, LastName, FirstName, Phone,

 Address, City, StateProvince, PostalCode, CurrentFlag

 FROM EmployeeTemp;

GO

C. Using TOP to limit the data inserted from the source table
The following example creates the table EmployeeSales and inserts the name and year-to-date
sales data for the top 5 random employees from the table HumanResources.Employee. The INSERT
statement chooses any 5 rows returned by the SELECT statement. The OUTPUT clause displays
the rows that are inserted into the EmployeeSales table. Notice that the ORDER BY clause in the
SELECT statement is not used to determine the top 5 employees.

USE AdventureWorks2012 ;

GO

IF OBJECT_ID ('dbo.EmployeeSales', 'U') IS NOT NULL

 DROP TABLE dbo.EmployeeSales;

GO

CREATE TABLE dbo.EmployeeSales

(EmployeeID nvarchar(11) NOT NULL,

 LastName nvarchar(20) NOT NULL,

 FirstName nvarchar(20) NOT NULL,

 YearlySales money NOT NULL

);

GO

INSERT TOP(5)INTO dbo.EmployeeSales

 OUTPUT inserted.EmployeeID, inserted.FirstName, inserted.LastName,

inserted.YearlySales

 SELECT sp.BusinessEntityID, c.LastName, c.FirstName, sp.SalesYTD

 FROM Sales.SalesPerson AS sp

 INNER JOIN Person.Person AS c

 ON sp.BusinessEntityID = c.BusinessEntityID

 WHERE sp.SalesYTD > 250000.00

 ORDER BY sp.SalesYTD DESC;

93

If you have to use TOP to insert rows in a meaningful chronological order, you must use TOP
together with ORDER BY in a subselect statement as shown in the following example. The
OUTPUT clause displays the rows that are inserted into the EmployeeSales table. Notice that the
top 5 employees are now inserted based on the results of the ORDER BY clause instead of
random rows.

INSERT INTO dbo.EmployeeSales

 OUTPUT inserted.EmployeeID, inserted.FirstName, inserted.LastName,

inserted.YearlySales

 SELECT TOP (5) sp.BusinessEntityID, c.LastName, c.FirstName, sp.SalesYTD

 FROM Sales.SalesPerson AS sp

 INNER JOIN Person.Person AS c

 ON sp.BusinessEntityID = c.BusinessEntityID

 WHERE sp.SalesYTD > 250000.00

 ORDER BY sp.SalesYTD DESC;

Specifying Target Objects Other Than Standard Tables
Examples in this section demonstrate how to insert rows by specifying a view or table variable.

A. Inserting data by specifying a view
The following example specifies a view name as the target object; however, the new row is
inserted in the underlying base table. The order of the values in the INSERT statement must match
the column order of the view. For more information, see Modifying Data Through a View.

USE AdventureWorks2012;

GO

IF OBJECT_ID ('dbo.T1', 'U') IS NOT NULL

 DROP TABLE dbo.T1;

GO

IF OBJECT_ID ('dbo.V1', 'V') IS NOT NULL

 DROP VIEW dbo.V1;

GO

CREATE TABLE T1 (column_1 int, column_2 varchar(30));

GO

CREATE VIEW V1 AS

SELECT column_2, column_1

FROM T1;

GO

INSERT INTO V1

 VALUES ('Row 1',1);

GO

SELECT column_1, column_2

FROM T1;

GO

http://msdn.microsoft.com/en-us/library/410e2812-4ebe-48b2-b95f-c7784f1c4336

94

SELECT column_1, column_2

FROM V1;

GO

B. Inserting data into a table variable
The following example specifies a table variable as the target object.

USE AdventureWorks2012;

GO

-- Create the table variable.

DECLARE @MyTableVar table(

 LocationID int NOT NULL,

 CostRate smallmoney NOT NULL,

 NewCostRate AS CostRate * 1.5,

 ModifiedDate datetime);

-- Insert values into the table variable.

INSERT INTO @MyTableVar (LocationID, CostRate, ModifiedDate)

 SELECT LocationID, CostRate, GETDATE() FROM Production.Location

 WHERE CostRate > 0;

-- View the table variable result set.

SELECT * FROM @MyTableVar;

GO

Inserting Rows into a Remote Table
Examples in this section demonstrate how to insert rows into a remote target table by using
a linked server or a rowset function to reference the remote table.

A. Inserting data into a remote table by using a linked server
The following example inserts rows into a remote table. The example begins by creating a link to
the remote data source by using sp_addlinkedserver. The linked server name, MyLinkServer, is
then specified as part of the four-part object name in the form server.catalog.schema.object.

USE master;

GO

-- Create a link to the remote data source.

-- Specify a valid server name for @datasrc as 'server_name' or

'server_name\instance_name'.

EXEC sp_addlinkedserver @server = N'MyLinkServer',

 @srvproduct = N' ',

 @provider = N'SQLNCLI',

 @datasrc = N'server_name',

 @catalog = N'AdventureWorks2012';

http://msdn.microsoft.com/en-us/library/fed3adb0-4c15-4a1a-8acd-1b184aff558f
http://msdn.microsoft.com/en-us/library/ac24d700-3144-4ab5-9fa8-8c014001cc71
http://msdn.microsoft.com/en-us/library/fed3adb0-4c15-4a1a-8acd-1b184aff558f

95

GO

USE AdventureWorks2012;

GO

-- Specify the remote data source in the FROM clause using a four-part name

-- in the form linked_server.catalog.schema.object.

INSERT INTO MyLinkServer.AdventureWorks2012.HumanResources.Department (Name, GroupName)

VALUES (N'Public Relations', N'Executive General and Administration');

GO

B. Inserting data into a remote table by using the OPENQUERY function
The following example inserts a row into a remote table by specifying the OPENQUERYrowset
function. The linked server name created in the previous example is used in this example.

-- Use the OPENQUERY function to access the remote data source.

INSERT OPENQUERY (MyLinkServer, 'SELECT Name, GroupName FROM

AdventureWorks2012.HumanResources.Department')

VALUES ('Environmental Impact', 'Engineering');

GO

C. Inserting data into a remote table by using the OPENDATASOURCE function
The following example inserts a row into a remote table by specifying
the OPENDATASOURCErowset function. Specify a valid server name for the data source by
using the format server_name or server_name\instance_name.

-- Use the OPENDATASOURCE function to specify the remote data source.

-- Specify a valid server name for Data Source using the format server_name or

server_name\instance_name.

INSERT INTO OPENDATASOURCE('SQLNCLI',

 'Data Source= <server_name>; Integrated Security=SSPI')

 .AdventureWorks2012.HumanResources.Department (Name, GroupName)

 VALUES (N'Standards and Methods', 'Quality Assurance');

GO

Bulk Loading Data from Tables or Data Files
Examples in this section demonstrate two methods to bulk load data into a table by using the
INSERT statement.

http://msdn.microsoft.com/en-us/library/b805e976-f025-4be1-bcb0-3a57b0c57717
http://msdn.microsoft.com/en-us/library/5510b846-9cde-4687-8798-be9a273aad31

96

A. Inserting data into a heap with minimal logging
The following example creates aa new table (a heap) and inserts data from another table into it
using minimal logging. The example assumes that the recovery model of the AdventureWorks2012
database is set to FULL. To ensure minimal logging is used, the recovery model of the
AdventureWorks2012 database is set to BULK_LOGGED before rows are inserted and reset to
FULL after the INSERT INTO…SELECT statement. In addition, the TABLOCK hint is specified for
the target table Sales.SalesHistory. This ensures that the statement uses minimal space in the
transaction log and performs efficiently.

USE AdventureWorks2012;

GO

-- Create the target heap.

CREATE TABLE Sales.SalesHistory(

 SalesOrderID int NOT NULL,

 SalesOrderDetailID int NOT NULL,

 CarrierTrackingNumber nvarchar(25) NULL,

 OrderQty smallint NOT NULL,

 ProductID int NOT NULL,

 SpecialOfferID int NOT NULL,

 UnitPrice money NOT NULL,

 UnitPriceDiscount money NOT NULL,

 LineTotal money NOT NULL,

 rowguid uniqueidentifier ROWGUIDCOL NOT NULL,

 ModifiedDate datetime NOT NULL);

GO

-- Temporarily set the recovery model to BULK_LOGGED.

ALTER DATABASE AdventureWorks2012

SET RECOVERY BULK_LOGGED;

GO

-- Transfer data from Sales.SalesOrderDetail to Sales.SalesHistory

INSERT INTO Sales.SalesHistory WITH (TABLOCK)

 (SalesOrderID,

 SalesOrderDetailID,

 CarrierTrackingNumber,

 OrderQty,

 ProductID,

 SpecialOfferID,

 UnitPrice,

 UnitPriceDiscount,

 LineTotal,

 rowguid,

 ModifiedDate)

SELECT * FROM Sales.SalesOrderDetail;

GO

97

-- Reset the recovery model.

ALTER DATABASE AdventureWorks2012

SET RECOVERY FULL;

GO

B. Using the OPENROWSET function with BULK to bulk load data into a table
The following example inserts rows from a data file into a table by specifying the OPENROWSET
function. The IGNORE_TRIGGERS table hint is specified for performance optimization. For more
examples, see Importing Bulk Data by Using BULK INSERT or OPENROWSET(BULK...).

-- Use the OPENROWSET function to specify the data source and specifies the

IGNORE_TRIGGERS table hint.

INSERT INTO HumanResources.Department WITH (IGNORE_TRIGGERS) (Name, GroupName)

SELECT b.Name, b.GroupName

FROM OPENROWSET (

 BULK 'C:\SQLFiles\DepartmentData.txt',

 FORMATFILE = 'C:\SQLFiles\BulkloadFormatFile.xml',

 ROWS_PER_BATCH = 15000)AS b ;

GO

Overriding the Default Behavior of the Query Optimizer by Using Hints
Examples in this section demonstrate how to use table hints to temporarily override the default
behavior of the query optimizer when processing the INSERT statement.

Because the SQL Server query optimizer typically selects the best execution plan for a
query, we recommend that hints be used only as a last resort by experienced developers
and database administrators.

A. Using the TABLOCK hint to specify a locking method
The following example specifies that an exclusive (X) lock is taken on the Production.Location
table and is held until the end of the INSERT statement.

USE AdventureWorks2012;

GO

INSERT INTO Production.Location WITH (XLOCK)

(Name, CostRate, Availability)

VALUES (N'Final Inventory', 15.00, 80.00);

GO

Capturing the Results of the INSERT Statement
Examples in this section demonstrate how to use the OUTPUT Clause to return information from,
or expressions based on, each row affected by an INSERT statement. These results can be

Caution

http://msdn.microsoft.com/en-us/library/18a64236-0285-46ea-8929-6ee9bcc020b9

98

returned to the processing application for use in such things as confirmation messages, archiving,
and other such application requirements.

A Using OUTPUT with an INSERT statement
The following example inserts a row into the ScrapReason table and uses the OUTPUT clause to
return the results of the statement to the @MyTableVar table variable. Because the ScrapReasonID
column is defined with an IDENTITY property, a value is not specified in the INSERT statement for
that column. However, note that the value generated by the Database Engine for that column is
returned in the OUTPUT clause in the INSERTED.ScrapReasonID column.

USE AdventureWorks2012;

GO

DECLARE @MyTableVar table(NewScrapReasonID smallint,

 Name varchar(50),

 ModifiedDate datetime);

INSERT Production.ScrapReason

 OUTPUT INSERTED.ScrapReasonID, INSERTED.Name, INSERTED.ModifiedDate

 INTO @MyTableVar

VALUES (N'Operator error', GETDATE());

--Display the result set of the table variable.

SELECT NewScrapReasonID, Name, ModifiedDate FROM @MyTableVar;

--Display the result set of the table.

SELECT ScrapReasonID, Name, ModifiedDate

FROM Production.ScrapReason;

GO

B. Using OUTPUT with identity and computed columns
The following example creates the EmployeeSales table and then inserts several rows into it using
an INSERT statement with a SELECT statement to retrieve data from source tables. The
EmployeeSales table contains an identity column (EmployeeID) and a computed column
(ProjectedSales). Because these values are generated by the Database Engine during the insert
operation, neither of these columns can be defined in @MyTableVar.

USE AdventureWorks2012 ;

GO

IF OBJECT_ID ('dbo.EmployeeSales', 'U') IS NOT NULL

 DROP TABLE dbo.EmployeeSales;

GO

CREATE TABLE dbo.EmployeeSales

(EmployeeID int IDENTITY (1,5)NOT NULL,

 LastName nvarchar(20) NOT NULL,

 FirstName nvarchar(20) NOT NULL,

 CurrentSales money NOT NULL,

 ProjectedSales AS CurrentSales * 1.10

99

);

GO

DECLARE @MyTableVar table(

 LastName nvarchar(20) NOT NULL,

 FirstName nvarchar(20) NOT NULL,

 CurrentSales money NOT NULL

);

INSERT INTO dbo.EmployeeSales (LastName, FirstName, CurrentSales)

 OUTPUT INSERTED.LastName,

 INSERTED.FirstName,

 INSERTED.CurrentSales

 INTO @MyTableVar

 SELECT c.LastName, c.FirstName, sp.SalesYTD

 FROM Sales.SalesPerson AS sp

 INNER JOIN Person.Person AS c

 ON sp.BusinessEntityID = c.BusinessEntityID

 WHERE sp.BusinessEntityID LIKE '2%'

 ORDER BY c.LastName, c.FirstName;

SELECT LastName, FirstName, CurrentSales

FROM @MyTableVar;

GO

SELECT EmployeeID, LastName, FirstName, CurrentSales, ProjectedSales

FROM dbo.EmployeeSales;

GO

C. Inserting data returned from an OUTPUT clause
The following example captures data returned from the OUTPUT clause of a MERGE statement,
and inserts that data into another table. The MERGE statement updates the Quantity column of
the ProductInventory table daily, based on orders that are processed in the SalesOrderDetail
table. It also deletes rows for products whose inventories drop to 0. The example captures the
rows that are deleted and inserts them into another table, ZeroInventory, which tracks products
with no inventory.

USE AdventureWorks2012;

GO

IF OBJECT_ID(N'Production.ZeroInventory', N'U') IS NOT NULL

 DROP TABLE Production.ZeroInventory;

GO

--Create ZeroInventory table.

CREATE TABLE Production.ZeroInventory (DeletedProductID int, RemovedOnDate DateTime);

GO

100

INSERT INTO Production.ZeroInventory (DeletedProductID, RemovedOnDate)

SELECT ProductID, GETDATE()

FROM

(MERGE Production.ProductInventory AS pi

 USING (SELECT ProductID, SUM(OrderQty) FROM Sales.SalesOrderDetail AS sod

 JOIN Sales.SalesOrderHeader AS soh

 ON sod.SalesOrderID = soh.SalesOrderID

 AND soh.OrderDate = '20070401'

 GROUP BY ProductID) AS src (ProductID, OrderQty)

 ON (pi.ProductID = src.ProductID)

 WHEN MATCHED AND pi.Quantity - src.OrderQty <= 0

 THEN DELETE

 WHEN MATCHED

 THEN UPDATE SET pi.Quantity = pi.Quantity - src.OrderQty

 OUTPUT $action, deleted.ProductID) AS Changes (Action, ProductID)

WHERE Action = 'DELETE';

IF @@ROWCOUNT = 0

PRINT 'Warning: No rows were inserted';

GO

SELECT DeletedProductID, RemovedOnDate FROM Production.ZeroInventory;

See Also
BULK INSERT (Transact-SQL)

DELETE (Transact-SQL)

EXECUTE (Transact-SQL)

FROM (Transact-SQL)

IDENTITY (Property) (Transact-SQL)

NEWID (Transact-SQL)

SELECT (Transact-SQL)

UPDATE (Transact-SQL)

MERGE (Transact-SQL)

OUTPUT Clause (Transact-SQL)

Using the inserted and deleted Tables

MERGE
Performs insert, update, or delete operations on a target table based on the results of a join with
a source table. For example, you can synchronize two tables by inserting, updating, or deleting
rows in one table based on differences found in the other table.

http://msdn.microsoft.com/en-us/library/bc806b71-cc55-470a-913e-c5f761d5c4b7
http://msdn.microsoft.com/en-us/library/8429134f-c821-4033-a07c-f782a48d501c
http://msdn.microsoft.com/en-us/library/f7014e60-96d5-457e-afc3-72b60ba20c0f
http://msdn.microsoft.com/en-us/library/ed84567f-7b91-4b44-b5b2-c400bda4590d

101

Transact-SQL Syntax Conventions

Syntax

[WITH <common_table_expression> [,...n]]

MERGE

 [TOP (expression) [PERCENT]]

 [INTO] <target_table> [WITH (<merge_hint>)] [[AS] table_alias]

 USING <table_source>

 ON <merge_search_condition>

 [WHEN MATCHED [AND <clause_search_condition>]

 THEN <merge_matched>] [...n]

 [WHEN NOT MATCHED [BY TARGET] [AND <clause_search_condition>]

 THEN <merge_not_matched>]

 [WHEN NOT MATCHED BY SOURCE [AND <clause_search_condition>]

 THEN <merge_matched>] [...n]

 [<output_clause>]

 [OPTION (<query_hint> [,...n])]

;

<target_table> ::=

{

 [database_name . schema_name . | schema_name .]

 target_table

}

<merge_hint>::=

{

 { [<table_hint_limited> [,...n]]

 [[,] INDEX (index_val [,...n])] }

}

<table_source> ::=

{

 table_or_view_name [[AS] table_alias] [<tablesample_clause>]

 [WITH (table_hint [[,]...n])]

102

 | rowset_function [[AS] table_alias]

 [(bulk_column_alias [,...n])]

 | user_defined_function [[AS] table_alias]

 | OPENXML <openxml_clause>

 | derived_table [AS] table_alias [(column_alias [,...n])]

 | <joined_table>

 | <pivoted_table>

 | <unpivoted_table>

}

<merge_search_condition> ::=

 <search_condition>

<merge_matched>::=

 { UPDATE SET <set_clause> | DELETE }

<set_clause>::=

SET

 { column_name= { expression | DEFAULT | NULL }

 | { udt_column_name.{ { property_name=expression

 | field_name=expression }

 | method_name(argument [,...n]) }

 }

 | column_name { .WRITE (expression,@Offset , @Length) }

 | @variable=expression

 | @variable=column=expression

 | column_name { += | -= | *= | /= | %= | &= | ^= | |= } expression

 | @variable { += | -= | *= | /= | %= | &= | ^= | |= } expression

 | @variable=column { += | -= | *= | /= | %= | &= | ^= | |= } expression

 } [,...n]

<merge_not_matched>::=

{

 INSERT [(column_list)]

 { VALUES (values_list)

 | DEFAULT VALUES }

103

}

<clause_search_condition> ::=

 <search_condition>

<search condition> ::=

 { [NOT] <predicate> | (<search_condition>) }

 [{ AND | OR } [NOT] { <predicate> | (<search_condition>) }]

[,...n]

<predicate> ::=

 { expression { = | <> | ! = | > | > = | ! > | < | < = | ! < } expression

 | string_expression [NOT] LIKE string_expression

 [ESCAPE 'escape_character']

 | expression [NOT] BETWEEN expression AND expression

 | expression IS [NOT] NULL

 | CONTAINS

 ({ column | * } ,'< contains_search_condition >')

 | FREETEXT ({ column | * } , 'freetext_string')

 | expression [NOT] IN (subquery | expression [,...n])

 | expression { = | <> | ! = | > | > = | ! > | < | < = | ! < }

 { ALL | SOME | ANY} (subquery)

 | EXISTS (subquery) }

<output_clause>::=

{

 [OUTPUT <dml_select_list> INTO { @table_variable | output_table }

 [(column_list)]]

 [OUTPUT <dml_select_list>]

}

<dml_select_list>::=

 { <column_name> | scalar_expression }

 [[AS] column_alias_identifier] [,...n]

<column_name> ::=

104

 { DELETED | INSERTED | from_table_name } . { * | column_name }

 | $action

Arguments
WITH <common_table_expression>

Specifies the temporary named result set or view, also known as common table
expression, defined within the scope of the MERGE statement. The result set is derived
from a simple query and is referenced by the MERGE statement. For more information,
see WITH common_table_expression (Transact-SQL).

TOP (expression) [PERCENT]

Specifies the number or percentage of rows that are affected. expression can be either
a number or a percentage of the rows. The rows referenced in the TOP expression are
not arranged in any order. For more information, see TOP (Transact-SQL).

The TOP clause is applied after the entire source table and the entire target table are
joined and the joined rows that do not qualify for an insert, update, or delete action are
removed. The TOP clause further reduces the number of joined rows to the specified
value and the insert, update, or delete actions are applied to the remaining joined rows
in an unordered fashion. That is, there is no order in which the rows are distributed
among the actions defined in the WHEN clauses. For example, specifying TOP (10)
affects 10 rows; of these rows, 7 may be updated and 3 inserted, or 1 may be deleted, 5
updated, and 4 inserted and so on.

Because the MERGE statement performs a full table scan of both the source and target
tables, I/O performance can be affected when using the TOP clause to modify a large
table by creating multiple batches. In this scenario, it is important to ensure that all
successive batches target new rows.

database_name

Is the name of the database in which target_table is located.

schema_name

Is the name of the schema to which target_table belongs.

target_table

Is the table or view against which the data rows from <table_source> are matched
based on <clause_search_condition>.target_table is the target of any insert, update, or
delete operations specified by the WHEN clauses of the MERGE statement.

105

If target_table is a view, any actions against it must satisfy the conditions for updating
views. For more information, see Modifying Data Through a View.

target_table cannot be a remote table. target_table cannot have any rules defined on it.

[AS] table_alias

Is an alternative name used to reference a table.

USING <table_source>

Specifies the data source that is matched with the data rows in target_table based on
<merge_search condition>. The result of this match dictates the actions to take by the
WHEN clauses of the MERGE statement. <table_source> can be a remote table or a
derived table that accesses remote tables.

<table_source> can be a derived table that uses the Transact-SQL table value
constructor to construct a table by specifying multiple rows.

For more information about the syntax and arguments of this clause, see FROM
(Transact-SQL).

ON <merge_search_condition>

Specifies the conditions on which <table_source> is joined with target_table to
determine where they match.

Caution
It is important to specify only the columns from the target table that are used for matching
purposes. That is, specify columns from the target table that are compared to the corresponding
column of the source table. Do not attempt to improve query performance by filtering out rows in
the target table in the ON clause, such as by specifying AND NOT target_table.column_x =
value. Doing so may return unexpected and incorrect results.

WHEN MATCHED THEN <merge_matched>

Specifies that all rows of target_table that match the rows returned by <table_source>
ON <merge_search_condition>, and satisfy any additional search condition, are either
updated or deleted according to the <merge_matched> clause.

The MERGE statement can have at most two WHEN MATCHED clauses. If two clauses
are specified, then the first clause must be accompanied by an AND
<search_condition> clause. For any given row, the second WHEN MATCHED clause is
only applied if the first is not. If there are two WHEN MATCHED clauses, then one must
specify an UPDATE action and one must specify a DELETE action. If UPDATE is
specified in the <merge_matched> clause, and more than one row of
<table_source>matches a row in target_table based on <merge_search_condition>,

http://msdn.microsoft.com/en-us/library/410e2812-4ebe-48b2-b95f-c7784f1c4336

106

SQL Server returns an error. The MERGE statement cannot update the same row more
than once, or update and delete the same row.

WHEN NOT MATCHED [BY TARGET] THEN <merge_not_matched>

Specifies that a row is inserted into target_table for every row returned by
<table_source> ON <merge_search_condition> that does not match a row in
target_table, but does satisfy an additional search condition, if present. The values to
insert are specified by the <merge_not_matched> clause. The MERGE statement can
have only one WHEN NOT MATCHED clause.

WHEN NOT MATCHED BY SOURCE THEN <merge_matched>

Specifies that all rows of target_table that do not match the rows returned by
<table_source> ON <merge_search_condition>, and that satisfy any additional search
condition, are either updated or deleted according to the <merge_matched> clause.

The MERGE statement can have at most two WHEN NOT MATCHED BY SOURCE
clauses. If two clauses are specified, then the first clause must be accompanied by an
AND <clause_search_condition> clause. For any given row, the second WHEN NOT
MATCHED BY SOURCE clause is only applied if the first is not. If there are two WHEN
NOT MATCHED BY SOURCE clauses, then one must specify an UPDATE action and
one must specify a DELETE action. Only columns from the target table can be
referenced in <clause_search_condition>.

When no rows are returned by <table_source>, columns in the source table cannot be
accessed. If the update or delete action specified in the <merge_matched> clause
references columns in the source table, error 207 (Invalid column name) is returned.
For example, the clause WHEN NOT MATCHED BY SOURCE THEN UPDATE SET
TargetTable.Col1 = SourceTable.Col1 may cause the statement to fail because
Col1 in the source table is inaccessible.

AND <clause_search_condition>

Specifies any valid search condition. For more information, see Search Condition
(Transact-SQL).

<table_hint_limited>

Specifies one or more table hints that are applied on the target table for each of the
insert, update, or delete actions that are performed by the MERGE statement. The
WITH keyword and the parentheses are required.

NOLOCK and READUNCOMMITTED are not allowed. For more information about table
hints, see Table Hint (Transact-SQL).

Specifying the TABLOCK hint on a table that is the target of an INSERT statement has

107

the same effect as specifying the TABLOCKX hint. An exclusive lock is taken on the
table. When FORCESEEK is specified, it is applied to the implicit instance of the target
table joined with the source table.

Caution
Specifying READPAST with WHEN NOT MATCHED [BY TARGET] THEN INSERT may result
in INSERT operations that violate UNIQUE constraints.

INDEX (index_val [,...n])

Specifies the name or ID of one or more indexes on the target table for performing an
implicit join with the source table. For more information, see Table Hint (Transact-
SQL).

<output_clause>

Returns a row for every row in target_table that is updated, inserted, or deleted, in no
particular order. For more information about the arguments of this clause,
see OUTPUT Clause (Transact-SQL).

OPTION (<query_hint> [,...n])

Specifies that optimizer hints are used to customize the way the Database Engine
processes the statement. For more information, see Query Hint (Transact-SQL).

<merge_matched>

Specifies the update or delete action that is applied to all rows of target_table that do
not match the rows returned by <table_source> ON <merge_search_condition>, and
that satisfy any additional search condition.

UPDATE SET <set_clause>

Specifies the list of column or variable names to be updated in the target table and
the values with which to update them.

For more information about the arguments of this clause, see UPDATE (Transact-
SQL). Setting a variable to the same value as a column is not permitted.

DELETE

Specifies that the rows matching rows in target_table are deleted.

108

<merge_not_matched>

Specifies the values to insert into the target table.

(column_list)

Is a list of one or more columns of the target table in which to insert data. Columns
must be specified as a single-part name or else the MERGE statement will fail.
column_list must be enclosed in parentheses and delimited by commas.

VALUES (values_list)

Is a comma-separated list of constants, variables, or expressions that return values to
insert into the target table. Expressions cannot contain an EXECUTE statement.

DEFAULT VALUES

Forces the inserted row to contain the default values defined for each column.

For more information about this clause, see INSERT (Transact-SQL).

<search condition>

Specifies the search conditions used to specify <merge_search_condition> or
<clause_search_condition>. For more information about the arguments for this clause,
see Search Condition (Transact-SQL).

Remarks
At least one of the three MATCHED clauses must be specified, but they can be specified in any
order. A variable cannot be updated more than once in the same MATCHED clause.

Any insert, update, or delete actions specified on the target table by the MERGE statement are
limited by any constraints defined on it, including any cascading referential integrity constraints. If
IGNORE_DUP_KEY is set to ON for any unique indexes on the target table, MERGE ignores this
setting.

The MERGE statement requires a semicolon (;) as a statement terminator. Error 10713 is raised
when a MERGE statement is run without the terminator.

When used after MERGE, @@ROWCOUNT returns the total number of rows inserted, updated,
and deleted to the client.

MERGE is a fully reserved keyword when the database compatibility level is set to 100. The
MERGE statement is available under both 90 and 100 database compatibility levels; however the
keyword is not fully reserved when the database compatibility level is set to 90.

http://msdn.microsoft.com/en-us/library/97a47998-81d9-4331-a244-9eb8b6fe4a56

109

Trigger Implementation
For every insert, update, or delete action specified in the MERGE statement, SQL Server fires
any corresponding AFTER triggers defined on the target table, but does not guarantee on which
action to fire triggers first or last. Triggers defined for the same action honor the order you specify.
For more information about setting trigger firing order, see Specifying First and Last Triggers.

If the target table has an enabled INSTEAD OF trigger defined on it for an insert, update, or
delete action performed by a MERGE statement, then it must have an enabled INSTEAD OF
trigger for all of the actions specified in the MERGE statement.

If there are any INSTEAD OF UPDATE or INSTEAD OF DELETE triggers defined on
target_table, the update or delete operations are not performed. Instead, the triggers fire and the
inserted and deleted tables are populated accordingly.

If there are any INSTEAD OF INSERT triggers defined on target_table, the insert operation is not
performed. Instead, the triggers fire and the inserted table is populated accordingly.

Permissions
Requires SELECT permission on the source table and INSERT, UPDATE, or DELETE
permissions on the target table. For additional information, see the Permissions section in the
SELECT, INSERT, UPDATE, and DELETE topics.

Examples

A. Using MERGE to perform INSERT and UPDATE operations on a table in a
single statement
A common scenario is updating one or more columns in a table if a matching row exists, or
inserting the data as a new row if a matching row does not exist. This is usually done by passing
parameters to a stored procedure that contains the appropriate UPDATE and INSERT
statements. With the MERGE statement, you can perform both tasks in a single statement. The
following example shows a stored procedure that contains both an INSERT statement and an
UPDATE statement. The procedure is then modified to perform the equivalent operations by
using a single MERGE statement.

USE AdventureWorks2012;

GO

CREATE PROCEDURE dbo.InsertUnitMeasure

 @UnitMeasureCode nchar(3),

 @Name nvarchar(25)

AS

BEGIN

 SET NOCOUNT ON;

-- Update the row if it exists.

 UPDATE Production.UnitMeasure

 SET Name = @Name

http://msdn.microsoft.com/en-us/library/9e6c7684-3dd3-46bb-b7be-523b33fae4d5

110

 WHERE UnitMeasureCode = @UnitMeasureCode

-- Insert the row if the UPDATE statement failed.

 IF (@@ROWCOUNT = 0)

 BEGIN

 INSERT INTO Production.UnitMeasure (UnitMeasureCode, Name)

 VALUES (@UnitMeasureCode, @Name)

 END

END;

GO

-- Test the procedure and return the results.

EXEC InsertUnitMeasure @UnitMeasureCode = 'ABC', @Name = 'Test Value';

SELECT UnitMeasureCode, Name FROM Production.UnitMeasure

WHERE UnitMeasureCode = 'ABC';

GO

-- Rewrite the procedure to perform the same operations using the MERGE statement.

-- Create a temporary table to hold the updated or inserted values from the OUTPUT

clause.

CREATE TABLE #MyTempTable

 (ExistingCode nchar(3),

 ExistingName nvarchar(50),

 ExistingDate datetime,

 ActionTaken nvarchar(10),

 NewCode nchar(3),

 NewName nvarchar(50),

 NewDate datetime

);

GO

ALTER PROCEDURE dbo.InsertUnitMeasure

 @UnitMeasureCode nchar(3),

 @Name nvarchar(25)

AS

BEGIN

 SET NOCOUNT ON;

 MERGE Production.UnitMeasure AS target

 USING (SELECT @UnitMeasureCode, @Name) AS source (UnitMeasureCode, Name)

 ON (target.UnitMeasureCode = source.UnitMeasureCode)

 WHEN MATCHED THEN

 UPDATE SET Name = source.Name

 WHEN NOT MATCHED THEN

 INSERT (UnitMeasureCode, Name)

 VALUES (source.UnitMeasureCode, source.Name)

111

 OUTPUT deleted.*, $action, inserted.* INTO #MyTempTable;

END;

GO

-- Test the procedure and return the results.

EXEC InsertUnitMeasure @UnitMeasureCode = 'ABC', @Name = 'New Test Value';

EXEC InsertUnitMeasure @UnitMeasureCode = 'XYZ', @Name = 'Test Value';

EXEC InsertUnitMeasure @UnitMeasureCode = 'ABC', @Name = 'Another Test Value';

SELECT * FROM #MyTempTable;

-- Cleanup

DELETE FROM Production.UnitMeasure WHERE UnitMeasureCode IN ('ABC','XYZ');

DROP TABLE #MyTempTable;

GO

B. Using MERGE to perform UPDATE and DELETE operations on a table in
a single statement
The following example uses MERGE to update the ProductInventory table in the AdventureWorks
sample database on a daily basis, based on orders that are processed in the SalesOrderDetail
table. The Quantity column of the ProductInventory table is updated by subtracting the number of
orders placed each day for each product in the SalesOrderDetail table. If the number of orders for
a product drops the inventory level of a product to 0 or less, the row for that product is deleted
from the ProductInventory table.

USE AdventureWorks2012;

GO

IF OBJECT_ID (N'Production.usp_UpdateInventory', N'P') IS NOT NULL DROP PROCEDURE

Production.usp_UpdateInventory;

GO

CREATE PROCEDURE Production.usp_UpdateInventory

 @OrderDate datetime

AS

MERGE Production.ProductInventory AS target

USING (SELECT ProductID, SUM(OrderQty) FROM Sales.SalesOrderDetail AS sod

 JOIN Sales.SalesOrderHeader AS soh

 ON sod.SalesOrderID = soh.SalesOrderID

 AND soh.OrderDate = @OrderDate

 GROUP BY ProductID) AS source (ProductID, OrderQty)

ON (target.ProductID = source.ProductID)

WHEN MATCHED AND target.Quantity - source.OrderQty <= 0

 THEN DELETE

WHEN MATCHED

 THEN UPDATE SET target.Quantity = target.Quantity - source.OrderQty,

 target.ModifiedDate = GETDATE()

112

OUTPUT $action, Inserted.ProductID, Inserted.Quantity, Inserted.ModifiedDate,

Deleted.ProductID,

 Deleted.Quantity, Deleted.ModifiedDate;

GO

EXECUTE Production.usp_UpdateInventory '20030501'

C. Using MERGE to perform UPDATE and INSERT operations on a target
table by using a derived source table
The following example uses MERGE to modify the SalesReason table by either updating or
inserting rows. When the value of NewName in the source table matches a value in the Name column
of the target table, (SalesReason), the ReasonType column is updated in the target table. When the
value of NewName does not match, the source row is inserted into the target table. The source table
is a derived table that uses the Transact-SQL table value constructor to specify multiple rows for
the source table. For more information about using the table value constructor in a derived table,
see Table Value Constructor (Transact-SQL). The example also shows how to store the results of
the OUTPUT clause in a table variable and then summarize the results of the MERGE statment
by performing a simple select operation that returns the count of inserted and updated rows.

USE AdventureWorks2012;

GO

-- Create a temporary table variable to hold the output actions.

DECLARE @SummaryOfChanges TABLE(Change VARCHAR(20));

MERGE INTO Sales.SalesReason AS Target

USING (VALUES ('Recommendation','Other'), ('Review', 'Marketing'), ('Internet',

'Promotion'))

 AS Source (NewName, NewReasonType)

ON Target.Name = Source.NewName

WHEN MATCHED THEN

 UPDATE SET ReasonType = Source.NewReasonType

WHEN NOT MATCHED BY TARGET THEN

 INSERT (Name, ReasonType) VALUES (NewName, NewReasonType)

OUTPUT $action INTO @SummaryOfChanges;

-- Query the results of the table variable.

SELECT Change, COUNT(*) AS CountPerChange

FROM @SummaryOfChanges

GROUP BY Change;

D. Inserting the results of the MERGE statement into another table
The following example captures data returned from the OUTPUT clause of a MERGE statement
and inserts that data into another table. The MERGE statement updates the Quantity column of

113

the ProductInventory table, based on orders that are processed in the SalesOrderDetail table.
The example captures the rows that are updated and inserts them into another table that is used
to track inventory changes.

USE AdventureWorks2012;

GO

CREATE TABLE Production.UpdatedInventory

 (ProductID INT NOT NULL, LocationID int, NewQty int, PreviousQty int,

 CONSTRAINT PK_Inventory PRIMARY KEY CLUSTERED (ProductID, LocationID));

GO

INSERT INTO Production.UpdatedInventory

SELECT ProductID, LocationID, NewQty, PreviousQty

FROM

(MERGE Production.ProductInventory AS pi

 USING (SELECT ProductID, SUM(OrderQty)

 FROM Sales.SalesOrderDetail AS sod

 JOIN Sales.SalesOrderHeader AS soh

 ON sod.SalesOrderID = soh.SalesOrderID

 AND soh.OrderDate BETWEEN '20030701' AND '20030731'

 GROUP BY ProductID) AS src (ProductID, OrderQty)

 ON pi.ProductID = src.ProductID

 WHEN MATCHED AND pi.Quantity - src.OrderQty >= 0

 THEN UPDATE SET pi.Quantity = pi.Quantity - src.OrderQty

 WHEN MATCHED AND pi.Quantity - src.OrderQty <= 0

 THEN DELETE

 OUTPUT $action, Inserted.ProductID, Inserted.LocationID, Inserted.Quantity AS NewQty,

Deleted.Quantity AS PreviousQty)

 AS Changes (Action, ProductID, LocationID, NewQty, PreviousQty) WHERE Action = 'UPDATE';

GO

See Also
SELECT (Transact-SQL)

INSERT (Transact-SQL)

UPDATE (Transact-SQL)

DELETE (Transact-SQL)

OUTPUT Clause (Transact-SQL)

Using MERGE in Integration Services Packages

FROM (Transact-SQL)

Table Value Constructor (Transact-SQL)

http://msdn.microsoft.com/en-us/library/7e44a5c2-e6d6-4fe2-a079-4f95ccdb147b

114

OPTION Clause
Specifies that the indicated query hint should be used throughout the entire query. Each query
hint can be specified only one time, although multiple query hints are permitted. Only one
OPTION clause can be specified with the statement.

Transact-SQL Syntax Conventions

Syntax

[OPTION (<query_hint> [,...n])]

See Also
Hints (Transact-SQL)

OUTPUT Clause
Returns information from, or expressions based on, each row affected by an INSERT, UPDATE,
DELETE, or MERGE statement. These results can be returned to the processing application for
use in such things as confirmation messages, archiving, and other such application requirements.
The results can also be inserted into a table or table variable. Additionally, you can capture the
results of an OUTPUT clause in a nested INSERT, UPDATE, DELETE, or MERGE statement,
and insert those results into a target table or view.

An UPDATE, INSERT, or DELETE statement that has an OUTPUT clause will return
rows to the client even if the statement encounters errors and is rolled back. The result
should not be used if any error occurs when you run the statement.

Used in:
DELETE

INSERT

UPDATE

MERGE

Transact-SQL Syntax Conventions

Syntax

<OUTPUT_CLAUSE> ::=

{

Note

115

 [OUTPUT <dml_select_list> INTO { @table_variable | output_table } [(column_list)]]

 [OUTPUT <dml_select_list>]

}

<dml_select_list> ::=

{ <column_name> | scalar_expression } [[AS] column_alias_identifier]

 [,...n]

<column_name> ::=

{ DELETED | INSERTED | from_table_name } . { * | column_name }

 | $action

Arguments
@table_variable

Specifies a table variable that the returned rows are inserted into instead of being
returned to the caller. @table_variable must be declared before the INSERT, UPDATE,
DELETE, or MERGE statement.

If column_list is not specified, the table variable must have the same number of
columns as the OUTPUT result set. The exceptions are identity and computed columns,
which must be skipped. If column_list is specified, any omitted columns must either
allow null values or have default values assigned to them.

For more information about table variables, see table (Transact-SQL)).

output_table

Specifies a table that the returned rows are inserted into instead of being returned to the
caller. output_table may be a temporary table.

If column_list is not specified, the table must have the same number of columns as the
OUTPUT result set. The exceptions are identity and computed columns. These must be
skipped. If column_list is specified, any omitted columns must either allow null values or
have default values assigned to them.

output_table cannot:

• Have enabled triggers defined on it.

• Participate on either side of a FOREIGN KEY constraint.

• Have CHECK constraints or enabled rules.

column_list

Is an optional list of column names on the target table of the INTO clause. It is
analogous to the column list allowed in the INSERT statement.

http://msdn.microsoft.com/en-us/library/1ef0b60e-a64c-4e97-847b-67930e3973ef

116

scalar_expression

Is any combination of symbols and operators that evaluates to a single value.
Aggregate functions are not permitted in scalar_expression.

Any reference to columns in the table being modified must be qualified with the
INSERTED or DELETED prefix.

column_alias_identifier

Is an alternative name used to reference the column name.

DELETED

Is a column prefix that specifies the value deleted by the update or delete operation.
Columns prefixed with DELETED reflect the value before the UPDATE, DELETE, or
MERGE statement is completed.

DELETED cannot be used with the OUTPUT clause in the INSERT statement.

INSERTED

Is a column prefix that specifies the value added by the insert or update operation.
Columns prefixed with INSERTED reflect the value after the UPDATE, INSERT, or
MERGE statement is completed but before triggers are executed.

INSERTED cannot be used with the OUTPUT clause in the DELETE statement.

from_table_name

Is a column prefix that specifies a table included in the FROM clause of a DELETE,
UPDATE, or MERGE statement that is used to specify the rows to update or delete.

If the table being modified is also specified in the FROM clause, any reference to
columns in that table must be qualified with the INSERTED or DELETED prefix.

*

Specifies that all columns affected by the delete, insert, or update action will be returned
in the order in which they exist in the table.

For example, OUTPUT DELETED.* in the following DELETE statement returns all
columns deleted from the ShoppingCartItem table:

DELETE Sales.ShoppingCartItem

 OUTPUT DELETED.*;

117

column_name

Is an explicit column reference. Any reference to the table being modified must be
correctly qualified by either the INSERTED or the DELETED prefix as appropriate, for
example: INSERTED.column_name.

$action

Is available only for the MERGE statement. Specifies a column of type nvarchar(10) in
the OUTPUT clause in a MERGE statement that returns one of three values for each
row: 'INSERT', 'UPDATE', or 'DELETE', according to the action that was performed on
that row.

Remarks
The OUTPUT <dml_select_list> clause and the OUTPUT <dml_select_list> INTO {
@table_variable | output_table } clause can be defined in a single INSERT, UPDATE, DELETE,
or MERGE statement.

Unless specified otherwise, references to the OUTPUT clause refer to both the OUTPUT
clause and the OUTPUT INTO clause.

The OUTPUT clause may be useful to retrieve the value of identity or computed columns after an
INSERT or UPDATE operation.

When a computed column is included in the <dml_select_list>, the corresponding column in the
output table or table variable is not a computed column. The values in the new column are the
values that were computed at the time the statement was executed.

There is no guarantee that the order in which the changes are applied to the table and the order
in which the rows are inserted into the output table or table variable will correspond.

If parameters or variables are modified as part of an UPDATE statement, the OUTPUT clause
always returns the value of the parameter or variable as it was before the statement executed
instead of the modified value.

You can use OUTPUT with an UPDATE or DELETE statement positioned on a cursor that uses
WHERE CURRENT OF syntax.

The OUTPUT clause is not supported in the following statements:

• DML statements that reference local partitioned views, distributed partitioned views, or
remote tables.

• INSERT statements that contain an EXECUTE statement.

• Full-text predicates are not allowed in the OUTPUT clause when the database compatibility
level is set to 100.

• The OUTPUT INTO clause cannot be used to insert into a view, or rowset function.

Note

118

• A user-defined function cannot be created if it contains an OUTPUT INTO clause that has a
table as its target.

To prevent nondeterministic behavior, the OUTPUT clause cannot contain the following
references:

• Subqueries or user-defined functions that perform user or system data access, or are
assumed to perform such access. User-defined functions are assumed to perform data
access if they are not schema-bound.

• A column from a view or inline table-valued function when that column is defined by one of
the following methods:

• Asubquery.

• A user-defined function that performs user or system data access, or is assumed to
perform such access.

• A computed column that contains a user-defined function that performs user or system
data access in its definition.

When SQL Server detects such a column in the OUTPUT clause, error 4186 is raised. For
more information, see MSSQLSERVER_4186.

Inserting Data Returned From an OUTPUT Clause Into a Table
When you are capturing the results of an OUTPUT clause in a nested INSERT, UPDATE,
DELETE, or MERGE statement and inserting those results into a target table, keep the following
information in mind:

• The whole operation is atomic. Either both the INSERT statement and the nested DML
statement that contains the OUTPUT clause execute, or the whole statement fails.

• The following restrictions apply to the target of the outer INSERT statement:

• The target cannot be a remote table, view, or common table expression.

• The target cannot have a FOREIGN KEY constraint, or be referenced by a FOREIGN
KEY constraint.

• Triggers cannot be defined on the target.

• The target cannot participate in merge replication or updatable subscriptions for
transactional replication.

• The following restrictions apply to the nested DML statement:

• The target cannot be a remote table or partitioned view.

• The source itself cannot contain a <dml_table_source> clause.

• The OUTPUT INTO clause is not supported in INSERT statements that contain a
<dml_table_source> clause.

• @@ROWCOUNT returns the rows inserted only by the outer INSERT statement.

• @@IDENTITY, SCOPE_IDENTITY, and IDENT_CURRENT return identity values generated
only by the nested DML statement, and not those generated by the outer INSERT statement.

http://msdn.microsoft.com/en-us/library/1ae88554-f291-45bc-a186-6f41d9cd0fca

119

• Query notifications treat the statement as a single entity, and the type of any message that is
created will be the type of the nested DML, even if the significant change is from the outer
INSERT statement itself.

• In the <dml_table_source> clause, the SELECT and WHERE clauses cannot include
subqueries, aggregate functions, ranking functions, full-text predicates, user-defined
functions that perform data access, or the TEXTPTR function.

Triggers
Columns returned from OUTPUT reflect the data as it is after the INSERT, UPDATE, or DELETE
statement has completed but before triggers are executed.

For INSTEAD OF triggers, the returned results are generated as if the INSERT, UPDATE, or
DELETE had actually occurred, even if no modifications take place as the result of the trigger
operation. If a statement that includes an OUTPUT clause is used inside the body of a trigger,
table aliases must be used to reference the trigger inserted and deleted tables to avoid
duplicating column references with the INSERTED and DELETED tables associated with
OUTPUT.

If the OUTPUT clause is specified without also specifying the INTO keyword, the target of the
DML operation cannot have any enabled trigger defined on it for the given DML action. For
example, if the OUTPUT clause is defined in an UPDATE statement, the target table cannot have
any enabled UPDATE triggers.

If the sp_configure option disallow results from triggers is set, an OUTPUT clause without an
INTO clause causes the statement to fail when it is invoked from within a trigger.

Data Types
The OUTPUT clause supports the large object data types: nvarchar(max), varchar(max),
varbinary(max), text, ntext, image, and xml. When you use the .WRITE clause in the UPDATE
statement to modify an nvarchar(max), varchar(max), or varbinary(max) column, the full before
and after images of the values are returned if they are referenced. The TEXTPTR() function
cannot appear as part of an expression on a text, ntext, or image column in the OUTPUT
clause.

Queues
You can use OUTPUT in applications that use tables as queues, or to hold intermediate result
sets. That is, the application is constantly adding or removing rows from the table. The following
example uses the OUTPUT clause in a DELETE statement to return the deleted row to the calling
application.

USE AdventureWorks2012;

GO

DELETE TOP(1) dbo.DatabaseLog WITH (READPAST)

OUTPUT deleted.*

WHERE DatabaseLogID = 7;

120

GO

This example removes a row from a table used as a queue and returns the deleted values to the
processing application in a single action. Other semantics may also be implemented, such as
using a table to implement a stack. However, SQL Server does not guarantee the order in which
rows are processed and returned by DML statements using the OUTPUT clause. It is up to the
application to include an appropriate WHERE clause that can guarantee the desired semantics,
or understand that when multiple rows may qualify for the DML operation, there is no guaranteed
order. The following example uses a subquery and assumes uniqueness is a characteristic of the
DatabaseLogID column in order to implement the desired ordering semantics.

USE tempdb;

GO

CREATE TABLE dbo.table1

(

 id INT,

 employee VARCHAR(32)

)

go

INSERT INTO dbo.table1 VALUES

 (1, 'Fred')

 ,(2, 'Tom')

 ,(3, 'Sally')

 ,(4, 'Alice');

GO

DECLARE @MyTableVar TABLE

(

 id INT,

 employee VARCHAR(32)

);

PRINT 'table1, before delete'

SELECT * FROM dbo.table1;

DELETE FROM dbo.table1

OUTPUT DELETED.* INTO @MyTableVar

WHERE id = 4 OR id = 2;

PRINT 'table1, after delete'

SELECT * FROM dbo.table1;

121

PRINT '@MyTableVar, after delete'

SELECT * FROM @MyTableVar;

DROP TABLE dbo.table1;

--Results

--table1, before delete

--id employee

------------- ------------------------------

--1 Fred

--2 Tom

--3 Sally

--4 Alice

--

--table1, after delete

--id employee

------------- ------------------------------

--1 Fred

--3 Sally

--@MyTableVar, after delete

--id employee

------------- ------------------------------

--2 Tom

--4 Alice

Use the READPAST table hint in UPDATE and DELETE statements if your scenario
allows for multiple applications to perform a destructive read from one table. This
prevents locking issues that can come up if another application is already reading the first
qualifying record in the table.

Permissions
SELECT permissions are required on any columns retrieved through <dml_select_list> or used in
<scalar_expression>.

INSERT permissions are required on any tables specified in <output_table>.

Examples

A. Using OUTPUT INTO with a simple INSERT statement
The following example inserts a row into the ScrapReason table and uses the OUTPUT clause to
return the results of the statement to the @MyTableVartable variable. Because the ScrapReasonID
column is defined with an IDENTITY property, a value is not specified in the INSERT statement for

Note

122

that column. However, note that the value generated by the Database Engine for that column is
returned in the OUTPUT clause in the column inserted.ScrapReasonID.

USE AdventureWorks2012;

GO

DECLARE @MyTableVar table(NewScrapReasonID smallint,

 Name varchar(50),

 ModifiedDate datetime);

INSERT Production.ScrapReason

 OUTPUT INSERTED.ScrapReasonID, INSERTED.Name, INSERTED.ModifiedDate

 INTO @MyTableVar

VALUES (N'Operator error', GETDATE());

--Display the result set of the table variable.

SELECT NewScrapReasonID, Name, ModifiedDate FROM @MyTableVar;

--Display the result set of the table.

SELECT ScrapReasonID, Name, ModifiedDate

FROM Production.ScrapReason;

GO

B. Using OUTPUT with a DELETE statement
The following example deletes all rows in the ShoppingCartItem table. The clause OUTPUT
deleted.* specifies that the results of the DELETE statement, that is all columns in the deleted
rows, be returned to the calling application. The SELECT statement that follows verifies the results
of the delete operation on the ShoppingCartItem table.

USE AdventureWorks2012;

GO

DELETE Sales.ShoppingCartItem

OUTPUT DELETED.*

WHERE ShoppingCartID = 20621;

--Verify the rows in the table matching the WHERE clause have been deleted.

SELECT COUNT(*) AS [Rows in Table] FROM Sales.ShoppingCartItem WHERE ShoppingCartID =

20621;

GO

C. Using OUTPUT INTO with an UPDATE statement
The following example updates the VacationHours column in the Employee table by 25 percent for
the first 10 rows. The OUTPUT clause returns the VacationHours value that exists before applying
the UPDATE statement in the column deleted.VacationHours, and the updated value in the column
inserted.VacationHours to the @MyTableVartable variable.

Two SELECT statements follow that return the values in @MyTableVar and the results of the update
operation in the Employee table.

123

USE AdventureWorks2012;

GO

DECLARE @MyTableVar table(

 EmpID int NOT NULL,

 OldVacationHours int,

 NewVacationHours int,

 ModifiedDate datetime);

UPDATE TOP (10) HumanResources.Employee

SET VacationHours = VacationHours * 1.25,

 ModifiedDate = GETDATE()

OUTPUT inserted.BusinessEntityID,

 deleted.VacationHours,

 inserted.VacationHours,

 inserted.ModifiedDate

INTO @MyTableVar;

--Display the result set of the table variable.

SELECT EmpID, OldVacationHours, NewVacationHours, ModifiedDate

FROM @MyTableVar;

GO

--Display the result set of the table.

SELECT TOP (10) BusinessEntityID, VacationHours, ModifiedDate

FROM HumanResources.Employee;

GO

D. Using OUTPUT INTO to return an expression
The following example builds on example C by defining an expression in the OUTPUT clause as the
difference between the updated VacationHours value and the VacationHours value before the
update was applied. The value of this expression is returned to the @MyTableVartable variable in
the column VacationHoursDifference.

USE AdventureWorks2012;

GO

DECLARE @MyTableVar table(

 EmpID int NOT NULL,

 OldVacationHours int,

 NewVacationHours int,

 VacationHoursDifference int,

 ModifiedDate datetime);

UPDATE TOP (10) HumanResources.Employee

SET VacationHours = VacationHours * 1.25,

 ModifiedDate = GETDATE()

OUTPUT inserted.BusinessEntityID,

 deleted.VacationHours,

 inserted.VacationHours,

124

 inserted.VacationHours - deleted.VacationHours,

 inserted.ModifiedDate

INTO @MyTableVar;

--Display the result set of the table variable.

SELECT EmpID, OldVacationHours, NewVacationHours,

 VacationHoursDifference, ModifiedDate

FROM @MyTableVar;

GO

SELECT TOP (10) BusinessEntityID, VacationHours, ModifiedDate

FROM HumanResources.Employee;

GO

E. Using OUTPUT INTO with from_table_name in an UPDATE statement
The following example updates the ScrapReasonID column in the WorkOrder table for all work
orders with a specified ProductID and ScrapReasonID. The OUTPUT INTO clause returns values from
the table being updated (WorkOrder) and also from the Product table. The Product table is used in
the FROM clause to specify the rows to update. Because the WorkOrder table has an AFTER UPDATE
trigger defined on it, the INTO keyword is required.

USE AdventureWorks2012;

GO

DECLARE @MyTestVar table (

 OldScrapReasonID int NOT NULL,

 NewScrapReasonID int NOT NULL,

 WorkOrderID int NOT NULL,

 ProductID int NOT NULL,

 ProductName nvarchar(50)NOT NULL);

UPDATE Production.WorkOrder

SET ScrapReasonID = 4

OUTPUT deleted.ScrapReasonID,

 inserted.ScrapReasonID,

 inserted.WorkOrderID,

 inserted.ProductID,

 p.Name

 INTO @MyTestVar

FROM Production.WorkOrder AS wo

 INNER JOIN Production.Product AS p

 ON wo.ProductID = p.ProductID

 AND wo.ScrapReasonID= 16

 AND p.ProductID = 733;

SELECT OldScrapReasonID, NewScrapReasonID, WorkOrderID,

 ProductID, ProductName

FROM @MyTestVar;

GO

125

F. Using OUTPUT INTO with from_table_name in a DELETE statement
The following example deletes rows in the ProductProductPhoto table based on search criteria
defined in the FROM clause of DELETE statement. The OUTPUT clause returns columns from the table
being deleted (deleted.ProductID, deleted.ProductPhotoID) and columns from the Product table.
This table is used in the FROM clause to specify the rows to delete.

USE AdventureWorks2012;

GO

DECLARE @MyTableVar table (

 ProductID int NOT NULL,

 ProductName nvarchar(50)NOT NULL,

 ProductModelID int NOT NULL,

 PhotoID int NOT NULL);

DELETE Production.ProductProductPhoto

OUTPUT DELETED.ProductID,

 p.Name,

 p.ProductModelID,

 DELETED.ProductPhotoID

 INTO @MyTableVar

FROM Production.ProductProductPhoto AS ph

JOIN Production.Product as p

 ON ph.ProductID = p.ProductID

 WHERE p.ProductModelID BETWEEN 120 and 130;

--Display the results of the table variable.

SELECT ProductID, ProductName, ProductModelID, PhotoID

FROM @MyTableVar

ORDER BY ProductModelID;

GO

G. Using OUTPUT INTO with a large object data type
The following example updates a partial value in DocumentSummary, an nvarchar(max) column in
the Production.Document table, by using the .WRITE clause. The word components is replaced by
the word features by specifying the replacement word, the beginning location (offset) of the word
to be replaced in the existing data, and the number of characters to be replaced (length). The
example uses the OUTPUT clause to return the before and after images of the DocumentSummary
column to the @MyTableVartable variable. Note that the full before and after images of the
DocumentSummary column are returned.

USE AdventureWorks2012;

GO

DECLARE @MyTableVar table (

 SummaryBefore nvarchar(max),

126

 SummaryAfter nvarchar(max));

UPDATE Production.Document

SET DocumentSummary .WRITE (N'features',28,10)

OUTPUT deleted.DocumentSummary,

 inserted.DocumentSummary

 INTO @MyTableVar

WHERE Title = N'Front Reflector Bracket Installation';

SELECT SummaryBefore, SummaryAfter

FROM @MyTableVar;

GO

H. Using OUTPUT in an INSTEAD OF trigger
The following example uses the OUTPUT clause in a trigger to return the results of the trigger
operation. First, a view is created on the ScrapReason table, and then an INSTEAD OF INSERT trigger
is defined on the view that lets only the Name column of the base table to be modified by the user.
Because the column ScrapReasonID is an IDENTITY column in the base table, the trigger ignores
the user-supplied value. This allows the Database Engine to automatically generate the correct
value. Also, the value supplied by the user for ModifiedDate is ignored and is set to the current
date. The OUTPUT clause returns the values actually inserted into the ScrapReason table.

USE AdventureWorks2012;

GO

IF OBJECT_ID('dbo.vw_ScrapReason','V') IS NOT NULL

 DROP VIEW dbo.vw_ScrapReason;

GO

CREATE VIEW dbo.vw_ScrapReason

AS (SELECT ScrapReasonID, Name, ModifiedDate

 FROM Production.ScrapReason);

GO

CREATE TRIGGER dbo.io_ScrapReason

 ON dbo.vw_ScrapReason

INSTEAD OF INSERT

AS

BEGIN

--ScrapReasonID is not specified in the list of columns to be inserted

--because it is an IDENTITY column.

 INSERT INTO Production.ScrapReason (Name, ModifiedDate)

 OUTPUT INSERTED.ScrapReasonID, INSERTED.Name,

 INSERTED.ModifiedDate

 SELECT Name, getdate()

 FROM inserted;

END

GO

INSERT vw_ScrapReason (ScrapReasonID, Name, ModifiedDate)

127

VALUES (99, N'My scrap reason','20030404');

GO

Here is the result set generated on April 12, 2004 ('2004-04-12'). Notice that the
ScrapReasonIDActual and ModifiedDate columns reflect the values generated by the trigger
operation instead of the values provided in the INSERT statement.

ScrapReasonID Name ModifiedDate

------------- ---------------- -----------------------

17 My scrap reason 2004-04-12 16:23:33.050

I. Using OUTPUT INTO with identity and computed columns
The following example creates the EmployeeSales table and then inserts several rows into it using
an INSERT statement with a SELECT statement to retrieve data from source tables. The
EmployeeSales table contains an identity column (EmployeeID) and a computed column
(ProjectedSales). Because these values are generated by the SQL Server Database Engine
during the insert operation, neither of these columns can be defined in @MyTableVar.

USE AdventureWorks2012 ;

GO

IF OBJECT_ID ('dbo.EmployeeSales', 'U') IS NOT NULL

 DROP TABLE dbo.EmployeeSales;

GO

CREATE TABLE dbo.EmployeeSales

(EmployeeID int IDENTITY (1,5)NOT NULL,

 LastName nvarchar(20) NOT NULL,

 FirstName nvarchar(20) NOT NULL,

 CurrentSales money NOT NULL,

 ProjectedSales AS CurrentSales * 1.10

);

GO

DECLARE @MyTableVar table(

 LastName nvarchar(20) NOT NULL,

 FirstName nvarchar(20) NOT NULL,

 CurrentSales money NOT NULL

);

INSERT INTO dbo.EmployeeSales (LastName, FirstName, CurrentSales)

 OUTPUT INSERTED.LastName,

 INSERTED.FirstName,

 INSERTED.CurrentSales

 INTO @MyTableVar

 SELECT c.LastName, c.FirstName, sp.SalesYTD

 FROM Sales.SalesPerson AS sp

 INNER JOIN Person.Person AS c

128

 ON sp.BusinessEntityID = c.BusinessEntityID

 WHERE sp.BusinessEntityID LIKE '2%'

 ORDER BY c.LastName, c.FirstName;

SELECT LastName, FirstName, CurrentSales

FROM @MyTableVar;

GO

SELECT EmployeeID, LastName, FirstName, CurrentSales, ProjectedSales

FROM dbo.EmployeeSales;

GO

J. Using OUTPUT and OUTPUT INTO in a single statement
The following example deletes rows in the ProductProductPhoto table based on search criteria
defined in the FROM clause of DELETE statement. The OUTPUT INTO clause returns columns from the
table being deleted (deleted.ProductID, deleted.ProductPhotoID) and columns from the Product
table to the @MyTableVartable variable. The Product table is used in the FROM clause to specify the
rows to delete. The OUTPUT clause returns the deleted.ProductID, deleted.ProductPhotoID
columns and the date and time the row was deleted from the ProductProductPhoto table to the
calling application.

USE AdventureWorks2012;

GO

DECLARE @MyTableVar table (

 ProductID int NOT NULL,

 ProductName nvarchar(50)NOT NULL,

 ProductModelID int NOT NULL,

 PhotoID int NOT NULL);

DELETE Production.ProductProductPhoto

OUTPUT DELETED.ProductID,

 p.Name,

 p.ProductModelID,

 DELETED.ProductPhotoID

 INTO @MyTableVar

OUTPUT DELETED.ProductID, DELETED.ProductPhotoID, GETDATE() AS DeletedDate

FROM Production.ProductProductPhoto AS ph

JOIN Production.Product as p

 ON ph.ProductID = p.ProductID

WHERE p.ProductID BETWEEN 800 and 810;

--Display the results of the table variable.

SELECT ProductID, ProductName, PhotoID, ProductModelID

FROM @MyTableVar;

GO

129

K. Inserting data returned from an OUTPUT clause
The following example captures data returned from the OUTPUT clause of a MERGE statement, and
inserts that data into another table. The MERGE statement updates the Quantity column of the
ProductInventory table daily, based on orders that are processed in the SalesOrderDetail table. It
also deletes rows for products whose inventories drop to 0 or below. The example captures the
rows that are deleted and inserts them into another table, ZeroInventory, which tracks products
with no inventory.

USE AdventureWorks2012;

GO

IF OBJECT_ID(N'Production.ZeroInventory', N'U') IS NOT NULL

 DROP TABLE Production.ZeroInventory;

GO

--Create ZeroInventory table.

CREATE TABLE Production.ZeroInventory (DeletedProductID int, RemovedOnDate DateTime);

GO

INSERT INTO Production.ZeroInventory (DeletedProductID, RemovedOnDate)

SELECT ProductID, GETDATE()

FROM

(MERGE Production.ProductInventory AS pi

 USING (SELECT ProductID, SUM(OrderQty) FROM Sales.SalesOrderDetail AS sod

 JOIN Sales.SalesOrderHeader AS soh

 ON sod.SalesOrderID = soh.SalesOrderID

 AND soh.OrderDate = '20070401'

 GROUP BY ProductID) AS src (ProductID, OrderQty)

 ON (pi.ProductID = src.ProductID)

 WHEN MATCHED AND pi.Quantity - src.OrderQty <= 0

 THEN DELETE

 WHEN MATCHED

 THEN UPDATE SET pi.Quantity = pi.Quantity - src.OrderQty

 OUTPUT $action, deleted.ProductID) AS Changes (Action, ProductID)

WHERE Action = 'DELETE';

IF @@ROWCOUNT = 0

PRINT 'Warning: No rows were inserted';

GO

SELECT DeletedProductID, RemovedOnDate FROM Production.ZeroInventory;

See Also
DELETE (Transact-SQL)

INSERT (Transact-SQL)

UPDATE (Transact-SQL)

table (Transact-SQL)

http://msdn.microsoft.com/en-us/library/1ef0b60e-a64c-4e97-847b-67930e3973ef

130

CREATE TRIGGER (Transact-SQL)

sp_configure (Transact-SQL)

READTEXT
Reads text, ntext, or image values from a text, ntext, or image column, starting from a specified
offset and reading the specified number of bytes.

This feature will be removed in a future version of Microsoft SQL Server. Avoid using this
feature in new development work, and plan to modify applications that currently use this
feature. Use the SUBSTRING function instead.

Transact-SQL Syntax Conventions

Syntax

READTEXT { table.column text_ptr offset size } [HOLDLOCK]

Arguments
table.column

Is the name of a table and column from which to read. Table and column names must
comply with the rules for identifiers. Specifying the table and column names is required;
however, specifying the database name and owner names is optional.

text_ptr

Is a valid text pointer. text_ptr must be binary(16).

offset

Is the number of bytes (when the text or image data types are used) or characters
(when the ntext data type is used) to skip before it starts to read the text, image, or
ntext data.

size

Is the number of bytes (when the text or image data types are used) or characters
(when the ntext data type is used) of data to read. If size is 0, 4 KB bytes of data is
read.

Important

http://msdn.microsoft.com/en-us/library/edeced03-decd-44c3-8c74-2c02f801d3e7
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8
http://msdn.microsoft.com/en-us/library/a19c808f-aaf9-4a69-af59-b1a5fc3e5c4c
http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c

131

HOLDLOCK

Causes the text value to be locked for reads until the end of the transaction. Other
users can read the value, but they cannot modify it.

Remarks
Use the TEXTPTR function to obtain a valid text_ptr value. TEXTPTR returns a pointer to the
text, ntext, or image column in the specified row or to the text, ntext, or image column in the
last row returned by the query if more than one row is returned. Because TEXTPTR returns a 16-
byte binary string, we recommend declaring a local variable to hold the text pointer, and then use
the variable with READTEXT. For more information about declaring a local variable,
see DECLARE @local_variable.

In SQL Server, in-row text pointers may exist but may not be valid. For more information about
the text in row option, see sp_tableoption. For more information about invalidating text pointers,
see sp_invalidate_textptr.

The value of the @@TEXTSIZE function supersedes the size specified for READTEXT if it is less
than the specified size for READTEXT. The @@TEXTSIZE function specifies the limit on the
number of bytes of data to be returned set by the SET TEXTSIZE statement. For more
information about how to set the session setting for TEXTSIZE, see SET TEXTSIZE.

Permissions
READTEXT permissions default to users that have SELECT permissions on the specified table.
Permissions are transferable when SELECT permissions are transferred.

Examples
The following example reads the second through twenty-sixth characters of the pr_info column in
the pub_info table.

To run this example, you must install the pubs sample database.

USE pubs;

GO

DECLARE @ptrval varbinary(16);

SELECT @ptrval = TEXTPTR(pr_info)

 FROM pub_info pr INNER JOIN publishers p

 ON pr.pub_id = p.pub_id

 AND p.pub_name = 'New Moon Books'

READTEXT pub_info.pr_info @ptrval 1 25;

GO

Note

http://msdn.microsoft.com/en-us/library/2672b8cb-f747-46f3-9358-9b49b3583b8e
http://msdn.microsoft.com/en-us/library/d1635ebb-f751-4de1-8bbc-cae161f90821
http://msdn.microsoft.com/en-us/library/0a57462c-1057-4c7d-bce3-852cc898341d
http://msdn.microsoft.com/en-us/library/dd9920e1-7064-4c05-93d8-9303103fa1d6
http://msdn.microsoft.com/en-us/library/787154a6-39a6-4dd6-a6d0-67b4364f95d5

132

See Also
@@TEXTSIZE

UPDATETEXT

WRITETEXT

Search Condition
Is a combination of one or more predicates that use the logical operators AND, OR, and NOT.

Transact-SQL Syntax Conventions

Syntax

<search_condition> ::=

 { [NOT] <predicate> | (<search_condition>) }

 [{ AND | OR } [NOT] { <predicate> | (<search_condition>) }]

[,...n]

<predicate> ::=

 { expression { = | <> | ! = | > | > = | ! > | < | < = | ! < } expression

 | string_expression [NOT] LIKE string_expression

 [ESCAPE 'escape_character']

 | expression [NOT] BETWEEN expression AND expression

 | expression IS [NOT] NULL

 | CONTAINS

 ({ column | * } ,'<contains_search_condition>')

 | FREETEXT ({ column | * } ,'freetext_string')

 | expression [NOT] IN (subquery | expression [,...n])

 | expression { = | <> | ! = | > | > = | ! > | < | < = | ! < }

 { ALL | SOME | ANY} (subquery)

 | EXISTS (subquery) }

Arguments
<search_condition>

Specifies the conditions for the rows returned in the result set for a SELECT statement,
query expression, or subquery. For an UPDATE statement, specifies the rows to be
updated. For a DELETE statement, specifies the rows to be deleted. There is no limit to
the number of predicates that can be included in a Transact-SQL statement search

http://msdn.microsoft.com/en-us/library/4308a7b9-8e8f-49e9-8246-8224e32f4953

133

condition.

NOT

Negates the Boolean expression specified by the predicate. For more information,
see NOT.

AND

Combines two conditions and evaluates to TRUE when both of the conditions are
TRUE. For more information, see AND.

OR

Combines two conditions and evaluates to TRUE when either condition is TRUE. For
more information, see OR.

<predicate>

Is an expression that returns TRUE, FALSE, or UNKNOWN.

expression

Is a column name, a constant, a function, a variable, a scalar subquery, or any
combination of column names, constants, and functions connected by an operator or
operators, or a subquery. The expression can also contain the CASE expression.

Note
When referencing the Unicode character data types nchar, nvarchar, and ntext, 'expression'
should be prefixed with the capital letter 'N'. If 'N' is not specified, SQL Server converts the string
to the code page that corresponds to the default collation of the database or column. Any
characters not found in this code page are lost.

=

Is the operator used to test the equality between two expressions.

<>

Is the operator used to test the condition of two expressions not being equal to each
other.

!=

Is the operator used to test the condition of two expressions not being equal to each

http://msdn.microsoft.com/en-us/library/dc07cc35-20f1-46e6-9995-2938390dc19a
http://msdn.microsoft.com/en-us/library/b61d7f8d-5a51-49b7-91dd-f6190a5a0fb9
http://msdn.microsoft.com/en-us/library/b730a256-4a63-4880-9906-65b05cd9caf2

134

other.

>

Is the operator used to test the condition of one expression being greater than the other.

>=

Is the operator used to test the condition of one expression being greater than or equal
to the other expression.

!>

Is the operator used to test the condition of one expression not being greater than the
other expression.

<

Is the operator used to test the condition of one expression being less than the other.

<=

Is the operator used to test the condition of one expression being less than or equal to
the other expression.

!<

Is the operator used to test the condition of one expression not being less than the other
expression.

string_expression

Is a string of characters and wildcard characters.

[NOT] LIKE

Indicates that the subsequent character string is to be used with pattern matching. For
more information, see LIKE.

ESCAPE 'escape_ character'

Allows for a wildcard character to be searched for in a character string instead of
functioning as a wildcard. escape_character is the character that is put in front of the
wildcard character to indicate this special use.

http://msdn.microsoft.com/en-us/library/581fb289-29f9-412b-869c-18d33a9e93d5

135

[NOT] BETWEEN

Specifies an inclusive range of values. Use AND to separate the starting and ending
values. For more information, see BETWEEN.

IS [NOT] NULL

Specifies a search for null values, or for values that are not null, depending on the
keywords used. An expression with a bitwise or arithmetic operator evaluates to NULL if
any one of the operands is NULL.

CONTAINS

Searches columns that contain character-based data for precise or less precise (fuzzy)
matches to single words and phrases, the proximity of words within a certain distance of
one another, and weighted matches. This option can only be used with SELECT
statements. For more information, see CONTAINS.

FREETEXT

Provides a simple form of natural language query by searching columns that contain
character-based data for values that match the meaning instead of the exact words in
the predicate. This option can only be used with SELECT statements. For more
information, see FREETEXT.

[NOT] IN

Specifies the search for an expression, based on whether the expression is included in
or excluded from a list. The search expression can be a constant or a column name,
and the list can be a set of constants or, more typically, a subquery. Enclose the list of
values in parentheses. For more information, see IN.

subquery

Can be considered a restricted SELECT statement and is similar to
<query_expresssion> in the SELECT statement. The ORDER BY clause and the INTO
keyword are not allowed. For more information, see SELECT.

ALL

Used with a comparison operator and a subquery. Returns TRUE for <predicate> when
all values retrieved for the subquery satisfy the comparison operation, or FALSE when
not all values satisfy the comparison or when the subquery returns no rows to the outer

http://msdn.microsoft.com/en-us/library/a5d5b050-203e-4355-ac85-e08ef5ca7823
http://msdn.microsoft.com/en-us/library/996c72fc-b1ab-4c96-bd12-946be9c18f84
http://msdn.microsoft.com/en-us/library/2f199d3c-440e-4bcf-bdb5-82bb3994005d
http://msdn.microsoft.com/en-us/library/4419de73-96b1-4dfe-8500-f4507915db04

136

statement. For more information, see ALL.

{ SOME | ANY }

Used with a comparison operator and a subquery. Returns TRUE for <predicate> when
any value retrieved for the subquery satisfies the comparison operation, or FALSE
when no values in the subquery satisfy the comparison or when the subquery returns
no rows to the outer statement. Otherwise, the expression is UNKNOWN. For more
information, see SOME | ANY.

EXISTS

Used with a subquery to test for the existence of rows returned by the subquery. For
more information, see EXISTS.

Remarks
The order of precedence for the logical operators is NOT (highest), followed by AND, followed by
OR. Parentheses can be used to override this precedence in a search condition. The order of
evaluation of logical operators can vary depending on choices made by the query optimizer. For
more information about how the logical operators operate on logic values, see AND, OR,
and NOT.

Examples

A. Using WHERE with LIKE and ESCAPE syntax
The following example searches for the rows in which the LargePhotoFileName column has the
characters green_, and uses the ESCAPE option because _ is a wildcard character. Without
specifying the ESCAPE option, the query would search for any description values that contain the
word green followed by any single character other than the _ character.

USE AdventureWorks2012 ;

GO

SELECT *

FROM Production.ProductPhoto

WHERE LargePhotoFileName LIKE '%greena_%' ESCAPE 'a' ;

B. Using WHERE and LIKE syntax with Unicode data
The following example uses the WHERE clause to retrieve the mailing address for any company that
is outside the United States (US) and in a city whose name starts with Pa.

USE AdventureWorks2012 ;

GO

http://msdn.microsoft.com/en-us/library/4b0c002e-1ffd-4425-a980-11fdc1f24af7
http://msdn.microsoft.com/en-us/library/1f717ad6-f67b-4980-9397-577ecb0e5789
http://msdn.microsoft.com/en-us/library/b6510a65-ac38-4296-a3d5-640db0c27631
http://msdn.microsoft.com/en-us/library/b61d7f8d-5a51-49b7-91dd-f6190a5a0fb9
http://msdn.microsoft.com/en-us/library/b730a256-4a63-4880-9906-65b05cd9caf2
http://msdn.microsoft.com/en-us/library/dc07cc35-20f1-46e6-9995-2938390dc19a

137

SELECT AddressLine1, AddressLine2, City, PostalCode, CountryRegionCode

FROM Person.Address AS a

JOIN Person.StateProvince AS s ON a.StateProvinceID = s.StateProvinceID

WHERE CountryRegionCode NOT IN ('US')

AND City LIKE N'Pa%' ;

See Also
Aggregate Functions

CASE

CONTAINSTABLE

Cursors

DELETE

Expressions

FREETEXTTABLE

FROM

Operators

UPDATE

SELECT
Retrieves rows from the database and enables the selection of one or many rows or columns
from one or many tables in SQL Server 2012. The full syntax of the SELECT statement is
complex, but the main clauses can be summarized as:

[WITH<common_table_expression>]

SELECT select_list[INTOnew_table]

[FROMtable_source] [WHEREsearch_condition]

[GROUP BY group_by_expression]

[HAVINGsearch_condition]

[ORDER BY order_expression [ASC | DESC]]

The UNION, EXCEPT and INTERSECT operators can be used between queries to combine or
compare their results into one result set.

Transact-SQL Syntax Conventions

Syntax

<SELECT statement> ::=

 [WITH <common_table_expression> [,...n]]

http://msdn.microsoft.com/en-us/library/0c06ae42-eb0a-4d77-9d74-aa1e7f344009
http://msdn.microsoft.com/en-us/library/658039ec-8dc2-4251-bc82-30ea23708cee
http://msdn.microsoft.com/en-us/library/e580c210-cf57-419d-9544-7f650f2ab814
http://msdn.microsoft.com/en-us/library/63000023-54fc-4efc-a30f-fb4d4db73aae
http://msdn.microsoft.com/en-us/library/ee53c5c8-e36c-40f9-8cd1-d933791b98fa
http://msdn.microsoft.com/en-us/library/4523ae15-4260-40a7-a53c-8df15e1fee79
http://msdn.microsoft.com/en-us/library/1fc2de8b-e7e0-4c61-9a02-4776a7d93ab7

138

 <query_expression>

 [ORDER BY { order_by_expression | column_position [ASC | DESC] }

 [,...n]]

 [<FOR Clause>]

 [OPTION (<query_hint> [,...n])]

<query_expression> ::=

 { <query_specification> | (<query_expression>) }

 [{ UNION [ALL] | EXCEPT | INTERSECT }

<query_specification> | (<query_expression>) [...n]]

<query_specification> ::=

SELECT [ALL | DISTINCT]

 [TOP (expression) [PERCENT] [WITH TIES]]

 < select_list >

 [INTO new_table]

 [FROM { <table_source> } [,...n]]
 [WHERE <search_condition>]

 [<GROUP BY>]

 [HAVING < search_condition >]

Remarks
Because of the complexity of the SELECT statement, detailed syntax elements and arguments
are shown by clause:

WITH common_table_expression HAVING

SELECT Clause UNION

INTO Clause EXCEPT and INTERSECT

FROM ORDER BY

WHERE FOR Clause

GROUP BY OPTION Clause

The order of the clauses in the SELECT statement is significant. Any one of the optional clauses
can be omitted, but when the optional clauses are used, they must appear in the appropriate
order.

SELECT statements are permitted in user-defined functions only if the select lists of these
statements contain expressions that assign values to variables that are local to the functions.

http://msdn.microsoft.com/en-us/library/607c296f-8a6a-49bc-975a-b8d0c0914df7
http://msdn.microsoft.com/en-us/library/b1019300-171a-4a1a-854f-e1e751de3565

139

A four-part name constructed with the OPENDATASOURCE function as the server-name part
can be used as a table source wherever a table name can appear in a SELECT statement.

Some syntax restrictions apply to SELECT statements that involve remote tables.

Logical Processing Order of the SELECT statement
The following steps show the logical processing order, or binding order, for a SELECT statement.
This order determines when the objects defined in one step are made available to the clauses in
subsequent steps. For example, if the query processor can bind to (access) the tables or views
defined in the FROM clause, these objects and their columns are made available to all
subsequent steps. Conversely, because the SELECT clause is step 8, any column aliases or
derived columns defined in that clause cannot be referenced by preceding clauses. However,
they can be referenced by subsequent clauses such as the ORDER BY clause. Note that the
actual physical execution of the statement is determined by the query processor and the order
may vary from this list.

1. FROM

2. ON

3. JOIN

4. WHERE

5. GROUP BY

6. WITH CUBE or WITH ROLLUP

7. HAVING

8. SELECT

9. DISTINCT

10. ORDER BY

11. TOP

Permissions
Selecting data requires SELECT permission on the table or view, which could be inherited from a
higher scope such as SELECT permission on the schema or CONTROL permission on the table.
Or requires membership in the db_datareader or db_owner fixed database roles, or the
sysadmin fixed server role. Creating a new table using SELECTINTO also requires both the
CREATETABLE permission, and the ALTERSCHEMA permission on the schema that owns the
new table.

See Also
SELECT Examples (Transact-SQL)

140

SELECT Clause
Specifies the columns to be returned by the query.

Transact-SQL Syntax Conventions

Syntax

SELECT [ALL

Arguments

 | DISTINCT]

[TOP (expression) [PERCENT] [WITH TIES]]

<select_list>

<select_list> ::=

 {

 *

 | { table_name | view_name | table_alias }.*
 | {

 [{ table_name | view_name | table_alias }.]
 { column_name | $IDENTITY | $ROWGUID }

 | udt_column_name [{ . | :: } { { property_name | field_name }

 | method_name (argument [,...n]) }]

 | expression

 [[AS] column_alias]

 }

 | column_alias =expression

 } [,...n]

ALL

Specifies that duplicate rows can appear in the result set. ALL is the default.

DISTINCT

Specifies that only unique rows can appear in the result set. Null values are considered
equal for the purposes of the DISTINCT keyword.

TOP (expression) [PERCENT] [WITH TIES]

Indicates that only a specified first set or percent of rows will be returned from the query
result set. expression can be either a number or a percent of the rows.

141

For backward compatibility, using the TOP expression without parentheses in SELECT
statements is supported, but we do not recommend it. For more information, see TOP.

<select_list>

The columns to be selected for the result set. The select list is a series of expressions
separated by commas. The maximum number of expressions that can be specified in
the select list is 4096.

*

Specifies that all columns from all tables and views in the FROM clause should be
returned. The columns are returned by table or view, as specified in the FROM clause,
and in the order in which they exist in the table or view.

table_name | view_name | table_alias.*

Limits the scope of the * to the specified table or view.

column_name

Is the name of a column to return. Qualify column_name to prevent an ambiguous
reference, such as occurs when two tables in the FROM clause have columns with
duplicate names. For example, the SalesOrderHeader and SalesOrderDetail tables in
the database both have a column named ModifiedDate. If the two tables are
joined in a query, the modified date of the SalesOrderDetail entries can be specified in
the select list as SalesOrderDetail.ModifiedDate.

expression

Is a constant, function, any combination of column names, constants, and functions
connected by an operator or operators, or a subquery.

$IDENTITY

Returns the identity column. For more information, see IDENTITY (Property), ALTER
TABLE (Transact-SQL), and CREATE TABLE (Transact-SQL).

If more than one table in the FROM clause has a column with the IDENTITY property,
$IDENTITY must be qualified with the specific table name, such as T1.$IDENTITY.

$ROWGUID

Returns the row GUID column.

If there is more than one table in the FROM clause with the ROWGUIDCOL property,

http://msdn.microsoft.com/en-us/library/8429134f-c821-4033-a07c-f782a48d501c
http://msdn.microsoft.com/en-us/library/f1745145-182d-4301-a334-18f799d361d1
http://msdn.microsoft.com/en-us/library/f1745145-182d-4301-a334-18f799d361d1
http://msdn.microsoft.com/en-us/library/1e068443-b9ea-486a-804f-ce7b6e048e8b

142

$ROWGUID must be qualified with the specific table name, such as T1.$ROWGUID.

udt_column_name

Is the name of a common language runtime (CLR) user-defined type column to return.

Note
SQL Server Management Studio returns user-defined type values in binary representation. To
return user-defined type values in string or XML format, use CAST or CONVERT.

{ . | :: }

Specifies a method, property, or field of a CLR user-defined type. Use .for an instance
(nonstatic) method, property, or field. Use :: for a static method, property, or field. To
invoke a method, property, or field of a CLR user-defined type, you must have
EXECUTE permission on the type.

property_name

Is a public property of udt_column_name.

field_name

Is a public data member of udt_column_name.

method_name

Is a public method of udt_column_name that takes one or more
arguments.method_name cannot be a mutator method.

The following example selects the values for the Location column, defined as type
point, from the Cities table, by invoking a method of the type called Distance:

CREATE TABLE Cities (

 Name varchar(20),

 State varchar(20),

 Location point);

GO

DECLARE @p point (32, 23), @distance float;

GO

SELECT Location.Distance (@p)

FROM Cities;

column_ alias

Is an alternative name to replace the column name in the query result set. For example,

http://msdn.microsoft.com/en-us/library/a87d0850-c670-4720-9ad5-6f5a22343ea8
http://msdn.microsoft.com/en-us/library/a87d0850-c670-4720-9ad5-6f5a22343ea8

143

an alias such as Quantity, or Quantity to Date, or Qty can be specified for a column
named quantity.

Aliases are used also to specify names for the results of expressions, for example:

USE AdventureWorks2012;

GO

SELECT AVG(UnitPrice) AS [Average Price]

FROM Sales.SalesOrderDetail;

column_alias can be used in an ORDER BY clause. However, it cannot be used in a
WHERE, GROUP BY, or HAVING clause. If the query expression is part of a DECLARE
CURSOR statement, column_alias cannot be used in the FOR UPDATE clause.

Remarks
The length of data returned for text or ntext columns that are included in the select list is set to
the smallest value of the following: the actual size of the text column, the default TEXTSIZE
session setting, or the hard-coded application limit. To change the length of returned text for the
session, use the SET statement. By default, the limit on the length of text data returned with a
SELECT statement is 4,000 bytes.

The SQL Server Database Engine raises exception 511 and rolls back the current running
statement if either of the following behavior occurs:

• The SELECT statement produces a result row or an intermediate work table row exceeding
8,060 bytes.

• The DELETE, INSERT, or UPDATE statement tries an action on a row exceeding 8,060
bytes.

An error occurs if no column name is specified to a column created by a SELECT INTO or
CREATE VIEW statement.

See Also
SELECT Examples (Transact-SQL)

Expressions

SELECT (Transact-SQL)

SELECT Examples
This topic provides examples of using the SELECT statement.

http://msdn.microsoft.com/en-us/library/ee53c5c8-e36c-40f9-8cd1-d933791b98fa

144

A. Using SELECT to retrieve rows and columns
The following example shows three code examples. This first code example returns all rows (no
WHERE clause is specified) and all columns (using the *) from the Product table in the
database.

USE AdventureWorks2012;

GO

SELECT *

FROM Production.Product

ORDER BY Name ASC;

-- Alternate way.

USE AdventureWorks2012;

GO

SELECT p.*

FROM Production.Product AS p

ORDER BY Name ASC;

GO

This example returns all rows (no WHERE clause is specified), and only a subset of the columns
(Name, ProductNumber, ListPrice) from the Product table in the database. Additionally, a
column heading is added.

USE AdventureWorks2012;

GO

SELECT Name, ProductNumber, ListPrice AS Price

FROM Production.Product

ORDER BY Name ASC;

GO

This example returns only the rows for Product that have a product line of R and that have days to
manufacture that is less than 4.

USE AdventureWorks2012;

GO

SELECT Name, ProductNumber, ListPrice AS Price

FROM Production.Product

WHERE ProductLine = 'R'

AND DaysToManufacture < 4

ORDER BY Name ASC;

GO

145

B. Using SELECT with column headings and calculations
The following examples return all rows from the Product table. The first example returns total
sales and the discounts for each product. In the second example, the total revenue is calculated
for each product.

USE AdventureWorks2012;

GO

SELECT p.Name AS ProductName,

NonDiscountSales = (OrderQty * UnitPrice),

Discounts = ((OrderQty * UnitPrice) * UnitPriceDiscount)

FROM Production.Product AS p

INNER JOIN Sales.SalesOrderDetail AS sod

ON p.ProductID = sod.ProductID

ORDER BY ProductName DESC;

GO

This is the query that calculates the revenue for each product in each sales order.

USE AdventureWorks2012;

GO

SELECT 'Total income is', ((OrderQty * UnitPrice) * (1.0 - UnitPriceDiscount)), ' for ',

p.Name AS ProductName

FROM Production.Product AS p

INNER JOIN Sales.SalesOrderDetail AS sod

ON p.ProductID = sod.ProductID

ORDER BY ProductName ASC;

GO

C. Using DISTINCT with SELECT
The following example uses DISTINCT to prevent the retrieval of duplicate titles.

USE AdventureWorks2012;

GO

SELECT DISTINCT JobTitle

FROM HumanResources.Employee

ORDER BY JobTitle;

GO

D. Creating tables with SELECT INTO
The following first example creates a temporary table named #Bicycles in tempdb.

USE tempdb;

GO

IF OBJECT_ID (N'#Bicycles',N'U') IS NOT NULL

DROP TABLE #Bicycles;

146

GO

SELECT *

INTO #Bicycles

FROM AdventureWorks2012.Production.Product

WHERE ProductNumber LIKE 'BK%';

GO

This second example creates the permanent table NewProducts.

USE AdventureWorks2012;

GO

IF OBJECT_ID('dbo.NewProducts', 'U') IS NOT NULL

 DROP TABLE dbo.NewProducts;

GO

ALTER DATABASE AdventureWorks2012 SET RECOVERY BULK_LOGGED;

GO

SELECT * INTO dbo.NewProducts

FROM Production.Product

WHERE ListPrice > $25

AND ListPrice < $100;

GO

ALTER DATABASE AdventureWorks2012 SET RECOVERY FULL;

GO

E. Using correlated subqueries
The following example shows queries that are semantically equivalent and illustrates the
difference between using the EXISTS keyword and the IN keyword. Both are examples of a valid
subquery that retrieves one instance of each product name for which the product model is a long
sleeve logo jersey, and the ProductModelID numbers match between the Product and
ProductModel tables.

USE AdventureWorks2012;

GO

SELECT DISTINCT Name

FROM Production.Product AS p

WHERE EXISTS

 (SELECT *

 FROM Production.ProductModel AS pm

 WHERE p.ProductModelID = pm.ProductModelID

 AND pm.Name LIKE 'Long-Sleeve Logo Jersey%');

GO

-- OR

147

USE AdventureWorks2012;

GO

SELECT DISTINCT Name

FROM Production.Product

WHERE ProductModelID IN

 (SELECT ProductModelID

 FROM Production.ProductModel

 WHERE Name LIKE 'Long-Sleeve Logo Jersey%');

GO

The following example uses IN in a correlated, or repeating, subquery. This is a query that
depends on the outer query for its values. The query is executed repeatedly, one time for each
row that may be selected by the outer query. This query retrieves one instance of the first and last
name of each employee for which the bonus in the SalesPerson table is 5000.00 and for which the
employee identification numbers match in the Employee and SalesPerson tables.

USE AdventureWorks2012;

GO

SELECT DISTINCT p.LastName, p.FirstName

FROM Person.Person AS p

JOIN HumanResources.Employee AS e

 ON e.BusinessEntityID = p.BusinessEntityID WHERE 5000.00 IN

 (SELECT Bonus

 FROM Sales.SalesPerson AS sp

 WHERE e.BusinessEntityID = sp.BusinessEntityID);

GO

The previous subquery in this statement cannot be evaluated independently of the outer query. It
requires a value for Employee.EmployeeID, but this value changes as the SQL Server Database
Engine examines different rows in Employee.

A correlated subquery can also be used in the HAVING clause of an outer query. This example
finds the product models for which the maximum list price is more than twice the average for the
model.

USE AdventureWorks2012;

GO

SELECT p1.ProductModelID

FROM Production.Product AS p1

GROUP BY p1.ProductModelID

HAVING MAX(p1.ListPrice) >= ALL

 (SELECT AVG(p2.ListPrice)

 FROM Production.Product AS p2

 WHERE p1.ProductModelID = p2.ProductModelID);

148

GO

This example uses two correlated subqueries to find the names of employees who have sold a
particular product.

USE AdventureWorks2012;

GO

SELECT DISTINCT pp.LastName, pp.FirstName

FROM Person.Person pp JOIN HumanResources.Employee e

ON e.BusinessEntityID = pp.BusinessEntityID WHERE pp.BusinessEntityID IN

(SELECT SalesPersonID

FROM Sales.SalesOrderHeader

WHERE SalesOrderID IN

(SELECT SalesOrderID

FROM Sales.SalesOrderDetail

WHERE ProductID IN

(SELECT ProductID

FROM Production.Product p

WHERE ProductNumber = 'BK-M68B-42')));

GO

F. Using GROUP BY
The following example finds the total of each sales order in the database.

USE AdventureWorks2012;

GO

SELECT SalesOrderID, SUM(LineTotal) AS SubTotal

FROM Sales.SalesOrderDetail

GROUP BY SalesOrderID

ORDER BY SalesOrderID;

GO

Because of the GROUP BY clause, only one row containing the sum of all sales is returned for each
sales order.

G. Using GROUP BY with multiple groups
The following example finds the average price and the sum of year-to-date sales, grouped by
product ID and special offer ID.

USE AdventureWorks2012;

GO

SELECT ProductID, SpecialOfferID, AVG(UnitPrice) AS [Average Price],

 SUM(LineTotal) AS SubTotal

FROM Sales.SalesOrderDetail

149

GROUP BY ProductID, SpecialOfferID

ORDER BY ProductID;

GO

H. Using GROUP BY and WHERE
The following example puts the results into groups after retrieving only the rows with list prices
greater than $1000.

USE AdventureWorks2012;

GO

SELECT ProductModelID, AVG(ListPrice) AS [Average List Price]

FROM Production.Product

WHERE ListPrice > $1000

GROUP BY ProductModelID

ORDER BY ProductModelID;

GO

I. Using GROUP BY with an expression
The following example groups by an expression. You can group by an expression if the
expression does not include aggregate functions.

USE AdventureWorks2012;

GO

SELECT AVG(OrderQty) AS [Average Quantity],

NonDiscountSales = (OrderQty * UnitPrice)

FROM Sales.SalesOrderDetail

GROUP BY (OrderQty * UnitPrice)

ORDER BY (OrderQty * UnitPrice) DESC;

GO

J. Using GROUP BY with ORDER BY
The following example finds the average price of each type of product and orders the results by
average price.

USE AdventureWorks2012;

GO

SELECT ProductID, AVG(UnitPrice) AS [Average Price]

FROM Sales.SalesOrderDetail

WHERE OrderQty > 10

GROUP BY ProductID

ORDER BY AVG(UnitPrice);

GO

150

K. Using the HAVING clause
The first example that follows shows a HAVING clause with an aggregate function. It groups the
rows in the SalesOrderDetail table by product ID and eliminates products whose average order
quantities are five or less. The second example shows a HAVING clause without aggregate
functions.

USE AdventureWorks2012;

GO

SELECT ProductID

FROM Sales.SalesOrderDetail

GROUP BY ProductID

HAVING AVG(OrderQty) > 5

ORDER BY ProductID;

GO

This query uses the LIKE clause in the HAVING clause.

USE AdventureWorks2012 ;

GO

SELECT SalesOrderID, CarrierTrackingNumber

FROM Sales.SalesOrderDetail

GROUP BY SalesOrderID, CarrierTrackingNumber

HAVING CarrierTrackingNumber LIKE '4BD%'

ORDER BY SalesOrderID ;

GO

L. Using HAVING and GROUP BY
The following example shows using GROUP BY, HAVING, WHERE, and ORDER BY clauses in one SELECT
statement. It produces groups and summary values but does so after eliminating the products
with prices over $25 and average order quantities under 5. It also organizes the results by
ProductID.

USE AdventureWorks2012;

GO

SELECT ProductID

FROM Sales.SalesOrderDetail

WHERE UnitPrice < 25.00

GROUP BY ProductID

HAVING AVG(OrderQty) > 5

ORDER BY ProductID;

GO

151

M. Using HAVING with SUM and AVG
The following example groups the SalesOrderDetail table by product ID and includes only those
groups of products that have orders totaling more than $1000000.00 and whose average order
quantities are less than 3.

USE AdventureWorks2012;

GO

SELECT ProductID, AVG(OrderQty) AS AverageQuantity, SUM(LineTotal) AS Total

FROM Sales.SalesOrderDetail

GROUP BY ProductID

HAVING SUM(LineTotal) > $1000000.00

AND AVG(OrderQty) < 3;

GO

To see the products that have had total sales greater than $2000000.00, use this query:

USE AdventureWorks2012;

GO

SELECT ProductID, Total = SUM(LineTotal)

FROM Sales.SalesOrderDetail

GROUP BY ProductID

HAVING SUM(LineTotal) > $2000000.00;

GO

If you want to make sure there are at least one thousand five hundred items involved in the
calculations for each product, use HAVING COUNT(*) > 1500 to eliminate the products that return
totals for fewer than 1500 items sold. The query looks like this:

USE AdventureWorks2012;

GO

SELECT ProductID, SUM(LineTotal) AS Total

FROM Sales.SalesOrderDetail

GROUP BY ProductID

HAVING COUNT(*) > 1500;

GO

N. Using the INDEX optimizer hint
The following example shows two ways to use the INDEX optimizer hint. The first example shows
how to force the optimizer to use a nonclustered index to retrieve rows from a table, and the
second example forces a table scan by using an index of 0.

USE AdventureWorks2012;

GO

SELECT pp.FirstName, pp.LastName, e.NationalIDNumber

FROM HumanResources.Employee AS e WITH (INDEX(AK_Employee_NationalIDNumber))

152

JOIN Person.Person AS pp on e.BusinessEntityID = pp.BusinessEntityID

WHERE LastName = 'Johnson';

GO

-- Force a table scan by using INDEX = 0.

USE AdventureWorks2012;

GO

SELECT pp.LastName, pp.FirstName, e.JobTitle

FROM HumanResources.Employee AS e WITH (INDEX = 0) JOIN Person.Person AS pp

ON e.BusinessEntityID = pp.BusinessEntityID

WHERE LastName = 'Johnson';

GO

M. Using OPTION and the GROUP hints
The following example shows how the OPTION (GROUP) clause is used with a GROUP BY clause.

USE AdventureWorks2012;

GO

SELECT ProductID, OrderQty, SUM(LineTotal) AS Total

FROM Sales.SalesOrderDetail

WHERE UnitPrice < $5.00

GROUP BY ProductID, OrderQty

ORDER BY ProductID, OrderQty

OPTION (HASH GROUP, FAST 10);

GO

O. Using the UNION query hint
The following example uses the MERGE UNION query hint.

USE AdventureWorks2012;

GO

SELECT BusinessEntityID, JobTitle, HireDate, VacationHours, SickLeaveHours

FROM HumanResources.Employee AS e1

UNION

SELECT BusinessEntityID, JobTitle, HireDate, VacationHours, SickLeaveHours

FROM HumanResources.Employee AS e2

OPTION (MERGE UNION);

GO

P. Using a simple UNION
In the following example, the result set includes the contents of the ProductModelID and Name
columns of both the ProductModel and Gloves tables.

USE AdventureWorks2012;

153

GO

IF OBJECT_ID ('dbo.Gloves', 'U') IS NOT NULL

DROP TABLE dbo.Gloves;

GO

-- Create Gloves table.

SELECT ProductModelID, Name

INTO dbo.Gloves

FROM Production.ProductModel

WHERE ProductModelID IN (3, 4);

GO

-- Here is the simple union.

USE AdventureWorks2012;

GO

SELECT ProductModelID, Name

FROM Production.ProductModel

WHERE ProductModelID NOT IN (3, 4)

UNION

SELECT ProductModelID, Name

FROM dbo.Gloves

ORDER BY Name;

GO

Q. Using SELECT INTO with UNION
In the following example, the INTO clause in the second SELECT statement specifies that the table
named ProductResults holds the final result set of the union of the designated columns of the
ProductModel and Gloves tables. Note that the Gloves table is created in the first SELECT statement.

USE AdventureWorks2012;

GO

IF OBJECT_ID ('dbo.ProductResults', 'U') IS NOT NULL

DROP TABLE dbo.ProductResults;

GO

IF OBJECT_ID ('dbo.Gloves', 'U') IS NOT NULL

DROP TABLE dbo.Gloves;

GO

-- Create Gloves table.

SELECT ProductModelID, Name

INTO dbo.Gloves

FROM Production.ProductModel

WHERE ProductModelID IN (3, 4);

GO

154

USE AdventureWorks2012;

GO

SELECT ProductModelID, Name

INTO dbo.ProductResults

FROM Production.ProductModel

WHERE ProductModelID NOT IN (3, 4)

UNION

SELECT ProductModelID, Name

FROM dbo.Gloves;

GO

SELECT ProductModelID, Name

FROM dbo.ProductResults;

R. Using UNION of two SELECT statements with ORDER BY
The order of certain parameters used with the UNION clause is important. The following example
shows the incorrect and correct use of UNION in two SELECT statements in which a column is to be
renamed in the output.

USE AdventureWorks2012;

GO

IF OBJECT_ID ('dbo.Gloves', 'U') IS NOT NULL

DROP TABLE dbo.Gloves;

GO

-- Create Gloves table.

SELECT ProductModelID, Name

INTO dbo.Gloves

FROM Production.ProductModel

WHERE ProductModelID IN (3, 4);

GO

/* INCORRECT */

USE AdventureWorks2012;

GO

SELECT ProductModelID, Name

FROM Production.ProductModel

WHERE ProductModelID NOT IN (3, 4)

ORDER BY Name

UNION

SELECT ProductModelID, Name

FROM dbo.Gloves;

GO

155

/* CORRECT */

USE AdventureWorks2012;

GO

SELECT ProductModelID, Name

FROM Production.ProductModel

WHERE ProductModelID NOT IN (3, 4)

UNION

SELECT ProductModelID, Name

FROM dbo.Gloves

ORDER BY Name;

GO

S. Using UNION of three SELECT statements to show the effects
of ALL and parentheses
The following examples use UNION to combine the results of three tables that all have the same 5
rows of data. The first example uses UNION ALL to show the duplicated records, and returns all 15
rows. The second example uses UNION without ALL to eliminate the duplicate rows from the
combined results of the three SELECT statements, and returns 5 rows.

The third example uses ALL with the first UNION and parentheses enclose the second UNION that is
not using ALL. The second UNION is processed first because it is in parentheses, and returns 5
rows because the ALL option is not used and the duplicates are removed. These 5 rows are
combined with the results of the first SELECT by using the UNION ALL keywords. This does not
remove the duplicates between the two sets of 5 rows. The final result has 10 rows.

USE AdventureWorks2012;

GO

IF OBJECT_ID ('dbo.EmployeeOne', 'U') IS NOT NULL

DROP TABLE dbo.EmployeeOne;

GO

IF OBJECT_ID ('dbo.EmployeeTwo', 'U') IS NOT NULL

DROP TABLE dbo.EmployeeTwo;

GO

IF OBJECT_ID ('dbo.EmployeeThree', 'U') IS NOT NULL

DROP TABLE dbo.EmployeeThree;

GO

SELECT pp.LastName, pp.FirstName, e.JobTitle

INTO dbo.EmployeeOne

FROM Person.Person AS pp JOIN HumanResources.Employee AS e

ON e.BusinessEntityID = pp.BusinessEntityID

WHERE LastName = 'Johnson';

GO

SELECT pp.LastName, pp.FirstName, e.JobTitle

156

INTO dbo.EmployeeTwo

FROM Person.Person AS pp JOIN HumanResources.Employee AS e

ON e.BusinessEntityID = pp.BusinessEntityID

WHERE LastName = 'Johnson';

GO

SELECT pp.LastName, pp.FirstName, e.JobTitle

INTO dbo.EmployeeThree

FROM Person.Person AS pp JOIN HumanResources.Employee AS e

ON e.BusinessEntityID = pp.BusinessEntityID

WHERE LastName = 'Johnson';

GO

-- Union ALL

SELECT LastName, FirstName, JobTitle

FROM dbo.EmployeeOne

UNION ALL

SELECT LastName, FirstName ,JobTitle

FROM dbo.EmployeeTwo

UNION ALL

SELECT LastName, FirstName,JobTitle

FROM dbo.EmployeeThree;

GO

SELECT LastName, FirstName,JobTitle

FROM dbo.EmployeeOne

UNION

SELECT LastName, FirstName, JobTitle

FROM dbo.EmployeeTwo

UNION

SELECT LastName, FirstName, JobTitle

FROM dbo.EmployeeThree;

GO

SELECT LastName, FirstName,JobTitle

FROM dbo.EmployeeOne

UNION ALL

(

SELECT LastName, FirstName, JobTitle

FROM dbo.EmployeeTwo

UNION

SELECT LastName, FirstName, JobTitle

FROM dbo.EmployeeThree

);

GO

157

See Also
CREATE TRIGGER

CREATE VIEW

DELETE

EXECUTE

Expressions

INSERT

LIKE

UNION

EXCEPT and INTERSECT (Transact-SQL)

UPDATE

WHERE

PathName (Transact-SQL)

INTO Clause (Transact-SQL)

FOR Clause
FOR clause is used to specify either the BROWSE or the XML option. BROWSE and XML are
unrelated options.

The XMLDATA directive to the FOR XML option is deprecated. Use XSD generation in
the case of RAW and AUTO modes. There is no replacement for the XMLDATA directive
in EXPLICIT mode. This feature will be removed in a future version of Microsoft SQL
Server. Avoid using this feature in new development work, and plan to modify
applications that currently use this feature.

Transact-SQL Syntax Conventions

Syntax

[FOR { BROWSE | <XML> }]

<XML> ::=

XML

{

 { RAW [('ElementName')] | AUTO }

 [

<CommonDirectives>

 [, { XMLDATA | XMLSCHEMA [('TargetNameSpaceURI')] }]

Important

http://msdn.microsoft.com/en-us/library/edeced03-decd-44c3-8c74-2c02f801d3e7
http://msdn.microsoft.com/en-us/library/aecc2f73-2ab5-4db9-b1e6-2f9e3c601fb9
http://msdn.microsoft.com/en-us/library/bc806b71-cc55-470a-913e-c5f761d5c4b7
http://msdn.microsoft.com/en-us/library/ee53c5c8-e36c-40f9-8cd1-d933791b98fa
http://msdn.microsoft.com/en-us/library/581fb289-29f9-412b-869c-18d33a9e93d5
http://msdn.microsoft.com/en-us/library/607c296f-8a6a-49bc-975a-b8d0c0914df7
http://msdn.microsoft.com/en-us/library/b1019300-171a-4a1a-854f-e1e751de3565
http://msdn.microsoft.com/en-us/library/6b95ad90-6c82-4a23-9294-a2adb74934a3

158

 [, ELEMENTS [XSINIL | ABSENT]

]

 | EXPLICIT

 [

 <CommonDirectives>

 [, XMLDATA]

]

 | PATH [('ElementName')]
 [

<CommonDirectives>

 [, ELEMENTS [XSINIL | ABSENT]]

]

}

<CommonDirectives> ::=
[, BINARY BASE64]

[, TYPE]

[, ROOT [('RootName')]]

Arguments
BROWSE

Specifies that updates be allowed while viewing the data in a DB-Library browse mode
cursor. A table can be browsed in an application if the table includes a timestamp
column, the table has a unique index, and the FOR BROWSE option is at the end of the
SELECT statements sent to an instance of SQL Server.

Note
You cannot use the <lock_hint> HOLDLOCK in a SELECT statement that includes the FOR
BROWSE option.

FOR BROWSE cannot appear in SELECT statements that are joined by the UNION
operator.

Note
When the unique index key columns of a table are nullable, and the table is on the inner side of
an outer join, the index is not supported by browse mode.

The browse mode lets you scan the rows in your SQL Server table and update the data
in your table one row at a time. To access a SQL Server table in your application in the

159

browse mode, you must use one of the following two options:

• The SELECT statement that you use to access the data from your SQL
Server table must end with the keywords FOR BROWSE. When you turn on the
FOR BROWSE option to use browse mode, temporary tables are created.

• You must run the following Transact-SQL statement to turn on the browse mode by
using the NO_BROWSETABLE option:

SET NO_BROWSETABLE ON

When you turn on the NO_BROWSETABLE option, all the SELECT statements
behave as if the FOR BROWSE option is appended to the statements. However,
the NO_BROWSETABLE option does not create the temporary tables that the
FOR BROWSE option generally uses to send the results to your application.

When you try to access the data from SQL Server tables in browse mode by using a
SELECT query that involves an outer join statement, and when a unique index is
defined on the table that is present on the inner side of an outer join statement, the
browse mode does not support the unique index. The browse mode supports the
unique index only when all the unique index key columns can accept null values. The
browse mode does not support the unique index if the following conditions are true:

• You try to access the data from SQL Server tables in browse mode by using a
SELECT query that involves an outer join statement.

• A unique index is defined on the table that is present on the inner side of an outer
join statement.

To reproduce this behavior in the browse mode, follow these steps:

1. In SQL Server Management Studio, create a database, named SampleDB.

2. In the SampleDB database, create a tleft table and a tright table that both contain a
single column that is named c1. Define a unique index on the c1 column in the tleft
table, and set the column to accept null values. To do this, run the following
Transact-SQL statements in an appropriate query window:

CREATE TABLE tleft(c1 INT NULL UNIQUE) ;

GO

CREATE TABLE tright(c1 INT NULL) ;

GO

3. Insert several values in the tleft table and the tright table. Make sure that you insert
a null value in the tleft table. To do this, run the following Transact-SQL statements
in the query window:

INSERT INTO tleft VALUES(2) ;

INSERT INTO tleft VALUES(NULL) ;

INSERT INTO tright VALUES(1) ;

INSERT INTO tright VALUES(3) ;

160

INSERT INTO tright VALUES(NULL) ;

GO

4. Turn on the NO_BROWSETABLE option. To do this, run the following Transact-
SQL statements in the query window:

SET NO_BROWSETABLE ON ;

GO

5. Access the data in the tleft table and the tright table by using an outer join
statement in the SELECT query. Make sure that the tleft table is on the inner side
of the outer join statement. To do this, run the following Transact-SQL statements
in the query window:

SELECT tleft.c1

FROM tleft

RIGHT JOIN tright

ON tleft.c1 = tright.c1

WHERE tright.c1 <> 2 ;

Notice the following output in the Results pane:

c1

NULL

NULL

After you run the SELECT query to access the tables in the browse mode, the result set
of the SELECT query contains two null values for the c1 column in the tleft table
because of the definition of the right outer join statement. Therefore, in the result set,
you cannot distinguish between the null values that came from the table and the null
values that the right outer join statement introduced. You might receive incorrect results
if you must ignore the null values from the result set.

Note
If the columns that are included in the unique index do not accept null values, all the null values
in the result set were introduced by the right outer join statement.

XML

Specifies that the results of a query are to be returned as an XML document. One of the
following XML modes must be specified: RAW, AUTO, EXPLICIT. For more information
about XML data and SQL Server, see Constructing XML Using FOR XML.

http://msdn.microsoft.com/en-us/library/2b6b5c61-c5bd-49d2-8c0c-b7cf15857906

161

RAW [('ElementName')]

Takes the query result and transforms each row in the result set into an XML element
with a generic identifier <row /> as the element tag. You can optionally specify a name
for the row element. The resulting XML output uses the specified ElementName as the
row element generated for each row. For more information, see Using RAW Mode
and Using RAW Mode.

AUTO

Returns query results in a simple, nested XML tree. Each table in the FROM clause, for
which at least one column is listed in the SELECT clause, is represented as an XML
element. The columns listed in the SELECT clause are mapped to the appropriate
element attributes. For more information, see Using AUTO Mode.

EXPLICIT

Specifies that the shape of the resulting XML tree is defined explicitly. Using this mode,
queries must be written in a particular way so that additional information about the
desired nesting is specified explicitly. For more information, see Using EXPLICIT
Mode.

XMLDATA

Returns inline XDR schema, but does not add the root element to the result. If
XMLDATA is specified, XDR schema is appended to the document.

XMLSCHEMA [('TargetNameSpaceURI')]

Returns inline XSD schema. You can optionally specify a target namespace URI when
you specify this directive, which returns the specified namespace in the schema. For
more information, see Inline XSD Schema Generation.

ELEMENTS

Specifies that the columns are returned as subelements. Otherwise, they are mapped to
XML attributes. This option is supported in RAW, AUTO and PATH modes only. For
more information, see Using RAW Mode.

XSINIL

Specifies that an element with xsi:nil attribute set to True be created for NULL column
values. This option can only be specified with ELEMENTS directive. For more
information, see Generating Elements for NULL Values Using the XSINIL
Parameter.

http://msdn.microsoft.com/en-us/library/02c1bc0b-760c-4589-9ab1-6927c6d9c734
http://msdn.microsoft.com/en-us/library/02c1bc0b-760c-4589-9ab1-6927c6d9c734
http://msdn.microsoft.com/en-us/library/7140d656-1d42-4f01-a533-5251429f4450
http://msdn.microsoft.com/en-us/library/8b26e8ce-5465-4e7a-b237-98d0f4578ab1
http://msdn.microsoft.com/en-us/library/8b26e8ce-5465-4e7a-b237-98d0f4578ab1
http://msdn.microsoft.com/en-us/library/04b35145-1cca-45f4-9eb7-990abf2e647d
http://msdn.microsoft.com/en-us/library/02c1bc0b-760c-4589-9ab1-6927c6d9c734
http://msdn.microsoft.com/en-us/library/2dbc4e48-1cae-4d83-b371-3265da9687cc
http://msdn.microsoft.com/en-us/library/2dbc4e48-1cae-4d83-b371-3265da9687cc

162

ABSENT

Indicates that for null column values, corresponding XML elements will not be added in
the XML result. Specify this option only with ELEMENTS.

PATH [('ElementName')]

Generates a <row> element wrapper for each row in the result set. You can optionally
specify an element name for the <row> element wrapper. If an empty string is provided,
such as FOR XML PATH ('')), a wrapper element is not generated. Using PATH may
provide a simpler alternative to queries written using the EXPLICIT directive. For more
information, see Using PATH Mode.

BINARY BASE64

Specifies that the query returns the binary data in binary base64-encoded format. When
you retrieve binary data by using RAW and EXPLICIT mode, this option must be
specified. This is the default in AUTO mode.

TYPE

Specifies that the query returns results as xml type. For more information, see TYPE
Directive in FOR XML Queries.

ROOT [('RootName')]

Specifies that a single top-level element be added to the resulting XML. You can
optionally specify the root element name to generate. If the optional root name is not
specified, the default <root> element is added.

Examples
The following example specifies FOR XML AUTO with the TYPE and XMLSCHEMA options. Because of
the TYPE option, the result set is returned to the client as an xml type. The XMLSCHEMA option
specifies that the inline XSD schema is included in the XML data returned, and the ELEMENTS
option specifies that the XML result is element-centric.

USE AdventureWorks2012;

GO

SELECT p.BusinessEntityID, FirstName, LastName, PhoneNumber AS Phone

FROM Person.Person AS p

Join Person.PersonPhone AS pph ON p.BusinessEntityID = pph.BusinessEntityID

WHERE LastName LIKE 'G%'

http://msdn.microsoft.com/en-us/library/a685a9ad-3d28-4596-aa72-119202df3976
http://msdn.microsoft.com/en-us/library/a3df6c30-1f25-45dc-b5a9-bd0e41921293
http://msdn.microsoft.com/en-us/library/a3df6c30-1f25-45dc-b5a9-bd0e41921293

163

ORDER BY LastName, FirstName

FOR XML AUTO, TYPE, XMLSCHEMA, ELEMENTS XSINIL;

See Also
SELECT (Transact-SQL)

Constructing XML Using FOR XML

GROUP BY
Groups a selected set of rows into a set of summary rows by the values of one or more columns
or expressions in SQL Server 2012. One row is returned for each group. Aggregate functions in
the SELECT clause <select> list provide information about each group instead of individual rows.

The GROUP BY clause has an ISO-compliant syntax and a non-ISO-compliant syntax. Only one
syntax style can be used in a single SELECT statement. Use the ISO compliant syntax for all new
work. The non-ISO compliant syntax is provided for backward compatibility.

In this topic, a GROUP BY clause can be described as general or simple:

• A general GROUP BY clause includes GROUPING SETS, CUBE, ROLLUP, WITH CUBE, or
WITH ROLLUP.

• A simple GROUP BY clause does not include GROUPING SETS, CUBE, ROLLUP, WITH
CUBE, or WITH ROLLUP. GROUP BY (), grand total, is considered a simple GROUP BY.

Transact-SQL Syntax Conventions (Transact-SQL)

Syntax

ISO-Compliant Syntax

GROUP BY <group by spec>

<group by spec> ::=

<group by item> [,...n]

<group by item> ::=

<simple group by item>

 | <rollup spec>

 | <cube spec>

 | <grouping sets spec>

 | <grand total>

http://msdn.microsoft.com/en-us/library/2b6b5c61-c5bd-49d2-8c0c-b7cf15857906

164

<simple group by item> ::=

<column_expression>

<rollup spec> ::=

 ROLLUP (<composite element list>)

<cube spec> ::=

 CUBE (<composite element list>)

<composite element list> ::=

<composite element> [,...n]

<composite element> ::=

<simple group by item>

 | (<simple group by item list>)

<simple group by item list> ::=

<simple group by item> [,...n]

<grouping sets spec> ::=

 GROUPING SETS (<grouping set list>)

<grouping set list> ::=

<grouping set> [,...n]

<grouping set> ::=

<grand total>

 | <grouping set item>

 | (<grouping set item list>)

<empty group> ::=

()

<grouping set item> ::=

<simple group by item>

 | <rollup spec>

165

 | <cube spec>

<grouping set item list> ::=

<grouping set item> [,...n]

Non-ISO-Compliant Syntax

[GROUP BY [ALL] group_by_expression [,...n]

 [WITH { CUBE | ROLLUP }]

]

Arguments
<column_expression>

Is the expression on which the grouping operation is performed.

ROLLUP ()

Generates the simple GROUP BY aggregate rows, plus subtotal or super-aggregate
rows, and also a grand total row.

The number of groupings that is returned equals the number of expressions in the
<composite element list> plus one. For example, consider the following statement.

SELECT a, b, c, SUM (<expression>)

FROM T

GROUP BY ROLLUP (a,b,c);

One row with a subtotal is generated for each unique combination of values of (a, b,
c), (a, b), and (a). A grand total row is also calculated.

Columns are rolled up from right to left. The column order affects the output groupings
of ROLLUP and can affect the number of rows in the result set.

CUBE ()

Generates simple GROUP BY aggregate rows, the ROLLUP super-aggregate rows,
and cross-tabulation rows.

CUBE outputs a grouping for all permutations of expressions in the <composite element
list>.

The number of groupings that is generated equals (2n), where n = the number of
expressions in the <composite element list>. For example, consider the following
statement.

SELECT a, b, c, SUM (<expression>)

FROM T

http://msdn.microsoft.com/en-us/library/ee53c5c8-e36c-40f9-8cd1-d933791b98fa

166

GROUP BY CUBE (a,b,c);

One row is produced for each unique combination of values of (a, b, c), (a, b), (a,
c), (b, c), (a), (b) and (c) with a subtotal for each row and a grand total row.

Column order does not affect the output of CUBE.

GROUPING SETS ()

Specifies multiple groupings of data in one query. Only the specified groups are
aggregated instead of the full set of aggregations that are generated by CUBE or
ROLLUP. The results are the equivalent of UNION ALL of the specified groups.
GROUPING SETS can contain a single element or a list of elements. GROUPING
SETS can specify groupings equivalent to those returned by ROLLUP or CUBE. The
<grouping set item list> can contain ROLLUP or CUBE.

()

The empty group generates a total.

Non-ISO Compliant Syntax
ALL

This feature will be removed in a future version of Microsoft SQL Server. Avoid using
this feature in new development work, and plan to modify applications that currently use
this feature. Includes all groups and result sets, even those that do not have any rows
that meet the search condition specified in the WHERE clause. When ALL is specified,
null values are returned for the summary columns of groups that do not meet the search
condition. You cannot specify ALL with the CUBE or ROLLUP operators.

GROUP BY ALL is not supported in queries that access remote tables if there is also a
WHERE clause in the query. GROUP BY ALL will fail on columns that have the
FILESTREAM attribute.

group_by_expression

Is an expression on which grouping is performed. group_by_expression is also known
as a grouping column. group_by expression can be a column or a non-aggregate
expression that references a column returned by the FROM clause. A column alias that
is defined in the SELECT list cannot be used to specify a grouping column.

Note
Columns of type text, ntext, and image cannot be used in group_by_expression.

For GROUP BY clauses that do not contain CUBE or ROLLUP, the number of
group_by_expression items is limited by the GROUP BY column sizes, the aggregated

http://msdn.microsoft.com/en-us/library/ee53c5c8-e36c-40f9-8cd1-d933791b98fa

167

columns, and the aggregate values involved in the query. This limit originates from the
limit of 8,060 bytes on the intermediate worktable that is needed to hold intermediate
query results. A maximum of 12 grouping expressions is permitted when CUBE or
ROLLUP is specified.

xml data type methods cannot be specified directly in group_by_expression. Instead,
refer to a user-defined function that uses xml data type methods inside it, or refer to a
computed column that uses them.

WITH CUBE

This feature will be removed in a future version of Microsoft SQL Server. Avoid using
this feature in new development work, and plan to modify applications that currently use
this feature. Specifies that in addition to the usual rows provided by GROUP BY,
summary rows are introduced into the result set. A GROUP BY summary row is
returned for every possible combination of group and subgroup in the result set. Use the
GROUPING function to determine whether null values in the result set are GROUP BY
summary values.

The number of summary rows in the result set is determined by the number of columns
included in the GROUP BY clause. Because CUBE returns every possible combination
of group and subgroup, the number of rows is the same, regardless of the order in
which the grouping columns are specified.

WITH ROLLUP

This feature will be removed in a future version of Microsoft SQL Server. Avoid using
this feature in new development work, and plan to modify applications that currently use
this feature. Specifies that in addition to the usual rows provided by GROUP BY,
summary rows are introduced into the result set. Groups are summarized in a
hierarchical order, from the lowest level in the group to the highest. The group hierarchy
is determined by the order in which the grouping columns are specified. Changing the
order of the grouping columns can affect the number of rows produced in the result set.

Important
Distinct aggregates, for example, AVG (DISTINCT column_name), COUNT (DISTINCT
column_name), and SUM (DISTINCT column_name), are not supported when you use CUBE or
ROLLUP. If these are used, the SQL Server Database Engine returns an error message and
cancels the query.

Remarks
Expressions in the GROUP BY clause can contain columns of the tables, derived tables or views
in the FROM clause. The columns are not required to appear in the SELECT clause <select> list.

168

Each table or view column in any nonaggregate expression in the <select> list must be included
in the GROUP BY list:

• The following statements are allowed:

SELECT ColumnA, ColumnB FROM T GROUP BY ColumnA, ColumnB;

SELECT ColumnA + ColumnB FROM T GROUP BY ColumnA, ColumnB;

SELECT ColumnA + ColumnB FROM T GROUP BY ColumnA + ColumnB;

SELECT ColumnA + ColumnB + constant FROM T GROUP BY ColumnA, ColumnB;

• The following statements are not allowed:

SELECT ColumnA, ColumnB FROM T GROUP BY ColumnA + ColumnB;

SELECT ColumnA + constant + ColumnB FROM T GROUP BY ColumnA + ColumnB;

If aggregate functions are included in the SELECT clause <select list>, GROUP BY calculates a
summary value for each group. These are known as vector aggregates.

Rows that do not meet the conditions in the WHERE clause are removed before any grouping
operation is performed.

The HAVING clause is used with the GROUP BY clause to filter groups in the result set.

The GROUP BY clause does not order the result set. Use the ORDER BY clause to order the
result set.

If a grouping column contains null values, all null values are considered equal, and they are put
into a single group.

You cannot use GROUP BY with an alias to replace a column name in the AS clause unless the
alias replaces a column name in a derived table in the FROM clause.

Duplicate grouping sets in a GROUPING SETS list are not eliminated. Duplicate grouping sets
can be generated by specifying a column expression more than one time or by listing a column
expression also generated by a CUBE or ROLLUP in the GROUPING SETS list.

Distinct aggregates, for example, AVG (DISTINCT column_name), COUNT (DISTINCT
column_name), and SUM (DISTINCT column_name) are supported with ROLLUP, CUBE, and
GROUPING SETS.

ROLLUP, CUBE, and GROUPING SETS cannot be specified in an indexed view.

GROUP BY or HAVING cannot be used directly on columns of ntext, text, or image. These
columns can be used as arguments in functions that return a value of another data type, such as
SUBSTRING() and CAST().

xml data type methods cannot be specified directly in a <column_expression>. Instead, refer to a
user-defined function that uses xml data type methods inside it, or refer to a computed column
that uses them.

169

GROUP BY Limitations for GROUPING SETS, ROLLUP, and CUBE

Syntax Limitations
GROUPING SETS are not allowed in the GROUP BY clause unless they are part of a
GROUPING SETS list. For example, GROUP BY C1, (C2,..., Cn) is not allowed but GROUP BY
GROUPING SETS (C1, (C2, ..., Cn)) is allowed.

GROUPING SETS are not allowed inside GROUPING SETS. For example, GROUP BY GROUPING
SETS (C1, GROUPING SETS (C2, C3)) is not allowed.

The non-ISO ALL, WITH CUBE, and WITH ROLLUP keywords are not allowed in a GROUP BY
clause with the ROLLUP, CUBE or GROUPING SETS keywords.

Size Limitations
For simple GROUP BY, there is no limit on the number of expressions.

For a GROUP BY clause that uses ROLLUP, CUBE, or GROUPING SETS, the maximum
number of expressions is 32, and the maximum number of grouping sets that can be generated is
4096 (212). The following examples fail because the GROUP BY clause is too complex:

• The following examples generate 8192 (213) grouping sets.

GROUP BY CUBE (a1, ..., a13)

GROUP BY a1, ..., a13 WITH CUBE

• The following example generates 4097 (212 + 1) grouping sets.

GROUP BY GROUPING SETS(CUBE(a1, ..., a12), b)

• The following example also generates 4097 (212 + 1) grouping sets. Both CUBE () and the ()
grouping set produce a grand total row and duplicate grouping sets are not eliminated.

GROUP BY GROUPING SETS(CUBE(a1, ..., a12), ())

Support for ISO and ANSI SQL-2006 GROUP BY Features
In SQL Server 2012, the GROUP BY clause cannot contain a subquery in an expression that is
used for the group by list. Error 144 is returned.

SQL Server 2012 supports all GROUP BY features that are included in the SQL-2006 standard
with the following syntax exceptions:

• Grouping sets are not allowed in the GROUP BY clause unless they are part of an explicit
GROUPING SETS list. For example, GROUP BY Column1, (Column2, ...ColumnN) is allowed in
the standard but not in SQL Server. GROUP BY C1, GROUPING SETS ((Column2, ...ColumnN)) or
GROUP BY Column1, Column2, ... ColumnN is allowed. These are semantically equivalent to the
previous GROUP BY example. This is to avoid the possibility that GROUP BY Column1, (Column2,
...ColumnN) might be misinterpreted as GROUP BY C1, GROUPING SETS ((Column2,
...ColumnN)). This is not semantically equivalent.

• Grouping sets are not allowed inside grouping sets. For example, GROUP BY GROUPING SETS
(A1, A2,…An, GROUPING SETS (C1, C2, ...Cn)) is allowed in the SQL-2006 standard but not
in SQL Server. SQL Server 2012 allows GROUP BY GROUPING SETS(A1, A2,...An, C1, C2,

170

...Cn) or GROUP BY GROUPING SETS((A1), (A2), ... (An), (C1), (C2), ... (Cn)). These
examples are semantically equivalent to the first GROUP BY example and have a clearer
syntax.

• GROUP BY [ALL/DISTINCT] is not allowed in a general GROUP BY clause or with the
GROUPING SETS, ROLLUP, CUBE, WITH CUBE or WITH ROLLUP constructs. ALL is the
default and is implicit.

Comparison of Supported GROUP BY Features
The following table describes the GROUP BY features that are supported based upon the version
of SQL Server and the database compatibility level.

Feature SQL Server 2005
Integration Services

SQL Server compatibility
level 100 or higher

SQL Server 2008 or later
with compatibility level
90

DISTINCT
aggregates

Not supported for WITH
CUBE or WITH
ROLLUP.

Supported for WITH
CUBE, WITH ROLLUP,
GROUPING SETS,
CUBE, or ROLLUP.

Same as compatibility
level 100.

User-defined
function with
CUBE or
ROLLUP name
in the GROUP
BY clause

User-defined function
dbo.cube(arg1,...argN)
or
dbo.rollup(arg1,...argN)
in the GROUP BY
clause is allowed.

For example:

SELECT SUM (x)

FROM T

GROUP BY dbo.cube(y);

User-defined function
dbo.cube (arg1,...argN)
or
dbo.rollup(arg1,...argN)
in the GROUP BY
clause is not allowed.

For example:

SELECT SUM (x)

FROM T

GROUP BY dbo.cube(y);

The following error
message is returned:
"Incorrect syntax near
the keyword
'cube'|'rollup'."

To avoid this problem,
replace dbo.cube with
[dbo].[cube] or
dbo.rollup with
[dbo].[rollup].

The following example is

User-defined function
dbo.cube (arg1,...argN)
or
dbo.rollup(arg1,...argN)
in the GROUP BY
clause is allowed

For example:

SELECT SUM (x)

FROM T

GROUP BY dbo.cube(y);

171

Feature SQL Server 2005
Integration Services

SQL Server compatibility
level 100 or higher

SQL Server 2008 or later
with compatibility level
90

allowed:

SELECT SUM (x)

FROM T

GROUP BY

[dbo].[cube](y);

GROUPING
SETS

Not supported Supported Supported

CUBE Not supported Supported Not supported

ROLLUP Not supported Supported Not supported

Grand total,
such as
GROUP BY ()

Not supported Supported Supported

GROUPING_ID
function

Not supported Supported Supported

GROUPING
function

Supported Supported Supported

WITH CUBE Supported Supported Supported

WITH ROLLUP Supported Supported Supported

WITH CUBE or
WITH ROLLUP
"duplicate"
grouping
removal

Supported Supported Supported

Examples

A. Using a simple GROUP BY clause
The following example retrieves the total for each SalesOrderID from the SalesOrderDetail table.

USE AdventureWorks2012;

GO

SELECT SalesOrderID, SUM(LineTotal) AS SubTotal

FROM Sales.SalesOrderDetail AS sod

172

GROUP BY SalesOrderID

ORDER BY SalesOrderID;

B. Using a GROUP BY clause with multiple tables
The following example retrieves the number of employees for each City from the Address table
joined to the EmployeeAddress table.

USE AdventureWorks2012;

GO

SELECT a.City, COUNT(bea.AddressID) EmployeeCount

FROM Person.BusinessEntityAddress AS bea

 INNER JOIN Person.Address AS a

 ON bea.AddressID = a.AddressID

GROUP BY a.City

ORDER BY a.City;

C. Using a GROUP BY clause with an expression
The following example retrieves the total sales for each year by using the DATEPART function. The
same expression must be present in both the SELECT list and GROUP BY clause.

USE AdventureWorks2012;

GO

SELECT DATEPART(yyyy,OrderDate) AS N'Year'

 ,SUM(TotalDue) AS N'Total Order Amount'

FROM Sales.SalesOrderHeader

GROUP BY DATEPART(yyyy,OrderDate)

ORDER BY DATEPART(yyyy,OrderDate);

D. Using a GROUP BY clause with a HAVING clause
The following example uses the HAVING clause to specify which of the groups generated in the
GROUP BY clause should be included in the result set.

USE AdventureWorks2012;

GO

SELECT DATEPART(yyyy,OrderDate) AS N'Year'

 ,SUM(TotalDue) AS N'Total Order Amount'

FROM Sales.SalesOrderHeader

GROUP BY DATEPART(yyyy,OrderDate)

HAVING DATEPART(yyyy,OrderDate) >= N'2003'

ORDER BY DATEPART(yyyy,OrderDate);

See Also
GROUPING_ID (Transact-SQL)

http://msdn.microsoft.com/en-us/library/c1050658-b19f-42ee-9a05-ecd6a73b896c

173

GROUPING (Transact-SQL)

SELECT (Transact-SQL)

SELECT Clause (Transact-SQL)

HAVING
Specifies a search condition for a group or an aggregate. HAVING can be used only with the
SELECT statement. HAVING is typically used in a GROUP BY clause. When GROUP BY is not
used, HAVING behaves like a WHERE clause.

Transact-SQL Syntax Conventions

Syntax

[HAVING <search condition>]

Arguments
<search_condition>

Specifies the search condition for the group or the aggregate to meet.

The text, image, and ntext data types cannot be used in a HAVING clause.

Examples
The following example that uses a simple HAVING clause retrieves the total for each SalesOrderID
from the SalesOrderDetail table that exceeds $100000.00.

USE AdventureWorks2012 ;

GO

SELECT SalesOrderID, SUM(LineTotal) AS SubTotal

FROM Sales.SalesOrderDetail

GROUP BY SalesOrderID

HAVING SUM(LineTotal) > 100000.00

ORDER BY SalesOrderID ;

See Also
GROUP BY (Transact-SQL)

WHERE (Transact-SQL)

http://msdn.microsoft.com/en-us/library/4efa3868-1fc4-4626-8fb1-e863cc03e422

174

INTO Clause
SELECT…INTO creates a new table in the default filegroup and inserts the resulting rows from
the query into it. To view the complete SELECT syntax, see SELECT (Transact-SQL).

Transact-SQL Syntax Conventions

Syntax

[INTO new_table]

Arguments
new_table

Specifies the name of a new table to be created, based on the columns in the select list
and the rows chosen from the data source.

The format of new_table is determined by evaluating the expressions in the select list.
The columns in new_table are created in the order specified by the select list. Each
column in new_table has the same name, data type, nullability, and value as the
corresponding expression in the select list. The IDENTITY property of a column is
transferred except under the conditions defined in "Working with Identity Columns" in
the Remarks section.

To create the table in another database on the same instance of SQL Server, specify
new_table as a fully qualified name in the form database.schema.table_name.

You cannot create new_table on a remote server; however, you can populate
new_table from a remote data source. To create new_table from a remote source table,
specify the source table using a four-part name in the form
linked_server.catalog.schema.object in the FROM clause of the SELECT statement.
Alternatively, you can use the OPENQUERY function or the OPENDATASOURCE
function in the FROM clause to specify the remote data source.

Data Types
The FILESTREAM attribute does not transfer to the new table. FILESTREAM BLOBs are copied
and stored in the new table as varbinary(max) BLOBs. Without the FILESTREAM attribute, the
varbinary(max) data type has a limitation of 2 GB. If a FILESTREAM BLOB exceeds this value,
error 7119 is raised and the statement is stopped.

When an existing identity column is selected into a new table, the new column inherits the
IDENTITY property, unless one of the following conditions is true:

• The SELECT statement contains a join, GROUP BY clause, or aggregate function.

• Multiple SELECT statements are joined by using UNION.

http://msdn.microsoft.com/en-us/library/b805e976-f025-4be1-bcb0-3a57b0c57717
http://msdn.microsoft.com/en-us/library/5510b846-9cde-4687-8798-be9a273aad31

175

• The identity column is listed more than one time in the select list.

• The identity column is part of an expression.

• The identity column is from a remote data source.

If any one of these conditions is true, the column is created NOT NULL instead of inheriting the
IDENTITY property. If an identity column is required in the new table but such a column is not
available, or you want a seed or increment value that is different than the source identity column,
define the column in the select list using the IDENTITY function. See "Creating an identity column
using the IDENTITY function" in the Examples section below.

Limitations and Restrictions
You cannot specify a table variable or table-valued parameter as the new table.

You cannot use SELECT…INTO to create a partitioned table, even when the source table is
partitioned. SELECT...INTO does not use the partition scheme of the source table; instead, the
new table is created in the default filegroup. To insert rows into a partitioned table, you must first
create the partitioned table and then use the INSERT INTO...SELECT FROM statement.

Indexes, constraints, and triggers defined in the source table are not transferred to the new table,
nor can they be specified in the SELECT...INTO statement. If these objects are required, you can
create them after executing the SELECT...INTO statement.

Specifying an ORDER BY clause does not guarantee the rows are inserted in the specified order.

When a sparse column is included in the select list, the sparse column property does not transfer
to the column in the new table. If this property is required in the new table, alter the column
definition after executing the SELECT...INTO statement to include this property.

When a computed column is included in the select list, the corresponding column in the new table
is not a computed column. The values in the new column are the values that were computed at
the time SELECT...INTO was executed.

Logging Behavior
The amount of logging for SELECT...INTO depends on the recovery model in effect for the
database. Under the simple recovery model or bulk-logged recovery model, bulk operations are
minimally logged. With minimal logging, using the SELECT… INTO statement can be more
efficient than creating a table and then populating the table with an INSERT statement. For more
information, see The Transaction Log (SQL Server).

Permissions
Requires CREATE TABLE permission in the destination database.

http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d

176

Examples

A. Creating a table by specifying columns from multiple sources
The following example creates the table dbo.EmployeeAddresses by selecting seven columns from
various employee-related and address-related tables.

USE AdventureWorks2012;

GO

SELECT c.FirstName, c.LastName, e.JobTitle, a.AddressLine1, a.City,

 sp.Name AS [State/Province], a.PostalCode

INTO dbo.EmployeeAddresses

FROM Person.Person AS c

 JOIN HumanResources.Employee AS e

 ON e.BusinessEntityID = c.BusinessEntityID

 JOIN Person.BusinessEntityAddress AS bea

 ON e.BusinessEntityID = bea.BusinessEntityID

 JOIN Person.Address AS a

 ON bea.AddressID = a.AddressID

 JOIN Person.StateProvince as sp

 ON sp.StateProvinceID = a.StateProvinceID;

GO

B. Inserting rows using minimal logging
The following example creates the table dbo.NewProducts and inserts rows from the
Production.Product table. The example assumes that the recovery model of the
AdventureWorks2012 database is set to FULL. To ensure minimal logging is used, the recovery
model of the AdventureWorks2012 database is set to BULK_LOGGED before rows are inserted
and reset to FULL after the SELECT...INTO statement. This process ensures that the
SELECT...INTO statement uses minimal space in the transaction log and performs efficiently.

USE AdventureWorks2012;

GO

IF OBJECT_ID('dbo.NewProducts', 'U') IS NOT NULL

 DROP TABLE dbo.NewProducts;

GO

ALTER DATABASE AdventureWorks2012 SET RECOVERY BULK_LOGGED;

GO

SELECT * INTO dbo.NewProducts

FROM Production.Product

WHERE ListPrice > $25

AND ListPrice < $100;

GO

ALTER DATABASE AdventureWorks2012 SET RECOVERY FULL;

177

GO

C. Creating an identity column using the IDENTITY function
The following example uses the IDENTITY function to create an identity column in the new table
Person.USAddress. This is required because the SELECT statement that defines the table
contains a join, which causes the IDENTITY property to not transfer to the new table. Notice that
the seed and increment values specified in the IDENTITY function are different from those of the
AddressID column in the source table Person.Address.

USE AdventureWorks2012;

GO

IF OBJECT_ID ('Person.USAddress') IS NOT NULL

DROP TABLE Person.USAddress;

GO

-- Determine the IDENTITY status of the source column AddressID.

SELECT OBJECT_NAME(object_id) AS TableName, name AS column_name, is_identity, seed_value,

increment_value

FROM sys.identity_columns

WHERE name = 'AddressID';

-- Create a new table with columns from the existing table Person.Address. A new IDENTITY

-- column is created by using the IDENTITY function.

SELECT IDENTITY (int, 100, 5) AS AddressID,

 a.AddressLine1, a.City, b.Name AS State, a.PostalCode

INTO Person.USAddress

FROM Person.Address AS a

INNER JOIN Person.StateProvince AS b ON a.StateProvinceID = b.StateProvinceID

WHERE b.CountryRegionCode = N'US';

-- Verify the IDENTITY status of the AddressID columns in both tables.

SELECT OBJECT_NAME(object_id) AS TableName, name AS column_name, is_identity, seed_value,

increment_value

FROM sys.identity_columns

WHERE name = 'AddressID';

D. Creating a table by specifying columns from a remote data source
The following example demonstrates three methods of creating a new table on the local server
from a remote data source. The example begins by creating a link to the remote data source. The
linked server name, MyLinkServer, is then specified in the FROM clause of the first
SELECT...INTO statement and in the OPENQUERY function of the second SELECT...INTO
statement. The third SELECT...INTO statement uses the OPENDATASOURCE function, which
specifies the remote data source directly instead of using the linked server name.

USE master;

178

GO

-- Create a link to the remote data source.

-- Specify a valid server name for @datasrc as 'server_name' or

'server_name\instance_name'.

EXEC sp_addlinkedserver @server = N'MyLinkServer',

 @srvproduct = N' ',

 @provider = N'SQLNCLI',

 @datasrc = N'server_name',

 @catalog = N'AdventureWorks2012';

GO

USE AdventureWorks2012;

GO

-- Specify the remote data source in the FROM clause using a four-part name

-- in the form linked_server.catalog.schema.object.

SELECT DepartmentID, Name, GroupName, ModifiedDate

INTO dbo.Departments

FROM MyLinkServer.AdventureWorks2012.HumanResources.Department

GO

-- Use the OPENQUERY function to access the remote data source.

SELECT DepartmentID, Name, GroupName, ModifiedDate

INTO dbo.DepartmentsUsingOpenQuery

FROM OPENQUERY(MyLinkServer, 'SELECT *

 FROM AdventureWorks2012.HumanResources.Department');

GO

-- Use the OPENDATASOURCE function to specify the remote data source.

-- Specify a valid server name for Data Source using the format server_name or

server_name\instance_name.

SELECT DepartmentID, Name, GroupName, ModifiedDate

INTO dbo.DepartmentsUsingOpenDataSource

FROM OPENDATASOURCE('SQLNCLI',

 'Data Source=server_name;Integrated Security=SSPI')

 .AdventureWorks2012.HumanResources.Department;

GO

See Also
SELECT

SELECT Examples (Transact-SQL)

INSERT (Transact-SQL)

IDENTITY (Function) (Transact-SQL)

http://msdn.microsoft.com/en-us/library/ebec77eb-fc02-4feb-b6c5-f0098d43ccb6

179

ORDER BY Clause
Sorts data returned by a query in SQL Server 2012. Use this clause to:

• Order the result set of a query by the specified column list and, optionally, limit the rows
returned to a specified range. The order in which rows are returned in a result set are not
guaranteed unless an ORDER BY clause is specified.

• Determine the order in which ranking function values are applied to the result set.

Transact-SQL Syntax Conventions

Syntax

ORDER BY order_by_expression

 [COLLATE collation_name]

 [ASC

Arguments

 | DESC]

 [,...n]

[<offset_fetch>]

<offset_fetch> ::=

{

 OFFSET { integer_constant | offset_row_count_expression } { ROW | ROWS }

 [

 FETCH { FIRST | NEXT } {integer_constant | fetch_row_count_expression } { ROW | ROWS }
ONLY

]

}

order_by_expression

Specifies a column or expression on which to sort the query result set. A sort column
can be specified as a name or column alias, or a nonnegative integer representing the
position of the column in the select list.

Multiple sort columns can be specified. Column names must be unique. The sequence
of the sort columns in the ORDER BY clause defines the organization of the sorted
result set. That is, the result set is sorted by the first column and then that ordered list is
sorted by the second column, and so on.

The column names referenced in the ORDER BY clause must correspond to either a
column in the select list or to a column defined in a table specified in the FROM clause

http://msdn.microsoft.com/en-us/library/e7f917ba-bf4a-4fe0-b342-a91bcf88a71b

180

without any ambiguities.

COLLATE collation_name

Specifies that the ORDER BY operation should be performed according to the collation
specified in collation_name, and not according to the collation of the column as defined
in the table or view. collation_name can be either a Windows collation name or a SQL
collation name. For more information, see Collation and International Terminology.
COLLATE is applicable only for columns of typechar, varchar, nchar, and nvarchar.

ASC | DESC

Specifies that the values in the specified column should be sorted in ascending or
descending order. ASC sorts from the lowest value to highest value. DESC sorts from
highest value to lowest value. ASC is the default sort order. Null values are treated as
the lowest possible values.

OFFSET { integer_constant | offset_row_count_expression } { ROW | ROWS }

Specifies the number of rows to skip before it starts to return rows from the query
expression. The value can be an integer constant or expression that is greater than or
equal to zero.

offset_row_count_expression can be a variable, parameter, or constant scalar
subquery. When a subquery is used, it cannot reference any columns defined in the
outer query scope. That is, it cannot be correlated with the outer query.

ROW and ROWS are synonyms and are provided for ANSI compatibility.

In query execution plans, the offset row count value is displayed in the Offset attribute
of the TOP query operator.

FETCH { FIRST | NEXT } { integer_constant | fetch_row_count_expression } { ROW |
ROWS } ONLY

Specifies the number of rows to return after the OFFSET clause has been processed.
The value can be an integer constant or expression that is greater than or equal to one.

fetch_row_count_expression can be a variable, parameter, or constant scalar subquery.
When a subquery is used, it cannot reference any columns defined in the outer query
scope. That is, it cannot be correlated with the outer query.

FIRST and NEXT are synonyms and are provided for ANSI compatibility.

ROW and ROWS are synonyms and are provided for ANSI compatibility.

In query execution plans, the offset row count value is displayed in the Rows or Top
attribute of the TOP query operator.

http://msdn.microsoft.com/en-us/library/92d34f48-fa2b-47c5-89d3-a4c39b0f39eb

181

Best Practices
Avoid specifying integers in the ORDER BY clause as positional representations of the columns
in the select list. For example, although a statement such as SELECT ProductID, Name FROM
Production.Production ORDER BY 2 is valid, the statement is not as easily understood by others
compared with specifying the actual column name. In addition, changes to the select list, such as
changing the column order or adding new columns, will require modifying the ORDER BY clause
in order to avoid unexpected results.

In a SELECT TOP (N) statement, always use an ORDER BY clause. This is the only way to
predictably indicate which rows are affected by TOP. For more information, see TOP (Transact-
SQL).

Interoperability
When used with a SELECT…INTO statement to insert rows from another source, the ORDER BY
clause does not guarantee the rows are inserted in the specified order.

Using OFFSET and FETCH in a view does not change the updateability property of the view.

Limitations and Restrictions
There is no limit to the number of columns in the ORDER BY clause; however, the total size of
the columns specified in an ORDER BY clause cannot exceed 8,060 bytes.

Columns of type ntext, text, image, geography, geometry, and xml cannot be used in an
ORDER BY clause.

An integer or constant cannot be specified when order_by_expression appears in a ranking
function. For more information, see OVER Clause (Transact-SQL).

If a table name is aliased in the FROM clause, only the alias name can be used to qualify its
columns in the ORDER BY clause.

Column names and aliases specified in the ORDER BY clause must be defined in the select list if
the SELECT statement contains one of the following clauses or operators:

• UNION operator

• EXCEPT operator

• INTERSECT operator

• SELECT DISTINCT

Additionally, when the statement includes a UNION, EXCEPT, or INTERSECT operator, the
column names or column aliases must be specified in the select list of the first (left-side) query.

In a query that uses UNION, EXCEPT, or INTERSECT operators, ORDER BY is allowed only at
the end of the statement. This restriction applies only to when you specify UNION, EXCEPT and
INTERSECT in a top-level query and not in a subquery. See the Examples section that follows.

The ORDER BY clause is not valid in views, inline functions, derived tables, and subqueries,
unless either the TOP or OFFSET and FETCH clauses are also specified. When ORDER BY is
used in these objects, the clause is used only to determine the rows returned by the TOP clause

182

or OFFSET and FETCH clauses. The ORDER BY clause does not guarantee ordered results
when these constructs are queried, unless ORDER BY is also specified in the query itself.

OFFSET and FETCH are not supported in indexed views or in a view that is defined by using the
CHECK OPTION clause.

OFFSET and FETCH can be used in any query that allows TOP and ORDER BY with the
following limitations:

• The OVER clause does not support OFFSET and FETCH.

• OFFSET and FETCH cannot be specified directly in INSERT, UPDATE, MERGE, and
DELETE statements, but can be specified in a subquery defined in these statements. For
example, in the INSERT INTO SELECT statement, OFFSET and FETCH can be specified in
the SELECT statement.

• In a query that uses UNION, EXCEPT or INTERSECT operators, OFFSET and FETCH can
only be specified in the final query that specifies the order of the query results.

• TOP cannot be combined with OFFSET and FETCH in the same query expression (in the
same query scope).

Using OFFSET and FETCH to limit the rows returned
We recommend that you use the OFFSET and FETCH clauses instead of the TOP clause to
implement a query paging solution and limit the number of rows sent to a client application.

Using OFFSET and FETCH as a paging solution requires running the query one time for each
"page" of data returned to the client application. For example, to return the results of a query in
10-row increments, you must execute the query one time to return rows 1 to 10 and then run the
query again to return rows 11 to 20 and so on. Each query is independent and not related to each
other in any way. This means that, unlike using a cursor in which the query is executed once and
state is maintained on the server, the client application is responsible for tracking state. To
achieve stable results between query requests using OFFSET and FETCH, the following
conditions must be met:

1. The underlying data that is used by the query must not change. That is, either the rows
touched by the query are not updated or all requests for pages from the query are executed
in a single transaction using either snapshot or serializable transaction isolation. For more
information about these transaction isolation levels, see SET TRANSACTION ISOLATION
LEVEL (Transact-SQL).

2. The ORDER BY clause contains a column or combination of columns that are guaranteed to
be unique.

See the example "Running multiple queries in a single transaction" in the Examples section later
in this topic.

If consistent execution plans are important in your paging solution, consider using the OPTIMIZE
FOR query hint for the OFFSET and FETCH parameters. See "Specifying expressions for
OFFSET and FETCH values" in the Examples section later in this topic. For more information
about OPTIMZE FOR, see Query Hints (Transact-SQL).

http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd
http://msdn.microsoft.com/en-us/library/016fb05e-a702-484b-bd2a-a6eabd0d76fd

183

Examples

Category Featured syntax elements

Basic syntax ORDER BY

Specifying ascending and descending order DESC • ASC

Specifying a collation COLLATE

Specifying a conditional order CASE expression

Using ORDER BY in a ranking function Ranking functions

Limiting the number of rows returned OFFSET • FETCH

Using ORDER BY with UNION, EXCEPT, and
INTERSECT

UNION

Basic syntax
Examples in this section demonstrate the basic functionality of the ORDER BY clause using the
minimum required syntax.

A. Specifying a single column defined in the select list
The following example orders the result set by the numeric ProductID column. Because a specific
sort order is not specified, the default (ascending order) is used.

USE AdventureWorks2012;

GO

SELECT ProductID, Name FROM Production.Product

WHERE Name LIKE 'Lock Washer%'

ORDER BY ProductID;

B. Specifying a column that is not defined in the select list
The following example orders the result set by a column that is not included in the select list, but
is defined in the table specified in the FROM clause.

USE AdventureWorks2012;

GO

SELECT ProductID, Name, Color

FROM Production.Product

ORDER BY ListPrice;

C. Specifying an alias as the sort column
The following example specifies the column alias SchemaName as the sort order column.

USE AdventureWorks2012;

184

GO

SELECT name, SCHEMA_NAME(schema_id) AS SchemaName

FROM sys.objects

WHERE type = 'U'

ORDER BY SchemaName;

D. Specifying an expression as the sort column
The following example uses an expression as the sort column. The expression is defined by
using the DATEPART function to sort the result set by the year in which employees were hired.

USE AdventureWorks2012;

Go

SELECT BusinessEntityID, JobTitle, HireDate

FROM HumanResources.Employee

ORDER BY DATEPART(year, HireDate);

Specifying ascending and descending sort order

A. Specifying a descending order
The following example orders the result set by the numeric column ProductID in descending
order.

USE AdventureWorks2012;

GO

SELECT ProductID, Name FROM Production.Product

WHERE Name LIKE 'Lock Washer%'

ORDER BY ProductID DESC;

B. Specifying a ascending order
The following example orders the result set by the Name column in ascending order. Note that the
characters are sorted alphabetically, not numerically. That is, 10 sorts before 2.

USE AdventureWorks2012;

GO

SELECT ProductID, Name FROM Production.Product

WHERE Name LIKE 'Lock Washer%'

ORDER BY Name ASC ;

C. Specifying both ascending and descending order
The following example orders the result set by two columns. The query result set is first sorted in
ascending order by the FirstName column and then sorted in descending order by the LastName
column.

USE AdventureWorks2012;

GO

SELECT LastName, FirstName FROM Person.Person

WHERE LastName LIKE 'R%'

185

ORDER BY FirstName ASC, LastName DESC ;

Specifying a collation
The following example shows how specifying a collation in the ORDER BY clause can change the
order in which the query results are returned. A table is created that contains a column defined by
using a case-insensitive, accent-insensitive collation. Values are inserted with a variety of case
and accent differences. Because a collation is not specified in the ORDER BY clause, the first
query uses the collation of the column when sorting the values. In the second query, a case-
sensitive, accent-sensitive collation is specified in the ORDER BY clause, which changes the
order in which the rows are returned.

USE tempdb;

GO

CREATE TABLE #t1 (name nvarchar(15) COLLATE Latin1_General_CI_AI)

GO

INSERT INTO #t1 VALUES(N'Sánchez'),(N'Sanchez'),(N'sánchez'),(N'sanchez');

-- This query uses the collation specified for the column 'name' for sorting.

SELECT name

FROM #t1

ORDER BY name;

-- This query uses the collation specified in the ORDER BY clause for sorting.

SELECT name

FROM #t1

ORDER BY name COLLATE Latin1_General_CS_AS;

Specifying a conditional order
The following examples uses the CASE expression in an ORDER BY clause to conditionally
determine the sort order of the rows based on a given column value. In the first example, the
value in the SalariedFlag column of the HumanResources.Employee table is evaluated. Employees
that have the SalariedFlag set to 1 are returned in order by the BusinessEntityID in descending
order. Employees that have the SalariedFlag set to 0 are returned in order by the
BusinessEntityID in ascending order. In the second example, the result set is ordered by the
column TerritoryName when the column CountryRegionName is equal to 'United States' and by
CountryRegionName for all other rows.

SELECT BusinessEntityID, SalariedFlag

FROM HumanResources.Employee

ORDER BY CASE SalariedFlag WHEN 1 THEN BusinessEntityID END DESC

 ,CASE WHEN SalariedFlag = 0 THEN BusinessEntityID END;

GO

SELECT BusinessEntityID, LastName, TerritoryName, CountryRegionName

FROM Sales.vSalesPerson

186

WHERE TerritoryName IS NOT NULL

ORDER BY CASE CountryRegionName WHEN 'United States' THEN TerritoryName

 ELSE CountryRegionName END;

Using ORDER BY in a ranking function
The following example uses the ORDER BY clause in the ranking functions ROW_NUMBER,
RANK, DENSE_RANK, and NTILE.

USE AdventureWorks2012;

GO

SELECT p.FirstName, p.LastName

 ,ROW_NUMBER() OVER (ORDER BY a.PostalCode) AS "Row Number"

 ,RANK() OVER (ORDER BY a.PostalCode) AS "Rank"

 ,DENSE_RANK() OVER (ORDER BY a.PostalCode) AS "Dense Rank"

 ,NTILE(4) OVER (ORDER BY a.PostalCode) AS "Quartile"

 ,s.SalesYTD, a.PostalCode

FROM Sales.SalesPerson AS s

 INNER JOIN Person.Person AS p

 ON s.BusinessEntityID = p.BusinessEntityID

 INNER JOIN Person.Address AS a

 ON a.AddressID = p.BusinessEntityID

WHERE TerritoryID IS NOT NULL AND SalesYTD <> 0;

Limiting the number of rows returned
The following examples use OFFSET and FETCH to limit the number of rows returned by a
query.

A. Specifying integer constants for OFFSET and FETCH values
The following example specifies an integer constant as the value for the OFFSET and FETCH
clauses. The first query returns all rows sorted by the column DepartmentID. Compare the results
returned by this query with the results of the two queries that follow it. The next query uses the
clause OFFSET 5 ROWS to skip the first 5 rows and return all remaining rows. The final query uses
the clause OFFSET 0 ROWS to start with the first row and then uses FETCH NEXT 10 ROWS ONLY to limit
the rows returned to 10 rows from the sorted result set.

USE AdventureWorks2012;

GO

SELECT p.FirstName, p.LastName

 ,ROW_NUMBER() OVER (ORDER BY a.PostalCode) AS "Row Number"

 ,RANK() OVER (ORDER BY a.PostalCode) AS "Rank"

 ,DENSE_RANK() OVER (ORDER BY a.PostalCode) AS "Dense Rank"

 ,NTILE(4) OVER (ORDER BY a.PostalCode) AS "Quartile"

 ,s.SalesYTD, a.PostalCode

FROM Sales.SalesPerson AS s

187

 INNER JOIN Person.Person AS p

 ON s.BusinessEntityID = p.BusinessEntityID

 INNER JOIN Person.Address AS a

 ON a.AddressID = p.BusinessEntityID

WHERE TerritoryID IS NOT NULL AND SalesYTD <> 0;

B. Specifying variables for OFFSET and FETCH values
The following example declares the variables @StartingRowNumber and @FetchRows and specifies
these variables in the OFFSET and FETCH clauses.

USE AdventureWorks2012;

GO

-- Specifying variables for OFFSET and FETCH values

DECLARE @StartingRowNumber tinyint = 1

 , @FetchRows tinyint = 8;

SELECT DepartmentID, Name, GroupName

FROM HumanResources.Department

ORDER BY DepartmentID ASC

 OFFSET @StartingRowNumber ROWS

 FETCH NEXT @FetchRows ROWS ONLY;

C. Specifying expressions for OFFSET and FETCH values
The following example uses the expression @StartingRowNumber - 1 to specify the OFFSET value
and the expression @EndingRowNumber - @StartingRowNumber + 1 to specify the FETCH value. In
addition, the query hint, OPTIMIZE FOR, is specified. This hint can be used to provide a
particular value for a local variable when the query is compiled and optimized. The value is used
only during query optimization, and not during query execution. For more information, see Query
Hints (Transact-SQL).

USE AdventureWorks2012;

GO

-- Specifying expressions for OFFSET and FETCH values

DECLARE @StartingRowNumber tinyint = 1

 , @EndingRowNumber tinyint = 8;

SELECT DepartmentID, Name, GroupName

FROM HumanResources.Department

ORDER BY DepartmentID ASC

 OFFSET @StartingRowNumber - 1 ROWS

 FETCH NEXT @EndingRowNumber - @StartingRowNumber + 1 ROWS ONLY

OPTION (OPTIMIZE FOR (@StartingRowNumber = 1, @EndingRowNumber = 20));

D. Specifying a constant scalar subquery for OFFSET and FETCH values
The following example uses a constant scalar subquery to define the value for the FETCH clause.
The subquery returns a single value from the column PageSize in the table dbo.AppSettings.

188

-- Specifying a constant scalar subquery

USE AdventureWorks2012;

GO

CREATE TABLE dbo.AppSettings (AppSettingID int NOT NULL, PageSize int NOT NULL);

GO

INSERT INTO dbo.AppSettings VALUES(1, 10);

GO

DECLARE @StartingRowNumber tinyint = 1;

SELECT DepartmentID, Name, GroupName

FROM HumanResources.Department

ORDER BY DepartmentID ASC

 OFFSET @StartingRowNumber ROWS

 FETCH NEXT (SELECT PageSize FROM dbo.AppSettings WHERE AppSettingID = 1) ROWS ONLY;

E. Running multiple queries in a single transaction
The following example shows one method of implementing a paging solution that ensures stable
results are returned in all requests from the query. The query is executed in a single transaction
using the snapshot isolation level, and the column specified in the ORDER BY clause ensures
column uniqueness.

USE AdventureWorks2012;

GO

-- Ensure the database can support the snapshot isolation level set for the query.

IF (SELECT snapshot_isolation_state FROM sys.databases WHERE name =

N'AdventureWorks2012') = 0

 ALTER DATABASE AdventureWorks2012 SET ALLOW_SNAPSHOT_ISOLATION ON;

GO

-- Set the transaction isolation level to SNAPSHOT for this query.

SET TRANSACTION ISOLATION LEVEL SNAPSHOT;

GO

-- Beging the transaction

BEGIN TRANSACTION;

GO

-- Declare and set the variables for the OFFSET and FETCH values.

DECLARE @StartingRowNumber int = 1

 , @RowCountPerPage int = 3;

-- Create the condition to stop the transaction after all rows have been returned.

WHILE (SELECT COUNT(*) FROM HumanResources.Department) >= @StartingRowNumber

BEGIN

189

-- Run the query until the stop condition is met.

SELECT DepartmentID, Name, GroupName

FROM HumanResources.Department

ORDER BY DepartmentID ASC

 OFFSET @StartingRowNumber - 1 ROWS

 FETCH NEXT @RowCountPerPage ROWS ONLY;

-- Increment @StartingRowNumber value.

SET @StartingRowNumber = @StartingRowNumber + @RowCountPerPage;

CONTINUE

END;

GO

COMMIT TRANSACTION;

GO

Using ORDER BY with UNION, EXCEPT, and INTERSECT
When a query uses the UNION, EXCEPT, or INTERSECT operators, the ORDER BY clause
must be specified at the end of the statement and the results of the combined queries are sorted.
The following example returns all products that are red or yellow and sorts this combined list by
the column ListPrice.

USE AdventureWorks2012;

GO

SELECT Name, Color, ListPrice

FROM Production.Product

WHERE Color = 'Red'

-- ORDER BY cannot be specified here.

UNION ALL

SELECT Name, Color, ListPrice

FROM Production.Product

WHERE Color = 'Yellow'

ORDER BY ListPrice ASC;

See Also
Expressions

SELECT

FROM

Ranking Functions (Transact-SQL)

TOP (Transact-SQL)

Query Hints (Transact-SQL)

EXCEPT and INTERSECT (Transact-SQL)

http://msdn.microsoft.com/en-us/library/ee53c5c8-e36c-40f9-8cd1-d933791b98fa
http://msdn.microsoft.com/en-us/library/e7f917ba-bf4a-4fe0-b342-a91bcf88a71b
http://msdn.microsoft.com/en-us/library/b1019300-171a-4a1a-854f-e1e751de3565

190

UNION (Transact-SQL)

CASE (Transact-SQL)

OVER Clause
Determines the partitioning and ordering of a rowset before the associated window function is
applied. That is, the OVER clause defines a window or user-specified set of rows within a query
result set. A window function then computes a value for each row in the window. You can use the
OVER clause with functions to compute aggregated values such as moving averages, cumulative
aggregates, running totals, or a top N per group results.

Applies to:
• Ranking functions

• Aggregate functions

• Analytic functions

• NEXT VALUE FOR function

Transact-SQL Syntax Conventions

Syntax
OVER (
 [<PARTITION BY clause>]

 [<ORDER BY clause>]

 [<ROW or RANGE clause>]

)

<PARTITION BY clause> ::=

PARTITION BY value_expression, ... [n]

<ORDER BY clause> ::=

ORDER BY order_by_expression

 [COLLATE collation_name]

 [ASC | DESC]

 [,...n]

<ROW or RANGE clause> ::=

{ ROWS | RANGE } <window frame extent>

<window frame extent> ::=

http://msdn.microsoft.com/en-us/library/607c296f-8a6a-49bc-975a-b8d0c0914df7
http://msdn.microsoft.com/en-us/library/658039ec-8dc2-4251-bc82-30ea23708cee
http://msdn.microsoft.com/en-us/library/e7f917ba-bf4a-4fe0-b342-a91bcf88a71b
http://msdn.microsoft.com/en-us/library/0c06ae42-eb0a-4d77-9d74-aa1e7f344009
http://msdn.microsoft.com/en-us/library/60fbff84-673b-48ea-9254-6ecdad20e7fe
http://msdn.microsoft.com/en-us/library/92632ed5-9f32-48eb-be28-a5e477ef9076

191

{ <window frame preceding>

 | <window frame between>

}

<window frame between> ::=

 BETWEEN <window frame bound> AND <window frame bound>

<window frame bound> ::=

{ <window frame preceding>

 | <window frame following>

}

<window frame preceding> ::=

{

 UNBOUNDED PRECEDING

 | <unsigned_value_specification> PRECEDING

 | CURRENT ROW

}

<window frame following> ::=

{

 UNBOUNDED FOLLOWING

 | <unsigned_value_specification> FOLLOWING

 | CURRENT ROW

}

<unsigned value specification> ::=

{ <unsigned integer literal> }

Arguments
PARTITION BY

Divides the query result set into partitions. The window function is applied to each
partition separately and computation restarts for each partition.

192

value_expression

Specifies the column by which the rowset is partitioned. value_expression can only refer
to columns made available by the FROM clause. value_expression cannot refer to
expressions or aliases in the select list. value_expression can be a column expression,
scalar subquery, scalar function, or user-defined variable.

<ORDER BY clause>

Defines the logical order of the rows within each partition of the result set. That is, it
specifies the logical order in which the window functioncalculation is performed.

order_by_expression

Specifies a column or expression on which to sort. order_by_expression can only refer
to columns made available by the FROM clause. An integer cannot be specified to
represent a column name or alias.

COLLATE collation_name

Specifies that the ORDER BY operation should be performed according to the collation
specified in collation_name. collation_name can be either a Windows collation name or
a SQL collation name. For more information, see Collation and International
Terminology. COLLATE is applicable only for columns of type char, varchar, nchar,
and nvarchar.

ASC | DESC

Specifies that the values in the specified column should be sorted in ascending or
descending order. ASC is the default sort order. Null values are treated as the lowest
possible values.

ROWS | RANGE

Further limits the rows within the partition by specifying start and end points within the
partition. This is done by specifying a range of rows with respect to the current row
either by logical association or physical association. Physical association is achieved by
using the ROWS clause.

The ROWS clause limits the rows within a partition by specifying a fixed number of rows
preceding or following the current row. Alternatively, the RANGE clause logically limits
the rows within a partition by specifying a range of values with respect to the value in
the current row. Preceding and following rows are defined based on the ordering in the
ORDER BY clause. The window frame “RANGE … CURRENT ROW …” includes all
rows that have the same values in the ORDER BY expression as the current row. For
example, ROWS BETWEEN 2 PRECEDING AND CURRENT ROW means that the

http://msdn.microsoft.com/en-us/library/92d34f48-fa2b-47c5-89d3-a4c39b0f39eb
http://msdn.microsoft.com/en-us/library/92d34f48-fa2b-47c5-89d3-a4c39b0f39eb

193

window of rows that the function operates on is three rows in size, starting with 2 rows
preceding until and including the current row.

Note
ROWS or RANGE requires that the ORDER BY clause be specified. If ORDER BY contains
multiple order expressions, CURRENT ROW FOR RANGE considers all columns in the ORDER
BY list when determining the current row.

UNBOUNDED PRECEDING

Specifies that the window starts at the first row of the partition. UNBOUNDED
PRECEDING can only be specified as window starting point.

<unsigned value specification> PRECEDING

Specified with <unsigned value specification>to indicate the number of rows or values
to precede the current row. This specification is not allowed for RANGE.

CURRENT ROW

Specifies that the window starts or ends at the current row when used with ROWS or
the current value when used with RANGE. CURRENT ROW can be specified as both a
starting and ending point.

BETWEEN <window frame bound > AND <window frame bound >

Used with either ROWS or RANGE to specify the lower (starting) and upper (ending)
boundary points of the window. <window frame bound> defines the boundary starting
point and <window frame bound> defines the boundary end point. The upper bound
cannot be smaller than the lower bound.

UNBOUNDED FOLLOWING

Specifies that the window ends at the last row of the partition. UNBOUNDED
FOLLOWING can only be specified as a window end point. For example RANGE
BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING defines a window that
starts with the current row and ends with the last row of the partition.

<unsigned value specification> FOLLOWING

Specified with <unsigned value specification> to indicate the number of rows or values
to follow the current row. When <unsigned value specification> FOLLOWING is
specified as the window starting point, the ending point must be <unsigned value
specification>FOLLOWING. For example, ROWS BETWEEN 2 FOLLOWING AND 10

194

FOLLOWING defines a window that starts with the second row that follows the current
row and ends with the tenth row that follows the current row. This specification is not
allowed for RANGE.

unsigned integer literal

Is a positive integer literal (including 0) that specifies the number of rows or values to
precede or follow the current row or value. This specification is valid only for ROWS.

General Remarks
More than one window function can be used in a single query with a single FROM clause. The
OVER clause for each function can differ in partitioning and ordering.

If PARTITION BY is not specified, the function treats all rows of the query result set as a single
group.

If ORDER BY is not specified entire partition is used for a window frame. This applies only to
functions that do not require ORDER BY clause. If ROWS/RANGE is not specified but ORDER
BY is specified, RANGE UNBOUNDED PRECEDING AND CURRENT ROW is used as default
for window frame. This applies only to functions that have can accept optional ROWS/RANGE
specification. For example, ranking functions cannot accept ROWS/RANGE, therefore this
window frame is not applied even though ORDER BY is present and ROWS/RANGE is not.

If ROWS/RANGE is specified and <window frame preceding> is used for <window frame extent>
(short syntax) then this specification is used for the window frame boundary starting point and
CURRENT ROW is used for the boundary ending point. For example “ROWS 5 PRECEDING” is
equal to “ROWS BETWEEN 5 PRECEDING AND CURRENT ROW”.

Limitations and Restrictions
The OVER clause cannot be used with the CHECKSUM aggregate function.

RANGE cannot be used with <unsigned value specification> PRECEDING or <unsigned value
specification> FOLLOWING.

Depending on the ranking, aggregate, or analytic function used with the OVER clause, <ORDER
BY clause> and/or the <ROWS and RANGE clause> may not be supported.

Examples

A. Using the OVER clause with the ROW_NUMBER function
The following example shows using the OVER clause with ROW_NUMBER function to display a
row number for each row within a partition. The ORDER BY clause specified in the OVER clause

195

orders the rows in each partition by the column SalesYTD. The ORDER BY clause in the SELECT
statement determines the order in which the entire query result set is returned.

USE AdventureWorks2012;

GO

SELECT ROW_NUMBER() OVER(PARTITION BY PostalCode ORDER BY SalesYTD DESC) AS "Row Number",

 p.LastName, s.SalesYTD, a.PostalCode

FROM Sales.SalesPerson AS s

 INNER JOIN Person.Person AS p

 ON s.BusinessEntityID = p.BusinessEntityID

 INNER JOIN Person.Address AS a

 ON a.AddressID = p.BusinessEntityID

WHERE TerritoryID IS NOT NULL

 AND SalesYTD <> 0

ORDER BY PostalCode;

GO

Here is the result set.

Row Number LastName SalesYTD PostalCode

--------------- ----------------------- --------------------- ----------

1 Mitchell 4251368.5497 98027

2 Blythe 3763178.1787 98027

3 Carson 3189418.3662 98027

4 Reiter 2315185.611 98027

5 Vargas 1453719.4653 98027

6 Ansman-Wolfe 1352577.1325 98027

1 Pak 4116871.2277 98055

2 Varkey Chudukatil 3121616.3202 98055

3 Saraiva 2604540.7172 98055

4 Ito 2458535.6169 98055

5 Valdez 1827066.7118 98055

6 Mensa-Annan 1576562.1966 98055

7 Campbell 1573012.9383 98055

8 Tsoflias 1421810.9242 98055

B. Using the OVER clause with aggregate functions
The following example uses the OVER clause with aggregate functions over all rows returned by
the query. In this example, using the OVER clause is more efficient than using subqueries to derive
the aggregate values.

USE AdventureWorks2012;

GO

SELECT SalesOrderID, ProductID, OrderQty

 ,SUM(OrderQty) OVER(PARTITION BY SalesOrderID) AS Total

 ,AVG(OrderQty) OVER(PARTITION BY SalesOrderID) AS "Avg"

196

 ,COUNT(OrderQty) OVER(PARTITION BY SalesOrderID) AS "Count"

 ,MIN(OrderQty) OVER(PARTITION BY SalesOrderID) AS "Min"

 ,MAX(OrderQty) OVER(PARTITION BY SalesOrderID) AS "Max"

FROM Sales.SalesOrderDetail

WHERE SalesOrderID IN(43659,43664);

GO

Here is the result set.

SalesOrderID ProductID OrderQty Total Avg Count Min Max

------------ ----------- -------- ----------- ----------- ----------- ------ ------

43659 776 1 26 2 12 1 6

43659 777 3 26 2 12 1 6

43659 778 1 26 2 12 1 6

43659 771 1 26 2 12 1 6

43659 772 1 26 2 12 1 6

43659 773 2 26 2 12 1 6

43659 774 1 26 2 12 1 6

43659 714 3 26 2 12 1 6

43659 716 1 26 2 12 1 6

43659 709 6 26 2 12 1 6

43659 712 2 26 2 12 1 6

43659 711 4 26 2 12 1 6

43664 772 1 14 1 8 1 4

43664 775 4 14 1 8 1 4

43664 714 1 14 1 8 1 4

43664 716 1 14 1 8 1 4

43664 777 2 14 1 8 1 4

43664 771 3 14 1 8 1 4

43664 773 1 14 1 8 1 4

43664 778 1 14 1 8 1 4

The following example shows using the OVER clause with an aggregate function in a calculated
value.

USE AdventureWorks2012;

GO

SELECT SalesOrderID, ProductID, OrderQty

 ,SUM(OrderQty) OVER(PARTITION BY SalesOrderID) AS Total

 ,CAST(1. * OrderQty / SUM(OrderQty) OVER(PARTITION BY SalesOrderID)

 *100 AS DECIMAL(5,2))AS "Percent by ProductID"

FROM Sales.SalesOrderDetail

WHERE SalesOrderID IN(43659,43664);

GO

Here is the result set. Notice that the aggregates are calculated by SalesOrderID and the Percent
by ProductID is calculated for each line of each SalesOrderID.

197

SalesOrderID ProductID OrderQty Total Percent by ProductID

------------ ----------- -------- ----------- ---------------------------------------

43659 776 1 26 3.85

43659 777 3 26 11.54

43659 778 1 26 3.85

43659 771 1 26 3.85

43659 772 1 26 3.85

43659 773 2 26 7.69

43659 774 1 26 3.85

43659 714 3 26 11.54

43659 716 1 26 3.85

43659 709 6 26 23.08

43659 712 2 26 7.69

43659 711 4 26 15.38

43664 772 1 14 7.14

43664 775 4 14 28.57

43664 714 1 14 7.14

43664 716 1 14 7.14

43664 777 2 14 14.29

43664 771 3 14 21.4

43664 773 1 14 7.14

43664 778 1 14 7.14

 (20 row(s) affected)

C. Producing a moving average and cumulative total
The following example uses the AVG and SUM functions with the OVER clause to provide a
moving average and cumulative total of yearly sales for each territory in the Sales.SalesPerson
table. The data is partitioned by TerritoryID and logically ordered by SalesYTD. This means that
the AVG function is computed for each territory based on the sales year. Notice that for
TerritoryID 1, there are two rows for sales year 2005 representing the two sales people with
sales that year. The average sales for these two rows is computed and then the third row
representing sales for the year 2006 is included in the computation.

USE AdventureWorks2012;

GO

SELECT BusinessEntityID, TerritoryID

 ,DATEPART(yy,ModifiedDate) AS SalesYear

 ,CONVERT(varchar(20),SalesYTD,1) AS SalesYTD

 ,CONVERT(varchar(20),AVG(SalesYTD) OVER (PARTITION BY TerritoryID

 ORDER BY DATEPART(yy,ModifiedDate)

),1) AS MovingAvg

 ,CONVERT(varchar(20),SUM(SalesYTD) OVER (PARTITION BY TerritoryID

 ORDER BY DATEPART(yy,ModifiedDate)

198

),1) AS CumulativeTotal

FROM Sales.SalesPerson

WHERE TerritoryID IS NULL OR TerritoryID < 5

ORDER BY TerritoryID,SalesYear;

Here is the result set.

BusinessEntityID TerritoryID SalesYear SalesYTD MovingAvg

CumulativeTotal

---------------- ----------- ----------- -------------------- -------------------- ------

274 NULL 2005 559,697.56 559,697.56

559,697.56

287 NULL 2006 519,905.93 539,801.75

1,079,603.50

285 NULL 2007 172,524.45 417,375.98

1,252,127.95

283 1 2005 1,573,012.94 1,462,795.04

2,925,590.07

280 1 2005 1,352,577.13 1,462,795.04

2,925,590.07

284 1 2006 1,576,562.20 1,500,717.42

4,502,152.27

275 2 2005 3,763,178.18 3,763,178.18

3,763,178.18

277 3 2005 3,189,418.37 3,189,418.37

3,189,418.37

276 4 2005 4,251,368.55 3,354,952.08

6,709,904.17

281 4 2005 2,458,535.62 3,354,952.08

6,709,904.17

(10 row(s) affected)

In this example, the OVER clause does not include PARTITION BY. This means that the function
will be applied to all rows returned by the query. The ORDER BY clause specified in the OVER
clause determines the logical order to which the AVG function is applied. The query returns a
moving average of sales by year for all sales territories specified in the WHERE clause. The
ORDER BY clause specified in the SELECT statement determines the order in which the rows of
the query are displayed.

SELECT BusinessEntityID, TerritoryID

 ,DATEPART(yy,ModifiedDate) AS SalesYear

 ,CONVERT(varchar(20),SalesYTD,1) AS SalesYTD

 ,CONVERT(varchar(20),AVG(SalesYTD) OVER (ORDER BY DATEPART(yy,ModifiedDate)

199

),1) AS MovingAvg

 ,CONVERT(varchar(20),SUM(SalesYTD) OVER (ORDER BY DATEPART(yy,ModifiedDate)

),1) AS CumulativeTotal

FROM Sales.SalesPerson

WHERE TerritoryID IS NULL OR TerritoryID < 5

ORDER BY SalesYear;

Here is the result set.

BusinessEntityID TerritoryID SalesYear SalesYTD MovingAvg

CumulativeTotal

---------------- ----------- ----------- -------------------- -------------------- ------

274 NULL 2005 559,697.56 2,449,684.05

17,147,788.35

275 2 2005 3,763,178.18 2,449,684.05

17,147,788.35

276 4 2005 4,251,368.55 2,449,684.05

17,147,788.35

277 3 2005 3,189,418.37 2,449,684.05

17,147,788.35

280 1 2005 1,352,577.13 2,449,684.05

17,147,788.35

281 4 2005 2,458,535.62 2,449,684.05

17,147,788.35

283 1 2005 1,573,012.94 2,449,684.05

17,147,788.35

284 1 2006 1,576,562.20 2,138,250.72

19,244,256.47

287 NULL 2006 519,905.93 2,138,250.72

19,244,256.47

285 NULL 2007 172,524.45 1,941,678.09

19,416,780.93

(10 row(s) affected)

D. Specifying the ROWS clause
The following example uses the ROWS clause to define a window over which the rows are
computed as the current row and the N number of rows that follow (1 row in this example).

SELECT BusinessEntityID, TerritoryID

 ,CONVERT(varchar(20),SalesYTD,1) AS SalesYTD

 ,DATEPART(yy,ModifiedDate) AS SalesYear

 ,CONVERT(varchar(20),SUM(SalesYTD) OVER (PARTITION BY TerritoryID

 ORDER BY DATEPART(yy,ModifiedDate)

200

 ROWS BETWEEN CURRENT ROW AND 1 FOLLOWING

),1) AS CumulativeTotal

FROM Sales.SalesPerson

WHERE TerritoryID IS NULL OR TerritoryID < 5;

Here is the result set.

BusinessEntityID TerritoryID SalesYTD SalesYear CumulativeTotal

---------------- ----------- -------------------- ----------- --------------------

274 NULL 559,697.56 2005 1,079,603.50

287 NULL 519,905.93 2006 692,430.38

285 NULL 172,524.45 2007 172,524.45

283 1 1,573,012.94 2005 2,925,590.07

280 1 1,352,577.13 2005 2,929,139.33

284 1 1,576,562.20 2006 1,576,562.20

275 2 3,763,178.18 2005 3,763,178.18

277 3 3,189,418.37 2005 3,189,418.37

276 4 4,251,368.55 2005 6,709,904.17

281 4 2,458,535.62 2005 2,458,535.62

In the following example, the ROWS clause is specified with UNBOUNDED PRECEDING. The
result is that the window starts at the first row of the partition.

SELECT BusinessEntityID, TerritoryID

 ,CONVERT(varchar(20),SalesYTD,1) AS SalesYTD

 ,DATEPART(yy,ModifiedDate) AS SalesYear

 ,CONVERT(varchar(20),SUM(SalesYTD) OVER (PARTITION BY TerritoryID

 ORDER BY DATEPART(yy,ModifiedDate)

 ROWS UNBOUNDED PRECEDING),1) AS

CumulativeTotal

FROM Sales.SalesPerson

WHERE TerritoryID IS NULL OR TerritoryID < 5;

Here is the result set.

BusinessEntityID TerritoryID SalesYTD SalesYear CumulativeTotal

---------------- ----------- -------------------- ----------- --------------------

274 NULL 559,697.56 2005 559,697.56

287 NULL 519,905.93 2006 1,079,603.50

285 NULL 172,524.45 2007 1,252,127.95

283 1 1,573,012.94 2005 1,573,012.94

280 1 1,352,577.13 2005 2,925,590.07

284 1 1,576,562.20 2006 4,502,152.27

275 2 3,763,178.18 2005 3,763,178.18

277 3 3,189,418.37 2005 3,189,418.37

276 4 4,251,368.55 2005 4,251,368.55

281 4 2,458,535.62 2005 6,709,904.17

201

See Also
Aggregate Functions (Transact-SQL)

Analytic Functions (Transact-SQL)

Table Value Constructor
Specifies a set of row value expressions to be constructed into a table. The Transact-SQL table
value constructor allows multiple rows of data to be specified in a single DML statement. The
table value constructor can be specified in the VALUES clause of the INSERT statement, in the
USING <source table> clause of the MERGE statement, and in the definition of a derived table in
the FROM clause.

Transact-SQL Syntax Conventions

Syntax

VALUES (<row value expression list>) [,...n]

<row value expression list> ::=

 {<row value expression> } [,...n]

<row value expression> ::=

 { DEFAULT | NULL | expression }

Arguments
VALUES

Introduces the row value expression lists. Each list must be enclosed in parentheses
and separated by a comma.

The number of values specified in each list must be the same and the values must be in
the same order as the columns in the table. A value for each column in the table must
be specified or the column list must explicitly specify the columns for each incoming
value.

DEFAULT

Forces the Database Engine to insert the default value defined for a column. If a default
does not exist for the column and the column allows null values, NULL is inserted.
DEFAULT is not valid for an identity column. When specified in a table value
constructor, DEFAULT is allowed only in an INSERT statement.

http://msdn.microsoft.com/en-us/library/0c06ae42-eb0a-4d77-9d74-aa1e7f344009
http://msdn.microsoft.com/en-us/library/60fbff84-673b-48ea-9254-6ecdad20e7fe

202

expression

Is a constant, a variable, or an expression. The expression cannot contain an
EXECUTE statement.

Limitations and Restrictions
The maximum number of rows that can be constructed using the table value constructor is 1000.
To insert more than 1000 rows, create multiple INSERT statements, or bulk import the data by
using the bcp utility or the BULK INSERT statement.

Only single scalar values are allowed as a row value expression. A subquery that involves
multiple columns is not allowed as a row value expression. For example, the following code
results in a syntax error because the third row value expression list contains a subquery with
multiple columns.

USE AdventureWorks2012;

GO

CREATE TABLE dbo.MyProducts (Name varchar(50), ListPrice money);

GO

-- This statement fails because the third values list contains multiple columns in the

subquery.

INSERT INTO dbo.MyProducts (Name, ListPrice)

VALUES ('Helmet', 25.50),

 ('Wheel', 30.00),

 (SELECT Name, ListPrice FROM Production.Product WHERE ProductID = 720);

GO

However, the statement can be rewritten by specifying each column in the subquery separately.
The following example successfully inserts three rows into the MyProducts table.

INSERT INTO dbo.MyProducts (Name, ListPrice)

VALUES ('Helmet', 25.50),

 ('Wheel', 30.00),

 ((SELECT Name FROM Production.Product WHERE ProductID = 720),

 (SELECT ListPrice FROM Production.Product WHERE ProductID = 720));

GO

Data Types
The values specified in a multi-row INSERT statement follow the data type conversion properties
of the UNION ALL syntax. This results in the implicit conversion of unmatched types to the type of
higher precedence. If the conversion is not a supported implicit conversion, an error is returned.

http://msdn.microsoft.com/en-us/library/f4c804ab-ed3f-43b1-a024-c9ac6944b66b

203

For example, the following statement inserts an integer value and a character value into a column
of type char.
CREATE TABLE dbo.t (a int, b char);

GO

INSERT INTO dbo.t VALUES (1,'a'), (2, 1);

GO

When the INSERT statement is run, SQL Server tries to convert 'a' to an integer because the
data type precedence indicates that an integer is of a higher type than a character. The
conversion fails and an error is returned. You can avoid the error by explicitly converting values
as appropriate. For example, the previous statement can be written as follows.

INSERT INTO dbo.t VALUES (1,'a'), (2, CONVERT(CHAR,1));

Examples

A. Inserting multiple rows of data
The following example creates the table dbo.Departments and then uses the table value
constructor to insert five rows into the table. Because values for all columns are supplied and are
listed in the same order as the columns in the table, the column names do not have to be
specified in the column list.

USE AdventureWorks2012;

GO

INSERT INTO Production.UnitMeasure

VALUES (N'FT2', N'Square Feet ', '20080923'), (N'Y', N'Yards', '20080923'), (N'Y3',

N'Cubic Yards', '20080923');

GO

B. Inserting multiple rows with DEFAULT and NULL values
The following example demonstrates specifying DEFAULT and NULL when using the table value
constructor to insert rows into a table.

USE AdventureWorks2012;

GO

CREATE TABLE Sales.MySalesReason(

 SalesReasonID int IDENTITY(1,1) NOT NULL,

 Name dbo.Name NULL ,

 ReasonType dbo.Name NOT NULL DEFAULT 'Not Applicable');

GO

INSERT INTO Sales.MySalesReason

VALUES ('Recommendation','Other'), ('Advertisement', DEFAULT), (NULL, 'Promotion');

SELECT * FROM Sales.MySalesReason;

204

C. Specifying multiple values as a derived table in a FROM clause
The following example uses the table value constructor to specify multiple values in the FROM
clause of a SELECT statement.

SELECT a, b FROM (VALUES (1, 2), (3, 4), (5, 6), (7, 8), (9, 10)) AS MyTable(a, b);

GO

D. Specifying multiple values as a derived source table in a MERGE
statement
The following example uses MERGE to modify the SalesReason table by either updating or
inserting rows. When the value of NewName in the source table matches a value in the Name column
of the target table, (SalesReason), the ReasonType column is updated in the target table. When the
value of NewName does not match, the source row is inserted into the target table. The source table
is a derived table that uses the Transact-SQL table value constructor to specify multiple rows for
the source table.

USE AdventureWorks2012;

GO

-- Create a temporary table variable to hold the output actions.

DECLARE @SummaryOfChanges TABLE(Change VARCHAR(20));

MERGE INTO Sales.SalesReason AS Target

USING (VALUES ('Recommendation','Other'), ('Review', 'Marketing'), ('Internet',

'Promotion'))

 AS Source (NewName, NewReasonType)

ON Target.Name = Source.NewName

WHEN MATCHED THEN

 UPDATE SET ReasonType = Source.NewReasonType

WHEN NOT MATCHED BY TARGET THEN

 INSERT (Name, ReasonType) VALUES (NewName, NewReasonType)

OUTPUT $action INTO @SummaryOfChanges;

-- Query the results of the table variable.

SELECT Change, COUNT(*) AS CountPerChange

FROM @SummaryOfChanges

GROUP BY Change;

See Also
INSERT (Transact-SQL)

MERGE (Transact-SQL)

FROM (Transact-SQL)

205

TOP
Limits the rows returned in a query result set to a specified number of rows or percentage of rows
in SQL Server 2012. When TOP is used in conjunction with the ORDER BY clause, the result set
is limited to the first N number of ordered rows; otherwise, it returns the first N number of random
rows. Use this clause to specify the number of rows returned from a SELECT statement or
affected by an INSERT, UPDATE, MERGE, or DELETE statement.

Transact-SQL Syntax Conventions

Syntax

[

 TOP (expression) [PERCENT]

 [WITH TIES]

]

Arguments
expression

Is the numeric expression that specifies the number of rows to be returned.expression
is implicitly converted to a float value if PERCENT is specified; otherwise, it is
converted to bigint.

PERCENT

Indicates that the query returns only the first expression percent of rows from the result
set. Fractional values are rounded up to the next integer value.

WITH TIES

Specifies that the query result set includes any additional rows that match the values in
the ORDER BY column or columns in the last row returned. This may cause more rows
to be returned than the value specified in expression. For example, if expression is set
to 5 but 2 additional rows match the values of the ORDER BY columns in row 5, the
result set will contain 7 rows.

TOP...WITH TIES can be specified only in SELECT statements, and only if an ORDER
BY clause is specified. The returned order of tying records is arbitrary. ORDER BY does
not affect this rule.

206

Best Practices
In a SELECT statement, always use an ORDER BY clause with the TOP clause. This is the only
way to predictably indicate which rows are affected by TOP.

Use OFFSET and FETCH in the ORDER BY clause instead of the TOP clause to implement a
query paging solution. A paging solution (that is, sending chunks or "pages" of data to the client)
is easier to implement using OFFSET and FETCH clauses. For more information, see ORDER
BY Clause (Transact-SQL).

Use TOP (or OFFSET and FETCH) instead of SET ROWCOUNT to limit the number of rows
returned. These methods are preferred over using SET ROWCOUNT for the following reasons:

• In SQL Server 2012, SET ROWCOUNT does not affect DELETE, INSERT, MERGE, and
UPDATE statements.

• As a part of a SELECT statement, the query optimizer can consider the value of expression
in the TOP or FETCH clauses during query optimization. Because SET ROWCOUNT is used
outside a statement that executes a query, its value cannot be considered in a query plan.

Compatibility Support
For backward compatibility, the parentheses are optional in SELECT statements. We recommend
that you always use parentheses for TOP in SELECT statements for consistency with its required
use in INSERT, UPDATE, MERGE, and DELETE statements in which the parentheses are
required.

Interoperability
The TOP expression does not affect statements that may be executed because of a trigger. The
inserted and deleted tables in the triggers will return only the rows that were truly affected by the
INSERT, UPDATE, MERGE, or DELETE statements. For example, if an INSERT TRIGGER is
fired as the result of an INSERT statement that used a TOP clause,

SQL Server allows for updating rows through views. Because the TOP clause can be included in
the view definition, certain rows may disappear from the view because of an update if the rows no
longer meet the requirements of the TOP expression.

When specified in the MERGE statement, the TOP clause is applied after the entire source table
and the entire target table are joined and the joined rows that do not qualify for an insert, update,
or delete action are removed. The TOP clause further reduces the number of joined rows to the
specified value and the insert, update, or delete actions are applied to the remaining joined rows
in an unordered fashion. That is, there is no order in which the rows are distributed among the
actions defined in the WHEN clauses. For example, if specifying TOP (10) affects 10 rows; of
these rows, 7 may be updated and 3 inserted, or 1 may be deleted, 5 updated, and 4 inserted,
and so on. Because the MERGE statement performs a full table scan of both the source and
target tables, I/O performance can be affected when using the TOP clause to modify a large table
by creating multiple batches. In this scenario, it is important to ensure that all successive batches
target new rows.

207

Use caution when specifying the TOP clause in a query that contains a UNION, UNION ALL,
EXCEPT, or INTERSECT operator. It is possible to write a query that returns unexpected results
because the order in which the TOP and ORDER BY clauses are logically processed is not
always intuitive when these operators are used in a select operation. For example, given the
following table and data, assume that you want to return the least expensive red car and the least
expensive blue car. That is, the red sedan and the blue van.

CREATE TABLE dbo.Cars(Model varchar(15), Price money, Color varchar(10));

INSERT dbo.Cars VALUES

 ('sedan', 10000, 'red'), ('convertible', 15000, 'blue'),

 ('coupe', 20000, 'red'), ('van', 8000, 'blue');

To achieve these results, you might write the following query.

SELECT TOP(1) Model, Color, Price

FROM dbo.Cars

WHERE Color = 'red'

UNION ALL

SELECT TOP(1) Model, Color, Price

FROM dbo.Cars

WHERE Color = 'blue'

ORDER BY Price ASC;

Here is the result set.

Model Color Price

------------- ---------- -------

sedan red 10000.00

convertible blue 15000.00

The unexpected results are returned because the TOP clause is logically executed before the
ORDER BY clause, which sorts the results of the operator (UNION ALL in this case). Thus, the
previous query returns any one red car and any one blue car and then orders the result of that
union by the price. The following example shows the correct method of writing this query to
achieve the desired result.

SELECT Model, Color, Price

FROM (SELECT TOP(1) Model, Color, Price

 FROM dbo.Cars

 WHERE Color = 'red'

 ORDER BY Price ASC) AS a

UNION ALL

SELECT Model, Color, Price

FROM (SELECT TOP(1) Model, Color, Price

 FROM dbo.Cars

 WHERE Color = 'blue'

 ORDER BY Price ASC) AS b;

208

By using TOP and ORDER BY in a subselect operation, you ensure that the results of the
ORDER BY clause is used applied to the TOP clause and not to sorting the result of the UNION
operation.

Here is the result set.

Model Color Price

------------- ---------- -------

sedan red 10000.00

van blue 8000.00

Limitations and Restrictions
When TOP is used with INSERT, UPDATE, MERGE, or DELETE, the referenced rows are not
arranged in any order and the ORDER BY clause can not be directly specified in these
statements. If you need to use TOP to insert, delete, or modify rows in a meaningful chronological
order, you must use TOP together with an ORDER BY clause that is specified in a subselect
statement. See the Examples section that follows in this topic.

TOP cannot be used in an UPDATE and DELETE statements on partitioned views.

TOP cannot be combined with OFFSET and FETCH in the same query expression (in the same
query scope). For more information, see ORDER BY Clause (Transact-SQL).

Examples

Category Featured syntax elements

Basic syntax TOP • PERCENT

Including tie values WITH TIES

Limiting the rows affected by DELETE,
INSERT, or UPDATE

DELETE • INSERT • UPDATE

Basic syntax
Examples in this section demonstrate the basic functionality of the ORDER BY clause using the
minimum required syntax.

A. Using TOP with a constant value
The following examples use a constant value to specify the number of employees that are
returned in the query result set. In the first example, the first 10 random rows are returned
because an ORDER BY clause is not used. In the second example, an ORDER BY clause is
used to return the top 10 recently hired employees.

USE AdventureWorks2012;

209

GO

-- Select the first 10 random employees.

SELECT TOP(10)JobTitle, HireDate

FROM HumanResources.Employee;

GO

-- Select the first 10 employees hired most recently.

SELECT TOP(10)JobTitle, HireDate

FROM HumanResources.Employee

ORDER BY HireDate DESC;

B. Using TOP with a variable
The following example uses a variable to specify the number of employees that are returned in
the query result set.

USE AdventureWorks2012;

GO

DECLARE @p AS int = 10;

SELECT TOP(@p)JobTitle, HireDate, VacationHours

FROM HumanResources.Employee

ORDER BY VacationHours DESC

GO

C. Specifying a percentage
The following example uses PERCENT to specify the number of employees that are returned in
the query result set. There are 290 employees in the HumanResources.Employee table. Because 5
percent of 290 is a fractional value, the value is rounded up to the next whole number.

USE AdventureWorks2012;

GO

SELECT TOP(5)PERCENT JobTitle, HireDate

FROM HumanResources.Employee

ORDER BY HireDate DESC;

Including tie values

A. Using WITH TIES to include rows that match the values in the last row
The following example obtains the top 10 percent of all employees with the highest salary and
returns them in descending order according to their salary. Specifying WITH TIES makes sure that
any employees that have salaries equal to the lowest salary returned (the last row) are also
included in the result set, even if doing this exceeds 10 percent of employees.

USE AdventureWorks2012;

GO

SELECT TOP(10)WITH TIES

pp.FirstName, pp.LastName, e.JobTitle, e.Gender, r.Rate

FROM Person.Person AS pp

210

 INNER JOIN HumanResources.Employee AS e

 ON pp.BusinessEntityID = e.BusinessEntityID

 INNER JOIN HumanResources.EmployeePayHistory AS r

 ON r.BusinessEntityID = e.BusinessEntityID

ORDER BY Rate DESC;

Limiting the rows affected by DELETE, INSERT, or UPDATE

A. Using TOP to limit the number of rows deleted
When a TOP (n) clause is used with DELETE, the delete operation is performed on a random
selection of n number of rows. The following example deletes 20 random rows from the
PurchaseOrderDetail table that have due dates that are earlier than July 1, 2002.

USE AdventureWorks2012;

GO

DELETE TOP (20)

FROM Purchasing.PurchaseOrderDetail

WHERE DueDate < '20020701';

GO

If you have to use TOP to delete rows in a meaningful chronological order, you must use TOP
together with ORDER BY in a subselect statement. The following query deletes the 10 rows of
the PurchaseOrderDetail table that have the earliest due dates. To ensure that only 10 rows are
deleted, the column specified in the subselect statement (PurchaseOrderID) is the primary key of
the table. Using a nonkey column in the subselect statement may result in the deletion of more
than 10 rows if the specified column contains duplicate values.

USE AdventureWorks2012;

GO

DELETE FROM Purchasing.PurchaseOrderDetail

WHERE PurchaseOrderDetailID IN

 (SELECT TOP 10 PurchaseOrderDetailID

 FROM Purchasing.PurchaseOrderDetail

 ORDER BY DueDate ASC);

GO

B. Using TOP to limit the number of rows inserted
The following example creates the table EmployeeSales and inserts the name and year-to-date
sales data for the top 5 random employees from the table HumanResources.Employee. The INSERT
statement chooses any 5 rows returned by the SELECT statement. The OUTPUT clause displays
the rows that are inserted into the EmployeeSales table. Notice that the ORDER BY clause in the
SELECT statement is not used to determine the top 5 employees.

USE AdventureWorks2012 ;

GO

211

IF OBJECT_ID ('dbo.EmployeeSales', 'U') IS NOT NULL

 DROP TABLE dbo.EmployeeSales;

GO

CREATE TABLE dbo.EmployeeSales

(EmployeeID nvarchar(11) NOT NULL,

 LastName nvarchar(20) NOT NULL,

 FirstName nvarchar(20) NOT NULL,

 YearlySales money NOT NULL

);

GO

INSERT TOP(5)INTO dbo.EmployeeSales

 OUTPUT inserted.EmployeeID, inserted.FirstName, inserted.LastName,

inserted.YearlySales

 SELECT sp.BusinessEntityID, c.LastName, c.FirstName, sp.SalesYTD

 FROM Sales.SalesPerson AS sp

 INNER JOIN Person.Person AS c

 ON sp.BusinessEntityID = c.BusinessEntityID

 WHERE sp.SalesYTD > 250000.00

 ORDER BY sp.SalesYTD DESC;

If you have to use TOP to insert rows in a meaningful chronological order, you must use TOP
together with ORDER BY in a subselect statement as shown in the following example. The
OUTPUT clause displays the rows that are inserted into the EmployeeSales table. Notice that the
top 5 employees are now inserted based on the results of the ORDER BY clause instead of
random rows.

INSERT INTO dbo.EmployeeSales

 OUTPUT inserted.EmployeeID, inserted.FirstName, inserted.LastName,

inserted.YearlySales

 SELECT TOP (5) sp.BusinessEntityID, c.LastName, c.FirstName, sp.SalesYTD

 FROM Sales.SalesPerson AS sp

 INNER JOIN Person.Person AS c

 ON sp.BusinessEntityID = c.BusinessEntityID

 WHERE sp.SalesYTD > 250000.00

 ORDER BY sp.SalesYTD DESC;

B. Using TOP to limit the number of rows updated
The following example uses the TOP clause to

When a TOP (n) clause is used with UPDATE, the update operation will be performed on a
random selection of 'n' number of rows. The following example assigns a random number of 10
customers from one salesperson to another.

USE AdventureWorks2012;

UPDATE TOP (10) Sales.Store

212

SET SalesPersonID = 276

WHERE SalesPersonID = 275;

GO

If you have to use TOP to apply updates in a meaningful chronology, you must use TOP together
with ORDER BY in a subselect statement. The following example updates the vacation hours of
the 10 employees with the earliest hire dates.

UPDATE HumanResources.Employee

SET VacationHours = VacationHours + 8

FROM (SELECT TOP 10 BusinessEntityID FROM HumanResources.Employee

 ORDER BY HireDate ASC) AS th

WHERE HumanResources.Employee.BusinessEntityID = th.BusinessEntityID;

GO

See Also
SELECT (Transact-SQL)

INSERT (Transact-SQL)

UPDATE (Transact-SQL)

DELETE (Transact-SQL)

ORDER BY Clause (Transact-SQL)

SET ROWCOUNT (Transact-SQL)

MERGE (Transact-SQL)

UPDATE
Changes existing data in a table or view in SQL Server 2012. For examples, see Examples.

Transact-SQL Syntax Conventions

Syntax

[WITH <common_table_expression> [...n]]

UPDATE

 [TOP (expression) [PERCENT]]

 { { table_alias | <object> | rowset_function_limited

 [WITH (<Table_Hint_Limited> [...n])]

 }

 | @table_variable

http://msdn.microsoft.com/en-us/library/c6966fb7-6421-47ef-98f3-82351f2f6bdc

213

 }

 SET

 { column_name= { expression | DEFAULT | NULL }

 | { udt_column_name.{ { property_name=expression
 | field_name=expression }

 | method_name(argument [,...n])

 }

 }

 | column_name { .WRITE (expression,@Offset,@Length) }
 | @variable=expression
 | @variable=column=expression
 | column_name { += | -= | *= | /= | %= | &= | ^= | |= } expression

 | @variable { += | -= | *= | /= | %= | &= | ^= | |= } expression

 | @variable=column { += | -= | *= | /= | %= | &= | ^= | |= } expression

 } [,...n]

 [<OUTPUT Clause>]

 [FROM{ <table_source> } [,...n]]

 [WHERE { <search_condition>

 | { [CURRENT OF

 { { [GLOBAL] cursor_name }

 | cursor_variable_name

 }

]

 }

 }

]

 [OPTION (<query_hint> [,...n])]

[;]

<object> ::=

{

 [server_name . database_name . schema_name .

 | database_name .[schema_name] .

 | schema_name .

]

214

 table_or_view_name}

Arguments
WITH <common_table_expression>

Specifies the temporary named result set or view, also known as common table
expression (CTE), defined within the scope of the UPDATE statement. The CTE result
set is derived from a simple query and is referenced by UPDATE statement.

Common table expressions can also be used with the SELECT, INSERT, DELETE, and
CREATE VIEW statements. For more information, see Updating Data in a Table.

TOP (expression) [PERCENT]

Specifies the number or percent of rows that will be updated. expression can be either a
number or a percent of the rows.

The rows referenced in the TOP expression used with INSERT, UPDATE, or DELETE
are not arranged in any order.

Parentheses delimiting expression in TOP are required in INSERT, UPDATE, and
DELETE statements. For more information, see TOP (Transact-SQL).

table_alias

The alias specified in the FROM clause representing the table or view from which the
rows are to be updated.

server_name

Is the name of the server (using a linked server name or the OPENDATASOURCE
function as the server name) on which the table or view is located. If server_name is
specified, database_name and schema_name are required.

database_name

Is the name of the database.

schema_name

Is the name of the schema to which the table or view belongs.

table_orview_name

Is the name of the table or view from which the rows are to be updated. The view
referenced by table_or_view_name must be updatable and reference exactly one base
table in the FROM clause of the view. For more information about updatable views,

http://msdn.microsoft.com/en-us/library/27cfb819-3e8d-4274-8bbe-cbbe4d9c2e23
http://msdn.microsoft.com/en-us/library/5510b846-9cde-4687-8798-be9a273aad31

215

see CREATE VIEW (Transact-SQL).

rowset_function_limited

Is either the OPENQUERY or OPENROWSET function, subject to provider capabilities.

WITH (<Table_Hint_Limited>)

Specifies one or more table hints that are allowed for a target table. The WITH keyword
and the parentheses are required. NOLOCK and READUNCOMMITTED are not
allowed. For information about table hints, see Table Hint (Transact-SQL).

@table_variable

Specifies a table variable as a table source.

SET

Specifies the list of column or variable names to be updated.

column_name

Is a column that contains the data to be changed.column_name must exist in table_or
view_name. Identity columns cannot be updated.

expression

Is a variable, literal value, expression, or a subselect statement (enclosed with
parentheses) that returns a single value. The value returned by expression replaces the
existing value in column_name or @variable.

Note
When referencing the Unicode character data types nchar, nvarchar, and ntext, 'expression'
should be prefixed with the capital letter 'N'. If 'N' is not specified, SQL Server converts the string
to the code page that corresponds to the default collation of the database or column. Any
characters not found in this code page are lost.

DEFAULT

Specifies that the default value defined for the column is to replace the existing value in
the column. This can also be used to change the column to NULL if the column has no
default and is defined to allow null values.

http://msdn.microsoft.com/en-us/library/aecc2f73-2ab5-4db9-b1e6-2f9e3c601fb9
http://msdn.microsoft.com/en-us/library/b805e976-f025-4be1-bcb0-3a57b0c57717
http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17
http://msdn.microsoft.com/en-us/library/1ef0b60e-a64c-4e97-847b-67930e3973ef

216

{ += | -= | *= | /= | %= | &= | ^= | |= }

Compound assignment operator:

+= Add and assign

-= Subtract and assign

*= Multiply and assign

/= Divide and assign

%= Modulo and assign

&= Bitwise AND and assign

^= Bitwise XOR and assign

|= Bitwise OR and assign

udt_column_name

Is a user-defined type column.

property_name | field_name

Is a public property or public data member of a user-defined type.

method_name(argument [,... n])

Is a nonstatic public mutator method of udt_column_name that takes one or more
arguments.

.WRITE (expression, @Offset , @Length)

Specifies that a section of the value of column_name is to be modified. expression
replaces @Length units starting from @Offset of column_name. Only columns of
varchar(max), nvarchar(max), or varbinary(max) can be specified with this clause.
column_name cannot be NULL and cannot be qualified with a table name or table alias.

expression is the value that is copied to column_name. expression must evaluate to or
be able to be implicitly cast to the column_name type. If expression is set to NULL,
@Length is ignored, and the value in column_name is truncated at the specified
@Offset.

@Offset is the starting point in the value of column_name at which expression is
written. @Offset is a zero-based ordinal position, is bigint, and cannot be a negative
number. If @Offset is NULL, the update operation appends expression at the end of the
existing column_name value and @Length is ignored. If @Offset is greater than the
length of the column_name value, the Database Engine returns an error. If @Offset
plus @Length exceeds the end of the underlying value in the column, the deletion
occurs up to the last character of the value. If @Offset plus LEN(expression) is greater
than the underlying declared size, an error is raised.

217

@Length is the length of the section in the column, starting from @Offset, that is
replaced by expression. @Length is bigint and cannot be a negative number. If
@Length is NULL, the update operation removes all data from @Offset to the end of
the column_name value.

For more information, see Remarks.

@variable

Is a declared variable that is set to the value returned by expression.

SET @variable = column = expression sets the variable to the same value as the
column. This differs from SET @variable = column, column = expression, which sets the
variable to the pre-update value of the column.

<OUTPUT_Clause>

Returns updated data or expressions based on it as part of the UPDATE operation. The
OUTPUT clause is not supported in any DML statements that target remote tables or
views. For more information, see OUTPUT Clause (Transact-SQL).

FROM <table_source>

Specifies that a table, view, or derived table source is used to provide the criteria for the
update operation. For more information, see FROM (Transact-SQL).

If the object being updated is the same as the object in the FROM clause and there is
only one reference to the object in the FROM clause, an object alias may or may not be
specified. If the object being updated appears more than one time in the FROM clause,
one, and only one, reference to the object must not specify a table alias. All other
references to the object in the FROM clause must include an object alias.

A view with an INSTEAD OF UPDATE trigger cannot be a target of an UPDATE with a
FROM clause.

Note
Any call to OPENDATASOURCE, OPENQUERY, or OPENROWSET in the FROM clause is
evaluated separately and independently from any call to these functions used as the target of the
update, even if identical arguments are supplied to the two calls. In particular, filter or join
conditions applied on the result of one of those calls have no effect on the results of the other.

WHERE

Specifies the conditions that limit the rows that are updated. There are two forms of
update based on which form of the WHERE clause is used:

• Searched updates specify a search condition to qualify the rows to delete.

• Positioned updates use the CURRENT OF clause to specify a cursor. The update

218

operation occurs at the current position of the cursor.

<search_condition>

Specifies the condition to be met for the rows to be updated. The search condition can
also be the condition upon which a join is based. There is no limit to the number of
predicates that can be included in a search condition. For more information about
predicates and search conditions, see Search Condition.

CURRENT OF

Specifies that the update is performed at the current position of the specified cursor.

A positioned update using a WHERE CURRENT OF clause updates the single row at
the current position of the cursor. This can be more accurate than a searched update
that uses a WHERE <search_condition> clause to qualify the rows to be updated. A
searched update modifies multiple rows when the search condition does not uniquely
identify a single row.

GLOBAL

Specifies that cursor_name refers to a global cursor.

cursor_name

Is the name of the open cursor from which the fetch should be made. If both a global
and a local cursor with the name cursor_name exist, this argument refers to the global
cursor if GLOBAL is specified; otherwise, it refers to the local cursor. The cursor must
allow updates.

cursor_variable_name

Is the name of a cursor variable.cursor_variable_name must reference a cursor that
allows updates.

OPTION (<query_hint> [,... n])

Specifies that optimizer hints are used to customize the way the Database Engine
processes the statement. For more information, see Query Hint (Transact-SQL).

Best Practices
Use the @@ROWCOUNT function to return the number of inserted rows to the client application.
For more information, see @@ROWCOUNT (Transact-SQL).

http://msdn.microsoft.com/en-us/library/97a47998-81d9-4331-a244-9eb8b6fe4a56

219

Variable names can be used in UPDATE statements to show the old and new values affected,
but this should be used only when the UPDATE statement affects a single record. If the UPDATE
statement affects multiple records, to return the old and new values for each record, use the
OUTPUT clause.

Use caution when specifying the FROM clause to provide the criteria for the update operation.
The results of an UPDATE statement are undefined if the statement includes a FROM clause that
is not specified in such a way that only one value is available for each column occurrence that is
updated, that is if the UPDATE statement is not deterministic. For example, in the UPDATE
statement in the following script, both rows in Table1 meet the qualifications of the FROM clause
in the UPDATE statement; but it is undefined which row from Table1 is used to update the row in
Table2.

USE AdventureWorks2012;

GO

IF OBJECT_ID ('dbo.Table1', 'U') IS NOT NULL

 DROP TABLE dbo.Table1;

GO

IF OBJECT_ID ('dbo.Table2', 'U') IS NOT NULL

 DROP TABLE dbo.Table2;

GO

CREATE TABLE dbo.Table1

 (ColA int NOT NULL, ColB decimal(10,3) NOT NULL);

GO

CREATE TABLE dbo.Table2

 (ColA int PRIMARY KEY NOT NULL, ColB decimal(10,3) NOT NULL);

GO

INSERT INTO dbo.Table1 VALUES(1, 10.0), (1, 20.0);

INSERT INTO dbo.Table2 VALUES(1, 0.0);

GO

UPDATE dbo.Table2

SET dbo.Table2.ColB = dbo.Table2.ColB + dbo.Table1.ColB

FROM dbo.Table2

 INNER JOIN dbo.Table1

 ON (dbo.Table2.ColA = dbo.Table1.ColA);

GO

SELECT ColA, ColB

FROM dbo.Table2;

The same problem can occur when the FROM and WHERE CURRENT OF clauses are
combined. In the following example, both rows in Table2 meet the qualifications of the FROM clause
in the UPDATE statement. It is undefined which row from Table2 is to be used to update the row in
Table1.

USE AdventureWorks2012;

220

GO

IF OBJECT_ID ('dbo.Table1', 'U') IS NOT NULL

 DROP TABLE dbo.Table1;

GO

IF OBJECT_ID ('dbo.Table2', 'U') IS NOT NULL

 DROP TABLE dbo.Table2;

GO

CREATE TABLE dbo.Table1

 (c1 int PRIMARY KEY NOT NULL, c2 int NOT NULL);

GO

CREATE TABLE dbo.Table2

 (d1 int PRIMARY KEY NOT NULL, d2 int NOT NULL);

GO

INSERT INTO dbo.Table1 VALUES (1, 10);

INSERT INTO dbo.Table2 VALUES (1, 20), (2, 30);

GO

DECLARE abc CURSOR LOCAL FOR

 SELECT c1, c2

 FROM dbo.Table1;

OPEN abc;

FETCH abc;

UPDATE dbo.Table1

SET c2 = c2 + d2

FROM dbo.Table2

WHERE CURRENT OF abc;

GO

SELECT c1, c2 FROM dbo.Table1;

GO

Compatibility Support
Support for use of the READUNCOMMITTED and NOLOCK hints in the FROM clause that apply
to the target table of an UPDATE or DELETE statement will be removed in a future version of
SQL Server. Avoid using these hints in this context in new development work, and plan to modify
applications that currently use them.

Data Types
All char and nchar columns are right-padded to the defined length.

If ANSI_PADDING is set to OFF, all trailing spaces are removed from data inserted into varchar
and nvarchar columns, except in strings that contain only spaces. These strings are truncated to
an empty string. If ANSI_PADDING is set to ON, trailing spaces are inserted. The Microsoft SQL
Server ODBC driver and OLE DB Provider for SQL Server automatically set ANSI_PADDING ON

221

for each connection. This can be configured in ODBC data sources or by setting connection
attributes or properties. For more information, see SET ANSI_PADDING (Transact-SQL).

Updating text, ntext, and image Columns
Modifying a text, ntext, or image column with UPDATE initializes the column, assigns a valid text
pointer to it, and allocates at least one data page, unless the column is being updated with NULL.

To replace or modify large blocks of text, ntext, or image data, use WRITETEXT or
UPDATETEXT instead of the UPDATE statement.

If the UPDATE statement could change more than one row while updating both the clustering key
and one or more text, ntext, or image columns, the partial update to these columns is executed
as a full replacement of the values.

The ntext, text, and image data types will be removed in a future version of Microsoft
SQL Server. Avoid using these data types in new development work, and plan to modify
applications that currently use them. Use nvarchar(max), varchar(max),
and varbinary(max) instead.

Updating Large Value Data Types
Use the .WRITE (expression, @Offset,@Length) clause to perform a partial or full update of
varchar(max), nvarchar(max), and varbinary(max) data types. For example, a partial update of
a varchar(max) column might delete or modify only the first 200 characters of the column,
whereas a full update would delete or modify all the data in the column. .WRITE updates that
insert or append new data are minimally logged if the database recovery model is set to bulk-
logged or simple. Minimal logging is not used when existing values are updated. For more
information, see The Transaction Log (SQL Server).

The Database Engine converts a partial update to a full update when the UPDATE statement
causes either of these actions:

• Changes a key column of the partitioned view or table.

• Modifies more than one row and also updates the key of a nonunique clustered index to a
nonconstant value.

You cannot use the .WRITE clause to update a NULL column or set the value of column_name to
NULL.

@Offset and @Length are specified in bytes for varbinary and varchar data types and in
characters for the nvarchar data type. The appropriate offsets are computed for double-byte
character set (DBCS) collations.

For best performance, we recommend that data be inserted or updated in chunk sizes that are
multiples of 8040 bytes.

If the column modified by the .WRITE clause is referenced in an OUTPUT clause, the complete
value of the column, either the before image in deleted.column_name or the after image in

Important

http://msdn.microsoft.com/en-us/library/92bd29a3-9beb-410e-b7e0-7bc1dc1ae6d0
http://msdn.microsoft.com/en-us/library/81ee5637-ee31-4c4d-96d0-56c26a742354
http://msdn.microsoft.com/en-us/library/282cd982-f4fb-4b22-b2df-9e8478f13f6a
http://msdn.microsoft.com/en-us/library/bcce65f9-10db-4b3e-bfaf-dfc06c6f820f
http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d

222

inserted.column_name, is returned to the specified column in the table variable. See example G
that follows.

To achieve the same functionality of .WRITE with other character or binary data types, use
the STUFF.

Updating User-defined Type Columns
Updating values in user-defined type columns can be accomplished in one of the following ways:

• Supplying a value in a SQL Server system data type, as long as the user-defined type
supports implicit or explicit conversion from that type. The following example shows how to
update a value in a column of user-defined type Point, by explicitly converting from a string.

UPDATE Cities

SET Location = CONVERT(Point, '12.3:46.2')

WHERE Name = 'Anchorage';

• Invoking a method, marked as a mutator, of the user-defined type, to perform the update. The
following example invokes a mutator method of type Point named SetXY. This updates the
state of the instance of the type.

UPDATE Cities

SET Location.SetXY(23.5, 23.5)

WHERE Name = 'Anchorage';

SQL Server returns an error if a mutator method is invoked on a Transact-SQL null
value, or if a new value produced by a mutator method is null.

• Modifying the value of a registered property or public data member of the user-defined type.
The expression supplying the value must be implicitly convertible to the type of the property.
The following example modifies the value of property X of user-defined type Point.

UPDATE Cities

SET Location.X = 23.5

WHERE Name = 'Anchorage';

To modify different properties of the same user-defined type column, issue multiple UPDATE
statements, or invoke a mutator method of the type.

Updating FILESTREAM Data
You can use the UPDATE statement to update a FILESTREAM field to a null value, empty value,
or a relatively small amount of inline data. However, a large amount of data is more efficiently
streamed into a file by using Win32 interfaces. When you update a FILESTREAM field, you
modify the underlying BLOB data in the file system. When a FILESTREAM field is set to NULL,
the BLOB data associated with the field is deleted. You cannot use .WRITE(), to perform partial
updates to FILESTREAM data. For more information, see FILESTREAM (SQL Server).

Note

http://msdn.microsoft.com/en-us/library/abb0afa9-44f6-42a2-a871-5f471dfb222b
http://msdn.microsoft.com/en-us/library/9a5a8166-bcbe-4680-916c-26276253eafa

223

Error Handling
If an update to a row violates a constraint or rule, violates the NULL setting for the column, or the
new value is an incompatible data type, the statement is canceled, an error is returned, and no
records are updated.

When an UPDATE statement encounters an arithmetic error (overflow, divide by zero, or a
domain error) during expression evaluation, the update is not performed. The rest of the batch is
not executed, and an error message is returned.

If an update to a column or columns participating in a clustered index causes the size of the
clustered index and the row to exceed 8,060 bytes, the update fails and an error message is
returned.

Interoperability
UPDATE statements are allowed in the body of user-defined functions only if the table being
modified is a table variable.

When an INSTEAD OF trigger is defined on UPDATE actions against a table, the trigger is
running instead of the UPDATE statement. Earlier versions of SQL Server only support AFTER
triggers defined on UPDATE and other data modification statements. The FROM clause cannot
be specified in an UPDATE statement that references, either directly or indirectly, a view with an
INSTEAD OF trigger defined on it. For more information about INSTEAD OF triggers,
see CREATE TRIGGER (Transact-SQL).

Limitations and Restrictions
The FROM clause cannot be specified in an UPDATE statement that references, either directly or
indirectly, a view that has an INSTEAD OF trigger defined on it. For more information about
INSTEAD OF triggers, see CREATE TRIGGER (Transact-SQL).

When a common table expression (CTE) is the target of an UPDATE statement, all references to
the CTE in the statement must match. For example, if the CTE is assigned an alias in the FROM
clause, the alias must be used for all other references to the CTE. Unambiguous CTE references
are required because a CTE does not have an object ID, which SQL Server uses to recognize the
implicit relationship between an object and its alias. Without this relationship, the query plan may
produce unexpected join behavior and unintended query results. The following examples
demonstrate correct and incorrect methods of specifying a CTE when the CTE is the target object
of the update operation.

USE tempdb;

GO

-- UPDATE statement with CTE references that are correctly matched.

DECLARE @x TABLE (ID int, Value int);

DECLARE @y TABLE (ID int, Value int);

INSERT @x VALUES (1, 10), (2, 20);

INSERT @y VALUES (1, 100),(2, 200);

http://msdn.microsoft.com/en-us/library/edeced03-decd-44c3-8c74-2c02f801d3e7
http://msdn.microsoft.com/en-us/library/edeced03-decd-44c3-8c74-2c02f801d3e7

224

WITH cte AS (SELECT * FROM @x)

UPDATE x -- cte is referenced by the alias.

SET Value = y.Value

FROM cte AS x -- cte is assigned an alias.

INNER JOIN @y AS y ON y.ID = x.ID;

SELECT * FROM @x;

GO

Here is the result set.

ID Value

------ -----

1 100

2 200

(2 row(s) affected)

-- UPDATE statement with CTE references that are incorrectly matched.

USE tempdb;

GO

DECLARE @x TABLE (ID int, Value int);

DECLARE @y TABLE (ID int, Value int);

INSERT @x VALUES (1, 10), (2, 20);

INSERT @y VALUES (1, 100),(2, 200);

WITH cte AS (SELECT * FROM @x)

UPDATE cte -- cte is not referenced by the alias.

SET Value = y.Value

FROM cte AS x -- cte is assigned an alias.

INNER JOIN @y AS y ON y.ID = x.ID;

SELECT * FROM @x;

GO

Here is the result set.

ID Value

------ -----

1 100

2 100

(2 row(s) affected)

225

Locking Behavior
An UPDATE statement always acquires an exclusive (X) lock on the table it modifies, and holds
that lock until the transaction completes. With an exclusive lock, no other transactions can modify
data. You can specify table hints to override this default behavior for the duration of the UPDATE
statement by specifying another locking method, however, we recommend that hints be used only
as a last resort by experienced developers and database administrators. For more information,
see Table Hints (Transact-SQL).

Logging Behavior
The UPDATE statement is logged; however, partial updates to large value data types using the
.WRITE clause are minimally logged. For more information, see "Updating Large Value Data
Types" in the earlier section “Data Types”.

Security

Permissions
UPDATE permissions are required on the target table. SELECT permissions are also required for
the table being updated if the UPDATE statement contains a WHERE clause, or if expression in
the SET clause uses a column in the table.

UPDATE permissions default to members of the sysadmin fixed server role, the db_owner and
db_datawriter fixed database roles, and the table owner. Members of the sysadmin, db_owner,
and db_securityadminroles, and the table owner can transfer permissions to other users.

Examples

Category Featured syntax elements

Basic Syntax UPDATE

Limiting the Rows that Are Updated WHERE • TOP • WITH common table
expression • WHERE CURRENT OF

Setting Column Values computed values • compound operators •
default values • subqueries

Specifying Target Objects Other than Standard
Tables

views • table variables • table aliases

Updating Data Based on Data From Other
Tables

FROM

Updating Rows in a Remote Table linked server • OPENQUERY •

226

Category Featured syntax elements

OPENDATASOURCE

Updating Large Object Data Types .WRITE • OPENROWSET

Updating User-defined Types user-defined types

Overriding the Default Behavior of the Query
Optimizer by Using Hints

table hints • query hints

Capturing the Results of the UPDATE
Statement

OUTPUT clause

Using UPDATE in Other Statements Stored Procedures • TRY…CATCH

Basic Syntax
Examples in this section demonstrate the basic functionality of the UPDATE statement using the
minimum required syntax.

A. Using a simple UPDATE statement
The following example updates a single column for all rows in the Person.Address table.

USE AdventureWorks2012;

GO

UPDATE Person.Address

SET ModifiedDate = GETDATE();

B. Updating multiple columns
The following example updates the values in the Bonus, CommissionPct, and SalesQuota columns
for all rows in the SalesPerson table.

USE AdventureWorks2012;

GO

UPDATE Sales.SalesPerson

SET Bonus = 6000, CommissionPct = .10, SalesQuota = NULL;

GO

Limiting the Rows that Are Updated
Examples in this section demonstrate ways that you can use to limit the number of rows affected
by the UPDATE statement.

A. Using the WHERE clause
The following example uses the WHERE clause to specify which rows to update. The statement
updates the value in the Color column of the Production.Product table for all rows that have an

227

existing value of 'Red' in the Color column and have a value in the Name column that starts with
'Road-250'.

USE AdventureWorks2012;

GO

UPDATE Production.Product

SET Color = N'Metallic Red'

WHERE Name LIKE N'Road-250%' AND Color = N'Red';

GO

B. Using the TOP clause
The following examples use the TOP clause to limit the number of rows that are modified in an
UPDATE statement. When a TOP (n) clause is used with UPDATE, the update operation is
performed on a random selection of 'n' number of rows. The following example updates the
VacationHours column by 25 percent for 10 random rows in the Employee table.

USE AdventureWorks2012;

GO

UPDATE TOP (10) HumanResources.Employee

SET VacationHours = VacationHours * 1.25 ;

GO

If you must use TOP to apply updates in a meaningful chronology, you must use TOP together
with ORDER BY in a subselect statement. The following example updates the vacation hours of
the 10 employees with the earliest hire dates.

UPDATE HumanResources.Employee

SET VacationHours = VacationHours + 8

FROM (SELECT TOP 10 BusinessEntityID FROM HumanResources.Employee

 ORDER BY HireDate ASC) AS th

WHERE HumanResources.Employee.BusinessEntityID = th.BusinessEntityID;

GO

C. Using the WITH common_table_expression clause
The following example updates the PerAssemnblyQty value for all parts and components that are
used directly or indirectly to create the ProductAssemblyID 800. The common table expression
returns a hierarchical list of parts that are used directly to build ProductAssemblyID 800 and parts
that are used to build those components, and so on. Only the rows returned by the common table
expression are modified.

USE AdventureWorks2012;

GO

WITH Parts(AssemblyID, ComponentID, PerAssemblyQty, EndDate, ComponentLevel) AS

(

 SELECT b.ProductAssemblyID, b.ComponentID, b.PerAssemblyQty,

 b.EndDate, 0 AS ComponentLevel

228

 FROM Production.BillOfMaterials AS b

 WHERE b.ProductAssemblyID = 800

 AND b.EndDate IS NULL

 UNION ALL

 SELECT bom.ProductAssemblyID, bom.ComponentID, p.PerAssemblyQty,

 bom.EndDate, ComponentLevel + 1

 FROM Production.BillOfMaterials AS bom

 INNER JOIN Parts AS p

 ON bom.ProductAssemblyID = p.ComponentID

 AND bom.EndDate IS NULL

)

UPDATE Production.BillOfMaterials

SET PerAssemblyQty = c.PerAssemblyQty * 2

FROM Production.BillOfMaterials AS c

JOIN Parts AS d ON c.ProductAssemblyID = d.AssemblyID

WHERE d.ComponentLevel = 0;

D. Using the WHERE CURRENT OF clause
The following example uses the WHERE CURRENT OF clause to update only the row on which
the cursor is positioned. When a cursor is based on a join, only the table_name specified in the
UPDATE statement is modified. Other tables participating in the cursor are not affected.

USE AdventureWorks2012;

GO

DECLARE complex_cursor CURSOR FOR

 SELECT a.BusinessEntityID

 FROM HumanResources.EmployeePayHistory AS a

 WHERE RateChangeDate <>

 (SELECT MAX(RateChangeDate)

 FROM HumanResources.EmployeePayHistory AS b

 WHERE a.BusinessEntityID = b.BusinessEntityID) ;

OPEN complex_cursor;

FETCH FROM complex_cursor;

UPDATE HumanResources.EmployeePayHistory

SET PayFrequency = 2

WHERE CURRENT OF complex_cursor;

CLOSE complex_cursor;

DEALLOCATE complex_cursor;

GO

229

Setting Column Values
Examples in this section demonstrate updating columns by using computed values, subqueries,
and DEFAULT values.

A. Specifying a computed value
The following examples uses computed values in an UPDATE statement. The example doubles
the value in the ListPrice column for all rows in the Product table.

USE AdventureWorks2012 ;

GO

UPDATE Production.Product

SET ListPrice = ListPrice * 2;

GO

B. Specifying a compound operator
The following example uses the variable @NewPrice to increment the price of all red bicycles by
taking the current price and adding 10 to it.

USE AdventureWorks2012;

GO

DECLARE @NewPrice int = 10;

UPDATE Production.Product

SET ListPrice += @NewPrice

WHERE Color = N'Red';

GO

The following example uses the compound operator += to append the data ' - tool
malfunction' to the existing value in the column Name for rows that have a ScrapReasonID between
10 and 12.

USE AdventureWorks2012;

GO

UPDATE Production.ScrapReason

SET Name += ' - tool malfunction'

WHERE ScrapReasonID BETWEEN 10 and 12;

C. Specifying a subquery in the SET clause
The following example uses a subquery in the SET clause to determine the value that is used to
update the column. The subquery must return only a scalar value (that is, a single value per row).
The example modifies the SalesYTD column in the SalesPerson table to reflect the most recent
sales recorded in the SalesOrderHeader table. The subquery aggregates the sales for each
salesperson in the UPDATE statement.

USE AdventureWorks2012;

GO

UPDATE Sales.SalesPerson

SET SalesYTD = SalesYTD +

230

 (SELECT SUM(so.SubTotal)

 FROM Sales.SalesOrderHeader AS so

 WHERE so.OrderDate = (SELECT MAX(OrderDate)

 FROM Sales.SalesOrderHeader AS so2

 WHERE so2.SalesPersonID = so.SalesPersonID)

 AND Sales.SalesPerson.BusinessEntityID = so.SalesPersonID

 GROUP BY so.SalesPersonID);

GO

D. Updating rows using DEFAULT values
The following example sets the CostRate column to its default value (0.00) for all rows that have a
CostRate value greater than 20.00.

USE AdventureWorks2012;

GO

UPDATE Production.Location

SET CostRate = DEFAULT

WHERE CostRate > 20.00;

Specifying Target Objects Other Than Standard Tables
Examples in this section demonstrate how to update rows by specifying a view, table alias, or
table variable.

A. Specifying a view as the target object
The following example updates rows in a table by specifying a view as the target object. The view
definition references multiple tables, however, the UPDATE statement succeeds because it
references columns from only one of the underlying tables. The UPDATE statement would fail if
columns from both tables were specified. For more information, see Modifying Data Through a
View.

USE AdventureWorks2012;

GO

UPDATE Person.vStateProvinceCountryRegion

SET CountryRegionName = 'United States of America'

WHERE CountryRegionName = 'United States';

B. Specifying a table alias as the target object
The follow example updates rows in the table Production.ScrapReason. The table alias assigned
to ScrapReason in the FROM clause is specified as the target object in the UPDATE clause.

USE AdventureWorks2012;

GO

UPDATE sr

SET sr.Name += ' - tool malfunction'

FROM Production.ScrapReason AS sr

http://msdn.microsoft.com/en-us/library/410e2812-4ebe-48b2-b95f-c7784f1c4336
http://msdn.microsoft.com/en-us/library/410e2812-4ebe-48b2-b95f-c7784f1c4336

231

JOIN Production.WorkOrder AS wo

 ON sr.ScrapReasonID = wo.ScrapReasonID

 AND wo.ScrappedQty > 300;

C. Specifying a table variable as the target object
The following example updates rows in a table variable.

USE AdventureWorks2012;

GO

-- Create the table variable.

DECLARE @MyTableVar table(

 EmpID int NOT NULL,

 NewVacationHours int,

 ModifiedDate datetime);

-- Populate the table variable with employee ID values from HumanResources.Employee.

INSERT INTO @MyTableVar (EmpID)

 SELECT BusinessEntityID FROM HumanResources.Employee;

-- Update columns in the table variable.

UPDATE @MyTableVar

SET NewVacationHours = e.VacationHours + 20,

 ModifiedDate = GETDATE()

FROM HumanResources.Employee AS e

WHERE e.BusinessEntityID = EmpID;

-- Display the results of the UPDATE statement.

SELECT EmpID, NewVacationHours, ModifiedDate FROM @MyTableVar

ORDER BY EmpID;

GO

Updating Data Based on Data From Other Tables
Examples in this section demonstrate methods of updating rows from one table based on
information in another table.

A. Using the UPDATE statement with information from another table
The following example modifies the SalesYTD column in the SalesPerson table to reflect the most
recent sales recorded in the SalesOrderHeader table.

USE AdventureWorks2012;

GO

UPDATE Sales.SalesPerson

SET SalesYTD = SalesYTD + SubTotal

FROM Sales.SalesPerson AS sp

JOIN Sales.SalesOrderHeader AS so

232

 ON sp.BusinessEntityID = so.SalesPersonID

 AND so.OrderDate = (SELECT MAX(OrderDate)

 FROM Sales.SalesOrderHeader

 WHERE SalesPersonID = sp.BusinessEntityID);

GO

The previous example assumes that only one sale is recorded for a specified salesperson on a
specific date and that updates are current. If more than one sale for a specified salesperson can
be recorded on the same day, the example shown does not work correctly. The example runs
without error, but each SalesYTD value is updated with only one sale, regardless of how many
sales actually occurred on that day. This is because a single UPDATE statement never updates
the same row two times.

In the situation in which more than one sale for a specified salesperson can occur on the same
day, all the sales for each sales person must be aggregated together within the UPDATE statement,
as shown in the following example:

USE AdventureWorks2012;

GO

UPDATE Sales.SalesPerson

SET SalesYTD = SalesYTD +

 (SELECT SUM(so.SubTotal)

 FROM Sales.SalesOrderHeader AS so

 WHERE so.OrderDate = (SELECT MAX(OrderDate)

 FROM Sales.SalesOrderHeader AS so2

 WHERE so2.SalesPersonID = so.SalesPersonID)

 AND Sales.SalesPerson.BusinessEntityID = so.SalesPersonID

 GROUP BY so.SalesPersonID);

GO

Updating Rows in a Remote Table
Examples in this section demonstrate how to update rows in a remote target table by using
a linked server or a rowset function to reference the remote table.

A. Updating data in a remote table by using a linked server
The following example updates a table on a remote server. The example begins by creating a link
to the remote data source by using sp_addlinkedserver. The linked server name, MyLinkServer, is
then specified as part of the four-part object name in the form server.catalog.schema.object. Note
that you must specify a valid server name for @datasrc.

USE master;

GO

-- Create a link to the remote data source.

-- Specify a valid server name for @datasrc as 'server_name' or

'server_name\instance_name'.

http://msdn.microsoft.com/en-us/library/fed3adb0-4c15-4a1a-8acd-1b184aff558f
http://msdn.microsoft.com/en-us/library/ac24d700-3144-4ab5-9fa8-8c014001cc71
http://msdn.microsoft.com/en-us/library/fed3adb0-4c15-4a1a-8acd-1b184aff558f

233

EXEC sp_addlinkedserver @server = N'MyLinkServer',

 @srvproduct = N' ',

 @provider = N'SQLNCLI10',

 @datasrc = N'<server name>',

 @catalog = N'AdventureWorks2012';

GO

USE AdventureWorks2012;

GO

-- Specify the remote data source using a four-part name

-- in the form linked_server.catalog.schema.object.

UPDATE MyLinkServer.AdventureWorks2012.HumanResources.Department

SET GroupName = N'Public Relations'

WHERE DepartmentID = 4;

B. Updating data in a remote table by using the OPENQUERY function
The following example updates a row in a remote table by specifying the OPENQUERYrowset
function. The linked server name created in the previous example is used in this example.

UPDATE OPENQUERY (MyLinkServer, 'SELECT GroupName FROM HumanResources.Department WHERE

DepartmentID = 4')

SET GroupName = 'Sales and Marketing';

C. Updating data in a remote table by using the OPENDATASOURCE function
The following example inserts a row into a remote table by specifying
the OPENDATASOURCErowset function. Specify a valid server name for the data source by
using the format server_name or server_name\instance_name. You may need to configure the
instance of SQL Server for Ad Hoc Distributed Queries. For more information, see Ad Hoc
Distributed Queries Option.

UPDATE OPENQUERY (MyLinkServer, 'SELECT GroupName FROM HumanResources.Department WHERE

DepartmentID = 4')

SET GroupName = 'Sales and Marketing';

Updating Large Object Data Types
Examples in this section demonstrate methods of updating values in columns that are defined
with large object (LOB) data types.

A. Using UPDATE with .WRITE to modify data in an nvarchar(max) column
The following example uses the .WRITE clause to update a partial value in DocumentSummary, an
nvarchar(max) column in the Production.Document table. The word components is replaced with
the word features by specifying the replacement word, the starting location (offset) of the word to
be replaced in the existing data, and the number of characters to be replaced (length). The

http://msdn.microsoft.com/en-us/library/b805e976-f025-4be1-bcb0-3a57b0c57717
http://msdn.microsoft.com/en-us/library/5510b846-9cde-4687-8798-be9a273aad31
http://msdn.microsoft.com/en-us/library/5b982015-e196-44c3-83b8-275fb9d769b2
http://msdn.microsoft.com/en-us/library/5b982015-e196-44c3-83b8-275fb9d769b2

234

example also uses the OUTPUT clause to return the before and after images of the
DocumentSummary column to the @MyTableVar table variable.

USE AdventureWorks2012;

GO

DECLARE @MyTableVar table (

 SummaryBefore nvarchar(max),

 SummaryAfter nvarchar(max));

UPDATE Production.Document

SET DocumentSummary .WRITE (N'features',28,10)

OUTPUT deleted.DocumentSummary,

 inserted.DocumentSummary

 INTO @MyTableVar

WHERE Title = N'Front Reflector Bracket Installation';

SELECT SummaryBefore, SummaryAfter

FROM @MyTableVar;

GO

B. Using UPDATE with .WRITE to add and remove data in an nvarchar(max) column
The following examples add and remove data from an nvarchar(max) column that has a value
currently set to NULL. Because the .WRITE clause cannot be used to modify a NULL column, the
column is first populated with temporary data. This data is then replaced with the correct data by
using the .WRITE clause. The additional examples append data to the end of the column value,
remove (truncate) data from the column and, finally, remove partial data from the column. The
SELECT statements display the data modification generated by each UPDATE statement.

USE AdventureWorks2012;

GO

-- Replacing NULL value with temporary data.

UPDATE Production.Document

SET DocumentSummary = N'Replacing NULL value'

WHERE Title = N'Crank Arm and Tire Maintenance';

GO

SELECT DocumentSummary

FROM Production.Document

WHERE Title = N'Crank Arm and Tire Maintenance';

GO

-- Replacing temporary data with the correct data. Setting @Length to NULL

-- truncates all existing data from the @Offset position.

UPDATE Production.Document

SET DocumentSummary .WRITE(N'Carefully inspect and maintain the tires and crank

arms.',0,NULL)

WHERE Title = N'Crank Arm and Tire Maintenance';

GO

SELECT DocumentSummary

235

FROM Production.Document

WHERE Title = N'Crank Arm and Tire Maintenance';

GO

-- Appending additional data to the end of the column by setting

-- @Offset to NULL.

UPDATE Production.Document

SET DocumentSummary .WRITE (N' Appending data to the end of the column.', NULL, 0)

WHERE Title = N'Crank Arm and Tire Maintenance';

GO

SELECT DocumentSummary

FROM Production.Document

WHERE Title = N'Crank Arm and Tire Maintenance';

GO

-- Removing all data from @Offset to the end of the existing value by

-- setting expression to NULL.

UPDATE Production.Document

SET DocumentSummary .WRITE (NULL, 56, 0)

WHERE Title = N'Crank Arm and Tire Maintenance';

GO

SELECT DocumentSummary

FROM Production.Document

WHERE Title = N'Crank Arm and Tire Maintenance';

GO

-- Removing partial data beginning at position 9 and ending at

-- position 21.

UPDATE Production.Document

SET DocumentSummary .WRITE ('',9, 12)

WHERE Title = N'Crank Arm and Tire Maintenance';

GO

SELECT DocumentSummary

FROM Production.Document

WHERE Title = N'Crank Arm and Tire Maintenance';

GO

C. Using UPDATE with OPENROWSET to modify a varbinary(max) column
The following example replaces an existing image stored in a varbinary(max) column with a new
image. The OPENROWSET function is used with the BULK option to load the image into the
column. This example assumes that a file named Tires.jpg exists in the specified file path.

USE AdventureWorks2012;

GO

UPDATE Production.ProductPhoto

SET ThumbNailPhoto = (

 SELECT *

http://msdn.microsoft.com/en-us/library/f47eda43-33aa-454d-840a-bb15a031ca17

236

 FROM OPENROWSET(BULK 'c:\Tires.jpg', SINGLE_BLOB) AS x)

WHERE ProductPhotoID = 1;

GO

D. Using UPDATE to modify FILESTREAM data
The following example uses the UPDATE statement to modify the data in the file system file. We
do not recommend this method for streaming large amounts of data to a file. Use the appropriate
Win32 interfaces. The following example replaces any text in the file record with the text Xray 1.
For more information, see FILESTREAM (SQL Server).

UPDATE Archive.dbo.Records

SET [Chart] = CAST('Xray 1' as varbinary(max))

WHERE [SerialNumber] = 2;

Updating User-defined Types
The following examples modify values in CLR user-defined type (UDT) columns. Three methods
are demonstrated. For more information about user-defined columns, see CLR User-Defined
Types.

A. Using a system data type
You can update a UDT by supplying a value in a SQL Server system data type, as long as the
user-defined type supports implicit or explicit conversion from that type. The following example
shows how to update a value in a column of user-defined type Point, by explicitly converting from
a string.

UPDATE dbo.Cities

SET Location = CONVERT(Point, '12.3:46.2')

WHERE Name = 'Anchorage';

B. Invoking a method
You can update a UDT by invoking a method, marked as a mutator, of the user-defined type, to
perform the update. The following example invokes a mutator method of type Point named SetXY.
This updates the state of the instance of the type.

UPDATE dbo.Cities

SET Location.SetXY(23.5, 23.5)

WHERE Name = 'Anchorage';

C. Modifying the value of a property or data member
You can update a UDT by modifying the value of a registered property or public data member of
the user-defined type. The expression supplying the value must be implicitly convertible to the
type of the property. The following example modifies the value of property X of user-defined type
Point.

UPDATE dbo.Cities

SET Location.X = 23.5

http://msdn.microsoft.com/en-us/library/9a5a8166-bcbe-4680-916c-26276253eafa
http://msdn.microsoft.com/en-us/library/27c4889b-c543-47a8-a630-ad06804f92df
http://msdn.microsoft.com/en-us/library/27c4889b-c543-47a8-a630-ad06804f92df

237

WHERE Name = 'Anchorage';

Overriding the Default Behavior of the Query Optimizer by Using Hints
Examples in this section demonstrate how to use table and query hints to temporarily override the
default behavior of the query optimizer when processing the UPDATE statement.

Because the SQL Server query optimizer typically selects the best execution plan for a
query, we recommend that hints be used only as a last resort by experienced developers
and database administrators.

A. Specifying a table hint
The following example specifies the table hint TABLOCK. This hint specifies that a shared lock is
taken on the table Production.Product and held until the end of the UPDATE statement.

USE AdventureWorks2012;

GO

UPDATE Production.Product

WITH (TABLOCK)

SET ListPrice = ListPrice * 1.10

WHERE ProductNumber LIKE 'BK-%';

GO

B. Specifying a query hint
The following example specifies the query hintOPTIMIZE FOR (@variable) in the UPDATE
statement. This hint instructs the query optimizer to use a particular value for a local variable
when the query is compiled and optimized. The value is used only during query optimization, and
not during query execution.

USE AdventureWorks2012;

GO

CREATE PROCEDURE Production.uspProductUpdate

@Product nvarchar(25)

AS

SET NOCOUNT ON;

UPDATE Production.Product

SET ListPrice = ListPrice * 1.10

WHERE ProductNumber LIKE @Product

OPTION (OPTIMIZE FOR (@Product = 'BK-%'));

GO

-- Execute the stored procedure

EXEC Production.uspProductUpdate 'BK-%';

Caution

238

Capturing the Results of the UPDATE Statement
Examples in this section demonstrate how to use the OUTPUT Clause to return information from,
or expressions based on, each row affected by an UPDATE statement. These results can be
returned to the processing application for use in such things as confirmation messages, archiving,
and other such application requirements.

A. Using UPDATE with the OUTPUT clause
The following example updates the column VacationHours in the Employee table by 25 percent for
the first 10 rows and also sets the value in the column ModifiedDate to the current date. The
OUTPUT clause returns the value of VacationHours that exists before applying the UPDATE statement
in the deleted.VacationHours column and the updated value in the inserted.VacationHours
column to the @MyTableVar table variable.

Two SELECT statements follow that return the values in @MyTableVar and the results of the update
operation in the Employee table. For more examples using the OUTPUT clause, see OUTPUT
Clause (Transact-SQL).

USE AdventureWorks2012;

GO

DECLARE @MyTableVar table(

 EmpID int NOT NULL,

 OldVacationHours int,

 NewVacationHours int,

 ModifiedDate datetime);

UPDATE TOP (10) HumanResources.Employee

SET VacationHours = VacationHours * 1.25,

 ModifiedDate = GETDATE()

OUTPUT inserted.BusinessEntityID,

 deleted.VacationHours,

 inserted.VacationHours,

 inserted.ModifiedDate

INTO @MyTableVar;

--Display the result set of the table variable.

SELECT EmpID, OldVacationHours, NewVacationHours, ModifiedDate

FROM @MyTableVar;

GO

--Display the result set of the table.

SELECT TOP (10) BusinessEntityID, VacationHours, ModifiedDate

FROM HumanResources.Employee;

GO

Using UPDATE in other statements
Examples in this section demonstrate how to use UPDATE in other statements.

239

A. Using UPDATE in a stored procedure
The following example uses an UPDATE statement in a stored procedure. The procedure takes
one input parameter, @NewHours and one output parameter @RowCount. The @NewHours parameter
value is used in the UPDATE statement to update the column VacationHours in the table
HumanResources.Employee. The @RowCount output parameter is used to return the number of rows
affected to a local variable. The CASE expression is used in the SET clause to conditionally
determine the value that is set for VacationHours. When the employee is paid hourly
(SalariedFlag = 0), VacationHours is set to the current number of hours plus the value specified in
@NewHours; otherwise, VacationHours is set to the value specified in @NewHours.

USE AdventureWorks2012;

GO

CREATE PROCEDURE HumanResources.Update_VacationHours

@NewHours smallint

AS

SET NOCOUNT ON;

UPDATE HumanResources.Employee

SET VacationHours =

 (CASE

 WHEN SalariedFlag = 0 THEN VacationHours + @NewHours

 ELSE @NewHours

 END

)

WHERE CurrentFlag = 1;

GO

EXEC HumanResources.Update_VacationHours 40;

B. Using UPDATE in a TRY…CATCH Block
The following example uses an UPDATE statement in a TRY…CATCH block to handle execution
errors that may occur during the an update operation.

USE AdventureWorks2012;

GO

BEGIN TRANSACTION;

BEGIN TRY

 -- Intentionally generate a constraint violation error.

 UPDATE HumanResources.Department

 SET Name = N'MyNewName'

 WHERE DepartmentID BETWEEN 1 AND 2;

END TRY

BEGIN CATCH

 SELECT

 ERROR_NUMBER() AS ErrorNumber

240

 ,ERROR_SEVERITY() AS ErrorSeverity

 ,ERROR_STATE() AS ErrorState

 ,ERROR_PROCEDURE() AS ErrorProcedure

 ,ERROR_LINE() AS ErrorLine

 ,ERROR_MESSAGE() AS ErrorMessage;

 IF @@TRANCOUNT > 0

 ROLLBACK TRANSACTION;

END CATCH;

IF @@TRANCOUNT > 0

 COMMIT TRANSACTION;

GO

See Also
CREATE TABLE (Transact-SQL)

CREATE TRIGGER (Transact-SQL)

Cursors (Transact-SQL)

DELETE (Transact-SQL)

INSERT (Transact-SQL)

Text and Image Functions (Transact-SQL)

WITH common_table_expression (Transact-SQL)

FILESTREAM (SQL Server)

UPDATETEXT
Updates an existing text, ntext, or image field. Use UPDATETEXT to change only a part of a
text, ntext, or image column in place. Use WRITETEXT to update and replace a whole text,
ntext, or image field.

This feature will be removed in a future version of Microsoft SQL Server. Avoid using this
feature in new development work, and plan to modify applications that currently use this
feature. Use the large-value data types and the .WRITE clause of the UPDATE statement
instead.

Transact-SQL Syntax Conventions

Syntax

Important

http://msdn.microsoft.com/en-us/library/1e068443-b9ea-486a-804f-ce7b6e048e8b
http://msdn.microsoft.com/en-us/library/edeced03-decd-44c3-8c74-2c02f801d3e7
http://msdn.microsoft.com/en-us/library/63000023-54fc-4efc-a30f-fb4d4db73aae
http://msdn.microsoft.com/en-us/library/b9c70488-1bf5-4068-a003-e548ccbc5199
http://msdn.microsoft.com/en-us/library/9a5a8166-bcbe-4680-916c-26276253eafa

241

UPDATETEXT [BULK] { table_name.dest_column_name dest_text_ptr }

 { NULL | insert_offset }

 { NULL | delete_length }

 [WITH LOG]

 [inserted_data

 | { table_name.src_column_namesrc_text_ptr }]

Arguments
BULK

Enables upload tools to upload a binary data stream. The stream must be provided by
the tool at the TDS protocol level. When the data stream is not present the query
processor ignores the BULK option.

Important
We recommend that the BULK option not be used in SQL Server-based applications. This option
might be changed or removed in a future version of SQL Server.

table_name .dest_column_name

Is the name of the table and text, ntext, or image column to be updated. Table names
and column names must comply with the rules for identifiers. Specifying the database
name and owner names is optional.

dest_text_ptr

Is a text pointer value (returned by the TEXTPTR function) that points to the text, ntext,
or image data to be updated. dest_text_ptr must be binary(16).

insert_offset

Is the zero-based starting position for the update. For text or image columns,
insert_offset is the number of bytes to skip from the start of the existing column before
inserting new data. For ntext columns, insert_offsetis the number of characters (each
ntext character uses 2 bytes). The existing text, ntext, or image data starting at this
zero-based starting position is shifted to the right to make room for the new data. A
value of 0 inserts the new data at the beginning of the existing data. A value of NULL
appends the new data to the existing data value.

delete_length

Is the length of data to delete from the existing text, ntext, or image column, starting at
the insert_offset position. The delete_lengthvalue is specified in bytes for text and

242

image columns and in characters for ntext columns. Each ntext character uses 2
bytes. A value of 0 deletes no data. A value of NULL deletes all data from the
insert_offset position to the end of the existing text or image column.

WITH LOG

Logging is determined by the recovery model in effect for the database.

inserted_data

Is the data to be inserted into the existing text, ntext, or image column at the
insert_offsetlocation. This is a single char, nchar, varchar, nvarchar, binary,
varbinary, text, ntext, or image value. inserted_data can be a literal or a variable.

table_name.src_column_name

Is the name of the table and text, ntext, or image column used as the source of the
inserted data. Table names and column names must comply with the rules for
identifiers.

src_text_ptr

Is a text pointer value (returned by the TEXTPTR function) that points to a text, ntext,
or image column used as the source of the inserted data.

Note
scr_text_ptrvalue must not be the same as dest_text_ptrvalue.

Remarks
Newly inserted data can be a single inserted_data constant, table name, column name, or text
pointer.

Update action UPDATETEXT parameters

To replace existing data Specify a nonnullinsert_offset value, a nonzero
delete_length value, and the new data to be
inserted.

To delete existing data Specify a nonnullinsert_offset value and a
nonzero delete_length. Do not specify new data
to be inserted.

To insert new data Specify the insert_offset value, a delete_length

243

Update action UPDATETEXT parameters

of 0, and the new data to be inserted.

For best performance we recommend that text, ntext and image data be inserted or updated in
chunks sizes that are multiples of 8,040 bytes.

In SQL Server, in-row text pointers to text, ntext, or image data may exist but may not be valid.
For information about the text in row option, see sp_tableoption. For information about
invalidating text pointers, see sp_invalidate_textptr.

To initialize text columns to NULL, use WRITETEXT; UPDATETEXT initializes text columns to
an empty string.

Permissions
Requires UPDATE permission on the specified table.

Examples
The following example puts the text pointer into the local variable @ptrval, and then uses
UPDATETEXT to update a spelling error.

To run this example, you must install the pubs database.

USE pubs;

GO

ALTER DATABASE pubs SET RECOVERY SIMPLE;

GO

DECLARE @ptrval binary(16);

SELECT @ptrval = TEXTPTR(pr_info)

 FROM pub_info pr, publishers p

 WHERE p.pub_id = pr.pub_id

 AND p.pub_name = 'New Moon Books'

UPDATETEXT pub_info.pr_info @ptrval 88 1 'b';

GO

ALTER DATABASE pubs SET RECOVERY FULL;

GO

See Also
READTEXT

TEXTPTR

WRITETEXT

Note

http://msdn.microsoft.com/en-us/library/0a57462c-1057-4c7d-bce3-852cc898341d
http://msdn.microsoft.com/en-us/library/dd9920e1-7064-4c05-93d8-9303103fa1d6
http://msdn.microsoft.com/en-us/library/2672b8cb-f747-46f3-9358-9b49b3583b8e

244

WHERE
Specifies the search condition for the rows returned by the query.

Transact-SQL Syntax Conventions

Syntax

[WHERE <search_condition>]

Arguments
<search_condition>

Defines the condition to be met for the rows to be returned. There is no limit to the
number of predicates that can be included in a search condition. For more information
about search conditions and predicates, see Search Condition.

Examples
The following examples show how to use some common search conditions in the WHERE clause.

A. Finding a row by using a simple equality
USE AdventureWorks2012

GO

SELECT ProductID, Name

FROM Production.Product

WHERE Name = 'Blade' ;

GO

B. Finding rows that contain a value as a part of a string
SELECT ProductID, Name, Color

FROM Production.Product

WHERE Name LIKE ('%Frame%');

GO

C. Finding rows by using a comparison operator
SELECT ProductID, Name

FROM Production.Product

WHERE ProductID <= 12 ;

GO

245

D. Finding rows that meet any of three conditions
SELECT ProductID, Name

FROM Production.Product

WHERE ProductID = 2

OR ProductID = 4

OR Name = 'Spokes' ;

GO

E. Finding rows that must meet several conditions
SELECT ProductID, Name, Color

FROM Production.Product

WHERE Name LIKE ('%Frame%')

AND Name LIKE ('HL%')

AND Color = 'Red' ;

GO

F. Finding rows that are in a list of values
SELECT ProductID, Name, Color

FROM Production.Product

WHERE Name IN ('Blade', 'Crown Race', 'Spokes');

GO

G. Finding rows that have a value between two values
SELECT ProductID, Name, Color

FROM Production.Product

WHERE ProductID BETWEEN 725 AND 734;

GO

See Also
DELETE

Predicate

Search Condition

SELECT

UPDATE

MERGE

http://msdn.microsoft.com/en-us/library/ddbc530c-f44d-4551-9ca3-3430258eb6c0

246

WITH common_table_expression
Specifies a temporary named result set, known as a common table expression (CTE). This is
derived from a simple query and defined within the execution scope of a single SELECT,
INSERT, UPDATE, or DELETE statement. This clause can also be used in a CREATE VIEW
statement as part of its defining SELECT statement. A common table expression can include
references to itself. This is referred to as a recursive common table expression.

Transact-SQL Syntax Conventions

Syntax

[WITH <common_table_expression> [,...n]]

<common_table_expression>::=

 expression_name [(column_name [,...n])]

 AS

 (CTE_query_definition)

Arguments
expression_name

Is a valid identifier for the common table expression. expression_name must be
different from the name of any other common table expression defined in the same
WITH <common_table_expression> clause, but expression_name can be the same as
the name of a base table or view. Any reference to expression_name in the query uses
the common table expression and not the base object.

column_name

Specifies a column name in the common table expression. Duplicate names within a
single CTE definition are not allowed. The number of column names specified must
match the number of columns in the result set of the CTE_query_definition. The list of
column names is optional only if distinct names for all resulting columns are supplied in
the query definition.

CTE_query_definition

Specifies a SELECT statement whose result set populates the common table
expression. The SELECT statement for CTE_query_definition must meet the same
requirements as for creating a view, except a CTE cannot define another CTE. For

247

more information, see the Remarks section and CREATE VIEW (Transact-SQL).

If more than one CTE_query_definition is defined, the query definitions must be joined
by one of these set operators: UNION ALL, UNION, EXCEPT, or INTERSECT.

Remarks

Guidelines for Creating and Using Common Table Expressions
The following guidelines apply to nonrecursive common table expressions. For guidelines that
apply to recursive common table expressions, see "Guidelines for Defining and Using Recursive
Common Table Expressions" that follows.

• A CTE must be followed by a single SELECT, INSERT, UPDATE, or DELETE statement that
references some or all the CTE columns. A CTE can also be specified in a CREATE VIEW
statement as part of the defining SELECT statement of the view.

• Multiple CTE query definitions can be defined in a nonrecursive CTE. The definitions must be
combined by one of these set operators: UNION ALL, UNION, INTERSECT, or EXCEPT.

• A CTE can reference itself and previously defined CTEs in the same WITH clause. Forward
referencing is not allowed.

• Specifying more than one WITH clause in a CTE is not allowed. For example, if a
CTE_query_definition contains a subquery, that subquery cannot contain a nested WITH
clause that defines another CTE.

• The following clauses cannot be used in the CTE_query_definition:

• ORDER BY (except when a TOP clause is specified)

• INTO

• OPTION clause with query hints

• FOR XML

• FOR BROWSE

• When a CTE is used in a statement that is part of a batch, the statement before it must be
followed by a semicolon.

• A query referencing a CTE can be used to define a cursor.

• Tables on remote servers can be referenced in the CTE.

• When executing a CTE, any hints that reference a CTE may conflict with other hints that are
discovered when the CTE accesses its underlying tables, in the same manner as hints that
reference views in queries. When this occurs, the query returns an error.

Guidelines for Defining and Using Recursive Common Table Expressions
The following guidelines apply to defining a recursive common table expression:

http://msdn.microsoft.com/en-us/library/aecc2f73-2ab5-4db9-b1e6-2f9e3c601fb9

248

• The recursive CTE definition must contain at least two CTE query definitions, an anchor
member and a recursive member. Multiple anchor members and recursive members can be
defined; however, all anchor member query definitions must be put before the first recursive
member definition. All CTE query definitionsare anchor members unless they reference the
CTE itself.

• Anchor members must be combined by one of these set operators: UNION ALL, UNION,
INTERSECT, or EXCEPT. UNION ALL is the only set operator allowed between the last
anchor member and first recursive member, and when combining multiple recursive
members.

• The number of columns in the anchor and recursive members must be the same.

• The data type of a column in the recursive member must be the same as the data type of the
corresponding column in the anchor member.

• The FROM clause of a recursive member must refer only one time to the CTE
expression_name.

• The following items are not allowed in the CTE_query_definition of a recursive member:

• SELECT DISTINCT

• GROUP BY

• PIVOT (When the database compatibility level is 110. See Breaking Changes to
Database Engine Features in SQL Server "Denali".)

• HAVING

• Scalar aggregation

• TOP

• LEFT, RIGHT, OUTER JOIN (INNER JOIN is allowed)

• Subqueries

• A hint applied to a recursive reference to a CTE inside a CTE_query_definition.

The following guidelines apply to using a recursive common table expression:

• All columns returned by the recursive CTE are nullable regardless of the nullability of the
columns returned by the participating SELECT statements.

• An incorrectly composed recursive CTE may cause an infinite loop. For example, if the
recursive member query definition returns the same values for both the parent and child
columns, an infinite loop is created. To prevent an infinite loop, you can limit the number of
recursion levels allowed for a particular statement by using the MAXRECURSION hint and a
value between 0 and 32,767 in the OPTION clause of the INSERT, UPDATE, DELETE, or
SELECT statement. This lets you control the execution of the statement until you resolve the
code problem that is creating the loop. The server-wide default is 100. When 0 is specified,
no limit is applied. Only one MAXRECURSION value can be specified per statement. For
more information, see Query Hint.

• A view that contains a recursive common table expression cannot be used to update data.

http://msdn.microsoft.com/en-us/library/47edefbd-a09b-4087-937a-453cd5c6e061
http://msdn.microsoft.com/en-us/library/47edefbd-a09b-4087-937a-453cd5c6e061

249

• Cursors may be defined on queries using CTEs. The CTE is the select_statement argument
that defines the result set of the cursor. Only fast forward-only and static (snapshot) cursors
are allowed for recursive CTEs. If another cursor type is specified in a recursive CTE, the
cursor type is converted to static.

• Tables on remote servers may be referenced in the CTE. If the remote server is referenced in
the recursive member of the CTE, a spool is created for each remote table so the tables can
be repeatedly accessed locally. If it is a CTE query, Index Spool/Lazy Spools is displayed in
the query plan and will have the additional WITH STACK predicate. This is one way to
confirm proper recursion.

• Analytic and aggregate functions in the recursive part of the CTE are applied to the set for the
current recursion level and not to the set for the CTE. Functions like ROW_NUMBER operate
only on the subset of data passed to them by the current recursion level and not the entire set
of data pased to the recursive part of the CTE. For more information, see J. Using analytical
functions in a recursive CTE.

Examples

A. Creating a simple common table expression
The following example shows the total number of sales orders per year for each sales
representative at Adventure Works Cycles.

USE AdventureWorks2012;

GO

-- Define the CTE expression name and column list.

WITH Sales_CTE (SalesPersonID, SalesOrderID, SalesYear)

AS

-- Define the CTE query.

(

 SELECT SalesPersonID, SalesOrderID, YEAR(OrderDate) AS SalesYear

 FROM Sales.SalesOrderHeader

 WHERE SalesPersonID IS NOT NULL

)

-- Define the outer query referencing the CTE name.

SELECT SalesPersonID, COUNT(SalesOrderID) AS TotalSales, SalesYear

FROM Sales_CTE

GROUP BY SalesYear, SalesPersonID

ORDER BY SalesPersonID, SalesYear;

GO

B. Using a common table expression to limit counts and report averages
The following example shows the average number of sales orders for all years for the sales
representatives.

250

WITH Sales_CTE (SalesPersonID, NumberOfOrders)

AS

(

 SELECT SalesPersonID, COUNT(*)

 FROM Sales.SalesOrderHeader

 WHERE SalesPersonID IS NOT NULL

 GROUP BY SalesPersonID

)

SELECT AVG(NumberOfOrders) AS "Average Sales Per Person"

FROM Sales_CTE;

GO

C. Using a recursive common table expression to display multiple levels of
recursion
The following example shows the hierarchical list of managers and the employees who report to
them. The example begins by creating and populating the dbo.MyEmployees table.

-- Create an Employee table.

CREATE TABLE dbo.MyEmployees

(

 EmployeeID smallint NOT NULL,

 FirstName nvarchar(30) NOT NULL,

 LastName nvarchar(40) NOT NULL,

 Title nvarchar(50) NOT NULL,

 DeptID smallint NOT NULL,

 ManagerID int NULL,

 CONSTRAINT PK_EmployeeID PRIMARY KEY CLUSTERED (EmployeeID ASC)

);

-- Populate the table with values.

INSERT INTO dbo.MyEmployees VALUES

 (1, N'Ken', N'Sánchez', N'Chief Executive Officer',16,NULL)

,(273, N'Brian', N'Welcker', N'Vice President of Sales',3,1)

,(274, N'Stephen', N'Jiang', N'North American Sales Manager',3,273)

,(275, N'Michael', N'Blythe', N'Sales Representative',3,274)

,(276, N'Linda', N'Mitchell', N'Sales Representative',3,274)

,(285, N'Syed', N'Abbas', N'Pacific Sales Manager',3,273)

,(286, N'Lynn', N'Tsoflias', N'Sales Representative',3,285)

,(16, N'David',N'Bradley', N'Marketing Manager', 4, 273)

,(23, N'Mary', N'Gibson', N'Marketing Specialist', 4, 16);

USE AdventureWorks2012;

GO

WITH DirectReports(ManagerID, EmployeeID, Title, EmployeeLevel) AS

251

(

 SELECT ManagerID, EmployeeID, Title, 0 AS EmployeeLevel

 FROM dbo.MyEmployees

 WHERE ManagerID IS NULL

 UNION ALL

 SELECT e.ManagerID, e.EmployeeID, e.Title, EmployeeLevel + 1

 FROM dbo.MyEmployees AS e

 INNER JOIN DirectReports AS d

 ON e.ManagerID = d.EmployeeID

)

SELECT ManagerID, EmployeeID, Title, EmployeeLevel

FROM DirectReports

ORDER BY ManagerID;

GO

D. Using a recursive common table expression to display two levels of
recursion
The following example shows managers and the employees reporting to them. The number of
levels returned is limited to two.

USE AdventureWorks2012;

GO

WITH DirectReports(ManagerID, EmployeeID, Title, EmployeeLevel) AS

(

 SELECT ManagerID, EmployeeID, Title, 0 AS EmployeeLevel

 FROM dbo.MyEmployees

 WHERE ManagerID IS NULL

 UNION ALL

 SELECT e.ManagerID, e.EmployeeID, e.Title, EmployeeLevel + 1

 FROM dbo.MyEmployees AS e

 INNER JOIN DirectReports AS d

 ON e.ManagerID = d.EmployeeID

)

SELECT ManagerID, EmployeeID, Title, EmployeeLevel

FROM DirectReports

WHERE EmployeeLevel <= 2 ;

GO

E. Using a recursive common table expression to display a hierarchical list
The following example builds on Example C by adding the names of the manager and
employees, and their respective titles. The hierarchy of managers and employees is additionally
emphasized by indenting each level.

USE AdventureWorks2012;

252

GO

WITH DirectReports(Name, Title, EmployeeID, EmployeeLevel, Sort)

AS (SELECT CONVERT(varchar(255), e.FirstName + ' ' + e.LastName),

 e.Title,

 e.EmployeeID,

 1,

 CONVERT(varchar(255), e.FirstName + ' ' + e.LastName)

 FROM dbo.MyEmployees AS e

 WHERE e.ManagerID IS NULL

 UNION ALL

 SELECT CONVERT(varchar(255), REPLICATE ('| ' , EmployeeLevel) +

 e.FirstName + ' ' + e.LastName),

 e.Title,

 e.EmployeeID,

 EmployeeLevel + 1,

 CONVERT (varchar(255), RTRIM(Sort) + '| ' + FirstName + ' ' +

 LastName)

 FROM dbo.MyEmployees AS e

 JOIN DirectReports AS d ON e.ManagerID = d.EmployeeID

)

SELECT EmployeeID, Name, Title, EmployeeLevel

FROM DirectReports

ORDER BY Sort;

GO

F. Using MAXRECURSION to cancel a statement
MAXRECURSION can be used to prevent a poorly formed recursive CTE from entering into an infinite
loop. The following example intentionally creates an infinite loop and uses the MAXRECURSION hint
to limit the number of recursion levels to two.

USE AdventureWorks2012;

GO

--Creates an infinite loop

WITH cte (EmployeeID, ManagerID, Title) as

(

 SELECT EmployeeID, ManagerID, Title

 FROM dbo.MyEmployees

 WHERE ManagerID IS NOT NULL

 UNION ALL

 SELECT cte.EmployeeID, cte.ManagerID, cte.Title

 FROM cte

 JOIN dbo.MyEmployees AS e

 ON cte.ManagerID = e.EmployeeID

)

253

--Uses MAXRECURSION to limit the recursive levels to 2

SELECT EmployeeID, ManagerID, Title

FROM cte

OPTION (MAXRECURSION 2);

GO

After the coding error is corrected, MAXRECURSION is no longer required. The following
example shows the corrected code.

USE AdventureWorks2012;

GO

WITH cte (EmployeeID, ManagerID, Title)

AS

(

 SELECT EmployeeID, ManagerID, Title

 FROM dbo.MyEmployees

 WHERE ManagerID IS NOT NULL

 UNION ALL

 SELECT e.EmployeeID, e.ManagerID, e.Title

 FROM dbo.MyEmployees AS e

 JOIN cte ON e.ManagerID = cte.EmployeeID

)

SELECT EmployeeID, ManagerID, Title

FROM cte;

GO

G. Using a common table expression to selectively step through a
recursive relationship in a SELECT statement
The following example shows the hierarchy of product assemblies and components that are
required to build the bicycle for ProductAssemblyID = 800.

USE AdventureWorks2012;

GO

WITH Parts(AssemblyID, ComponentID, PerAssemblyQty, EndDate, ComponentLevel) AS

(

 SELECT b.ProductAssemblyID, b.ComponentID, b.PerAssemblyQty,

 b.EndDate, 0 AS ComponentLevel

 FROM Production.BillOfMaterials AS b

 WHERE b.ProductAssemblyID = 800

 AND b.EndDate IS NULL

 UNION ALL

 SELECT bom.ProductAssemblyID, bom.ComponentID, p.PerAssemblyQty,

 bom.EndDate, ComponentLevel + 1

 FROM Production.BillOfMaterials AS bom

254

 INNER JOIN Parts AS p

 ON bom.ProductAssemblyID = p.ComponentID

 AND bom.EndDate IS NULL

)

SELECT AssemblyID, ComponentID, Name, PerAssemblyQty, EndDate,

 ComponentLevel

FROM Parts AS p

 INNER JOIN Production.Product AS pr

 ON p.ComponentID = pr.ProductID

ORDER BY ComponentLevel, AssemblyID, ComponentID;

GO

H. Using a recursive CTE in an UPDATE statement
The following example updates the PerAssemblyQty value for all parts that are used to build the
product 'Road-550-W Yellow, 44' (ProductAssemblyID800). The common table expression returns
a hierarchical list of parts that are used to build ProductAssemblyID 800 and the components that
are used to create those parts, and so on. Only the rows returned by the common table
expression are modified.

USE AdventureWorks2012;

GO

WITH Parts(AssemblyID, ComponentID, PerAssemblyQty, EndDate, ComponentLevel) AS

(

 SELECT b.ProductAssemblyID, b.ComponentID, b.PerAssemblyQty,

 b.EndDate, 0 AS ComponentLevel

 FROM Production.BillOfMaterials AS b

 WHERE b.ProductAssemblyID = 800

 AND b.EndDate IS NULL

 UNION ALL

 SELECT bom.ProductAssemblyID, bom.ComponentID, p.PerAssemblyQty,

 bom.EndDate, ComponentLevel + 1

 FROM Production.BillOfMaterials AS bom

 INNER JOIN Parts AS p

 ON bom.ProductAssemblyID = p.ComponentID

 AND bom.EndDate IS NULL

)

UPDATE Production.BillOfMaterials

SET PerAssemblyQty = c.PerAssemblyQty * 2

FROM Production.BillOfMaterials AS c

JOIN Parts AS d ON c.ProductAssemblyID = d.AssemblyID

WHERE d.ComponentLevel = 0;

255

I. Using multiple anchor and recursive members
The following example uses multiple anchor and recursive members to return all the ancestors of
a specified person. A table is created and values inserted to establish the family genealogy
returned by the recursive CTE.

-- Genealogy table

IF OBJECT_ID('dbo.Person','U') IS NOT NULL DROP TABLE dbo.Person;

GO

CREATE TABLE dbo.Person(ID int, Name varchar(30), Mother int, Father int);

GO

INSERT dbo.Person

VALUES(1, 'Sue', NULL, NULL)

 ,(2, 'Ed', NULL, NULL)

 ,(3, 'Emma', 1, 2)

 ,(4, 'Jack', 1, 2)

 ,(5, 'Jane', NULL, NULL)

 ,(6, 'Bonnie', 5, 4)

 ,(7, 'Bill', 5, 4);

GO

-- Create the recursive CTE to find all of Bonnie's ancestors.

WITH Generation (ID) AS

(

-- First anchor member returns Bonnie's mother.

 SELECT Mother

 FROM dbo.Person

 WHERE Name = 'Bonnie'

UNION

-- Second anchor member returns Bonnie's father.

 SELECT Father

 FROM dbo.Person

 WHERE Name = 'Bonnie'

UNION ALL

-- First recursive member returns male ancestors of the previous generation.

 SELECT Person.Father

 FROM Generation, Person

 WHERE Generation.ID=Person.ID

UNION ALL

-- Second recursive member returns female ancestors of the previous generation.

 SELECT Person.Mother

 FROM Generation, dbo.Person

 WHERE Generation.ID=Person.ID

)

SELECT Person.ID, Person.Name, Person.Mother, Person.Father

FROM Generation, dbo.Person

256

WHERE Generation.ID = Person.ID;

GO

J. Using analytical functions in a recursive CTE
The following example shows a pitfall that can occur when using an analytical or aggregate
function in the recursive part of a CTE.

DECLARE @t1 TABLE (itmID int, itmIDComp int);

INSERT @t1 VALUES (1,10), (2,10);

DECLARE @t2 TABLE (itmID int, itmIDComp int);

INSERT @t2 VALUES (3,10), (4,10);

WITH vw AS

 (

 SELECT itmIDComp, itmID

 FROM @t1

 UNION ALL

 SELECT itmIDComp, itmID

 FROM @t2

)

,r AS

 (

 SELECT t.itmID AS itmIDComp

 , NULL AS itmID

 ,CAST(0 AS bigint) AS N

 ,1 AS Lvl

 FROM (SELECT 1 UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT 4) AS t (itmID)

UNION ALL

SELECT t.itmIDComp

 , t.itmID

 , ROW_NUMBER() OVER(PARTITION BY t.itmIDComp ORDER BY t.itmIDComp, t.itmID) AS N

 , Lvl + 1

FROM r

 JOIN vw AS t ON t.itmID = r.itmIDComp

)

SELECT Lvl, N FROM r;

257

The following results are the expected results for the query.

Lvl N

1 0

1 0

1 0

1 0

2 4

2 3

2 2

2 1

The following results are the actual results for the query.

Lvl N

1 0

1 0

1 0

1 0

2 1

2 1

2 1

2 1

N returns 1 for each pass of the recursive part of the CTE because only the subset of data for that
recursion level is passed to ROWNUMBER. For each of the iterations of the recursive part of the
query, only one row is passed to ROWNUMBER.

See Also
CREATE VIEW

DELETE

EXCEPT and INTERSECT (Transact-SQL)

INSERT

SELECT

UPDATE

WRITETEXT
Permits minimally logged, interactive updating of an existing text, ntext, or image column.
WRITETEXT overwrites any existing data in the column it affects. WRITETEXT cannot be used
on text, ntext, and image columns in views.

http://msdn.microsoft.com/en-us/library/aecc2f73-2ab5-4db9-b1e6-2f9e3c601fb9
http://msdn.microsoft.com/en-us/library/b1019300-171a-4a1a-854f-e1e751de3565

258

This feature will be removed in a future version of Microsoft SQL Server. Avoid using this
feature in new development work, and plan to modify applications that currently use this
feature. Use the large-value data types and the .WRITE clause of the UPDATE statement
instead.

Transact-SQL Syntax Conventions

Syntax

WRITETEXT [BULK]

 { table.column text_ptr }

 [WITH LOG] { data }

Arguments
BULK

Enables upload tools to upload a binary data stream. The stream must be provided by
the tool at the TDS protocol level. When the data stream is not present the query
processor ignores the BULK option.

Important
We recommend that the BULK option not be used in SQL Server-based applications. This option
might be changed or removed in a future version of SQL Server.

table .column

Is the name of the table and text, ntext, or image column to update. Table and column
names must comply with the rules for identifiers. Specifying the database name and
owner names is optional.

text_ptr

Is a value that stores the pointer to the text, ntext, or imagedata.text_ptr must be
binary(16).To create a text pointer, execute an INSERT or UPDATE statement with
data that is not null for the text, ntext, or image column.

WITH LOG

Ignored by SQL Server. Logging is determined by the recovery model in effect for the
database.

Important

http://msdn.microsoft.com/en-us/library/171291bb-f57f-4ad1-8cea-0b092d5d150c

259

data

Is the actual text, ntext or image data to store.data can be a literal or a parameter. The
maximum length of text that can be inserted interactively with WRITETEXT is
approximately 120 KB for text, ntext, and image data.

Remarks
Use WRITETEXT to replace text, ntext, and image data and UPDATETEXT to modify text,
ntext, and image data. UPDATETEXT is more flexible because it changes only a part of a text,
ntext, or image column instead of the whole column.

For best performance we recommend that text, ntext, and image data be inserted or updated in
chunk sizes that are multiples of 8040 bytes.

If the database recovery model is simple or bulk-logged, text, ntext, and image operations that
use WRITETEXT are minimally logged operations when new data is inserted or appended.

Minimal logging is not used when existing values are updated.

For WRITETEXT to work correctly, the column must already contain a valid text pointer.

If the table does not have in row text, SQL Server saves space by not initializing text columns
when explicit or implicit null values are added in text columns with INSERT, and no text pointer
can be obtained for such nulls. To initialize text columns to NULL, use the UPDATE statement. If
the table has in row text, you do not have to initialize the text column for nulls and you can always
get a text pointer.

The ODBC SQLPutData function is faster and uses less dynamic memory than WRITETEXT.
This function can insert up to 2 gigabytes of text, ntext, or image data.

In SQL Server, in row text pointers to text, ntext, or image data may exist but may not be valid.
For information about the text in row option, see sp_tableoption. For information about
invalidating text pointers, see sp_invalidate_textptr.

Permissions
Requires UPDATE permission on the specified table. Permission is transferable when UPDATE
permission is transferred.

Examples
The following example puts the text pointer into the local variable @ptrval, and then WRITETEXT
places the new text string into the row pointed to by @ptrval.

To run this example, you must install the pubs sample database.

USE pubs;

Note

Note

http://msdn.microsoft.com/en-us/library/0a57462c-1057-4c7d-bce3-852cc898341d
http://msdn.microsoft.com/en-us/library/dd9920e1-7064-4c05-93d8-9303103fa1d6

260

GO

ALTER DATABASE pubs SET RECOVERY SIMPLE;

GO

DECLARE @ptrval binary(16);

SELECT @ptrval = TEXTPTR(pr_info)

FROM pub_info pr, publishers p

WHERE p.pub_id = pr.pub_id

 AND p.pub_name = 'New Moon Books'

WRITETEXT pub_info.pr_info @ptrval 'New Moon Books (NMB) has just released another top

ten publication. With the latest publication this makes NMB the hottest new publisher of

the year!';

GO

ALTER DATABASE pubs SET RECOVERY SIMPLE;

GO

See Also
Data Types

DECLARE @local_variable

DELETE

SELECT

SET

UPDATETEXT

Transact-SQL Syntax Conventions
The following table lists and describes conventions that are used in the syntax diagrams in the
Transact-SQL Reference.

Convention Used for

UPPERCASE Transact-SQL keywords.

italic User-supplied parameters of Transact-SQL
syntax.

bold Database names, table names, column names,
index names, stored procedures, utilities, data
type names, and text that must be typed exactly
as shown.

http://msdn.microsoft.com/en-us/library/a54f7373-b247-4d61-8fb8-7f2ec7a8d0a4
http://msdn.microsoft.com/en-us/library/d1635ebb-f751-4de1-8bbc-cae161f90821
http://msdn.microsoft.com/en-us/library/f7e107f8-0fcf-408b-b30f-da2323eeb714

261

Convention Used for

Indicates the default value applied when the
clause that contains the underlined value is
omitted from the statement.

underline

| (vertical bar) Separates syntax items enclosed in brackets or
braces. You can use only one of the items.

[] (brackets) Optional syntax items. Do not type the
brackets.

{ } (braces) Required syntax items. Do not type the braces.

[,...n] Indicates the preceding item can be repeated n
number of times. The occurrences are
separated by commas.

[...n] Indicates the preceding item can be repeated n
number of times. The occurrences are
separated by blanks.

; Transact-SQL statement terminator.Although
the semicolon is not required for most
statements in this version of SQL Server, it will
be required in a future version.

<label> ::= The name for a block of syntax. This
convention is used to group and label sections
of lengthy syntax or a unit of syntax that can be
used in more than one location within a
statement. Each location in which the block of
syntax can be used is indicated with the label
enclosed in chevrons: <label>.

A set is a collection of expressions, for example
<grouping set>; and a list is a collection of sets,
for example <composite element list>.

Multipart Names
Unless specified otherwise, all Transact-SQL references to the name of a database object can be
a four-part name in the following form:

server_name.[database_name].[schema_name].object_name

| database_name.[schema_name].object_name

| schema_name.object_name

262

| object_name

server_name

Specifies a linked server name or remote server name.

database_name

Specifies the name of a SQL Server database when the object resides in a local
instance of SQL Server. When the object is in a linked server, database_name specifies
an OLE DB catalog.

schema_name

Specifies the name of the schema that contains the object if the object is in a SQL
Server database. When the object is in a linked server, schema_name specifies an OLE
DB schema name.

object_name

Refers to the name of the object.

When referencing a specific object, you do not always have to specify the server, database, and
schema for the SQL Server Database Engine to identify the object. However, if the object cannot
be found, an error is returned.

To avoid name resolution errors, we recommend specifying the schema name whenever
you specify a schema-scoped object.

To omit intermediate nodes, use periods to indicate these positions. The following table shows
the valid formats of object names.

Object reference format Description

server.database.schema.object Four-part name.

server.database..object Schema name is omitted.

server..schema.object Database name is omitted.

server...object Database and schema name are omitted.

database.schema.object Server name is omitted.

database..object Server and schema name are omitted.

schema.object Server and database name are omitted.

Note

263

Object reference format Description

object Server, database, and schema name are
omitted.

Code Example Conventions
Unless stated otherwise, the examples provided in the Transact-SQL Reference were tested by
using SQL Server Management Studio and its default settings for the following options:

• ANSI_NULLS

• ANSI_NULL_DFLT_ON

• ANSI_PADDING

• ANSI_WARNINGS

• CONCAT_NULL_YIELDS_NULL

• QUOTED_IDENTIFIER

Most code examples in the Transact-SQL Reference have been tested on servers that are
running a case-sensitive sort order. The test servers were typically running the ANSI/ISO 1252
code page.

Many code examples prefix Unicode character string constants with the letter N. Without the N
prefix, the string is converted to the default code page of the database. This default code page
may not recognize certain characters.

See Also
Transact-SQL Reference (Database Engine)

http://msdn.microsoft.com/en-us/library/dbba47d7-e08e-4435-b876-35dced1f325d

	Cover
	Contents
	Data Manipulation Language (DML) Statements
	BULK INSERT
	DELETE
	FROM
	Hints
	Join Hints
	Query Hints
	Table Hints

	INSERT
	MERGE
	OPTION Clause
	OUTPUT Clause
	READTEXT
	Search Condition
	SELECT
	SELECT Clause
	SELECT Examples
	FOR Clause
	GROUP BY
	HAVING
	INTO Clause
	ORDER BY Clause
	OVER Clause

	Table Value Constructor
	TOP
	UPDATE
	UPDATETEXT
	WHERE
	WITH common_table_expression
	WRITETEXT
	Transact-SQL Syntax Conventions

