

Multidimensional Model
Programming
SQL Server 2012 Books Online

Summary: Analysis Services provides several APIs that you can use to program against
an Analysis Services instance and the multidimensional databases that it makes
available. This section describes the approaches available to developers who want to
create custom applications using Analysis Services multidimensional solutions. You can
use this information to choose the programming interface that best meets the
requirements of a particular project. Analysis Services development projects can be
based on managed or non-managed code that runs on a Windows platform, or other
platforms that support HTTP access.

Category: Reference
Applies to: SQL Server 2012
Source: SQL Server 2012 Books Online (link to source content)
E-book publication date: January 2013

http://msdn.microsoft.com/en-us/library/hh230848.aspx�

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors
will be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents
Multidimensional Model Programming .. 4

Understanding Microsoft OLAP Architecture ... 4
Logical Architecture .. 5

Logical Architecture Overview .. 6
Server Objects ... 13

Database Objects ... 13
Security Roles .. 15

Dimension Objects .. 19
Dimensions ... 20
Attributes and Attribute Hierarchies... 26
Attribute Relationships .. 27
User Hierarchies.. 29
Write-Enabled Dimensions ... 35
Dimension Translations ... 36
Database Dimension Properties ... 37
Proactive Caching (Dimensions) ... 41

Cube Objects ... 41
Cube Properties .. 42
Dimension Relationships ... 44
Calculations .. 49
Partitions ... 50
Perspectives ... 59
Cube Translations .. 61
Cube Cells ... 62
Cube Storage ... 65

Aggregations and Aggregation Designs .. 66
Physical Architecture .. 68

OLAP Engine Server Components ... 68
Server Process ... 71
Object Naming.. 71
Maximum Capacity Specifications ... 74
Data Types in Analysis Services .. 78
Local Cubes .. 81
Clients ... 83

International Considerations ... 88
Languages and Collations .. 90
Translations .. 96
Currency Conversions .. 98
Client Applications ... 104

Developing with ADOMD.NET ... 105

ADOMD.NET Client Programming ... 106
ADOMD.NET Client Functionality ... 109
Migrating From ADO MD To ADOMD.NET... 111
Establishing Connections in ADOMD.NET... 119

Establishing Secure Connections in ADOMD.NET .. 120
Working with Connections and Sessions in ADOMD.NET .. 127
Performing Transactions in ADOMD.NET .. 130

Retrieving Metadata from an Analytical Data Source ... 131
Working with the ADOMD.NET Object Model .. 136
Working with Schema Rowsets in ADOMD.NET ... 137

Executing Commands Against an Analytical Data Source .. 139
Retrieving Data from an Analytical Data Source ... 140

Retrieving Data Using the CellSet ... 141
Retrieving Data Using the AdomdDataReader .. 143
Retrieving Data Using the XmlReader... 147

ADOMD.NET Server Programming .. 148
ADOMD.NET Server Functionality .. 149
ADOMD.NET Server Object Architecture ... 150
User Defined Functions and Stored Procedures ... 154

Redistributing ADOMD.NET ... 156

Developing with Analysis Management Objects (AMO) ... 157
AMO Concepts and Object Model ... 157
Introducing AMO Classes .. 165

AMO Fundamental Classes ... 167
AMO OLAP Classes... 169
AMO Data Mining Classes ... 174
AMO Security Classes .. 178
AMO Other Classes and Methods .. 180

Programming Administrative Tasks with AMO ... 185
Programming AMO Fundamental Objects.. 186
Programming AMO OLAP Basic Objects ... 202
Programming AMO OLAP Advanced Objects.. 218
Programming AMO Data Mining Objects ... 232
Programming AMO Security Objects .. 235
Programming AMO Complementary Classes and Methods .. 240

Developing with Analysis Services Scripting Language (ASSL) ... 247
ASSL Objects and Object Characteristics ... 247
ASSL XML Conventions .. 249
XMLA Concepts ... 253

Developing with XMLA in Analysis Services ... 254
Managing Connections and Sessions (XMLA) ... 257
Handling Errors and Warnings (XMLA) ... 260
Defining and Identifying Objects (XMLA) .. 264
Managing Transactions (XMLA) .. 265
Canceling Commands (XMLA) ... 266

Performing Batch Operations (XMLA)... 267
Creating and Altering Objects (XMLA).. 271
Locking and Unlocking Databases (XMLA) ... 274
Processing Objects (XMLA) ... 275
Merging Partitions (XMLA) .. 280
Designing Aggregations (XMLA) .. 282
Backing Up, Restoring, and Synchronizing Databases (XMLA) ... 286
Inserting, Updating, and Dropping Members (XMLA) .. 292
Updating Cells (XMLA) .. 295
Managing Caches (XMLA) ... 296
Monitoring Traces (XMLA)... 297

Extending OLAP functionality .. 301
Extending OLAP through personalizations ... 301
Analysis Services Personalization Extensions ... 302
Defining Stored Procedures.. 306

Designing Stored Procedures .. 307
Creating Stored Procedures .. 307
Calling Stored Procedures ... 310
Accessing Query Context in Stored Procedures ... 312
Setting Security for Stored Procedures .. 312
Debugging Stored Procedures .. 312

Analysis Services OLE DB Provider ... 314

 4

Multidimensional Model Programming
Analysis Services provides several APIs that you can use to program against an Analysis Services
instance and the multidimensional databases that it makes available. This section describes the
approaches available to developers who want to create custom applications using Analysis
Services multidimensional solutions. You can use this information to choose the programming
interface that best meets the requirements of a particular project. Analysis Services development
projects can be based on managed or non-managed code that runs on a Windows platform, or
other platforms that support HTTP access.

In This Section
Understanding Microsoft OLAP Architecture
Developing with ADOMD.NET
Developing with Analysis Management Objects (AMO)
Developing with XMLA in Analysis Services
Developing with Analysis Services Scripting Language (ASSL)
Extending OLAP functionality
Analysis Services OLE DB Provider (Analysis Services - Multidimensional Data)

See Also
Tabular Model Programming
Data Mining Programming

Understanding Microsoft OLAP Architecture
Use these topics to better understand Analysis Services multidimensional databases and plan
how to implement multidimensional databases in your business intelligence solution.
 Logical Architecture

 Solution Design Considerations (Analysis Services - Multidimensional
Data)
 Dimension Objects (Analysis Services - Multidimensional Database)
 Cube Objects (Analysis Services - Multidimensional Database)
 More…

 Physical Architecture

 Analysis Services Multidimensional Database Server Cubes

http://msdn.microsoft.com/en-us/library/0ceb461e-12c1-44ea-97ac-b99bf308676b(SQL.110)�
http://msdn.microsoft.com/en-us/library/9fd77b16-0b89-44ce-bcf1-7c04b62499da(SQL.110)�

 5

 Analysis Services Multidimensional Database Local Cubes
 More…

 Programming Architecture

Developing with Analysis Management Objects (AMO)
Developing with Analysis Services Scripting Language (ASSL)
Developing with ADOMD.NET

 International Considerations

 International Considerations (Analysis Services - Multidimensional Data)

See Also
Technical Reference (Analysis Services - Multidimensional Database)

Logical Architecture
Microsoft SQL Server Analysis Services uses both server and client components to supply online
analytical processing (OLAP) and data mining functionality for business intelligence applications:
• The server component of Analysis Services is implemented as a Microsoft Windows service.

SQL Server Analysis Services supports multiple instances on the same computer, with each
instance of Analysis Services implemented as a separate instance of the Windows service.

• Clients communicate with Analysis Services using the public standard XML for Analysis
(XMLA), a SOAP-based protocol for issuing commands and receiving responses, exposed as
a Web service. Client object models are also provided over XMLA, and can be accessed
either by using a managed provider, such as ADOMD.NET, or a native OLE DB provider.

• Query commands can be issued using the following languages: SQL; Multidimensional
Expressions (MDX), an industry standard query language for analysis; or Data Mining
Extensions (DMX), an industry standard query language oriented toward data mining.
Analysis Services Scripting Language (ASSL) can also be used to manage Analysis Services
database objects.

Analysis Services also supports a local cube engine that enables applications on disconnected
clients to browse locally stored multidimensional data. For more information, see Client
Architecture

In This Section
Logical Architecture Overview

Logical Architecture Overview (Analysis Services - Multidimensional
Database)

Server Objects

Server Objects (Analysis Services - Multidimensional Database)

http://msdn.microsoft.com/en-us/library/1226c5a4-fd88-469c-81fe-3f664ab66e5e(SQL.110)�

 6

Dimension Objects

Dimension Objects (Analysis Services - Multidimensional Database)

Cube Objects

Cube Objects (Analysis Services - Multidimensional Database)

User Access Security

User Access Security Architecture

See Also
Planning and Architecture (Analysis Services - Multidimensional Database)
Physical Architecture (Analysis Services - Multidimensional Database)

Logical Architecture Overview
In SQL Server 2008 R2, Analysis Services can be operated in two different modes: the standard
server installation mode, which supports traditional OLAP and data mining, and SharePoint
integrated mode, which uses a special instance of Analysis Services hosted in a SharePoint server
to support workbooks created by Microsoft PowerPivot for Excel 2010.
This topic explains the basic architecture of Analysis Services when operating in standard mode.
For more information about Sharepoint integrated mode, see Analysis Services in Vertipaq
mode. For more information about the PowerPivot client, see PowerPivot for Excel.
Basic Architecture
An instance of Analysis Services can contain multiple databases, and a database can have OLAP
objects and data mining objects at the same time. Applications connect to a specified instance
of Analysis Services and a specified database. A server computer can host multiple instances of
Analysis Services. Instances of Analysis Services are named as
"<ServerName>\<InstanceName>". The following illustration shows all mentioned relationships
between Analysis Services objects.

http://msdn.microsoft.com/en-us/library/71b44e10-2bd0-44f7-8de9-7c8f5b7ac082(SQL.110)�
http://msdn.microsoft.com/en-us/library/689fafa8-7676-4c4a-b654-46422078ce1d(SQL.110)�
http://msdn.microsoft.com/en-us/library/689fafa8-7676-4c4a-b654-46422078ce1d(SQL.110)�
http://msdn.microsoft.com/en-us/library/689fafa8-7676-4c4a-b654-46422078ce1d(SQL.110)�
http://msdn.microsoft.com/en-us/library/7b70845c-ad05-40e4-b41a-f8215a70298c(SQL.110)�

 7

Basic classes are the minimum set of objects that are required to build a cube. This minimum set
of objects is a dimension, a measure group, and a partition. An aggregation is optional.
Dimensions are built from attributes and hierarchies. Hierarchies are formed by an ordered set
of attributes, where each attribute of the set corresponds to a level in the hierarchy.
Cubes are built from dimensions and measure groups. The dimensions in the dimensions
collection of a cube belong to the dimensions collection of the database. Measure groups are
collections of measures that have the same data source view and have the same subset of
dimensions from the cube. A measure group has one or more partitions to manage the physical
data. A measure group can have a default aggregation design. The default aggregation design
can be used by all partitions in the measure group; also, each partition can have its own
aggregation design.
Server Objects

Each instance of Analysis Services is seen as a different server object in AMO; each different
instance is connected to a T:Microsoft.AnalysisServices.Server object by a different
connection. Each server object contains one or more data source, data source view, and
database objects, as well as assemblies and security roles.

Dimension Objects

Each database object contains multiple dimension objects. Each dimension object contains
one or more attributes, which are organized into hierarchies.

Cube Objects

Each database object contains one or more cube objects. A cube is defined by its measures

 8

and dimensions. The measures and dimensions in a cube are derived from the tables and
views in the data source view on which the cube is based, or which is generated from the
measure and dimension definitions.

Object Inheritance
The ASSL object model contains many repeated element groups. For example, the element
group, “Dimensions contain Hierarchies,” defines the dimension hierarchy of an element. Both
Cubes and MeasureGroups contain the element group, "Dimensions contain Hierarchies."
Unless explicitly overridden, an element inherits the details of these repeated element groups
from the higher level. For example, the Translations for a CubeDimension are the same as the
Translations for its ancestor element, Cube.
To explicitly override properties inherited from a higher-level object, an object does not need to
repeat explicitly the entire structure and properties of the higher-level object. The only
properties that an object needs to state explicitly are those properties that the object wants to
override. For example, a CubeDimension may list only those Hierarchies that need to be
disabled in the Cube, or for which the visibility needs to be changed, or for which some Level
details have not been provided at the Dimension level.
Some properties specified on an object provide default values for the same property on a child
or descendant object. For example, Cube.StorageMode provides the default value for
Partition.StorageMode. For inherited default values, ASSL applies the same rules as used in
Decision Support Objects (DSO) 8.0. The following list describes these rules for inherited default
values:
• When the property for the child object is null in the XML, the property's value defaults to the

inherited value. However, if you query the value from the server, the server returns the null
value of the XML element.

• It is not possible to determine programmatically whether the property of a child object has
been set directly on the child object or inherited.

Example
The Imports cube contains two measures, Packages and Last, and three related dimensions,
Route, Source, and Time.

 9

The smaller alphanumeric values around the cube are the members of the dimensions. Example
members are ground (member of the Route dimension), Africa (member of the Source
dimension), and 1st quarter (member of the Time dimension).
Measures
The values within the cube cells represent the two measures, Packages and Last. The Packages
measure represents the number of imported packages, and the Sum function is used to
aggregate the facts. The Last measure represents the date of receipt, and the Max function is
used to aggregate the facts.
Dimensions
The Route dimension represents the means by which the imports reach their destination.
Members of this dimension include ground, nonground, air, sea, road, or rail. The Source
dimension represents the locations where the imports are produced, such as Africa or Asia. The
Time dimension represents the quarters and halves of a single year.
Aggregates
Business users of a cube can determine the value of any measure for each member of every
dimension, regardless of the level of the member within the dimension, because Analysis
Services aggregates values at upper levels as needed. For example, the measure values in the
preceding illustration can be aggregated according to a standard calendar hierarchy by using
the Calendar Time hierachy in the Time dimension as illustrated in the following diagram.

 10

In addition to aggregating measures by using a single dimension, you can aggregate measures
by using combinations of members from different dimensions. This allows business users to
evaluate measures in multiple dimensions simultaneously. For example, if a business user wants
to analyze quarterly imports that arrived by air from the Eastern Hemisphere and Western
Hemisphere, the business user can issue a query on the cube to retrieve the following dataset.

 Packages Last

 All
Sources

Eastern
Hemisphere

Western
Hemisphere

All
Sources

Eastern
Hemisphere

Western
Hemisphere

All
Time

 25110 6547 18563 Dec-
29-99

Dec-22-99 Dec-29-99

 1st
half

 11173 2977 8196 Jun-28-
99

Jun-20-99 Jun-28-99

 1st
quarter

5108 1452 3656 Mar-
30-99

Mar-19-99 Mar-30-99

 2nd
quarter

6065 1525 4540 Jun-28-
99

Jun-20-99 Jun-28-99

 2nd
half

 13937 3570 10367 Dec-
29-99

Dec-22-99 Dec-29-99

 3rd
quarter

6119 1444 4675 Sep-30-
99

Sep-18-99 Sep-30-99

 4th 7818 2126 5692 Dec- Dec-22-99 Dec-29-99

 11

 Packages Last

quarter 29-99

After a cube is defined, you can create new aggregations, or you can change existing
aggregations to set options such as whether aggregations are precalculated during processing
or calculated at query time. Related topic: Defining an Analysis Services Database.
Mapping Measures, Attributes, and Hierarchies
The measures, attributes, and hierarchies in the example cube are derived from the following
columns in the cube's fact and dimension tables.

Measure or
attribute
(level)

Members Source table Source column Sample
column value

Packages
measure

Not applicable ImportsFactTable Packages 12

Last
measure

Not applicable ImportsFactTable Last May-03-99

Route
Category
level in
Route
dimension

nonground,ground RouteDimensionTable Route_Categor
y

Nonground

Route
attribute in
Route
dimension

air,sea,road,rail RouteDimensionTable Route Sea

Hemispher
e attribute
in Source
dimension

Eastern
Hemisphere,Western
Hemisphere

SourceDimensionTabl
e

Hemisphere Eastern
Hemispher
e

Continent
attribute in
Source
dimension

Africa,Asia,AustraliaEurope,
N. America,S. America

SourceDimensionTabl
e

Continent Europe

Half
attribute in
Time

1st half,2nd half TimeDimensionTable Half 2nd half

 12

Measure or
attribute
(level)

Members Source table Source column Sample
column value

dimension

Quarter
attribute in
Time
dimension

1st quarter,2nd quarter,3rd
quarter,4th quarter

TimeDimensionTable Quarter 3rd quarter

Data in a single cube cell is usually derived from multiple rows in the fact table. For example, the
cube cell at the intersection of the air member, the Africa member, and the 1st quarter member
contains a value that is derived by aggregating the following rows in the ImportsFactTable fact
table.

Import_ReceiptKey RouteKey SourceKey TimeKey Packages Last

3516987 1 6 1 15 Jan-10-
99

3554790 1 6 1 40 Jan-19-
99

3572673 1 6 1 34 Jan-27-
99

3600974 1 6 1 45 Feb-02-
99

3645541 1 6 1 20 Feb-09-
99

3674906 1 6 1 36 Feb-17-
99

In the preceding table, each row has the same values for the RouteKey, SourceKey, and
TimeKey columns, indicating that these rows contribute to the same cube cell.
The example shown here represents a very simple cube, in that the cube has a single measure
group, and all the dimension tables are joined to the fact table in a star schema. Another
common schema is a snowflake schema, in which one or more dimension tables join to another
dimension table, rather than joining directly to the fact table. Related topic: Dimensions.
The example shown here contains only a single fact table. When a cube has multiple fact tables,
the measures from each fact table are organized into measure groups, and a measure group is

 13

related to a specific set of dimensions by defined dimension relationships. These relationships
are defined by specifying the participating tables in the data source view and the granularity of
the relationship. Related topic: Dimension Relationships.
See Also
Working with Cubes and Measures
Working with Dimensions and Levels
Working with Analysis Services Databases

Server Objects
Introducing Server Objects
The T:Microsoft.AnalysisServices.Server object represents the server and the instance of
Microsoft SQL Server Analysis Services that you want to work with.
As soon as you have a connected instance of Analysis Services, you will be able to see:
• All databases that you can access, as a collection.
• All defined server properties, as a collection.
• The connection string, the connection information, and the session ID.
• The product name, edition, and version.
• The roles collections.
• The traces collection.
• The assemblies collection.

Database Objects
A Microsoft SQL Server Analysis Services instance contains database objects and assemblies for
use with online analytical processing (OLAP) and data mining.
• Databases contain OLAP and data mining objects, such as data sources, data source views,

cubes, measures, measure groups, dimensions, attributes, hierarchies, mining structures,
mining models and roles.

• Assemblies contain user-defined functions that extend the functionality of the intrinsic
functions provided with the Multidimensional Expressions (MDX) and Data Mining
Extensions (DMX) languages.

The T:Microsoft.AnalysisServices.Database object is the container for all data objects that are
needed for a business intelligence project (such as OLAP cubes, dimensions, and data mining
structures), and their supporting objects (such as T:Microsoft.AnalysisServices.DataSource,
T:Microsoft.AnalysisServices.Account, and T:Microsoft.AnalysisServices.Role).
A T:Microsoft.AnalysisServices.Database object provides access to objects and attributes that
include the following:
• All cubes that you can access, as a collection.

http://msdn.microsoft.com/en-us/library/02bf9b7d-5a60-4fea-9efb-019126b5970b(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea2a36a7-f0b7-44de-8c2f-b36085db48ee(SQL.110)�
http://msdn.microsoft.com/en-us/library/78b2f22a-b7bd-4a2b-b6fc-0bff4d2b3168(SQL.110)�

 14

• All dimensions that you can access, as a collection.
• All mining structures that you can access, as a collection.
• All data sources and data source views, as two collections.
• All roles and database permissions, as two collections.
• The collation value for the database.
• The estimated size of the database.
• The language value of the database.
• The visible setting for the database.
In This Section
The following topics describe objects shared by both OLAP and data mining features in Analysis
Services.

Topic Description

Working with Data Mining Describes a data source in Analysis Services.

Data Source Views (Analysis Services) Describes a logical data model based on
one or more data sources, in Analysis
Services.

Cubes Describes cubes and cube objects,
including measures, measure groups,
dimension usage relationships, calculations,
key performance indicators, actions,
translations, partitions, and perspectives.

Dimensions Describes dimensions and dimension
objects, including attributes, attribute
relationships, hierarchies, levels, and
members.

Mining Structures Describes mining structures and mining
objects, including mining models.

Roles Describes a role, the security mechanism
used to control access to objects in Analysis
Services.

Assemblies (Analysis Services) Describes an assembly, a collection of user-
defined functions used to extend the MDX
and DMX languages, in Analysis Services.

See Also

http://msdn.microsoft.com/en-us/library/a16469d9-9d53-4e35-9982-fc06327a9d33(SQL.110)�
http://msdn.microsoft.com/en-us/library/be8bdf02-0642-4bc7-91cb-46f4f3be00bb(SQL.110)�
http://msdn.microsoft.com/en-us/library/e0f7acf3-4b07-41fc-a5fc-ac30b4a56c54(SQL.110)�
http://msdn.microsoft.com/en-us/library/39748290-c32a-48e6-92a6-0c3a9223773a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b2645d10-6d17-444e-9289-f111ec48bbfb(SQL.110)�

 15

Working with Data Sources
Data Source Views
Designing Analysis Services Multidimensional Database Objects
Working with Data Mining

Security Roles
Roles are used in Microsoft SQL Server Analysis Services to manage security for Analysis Services
objects and data. In basic terms, a role associates the security identifiers (SIDs) of Microsoft
Windows users and groups that have specific access rights and permissions defined for objects
managed by an instance of Analysis Services. Two types of roles are provided in Analysis
Services:
• The server role, a fixed role that provides administrator access to an instance of Analysis

Services.
• Database roles, roles defined by administrators to control access to objects and data for

non-administrator users.
Security in Microsoft SQL Server Analysis Services security is managed by using roles and
permissions. Roles are groups of users. Users, also called members, can be added or removed
from roles. Permissions for objects are specified by roles, and all members in a role can use the
objects for which the role has permissions. All members in a role have equal permissions to the
objects. Permissions are particular to objects. Each object has a permissions collection with the
permissions granted on that object, different sets of permissions can be granted on an object.
Each permission, from the permissions collection of the object, has a single role assigned to it.
Role and Role Member Objects
A role is a containing object for a collection of users (members). A Role definition establishes the
membership of the users in Analysis Services. Because permissions are assigned by role, a user
must be a member of a role before the user has access to any object.
A T:Microsoft.AnalysisServices.Role object is composed of the parameters Name, Id, and
Members. Members is a collection of strings. Each member contains the user name in the form
of "domain\username". Name is a string that contains the name of the role. ID is a string that
contains the unique identifier of the role.
Server Role
The Analysis Services server role defines administrative access of Windows users and groups to
an instance of Analysis Services. Members of this role have access to all Analysis Services
databases and objects on an instance of Analysis Services, and can perform the following tasks:
• Perform server-level administrative functions using SQL Server Management Studio or SQL

Server Data Tools (SSDT), including creating databases and setting server-level properties.
• Perform administrative functions programmatically with Analysis Management Objects

(AMO).
• Maintain Analysis Services database roles.

http://msdn.microsoft.com/en-us/library/c97e0f8d-7ddd-4941-8b51-e7832f30fbbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/be8bdf02-0642-4bc7-91cb-46f4f3be00bb(SQL.110)�
http://msdn.microsoft.com/en-us/library/fbc0698f-93d3-4292-86cd-afe3a2ec5b0a(SQL.110)�
http://msdn.microsoft.com/en-us/library/84f6548d-ebb0-4e10-9b29-66253fa0a04a(SQL.110)�

 16

• Start traces (other than for processing events, which can be performed by a database role
with Process access).

Every instance of Analysis Services has a server role that defines which users can administer that
instance. The name and ID of this role is Administrators, and unlike database roles, the server
role cannot be deleted, nor can permissions be added or removed. In other words, a user either
is or is not an administrator for an instance of Analysis Services, depending on whether he or
she is included in the server role for that instance of Analysis Services. Related topics: Granting
User Access, Setting Server Configuration Properties.
Database Roles
An Analysis Services database role defines user access to objects and data in an Analysis
Services database. A database role is created as a separate object in an Analysis Services
database, and applies only to the database in which that role is created. Windows users and
groups are included in the role by an administrator, who also defines permissions within the
role.
The permissions of a role may allow members to access and administer the database, in addition
to the objects and data within the database. Each permission has one or more access rights
associated with it, which in turn give the permission finer control over access to a particular
object in the database. Related topics: Permissions and Access Rights, Granting User Access
Permission Objects
Permissions are associated with an object (cube, dimension, others) for a particular role.
Permissions specify what operations the member of that role can perform on that object.
The T:Microsoft.AnalysisServices.Permission class is an abstract class. Therefore, you must use the
derived classes to define permissions on the corresponding objects. For each object, a
permission derived class is defined.

Object Class

T:Microsoft.AnalysisServices.Database T:Microsoft.AnalysisServices.DatabasePermission

T:Microsoft.AnalysisServices.DataSource T:Microsoft.AnalysisServices.DataSourcePermission

T:Microsoft.AnalysisServices.Dimension T:Microsoft.AnalysisServices.DimensionPermission

T:Microsoft.AnalysisServices.Cube T:Microsoft.AnalysisServices.CubePermission

T:Microsoft.AnalysisServices.MiningStructu
re

T:Microsoft.AnalysisServices.MiningStructurePermissi
on

T:Microsoft.AnalysisServices.MiningModel T:Microsoft.AnalysisServices.MiningModelPermission

Possible actions enabled by permissions are shown in the list:

http://msdn.microsoft.com/en-us/library/81a25f52-3e61-4f83-877a-560f031d9c28(SQL.110)�
http://msdn.microsoft.com/en-us/library/81a25f52-3e61-4f83-877a-560f031d9c28(SQL.110)�
http://msdn.microsoft.com/en-us/library/81a25f52-3e61-4f83-877a-560f031d9c28(SQL.110)�
http://msdn.microsoft.com/en-us/library/e0a63bec-de07-462e-98a1-b9678f7d791a(SQL.110)�
http://msdn.microsoft.com/en-us/library/59fa3573-f985-46cb-8042-7da71bd59a7b(SQL.110)�
http://msdn.microsoft.com/en-us/library/af28524e-5eca-4dce-a050-da4f406ee1c7(SQL.110)�

 17

Action Values Explanation

Process {true, false}
Default=false

If true, members can process the object and any
object that is contained in the object.
Process permissions do not apply to mining models.
T:Microsoft.AnalysisServices.MiningModel
permissions are always inherited from
T:Microsoft.AnalysisServices.MiningStructure.

ReadDefinition {None, Basic,
Allowed}
Default=None

Specifies whether members can read the data
definition (ASSL) associated with the object.
If Allowed, members can read the ASSL associated
with the object.
Basic and Allowed are inherited by objects that are
contained in the object. Allowed overrides Basic
and None.
Allowed is required for DISCOVER_XML_METADATA
on an object. Basic is required to create linked
objects and local cubes.

Read {None, Allowed}
Default=None
(Except for
DimensionPermissio
n, where
default=Allowed)

Specifies whether members have read access to
schema rowsets and data content.
Allowed gives read access on a database, which lets
you discover a database.
Allowed on a cube gives read access in schema
rowsets and access to cube content (unless
constrained by
T:Microsoft.AnalysisServices.CellPermission and
T:Microsoft.AnalysisServices.CubeDimensionPermissio
n).
Allowed on a dimension grants that read permission
on all attributes in the dimension (unless constrained
by
T:Microsoft.AnalysisServices.CubeDimensionPermissio
n). Read permission is used for static inheritance to
the
T:Microsoft.AnalysisServices.CubeDimensionPermissio
n only. None on a dimension hides the dimension
and gives access to the default member only for
aggregatable attributes; an error is raised if the
dimension contains a non-aggregatable attribute.
Allowed on a

 18

Action Values Explanation

T:Microsoft.AnalysisServices.MiningModelPermission
grants permissions to see objects in schema rowsets
and to perform predict joins.
Note Allowed is required to read or write to any
object in the database.

Write {None, Allowed}
Default=None

Specifies whether members have write access to data
of the parent object.
Access applies to
T:Microsoft.AnalysisServices.Dimension,
T:Microsoft.AnalysisServices.Cube, and
T:Microsoft.AnalysisServices.MiningModel subclasses.
It does not apply to database
T:Microsoft.AnalysisServices.MiningStructure
subclasses, which generates a validation error.
Allowed on a T:Microsoft.AnalysisServices.Dimension
grants write permission on all attributes in the
dimension.
Allowed on a T:Microsoft.AnalysisServices.Cube
grants write permission on the cells of the cube for
partitions defined as Type=writeback.
Allowed on a
T:Microsoft.AnalysisServices.MiningModel grants
permission to modify model content.
Allowed on a
T:Microsoft.AnalysisServices.MiningStructure has no
specific meaning in Analysis Services.

Note
Write cannot be set to Allowed unless read
is also set to Allowed

Administer

Note
Only in
Database
permission
s

{true, false}
Default=false

Specifies whether members can administer a
database.
true grants members access to all objects in a
database.
A member can have Administer permissions for a
specific database, but not for others.

See Also

 19

Permissions and Access Rights
Security and Protection
Granting Administrative Access
Granting User Access

Dimension Objects
A simple T:Microsoft.AnalysisServices.Dimension object is composed of basic information,
attributes, and hierarchies. Basic information includes the name of the dimension, the type of
the dimension, the data source, the storage mode, and others. Attributes define the actual data
in the dimension. Attributes do not necessarily belong to a hierarchy, but hierarchies are built
from attributes. A hierarchy creates ordered lists of levels, and defines the ways a user can
explore the dimension.
In This Section
The following topics provide more information about how to design and implement dimension
objects.

Topic Description

Dimensions (Analysis Services) In Microsoft SQL Server Analysis Services,
dimensions are a fundamental component
of cubes. Dimensions organize data with
relation to an area of interest, such as
customers, stores, or employees, to users.

Attributes and Attribute Hierarchies Dimensions are collections of attributes,
which are bound to one or more columns
in a table or view in the data source view.

Attribute Relationships In Microsoft SQL Server Analysis Services,
attributes within a dimension are always
related either directly or indirectly to the
key attribute. When you define a dimension
based on a star schema, which is where all
dimension attributes are derived from the
same relational table, an attribute
relationship is automatically defined
between the key attribute and each non-
key attribute of the dimension. When you
define a dimension based on a snowflake
schema, which is where dimension
attributes are derived from multiple related
tables, an attribute relationship is

http://msdn.microsoft.com/en-us/library/59fa3573-f985-46cb-8042-7da71bd59a7b(SQL.110)�
http://msdn.microsoft.com/en-us/library/64970b87-766f-468b-a94e-9b53495bafdc(SQL.110)�
http://msdn.microsoft.com/en-us/library/81a25f52-3e61-4f83-877a-560f031d9c28(SQL.110)�
http://msdn.microsoft.com/en-us/library/af28524e-5eca-4dce-a050-da4f406ee1c7(SQL.110)�

 20

Topic Description

automatically defined as follows:
• Between the key attribute and each

non-key attribute bound to columns in
the main dimension table.

• Between the key attribute and the
attribute bound to the foreign key in
the secondary table that links the
underlying dimension tables.

• Between the attribute bound to foreign
key in the secondary table and each
non-key attribute bound to columns
from the secondary table.

Dimensions
In Microsoft SQL Server Analysis Services, dimensions are a fundamental component of cubes.
Dimensions organize data with relation to an area of interest, such as customers, stores, or
employees, to users. Dimensions in Analysis Services contain attributes that correspond to
columns in dimension tables. These attributes appear as attribute hierarchies and can be
organized into user-defined hierarchies, or can be defined as parent-child hierarchies based on
columns in the underlying dimension table. Hierarchies are used to organize measures that are
contained in a cube. The following topics provide an overview of dimensions, attributes, and
hierarchies.
In This Section

Topic Description

Solution Overview (Analysis Services -
Multidimensional Data)

Provides an overview of dimension
concepts.

Attributes and Attribute Hierarchies Describes attributes and attribute
hierarchies.

User-defined Hierarchies Describes user-defined hierarchies of
attributes.

Write-Enabled Dimensions Describes write-enabled dimensions.

Dimension Translations Describes translations of dimension meta
data.

 21

See Also
Defining and Configuring Dimensions, Attributes and Hierarchies
Cube Objects (Analysis Services - Multidimensional Data)

Introduction to Dimensions (Analysis Services - Multidimensional Data)
All Microsoft SQL Server Analysis Services dimensions are groups of attributes based on
columns from tables or views in a data source view. Dimensions exist independent of a cube, can
be used in multiple cubes, can be used multiple times in a single cube, and can be linked
between Analysis Services.instances. A dimension that exists independent of a cube is called a
database dimension and an instance of a database dimension within a cube is called a cube
dimension.
Dimension based on a Star Schema Design
The structure of a dimension is largely driven by the structure of the underlying dimension table
or tables. The simplest structure is called a star schema, where each dimension is based on a
single dimension table that is directly linked to the fact table by a primary key - foreign key
relationship.
The following diagram illustrates a subsection of the sample database, in which the
FactResellerSales fact table is related to two dimension tables, DimReseller and
DimPromotion. The ResellerKey column in the FactResellerSales fact table defines a foreign
key relationship to the ResellerKey primary key column in the DimReseller dimension table.
Similarly, the PromotionKey column in the FactResellerSales fact table defines a foreign key
relationship to the PromotionKey primary key column in the DimPromotion dimension table.

http://msdn.microsoft.com/en-us/library/2b62b05c-00fd-4e60-b77f-f707ba83a19b(SQL.110)�

 22

Dimension based on a Snowflake Schema Design
Frequently, a more complex structure is required because information from multiple tables is
required to define the dimension. In this structure, called a snowflake schema, each dimension is
based on attributes from columns in multiple tables linked to each other and ultimately to the
fact table by primary key - foreign key relationships. For example, the following diagram
illustrates the tables required to completely describe the Product dimension in the
AdventureWorksDW sample project:

 23

To completely describe a product, the product's category and subcategory must be included in
the Product dimension. However, that information does not reside directly in the main table for
the DimProduct dimension. A foreign key relationship from DimProduct to
DimProductSubcategory, which in turn has a foreign key relationship to the
DimProductCategory table, makes it possible to include the information for product categories
and subcategories in the Product dimension.
Snowflake Schema versus Reference Relationship
Sometimes, you may have a choice between using a snowflake schema to define attributes in a
dimension from multiple tables, or defining two separate dimensions and defining a reference
dimension relationship between them. The following diagram illustrates such a scenario.

 24

In the previous diagram, the FactResellerSales fact table does not have a foreign key
relationship with the DimGeography dimension table. However, the FactResellerSales fact
table does have a foreign key relationship with the DimReseller dimension table, which in turn
has a foreign key relationship with the DimGeography dimension table. To define a Reseller
dimension that contains geography information about each reseller, you would have to retrieve
these attributes from the DimGeography and the DimReseller dimension tables. However, in
Analysis Services, you can achieve the same result by creating two separate dimensions and
linking them in a measure group by defining a reference dimension relationship between the

 25

two dimensions. For more information about reference dimension relationships, see Using the
Cube Wizard to Define a Cube, Dimensions, Hierarchies and Attributes.
One advantage of using reference dimension relationships in this scenario is that you could
create a single geography dimension and then create multiple cube dimensions based on the
geography dimension, without requiring any additional storage space. For example, you could
link one of the geography cube dimensions to a reseller dimension and another of the
geography cube dimensions to a customer dimension. Related topics: Dimension
Relationships, Defining a Referenced Relationship and Referenced Relationship Properties
Processing a Dimension
After you create a dimension, you must process the dimension before you can view the
members of the attributes and hierarchies in the dimension. After the structure of a dimension is
changed or the information in its underlying tables is updated, you have to process the
dimension again before you can view the changes. When you process a dimension after
structural changes, you must also process any cubes that include the dimension - or the cube
will not be viewable.
Security
All the subordinate objects of a dimension, including hierarchies, levels, and members, are
secured using roles in Analysis Services. Dimension security can be applied for all the cubes in
the database that use the dimension, or for only a specific cube. For more information about
dimension security, see Granting Dimension Access.
See Also
Dimension Storage
Dimension Translations
Write-Enabled Dimensions
Using the Dimension Wizard to Define a Dimension, Hierarchies, and Attributes

Dimension Storage
Dimensions in Microsoft SQL Server Analysis Services support two storage modes:
• Relational OLAP (ROLAP)
• Multidimensional OLAP (MOLAP)
The storage mode determines the location and form of a dimension's data. MOLAP is the
default storage mode for dimensions. Related topics: Partition Storage Modes and Processing
MOLAP
Data for a dimension that uses MOLAP is stored in a multidimensional structure in the instance
of Analysis Services. This multidimensional structure is created and populated when the
dimension is processed. MOLAP dimensions provide better query performance than ROLAP
dimensions.
ROLAP

http://msdn.microsoft.com/en-us/library/5bb44b41-635b-4398-8fe9-0bfbb142553e(SQL.110)�
http://msdn.microsoft.com/en-us/library/be5b2746-0336-4b12-827e-131462bdf605(SQL.110)�
http://msdn.microsoft.com/en-us/library/b01ffcf1-39f2-42b1-b726-17afc443df70(SQL.110)�

 26

Data for a dimension that uses ROLAP is actually stored in the tables used to define the
dimension. The ROLAP storage mode can be used to support large dimensions without
duplicating large amounts of data, but at the expense of query performance. Because the
dimension relies directly on the tables in the data source view used to define the dimension, the
ROLAP storage mode also supports real-time OLAP.

If a dimension uses the ROLAP storage mode and the dimension is included in a cube
that uses MOLAP storage, any schema changes to its source table must be followed by
immediate processing of the cube. Failure to do this may result in inconsistent results
when querying the cube. Related topic: Processing Objects Using Integration Services.

See Also
Partition Storage Modes and Processing

Attributes and Attribute Hierarchies
Dimensions are collections of attributes, which are bound to one or more columns in a table or
view in the data source view.
Key Attribute
Each dimension contains a key attribute. Each attribute bound to one or more columns in a
dimension table. The key attribute is the attribute in a dimension that identifies the columns in
the dimension main table that are used in foreign key relationships to the fact table. Typically,
the key attribute represents the primary key column or columns in the dimension table. You can
define a logical primary key on a table in a data source view which has no physical primary key
in the underlying data source. For more information, see Defining Dimension Attributes. When
defining key attributes, the Cube Wizard and Dimension Wizard try to use the primary key
columns of the dimension table in the data source view. If the dimension table does not have a
logical primary key or physical primary key defined, the wizards may not be able to correctly
define the key attributes for the dimension.
Binding an Attribute to Columns in Data Source View Tables or Views
An attribute is bound to columns in one or more data source view tables or views. An attribute is
always bound to one or more key columns, which determines the members that are contained
by the attribute. By default, this is the only column to which an attribute is bound. An attribute
can also be bound to one or more additional columns for specific purposes. For example, an
attribute's NameColumn property determines the name that appears to the user for each
attribute member - this property of the attribute can be bound to a particular dimension column
through a data source view or can be bound to a calculated column in the data source view. For
more information, see Defining and Configuring Dimension Attributes.
Attribute Hierarchies
By default, attribute members are organized into two level hierarchies, consisting of a leaf level
and an All level. The All level contains the aggregated value of the attribute's members across
the measures in each measure group to which the dimension of which the attribute is related is

Important

http://msdn.microsoft.com/en-us/library/e960a9a2-80b4-45da-9369-bc560ecdccac(SQL.110)�
http://msdn.microsoft.com/en-us/library/172bc267-c637-4caa-bf55-0ba198d30b1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/7f83d1cb-4732-424f-adc5-2449c1dd1008(SQL.110)�

 27

a member. However, if the IsAggregatable property is set to False, the All level is not created.
For more information, see Defining and Configuring Dimension Attributes.
Attributes can be, and typically are, arranged into user-defined hierarchies that provide the drill-
down paths by which users can browse the data in the measure groups to which the attribute is
related. In client applications, attributes can be used to provide grouping and constraint
information. When attributes are arranged into user-defined hierarchies, you define
relationships between hierarchy levels when levels are related in a many-to-one or a one-to-one
relationship (called a natural relationship). For example, in a Calendar Time hierarchy, a Day level
should be related to the Month level, the Month level related to the Quarter level, and so on.
Defining relationships between levels in a user-defined hierarchy enables Analysis Services to
define more useful aggregations to increase query performance and can also save memory
during processing performance, which can be important with large or complex cubes. For more
information, see User-defined Hierarchies, Defining and Configuring a User-defined Hierarchy,
and Defining and Configuring an Attribute Relationship.
Attribute Relationships, Star Schemas, and Snowflake Schemas
By default, in a star schema, all attributes are directly related to the key attribute, which enables
users to browse the facts in the cube based on any attribute hierarchy in the dimension. In a
snowflake schema, an attribute is either directly linked to the key attribute if their underlying
table is directly linked to the fact table or is indirectly linked by means of the attribute that is
bound to the key in the underlying table that links the snowflake table to the directly linked
table.
See Also
Defining and Configuring a User-defined Hierarchy
Defining and Configuring an Attribute Relationship
Defining and Configuring Dimension Attributes

Attribute Relationships
In Microsoft SQL Server Analysis Services, attributes within a dimension are always related either
directly or indirectly to the key attribute. When you define a dimension based on a star schema,
which is where all dimension attributes are derived from the same relational table, an attribute
relationship is automatically defined between the key attribute and each non-key attribute of
the dimension. When you define a dimension based on a snowflake schema, which is where
dimension attributes are derived from multiple related tables, an attribute relationship is
automatically defined as follows:
• Between the key attribute and each non-key attribute bound to columns in the main

dimension table.
• Between the key attribute and the attribute bound to the foreign key in the secondary table

that links the underlying dimension tables.
• Between the attribute bound to foreign key in the secondary table and each non-key

attribute bound to columns from the secondary table.

http://msdn.microsoft.com/en-us/library/7f83d1cb-4732-424f-adc5-2449c1dd1008(SQL.110)�
http://msdn.microsoft.com/en-us/library/16715b85-0630-4a8e-99b0-c0d213cade26(SQL.110)�
http://msdn.microsoft.com/en-us/library/9184d344-e96d-4025-ad6f-3f75129746df(SQL.110)�
http://msdn.microsoft.com/en-us/library/16715b85-0630-4a8e-99b0-c0d213cade26(SQL.110)�
http://msdn.microsoft.com/en-us/library/9184d344-e96d-4025-ad6f-3f75129746df(SQL.110)�
http://msdn.microsoft.com/en-us/library/7f83d1cb-4732-424f-adc5-2449c1dd1008(SQL.110)�

 28

However, there are a number of reasons why you might want to change these default attribute
relationships. For example, you might want to define a natural hierarchy, a custom sort order, or
dimension granularity based on a non-key attribute. For more information, see User Hierarchy
Properties.

Attribute relationships are known in Multidimensional Expressions (MDX) as member
properties.

Natural Hierarchy Relationships
A hierarchy is a natural hierarchy when each attribute included in the user-defined hierarchy has
a one to many relationship with the attribute immediately below it. For example, consider a
Customer dimension based on a relational source table with eight columns:
• CustomerKey
• CustomerName
• Age
• Gender
• Email
• City
• Country
• Region
The corresponding Analysis Services dimension has seven attributes:
• Customer (based on CustomerKey, with CustomerName supplying member names)
• Age, Gender, Email, City, Region, Country
Relationships representing natural hierarchies are enforced by creating an attribute relationship
between the attribute for a level and the attribute for the level below it. For Analysis Services,
this specifies a natural relationship and potential aggregation. In the Customer dimension, a
natural hierarchy exists for the Country, Region, City, and Customer attributes. The natural
hierarchy for {Country, Region, City, Customer} is described by adding the following
attribute relationships:
• The Country attribute as an attribute relationship to the Region attribute.
• The Region attribute as an attribute relationship to the City attribute.
• The City attribute as an attribute relationship to the Customer attribute.
For navigating data in the cube, you can also create a user-defined hierarchy that does not
represent a natural hierarchy in the data (which is called an ad hoc or reporting hierarchy). For
example, you could create a user-defined hierarchy based on {Age, Gender}. Users do not see
any difference in how the two hierarchies behave, although the natural hierarchy benefits from
aggregating and indexing structures — hidden from the user — that account for the natural
relationships in the source data.

Note

http://msdn.microsoft.com/en-us/library/7f83d1cb-4732-424f-adc5-2449c1dd1008(SQL.110)�
http://msdn.microsoft.com/en-us/library/7f83d1cb-4732-424f-adc5-2449c1dd1008(SQL.110)�
http://msdn.microsoft.com/en-us/library/7f83d1cb-4732-424f-adc5-2449c1dd1008(SQL.110)�

 29

The SourceAttribute property of a level determines which attribute is used to describe the level.
The KeyColumns property on the attribute specifies the column in the data source view that
supplies the members. The NameColumn property on the attribute can specify a different name
column for the members.
To define a level in a user-defined hierarchy using SQL Server Data Tools (SSDT), the Dimension
Designer allows you to select a dimension attribute, a column in a dimension table, or a column
from a related table included in the data source view for the cube. For more information about
creating user-defined hierarchies, see Defining and Configuring a User-defined Hierarchy.
In Analysis Services, an assumption is usually made about the content of members. Leaf
members have no descendents and contain data derived from underlying data sources. Nonleaf
members have descendents and contain data derived from aggregations performed on child
members. In aggregated levels, members are based on aggregations of subordinate levels.
Therefore, when the IsAggregatable property is set to False on a source attribute for a level, no
aggregatable attributes should be added as levels above it.
Defining an Attribute Relationship
The main constraint when you create an attribute relationship is to make sure that the attribute
referred to by the attribute relationship has no more than one value for any member in the
attribute to which the attribute relationship belongs. For example, if you define a relationship
between a City attribute and a State attribute, each city can only relate to a single state.
Attribute Relationship Queries
You can use MDX queries to retrieve data from attribute relationships, in the form of member
properties, with the PROPERTIES keyword of the MDX SELECT statement. For more information
about how to use MDX to retrieve member properties, see Using Member Properties (MDX).
See Also
Attributes and Attribute Hierarchies
Configuring Dimension Attribute Properties
User-defined Hierarchies
Configuring User-defined Hierarchy Properties

User Hierarchies
User-defined hierarchies are user-defined hierarchies of attributes that are used in
Microsoft SQL Server Analysis Services to organize the members of a dimension into hierarchical
structures and provide navigation paths in a cube. For example, the following table defines a
dimension table for a time dimension. The dimension table supports three attributes, named
Year, Quarter, and Month.

Year Quarter Month

1999 Quarter 1 Jan

http://msdn.microsoft.com/en-us/library/16715b85-0630-4a8e-99b0-c0d213cade26(SQL.110)�
http://msdn.microsoft.com/en-us/library/26b5ad08-3799-4a5e-89f3-dca25e637d45(SQL.110)�
http://msdn.microsoft.com/en-us/library/7f83d1cb-4732-424f-adc5-2449c1dd1008(SQL.110)�

 30

Year Quarter Month

1999 Quarter 1 Feb

1999 Quarter 1 Mar

1999 Quarter 2 Apr

1999 Quarter 2 May

1999 Quarter 2 Jun

1999 Quarter 3 Jul

1999 Quarter 3 Aug

1999 Quarter 3 Sep

1999 Quarter 4 Oct

1999 Quarter 4 Nov

1999 Quarter 4 Dec

The Year, Quarter, and Month attributes are used to construct a user-defined hierarchy, named
Calendar, in the time dimension. The relationship between the levels and members of the
Calendar dimension (a regular dimension) is shown in the following diagram.

Any hierarchy other than the default two-level attribute hierarchy is called a user-defined
hierarchy. For more information about attribute hierarchies, see Defining Dimension
Attributes.

Member Structures
With the exception of parent-child hierarchies, the positions of members within the hierarchy
are controlled by the order of the attributes in the hierarchy's definition. Each attribute in the

Note

 31

hierarchy definition constitutes a level in the hierarchy. The position of a member within a level
is determined by the ordering of the attribute used to create the level. The member structures of
user-defined hierarchies can take one of four basic forms, depending on how the members are
related to each other.
Balanced Hierarchies
In a balanced hierarchy, all branches of the hierarchy descend to the same level, and each
member's logical parent is the level immediately above the member. The Product Categories
hierarchy of the Product dimension in the Adventure Works DW Multidimensional 2012
sample Analysis Services database is a good example of a balanced hierarchy. Each member in
the Product Name level has a parent member in the Subcategory level, which in turn has a
parent member in the Category level. Also, every branch in the hierarchy has a leaf member in
the Product Name level.
Unbalanced Hierarchies
In an unbalanced hierarchy, branches of the hierarchy descend to different levels. Parent-child
hierarchies are unbalanced hierarchies. For example, the Organization dimension in the
Adventure Works DW Multidimensional 2012 sample Analysis Services database contains a
member for each employee. The CEO is the top member in the hierarchy, and the division
managers and executive secretary are immediately beneath the CEO. The division managers
have subordinate members but the executive secretary does not.
It may be impossible for end users to distinguish between unbalanced and ragged hierarchies.
However, you employ different techniques and properties in Analysis Services to support these
two types of hierarchies. For more information, see Working with Attributes in Ragged
Hierarchies, and Working with Attributes in Parent-Child Hierarchies.
Ragged Hierarchies
In a ragged hierarchy, the logical parent member of at least one member is not in the level
immediately above the member. This can cause branches of the hierarchy to descend to
different levels. For example, in a Geography dimension defined with the levels Continent,
CountryRegion, and City, in that order, the member Europe appears in the top level of the
hierarchy, the member France appears in the middle level, and the member Paris appears in the
bottom level. France is more specific than Europe, and Paris is more specific than France. To this
regular hierarchy, the following changes are made:
• The Vatican City member is added to the CountryRegion level.
• Members are added to the City level and are associated with the Vatican City member in the

CountryRegion level.
• A level, named Province, is added between the CountryRegion and City levels.
The Province level is populated with members associated with other members in the
CountryRegion level, and members in the City level are associated with their corresponding
members in the Province level. However, because the Vatican City member in the CountryRegion
level has no associated members in the Province level, members must be associated from the
City level directly to the Vatican City member in the CountryRegion level. Because of the

http://msdn.microsoft.com/en-us/library/e40a5788-7ede-4b0f-93ab-46ca33d0cace(SQL.110)�
http://msdn.microsoft.com/en-us/library/e40a5788-7ede-4b0f-93ab-46ca33d0cace(SQL.110)�
http://msdn.microsoft.com/en-us/library/e40a5788-7ede-4b0f-93ab-46ca33d0cace(SQL.110)�
http://msdn.microsoft.com/en-us/library/249971cc-4bcd-44f1-8241-bdacc04d3d38(SQL.110)�

 32

changes, the hierarchy of the dimension is now ragged. The parent of the city Vatican City is the
country/region Vatican City, which is not in the level immediately above the Vatican City
member in the City level. For more information, see Working with Attributes in Ragged
Hierarchies.
Parent-Child Hierarchies
Parent-child hierarchies for dimensions are defined by using a special attribute, called a parent
attribute, to determine how members relate to each other. A parent attribute describes a self-
referencing relationship, or self-join, within a dimension main table. Parent-child hierarchies are
constructed from a single parent attribute. Only one level is assigned to a parent-child hierarchy,
because the levels present in the hierarchy are drawn from the parent-child relationships
between members associated with the parent attribute. The dimension schema of a parent-child
hierarchy depends on a self-referencing relationship present on the dimension main table. For
example, the following diagram illustrates the DimOrganization dimension main table in the
Adventure Works DW Multidimensional 2012 Analysis Services sample database.

In this dimension table, the ParentOrganizationKey column has a foreign key relationship with
the OrganizationKey primary key column. In other words, each record in this table can be
related through a parent-child relationship with another record in the table. This kind of self-join
is generally used to represent organization entity data, such as the management structure of
employees in a department.
When you create a parent-child hierarchy, the columns represented by both attributes must
have the same data type. Both attributes must also be in the same table. By default, any member
whose parent key equals its own member key, null, 0 (zero), or a value absent from the column
for member keys is assumed to be a member of the top level (excluding the (All) level).
The depth of a parent-child hierarchy can vary among its hierarchical branches. In other words, a
parent-child hierarchy is considered an unbalanced hierarchy.
Unlike user-defined hierarchies, in which the number of levels in the hierarchy determines the
number of levels that can be seen by end users, a parent-child hierarchy is defined with the
single level of an attribute hierarchy, and the values in this single level produce the multiple
levels seen by users. The number of displayed levels depends on the contents of the dimension
table columns that store the member keys and the parent keys. The number of levels can
change when the data in the dimension tables change. For more information, see Defining a
Parent-Child Hierarchy, and Working with Attributes in Parent-Child Hierarchies.

http://msdn.microsoft.com/en-us/library/e40a5788-7ede-4b0f-93ab-46ca33d0cace(SQL.110)�
http://msdn.microsoft.com/en-us/library/e40a5788-7ede-4b0f-93ab-46ca33d0cace(SQL.110)�
http://msdn.microsoft.com/en-us/library/e40a5788-7ede-4b0f-93ab-46ca33d0cace(SQL.110)�
http://msdn.microsoft.com/en-us/library/4657f5dc-d88e-48d2-a448-08f79bc89546(SQL.110)�
http://msdn.microsoft.com/en-us/library/4657f5dc-d88e-48d2-a448-08f79bc89546(SQL.110)�
http://msdn.microsoft.com/en-us/library/4657f5dc-d88e-48d2-a448-08f79bc89546(SQL.110)�
http://msdn.microsoft.com/en-us/library/249971cc-4bcd-44f1-8241-bdacc04d3d38(SQL.110)�

 33

See Also
Defining and Configuring a User-defined Hierarchy
Configuring User-defined Hierarchy Properties
Configuring Dimension Attribute Properties

User Hierarchy Properties
The following table describes the properties of a user-defined hierarchy.

Property Description

AllMemberName Contains the caption in the default
language for the All member of the
hierarchy.

AllowDuplicateNames Determines whether duplicate names are
allowed in the hierarchy. Values are True
and False. Default value is True.

Description Contains the description of the hierarchy.

DisplayFolder Specifies the folder in which to list the
hierarchy for users.

ID Contains the unique identifier (ID) of the
hierarchy.

MemberNamesUnique Determines whether member names in the
hierarchy must be unique. Values are True
and False. Default value is False.

Name Contains the name of the hierarchy.

See Also
Level Properties
Configuring Level Properties

Level Properties
The following table lists and describes the properties of a level in a user-defined hierarchy.

Property Description

Description Contains the description of the level.

http://msdn.microsoft.com/en-us/library/16715b85-0630-4a8e-99b0-c0d213cade26(SQL.110)�
http://msdn.microsoft.com/en-us/library/7f83d1cb-4732-424f-adc5-2449c1dd1008(SQL.110)�

 34

Property Description

HideMemberIf Indicates whether and when a member in a
level should be hidden from client
applications. This property can have the
following values:
Never

Members are never hidden. This
is the default value.

OnlyChildWithNoName

A member is hidden when the
member is the only child of its
parent and the member's name
is empty.

OnlyChildWithParentName

A member is hidden when the
member is the only child of its
parent and the member's name
is identical to that of its parent.

NoName

A member is hidden when the
member's name is empty.

ParentName

A member is hidden when the
member's name is identical to
that of its parent.

ID Contains the unique identifier (ID) of the
level.

Name Contains the friendly name of the level. By
default, the name of a level is the same as
the name of the source attribute.

SourceAttribute Contains the name of the source attribute
on which the level is based.

See Also
User Hierarchy Properties

 35

Write-Enabled Dimensions
The data in a dimension is generally read-only. However, for certain scenarios, you may want to
write-enable a dimension. In Microsoft SQL Server Analysis Services, write-enabling a dimension
enables business users to modify the contents of the dimension and see the immediate affect of
changes on the hierarchies of the dimension. Any dimension that is based on a single table can
be write-enabled. In a write-enabled dimension, business users and administrators can change,
move, add, and delete attribute members within the dimension. These updates are referred to
collectively as dimension writeback.
Analysis Services supports dimension writeback on all dimension attributes and any member of
a dimension may be modified. For a write-enabled cube or partition, updates are stored in a
writeback table separate from the cube's source tables. However, for a write-enabled dimension,
updates are recorded directly in the dimension's table. Also, if the write-enabled dimension is
included in a cube with multiple partitions where some or all their data sources have copies of
the dimension table, only the original dimension table is updated during a writeback process.
Write-enabled dimensions and write-enabled cubes have different but complementary features.
A write-enabled dimension gives business users the ability to update members, whereas a write-
enabled cube gives them the ability to update cell values. Although these two features are
complementary, you do not have to use both features in combination. A dimension does not
have to be included in a cube for dimension writeback to occur. A write-enabled dimension can
also be included in a cube that is not write-enabled. You use different procedures to write-
enable dimensions and cubes, and to maintain their security.
The following restrictions apply to dimension writeback:
• When you create a new member, you must include every attribute in a dimension. You

cannot insert a member without specifying a value for the key attribute of the dimension.
Therefore, creating members is subject to any constraints (such as non-null key values) that
are defined on the dimension table.

• Dimension writeback is supported only for star schemas. In other words, a dimension must
be based on a single dimension table directly related to a fact table. After you write-enable a
dimension, Analysis Services validates this requirement when you deploy to an existing
Analysis Services database or when you build an Analysis Services project.

Any existing member of a writeback dimension can be modified or deleted. When a member is
deleted, the deletion cascades to all child members. For example, in a Customer dimension that
contains CountryRegion, Province, City, and Customer attributes, deleting a country/region
would delete all provinces, cities, and customers that belong to the deleted country/region. If a
country/region has only one province, deleting that province would delete the country/region
also.
Members of a writeback dimension can only be moved within the same level. For example, a city
could be moved to the City level in a different country/region or province, but a city cannot be
moved to the Province or CountryRegion level. In a parent-child hierarchy, all members are leaf
members, and therefore a member may be moved to any level other than the (All) level.

 36

If a member of a parent-child hierarchy is deleted, the member's children are moved to the
member's parent. Update permissions on the relational table are required on the deleted
member, but no permissions are required on the moved members. When an application moves
a member in a parent-child hierarchy, the application can specify in the UPDATE operation
whether descendents of the member are moved with the member or are moved to the
member's parent. To recursively delete a member in a parent-child hierarchy, a user must have
update permissions on the relational table for the member and all the member's descendants.

Updates to the parent attribute in a parent-child hierarchy must not include updates to
any other properties or attributes.

All changes to a dimension cause the dimension structure to be modified. Each change to a
dimension is considered a single transaction, requiring incremental processing to update the
dimension structure. Write-enabled dimensions have the same processing requirements as any
other dimension.

Dimension writeback is not supported by linked dimensions. For more information about
linked dimensions, see Dimensions (Analysis Services - Multidimensional Data).

Security
The only business users who can update a write-enabled dimension are those in Analysis
Services database roles that have been granted read/write permission to the dimension. For
each role, you can control which members can and cannot be updated. For business users to
update write-enabled dimensions, their client application must support this capability. For such
users, a write-enabled dimension must be included in a cube that was processed since the
dimension last changed. For more information, see Granting User Access.
Users and groups included in the Administrators role can update the attribute members of a
write-enabled dimension, even if the dimension is not included in a cube.
See Also
Configuring Database Dimension Properties
Write-Enabled Partitions
Dimensions (Analysis Services)

Dimension Translations
A translation is a simple mechanism to change the displayed labels and captions from one
language to another. Each translation is defined as a pair of values: a string with the translated
text, and a number with the language ID. Translations are available for all objects in Analysis
Services. Dimensions can also have the attribute values translated. The client application is
responsible for finding the language setting that the user has defined, and switch to display all
captions and labels to that language. An object can have as many translations as you want.

Note

Note

http://msdn.microsoft.com/en-us/library/79311d29-ff55-4c75-a408-a59a7d0176ac(SQL.110)�
http://msdn.microsoft.com/en-us/library/af28524e-5eca-4dce-a050-da4f406ee1c7(SQL.110)�

 37

A simple T:Microsoft.AnalysisServices.Translation object is composed of: language ID number,
and translated caption. The language ID number is an Integer with the language ID. The
translated caption is the translated text.
In Microsoft SQL Server Analysis Services, a dimension translation is a language-specific
representation of the name of a dimension, the name of an Analysis Services object or one of its
members, such as a caption, member, or hierarchy level. SQL Server Analysis Services also
supports translations of cube objects.
Translations provide server support for client applications that can support multiple languages.
Frequently, users from different countries view a cube and its dimensions. It is useful to be able
to translate various elements of a cube and its dimensions into a different language so that
these users can view and understand the cube. For example, a business user in France can access
a cube from a workstation with a French locale setting, and see the object property values in
French. However, a business user in Germany who accesses the same cube from a workstation
with a German locale setting sees the same object property values in German.
The collation and language information for the client computer is stored in the form of a locale
identifier (LCID). Upon connection, the client passes the LCID to the instance of Analysis Services.
The instance uses the LCID to determine which set of translations to use when providing
metadata for Analysis Services objects. If an Analysis Services object does not contain the
specified translation, the default language is used to return the content back to the client.
See Also
Client Applications (Analysis Services - Multidimensional Data)
Working with Translations (SSAS)
Working with Client Applications (SSAS)

Database Dimension Properties
In Microsoft SQL Server Analysis Services, the characteristics of a dimension are defined by the
metadata for the dimension, based on the settings of various dimension properties, and on the
attributes or hierarchies that are contained by the dimension. The following table describes the
dimension properties in Analysis Services.

Property Description

AttributeAllMemberName Specifies the name of the All member for
attributes in a dimension.

Collation Determines the collation used by the
dimension.

CurrentStorageMode Contains the current storage mode for the
dimension.

DependsOnDimension Contains the ID of another dimension on

 38

Property Description

which the dimension depends, if any.

Description Contains the description of the dimension.

ErrorConfiguration Configurable error handling settings for
handling of duplicate keys, unknown keys,
error limits, action upon error detection,
error log file, and null key handling.

ID Contains the unique identifier (ID) of the
dimension.

Language Specifies the default language for the
dimension.

MdxMissingMemberMode Determines how missing members are
handled for Multidimensional Expressions
(MDX) statements.

MiningModelID Contains the ID of the mining model with
which the data mining dimension is
associated. This property is applicable only
if the dimension is a mining model
dimension.

Name Specifies the name of the dimension.

ProactiveCaching Defines the proactive cache settings for the
dimension.

ProcessingGroup Specifies the processing group. Values are
ByAttribute or ByTable. Default is
ByAttribute.

ProcessingMode Indicates whether Analysis Services should
index and aggregate during or after
processing.

ProcessingPriority Determines the processing priority of the
dimension during background operations
such as lazy aggregation, indexing, or
clustering.

Source Identifies the data source view to which the
dimension is bound.

StorageMode Determines the storage mode for the
dimension.

 39

Property Description

Type Specifies the type of the dimension.

UnknownMember Indicates whether the unknown member is
visible.

UnknownMemberName Specifies the caption, in the default
language of the dimension, for the
unknown member of the dimension.

WriteEnabled Indicates whether dimension writebacks are
available (subject to security permissions).

For more information about setting values for the ErrorConfiguration and
UnknownMember properties when working with null values and other data integrity
issues, see Handling Data Integrity Issues in Analysis Services 2005.

See Also
Dimensions (Analysis Services - Multidimensional Data)
Hierarchies
Dimension Relationships and Usage
Dimensions (SSAS)

Dimension Types
The Type property setting provides information about the contents of a dimension to server
and client applications. In some cases, the Type setting only provides guidance for client
applications and is optional. In other cases, such as Accounts or Time dimensions, the Type
property settings for the dimension and its attributes determine specific server-based behaviors
and may be required to implement certain behaviors in the cube. For example, the Type
property of a dimension can be set to Accounts to indicate to client applications that the
standard dimension contains account attributes. For more information about time, account, and
currency dimensions, see Dimensions (Analysis Services - Multidimensional Data), Account,
and Currency.
The default setting for the dimension type is Regular, which makes no assumptions about the
contents of the dimension. This is the default setting for all dimensions when you initially define
a dimension unless you specify Time when defining the dimension using the Dimension Wizard.
You should also leave Regular as the dimension type if the Dimension Wizard does not list an
appropriate type for Dimension type.
Available Dimension Types

Note

http://go.microsoft.com/fwlink/?LinkId=81891�
http://msdn.microsoft.com/en-us/library/6d692856-4b01-4dca-a650-f97ac220c114(SQL.110)�
http://msdn.microsoft.com/en-us/library/2ba74e81-5b4b-407e-acdf-deb2f6accf0a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b1f037d1-ce47-4e47-a1c2-5ec9e781cff6(SQL.110)�

 40

The following table describes the dimension types available in Microsoft SQL Server Analysis
Services.

Dimension type Description

Regular A dimension whose type has not been set
to a special dimension type.

Time A dimension whose attributes represent
time periods, such as years, semesters,
quarters, months, and days.

Organization A dimension whose attributes represent
organizational information, such as
employees or subsidiaries.

Geography A dimension whose attributes represent
geographic information, such as cities or
postal codes.

BillOfMaterials A dimension whose attributes represent
inventory or manufacturing information,
such as parts lists for products.

Accounts A dimension whose attributes represent a
chart of accounts for financial reporting
purposes.

Customers A dimension whose attributes represent
customer or contact information.

Products A dimension whose attributes represent
product information.

Scenario A dimension whose attributes represent
planning or strategic analysis information.

Quantitative A dimension whose attributes represent
quantitative information.

Utility A dimension whose attributes represent
miscellaneous information.

Currency This type of dimension contains currency
data and metadata.

Rates A dimension whose attributes represent
currency rate information.

 41

Dimension type Description

Channel A dimension whose attributes represent
channel information.

Promotion A dimension whose attributes represent
marketing promotion information.

See Also
Creating a Standard Dimension
Dimensions (SSAS)

Proactive Caching (Dimensions)
Proactive caching provides automatic MOLAP cache creation and management for OLAP
objects. The cubes immediately incorporate changes that are made to the data in the database,
based upon notifications received from the database. The goal of proactive caching is to provide
the performance of traditional MOLAP, while retaining the immediacy and ease of management
offered by ROLAP.
A simple T:Microsoft.AnalysisServices.ProactiveCaching object is composed of: timing
specification, and table notification. The timing specification defines the timeframe for updating
the cache after a change notification has been received. The table notification defines the
notification schema between the data table and the
T:Microsoft.AnalysisServices.ProactiveCaching object.

Cube Objects
Introducing Cube Objects
A simple T:Microsoft.AnalysisServices.Cube object is composed of: basic information, dimensions,
and measure groups. Basic information includes the name of the cube, the default measure of
the cube, the data source, the storage mode, and others.
The Dimensions collection contains the actual set of dimensions used in the cube from the
database dimensions colection. All dimensions have to be defined in the dimensions collection
of the database before being referenced in the cube. Private dimensions are not available in
Microsoft SQL Server Analysis Services.
Measure groups are sets of measures in the cube. A measure group is a collection of measures
that have a common data source view and a common set of dimensions. A measure group is the
unit of process for measures; measure groups can be processed individually and then browsed.
In this section

Topic

http://msdn.microsoft.com/en-us/library/edd96fbe-1b1c-445a-95d6-7a025e0ee868(SQL.110)�

 42

Actions (Analysis Services -
Multidimensional Data)

Aggregations and Aggregation Designs

Calculations

Cube Cells (Analysis Services -
Multidimensional Data)

Cube Properties

Cube Storage (Analysis Services -
Multidimensional Data)

Cube Translations

Dimension Relationships

Key Performance Indicators (KPIs)

Measures and Measure Groups

Partitions (Analysis Services -
Multidimensional Data)

Perspectives

Cube Properties
Cubes have a number of properties that you can set to affect cube-wide behavior. These
properties are summarized in the following table.

Some properties are set automatically when the cube is created and cannot be changed.
For more information about how to set cube properties, see Proactive Caching (Partitions).

Property Description

AggregationPrefix Specifies the common prefix that is used
for aggregation names.

Collation Specifies the locale identifier (LCID) and the
comparison flag, separated by an
underscore: for example,
Latin1_General_C1_AS.

DefaultMeasure Contains a Multidimensional Expressions

Note

http://msdn.microsoft.com/en-us/library/07229bb2-805c-427e-8455-69c9ca5d01e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/07229bb2-805c-427e-8455-69c9ca5d01e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/73aee2da-da30-44f1-829c-0a4c078a7768(SQL.110)�
http://msdn.microsoft.com/en-us/library/4f0122f9-c3a5-4172-ada3-5bc5f7b1cc9a(SQL.110)�
http://msdn.microsoft.com/en-us/library/a6692467-da88-4312-8b03-d812f2ae5a96(SQL.110)�

 43

Property Description

(MDX) expression that defines the default
measure for the cube.

Description Provides a description of the cube, which
may be exposed in client applications.

ErrorConfiguration Contains configurable error handling
settings for handling of duplicate keys,
unknown keys, error limits, action upon
error detection, error log file, and null key
handling.

EstimatedRows Specifies the number of estimated rows in
the cube.

ID Contains the unique identifier (ID) of the
cube.

Language Specifies the default language identifier of
the cube.

Name Specifies the user-friendly name of the
cube.

ProactiveCaching Defines proactive cache settings for the
cube.

ProcessingMode Indicates whether indexing and
aggregating should occur during or after
processing. Options are regular or lazy.

ProcessingPriority Determines the processing priority of the
cube during background operations, such
as lazy aggregations and indexing. The
default value is 0.

ScriptCacheProcessingMode Indicates whether the script cache should
be built during or after processing. Options
are regular and lazy.

ScriptErrorHandlingMode Determines error handling. Options are
IgnoreNone or IgnoreAll

Source Displays the data source view used for the
cube.

StorageLocation Specifies the file system storage location
for the cube. If none is specified, the

 44

Property Description

location is inherited from the database that
contains the cube object.

StorageMode Specifies the storage mode for the cube.
Values are MOLAP, ROLAP, or HOLAP.

Visible Determines the visibility of the cube.

For more information about setting values for the ErrorConfiguration property when
working with null values and other data integrity issues, see Handling Data Integrity
Issues in Analysis Services 2005.

See Also
Proactive Caching (SSAS)

Dimension Relationships
Dimension usage defines the relationships between a cube dimension and the measure groups
in a cube. A cube dimension is an instance of a database dimension that is used in a specific
cube. A cube can, and frequently does, have cube dimensions that are not directly related to a
measure group, but which might be indirectly related to the measure group through another
dimension or measure group. When you add a database dimension or measure group to a cube,
Microsoft SQL Server Analysis Services tries to determine dimension usage by examining
relationships between the dimension tables and fact tables in the cube's data source view, and
by examining the relationships between attributes in dimensions. Analysis Services automatically
sets the dimension usage settings for the relationships that it can detect.
A relationship between a dimension and a measure group consists of the dimension and fact
tables participating in the relationship and a granularity attribute that specifies the granularity of
the dimension in the particular measure group.
Regular Dimension Relationships
A regular dimension relationship between a cube dimension and a measure group exists when
the key column for the dimension is joined directly to the fact table. This direct relationship is
based on a primary key–foreign key relationship in the underlying relational database, but might
also be based on a logical relationship that is defined in the data source view. A regular
dimension relationship represents the relationship between dimension tables and a fact table in
a traditional star schema design. For more information about regular relationships, see Defining
Dimension Usage Relationships.
Reference Dimension Relationships

Note

http://go.microsoft.com/fwlink/?LinkId=81891�
http://go.microsoft.com/fwlink/?LinkId=81891�
http://go.microsoft.com/fwlink/?LinkId=81891�
http://msdn.microsoft.com/en-us/library/840280d8-20c3-46c0-99ea-62479469c36b(SQL.110)�
http://msdn.microsoft.com/en-us/library/840280d8-20c3-46c0-99ea-62479469c36b(SQL.110)�
http://msdn.microsoft.com/en-us/library/840280d8-20c3-46c0-99ea-62479469c36b(SQL.110)�

 45

A reference dimension relationship between a cube dimension and a measure group exists when
the key column for the dimension is joined indirectly to the fact table through a key in another
dimension table, as shown in the following illustration.

A reference dimension relationship represents the relationship between dimension tables and a
fact table in a snowflake schema design. When dimension tables are connected in a snowflake
schema, you can define a single dimension using columns from multiple tables, or you can
define separate dimensions based on the separate dimension tables and then define a link
between them using the reference dimension relationship setting. The following figure shows
one fact table named InternetSales, and two dimension tables called Customer and
Geography, in a snowflake schema.

You can create a dimension with the Customer table as the dimension main table and the
Geography table included as a related table. A regular relationship is then defined between the
dimension and the InternetSales measure group.
Alternatively, you can create two dimensions related to the InternetSales measure group: a
dimension based on the Customer table, and a dimension based on the Geography table. You
can then relate the Geography dimension to the InternetSales measure group using a reference
dimension relationship using the Customer dimension. In this case, when the facts in the
InternetSales measure group are dimensioned by the Geography dimension, the facts are
dimensioned by customer and by geography. If the cube contained a second measure group
named Reseller Sales, you would be unable to dimension the facts in the Reseller Sales measure
group by Geography because no relationship would exist between Reseller Sales and
Geography.

 46

There is no limit to the number of reference dimensions that can be chained together, as shown
in the following illustration.

For more information about referenced relationships, see Defining a Referenced Relationship
and Referenced Relationship Properties.
Fact Dimension Relationships
Fact dimensions, frequently referred to as degenerate dimensions, are standard dimensions that
are constructed from attribute columns in fact tables instead of from attribute columns in
dimension tables. Useful dimensional data is sometimes stored in a fact table to reduce
duplication. For example, the following diagram displays the FactResellerSales fact table, from
the Adventure Works DW Multidimensional 2012 sample database.

http://msdn.microsoft.com/en-us/library/5bb44b41-635b-4398-8fe9-0bfbb142553e(SQL.110)�
http://msdn.microsoft.com/en-us/library/5bb44b41-635b-4398-8fe9-0bfbb142553e(SQL.110)�
http://msdn.microsoft.com/en-us/library/5bb44b41-635b-4398-8fe9-0bfbb142553e(SQL.110)�

 47

The table contains attribute information not only for each line of an order issued by a reseller,
but about the order itself. The attributes circled in the previous diagram identify the information
in the FactResellerSales table that could be used as attributes in a dimension. In this case, two
additional pieces of information, the carrier tracking number and the purchase order number
issued by the reseller, are represented by the CarrierTrackingNumber and CustomerPONumber
attribute columns. This information is interesting—for example, users would definitely be
interested in seeing aggregated information, such as the total product cost, for all the orders
being shipped under a single tracking number. But, without a dimension data for these two
attributes cannot be organized or aggregated.
In theory, you could create a dimension table that uses the same key information as the
FactResellerSales table and move the other two attribute columns, CarrierTrackingNumber and
CustomerPONumber, to that dimension table. However, you would be duplicating a significant
portion of data and adding unnecessary complexity to the data warehouse to represent just two
attributes as a separate dimension.

Fact dimensions are frequently used to support drillthrough actions. For more
information about actions, see Actions.

Note

http://msdn.microsoft.com/en-us/library/07229bb2-805c-427e-8455-69c9ca5d01e0(SQL.110)�

 48

Fact dimensions must be incrementally updated after every update to the measure
group that is referenced by the fact relationship. If the fact dimension is a ROLAP
dimension, the Analysis Services processing engine drops any caches and incrementally
processes the measure group.

For more information about fact relationships, see Defining a Fact Relationship and Fact
Relationship Properties.
Many to Many Dimension Relationships
In most dimensions, each fact joins to one and only one dimension member, and a single
dimension member can be associated with multiple facts. In relational database terminology,
this is referred to as a one-to-many relationship. However, it is frequently useful to join a single
fact to multiple dimension members. For example, a bank customer might have multiple
accounts (checking, saving, credit card, and investment accounts), and an account can also have
joint or multiple owners. The Customer dimension constructed from such relationships would
then have multiple members that relate to a single account transaction.

SQL Server Analysis Services lets you define a many-to-many relationship between a dimension
and a fact table.

To support a many-to-many dimension relationship, the data source view must have
established a foreign key relationship between all the tables involved, as shown in the
previous diagram. Otherwise, you will be unable to select the correct intermediate
measure group when establishing the relationship in the Dimension Usage tab of
Dimension Designer.

For more information about many-to-many relationships, see Defining a Many-to-Many
Relationship and Many-to-Many Relationship Properties.
See Also
Dimensions
Defining and Configuring Dimension Usage and Dimension Relationships

Note

Note

http://msdn.microsoft.com/en-us/library/d8e41724-da77-4ac1-bc42-956b5d91ea5d(SQL.110)�
http://msdn.microsoft.com/en-us/library/d8e41724-da77-4ac1-bc42-956b5d91ea5d(SQL.110)�
http://msdn.microsoft.com/en-us/library/d8e41724-da77-4ac1-bc42-956b5d91ea5d(SQL.110)�
http://msdn.microsoft.com/en-us/library/edb5f61a-a581-467a-a367-134b7f9b849f(SQL.110)�
http://msdn.microsoft.com/en-us/library/edb5f61a-a581-467a-a367-134b7f9b849f(SQL.110)�
http://msdn.microsoft.com/en-us/library/b0111394-b32b-422d-a7e4-ab9e5cbbc02d(SQL.110)�

 49

Calculations
A calculation is a Multidimensional Expressions (MDX) expression or script that is used to define
a calculated member, a named set, or a scoped assignment in a cube in Microsoft SQL
Server Analysis Services. Calculations let you add objects that are defined not by the data of the
cube, but by expressions that can reference other parts of the cube, other cubes, or even
information outside the Analysis Services database. Calculations let you extend the capabilities
of a cube, adding flexibility and power to business intelligence applications. For more
information about scripting calculations, see Introduction to MDX Scripting in Microsoft SQL
Server 2005. For more information about performance issues related to MDX queries and
calculations, see the SQL Server 2005 Analysis Services Performance Guide.
Calculated Members
A calculated member is a member whose value is calculated at run time using a
Multidimensional Expressions (MDX) expression that you specify when you define the calculated
member. A calculated member is available to business intelligence applications just like any
other member. Calculated members do not increase the size of the cube because only the
definitions are stored in the cube; values are calculated in memory as required to answer a
query.
Calculated members can be defined for any dimension, including the measures dimension.
Calculated members created on the Measures dimension are called calculated measures.
Although calculated members are typically based on data that already exists in the cube, you
can create complex expressions by combining data with arithmetic operators, numbers, and
functions. You can also use MDX functions, such as LookupCube, to access data in other cubes
in the Analysis Services database. Analysis Services includes standardized Visual Studio function
libraries, and you can use stored procedures to retrieve data from sources other than the current
Analysis Services database. For more information about stored procedures, see Defining
Calculations.
For example, suppose executives in a shipping company want to determine which types of cargo
are more profitable to carry, based on profit per unit of volume. They use a Shipments cube that
contains the dimensions Cargo, Fleet, and Time and the measures Price_to_Ship, Cost_to_Ship,
and Volume_in_Cubic_Meters; however, the cube does not contain a measure for profitability.
You can create a calculated member as a measure named Profit_per_Cubic_Meter in the cube by
combining the existing measures in the following expression:

([Measures].[Price_to_Ship] - [Measures].[Cost_to_Ship]) /

[Measures].[Volume_in_Cubic_Meters]

After you create the calculated member, the Profit_per_Cubic_Meter appears together with the
other measures the next time that the Shipments cube is browsed.
To create calculated members, use the Calculations tab in Cube Designer. For more
information, see Defining a Calculated Member
Named Sets

http://go.microsoft.com/fwlink/?LinkId=81892�
http://go.microsoft.com/fwlink/?LinkId=81892�
http://go.microsoft.com/fwlink/?LinkId=81892�
http://go.microsoft.com/fwlink/?LinkId=81621�
http://msdn.microsoft.com/en-us/library/820e4b18-9c3a-4b12-a126-ca16d8364a00(SQL.110)�

 50

A named set is a CREATE SET MDX statement expression that returns a set. The MDX expression
is saved as part of the definition of a cube in Microsoft SQL Server Analysis Services. A named
set is created for reuse in Multidimensional Expressions (MDX) queries. A named set enables
business users to simplify queries, and use a set name instead of a set expression for complex,
frequently used set expressions. Related topic: Defining a Named Set
Script Commands
A script command is an MDX script, included as part of the definition of the cube. Script
commands let you perform almost any action that is supported by MDX on a cube, such as
scoping a calculation to apply to only part of the cube. In SQL Server Analysis Services, MDX
scripts can apply either to the whole cube or to specific sections of the cube, at specific points
throughout the execution of the script. The default script command, which is the CALCULATE
statement, populates cells in the cube with aggregated data based on the default scope.
The default scope is the whole cube, but you can define a more limited scope, known as a
subcube, and then apply an MDX script to only that particular cube space. The SCOPE statement
defines the scope of all subsequent MDX expressions and statements in the calculation script
until the scope is terminated or redefined. The THIS statement is then used to apply an MDX
expression to the current scope. You can use the BACK_COLOR statement to specify a
background cell color for the cells in the current scope, to help you during debugging.
For example, you can use a script command to allocate sales quotas to employees across time
and sales territory based on the weighted values of sales for a prior time period.
See Also
Defining and Configuring a Calculation

Partitions
A partition is a container for a portion of the measure group data. Partitions are not seen from
MDX queries; all queries reflect the whole content of the measure group, regardless of how
many partitions are defined for the measure group. The data content of a partition is defined by
the query bindings of the partition, and by the slicing expression.
A simple T:Microsoft.AnalysisServices.Partition object is composed of: basic information, slicing
definition, aggregation design, and others. Basic information includes the name of the partition,
the storage mode, the processing mode, and others. The slicing definition is an MDX expression
specifying a tuple or a set. The slicing definition has the same restrictions as the StrToSet MDX
function. Together with the CONSTRAINED parameter, the slicing definition can use dimension,
hierarchy, level and member names, keys, unique names, or other named objects in the cube,
but cannot use MDX functions. The aggregation design is a collection of aggregation definitions
that can be shared across multiple partitions. The default is taken from the parent cube's
aggregation design.
Partitions are used by Microsoft SQL Server Analysis Services to manage and store data and
aggregations for a measure group in a cube. Every measure group has at least one partition; this
partition is created when the measure group is defined. When you create a new partition for a

http://msdn.microsoft.com/en-us/library/03cf97a4-1a18-45f3-acb0-35123bd619be(SQL.110)�
http://msdn.microsoft.com/en-us/library/c21b3459-9bef-45a2-aba5-c992eba5b66e(SQL.110)�

 51

measure group, the new partition is added to the set of partitions that already exist for the
measure group. The measure group reflects the combined data that is contained in all its
partitions. This means that you must ensure that the data for a partition in a measure group is
exclusive of the data for any other partition in the measure group to ensure that data is not
reflected in the measure group more than once. The original partition for a measure group is
based on a single fact table in the data source view of the cube. When there are multiple
partitions for a measure group, each partition can reference a different table in either the data
source view or in the underlying relational data source for the cube. More than one partition in a
measure group can reference the same table, if each partition is restricted to different rows in
the table.
Partitions are a powerful and flexible means of managing cubes, especially large cubes. For
example, a cube that contains sales information can contain a partition for the data of each past
year and also partitions for each quarter of the current year. Only the current quarter partition
needs to be processed when current information is added to the cube; processing a smaller
amount of data will improve processing performance by decreasing processing time. At the end
of the year the four quarterly partitions can be merged into a single partition for the year and a
new partition created for the first quarter of the new year. Further, this new partition creation
process can be automated as part of your data warehouse loading and cube processing
procedures.
Partitions are not visible to business users of the cube. However, administrators can configure,
add, or drop partitions. Each partition is stored in a separate set of files. The aggregate data of
each partition can be stored on the instance of Analysis Services where the partition is defined,
on another instance of Analysis Services, or in the data source that is used to supply the
partition's source data. Partitions allow the source data and aggregate data of a cube to be
distributed across multiple hard drives and among multiple server computers. For a cube of
moderate to large size, partitions can greatly improve query performance, load performance,
and ease of cube maintenance. For more information about remote partitions, see Analysis
Services Multidimensional Database Logical Architecture-Delete.
The storage mode of each partition can be configured independently of other partitions in the
measure group. Partitions can be stored by using any combination of options for source data
location, storage mode, proactive caching, and aggregation design. Options for real-time OLAP
and proactive caching let you balance query speed against latency when you design a partition.
Storage options can also be applied to related dimensions and to facts in a measure group. This
flexibility lets you design cube storage strategies appropriate to your needs. For more
information, see Partition Storage, Aggregations and Proactive Caching.
Partition Structure
The structure of a partition must match the structure of its measure group, which means that the
measures that define the measure group must also be defined in the partition, along with all
related dimensions. Therefore, when a partition is created, it automatically inherits the same set
of measures and related dimensions that were defined for the measure group.
However, each partition in a measure group can have a different fact table, and these fact tables
can be from different data sources. When different partitions in a measure group have different

 52

fact tables, the tables must be sufficiently similar to maintain the structure of the measure
group, which means that the processing query returns the same columns and same data types
for all fact tables for all partitions.
When fact tables for different partitions are from different data sources, the source tables for
any related dimensions, and also any intermediate fact tables, must also be present in all data
sources and must have the same structure in all the databases. Also, all dimension table columns
that are used to define attributes for cube dimensions related to the measure group must be
present in all of the data sources. There is no need to define all the joins between the source
table of a partition and a related dimension table if the partition source table has the identical
structure as the source table for the measure group.
Columns that are not used to define measures in the measure group can be present in some
fact tables but absent in others. Similarly, columns that are not used to define attributes in
related dimension tables can be present in some databases but absent in others. Tables that are
not used for either fact tables or related dimension tables can be present in some databases but
absent in others.
Data Sources and Partition Storage
A partition is based either on a table or view in a data source, or on a table or named query in a
data source view. The location where partition data is stored is defined by the data source
binding. Typically, you can partition a measure group horizontally or vertically:
• In a horizontally partitioned measure group, each partition in a measure group is based on a

separate table. This kind of partitioning is appropriate when data is separated into multiple
tables. For example, some relational databases have a separate table for each month's data.

• In a vertically partitioned measure group, a measure group is based on a single table, and
each partition is based on a source system query that filters the data for the partition. For
example, if a single table contains several months data, the measure group could still be
partitioned by month by applying a Transact-SQL WHERE clause that returns a separate
month's data for each partition.

Each partition has storage settings that determine whether the data and aggregations for the
partition are stored in the local instance of Analysis Services or in a remote partition using
another instance of Analysis Services. The storage settings can also specify the storage mode
and whether proactive caching is used to control latency for a partition. For more information,
see Partition Storage Modes (Analysis Services), Proactive Caching, and Remote Partitions.
Incremental Updates
When you create and manage partitions in multiple-partition measure groups, you must take
special precautions to guarantee that cube data is accurate. Although these precautions do not
usually apply to single-partition measure groups, they do apply when you incrementally update
partitions. When you incrementally update a partition, a new temporary partition is created that
has a structure identical to that of the source partition. The temporary partition is processed and
then merged with the source partition. Therefore, you must ensure that the processing query
that populates the temporary partition does not duplicate any data already present in an
existing partition. For more information, see Defining and Configuring a Partition.

http://msdn.microsoft.com/en-us/library/da001e1c-d7a5-4bc7-a2c5-2d3dba534664(SQL.110)�

 53

See Also
Measure Groups (Analysis Services)
Defining and Configuring a Partition
Cubes (Analysis Services)

Partition Storage Modes and Processing
The storage mode of a partition affects the query and processing performance, storage
requirements, and storage locations of the partition and its parent measure group and cube. The
choice of storage mode also affects processing choices.
A partition can use one of three basic storage modes:
• Multidimensional OLAP (MOLAP)
• Relational OLAP (ROLAP)
• Hybrid OLAP (HOLAP)
Microsoft SQL Server Analysis Services supports all three basic storage modes. It also supports
proactive caching, which enables you to combine the characteristics of ROLAP and MOLAP
storage for both immediacy of data and query performance. For more information,
see Partitions (Analysis Services - Multidimensional Data).
MOLAP
The MOLAP storage mode causes the aggregations of the partition and a copy of its source data
to be stored in a multidimensional structure in Analysis Services when the partition is processed.
This MOLAP structure is highly optimized to maximize query performance. The storage location
can be on the computer where the partition is defined or on another computer running Analysis
Services. Because a copy of the source data resides in the multidimensional structure, queries
can be resolved without accessing the partition's source data. Query response times can be
decreased substantially by using aggregations. The data in the partition's MOLAP structure is
only as current as the most recent processing of the partition.
As the source data changes, objects in MOLAP storage must be processed periodically to
incorporate those changes and make them available to users. Processing updates the data in the
MOLAP structure, either fully or incrementally. The time between one processing and the next
creates a latency period during which data in OLAP objects may not match the source data. You
can incrementally or fully update objects in MOLAP storage without taking the partition or cube
offline. However, there are situations that may require you to take a cube offline to process
certain structural changes to OLAP objects. You can minimize the downtime required to update
MOLAP storage by updating and processing cubes on a staging server and using database
synchronization to copy the processed objects to the production server. You can also use
proactive caching to minimize latency and maximize availability while retaining much of the
performance advantage of MOLAP storage. For more information, see Proactive Caching
(SSAS), Synchronizing Analysis Services Databases, and Processing Analysis Services Objects.
ROLAP

http://msdn.microsoft.com/en-us/library/e9031078-c4f5-4986-b0c9-4d064b622ab7(SQL.110)�
http://msdn.microsoft.com/en-us/library/da001e1c-d7a5-4bc7-a2c5-2d3dba534664(SQL.110)�
http://msdn.microsoft.com/en-us/library/e0f7acf3-4b07-41fc-a5fc-ac30b4a56c54(SQL.110)�
http://msdn.microsoft.com/en-us/library/6aeff68d-8470-43fb-a3ed-a4b9685332c2(SQL.110)�
http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�

 54

The ROLAP storage mode causes the aggregations of the partition to be stored in indexed views
in the relational database that was specified in the partition's data source. Unlike the MOLAP
storage mode, ROLAP does not cause a copy of the source data to be stored in the Analysis
Services data folders. Instead, when results cannot be derived from the query cache, the indexed
views in the data source is accessed to answer queries. Query response is generally slower with
ROLAP storage than with the MOLAP or HOLAP storage modes. Processing time is also typically
slower with ROLAP. However, ROLAP enables users to view data in real time and can save
storage space when you are working with large datasets that are infrequently queried, such as
purely historical data.

When using ROLAP, Analysis Services may return incorrect information related to the
unknown member if a join is combined with a GROUP BY clause. Analysis Services
eliminates relational integrity errors instead of returning the unknown member value.

If a partition uses the ROLAP storage mode and its source data is stored in SQL Server Database
Engine, Analysis Services tries to create indexed views to contain aggregations of the partition. If
Analysis Services cannot create indexed views, it does not create aggregation tables. Although
Analysis Services handles the session requirements for creating indexed views on SQL Server
Database Engine, the following conditions must be met by the ROLAP partition and the tables in
its schema in order for Analysis Services to create indexed views for aggregations:
• The partition cannot contain measures that use the Min or Max aggregate functions.
• Each table in the schema of the ROLAP partition must be used only one time. For example,

the schema cannot contain [dbo].[address] AS "Customer Address" and [dbo].[address] AS
"SalesRep Address".

• Each table must be a table, not a view.
• All table names in the partition's schema must be qualified with the owner name, for

example, [dbo].[customer].
• All tables in the partition's schema must have the same owner; for example, you cannot have

a FROM clause that references the tables [tk].[customer], [john].[store], and
[dave].[sales_fact_2004].

• The source columns of the partition's measures must not be nullable.
• All tables used in the view must have been created with the following options set to ON:

• ANSI_NULLS
• QUOTED_IDENTIFIER

• The total size of the index key, in SQL Server Database Engine, cannot exceed 900 bytes. SQL
Server Database Engine will assert this condition based on the fixed length key columns
when the CREATE INDEX statement is processed. However, if there are variable length
columns in the index key, SQL Server Database Engine will also assert this condition for every
update to the base tables. Because different aggregations have different view definitions,
ROLAP processing using indexed views can succeed or fail depending on the aggregation
design.

Note

 55

• The session creating the indexed view must have the following options set to ON:
ARITHABORT, CONCAT_NULL_YEILDS_NULL, QUOTED_IDENTIFIER, ANSI_NULLS,
ANSI_PADDING, and ANSI_WARNING. This setting can be made in SQL Server Management
Studio.

• The session creating the indexed view must have the following option set to OFF:
NUMERIC_ROUNDABORT. This setting can be made in SQL Server Management Studio.

HOLAP
The HOLAP storage mode combines attributes of both MOLAP and ROLAP. Like MOLAP, HOLAP
causes the aggregations of the partition to be stored in a multidimensional structure in an SQL
Server Analysis Services instance. HOLAP does not cause a copy of the source data to be stored.
For queries that access only summary data in the aggregations of a partition, HOLAP is the
equivalent of MOLAP. Queries that access source data—for example, if you want to drill down to
an atomic cube cell for which there is no aggregation data—must retrieve data from the
relational database and will not be as fast as they would be if the source data were stored in the
MOLAP structure. With HOLAP storage mode, users will typically experience substantial
differences in query times depending upon whether the query can be resolved from cache or
aggregations versus from the source data itself.
Partitions stored as HOLAP are smaller than the equivalent MOLAP partitions because they do
not contain source data and respond faster than ROLAP partitions for queries involving
summary data. HOLAP storage mode is generally suited for partitions in cubes that require rapid
query response for summaries based on a large amount of source data. However, where users
generate queries that must touch leaf level data, such as for calculating median values, MOLAP
is generally a better choice.
See Also
Designing Partition Storage and Aggregations
Proactive Caching
Synchronizing Analysis Services Databases
Partitions

Proactive Caching (Partitions)
Proactive caching provides automatic MOLAP cache creation and management for OLAP
objects. The cubes immediately incorporate changes that are made to the data in the database,
based upon notifications received from the database. The goal of proactive caching is to provide
the performance of traditional MOLAP, while retaining the immediacy and ease of management
offered by ROLAP.
A simple T:Microsoft.AnalysisServices.ProactiveCaching object is composed of: timing
specification, and table notification. The timing specification defines the timeframe for updating
the cache after a change notification has been received. The table notification defines the
notification schema between the data table and the
T:Microsoft.AnalysisServices.ProactiveCaching object.

http://msdn.microsoft.com/en-us/library/b2bd3a72-6cea-499f-a5b5-7f47be8a933d(SQL.110)�
http://msdn.microsoft.com/en-us/library/6aeff68d-8470-43fb-a3ed-a4b9685332c2(SQL.110)�

 56

Multidimensional OLAP (MOLAP) storage provides the best query response, but with a penalty
of some data latency. Real-time relational OLAP (ROLAP) storage lets users immediately browse
the most recent changes in a data source, but at the penalty of significantly poorer performance
than multidimensional OLAP (MOLAP) storage because of the absence of precalculated
summaries of data and because relational storage is not optimized for OLAP-style queries. If you
have applications in which your users need to see recent data and you also want the
performance advantages of MOLAP storage, SQL Server Analysis Services offers the option of
proactive caching to address this scenario, particularly in combination with the use of partitions.
Proactive caching is set on a per partition and per dimension basis. Proactive caching options
can provide a balance between the enhanced performance of MOLAP storage and the
immediacy of ROLAP storage, and provide automatic partition processing when underlying data
changes or on a set schedule.
Proactive Caching Configuration Options
SQL Server Analysis Services provides several proactive caching configuration options that
enable you to maximize performance, minimize latency, and schedule processing. Proactive
caching features simplify the process of managing data obsolescence. The proactive caching
settings determine how frequently the multidimensional OLAP structure, also called the MOLAP
cache, is rebuilt, whether the outdated MOLAP storage is queried while the cache is rebuilt or
the underlying ROLAP data source, and whether the cache is rebuilt on a schedule or based on
changes in the database.
Minimizing Latency
With proactive caching set to minimize latency, user queries against an OLAP object are made
against either ROLAP storage or MOLAP storage, depending whether recent changes have
occurred to the data and how proactive caching is configured. The query engine directs queries
against source data in MOLAP storage until changes occur in the data source. To minimize
latency, after changes occur in a data source, cached MOLAP objects can be dropped and
querying switched to ROLAP storage while the MOLAP objects are rebuilt in cache. After the
MOLAP objects are rebuilt and processed, queries are automatically switched to the MOLAP
storage. The cache refresh can occur extremely quickly for a small partition, such as the current
partition - which can be as small as the current day.
Maximizing Performance
To maximize performance while also reducing latency, caching can also be used without
dropping the current MOLAP objects. Queries then continue against the MOLAP objects while
data is read into and processed in a new cache. This method provides better performance but
may result in queries returning old data while the new cache is being built.
See Also
Choosing a Standard Storage Setting
Choosing a Standard Storage Setting

http://msdn.microsoft.com/en-us/library/e525e708-f719-4905-a4cc-20f6a9a3edcd(SQL.110)�

 57

Remote Partitions
The data of a remote partition is stored on a different instance of Microsoft SQL Server Analysis
Services than the instance that contains the definitions (metadata) of the partition and its parent
cube. A remote partition is administered on the same instance of Analysis Services where the
partition and its parent cube are defined.

To store a remote partition, the computer must have an instance of SQL Server Analysis
Services installed and be running the same service pack level as the instance where the
partition was defined. Remote partitions on instances of an earlier version of Analysis
Services are not supported.

When remote partitions are included in a measure group, the memory and CPU utilization of the
cube is distributed across all the partitions in the measure group. For example, when a remote
partition is processed, either alone or as part of parent cube processing, most of the memory
and CPU utilization for that partition occurs on the remote instance of Analysis Services.

 A cube that contains remote partitions can contain write-enabled dimensions; however,
this may affect performance for the cube. For more information about write-enabled
dimensions, see Processing (Analysis Services - Multidimensional Data).

Storage Modes for Remote Partitions
Remote partitions may use any of the storage types used by local partitions: multidimensional
OLAP (MOLAP), hybrid OLAP (HOLAP), or relational OLAP (ROLAP). Remote partitions may also
use proactive caching. Depending on the storage mode of a remote partition, the following data
is stored on the remote instance of Analysis Services.

Storage Type Data

MOLAP The partition's aggregations and a copy of
the partition's source data

HOLAP The partitions aggregations

ROLAP No partition data

If a measure group contains multiple MOLAP or HOLAP partitions stored on multiple instances
of Analysis Services, the cube distributes the data in the measure group data among those
instances of Analysis Services.
Merging Remote Partitions
Remote partitions can be merged only with other remote partitions that are stored on the same
remote instance of Analysis Services. For more information about merging partitions,
see Merging Partitions.

Note

Note

http://msdn.microsoft.com/en-us/library/b3857b9b-de43-4911-989d-d14da0196f89(SQL.110)�

 58

Archiving and Restoring Remote Partitions
Data in remote partitions can be archived or restored when the database that stores the remote
partition is archived or restored. If you restore a database without restoring a remote partition,
you must process the remote partition before you can use the data in the partition. For more
information about archiving and restoring databases, see Backing Up and Restoring an Analysis
Services Database.
See Also
Creating and Managing a Remote Partition
Processing OLAP Objects

Write-Enabled Partitions
The data in a cube is generally read-only. However, for certain scenarios, you may want to write-
enable a partition. Write-enabled partitions are used to enable business users to explore
scenarios by changing cell values and analyzing the effects of the changes on cube data. When
you write-enable a partition, client applications can record changes to the data in the partition.
These changes, known as writeback data, are stored in a separate table and do not overwrite any
existing data in a measure group. However, they are incorporated into query results as if they
are part of the cube data.
You can write-enable an entire cube or only certain partitions in the cube. Write-enabled
dimensions are different but complementary. A write-enabled partition lets users update
partition cells, whereas a write-enabled dimension lets users update dimension members. You
can also use these two features in combination. For example, a write-enabled cube or a write-
enabled partition does not have to include any write-enabled dimensions. Related
topic: Defining Write-Enabled Dimensions.

If you want to write-enable a cube that has a Microsoft Access database as a data source,
do not use Microsoft OLE DB Provider for ODBC Drivers in the data source definitions for
the cube, its partitions, or its dimensions. Instead, you can use Microsoft Jet 4.0 OLE DB
Provider, or any version of the Jet Service Pack that includes Jet 4.0 OLE. For more
information, see the Microsoft Knowledge Base article How to obtain the latest service
pack for the Microsoft Jet 4.0 Database Engine.

A cube can be write-enabled only if all its measures use the Sum aggregate function. Linked
measure groups and local cubes cannot be write-enabled.
Writeback Storage
Any change made by the business user is stored in the writeback table as a difference from the
currently displayed value. For example, if an end user changes a cell value from 90 to 100, the
value +10 is stored in the writeback table, together with the time of the change and information
about the business user who made it. The net effect of accumulated changes is displayed to
client applications. The original value in the cube is preserved, and an audit trail of changes is
recorded in the writeback table.

Note

http://msdn.microsoft.com/en-us/library/947eebd2-3622-479e-8aa6-57c11836e4ec(SQL.110)�
http://msdn.microsoft.com/en-us/library/947eebd2-3622-479e-8aa6-57c11836e4ec(SQL.110)�
http://msdn.microsoft.com/en-us/library/4322b5cb-af07-4e79-8ecb-59e1121a9eb8(SQL.110)�
http://msdn.microsoft.com/en-us/library/c7e1f66f-16ca-43da-b8c7-4d3e1fa8b58d(SQL.110)�
http://support.microsoft.com/?kbid=239114�
http://support.microsoft.com/?kbid=239114�
http://support.microsoft.com/?kbid=239114�

 59

Changes to leaf and nonleaf cells are handled differently. A leaf cell represents an intersection of
a measure and a leaf member from every dimension referenced by the measure group. The
value of a leaf cell is taken directly from the fact table, and cannot be divided further by drilling
down. If a cube or any partition is write-enabled, changes can be made to a leaf cell. Changes
can be made to a nonleaf cell only if the client application provides a way of distributing the
changes among the leaf cells that make up the nonleaf cell. This process, called allocation, is
managed through the UPDATE CUBE statement in Multidimensional Expressions (MDX).
Business intelligence developers can use the UPDATE CUBE statement to include allocation
functionality. For more information, see UPDATE CUBE Statement.

When updated cells do not overlap, the Update Isolation Level connection string
property can be used to enhance performance for UPDATE CUBE. For more information,
see P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.ConnectionString.

Regardless of whether a client application distributes changes that were made to nonleaf cells,
whenever queries are evaluated, changes in the writeback table are applied to both leaf and
nonleaf cells so that business users can view the effects of the changes throughout the cube.
Changes that were made by the business user are kept in a separate writeback table that you
can work with as follows:
• Convert to a partition to permanently incorporate changes into the cube. This action makes

the measure group read-only. You can specify a filter expression to select the changes you
want to convert.

• Discard to return the partition to its original state. This action makes the partition read-only.
Security
A business user is permitted to record changes in a cube's writeback table only if the business
user belongs to a role that has read/write permission to the cube's cells. For each role, you can
control which cube cells can and cannot be updated. For more information, see Granting Cube
Access.
See Also
Write-Enabled Dimensions (Analysis Services)
Aggregations (Analysis Services)
Partitions (Analysis Services)
Defining Write-Enabled Dimensions

Perspectives
A perspective is a definition that allows users to see a cube in a simpler way. A perspective is a
subset of the features of a cube. A perspective enables administrators to create views of a cube,
helping users to focus on the most relevant data for them. A perspective contains subsets of all
objects from a cube. A perspective cannot include elements that are not defined in the parent
cube.

Important

http://msdn.microsoft.com/en-us/library/6c8f23bb-401b-49de-843a-5324ac977239(SQL.110)�
http://msdn.microsoft.com/en-us/library/55b1456e-2f6b-4101-b316-c926f40304e3(SQL.110)�
http://msdn.microsoft.com/en-us/library/55b1456e-2f6b-4101-b316-c926f40304e3(SQL.110)�
http://msdn.microsoft.com/en-us/library/55b1456e-2f6b-4101-b316-c926f40304e3(SQL.110)�

 60

A simple T:Microsoft.AnalysisServices.Perspective object is composed of: basic information,
dimensions, measure groups, calculations, KPIs, and actions. Basic information includes the
name and the default measure of the perspective. The dimensions are a subset of the cube
dimensions. The measure groups are a subset of the cube measure groups. The calculations are
a subset of the cube calculations. The KPIs are a subset of the cube KPIs. The actions are a
subset of the cube actions.
A cube has to be updated and processed before the perspective can be used.
Cubes can be very complex objects for users to explore in Microsoft SQL Server Analysis
Services. A single cube can represent the contents of a complete data warehouse, with multiple
measure groups in a cube representing multiple fact tables, and multiple dimensions based on
multiple dimension tables. Such a cube can be very complex and powerful, but daunting to
users who may only need to interact with a small part of the cube in order to satisfy their
business intelligence and reporting requirements.
In Microsoft SQL Server Analysis Services, you can use a perspective to reduce the perceived
complexity of a cube in Analysis Services. A perspective defines a viewable subset of a cube that
provides focused, business-specific or application-specific viewpoints on the cube. The
perspective controls the visibility of objects that are contained by a cube. The following objects
can be displayed or hidden in a perspective:
• Dimensions
• Attributes
• Hierarchies
• Measure groups
• Measures
• Key Performance Indicators (KPIs)
• Calculations (calculated members, named sets, and script commands)
• Actions
For example, the Adventure Works cube in the Adventure Works DW Multidimensional
2012 sample Analysis Services database contains eleven measure groups and twenty-one
different cube dimensions, representing sales, sales forecasting, and financial data. A client
application can directly reference the complete cube, but this viewpoint may be overwhelming
to a user trying to extract basic sales forecasting information. Instead, the same user can use the
Sales Targets perspective to limit the view of the Adventure Works cube to only those objects
relevant to sales forecasting.
Objects in a cube that are not visible to the user through a perspective can still be directly
referenced and retrieved using XML for Analysis (XMLA), Multidimensional Expressions (MDX), or
Data Mining Extensions (DMX) statements. Perspectives do not restrict access to objects in a
cube and should not be used as such; instead, perspectives are used to provide a better user
experience while accessing a cube.

 61

A perspective is a read-only view of the cube; objects in the cube cannot be renamed or
changed by using a perspective. Similarly, the behavior or features of a cube, such as the use of
visual totals, cannot be changed by using a perspective.
Security
Perspectives are not meant to be used as a security mechanism, but as a tool for providing a
better user experience in business intelligence applications. All security for a particular
perspective is inherited from the underlying cube. For example, perspectives cannot provide
access to objects in a cube to which a user does not already have access. - Security for the cube
must be resolved before access to objects in the cube can be provided through a perspective.
Related topic: Security and Protection
See Also
Working with Perspectives in Model Designer

Cube Translations
A translation is a simple mechanism to change the displayed labels and captions from one
language to another. Each translation is defined as a pair of values: a string with the translated
text, and a number with the language ID. Translations are available for all objects in Analysis
Services. Dimensions can also have the attribute values translated. The client application is
responsible for finding the language setting that the user has defined, and switch to display all
captions and labels to that language. An object can have as many translations as you want.
A simple T:Microsoft.AnalysisServices.Translation object is composed of: language ID number,
and translated caption. The language ID number is an Integer with the language ID. The
translated caption is the translated text.
In Microsoft SQL Server Analysis Services, a cube translation is a language-specific
representation of the name of a cube object, such as a caption or a display folder. Analysis
Services also supports translations of dimension and member names.
Translations provide server support for client applications that can support multiple languages.
Frequently, users from different countries view cube data. It is useful to be able to translate
various elements of a cube into a different language so that these users can view and
understand the cube's metadata. For example, a business user in France can access a cube from
a workstation with a French locale setting, and view the object property values in French.
Similarly, a business user in Germany can access the same cube from a workstation with a
German locale setting and view the object property values in German.
The collation and language information for the client computer is stored in the form of a locale
identifier (LCID). Upon connection, the client passes the LCID to the instance of Analysis Services.
The instance uses the LCID to determine which set of translations to use when providing
metadata for Analysis Services objects to each business user. If an Analysis Services object does
not contain the specified translation, the default language is used to return the content back to
the client.
See Also

http://msdn.microsoft.com/en-us/library/64970b87-766f-468b-a94e-9b53495bafdc(SQL.110)�
http://msdn.microsoft.com/en-us/library/f61876a9-6a24-4fdd-9f74-eddcf8c35a88(SQL.110)�

 62

Client Applications (Analysis Services - Multidimensional Data)
Working with Translations (SSAS)
Working with Client Applications (SSAS)

Cube Cells
A cube is composed of cells, organized by measure groups and dimensions. A cell represents
the unique logical intersection in a cube of one member from every dimension in the cube. For
example, the cube described by the following diagram contains one measure group that has two
measures, organized along three dimensions named Source, Route, and Time.

The single shaded cell in this diagram is the intersection of the following members:
• The air member of the Route dimension.
• The Africa member of the Source dimension.
• The 4th quarter member of the Time dimension.
• The Packages measure.
Leaf and Nonleaf Cells
The value for a cell in a cube can be obtained in one of several ways. In the previous example,
the value in the cell can be directly retrieved from the fact table of the cube, because all the
members used to identify that cell are leaf members. A leaf member has no child members,
hierarchically speaking, and typically references a single record in a dimension table. This kind of
cell is referred to as a leaf cell.

 63

However, a cell can also be identified by using nonleaf members. A nonleaf member is a member
that has one or more child members. In this case, the value of the cell is typically derived from
the aggregation of child members associated with the nonleaf member. For example, the
intersection of the following members and dimensions refers to a cell whose value is supplied by
aggregation:
• The air member of the Route dimension.
• The Africa member of the Source dimension.
• The 2nd half member of the Time dimension.
• The Packages member.
The 2nd half member of the Time dimension is a nonleaf member. Therefore, all of values
associated with it must be aggregated values, as shown in the following diagram.

Assuming the aggregations for the 3rd quarter and 4th quarter members are summations, the
value of the specified cell is 400, which is the total of all of the leaf cells shaded in the previous
diagram. Because the value of the cell is derived from the aggregation of other cells, the
specified cell is considered a nonleaf cell.
The cell values derived for members that use custom rollups and member groups, in addition to
custom members, are handled similarly. However, cell values derived for calculated members are
based completely on the Multidimensional Expressions (MDX) expression used to define the
calculated member; in some cases, there may be no actual cell data involved. For more
information, see Aggregations and Aggregation Designs, Custom Member Formulas,
and Calculations.

http://msdn.microsoft.com/en-us/library/a3ddd9fc-5fa3-4227-9322-8c45a5b5c2c3(SQL.110)�
http://msdn.microsoft.com/en-us/library/258304e2-d900-4013-97e3-871f51dfdce2(SQL.110)�

 64

Empty Cells
It is not required that every cell in a cube contain a value; there can be intersections in a cube
that have no data. These intersections, called empty cells, frequently occur in cubes because not
every intersection of a dimension attribute with a measure within a cube contains a
corresponding record in a fact table. The ratio of empty cells in a cube to the total number of
cells in a cube is frequently referred to as the sparsity of a cube.
For example, the structure of the cube shown in the following diagram is similar to other
examples in this topic. However, in this example, there were no air shipments to Africa for the
third quarter or to Australia for the fourth quarter. There is no data in the fact table to support
the intersections of those dimensions and measures; therefore the cells at those intersections
are empty.

In SQL Server Analysis Services, an empty cell is a cell that has special qualities. Because empty
cells can skew the results of crossjoins, counts, and so on, many MDX functions supply the ability
to ignore empty cells for the purposes of calculation. For more information,
see Multidimensional Expressions (MDX) Reference, and Key Concepts in MDX (MDX).
Security
Access to cell data is managed in Analysis Services at the role level, and can be finely controlled
by using MDX expressions. For more information, see Granting Custom Access to Dimension
Data, and Granting Custom Access to Cell Data.
See Also
Cube Storage (SSAS)

http://msdn.microsoft.com/en-us/library/7e1cb1fb-2a50-41c2-9c70-b853ad6b6c3f(SQL.110)�
http://msdn.microsoft.com/en-us/library/4797ddc8-6423-497a-9a43-81a1af7eb36c(SQL.110)�
http://msdn.microsoft.com/en-us/library/b028720d-3785-4381-9572-157d13ec4291(SQL.110)�
http://msdn.microsoft.com/en-us/library/b028720d-3785-4381-9572-157d13ec4291(SQL.110)�
http://msdn.microsoft.com/en-us/library/3b13a4ae-f3df-4523-bd30-b3fdf71e95cf(SQL.110)�

 65

Aggregations and Aggregation Designs (SSAS)

Cube Storage
Storage may include only the cube metadata, or may include all of the source data from the fact
table as well as the aggregations defined by dimensions related to the measure group. The
amount of data stored depends upon the storage mode selected and the number of
aggregations. The amount of data stored directly affects query performance. Microsoft SQL
Server Analysis Services uses several techniques for minimizing the space required for storage of
cube data and aggregations:
• Storage options enable you to select the storage modes and locations that are most

appropriate for cube data.
• A sophisticated algorithm designs efficient summary aggregations to minimize storage

without sacrificing speed.
• Storage is not allocated for empty cells.
Storage is defined on a partition-by-partition basis, and at least one partition exists for each
measure group in a cube. For more information, see Aggregations and Aggregation
Designs, Partition Storage, Measures and Measure Groups, and Defining and Configuring a
Measure Group.
Partition Storage
Storage for a measure group can be divided into multiple partitions. Partitions enable you to
distribute a measure group into discrete segments on a single server or across multiple servers,
and to optimize storage and query performance. Each partition in a measure group can be
based on a different data source and stored using different storage settings.
You specify the data source for a partition when you create it. You can also change the data
source for any existing partition. A measure group can be partitioned vertically or horizontally.
Each partition in a vertically partitioned measure group is based on a filtered view of a single
source table. For example, if a measure group is based on a single table that contains several
years of data, you could create a separate partition for each year's data. In contrast, each
partition in a horizontally partitioned measure group is based on a separate table. You would
use horizontal partitions if the data source stores each year's data in a separate table.
Partitions are initially created with the same storage settings as the measure group in which they
are created. The storage settings determine whether the detail and aggregation data is stored in
multidimensional format on the instance of Analysis Services, in relational format on the source
server, or a combination of both. Storage settings also determine whether proactive caching is
used to automatically process source data changes to the multidimensional data stored on the
Analysis Services.
The partitions of a cube are not visible to the user. However, the choice of storage settings for
different partitions may affect the immediacy of data, the amount of disk space that is used, and
query performance. Partitions can be stored on multiple instances of Analysis Services. This

http://msdn.microsoft.com/en-us/library/4f0122f9-c3a5-4172-ada3-5bc5f7b1cc9a(SQL.110)�
http://msdn.microsoft.com/en-us/library/1018bb2e-b89b-489e-aead-450dec5dca3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/1018bb2e-b89b-489e-aead-450dec5dca3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/1018bb2e-b89b-489e-aead-450dec5dca3b(SQL.110)�

 66

provides a clustered approach to cube storage, and distributes workload across Analysis Services
servers. For more information, see Partition Storage, Remote Partitions, and Partitions.
Linked Measure Groups
It can require considerable disk space to store multiple copies of a cube on different instances of
Analysis Services, but you can greatly reduce the space needed by replacing the copies of the
measure group with linked measure groups. A linked measure group is based on a measure
group in a cube in another Analysis Services database, on the same or a different instance of
Analysis Services. A linked measure group can also be used with linked dimensions from the
same source cube. The linked dimensions and measure groups use the aggregations of the
source cube and have no data storage requirements of their own. Therefore, by maintaining the
source measure groups and dimensions in one database, and creating linked cubes and
dimensions in cubes in other databases, you can save disk space that otherwise would be used
for storage. For more information, see Linked Measure Groups, and Linked Dimensions.
See Also
Aggregations and Aggregation Designs

Aggregations and Aggregation Designs
An T:Microsoft.AnalysisServices.AggregationDesign object defines a set of aggregation
definitions that can be shared across multiple partitions.
An T:Microsoft.AnalysisServices.Aggregation object represents the summarization of measure
group data at certain granularity of the dimensions.
A simple T:Microsoft.AnalysisServices.Aggregation object is composed of: basic information and
dimensions. Basic information includes the name of the aggregation, the ID, annotations, and a
description. The dimensions are a collection of
T:Microsoft.AnalysisServices.AggregationDimension objects that contain the list of granularity
attributes for the dimension.
Aggregations are precalculated summaries of data from leaf cells. Aggregations improve query
response time by preparing the answers before the questions are asked. For example, when a
data warehouse fact table contains hundreds of thousands of rows, a query requesting the
weekly sales totals for a particular product line can take a long time to answer if all the rows in
the fact table have to be scanned and summed at query time to compute the answer. However,
the response can be almost immediate if the summarization data to answer this query has been
precalculated. This precalculation of summary data occurs during processing and is the
foundation for the rapid response times of OLAP technology.
Cubes are the way that OLAP technology organizes summary data into multidimensional
structures. Dimensions and their hierarchies of attributes reflect the queries that can be asked of
the cube. Aggregations are stored in the multidimensional structure in cells at coordinates
specified by the dimensions. For example, the question "What were the sales of product X in
1998 for the Northwest region?" involves three dimensions (Product, Time, and Geography) and

http://msdn.microsoft.com/en-us/library/7f838452-8669-4194-8e15-7afdc7f15251(SQL.110)�
http://msdn.microsoft.com/en-us/library/79311d29-ff55-4c75-a408-a59a7d0176ac(SQL.110)�

 67

one measure (Sales). The value of the cell in the cube at the specified coordinates (product X,
1998, Northwest) is the answer, a single numeric value.
Other questions may return multiple values. For example, "How much were the sales of
hardware products by quarter by region for 1998?" Such queries return sets of cells from the
coordinates that satisfy the specified conditions. The number of cells returned by the query
depends on the number of items in the Hardware level of the Product dimension, the four
quarters in 1998, and the number of regions in the Geography dimension. If all summary data
has been precalculated into aggregations, the response time of the query will depend only on
the time that is required to extract the specified cells. No calculation or reading of data from the
fact table is required.
Although precalculation of all possible aggregations in a cube might provide the fastest possible
response time for all queries, Analysis Services can easily calculate some aggregrated values
from other precalculated aggregations. Additionally, calculating all possible aggregations
requires significant processing time and storage. Therefore, there is a tradeoff between storage
requirements and the percentage of possible aggregations that are precalculated. If no
aggregations are precalculated (0%), the amount of required processing time and storage space
for a cube is minimized, but query response time may be slow because the data required to
answer each query must be retrieved from the leaf cells and then aggregated at query time to
answer each query. For example, returning a single number that answers the question asked
earlier ("What were the sales of product X in 1998 for the Northwest region") might require
reading thousands of rows of data, extracting the value of the column used to provide the Sales
measure from each row, and then calculating the sum. Moreover, the length of time required to
retrieve that data will very depending on the storage mode chosen for the data—MOLAP,
HOLAP, or ROLAP. Related topic: Partition Storage Modes and Processing.
Designing Aggregations
Microsoft SQL Server Analysis Services incorporates a sophisticated algorithm to select
aggregations for precalculation so that other aggregations can be quickly computed from the
precalculated values. For example, if the aggregations are precalculated for the Month level of a
Time hierarchy, the calculation for a Quarter level requires only the summarization of three
numbers, which can be quickly computed on demand. This technique saves processing time and
reduces storage requirements, with minimal effect on query response time.
The Aggregation Design Wizard provides options for you to specify storage and percentage
constraints on the algorithm to achieve a satisfactory tradeoff between query response time and
storage requirements. However, the Aggregation Design Wizard's algorithm assumes that all
possible queries are equally likely. The Usage-Based Optimization Wizard lets you adjust the
aggregation design for a measure group by analyzing the queries that have been submitted by
client applications. By using the wizard to tune a cube's aggregation you can increase
responsiveness to frequent queries and decrease responsiveness to infrequent queries without
significantly affecting the storage needed for the cube.
Aggregations are designed by using the wizards but are not actually calculated until the
partition for which the aggregations are designed is processed. After the aggregation has been
created, if the structure of a cube ever changes, or if data is added to or changed in a cube's

 68

source tables, it is usually necessary to review the cube's aggregations and process the cube
again. Related topic: Designing Partition Storage and Aggregations.
See Also
Partition Storage

Physical Architecture
In This Section
The following topics provide more information about the architecture of an Analysis
Services solution.

Topic Description

Server Architecture Describes the components of an Analysis
Services server.

Local Cubes Describes how stand-alone cubes are
implemented and the scope of such
implementation under an Analysis Services
solution.

Clients Describes the client architecture to access
data and metadata from an Analysis
Services solution.

OLAP Engine Server Components
The server component of Microsoft SQL Server Analysis Services is the msmdsrv.exe
application, which ordinarily runs as a Windows service. This application consists of security
components, an XML for Analysis (XMLA) listener component, a query processor component
and numerous other internal components that perform the following functions:
• Parsing statements received from clients
• Managing metadata
• Handling transactions
• Processing calculations
• Storing dimension and cell data
• Creating aggregations
• Scheduling queries
• Caching objects

http://msdn.microsoft.com/en-us/library/b2bd3a72-6cea-499f-a5b5-7f47be8a933d(SQL.110)�

 69

• Managing server resources
Architectural Diagram
An Analysis Services instance runs as a stand-alone service and communication with the service
occurs through XML for Analysis (XMLA), by using either HTTP or TCP. AMO is a layer between
the user application and the Analysis Services instance. This layer provides access to Analysis
Services administrative objects. AMO is a class library that takes commands from a client
application and converts those commands into XMLA messages for the Analysis Services
instance. AMO presents Analysis Services instance objects as classes to the end user application,
with method members that run commands and property members that hold the data for the
Analysis Services objects.
The following illustration shows the Analysis Services components architecture, including all
major elements running within the Analysis Services instance and all user components that
interact with the instance. The illustration also shows that the only way to access the instance is
by using the XML for Analysis (XMLA) Listener, either by using HTTP or TCP.

 70

Fore more information, see the SQL Server 2005 Analysis Services Performance Guide.
XMLA Listener

Note

http://go.microsoft.com/fwlink/?LinkId=81621�

 71

The XMLA listener component handles all XMLA communications between Analysis Services and
its clients. The Analysis Services Port configuration setting in the msmdsrv.ini file can be used to
specify a port on which an Analysis Services instance listens. A value of 0 in this file indicates
that Analysis Services listen on the default port. Unless otherwise specified, Analysis Services
uses the following default TCP ports:

Port Description

2383 Default instance of SQL Server Analysis
Services.

2382 Redirector for other instances of SQL
Server Analysis Services.

Dynamically assigned at server startup Named instance of SQL Server Analysis
Services.

In This Section
• Object Naming (Analysis Services - Multidimensional Data)
• Maximum Capacity Specifications (Analysis Services - Multidimensional Data)
See Also
Specifying and Restricting Ports
Physical Architecture (Analysis Services - Multidimensional Data)
Logical Architecture (Analysis Services - Multidimensional Data)

Server Process
In This Section
The following topics provide more information about how Analysis Services instances are
implemented.

Topic Description

Analysis Services Configuration Properties Describes configuration properties and
settings for each instance of Analysis
Services.

Object Naming
Object Names, IDs, and References

http://msdn.microsoft.com/en-us/library/d388a095-b8ee-40d6-b498-6d21568d4158(SQL.110)�
http://msdn.microsoft.com/en-us/library/274b89cd-14ed-4666-bc13-eedf1de51e18(SQL.110)�

 72

In general, every major object contains the following properties:
• Name Normally, the names of sibling objects are unique within the scope of the parent

collection. For example, two different Database objects may have the same Dimension
names. However, within each Database, the Dimension names are unique. Exceptions to
this rule are noted later. For example, Measure names need to be unique at the Cube level,
but they do not need to be unique at the level of the parent MeasureGroup.

• ID The uniqueness restrictions that apply to Name properties also apply to ID properties.
In addition, ID properties cannot be changed. ID properties are assigned upon creation by
the user, by the application, or automatically by the server (if the properties are not
specified). If the server assigns ID properties, the server sets the ID properties to the initial
name of the object.

• Description
Object References
Objects are referenced by their ID properties. The naming convention for ID properties starts
with a name that is based on the target type, adds the suffix "ID", and possibly adds a prefix that
provides extra information on the role that the object plays. For example, the object is the
default measure used in a Cube. The target type of the object is Measure. To this target type
name, you add the suffix "ID" and the prefix "Default." The resulting ID property name becomes
DefaultMeasureID, as shown in the following code:
 <Cube>
 <DefaultMeasureID>Amount</DefaultMeasureID>
 …
 <Cube>

When a qualified name that consists of multiple IDs is required (for example, CubeID and
MeasureID both refer to a measure in another Cube), then an outer element is introduced to
contain the set of ID elements.
Reference Exceptions
A DataSource reference that consists of a single dot (.) refers to the current database of the
current OLAP server. For example, the following XML fragment points to the current Database
of the current OLAP server instance:
 <DataSourceID>.</DataSourceID>

References to DataSourceView (DSV) elements are exceptions to the referencing rules. A
DataSet object in the Microsoft .NET Framework describes the schema for a DSV. In the schema,
a DSV object has a Name, but not an immutable ID. Therefore, references to a DSV object needs
to use the Name as the identification mechanism. For example, the reference,
ColumnBinding.TableID, does not contain the ID. Instead, the reference contains the Name of
the appropriate table.

 73

Naming Guidelines
ASSL applies the same rules for case and whitespace to Names and ID properties as use in DSO
8.0:
• The uniqueness check for Name and ID is not case sensitive. Therefore, it is not possible to

have a Cube named “sales” and another named “Sales” in the same database.
• While a Name or ID property can contain embedded spaces, the property cannot contain

leading or trailing spaces. Leading and trailing spaces are implicitly trimmed. This rule
applies both to the Name and ID of an object, as well as to the values of elements that
reference that Name and ID.

The following rules also apply to Name and ID properties. These rules are similar to rules in DSO
8.0.
• The maximum number of characters is 100.
• There is no special requirement for the first character of an identifier. The first character may

be any valid character
The following reserved names must not be used:
• AUX
• CLOCK$
• COM1 through COM9 (COM1, COM2, COM3, and so on)
• CON
• LPT1 through LPT9 (LPT1, LPT2, LPT3, and so on)
• NUL
• PRN
• NULL is not allowed as a character in any string within the XML
The following table lists invalid characters for specific objects.

Object Invalid characters

Server The name must follow the rules for
computer names. (IP addresses are not
valid.)

DataSource : / \ * | ? " () [] {} <>

Level or Attribute . , ; ' ` : / \ * | ? " & % $! + = [] {} < >

Dimension or Hierarchy .,, ; ' ` : / \ * | ? " & % $! + = () [] {} <,>

All other objects . , ; ' ` : / \ * | ? " & % $! + = () [] {} < >

Localized Names

 74

Captions for objects that are visible to clients (for example, Dimension, Hierarchy, and Level)
can be localized into different languages. Captions for objects that are defined by way of
commands (for example, calculated measures and named sets) are provided as part of the MDX
definition of the objects.
The bindings for attributes also allow a different source (for example, a different source column)
for the attribute name to be provided for different languages.
It is not possible to localize the Names of objects.

Maximum Capacity Specifications
The following tables specify the maximum sizes and numbers of various objects defined in
Analysis Services components under different server deployment modes.
This topic contains the following sections:
Multidimensional and Data Mining (DeploymentMode=0)
SharePoint (DeploymentMode=1)
Tabular (DeploymentMode=2)
Multidimensional and Data Mining (DeploymentMode=0)
MOLAP storage mode, which stores both data and metadata, has additional physical limits on
file sizes. String store files are a maximum size of 4 GB by default. If you require larger files for
string stores, you can specify a different string storage architecture. For more information,
see Configure Scalable String Storage for Dimensions and Measures.

Object Maximum sizes/numbers

Databases in an instance 2^31-1 = 2,147,483,647

Dimensions in a database 2^31-1 = 2,147,483,647

Attributes in a dimension 2^31-1 = 2,147,483,647

Members in a dimension attribute 2^31-1 = 2,147,483,647

User-defined hierarchies in a dimension 2^31-1 = 2,147,483,647

Levels in a user-defined hierarchy 2^31-1 = 2,147,483,647

Cubes in a database 2^31-1 = 2,147,483,647

Measure groups in a cube 2^31-1 = 2,147,483,647

Measures in a measure group 2^31-1 = 2,147,483,647

Calculations in a cube 2^31-1 = 2,147,483,647

KPIs in a cube 2^31-1 = 2,147,483,647

http://msdn.microsoft.com/en-us/library/987f6cfc-da82-4b2e-96ef-a8af88339e5f(SQL.110)�

 75

Object Maximum sizes/numbers

Actions in a cube 2^31-1 = 2,147,483,647

Partitions in a cube 2^31-1 = 2,147,483,647

Translations in a cube 2^31-1 = 2,147,483,647

Aggregations in a partition 2^31-1 = 2,147,483,647

Cells returned by a query 2^31-1 = 2,147,483,647

Record size of the source query 64K

Length of object names 100 characters

Maximum number of distinct states in a
data mining model attribute column

2^31-1 = 2,147,483,647

Maximum number of attributes considered
(feature selection)

2^31-1 = 2,147,483,647

For more information about object naming guidelines, see Objects and Object Characteristics.
For more information about data source limitations for online analytical processing (OLAP) and
data mining, see Working with Data Sources (SSAS), Working with Data Sources (SSAS),
and Objects and Object Characteristics.
SharePoint (DeploymentMode=1)

Object Maximum sizes/numbers

Databases in an instance 2^31-1 = 2,147,483,647

Tables in a database 2^31-1 = 2,147,483,647

Columns in a table 2^31-1 = 2,147,483,647

Warning
• Total number of columns in a table

depends on the total number of
Measures and Calculated Columns
associated to the same table.

• The maximum number of 'Columns
+ Measures + Calculated Columns'
for a table is 2^31-1 =
2,147,483,647

Rows in a table Unlimited

http://msdn.microsoft.com/en-us/library/c97e0f8d-7ddd-4941-8b51-e7832f30fbbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/c97e0f8d-7ddd-4941-8b51-e7832f30fbbe(SQL.110)�

 76

Object Maximum sizes/numbers

Warning
With the restriction that no single
column may contain more than
1,999,999,997 distinct values.

Hierarchies in a table 2^31-1 = 2,147,483,647

Levels in a hierarchy 2^31-1 = 2,147,483,647

Relationships 2^31-1 = 2,147,483,647

Key Columns in a table 2^31-1 = 2,147,483,647

Measures in a table 2^31-1 = 2,147,483,647

Warning
• Total number of Measures in a table

depends on the total number of
Columns and Calculated Columns
associated to the same table.

• The maximum number of 'Columns
+ Measures + Calculated Columns'
for a table is 2^31-1 =
2,147,483,647

Calculated Columns in a table 2^31-1 = 2,147,483,647

Warning
• Total number of Calculated

Columns in a table depends on the
total number of Columns and
Measures associated to the same
table.

• The maximum number of 'Columns
+ Measures + Calculated Columns'
for a table is 2^31-1 =
2,147,483,647

Cells returned by a query 2^31-1 = 2,147,483,647

Record size of the source query 64K

Length of object names 100 characters

Tabular (DeploymentMode=2)

 77

Object Maximum sizes/numbers

Databases in an instance 2^31-1 = 2,147,483,647

Tables in a database 2^31-1 = 2,147,483,647

Columns in a table 2^31-1 = 2,147,483,647

Warning
• Total number of columns in a table

depends on the total number of
Measures and Calculated Columns
associated to the same table.

• The maximum number of 'Columns
+ Measures + Calculated Columns'
for a table is 2^31-1 =
2,147,483,647

Rows in a table Unlimited

Warning
With the restriction that no single
column in the table can have more
than 1,999,999,997 distinct values.

Hierarchies in a table 2^31-1 = 2,147,483,647

Levels in a hierarchy 2^31-1 = 2,147,483,647

Relationships 2^31-1 = 2,147,483,647

Key Columns in a table 2^31-1 = 2,147,483,647

Measures in a table 2^31-1 = 2,147,483,647

Warning
• Total number of Measures in a table

depends on the total number of
Columns and Calculated Columns
associated to the same table.

• The maximum number of 'Columns
+ Measures + Calculated Columns'
for a table is 2^31-1 =
2,147,483,647

Calculated Columns in a table 2^31-1 = 2,147,483,647

 78

Object Maximum sizes/numbers

Warning
• Total number of Calculated

Columns in a table depends on the
total number of Columns and
Measures associated to the same
table.

• The maximum number of 'Columns
+ Measures + Calculated Columns'
for a table is 2^31-1 =
2,147,483,647

Cells returned by a query 2^31-1 = 2,147,483,647

Record size of the source query 64K

Length of object names 100 characters

See Also
Determine Server Mode (Analysis Services)
General Properties

Data Types in Analysis Services
For all T:Microsoft.AnalysisServices.DataItem objects, Analysis Services supports the following
subset of System.Data.OleDb.OleDbType. To set or read the data type, use DataItem Data
Type (ASSL).
Supported Data Types

BigInt A 64-bit signed integer. The BigInt value
type represents integers with values
ranging from negative
9,223,372,036,854,775,808 to positive
9,223,372,036,854,775,807.

Binary A stream of binary data of Byte type. Byte
is a value type that represents unsigned
integers with values that range from 0 to
255.

Boolean Instances of this type have values of either
true or false.

http://msdn.microsoft.com/en-us/library/9e556fb1-ca37-4f06-8f8f-f187cb0fdb37(SQL.110)�
http://msdn.microsoft.com/en-us/library/88a8117c-396a-469f-a62d-c6f262504021(SQL.110)�
http://msdn.microsoft.com/en-us/library/f4f5155f-9c3d-49a1-a390-a9c734fafbce(SQL.110)�
http://msdn.microsoft.com/en-us/library/f4f5155f-9c3d-49a1-a390-a9c734fafbce(SQL.110)�
http://msdn.microsoft.com/en-us/library/f4f5155f-9c3d-49a1-a390-a9c734fafbce(SQL.110)�

 79

 Currency A currency value ranging from -
922,337,203,685,477.5808 to
+922,337,203,685,477.5807 with accuracy
to a ten-thousandth of a currency unit (four
decimal places).

 Date Date and time data, stored as a double. The
whole portion is the number of days since
December 30, 1899, and the fractional
portion is a fraction of a day or time of the
day.

 Double A floating-point number within the range
of -1.79769313486232E +308 to
1.79769313486232E +308. A Double value
stores number information up to 15
decimal digits of precision.

 Integer A 32-bit signed integer that represents
signed integers with values that range from
negative 2,147,483,648 through positive
2,147,483,647.

 Single A floating-point number within the range
of - 3.4028235E +38 through 3.4028235E
+38. A Single value stores number
information up to 7 decimal digits of
precision.

Smallint A 16-bit signed integer. The Smallint value
type represents signed integers with values
ranging from negative 32768 to positive
32767.

Tinyint An 8-bit signed integer. The Tinyint value
type represents integers with values
ranging from negative 128 to positive 127.

UnsignedBigInt A 64-bit unsigned integer. The
UnsignedBigInt value type represents
unsigned integers with values ranging from
0 to 18,446,744,073,709,551,615.

UnsignedInt A 32-bit unsigned integer. The UnsignedInt
value type represents unsigned integers
with values ranging from 0 to

 80

4,294,967,295.

UnsignedSmallInt A 16-bit unsigned integer. The
UnsignedSmallInt value type represents
unsigned integers with values ranging from
0 to 65535.

UnsignedTinyInt An 8-bit unsigned integer. The
UnsignedTinyInt value type represents
unsigned integers with values that range
from 0 to 255

WChar A null-terminated stream of Unicode
characters. A WChar is a sequential
collection of Unicode characters that is
used to represent text.

AMO Validations on Data Types
The following table lists the extra validations that Analysis Management Objects (AMO) does for
certain bindings:

Object Binding Allowed Data Types

DimensionAttribute KeyColumns All but Binary

 NameColumn Only WChar

 SkippedLevelsColumn Only integer types:
BigInt, Integer, SmallInt,
TinyInt, UnsignedBigInt,
UnsignedInt,
UnsignedSmallInt,
UnsignedTinyInt

 CustomRollupColumn Only WChar

 CustomRollupPropertiesColumn Only WChar

 UnaryOperatorColumn Only WChar

 ValueColumn All

AttributeTranslation CaptionColumn Only WChar

ScalarMiningStructureColumn KeyColumns All but Binary

 NameColumn Only WChar

 81

Object Binding Allowed Data Types

TableMiningStructureColumn ForeignKeyColumns All but Binary

MeasureGroupAttribute KeyColumns All but Binary

Distinct Count Measure Source BigInt, Currency,
Double, Integer, Single,
SmallInt, TinyInt,
UnsignedBigInt,
UnsignedInt,
UnsignedSmallInt,
UnsignedTinyInt

Local Cubes
To create, update or delete local cubes, you must write and execute either an ASSL script or an
AMO program.
Local cubes and local mining models allow analysis on a client workstation while it is
disconnected from the network. For example, a client application might call the OLE DB for
OLAP 9.0 Provider (MSOLAP.3), which loads the local cube engine to create and query local
cubes, as shown in the following illustration:

ADMOD.NET and Analysis Management Objects (AMO) also load the local cube engine when
interacting with local cubes. Only a single process can access a local cube file, because the local
cube engine exclusively locks a local cube file when it establishes a connection to the local cube.
With a process, up to five simultaneous connections are permitted.

 82

A .cub file may contain more than one cube or data mining model. Queries to the local cubes
and data mining models are handled by the local cube engine and do not require a connection
to an Analysis Services instance.

The use of SQL Server Management Studio and SQL Server Data Tools (SSDT) to manage
local cubes is not supported.

Local Cubes
A local cube can be created and populated from either an existing cube in an Analysis
Services instance or from a relational data source.

Source for data for local cube Creation method

Server-based cube You can use either the CREATE GLOBAL
CUBE statement or an Analysis
Services Scripting Language (ASSL) script to
create and populate a cube from a server-
based cube. For more information,
see CREATE GLOBAL CUBE Statement
(MDX) or Analysis Services Scripting
Language Reference.

Relational data source You use an ASSL script to create and
populate a cube from an OLE DB relational
database. To create a local cube using
ASSL, you simply connect to a local cube
file (*.cub) and execute the ASSL script in
the same manner as executing an ASSL
script against an Analysis Services instance
to create a server cube. For more
information, see Analysis Services Scripting
Language Reference.

Use the REFRESH CUBE statement to rebuild a local cube and update its data. For more
information, see REFRESH CUBE Statement (MDX).
Local Cubes Created from Server-based Cubes
When creating local cubes created from server-based cubes, the following considerations apply:
• Distinct count measures are not supported.
• When you add a measure, you must also include at least one dimension that is related to the

measure being added. For more information about dimension relationships to measure
groups, see Dimension Relationships.

Note

http://msdn.microsoft.com/en-us/library/b46f3c98-a4f1-4ebb-915f-a3333f4054dc(SQL.110)�
http://msdn.microsoft.com/en-us/library/b46f3c98-a4f1-4ebb-915f-a3333f4054dc(SQL.110)�
http://msdn.microsoft.com/en-us/library/b46f3c98-a4f1-4ebb-915f-a3333f4054dc(SQL.110)�
http://msdn.microsoft.com/en-us/library/ca0e852e-9002-4224-a0f0-bd96f2fc5c65(SQL.110)�
http://msdn.microsoft.com/en-us/library/ca0e852e-9002-4224-a0f0-bd96f2fc5c65(SQL.110)�
http://msdn.microsoft.com/en-us/library/ca0e852e-9002-4224-a0f0-bd96f2fc5c65(SQL.110)�
http://msdn.microsoft.com/en-us/library/ca0e852e-9002-4224-a0f0-bd96f2fc5c65(SQL.110)�
http://msdn.microsoft.com/en-us/library/ca0e852e-9002-4224-a0f0-bd96f2fc5c65(SQL.110)�
http://msdn.microsoft.com/en-us/library/b8c087fb-5d17-4b13-b7cf-9929e9aab35c(SQL.110)�

 83

• When you add a parent-child hierarchy, levels and filters on a parent-child hierarchy are
ignored and the entire parent-child hierarchy is included.

• Member properties are not created.
• When you include a semi-additive measure, no slices are permitted on either the Account or

the Time dimension.
• Reference dimensions are always materialized.
• When you include a many-to-many dimension, the following rules apply:

• You cannot slice the many-to-many dimension.
• You must add a measure from the intermediary measure group.
• You cannot slice any of the dimensions common to the two measure groups involved in

the many-to-may relationship.
• Only those calculated members, named sets, and assignments that rely upon measures and

dimensions added to the local cube will appear in the local cube. Invalid calculated
members, named sets, and assignments will be automatically excluded.

Security
In order for a user to create a local cube from a server cube, the user must be granted
Drillthrough and Local Cube permissions on the server cube. For more information,
see Granting Cube Access.
Local cubes are not secured using roles like server cubes. Anyone with file-level access to a local
cube file can query cubes in it. You can use the Encryption Password connection property on a
local cube file to set a password on the local cube file. Setting a password on a local cube file
requires all future connections to the local cube file to use this password in order to query the
file.
See Also
CREATE GLOBAL CUBE Statement (MDX)
ASSL
REFRESH CUBE Statement (MDX)

Clients
Microsoft SQL Server Analysis Services supports a thin-client architecture. The Analysis
Services calculation engine is entirely server-based, so all queries are resolved on the server. As a
result, only a single round trip between the client and the server is required for each query,
resulting in scalable performance as queries increase in complexity.
The native protocol for Analysis Services is XML for Analysis (XML/A). Analysis Services provides
several data access interfaces for client applications, but all of these components communicate
with an instance of Analysis Services using XML for Analysis.
Several different providers are provided with Analysis Services to support different programming
languages. A provider communicates with an Analysis Services server by sending and receiving

http://msdn.microsoft.com/en-us/library/55b1456e-2f6b-4101-b316-c926f40304e3(SQL.110)�
http://msdn.microsoft.com/en-us/library/b46f3c98-a4f1-4ebb-915f-a3333f4054dc(SQL.110)�
http://msdn.microsoft.com/en-us/library/b8c087fb-5d17-4b13-b7cf-9929e9aab35c(SQL.110)�

 84

XML for Analysis in SOAP packets over TCP/IP or over HTTP through Internet Information
Services (IIS). An HTTP connection uses a COM object instantiated by IIS, called a data pump,
which acts as a conduit for Analysis Services data. The data pump does not examine the
underlying data contained in the HTTP stream in any way, nor are any of the underlying data
structures available to any of the code in the data library itself.

Win32 client applications can connect to an Analysis Services server using OLE DB for OLAP
interfaces or the Microsoft® ActiveX® Data Objects (ADO) object model for Component Object
Model (COM) automation languages, such as Microsoft Visual Basic®. Applications coded with
.NET languages can connect to an Analysis Services server using ADOMD.NET.
Existing applications can communicate with Analysis Services without modification simply by
using one of the Analysis Services providers.

 85

Programming Language Data Access Interface

C++ OLE DB for OLAP

Visual Basic 6 ADO MD

.NET languages ADO MD.NET

Any language that supports SOAP XML for Analysis

Analysis Services has a Web architecture with a fully scalable middle tier for deployment by both
small and large organizations. Analysis Services provides broad middle tier support for Web
services. ASP applications are supported by OLE DB for OLAP and ADO MD, ASP.NET
applications are supported by ADOMD.NET. The middle tier, illustrated in the following figure, is
scalable to many concurrent users.

 86

Both client and middle tier applications can communicate directly with Analysis Services without
using a provider. Client and middle tier applications may send XML for Analysis in SOAP packets
over TCP/IP, HTTP, or HTTPS. The client may be coded using any language that supports SOAP.
Communication in this case is most easily managed by Internet Information Services (IIS) using
HTTP, although a direct connection to the server using TCP/IP may also be coded. This is the
thinnest possible client solution for Analysis Services.
Analysis Services in Tabular or SharePoint Mode

 87

In SQL Server 2012, the server can be started in xVelocity in-memory analytics engine (VertiPaq)
mode for tabular databases and for PowerPivot workbooks that have been published to a
SharePoint site.
PowerPivot for Excel and SQL Server Data Tools (SSDT) are the only client environments that are
supported for creating and querying in-memory databases that use SharePoint or Tabular mode,
respectively. The embedded PowerPivot database that you create by using the Excel and
PowerPivot tools is contained within the Excel workbook, and is saved as part of the Excel .xlsx
file.
However, a PowerPivot workbook can use data that is stored in a traditional cube if you import
the cube data into the workbook. You can also import data from another PowerPivot workbook
if it has been published to a SharePoint site.

When you use a cube as a data source for a PowerPivot workbook, the data that you get
from the cube is defined as an MDX query; however, the data is imported as a flattened
snapshot. You cannot interactively work with the data or refresh the data from the cube.

For more information about using an SSAS cube as a data source, see the PowerPivot for Excel.
Interfaces for PowerPivot Client
PowerPivot interacts with the xVelocity in-memory analytics engine (VertiPaq) storage engine
within the workbook by using the established interfaces and languages for Analysis Services:
AMO and ADOMD.NET, and MDX and XMLA. Within the add-in, measures are defined by using
a formula language similar to Excel, Data Analysis Expressions (DAX). DAX expressions are
embedded within the XMLA messages that are sent to the in-process server. For more
information, see MDX and DAX.
Providers
Communications between PowerPivot and Excel use the MSOLAP OLEDB provider (version 11.0).
Within the MSOLAP provider, there are four different modules, or transports, that can be used
for sending messages between the client and server.
TCP/IP Used for normal client-server connections.
HTTP Used for HTTP connections via the SSAS data pump service, or by a call to the
SharePoint PowerPivot Web Service (WS) component.
INPROC Used for connections to the in-process engine.
CHANNEL Reserved for communications with the PowerPivot System Service in the
SharePoint farm. For more information about the components needed to work with PowerPivot
in a SharePoint installation, see Planning and Architecture (PowerPivot for SharePoint).
See Also
Server Cubes (Analysis Services - Multidimensional Data)

Note

http://go.microsoft.com/fwlink/?LinkId=164234�
http://msdn.microsoft.com/en-us/library/c2867331-0d71-457c-a552-0f804f60310e(SQL.110)�
http://msdn.microsoft.com/en-us/library/240ec312-0558-4822-986b-e4ff859eec0e(SQL.110)�

 88

International Considerations
Microsoft SQL Server Analysis Services supports the storage and manipulation of multilingual
data and metadata. Features include national language and collation support for sorts and
comparisons, translations for multilingual metadata support, and currency conversion
functionality. Using the Analysis Services multilingual and multicultural features, you can do the
following:

Action Description

Define the language and collation support
for Analysis Services instances and
databases.

You can define the default language and
Windows collation for an Analysis Services
instance, as well as defining translations for
the properties of Analysis Services
databases.
To define the language and collation
support for Analysis Services instances and
databases:
• You can use SQL Server Management

Studio to define the default language
and collation for an Analysis Services
instance. For more information,
see Business Intelligence Wizard F1
Help.

• You can use the SQL Server Data Tools
(SSDT) to define the translations for the
caption, description, and account types
for an Analysis Services database. For
more information, see Working with
Translations (SSAS).

Define language and collation support for
objects in an Analysis Services database.

Translations for data and metadata can be
defined on an Analysis Services instance so
that client applications can receive Analysis
Services objects in a specified language and
collation.
To define and retrieve translated data and
metadata:
• You can define translations on Analysis

Services objects to support multiple
languages. For more information,
see Working with Translations (SSAS).

 89

Action Description

• You can retrieve data and metadata
from Analysis Services objects on which
translations have been defined
automatically by providing a locale
identifier when connecting to an
Analysis Services instance. For more
information, see Working with Client
Applications (SSAS).

Provide support for multiple currencies in
an Analysis Services database.

Analysis Services provides currency
conversion support by using specialized
Multidimensional Expressions (MDX) scripts
to convert measures containing currency
data.
To provide support for multiple currencies
in an Analysis Services database:
• You can use the Business Intelligence

Wizard to generate an MDX script that
uses a combination of data and
metadata from dimensions, attributes,
and measure groups to convert
measures containing currency data. For
more information, see Working with
Currency Conversions (SSAS).

In This Section

Topic Description

Working with Languages and Collations
(SSAS)

Describes how to specify default language
and Windows collation for an Analysis
Services instance, as well as how your
choices affect data and metadata managed
by Analysis Services.

Working with Translations (SSAS) Describes how to define translations for an
Analysis Services database and objects
contained by the database, as well as how
Analysis Services resolves requests for
translated data and metadata from client

 90

Topic Description

applications.

Working with Currency Conversions (SSAS) Describes how to define a currency
conversion using the Business Intelligence
Wizard.

Working with Client Applications (SSAS) Describes the common issues encountered
by client applications when working with
multilingual and multicultural data and
metadata in Analysis Services.

See Also
Translations (SSAS)
Database Properties Dialog Box (SSAS)
Database Designer (SSAS)
Business Intelligence Wizard F1 Help (SSAS)

Languages and Collations
Microsoft SQL Server Analysis Services supports all languages that are supported by Microsoft
Windows operating systems. For more information about language support in SQL
Server Analysis Services, see International Considerations (Analysis Services - Multidimensional
Data). Besides specifying the default language and collation used by an Analysis Services
instance, you can also provide multilanguage support for individual Analysis Services objects,
including cubes, measure groups, dimensions, hierarchies, and attributes, by defining a
translation associated with an Analysis Services object. The default language and collation
settings for an Analysis Services instance specify the settings used for data and metadata if a
translation for a specific language identifier is not provided for an Analysis Services object, or if a
client application does not specify a language identifier when connecting to an Analysis Services
instance.
Language Identifiers
Analysis Services uses Windows language identifiers to specify the selected language for
Analysis Services instances and objects. A Windows language identifier corresponds to a
combination of Windows primary language and sublanguage identifiers. For example, if you
select English (United States) in the Language drop-down list on the Collation Settings page
of the Microsoft SQL Server Installation Wizard, the corresponding Windows language
identifier, 0x0409 (or 1033), is specified in the Language element of the configuration settings
file for the Analysis Services instance. For more information about available Windows language
identifiers, see "Table of Language Identifiers" in the MSDN documentation.
Collations

http://msdn.microsoft.com/en-us/library/70f000b7-917f-4699-b142-7a0d13ff767c(SQL.110)�
http://msdn.microsoft.com/en-us/library/00c9c42b-db2b-4620-8fb6-1e165ff0cbdd(SQL.110)�
http://msdn.microsoft.com/en-us/library/155ac80c-63ae-47aa-9e86-9396e3d920eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/0510eac5-72d9-4ed5-a311-8521d95b02cb(SQL.110)�
http://msdn.microsoft.com/en-us/library/0510eac5-72d9-4ed5-a311-8521d95b02cb(SQL.110)�

 91

Analysis Services uses Windows collations to specify the selected collation for Analysis Services
instances and objects. A Windows collation identifier corresponds to a combination of code
page and sort order information. For example, if you select Latin1_General in the Windows
collations drop-down list on the Collation Settings page of the Microsoft SQL Server
Installation Wizard, and select the Binary sort order option, the corresponding Windows
collation identifier, Latin1_General_BIN, is specified in the Collation element of the configuration
settings file for the Analysis Services instance.
Windows Collations
Windows collations define rules for storing character data based on an associated Windows
locale. The base Windows collation rules specify which alphabet or language is used when
dictionary sorting is applied, and also the code page that is used to store non-Unicode character
data. Binary collations sort data based on the sequence of coded values that are defined by the
locale and data type. A binary collation in Analysis Services defines the language locale and the
ANSI code page to be used, enforcing a binary sort order. Because of their relative simplicity,
binary collations are useful in achieving improved application performance. For non-Unicode
data types, data comparisons are based on the code points defined in the ANSI code page. For
Unicode data types, data comparisons are based on the Unicode code points. For binary
collations on Unicode data types, the locale is not considered in data sorts. For example,
Latin1_General_BIN and Japanese_BIN yield identical sorting results when used on Unicode data.
For more information about Windows collations in SQL Server, see Working with Collations.
By specifying a Windows collation for Analysis Services, the Analysis Services instance uses the
same code pages and sorting and comparison rules as an application that is running on a
computer for which you have specified the associated Windows locale. For example, the French
Windows collation for Analysis Services matches the collation attributes of the French locale for
Windows.
There are more Windows locales than there are Windows collations defined for Analysis
Services. The names of Windows locales are based on a language identifier, such as English, and
a sublanguage identifier, such as United States or Australia. However, many languages share
common alphabets and rules for sorting and comparing characters. For example, 33 Windows
locales, including all the Portuguese and English Windows locales, use the Latin1 code page
(1252) and follow a common set of rules for sorting and comparing characters. The SQL Server
Windows collation Latin1_General, based on this code page and associated sorting rules,
supports all 33 of these Windows locales. Also, Windows locales specify attributes that are not
covered by Analysis Services Windows collations, such as currency, date, and time formats.
Because countries and regions such as Australia and the United States have different currency,
date, and time formats, they require different Windows collations. They do not require different
Analysis Services Windows collations, however, because they have the same alphabet and rules
for sorting and comparing characters.

While multiple language identifiers can be specified for Analysis Services objects, the
same Analysis Services Windows collation is used for all Analysis Services objects, with a

Note

http://msdn.microsoft.com/en-us/library/61cdbb6b-3ca1-4d73-938b-22e4f06f75ea(SQL.110)�

 92

single exception, regardless of language identifier. The single exception to this
functionality is the CaptionColumn property of an attribute in a database dimension, for
which you can specify an Analysis Services Windows collation to collate the members of
the specified attribute. For more information about defining attribute translations,
see Working with Translations (SSAS). If the same language is used by all of the users for
your Analysis Services instance, select the collation that supports the specified default
language for your instance. If multiple languages are used, choose a collation that best
supports the requirements of the various languages. For example, if the users of your
instance generally speak western European languages, select the Latin1_General
collation.

Sort Order Options
Several sort order options can be applied to the specified Analysis Services Windows collation to
additionally define sorting and comparison rules based on case, accent, kana, and width
sensitivity. The following table describes Windows collation sort order options and associated
suffixes for Analysis Services.

Sort order (suffix) Sort order description

Binary (_BIN)1 Sorts and compares data in Analysis
Services based on the bit patterns defined
for each character. Binary sort order is case
sensitive and accent sensitive. Binary is also
the fastest sorting order. For more
information, see Using Binary Collations.
If this option is not selected, Analysis
Services follows sorting and comparison
rules as defined in dictionaries for the
associated language or alphabet.
This option corresponds to the Binary
option on the Collation Settings page of
the Microsoft SQL Server Installation
Wizard or the Language/Collation page
of the Analysis Server Properties dialog
box in SQL Server Management Studio.

BIN2 (_BIN2)1 Sorts and compares data in Analysis
Services based on Unicode code points for
Unicode data. For non-Unicode data, BIN2
will use comparisons identical to binary
sorts.
The advantage of using a BIN2 sort order is
that no data resorting is required in

http://msdn.microsoft.com/en-us/library/0511195f-16dc-4334-adde-ff5e5e7f6c9f(SQL.110)�

 93

Sort order (suffix) Sort order description

applications that compare sorted data. As a
result, BIN2 provides simpler application
development and possible performance
increases. For more information, see Using
Binary Collations.
This option corresponds to the Binary 2
option on the Collation Settings page of
the Microsoft SQL Server Installation
Wizard or the Language/Collation page
of the Analysis Server Properties dialog
box in SQL Server Management Studio.

Case-sensitive (_CS) Distinguishes between uppercase and
lowercase letters. If selected, lowercase
letters sort ahead of their uppercase
versions.
This option is set by selecting the Case-
sensitive option on the Collation Settings
page of the Microsoft SQL Server
Installation Wizard or the
Language/Collation page of the Analysis
Server Properties dialog box in SQL Server
Management Studio.

Case-insensitive (_CI) Does not distinguish between uppercase
and lowercase letters. Analysis Services
considers the uppercase and lowercase
letters to be identical for sorting purposes.
This option is set by clearing the Case-
sensitive option on the Collation Settings
page of the Microsoft SQL Server
Installation Wizard or the
Language/Collation page of the Analysis
Server Properties dialog box in SQL Server
Management Studio.

Accent-sensitive (_AS) Distinguishes between accented and
unaccented characters. For example, 'a' is
not equal to 'ấ'.
If this option is not selected, Analysis
Services considers the accented and
unaccented versions of letters to be

http://msdn.microsoft.com/en-us/library/0511195f-16dc-4334-adde-ff5e5e7f6c9f(SQL.110)�
http://msdn.microsoft.com/en-us/library/0511195f-16dc-4334-adde-ff5e5e7f6c9f(SQL.110)�
http://msdn.microsoft.com/en-us/library/0511195f-16dc-4334-adde-ff5e5e7f6c9f(SQL.110)�

 94

Sort order (suffix) Sort order description

identical for sorting purposes.
This option corresponds to the Accent-
sensitive option on the Collation Settings
page of the Microsoft SQL Server
Installation Wizard or the
Language/Collation page of the Analysis
Server Properties dialog box in SQL Server
Management Studio.

Accent-insensitive (_AI) Does not distinguish between accented and
unaccented characters. Analysis Services
considers the accented and unaccented
versions of letters to be identical for sorting
purposes.
This option is set by clearing the Accent-
sensitive option on the Collation Settings
page of the Microsoft SQL Server
Installation Wizard or the
Language/Collation page of the Analysis
Server Properties dialog box in SQL Server
Management Studio.

Kana-sensitive (_KS) Distinguishes between the two types of
Japanese kana characters: hiragana and
katakana.
If this option is not selected, Analysis
Services considers hiragana and katakana
characters to be equal for sorting purposes.

Note
There is no sort order suffix for
kana-insensitive sorting.

This option corresponds to the Kana-
sensitive option on the Collation Settings
page of the Microsoft SQL Server
Installation Wizard or the
Language/Collation page of the Analysis
Server Properties dialog box in SQL Server
Management Studio.

Width-sensitive (_WS) Distinguishes between a single-byte
character and the same character when

 95

Sort order (suffix) Sort order description

represented as a double-byte character.
If this option is not selected, Analysis
Services considers the single-byte and
double-byte representation of the same
character to be identical for sorting
purposes.

Note
There is no sort order suffix for
width-insensitive sorting.

This option corresponds to the Width-
sensitive option on the Collation Settings
page of the Microsoft SQL Server
Installation Wizard or the
Language/Collation page of the Analysis
Server Properties dialog box in SQL Server
Management Studio.

1 If BIN2 is selected, the case-sensitive, case-insensitive, accent-sensitive, accent-insensitive,
kana-sensitive, and width-sensitive options are not available.
Each Windows collation is combined with sort order suffixes to define case, accent, width, or
kana sensitivity. For example, the default value of the Collation configuration property for
Analysis Services is Latin1_General_AS_CS, specifying that the Latin1_General collation is used,
with an accent-sensitive, case-sensitive sort order.
Specifying the Default Language and Collation
You can specify the default language and collation settings for an Analysis Services instance
during installation, in the Collation Settings page of the Microsoft SQL Server Installation
Wizard.
After installation, you can change the default language and collation settings for an Analysis
Services instance in SQL Server Management Studio using the Language/Collation page of the
Analysis Server Properties dialog box. For more information about how to use the Analysis
Server Properties dialog box to change language and collation settings,
see Language/Collation (Analysis Server Properties Dialog Box) (SSAS).
Using EnableFast1033Locale
If you use the English (United States) language identifier (0x0409, or 1033) as the default
language for the Analysis Services instance, you can get additional performance benefits by
setting the EnableFast1033Locale configuration property, an advanced configuration property
available only for that language identifier. Setting the value of this property to true enables
Analysis Services to use a faster algorithm for string hashing and comparison. For more

http://msdn.microsoft.com/en-us/library/b9933f1e-fdc2-4b89-86b3-29730f59ec36(SQL.110)�

 96

information about setting configuration properties, see Analysis Services Configuration
Properties.
See Also
International Considerations for Analysis Services (SSAS)

Translations
Multilanguage support in Microsoft SQL Server Analysis Services is accomplished by using
translations. A translation contains a language identifier and bindings for properties of Analysis
Services objects which can be presented in multiple languages. For example, you can define a
translation for an Analysis Services database to present the caption and description of that
database in a specified language. For more information about translations, see Languages and
Collations (Analysis Services - Multidimensional Data).
Defining Translations
You can define translations in SQL Server Data Tools (SSDT) by using the appropriate designer
for the Analysis Services object to be translated. Defining a translation creates a Translation
object associated with the appropriate Analysis Services object that has the specified explicit
literal values, in the specified language, for the properties of the associated Analysis Services
object.
The following objects and properties in Analysis Services can have translations associated with
them:

Object Properties Designer

Database Caption, Description Database Designer

Cube Caption, Description Cube Designer

Measure group Caption Cube Designer

Measure Caption, DisplayFolder Cube Designer

Cube dimension Caption Cube Designer

Perspective Caption Cube Designer

Key performance indicator
(KPI)

Caption, Description, DisplayFolder Cube Designer

Action Caption Cube Designer

Named set Caption Cube Designer

Calculated member Caption Cube Designer

Database dimension Caption, AttributeAllMember Dimension Designer

http://msdn.microsoft.com/en-us/library/274b89cd-14ed-4666-bc13-eedf1de51e18(SQL.110)�
http://msdn.microsoft.com/en-us/library/274b89cd-14ed-4666-bc13-eedf1de51e18(SQL.110)�
http://msdn.microsoft.com/en-us/library/274b89cd-14ed-4666-bc13-eedf1de51e18(SQL.110)�
http://msdn.microsoft.com/en-us/library/00c9c42b-db2b-4620-8fb6-1e165ff0cbdd(SQL.110)�
http://msdn.microsoft.com/en-us/library/51f33f3b-6b7f-41bf-a620-97fd5189e633(SQL.110)�
http://msdn.microsoft.com/en-us/library/51f33f3b-6b7f-41bf-a620-97fd5189e633(SQL.110)�
http://msdn.microsoft.com/en-us/library/51f33f3b-6b7f-41bf-a620-97fd5189e633(SQL.110)�
http://msdn.microsoft.com/en-us/library/51f33f3b-6b7f-41bf-a620-97fd5189e633(SQL.110)�
http://msdn.microsoft.com/en-us/library/51f33f3b-6b7f-41bf-a620-97fd5189e633(SQL.110)�
http://msdn.microsoft.com/en-us/library/51f33f3b-6b7f-41bf-a620-97fd5189e633(SQL.110)�
http://msdn.microsoft.com/en-us/library/51f33f3b-6b7f-41bf-a620-97fd5189e633(SQL.110)�
http://msdn.microsoft.com/en-us/library/51f33f3b-6b7f-41bf-a620-97fd5189e633(SQL.110)�
http://msdn.microsoft.com/en-us/library/51f33f3b-6b7f-41bf-a620-97fd5189e633(SQL.110)�
http://msdn.microsoft.com/en-us/library/7104cc5f-f3c9-468c-8567-d78c7d84e60b(SQL.110)�

 97

Object Properties Designer

Attribute Caption, CaptionColumn1,
AttributeHierarchyDisplayFolder,
NamingTemplate,
MembersWithDataCaption

Dimension Designer

Hierarchy Caption, AllMemberName Dimension Designer

Level Caption Dimension Designer

1 The CaptionColumn property of an attribute can be bound to a column in a data source view
and can use a Windows collation other than that specified for the instance, unlike other
translations.
Defining Attribute Translations
Translations associated with attributes in database dimensions are handled differently than
other translations in the following ways:
• A column binding, instead of an explicit literal value, can be associated with the

CaptionColumn property so that the member names of members for that attribute can be
translated.

• A Windows collation other than the collation specified for the instance can be used so that
members in the attribute can be appropriately sorted for the language specified in the
translation.

You can use the Attribute Data Translation dialog box in SQL Server Data Tools (SSDT) to
define translations for attributes in database dimensions. For more information about the
Attribute Data Translation dialog box, see Attribute Data Translation Dialog Box (SSAS).
Resolving Translations
If a client application requests information in a specified language identifier, the Analysis
Services instance attempts to resolve data and metadata for Analysis Services objects to the
closest possible language identifier. If the client application does not specify a default language,
or specifies the neutral locale identifier (0) or process default language identifier (1024), then
Analysis Services uses the default language for the instance to return data and metadata for
Analysis Services objects.
If the client application specifies a language identifier other than the default language identifier,
the instance iterates through all available translations for all available objects. If the specified
language identifier matches the language identifier of a translation, Analysis Services returns
that translation. If a match cannot be found, Analysis Services attempts to use one of the
following methods to return translations with a language identifier closest to the specified
language identifier:
• For the following language identifiers, Analysis Services attempts to use an alternate

language identifier if a translation for the specified language identifier is not defined:

http://msdn.microsoft.com/en-us/library/7104cc5f-f3c9-468c-8567-d78c7d84e60b(SQL.110)�
http://msdn.microsoft.com/en-us/library/7104cc5f-f3c9-468c-8567-d78c7d84e60b(SQL.110)�
http://msdn.microsoft.com/en-us/library/7104cc5f-f3c9-468c-8567-d78c7d84e60b(SQL.110)�
http://msdn.microsoft.com/en-us/library/bed286de-1e9b-49de-b09e-3cd076aba152(SQL.110)�

 98

Specified language identifier Alternate language identifier

3076 - Chinese (Hong Kong SAR, PRC) 1028 - Chinese (Taiwan)

5124 - Chinese (Macao SAR) 1028 - Chinese (Taiwan)

1028 - Chinese (Taiwan) Default language

4100 - Chinese (Singapore) 2052 - Chinese (PRC)

2074 - Croatian Default language

3098 - Croatian (Cyrillic) Default language

• For all other specified language identifiers, Analysis Services extracts the primary language of

the specified language identifier and retrieves the language identifier indicated by Windows
as the best match for the primary language. If a translation for the best match language
identifier cannot be found, or if the specified language identifier is the best match for the
primary language, then the default language is used.

See Also
International Considerations for Analysis Services (SSAS)
Working with Languages and Collations (SSAS)

Currency Conversions
Microsoft SQL Server Analysis Services uses a combination of features, guided by
Multidimensional Expressions (MDX) scripts, to provide currency conversion support in cubes
supporting multiple currencies.
Currency Conversion Terminology
The following terminology is used in Analysis Services to describe currency conversion
functionality:
Pivot currency

The currency against which exchange rates are entered in the rate measure group.

Local currency

The currency used to store transactions on which measures to be converted are based.

The local currency can be identified by either:

• A currency identifier in the fact table stored with the transaction, as is commonly the
case with banking applications where the transaction itself identifies the currency used
for that transaction.

• A currency identifier associated with an attribute in a dimension table that is then
associated with a transaction in the fact table, as is commonly the case in financial

 99

applications where a location or other identifier, such as a subsidiary, identifies the
currency used for an associated transaction.

Reporting currency

The currency to which transactions are converted from the pivot currency.

Note
For many-to-one currency conversions, the pivot currency and reporting currency are the same.

Currency dimension

A database dimension defined with the following settings:

• The Type property of the dimension is set to Currency.

• The Type property of one attribute for the dimension is set to CurrencyName.

Important
The values of this attribute must be used in all columns that should contain a currency identifier.

Rate measure group

A measure group in a cube, defined with the following settings:

• A regular dimension relationship exists between a currency dimension and the rate
measure group.

• A regular dimension relationship exists between a time dimension and the rate measure
group.

• Optionally, the Type property is set to ExchangeRate. While the Business Intelligence
Wizard uses the relationships with the currency and time dimensions to identify likely
rate measure groups, setting the Type property to ExchangeRate allows client
applications to more easily identify rate measure groups.

• One or more measures, representing the exchange rates contained by the rate measure
group.

Reporting currency dimension

The dimension, defined by the Business Intelligence Wizard after a currency conversion is
defined, that contains the reporting currencies for that currency conversion. The reporting
currency dimension is based on a named query, defined in the data source view on which the
currency dimension associated with the rate measure group is based, from the dimension
main table of the currency dimension. The dimension is defined with the following settings:

• The Type property of the dimension is set to Currency.

• The Type property of the key attribute for the dimension is set to CurrencyName.

• The Type property of one attribute within the dimension is set to CurrencyDestination,
and the column bound to the attribute contains the currency identifiers that represent
the reporting currencies for the currency conversion.

Defining Currency Conversions

 100

You can use the Business Intelligence Wizard to define currency conversion functionality for a
cube, or you can manually define currency conversions using MDX scripts.
Prerequisites
Before you can define a currency conversion in a cube using the Business Intelligence Wizard,
you must first define at least one currency dimension, at least one time dimension, and at least
one rate measure group. From these objects, the Business Intelligence Wizard can retrieve the
data and metadata used to construct the reporting currency dimension and MDX script needed
to provide currency conversion functionality.
Decisions
You need to make the following decisions before the Business Intelligence Wizard can construct
the reporting currency dimension and MDX script needed to provide currency conversion
functionality:
• Exchange rate direction
• Converted members
• Conversion type
• Local currencies
• Reporting currencies
Exchange Rate Directions
The rate measure group contains measures representing exchange rates between local
currencies and the pivot currency (commonly referred to as the corporate currency). The
combination of exchange rate direction and conversion type determines the operation
performed on measures to be converted by the MDX script generated using the Business
Intelligence Wizard. The following table describes the operations performed depending on the
exchange rate direction and conversion type, based on the exchange rate direction options and
conversion directions available in the Business Intelligence Wizard.

Exchange rate
direction

Many-to-one One-to-many Many-to-many

n pivot currency to 1
sample currency

Multiply the measure
to be converted by the
exchange rate
measure for the local
currency in order to
convert the measure
into the pivot
currency.

Divide the measure to
be converted by the
exchange rate
measure for the
reporting currency in
order to convert the
measure into the
reporting currency.

Multiply the measure
to be converted by the
exchange rate
measure for the local
currency in order to
convert the measure
into the pivot
currency, then divide
the converted
measure by the
exchange rate

 101

measure for the
reporting currency in
order to convert the
measure into the
reporting currency.

n sample currency to
1 pivot currency

Divide the measure to
be converted by the
exchange rate
measure for the local
currency in order to
convert the measure
into the pivot
currency.

Multiply the measure
to be converted by the
exchange rate
measure for the
reporting currency in
order to convert the
measure into the
reporting currency.

Divide the measure to
be converted by the
exchange rate
measure for the local
currency in order to
convert the measure
into the pivot
currency, then multiply
the converted
measure by the
exchange rate
measure for the
reporting currency in
order to convert the
measure into the
reporting currency.

You choose the exchange rate direction on the Set currency conversion options page of the
Business Intelligence Wizard. For more information about setting conversion direction,
see International Considerations (Analysis Services - Multidimensional Data).
Converted Members
You can use the Business Intelligence Wizard to specify which measures from the rate measure
group are used to convert values for:
• Measures in other measure groups.
• Members of an attribute hierarchy for an account attribute in a database dimension.
• Account types, used by members of an attribute hierarchy for an account attribute in a

database dimension.
The Business Intelligence Wizard uses this information within the MDX script generated by the
wizard to determine the scope of the currency conversion calculation. For more information
about specifying members for currency conversion, see Select Members (Business Intelligence
Wizard).
Conversion Types
The Business Intelligence Wizard supports three different types of currency conversion:
• One-to-many

http://msdn.microsoft.com/en-us/library/a49d4e1f-bdda-4a83-ab4f-ce8c500e1d6d(SQL.110)�
http://msdn.microsoft.com/en-us/library/1a147461-d594-41e7-a41d-09d2d003e1e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/1a147461-d594-41e7-a41d-09d2d003e1e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/1a147461-d594-41e7-a41d-09d2d003e1e0(SQL.110)�

 102

Transactions are stored in the fact table in the pivot currency, and then converted to one or
more other reporting currencies.
For example, the pivot currency can be set to United States dollars (USD), and the fact table
stores transactions in USD. This conversion type converts these transactions from the pivot
currency to the specified reporting currencies. The result is that transactions can be stored in
the specified pivot currency and viewed either in the specified pivot currency or in any of the
reporting currencies specified in the reporting currency dimension defined for the currency
conversion.

• Many-to-one
Transactions are stored in the fact table in local currencies, and then converted into the pivot
currency. The pivot currency serves as the only specified reporting currency in the reporting
currency dimension.
For example, the pivot currency can be set to United States dollars (USD), and the fact table
stores transactions in euros (EUR), Australian dollars (AUD), and Mexican pesos (MXN). This
conversion type converts these transactions from their specified local currencies to the pivot
currency. The result is that transactions can be stored in the specified local currencies and
viewed in the pivot currency, which is specified in the reporting currency dimension defined
for the currency conversion.

• Many-to-many
Transactions are stored in the fact table in local currencies. The currency conversion
functionality converts such transactions into the pivot currency, and then to one or more
other reporting currencies.
For example, the pivot currency can be set to United States dollars (USD), and the fact table
stores transactions in euros (EUR), Australian dollars (AUD), and Mexican pesos (MXN). This
conversion type converts these transactions from their specified local currencies to the pivot
currency, and then the converted transactions are converted again from the pivot currency
to the specified reporting currencies. The result is that transactions can be stored in the
specified local currencies and viewed either in the specified pivot currency or in any of the
reporting currencies that are specified in the reporting currency dimension defined for the
currency conversion.

Specifying the conversion type allows the Business Intelligence Wizard to define the named
query and dimension structure of the reporting currency dimension, as well as the structure of
the MDX script defined for the currency conversion.
Local Currencies
If you choose a many-to-many or many-to-one conversion type for your currency conversion,
you need to specify how to identify the local currencies from which the MDX script generated by
the Business Intelligence Wizard performs the currency conversion calculations. The local
currency for a transaction in a fact table can be identified in one of two ways:
• The measure group contains a regular dimension relationship to the currency dimension. For

example, in the Adventure Works DW Multidimensional 2012 sample Analysis Services

 103

database, the Internet Sales measure group has a regular dimension relationship to the
Currency dimension. The fact table for that measure group contains a foreign key column
that references the currency identifiers in the dimension table for that dimension. In this
case, you can select the attribute from the currency dimension that is referenced by the
measure group to identify the local currency for transactions in the fact table for that
measure group. This situation most often occurs in banking applications, where the
transaction itself determines the currency used within the transaction.

• The measure group contains a referenced dimension relationship to the currency dimension,
through another dimension that directly references the currency dimension. For example, in
the Adventure Works DW Multidimensional 2012 sample Analysis Services database,
the Financial Reporting measure group has a referenced dimension relationship to the
Currency dimension through the Organization dimension. The fact table for that measure
group contains a foreign key column that references members in the dimension table for the
Organization dimension. The dimension table for the Organization dimension, in turn,
contains a foreign key column that references the currency identifiers in the dimension table
for the Currency dimension. This situation most often occurs in financial reporting
applications, where the location or subsidiary for a transaction determines the currency for
the transaction. In this case, you can select the attribute that references the currency
dimension from the dimension for the business entity.

Reporting Currencies
If you choose a many-to-many or one-to-many conversion type for your currency conversion,
you need to specify the reporting currencies for which the MDX script generated by the Business
Intelligence Wizard performs the currency conversion calculations. You can either specify all the
members of the currency dimension related to the rate measure group, or select individual
members from the dimension.
The Business Intelligence Wizard creates a reporting currency dimension, based on a named
query constructed from the dimension table for the currency dimension using the selected
reporting currencies.

If you select the one-to-many conversion type, a reporting currency dimension is also
created. The dimension contains only one member representing the pivot currency,
because the pivot currency is also used as the reporting currency for a one-to-many
currency conversion.

A separate reporting currency dimension is defined for each currency conversion defined in a
cube. You can change the name of the reporting currency dimensions after creation, but if you
do so you must also update the MDX script generated for that currency conversion to ensure
that the correct name is used by the script command when referencing the reporting currency
dimension.
Defining Multiple Currency Conversions
Using the Business Intelligence Wizard, you can define as many currency conversions as needed
for your business intelligence solution. You can either overwrite an existing currency conversion

Note

 104

or append a new currency conversion to the MDX script for a cube. Multiple currency
conversions defined in a single cube provide flexibility in business intelligence applications that
have complex reporting requirements, such as financial reporting applications that support
multiple, separate conversion requirements for international reporting.
Identifying Currency Conversions
The Business Intelligence Wizard identifies each currency conversion by framing the script
commands for the currency conversion in the following comments:
//<Currency conversion>
...
 [MDX statements for the currency conversion]
...
//</Currency conversion>
If you change or remove these comments, the Business Intelligence Wizard is unable to detect
the currency conversion, so you should not change these comments.
The wizard also stores metadata in comments within these comments, including the creation
date and time, the user, and the conversion type. These comments should also not be changed
because the Business Intelligence Wizard uses this metadata when displaying existing currency
conversions.
You can change the script commands contained in a currency conversion as needed. If you
overwrite the currency conversion, however, your changes will be lost.
See Also
International Considerations for Analysis Services (SSAS)

Client Applications
When working with client applications in multiple languages for Microsoft SQL Server Analysis
Services, the following general guidelines allow you to increase the portability of your business
intelligence solution.
Handling Translations
Translations provide display information for the names of Analysis Services objects, but the
identifiers for the same objects are not translated. Whenever possible, use the identifiers and
keys for Analysis Services objects instead of the translated captions and names. For example, use
member keys instead of member names for Multidimensional Expressions (MDX) statements
and scripts to ensure portability across multiple languages.
Handling Date and Time Values
When you perform month and day-of-week comparisons and operations, use the numeric date
and time parts instead of date and time part strings. Date and time part strings are determined
in part by the language identifier specified for the instance, and the current translation provided
by the instance for the members of the time dimension. Take advantage of date and time
functions in MDX for negotiating time dimensions, as well as the Visual Basic for Applications

 105

(VBA) date and time functions for returning numeric date and time parts instead of the name
strings. Use the literal date and time part strings when returning results to be displayed to a
user, because the strings are frequently more meaningful than a numeric representation.
However, do not code any logic that depends on the displayed names being in a specific
language.
See Also
International Considerations (Analysis Services - Multidimensional Data)

Developing with ADOMD.NET
ADOMD.NET is a Microsoft .NET Framework data provider that is designed to communicate with
Microsoft SQL Server Analysis Services. ADOMD.NET uses the XML for Analysis protocol to
communicate with analytical data sources by using either TCP/IP or HTTP connections to
transmit and receive SOAP requests and responses that are compliant with the XML for Analysis
specification. Commands can be sent in Multidimensional Expressions (MDX), Data Mining
Extensions (DMX), Analysis Services Scripting Language (ASSL), or even a limited syntax of SQL,
and may not return a result. Analytical data, key performance indicators (KPIs), and mining
models can be queried and manipulated by using the ADOMD.NET object model. By using
ADOMD.NET, you can also view and work with metadata either by retrieving OLE DB-compliant
schema rowsets or by using the ADOMD.NET object model.
The ADOMD.NET data provider is represented by the Microsoft.AnalysisServices.AdomdClient
namespace.

In This Section

Topic Description

Analysis Services Data Access Interfaces
(Analysis Services - Multidimensional Data)

Describes how to use ADOMD.NET client
objects to retrieve data and metadata from
analytical data sources.

ADOMD.NET Server Programming Describes how to use ADOMD.NET server
objects to create stored procedures and
user-defined functions.

Redistributing ADOMD.NET Describes the process of redistributing
ADOMD.NET.

N:Microsoft.AnalysisServices.AdomdClient Details the objects that are contained in the
Microsoft.AnalysisServices.AdomdClient
namespace.

 106

See Also
Multidimensional Expressions (MDX) Reference
Data Mining Extensions (DMX) Reference
Schema Rowsets
ASSL
Analysis Services Data Access Interfaces (SSAS)

ADOMD.NET Client Programming
The ADOMD.NET client components reside within the
Microsoft.AnalysisServices.AdomdClient namespace (in
microsoft.analysisservices.adomdclient.dll). These client components provide the functionality
for client and middle-tier applications to easily query data and metadata from an analytical data
store, such as Microsoft SQL Server Analysis Services.

Using the ADOMD.NET Client Objects
In querying an analytical data source, there are a set of common tasks that need to be
performed. The following table represents the common tasks in which you use the ADOMD.NET
client objects to perform such a query.

Task Description

Establishing Connections In ADOMD.NET, you use an
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection
object to establish connections with analytical data sources,
such as Analysis Services databases. You can use the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection
object to run commands, retrieve data, and retrieve
metadata from the analytical data source.

Retrieving Metadata After a connection has been established, you can use a wide
variety of objects to retrieve information about the
underlying data source. This functionality allows
applications to adapt to the data source to which they have
connected.

Executing Commands The
T:Microsoft.AnalysisServices.AdomdClient.AdomdCommand
object provides the interfaces necessary for running
commands against the underlying analytical data source.

http://msdn.microsoft.com/en-us/library/7e1cb1fb-2a50-41c2-9c70-b853ad6b6c3f(SQL.110)�
http://msdn.microsoft.com/en-us/library/6d85ca20-de67-4e20-b3b5-b734c6cfcece(SQL.110)�
http://msdn.microsoft.com/en-us/library/820d4b59-d428-4616-b792-c848e5da407e(SQL.110)�
http://msdn.microsoft.com/en-us/library/46388efb-3c78-47a2-b5c9-5a69ff394d03(SQL.110)�

 107

Task Description

Retrieving Data After a command runs, data could be retrieved and parsed
using either the
T:Microsoft.AnalysisServices.AdomdClient.CellSet,
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader,
or System.XmlReader objects.

Performing Transactions All of the actions listed in the previous rows of this table can
take place within a read-committed transaction, in which
shared locks are held while the data is being read to avoid
dirty reads. The data can still be changed before the end of
the transaction, resulting in non-repeatable reads or
phantom data. The
T:Microsoft.AnalysisServices.AdomdClient.AdomdTransaction
object provides the transaction functionality in
ADOMD.NET.

Interaction with the ADOMD.NET object hierarchy typically starts with one or more of the
objects in the topmost layer, as described in the following table.

To Use this object

Connect to an analytical
data source

T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection

The
T:Microsoft.AnalysisServices.AdomdClient.AdomdConn
ection object represents both a connection to a data source and
the data source metadata. For example, you can connect to a
Microsoft SQL Server Analysis Services local cube (.cub) file, and
then examine the
P:Microsoft.AnalysisServices.AdomdClient.AdomdConn
ection.Cubes property to obtain metadata about the cubes
present on the analytical data source. This object also represents
the implementation of the IDbConnection interface, an interface
that is required by all .NET Framework data providers.

Discover the data
mining capabilities of
the data source

T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection

The
T:Microsoft.AnalysisServices.AdomdClient.AdomdConn
ection object exposes several mining collections:

• The
T:Microsoft.AnalysisServices.AdomdClient.Mining

 108

To Use this object

ModelCollection contains a list of every mining model in
the data source.

• The
T:Microsoft.AnalysisServices.AdomdClient.MiningS
erviceCollection provides information about the available
mining algorithms.

• The
T:Microsoft.AnalysisServices.AdomdClient.MiningS
tructureCollection exposes information about the mining
structures on the server.

Query the data source T:Microsoft.AnalysisServices.AdomdClient.AdomdCommand

The
T:Microsoft.AnalysisServices.AdomdClient.AdomdCom
mand object represents the statement or query that will be sent
to the server. Once a connection is established to a data source,
you use a
T:Microsoft.AnalysisServices.AdomdClient.AdomdCom
mand object to run statements in the supported language, such
as Multidimensional Expressions (MDX) or Data Mining Data
Mining Extensions (DMX). You can also use a
T:Microsoft.AnalysisServices.AdomdClient.AdomdCom
mand object to return results in the form of
T:Microsoft.AnalysisServices.AdomdClient.CellSet or
T:Microsoft.AnalysisServices.AdomdClient.AdomdData
Reader objects.

Retrieve data in a fast,
efficient way

T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader

The
T:Microsoft.AnalysisServices.AdomdClient.AdomdData
Reader can be created with a call to the
M:Microsoft.AnalysisServices.AdomdClient.AdomdCom
mand.Execute or
M:Microsoft.AnalysisServices.AdomdClient.AdomdCom
mand.ExecuteReader method of an
T:Microsoft.AnalysisServices.AdomdClient.AdomdCom
mand object. This object implements the IDbDataReader
interface from the System.Data namespace of the .NET
Framework class library.

Retrieve analytical data
with the highest

T:Microsoft.AnalysisServices.AdomdClient.CellSet

The T:Microsoft.AnalysisServices.AdomdClient.CellSet

 109

To Use this object

amount of metadata can be created with a call to the
M:Microsoft.AnalysisServices.AdomdClient.AdomdCom
mand.Execute or
M:Microsoft.AnalysisServices.AdomdClient.AdomdCom
mand.ExecuteCellSet method of an
T:Microsoft.AnalysisServices.AdomdClient.AdomdCom
mand. Once an
T:Microsoft.AnalysisServices.AdomdClient.AdomdCom
mand has returned a
T:Microsoft.AnalysisServices.AdomdClient.CellSet, you
can then examine the analytical data contained by the
T:Microsoft.AnalysisServices.AdomdClient.CellSet.

Retrieve metadata
about cubes, such as
available dimensions,
measures, named sets,
and so on

T:Microsoft.AnalysisServices.AdomdClient.CubeDef

The T:Microsoft.AnalysisServices.AdomdClient.CubeDef
represents metadata about a cube. You reference the
T:Microsoft.AnalysisServices.AdomdClient.CubeDef
from the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConn
ection.

Retrieve data using the
System.Data.IDbData
Adapter interface

T:Microsoft.AnalysisServices.AdomdClient.AdomdDataAdapter

The
T:Microsoft.AnalysisServices.AdomdClient.AdomdData
Adapter provides read-only support for existing .NET
Framework client applications.

See Also
ADOMD.NET Server Programming
ADOMD.NET

ADOMD.NET Client Functionality
ADOMD.NET, as with other Microsoft .NET Framework data providers, serves as a bridge
between an application and a data source. However, ADOMD.NET is unlike other .NET
Framework data providers in that ADOMD.NET works with analytical data. To work with
analytical data, ADOMD.NET supports functionality that is very different than other .NET
Framework data providers. ADOMD.NET not only allows you to retrieve data, but also to retrieve
metadata and change the structure of the analytical data store:

 110

Retrieving Metadata

Applications can learn more about the data that can be retrieved from the data source
through metadata retrieval, using either schema rowsets or the object model. Information
such as the types of each key performance indicator (KPI) that are available, the dimensions
in a cube, and the parameters needed by the mining models are all discoverable. Metadata is
most important to dynamic applications that require user input to determine the type, depth,
and scope of data to be retrieved. Examples include Query Analyzer, Microsoft Excel, and
other querying tools. Metadata is less critical to static applications that perform a predefined
set of actions.

For more information: ADOMD.NET Client Programming.

Retrieving Data

Data retrieval is the actual retrieval of the information stored in the data source. Data
retrieval is the primary function of "static" applications, which know the structure of the data
source. Data retrieval is also the end result of "dynamic" applications. The value of the KPI at
a given time of day, the number of bicycles sold within the last hour for each store, and the
factors governing the annual performance of employees are all examples of data that can be
retrieved. Retrieving data is vital for any querying application.

For more information: Retrieving Data.

Changing the Structure of Analytical Data

ADOMD.NET can also be used to actually change the structure of the analytical data store.
Though this is usually done through the Analysis Management Objects (AMO) object model,
you can use ADOMD.NET to send Analysis Services Scripting Language (ASSL) commands to
create, alter, or delete objects on the server.

For more information: Executing Commands, Analysis Management Objects
(AMO), Analysis Services Scripting Language (ASSL)

Retrieving metadata, retrieving data, and changing data structure each occur at a specific point
in the workflow of a typical ADOMD.NET application.
Typical Process Flow
Traditional ADOMD.NET applications usually follow the same workflow when working with an
analytical database:
1. First, a connection is made to the database, using the

T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object. When you open the
connection, the T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object exposes
metadata about the server to which you have connected. In a dynamic application, some of
this information is typically shown to the user so that the user can make a selection, such as
which cube to query. The connection created during this step can be reused multiple times
by the application, reducing overhead.
For more information: Establishing Connections in ADOMD.NET

http://msdn.microsoft.com/en-us/library/ca0e852e-9002-4224-a0f0-bd96f2fc5c65(SQL.110)�

 111

2. Once a connection has been made, a dynamic application would then query the server for
more specific metadata. For a static application, the programmer knows in advance which
objects the application will be querying, and thus will not need to retrieve this metadata.
Metadata that is retrieved can be used by the application and the user for the next step.
For more information: Retrieving Metadata from an Analytical Data Source

3. The application then runs a command against the server. This command can be for the
purpose of retrieving additional metadata, retrieving data, or modifying the database
structure. For any of these tasks, the application could use a previously-determined query, or
make use of newly retrieved metadata to create additional queries.
For more information: Retrieving Metadata from an Analytical Data Source, Retrieving Data
from an Analytical Data Source, Executing Commands Against an Analytical Data Source

4. Once the command has been sent to the server, the server begins to return the metadata or
data to the client. This information can be viewed by using a
T:Microsoft.AnalysisServices.AdomdClient.CellSet object, an
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object, or a System.XmlReader
object.

To illustrate this traditional workflow, the following example contains a method that opens a
connection to the database, executes a command against a known cube, and retrieves the
results into a cellset. The cellset then returns a tab-delimited string containing column headers,
row headers, and cell data.
Adomd.NetClient#ReturnCommandUsingCellSet
See Also
ADOMD.NET Client Programming

Migrating From ADO MD To ADOMD.NET
The ADOMD.NET library is similar to the ActiveX Data Objects Multidimensional (ADO MD)
library, an extension of the ActiveX Data Objects (ADO) library that is used to access
multidimensional data in Component Object Model (COM)–based client applications. ADO MD
provides easy access to multidimensional data from unmanaged languages such as C++ and
Microsoft Visual Basic. ADOMD.NET provides easy access to analytical (both multidimensional
and data mining) data from managed languages such as Microsoft C# and Microsoft Visual
Basic .NET. Additionally, ADOMD.NET provides an enhanced metadata object model.
Migrating existing client applications from ADO MD to ADOMD.NET is easy, but there are
several important differences regarding migration:
To provide connectivity and data access to client applications

ADO MD ADOMD.NET

Requires references to both Adodb.dll and Requires a single reference to

 112

Adomd.dll. Microsoft.AnalysisServices.AdomdClient.dll.

The T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection class provides
connectivity support, in addition to access to metadata.

To retrieve metadata for multidimensional objects

ADO MD ADOMD.NET

Use the Catalog
class.

Use the
P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.Cubes
property of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.

To run queries and return cellset objects

ADO MD ADOMD.NET

Use the CellSet class. Use the
T:Microsoft.AnalysisServices.AdomdClient.AdomdCommand
class.

To access the metadata that is used to display a cellset

ADO MD ADOMD.NET

Use the Position class. Use the
T:Microsoft.AnalysisServices.AdomdClient.Set
and
T:Microsoft.AnalysisServices.AdomdClient.Tuple
objects.

nNote
The T:Microsoft.AnalysisServices.AdomdClient.Position class is supported for backward
compatibility.

To retrieve mining model metadata

ADO MD ADOMD.NET

No class available. Use one of the data mining collections:
• The

 113

T:Microsoft.AnalysisServices.AdomdClient.MiningModelCollectio
n contains a list of every mining model in the data source.

• The
T:Microsoft.AnalysisServices.AdomdClient.MiningServiceCollecti
on provides information about the available mining algorithms.

• The
T:Microsoft.AnalysisServices.AdomdClient.MiningStructureCollec
tion exposes information about the mining structures on the
server.

To highlight these differences the following migration example compares an existing ADO MD
application to an equivalent ADOMD.NET application.
Looking at a Migration Example
Both the existing ADO MD and equivalent ADOMD.NET code examples shown in this section
perform the same set of actions: creating a connection, running a Multidimensional Expressions
(MDX) statement, and retrieving metadata and data. However, these two sets of code do not use
the same objects to perform those tasks.
Existing ADO MD Code
The following code example, drawn from ADO MD 2.8 documentation, is written in Microsoft
Visual Basic® 6.0 and uses ADO MD to demonstrate how to connect to and query
a Microsoft SQL Server data source. This ADO MD example uses the following objects:
• Creates a connection from a Catalog object.
• Runs the Multidimensional Expressions (MDX) statement using the Cellset object.
• Retrieves the metadata and data from the Position object, retrieved from the Cellset object.

Private Sub cmdCellSettoDebugWindow_Click()

Dim cat As New ADOMD.Catalog

Dim cst As New ADOMD.Cellset

Dim i As Integer

Dim j As Integer

Dim k As Integer

Dim strServer As String

Dim strSource As String

Dim strColumnHeader As String

Dim strRowText As String

On Error GoTo Error_cmdCellSettoDebugWindow_Click

Screen.MousePointer = vbHourglass

 114

'*---

'* Set server to local host.

'*---

 strServer = "LOCALHOST"

'*---

'* Set MDX query string source.

'*---

 strSource = strSource & "SELECT "

 strSource = strSource & "{[Measures].members} ON COLUMNS,"

 strSource = strSource & _

 "NON EMPTY [Store].[Store City].members ON ROWS"

 strSource = strSource & " FROM Sales"

'*---

'* Set active connection.

'*---

 cat.ActiveConnection = "Data Source=" & strServer & _

 ";Provider=msolap;"

'*---

'* Set cellset source to MDX query string.

'*---

 cst.Source = strSource

'*---

'* Set cellset active connection to current connection

'*---

 Set cst.ActiveConnection = cat.ActiveConnection

'*---

'* Open cellset.

'*---

 115

 cst.Open

'*---

'* Allow space for row header text.

'*---

strColumnHeader = vbTab & vbTab & vbTab & vbTab & vbTab & vbTab

'*---

'* Loop through column headers.

'*---

 For i = 0 To cst.Axes(0).Positions.Count - 1

 strColumnHeader = strColumnHeader & _

 cst.Axes(0).Positions(i).Members(0).Caption & vbTab & _

 vbTab & vbTab & vbTab

 Next

 Debug.Print vbTab & strColumnHeader & vbCrLf

'*---

'* Loop through row headers and provide data for each row.

'*---

 strRowText = ""

 For j = 0 To cst.Axes(1).Positions.Count - 1

 strRowText = strRowText & _

 cst.Axes(1).Positions(j).Members(0).Caption & vbTab & _

 vbTab & vbTab & vbTab

 For k = 0 To cst.Axes(0).Positions.Count - 1

 strRowText = strRowText & cst(k, j).FormattedValue & _

 vbTab & vbTab & vbTab & vbTab

 Next

 Debug.Print strRowText & vbCrLf

 strRowText = ""

 Next

 116

 Screen.MousePointer = vbDefault

Exit Sub

Error_cmdCellSettoDebugWindow_Click:

 Beep

 Screen.MousePointer = vbDefault

 MsgBox "The following error has occurred:" & vbCrLf & _

 Err.Description, vbCritical, " Error!"

 Exit Sub

End Sub

Equivalent ADOMD.NET Code
The following example, written in Visual Basic .NET and using ADOMD.NET, demonstrates how
to perform the same actions as the previous Visual Basic 6.0 example. The major difference
between the following example and the ADO MD example shown earlier is the objects that are
used to perform the actions. The ADOMD.NET example uses the following objects:
• Creates a connection with an AdomdConnection object.
• Runs the MDX statement using an AdomdCommand object.
• Retrieves the metadata and data from the Set object, retrieved from the Cellset object.

Private Sub DisplayCellSetInOutputWindow()

 Dim conn As AdomdConnection

 Dim cmd As AdomdCommand

 Dim cst As CellSet

 Dim i As Integer

 Dim j As Integer

 Dim k As Integer

 Dim strServer As String = "LOCALHOST"

 Dim strSource As String = "SELECT [Measures].members ON COLUMNS, " & _

 "NON EMPTY [Store].[Store City].members ON ROWS FROM SALES"

 Dim strOutput As New System.IO.StringWriter

 '*---

 '* Open connection.

 '*---

 Try

 117

 ' Create a new AdomdConnection object, providing the connection

 ' string.

 conn = New AdomdConnection("Data Source=" & strServer & _

 ";Provider=msolap;")

 ' Open the connection.

 conn.Open()

 Catch ex As Exception

 Throw New ApplicationException(_

 "An error occurred while connecting.")

 End Try

 Try

 '*---

 '* Open cellset.

 '*---

 ' Create a new AdomdCommand object, providing the MDX query string.

 cmd = New AdomdCommand(strSource, conn)

 ' Run the command and return a CellSet object.

 cst = cmd.ExecuteCellSet()

 '*---

 '* Concatenate output.

 '*---

 ' Include spacing to account for row headers.

 strOutput.Write(vbTab, 6)

 ' Iterate through the first axis of the CellSet object and

 ' retrieve column headers.

 For i = 0 To cst.Axes(0).Set.Tuples.Count - 1

 strOutput.Write(cst.Axes(0).Set.Tuples(i).Members(0).Caption)

 strOutput.Write(vbTab, 4)

 Next

 118

 strOutput.WriteLine()

 ' Iterate through the second axis of the CellSet object and

 ' retrieve row headers and cell data.

 For j = 0 To cst.Axes(1).Set.Tuples.Count - 1

 ' Append the row header.

 strOutput.Write(cst.Axes(1).Set.Tuples(j).Members(0).Caption)

 strOutput.Write(vbTab, 4)

 ' Append the cell data for that row.

 For k = 0 To cst.Axes(0).Set.Tuples.Count - 1

 strOutput.Write(cst.Cells(k, j).FormattedValue)

 strOutput.Write(vbTab, 4)

 Next

 strOutput.WriteLine()

 Next

 ' Display the output.

 Debug.WriteLine(strOutput.ToString)

 '*---

 '* Release resources.

 '*---

 conn.Close()

 Catch ex As Exception

 ' Ignore or handle errors.

 Finally

 cst = Nothing

 cmd = Nothing

 conn = Nothing

 End Try

End Sub

 119

Establishing Connections in ADOMD.NET
In ADOMD.NET, you use the T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object
to open connections with analytical data sources, such as Microsoft SQL Server Analysis Services
databases. When the connection is no longer needed, you should explicitly close the connection.
Opening a Connection
To open a connection in ADOMD.NET, you must first specify a connection string to a valid
analytical data source and database. Then, you must explicitly open the connection to that data
source.
Specifying a Multidimensional Data Source
To specify an analytical data source and database, you set the
P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.ConnectionString property of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object. The connection string
specified for the P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.ConnectionString
property is an OLE DB–compliant string. ADOMD.NET uses the specified connection string to
determine how to connect to the server.
The P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.ConnectionString property can
be set on either an existing T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object
or during the creation an instance of an
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object. The following code
demonstrates how to set the
P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.ConnectionString property when
you create an :Microsoft.AnalysisServices.AdomdClient.AdomdConnection:

Dim advwrksConnection As New AdomdConnection("Data Source=localhost;Catalog=AdventureWorksAS")

System.Diagnostics.Debug.Writeline(advwrksConnection.ConnectionString)

AdomdConnection advwrksConnection = new AdomdConnection("Data

Source=localhost;Catalog=AdventureWorksAS");

System.Diagnostics.Debug.Writeline(advwrksConnection.ConnectionString);

Opening a Connection to the Data Source
After you have specified the connection string, you must use the
M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.Open method to open the
connection. When you open a T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection
object, you can set various levels of security for the connection. The security level that is used for
the connection depends on the value of the ProtectionLevel connection string setting. For
more information about opening secure connections in ADOMD.NET, see ADOMD.NET Client
Programming.
Working with a Connection
Each open connection exists in a session, which provides support for stateful operations. A
session can be shared by more than one open connection. Sharing a session enables more than

 120

one client to share the same context. For more information, see Connections and Sessions in
ADOMD.NET.
You can use an open connection to retrieve metadata, data, and run commands. For more
information, see Retrieving Metadata, Retrieving Data, and Executing Commands.
When the connection is open, you can retrieve data, retrieve metadata, and run commands from
within a read-committed transaction, in which shared locks are held while the data is being read
to avoid dirty reads. The data can still be changed before the end of the transaction, resulting in
non-repeatable reads or phantom data. For more information, see Performing Transactions.
Closing a Connection
We recommended that you explicitly close an
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object as soon as you no longer
need the connection. To explicitly close the connection, you use the
M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.Close and
Overload:System.ComponentModel.Component.Dispose methods of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object.
A connection that is not explicitly closed, but is allowed to fall out of scope, may not release
server resources quickly enough to enable high-concurrency Analysis Services client applications
to efficiently open new connections. Depending on how you created the connection, the session
used by the T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object can remain
active if the connection is not explicitly closed.
For more information about sessions, see Connections and Sessions in ADOMD.NET.

In the Finalize method of any implemented class, do not call the Close or Dispose
methods of an T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object,
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object, or any other
managed object. In a finalizer, only release unmanaged resources that are directly owned
by the implemented class. If the implemented class does not own any unmanaged
resources, do not include a Finalize method in the class definition.

See Also
ADOMD.NET Programming

Establishing Secure Connections in ADOMD.NET
When you use a connection in ADOMD.NET, the security method that is used for the connection
depends on the value of the ProtectionLevel property of the connection string used when you
call the M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.Open method of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.
The ProtectionLevel property offers four levels of security: unauthenticated, authenticated,
signed, and encrypted. The following table describes these various security levels.

Important

Note

 121

If you choose to use database connection pooling, the database will not be able to
manage security. This is because database connection pooling requires that the
connection string be identical to pool connections. Therefore, you must manage security
elsewhere.

 122

Security Level ProtectionLevel Value

unauthenticated connection

An unauthenticated connection
does no form of authentication.
This kind of connection
represents the most widely
supported, but least secure, form
of connection.

None

authenticated connection

An authenticated connection
authenticates the user who is
making the connection, but does
not secure additional
communications. This kind of
connection is useful in that you
can establish the identity of the
user or application that is
connecting to an analytical data
source.

Connect

signed connection

A signed connection
authenticates the user who is
requesting the connection, and
then makes sure that
transmissions are not modified.
This kind of connection is useful
when the authenticity of the
transferred data must be
verified. However, a signed
connection only prevents the
content of the data packet from
being modified. The content can
still be viewed in transit.

Note
A signed connection is only supported by
the XML for Analysis provider supplied by
Microsoft SQL Server Analysis Services.

Pkt Integrity or PktIntegrity

encrypted connection

An encrypted connection is the

Pkt Privacy or PktPrivacy

 123

Security Level ProtectionLevel Value

default connection type used by
ADOMD.NET. This kind of
connection authenticates the
user who is requesting the
connection, and then also
encrypts the data that is
transmitted. An encrypted
connection is the securest form
of connection that can be
created by ADOMD.NET. The
content of the data packet
cannot be viewed or modified,
thereby protecting data during
transit.

Note
An encrypted connection is only
supported by the XML for Analysis
provider supplied by SQL Server Analysis
Services.

However, not all levels of security are available for all kinds of connections:
• A TCP connection can use any one of the four levels of security. In fact, a TCP connection,

when you use it with Windows Integrated Security, offers the securest method of connecting
to an analytical data source.

• An HTTP connection can only be an authenticated connection. Therefore, the
ProtectionLevel property must be set to Connect.

• An HTTPS connection can only be an encrypted connection. Therefore, the ProtectionLevel
property must be set to Pkt Privacy or PktPrivacy.

Securing TCP Connections
For a TCP connection, the ProtectionLevel property supports all four levels of security, as
shown in the following table.

ProtectionLevel
Value

Use with TCP
Connection?

Results

None Yes Specifies an unauthenticated connection.
A TCP stream is requested from the provider, but there is
no form of authentication performed on the user who is

 124

ProtectionLevel
Value

Use with TCP
Connection?

Results

requesting the stream.

Connect Yes Specifies an authenticated connected.
A TCP stream is requested from the provider, and then the
security context of the user who is requesting the stream is
authenticated against the server:
• If authentication succeeds, no other action is taken.
• If authentication fails, the

T:Microsoft.AnalysisServices.AdomdClient.AdomdConnec
tion object disconnects from the multidimensional data
source and an exception is thrown.

After authentication succeeds or fails, the security context
that is used to authenticate the connection is disposed.

Pkt Integrity or
PktIntegrity

Yes Specifies a signed connection.
A TCP stream is requested from the provider, and then the
security context of the user who is requesting the stream is
authenticated against the server:
• If authentication succeeds, the

T:Microsoft.AnalysisServices.AdomdClient.AdomdConnec
tion object closes the existing TCP stream and opens a
signed TCP stream to handle all requests. Each request
for data or metadata is authenticated by using the
security context that was used to open the connection.
Additionally, each packet is digitally signed to make
sure that the payload of the TCP packet has not been
changed in any way.

• If authentication fails, the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnec
tion object disconnects from the multidimensional data
source and an exception is thrown.

Pkt Privacy or
PktPrivacy

Yes Specifies an encrypted connection.

Note
You can also specify an encrypted connection by
not setting the ProtectionLevel property in the
connection string.

A TCP stream is requested from the provider, and then the
security context of the user requesting the stream is

 125

ProtectionLevel
Value

Use with TCP
Connection?

Results

authenticated against the server:
• If authentication succeeds, the

T:Microsoft.AnalysisServices.AdomdClient.AdomdConnec
tion object closes the existing TCP stream and opens
up an encrypted TCP stream to handle all requests.
Each request for data or metadata is authenticated by
using the security context that was used to open the
connection. Additionally, the payload of each TCP
packet is encrypted by using the highest encryption
method supported by both the provider and the
multidimensional data source.

• If authentication fails, the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnec
tion object disconnects from the multidimensional data
source and an exception is thrown.

Using Windows Integrated Security for the Connection
Windows Integrated Security is the securest way of establishing and securing a connection to an
instance of Analysis Services. Windows Integrated Security does not reveal security credentials,
such as a user name or password, during the authentication process, but instead uses the
security identifier of the currently running process to establish identity. For most client
applications, this security identifier represents the identity of the currently logged-on user.
To use Windows Integrated Security, the connection string requires the following settings:
• For the Integrated Security property, either do not set this property or set this property to

SSPI.

Windows Integrated Security is only available for TCP connections because HTTP
connections must use the Basic setting for the Integrated Security property.

• For the ProtectionLevel property, set this property to Connect, Pkt Integrity, or Pkt
Privacy.

Securing HTTP Connections
HTTPS and Secure Sockets Layer (SSL) can be used to externally secure HTTP communications
with an analytical data source.
Because an XMLA provider only uses secure HTTP, an HTTP connection in ADOMD.NET must be
a signed connection, as shown in the following table.

Note

 126

ProtectionLevel Value Use with HTTP or HTTPS

None No

Connect HTTP

Pkt Integrity or PktIntegrity No

Pkt Privacy or PktPrivacy HTTPS

Opening a Secure HTTP Connection
The following example demonstrates how to use ADOMD.NET to open an HTTP connection for
the AdventureWorksAS sample Analysis Services database:

Public Function GetAWEncryptedConnection(_

 Optional ByVal serverName As String = "https:\\localhost\isapy\msmdpump.dll") _

 As AdomdConnection

 Dim strConnectionString As String = ""

 Dim objConnection As New AdomdConnection

 Try

 ' To establish an encrypted connection, set the

 ' ProtectionLevel setting to PktPrivacy.

 strConnectionString = "DataSource=" & serverName & ";" & _

 "Catalog=AdventureWorksAS;" & _

 "ProtectionLevel=PktPrivacy;"

 ' Note that username and password are not supplied here.

 ' The current security context is used for authentication

 ' purposes.

 objConnection.ConnectionString = strConnectionString

 objConnection.Open()

 Catch ex As Exception

 objConnection = Nothing

 Throw ex

 Finally

 127

 ' Return the encrypted connection.

 GetAWEncryptedConnection = objConnection

 End Try

End Function

See Also
Establishing Connections in ADOMD.NET

Working with Connections and Sessions in ADOMD.NET
In XML for Analysis (XMLA), sessions provide support for stateful operations during analytical
data access. Sessions frame the scope and context of commands and transactions for an
analytical data source. The XMLA elements used to manage sessions are BeginSession, Session,
and EndSession.
ADOMD.NET uses these three XMLA session elements when you start a session, perform queries
or retrieve data during the session, and close a session.
Starting a Session
The P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.SessionID property of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object contains the identifier of the
active session associated with the T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection
object. By using this property correctly, you can effectively control both client and server
statefulness in your application:
• If the P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.SessionID property is not

set to a valid session ID when the
M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.Open method is called, the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object requests a new session ID
from the provider. ADOMD.NET initiates a session by sending an XMLA BeginSession
header to the provider. If ADOMD.NET is successful is starting a session, ADOMD.NET sets
the value of the P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.SessionID
property to the session ID of the newly created session.

• If the P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.SessionID property is set
to a valid session ID when the
M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.Open method is called, the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object tries to connect to the
specified session.

If the T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object cannot connect to the
specified session, or if the provider does not support sessions, an exception is thrown.

After you have had ADOMD.NET create a session, you can connect multiple
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection objects to that single active

Note

http://msdn.microsoft.com/en-us/library/49873a97-58d7-42a9-ab7f-e045e2856737(SQL.110)�
http://msdn.microsoft.com/en-us/library/884ed090-968e-41d3-97e5-6d12787467da(SQL.110)�
http://msdn.microsoft.com/en-us/library/e64f1da4-5c83-40a2-b15e-837f5451bafa(SQL.110)�

 128

session, or you can disconnect a single
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object from that session and
reconnect that object to another session.

Working in a Session
After ADOMD.NET connects the T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection
object to a valid session, ADOMD.NET will send an XMLA Session header to the provider with
every request for data or metadata made by an application. Every request will have the session
ID set to the value of the P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.SessionID
property.
A session ID does not guarantee that a session remains valid. If the session expires (for example,
if the session times out or the connection is lost), the provider can choose to end and roll back
the actions of that session. If this occurs, all subsequent method calls from the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object will throw an exception.
Because exceptions are thrown only when the next request is sent to the provider, not when the
session expires, your application must be able to handle these exceptions any time that your
application retrieves data or metadata from the provider.
Closing a Session
If the M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.Close method is called
without specifying the value of the endSession parameter, or if the endSession parameter is set
to True, both the connection to the session and the session associated with the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object are closed. To close a
session, ADOMD.NET sends an XMLA EndSession header to the provider, with the session ID set
to the value of the P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.SessionID
property.
If the M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.Close method is called with
the endSession parameter set to False, the session associated with the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object remains active but the
connection to the session is closed.
Example of Managing a Session
The following example demonstrates how to open a connection, create a session, and close the
connection while keeping the session open in ADOMD.NET:

Public Function CreateSession(ByVal connectionString As String) As String

 Dim strSessionID As String = ""

 Dim objConnection As New AdomdConnection

 Try

 ' First, try to connect to the specified data source.

 ' If the connection string is not valid, or if the specified

 ' provider does not support sessions, an exception is thrown.

 129

 objConnection.ConnectionString = connectionString

 objConnection.Open()

 ' Now that the connection is open, retrieve the new

 ' active session ID.

 strSessionID = objConnection.SessionID

 ' Close the connection, but leave the session open.

 objConnection.Close(False)

 Return strSessionID

 Finally

 objConnection = Nothing

 End Try

End Function

static string CreateSession(string connectionString)

{

 string strSessionID = "";

 AdomdConnection objConnection = new AdomdConnection();

 try

 {

 /*First, try to connect to the specified data source.

 If the connection string is not valid, or if the specified

 provider does not support sessions, an exception is thrown. */

 objConnection.ConnectionString = connectionString;

 objConnection.Open();

 // Now that the connection is open, retrieve the new

 // active session ID.

 strSessionID = objConnection.SessionID;

 // Close the connection, but leave the session open.

 objConnection.Close(false);

 return strSessionID;

 }

 130

 finally

 {

 objConnection = null;

 }

}

See Also
Establishing Connections in ADOMD.NET

Performing Transactions in ADOMD.NET
In ADOMD.NET, you use the T:Microsoft.AnalysisServices.AdomdClient.AdomdTransaction object
to manage transaction context for a given
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object. This functionality allows you
to run several commands within the same context. Each command will read the same data
without the read data changing between each command execution.

The T:Microsoft.AnalysisServices.AdomdClient.AdomdTransaction class is the
implementation of the System.Data.IDbTransaction interface, part of the Microsoft
.NET Framework Class Library and implemented by all .NET Framework data providers
that support transactions.

The T:Microsoft.AnalysisServices.AdomdClient.AdomdTransaction object only supports read-
committed transactions, in which shared locks are held while the data is being read to avoid
dirty reads.
The T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection is used to start the transaction.
To use the transaction, commands are then run against the connection that started the
transaction. When you are finished with the transaction, you can either be roll back or commit
the transaction.
Starting a Transaction
You create an instance of an T:Microsoft.AnalysisServices.AdomdClient.AdomdTransaction object
by calling the M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.BeginTransaction
method of the T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object. The following
example shows how to create an instance of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdTransaction object:

Dim objTransaction As AdomdTransaction = objConnection.BeginTransaction()

AdomdTransaction objTransaction = objConnection.BeginTransaction();

Rolling Back a Transaction
To roll back an existing, incomplete transaction, you call the
M:Microsoft.AnalysisServices.AdomdClient.AdomdTransaction.Rollback method of the

Note

 131

T:Microsoft.AnalysisServices.AdomdClient.AdomdTransaction object. If you call this method on an
existing, complete transaction, an exception is thrown.
Committing a Transaction
After you call the M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.BeginTransaction
method to start a transaction, you can complete the transaction by calling the
M:Microsoft.AnalysisServices.AdomdClient.AdomdTransaction.Commit method of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdTransaction object. If this method is called on
an existing, complete transaction, an exception is thrown.
See Also
ADOMD.NET Client Programming
ADOMD.NET Programming

Retrieving Metadata from an Analytical Data Source
Metadata is important to applications that retrieve and work with analytical data. When
retrieving data from a relational data source, the dimensionality of such data is predictable, even
with nested datasets. Result sets from a relational database are typically two-dimensional or
scalar in structure. However, data retrieved from analytical data sources can be of variable
dimensionality, organized along potentially deep hierarchies.
To handle the complexity of metadata retrieval from analytical data sources, ADOMD.NET
provides two forms of metadata retrieval:
The Object Model

The ADOMD.NET object model is generally easier to use than schema rowsets. For most
scenarios, you can access the metadata of various database objects just by using the object
model. ADOMD.NET exposes the object model through the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.

For more information: Schema Rowsets

Schema Rowsets

A complete, but more difficult approach to retrieving metadata is through using schema rowsets.
A schema rowset is an OLE DB rowset that encapsulates the description for all objects of a
particular type in the database. Schema information in an analytical data source includes
databases or catalogs available from the data source, cubes and mining models in a database,
roles that exist for cubes at the data source, and so on. This metadata can be retrieved by using
the
Overload:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.GetSchema
DataSet method, passing in either a GUID or an XML for Analysis (XMLA) name.

For more information: Working With Schema Rowsets

Each of these metadata retrieval methods access different types of metadata. The following
table describes the different metadata available for each method, and the methods used to
access it.

 132

GUID (used in Schema Rowsets) XMLA Name (used in
Schema Rowsets)

ADOMD.NET Object Model

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Actions

MDSCHEMA_ACTION
S Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Catalogs

DBSCHEMA_CATALO
GS Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Columns

DBSCHEMA_COLUM
NS Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Connections

DISCOVER_CONNEC
TIONS

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Cubes

MDSCHEMA_CUBES
Rowset

AdomdConnection.Cubes

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.DataSources

DISCOVER_DATASOU
RCES Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.DBConnection
s

DISCOVER_DB_CON
NECTIONS

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Dimensions

MDSCHEMA_DIMENS
IONS Rowset

AdomdConnection.Cubes[].Dime
nsions

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.DimensionStat

DISCOVER_DIMENSI
ON_STAT

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Enumerators

DISCOVER_ENUMERA
TORS Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Functions

MDSCHEMA_FUNCTI
ONS Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Hierarchies

MDSCHEMA_HIERAR
CHIES Rowset

AdomdConnection.Cubes[].Dime
nsions[].Hierarchies

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.InputDataSour
ces

MDSCHEMA_INPUT_
DATASOURCES
Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Instances

DISCOVER_INSTANCE
S Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Jobs

DISCOVER_JOBS

http://msdn.microsoft.com/en-us/library/f73081f8-ac51-4286-b46e-2b34e792c3e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/f73081f8-ac51-4286-b46e-2b34e792c3e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/f02dc75d-5442-4eea-b33a-567dc816be7a(SQL.110)�
http://msdn.microsoft.com/en-us/library/f02dc75d-5442-4eea-b33a-567dc816be7a(SQL.110)�
http://msdn.microsoft.com/en-us/library/653bdd07-a533-4a99-8b6a-6e5c7322e1f3(SQL.110)�
http://msdn.microsoft.com/en-us/library/653bdd07-a533-4a99-8b6a-6e5c7322e1f3(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f1b63d4-aa3f-48c6-b866-7ffd91675044(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f1b63d4-aa3f-48c6-b866-7ffd91675044(SQL.110)�
http://msdn.microsoft.com/en-us/library/f3ff26ab-a447-416b-ba54-1716df2283de(SQL.110)�
http://msdn.microsoft.com/en-us/library/f3ff26ab-a447-416b-ba54-1716df2283de(SQL.110)�
http://msdn.microsoft.com/en-us/library/a0fd94bb-359a-4df6-93a6-d60d50223944(SQL.110)�
http://msdn.microsoft.com/en-us/library/a0fd94bb-359a-4df6-93a6-d60d50223944(SQL.110)�
http://msdn.microsoft.com/en-us/library/ddc7b13c-3135-4419-8166-eddd459167da(SQL.110)�
http://msdn.microsoft.com/en-us/library/ddc7b13c-3135-4419-8166-eddd459167da(SQL.110)�
http://msdn.microsoft.com/en-us/library/5253fa8c-b1ce-4504-aff6-a246b5e675c7(SQL.110)�
http://msdn.microsoft.com/en-us/library/5253fa8c-b1ce-4504-aff6-a246b5e675c7(SQL.110)�
http://msdn.microsoft.com/en-us/library/2e5b2a81-366e-4d5b-af1e-1d372bf596d9(SQL.110)�
http://msdn.microsoft.com/en-us/library/2e5b2a81-366e-4d5b-af1e-1d372bf596d9(SQL.110)�
http://msdn.microsoft.com/en-us/library/12482fd5-16e3-4171-9cb0-76d0d4f5308e(SQL.110)�
http://msdn.microsoft.com/en-us/library/12482fd5-16e3-4171-9cb0-76d0d4f5308e(SQL.110)�
http://msdn.microsoft.com/en-us/library/12482fd5-16e3-4171-9cb0-76d0d4f5308e(SQL.110)�
http://msdn.microsoft.com/en-us/library/e0842e63-089d-468d-869f-634da343d9fb(SQL.110)�
http://msdn.microsoft.com/en-us/library/e0842e63-089d-468d-869f-634da343d9fb(SQL.110)�

 133

GUID (used in Schema Rowsets) XMLA Name (used in
Schema Rowsets)

ADOMD.NET Object Model

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Keywords

DISCOVER_KEYWOR
DS Rowset (OLE DB
for OLAP)

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Kpis

MDSCHEMA_KPIS
Rowset

AdomdConnection.Cubes[].KPIs

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Levels

MDSCHEMA_LEVELS
Rowset

AdomdConnection.Cubes[].Dime
nsions[].Hierarchies[].Levels

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Literals

DISCOVER_LITERALS
Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Locations

DISCOVER_LOCATIO
NS

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Locks

DISCOVER_LOCKS

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MasterKey

DISCOVER_MASTER
_KEY

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MeasureGroup
Dimensions

MDSCHEMA_MEASU
REGROUP_DIMENSIO
NS

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MeasureGroup
s

MDSCHEMA_MEASU
REGROUPS Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Measures

MDSCHEMA_MEASU
RES Rowset

AdomdConnection.Cubes[].Meas
ures

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MemberPrope
rties

MDSCHEMA_PROPER
TIES Rowset

PropertyCollection available
from most major ADOMD.NET
objects.

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Members

MDSCHEMA_MEMBE
RS Rowset

AdomdConnection.Cubes[].Dime
nsions[].Hierarchies[].Levels[].Get
Members()

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MemoryGrant

DISCOVER_MEMOR
YGRANT

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MemoryUsage

DISCOVER_MEMOR
YUSAGE

http://msdn.microsoft.com/en-us/library/70cc680d-9530-469b-8a61-4e6779aec17a(SQL.110)�
http://msdn.microsoft.com/en-us/library/70cc680d-9530-469b-8a61-4e6779aec17a(SQL.110)�
http://msdn.microsoft.com/en-us/library/70cc680d-9530-469b-8a61-4e6779aec17a(SQL.110)�
http://msdn.microsoft.com/en-us/library/40fb5112-6a90-4455-82b3-8b6322490222(SQL.110)�
http://msdn.microsoft.com/en-us/library/40fb5112-6a90-4455-82b3-8b6322490222(SQL.110)�
http://msdn.microsoft.com/en-us/library/4313e268-33f4-4e99-96d7-2ec26775c580(SQL.110)�
http://msdn.microsoft.com/en-us/library/4313e268-33f4-4e99-96d7-2ec26775c580(SQL.110)�
http://msdn.microsoft.com/en-us/library/1bf0a2e2-a419-4c25-b271-37dfa44de2ea(SQL.110)�
http://msdn.microsoft.com/en-us/library/1bf0a2e2-a419-4c25-b271-37dfa44de2ea(SQL.110)�
http://msdn.microsoft.com/en-us/library/c731c06a-7382-4e50-ba0e-d8cee3ab4f28(SQL.110)�
http://msdn.microsoft.com/en-us/library/c731c06a-7382-4e50-ba0e-d8cee3ab4f28(SQL.110)�
http://msdn.microsoft.com/en-us/library/c731c06a-7382-4e50-ba0e-d8cee3ab4f28(SQL.110)�
http://msdn.microsoft.com/en-us/library/bab1bbd0-421b-4fad-9aee-e6511e0e1f1b(SQL.110)�
http://msdn.microsoft.com/en-us/library/bab1bbd0-421b-4fad-9aee-e6511e0e1f1b(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff5bd1a-aad0-49b8-9f8d-7df2637caacf(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff5bd1a-aad0-49b8-9f8d-7df2637caacf(SQL.110)�
http://msdn.microsoft.com/en-us/library/95c480f7-c525-44ba-a59b-cd36f5855a4f(SQL.110)�
http://msdn.microsoft.com/en-us/library/95c480f7-c525-44ba-a59b-cd36f5855a4f(SQL.110)�
http://msdn.microsoft.com/en-us/library/0b1aada0-67f8-4ef6-81b2-0100b65e0c2f(SQL.110)�
http://msdn.microsoft.com/en-us/library/0b1aada0-67f8-4ef6-81b2-0100b65e0c2f(SQL.110)�

 134

GUID (used in Schema Rowsets) XMLA Name (used in
Schema Rowsets)

ADOMD.NET Object Model

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MiningColumn
s

DMSCHEMA_MINING
_COLUMNS Rowset

AdomdConnection.MiningModel
s[].MiningModelColumns

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MiningFunctio
ns

DMSCHEMA_MINING
_FUNCTIONS Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MiningModelC
ontent

DMSCHEMA_MINING
_MODEL_CONTENT
Rowset

AdomdConnection.MiningModel
s[].MiningContentNodes

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MiningModelC
ontentPmml

DMSCHEMA_MINING
_MODEL_CONTENT_P
MML Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MiningModels

DMSCHEMA_MINING
_MODELS Rowset

AdomdConnection.MiningModel
s

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MiningModelX
ml

DMSCHEMA_MINING
_MODEL_XML Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MiningService
Parameters

DMSCHEMA_MINING
_SERVICE_PARAMETE
RS Rowset

AdomdConnection.MiningServic
es[].MiningServiceParameters

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MiningService
s

DMSCHEMA_MINING
_SERVICES Rowset

AdomdConnection.MiningServic
es

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MiningStructu
reColumns

DMSCHEMA_MINING
_STRUCTURE_COLUM
NS Rowset

AdomdConnection.MiningStruct
ures[].MiningStructureColumns

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.MiningStructu
res

DMSCHEMA_MINING
_STRUCTURES
Rowset

AdomdConnection.MiningStruct
ures

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.PartitionDime
nsionStat

DISCOVER_PARTITI
ON_DIMENSION_ST
AT

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.PartitionStat

DISCOVER_PARTITI
ON_STAT

http://msdn.microsoft.com/en-us/library/ae35ccde-4438-46f4-8611-40b2b1a42fce(SQL.110)�
http://msdn.microsoft.com/en-us/library/ae35ccde-4438-46f4-8611-40b2b1a42fce(SQL.110)�
http://msdn.microsoft.com/en-us/library/9ace7493-a7b1-45ca-93de-3cb2f3597017(SQL.110)�
http://msdn.microsoft.com/en-us/library/9ace7493-a7b1-45ca-93de-3cb2f3597017(SQL.110)�
http://msdn.microsoft.com/en-us/library/1e85d9e7-3b74-42ac-b94e-f52f76d8a25d(SQL.110)�
http://msdn.microsoft.com/en-us/library/1e85d9e7-3b74-42ac-b94e-f52f76d8a25d(SQL.110)�
http://msdn.microsoft.com/en-us/library/1e85d9e7-3b74-42ac-b94e-f52f76d8a25d(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa05bb08-a955-4c8d-b57f-ffcd82470220(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa05bb08-a955-4c8d-b57f-ffcd82470220(SQL.110)�
http://msdn.microsoft.com/en-us/library/fa05bb08-a955-4c8d-b57f-ffcd82470220(SQL.110)�
http://msdn.microsoft.com/en-us/library/1636f4cf-b342-4e2e-93b4-04136e2d41ef(SQL.110)�
http://msdn.microsoft.com/en-us/library/1636f4cf-b342-4e2e-93b4-04136e2d41ef(SQL.110)�
http://msdn.microsoft.com/en-us/library/f58b00e9-3f72-4cff-b448-21a9fb529772(SQL.110)�
http://msdn.microsoft.com/en-us/library/f58b00e9-3f72-4cff-b448-21a9fb529772(SQL.110)�
http://msdn.microsoft.com/en-us/library/5994e66b-84d0-4279-9f50-d92fd829dd83(SQL.110)�
http://msdn.microsoft.com/en-us/library/5994e66b-84d0-4279-9f50-d92fd829dd83(SQL.110)�
http://msdn.microsoft.com/en-us/library/5994e66b-84d0-4279-9f50-d92fd829dd83(SQL.110)�
http://msdn.microsoft.com/en-us/library/4a672f2f-d637-4def-a572-c18556f83d34(SQL.110)�
http://msdn.microsoft.com/en-us/library/4a672f2f-d637-4def-a572-c18556f83d34(SQL.110)�
http://msdn.microsoft.com/en-us/library/81f25502-ac90-42f1-8ddf-7b0f9752ebfd(SQL.110)�
http://msdn.microsoft.com/en-us/library/81f25502-ac90-42f1-8ddf-7b0f9752ebfd(SQL.110)�
http://msdn.microsoft.com/en-us/library/81f25502-ac90-42f1-8ddf-7b0f9752ebfd(SQL.110)�
http://msdn.microsoft.com/en-us/library/6224556b-08a0-496e-bd7c-632c3e833e26(SQL.110)�
http://msdn.microsoft.com/en-us/library/6224556b-08a0-496e-bd7c-632c3e833e26(SQL.110)�
http://msdn.microsoft.com/en-us/library/6224556b-08a0-496e-bd7c-632c3e833e26(SQL.110)�

 135

GUID (used in Schema Rowsets) XMLA Name (used in
Schema Rowsets)

ADOMD.NET Object Model

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.PerformanceC
ounters

DISCOVER_PERFOR
MANCE_COUNTERS

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.ProviderTypes

DBSCHEMA_PROVID
ER_TYPES Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.SchemaRowset
s

DISCOVER_SCHEMA_
ROWSETS Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Sessions

DISCOVER_SESSION
S

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Sets

MDSCHEMA_SETS
Rowset

AdomdConnection.Cubes[].Nam
edSets

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Tables

DBSCHEMA_TABLES
Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.TablesInfo

DBSCHEMA_TABLES
_INFO

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.TraceColumns

DISCOVER_TRACE_C
OLUMNS

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.TraceDefinitio
nProviderInfo

DISCOVER_TRACE_D
EFINITION_PROVID
ERINFO

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.TraceEventCat
egories

DISCOVER_TRACE_E
VENT_CATEGORIES

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Traces

DISCOVER_TRACES

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.Transactions

DISCOVER_TRANSA
CTIONS

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.XmlaPropertie
s

DISCOVER_PROPERTI
ES Rowset

F:Microsoft.AnalysisServices.AdomdCli
ent.AdomdSchemaGuid.XmlMetadata

DISCOVER_XML_MET
ADATA rowset

http://msdn.microsoft.com/en-us/library/255e01ba-53a9-478d-9b86-45faba76710e(SQL.110)�
http://msdn.microsoft.com/en-us/library/255e01ba-53a9-478d-9b86-45faba76710e(SQL.110)�
http://msdn.microsoft.com/en-us/library/e5012aa0-6ef8-497f-96c1-2772e2394f62(SQL.110)�
http://msdn.microsoft.com/en-us/library/e5012aa0-6ef8-497f-96c1-2772e2394f62(SQL.110)�
http://msdn.microsoft.com/en-us/library/abb00dc0-2b83-48d6-b2ba-6615c1488d06(SQL.110)�
http://msdn.microsoft.com/en-us/library/abb00dc0-2b83-48d6-b2ba-6615c1488d06(SQL.110)�
http://msdn.microsoft.com/en-us/library/14c16e6b-0aff-4ad1-b98f-cdb7df0f8d73(SQL.110)�
http://msdn.microsoft.com/en-us/library/14c16e6b-0aff-4ad1-b98f-cdb7df0f8d73(SQL.110)�
http://msdn.microsoft.com/en-us/library/3e2b50e2-3855-4091-8b02-4968e8e57d4c(SQL.110)�
http://msdn.microsoft.com/en-us/library/3e2b50e2-3855-4091-8b02-4968e8e57d4c(SQL.110)�
http://msdn.microsoft.com/en-us/library/0befd026-db1b-43ac-b0e6-734abb56a4b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/0befd026-db1b-43ac-b0e6-734abb56a4b1(SQL.110)�

 136

See Also
ADOMD.NET Client Programming
ADOMD.NET Programming
Schema Rowsets

Working with the ADOMD.NET Object Model
ADOMD.NET provides an object model for viewing the cubes and subordinate objects contained
by an analytical data source. However, not all metadata for a given analytical data source is
available through the object model. The object model provides access to only the information
that is most useful for a client application to display in order to allow a user to interactively
construct commands. Because of the reduced complexity of the metadata to present, the
ADOMD.NET object model is easier to use.
In the ADOMD.NET object model, the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object provides access to
information on the online analytical processing (OLAP) cubes and mining models defined on an
analytical data source, and related objects such as dimensions, named sets, and mining
algorithms.
Retrieving OLAP Metadata
Each T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object has a collection of
T:Microsoft.AnalysisServices.AdomdClient.CubeDef objects that represent the cubes available to
the user or application. The T:Microsoft.AnalysisServices.AdomdClient.CubeDef object exposes
information about the cube, as well as various objects related to the cube, such as dimensions,
key performance indicators, measures, named sets, and so on.
Whenever possible, you should use the T:Microsoft.AnalysisServices.AdomdClient.CubeDef object
to represent metadata in client applications designed to support multiple OLAP servers, or for
general metadata display and access purposes.

For provider specific metadata, or for detailed metadata display and access, use schema
rowsets to retrieve metadata. For more information, see Retrieving Metadata from an
Analytical Data Source.

The following example uses the T:Microsoft.AnalysisServices.AdomdClient.CubeDef object to
retrieve the visible cubes and their dimensions from the local server:
Adomd.NetClient#RetrieveCubesAndDimensions
Retrieving Data Mining Metadata
Each T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object has several collections
that provide information about the data mining capabilities of the data source:
• The T:Microsoft.AnalysisServices.AdomdClient.MiningModelCollection contains a list of every

mining model in the data source.

Note

http://msdn.microsoft.com/en-us/library/820d4b59-d428-4616-b792-c848e5da407e(SQL.110)�

 137

• The T:Microsoft.AnalysisServices.AdomdClient.MiningServiceCollection provides information
about the available mining algorithms.

• The T:Microsoft.AnalysisServices.AdomdClient.MiningStructureCollection exposes information
about the mining structures on the server.

To determine how to query against a mining model on the server, iterate through the
P:Microsoft.AnalysisServices.AdomdServer.MiningModel.Columns collection. Each
T:Microsoft.AnalysisServices.AdomdClient.MiningModelColumn object exposes the following
characteristics:
• Whether the object is an input column

(P:Microsoft.AnalysisServices.AdomdClient.MiningModelColumn.IsInput).
• Whether the object is a prediction column

(P:Microsoft.AnalysisServices.AdomdClient.MiningModelColumn.IsPredictable).
• The values associated with a discrete column

(P:Microsoft.AnalysisServices.AdomdClient.MiningModelColumn.Values)
• The type of data in the column

(P:Microsoft.AnalysisServices.AdomdClient.MiningModelColumn.Type).
See Also
Retrieving Metadata

Working with Schema Rowsets in ADOMD.NET
When you need more metadata than is available in the ADOMD.NET object model, ADOMD.NET
provides the capability to retrieve the full range of XML for Analysis (XMLA), OLE DB, OLE DB for
OLAP, and OLE DB for Data Mining schema rowsets:
XML for Analysis metadata

The XML for Analysis schema rowsets provide a method for retrieving low-level information
about the server. Information available includes the data sources available on the server, the
keywords reserved by the provider, the literals supported by the provider, and more. You can
even use an XML for Analysis schema rowset to discover all schema rowsets supported by the
provider.

For more information: Retrieving Metadata from an Analytical Data Source

OLE DB metadata

The OLE DB schema rowsets provide an industry-standard method for retrieving information
from a variety of providers.

For more information: OLE DB Schema Rowsets

OLAP metadata

Schema information provided for an analytical data source includes databases or catalogs
available from the analytical data source, cubes and mining models in a database, roles that
exist for cubes at the data source, and more.

http://msdn.microsoft.com/en-us/library/36e3ecfd-fcc3-415a-9c43-f59921d2468a(SQL.110)�
http://msdn.microsoft.com/en-us/library/ca2ee87a-ba04-4501-9125-33934c58ab31(SQL.110)�

 138

For more information: OLE DB for OLAP Schema Rowsets

Data Mining metadata

In addition to OLAP metadata, data mining metadata can be retrieved using schema rowsets.
The available rowsets expose information on the available data mining models in the
database, the available mining algorithms, the parameters that the algorithm require, mining
structures, and more.

For more information: Data Mining Schema Rowsets

For each of these various schema rowsets, you retrieve metadata from the rowset by passing
either a GUID or XMLA name with the
Overload:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.GetSchemaDataSet method
of the T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object.
Retrieving Metadata by Passing GUIDS
The T:Microsoft.AnalysisServices.AdomdClient.AdomdSchemaGuid class contains a list of fields
that represent the schema rowsets most commonly supported by providers and analytical data
sources. To retrieve both general and provider-specific metadata from a provider or analytical
data source, you use the GUIDs contained within the
T:Microsoft.AnalysisServices.AdomdClient.AdomdSchemaGuid object with the either of the
following methods:
•

 M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.GetSchemaDataSet(System.
Guid,System.Object[])

•
 M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.GetSchemaDataSet(System.
Guid,System.Object[],System.Boolean)

The ADOMD.NET data provider exposes schema information through functionality made
available by your specific provider and analytical data source. Each provider and data
source may provide different metadata.

Retrieving Metadata by Passing XMLA Names
The following methods take as arguments the XMLA schema name that identifies which schema
information to return, and an array of restrictions on those returned columns:
•

 M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.GetSchemaDataSet(System.S
tring,Microsoft.AnalysisServices.AdomdClient.AdomdRestrictionCollection)

•
 M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.GetSchemaDataSet(System.S
tring,Microsoft.AnalysisServices.AdomdClient.AdomdRestrictionCollection,System.Boolean)

Note

http://msdn.microsoft.com/en-us/library/5fad3ecc-407c-4148-862e-ea6119cc7480(SQL.110)�
http://msdn.microsoft.com/en-us/library/bd7d5df5-500b-4159-8467-880e141bc043(SQL.110)�

 139

•
 M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.GetSchemaDataSet(System.S
tring,System.String,Microsoft.AnalysisServices.AdomdClient.AdomdRestrictionCollection)

•
 M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.GetSchemaDataSet(System.S
tring,System.String,Microsoft.AnalysisServices.AdomdClient.AdomdRestrictionCollection,Syste
m.Boolean)

Each of these methods returns an instance of a DataSet object that is populated with the
schema information. The DataSet object is from the System.Data namespace of the Microsoft
.NET Framework Class Library.
Example
Description
In the following example, the GetActions function takes a connection, the cube name, a
coordinate, and a coordinate type, retrieves an MDSCHEMA_ACTIONS Rowset, and returns the
actions available on the selected coordinate.
Adomd.NetClient#GetActions
See Also
Retrieving Metadata

Executing Commands Against an Analytical Data Source
After establishing a connection to an analytical data source, you can use an
T:Microsoft.AnalysisServices.AdomdClient.AdomdCommand object to run commands against and
return results from that data source. These commands can retrieve data by using
Multidimensional Expressions (MDX), Data Mining Extensions (DMX), or even a limited syntax of
SQL. Additionally, you can use Analysis Services Scripting Language (ASSL) commands to modify
the underlying database.
Creating a Command
Before running a command, you must create it. You can create a command using one of two
methods:
• The first method uses the T:Microsoft.AnalysisServices.AdomdClient.AdomdCommand

constructor, which can take a command to run at the data source, and an
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object on which to run the
command.

• The second method uses the
M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.CreateCommand method of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object.

The text of the command to be run can be queried and modified using the
P:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.CommandText property. The
commands that you create do not have to return data after they run.

http://msdn.microsoft.com/en-us/library/f73081f8-ac51-4286-b46e-2b34e792c3e0(SQL.110)�

 140

Running a Command
After you have created an T:Microsoft.AnalysisServices.AdomdClient.AdomdCommand object,
there are several M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.Execute methods
that your command can use to perform various actions. The following table lists some of these
actions.

To Use this method

Return results as a stream of
data

M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.Execu
teReader(System.Data.CommandBehavior) to return an
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader
object

Return a
T:Microsoft.AnalysisServices.
AdomdClient.CellSet object

M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.Execu
teCellSet

Run commands that do not
return rows

M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.Execu
teNonQuery

Return an XMLReader
object that contains the data
in an XML for Analysis
(XMLA) compliant format

M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.Execu
teXmlReader

Example of Running a Command
This example uses the T:Microsoft.AnalysisServices.AdomdClient.AdomdCommand to run an
XMLA command that will process the Adventure Works DW cube on the local server, without
returning data.
Adomd.NetClient#ExecuteXMLAProcessCommand

Retrieving Data from an Analytical Data Source
Once you make a connection and create the query, you can retrieve any data. In ADOMD.NET,
you can retrieve data using three different objects
(T:Microsoft.AnalysisServices.AdomdClient.CellSet,
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader, and T:System.Xml.XmlReader) by
calling one of the Execute methods of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdCommand object.
Each of these three objects balances interactivity and overhead:
• Interactivity refers to the ease-of-use and amount of information available through the

object model.

 141

• Overhead refers to the amount of traffic that an object model generates over the network
connection to the server, the amount of memory needed for the object model, and the
speed with which the object model retrieves data.

To help you select the data retrieval object that best suits the needs of your application, the
following table highlights the differences between interactivity and overhead for each object.

Object Interacti
vity

Overhead Retains
dimension
ality

Usage
Information

T:Microsoft.AnalysisServices.AdomdClient.CellSe
t

Highest Moderat
ely high,
which
results
in
slowest
retrieval
of data

Yes ADOMD.NET
Client
Programming

T:Microsoft.AnalysisServices.AdomdClient.Adom
dDataAdapter

Modera
te

Moderat
e

No Populating a
DataSet from
a DataAdapter

T:Microsoft.AnalysisServices.AdomdClient.Adom
dDataReader

Modera
te

Moderat
e

No Retrieving
Data Using the
AdomdDataRe
ader

T:System.Xml.XmlReader Lowest Lowest,
which
results
in
fastest
data
retrieval

Yes Retrieving
Data Using the
XmlReader

See Also
ADOMD.NET Programming

Retrieving Data Using the CellSet
When retrieving analytical data, the T:Microsoft.AnalysisServices.AdomdClient.CellSet object
provides the most interactivity and flexibility. The

http://go.microsoft.com/fwlink/?LinkId=70016�
http://go.microsoft.com/fwlink/?LinkId=70016�
http://go.microsoft.com/fwlink/?LinkId=70016�

 142

T:Microsoft.AnalysisServices.AdomdClient.CellSet object is an in-memory cache of hierarchical
data and metadata that retains the original dimensionality of the data. The
T:Microsoft.AnalysisServices.AdomdClient.CellSet object can also be traversed in either a
connected or disconnected state. Because of this disconnected ability, the
T:Microsoft.AnalysisServices.AdomdClient.CellSet object can be used to view data and metadata
in any order and provides the most comprehensive object model for data retrieval. This
disconnected capability also causes the T:Microsoft.AnalysisServices.AdomdClient.CellSet object
to have the most overhead, and to be the slowest ADOMD.NET data retrieval object model to
populate.
Retrieving Data in a Connected State
To use the T:Microsoft.AnalysisServices.AdomdClient.CellSet object to retrieve data, you follow
these steps:
1. Create a new instance of the object.

To create a new instance of the T:Microsoft.AnalysisServices.AdomdClient.CellSet object, you
call the M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.Execute or
M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.ExecuteCellSet method of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdCommand object.

2. Identify metadata.
Besides retrieving data, ADOMD.NET also retrieves metadata for the cellset. As soon as the
command has run the query and returned a T:Microsoft.AnalysisServices.AdomdClient.CellSet,
you can retrieve the metadata through various objects. This metadata is needed for client
applications to display and interact with cellset data. For example, many client applications
provide functionality for drilling down on, or hierarchically displaying the child positions of, a
specified position in a cellset.
In ADOMD.NET, the P:Microsoft.AnalysisServices.AdomdClient.CellSet.Axes and
P:Microsoft.AnalysisServices.AdomdClient.CellSet.FilterAxis properties of the
T:Microsoft.AnalysisServices.AdomdClient.CellSet object represent the metadata of the query
and slicer axes, respectively, in the returned cellset. Both properties return references to
T:Microsoft.AnalysisServices.AdomdClient.Axis objects, which in turn contain the positions
represented on each axis.
Each T:Microsoft.AnalysisServices.AdomdClient.Axis object contains a collection of
T:Microsoft.AnalysisServices.AdomdClient.Position objects that represent the set of tuples
available for that axis. Each T:Microsoft.AnalysisServices.AdomdClient.Position object
represents a single tuple that contains one or more members, represented by a collection of
T:Microsoft.AnalysisServices.AdomdClient.Member objects.

3. Retrieve data from the cellset collection.
Besides retrieving metadata, ADOMD.NET also retrieves data for the cellset. As soon as the
command has run the query and returned a T:Microsoft.AnalysisServices.AdomdClient.CellSet,
you can retrieve the data by using the P:Microsoft.AnalysisServices.AdomdClient.CellSet.Cells
collection of the T:Microsoft.AnalysisServices.AdomdClient.CellSet. This collection contains
the values that are calculated for the intersection of all axes in the query. Therefore, there are

 143

several indexers for accessing each intersection, or cell. For a list of indexers, see
Overload:Microsoft.AnalysisServices.AdomdClient.CellCollection.Item.

Example of Retrieving Data in a Connected State
The following example makes a connection to the local server, and then runs a command on the
connection. The example parses the results by using the CellSet object model: the captions
(metadata) for the columns are retrieved from the first axis, and the captions (metadata) for each
row are retrieved from the second axis, and the intersecting data is retrieved by using the
P:Microsoft.AnalysisServices.AdomdClient.CellSet.Cells collection.
Adomd.NetClient#ReturnCommandUsingCellSet
Retrieving Data in a Disconnected State
By loading XML returned from a previous query, you can use the
T:Microsoft.AnalysisServices.AdomdClient.CellSet object to provide a comprehensive method of
browsing analytical data without requiring an active connection.

Not all properties of the objects that are available from the
T:Microsoft.AnalysisServices.AdomdClient.CellSet object are available while in a
disconnected state. For more information, see
M:Microsoft.AnalysisServices.AdomdClient.CellSet.LoadXml(System.Xml.XmlReader).

Example of Retrieving Data in a Disconnected State
The following example is similar to the metadata and data example shown earlier in this topic.
However, the command in the following example runs with a call to
M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.ExecuteXmlReader, and the result is
returned as a System.Xml.XmlReader. The example then populates the
T:Microsoft.AnalysisServices.AdomdClient.CellSet object by using this System.Xml.XmlReader
with the M:Microsoft.AnalysisServices.AdomdClient.CellSet.LoadXml(System.Xml.XmlReader)
method. Although this example loads the System.Xml.XmlReader immediately, you could
cache the XML that is contained by the reader to a hard disk or transport that data to a different
application through any means before loading the data into a cellset.
Adomd.NetClient#DemonstrateDisconnectedCellset
See Also
Retrieving Data Using the XmlReader
Retrieving Data Using the AdomdDataReader
Retrieving Data Using the XmlReader

Retrieving Data Using the AdomdDataReader
When retrieving analytical data, the T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader
object provides a good balance between overhead and interactivity. The
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object retrieves a read-only,
forward-only, flattened stream of data from an analytical data source. This unbuffered stream of

Note

 144

data enables procedural logic to efficiently process results from an analytical data source
sequentially. This makes the T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader a good
choice when retrieving large amounts of data for display purposes because the data is not
cached in memory.
The T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader can also increase application
performance by retrieving data as soon as it is available, instead of waiting for the complete
results of the query to be returned. The
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader also reduces system overhead
because, by default, this reader stores only one row at a time in memory.
The tradeoff for optimized performance is that the
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object provides less information
about retrieved data than other data retrieval methods. The
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object does not support a large
object model for representing data or metadata, nor does this object model allow for more
complex analytical features like cell writeback. However, the
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object does provide a set of
strongly typed methods for retrieving cellset data and a method for retrieving cellset metadata
in a tabular format. Additionally, T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader
implements the IDbDataReader interface to support data binding and for retrieving data using
the SelectCommand method, from the System.Data namespace of the Microsoft .NET
Framework Class Library.
Retrieving Data from the AdomdDataReader
To use the T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object to retrieve data,
you follow these steps:
1. Create a new instance of the object.

To create a new instance of the T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader
class, you call the M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.Execute or
M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.ExecuteReader method of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdCommand object.

2. Retrieve data.
As the command runs the query, ADOMD.NET returns the results in the Resultset format, a
tabular format as described in the XML for Analysis specification, to flatten the data for the
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object. A tabular format is
unusual when querying analytical data considering the variable dimensionality in such data.
ADOMD.NET stores these tabular results in the network buffer on the client until you request
them by using one of the following methods:
• Call the M:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader.Read method of

the T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object.
The M:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader.Read method obtains a
row from the query results. You can then pass the name, or the ordinal reference, of the

 145

column to the Overload:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader.Item
property to access each column of the returned row. For example, the first column in the
current row is named, ColumnName. Then, either reader[0].ToString() or
reader["ColumnName"].ToString() will return the contents of the first column in the
current row.

• Call one of the typed accessor methods.
The T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader provides a series of
typed accessor methods—methods that let you access column values in their native data
types. When you know the underlying data type of a column value, a typed accessor
method reduces the amount of type conversion required when retrieving the column
value, and thereby, provides the highest performance.
Some of the typed accessor methods that are available include
M:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader.GetDateTime(System.Int32),
M:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader.GetDouble(System.Int32),
and M:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader.GetInt32(System.Int32).
For a complete list of typed accessor methods, see
Methods.T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader.

3. Close the reader.
You should always call the
M:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader.Close method when you have
finished using the T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object. While
an instance of an T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object is open,
the T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection is being used exclusively by
that T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader. You will not be able to run
any commands on the instance of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection, including creating another
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader or System.Xml.XmlReader,
until you close the original T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader.

Example of Retrieving Data from the AdomdDataReader
The following code example iterates through a
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object, and returns the first two
values, as strings, from each row.

If Reader.HasRows Then

 Do While objReader.Read()

 Console.WriteLine(vbTab & "{0}" & vbTab & "{1}", _

 objReader.GetString(0), objReader.GetString(1))

 Loop

Else

 Console.WriteLine("No rows returned.")

 146

End If

objReader.Close()

if (objReader.HasRows)

 while (objReader.Read())

 Console.WriteLine("\t{0}\t{1}", _

 objReader.GetString(0), objReader.GetString(1));

else

 Console.WriteLine("No rows returned.");

objReader.Close();

Retrieving Metadata from the AdomdDataReader
While an instance of an T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object is
open, you can retrieve schema information, or metadata, about the current recordset using the
M:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader.GetSchemaTable method.
M:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader.GetSchemaTable returns a
DataTable object that is populated with the schema information for the current recordset. The
DataTable will contain one row for each column of the recordset. Each column of the schema
table row maps to a property of the column returned in the cellset, where ColumnName is the
name of the property and the value of the column is the value of the property.
Example of Retrieving Metadata from the AdomdDataReader
The following code example writes out the schema information for an
T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader object.

Dim schemaTable As DataTable = objReader.GetSchemaTable()

Dim objRow As DataRow

Dim objColumn As DataColumn

For Each objRow In schemaTable.Rows

 For Each objColumn In schemaTable.Columns

 Console.WriteLine(objColumn.ColumnName & " = " & objRow(objColumn).ToString())

 Next

 Console.WriteLine()

Next

 147

DataTable schemaTable = objReader.GetSchemaTable();

foreach (DataRow objRow in schemaTable.Rows)

{

 foreach (DataColumn objColumn in schemaTable.Columns)

 Console.WriteLine(objColumn.ColumnName + " = " + objRow[objColumn]);

 Console.WriteLine();

}

Retrieving Multiple Result Sets
Data mining supports the concept of nested tables, which ADOMD.NET exposes as nested
rowsets. To retrieve the nested rowset associated with each row, you call the
M:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader.GetDataReader(System.Int32)
method.
See Also
Retrieving Data Using the XmlReader
Retrieving Data Using the CellSet
Retrieving Data Using the XmlReader

Retrieving Data Using the XmlReader
The XmlReader class, part of the System.Xml namespace for the Microsoft .NET Framework
Class Library, is similar to the T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader class
in that the XmlReader class also provides fast, non-cached, forward-only access to data. If there
is no need for an in-memory, analytical view of the data using the
T:Microsoft.AnalysisServices.AdomdClient.CellSet object, the XmlReader object is perfect for
retrieving XML data, especially for large quantities of data. Because XmlReader streams data,
XmlReader does not have to retrieve and cache all the data before exposing the data to the
caller, as would be the case if a T:Microsoft.AnalysisServices.AdomdClient.CellSet object were
used to convert the XML for Analysis response into an analytical object model representation.
The XmlReader class provides direct access to the XML for Analysis response received by
ADOMD.NET when the
M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.ExecuteXmlReader method of the
T:Microsoft.AnalysisServices.AdomdClient.AdomdCommand object is called. Because the retrieved
data is raw XML, you must parse the data and metadata manually. As soon as the data has been
retrieved, the XmlReader object should be closed.
Retrieving Data and Metadata
To use the XmlReader class to retrieve data, you follow these steps:
1. Create a new instance of the object.

To create a new instance of the XmlReader class, you call the
M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.Execute or

 148

M:Microsoft.AnalysisServices.AdomdClient.AdomdCommand.ExecuteXmlReader method of
the T:Microsoft.AnalysisServices.AdomdClient.AdomdCommand object.

2. Retrieve data.
After the command runs the query and returns an XmlReader, you must parse the data and
metadata. The XML data and metadata is presented in the native format used by the XML for
Analysis provider. For most XML for Analysis providers, the native format is the MDDataSet
format. The MDDataSet format provides both data and metadata for cellsets in a well-
structured format. For more information about the MDDataSet format, see the XML for
Analysis specification.

3. Close the reader.
You should always call the
M:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.Close method when you have
finished using the XmlReader object. While an XmlReader is open, that XmlReader has
exclusive use of the T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection object that
was used to run the command. You will not be able to run any commands using that
T:Microsoft.AnalysisServices.AdomdClient.AdomdConnection, including creating another
XmlReader or T:Microsoft.AnalysisServices.AdomdClient.AdomdDataReader, until you close
the original XmlReader.

Example of Retrieving Data from the XmlReader
The following example runs a command and retrieves the data as an XmlReader, outputting the
contents of the file to the console.
Adomd.NetClient#OutputDataWithXML
See Also
Retrieving Data Using the AdomdDataReader
Retrieving Data Using the CellSet
Retrieving Data Using the AdomdDataReader

ADOMD.NET Server Programming
The ADOMD.NET server components of ADOMD.NET reside within the
Microsoft.AnalysisServices.AdomdServer namespace (in msmgdsrv.dll). You use these server
components to create custom Multidimensional Expressions (MDX) functions and stored
procedures that are run on an instance of Microsoft SQL Server Analysis Services. The server
objects provide the capabilities for querying cubes and mining models, and for evaluating
expressions in a given context. The benefits for creating custom functions and stored
procedures include fast execution, centralized deployment, and improved maintainability.
The topics in the following table will help you develop ADOMD.NET server applications.

 149

Topic Description

ADOMD.NET Describes the uses for ADOMD.NET server
objects.

ADOMD.NET Server Object Architecture Describes the object architecture for
ADOMD.NET server objects.

User Defined Functions and Stored
Procedures

Walks you through the process of creating
a user defined function or stored
Procedure.

See Also
ADOMD.NET Client Programming
ADOMD.NET

ADOMD.NET Server Functionality
All ADOMD.NET server objects provide read-only access to the data and metadata on the server.
To retrieve data and metadata, you use the ADOMD.NET server object model as the server
object model does not support schema rowsets.
With ADOMD.NET server objects, you can create a user defined function (UDF) or a stored
procedure for Microsoft SQL Server Analysis Services. These in-process methods are called
through query statements created in languages such as Multidimensional Expressions (MDX),
Data Mining Extensions (DMX), or SQL. These in-process methods also provide added
functionality without the latencies associated with network communications.

The T:Microsoft.AnalysisServices.AdomdServer.AdomdCommand object only supports
DMX.

What is a UDF?
A UDF is a method that has the following characteristics:
• You can call the UDF in the context of a query.
• The UDF can take any number of parameters.
• The UDF can return various types of data.
The following example uses the fictional UDF, FinalSalesNumber:

SELECT SalesPerson.Name ON ROWS,

 FinalSalesNumber() ON COLUMNS

FROM SalesModel

What is a Stored Procedure?

Note

 150

A stored procedure is a method that has the following characteristics:
• You call a stored procedure on its own with the MDX CALL statement.
• A stored procedure can take any number of parameters.
• A stored procedure can return a dataset, an IDataReader, or an empty result.
The following example uses the fictional stored procedure, FinalSalesNumbers:

CALL FinalSalesNumbers()

See Also
ADOMD.NET Server Programming

ADOMD.NET Server Object Architecture
The ADOMD.NET server objects are helper objects that can be used to create user defined
functions (UDFs) or stored procedures in Microsoft SQL Server Analysis Services.

To use the Microsoft.AnalysisServices.AdomdServer namespace (and these objects), a
reference to the msmgdsrv.dll must be added to UDF project or stored procedure.

Note

http://msdn.microsoft.com/en-us/library/b534a20b-924c-43b8-832d-24e57d50425c(SQL.110)�

 151

ADOMD.NET Object Model

 152

 153

Interaction with the ADOMD.NET object hierarchy typically starts with one or more of the
objects in the topmost layer, as described in the following table.

To Use this object

Evaluate
Multidimension
al Expressions
(MDX)
expressions

T:Microsoft.AnalysisServices.AdomdServer.Expression

The T:Microsoft.AnalysisServices.AdomdServer.Expression object
provides a way to run an MDX expression and evaluate that expression
under a specified tuple.

Provide support
for executing
MDX functions
without
constructing
the full MDX
statement

T:Microsoft.AnalysisServices.AdomdServer.MDX

The T:Microsoft.AnalysisServices.AdomdServer.MDX object is
convenient for calling predefined MDX functions without using the
T:Microsoft.AnalysisServices.AdomdServer.Expression object.
Additional functions for the
T:Microsoft.AnalysisServices.AdomdServer.MDX object should be
available in future releases.

Represent the
current
execution
context for the
UDF

T:Microsoft.AnalysisServices.AdomdServer.Context

The T:Microsoft.AnalysisServices.AdomdServer.Context object
exposes information such as the current cube or mining model and various
metadata collections. One key use of the
T:Microsoft.AnalysisServices.AdomdServer.Context object is the
P:Microsoft.AnalysisServices.AdomdServer.Hierarchy.CurrentM
ember property of the
T:Microsoft.AnalysisServices.AdomdServer.Hierarchy object. This
key usage enables the author of the UDF or stored procedure to make
decisions based on what member from a certain dimension the query is on.

Create sets and
tuples

T:Microsoft.AnalysisServices.AdomdServer.SetBuilder,
T:Microsoft.AnalysisServices.AdomdServer.TupleBuilder

The T:Microsoft.AnalysisServices.AdomdServer.SetBuilder
provides a way to create immutable sets, while the
T:Microsoft.AnalysisServices.AdomdServer.TupleBuilder provides
a way to create immutable tuples.

Support implicit
conversion and
casting among
the six basic
types of the
MDX language

T:Microsoft.AnalysisServices.AdomdServer.MDXValue

The T:Microsoft.AnalysisServices.AdomdServer.MDXValue object
provides implicit conversion and casting among the following types:

• T:Microsoft.AnalysisServices.AdomdServer.Hierarchy

• T:Microsoft.AnalysisServices.AdomdServer.Level

 154

To Use this object

• T:Microsoft.AnalysisServices.AdomdServer.Member

• T:Microsoft.AnalysisServices.AdomdServer.Tuple

• T:Microsoft.AnalysisServices.AdomdServer.Set

• Scalar, or value types

See Also
ADOMD.NET Server Programming

User Defined Functions and Stored Procedures
With ADOMD.NET server objects, you can create user defined function (UDF) or stored
procedures for Microsoft SQL Server Analysis Services that interact with metadata and data from
the server. These in-process methods are called through Multidimensional Expressions (MDX) or
Data Mining Extensions (DMX) statements to provide added functionality without the latencies
associated with network communications.
UDF Examples
A UDF is a method that can be called in the context of an MDX or DMX statement, can take any
number of parameters, and can return any type of data.
A UDF created using MDX is similar to one created for DMX. The main difference is that certain
properties of the T:Microsoft.AnalysisServices.AdomdServer.Context object, such as the
P:Microsoft.AnalysisServices.AdomdServer.Context.CurrentCube and
P:Microsoft.AnalysisServices.AdomdServer.Context.CurrentMiningModel properties, are available
only for one scripting language or the other.
The following examples show how to use a UDF to return a node description, filter tuples, and
apply a filter to a tuple.
Returning a Node Description
The following example creates a UDF that returns the node description for a specified node. The
UDF uses the current context in which it is being run, and uses a DMX FROM clause to retrieve
the node from the current mining model.

public string GetNodeDescription(string nodeUniqueName)

{

 return Context.CurrentMiningModel.GetNodeFromUniqueName(nodeUniqueName).Description;

}

Once deployed, the previous UDF example can be called by the following DMX expression,
which retrieves the most-likely prediction node. The description contains information that
describes the conditions that make up the prediction node.

 155

select Cluster(), SampleAssembly.GetNodeDescription(PredictNodeId(Cluster())) FROM
[Customer Clusters]

Returning Tuples
The following example takes a set and a return count, and randomly retrieves tuples from the
set, returning a final subset:
public Set RandomSample(Set set, int returnCount)

{

 //Return the original set if there are fewer tuples

 //in the set than the number requested.

 if (set.Tuples.Count <= returnCount)

 return set;

 System.Random r = new System.Random();

 SetBuilder returnSet = new SetBuilder();

 //Retrieve random tuples until the return set is filled.

 int i = set.Tuples.Count;

 foreach (Tuple t in set.Tuples)

 {

 if (r.Next(i) < returnCount)

 {

 returnCount--;

 returnSet.Add(t);

 }

 i--;

 //Stop the loop if we have enough tuples.

 if (returnCount == 0)

 break;

 }

 return returnSet.ToSet();

}

The previous example is called in the following MDX example. In this MDX example, five random
states or provinces are retrieved from the Adventure Works database.

 156

SELECT SampleAssembly.RandomSample([Geography].[State-Province].Members, 5) on
ROWS,

[Date].[Calendar].[Calendar Year] on COLUMNS

FROM [Adventure Works]

WHERE [Measures].[Reseller Freight Cost]

Applying a Filter to a Tuple
In the following example, a UDF is defined that takes a set, and applies a filter to each tuple in
the set, using the Expression object. Any tuples that conform to the filter will be added to a set
that is returned.
Adomd.NetServer#FilterSet
The previous example is called in the following MDX example, which filters the set to cities with
names beginning with 'A'.

Select Measures.Members on Rows,

SampleAssembly.FilterSet([Customer].[Customer Geography].[City], "[Customer].[Customer
Geography].[City].CurrentMember.Name < 'B'") on Columns

From [Adventure Works]

Stored Procedure Example
In the following example, an MDX-based stored procedure uses AMO to create partitions, if
needed, for Internet Sales.
Adomd.NetServer#CreateInternetSalesMeasureGroupPartitions

Redistributing ADOMD.NET
When you write applications that use ADOMD.NET, you must redistribute ADOMD.NET along
with your application. To redistribute ADOMD.NET, include the ADOMD.NET setup program,
SQLServer2005_ADOMD.msi, in your application's setup program. The ADOMD.NET setup
program can be found on the Microsoft Web site. After you include the ADOMD.NET setup
program, have your application's setup program launch the ADOMD.NET setup program and
install ADOMD.NET.
The ADOMD.NET setup program installs the ADOMD.NET files in <system drive>:\Program
Files\Microsoft.NET\ADOMD.NET\90.
For more information, see Feature Pack for Microsoft SQL Server - November 2005.

See Also
ADOMD.NET Concepts

http://go.microsoft.com/fwlink/?LinkId=56426�
http://msdn.microsoft.com/en-us/library/331d5938-2231-4aa6-a389-daa37ab9b0e3(SQL.110)�

 157

Developing with Analysis Management Objects
(AMO)
Analysis Management Objects (AMO) is the complete library of programmatically accessed
objects that enables an application to manage a running instance of Microsoft SQL
Server Analysis Services. This section explains AMO concepts, focusing on major objects, how
and when to use them, and the way they are interrelated. For more information about specific
objects or classes, see the N:Microsoft.AnalysisServices.

See Also
Decision Support Objects (DSO)
ASSL
Using XML for Analysis in Analysis Services (XMLA)

AMO Concepts and Object Model
This topic provides a definition of Analysis Management Objects (AMO), how AMO is related to
other tools and libraries provided in the architecture of Microsoft SQL Server Analysis Services,
and a conceptual explanation of all major objects in AMO.
AMO is a complete collection of management classes for Analysis Services that can be used
programmatically, under the namespace of N:Microsoft.AnalysisServices, in a managed
environment. The classes are included in the AnalysisServices.dll file, which is usually found
where the SQL Server setup installs the files, under the folder \100\SDK\Assemblies\. To use the
AMO classes, include a reference to this assembly in your projects.
By using AMO you are able to create, modify, and delete objects such as cubes, dimensions,
mining structures, and Analysis Services databases; over all these objects, actions can be
performed from your application in the .NET Framework. You can also process and update the
information stored in Analysis Services databases.
With AMO you cannot query your data. To query your data, use ADOMD.NET.
This topic contains the following sections:
AMO in the Analysis Services Architecture
AMO Architecture
Using AMO
Automating Administrative Tasks with AMO

AMO in the Analysis Services Architecture
By design, AMO is only intended for object management and not for querying data. If the user
needs to query Analysis Services data from a client application, the client application should
use ADOMD.NET.

http://msdn.microsoft.com/en-us/library/95d1fab9-7849-49e3-8cd0-5edff29a1566(SQL.110)�

 158

AMO Architecture
AMO is a complete library of classes designed to manage an instance of Analysis Services from a
client application in managed code under the .NET Framework version 2.0.
The AMO library of classes is designed as a hierarchy of classes, where certain classes must be
instantiated before others in order to use them in your code. There are also auxiliary classes that
can be instantiated at any time in your code, but you will probably have instantiated one or
more of the hierarchy classes before using any one of the auxiliary classes.
The following illustration is a high-level view of the AMO hierarchy that includes major classes.
The illustration shows the placement of the classes among their containers and their peers. A
T:Microsoft.AnalysisServices.Dimension belongs to a T:Microsoft.AnalysisServices.Database and a
T:Microsoft.AnalysisServices.Server, and can be created at the same time as a
T:Microsoft.AnalysisServices.DataSource and T:Microsoft.AnalysisServices.MiningStructure. Certain
peer classes must be instantiated before you can use others. For example, you have to create an
instance of T:Microsoft.AnalysisServices.DataSource before adding a new
T:Microsoft.AnalysisServices.Dimension or T:Microsoft.AnalysisServices.MiningStructure.

 159

A major object is a class that represents a complete object as a whole entity and not as a part of
another object. Major objects include T:Microsoft.AnalysisServices.Server,
T:Microsoft.AnalysisServices.Cube, T:Microsoft.AnalysisServices.Dimension, and
T:Microsoft.AnalysisServices.MiningStructure, because these are entities on their own. However, a
T:Microsoft.AnalysisServices.Level is not a major object, because it is a constituent part of a

 160

T:Microsoft.AnalysisServices.Dimension. Major objects can be created, deleted, modified, or
processed independent of other objects. Minor objects are objects that can only be created as
part of creating the parent major object. Minor objects are usually created upon a major object
creation. Values for minor objects should be defined at creation time because there is no default
creation for minor objects.
The following illustration shows the major objects that a T:Microsoft.AnalysisServices.Server
object contains.

 161

 162

When programming with AMO, the association between classes and contained classes uses
collection type attributes, for example T:Microsoft.AnalysisServices.Server and
T:Microsoft.AnalysisServices.Dimension. To work with one instance of a contained class, you first
acquire a reference to a collection object that holds or can hold the contained class. Next, you
find the specific object that you are looking for in the collection, and then you can obtain a
reference to the object to start working with it.

AMO Classes
AMO is a library of classes designed to manage an instance of Analysis Services from a client
application. The AMO library can be thought of as logically-related groups of objects that are
used to accomplish a specific task. AMO classes can be categorized in the following way:

 163

Class Set Purpose

AMO Fundamental Classes Classes required in order to work with any
other set of classes.

OLAP Classes Classes that let you manage the OLAP
objects in Analysis Services.

DataMining Classes Classes that let you manage the data
mining objects in Analysis Services.

Security Classes Classes that let you control access to other
objects and maintain security.

Other classes and methods Classes and methods that help OLAP or
data mining administrators to complete
their daily tasks.

Using AMO
AMO is especially useful for automating repetitive tasks, for example creating new partitions in a
measure group based on new data in the fact table, or re-training a mining model based on new
data. These tasks that create new objects are usually performed on a monthly, weekly, or
quarterly basis, and the new objects can easily be named, based in the new data, by the
application.

Analysis Services administrators
Analysis Services administrators can use AMO to automate the processing of Analysis Services
databases. For designing and deploying Analysis Services databases, you should use SQL Server
Data Tools (SSDT).

Developers
Developers can use AMO to develop administrative interfaces for specified sets of users. These
interfaces can restrict access to Analysis Services objects and limit users to certain tasks. For
example, by using AMO you could create a Backup application that enables a user to see all
database objects, select any one of the databases, and backup it to any one of a specified set of
devices.
Developers can also embed Analysis Services logic in their applications. For this, developers can
create cubes, dimensions, mining structures, and mining models based on user input or other
factors.

OLAP advanced users
OLAP advanced users are usually data analysts or other experienced data users who have a
strong programming background and who want to enhance their data analysis with a closer

 164

usage of the data objects. For users who are required to work offline, AMO can be very useful to
automate creating local cubes before going offline.

Data mining advanced users
For data mining advanced users, AMO is most useful if you have large sets of models that
periodically have to be re-trained.

Automating Administrative Tasks with AMO
Most repetitive tasks are best designed, deployed, and maintained if they are developed by
using Integration Services than if they are developed as an application in any language of your
choice. However, for repetitive tasks that cannot be automated by using Integration Services,
you can use AMO. AMO is also useful for when you want to develop a specialized application for
business intelligence by using Analysis Services.

Automatic object management
With AMO is very easy to create, update or delete Analysis Services objects (for example
T:Microsoft.AnalysisServices.Database, T:Microsoft.AnalysisServices.Dimension,
T:Microsoft.AnalysisServices.Cube, mining T:Microsoft.AnalysisServices.MiningStructure, and
T:Microsoft.AnalysisServices.MiningModel, or T:Microsoft.AnalysisServices.Role) based on user
input or on new acquired data. AMO is ideal for setup applications that have to deploy a
developed solution, from an independent software vendor to a final customer. The setup
application can verify that an earlier version exists and can update the structure, remove no
longer useful objects, and create new ones. If there is no earlier version then can create
everything from scratch.
AMO can be powerful to create new partitions based on new data, and can remove old
partitions that had gone beyond the scope of the project. For example, for a finance analysis
solution that works with the last 36 months of data, as soon as a new month of data is received,
the 37th old month could be removed. To optimize performance, new aggregations can be
designed based on usage and applied to the last 12 months.

Automatic object processing
Object processing and updated availability can be achieved by using AMO to respond to certain
events beyond the ordinary flow data and scheduled tasks that use Integration Services.

Automatic security management
Security management can be automated to include new users to roles and permissions, or to
remove other users as soon as their time has expired. New interfaces can be created to simplify
security management for security administrators. This can be simpler than using SQL Server Data
Tools (SSDT).

Automatic Backup management
Automatic backup management can be done by using Integration Services tasks, or by creating
specialized AMO applications that run automatically. By using AMO you can develop Backup
interfaces for operators that help them in their daily jobs.

 165

Tasks AMO is not intended for
AMO cannot be used to query the data. To query Analysis Services data, including cubes and
mining models, use ADOMD.NET from a user application. For more information,
see ADOMD.NET.

Introducing AMO Classes
Analysis Management Objects (AMO) is a library of classes designed to manage an instance of
Microsoft SQL Server Analysis Services from a client application. AMO classes are classes that
you will use to administer Analysis Services objects such as databases, dimensions, cubes,
mining structures and models, roles and permissions, exceptions, and others
The following illustration shows the relationship of the classes that are explained in this topic.

 166

The AMO library can be thought of as logically-related groups of objects that are used to
accomplish a specific task. AMO classes can be categorized in the following way. This section
includes the following topics:

 167

Topic Description

Programming Administrative Tasks with
AMO (deleted)

Describes classes that are required in order
to work with any other set of classes.

OLAP Classes Describes classes that let you manage the
OLAP objects in Analysis Services.

DataMining Classes Describes classes that let you manage the
data mining objects in Analysis Services.

Security Classes Describes classes that let you control access
to other objects and maintain security.

Other classes and methods Describes classes and methods that help
OLAP or Data Mining administrators to
complete their daily tasks.

See Also
N:Microsoft.AnalysisServices
Logical Architecture (Analysis Services - Multidimensional Data)
Analysis Services Objects (SSAS)
Analysis Management Objects (AMO)

AMO Fundamental Classes
Fundamental classes are the starting point for working with Analysis Management Objects
(AMO). Through these classes you establish your environment for the rest of the objects that will
be used in your application. Fundamental classes include the following objects:
T:Microsoft.AnalysisServices.Server, T:Microsoft.AnalysisServices.Database,
T:Microsoft.AnalysisServices.DataSource, and T:Microsoft.AnalysisServices.DataSourceView.
The following illustration shows the relationship of the classes that are explained in this topic.

 168

This topic contains the following sections:
• Server Objects
• Database Objects
• DataSource and DataSourceView Objects
Server Objects
Additionally, you will have access to the following methods:
• Connection management: Connect, Disconnect, Reconnect, and GetConnectionState.
• Transaction management: BeginTransaction, CommitTransaction, and RollbackTransaction.
• Backup and Restore.
• DDL execution: Execute, CancelCommand, SendXmlaRequest, StartXmlaRequest.
• Metadata management: UpdateObjects and Validate.
To connect to a server, you need a standard connection string, as used in ADOMD.NET and
OLEDB. For more information, see
P:System.Configuration.ConnectionStringSettings.ConnectionString. The name of the server can
be specified as a connection string without having to use a connection string format.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.Server in the N:Microsoft.AnalysisServices.
Database Objects
To work with a T:Microsoft.AnalysisServices.Database object in your application, you must get an
instance of the database from the parent server databases collection. To create a database, you
add a T:Microsoft.AnalysisServices.Database object to a server databases collection and update
the new instance to the server. To delete a database, you drop the
T:Microsoft.AnalysisServices.Database object by using its own Drop method.

 169

Databases can be backed up by using the BackUp method (from the
T:Microsoft.AnalysisServices.Database object or from the T:Microsoft.AnalysisServices.Server
object), but can only be restored from the T:Microsoft.AnalysisServices.Server object with the
Restore method.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.Database in the N:Microsoft.AnalysisServices.
DataSource and DataSourceView Objects
Data sources are managed by using the T:Microsoft.AnalysisServices.DataSourceCollection from
the database class. An instance of T:Microsoft.AnalysisServices.DataSource can be created by
using the Add method from a T:Microsoft.AnalysisServices.DataSourceCollection object. An
instance of T:Microsoft.AnalysisServices.DataSource can be deleted by using the Remove method
from a T:Microsoft.AnalysisServices.DataSourceCollection object.
T:Microsoft.AnalysisServices.DataSourceView objects are managed from the
T:Microsoft.AnalysisServices.DataSourceViewCollection object in the database class.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.DataSource and T:Microsoft.AnalysisServices.DataSourceView in the
N:Microsoft.AnalysisServices.
See Also
N:Microsoft.AnalysisServices
Introducing AMO Classes
Programming AMO Fundamental objects

AMO OLAP Classes
Analysis Management Objects (AMO) OLAP classes help you create, modify, delete, and process
cubes, dimensions, and related objects such as Key Performance Indicators (KPIs), actions, and
proactive caching.
For more information about setting up the AMO programming environment, how to establish a
connection with a server, accessing a database or defining data sources and data source views,
see Database Objects (Analysis Services - Multidimensional Data).
This topic contains the following sections:
• Dimension Objects
• Cube Objects
• MeasureGroup Objects
• Partition Objects
• AggregationDesign Objects
• Aggregation Objects
• Action Objects
• KPI Objects

 170

• Perspective Objects
• Translation Objects
• ProactiveCaching Objects
The following illustration shows the relationship of the classes that are explained in this topic.

Basic Classes
Dimension Objects
A dimension is created by adding it to the dimensions collection of the parent database, and by
updating the T:Microsoft.AnalysisServices.Dimension object to the server by using the Update
method.

 171

To remove a dimension, it has to be dropped by using the Drop method of the
T:Microsoft.AnalysisServices.Dimension. Removing a T:Microsoft.AnalysisServices.Dimension from
the dimensions collection of the database by using the Remove method does not delete it on
the server, just in the AMO object model.
A T:Microsoft.AnalysisServices.Dimension object can be processed after it has been created. The
T:Microsoft.AnalysisServices.Dimension can be processed using its own process method, or it can
be processed with the parent object's process method when the parent object is processed.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.Dimension in the N:Microsoft.AnalysisServices.
Cube Objects
A cube is created by adding it to the cubes collection of the database, then updating the
T:Microsoft.AnalysisServices.Cube object to the server by using the Update method. The Update
method of the cube can include the parameter UpdateOptions.ExpandFull, which ensures that all
objects in the cube that were modified will be updated to the server in this update action.
To remove a cube, it has to be dropped by using the Drop method of the
T:Microsoft.AnalysisServices.Cube. Removing a cube from the collection does not affect the
server.
A T:Microsoft.AnalysisServices.Cube object can be processed after it has been created. The
T:Microsoft.AnalysisServices.Cube can be processed using its own process method, or it can be
processed when a parent object processes itself with its own Process method.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.Cube in the N:Microsoft.AnalysisServices.
MeasureGroup Objects
A measure group is created by adding it to the measure group collection of the cube, then
updating the T:Microsoft.AnalysisServices.MeasureGroup object to the server by using its own
Update method. A T:Microsoft.AnalysisServices.MeasureGroup object is removed using its own
Drop method.
A T:Microsoft.AnalysisServices.MeasureGroup object can be processed after it has been created.
The T:Microsoft.AnalysisServices.MeasureGroup can be processed by using its own Process
method, or it can be processed when a parent object processes itself with its own Process
method.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.MeasureGroup in the N:Microsoft.AnalysisServices.
Partition Objects
A T:Microsoft.AnalysisServices.Partition object is created by adding it to the partitions collection
of the parent measure group, then updating the T:Microsoft.AnalysisServices.Partition object on
the server by using the Update method. A T:Microsoft.AnalysisServices.Partition object is
removed by using the Drop method.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.Partition in the N:Microsoft.AnalysisServices.

 172

AggregationDesign Objects
Aggregation designs are constructed using the AggregationDesign method from an
T:Microsoft.AnalysisServices.AggregationDesign object.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.AggregationDesign in the N:Microsoft.AnalysisServices.
Aggregation Objects
An T:Microsoft.AnalysisServices.Aggregation object is created by adding it to the aggregation
designs collection of the parent measure group, then updating the parent measure group object
on the server by using the Update method. An aggregation is removed from the
T:Microsoft.AnalysisServices.AggregationCollection by using the Remove method or the
RemoveAt method.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.Aggregation in the N:Microsoft.AnalysisServices.
Advanced Classes
Advanced classes provide OLAP functionality beyond building and browsing a cube. The
following are some of the advanced classes and the benefits they provide:
• Action classes are used to create an active response when browsing certain areas of the

cube.
• Key Performance Indicators (KPIs) enable comparison analysis between values of data.
• Perspectives provide selected views of a single cube, so that users can focus on what is

important to them.
• Translations allow the cube to be customized to the user locale.
• Proactive caching classes can provide a balance between the enhanced performance of

MOLAP storage and the immediacy of ROLAP storage, and provide scheduled partition
processing.

AMO is used to set the definitions for this enhanced behavior, but the actual experience is
defined by the browsing client that implements all of these enhancements.
Action Objects
An T:Microsoft.AnalysisServices.Action object is created by adding it to the actions collection of
the cube, then updating the T:Microsoft.AnalysisServices.Cube object to the server by using the
Update method. The update method of the cube can include the parameter
UpdateOptions.ExpandFull, which ensures that all objects in the cube that were modified will be
updated to the server with this update action.
To remove an T:Microsoft.AnalysisServices.Action object, it must be removed from the collection
and the parent cube must be updated.
A cube must be updated and processed before the action can be used from the client.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.Action in the N:Microsoft.AnalysisServices.
Kpi Objects

 173

A T:Microsoft.AnalysisServices.Kpi object is created by adding it to the KPI collection of the cube,
then updating the T:Microsoft.AnalysisServices.Cube object to the server by using the Update
method. The Update method of the cube can include the parameter UpdateOptions.ExpandFull,
which ensures that all objects in the cube that were modified will be updated to the server with
this update action.
To remove a T:Microsoft.AnalysisServices.Kpi object, it must be removed from the collection,
then and the parent cube must be updated.
A cube must be updated and processed before the KPI can be used.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.Kpi in the N:Microsoft.AnalysisServices.
Perspective Objects
A T:Microsoft.AnalysisServices.Perspective object is created by adding it to the perspective
collection of the cube, then updating the T:Microsoft.AnalysisServices.Cube object to the server
by using the Update method. The Update method of the cube can include the parameter
UpdateOptions.ExpandFull, which ensures that all objects in the cube that were modified will be
updated to the server with this update action.
To remove a T:Microsoft.AnalysisServices.Perspective object, it must be removed from the
collection, then the parent cube must be updated.
A cube has to be updated and processed before the perspective can be used.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.Perspective in the N:Microsoft.AnalysisServices.
Translation Objects
A T:Microsoft.AnalysisServices.Translation object is created by adding it to the translation
collection of the desired object, then updating the closest major parent object to the server by
using the Update method. The Update method of the closest parent object can include the
parameter UpdateOptions.ExpandFull, which ensures that all children objects that were modified
will be updated to the server with this update action.
To remove a T:Microsoft.AnalysisServices.Translation object, it must be removed from the
collection, then the closest parent object must be updated.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.Translation in the N:Microsoft.AnalysisServices.
ProactiveCaching Objects
A T:Microsoft.AnalysisServices.ProactiveCaching object is created by adding it to the proactive
caching object collection of the dimension or partition, then updating the dimension or partition
object to the server by using the Update method.
To remove a T:Microsoft.AnalysisServices.ProactiveCaching object, it must be removed from the
collection, then the parent object must be updated.
A dimension or partition must be updated and processed before proactive caching is enabled
and ready to be used.

 174

For more information about methods and properties available, see
T:Microsoft.AnalysisServices.ProactiveCaching in the N:Microsoft.AnalysisServices.
See Also
N:Microsoft.AnalysisServices
Introducing AMO classes
Programming AMO OLAP basic objects
Programming AMO OLAP advanced objects
Logical Architecture (Analysis Services - Multidimensional Data)
Analysis Services Objects (SSAS)

AMO Data Mining Classes
Data mining classes help you create, modify, delete, and process data mining objects. Working
with data mining objects includes creating data mining structures, creating data mining models,
and processing the models.
For more information about how to set up the environment, and about
T:Microsoft.AnalysisServices.Server, T:Microsoft.AnalysisServices.Database,
T:Microsoft.AnalysisServices.DataSource, and T:Microsoft.AnalysisServices.DataSourceView
objects, see Database Objects (Analysis Services - Multidimensional Data).
Defining objects in Analysis Management Objects (AMO) requires setting a number of
properties on each object to set up the correct context. Complex objects, such as OLAP and data
mining objects, require lengthy and detailed coding.
This topic contains the following sections:
• MiningStructure Objects
• MiningModel Objects
The following illustration shows the relationship of the classes that are explained in this topic.

 175

MiningStructure Objects
A mining structure is the container for mining models. The structure defines all possible columns
that the mining models may use. Each mining model defines its own columns from the set of
defined columns in the structure.
A simple T:Microsoft.AnalysisServices.MiningStructure object is composed of: basic information,
a data source view, one or more T:Microsoft.AnalysisServices.ScalarMiningStructureColumn, zero
or more T:Microsoft.AnalysisServices.TableMiningStructureColumn, and a
T:Microsoft.AnalysisServices.MiningModelCollection.
Basic information includes the name and ID (internal identifier) of the
T:Microsoft.AnalysisServices.MiningStructure object.
The T:Microsoft.AnalysisServices.DataSourceView object holds the underlying data model for the
mining structure.
T:Microsoft.AnalysisServices.ScalarMiningStructureColumn are columns or attributes that have
single values.
T:Microsoft.AnalysisServices.TableMiningStructureColumn are columns or attributes that have
multiple values for each case.
T:Microsoft.AnalysisServices.MiningModelCollection contains all mining models built on the same
data.

 176

A T:Microsoft.AnalysisServices.MiningStructure object is created by adding it to the
T:Microsoft.AnalysisServices.MiningStructureCollection of the database and updating the
T:Microsoft.AnalysisServices.MiningStructure object to the server, by using the Update method.
To remove a T:Microsoft.AnalysisServices.MiningStructure object, it must be dropped by using
the Drop method of the T:Microsoft.AnalysisServices.MiningStructure object. Removing a
T:Microsoft.AnalysisServices.MiningStructure object from the collection does not affect the
server.
The T:Microsoft.AnalysisServices.MiningStructure can be processed using its own process
method, or it can be processed when a parent object processes itself with its own process
method.
Columns
Columns hold the data for the model and can be of different types depending on the usage:
Key, Input, Predictable, or InputPredictable. Predictable columns are the target of building the
mining model.
Single-value columns are known as T:Microsoft.AnalysisServices.ScalarMiningStructureColumn in
AMO. Multiple-value columns are known as
T:Microsoft.AnalysisServices.TableMiningStructureColumn.
ScalarMiningStructureColumn
A simple T:Microsoft.AnalysisServices.ScalarMiningStructureColumn object is composed of basic
information, Type, Content, and data binding.
Basic information includes the name and ID (internal identifier) of the
T:Microsoft.AnalysisServices.ScalarMiningStructureColumn.
Type is the data type of the value: LONG, BOOLEAN, TEXT, DOUBLE, DATE.
Content tells the engine how the column can be modeled. Values can be: Discrete, Continuous,
Discretized, Ordered, Cyclical, Probability, Variance, StdDev, ProbabilityVariance,
ProbabilityStdDev, Support, Key.
Data binding is linking the data mining column with the underlying data model by using a data
source view element.
A T:Microsoft.AnalysisServices.ScalarMiningStructureColumn is created by adding it to the parent
T:Microsoft.AnalysisServices.MiningStructureCollection, and updating the parent
T:Microsoft.AnalysisServices.MiningStructure object to the server by using the Update method.
To remove a T:Microsoft.AnalysisServices.ScalarMiningStructureColumn, it must be removed from
the collection of the parent T:Microsoft.AnalysisServices.MiningStructure, and the parent
T:Microsoft.AnalysisServices.MiningStructure object must be updated to the server by using the
Update method.
TableMiningStructureColumn
A simple T:Microsoft.AnalysisServices.TableMiningStructureColumn object is composed of basic
information and scalar columns.

 177

Basic information includes the name and ID (internal identifier) of the
T:Microsoft.AnalysisServices.TableMiningStructureColumn.
Scalar columns are T:Microsoft.AnalysisServices.ScalarMiningStructureColumn.
A T:Microsoft.AnalysisServices.TableMiningStructureColumn is created by adding it to the parent
T:Microsoft.AnalysisServices.MiningStructure collection, and updating the parent
T:Microsoft.AnalysisServices.TableMiningStructureColumn object to the server by using the
Update method.
To remove a T:Microsoft.AnalysisServices.ScalarMiningStructureColumn, it has to be removed
from the collection of the parent T:Microsoft.AnalysisServices.MiningStructure, and the parent
T:Microsoft.AnalysisServices.MiningStructure object must be updated to the server by using the
Update method.
MiningModel Objects
A T:Microsoft.AnalysisServices.MiningModel is the object that allows you to choose which
columns from the structure to use, an algorithm to use, and optionally specific parameters to
tune the model. For example, you might want to define several mining models in the same
mining structure that use the same algorithms, but to ignore some columns from the mining
structure in one model, use them as inputs in another model, and use them as input and predict
in a third model. This can be useful if in one mining model you want to treat a column as
continuous, but in other model you want to treat the column as discretized.
A simple T:Microsoft.AnalysisServices.MiningModel object is composed of: basic information,
algorithm definition, and columns.
Basic information includes the name and ID (internal identifier) of the mining model.
An algorithm definition refers to any one of the standard algorithms provided in Analysis
Services, or any custom algorithms enabled on the server.
Columns are a collection of the columns that are used by the algorithm and their usage
definition.
A T:Microsoft.AnalysisServices.MiningModel is created by adding it to the
T:Microsoft.AnalysisServices.MiningModelCollection of the database and updating the
T:Microsoft.AnalysisServices.MiningModel object to the server by using the Update method.
To remove a T:Microsoft.AnalysisServices.MiningModel, it has to be dropped by using the Drop
method of the T:Microsoft.AnalysisServices.MiningModel. Removing a
T:Microsoft.AnalysisServices.MiningModel from the collection does not affect the server.
After it is created, a T:Microsoft.AnalysisServices.MiningModel can be processed by using its own
process method, or it can be processed when a parent object processes itself with its own
process method.
See Also
AMO Fundamental Classes
Programming AMO DataMining objects
N:Microsoft.AnalysisServices

 178

Introducing AMO classes
Logical Architecture (Analysis Services - Multidimensional Data)
Analysis Services Objects (SSAS)

AMO Security Classes
This topic contains the following sections:
• Role and RoleMember Objects
• Permission Objects
The following illustration shows the relationship of the classes that are explained in this topic.

 179

Role and RoleMember Objects
A T:Microsoft.AnalysisServices.Role object is created by adding it to the roles collection of the
database, and updating the T:Microsoft.AnalysisServices.Role object to the server by using the
Update method. A T:Microsoft.AnalysisServices.Role object has to be updated before it can be
used.
To remove a T:Microsoft.AnalysisServices.Role object, it has to be dropped by using the Drop
method of the T:Microsoft.AnalysisServices.Role object. The Remove method, from the roles
collection, only prevents you from seeing the role in your application, but it does not remove
the role from the server. A T:Microsoft.AnalysisServices.Role object cannot be dropped if there
are any permissions associated with it.
A T:Microsoft.AnalysisServices.RoleMember object is created by adding a user to the members
collection of the role and updating the T:Microsoft.AnalysisServices.Role object to the server by
using the Update method. Only Server Administrators or Database Administrators are permitted
to create roles. A T:Microsoft.AnalysisServices.Role object has to be updated to the server before
any of its members is allowed to use any the objects to which the user has been granted
permission.
To remove a T:Microsoft.AnalysisServices.RoleMember object, it has to be removed from the
collection by using the Remove method of the collection, and then updating the role by using
the Update method.
For more information about methods and properties available for these objects, see
T:Microsoft.AnalysisServices.Role and T:Microsoft.AnalysisServices.RoleMember in the
N:Microsoft.AnalysisServices.
Permission Objects
A T:Microsoft.AnalysisServices.Permission object is created by adding it to the permissions
collection of the object and updating the T:Microsoft.AnalysisServices.Permission object to the
server by using the Update method.
To remove a T:Microsoft.AnalysisServices.Permission object, it has to be dropped by using the
Drop method of the object. The remove method, from the permissions collection, only prevents
you from seeing the permission in your application, but it does not remove the
T:Microsoft.AnalysisServices.Permission object from the server. A role cannot be deleted if there
is any permission associated with it.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.Permission in N:Microsoft.AnalysisServices.
See Also
Database Objects (Analysis Services - Multidimensional Data)
Permissions and Access Rights (SSAS)
Security and Protection (Analysis Services - Multidimensional Data)
N:Microsoft.AnalysisServices

http://msdn.microsoft.com/en-us/library/59fa3573-f985-46cb-8042-7da71bd59a7b(SQL.110)�
http://msdn.microsoft.com/en-us/library/64970b87-766f-468b-a94e-9b53495bafdc(SQL.110)�

 180

Introducing AMO classes
Logical Architecture (Analysis Services - Multidimensional Data)
Analysis Services Objects (SSAS)

AMO Other Classes and Methods
This section contains common classes that are not specific to OLAP or data mining, and that are
helpful when administering or managing objects in Microsoft SQL Server Analysis Services.
These classes cover features such as stored procedures, tracing, exceptions, and backup and
restore.
This topic contains the following sections:
• Assembly Objects
• Backup and Restore Methods
• Trace Objects
• CaptureLog Class and CaptureXML Attribute
• AMOException Exception Class
The following illustration shows the relationship of the classes that are explained in this topic.

Assembly Objects
An T:Microsoft.AnalysisServices.Assembly object is created by adding it to the assemblies
collection of the server, and then updating the T:Microsoft.AnalysisServices.Assembly object to
the server, by using the Update method.
To remove an T:Microsoft.AnalysisServices.Assembly object, it has to be dropped by using the
Drop method of the T:Microsoft.AnalysisServices.Assembly object. Removing an
T:Microsoft.AnalysisServices.Assembly object from the assemblies collection of the database

 181

does not drop the assembly, it only prevents you from seeing it in your application until the next
time that you run your application.
For more information about methods and properties available, see
T:Microsoft.AnalysisServices.Assembly in N:Microsoft.AnalysisServices .

COM assemblies might pose a security risk. Due to this risk and other considerations,
COM assemblies were deprecated in SQL Server 2008 Analysis Services (SSAS). COM
assemblies might not be supported in future releases.

Backup and Restore Methods
Backup and Restore are methods that can be used to create copies of an Analysis Services
database and recover the database by using the copy. The Backup method belongs to the
T:Microsoft.AnalysisServices.Database object, and the Restore method belongs to the
T:Microsoft.AnalysisServices.Server object.
Only server and database administrators are permitted to perform a backup of a database. Only
server administrators can restore a database onto a different server than it was backed up from.
Database administrators can restore a database by overwriting the existing database only if they
own the database that is to be overwritten. After a restore, the database administrator may lose
access to the restored database if the database is restored with its original security definitions.
Database backup files must have .abf extensions.
Backup Method
To backup a database, use the Backup method of the database object with the name of the
backup file as a parameter.
Default values:
AllowOverwrite=false
BackupRemotePartitions=false
Security=CopyAll
ApplyCompression=true
Restore Method
To restore a database to a server, use the Restore method of the server with the backup file as a
parameter.
Default values:
AllowOverwrite=false
DataSourceType=Remote
Security=CopyAll
Restrictions
1. A local partition cannot be restored as a remote partition.
2. A remote partition cannot be restored as a local partition, but a remote partition be restored

on a different server than it was backed up from.

noteDXDOC112778PADS Security Note

 182

Common Parameters and Properties for Backup and Restore Methods
• File is the name of the file to backup (UNC name) into/from.
• Location specifies server-specific backup information, such as BackupFile.This allows you to

specify a separate backup file for a remote database.
• DatasourceID specifies the ID of the subordinate database in a remote server.
• ConnectionString allows you to adjust the remote datasource in case the remote server has

changed. DatasourceID must always be specified when ConnectionString is present.
• Folder allows remapping of the folders for partitions on the local hard drive
• Original is the original folder for local partitions.
• New is the new location for local partitions that used to reside in the corresponding

'Original' old folder.
• Password, if non-blank, specifies that the server will encrypt the backup file.
Trace Objects
Trace is a framework used for monitoring, replaying, and managing an instance of Analysis
Services. A client application, like SQL Server Profiler, subscribes to a trace and the server sends
back trace events as specified in the trace definition.
Each event is described by an event class. The event class describes the type of event generated.
Within an event class, event subclasses describe a finer level of categorization. Each event is
described by a number of columns. The columns that describe a trace event are consistent for all
events and conform to the SQL trace structure. Information recorded in each column may differ
depending on the event class; that is, a predefined set of columns is defined for each trace, but
the meaning of the column may differ depending on the event class. For example, the TextData
column is used to record the original ASSL for all statement events.
A trace definition can include one or more event classes to be traced concurrently. For each
event class, one or more data columns can be added to the trace definition, but not all trace
columns must be used. The database administrator can decide which of the available columns to
include in a trace. Further, event classes can be selectively traced based on filter criteria on any
column in the trace.
Traces can be started and deleted. Multiple traces can be run at any one time. Trace events can
be captured live or directed to a file for later analysis or replay. SQL Server Profiler is the tool
used to analyze and replay Analysis Services trace events. Multiple connections are allowed to
receive events from the same trace.
Traces can be divided in two groups: server traces and session traces. Server traces will inform of
all events in the server; session traces will inform only events in the current session.
Traces, from the traces collection of the server, are defined the following way:
1. Create a T:Microsoft.AnalysisServices.Trace object and populate its basic data, including trace

ID, name, log file name, append|overwrite, and others.
2. Add Events to be monitored to the Events collection of the trace object. For each event, data

columns are added.

 183

3. Set Filters to exclude unnecessary rows of data by adding them to the filters collection.
4. Start the trace; creating the trace does not start collecting data.
5. Stop the trace.
6. Review the trace file with SQL Server Profiler.
Traces, from the session object, are obtained in the following manner:
1. Define functions to handle the trace events generated in your application by SessionTrace.

Possible events are OnEvent and Stopped.
2. Add your defined functions to the event handler.
3. Start the session trace.
4. Do your process and let your function handlers capture the events.
5. Stop the session trace.
6. Continue with your application.
CaptureLog Class and CaptureXML Attribute
All actions to be executed by AMO are sent to the server as XMLA messages. AMO provides the
means to capture all these messages without the SOAP headers. For more information,
see Database Objects (Analysis Services - Multidimensional Data). CaptureLog is the mechanism
in AMO for scripting out objects and operations; objects and operations will be scripted in
XMLA.
To start capturing the XML, the CaptureXML server object property needs to be set to true. Then
all actions that are to be sent to the server will start being captured in the CaptureLog class,
without the actions being sent to the server. CaptureLog is considered a class because it has a
method, Clear, which is used to clear the capture log.
To read the log, you get the strings collection and start iterating over the strings. Also, you can
concatenate all logs into a string by using the server object method ConcatenateCaptureLog.
ConcatenateCaptureLog requires has three parameters, two of which are required. The required
parameters are transactional, of Boolean type, and parallel, of Boolean type. If transactional is
set to true, it indicates that the XML batch file will be created as a single transaction instead of
each command being treated as a separated transaction. If parallel is set to true, it indicates that
all commands in the batch file will be recorded for concurrent execution instead of sequentially
as they were recorded.
AMOException Exception Class
You can use AMOException exception class to easily catch exceptions in your application that
are thrown by AMO.
AMO will throw exceptions at different problems found. The following table lists the kind of
exceptions that are handled by AMO. Exceptions are derived from the
T:Microsoft.AnalysisServices.AmoException class.

 184

Exception Origin Description

T:Microsoft.AnalysisServices.AmoException Base class Application receives
this exception when
a required parent
object is missing, or
when a requested
item is not found in
a collection.

T:Microsoft.AnalysisServices.OutOfSyncException Derived from
AMOException

Application receives
this exception when
AMO is out of
synchronization
with the engine and
the engine returns
an object reference
that AMO does not
know about.

T:Microsoft.AnalysisServices.OperationException Derived from
AMOException

This an important
exception that is
frequently received
by applications.
This exception
contains the details
of an error coming
from the server,
probably because
of a faulty AMO
operation like
Update or Process
or Drop.

T:Microsoft.AnalysisServices.ResponseFormatException Derived from
AMOException

This exception
occurs when the
engine returns a
message in a
format that AMO
does not
understand.

T:Microsoft.AnalysisServices.ConnectionException Derived from
AMOException

This exception
occurs when a
connection cannot

 185

Exception Origin Description

be established (with
Server.Connect) or
when the
connection is lost
while AMO is
communicating
with the engine (for
example, during an
Update or Process
or Drop).

See Also
N:Microsoft.AnalysisServices
Introducing AMO classes
Logical Architecture (Analysis Services - Multidimensional Data)
Analysis Services Objects (SSAS)

Programming Administrative Tasks with AMO
Analysis Management Objects (AMO) is a programming library used from client applications to
manage Analysis Services. In this section, you will learn to how to program using the AMO
objects.
The AMO library can be thought of as logically related groups of objects that are used to
accomplish a specific task.
This section includes the following topics:

Chapter Contents

Programming AMO Fundamental objects Describes how to program the Server,
Database, DataSource, and DataSourceView
objects. Also included here is
AMOException.

Programming AMO OLAP basic objects Describes how to program the Dimension,
Cube, MeasureGroup, Partition, and
Aggregation objects.

Programming AMO OLAP advanced objects Describes how to program the Action, KPI,
Perspective, ProactiveCaching, and

 186

Chapter Contents

Translation objects.

Programming AMO DataMining objects Describes how to program the
MiningStructure and MiningModel objects.

Programming AMO Security objects Describes how to program the Roles,
Members, and Permissions objects.

Programming AMO complementary classes
and methods

Describes how to program the Assembly
object, Backup and Restore methods, Trace
class, and also the CaptureLog class and
CaptureXML attribute.

See Also
N:Microsoft.AnalysisServices
Introducing AMO Concepts
Introducing AMO Classes
Analysis Services Objects (SSAS)

Programming AMO Fundamental Objects
Fundamental objects are generally simple and straightforward objects. These objects are usually
created and instantiated, then when they are no longer needed, the user disconnects from them.
Fundamental classes include the following objects: T:Microsoft.AnalysisServices.Server,
T:Microsoft.AnalysisServices.Database, T:Microsoft.AnalysisServices.DataSource, and
T:Microsoft.AnalysisServices.DataSourceView. The only complex object in AMO fundamental
objects is T:Microsoft.AnalysisServices.DataSourceView, which requires detail to build the abstract
model that represents the data source view.
T:Microsoft.AnalysisServices.Server and T:Microsoft.AnalysisServices.Database objects are usually
required to use the contained objects as OLAP objects or data mining objects.
This topic contains the following sections:
• Server Objects
• AMOException Exception Objects
• Database Objects
• DataSource Objects
• DataSourceView Objects
Server Objects

http://msdn.microsoft.com/en-us/library/050443b7-6324-4843-8863-0346e4866806(SQL.110)�

 187

To use a T:Microsoft.AnalysisServices.Server object requires the following steps: connecting to
the server, verifying whether the T:Microsoft.AnalysisServices.Server object is connected to the
server, and if so, disconnecting the T:Microsoft.AnalysisServices.Server from the server.
Connecting to the Server Object
Connecting to the server consists of having the right connection string.
The following code sample returns a T:Microsoft.AnalysisServices.Server object if the connection
is successful, or returns null if an error occurs. Errors during the connection process are handled
in a try/catch construct. AMO errors are caught by using the
T:Microsoft.AnalysisServices.AmoException exception class. In this example, the error is shown to
the user on a message box.

 static Server ServerConnect(String strStringConnection)

 {

 string methodCaption = "ServerConnect method";

 Server svr = new Server();

 try

 {

 svr.Connect(strStringConnection);

 }

 #region ErrorHandling

 catch (AmoException e)

 {

 MessageBox.Show("AMO exception " + e.ToString());

 svr = null;

 }

 catch (Exception e)

 {

 MessageBox.Show("General exception " + e.ToString());

 svr = null;

 }

 #endregion

 return svr;

 }

The structure of the connection string is:
"Data source=<server name>".

 188

For a more information about connection string, see
P:Microsoft.SqlServer.Management.Common.OlapConnectionInfo.ConnectionString.
Validating the Connection
Before programming the T:Microsoft.AnalysisServices.Server objects, you should verify that you
are still connected to the server. The following code sample shows you how to do it. The sample
assumes that svr is a T:Microsoft.AnalysisServices.Server object that exists in your code.
 if ((svr != null) && (svr.Connected))

 {

 // Do what it is needed if connection is good

 }

Disconnecting from the Server
As soon as you are finished, you can disconnect from the server by using the Disconnect
method. The following code sample shows you how to do it. The sample assumes that svr is a
T:Microsoft.AnalysisServices.Server object that exists in your code.

 if ((svr != null) && (svr.Connected))

 {

 svr.Disconnect()

 }

AmoException Exception Objects
AMO will throw exceptions at different problems found. For a detailed explanation of
exceptions, see Database Objects (Analysis Services - Multidimensional Data). The following
sample code shows the correct way to capture exceptions in AMO:

try

{

 //... some AMO code in here

}

catch (OutOfSynchException e)

{

 // error handling code for OutOfSynchException

}

catch (OperationException e)

{

 // error handling code for OperationException

 189

}

catch (ResponseFormatException e)

{

 // error handling code for ResponseFormatException

}

catch (ConnectionException e)

{

 // error handling code for ConnectionException

}

catch (AMOException e)

{

 //... here is the place where you end if it is an AMO exception, but none of the previous

exceptions

 // if you start with AMOException in the first catch you will never see any one of the

previous exceptions

}

Database Objects
Working with a T:Microsoft.AnalysisServices.Database object is very simple and straightforward.
You get an existing database from the database collection of the
T:Microsoft.AnalysisServices.Server object.
Creating, Dropping, and Finding a Database
The following code sample shows how to create a database by using a database name. Before
creating the database, query the T:Microsoft.AnalysisServices.DatabaseCollection of the server to
see whether the database exists. If the database exists, the database is dropped and afterward
created; if the database does not exist then it is created. If the database is to be dropped, then
the database is first acquired from the databases collection.

 static Database CreateDatabase(Server svr, String DatabaseName)

 {

 Database db = null;

 190

 if ((svr != null) && (svr.Connected))

 {

 // Drop the database if it already exists

 db = svr.Databases.FindByName(DatabaseName);

 if (db != null)

 {

 db.Drop();

 }

 // Create the database

 db = svr.Databases.Add(DatabaseName);

 db.Update();

 }

 return db;

 }

To determine whether a database exists in the database collection, the FindByName method is
used. If the database exists, then the method returns the found database object, if not it returns
a null object.
As soon as the T:Microsoft.AnalysisServices.Database object is added to the databases collection,
the server has to be updated by using its Update method. Failing to update the server will cause
the T:Microsoft.AnalysisServices.Database object not to be created in the server.
Processing a Database
Processing a database, with all the children objects, is very simple because the
T:Microsoft.AnalysisServices.Database object includes a Process method.
The Process method can include parameters, but they are not required. If no parameters are
specified, then all children objects will be processed with their ProcessDefault option. For more
information about processing options, see T:Microsoft.AnalysisServices.Database.
1. The following sample code process a database by its default value.

 static Database ProcessDatabase(Database db, ProcessType pt)

 {

 db.Process(pt);

 return db;

 }

DataSource Objects

 191

A T:Microsoft.AnalysisServices.DataSource object is the link between Analysis Services and the
database where the data resides. The schema that represents the underlying model for Analysis
Services is defined by the T:Microsoft.AnalysisServices.DataSourceView object. A
T:Microsoft.AnalysisServices.DataSource object can be seen as a connection string to the
database where the data resides.
The following sample code shows how to create a T:Microsoft.AnalysisServices.DataSource
object. The sample verifies that the server still exists, the T:Microsoft.AnalysisServices.Server
object is connected, and the database exists. If the T:Microsoft.AnalysisServices.DataSource
object exists, then it is dropped are re-created. The T:Microsoft.AnalysisServices.DataSource
object is created having the same name and internal ID. In this sample, no checking is
performed on the connection string to verify it.

 static string CreateDataSource(Database db, string strDataSourceName, string

strConnectionString)

 {

 Server svr = db.Parent;

 DataSource ds = db.DataSources.FindByName(strDataSourceName);

 if (ds != null)

 ds.Drop();

 // Create the data source

 ds = db.DataSources.Add(strDataSourceName, strDataSourceName);

 ds.ConnectionString = strConnectionString;

 // Send the data source definition to the server.

 ds.Update();

 return ds.Name;

 }

DataSourceView Objects
T:Microsoft.AnalysisServices.DataSourceView object is responsible for holding the schema model
for Analysis Services. For the T:Microsoft.AnalysisServices.DataSourceView object to hold the
schema, the schema must first be constructed. Schemas are constructed over DataSet objects,
from the System.Data namespace.
The following sample code will create part of the schema that is included in AdventureWorks
Analysis Services Project sample. For more information about installing the samples,
see AdventureWorks2012 Sample Databases. The current sample creates schema definitions for
tables, computed columns, relations, and composite relations. Schemas are persisted data sets.
The sample code does the following:

http://msdn.microsoft.com/en-us/library/fc98c380-518f-4e5e-8cde-14669aca308f(SQL.110)�

 192

1. Create a T:Microsoft.AnalysisServices.DataSourceView object.
Verify first if the T:Microsoft.AnalysisServices.DataSource object exists; if true, then drop the
T:Microsoft.AnalysisServices.DataSource and create it. If the
T:Microsoft.AnalysisServices.DataSource does not exist, create it.

2. Open a connection to the database using T:Microsoft.AnalysisServices.DataSource connection
string.

3. Create the schema.
The schema consists of the following:
• A table definition, AddTable() method.
• An optional set of calculated columns, AddComputedColumn() method.
• An optional set of relations, AddRelation.
• An optional set of composite relations, AddCompositeRelations.

4. Update the server.

The following sample code is trimmed for readability purposes; the complete code is
included at the end of this topic.

The following methods are part of the sample code: AddTable, AddComputedColumn,
AddRelation, and AddCompositeRelation.

The clause 'WHERE 1=0' is to avoid the query from returning rows to the DataSet object.

 static DataSourceView CreateDataSourceView(Database db, string strDataSourceName)

 {

 // Create the data source view

 DataSourceView dsv = db.DataSourceViews.FindByName(strDataSourceName);

 if (dsv != null)

 dsv.Drop();

 dsv = db.DataSourceViews.Add(strDataSourceName);

 dsv.DataSourceID = strDataSourceName;

 dsv.Schema = new DataSet();

 dsv.Schema.Locale = CultureInfo.CurrentCulture;

 // Open a connection to the data source

 OleDbConnection connection

 = new OleDbConnection(dsv.DataSource.ConnectionString);

Note

Note

Note

 193

 connection.Open();

 #region Create tables

 // Add the DimTime table

 AddTable(dsv, connection, "DimTime");

 AddComputedColumn(dsv, connection, "DimTime", "SimpleDate", "DATENAME(mm,

FullDateAlternateKey) + ' ' + DATENAME(dd, FullDateAlternateKey) + ',' + ' ' + DATENAME(yy,

FullDateAlternateKey)");

 // Add the DimProductCategory table

 AddTable(dsv, connection, "DimProductCategory");

 // Add the DimProductSubcategory table

 AddTable(dsv, connection, "DimProductSubcategory");

 AddRelation(dsv, "DimProductSubcategory", "ProductCategoryKey", "DimProductCategory",

"ProductCategoryKey");

 // Add the FactInternetSales table

 AddTable(dsv, connection, "FactInternetSales");

"DimTime", "TimeKey");

 AddRelation(dsv, "FactInternetSales", "ShipDateKey", "DimTime", "TimeKey");

 AddRelation(dsv, "FactInternetSales", "DueDateKey", "DimTime", "TimeKey");

 // Add the FactInternetSalesReason table

 AddTable(dsv, connection, "FactInternetSalesReason");

 AddCompositeRelation(dsv, "FactInternetSalesReason", "FactInternetSales",

"SalesOrderNumber", "SalesOrderLineNumber");

 dsv.Update();

 #endregion

 // Send the data source view definition to the server

 dsv.Update();

 194

 return dsv;

 }

 static void AddTable(DataSourceView dsv, OleDbConnection connection, String tableName)

 {

 string strSelectText = "SELECT * FROM [dbo].[" + tableName + "] WHERE 1=0";

 OleDbDataAdapter adapter = new OleDbDataAdapter(strSelectText, connection);

 DataTable[] dataTables = adapter.FillSchema(dsv.Schema,

 SchemaType.Mapped, tableName);

 DataTable dataTable = dataTables[0];

 dataTable.ExtendedProperties.Add("TableType", "Table");

 dataTable.ExtendedProperties.Add("DbSchemaName", "dbo");

 dataTable.ExtendedProperties.Add("DbTableName", tableName);

 dataTable.ExtendedProperties.Add("FriendlyName", tableName);

 dataTable = null;

 dataTables = null;

 adapter = null;

 }

 static void AddComputedColumn(DataSourceView dsv, OleDbConnection connection, String

tableName, String computedColumnName, String expression)

 {

 DataSet tmpDataSet = new DataSet();

 tmpDataSet.Locale = CultureInfo.CurrentCulture;

 OleDbDataAdapter adapter = new OleDbDataAdapter("SELECT ("

 + expression + ") AS [" + computedColumnName + "] FROM [dbo].["

 + tableName + "] WHERE 1=0", connection);

 DataTable[] dataTables = adapter.FillSchema(tmpDataSet,

 SchemaType.Mapped, tableName);

 DataTable dataTable = dataTables[0];

 195

 DataColumn dataColumn = dataTable.Columns[computedColumnName];

 dataTable.Constraints.Clear();

 dataTable.Columns.Remove(dataColumn);

 dataColumn.ExtendedProperties.Add("DbColumnName", computedColumnName);

 dataColumn.ExtendedProperties.Add("ComputedColumnExpression",

 expression);

 dataColumn.ExtendedProperties.Add("IsLogical", "True");

 dsv.Schema.Tables[tableName].Columns.Add(dataColumn);

 dataColumn = null;

 dataTable = null;

 dataTables = null;

 adapter = null;

 tmpDataSet = null;

 }

 static void AddRelation(DataSourceView dsv, String fkTableName, String fkColumnName,

String pkTableName, String pkColumnName)

 {

 DataColumn fkColumn

 = dsv.Schema.Tables[fkTableName].Columns[fkColumnName];

 DataColumn pkColumn

 = dsv.Schema.Tables[pkTableName].Columns[pkColumnName];

 dsv.Schema.Relations.Add("FK_" + fkTableName + "_"

 + fkColumnName, pkColumn, fkColumn, true);

 }

 static void AddCompositeRelation(DataSourceView dsv, String fkTableName, String

pkTableName, String columnName1, String columnName2)

 {

 DataColumn[] fkColumns = new DataColumn[2];

 196

 fkColumns[0] = dsv.Schema.Tables[fkTableName].Columns[columnName1];

 fkColumns[1] = dsv.Schema.Tables[fkTableName].Columns[columnName2];

 DataColumn[] pkColumns = new DataColumn[2];

 pkColumns[0] = dsv.Schema.Tables[pkTableName].Columns[columnName1];

 pkColumns[1] = dsv.Schema.Tables[pkTableName].Columns[columnName2];

 dsv.Schema.Relations.Add("FK_" + fkTableName + "_" + columnName1

 + "_" + columnName2, pkColumns, fkColumns, true);

 }

In the sample code, the AddTable and AddComputedColumn methods use the FillSchema
method of the DataAdapter object to add a DataTable to a DataSet and to configure the schema
to match that in the data source. The extended properties add required info to configure the
schema for Analysis Services.
In the sample code, the AddRelation and AddCompositeRelation methods add the relation
columns, depending on the existing schema and the existing columns on the model. Columns
must be part of the tables defined in the schema for these methods to work.
The following is the complete code sample:

 static DataSourceView CreateDataSourceView(Database db, string strDataSourceName)

 {

 // Create the data source view

 DataSourceView dsv = db.DataSourceViews.FindByName(strDataSourceName);

 if (dsv != null)

 dsv.Drop();

 dsv = db.DataSourceViews.Add(strDataSourceName);

 dsv.DataSourceID = strDataSourceName;

 dsv.Schema = new DataSet();

 dsv.Schema.Locale = CultureInfo.CurrentCulture;

 // Open a connection to the data source

 OleDbConnection connection

 = new OleDbConnection(dsv.DataSource.ConnectionString);

 connection.Open();

 197

 #region Create tables

 // Add the DimTime table

 AddTable(dsv, connection, "DimTime");

 AddComputedColumn(dsv, connection, "DimTime", "SimpleDate", "DATENAME(mm,

FullDateAlternateKey) + ' ' + DATENAME(dd, FullDateAlternateKey) + ',' + ' ' + DATENAME(yy,

FullDateAlternateKey)");

 AddComputedColumn(dsv, connection, "DimTime", "CalendarYearDesc", "'CY' + ' ' +

CalendarYear");

 AddComputedColumn(dsv, connection, "DimTime", "CalendarSemesterDesc", "CASE WHEN

CalendarSemester = 1 THEN 'H1'+' '+ 'CY' +' '+ CONVERT(CHAR (4), CalendarYear) ELSE 'H2'+' '+

'CY' +' '+ CONVERT(CHAR (4), CalendarYear) END");

 AddComputedColumn(dsv, connection, "DimTime", "CalendarQuarterDesc", "'Q' +

CONVERT(CHAR (1), CalendarQuarter) +' '+ 'CY' +' '+ CONVERT(CHAR (4), CalendarYear)");

 AddComputedColumn(dsv, connection, "DimTime", "MonthName", "EnglishMonthName+' '+

CONVERT(CHAR (4), CalendarYear)");

 AddComputedColumn(dsv, connection, "DimTime", "FiscalYearDesc", "'FY' + ' ' +

FiscalYear");

 AddComputedColumn(dsv, connection, "DimTime", "FiscalSemesterDesc", "CASE WHEN

FiscalSemester = 1 THEN 'H1'+' '+ 'FY' +' '+ CONVERT(CHAR (4), FiscalYear) ELSE 'H2'+' '+ 'FY' +'

'+ CONVERT(CHAR (4), FiscalYear) END");

 AddComputedColumn(dsv, connection, "DimTime", "FiscalQuarterDesc", "'Q' +

CONVERT(CHAR (1), FiscalQuarter) +' '+ 'FY' +' '+ CONVERT(CHAR (4), FiscalYear)");

 AddComputedColumn(dsv, connection, "DimTime", "FiscalMonthNumberOfYear", "CASE WHEN

MonthNumberOfYear = '1' THEN CONVERT(int,'7') WHEN MonthNumberOfYear = '2' THEN

CONVERT(int,'8') WHEN MonthNumberOfYear = '3' THEN CONVERT(int,'9') WHEN MonthNumberOfYear = '4'

THEN CONVERT(int,'10') WHEN MonthNumberOfYear = '5' THEN CONVERT(int,'11') WHEN

MonthNumberOfYear = '6' THEN CONVERT(int,'12') WHEN MonthNumberOfYear = '7' THEN

CONVERT(int,'1') WHEN MonthNumberOfYear = '8' THEN CONVERT(int,'2') WHEN MonthNumberOfYear = '9'

THEN CONVERT(int,'3') WHEN MonthNumberOfYear = '10' THEN CONVERT(int,'4') WHEN MonthNumberOfYear

= '11' THEN CONVERT(int,'5') WHEN MonthNumberOfYear = '12' THEN CONVERT(int,'6') END");

 dsv.Update();

 // Add the DimGeography table

 AddTable(dsv, connection, "DimGeography");

 198

 // Add the DimProductCategory table

 AddTable(dsv, connection, "DimProductCategory");

 // Add the DimProductSubcategory table

 AddTable(dsv, connection, "DimProductSubcategory");

 AddRelation(dsv, "DimProductSubcategory", "ProductCategoryKey", "DimProductCategory",

"ProductCategoryKey");

 // Add the DimProduct table

 AddTable(dsv, connection, "DimProduct");

 AddComputedColumn(dsv, connection, "DimProduct", "ProductLineName", "CASE ProductLine

WHEN 'M' THEN 'Mountain' WHEN 'R' THEN 'Road' WHEN 'S' THEN 'Accessory' WHEN 'T' THEN 'Touring'

ELSE 'Components' END");

 AddRelation(dsv, "DimProduct", "ProductSubcategoryKey", "DimProductSubcategory",

"ProductSubcategoryKey");

 dsv.Update();

 // Add the DimCustomer table

 AddTable(dsv, connection, "DimCustomer");

 AddComputedColumn(dsv, connection, "DimCustomer", "FullName", "CASE WHEN MiddleName

IS NULL THEN FirstName + ' ' + LastName ELSE FirstName + ' ' + MiddleName + ' ' + LastName END");

 AddComputedColumn(dsv, connection, "DimCustomer", "GenderDesc", "CASE WHEN Gender =

'M' THEN 'Male' ELSE 'Female' END");

 AddComputedColumn(dsv, connection, "DimCustomer", "MaritalStatusDesc", "CASE WHEN

MaritalStatus = 'S' THEN 'Single' ELSE 'Married' END");

 AddRelation(dsv, "DimCustomer", "GeographyKey", "DimGeography", "GeographyKey");

 // Add the DimReseller table

 AddTable(dsv, connection, "DimReseller");

 AddComputedColumn(dsv, connection, "DimReseller", "OrderFrequencyDesc", "CASE WHEN

OrderFrequency = 'A' THEN 'Annual' WHEN OrderFrequency = 'S' THEN 'Bi-Annual' ELSE 'Quarterly'

END");

 AddComputedColumn(dsv, connection, "DimReseller", "OrderMonthDesc", "CASE WHEN

OrderMonth = '1' THEN 'January' WHEN OrderMonth = '2' THEN 'February' WHEN OrderMonth = '3' THEN

'March' WHEN OrderMonth = '4' THEN 'April' WHEN OrderMonth = '5' THEN 'May' WHEN OrderMonth = '6'

 199

THEN 'June' WHEN OrderMonth = '7' THEN 'July' WHEN OrderMonth = '8' THEN 'August' WHEN OrderMonth

= '9' THEN 'September' WHEN OrderMonth = '10' THEN 'October' WHEN OrderMonth = '11' THEN

'November' WHEN OrderMonth = '12' THEN 'December' ELSE 'Never Ordered' END");

 // Add the DimCurrency table

 AddTable(dsv, connection, "DimCurrency");

 dsv.Update();

 // Add the DimSalesReason table

 AddTable(dsv, connection, "DimSalesReason");

 // Add the FactInternetSales table

 AddTable(dsv, connection, "FactInternetSales");

 AddRelation(dsv, "FactInternetSales", "ProductKey", "DimProduct", "ProductKey");

 AddRelation(dsv, "FactInternetSales", "CustomerKey", "DimCustomer", "CustomerKey");

 AddRelation(dsv, "FactInternetSales", "OrderDateKey", "DimTime", "TimeKey");

 AddRelation(dsv, "FactInternetSales", "ShipDateKey", "DimTime", "TimeKey");

 AddRelation(dsv, "FactInternetSales", "DueDateKey", "DimTime", "TimeKey");

 AddRelation(dsv, "FactInternetSales", "CurrencyKey", "DimCurrency", "CurrencyKey");

 dsv.Update();

 // Add the FactResellerSales table

 AddTable(dsv, connection, "FactResellerSales");

 AddRelation(dsv, "FactResellerSales", "ProductKey", "DimProduct", "ProductKey");

 AddRelation(dsv, "FactResellerSales", "ResellerKey", "DimReseller", "ResellerKey");

 AddRelation(dsv, "FactResellerSales", "OrderDateKey", "DimTime", "TimeKey");

 AddRelation(dsv, "FactResellerSales", "ShipDateKey", "DimTime", "TimeKey");

 AddRelation(dsv, "FactResellerSales", "DueDateKey", "DimTime", "TimeKey");

 AddRelation(dsv, "FactResellerSales", "CurrencyKey", "DimCurrency", "CurrencyKey");

 // Add the FactInternetSalesReason table

 AddTable(dsv, connection, "FactInternetSalesReason");

 AddCompositeRelation(dsv, "FactInternetSalesReason", "FactInternetSales",

"SalesOrderNumber", "SalesOrderLineNumber");

 200

 dsv.Update();

 // Add the FactCurrencyRate table

 AddTable(dsv, connection, "FactCurrencyRate");

 AddRelation(dsv, "FactCurrencyRate", "CurrencyKey", "DimCurrency", "CurrencyKey");

 AddRelation(dsv, "FactCurrencyRate", "TimeKey", "DimTime", "TimeKey");

 #endregion

 // Send the data source view definition to the server

 dsv.Update();

 return dsv;

 }

 static void AddTable(DataSourceView dsv, OleDbConnection connection, String tableName)

 {

 string strSelectText = "SELECT * FROM [dbo].[" + tableName + "] WHERE 1=0";

 OleDbDataAdapter adapter = new OleDbDataAdapter(strSelectText, connection);

 DataTable[] dataTables = adapter.FillSchema(dsv.Schema,

 SchemaType.Mapped, tableName);

 DataTable dataTable = dataTables[0];

 dataTable.ExtendedProperties.Add("TableType", "Table");

 dataTable.ExtendedProperties.Add("DbSchemaName", "dbo");

 dataTable.ExtendedProperties.Add("DbTableName", tableName);

 dataTable.ExtendedProperties.Add("FriendlyName", tableName);

 dataTable = null;

 dataTables = null;

 adapter = null;

 }

 201

 static void AddComputedColumn(DataSourceView dsv, OleDbConnection connection, String

tableName, String computedColumnName, String expression)

 {

 DataSet tmpDataSet = new DataSet();

 tmpDataSet.Locale = CultureInfo.CurrentCulture;

 OleDbDataAdapter adapter = new OleDbDataAdapter("SELECT ("

 + expression + ") AS [" + computedColumnName + "] FROM [dbo].["

 + tableName + "] WHERE 1=0", connection);

 DataTable[] dataTables = adapter.FillSchema(tmpDataSet,

 SchemaType.Mapped, tableName);

 DataTable dataTable = dataTables[0];

 DataColumn dataColumn = dataTable.Columns[computedColumnName];

 dataTable.Constraints.Clear();

 dataTable.Columns.Remove(dataColumn);

 dataColumn.ExtendedProperties.Add("DbColumnName", computedColumnName);

 dataColumn.ExtendedProperties.Add("ComputedColumnExpression",

 expression);

 dataColumn.ExtendedProperties.Add("IsLogical", "True");

 dsv.Schema.Tables[tableName].Columns.Add(dataColumn);

 dataColumn = null;

 dataTable = null;

 dataTables = null;

 adapter = null;

 tmpDataSet = null;

 }

 static void AddRelation(DataSourceView dsv, String fkTableName, String fkColumnName,

String pkTableName, String pkColumnName)

 {

 202

 DataColumn fkColumn

 = dsv.Schema.Tables[fkTableName].Columns[fkColumnName];

 DataColumn pkColumn

 = dsv.Schema.Tables[pkTableName].Columns[pkColumnName];

 dsv.Schema.Relations.Add("FK_" + fkTableName + "_"

 + fkColumnName, pkColumn, fkColumn, true);

 }

 static void AddCompositeRelation(DataSourceView dsv, String fkTableName, String

pkTableName, String columnName1, String columnName2)

 {

 DataColumn[] fkColumns = new DataColumn[2];

 fkColumns[0] = dsv.Schema.Tables[fkTableName].Columns[columnName1];

 fkColumns[1] = dsv.Schema.Tables[fkTableName].Columns[columnName2];

 DataColumn[] pkColumns = new DataColumn[2];

 pkColumns[0] = dsv.Schema.Tables[pkTableName].Columns[columnName1];

 pkColumns[1] = dsv.Schema.Tables[pkTableName].Columns[columnName2];

 dsv.Schema.Relations.Add("FK_" + fkTableName + "_" + columnName1

 + "_" + columnName2, pkColumns, fkColumns, true);

 }

See Also
N:Microsoft.AnalysisServices
Introducing AMO classes
AMO Fundamental Classes
Logical Architecture (Analysis Services - Multidimensional Data)
Analysis Services Objects (SSAS)

Programming AMO OLAP Basic Objects
Creating complex Analysis Services objects is simple and straightforward but requires attention
to detail. This topic explains the programming details of OLAP basic objects. This topic contains
the following sections:
• Dimension Objects

 203

• Cube Objects
• MeasureGroup Objects
• Partition Objects
• Aggregation Objects
Dimension Objects
To administer or process a dimension, you program the T:Microsoft.AnalysisServices.Dimension
object.
Creating, Dropping, and Finding a Dimension
Creating a T:Microsoft.AnalysisServices.Dimension object is accomplished in four steps:
1. Create the dimension object and populate basic attributes.

Basic attributes are Name, Dimension Type, Storage Mode, Data Source Binding, Attribute
All Member Name, and other dimension attributes.
Before creating a dimension, you should verify that the dimension does not already exist. If
the dimension exists, then the dimension is dropped and re-created.

2. Create the attributes that define the dimension.
Each attribute has to be added individually to the schema before using it (find
CreateDataItem method at the end of the sample code), and then can be added to the
attributes collection of the dimension.
Key and Name column must be defined in all attributes.
The primary key attribute of the dimension should be defined as AttributeUsage.Key to
make clear that this attribute is the key access to the dimension.

3. Create the hierarchies that the user will access to navigate the dimension.
When you are creating hierarchies, the level order is defined by the order in which levels are
created from top to bottom. The highest level is the first added to the levels collection of the
hierarchy.

4. Update the server by using the Update method of the current dimension.
The following sample code creates the Product dimension for the AdventureWorks2012 Sample
Databases.

 static void CreateProductDimension(Database db, string datasourceName)

 {

 // Create the Product dimension

 Dimension dim = db.Dimensions.FindByName("Product");

 if (dim != null)

 dim.Drop();

 dim = db.Dimensions.Add("Product");

 dim.Type = DimensionType.Products;

http://msdn.microsoft.com/en-us/library/fc98c380-518f-4e5e-8cde-14669aca308f(SQL.110)�
http://msdn.microsoft.com/en-us/library/fc98c380-518f-4e5e-8cde-14669aca308f(SQL.110)�
http://msdn.microsoft.com/en-us/library/fc98c380-518f-4e5e-8cde-14669aca308f(SQL.110)�

 204

 dim.UnknownMember = UnknownMemberBehavior.Hidden;

 dim.AttributeAllMemberName = "All Products";

 dim.Source = new DataSourceViewBinding(datasourceName);

 dim.StorageMode = DimensionStorageMode.Molap;

 #region Create attributes

 DimensionAttribute attr;

 attr = dim.Attributes.Add("Product Name");

 attr.Usage = AttributeUsage.Key;

 attr.Type = AttributeType.Product;

 attr.OrderBy = OrderBy.Name;

 attr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "DimProduct",

"ProductKey"));

 attr.NameColumn = CreateDataItem(db.DataSourceViews[0], "DimProduct",

"EnglishProductName");

 attr = dim.Attributes.Add("Product Line");

 attr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "DimProduct",

"ProductLine"));

 attr.NameColumn = CreateDataItem(db.DataSourceViews[0], "DimProduct",

"ProductLineName");

 attr = dim.Attributes.Add("Model Name");

 attr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "DimProduct",

"ModelName"));

 attr.AttributeRelationships.Add(new AttributeRelationship("Product Line"));

 attr.AttributeRelationships.Add(new AttributeRelationship("Subcategory"));

 attr = dim.Attributes.Add("Subcategory");

 attr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "DimProductSubcategory",

"ProductSubcategoryKey"));

 attr.KeyColumns[0].NullProcessing = NullProcessing.UnknownMember;

 205

 attr.NameColumn = CreateDataItem(db.DataSourceViews[0], "DimProductSubcategory",

"EnglishProductSubcategoryName");

 attr.AttributeRelationships.Add(new AttributeRelationship("Category"));

 attr = dim.Attributes.Add("Category");

 attr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "DimProductCategory",

"ProductCategoryKey"));

 attr.NameColumn = CreateDataItem(db.DataSourceViews[0], "DimProductCategory",

"EnglishProductCategoryName");

 attr = dim.Attributes.Add("List Price");

 attr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "DimProduct",

"ListPrice"));

 attr.AttributeHierarchyEnabled = false;

 attr = dim.Attributes.Add("Size");

 attr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "DimProduct", "Size"));

 attr.AttributeHierarchyEnabled = false;

 attr = dim.Attributes.Add("Weight");

 attr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "DimProduct", "Weight"));

 attr.AttributeHierarchyEnabled = false;

 #endregion

 #region Create hierarchies

 Hierarchy hier;

 hier = dim.Hierarchies.Add("Product Model Categories");

 hier.AllMemberName = "All Products";

 hier.Levels.Add("Category").SourceAttributeID = "Category";

 hier.Levels.Add("Subcategory").SourceAttributeID = "Subcategory";

 hier.Levels.Add("Model Name").SourceAttributeID = "Model Name";

 206

 hier = dim.Hierarchies.Add("Product Categories");

 hier.AllMemberName = "All Products";

 hier.Levels.Add("Category").SourceAttributeID = "Category";

 hier.Levels.Add("Subcategory").SourceAttributeID = "Subcategory";

 hier.Levels.Add("Model Name").SourceAttributeID = "Product Name";

 hier = dim.Hierarchies.Add("Product Model Lines");

 hier.AllMemberName = "All Products";

 hier.Levels.Add("Subcategory").SourceAttributeID = "Product Line";

 hier.Levels.Add("Model Name").SourceAttributeID = "Model Name";

 #endregion

 dim.Update();

 }

 static DataItem CreateDataItem(DataSourceView dsv, string tableName, string columnName)

 {

 DataTable dataTable = ((DataSourceView)dsv).Schema.Tables[tableName];

 DataColumn dataColumn = dataTable.Columns[columnName];

 return new DataItem(tableName, columnName,

 OleDbTypeConverter.GetRestrictedOleDbType(dataColumn.DataType));

 }

Processing a Dimension
Processing a dimension is as simple as using the Process method of the
T:Microsoft.AnalysisServices.Dimension object.
Processing a dimension can affect all cubes that use the dimension. For more information about
processing options, see AdventureWorks Sample Data Warehouse and Processing Analysis
Services Objects.
The following code does an incremental update in all dimensions of a supplied database:

 static void UpdateAllDimensions(Database db)

 {

http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�

 207

 foreach (Dimension dim in db.Dimensions)

 dim.Process(ProcessType.ProcessUpdate);

 }

Cube Objects
To administer or process a cube, you program the T:Microsoft.AnalysisServices.Cube object.
Creating, Dropping, and Finding a Cube
Managing cubes is similar to managing dimensions. Creating a T:Microsoft.AnalysisServices.Cube
object is accomplished in four steps:
1. Create the cube object and populate basic attributes.

Basic attributes are Name, Storage Mode, Data Source Binding, Default Measure, and other
cube attributes.
Before creating a cube you should verify that the cube does not exist. In the sample if the
cube exists the cube is dropped and then re-created.

2. Add the dimensions of the cube.
Dimensions are added to the current cube dimensions collection from the database;
dimensions in the cube are references to the database dimensions collection. Each
dimension has to be mapped to the cube individually. In the sample dimensions are mapped
providing: the database dimension Internal Identifier, a Name for the dimension in the cube
and an Id for the named dimension in the cube.
In the sample code notice that "Date" dimension is added three times, every time is added
by using a different cube dimension name: Date, Ship Date, Delivery Date. These dimensions
are called “role playing” dimensions. The base dimension is the same (Date), but in the fact
table the dimension is used in different “roles” (Order Date, Ship Date, Delivery Date) -see
"Creating, dropping and finding a MeasureGroup" later in this document to understand how
"role playing" dimensions are defined.

3. Create the Measure Groups that the user will access to browse the data of the cube.
Measure group creation will be explained in "Creating, dropping and finding a
MeasureGroup" later in this document. The sample wraps measure group creation in
different methods, one for each measure group.

4. Update the server by using the Update method of current cube.
The update method is used with the Update option ExpandFull to make sure that all objects
are fully updated in the server.

The following code sample creates the parts of the Adventure Works cube. The code sample
does not create all dimensions or measure groups that are included in the Adventure Works
Analysis Services Project sample. For more information about installing the samples,
see AdventureWorks2012 Sample Databases.
 static void CreateAdventureWorksCube(Database db, string datasourceName)

 {

http://msdn.microsoft.com/en-us/library/fc98c380-518f-4e5e-8cde-14669aca308f(SQL.110)�

 208

 // Create the Adventure Works cube

 Cube cube = db.Cubes.FindByName("Adventure Works");

 if (cube != null)

 cube.Drop();

 db.Cubes.Add("Adventure Works");

 cube.DefaultMeasure = "[Reseller Sales Amount]";

 cube.Source = new DataSourceViewBinding(datasourceName);

 cube.StorageMode = StorageMode.Molap;

 #region Create cube dimensions

 Dimension dim;

 dim = db.Dimensions.GetByName("Date");

 cube.Dimensions.Add(dim.ID, "Date", "Order Date Key - Dim Time");

 cube.Dimensions.Add(dim.ID, "Ship Date",

 "Ship Date Key - Dim Time");

 cube.Dimensions.Add(dim.ID, "Delivery Date",

 "Delivery Date Key - Dim Time");

 dim = db.Dimensions.GetByName("Customer");

 cube.Dimensions.Add(dim.ID);

 dim = db.Dimensions.GetByName("Reseller");

 cube.Dimensions.Add(dim.ID);

 #endregion

 #region Create measure groups

 CreateSalesReasonsMeasureGroup(cube);

 CreateInternetSalesMeasureGroup(cube);

 CreateResellerSalesMeasureGroup(cube);

 CreateCustomersMeasureGroup(cube);

 209

 CreateCurrencyRatesMeasureGroup(cube);

 #endregion

 cube.Update(UpdateOptions.ExpandFull);

 }

Processing a Cube
Processing a cube is as simple as using the Process method of the
T:Microsoft.AnalysisServices.Cube object. Processing a cube also processes all measure groups in
the cube, and all partitions in the measure group. In a cube, partitions are the only objects that
can be processed; for the purposes of processing, measure groups are only containers of
partitions. The specified type of processing for the cube propagates to the partitions. Processing
of cube and measure group internally is resolved to processing of dimensions and partitions.
For more information about processing options, see Processing Objects (XMLA), and Processing
Analysis Services Objects.
The following code will do a full process on all cubes in a specified database:

 foreach (Cube cube in db.Cubes)

 cube.Process(ProcessType.ProcessFull);

 }

MeasureGroup Objects
To administer or process a measure group, you program the
T:Microsoft.AnalysisServices.MeasureGroup object.
Creating, Dropping, and Finding a MeasureGroup
Managing measure groups is similar to managing dimensions and cubes. Creating a
T:Microsoft.AnalysisServices.MeasureGroup object is accomplished in the following steps:
1. Create the measure group object and populate the basic attributes.

Basic attributes include Name, Storage Mode, Processing Mode, Default Measure, and other
measure group attributes.
Before creating a measure group, verify that the measure group does not exist. In the
sample code that follows, if the measure group exists, then the measure group is dropped
and re-created.

2. Create the measures of the measure group. For each measure created, the following
attributes are assigned: name, aggregation function, source column, format string. Other
attributes can also be assigned. Note that in the sample code that follows, the
CreateDataItem method adds the column to the schema.

3. Add the dimensions of the measure group.

http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�

 210

4. Dimensions are added to the current measure group dimensions collection from the parent
cube dimensions collection. As soon as the dimension is included in the measure group
dimensions collection, a key column from the fact table can be mapped to the dimension so
that the measure group can be browsed through the dimension.
In the sample code that follows, see the lines under "Mapping dimension and key column
from fact table". The role playing dimensions are implemented by linking different surrogate
keys to the same dimension under different names. For each one of the role playing
dimensions (Date, Ship Date, Delivery Date), a different surrogate key is linked to it
(OrderDateKey, ShipDateKey, DueDateKey). All keys are from the fact table FactInternetSales.

5. Add the designed partitions of the measure group.
The in the sample code that follows, partition creation is wrapped in one method.

6. Update the server by using the Update method of current measure group.
In the sample code that follows, all measure groups are updated when the cube is updated.

The following sample code will create the InternetSales measure group of the Adventure Works
Analysis Services Project sample. For more information about installing the samples,
see AdventureWorks2012 Sample Databases.

 static void CreateInternetSalesMeasureGroup(Cube cube)

 {

 // Create the Internet Sales measure group

 Database db = cube.Parent;

 MeasureGroup mg = cube.MeasureGroups.FindByName("Internet Sales");

 if (mg != null)

 mg.Drop();

 mg = cube.MeasureGroups.Add("Internet Sales");

 mg.StorageMode = StorageMode.Molap;

 mg.ProcessingMode = ProcessingMode.LazyAggregations;

 mg.Type = MeasureGroupType.Sales;

 #region Create measures

 Measure meas;

 meas = mg.Measures.Add("Internet Sales Amount");

 meas.AggregateFunction = AggregationFunction.Sum;

 meas.FormatString = "Currency";

http://msdn.microsoft.com/en-us/library/fc98c380-518f-4e5e-8cde-14669aca308f(SQL.110)�

 211

 meas.Source = CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"SalesAmount");

 meas = mg.Measures.Add("Internet Order Quantity");

 meas.AggregateFunction = AggregationFunction.Sum;

 meas.FormatString = "#,#";

 meas.Source = CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"OrderQuantity");

 meas = mg.Measures.Add("Internet Unit Price");

 meas.AggregateFunction = AggregationFunction.Sum;

 meas.FormatString = "Currency";

 meas.Visible = false;

 meas.Source = CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"UnitPrice");

 meas = mg.Measures.Add("Internet Total Product Cost");

 meas.AggregateFunction = AggregationFunction.Sum;

 //meas.MeasureExpression = "[Internet Total Product Cost] * [Average Rate]";

 meas.FormatString = "Currency";

 meas.Source = CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"TotalProductCost");

 meas = mg.Measures.Add("Internet Order Count");

 meas.AggregateFunction = AggregationFunction.Count;

 meas.FormatString = "#,#";

 meas.Source = CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"ProductKey");

 #endregion

 #region Create measure group dimensions

 CubeDimension cubeDim;

 212

 RegularMeasureGroupDimension regMgDim;

 ManyToManyMeasureGroupDimension mmMgDim;

 MeasureGroupAttribute mgAttr;

 // Mapping dimension and key column from fact table

 // > select dimension and add it to the measure group

 cubeDim = cube.Dimensions.GetByName("Date");

 regMgDim = new RegularMeasureGroupDimension(cubeDim.ID);

 mg.Dimensions.Add(regMgDim);

 // > add key column from dimension and map it with

 // the surrogate key in the fact table

 mgAttr = regMgDim.Attributes.Add(cubeDim.Dimension.Attributes.GetByName("Date").ID);

// this is dimension key column

 mgAttr.Type = MeasureGroupAttributeType.Granularity;

 mgAttr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"OrderDateKey")); // this surrogate key in fact table

 cubeDim = cube.Dimensions.GetByName("Ship Date");

 regMgDim = new RegularMeasureGroupDimension(cubeDim.ID);

 mg.Dimensions.Add(regMgDim);

 mgAttr = regMgDim.Attributes.Add(cubeDim.Dimension.Attributes.GetByName("Date").ID);

 mgAttr.Type = MeasureGroupAttributeType.Granularity;

 mgAttr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"ShipDateKey"));

 cubeDim = cube.Dimensions.GetByName("Delivery Date");

 regMgDim = new RegularMeasureGroupDimension(cubeDim.ID);

 mg.Dimensions.Add(regMgDim);

 mgAttr = regMgDim.Attributes.Add(cubeDim.Dimension.Attributes.GetByName("Date").ID);

 mgAttr.Type = MeasureGroupAttributeType.Granularity;

 mgAttr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"DueDateKey"));

 213

 cubeDim = cube.Dimensions.GetByName("Customer");

 regMgDim = new RegularMeasureGroupDimension(cubeDim.ID);

 mg.Dimensions.Add(regMgDim);

 mgAttr = regMgDim.Attributes.Add(cubeDim.Dimension.Attributes.GetByName("Full

Name").ID);

 mgAttr.Type = MeasureGroupAttributeType.Granularity;

 mgAttr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"CustomerKey"));

 cubeDim = cube.Dimensions.GetByName("Product");

 regMgDim = new RegularMeasureGroupDimension(cubeDim.ID);

 mg.Dimensions.Add(regMgDim);

 mgAttr = regMgDim.Attributes.Add(cubeDim.Dimension.Attributes.GetByName("Product

Name").ID);

 mgAttr.Type = MeasureGroupAttributeType.Granularity;

 mgAttr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"ProductKey"));

 cubeDim = cube.Dimensions.GetByName("Source Currency");

 regMgDim = new RegularMeasureGroupDimension(cubeDim.ID);

 mg.Dimensions.Add(regMgDim);

 mgAttr =

regMgDim.Attributes.Add(cubeDim.Dimension.Attributes.GetByName("Currency").ID);

 mgAttr.Type = MeasureGroupAttributeType.Granularity;

 mgAttr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"CurrencyKey"));

 cubeDim = cube.Dimensions.GetByName("Sales Reason");

 mmMgDim = new ManyToManyMeasureGroupDimension();

 mmMgDim.CubeDimensionID = cubeDim.ID;

 mmMgDim.MeasureGroupID = cube.MeasureGroups.GetByName("Sales Reasons").ID;

 mg.Dimensions.Add(mmMgDim);

 cubeDim = cube.Dimensions.GetByName("Internet Sales Order Details");

 214

 regMgDim = new RegularMeasureGroupDimension(cubeDim.ID);

 mg.Dimensions.Add(regMgDim);

 mgAttr = regMgDim.Attributes.Add(cubeDim.Dimension.Attributes.GetByName("Sales Order

Key").ID);

 mgAttr.Type = MeasureGroupAttributeType.Granularity;

 mgAttr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"SalesOrderNumber"));

 mgAttr.KeyColumns.Add(CreateDataItem(db.DataSourceViews[0], "FactInternetSales",

"SalesOrderLineNumber"));

 #endregion

 #region Create partitions

 CreateInternetSalesMeasureGroupPartitions(mg)

 #endregion

 }

Processing a Measure Group
Processing a measure group is as simple as using the Process method of the
T:Microsoft.AnalysisServices.MeasureGroup object. Processing a measure group will process all
partitions that belong to the measure group. Processing a measure group internally is resolved
to processing dimensions and partitions. See Processing a Partition in this document.
For more information about processing options, see Processing Objects (XMLA), and Processing
Analysis Services Objects.
The following code will do a full process in all measure groups of a supplied cube.

 static void FullProcessAllMeasureGroups(Cube cube)

 {

 foreach (MeasureGroup mg in cube.MeasureGroups)

 mg.Process(ProcessType.ProcessFull);

 }

Partition Objects
To administer or process a partition, you program a T:Microsoft.AnalysisServices.Partition object.
Creating, Dropping, and Finding a Partition
Partitions are simple objects that can be created in two steps.

http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�

 215

1. Create the partition object and populate the basic attributes.
Basic attributes are Name, Storage Mode, partition source, Slice, as well as other measure
group attributes. Partition source defines the SQL select statement for current partition. Slice
is an MDX expression specifying a tuple or a set that delimits a part of the dimensions from
the parent measure group that are contained in the current partition. For MOLAP partitions,
slicing is determined automatically every time that the partition is processed.
Before creating a partition, you should verify that the partition does not exist. In the sample
code that follows, if the partition exists, it is dropped and then re-created.

2. Update the server by using the Update method of the current partition.
In the sample code that follows, all partitions are updated when the cube is updated.

The following code sample creates partitions for the 'InternetSales' measure group.

 static void CreateInternetSalesMeasureGroupPartitions(MeasureGroup mg)

 {

 Partition part;

 part = mg.Partitions.FindByName("Internet_Sales_184");

 if (part != null)

 part.Drop();

 part = mg.Partitions.Add("Internet_Sales_184");

 part.StorageMode = StorageMode.Molap;

 part.Source = new QueryBinding(db.DataSources[0].ID, "SELECT * FROM

[dbo].[FactInternetSales] WHERE OrderDateKey <= '184'");

 part.Slice = "[Date].[Calendar Year].&[2001]";

 part.Annotations.Add("LastOrderDateKey", "184");

 part = mg.Partitions.FindByName("Internet_Sales_549");

 if (part != null)

 part.Drop();

 part = mg.Partitions.Add("Internet_Sales_549");

 part.StorageMode = StorageMode.Molap;

 part.Source = new QueryBinding(db.DataSources[0].ID, "SELECT * FROM

[dbo].[FactInternetSales] WHERE OrderDateKey > '184' AND OrderDateKey <= '549'");

 part.Slice = "[Date].[Calendar Year].&[2002]";

 part.Annotations.Add("LastOrderDateKey", "549");

 part = mg.Partitions.FindByName("Internet_Sales_914");

 216

 if (part != null)

 part.Drop();

 part = mg.Partitions.Add("Internet_Sales_914");

 part.StorageMode = StorageMode.Molap;

 part.Source = new QueryBinding(db.DataSources[0].ID, "SELECT * FROM

[dbo].[FactInternetSales] WHERE OrderDateKey > '549' AND OrderDateKey <= '914'");

 part.Slice = "[Date].[Calendar Year].&[2003]";

 part.Annotations.Add("LastOrderDateKey", "914");

 }

Processing a Partition
Processing a partition is as simple as using the Process method of the
T:Microsoft.AnalysisServices.Partition object.
For more information about processing options, see Processing Objects (XMLA) and Processing
Analysis Services Objects.
The following code sample does a full process in all partitions of a specified measure group.
 static void FullProcessAllPartitions(MeasureGroup mg)

 {

 foreach (Partition part in mg.Partitions)

 part.Process(ProcessType.ProcessFull);

 }

Merging Partitions
Merging partitions means performing any operation that results in two or more partitions
becoming one partition.
Merging partitions is a method of the T:Microsoft.AnalysisServices.Partition object. This
command merges the data of one or more source partitions into a target partition and deletes
the source partitions.
Partitions can be merged only if they meet all the following criteria:
• Partitions are in the same measure group.
• Partitions are stored in the same mode (MOLAP, HOLAP, and ROLAP).
• Partitions reside on the same server; remote partitions can be merged if on the same server.
Unlike previous versions, in Microsoft SQL Server Analysis Services it is not necessary that all
source partitions have identical aggregations design.
The resulting set of aggregations for the target partition is the same set of aggregations as of
the state before running merge command.
The following code sample merges all partitions of a specified measure group. The partitions are
merged into the first partition of the measure group.

http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�

 217

 static void MergeAllPartitions(MeasureGroup mg)

 {

 if (mg.Partitions.Count > 1)

 {

 Partition[] partArray = new Partition[mg.Partitions.Count - 1];

 for (int i = 1; i < mg.Partitions.Count; i++)

 partArray[i - 1] = mg.Partitions[i];

 mg.Partitions[0].Merge(partArray);

 //To have last changes in the server reflected in AMO

 mg.Refresh();

 }

Aggregation Objects
To design an design an aggregation and apply it to one or more partitions, you program
T:Microsoft.AnalysisServices.Aggregation object.
Creating and Dropping Aggregations
Aggregations can easily be created and assigned to measure groups or to partitions by using
the DesignAggregations method from the T:Microsoft.AnalysisServices.AggregationDesign
object. The T:Microsoft.AnalysisServices.AggregationDesign object is a separate object from
partition, the T:Microsoft.AnalysisServices.AggregationDesign object is contained in the
T:Microsoft.AnalysisServices.MeasureGroup object. Aggregations can be designed up to specified
level of optimization (0 to 100) or up to specified level of storage (bytes). Multiple partitions can
use the same aggregation design.
The following code sample creates aggregations for all partitions of a supplied measure group.
Any existing aggregations in partitions are dropped.

 static public String DesignAggregationsOnPartitions(MeasureGroup mg, double

optimizationWanted, double maxStorageBytes)

 {

 double optimization = 0;

 double storage = 0;

 long aggCount = 0;

 bool finished = false;

 AggregationDesign ad = null;

 String aggDesignName;

 String AggregationsDesigned = "";

 aggDesignName = mg.AggregationPrefix + "_" + mg.Name;

 ad = mg.AggregationDesigns.Add();

 218

 ad.Name = aggDesignName;

 ad.InitializeDesign();

 while ((!finished) && (optimization < optimizationWanted) && (storage <

maxStorageBytes))

 {

 ad.DesignAggregations(out optimization, out storage, out aggCount, out finished);

 }

 ad.FinalizeDesign();

 foreach (Partition part in mg.Partitions)

 {

 part.AggregationDesignID = ad.ID;

 AggregationsDesigned += aggDesignName + " = " + aggCount.ToString() + "

aggregations designed\r\n\tOptimization: " + optimization.ToString() + "/" +

optimizationWanted.ToString() + "\n\r\tStorage: " + storage.ToString() + "/" +

maxStorageBytes.ToString() + "]\n\r";

 }

 return AggregationsDesigned;

 }

See Also
N:Microsoft.AnalysisServices
Introducing AMO classes
AMO OLAP Classes
Logical Architecture (Analysis Services - Multidimensional Data)
Analysis Services Objects (SSAS)
Processing Analysis Services Objects
AdventureWorks Sample Data Warehouse

Programming AMO OLAP Advanced Objects
This topic explains the Analysis Management Objects (AMO) programming details of OLAP
advanced objects. This topic contains the following sections:
• Action Objects
• Kpi Objects
• Perspective Objects
• ProactiveCaching Objects
• Translation Objects

http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/4c62907b-c882-48ff-b92c-b82ccfd7e06f(SQL.110)�

 219

Action Objects
Action classes are used to create an active response when browsing certain areas of the cube.
Action objects can be defined by using AMO, but are used from the client application that
browses the data. Actions can be of different types and they have to be created according to
their type. Actions can be:
• Drillthrough actions, which return the set of rows that represents the underlying data of the

selected cells of the cube where the action occurs.
• Reporting actions, which return a report from Reporting Services that is associated with the

selected section of the cube where the action occurs.
• Standard actions, which return the action element (URL, HTML, DataSet, RowSet, and other

elements) that is associated with the selected section of the cube where the action occurs.
Creating an action object requires the following steps:
1. Create the derived action object and populate basic attributes.

The following are the basic attributes: type of action, target type or section of the cube,
target or specific area of the cube where the action is available, caption and where the
caption is an MDX expression.

2. Populate the specific attributes of the action type.
Attributes are different for the three types of actions, see the code sample that follows for
parameters.

3. Add the action to the cubes collection and update the cube. The action is not an updatable
object.

Testing the action requires a different program application. You can test your action in SQL
Server Data Tools (SSDT). First, you must install Reporting Services samples, see Processing
Analysis Services Objects.
The following sample code replicates three different actions from the Adventure Works Analysis
Services Project sample. For more information about installing the samples,
see AdventureWorks2012 Sample Databases. You can differentiate the actions because the ones
that you introduce by using the following sample, start with "My".

 static public void CreateActions(Cube cube)

 {

 #region Adding a drillthrough action

 // Verify That action exists and drop it

 if (cube.Actions.ContainsName("My Reseller Details"))

 cube.Actions.Remove("My Drillthrough Action",true);

 //Create a Drillthrough action

 DrillThroughAction dtaction = new DrillThroughAction("My Reseller Details", "My

Drillthrough Action");

http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/fc98c380-518f-4e5e-8cde-14669aca308f(SQL.110)�

 220

 //Define the Action

 dtaction.Type = ActionType.DrillThrough;

 dtaction.TargetType = ActionTargetType.Cells;

 dtaction.Target = "MeasureGroupMeasures(\"Reseller Sales\")";

 dtaction.Caption = "My Drillthrough...";

 dtaction.CaptionIsMdx = false;

 #region create drillthrough action specifics

 //Adding Drillthrough columns

 //Adding Measure columns to the drillthrough

 MeasureGroup mg = cube.MeasureGroups.FindByName("Reseller Sales");

 MeasureBinding mb1 = new MeasureBinding();

 mb1.MeasureID = mg.Measures.FindByName("Reseller Sales Amount").ID;

 dtaction.Columns.Add(mb1);

 MeasureBinding mb2 = new MeasureBinding();

 mb2.MeasureID = mg.Measures.FindByName("Reseller Order Quantity").ID;

 dtaction.Columns.Add(mb2);

 MeasureBinding mb3 = new MeasureBinding();

 mb3.MeasureID = mg.Measures.FindByName("Reseller Unit Price").ID;

 dtaction.Columns.Add(mb3);

 //Adding Dimension Columns to the drillthrough

 CubeAttributeBinding cb1 = new CubeAttributeBinding();

 cb1.CubeID = cube.ID;

 cb1.CubeDimensionID = cube.Dimensions.FindByName("Reseller").ID;

 cb1.AttributeID = "Reseller Name";

 cb1.Type = AttributeBindingType.All;

 dtaction.Columns.Add(cb1);

 CubeAttributeBinding cb2 = new CubeAttributeBinding();

 221

 cb2.CubeID = cube.ID;

 cb2.CubeDimensionID = cube.Dimensions.FindByName("Product").ID;

 cb2.AttributeID = "Product Name";

 cb2.Type = AttributeBindingType.All;

 dtaction.Columns.Add(cb2);

 #endregion

 //Add the defined action to the cube

 cube.Actions.Add(dtaction);

 #endregion

 #region Adding a Standard action

 // Verify That action exists and drop it

 if (cube.Actions.ContainsName("My City Map"))

 cube.Actions.Remove("My Action", true);

 //Create a Drillthrough action

 StandardAction stdaction = new StandardAction("My City Map", "My Action");

 //Define the Action

 stdaction.Type = ActionType.Url;

 stdaction.TargetType = ActionTargetType.AttributeMembers;

 stdaction.Target = "[Geography].[City]";

 stdaction.Caption = "\"My View Map for \" +

[Geography].[City].CurrentMember.Member_Caption + \"...\"";

 stdaction.CaptionIsMdx = true;

 #region create standard action specifics

 stdaction.Expression = "\"http://maps.msn.com/home.aspx?plce1=\" + " +

 "[Geography].[City].CurrentMember.Name + \",\" + " +

 "[Geography].[State-Province].CurrentMember.Name + \",\" + " +

 "[Geography].[Country].CurrentMember.Name + " +

 "\"®n1=\" + " +

 "Case " +

 222

 "When [Geography].[Country].CurrentMember Is " +

 "[Geography].[Country].&[Australia] " +

 "Then \"3\" " +

 "When [Geography].[Country].CurrentMember Is " +

 "[Geography].[Country].&[Canada] " +

 "Or [Geography].[Country].CurrentMember Is " +

 "[Geography].[Country].&[United States] " +

 "Then \"0\" " +

 "Else \"1\" " +

 "End ";

 #endregion

 //Add the defined action to the cube

 cube.Actions.Add(stdaction);

 #endregion

 #region Adding a Reporting action

 // Verify That action exists and drop it

 if (cube.Actions.ContainsName("My Sales Reason Comparisons"))

 cube.Actions.Remove("My Report Action", true);

 //Create a Report action

 ReportAction rsaction = new ReportAction("My Sales Reason Comparisonsp", "My Report

Action");

 //Define the Action

 rsaction.Type = ActionType.Report;

 rsaction.TargetType = ActionTargetType.AttributeMembers;

 rsaction.Target = "[Product].[Category]";

 rsaction.Caption = "\"My Sales Reason Comparisons for \" +

[Product].[Category].CurrentMember.Member_Caption + \"...\"";

 rsaction.CaptionIsMdx = true;

 223

 #region create Report action specifics

 rsaction.ReportServer = "MyRSSamplesServer";

 rsaction.Path = "ReportServer?/AdventureWorks Sample Reports/Sales Reason

Comparisons";

 rsaction.ReportParameters.Add("ProductCategory", "UrlEscapeFragment(

[Product].[Category].CurrentMember.UniqueName)");

 rsaction.ReportFormatParameters.Add("rs:Command", "Render");

 rsaction.ReportFormatParameters.Add("rs:Renderer", "HTML5");

 #endregion

 //Add the defined action to the cube

 cube.Actions.Add(rsaction);

 #endregion

 }

Kpi Objects
A key performance indicator (KPI) is a collection of calculations that are associated with a
measure group in a cube and are used to evaluate business success.
T:Microsoft.AnalysisServices.Kpi objects can be defined by AMO, but are used from the client
application that browses the data.
Creating a T:Microsoft.AnalysisServices.Kpi object requires the following steps:
1. Create the T:Microsoft.AnalysisServices.Kpi object and populate the basic attributes.

The following is a list of basic attributes: Description, Display Folder, Associated Measure
Group, and Value. Display Folder tells the client application where the KPI should be located
for the end-user to find it. The Associated Measure Group indicates the measure group
where all MDX calculations should be referred. Value shows the actual value of the
performance indicator as an MDX expression.

2. Define KPI Indicators: Goal, Status, and Trend.
Indicators are MDX expressions that should evaluate between -1 to 1, but is the browsing
application which defines the range of values for the indicators.

3. When you browse KPIs in SQL Server Data Tools (SSDT), values less than -1 are treated as -1,
and values larger than 1 are treated as 1.

4. Define graphic images.
Graphic images are string values, used as reference in the client application to identify the
correct set of images to display. The graphic image string also defines the behavior of the
display function. Usually the range is split in an odd number of states, from bad to good,
and to each state an image, from the set, is assigned.

 224

If you use SQL Server Data Tools (SSDT) to browse your KPIs, then depending on names, the
indicator range is split into either three states or five states. In addition, there are names
where the range is inverted, that is -1 is 'Good' and 1 is 'Bad'. In SQL Server Data Tools
(SSDT), three states within the range are as follows:
• Bad = -1 to -0.5
• OK = -0.4999 to -0.4999
• Good = 0.50 to 1
In SQL Server Data Tools (SSDT), five states within the range are as follows:
• Bad = -1 to -0.75
• Risk = -0.7499 to -0.25
• OK = -0.2499 to 0.2499
• Raising = 0.25 to 0.7499
• Good = 0.75 to 1

The following table lists the Usage, Name, and the number of states associated with the image.

Image usage Image Name Number of States

Status Shapes 3

Status Traffic Light 3

Status Road Signs 3

Status Gauge 3

Status Reversed Gauge 5

Status Thermometer 3

Status Cylinder 3

Status Faces 3

Status Variance arrow 3

Trend Standard Arrow 3

Trend Status Arrow 3

Trend Reversed status arrow 5

Trend Faces 3

1. Add the KPI to the cube collection and update the cube, because the KPI is not an updatable

object.

 225

Testing the KPI requires a different program application. You can test your KPI in SQL Server
Data Tools (SSDT).
The following sample code creates a KPI in the "Financial Perpective/Grow Revenue" folder for
the Adventure Works cube that is included in the Adventure Works Analysis Services Project
sample. For more information about installing the samples, see AdventureWorks2012 Sample
Databases.

 static public void CreateKPIs(Cube cube)

 {

 Kpi kpi = cube.Kpis.Add("My Internet Revenue", "My Internet Revenue");

 kpi.Description = "(My) Revenue achieved through direct sales via Interner";

 kpi.DisplayFolder = "\\Financial Perspective\\Grow Revenue";

 kpi.AssociatedMeasureGroupID = "Internet Sales";

 kpi.Value = "[Measures].[Internet Sales Amount]";

 #region Goal

 kpi.Goal = "Case" +

 " When IsEmpty" +

 " (" +

 " ParallelPeriod" +

 " (" +

 " [Date].[Fiscal Time].[Fiscal Year]," +

 " 1," +

 " [Date].[Fiscal Time].CurrentMember" +

 ")" +

 ")" +

 " Then [Measures].[Internet Sales Amount]" +

 " Else 1.10 *" +

 " (" +

 " [Measures].[Internet Sales Amount]," +

 " ParallelPeriod" +

 " (" +

 " [Date].[Fiscal Time].[Fiscal Year]," +

 " 1," +

 " [Date].[Fiscal Time].CurrentMember" +

 ")" +

http://msdn.microsoft.com/en-us/library/fc98c380-518f-4e5e-8cde-14669aca308f(SQL.110)�
http://msdn.microsoft.com/en-us/library/fc98c380-518f-4e5e-8cde-14669aca308f(SQL.110)�
http://msdn.microsoft.com/en-us/library/fc98c380-518f-4e5e-8cde-14669aca308f(SQL.110)�

 226

 ") " +

 " End";

 #endregion

 #region Status

 kpi.Status = "Case" +

 " When KpiValue(\"Internet Revenue\") / KpiGoal (\"Internet

Revenue\") >= .95 " +

 " Then 1 " +

 " When KpiValue(\"Internet Revenue\") / KpiGoal (\"Internet

Revenue\") < .95 " +

 " And " +

 " KpiValue(\"Internet Revenue\") / KpiGoal (\"Internet

Revenue\") >= .85 " +

 " Then 0 " +

 " Else -1 " +

 "End";

 #endregion

 #region Trend

 kpi.Trend = "Case " +

 " When VBA!Abs " +

 " (" +

 " KpiValue(\"Internet Revenue\") - " +

 " (" +

 " KpiValue (\"Internet Revenue\"), " +

 " ParallelPeriod " +

 " (" +

 " [Date].[Fiscal Time].[Fiscal Year], " +

 " 1, " +

 " [Date].[Fiscal Time].CurrentMember " +

 ") " +

 ") / " +

 " (" +

 " KpiValue (\"Internet Revenue\"), " +

 " ParallelPeriod " +

 227

 " (" +

 " [Date].[Fiscal Time].[Fiscal Year], " +

 " 1, " +

 " [Date].[Fiscal Time].CurrentMember " +

 ") " +

 ") " +

 ") <=.02 " +

 " Then 0 " +

 " When KpiValue(\"Internet Revenue\") - " +

 " (" +

 " KpiValue (\"Internet Revenue\"), " +

 " ParallelPeriod " +

 " (" +

 " [Date].[Fiscal Time].[Fiscal Year], " +

 " 1, " +

 " [Date].[Fiscal Time].CurrentMember " +

 ") " +

 ") / " +

 " (" +

 " KpiValue (\"Internet Revenue\"), " +

 " ParallelPeriod " +

 " (" +

 " [Date].[Fiscal Time].[Fiscal Year], " +

 " 1, " +

 " [Date].[Fiscal Time].CurrentMember " +

 ") " +

 ") >.02 " +

 " Then 1 " +

 " Else -1 " +

 "End";

 #endregion

 kpi.TrendGraphic = "Standard Arrow";

 kpi.StatusGraphic = "Cylinder";

 228

 }.

Perspective Objects
T:Microsoft.AnalysisServices.Perspective objects can be defined by AMO, but are used from the
client application that browses the data.
Creating a T:Microsoft.AnalysisServices.Perspective object requires the following steps:
1. Create the T:Microsoft.AnalysisServices.Perspective object and populate the basic attributes.

The following is a list of basic attributes: Name, Default Measure, Description, and
annotations.

2. Add all objects from the parent cube that should be seen by end user.
Add cube dimensions (attributes and hierarchies), measure groups (measure and measure
group), actions, KPIs, and calculations.

3. Add the perspective to the cube collection and update the cube, because perspective is not
an updatable object.

Testing the perspective requires a different program application. You can test your perspective
in SQL Server Data Tools (SSDT).
The following code sample creates a perspective named "Direct Sales" for the supplied cube.

 static public void CreatePerspectives(Cube cube)

 {

 Perspective perspective = cube.Perspectives.Add("Direct Sales", "Direct Sales");

 CubeDimension dim1 = cube.Dimensions.GetByName("Date");

 PerspectiveDimension pdim1 = perspective.Dimensions.Add(dim1.DimensionID);

 pdim1.Attributes.Add("Date");

 pdim1.Attributes.Add("Calendar Year");

 pdim1.Attributes.Add("Fiscal Year");

 pdim1.Attributes.Add("Calendar Quarter");

 pdim1.Attributes.Add("Fiscal Quarter");

 pdim1.Attributes.Add("Calendar Month Number");

 pdim1.Attributes.Add("Fiscal Month Number");

 pdim1.Hierarchies.Add("Calendar Time");

 pdim1.Hierarchies.Add("Fiscal Time");

 CubeDimension dim2 = cube.Dimensions.GetByName("Product");

 PerspectiveDimension pdim2 = perspective.Dimensions.Add(dim2.DimensionID);

 pdim2.Attributes.Add("Product Name");

 pdim2.Attributes.Add("Product Line");

 229

 pdim2.Attributes.Add("Model Name");

 pdim2.Attributes.Add("List Price");

 pdim2.Attributes.Add("Size");

 pdim2.Attributes.Add("Weight");

 pdim2.Hierarchies.Add("Product Model Categories");

 pdim2.Hierarchies.Add("Product Categories");

 PerspectiveMeasureGroup pmg = perspective.MeasureGroups.Add("Internet Sales");

 pmg.Measures.Add("Internet Sales Amount");

 pmg.Measures.Add("Internet Order Quantity");

 pmg.Measures.Add("Internet Unit Price");

 pmg = perspective.MeasureGroups.Add("Reseller Sales");

 pmg.Measures.Add("Reseler Sales Amount");

 pmg.Measures.Add("Reseller Order Quantity");

 pmg.Measures.Add("Reseller Unit Price");

 PerspectiveAction pact = perspective.Actions.Add("Drillthrough Action");

 PerspectiveKpi pkpi = perspective.Kpis.Add("Internet Revenue");

 Cube.Update();

 }

ProactiveCaching Objects
T:Microsoft.AnalysisServices.ProactiveCaching objects can be defined by AMO.
Creating a T:Microsoft.AnalysisServices.ProactiveCaching object requires the following steps:
1. Create the T:Microsoft.AnalysisServices.ProactiveCaching object.

There are no basic attributes to define.
2. Add cache specifications.

Specification Description

AggregationStorage The type of storage for aggregations.
Applies to partition only. On dimension it
must be Regular.

 230

Specification Description

SilenceInterval Minimum amount of time the cache exists
before the MOLAP imaging starts.

Latency The amount of time between the earliest
notification and the moment when the
MOLAP images are destroyed.

SilenceOverrideInterval The time after an initial notification after
which the MOLAP imaging kicks in
unconditionally.

ForceRebuildInterval The time (starting after a fresh MOLAP
image is dropped) after which MOLAP
imaging starts unconditionally (no
notifications).

OnlineMode When the MOLAP image is available.
Can be either Immediate or
OnCacheComplete.

1. Add the T:Microsoft.AnalysisServices.ProactiveCaching object to the parent collection. You

will need to update the parent, because T:Microsoft.AnalysisServices.ProactiveCaching is not
an updatable object.

The following code sample creates a T:Microsoft.AnalysisServices.ProactiveCaching object in all
partitions from the Internet Sales measure group in the Adventure Works cube in a specified
database.

 static public void SetProactiveCachingSettings(Database db)

 {

 ProactiveCaching pc;

 if (db.Cubes.ContainsName("Adventure Works") && db.Cubes.FindByName("Adventure

Works").MeasureGroups.ContainsName("Internet Sales"))

 {

 ProactiveCachingTablesBinding pctb;

 TableNotification tn;

 MeasureGroup mg = db.Cubes.FindByName("Adventure

Works").MeasureGroups.FindByName("Internet Sales");

 foreach(Partition part in mg.Partitions)

 {

 231

 pc = new ProactiveCaching();

 pc.AggregationStorage = ProactiveCachingAggregationStorage.MolapOnly;

 pc.SilenceInterval = TimeSpan.FromSeconds(10);

 pc.Latency = TimeSpan.FromSeconds(-1);

 pc.SilenceOverrideInterval = TimeSpan.FromMinutes(10);

 pc.ForceRebuildInterval = TimeSpan.FromSeconds(-1);

 pc.Enabled = true;

 pc.OnlineMode = ProactiveCachingOnlineMode.OnCacheComplete;

 pctb = new ProactiveCachingTablesBinding();

 pctb.NotificationTechnique = NotificationTechnique.Server;

 tn = new TableNotification("[FactInternetSales]", "dbo");

 pctb.TableNotifications.Add(tn);

 pc.Source = pctb;

 part.ProactiveCaching = pc;

 part.Update();

 }

 }

 }

Translation Objects
Translation objects can be defined by AMO, but are used from the client application that
browses the data. Translation objects are simple objects to code. Translations for object captions
are provided by pairs of Locale Identifier and Translated Caption. For any caption, multiple
translations can be enabled. Translations can be provided for most Analysis Services objects,
such as dimensions, attributes, hierarchies, cubes, measure groups, measures, and others.
The following code sample provides a Spanish translation for the name of the attribute Product
Name.

 static public void CreateTranslations(Database db)

 {

 //Spanish Tranlations for Product Category in Product Dimension

 Dimension dim = db.Dimensions["Product"];

 DimensionAttribute atr = dim.Attributes["Product Name"];

 Translation tran = atr.Translations.Add(3082);

 tran.Caption = "Nombre Producto";

 232

 dim.Update(UpdateOptions.ExpandFull);

 }

See Also
N:Microsoft.AnalysisServices
Introducing AMO classes
AMO OLAP Classes
Logical Architecture (Analysis Services - Multidimensional Data)
Analysis Services Objects (SSAS)
Processing Analysis Services Objects

Programming AMO Data Mining Objects
Programming data mining objects by using AMO is simple and straightforward. The first step is
to create the data structure model to support the mining project. Then you create the data
mining model that supports the mining algorithm you want to use in order to predict or to find
the unseen relationships underlying your data. With your mining project created (including
structure and algorithms), you can then process the mining models to obtain the trained models
that you will use later when querying and predicting from the client application.
One thing to remember is that AMO is not for querying; AMO is for managing and
administering your mining structures and models. To query your data, use Database Objects
(Analysis Services - Multidimensional Data).
This topic contains the following sections:
• MiningStructure Objects
• MiningModel Objects
MiningStructure Objects
A mining structure is the definition of the data structure that is used to create all mining models.
A mining structure contains a binding to a data source view that is defined in the database, and
contains definitions for all columns participating in the mining models. A mining structure can
have more than one mining model.
Creating a T:Microsoft.AnalysisServices.MiningStructure object requires the following steps:
1. Create the T:Microsoft.AnalysisServices.MiningStructure object and populate the basic

attributes. Basic attributes include object name, object ID (internal identification), and data
source binding.

2. Create columns for the model. Columns can be either scalar or table definitions.
Each column needs a name and internal ID, a type, a content definition, and a binding.

3. Update the T:Microsoft.AnalysisServices.MiningStructure object to the server, by using the
Update method of the object.

http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�

 233

Mining structures can be processed, and when they are processed, the children mining
models are processed or retrained.

The following sample code creates a mining structure to forecast sales in a time series. Before
running the sample code, make sure that the database db, passed as parameter for
CreateSalesForecastingMiningStructure, contains in db.DataSourceViews[0] a reference
to the view dbo.vTimeSeries in the Adventure Works DW Multidimensional 2012 sample
database.

public static MiningStructure CreateSalesForecastingMiningStructure(Database db)

{

 MiningStructure ms = db.MiningStructures.FindByName("Forecasting Sales Structure");

 if (ms != null)

 ms.Drop();

 ms = db.MiningStructures.Add("Forecasting Sales Structure", "Forecasting Sales Structure");

 ms.Source = new DataSourceViewBinding(db.DataSourceViews[0].ID);

 ScalarMiningStructureColumn amount = ms.Columns.Add("Amount", "Amount");

 amount.Type = MiningStructureColumnTypes.Double;

 amount.Content = MiningStructureColumnContents.Continuous;

 amount.KeyColumns.Add("vTimeSeries", "Amount", OleDbType.Currency);

 ScalarMiningStructureColumn modelRegion = ms.Columns.Add("Model Region", "Model Region");

 modelRegion.IsKey = true;

 modelRegion.Type = MiningStructureColumnTypes.Text;

 modelRegion.Content = MiningStructureColumnContents.Key;

 modelRegion.KeyColumns.Add("vTimeSeries", "ModelRegion", OleDbType.WChar, 56);

 ScalarMiningStructureColumn qty = ms.Columns.Add("Quantity", "Quantity");

 qty.Type = MiningStructureColumnTypes.Long;

 qty.Content = MiningStructureColumnContents.Continuous;

 qty.KeyColumns.Add("vTimeSeries", "Quantity", OleDbType.Integer);

 ScalarMiningStructureColumn timeIndex = ms.Columns.Add("TimeIndex", "TimeIndex");

 timeIndex.IsKey = true;

 timeIndex.Type = MiningStructureColumnTypes.Long;

 timeIndex.Content = MiningStructureColumnContents.KeyTime;

 234

 timeIndex.KeyColumns.Add("vTimeSeries", "TimeIndex", OleDbType.Integer);

 ms.Update();

 return ms;

}

MiningModel Objects
A mining model is a repository for all columns and column definitions that will be used in a
mining algorithm.
Creating a T:Microsoft.AnalysisServices.MiningModel object requires the following steps:
1. Create the T:Microsoft.AnalysisServices.MiningModel object and populate the basic

attributes.
Basic attributes include object name, object ID (internal identification), and mining algorithm
specification.

2. Add the columns of the mining model. One of the columns must be defined as the case key.
3. Update the T:Microsoft.AnalysisServices.MiningModel object to the server, by using the

Update method of the object.
T:Microsoft.AnalysisServices.MiningModel objects can be processed independently of other
models in the parent T:Microsoft.AnalysisServices.MiningStructure.

The following sample code creates a Microsoft Time Series forecasting model based on the
"Forecasting Sales Structure" mining structure:
public static MiningModel CreateSalesForecastingMiningModel(MiningStructure ms)

{

 if (ms.MiningModels.ContainsName("Sales Forecasting Model"))

 {

 ms.MiningModels["Sales Forecasting Model"].Drop();

 }

 MiningModel mm = ms.CreateMiningModel(true, "Sales Forecasting Model");

 mm.Algorithm = MiningModelAlgorithms.MicrosoftTimeSeries;

 mm.AlgorithmParameters.Add("PERIODICITY_HINT", "{12}");

 MiningModelColumn amount = new MiningModelColumn();

 amount.SourceColumnID = "Amount";

 amount.Usage = MiningModelColumnUsages.Predict;

 MiningModelColumn modelRegion = new MiningModelColumn();

 235

 modelRegion.SourceColumnID = "Model Region";

 modelRegion.Usage = MiningModelColumnUsages.Key;

 MiningModelColumn qty = new MiningModelColumn();

 qty.SourceColumnID = "Quantity";

 qty.Usage = MiningModelColumnUsages.Predict;

 MiningModelColumn ti = new MiningModelColumn();

 ti.SourceColumnID = "TimeIndex";

 ti.Usage = MiningModelColumnUsages.Key;

 mm.Update();

 mm.Process(ProcessType.ProcessFull);

 return mm;

}

See Also
AMO Fundamental Classes
N:Microsoft.AnalysisServices
Introducing AMO classes
AMO DataMining Classes
Logical Architecture (Analysis Services - Multidimensional Data)
Analysis Services Objects (SSAS)

Programming AMO Security Objects
In Microsoft SQL Server Analysis Services, programming security objects or running applications
that use AMO security objects requires being a member of the Server Administrator group or
the Database Administrator group. Server Administrator and Database Administrator are an
access levels supplied by SQL Server Analysis Services.
In Analysis Services the user access to any object is obtained through the combination of Roles
and Permissions assigned to that object. For more information, see Database Objects (Analysis
Services - Multidimensional Data).
Role and Permission Objects
Server roles contain one and only one role in the collection, the Administrators role. New roles
cannot be added to the server roles collection. Membership in the Administrators role permits
complete access to every object in the server

 236

T:Microsoft.AnalysisServices.Role objects are created at database level. Role maintenance
requires only adding or removing members to or from the role, and adding or dropping roles to
the T:Microsoft.AnalysisServices.Database object. A role cannot be dropped if there is any
T:Microsoft.AnalysisServices.Permission object associated with the role. To drop a role, all
T:Microsoft.AnalysisServices.Permission objects in the T:Microsoft.AnalysisServices.Database
objects must be searched, and the T:Microsoft.AnalysisServices.Role removed from permissions,
before the T:Microsoft.AnalysisServices.Role can be dropped from the
T:Microsoft.AnalysisServices.Database.
Permissions define the enabled actions on the object where the permission is supplied.
Permissions can be supplied to the following objects: T:Microsoft.AnalysisServices.Database,
T:Microsoft.AnalysisServices.DataSource, T:Microsoft.AnalysisServices.Dimension,
T:Microsoft.AnalysisServices.Cube, T:Microsoft.AnalysisServices.MiningStructure, and
T:Microsoft.AnalysisServices.MiningModel. Permission maintenance involves granting or revoking
enabled access by the corresponding access property. For each enabled access, there is a
property that can be set to the desired level of access. Access can be defined for the following
operations: Process, ReadDefinition, Read, Write, and Administer. Administer access is only
defined on the T:Microsoft.AnalysisServices.Database object. The database administrator security
level is obtained when the role is granted with the Administer database permission.
The following sample creates four roles: Database Administrators, Processors, Writers, and
Readers.
Database Administrators can administer the supplied database.
Processors can process all objects in a database and verify results. To verify results, read access
to the database object must be explicitly enabled to the supplied cube, because read permission
does not apply to children objects.
Writers can read and write to the supplied cube, and cell access is limited to the 'United States'
in the customer dimension.
Readers can read on the supplied cube, and cell access is limited to the 'United States' in the
customer dimension.

 static public void CreateRolesAndPermissions(Database db, Cube cube)

 {

 Role role;

 DatabasePermission dbperm;

 CubePermission cubeperm;

 #region Create the Database Administrators role

 // Create the Database Administrators role.

 role = db.Roles.Add("Database Administrators");

 237

 role.Members.Add(new RoleMember("")); // e.g. domain\user

 role.Update();

 // Assign administrative permissions to this role.

 // Members of this role can perform any operation within the database.

 dbperm = db.DatabasePermissions.Add(role.ID);

 dbperm.Administer = true;

 dbperm.Update();

 #endregion

 #region Create the Processors role

 // Create the Processors role.

 role = db.Roles.Add("Processors");

 role.Members.Add(new RoleMember("")); // e.g. myDomain\johndoe

 role.Update();

 // Assign Read and Process permissions to this role.

 // Members of this role can process objects in the database and query them to verify

results.

 // Process permission applies to all contained objects, i.e. all dimensions and

cubes.

 // Read permission does not apply to contained objects, so we must assign the

permission explicitly on the cubes.

 dbperm = db.DatabasePermissions.Add(role.ID);

 dbperm.Read = ReadAccess.Allowed;

 dbperm.Process = true;

 dbperm.Update();

 cubeperm = cube.CubePermissions.Add(role.ID);

 cubeperm.Read = ReadAccess.Allowed;

 cubeperm.Update();

 238

 #endregion

 #region Create the Writers role

 // Create the Writers role.

 role = db.Roles.Add("Writers");

 role.Members.Add(new RoleMember("")); // e.g. redmond\johndoe

 role.Update();

 // Assign Read and Write permissions to this role.

 // Members of this role can discover, query and writeback to the Adventure Works

cube.

 // However cell access and writeback is restricted to the United States (in the

Customer dimension).

 dbperm = db.DatabasePermissions.Add(role.ID);

 dbperm.Read = ReadAccess.Allowed;

 dbperm.Update();

 cubeperm = cube.CubePermissions.Add(role.ID);

 cubeperm.Read = ReadAccess.Allowed;

 cubeperm.Write = WriteAccess.Allowed;

 cubeperm.CellPermissions.Add(new CellPermission(CellPermissionAccess.Read,

"[Customer].[Country-Region].CurrentMember is [Customer].[Country-Region].[Country-

Region].&[United States]"));

 cubeperm.CellPermissions.Add(new CellPermission(CellPermissionAccess.ReadWrite,

"[Customer].[Country-Region].CurrentMember is [Customer].[Country-Region].[Country-

Region].&[United States]"));

 cubeperm.Update();

 #endregion

 #region Create the Readers role

 // Create the Readers role.

 239

 role = db.Roles.Add("Readers");

 role.Members.Add(new RoleMember("")); // e.g. redmond\johndoe

 role.Update();

 // Assign Read permissions to this role.

 // Members of this role can discover and query the Adventure Works cube.

 // However the Customer dimension is restricted to the United States.

 dbperm = db.DatabasePermissions.Add(role.ID);

 dbperm.Read = ReadAccess.Allowed;

 dbperm.Update();

 cubeperm = cube.CubePermissions.Add(role.ID);

 cubeperm.Read = ReadAccess.Allowed;

 Dimension dim = db.Dimensions.GetByName("Customer");

 DimensionAttribute attr = dim.Attributes.GetByName("Country-Region");

 CubeDimensionPermission cubedimperm = cubeperm.DimensionPermissions.Add(dim.ID);

 cubedimperm.Read = ReadAccess.Allowed;

 AttributePermission attrperm = cubedimperm.AttributePermissions.Add(attr.ID);

 attrperm.AllowedSet = "{[Customer].[Country-Region].[Country-Region].&[United

States]}";

 cubeperm.Update();

 #endregion

 }

See Also
N:Microsoft.AnalysisServices
Introducing AMO classes
Programming AMO Security objects
Permissions and Access Rights (SSAS)
Securing the Analysis Services Instance
Logical Architecture (Analysis Services - Multidimensional Data)
Analysis Services Objects (SSAS)

http://msdn.microsoft.com/en-us/library/59fa3573-f985-46cb-8042-7da71bd59a7b(SQL.110)�
http://msdn.microsoft.com/en-us/library/e177d7a0-40a3-49d1-a2c6-05c62963f3a2(SQL.110)�

 240

Programming AMO Complementary Classes and Methods
This topic contains the following sections:
• Assembly Class
• Backup and Restore
• Trace Class
• CaptureLog class and CaptureXML attribute
Assembly Class
Assemblies let users extend the functionality of Microsoft SQL Server Analysis Services by
adding new stored procedures or Multidimensional Expressions (MDX) functions. For more
information, see Processing Analysis Services Objects.
Adding and dropping assemblies is simple and can be performed online. You must be a
database administrator to add an assembly to the database or a server administrator to add the
assembly to the server object.
The following sample adds an assembly to the provided database and assigns the service
account to run the assembly. If the assembly exists in the database, the assembly is dropped
before trying to add it.

 static public void CreateStoredProcedures(Database db)

 {

 ClrAssembly clrAssembly;

 // Verify That assembly exist in database and drop it

 if (db.Assemblies.ContainsName("StoredProcedures"))

 {

 clrAssembly = db.Assemblies.FindByName("StoredProcedures");

 clrAssembly.Drop();

 }

 // Create the CLR assembly

 clrAssembly = db.Assemblies.Add("StoredProcedures");

 clrAssembly.ImpersonationInfo = new ImpersonationInfo(

 ImpersonationMode.ImpersonateServiceAccount);

 clrAssembly.PermissionSet = PermissionSet.Unrestricted;

 // Load the assembly files

 clrAssembly.LoadFiles(Environment.CurrentDirectory

 241

 + @"\StoredProcedures2.dll", false);

 clrAssembly.Update();

 }

Backup and Restore Methods
The Backup and Restore methods let administrators back up databases and restore them.
The following sample creates backups for all databases in the specified server. If a backup file
already exists, then it is overwritten. Backup files are saved in the BackUp folder in the Analysis
Services Data folder.

 static public void BackUpAllDatabases(Server svr)

 {

 string fileName;

 if ((svr != null) && (svr.Connected))

 foreach (Database db in svr.Databases)

 {

 fileName = db.Name + "_" + ((Int64)(DateTime.Today.Year * 10000 +

DateTime.Today.Month * 100 + DateTime.Today.Day)).ToString()+ ".abf";

 db.Backup(fileName, true);

 }

 }

The following sample restores the "Adventure Works" backup from the previous sample. If the
"My Adventure WorksDW" database already exists, then the database is overwritten.

 static public void RestoreAdventureWorks(Server svr)

 {

 svr.Restore("Adventure Works DW_20051025.abf", "My Adventure WorksDW", true);

 }

Trace Class
Monitoring the server activity requires using two kinds of traces: Session Traces and Server
Traces. Tracing the server can tell you how your current task is performing on the server (Session
Traces) or the traces can tell you about the overall activity in the server without you even being
connected to the server (Server Traces).
When tracing current activity (Session Traces), the server sends notifications to the current
application about the events that are occurring in the server that are caused by the application.
Events are captured using event handlers in the current application. You first assign the event

 242

handling routines to the T:Microsoft.AnalysisServices.SessionTrace object and then start the
Session Trace.
The following sample shows how to setup a Session Trace to trace current activities. Event
handler routines are located at the end of the sample and will output all trace information to the
System.Console object. To generate tracing events the "Adventure Works" sample cube will be
fully processed after the trace starts.

 static public void TestSessionTraces(Server svr)

 {

 // Start the default trace

 svr.SessionTrace.OnEvent

 += new TraceEventHandler(DefaultTrace_OnEvent);

 svr.SessionTrace.Stopped

 += new TraceStoppedEventHandler(DefaultTrace_Stopped);

 svr.SessionTrace.Start();

 // Process the databases

 // The trace handlers will output all progress notifications

 // to the console

 Database db = svr.Databases.FindByName("Adventure Works DW Multidimensional 2012");

 Cube cube = db.Cubes.FindByName("Adventure Works");

 cube.Process(ProcessType.ProcessFull);

 // Stop the default trace

 svr.SessionTrace.Stop();

 }

 static public void DefaultTrace_OnEvent(object sender, TraceEventArgs e)

 {

 Console.WriteLine("{0}", e.TextData);

 }

 static public void DefaultTrace_Stopped(ITrace sender, TraceStoppedEventArgs e)

 243

 {

 switch (e.StopCause)

 {

 case TraceStopCause.StoppedByUser:

 case TraceStopCause.Finished:

 Console.WriteLine("Processing completed successfully");

 break;

 case TraceStopCause.StoppedByException:

 Console.WriteLine("Processing failed: {0}",

 e.Exception.Message);

 break;

 }

 }

Server traces can be configured to log everything to a trace file and can be automatically
restarted when the service restarts.
To set a server trace, you first need to define which events in the server to be monitored, and
what data from the event should be saved in the trace file. For each event, you must define the
data columns to be saved in the trace file.
Creating a server trace requires four steps:
1. Create the server trace object and populate basic common attributes.

LogFileSize defines the maximum size of the trace file and is defined in MegaBytes;
LogFileRollOver enables the logfile to start on a different file if LogFileSize limit is reached,
when enabled the file name is appended with a sequence namber; AutoRestart enables the
trace to start again if the Service is restarted.

2. Create the events and the corresponding data columns.
3. Start and stop the trace as needed.

Even after the trace has been stopped, the trace exists in the server and should start again if
the trace was defined as AutoRestart=true.

4. Drop the trace when no longer needed.
In the following sample, if the trace already exists, it is dropped and then recreated. Trace files
are saved in the Log folder of Analysis Services data folders.

 static public void TestServerTraces(Server svr)

 {

 Trace trc;

 TraceEvent te;

 244

 trc = svr.Traces.FindByName("TestServerTraces");

 if (trc != null)

 trc.Drop();

 trc = svr.Traces.Add("TestServerTraces", "TestServerTraces");

 trc.LogFileName = ("TestServerTraces_" +((Int64)(DateTime.Now.Year * 10000 +

DateTime.Now.Month * 100 + DateTime.Now.Day)).ToString() + "_" +

 ((Int64)(DateTime.Now.Hour * 10000 + DateTime.Now.Minute * 100 +

DateTime.Now.Second)).ToString() + ".trc");

 trc.LogFileSize = 100;

 trc.LogFileRollover = true;

 trc.AutoRestart = false;

 #region Define Events to trace & data columns per event

 te = trc.Events.Add(TraceEventClass.ProgressReportBegin);

 te.Columns.Add(TraceColumn.TextData);

 te.Columns.Add(TraceColumn.StartTime);

 te.Columns.Add(TraceColumn.ObjectName);

 te.Columns.Add(TraceColumn.ObjectPath);

 te.Columns.Add(TraceColumn.DatabaseName);

 te.Columns.Add(TraceColumn.NTCanonicalUserName);

 te = trc.Events.Add(TraceEventClass.ProgressReportCurrent);

 te.Columns.Add(TraceColumn.TextData);

 te.Columns.Add(TraceColumn.CurrentTime);

 te.Columns.Add(TraceColumn.ObjectName);

 te.Columns.Add(TraceColumn.ObjectPath);

 te.Columns.Add(TraceColumn.DatabaseName);

 te = trc.Events.Add(TraceEventClass.ProgressReportEnd);

 te.Columns.Add(TraceColumn.TextData);

 te.Columns.Add(TraceColumn.StartTime);

 te.Columns.Add(TraceColumn.CurrentTime);

 245

 te.Columns.Add(TraceColumn.EndTime);

 te.Columns.Add(TraceColumn.Success);

 te.Columns.Add(TraceColumn.Error);

 te.Columns.Add(TraceColumn.ObjectName);

 te.Columns.Add(TraceColumn.ObjectPath);

 te.Columns.Add(TraceColumn.DatabaseName);

 te.Columns.Add(TraceColumn.NTCanonicalUserName);

 #endregion

 trc.Update();

 trc.Start();

 #region Process the Adventure Works Cube

 // The trace settings will output all progress notifications

 // to the trace file

 Database db = svr.Databases.FindByName("Adventure Works DW Multidimensional

2012");

 Cube cube = db.Cubes.FindByName("Adventure Works");

 cube.Process(ProcessType.ProcessFull);

 #endregion

 trc.Stop();

 trc.Drop();

 }

CaptureLog and CaptureXml Attributes
The CaptureLog attribute enables you to create XMLA batch files from your AMO operations.
CaptureLog enables you to script out server objects as databases, cubes, dimensions, mining
structures, and others.
Creating a CaptureLog requires the following steps:
1. Start capturing the XMLA log by setting the server attribute CaptureXml to true.

This option will start saving all AMO operations to a string collection instead of sending
them to the server.

 246

2. Start AMO activity as usual, but remember that no action is being sent to the server. Activity
can be any operation such as processing, creating, deleting, updating, or any other action
over an object.

3. Stop capturing the XMLA log by resetting CaptureXml to false.
4. Review the captured XMLA, either by reviewing each of the strings in the CaptureLog string

collection, or by generating a complete string with the ConcatenateCaptureLog method.
ConcatenateCaptureLog enables you to generate the XMLA batch as a single transaction and
to add the parallel process option to the batch.

The following sample returns a string with the batch commands to do a Full process on all
dimensions and on all cubes on the [Adventure Works DW Multidimensional 2012] database.

 static public string TestCaptureLog(Server svr)

 {

 String capturedXmla = "";

 if ((svr != null) && (svr.Connected))

 {

 svr.CaptureXml = true;

 #region Actions to be captured to an XMLA file

 //No action is executed during CaptureXml = true

 Database db = svr.Databases.FindByName("Adventure Works DW Multidimensional

2012");

 foreach (Dimension dim in db.Dimensions)

 dim.Process(ProcessType.ProcessFull);

 foreach (Cube cube in db.Cubes)

 cube.Process(ProcessType.ProcessFull);

 #endregion

 svr.CaptureXml = false;

 capturedXmla = svr.ConcatenateCaptureLog(true, true);

 }

 return capturedXmla;

 }

 247

See Also
N:Microsoft.AnalysisServices
Introducing AMO classes
AMO Other classes and methods
Logical Architecture (Analysis Services - Multidimensional Data)
Analysis Services Objects (SSAS)
Processing Analysis Services Objects

Developing with Analysis Services Scripting
Language (ASSL)
Analysis Services Scripting Language (ASSL) is an extension to XMLA that adds an object
definition language and command language for creating and managing Analysis Services
structures directly on the server. You can use ASSL in custom application to communicate with
Analysis Services over the XMLA protocol. ASSL is made up of two parts:
• A Data Definition Language (DDL), or object definition language, defines and describes an

instance of Analysis Services, as well as the databases and database objects that the instance
contains.

• A command language that sends action commands, such as Create, Alter, or Process, to an
instance of Analysis Services. This command language is discussed in the Data Sources and
Bindings (Analysis Services - Multidimensional Data).

 To view the ASSL that describes a multidimensional solution in SQL Server Data Tools, you can
use the View Code command at the project level. You can also create or edit ASSL script in
Management Studio using the XMLA query editor. The scripts you build can be used to manage
objects or run commands on the server.

See Also
Overview of Analysis Services Scripting Language
Objects and Object Characteristics
XML Style and Conventions
Data Sources and Bindings

ASSL Objects and Object Characteristics
Objects in Analysis Services Scripting Language (ASSL) follow specific guidelines in regards to
object groups, inheritance, naming, expansion, and processing.

Object Groups

http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/88045e05-ce47-4e28-999b-7f9c74af9faf(SQL.110)�
http://msdn.microsoft.com/en-us/library/88045e05-ce47-4e28-999b-7f9c74af9faf(SQL.110)�
http://msdn.microsoft.com/en-us/library/88045e05-ce47-4e28-999b-7f9c74af9faf(SQL.110)�
http://msdn.microsoft.com/en-us/library/8e19dba2-6738-48ff-b90f-f2af2b1d5a68(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc028030-dda2-4660-b818-c3160d79fd6d(SQL.110)�

 248

All Microsoft SQL Server Analysis Services objects have an XML representation. The objects are
divided into two groups:
Major objects

Major objects can be independently created, altered, and deleted. Major objects include:

• Servers

• Databases

• Dimensions

• Cubes

• Measure groups

• Partitions

• Perspectives

• Mining models

• Roles

• Commands associated with a server or database

• Data sources

Major objects have the following properties to track their history and status.

• CreatedTimestamp

• LastSchemaUpdate

• LastProcessed (where appropriate)

Note
The classification of an object as a major object affects how an instance of Analysis Services treats that
object and how that object is handled in the object definition language. However, this classification
does not guarantee that Analysis Services management and development tools will allow the
independent creation, modification, or deletion of these objects.

Minor objects

Minor objects can only be created, altered, or deleted as part of creating, altering, or deleting
the parent major object. Minor objects include:

• Hierarchies and levels

• Attributes

• Measures

• Mining model columns

• Commands associated with a cube

• Aggregations

Object Expansion
The ObjectExpansion restriction can be used to control the degree of expansion of ASSL XML
returned by the server. This restriction has the options listed in the following table.

 249

Enumeration value Allowed for <Alter> Description

ReferenceOnly no Returns only the name, ID, and
timestamp for the requested
object and for all contained
major objects recursively.

ObjectProperties yes Expands the requested object
and minor contained objects,
but does not return major
contained objects.

ExpandObject no Same as ObjectProperties, but
also returns the name, ID, and
timestamp for contained major
objects.

ExpandFull yes Fully expands the requested
object and all contained objects
recursively.

This ASSL reference section describes the ExpandFull representation. All other ObjectExpansion
levels are derived from this level.

Object Processing
ASSL includes read-only elements or properties (for example, LastProcessed) that can be read
from the Analysis Services instance, but which are omitted when command scripts are submitted
to the instance. Analysis Services ignores modified values for read-only elements without
warning or error.
Analysis Services also ignores inappropriate or irrelevant properties without raising validation
errors. For example, the X element should only be present when the Y element has a particular
value. The Analysis Services instance ignores the X element instead of validating that element
against the value of the Y element.

See Also
Introducing Analysis Services Scripting Language

ASSL XML Conventions
Analysis Services Scripting Language (ASSL) represents the hierarchy of objects as a set of
element types, each of which defines the child elements they can contain.
To represent the object hierarchy, ASSL uses the following XML conventions:

http://msdn.microsoft.com/en-us/library/19a4c5bf-32f1-4e36-801a-dab0931f981c(SQL.110)�

 250

• All objects and properties are represented as elements, except for standard XML attributes
such as ‘xml:lang’.

• Both element names and enumeration values follow the Microsoft .NET Framework naming
convention of Pascal casing with no underscores.

• The case of all values is preserved. Values for enumerations are also case-sensitive.
In addition to this list of conventions, Analysis Services also follows certain conventions
regarding cardinality, inheritance, whitespace, data types, and default values.

For more information on each element's description, type, cardinality, and default value,
as well as any relevant additional information, see Introducing Analysis Services Scripting
Language.

Cardinality
When an element has a cardinality that is greater than 1, there is an XML element collection that
encapsulates this element. The name of collection uses the plural form of the elements
contained in the collection. For example, the following XML fragment represents the
Dimensions collection within a Database element:
 <Database>
 …
 <Dimensions>
 <Dimension>
 ...
 </Dimension>
 <Dimension>
 ...
 </Dimension>
 </Dimensions>
</Database>

The order in which elements appear is unimportant.

Inheritance
Inheritance is used when there are distinct objects that have overlapping but significantly
different sets of properties. Examples of such overlapping but distinct objects are virtual cubes,
linked cubes, and regular cubes. For overlapping but distinct object, Analysis Services uses the
standard type attribute from the XML Instance Namespace to indicate the inheritance. For
example, the following XML fragment shows how the type attribute identifies whether a Cube
element inherits from a regular cube or from a virtual cube:
 <Cubes>

Note

http://msdn.microsoft.com/en-us/library/7ac07e82-8806-4e9e-8123-22c09c0296de(SQL.110)�
http://msdn.microsoft.com/en-us/library/7ac07e82-8806-4e9e-8123-22c09c0296de(SQL.110)�

 251

 <Cube xsi:type=”RegularCube”>
 <Name>Sales</Name>
 ...
 </Cube>
 <Cube xsi:type=”VirtualCube”>
 <Name>SalesAndInventory</Name>
 ...
 </Cube>
 </Cubes>

Inheritance is generally not used when multiple types have a property of the same name. For
example, the Name and ID properties appear on many elements, but these properties have not
been promoted to an abstract type.

Whitespace
Whitespace within an element value is preserved. However, leading and trailing whitespace is
always trimmed. For example, the following elements have the same text but differing amounts
of whitespace within that text, and are therefore treated as if they have different values:
 <Description>My text<Description>
 <Description>My text<Description>

However, the following elements vary only in leading and trailing whitespace, and are therefore
treated as if they have equivalent values:
 <Description>My text<Description>
 <Description> My text <Description>

Data Types
Analysis Services uses the following standard XML Schema definition language (XSD) data types:
Int

An integer value in the range of -231 to 231 – 1.

Long

An integer value in range of -263 to 263 – 1.

String

A string value that conforms to the following global rules:

• Control characters are stripped out.

• Leading and trailing white space is trimmed.

 252

• Internal white space is preserved.

Name and ID properties have special limitations on valid characters in string elements. For
additional information about Name and ID conventions, see Objects and Object
Characteristics.

DateTime

A DateTime structure from the .NET Framework. A DateTime value cannot be NULL. The
lowest date supported by the DataTime data type is January 1, 1601, which is available to
programmers as DateTime.MinValue. The lowest supported date indicates that a DateTime
value is missing.

Boolean

An enumeration with only two values, such as {true, false} or {0, 1}.

Default Values
Analysis Services uses the defaults listed in the following table.

XML data type Default value

Boolean False

String "" (empty string)

Integer or Long 0 (zero)

Timestamp 12:00:00 AM, 1/1/0001 (corresponding to a
the .NET Frameworks System.DateTime
with 0 ticks)

An element that is present but empty is interpreted as having a value of a null string, not the
default value.

Inherited Defaults
Some properties that are specified on an object provide default values for the same property on
child or descendant objects. For example, Cube.StorageMode provides the default value for
Partition.StorageMode. The rules that Analysis Services applies for inherited default values are
as follows:
• When the property for the child object is null in the XML, its value defaults to the inherited

value. However, if you query the value from the server, the server returns the null value of
the XML element.

• It is not possible to determine programmatically whether the property of a child object has
been set directly on the child object or inherited.

 253

Some elements have defined defaults that apply when the element is missing. For example, the
Dimension elements in the following XML fragment are equivalent even though one
Dimension element contains a Visible element, but the other Dimension element does not.
 <Dimension>
 <Name>Product</Name>
 </Dimension>

 <Dimension>
 <Name>Product</ Name>
 <Visible>true</Visible>
 </Dimension>

For more information on inherited defaults, see Objects and Object Characteristics.

See Also
Introducing Analysis Services Scripting Language

XMLA Concepts
The XML for Analysis (XMLA) open standard supports data access to data sources that reside on
the World Wide Web. Microsoft SQL Server Analysis Services implements XMLA per the XMLA
1.1 specification.
XML for Analysis (XMLA) is a Simple Object Access Protocol (SOAP)-based XML protocol,
designed specifically for universal data access to any standard multidimensional data source
residing on the Web. XMLA also eliminates the need to deploy a client component that exposes
Component Object Model (COM) or Microsoft .NET Framework interfaces. XMLA is optimized
for the Internet, when round trips to the server are expensive in terms of time and resources,
and when stateful connections to a data source can limit user connections on the server.
XMLA is the native protocol for Microsoft SQL Server Analysis Services, used for all interaction
between a client application and an instance of Analysis Services. Analysis Services fully supports
XML for Analysis 1.1, and also provides extensions to support metadata management, session
management, and locking capabilities. Both Analysis Management Objects (AMO) and
ADOMD.NET use the XMLA protocol when communicating with an instance of Analysis Services.

Handling XMLA Communications
The XMLA open standard describes two generally accessible methods: Discover and Execute.
These methods use the loosely-coupled client and server architecture supported by XML to
handle incoming and outgoing information on an instance of Analysis Services.
The Discover method obtains information and metadata from a Web service. This information
can include a list of available data sources, as well as information about any of the data source

http://msdn.microsoft.com/en-us/library/19a4c5bf-32f1-4e36-801a-dab0931f981c(SQL.110)�

 254

providers. Properties define and shape the data that is obtained from a data source. The
Discover method is a common method for defining the many types of information a client
application may require from data sources on Analysis Services instances. The properties and the
generic interface provide extensibility without requiring you to rewrite existing functions in a
client application.
The Execute method allows applications to run provider-specific commands against XMLA data
sources.
Although the XMLA protocol is optimized for Web applications, it can also be leveraged for
LAN-oriented applications. The following applications can benefit from this XML-based API:
• Client/server applications that require flexible technology between clients and the server
• Client/server applications that target multiple operating systems
• Clients that do not require significant state in order to increase server capacity

XMLA and the Unified Dimensional Model
XMLA is the protocol used by business intelligence applications that employ the Unified
Dimensional Model (UDM) methodology

Developing with XMLA in Analysis Services
XML for Analysis (XMLA) is a SOAP-based XML protocol, designed specifically for universal data
access to any standard multidimensional data source that can be accessed over an HTTP
connection. Analysis Services uses XMLA as its only protocol when communicating with client
applications. Fundamentally, all client libraries supported by Analysis Services formulate requests
and responses in XMLA.
As a developer, you can use XMLA to integrate a client application with Analysis Services,
without any dependencies on the .NET Framework or COM interfaces. Application requirements
that include hosting on a wide range of platforms can be satisfied by using XMLA and an HTTP
connection to Analysis Services.
Analysis Services is fully compliant with the 1.1 specification of XMLA, but also extends it to
enable data definition, data manipulation, and data control support. Analysis Services extensions
are referred to as the Analysis Services Scripting Language (ASSL). Using XMLA and ASSL
together enables a broader set of functionality than what XMLA alone provides. For more
information about ASSL, see Developing with Analysis Services Scripting Language (ASSL).
In This Section

Topic Description

Managing Connections and Sessions Describes how to connect to an Analysis
Services instance, and how to manage
sessions and statefulness in XMLA.

 255

Topic Description

Handling Errors and Warnings (XMLA) Describes how Analysis Services returns
error and warning information for methods
and commands in XMLA.

Defining and Identifying Objects (XMLA) Describes object identifiers and object
references, and how to use identifiers and
references within XMLA commands.

Managing Transactions (XMLA) Details how to use
the BeginTransaction, CommitTransaction,
and RollbackTransaction commands to
explicitly define and manage a transaction
on the current XMLA session.

Canceling Commands (XMLA) Describes how to use the Cancelcommand
to cancel commands, sessions, and
connections in XMLA.

Performing Batch Operations (XMLA) Describes how to use the Batch command
to run multiple XMLA commands, in serial
or in parallel, either within the same
transaction or as separate transactions,
using a single XMLA Execute method.

Creating and Altering Objects (XMLA) Describes how to use the Create, Alter,
and Delete commands, along with Analysis
Services Scripting Language (ASSL)
elements, to define, change, or remove
objects from an Analysis Services instance.

Locking and Unlocking Databases (XMLA) Details how to use the Lock and Unlock
commands to lock and unlock an Analysis
Services database.

Processing Objects (XMLA) Describes how to use the Process
command to process an Analysis Services
object.

Merging Partitions (XMLA) Describes how to use the MergePartitions
command to merge partitions on an
Analysis Services instance.

Designing Aggregations (XMLA) Describes how to use
the DesignAggregations command, either
in iterative or batch mode, to design
aggregations for an aggregation design in

http://msdn.microsoft.com/en-us/library/fca122fc-b57c-4ba6-849b-ca8c93cf64e9(SQL.110)�
http://msdn.microsoft.com/en-us/library/1cd814dc-a0be-4305-b44d-faf15e843f7d(SQL.110)�
http://msdn.microsoft.com/en-us/library/40e7dc00-656f-412f-97f0-d05bf7caa196(SQL.110)�
http://msdn.microsoft.com/en-us/library/de4062c1-7434-44dc-9f01-29fcf78963bd(SQL.110)�
http://msdn.microsoft.com/en-us/library/818f3212-9605-4e34-8623-1154d9fae1f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/0fff5221-7164-4bbc-ab58-49cf04c52664(SQL.110)�
http://msdn.microsoft.com/en-us/library/a623d362-a1ac-40e4-8816-65fac89cb391(SQL.110)�
http://msdn.microsoft.com/en-us/library/84e58385-c9ba-48fa-a867-94d35b777a56(SQL.110)�
http://msdn.microsoft.com/en-us/library/76201b18-11e9-4815-9287-27a068d8fbc5(SQL.110)�
http://msdn.microsoft.com/en-us/library/a819e805-4793-43bb-8af3-16a19f8bdab3(SQL.110)�
http://msdn.microsoft.com/en-us/library/46425b33-baa2-41ad-803a-34d2fb4b2cab(SQL.110)�
http://msdn.microsoft.com/en-us/library/886fd480-c0e6-4c9b-b65e-da47f874d938(SQL.110)�
http://msdn.microsoft.com/en-us/library/cf538189-0629-49b3-8e01-32afba7b020d(SQL.110)�
http://msdn.microsoft.com/en-us/library/4c419dbc-7405-40aa-8ddd-6b46685a297d(SQL.110)�

 256

Topic Description

Analysis Services.

Backing Up, Restoring, and Synchronizing
Databases (XMLA)

Describes how to use the Backup
and Restore commands to back up and
restore an Analysis Services database from
a backup file.
Also describes how to use the Synchronize
command to synchronize an Analysis
Services database with an existing database
on the same instance or on a different
instance.

Inserting, Updating, and Dropping
Members (XMLA)

Describes how to use the Insert, Update,
and Drop commands to add, change, or
delete members from a write-enabled
dimension.

Updating Cells (XMLA) Describes how to use the UpdateCells
command to change the values of cells in a
write-enabled partition.

Managing Caches (XMLA) Details how to use the ClearCache
command to clear the caches of Analysis
Services objects.

Monitoring Traces (XMLA) Describes how to use the Subscribe
command to subscribe to and monitor an
existing trace on an Analysis Services
instance.

Data Mining with XMLA
XML for Analysis fully supports data mining schema rowsets. These rowsets provide information
for querying data mining models using the Discover method. For more information about data
mining schema rowsets, see Data Mining Schema Rowsets

For more information about DMX, see Data Mining Extensions (DMX) Reference.
Namespace and Schema
Namespace
The schema defined in this specification uses the XML namespace
http://schemas.microsoft.com/AnalysisServices/2003/Engine and the standard abbreviation
“DDL.”

http://msdn.microsoft.com/en-us/library/5bcbc14c-9db9-45b2-99de-f3a265bcb0c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/bb5a0c92-3927-4fa4-975b-6e4d79e0a912(SQL.110)�
http://msdn.microsoft.com/en-us/library/9401323c-feff-409a-a9da-94aee47e0563(SQL.110)�
http://msdn.microsoft.com/en-us/library/d1137033-cc19-4bcb-b93d-8575f17bea6b(SQL.110)�
http://msdn.microsoft.com/en-us/library/324dcc16-865d-4d0a-b393-2b06c18ac807(SQL.110)�
http://msdn.microsoft.com/en-us/library/a5d21db3-743a-4958-b16d-b6816a5ee787(SQL.110)�
http://msdn.microsoft.com/en-us/library/18336a35-8a46-4532-9ee7-71828b2982af(SQL.110)�
http://msdn.microsoft.com/en-us/library/e154b489-e443-469a-9490-43c62da62e11(SQL.110)�
http://msdn.microsoft.com/en-us/library/aad50dd7-44d4-4d83-a973-187f9aed35ec(SQL.110)�
http://msdn.microsoft.com/en-us/library/0eb52d88-c081-416e-a229-610e4373b0b3(SQL.110)�
http://msdn.microsoft.com/en-us/library/bd7d5df5-500b-4159-8467-880e141bc043(SQL.110)�
http://msdn.microsoft.com/en-us/library/6d85ca20-de67-4e20-b3b5-b734c6cfcece(SQL.110)�
http://schemas.microsoft.com/AnalysisServices/2003/Engine

 257

Schema
The definition of an XML Schema definition language (XSD) schema for the Analysis Services
object definition language is based on the definition of the schema elements and hierarchy in
this section.
Extensibility
Extensibility of the object definition language schema is provided by means of an Annotation
element that is included on all objects. This element can contain any valid XML from any XML
namespace (other than the target namespace that defines the DDL), subject to the following
rules:
• The XML can contain only elements.
• Each element must have a unique name. It is recommended that the value of Name

reference the target namespace.
These rules are imposed so that the contents of the Annotation tag can be exposed as a set of
Name/Value pairs through Decision Support Objects (DSO) 9.0.
Comments and white space within the Annotation tag that are not enclosed with a child
element may not be preserved. In addition, all elements must be read-write; read-only elements
are ignored.
The object definition language schema is closed, in that the server does not allow substitution of
derived types for elements defined in the schema. Therefore, the server accepts only the set of
elements defined here, and no other elements or attributes. Unknown elements cause the
Analysis Services engine to raise an error.
See Also
ASSL
Planning and Architecture (Analysis Services - Multidimensional Data)

Managing Connections and Sessions (XMLA)
Statefulness is a condition during which the server preserves the identity and context of a client
between method calls. Statelessness is a condition during which the server does not remember
the identity and context of a client after a method call finishes.
To provide statefulness, XML for Analysis (XMLA) supports sessions that allow a series of
statements to be performed together. An example of such a series of statements would be the
creation of a calculated member that is to be used in subsequent queries.
In general, sessions in XMLA follow the following behavior outlined by the OLE DB 2.6
specification:
• Sessions define transaction and command context scope.
• Multiple commands can be run in the context of a single session.
• Support for transactions in the XMLA context is through provider-specific commands sent

with the Execute method.

http://msdn.microsoft.com/en-us/library/0fff5221-7164-4bbc-ab58-49cf04c52664(SQL.110)�

 258

XMLA defines a way to support sessions in a Web environment in a mode similar to the
approach used by the Distributed Authoring and Versioning (DAV) protocol to implement
locking in a loosely coupled environment. This implementation parallels DAV in that the
provider is allowed to expire sessions for various reasons (for example, a timeout or connection
error). When sessions are supported, Web services must be aware and ready to handle
interrupted sets of commands that must be restarted.
The World Wide Web Consortium (W3C) Simple Object Access Protocol (SOAP) specification
recommends using SOAP headers for building up new protocols on top of SOAP messages. The
following table lists the SOAP header elements and attributes that XMLA defines for initiating,
maintaining, and closing a session.

SOAP header Description

BeginSession This header requests the provider to create
a new session. The provider should respond
by constructing a new session and
returning the session ID as part of the
Session header in the SOAP response.

SessionId The value area contains the session ID that
must be used in each method call for the
rest of the session. The provider in the
SOAP response sends this tag and the
client must also send this attribute with
each Session header element.

Session For every method call that occurs in the
session, this header must be used, and the
session ID must be included in the value
area of the header.

EndSession To terminate the session, use this header.
The session ID must be included with the
value area.

A session ID does not guarantee that a session stays valid. If the session expires (for
example, if it times out or the connection is lost), the provider can choose to end and roll
back that session's actions. As a result, all subsequent method calls from the client on a
session ID fail with an error signaling a session that is not valid. A client should handle
this condition and be prepared to resend the session method calls from the beginning.

Legacy Code Example

Note

 259

The following example shows how sessions are supported.
1. To begin the session, add a BeginSession header in SOAP to the outbound XMLA method

call from the client. The value area is initially blank because the session ID is not yet known.

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Header>

 <XA:BeginSession

 xmlns:XA="urn:schemas-microsoft-com:xml-analysis"

 xsi:type="xsd:int"

 mustUnderstand="1"/>

 </SOAP-ENV:Header>

 <SOAP-ENV:Body>

 ...<!-- Discover or Execute call goes here.-->

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

2. The SOAP response message from the provider includes the session ID in the return header
area, using the XMLA header tag <SessionId>.

<SOAP-ENV:Header>

 <XA:Session

 xmlns:XA="urn:schemas-microsoft-com:xml-analysis"

 SessionId="581"/>

</SOAP-ENV:Header>

3. For each method call in the session, the Session header must be added, containing the
session ID returned from the provider.

<SOAP-ENV:Header>

 <XA:Session

 xmlns:XA="urn:schemas-microsoft-com:xml-analysis"

 mustUnderstand="1"

 SessionId="581"/>

</SOAP-ENV:Header>

4. When the session is complete, the <EndSession> tag is used, containing the related session
ID value.

<SOAP-ENV:Header>

 <XA:EndSession

 260

 xmlns:XA="urn:schemas-microsoft-com:xml-analysis"

 xsi:type="xsd:int"

 mustUnderstand="1"

 SessionId="581"/>

</SOAP-ENV:Header>

See Also
Using XML for Analysis in Analysis Services (XMLA)

Handling Errors and Warnings (XMLA)
Error handling is required when an XML for Analysis (XMLA) Discover or Execute method call
does not run, runs successfully but generates errors or warnings, or runs successfully but returns
results that contain errors.

Error Reporting

The XMLA method call does not run Microsoft SQL Server Analysis Services
returns a SOAP fault message that contains
the details of the failure.
For more information, see the
section, Handling SOAP Faults.

Errors or warnings on a successful method
call

Analysis Services includes an error
or warning element for each error or
warning, respectively, in the Messages
property of the root element that contains
the results of the method call.
For more information, see the
section, Handling Errors and Warnings.

Errors in the result for a successful method
call

Analysis Services includes an inline error or
warning element for the error or warning,
respectively, within the appropriate Cell
or row element of the results of the method
call.
For more information, see the
section, Handling Inline Errors and
Warnings.

Handling SOAP Faults
Analysis Services returns a SOAP fault when the following situations occur:

http://msdn.microsoft.com/en-us/library/0eb52d88-c081-416e-a229-610e4373b0b3(SQL.110)�
http://msdn.microsoft.com/en-us/library/0fff5221-7164-4bbc-ab58-49cf04c52664(SQL.110)�
http://msdn.microsoft.com/en-us/library/add670cb-cab2-42be-91a3-d0c385f29d16(SQL.110)�
http://msdn.microsoft.com/en-us/library/a34a6caa-4b68-486b-8f50-cdc124c65888(SQL.110)�
http://msdn.microsoft.com/en-us/library/719d15ff-f18b-4c56-80ba-a9114c0b7d8a(SQL.110)�
http://msdn.microsoft.com/en-us/library/ecd9d6e8-b16c-4d62-9a87-107c413a0056(SQL.110)�
http://msdn.microsoft.com/en-us/library/88daba54-89e9-423f-8d12-8de80cf52d6b(SQL.110)�
http://msdn.microsoft.com/en-us/library/4d9977a0-c396-44c7-9fd4-97f4c3d643aa(SQL.110)�

 261

• The SOAP message that contains the XMLA method was not well-formed or could not be
validated by the Analysis Services instance.

• A communications or other error occurred involving the SOAP message that contains the
XMLA method.

• The XMLA method did not run on the Analysis Services instance.
The SOAP fault codes for XMLstartA start with "XMLForAnalysis", followed by a period and the
hexadecimal HRESULT result code. For example, an error code of "0x80000005" is formatted as
"XMLForAnalysis.0x80000005". For more information about the SOAP fault format, see Soap
Fault in the W3C Simple Object Access Protocol (SOAP) 1.1.
Fault Code Information
The following table shows the XMLA fault code information that is contained in the detail
section of the SOAP response. The columns are the attributes of an error in the detail section of
a SOAP fault.

Column name Type Description Null allowed1

ErrorCode UnsignedInt Return code that
indicates the success
or failure of the
method. The
hexadecimal value
must be converted to
an UnsignedInt value.

No

WarningCode UnsignedInt Return code that
indicates a warning
condition. The
hexadecimal value
must be converted to
an UnsignedInt value.

Yes

Description String Error or warning text
and description
returned by the
component that
generated the error.

Yes

Source String Name of the
component that
generated the error or
warning.

Yes

HelpFile String Path or URL to the Yes

 262

Column name Type Description Null allowed1

Help file or topic that
describes the error or
warning.

1 Indicates whether the data is required and must be returned, or whether the data is optional
and a null string is allowed if the column does not apply.
The following is an example of a SOAP fault that occurred when a method call failed:

<?xml version="1.0"?>

 <SOAP-ENV:Envelope

 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Fault>

 <faultcode>XMLAnalysisError.0x80000005</faultcode>

 <faultstring>The XML for Analysis provider encountered an error.</faultstring>

 <faultactor>XML for Analysis Provider</faultactor>

 <detail>

<Error

ErrorCode="2147483653"

Description="An unexpected error has occurred."

Source="XML for Analysis Provider"

HelpFile="" />

 </detail>

 </SOAP-ENV:Fault>

</SOAP-ENV:Envelope>

Handling Errors and Warnings
Analysis Services returns the Messages property in the root element for a command if the
following situations occur after that command runs:
• The method itself did not fail, but a failure occurred on the Analysis Services instance after

the method call succeeded.
• The Analysis Services instance returns a warning when the command is successful.
The Messages property follows all other properties that are contained by the root element, and
can contain one or more Message elements. In turn, each Message element can contain either
a single error or warning element describing any errors or warnings, respectively, that occurred
for the specified command.

 263

For more information about errors and warnings that are contained in the Messages property,
see XML for Analysis Overview (XMLA) - deleted.
Handling Errors During Serialization
If an error occurs after the Analysis Services instance has already begun serializing the output of
a successfully run command, Analysis Services returns an Exception element in a different
namespace at the point of the error. The Analysis Services instance then closes all open
elements so that the XML document sent to the client is a valid document. The instance also
returns a Messages element that contains the description of the error.
Handling Inline Errors and Warnings
Analysis Services returns an inline error or warning for a command if the XMLA method itself
did not fail, but an error specific to a data element in the results returned by the method
occurred on the Analysis Services instance after the XMLA method call succeeded.
Analysis Services supplies inline error and warning elements if issues specific to a cell or to
other data that are contained within a root element using the MDDataSet data type occur, such
as a security error or formatting error for a cell. In these cases, Analysis Services returns an error
or warning element in the Cell or row element that contains the error or warning, respectively.
The following example illustrates a result set that contains an error in the rowset returned from
an Execute method using the Statement command.
<return>

 ...

 <root>

 ...

 <CellData>

 ...

 <Cell CellOrdinal="10">

 <Value>

 <Error>

 <ErrorCode>2148497527</ErrorCode>

 <Description>Security Error.</Description>

 </Error>

 </Value>

 </Cell>

 </CellData>

 ...

 </root>

 ...

http://msdn.microsoft.com/en-us/library/719d15ff-f18b-4c56-80ba-a9114c0b7d8a(SQL.110)�
http://msdn.microsoft.com/en-us/library/0be4cc2f-c03e-490a-a6f7-8b1ede5d09ba(SQL.110)�
http://msdn.microsoft.com/en-us/library/1a7e0092-f9f0-4ae5-ba27-ad1d8ebe8cb9(SQL.110)�
http://msdn.microsoft.com/en-us/library/bfedc03c-d476-4d55-b5fd-36169f01351a(SQL.110)�

 264

</return>

See Also
Using XML for Analysis in Analysis Services (XMLA)
XML for Analysis Overview (XMLA)

Defining and Identifying Objects (XMLA)
Objects are identified in XML for Analysis (XMLA) commands by using object identifiers and
object references, and are defined by using Analysis Services Scripting Language (ASSL)
elements XMLA commands.
Object Identifiers
An object is identified by using the unique identifier of the object as defined on an instance of
Microsoft SQL Server Analysis Services. Object identifiers can either be explicitly specified or
determined by the Analysis Services instance when Analysis Services creates the object. You can
use the Discover method to retrieve object identifiers for subsequent Discover or Execute
method calls.
Object References
Several XMLA commands, such as Delete or Process, use an object reference to refer to an
object in an unambiguous manner. An object reference contains the object identifier of the
object on which a command is executed and the object identifiers of the ancestors for that
object. For example, the object reference for a partition contains the object identifier of the
partition, as well as the object identifiers of that partition's parent measure group, cube, and
database.
Object Definitions
The Create and Alter commands in XMLA create or alter, respectively, objects on an Analysis
Services instance. The definitions for those objects are represented by an ObjectDefinition
element that contains elements from ASSL. Object identifiers can be explicitly specified for all
major and many minor objects by using the ID element. If the ID element is not used, the
Analysis Services instance provides a unique identifier, with a naming convention that depends
on the object to be identified. For more information about how to use the Create and Alter
commands to define objects, see Using XML for Analysis in Analysis Services (XMLA).
See Also
Object Element (XMLA)
ParentObject Element (XMLA)
Source Element (XMLA)
Target Element (XMLA)
Using XML for Analysis in Analysis Services (XMLA)

http://msdn.microsoft.com/en-us/library/d1b87386-2ac7-4c60-92c8-7ed546e30b6a(SQL.110)�
http://msdn.microsoft.com/en-us/library/0eb52d88-c081-416e-a229-610e4373b0b3(SQL.110)�
http://msdn.microsoft.com/en-us/library/0fff5221-7164-4bbc-ab58-49cf04c52664(SQL.110)�
http://msdn.microsoft.com/en-us/library/76201b18-11e9-4815-9287-27a068d8fbc5(SQL.110)�
http://msdn.microsoft.com/en-us/library/886fd480-c0e6-4c9b-b65e-da47f874d938(SQL.110)�
http://msdn.microsoft.com/en-us/library/a623d362-a1ac-40e4-8816-65fac89cb391(SQL.110)�
http://msdn.microsoft.com/en-us/library/84e58385-c9ba-48fa-a867-94d35b777a56(SQL.110)�
http://msdn.microsoft.com/en-us/library/1911868c-a018-4308-8cf9-972a57f610a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/f7d67599-6a70-4455-bfdb-1d127e5eff4e(SQL.110)�
http://msdn.microsoft.com/en-us/library/99470537-2c4a-4072-9613-940c41c12487(SQL.110)�
http://msdn.microsoft.com/en-us/library/f821f8f1-554a-4f16-bf09-262a9448e304(SQL.110)�
http://msdn.microsoft.com/en-us/library/4d4665ae-e20f-4baf-ab0f-848660caf500(SQL.110)�
http://msdn.microsoft.com/en-us/library/9a69a777-5f34-4e94-b470-6bab2a98df8b(SQL.110)�

 265

Managing Transactions (XMLA)
Every XML for Analysis (XMLA) command sent to an instance of Microsoft SQL Server Analysis
Services runs within the context of a transaction on the current implicit or explicit session. To
manage each of these transactions, you use the BeginTransaction, CommitTransaction,
and RollbackTransaction commands. By using these commands, you can create implicit or
explicit transactions, change the transaction reference count, as well as start, commit, or roll
back transactions.
Implicit and Explicit Transactions
A transaction is either implicit or explicit:
Implicit transaction

Analysis Services creates an implicit transaction for an XMLA command if the
BeginTransaction command does not specify the start of a transaction. Analysis Services
always commits an implicit transaction if the command succeeds, and rolls back an implicit
transaction if the command fails.

Explicit transaction

Analysis Services creates an explicit transaction if the BeginTransaction command starts of a
transaction. However, Analysis Services only commits an explicit transaction if a
CommitTransaction command is sent, and rolls back an explicit transaction if a
RollbackTransaction command is sent.

In addition, Analysis Services rolls back both implicit and explicit transactions if the current
session ends before the active transaction completes.
Transactions and Reference Counts
Analysis Services maintains a transaction reference count for each session. However, Analysis
Services does not support nested transactions in that only one active transaction is maintained
per session. If the current session does not have an active transaction, the transaction reference
count is set to zero.
In other words, each BeginTransaction command increments the reference count by one, while
each CommitTransaction command decrements the reference count by one. If a
CommitTransaction command sets the transaction count to zero, Analysis Services commits the
transaction.
However, the RollbackTransaction command rolls back the active transaction regardless of the
current value of the transaction reference count. In other words, a single RollbackTransaction
command rolls back the active transaction, no matter how many BeginTransaction commands
or CommitTransaction commands were sent, and sets the transaction reference count to zero.
Beginning a Transaction
The BeginTransaction command begins an explicit transaction on the current session and
increments the transaction reference count for the current session by one. All subsequent
commands are considered to be within the active transaction, until either enough

http://msdn.microsoft.com/en-us/library/fca122fc-b57c-4ba6-849b-ca8c93cf64e9(SQL.110)�
http://msdn.microsoft.com/en-us/library/1cd814dc-a0be-4305-b44d-faf15e843f7d(SQL.110)�
http://msdn.microsoft.com/en-us/library/40e7dc00-656f-412f-97f0-d05bf7caa196(SQL.110)�

 266

CommitTransaction commands are sent to commit the active transaction or a single
RollbackTransaction command is sent to roll back the active transaction.
Committing a Transaction
The CommitTransaction command commits the results of commands that are run after the
BeginTransaction command was run on the current session. Each CommitTransaction
command decrements the reference count for active transactions on a session. If a
CommitTransaction command sets the reference count to zero, Analysis Services commits the
active transaction. If there is no active transaction (in other words, the transaction reference
count for the current session is already set to zero), a CommitTransaction command results in
an error.
Rolling Back a Transaction
The RollbackTransaction command rolls back the results of commands that are run after the
BeginTransaction command was run on the current session. The RollbackTransaction
command rolls back the active transaction, regardless of the current transaction reference count,
and sets the transaction reference count to zero. If there is no active transaction (in other words,
the transaction reference count for the current session is already set to zero), a
RollbackTransaction command results in an error.
See Also
Using XML for Analysis in Analysis Services (XMLA)

Canceling Commands (XMLA)
Depending on the administrative permissions of the user issuing the command, the Cancel
command in XML for Analysis (XMLA) can cancel a command on a session, a session, a
connection, a server process, or an associated session or connection.
Canceling Commands
A user can cancel the currently executing command within the context of the current explicit
session by sending a Cancel command with no specified properties.

A command running in an implicit session cannot be canceled by a user.
Canceling Batch Commands
If a user cancels a Batch command, then all remaining commands not yet executed within the
Batch command are canceled. If the Batch command was transactional, any commands that
were executed before the Cancel command runs are rolled back.
Canceling Sessions
By specifying a session identifier for an explicit session in the SessionID property of the Cancel
command, a database administrator or server administrator can cancel a session, including the
currently executing command. A database administrator can only cancel sessions for databases
on which he or she has administrative permissions.

Note

http://msdn.microsoft.com/en-us/library/de4062c1-7434-44dc-9f01-29fcf78963bd(SQL.110)�
http://msdn.microsoft.com/en-us/library/18220e00-76cf-48f6-9465-200465a0c553(SQL.110)�

 267

A database administrator can retrieve the active sessions for a specified database by retrieving
the DISCOVER_SESSIONS schema rowset. To retrieve the DISCOVER_SESSIONS schema rowset,
the database administrator uses the XMLA Discover method and specifies the appropriate
database identifier for the SESSION_CURRENT_DATABASE restriction column in the Restrictions
property of the Discover method.
Canceling Connections
By specifying a connection identifier in the ConnectionID property of the Cancel command, a
server administrator can cancel all of the sessions associated with a given connection, including
all running commands, and cancel the connection.

If the instance of Microsoft SQL Server Analysis Services cannot locate and cancel the
sessions associated with a connection, such as when the data pump opens multiple
sessions while providing HTTP connectivity, the instance cannot cancel the connection. If
this case is encountered during the execution of a Cancel command, an error occurs.

A server administrator can retrieve the active connections for an Analysis Services instance by
retrieving the DISCOVER_CONNECTIONS schema rowset using the XMLA Discover method.
Canceling Server Processes
By specifying a server process identifier (SPID) in the SPID property of the Cancel command, a
server administrator can cancel the commands associated with a given SPID.
Canceling Associated Sessions and Connections
You can set the CancelAssociated property to true to cancel the connections, sessions, and
commands associated with the connection, session, or SPID specified in the Cancel command.
See Also
Using XML for Analysis in Analysis Services (XMLA)
Using XML for Analysis in Analysis Services (XMLA)

Performing Batch Operations (XMLA)
You can use the Batch command in XML for Analysis (XMLA) to run multiple XMLA commands
using a single XMLA Execute method. You can run multiple commands contained in the Batch
command either as a single transaction or in individual transactions for each command, in serial
or in parallel. You can also specify out-of-line bindings and other properties in the Batch
command for processing multiple Microsoft SQL Server Analysis Services objects.
Running Transactional and Nontransactional Batch Commands
The Batch command executes commands in one of two ways:
Transactional

If the Transaction attribute of the Batch command is set to true, the Batch command run
commands all of the commands contained by the Batch command in a single transaction—a
transactional batch.

Note

http://msdn.microsoft.com/en-us/library/e745ce13-b468-4372-a6f0-0da3d772dda3(SQL.110)�
http://msdn.microsoft.com/en-us/library/de044fb2-f713-46b2-8899-14e8d515e823(SQL.110)�
http://msdn.microsoft.com/en-us/library/c4a54dcb-a0cd-4255-9e0f-a34eb990854f(SQL.110)�
http://msdn.microsoft.com/en-us/library/fd890440-d1a7-4c05-9e81-c81e6b8c274c(SQL.110)�
http://msdn.microsoft.com/en-us/library/0eb52d88-c081-416e-a229-610e4373b0b3(SQL.110)�
http://msdn.microsoft.com/en-us/library/818f3212-9605-4e34-8623-1154d9fae1f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/0fff5221-7164-4bbc-ab58-49cf04c52664(SQL.110)�

 268

If any command fails in a transactional batch, Analysis Services rolls back any command in
the Batch command that ran before the command that failed and the Batch command
immediately ends. Any commands in the Batch command that have not yet run are not
executed. After the Batch command ends, the Batch command reports any errors that
occurred for the failed command.

Nontransactional

If the Transaction attribute is set to false, the Batch command runs each command
contained by the Batch command in a separate transaction—a nontransactional batch. If any
command fails in a nontransactional batch, the Batch command continues to run commands
after the command which failed. After the Batch command tries to run all the commands that
the Batch command contains, the Batch command reports any errors that occurred.

All results returned by commands contained in a Batch command are returned in the same
order in which the commands are contained in the Batch command. The results returned by a
Batch command vary based on whether the Batch command is transactional or
nontransactional.

If a Batch command contains a command that does not return output, such as the Lock
command, and that command successfully runs, the Batch command returns an
empty root element within the results element. The empty root element ensures that
each command contained in a Batch command can be matched with the appropriate
root element for that command's results.

Returning Results from Transactional Batch Results
Results from commands run within a transactional batch are not returned until the entire Batch
command is completed. The results are not returned after each command runs because any
command that fails within a transactional batch would cause the entire Batch command and all
containing commands to be rolled back. If all commands start and run successfully, the return
element of the ExecuteResponse element returned by the Execute method for the Batch
command contains one results element, which in turn contains one root element for each
successfully run command contained in the Batch command. If any command in the Batch
command cannot be started or fails to complete, the Execute method returns a SOAP fault for
the Batch command that contains the error of the command that failed.
Returning Results from Nontransactional Batch Results
Results from commands run within a nontransactional batch are returned in the order in which
the commands are contained within the Batch command and as they are returned by each
command. If no command contained in the Batch command can be successfully started, the
Execute method returns a SOAP fault that contains an error for the Batch command. If at least
one command is successfully started, the return element of the ExecuteResponse element
returned by the Execute method for the Batch command contains one results element, which
in turn contains one root element for each command contained in the Batch command. If one

Note

http://msdn.microsoft.com/en-us/library/a819e805-4793-43bb-8af3-16a19f8bdab3(SQL.110)�
http://msdn.microsoft.com/en-us/library/ecd9d6e8-b16c-4d62-9a87-107c413a0056(SQL.110)�
http://msdn.microsoft.com/en-us/library/3cfe8b74-fec3-4987-a74a-5f731444e024(SQL.110)�
http://msdn.microsoft.com/en-us/library/6edb1b82-da4c-4cd9-9385-bea04032f0eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/3249a17a-7bfa-4753-b605-8f611ba7ae2b(SQL.110)�

 269

or more commands in a nontransactional batch cannot be started or fails to complete, the root
element for that failed command contains an error element describing the error.

As long as at least one command in a nontransactional batch can be started, the
nontransactional batch is considered to have successfully run, even if every command
contained in the nontransactional batch returns an error in the results of the Batch
command.

Using Serial and Parallel Execution
You can use the Batch command to run included commands in serial or in parallel. When the
commands are run in serial, the next command included in the Batch command cannot start
until the currently running command in the Batch command is completed. When the commands
are run in parallel, multiple commands can be executed simultaneously by the Batch command.
To run commands in parallel, you add the commands to be run in parallel to the Parallel
property of the Batch command. Currently, Analysis Services can run only contiguous,
sequential Process commands in parallel. Any other XMLA command, such as Create or Alter,
included in the Parallel property is run serially.
Analysis Services tries to run all Process commands included in the Parallel property in parallel,
but cannot guarantee that all included Process commands can be run in parallel. The instance
analyzes each Process command and, if the instance determines that the command cannot be
run in parallel, the Process command is run in serial.

To run commands in parallel, the Transaction attribute of the Batch command must be
set to true because Analysis Services supports only one active transaction per connection
and nontransactional batches run each command in a separate transaction. If you
include the Parallel property in a nontransactional batch, an error occurs.

Limiting Parallel Execution
An Analysis Services instance tries to run as many Process commands in parallel as possible, up
to the limits of the computer on which the instance runs. You can limit the number of
concurrently executing Process commands by setting the maxParallel attribute of the Parallel
property to a value indicating the maximum number of Process commands that can be run in
parallel.
For example, a Parallel property contains the following commands in the sequence listed:
1. Create
2. Process
3. Alter
4. Process
5. Process
6. Process

Note

Note

http://msdn.microsoft.com/en-us/library/add670cb-cab2-42be-91a3-d0c385f29d16(SQL.110)�
http://msdn.microsoft.com/en-us/library/04726d94-37ee-460b-9744-d62b45f536b9(SQL.110)�
http://msdn.microsoft.com/en-us/library/886fd480-c0e6-4c9b-b65e-da47f874d938(SQL.110)�
http://msdn.microsoft.com/en-us/library/a623d362-a1ac-40e4-8816-65fac89cb391(SQL.110)�
http://msdn.microsoft.com/en-us/library/84e58385-c9ba-48fa-a867-94d35b777a56(SQL.110)�

 270

7. Delete
8. Process
9. Process
The maxParallel attribute of this Parallel property is set to 2. Therefore, the instance runs the
previous lists of commands as described in the following list:
• Command 1 runs serially because command 1 is a Create command and only Process

commands can be run in parallel.
• Command 2 runs serially after command 1 is completed.
• Command 3 runs serially after command 2 is completed.
• Commands 4 and 5 run in parallel after command 3 is completed. Although command 6 is

also a Process command, command 6 cannot run in parallel with commands 4 and 5
because the maxParallel property is set to 2.

• Command 6 runs serially after both commands 4 and 5 are completed.
• Command 7 runs serially after command 6 is completed.
• Commands 8 and 9 run in parallel after command 7 is completed.
Using the Batch Command to Process Objects
The Batch command contains several optional properties and attributes specifically included to
support processing multiple Analysis Services projects:
• The ProcessAffectedObjects attribute of the Batch command indicates whether the

instance should also process any object that requires reprocessing as a result of a Process
command included in the Batch command processing a specified object.

• The Bindings property contains a collection of out-of-line bindings used by all of the
Process commands in the Batch command.

• The DataSource property contains an out-of-line binding for a data source used by all of the
Process commands in the Batch command.

• The DataSourceView property contains an out-of-line binding for a data source view used by
all of the Process commands in the Batch command.

• The ErrorConfiguration property specifies the way in which the Batch command handles
errors encountered by all Process commands contained in the Batch command.

A Process command cannot include the Bindings, DataSource, DataSourceView, or
ErrorConfiguration properties, if the Process command is contained in a Batch
command. If you must specify these properties for a Process command, provide the
necessary information in the corresponding properties of the Batch command that
contains the Process command.

See Also
Using XML for Analysis in Analysis Services (XMLA)
Process Element (XMLA)

Important

http://msdn.microsoft.com/en-us/library/caa34cab-f61f-4f39-b800-af1601714daa(SQL.110)�
http://msdn.microsoft.com/en-us/library/adc0713a-3927-40f3-8b87-012130908f34(SQL.110)�
http://msdn.microsoft.com/en-us/library/c4a4360f-7342-484b-bac1-0a247e8f279d(SQL.110)�
http://msdn.microsoft.com/en-us/library/5e350f5f-3a14-49b4-80c0-208c61f336d5(SQL.110)�
http://msdn.microsoft.com/en-us/library/818f3212-9605-4e34-8623-1154d9fae1f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/886fd480-c0e6-4c9b-b65e-da47f874d938(SQL.110)�

 271

Processing Analysis Services Objects
Using XML for Analysis in Analysis Services (XMLA)

Creating and Altering Objects (XMLA)
Major objects can be independently created, altered, and deleted. Major objects include the
following objects:
• Servers
• Databases
• Dimensions
• Cubes
• Measure groups
• Partitions
• Perspectives
• Mining models
• Roles
• Commands associated with a server or database
• Data sources
You use the Create command to create a major object on an instance of Microsoft SQL
Server Analysis Services, and the Alter command to alter an existing major object on an instance.
Both commands are run using the Execute method.
Creating Objects
When you create objects by using the Create method, you must first identify the parent object
that contains the Analysis Services object to be created. You identify the parent object by
providing an object reference in the ParentObject property of the Create command. Each object
reference contains the object identifiers needed to uniquely identify the parent object for the
Create command. For more information about object references, see Using XML for Analysis in
Analysis Services (XMLA).
For example, you must provide an object reference to a cube to create a new measure group for
the cube. The object reference for the cube in the ParentObject property contains both a
database identifier and a cube identifier, as the same cube identifier could potentially be used
on a different database.
The ObjectDefinition element contains Analysis Services Scripting Language (ASSL) elements
that define the major object to be created. For more information about ASSL, see ASSL.
If you set the AllowOverwrite attribute of the Create command to true, you can overwrite an
existing major object that has the specified identifier. Otherwise, an error occurs if a major
object that has the specified identifier already exists in the parent object.
For more information about the Create command, see Create Element (XMLA).
Creating Session Objects

http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/a623d362-a1ac-40e4-8816-65fac89cb391(SQL.110)�
http://msdn.microsoft.com/en-us/library/84e58385-c9ba-48fa-a867-94d35b777a56(SQL.110)�
http://msdn.microsoft.com/en-us/library/0fff5221-7164-4bbc-ab58-49cf04c52664(SQL.110)�
http://msdn.microsoft.com/en-us/library/f821f8f1-554a-4f16-bf09-262a9448e304(SQL.110)�
http://msdn.microsoft.com/en-us/library/1911868c-a018-4308-8cf9-972a57f610a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/a623d362-a1ac-40e4-8816-65fac89cb391(SQL.110)�

 272

Session objects are temporary objects that are available only to the explicit or implicit session
used by a client application and are deleted when the session is ended. You can create session
objects by setting the Scope attribute of the Create command to Session.

When using the Session setting, the ObjectDefinition element can only
contain Dimension, Cube, or MiningModel ASSL elements.

Altering Objects
When modifying objects by using the Alter method, you must first identify the object to be
modified by providing an object reference in the Object property of the Alter command. Each
object reference contains the object identifiers needed to uniquely identify the object for the
Alter command. For more information about object references, see Defining and Identifying
Objects (XMLA).
For example, you must provide an object reference to a cube in order to modify the structure of
a cube. The object reference for the cube in the Object property contains both a database
identifier and a cube identifier, as the same cube identifier could potentially be used on a
different database.
The ObjectDefinition element contains ASSL elements that define the major object to be
modified. For more information about ASSL, see ASSL.
If you set the AllowCreate attribute of the Alter command to true, you can create the specified
major object if the object does not exist. Otherwise, an error occurs if a specified major object
does not already exist.
Using the ObjectExpansion Attribute
If you are changing only the properties of the major object and are not redefining minor objects
that are contained by the major object, you can set the ObjectExpansion attribute of the Alter
command to ObjectProperties. The ObjectDefinition property then only has to contain the
elements for the properties of the major object, and the Alter command leaves minor objects
associated with the major object untouched.
To redefine minor objects for a major object, you must set the ObjectExpansion attribute to
ExpandFull and the object definition must include all minor objects that are contained by the
major object. If the ObjectDefinition property of the Alter command does not explicitly include
a minor object that is contained by the major object, the minor object that was not included is
deleted.
Altering Session Objects
To modify session objects created by the Create command, set the Scope attribute of the Alter
command to Session.

When using the Session setting, the ObjectDefinition element can only
contain Dimension, Cube, or MiningModel ASSL elements.

Creating or Altering Subordinate Objects

Note

Note

http://msdn.microsoft.com/en-us/library/71886014-f463-4b70-a2a2-d9e5053ba4f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/2d801066-6cca-4a99-bbd8-56a38d762108(SQL.110)�
http://msdn.microsoft.com/en-us/library/a61d935f-c8f6-457d-ad0c-44f58bb286f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/99470537-2c4a-4072-9613-940c41c12487(SQL.110)�
http://msdn.microsoft.com/en-us/library/71886014-f463-4b70-a2a2-d9e5053ba4f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/2d801066-6cca-4a99-bbd8-56a38d762108(SQL.110)�
http://msdn.microsoft.com/en-us/library/a61d935f-c8f6-457d-ad0c-44f58bb286f5(SQL.110)�

 273

Although a Create or Alter command creates or alters only one topmost major object, the
major object being created or modified can contain definitions within the enclosing
ObjectDefinition property for other major and minor objects that are subordinate to it. For
example, if you define a cube, you specify the parent database in ParentObject, and within the
cube definition in ObjectDefinition you can define measure groups for the cube, and within the
measure groups you can define partitions for each measure group. A minor object can be
defined only under the major object that contains it. For more information about major and
minor objects, see Analysis Services Objects (SSAS).
Examples
Description
The following example creates a relational data source that references the Adventure Works
DW Multidimensional 2012 sample Microsoft SQL Server database.
Code
<Create xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">

 <ParentObject>

 <DatabaseID>Adventure Works DW Multidimensional 2012</DatabaseID>

 </ParentObject>

 <ObjectDefinition>

 <DataSource xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="RelationalDataSource">

 <ID>AdventureWorksDW2012</ID>

 <Name>AdventureWorksDW2012</Name>

 <ConnectionString>Data Source=localhost;Initial

Catalog=AdventureWorksDW2008R2;Integrated Security=True</ConnectionString>

 <ImpersonationInfo>

 <ImpersonationMode>ImpersonateServiceAccount</ImpersonationMode>

 </ImpersonationInfo>

 <ManagedProvider>System.Data.SqlClient</ManagedProvider>

 <Timeout>PT0S</Timeout>

 </DataSource>

 </ObjectDefinition>

</Create>

Description
The following example alters the relational data source created in the previous example to set
the query time-out for the data source to 30 seconds.
Code

 274

<Alter ObjectExpansion="ObjectProperties"

xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">

 <Object>

 <DatabaseID>Adventure Works DW Multidimensional 2012</DatabaseID>

 <DataSourceID>AdventureWorksDW2012</DataSourceID>

 </Object>

 <ObjectDefinition>

 <DataSource xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="RelationalDataSource">

 <ID>AdventureWorksDW2012</ID>

 <Name>AdventureWorksDW2012</Name>

 <ConnectionString>Data Source=fr-dwk-02;Initial

Catalog=AdventureWorksDW2008R2;Integrated Security=True</ConnectionString>

 <ManagedProvider>System.Data.SqlClient</ManagedProvider>

 <Timeout>PT30S</Timeout>

 </DataSource>

 </ObjectDefinition>

</Alter>

Comments
The ObjectExpansion attribute of the Alter command was set to ObjectProperties. This setting
allows the ImpersonationInfo element, a minor object, to be excluded from the data source
defined in ObjectDefinition. Therefore, the impersonation information for that data source
remains set to the service account, as specified in the first example.
See Also
Execute Method (XMLA)
ASSL
Using XML for Analysis in Analysis Services (XMLA)

Locking and Unlocking Databases (XMLA)
You can lock and unlock databases using, respectively, the Lock and Unlock commands in XML
for Analysis (XMLA). Typically, other XMLA commands automatically lock and unlock objects as
needed to complete the command during execution. You can explicitly lock or unlock a
database to perform multiple commands within a single transaction, such as a Batch command,
while preventing other applications from committing a write transaction to the database.
Locking Databases

http://msdn.microsoft.com/en-us/library/d4b9c372-1023-43f7-97e9-b0a90f544fbb(SQL.110)�
http://msdn.microsoft.com/en-us/library/0fff5221-7164-4bbc-ab58-49cf04c52664(SQL.110)�
http://msdn.microsoft.com/en-us/library/a819e805-4793-43bb-8af3-16a19f8bdab3(SQL.110)�
http://msdn.microsoft.com/en-us/library/46425b33-baa2-41ad-803a-34d2fb4b2cab(SQL.110)�
http://msdn.microsoft.com/en-us/library/818f3212-9605-4e34-8623-1154d9fae1f0(SQL.110)�

 275

The Lock command locks an object, either for shared or exclusive use, within the context of the
currently active transaction. A lock on an object prevents transactions from committing until the
lock is removed. Microsoft SQL Server Analysis Services supports two types of locks, shared
locks and exclusive locks. For more information about the lock types supported by Analysis
Services, see Using XML for Analysis in Analysis Services (XMLA).
Analysis Services allows only databases to be locked. The Object element must contain an object
reference to an Analysis Services database. If the Object element is not specified or if the Object
element refers to an object other than a database, an error occurs.

Only database administrators or server administrators can explicitly issue a Lock
command.

Other commands implicitly issue a Lock command on an Analysis Services database. Any
operation that reads data or metadata from a database, such as any Discover method or
an Execute method running a Statement command, implicitly issues a shared lock on the
database. Any transaction that commits changes in data or metadata to an object on an Analysis
Services database, such as an Execute method running an Alter command, implicitly issues an
exclusive lock on the database.
Unlocking Objects
The Unlock command removes a lock established within the context of the currently active
transaction.

Only database administrators or server administrators can explicitly issue an Unlock
command.

All locks are held in the context of the current transaction. When the current transaction is
committed or rolled back, all locks defined within the transaction are automatically released.
See Also
Lock Element (XMLA)
Unlock Element (XMLA)
Using XML for Analysis in Analysis Services (XMLA)

Processing Objects (XMLA)
In Microsoft SQL Server Analysis Services, processing is the step or series of steps that turn data
into information for business analysis. Processing is different depending on the type of object,
but processing is always part of turning data into information.
To process an Analysis Services object, you can use the Process command. The Process
command can process the following objects on an Analysis Services instance:
• Cubes
• Databases

noteDXDOC112778PADS Security Note

noteDXDOC112778PADS Security Note

http://msdn.microsoft.com/en-us/library/43a54181-6494-48c3-b14b-376d8939fa9f(SQL.110)�
http://msdn.microsoft.com/en-us/library/99470537-2c4a-4072-9613-940c41c12487(SQL.110)�
http://msdn.microsoft.com/en-us/library/0eb52d88-c081-416e-a229-610e4373b0b3(SQL.110)�
http://msdn.microsoft.com/en-us/library/0fff5221-7164-4bbc-ab58-49cf04c52664(SQL.110)�
http://msdn.microsoft.com/en-us/library/bfedc03c-d476-4d55-b5fd-36169f01351a(SQL.110)�
http://msdn.microsoft.com/en-us/library/84e58385-c9ba-48fa-a867-94d35b777a56(SQL.110)�
http://msdn.microsoft.com/en-us/library/a819e805-4793-43bb-8af3-16a19f8bdab3(SQL.110)�
http://msdn.microsoft.com/en-us/library/46425b33-baa2-41ad-803a-34d2fb4b2cab(SQL.110)�
http://msdn.microsoft.com/en-us/library/886fd480-c0e6-4c9b-b65e-da47f874d938(SQL.110)�

 276

• Dimensions
• Measure groups
• Mining models
• Mining structures
• Partitions
To control the processing of objects, the Process command has various properties that can be
set. The Process command has properties that control: how much processing will be done,
which objects will be processed, whether to use out-of-line bindings, how to handle errors, and
how to manage writeback tables.
Specifying Processing Options
The Type property of the Process command specifies the processing option to use when
processing the object. For more information about processing options,
see WritebackTableCreation Element (XMLA).
The following table lists the constants for the Type property and the various objects that can be
processed using each constant.

Type value Applicable objects

ProcessFull Cube, database, dimension, measure group,
mining model, mining structure, partition

ProcessAdd Dimension, partition

ProcessUpdate Dimension

ProcessIndexes Dimension, cube, measure group, partition

ProcessData Dimension, cube, measure group, partition

ProcessDefault Cube, database, dimension, measure group,
mining model, mining structure, partition

ProcessClear Cube, database, dimension, measure group,
mining model, mining structure, partition

ProcessStructure Cube, mining structure

ProcessClearStructureOnly Mining structure

ProcessScriptCache Cube

For more information about processing Analysis Services objects, see Processing Analysis
Services Objects.
Specifying Objects to be Processed

http://msdn.microsoft.com/en-us/library/5d898123-a635-402a-be86-8249d7304fa4(SQL.110)�
http://msdn.microsoft.com/en-us/library/2e858c74-ad3e-45f1-8745-efe2c0c3a7fa(SQL.110)�
http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�
http://msdn.microsoft.com/en-us/library/625aa5a6-aa09-4bac-be8a-778fa81c5a61(SQL.110)�

 277

The Object property of the Process command contains the object identifier of the object to be
processed. Only one object can be specified in a Process command, but processing an object
also processes any child objects. For example, processing a measure group in a cube processes
all the partitions for that measure group, while processing a database processes all the objects,
including cubes, dimensions, and mining structures, that are contained by the database.
If you set the ProcessAffectedObjects attribute of the Process command to true, any related
object affected by processing the specified object is also processed. For example, if a dimension
is incrementally updated by using the ProcessUpdate processing option in the Process
command, any partition whose aggregations are invalidated because of members being added
or deleted is also processed by Analysis Services if ProcessAffectedObjects is set to true. In this
case, a single Process command can process multiple objects on an Analysis Services instance,
but Analysis Services determines which objects besides the single object specified in the Process
command must also be processed.
However, you can process multiple objects, such as dimensions, at the same time by using
multiple Process commands within a Batch command. Batch operations provide a finer level of
control for serial or parallel processing of objects on an Analysis Services instance than using the
ProcessAffectedObjects attribute, and let you to tune your processing approach for larger
Analysis Services databases. For more information about performing batch operations,
see Performing Batch Operations (XMLA).
Specifying Out-of-Line Bindings
If the Process command is not contained by a Batch command, you can optionally specify out-
of-line bindings in the Bindings, DataSource, and DataSourceView properties of the Process
command for the objects to be processed. Out-of-line bindings are references to data sources,
data source views, and other objects in which the binding exists only during the execution of the
Process command, and which override any existing bindings associated with the objects being
processed. If out-of-line bindings are not specified, the bindings currently associated with the
objects to be processed are used.
Out-of-line bindings are used in the following circumstances:
• Incrementally processing a partition, in which an alternative fact table or a filter on the

existing fact table must be specified to make sure that rows are not counted twice.
• Using a data flow task in Microsoft SQL Server Integration Services to provide data while

processing a dimension, mining model, or partition.
Out-of-line bindings are described as part of the Analysis Services Scripting Language (ASSL).
For more information about out-of-line bindings in ASSL, see Data Sources and Bindings.
Incrementally Updating Partitions
Incrementally updating an already processed partition typically requires an out-of-line binding
because the binding specified for the partition references fact table data already aggregated
within the partition. When incrementally updating an already processed partition by using the
Process command, Analysis Services performs the following actions:

http://msdn.microsoft.com/en-us/library/99470537-2c4a-4072-9613-940c41c12487(SQL.110)�
http://msdn.microsoft.com/en-us/library/caa34cab-f61f-4f39-b800-af1601714daa(SQL.110)�
http://msdn.microsoft.com/en-us/library/adc0713a-3927-40f3-8b87-012130908f34(SQL.110)�
http://msdn.microsoft.com/en-us/library/c4a4360f-7342-484b-bac1-0a247e8f279d(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc028030-dda2-4660-b818-c3160d79fd6d(SQL.110)�

 278

• Creates a temporary partition with a structure identical to that of the partition to be
incrementally updated.

• Processes the temporary partition, using the out-of-line binding specified in the Process
command.

• Merges the temporary partition with the existing selected partition.
For more information about merging partitions using XML for Analysis (XMLA), see Merging
Partitions (XMLA).
Handling Processing Errors
The ErrorConfiguration property of the Process command lets you specify how to handle errors
encountered while processing an object. For example, while processing a dimension, Analysis
Services encounters a duplicate value in the key column of the key attribute. Because attribute
keys must be unique, Analysis Services discards the duplicate records. Based on
the KeyDuplicate property of ErrorConfiguration, Analysis Services could:
• Ignore the error and continue processing the dimension.
• Return a message that states Analysis Services encountered a duplicate key and continue

processing.
There are many similar conditions for which ErrorConfiguration provides options during a
Process command.
Managing Writeback Tables
If the Process command encounters a write-enabled partition, or a cube or measure group for
such a partition, that is not already fully processed, a writeback table may not already exist for
that partition. The WritebackTableCreation property of the Process command determines
whether Analysis Services should create a writeback table.
Examples
Description
The following example fully processes the Adventure Works DW Multidimensional 2012
sample Analysis Services database.
Code
<Process xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">

 <Object>

 <DatabaseID>Adventure Works DW Multidimensional 2012</DatabaseID>

 </Object>

 <Type>ProcessFull</Type>

 <WriteBackTableCreation>UseExisting</WriteBackTableCreation>

</Process>

Description

http://msdn.microsoft.com/en-us/library/5e350f5f-3a14-49b4-80c0-208c61f336d5(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7000b8b-e81f-4401-8738-00c2e0f73a59(SQL.110)�
http://msdn.microsoft.com/en-us/library/e9579d63-e28c-4d4e-9f4a-21c5da24c276(SQL.110)�

 279

The following example incrementally processes the Internet_Sales_2004 partition in the
Internet Sales measure group of the Adventure Works DW cube in the Adventure Works
DW Multidimensional 2012 sample Analysis Services database. The Process command is
adding aggregations for order dates later than December 31, 2006 to the partition by using an
out-of-line query binding in the Bindings property of the Process command to retrieve the fact
table rows from which to generate aggregations to add to the partition.
Code
<Process ProcessAffectedObjects="true"

xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">

 <Object>

 <DatabaseID>Adventure Works DW Multidimensional 2012</DatabaseID>

 <CubeID>Adventure Works DW</CubeID>

 <MeasureGroupID>Fact Internet Sales 1</MeasureGroupID>

 <PartitionID>Internet_Sales_2006</PartitionID>

 </Object>

 <Bindings>

 <Binding>

 <DatabaseID>Adventure Works DW Multidimensional 2012</DatabaseID>

 <CubeID>Adventure Works DW</CubeID>

 <MeasureGroupID>Fact Internet Sales 1</MeasureGroupID>

 <PartitionID>Internet_Sales_2006</PartitionID>

 <Source xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:type="QueryBinding">

 <DataSourceID>Adventure Works DW</DataSourceID>

 <QueryDefinition>

 SELECT

 [dbo].[FactInternetSales].[ProductKey],

 [dbo].[FactInternetSales].[OrderDateKey],

 [dbo].[FactInternetSales].[DueDateKey],

 [dbo].[FactInternetSales].[ShipDateKey],

 [dbo].[FactInternetSales].[CustomerKey],

 [dbo].[FactInternetSales].[PromotionKey],

 [dbo].[FactInternetSales].[CurrencyKey],

 [dbo].[FactInternetSales].[SalesTerritoryKey],

 [dbo].[FactInternetSales].[SalesOrderNumber],

 280

 [dbo].[FactInternetSales].[SalesOrderLineNumber],

 [dbo].[FactInternetSales].[RevisionNumber],

 [dbo].[FactInternetSales].[OrderQuantity],

 [dbo].[FactInternetSales].[UnitPrice],

 [dbo].[FactInternetSales].[ExtendedAmount],

 [dbo].[FactInternetSales].[UnitPriceDiscountPct],

 [dbo].[FactInternetSales].[DiscountAmount],

 [dbo].[FactInternetSales].[ProductStandardCost],

 [dbo].[FactInternetSales].[TotalProductCost],

 [dbo].[FactInternetSales].[SalesAmount],

 [dbo].[FactInternetSales].[TaxAmt],

 [dbo].[FactInternetSales].[Freight],

 [dbo].[FactInternetSales].[CarrierTrackingNumber],

 [dbo].[FactInternetSales].[CustomerPONumber]

 FROM [dbo].[FactInternetSales]

 WHERE OrderDateKey > '1280'

 </QueryDefinition>

 </Source>

 </Binding>

 </Bindings>

 <Type>ProcessAdd</Type>

 <WriteBackTableCreation>UseExisting</WriteBackTableCreation>

</Process>

Merging Partitions (XMLA)
If partitions have the same aggregation design and structure, you can merge the partition by
using the MergePartitions command in XML for Analysis (XMLA). Merging partitions is an
important action to perform when you manage partitions, especially those partitions that
contain historical data partitioned by date.
For example, a financial cube may use two partitions:
• One partition represents financial data for the current year, using real-time relational OLAP

(ROLAP) storage settings for performance.
• Another partition contains financial data for previous years, using multidimensional OLAP

(MOLAP) storage settings for storage.

http://msdn.microsoft.com/en-us/library/cf538189-0629-49b3-8e01-32afba7b020d(SQL.110)�

 281

Both partitions use different storage settings, but use the same aggregation design. Instead of
processing the cube across years of historical data at the end of the year, you can instead use
the MergePartitions command to merge the partition for the current year into the partition for
previous years. This preserves the aggregation data without requiring a potentially time-
consuming full processing of the cube.
Specifying Partitions to Merge
When the MergePartitions command runs, the aggregation data stored in the source partitions
specified in the Source property is added to the target partition specified in the Target property.

The Source property can contain more than one partition object reference. However, the
Target property cannot.

To be successfully merged, the partitions specified in both the Source and Target must be
contained by the same measure group and use the same aggregation design. Otherwise, an
error occurs.
The partitions specified in the Source are deleted after the MergePartitions command is
successfully completed.
Examples
Description
The following example merges all the partitions in the Customer Counts measure group of the
Adventure Works cube in the Adventure Works DW sample Microsoft SQL Server Analysis
Services database into the Customers_2004 partition.
Code
<MergePartitions xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">

 <Sources>

 <Source>

 <DatabaseID>Adventure Works DW Multidimensional 2012</DatabaseID>

 <CubeID>Adventure Works DW</CubeID>

 <MeasureGroupID>Fact Internet Sales 1</MeasureGroupID>

 <PartitionID>Internet_Sales_2001</PartitionID>

 </Source>

 <Source>

 <DatabaseID>Adventure Works DW Multidimensional 2012</DatabaseID>

 <CubeID>Adventure Works DW</CubeID>

 <MeasureGroupID>Fact Internet Sales 1</MeasureGroupID>

 <PartitionID>Internet_Sales_2002</PartitionID>

 </Source>

Note

http://msdn.microsoft.com/en-us/library/4d4665ae-e20f-4baf-ab0f-848660caf500(SQL.110)�
http://msdn.microsoft.com/en-us/library/9a69a777-5f34-4e94-b470-6bab2a98df8b(SQL.110)�

 282

 <Source>

 <DatabaseID>Adventure Works DW Multidimensional 2012</DatabaseID>

 <CubeID>Adventure Works DW</CubeID>

 <MeasureGroupID>Fact Internet Sales 1</MeasureGroupID>

 <PartitionID>Internet_Sales_2003</PartitionID>

 </Source>

 </Sources>

 <Target>

 <DatabaseID>Adventure Works DW Multidimensional 2012</DatabaseID>

 <CubeID>Adventure Works DW</CubeID>

 <MeasureGroupID>Fact Internet Sales 1</MeasureGroupID>

 <PartitionID>Internet_Sales_2004</PartitionID>

 </Target>

</MergePartitions>

See Also
Using XML for Analysis in Analysis Services (XMLA)

Designing Aggregations (XMLA)
Aggregation designs are associated with the partitions of a particular measure group to make
sure that the partitions use the same structure when storing aggregations. Using the same
storage structure for partitions lets you to easily define partitions that can be later merged using
the MergePartitions command. For more information about aggregation designs, see Using XML
for Analysis in Analysis Services (XMLA).
To define aggregations for an aggregation design, you can use the DesignAggregations
command in XML for Analysis (XMLA). The DesignAggregations command has properties that
identify which aggregation design to use as a reference and how to control the design process
based upon that reference. Using the DesignAggregations command and its properties, you
can design aggregations iteratively or in batch, and then view the resulting design statistics to
evaluate the design process.
Specifying an Aggregation Design
The Object property of the DesignAggregations command must contain an object reference to
an existing aggregation design. The object reference contains a database identifier, cube
identifier, measure group identifier, and aggregation design identifier. If the aggregation design
does not already exist, an error occurs.
Controlling the Design Process
You can use the following properties of the DesignAggregations command to control the
algorithm used to define aggregations for the aggregation design:

http://msdn.microsoft.com/en-us/library/cf538189-0629-49b3-8e01-32afba7b020d(SQL.110)�
http://msdn.microsoft.com/en-us/library/4c419dbc-7405-40aa-8ddd-6b46685a297d(SQL.110)�
http://msdn.microsoft.com/en-us/library/99470537-2c4a-4072-9613-940c41c12487(SQL.110)�

 283

• The Steps property determines how many iterations the DesignAggregations command
should take before it returns control to the client application.

• The Time property determines how many milliseconds the DesignAggregations command
should take before it returns control to the client application.

• The Optimization property determines the estimated percentage of performance
improvement the DesignAggregations command should try to achieve. If you are iteratively
designing aggregations, you only have to send this property on the first command.

• The Storage property determines the estimated amount of disk storage, in bytes, used by
the DesignAggregations command. If you are iteratively designing aggregations, you only
have to send this property on the first command.

• The Materialize property determines whether the DesignAggregations command should
create the aggregations defined during the design process. If you are iteratively designing
aggregations, this property should be set to false until you are ready to save the designed
aggregations. When set to true, the current design process ends and the defined
aggregations are added to the specified aggregation design.

Specifying Queries
The DesignAggregations command supports usage-based optimization command by including
one or more Query elements in the Queries property. The Queries property can contain one or
more Query elements. If the Queries property does not contain any Query elements, the
aggregation design specified in the Object element uses a default structure that contains a
general set of aggregations. This general set of aggregations is designed to meet the criteria
specified in the Optimization and Storage properties of the DesignAggregations command.
Each Query element represents a goal query that the design process uses to define
aggregations that target the most frequently used queries. You can either specify your own goal
queries, or you can use the information stored by an instance of Microsoft SQL Server Analysis
Services in the query log to retrieve information about the most frequently used queries. The
Usage-Based Optimization Wizard uses the query log to retrieve goal queries based on time,
usage, or a specified user when it sends a DesignAggregations command. For more
information, see Usage-Based Optimization Wizard F1 Help (SSAS).
If you are iteratively designing aggregations, you only have to pass goal queries in the first
DesignAggregations command because the Analysis Services instance stores these goal
queries and uses these queries during subsequent DesignAggregations commands. After you
pass goal queries in the first DesignAggregations command of an iterative process, any
subsequent DesignAggregations command that contains goal queries in the Queries property
generates an error.
The Query element contains a comma-delimited value that contains the following arguments:
Frequency,Dataset[,Dataset...]
Frequency

A weighting factor that corresponds to the number of times that the query has previously
been executed. If the Query element represents a new query, the Frequency value represents

http://msdn.microsoft.com/en-us/library/a6821a2a-89ec-418b-b2dd-92adf2ccc20e(SQL.110)�
http://msdn.microsoft.com/en-us/library/b74ba333-19e5-407d-92ab-3c429d4b3f45(SQL.110)�
http://msdn.microsoft.com/en-us/library/fb9ff737-59e2-4d8b-9f0e-af392eb25d08(SQL.110)�
http://msdn.microsoft.com/en-us/library/c3590af8-a24b-4fd3-b846-17edbd399b6d(SQL.110)�
http://msdn.microsoft.com/en-us/library/cda19474-7170-4b0e-b0ea-297ce5128112(SQL.110)�
http://msdn.microsoft.com/en-us/library/e199412a-23f1-4d11-9e72-11f184ad9602(SQL.110)�
http://msdn.microsoft.com/en-us/library/5a4544e4-012f-4a47-942c-23596400ea16(SQL.110)�
http://msdn.microsoft.com/en-us/library/e5f5a938-ae7c-4f4e-9416-a7f94ac82763(SQL.110)�

 284

the weighting factor used by the design process to evaluate the query. As the frequency
value becomes larger, the weight that is put on the query during the design process
increases.

Dataset

A numeric string that specifies which attributes from a dimension are to be included in the
query. This string must have the same number of characters as the number of attributes in
the dimension. Zero (0) indicates that the attribute in the specified ordinal position is not
included in the query for the specified dimension, while one (1) indicates that the attribute in
the specified ordinal position is included in the query for the specified dimension.

For example, the string "011" would refer to a query involving a dimension with three
attributes, from which the second and third attributes are included in the query.

Note
Some attributes are excluded from consideration in the dataset. For more information about excluded
attributes, see Query Element (XMLA).

Each dimension in the measure group that contains the aggregation design is represented by
a Dataset value in the Query element. The order of Dataset values must match the order of
dimensions included in the measure group.

Designing Aggregations Using Iterative or Batch Processes
You can use the DesignAggregations command as part of an iterative process or a batch
process, depending on the interactivity required by the design process.
Designing Aggregations Using an Iterative Process
To iteratively design aggregations, you send multiple DesignAggregations commands to
provide fine control over the design process. The Aggregation Design Wizard uses this same
approach to provide fine control over the design process. For more information,
see Aggregation Design Wizard F1 Help (SSAS).

An explicit session is required to iteratively design aggregations. For more information
about explicit sessions, see Managing Connections and Sessions (XMLA).

To start the iterative process, you first send a DesignAggregations command that contains the
following information:
• The Storage and Optimization property values on which the whole design process is

targeted.
• The Steps and Time property values on which the first step of the design process is limited.
• If you want usage-based optimization, the Queries property that contains the goal queries

on which the whole design process is targeted.
• The Materialize property set to false. Setting this property to false indicates that the design

process does not save the defined aggregations to the aggregation design when the
command is completed.

Note

http://msdn.microsoft.com/en-us/library/5a4544e4-012f-4a47-942c-23596400ea16(SQL.110)�
http://msdn.microsoft.com/en-us/library/39e23cf1-6405-4fb6-bc14-ba103314362d(SQL.110)�

 285

When the first DesignAggregations command finishes, the command returns a rowset that
contains design statistics. You can evaluate these design statistics to determine whether the
design process should continue or whether the design process is finished. If the process should
continue, you then send another DesignAggregations command that contains the Steps and
Time values with which this step of the design process is limited. You evaluate the resulting
statistics and then determine whether the design process should continue. This iterative process
of sending DesignAggregations commands and evaluating the results continues until you
reach your goals and have a appropriate set of aggregations defined.
After you have reached the set of aggregations that you want, you send one final
DesignAggregations command. This final DesignAggregations command should have its
Steps property set to 1 and its Materialize property set to true. By using these settings, this
final DesignAggregations command completes the design process and saves the defined
aggregation to the aggregation design.
Designing Aggregations Using a Batch Process
You can also design aggregations in a batch process by sending a single DesignAggregations
command that contains the Steps, Time, Storage, and Optimization property values on which
the whole design process is targeted and limited. If you want usage-based optimization, the
goal queries on which the design process is targeted should also be included in the Queries
property. Also make sure that the Materialize property is set to true, so that the design process
saves the defined aggregations to the aggregation design when the command finishes.
You can design aggregations using a batch process in either an implicit or explicit session. For
more information about implicit and explicit sessions, see Managing Connections and Sessions
(XMLA).
Returning Design Statistics
When the DesignAggregations command returns control to the client application, the
command returns a rowset that contains a single row representing the design statistics for the
command. The rowset contains the columns listed in the following table.

Column Data type Description

Steps Integer The number of steps taken by
the command before returning
control to the client
application.

Time Long integer The number of milliseconds
taken by the command before
returning control to the client
application.

Optimization Double The estimated percentage of
performance improvement

 286

Column Data type Description

achieved by the command
before returning control to the
client application.

Storage Long integer The estimated number of bytes
taken by the command before
returning control to the client
application.

Aggregations Long integer The number of aggregations
defined by the command
before returning control to the
client application.

LastStep Boolean Indicates whether the data in
the rowset represents the last
step in the design process. If
the Materialize property of the
command was set to true, the
value of this column is set to
true.

You can use the design statistics that are contained in the rowset returned after each
DesignAggregations command in both iterative and batch design. In iterative design, you can
use the design statistics to determine and display progress. When you are designing
aggregations in batch, you can use the design statistics to determine the number of
aggregations created by the command.
See Also
Using XML for Analysis in Analysis Services (XMLA)

Backing Up, Restoring, and Synchronizing Databases (XMLA)
In XML for Analysis, there are three commands that back up, restore, and synchronize databases:
• The Backup command backs up a Microsoft SQL Server Analysis Services database using an

Analysis Services backup file (.abf), as described in the section, Backing Up Databases.
• The Restore command restores an Analysis Services database from an .abf file, as described

in the section, Restoring Databases.
• The Synchronize command synchronizes one Analysis Services database with the data and

metadata of another database, as described in the section, Synchronizing Databases.
Backing Up Databases

http://msdn.microsoft.com/en-us/library/5bcbc14c-9db9-45b2-99de-f3a265bcb0c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/bb5a0c92-3927-4fa4-975b-6e4d79e0a912(SQL.110)�
http://msdn.microsoft.com/en-us/library/9401323c-feff-409a-a9da-94aee47e0563(SQL.110)�

 287

As mentioned earlier, the Backup command backs up a specified Analysis Services database to a
backup file. The Backup command has various properties that let you specify the database to be
backed up, the backup file to use, how to back up security definitions, and the remote partitions
to be backed up.

The Analysis Services service account must have permission to write to the backup
location specified for each file. Also, the user must have one of the following roles:
administrator role on the Analysis Services instance, or a member of a database role with
Full Control (Administrator) permissions on the database to be backed up.

Specifying the Database and Backup File
To specify the database to be backed up, you set the Object property of the Backup command.
The Object property must contain an object identifier for a database, or an error occurs.
To specify the file that is to be created and used by the backup process, you set the File property
of the Backup command. The File property should be set to a UNC path and file name for the
backup file to be created.
Besides specifying which file to use for backup, you can set the following options for the
specified backup file:
• If you set the AllowOverwrite property to true, the Backup command overwrites the backup

file if the specified file already exists. If you set the AllowOverwrite property to false, an
error occurs if the specified backup file already exists.

• If you set the ApplyCompression property to true, the backup file is compressed after the file
is created.

• If you set the Password property to any non-blank value, the backup file is encrypted by
using the specified password.

If ApplyCompression and Password properties are not specified, the backup file
stores user names and passwords that are contained in connection strings in clear
text. Data that is stored in clear text may be retrieved. For increased security, use the
ApplyCompression and Password settings to both compress and encrypt the
backup file.

Backing Up Security Settings
The Security property determines whether the Backup command backs up the security
definitions, such as roles and permissions, defined on an Analysis Services database. The
Security property also determines whether the backup file includes the Windows user accounts
and groups defined as members of the security definitions.
The value of the Security property is limited to one of the strings listed in the following table.

noteDXDOC112778PADS Security Note

noteDXDOC112778PADS Security Note

http://msdn.microsoft.com/en-us/library/99470537-2c4a-4072-9613-940c41c12487(SQL.110)�
http://msdn.microsoft.com/en-us/library/3dfd0e9b-746b-4ce5-8a95-610d2e573739(SQL.110)�
http://msdn.microsoft.com/en-us/library/e7e92481-5f29-47f2-9efd-4e5e60c002bb(SQL.110)�
http://msdn.microsoft.com/en-us/library/93e222e5-9371-4fb5-aae0-f50b964cc264(SQL.110)�
http://msdn.microsoft.com/en-us/library/8a0603bd-f6a1-4b86-84f1-c83d0b03951b(SQL.110)�
http://msdn.microsoft.com/en-us/library/0b601f69-d16d-4d10-9361-b8afaa6ed357(SQL.110)�

 288

Value Description

SkipMembership Include security definitions, but exclude
membership information, in the backup file.

CopyAll Include security definitions and
membership information in the backup file.

IgnoreSecurity Exclude security definitions from the
backup file.

Backing Up Remote Partitions
To back up remote partitions in the Analysis Services database, you set
the BackupRemotePartitions property of the Backup command to true. This setting causes the
Backup command to create a remote backup file for each remote data source that is used to
store remote partitions for the database.
For each remote data source to be backed up, you can specify its corresponding backup file by
including a Location element in the Locations property of the Backup command. The Location
element should have its File property set to the UNC path and file name of the remote backup
file, and its DataSourceID property set to the identifier of the remote data source defined in the
database.
Restoring Databases
The Restore command restores a specified Analysis Services database from a backup file. The
Restore command has various properties that let you specify the database to restore, the
backup file to use, how to restore security definitions, the remote partitions to be stored, and
the relocation relational OLAP (ROLAP) objects.

For each backup file, the user who runs the restore command must have permission to
read from the backup location specified for each file. To restore an Analysis Services
database that is not installed on the server, the user must also be a member of the server
role for that Analysis Services instance. To overwrite an Analysis Services database, the
user must have one of the following roles: a member of the server role for the Analysis
Services instance or a member of a database role with Full Control (Administrator)
permissions on the database to be restored.

After restoring an existing database, the user who restored the database might lose
access to the restored database. This loss of access can occur if, at the time that the
backup was performed, the user was not a member of the server role or was not a
member of the database role with Full Control (Administrator) permissions.

Specifying the Database and Backup File

noteDXDOC112778PADS Security Note

Note

http://msdn.microsoft.com/en-us/library/bd68bcf9-b324-4fa8-b6e5-1f5531f9992c(SQL.110)�
http://msdn.microsoft.com/en-us/library/cea5e776-f435-425a-9bce-812d727a2b71(SQL.110)�
http://msdn.microsoft.com/en-us/library/630929cb-f0dc-472a-86bc-28b67e907c3d(SQL.110)�
http://msdn.microsoft.com/en-us/library/695522c7-acca-420a-a5fb-f01f3fd9a96b(SQL.110)�

 289

The DatabaseName property of the Restore command must contain an object identifier for a
database, or an error occurs. If the specified database already exists, the AllowOverwrite
property determines whether the existing database is overwritten. If the AllowOverwrite
property is set to false and the specified database already exists, an error occurs.
You should set the File property of the Restore command to a UNC path and file name for the
backup file to be restored to the specified database. You can also set the Password property for
the specified backup file. If the Password property is set to any non-blank value, the backup file
is decrypted by using the specified password. If the backup file was not encrypted, or if the
specified password does not match the password used to encrypt the backup file, an error
occurs.
Restoring Security Settings
The Security property determines whether the Restore command restores the security
definitions, such as roles and permissions, defined on an Analysis Services database. The
Security property also determines whether the Restore command includes the Windows user
accounts and groups defined as members of the security definitions as part of the restore
process.
The value of this element is limited to one of the strings listed in the following table.

Value Description

SkipMembership Include security definitions, but exclude
membership information, in the database.

CopyAll Include security definitions and
membership information in the database.

IgnoreSecurity Exclude security definitions from the
database.

Restoring Remote Partitions
For each remote backup file created during a previous Backup command, you can restore its
associated remote partition by including a Location element in the Locations property of the
Restore command. The DataSourceType property for each Location element must be excluded
or explicitly set to Remote.
For each specified Location element, the Analysis Services instance contacts the remote data
source specified in the DataSourceID property to restore the partitions defined in the remote
backup file specified in the File property. Besides the DataSourceID and File properties, the
following properties are available for each Location element used to restore a remote partition:
• To override the connection string for the remote data source specified in DataSourceID, you

can set the ConnectionString property of the Location element to a different connection
string. The Restore command will then use the connection string that is contained in the

http://msdn.microsoft.com/en-us/library/f5a348b1-911b-4139-832e-4bcb6d80a728(SQL.110)�

 290

ConnectionString property. If ConnectionString is not specified, the Restore command
uses the connection string stored in the backup file for the specified remote data source.
You can use the ConnectionString setting to move a remote partition to a different remote
instance. However, you cannot use the ConnectionString setting to restore a remote
partition to the same instance that contains the restored database. In other words, you
cannot use the ConnectionString property to make a remote partition into a local partition.

• For each original folder used to store the remote partitions on the remote data source, you
can specify a Folder element to indicate the new folder in which to restore all the remote
partitions stored in the original folder. If a Folder element is not specified, the Restore
command uses the original folders specified for the remote partitions that are contained in
the remote backup file.

Relocating ROLAP Objects
The Restore command cannot restore aggregations or data for objects that use ROLAP storage
because such information is stored in tables on an underlying relational data source. However,
the metadata for ROLAP objects can be restored. To restore the metadata for ROLAP object, the
Restore command re-creates the table structure on a relational data source.
You can use the Location element in a Restore command to relocate ROLAP objects. For each
Location element used to relocate a data source, the DataSourceType property must be
explicitly set to Local. You also have to set the ConnectionString property of the Location
element to the connection string of the new location. During the restore, the Restore command
will replace the connection string for the data source identified by the DataSourceID property
of the Location element with the value of the ConnectionString property of the Location
element.
Synchronizing Databases
The Synchronize command synchronizes the data and metadata of a specified Analysis Services
database with another database. The Synchronize command has various properties that let you
specify the source database, how to synchronize security definitions, the remote partitions to be
synchronized, and the synchronization of ROLAP objects.

The Synchronize command can be executed only by server administrators and database
administrators. Both the source and destination database must have the same database
compatibility level.

Specifying the Source Database
The Source property of the Synchronize command contains two properties, ConnectionString
and Object. The ConnectionString property contains the connection string of the instance that
contains the source database, and the Object property contains the object identifier for the
source database.
The destination database is the current database for the session in which the Synchronize
command runs.

Note

http://msdn.microsoft.com/en-us/library/87b305b0-57e3-4ec3-9d80-f1bcf3ce7540(SQL.110)�
http://msdn.microsoft.com/en-us/library/4d4665ae-e20f-4baf-ab0f-848660caf500(SQL.110)�

 291

If the ApplyCompression property of the Synchronize command is set to true, the information
sent from the source database to the destination database is compressed before being sent.
Synchronizing Security Settings
The SynchronizeSecurity property determines whether the Synchronize command synchronizes
the security definitions, such as roles and permissions, defined on the source database. The
SynchronizeSecurity property also determines whether the Sychronize command includes the
Windows user accounts and groups defined as members of the security definitions.
The value of this element is limited to one of the strings listed in the following table.

Value Description

SkipMembership Include security definitions, but exclude
membership information, in the destination
database.

CopyAll Include security definitions and
membership information in the destination
database.

IgnoreSecurity Exclude security definitions from the
destination database.

Synchronizing Remote Partitions
For each remote data source that exists on the source database, you can synchronize each
associated remote partition by including a Location element in the Locations property of the
Synchronize command. For each Location element, the DataSourceType property must be
excluded or explicitly set to Remote.
To define and connect to a remote data source in the destination database, the Synchronize
command uses the connection string defined in the ConnectionString property of the Location
element. The Synchronize command then uses the DataSourceID property of the Location
element to identify which remote partitions to synchronize. The Synchronize command
synchronizes the remote partitions on the remote data source specified in the DataSourceID
property on the source database with the remote data source specified in the DataSourceID
property on the destination database.
For each original folder used to store the remote partitions on the remote data source on the
source database, you can also specify a Folder element in the Location element. The Folder
element indicates the new folder for the destination database in which to synchronize all the
remote partitions stored in the original folder on the remote data source. If a Folder element is
not specified, the Synchronize command uses the original folders specified for remote partitions
that are contained in the source database.
Synchronizing ROLAP Objects

http://msdn.microsoft.com/en-us/library/d37dbb95-f4a4-44ac-8eb9-f661d5bb5018(SQL.110)�

 292

The Synchronize command cannot synchronize aggregations or data for objects that use
ROLAP storage because such information is stored in tables on an underlying relational data
source. However, the metadata for ROLAP objects can be synchronized. To synchronize the
metadata, the Synchronize command recreates the table structure on a relational data source.
You can use the Location element in a Synchronize command to synchronize ROLAP objects.
For each Location element used to relocate a data source, the DataSourceType property must
be explicitly set to Local. . You also have to set the ConnectionString property of the Location
element to the connection string of the new location. During synchronization, the Synchronize
command will replace the connection string for the data source identified by the DataSourceID
property of the Location element with the value of the ConnectionString property of the
Location element.
See Also
Managing Backing Up and Restoring (Analysis Services)
Restore Element (XMLA)
Synchronize Element (XMLA)
Backing Up and Restoring an Analysis Services Database

Inserting, Updating, and Dropping Members (XMLA)
You can use the Insert, Update, and Drop commands in XML for Analysis (XMLA) to respectively
insert, update, or delete members from a write-enabled dimension. For more information about
write-enabled dimensions, see Using XML for Analysis in Analysis Services (XMLA).
Inserting New Members
The Insert command inserts new members into specified attributes in a write-enabled
dimension.
Before constructing the Insert command, you should have the following information available
for the new members to be inserted:
• The dimension in which to insert the new members.
• The dimension attribute in which to insert the new members.
• The names of the new members, including any applicable translations for the name.
• The keys of the new members. If an attribute uses a composite key, the key may require

multiple values.
• Values for any applicable attribute properties that are not implemented as other attributes

within the dimension. Such attribute properties include unary operations, translations,
custom rollups, custom rollup properties, and skipped levels.

The Insert command takes only two properties:
• The Object property, which contains an object reference for the dimension in which the

members are to be inserted. The object reference contains the database identifier, cube
identifier, and dimension identifier for the dimension.

http://msdn.microsoft.com/en-us/library/5bcbc14c-9db9-45b2-99de-f3a265bcb0c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/bb5a0c92-3927-4fa4-975b-6e4d79e0a912(SQL.110)�
http://msdn.microsoft.com/en-us/library/9401323c-feff-409a-a9da-94aee47e0563(SQL.110)�
http://msdn.microsoft.com/en-us/library/947eebd2-3622-479e-8aa6-57c11836e4ec(SQL.110)�
http://msdn.microsoft.com/en-us/library/d1137033-cc19-4bcb-b93d-8575f17bea6b(SQL.110)�
http://msdn.microsoft.com/en-us/library/324dcc16-865d-4d0a-b393-2b06c18ac807(SQL.110)�
http://msdn.microsoft.com/en-us/library/a5d21db3-743a-4958-b16d-b6816a5ee787(SQL.110)�
http://msdn.microsoft.com/en-us/library/99470537-2c4a-4072-9613-940c41c12487(SQL.110)�

 293

• The Attributes property, which contains one or more Attribute elements to identify the
attributes in which members are to be inserted. Each Attribute element identifies an
attribute and provides the name, value, translations, unary operator, custom rollup, custom
rollup properties, and skipped levels for a single member to be added to the identified
attribute.

All properties for the Attribute element must be included. Otherwise, an error may
occur.

Updating Existing Members
The Update command updates existing members in specified attributes, based on relationships
with other members in other attributes, in a write-enabled dimension. The Update command
can move members to other levels in hierarchies contained by the dimension, and can be used
to restructure parent-child hierarchies defined by parent attributes.
Before constructing the Update command, you should have the following information available
for the members to be updated:
• The dimension in which to update existing members.
• The dimension attributes in which to update existing members.
• The keys of the existing members. If an attribute uses a composite key, the key may require

multiple values.
• Values for any applicable attribute properties that are not implemented as other attributes

within the dimension. Such attribute properties include unary operations, translations,
custom rollups, custom rollup properties, and skipped levels.

The Update command takes only three required properties:
• The Object property, which contains an object reference for the dimension in which the

members are to be updated. The object reference contains the database identifier, cube
identifier, and dimension identifier for the dimension.

• The Attributes property, which contains one or more Attribute elements to identify the
attributes in which members are to be updated. The Attribute element identifies an
attribute and provides the name, value, translations, unary operator, custom rollup, custom
rollup properties, and skipped levels for a single member updated for the identified
attribute.

All properties for the Attribute element must be included. Otherwise, an error may
occur.

• The Where property, which contains one or more Attribute elements that constrain the
attributes in which members are to be updated. The Where property is crucial to limiting an
Update command to specific instances of a member. If the Where property is not specified,
all instances of a given member are updated. For example, there are three customers for
whom you want to change the city name from Redmond to Bellevue. To change the city

Note

Note

http://msdn.microsoft.com/en-us/library/c0393de8-44e8-46de-af78-1fd66c218521(SQL.110)�
http://msdn.microsoft.com/en-us/library/0df9cf44-dc5f-4234-8a5a-daac8aabc0d6(SQL.110)�
http://msdn.microsoft.com/en-us/library/81fb4190-3379-4ddf-8795-a0772f3b92bb(SQL.110)�

 294

name, you must provide a Where property that identifies the three members in the
Customer attribute for which the members in the City attribute should be changed. If you do
not provide this Where property, every customer whose city name is currently Redmond
would have the city name of Bellevue after the Update command runs.

With the exception of new members, the Update command can only update
attribute key values for attributes not included in the Where clause. For example, the
city name cannot be updated when a customer is updated; otherwise, the city name
is changed for all customers.

Updating Members in Parent Attributes
To support parent attributes, the Update command the
optional MoveWithDescendantsMovewithDescedants properties. Setting the
MoveWithDescendants property to true indicates that the descendants of the parent member
should also be moved with the parent member when the identifier of that parent member
changes. If this value is set to false, moving a parent member causes the immediate descendants
of that parent member to be promoted to the level in which the parent member formerly
resided.
When updating members in a parent attribute, the Update command cannot update members
in other attributes.
Dropping Existing Members
Before constructing the Drop command, you should have the following information available for
the members to be dropped:
• The dimension in which to drop existing members.
• The dimension attributes in which to drop existing members.
• The keys of the existing members to be dropped. If an attribute uses a composite key, the

key may require multiple values.
The Drop command takes only two required properties:
• The Object property, which contains an object reference for the dimension in which the

members are to be dropped. The object reference contains the database identifier, cube
identifier, and dimension identifier for the dimension.

• The Where property, which contains one or more Attribute elements to constrain the
attributes in which members are to be deleted. The Where property is crucial to limiting a
Drop command to specific instances of a member. If the Where command is not specified,
all instances of a given member are dropped. For example, there are three customers that
you want to drop from Redmond. To drop these customers, you must provide a Where
property that identifies the three members in the Customer attribute to be removed and the
Redmond member of the City attribute from which the three customers are to be removed.
If the Where property only specifies the Redmond member of the City attribute, every
customer associated with Redmond would be dropped by the Drop command. If the Where

Note

http://msdn.microsoft.com/en-us/library/d02285b6-1801-4da9-8e2b-9ab008e25558(SQL.110)�

 295

property only specifies the three members in the Customer attribute, the three customers
would be deleted entirely by the Drop command.

The Attribute elements included in a Drop command must contain only the
AttributeName and Keys properties. Otherwise, an error may occur.

Dropping Members in Parent Attributes
Setting the DeleteWithDescendants property indicates that the descendants of a parent member
should also be deleted with the parent member. If this value is set to false, the immediate
descendants of the parent member are instead promoted to the level in which the parent
member formerly resided.

A user needs only to have delete permissions for the parent member to delete both the
parent member and its descendants. A user does not need delete permissions on the
descendants.

See Also
Drop Element (XMLA)
Insert Element (XMLA)
Update Element (XMLA)
Defining and Identifying Objects (XMLA)
Using XML for Analysis in Analysis Services (XMLA)

Updating Cells (XMLA)
You can use the UpdateCells command to change the value of one or more cells in a cube
enabled for cube writeback. Microsoft SQL Server Analysis Services stores the updated
information in a separate writeback table for each partition that contains cells to be updated.

The UpdateCells command does not support allocations during cube writeback. To use
allocated writeback, you should use the Statement command to send a Multidimensional
Expressions (MDX) UPDATE statement. For more information, see Using XML for Analysis
in Analysis Services (XMLA).

Specifying Cells
The Cell property of the UpdateCells command contains the cells to be updated. You identify
each cell in the Cell property using that cell's ordinal number. Conceptually, Analysis Services
numbers cells in a cube as if the cube were a p-dimensional array, where p is the number of
axes. Cells are addressed in row-major order. The following illustration shows the formula for
calculating the ordinal number of a cell.

Note

noteDXDOC112778PADS Security Note

Note

http://msdn.microsoft.com/en-us/library/adfc9437-aaa7-4364-bcdb-128fcc9a410d(SQL.110)�
http://msdn.microsoft.com/en-us/library/a5d21db3-743a-4958-b16d-b6816a5ee787(SQL.110)�
http://msdn.microsoft.com/en-us/library/d1137033-cc19-4bcb-b93d-8575f17bea6b(SQL.110)�
http://msdn.microsoft.com/en-us/library/324dcc16-865d-4d0a-b393-2b06c18ac807(SQL.110)�
http://msdn.microsoft.com/en-us/library/18336a35-8a46-4532-9ee7-71828b2982af(SQL.110)�
http://msdn.microsoft.com/en-us/library/bfedc03c-d476-4d55-b5fd-36169f01351a(SQL.110)�
http://msdn.microsoft.com/en-us/library/6c8f23bb-401b-49de-843a-5324ac977239(SQL.110)�
http://msdn.microsoft.com/en-us/library/6c8f23bb-401b-49de-843a-5324ac977239(SQL.110)�
http://msdn.microsoft.com/en-us/library/6c8f23bb-401b-49de-843a-5324ac977239(SQL.110)�
http://msdn.microsoft.com/en-us/library/88daba54-89e9-423f-8d12-8de80cf52d6b(SQL.110)�

 296

Once you know a cell's ordinal number, you can indicate the intended value of the cell in
the Value property of the Cell property.
See Also
Update Element (XMLA)
Using XML for Analysis in Analysis Services (XMLA)

Managing Caches (XMLA)
You can use the ClearCache command in XML for Analysis (XMLA) to clear the cache of a
specified dimension or partition. Clearing the cache forces Microsoft SQL Server Analysis
Services to rebuild the cache for that object.
Specifying Objects
The Object property of the ClearCache command can contain an object reference only for one
of the following objects. An error occurs if an object reference is for an object other than one of
following objects:
Database

Clears the cache for all dimensions and partitions contained in the database.

Dimension

Clears the cache for the specified dimension.

Cube

Clears the cache for all partitions contained in the measure groups for the cube.

Measure group

Clears the cache for all partitions contained in the measure group.

Partition

Clears the cache for the specified partition.

See Also
Using XML for Analysis in Analysis Services (XMLA)

http://msdn.microsoft.com/en-us/library/f87ca7f8-d9fe-4730-a706-5d50fcfe21df(SQL.110)�
http://msdn.microsoft.com/en-us/library/88daba54-89e9-423f-8d12-8de80cf52d6b(SQL.110)�
http://msdn.microsoft.com/en-us/library/324dcc16-865d-4d0a-b393-2b06c18ac807(SQL.110)�
http://msdn.microsoft.com/en-us/library/e154b489-e443-469a-9490-43c62da62e11(SQL.110)�
http://msdn.microsoft.com/en-us/library/99470537-2c4a-4072-9613-940c41c12487(SQL.110)�

 297

Monitoring Traces (XMLA)
You can use the Subscribe command in XML for Analysis (XMLA) to monitor an existing trace
defined on an instance of Microsoft SQL Server Analysis Services. The Subscribe command
returns the results of a trace as a rowset.
Specifying a Trace
The Object property of the Subscribe command must contain an object reference to either an
Analysis Services instance or a trace on an Analysis Services instance. If the Object property is
not specified, or a trace identifier is not specified in the Object property, the Subscribe
command monitors the default session trace for the explicit session specified in the SOAP
header for the command.
Returning Results
The Subscribe command returns a rowset containing the trace events captured by the specified
trace. The Subscribe command returns trace results until the command is canceled by
the Cancel command.
The rowset contains the columns listed in the following table.

Column Data type Description

EventClass Integer The event class of the event
received by the trace.

EventSubclass Long integer The event subclass of the event
received by the trace.

CurrentTime Datetime The time at which the event
started, when available. For
filtering, expected formats are
'YYYY-MM-DD' and 'YYYY-MM-
DD HH:MM:SS'.

StartTime Datetime The time at which the event
started, when available. For
filtering, expected formats are
'YYYY-MM-DD' and 'YYYY-MM-
DD HH:MM:SS'.

EndTime Datetime The time at which the event
ended, when available. For
filtering, expected formats are
'YYYY-MM-DD' and 'YYYY-MM-
DD HH:MM:SS'.
This column is not populated
for event classes that describe

http://msdn.microsoft.com/en-us/library/aad50dd7-44d4-4d83-a973-187f9aed35ec(SQL.110)�
http://msdn.microsoft.com/en-us/library/99470537-2c4a-4072-9613-940c41c12487(SQL.110)�
http://msdn.microsoft.com/en-us/library/de4062c1-7434-44dc-9f01-29fcf78963bd(SQL.110)�

 298

Column Data type Description

the start of a process or action.

Duration Long integer The amount of total time (in
milliseconds) elapsed for the
event.

CPUTime Long integer The amount of processor time
(in milliseconds) elapsed for the
event.

JobID Long integer The job identifier for the
process.

SessionID String The identifier of the session for
which the event occurred.

SessionType String The type of the session for
which the event occurred.

ProgressTotal Long integer The total number or amount of
progress reported by the event.

IntegerData Long integer Integer data associated with the
event. The contents of this
column depend on the event
class and subclass of the event.

ObjectID String The identifier of the object for
which the event occurred.

ObjectType String The type of the object specified
in ObjectName.

ObjectName String The name of the object for
which the event occurred.

ObjectPath String The hierarchical path of the
object for which the event
occurred. The path is
represented as a comma-
delimited string of object
identifiers for the parents of the
object specified in ObjectName.

ObjectReference String The XML representation of the
object reference for the object
specified in ObjectName.

 299

Column Data type Description

NestLevel Integer The level of the transaction for
which the event occurred.

NumSegments Long integer The number of data segments
affected or accessed by the
command for which the event
occurred.

Severity Integer The severity level of an
exception for the event. The
column can contain one of the
following values:

Value Description

0 Success

1 Information

2 Warning

3 Error

Success Boolean Indicates whether a command
succeeded or failed.

Error Long integer The error number of the event,
if applicable.

ConnectionID String The identifier of the connection
for which the event occurred.

DatabaseName String The name of the database for
which the event occurred.

NTUserName String The Windows user name of the
user associated with the event.

NTDomainName String The Windows domain of the
user associated with the event.

ClientHostName String The name of the computer on
which the client application is
running. This column is

 300

Column Data type Description

populated with the values
passed by the client application.

ClientProcessID Long integer The process identifier of the
client application.

ApplicationName String The name of the client
application that created the
connection to the Analysis
Services instance. This column is
populated with the values
passed by the client application,
rather than the displayed name
of the program.

NTCanonicalUserName String The Windows canonical user
name of the user associated
with the event.

SPID String The server process ID (SPID) of
the session for which the event
occurred. The value of this
column directly corresponds to
the session ID specified in the
SOAP header of the XMLA
message for which the event
occurred.

TextData String The text data associated with
the event. The contents of this
column depend on the event
class and subclass of the event.

ServerName String The name of the Analysis
Services instance for which the
event occurred.

RequestParameters String The parameters of the
parameterized query or XMLA
command for which the event
occurred.

RequestProperties String The properties of the XMLA
method for which the event
occurred.

 301

See Also
Using XML for Analysis in Analysis Services (XMLA)

Extending OLAP functionality
As a programmer, you can extend Analysis Services by writing assemblies, personalized
extensions, and stored procedures that provide functionality you want to use and repurpose in
multiple database applications. Assemblies are used to extend multidimensional models
functionality by adding new procedures and functions to the MDX language or by means of the
personalization addin.
Stored procedures can be used to call external routines, simplifying Analysis Services database
development and implementation by allowing common code to be developed once and stored
in a single location. Stored procedures can be used to add business functionality to your
applications that is not provided by the native functionality of MDX.
Personalizations are custom objects that you add to a cube to provide a behavior that varies by
user. Personalizations are not permanent objects in the cube, but are objects that the client
application applies dynamically during the user's session. Examples include changing the
currency of a monetary value depending on the person accessing the data, providing
individualized KPIs, or a targeted suggestion list for regular customers who purchase online.

In this Section
Extending OLAP through personalizations
Analysis Services Personalization Extensions
Defining Stored Procedures

Extending OLAP through personalizations
Microsoft SQL Server 2012 Analysis Services (SSAS) supplies many intrinsic functions for use
with the Multidimensional Expressions (MDX) and Data Mining Extensions (DMX) languages.
These functions are designed to accomplish everything from standard statistical calculations to
traversing members in a hierarchy. However, as with any other complex and robust product,
there is always the need to extend the functionality of such a product further.
Therefore, Analysis Services provides you with the ability to add assemblies and personalized
extensions to an instance of the service, in order to complete your business needs whenever the
standard functionality is not enough.

Assemblies
Assemblies enable you to extend the business functionality of MDX and DMX. You build the
functionality that you want into a library, such as a dynamic link library (DLL), then add the

 302

library as an assembly to an instance of Analysis Services or to an Analysis Services database.
The public methods in the library are then exposed as user-defined functions to MDX and DMX
expressions, procedures, calculations, actions, and client applications.

Personalized Extensions
SQL Server Analysis Services personalization extensions are the foundation of the idea of
implementing a plug-in architecture. Analysis Services personalization extensions are a simple
and elegant modification to the existing managed assembly architecture and are exposed
throughout the Analysis Services N:Microsoft.AnalysisServices.AdomdServer object model,
Multidimensional Expressions (MDX) syntax, and schema rowsets.

See Also
Assemblies (Analysis Services - Multidimensional Data)
Analysis Services Personalization Extensions

Analysis Services Personalization Extensions
SQL Server Analysis Services personalization extensions are the foundation of the idea of
implementing a plug-in architecture. In a plug-in architecture, you can develop new cube
objects and functionality dynamically and share them easily with other developers. As such,
Analysis Services personalization extensions provide the functionality that makes it possible to
achieve the following:
• Dynamic design and deployment Immediately after you design and deploy Analysis

Services personalization extensions, users have access to the objects and functionality at the
start of the next user session.

• Interface independence Regardless of the interface that you use to create the Analysis
Services personalization extensions, users can use any interface to access the objects and
functionality.

• Session context Analysis Services personalization extensions are not permanent objects in
the existing infrastructure and do not require the cube to be reprocessed. They become
exposed and created for the user at the time that the user connects to the database, and
remain available for the length of that user session.

• Rapid distribution Share Analysis Services personalization extensions with other software
developers without having to go into detailed specifications about where or how to find this
extended functionality.

Analysis Services personalization extensions have many uses. For example, your company has
sales that involve different currencies. You create a calculated member that returns the
consolidated sales in the local currency of the person who is accessing the cube. You create this
member as a personalization extension. You then share this calculated member to a group of
users. Once shared, those users have immediate access to the calculated member as soon as
they connect to the server. They have access even if they are not using the same interface as the
one that was used to create the calculated member.

http://msdn.microsoft.com/en-us/library/b2645d10-6d17-444e-9289-f111ec48bbfb(SQL.110)�

 303

Analysis Services personalization extensions are a simple and elegant modification to the
existing managed assembly architecture and are exposed throughout the Analysis
Services N:Microsoft.AnalysisServices.AdomdServer object model, Multidimensional Expressions
(MDX) syntax, and schema rowsets.

Logical Architecture
The architecture for Analysis Services personalization extensions is based on the managed
assembly architecture and the following four basic elements:
The [PlugInAttribute] custom attribute

When starting the service, Analysis Services loads the required assemblies
and determines which classes have the
T:Microsoft.AnalysisServices.AdomdServer.PlugInAttribute custom attribute.

Note
The .NET Framework defines custom attributes as a way to describe your code and affect run-time
behavior. For more information, see the topic, "Attributes Overview," in the .NET Framework
Developer's Guide on MSDN.

For all classes with the T:Microsoft.AnalysisServices.AdomdServer.PlugInAttribute
custom attribute, Analysis Services invokes their default constructors. Invoking all the
constructors at startup provides a common location from which to build new objects and that
is independent of any user activity.

In addition to building a small cache of information about authoring and managing
personalization extensions, the class constructor typically subscribes to the
E:Microsoft.AnalysisServices.AdomdServer.Server.SessionOpened and
E:Microsoft.AnalysisServices.AdomdServer.Server.SessionClosing events. Failing
to subscribe to these events may cause the class to be inappropriately marked for cleanup by
the common language runtime (CLR) garbage collector.

Session context

For those objects that are based on personalization extensions, Analysis Services creates an
execution environment during the client session and dynamically builds most of those
objects in this environment. Like any other CLR assembly, this execution environment also
has access to other functions and stored procedures. When the user session ends, Analysis
Services removes the dynamically created objects and closes the execution environment.

Events

Object creation is triggered by the session events On-Cube-OpenedCubeOpened and On-
Cube-ClosingCubeClosing.

Communication between the client and the server occurs through specific events. These
events make the client aware of the situations that lead to the client's objects being built. The
client's environment is dynamically created using two sets of events: session events and cube
events.

Session events are associated with the server object. When a client logs on to a server,

http://go.microsoft.com/fwlink/?LinkId=82929�

 304

Analysis Services creates a session and triggers the
E:Microsoft.AnalysisServices.AdomdServer.Server.SessionOpened event. When a
client ends the session on the server, Analysis Services triggers the
E:Microsoft.AnalysisServices.AdomdServer.Server.SessionClosing event.

Cube events are associated with the connection object. Connecting to a cube triggers the
E:Microsoft.AnalysisServices.AdomdServer.AdomdConnection.CubeOpened
event. Closing the connection to a cube, by either closing the cube or by changing to a
different cube, triggers a
E:Microsoft.AnalysisServices.AdomdServer.AdomdConnection.CubeClosing
event.

Traceability and error handling

All activity is traceable by using SQL Server Profiler. Unhandled errors are reported to the
Windows event log.

All object authoring and management is independent of this architecture and is the sole
responsibility of the developers of the objects.

Infrastructure Foundations
Analysis Services personalization extensions are based on existing components. The following is
a summary of enhancements and improvements that provide the personalization extensions
functionality.

Assemblies
The custom attribute, T:Microsoft.AnalysisServices.AdomdServer.PlugInAttribute, can be added to
your custom assemblies to identify Analysis Services personalization extensions classes.

Changes to the AdomdServer Object Model
The following objects in the N:Microsoft.AnalysisServices.AdomdServer object model have been
enhanced or added to the model.

New AdomdConnection Class
The T:Microsoft.AnalysisServices.AdomdServer.AdomdConnection class is new and exposes
several personalization extensions through both properties and events.
Properties
• P:Microsoft.AnalysisServices.AdomdServer.AdomdConnection.SessionID, a read-only string

value representing the session Id of the current connection.
• P:Microsoft.AnalysisServices.AdomdServer.AdomdConnection.ClientCulture, a read-only

reference to the client culture associated with current session.
• P:Microsoft.AnalysisServices.AdomdServer.AdomdConnection.User, a read-only reference to

the identity interface representing the current user.
Events
• E:Microsoft.AnalysisServices.AdomdServer.AdomdConnection.CubeOpened

 305

• E:Microsoft.AnalysisServices.AdomdServer.AdomdConnection.CubeClosing

New Properties in the Context class
The T:Microsoft.AnalysisServices.AdomdServer.Context class has two new properties:
• P:Microsoft.AnalysisServices.AdomdServer.Context.Server, a read-only reference to the new

server object.
• P:Microsoft.AnalysisServices.AdomdServer.Context.CurrentConnection, a read-only reference

to the new T:Microsoft.AnalysisServices.AdomdServer.AdomdConnection object.

New Server class
The T:Microsoft.AnalysisServices.AdomdServer.Server class is new and exposes several
personalization extensions through both class properties and events.
Properties
• P:Microsoft.AnalysisServices.AdomdServer.Server.Name, a read-only string value representing

the server name.
• P:Microsoft.AnalysisServices.AdomdServer.Server.Culture, A read-only reference to the global

culture associated with the server.
Events
• E:Microsoft.AnalysisServices.AdomdServer.Server.SessionOpened
• E:Microsoft.AnalysisServices.AdomdServer.Server.SessionClosing

AdomdCommand class
The T:Microsoft.AnalysisServices.AdomdServer.AdomdCommand class now supports of the
following MDX commands:
• CREATE MEMBER Statement (MDX)
• UPDATE MEMBER Statement (MDX)
• DROP MEMBER Statement (MDX)
• CREATE SET Statement (MDX)
• DROP SET Statement (MDX)
• CREATE KPI Statement (MDX)
• DROP KPI Statement (MDX)

MDX extensions and enhancements
The CREATE MEMBER command is enhanced with the caption property, the display_folder
property, and the associated_measure_group property.
The UPDATE MEMBER command is added to avoid member re-creation when an update is
needed with the consequent loss of precedence in solving calculations. Updates cannot change
the scope of the calculated member, move the calculated member to a different parent, or
define a different solveorder.

http://msdn.microsoft.com/en-us/library/49379217-be2c-4139-a206-1168078b9b76(SQL.110)�
http://msdn.microsoft.com/en-us/library/07ab708d-d165-4fb1-a9f9-fb8197ff0dab(SQL.110)�
http://msdn.microsoft.com/en-us/library/e9819976-a9ec-4c48-b0b5-3f6938e200f5(SQL.110)�
http://msdn.microsoft.com/en-us/library/eff51eeb-5e7e-4706-b861-c57b6f3f89f0(SQL.110)�
http://msdn.microsoft.com/en-us/library/bbc37afb-af8c-41df-ba81-12771beb1c41(SQL.110)�
http://msdn.microsoft.com/en-us/library/87618fef-95e5-4dd0-a650-aeb60ccbddcb(SQL.110)�
http://msdn.microsoft.com/en-us/library/d19c6809-b8a6-459d-8554-b41854f7cc45(SQL.110)�

 306

The CREATE SET command is enhanced with the caption property, the display_folder property,
and the new STATIC | DYNAMIC keyword. Static means that set is evaluated only at creation
time. Dynamic means that the set is evaluated every time that the set is used in a query. The
default value is STATIC if a keyword is omitted.
CREATE KPI and DROP KPI commands are added to the MDX syntax. KPIs can be created
dynamically from any MDX script.

Schema Rowsets extensions
On MDSCHEMA_MEMBERS scope column is added. Scope values are as follows:
MDMEMBER_SCOPE_GLOBAL=1, MDMEMBER_SCOPE_SESSION=2.
On MDSCHEMA_SETS set_evaluation_context column is added. Set evaluation context values are
as follows: MDSET_RESOLUTION_STATIC = 1, MDSET_RESOLUTION_DYNAMIC = 2.
On MDSCHEMA_KPIS scope column is added. Scope values are as follows:
MDKPI_SCOPE_GLOBAL=1, MDKPI_SCOPE_SESSION=2.

Defining Stored Procedures
You can use stored procedures to call external routines from Microsoft SQL Server Analysis
Services. You can write an external routines called by a stored procedure in any common
language runtime (CLR) language, such as C, C++, C#, Visual Basic, or Visual Basic .NET. A stored
procedure can be created once and called from many contexts, such as other stored procedures,
calculated measures, or client applications. Stored procedures simplify Analysis Services
database development and implementation by allowing common code to be developed once
and stored in a single location. Stored procedures can be used to add business functionality to
your applications that is not provided by the native functionality of MDX.
This section provides the information necessary to understand, design, and implement stored
procedures.

Topic Description

Assemblies (Analysis Services -
Multidimensional Data)

Describes how to design assemblies for use
with Analysis Services.

Creating Stored Procedures Describes how to create assemblies for
Analysis Services.

Calling Stored Procedures Provides information on how to use
assemblies in Analysis Services.

Accessing Query Context in Stored
Procedures

Describes how to access scope and context
information with assemblies.

Setting Security for Stored Procedures Describes how to configure security for
assemblies in Analysis Services.

 307

Topic Description

Debugging Stored Procedures Describes how to debug assemblies in
Analysis Services.

See Also
Stored Procedures

Designing Stored Procedures
Both the administrative object model Analysis Management Objects (AMO) and the client
oriented object model Microsoft ActiveX® Data Objects (Multidimensional) (ADO MD) are
available in stored procedures.
Stored procedures must be in scope (either the server or the database) to be visible at the
Multidimensional Expressions (MDX) level to be called. However, once a stored procedure is
invoked, its scope is not limited to actions under its parent. A stored procedure may make
changes or modifications anywhere on the server, subject only to the security limitations of the
user process that invokes it or to the limitations of the transaction in which it is operating.
Server scope procedures are available in all contexts on the server. Database scope stored
procedures are visible only in the database context of the database in which they are defined.
As with any MDX function, stored procedure must be resolved before an MDX session can
continue; stored procedures lock MDX sessions while executing. Unless a specific reason exists
to halt an MDX session pending user interaction, then user interactions (such as dialog boxes)
are discouraged.
Dependent Assemblies
All dependent assemblies must be loaded into an instance of Analysis Services to be found by
the common language runtime (CLR). Analysis Services stores the dependent assemblies in the
same folder as the main assembly, so the CLR automatically resolves all function references to
functions in those assemblies.
See Also
Defining Stored Procedures
Working with Stored Procedures

Creating Stored Procedures
All stored procedures must be associated with a common language runtime (CLR) or
Component Object Model (COM) class in order to be used. The class must be installed on the
server — usually in the form of a Microsoft ActiveX® dynamic link library (DLL) — and
registered as an assembly on the server or in an Analysis Services database.

http://msdn.microsoft.com/en-us/library/b2645d10-6d17-444e-9289-f111ec48bbfb(SQL.110)�
http://msdn.microsoft.com/en-us/library/b2645d10-6d17-444e-9289-f111ec48bbfb(SQL.110)�

 308

Stored procedures are registered on a server or on a database. Server stored procedures can be
called from any query context. Database stored procedures can only be accessed if the database
context is the database under which the stored procedure is defined. If functions in one
assembly call functions in a different assembly, you must register both assemblies in the same
context (server or database). For a server or a deployed Microsoft SQL Server Analysis Services
database on a server, you can use SQL Server Management Studio to register an assembly. For
an Analysis Services project, you can use Analysis Services Designer to register an assembly in
the project.

COM assemblies might pose a security risk. Due to this risk and other considerations,
COM assemblies were deprecated in SQL Server 2008 Analysis Services (SSAS). COM
assemblies might not be supported in future releases.

Registering a Server Assembly
In Object Explorer in SQL Server Management Studio, server assemblies are listed in the
Assemblies folder under an instance of Analysis Services. Server assemblies can contain both
.NET (CLR) assemblies and COM libraries.
To create a server assembly
1. Expand the instance of Analysis Services in Object Explorer, right-click the Assemblies folder,

and then click New Assembly. This displays the Register Server Assembly dialog box.
2. For Type specify the type of assembly:

• For a managed code (CLR) DLL, specify .NET Assembly.
• For a native code (COM) DLL, specify COM DLL.

3. For File name, specify the DLL containing the stored procedures.
4. For Assembly name, specify a name for the assembly.
5. If this is a debug build of the library that you are going to use to debug stored procedures,

select the Include debug information check box. For more information about debugging
stored procedures, see Defining Stored Procedures.

6. You can click OK to register the assembly immediately, or on the dialog box toolbar, you can
click a command on the Script menu to script the registration action to a query window, a
file, or the Clipboard.

After you register a server assembly, you can configure it by right-clicking the assembly in
Object Explorer and then clicking Properties.
Registering a Database Assembly on the Server
In Object Explorer in SQL Server Management Studio, database assemblies are listed in the
Assemblies folder under an Analysis Services database. Database assemblies can contain both
.NET (CLR) assemblies and COM libraries.
To create a database assembly on a server

noteDXDOC112778PADS Security Note

 309

1. Expand the instance the Analysis Services database in Object Explorer, right-click the
Assemblies folder, and then click New Assembly. This displays the Register Database
Assembly dialog box.

2. For Type specify the type of assembly:
• For a managed code (CLR) DLL, specify .NET Assembly.
• For a native code (COM) DLL), specify COM DLL.

3. For File name, specify the DLL containing the stored procedures.
4. For Assembly name, specify a name for the assembly.
5. If this is a debug build of the library that you are going to use to debug stored procedures,

select the Include debug information check box. For more information about debugging
stored procedures, see Debugging Stored Procedures.

6. You can click OK to register the assembly immediately, or on the dialog box toolbar, you can
click a command on the Script menu to script the registration action to a query window, a
file, or the Clipboard.

After you register a database assembly, you can configure it by right-clicking the assembly in
Object Explorer and then clicking Properties.
Registering a Database Assembly in a Project
In Solution Explorer in SQL Server Data Tools (SSDT), database assemblies are listed in the
Assemblies folder under an Analysis Services project. Database assemblies can contain both
.NET (CLR) assemblies and COM libraries.
To create a database assembly in an Analysis Service project
1. Expand the instance the Analysis Services database in Object Explorer, right-click the

Assemblies folder, and then click New Assembly Reference. This displays the Add
Reference dialog box. The .NET tab of the Add Reference dialog box lists existing .NET
(CLR) assemblies, while the Projects tab lists projects.

2. You can click an existing component or project and then click Add to add it to the Analysis
Services project. To add a reference to a COM DLL, click the Browse tab to find the file. The
Selected projects and components list shows the name, type, version, and location for
each component that you are adding to the project.

3. When you are finished selecting components to add, click OK to add them to the Analysis
Services project.

Script Format For an Assembly
Registering a .NET assembly is fairly simple. A .NET assembly is added to a database in binary
format using the following format:

<Create>

 <ObjectDefinition>

 <Assembly>

 <Files>

 310

 <File>

 <Name>filename</Name>

 <Type>filetype</Type>

 <Data>

 <Block>binarydatablock</Block>

 <Block>binarydatablock</Block>

 ...

 </Data>

 </File>

 </Files>

 <PermissionSet>PermissionSet</PermissionSet>

 </Assembly>

 <ObjectDefinition>

</Create>

See Also
Stored Procedures
Working with Stored Procedures

Calling Stored Procedures
Stored procedures can be called on the server or from client application. In either case, stored
procedures always run on the server, either the context of the server or of a database. There are
no special permissions required to execute a stored procedure. Once a stored procedure is
added by an assembly to the server or database context, any user can execute the stored
procedure as long as the role for the user permits the actions performed by the stored
procedure.
Calling a stored procedure in MDX is done in the same manner as calling an intrinsic MDX
function. For a stored procedure that takes no parameters, the name of the procedure and an
empty pair of parentheses are used, as shown here:

MyStoredProcedure()

If the stored procedure takes one or more parameters, then the parameters are supplied, in
order, separated by commas. The following example demonstrates a sample stored procedure
with three parameters:

MyStoredProcedure("Parameter1", 2, 800)

Calling Stored Procedures in MDX Queries
In all MDX queries, the stored procedure must return the syntactically correct type required by
an MDX expression. If a stored procedure does not return the correct type, an MDX error occurs.

http://msdn.microsoft.com/en-us/library/b2645d10-6d17-444e-9289-f111ec48bbfb(SQL.110)�

 311

The following examples demonstrate stored procedures that return a set, a member, and the
result of a mathematical operation.
Returning a Set
The following examples implement a stored procedure, called MySproc, that returns a set. In the
first example, MySproc returns the set directly in the SELECT expression. In the second two
examples, MySproc returns the set as an argument for the Crossjoin and DrilldownLevel
functions.

SELECT MySetProcedure(a,b,c) ON 0 FROM Sales

SELECT Crossjoin(MySetProcedure(a,b,c)) ON 0 FROM Sales

SELECT DrilldownLevel(MySetProcedure(a,b,c)) ON 0 FROM Sales

Returning a Member
The following example shows a function MySproc function that returns a member:
SELECT Descendants(MySproc(a,b,c),3) ON 0 FROM Sales

Returning the Result of a Math Operation
SELECT Country.Members on 0, MySproc(Measures.Sales) ON 1 FROM Sales

Calling Stored Procedures with the Call Statement
Stored procedures can be called outside of the context of an MDX query using the MDX Call
statement.
You can use this method to either instantiate the side effects of a stored query or for the
application to get the results of a stored query. A common use of the Call statement would be
to use Analysis Management Objects (AMO) to perform administrative functions that do not
have a return result. For example, the following command calls a stored procedure:

Call MyStoredProcedure(a,b,c)

The only supported type returned from stored procedure in a Call statement is a rowset. The
serialization for a rowset is defined by XML for Analysis. If a stored procedure in a Call statement
returns any other type, it is ignored and not returned in XML to the calling application. For more
information about XML for Analysis rowsets, see, XML for Analysis Schema Rowsets.
If a stored procedure returns a .NET rowset, Analysis Services converts the result on the server to
an XML for Analysis rowset. The XML for Analysis rowset is always returned by a stored
procedure in the Call function. If a dataset contains features that cannot be expressed in the
XML for Analysis rowset, a failure results.
Procedures that return void values (for example, subroutines in Visual Basic) can also be
employed with the CALL keyword. If, for example, you wanted to use the function
MyVoidFunction() in an MDX statement, the following syntax would be employed:

CALL(MyVoidFunction)

See Also
Defining Stored Procedures
Working with Stored Procedures

http://msdn.microsoft.com/en-us/library/b2645d10-6d17-444e-9289-f111ec48bbfb(SQL.110)�

 312

Accessing Query Context in Stored Procedures
The execution context of a stored procedure is available within the code of the stored procedure
as the Context object of the ADOMD.NET server object model. This is a read-only context and
cannot be modified by the stored procedure. The following properties are available on this
object.

Property Type Description

CurrentCube Cube The cube for the current
query context.

CurrentDatabaseName String The identifier of the current
database.

CurrentConnection Connection A reference to the
connection object in the
current context.

Pass Integer The pass number for the
current context.

The Context object exists when the Multidimensional Expressions (MDX) object model is used in
a stored procedure. It is not available when the MDX object model is used on a client. The
Context object is not explicitly passed to or returned by the stored procedure. It is available
during the execution of the stored procedure.
See Also
Defining Stored Procedures
Working with Stored Procedures

Setting Security for Stored Procedures
Security for stored procedures is set with the PermissionSet property on a stored procedure for
an instance of Analysis Services (server level), an Analysis Services database, or an Analysis
Services project.
See Also
Defining Stored Procedures
Working with Stored Procedures

Debugging Stored Procedures
Analysis Services stored procedures are actually CLR or COM libraries (normally DLLs) that are
written in C# (or any other CLR or COM language). Therefore, debugging a stored procedure is

http://msdn.microsoft.com/en-us/library/b2645d10-6d17-444e-9289-f111ec48bbfb(SQL.110)�
http://msdn.microsoft.com/en-us/library/b2645d10-6d17-444e-9289-f111ec48bbfb(SQL.110)�

 313

much like debugging any other application in the Visual Studio debugging environment. You
debug stored procedures in the Visual Studio development environment using the integrated
debugging functions. These allow you to stop at procedure locations, inspect memory and
register values, change variables, observe message traffic and get a close look at how your code
works.
Procedures

1. Open the project used to create the DLL in Visual Studio.
2. Create breakpoints in the method or function corresponding to the procedure you

want to debug.
3. Use Visual Studio to create a debug build of a stored procedure DLL.
4. Deploy the DLL to the server. For more information about deploying the DLL to the

server, see Defining Stored Procedures.
5. You need an application that calls the stored procedure that you want to test. If you do

not have one ready, you can use the MDX Query Editor in SQL Server Management
Studio to create an MDX query that calls the stored procedure that you want to test.

6. In Visual Studio, attach to the Analysis Services process (Msmdsrv.exe).
a. From the Debug menu, choose Attatch to Process.
b. In the Attatch to Process dialog box, select Show processes from all users.
c. In the Available Processes list, in the Process column, click Msmdsrv.exe. If there

is more than one instance of Analysis Services running on the server, you need to
identify the process by the ID of the instance you want to use.

d. In the Attach to text box, make sure that the appropriate program type is selected.
For a CLR DLL, click Select, then click Debug these code types, then click
Managed, then click OK. For a COM DLL, click Select, then click Debug these code
types, then click Native, then click OK.

e. Click Attach.
7. In Analysis Services, invoke the program or MDX script that calls the stored procedure.

The debugger breaks when it reaches a line containing a breakpoint. You can evaluate
variables in the watch window, view locals, and step through the code.

If you have problems debugging a library, make sure that the corresponding program
database (PDB) file was copied to the deployment location on the server. If this file was not
copied during registration or deployment, you must copy it manually to the same location
as the DLL. For native code (COM DLL), the PDB file resides in the \debug subdirectory. For
managed code (CLR DLL), it resides in the \WINDEBUG subdirectory.

See Also
Stored Procedures
Working with Stored Procedures

To debug a stored procedure

http://msdn.microsoft.com/en-us/library/b2645d10-6d17-444e-9289-f111ec48bbfb(SQL.110)�

 314

Analysis Services OLE DB Provider
The Analysis Services OLE DB Provider is an interface for applications interacting with
Microsoft Analysis Services. It is used to build client applications that interact with
multidimensional data. This provider also provides methods for online and offline data mining
analysis of multidimensional data and relational data, and is included as part of Analysis
Services. It can be redistributed by third-party client applications.
The Analysis Services OLE DB Provider is the primary method for interacting with Analysis
Services in order to accomplish such tasks as connecting to a cube or data mining model,
querying a cube or data mining model, and retrieving schema information.
As a stand-alone provider, the Analysis Services OLE DB Provider provides client applications
with the ability to create local cube files and mining models from relational and
multidimensional sources. Client applications can connect to a local cube and execute queries
using Multidimensional Expressions (MDX) without interacting with the full-scale server running
the instance of Analysis Services.

See Also
Analysis Services Data Access Interfaces (Analysis Services - Multidimensional Data)

http://msdn.microsoft.com/en-us/library/46388efb-3c78-47a2-b5c9-5a69ff394d03(SQL.110)�

	Cover
	Contents
	Multidimensional Model Programming
	Understanding Microsoft OLAP Architecture
	Logical Architecture
	Logical Architecture Overview
	Server Objects
	Dimension Objects
	Cube Objects
	Aggregations and Aggregation Designs

	Physical Architecture
	OLAP Engine Server Components
	Server Process
	Object Naming
	Maximum Capacity Specifications
	Data Types in Analysis Services
	Local Cubes
	Clients

	International Considerations
	Languages and Collations
	Translations
	Currency Conversions
	Client Applications

	Developing with ADOMD.NET
	ADOMD.NET Client Programming
	ADOMD.NET Client Functionality
	Migrating From ADO MD To ADOMD.NET
	Establishing Connections in ADOMD.NET
	Retrieving Metadata from an Analytical Data Source
	Executing Commands Against an Analytical Data Source
	Retrieving Data from an Analytical Data Source

	ADOMD.NET Server Programming
	ADOMD.NET Server Functionality
	ADOMD.NET Server Object Architecture
	User Defined Functions and Stored Procedures

	Redistributing ADOMD.NET

	Developing with Analysis Management Objects (AMO)
	AMO Concepts and Object Model
	Introducing AMO Classes
	AMO Fundamental Classes
	AMO OLAP Classes
	AMO Data Mining Classes
	AMO Security Classes
	AMO Other Classes and Methods

	Programming Administrative Tasks with AMO
	Programming AMO Fundamental Objects
	Programming AMO OLAP Basic Objects
	Programming AMO OLAP Advanced Objects
	Programming AMO Data Mining Objects
	Programming AMO Security Objects
	Programming AMO Complementary Classes and Methods

	Developing with Analysis Services Scripting Language (ASSL)
	ASSL Objects and Object Characteristics
	ASSL XML Conventions
	XMLA Concepts
	Developing with XMLA in Analysis Services
	Managing Connections and Sessions (XMLA)
	Handling Errors and Warnings (XMLA)
	Defining and Identifying Objects (XMLA)
	Managing Transactions (XMLA)
	Canceling Commands (XMLA)
	Performing Batch Operations (XMLA)
	Creating and Altering Objects (XMLA)
	Locking and Unlocking Databases (XMLA)
	Processing Objects (XMLA)
	Merging Partitions (XMLA)
	Designing Aggregations (XMLA)
	Backing Up, Restoring, and Synchronizing Databases (XMLA)
	Inserting, Updating, and Dropping Members (XMLA)
	Updating Cells (XMLA)
	Managing Caches (XMLA)
	Monitoring Traces (XMLA)

	Extending OLAP functionality
	Extending OLAP through personalizations
	Analysis Services Personalization Extensions
	Defining Stored Procedures
	Designing Stored Procedures
	Creating Stored Procedures
	Calling Stored Procedures
	Accessing Query Context in Stored Procedures
	Setting Security for Stored Procedures
	Debugging Stored Procedures

	Analysis Services OLE DB Provider

