

Multidimensional Expressions
(MDX) Reference
SQL Server 2012 Books Online

Summary: Multidimensional Expressions (MDX) is the query language that you
use to work with and retrieve multidimensional data in Microsoft Analysis
Services. MDX is based on the XML for Analysis (XMLA) specification, with
specific extensions for SQL Server Analysis Services. MDX utilizes expressions
composed of identifiers, values, statements, functions, and operators that
Analysis Services can evaluate to retrieve an object (for example a set or a
member), or a scalar value (for example, a string or a number).

Category: Reference
Applies to: SQL Server 2012
Source: SQL Server Books Online (link to source content)
E-book publication date: June 2012

http://msdn.microsoft.com/en-us/library/ms145506.aspx�

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of
the Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents
Multidimensional Expressions (MDX) Reference ... 8

MDX Syntax Elements .. 8
Identifiers .. 10

Using Regular Identifiers ... 10
Using Delimited Identifiers ... 11

Expressions ... 12
Using Cube and Subcube Expressions ... 14
Using Dimension Expressions ... 16
Using Member Expressions .. 17
Using Tuple Expressions .. 18
Using Set Expressions... 19
Using Scalar Expressions ... 20
Working with Empty Values ... 22

Operators (MDX Syntax) ... 25
Arithmetic Operators .. 28
Bitwise Operators ... 29
Comparison Operators .. 29
Concatenation Operators ... 31
Set Operators .. 31
Unary Operators ... 32
Assignment Operators ... 33

Functions (MDX Syntax) .. 33
Using String Functions ... 35
Using Mathematical Functions ... 37
Using Logical Functions ... 37
Using Member Functions .. 38
Using Tuple Functions .. 39
Using Set Functions .. 39
Using Dimension, Hierarchy, and Level Functions .. 43
Using Stored Procedures .. 44

Comments (MDX Syntax) .. 44
Reserved Keywords (MDX Syntax) .. 46

MDX Language Reference .. 46
MDX Syntax Conventions ... 47
MDX Statement Reference ... 48

MDX Scripting Statements ... 48
MDX Data Definition Statements... 54
MDX Data Manipulation Statements.. 94

MDX Operator Reference .. 113
-- (Comment) .. 115

- (Except) .. 117
- (Negative) ... 118
- (Subtract)... 119
* (Crossjoin) ... 120
* (Multiply) ... 121
/ (Divide) ... 122
^ (Power).. 124
/*...*/ (Comment) ... 125
// (Comment) .. 126
: (Range) ... 127
+ (Add) .. 128
+ (Positive)... 129
+ (String Concatenation) ... 130
+ (Union) .. 130
< (Less Than) .. 132
<= (Less Than or Equal To) ... 133
<> (Not Equal To) ... 134
= (Equal To) ... 135
> (Greater Than) .. 136
>= (Greater Than or Equal To)... 137
AND .. 138
IS 140
NOT .. 141
OR ... 142
XOR .. 144

MDX Function Reference ... 145
AddCalculatedMembers ... 157
Aggregate .. 158
AllMembers ... 162
Ancestor ... 164
Ancestors ... 166
Ascendants .. 168
Avg ... 169
Axis ... 172
BottomCount .. 174
BottomPercent ... 175
BottomSum ... 176
CalculationCurrentPass ... 177
CalculationPassValue ... 178
CASE Statement ... 179
Children .. 182
ClosingPeriod ... 183
CoalesceEmpty ... 185
Correlation ... 187
Count (Dimension) ... 188
Count (Hierarchy Levels) .. 188

Count (Set)... 189
Count (Tuple) .. 192
Cousin ... 192
Covariance ... 194
CovarianceN .. 195
Crossjoin ... 196
Current .. 198
CurrentMember ... 199
CurrentOrdinal ... 202
CustomData .. 203
DataMember ... 204
DefaultMember ... 205
Descendants ... 206
Dimension .. 211
Dimensions .. 212
Distinct .. 214
DistinctCount .. 215
DrilldownLevel.. 216
DrilldownLevelBottom... 218
DrilldownLevelTop .. 220
DrilldownMember ... 221
DrilldownMemberBottom .. 223
DrilldownMemberTop ... 225
DrillupLevel.. 226
DrillupMember ... 227
Error ... 230
Except .. 230
Exists .. 231
Extract .. 233
Filter ... 235
FirstChild .. 236
FirstSibling ... 237
Generate ... 238
Head... 240
Hierarchize ... 242
Hierarchy .. 244
IIf244
Instr .. 247
Intersect .. 250
IsAncestor .. 252
IsEmpty ... 253
IsGeneration .. 254
IsLeaf .. 255
IsSibling .. 255
Item (Member) ... 256
Item (Tuple) ... 257

KPIGoal.. 259
KPIStatus .. 260
KPITrend ... 261
KPIWeight .. 262
KPICurrentTimeMember ... 262
KPIValue.. 263
Lag .. 264
LastChild ... 265
LastPeriods .. 265
LastSibling.. 267
Lead .. 267
Leaves .. 268
Level ... 269
Levels ... 270
LinkMember .. 271
LinRegIntercept ... 272
LinRegPoint ... 273
LinRegR2 .. 275
LinRegSlope .. 276
LinRegVariance .. 277
LookupCube .. 278
Max ... 279
MeasureGroupMeasures .. 281
Median .. 281
Members (Set) .. 283
Members (String) .. 284
MemberToStr ... 285
MemberValue ... 286
Min ... 287
Mtd ... 288
Name ... 289
NameToSet .. 290
NextMember ... 291
NonEmpty .. 292
NonEmptyCrossjoin ... 294
OpeningPeriod ... 295
Order.. 296
Ordinal .. 301
ParallelPeriod .. 302
Parent .. 303
PeriodsToDate .. 304
Predict ... 306
PrevMember ... 307
Properties ... 309
Qtd.. 311
Rank ... 312

RollupChildren ... 314
Root.. 316
SetToArray ... 317
SetToStr .. 318
Siblings.. 319
Stddev ... 320
StddevP ... 320
Stdev .. 320
StdevP ... 321
StripCalculatedMembers .. 322
StrToMember ... 324
StrToSet .. 326
StrToTuple ... 327
StrToValue ... 329
Subset .. 330
Sum .. 331
Tail .. 333
This ... 334
ToggleDrillState ... 335
TopCount ... 337
TopPercent .. 338
TopSum .. 341
TupleToStr ... 343
Union ... 344
UniqueName ... 346
UnknownMember ... 347
Unorder... 349
UserName .. 350
ValidMeasure .. 350
Value .. 352
Var .. 353
Variance .. 354
VarianceP ... 354
VarP .. 354
VisualTotals ... 355
Wtd ... 356
Ytd .. 357

MDX Reserved Words ... 358

 8

Multidimensional Expressions (MDX) Reference

In this Section

Topic Description

Defining Assignments and Other Script
Commands

Describes the various syntax elements
available in the MDX language for MDX
expressions, statements, and scripts.

MDX Language Reference (MDX) Describes the statements, operators, and
functions that define the MDX language.

See Also
Querying Multidimensional Data (Analysis Services - Multidimensional Data)
Analysis Services Scripting Language Reference
Retrieving Data from an Analytical Data Source
Creating and Editing MDX Scripts

MDX Syntax Elements
Multidimensional Expressions (MDX) has several elements that are used by, or influence, most
statements:

Term Definition

Identifiers Identifiers are the names of objects such as
cubes, dimensions, members, and
measures.

Data Types Define the types of data that are contained
by cells, member properties, and cell
properties. MDX supports only the OLE
VARIANT data type. For more information
about the coercion, conversion, and
manipulation of the VARIANT data type,

http://msdn.microsoft.com/en-us/library/e0a5dd60-35a3-4a4f-b36f-52ecea814886(SQL.110)�
http://msdn.microsoft.com/en-us/library/ca0e852e-9002-4224-a0f0-bd96f2fc5c65(SQL.110)�
http://msdn.microsoft.com/en-us/library/88358189-28aa-4bc7-8dda-5a92e3a012b8(SQL.110)�
http://msdn.microsoft.com/en-us/library/f28b9b22-3dc7-4a45-b4eb-2d023f2c94b8(SQL.110)�

 9

Term Definition

see "VARIANT and VARIANTARG" in the
Platform SDK documentation.

Multidimensional Expressions (MDX)
Reference

Expressions are units of syntax that
Microsoft SQL Server Analysis Services can
resolve to single (scalar) values or objects.
Expressions include functions that return a
single value, a set expression, and so on.

Operators Operators are syntax elements that work
with one or more simple MDX expressions
to make more complex MDX expressions.

Functions Functions are syntax elements that take
zero, one, or more input values, and return
a scalar value or an object. Examples
include the Sum function for adding several
values, the Members function for returning
a set of members from a dimension or
level, and so on.

Comments Comments are pieces of text that are
inserted into MDX statements or scripts to
explain the purpose of the statement.
Analysis Services does not execute
comments .

Reserved Keywords Reserved keywords are words that are
reserved for the use of MDX and should
not be used for object names used in MDX
statements.

Members, Tuples, and Sets Members, tuples and sets are core concepts
of multidimensional data that you must
understand before you create an MDX
query.

See Also
Multidimensional Expressions (MDX) Reference

http://msdn.microsoft.com/en-us/library/b6ec2439-caef-46d3-9fd7-5f4526cee334(SQL.110)�

 10

Identifiers
An identifier is the name of an Microsoft SQL Server Analysis Services object. Every Analysis
Services object can and must have an identifier. This includes cubes, dimensions, hierarchies,
levels, members, and so on. You use the identifier of an object to reference the object in
Multidimensional Expressions (MDX) statements.
Depending on how you name the object, the identifier of the object identifier will be either a
regular or delimited identifier.

Both regular and delimited identifiers must contain from 1 through 100 characters.

Using Regular Identifiers
A regular identifier is an object name that complies with the following formatting rules for
regular identifiers. A regular identifier can be used with or without delimiters.

Formatting Rules for Regular Identifiers
1. The first character must be one of the following:

• A letter as defined by the Unicode Standard 2.0. Besides letter characters from other
languages, the Unicode definition of letters includes Latin characters from a through z
and from A through Z.

• The underscore (_).
2. Subsequent characters can be:

• Letters as defined in the Unicode Standard 2.0.
• Decimal numbers from either Basic Latin or other national scripts.
• The underscore (_).

3. The identifier must not be an MDX reserved keyword. Reserved keywords are case-
insensitive in MDX. For more information, see MDX Syntax Elements (MDX).

4. Embedded spaces or special characters are not allowed.

Examples of Regular Identifiers
In the following MDX statement, the identifiers, Measures, Product, and Style, comply with the
formatting rules for regular identifiers. These regular identifiers do not need delimiters.
SELECT Measures.MEMBERS ON COLUMNS,
Product.Style.CHILDREN ON ROWS
FROM [Adventure Works]

Note

 11

Although not required, you could also use delimiters with regular identifiers. In the following
MDX statement, the Measures, Product, and Style regular identifiers have been correctly
delimited by using brackets.
SELECT [Measures].MEMBERS ON COLUMNS,
[Product].[Style].CHILDREN ON ROWS
FROM [Adventure Works]

Using Delimited Identifiers
An identifier that does not comply with the formatting rules for regular identifiers must always
be delimited by using brackets ([]).

Delimiters are for identifiers only. Delimiters cannot be used for keywords, whether or
not the keywords are marked as reserved in Analysis Services.

You use a delimited identifier in the following situations:
• When the name of an object or part of the name uses reserved words.

We recommend that reserved keywords not be used as object names. Databases upgraded
from earlier versions of Analysis Services may contain identifiers that include words not
reserved in the earlier version, but are reserved words for SQL Server Analysis Services. Until
you can change the identifier for the object, you can reference the object using a delimited
identifier.

• When the name of an object uses characters not listed as qualified identifiers.
Analysis Services allows a delimited identifier to use any character in the current code page.
However, indiscriminate use of special characters in an object name may make MDX
statements and scripts difficult to read and maintain.

Formatting Rules for Delimited Identifiers
The body of a delimited identifier can contain any combination of characters in the current code
page, including the delimiting characters themselves. If the body of the delimited identifier
contains delimiting characters, special handling is required:
• If the body of the identifier contains only a left bracket ([), no additional handling is required.
• If the body of the identifier contains a right bracket (]), you must specify two right brackets

(]]).

Examples of Delimited Identifiers
In the following hypothetical MDX statement, Sales Volume, Sales Cube, and select are
delimited identifiers:

Note

 12

-- The [Sales Volume] and [Sales Cube] identifiers contain a space.
SELECT Measures.[Sales Volume]
FROM [Sales Cube]
WHERE Product.[select]
-- The [select] identifier is a reserved keyword.
In this next example, the name of an object is Total Profit [Domestic]. To reference this
object, you must use the following delimited identifier:
[Total Profit [Domestic]]]
Notice that the left bracket before Domestic did not have to be changed to create the delimited
identifier. However, the right bracket following Domestic had to be replaced with two right
brackets.

Delimiting Identifiers with Multiple Parts
When you use qualified object names you may have to delimit more than one of the identifiers
that make up the object name. For example, the Front Brakes identifier in the following code
needs delimiting.
SELECT [Measures].MEMBERS ON COLUMNS,
[Product].[Product].[Front Brakes] ON ROWS
FROM [Adventure Works]
In addition, the Measures identifier in the previous example was delimited to demonstrate
delimiting more than one identifier.

See Also
MDX Language Reference
MDX Query Fundamentals (MDX)
MDX Syntax Elements (MDX)

Expressions
An expression is a combination of identifiers, values, and operators that Microsoft SQL
Server Analysis Services can evaluate to get a result. The data can be used in several different
places when accessing or changing data. For example, you can use an expression as part of the
data to be retrieved by a query or as a search condition to look for data that meets a set of
criteria.

Simple and Complex Expressions
An expression can be simple or complex in MDX:
A simple expression can be one of the following expressions:

http://msdn.microsoft.com/en-us/library/a560383b-bb58-472e-95f5-65d03d8ea08b(SQL.110)�

 13

Constant

A constant is a symbol that represents a single, specific value in MDX. String, numeric, and
date values can be rendered as constants. Unlike numeric constants, string and date
constants must be delimited with single quote (') characters.

Scalar function

A scalar function returns a single value within the context of evaluation in MDX. This
distinction is important to understanding how MDX resolves scalar functions, because most
MDX expressions, statements, and scripts are evaluated not over a single data element, but
iteratively over a group of data elements such as cells or members. At the time the scalar
function is evaluated, however, the function is typically reviewing a single data element.

Object identifier

MDX is object-oriented because of the nature of multidimensional data. Object identifiers are
considered simple expressions in MDX. For more information on identifiers, see MDX
Query Fundamentals (MDX).

A complex expression can be built from combinations of these entities joined by operators.

Expression Results
For a simple expression built of a single constant, variable, scalar function, or column name, the
data type, collation, precision, scale, and value of the expression is the data type, collation,
precision, scale, and value of the referenced element. Because MDX directly supports only the
OLE VARIANT data type, coercion should not occur when working with simple expressions.
For a complex expression, coercion can occur when using two or more simple expressions with
different data types.

Expression Examples
The following query shows examples of calculated measures whose definitions are simple
expressions:
WITH
MEMBER MEASURES.CONSTANTVALUE AS 1
MEMBER MEASURES.SCALARFUNCTION AS [Date].[Calendar Year].CURRENTMEMBER.NAME
MEMBER MEASURES.OBJECTIDENTIFIER AS [Measures].[Internet Sales Amount]
SELECT
{MEASURES.CONSTANTVALUE,MEASURES.SCALARFUNCTION,MEASURES.OBJECTIDENTIFIER }
ON 0,
[Date].[Calendar Year].MEMBERS ON 1
FROM [Adventure Works]

 14

An expression can also be a calculation, such as [Measures].[Discount Amount] * 1.5. The
following example demonstrates the use of a calculation to define a member in an MDX SELECT
statement:
WITH

 MEMBER [Measures].[Special Discount] AS

 [Measures].[Discount Amount] * 1.5

SELECT

 [Measures].[Special Discount] on COLUMNS,

 NON EMPTY [Product].[Product].MEMBERS ON Rows

FROM [Adventure Works]

WHERE [Product].[Category].[Bikes]

In This Section

Topic Description

Using Cube and Subcube Expressions Defines cube and subcube expressions.

Using Dimension Expressions Defines dimension expressions.

Using Member Expressions Defines member expressions.

Using Tuple Expressions Defines tuple expressions.

Using Set Expressions Defines set expressions.

Using Scalar Expressions Defines scalar expressions.

Working with Empty Values Describes what an empty value is and how
such values are handled.

See Also
MDX Language Reference
MDX Query Fundamentals (MDX)

Using Cube and Subcube Expressions
You use cube and subcube expressions in Multidimensional Expressions (MDX) statements to
define, manipulate, or retrieve data from a cube or subcube.

http://msdn.microsoft.com/en-us/library/a560383b-bb58-472e-95f5-65d03d8ea08b(SQL.110)�

 15

Cube Expressions
A cube expression contains either a cube identifier or the CURRENTCUBE keyword, and
therefore can only be simple expressions. Many MDX statements use the CURRENTCUBE
keyword to identify the current cube context instead of requiring a cube identifier.
A cube identifier appears as Cube_Name in BNF notation descriptions of MDX statements.
Cube expressions may appear in several places. In an MDX SELECT statement they specify the
cube from which data is to be retrieved. In the following example query, the expression
[Adventure Works] refers to the cube of that name:
SELECT [Measures].[Internet Sales Amount] ON COLUMNS
FROM [Adventure Works]
In the CREATE MEMBER statement, the cube expression specifies which cube the calculated
member you are creating is to appear on. In the following example, the statement creates a
calculated measure on the Measures dimension of the Adventure Works cube:
CREATE MEMBER [Adventure Works].[Measures].[Test] AS 1
When you use the CREATE MEMBER statement inside an MDX Script, the name of the cube can
be replaced with the CURRENTCUBE keyword, since the cube where the calculated member is to
be created must be the same cube that the MDX Script belongs to, as shown in the
followingexample:
CREATE MEMBER CURRENTCUBE.[Measures].[Test] AS 1;
Doing this makes it easier to copy and paste calculated member definitions from one cube to
another since the name of the cube is no longer hard-coded.

SubCube Expressions
A subcube expression can contain a subcube identifier or an MDX statement that returns a
subcube. If the subcube expression contains a subcube identifier, it will be a simple expression. If
it contains an MDX statement that returns a subcube, it is a complex statement. The MDX
SELECT statement, for example, returns a subcube and can be used where subcube expressions
are allowed, as shown in the following example:
SELECT [Measures].MEMBERS ON COLUMNS,
[Date].[Calendar Year].MEMBERS ON ROWS
FROM
(SELECT [Measures].[Internet Sales Amount] ON COLUMNS,
[Date].[Calendar Year].&[2004] ON ROWS
FROM [Adventure Works])
This use of a SELECT statement in the FROM clause is also referred to as a subselect.
Another common scenario where subcube expressions are encountered is when making scoped
assignments in an MDX Script. In the following example, the SCOPE statement is used to limit an
assignment to a subcube consisting of [Measures].[Internet Sales Amount]:

 16

SCOPE([Measures].[Internet Sales Amount]);
 This=1;
END SCOPE;
A subcube identifier appears as Subcube_Name. in BNF notation descriptions of MDX
statements.

See Also
The Basic MDX Query (MDX)
Building Subcubes in MDX (MDX)
CREATE SUBCUBE Statement (MDX)
Expressions (MDX)
SCOPE Statement (MDX)

Using Dimension Expressions
You typically use dimension and hierarchy expressions when passing parameters to functions in
Multidimensional Expressions (MDX) to return members, sets, or tuples from a hierarchy.
Dimension expressions can only be simple expressions because they are object identifiers. See
Expressions (MDX) for an explanation of simple and complex expressions.

Dimension Expressions
A dimension expression either contains a dimension identifier or a dimension function.
Dimension expressions are rarely used on their own. Instead, you will usually want to specify a
hierarchy on a dimension. The only exception is when you are working with the Measures
dimension, which has no hierarchies.
The following example shows a calculated member that uses the expression [Measures] along
with the .Members and Count() functions to return the number of members on the Measures
dimension:
WITH MEMBER [Measures].[MeasureCount] AS
COUNT([Measures].MEMBERS)
SELECT [Measures].[MeasureCount] ON 0
FROM [Adventure Works]
A dimension identifier appears as Dimension_Name in the BNF notation used to describe MDX
statements.

Hierarchy Expressions
Similarly, a hierarchy expression contains either a hierarchy identifier or a hierarchy function. The
following example shows the use of the hierarchy expression [Date].[Calendar], along with the

http://msdn.microsoft.com/en-us/library/4fa5a95a-fec9-4584-875c-dbf030c53e82(SQL.110)�
http://msdn.microsoft.com/en-us/library/5403a62b-99ac-4d83-b02a-89bf78bf0f46(SQL.110)�

 17

.Levels and .Count functions, to return the number of levels in the Calendar hierarchy of the Date
dimension:
WITH MEMBER [Measures].[CalendarLevelCount] AS
[Date].[Calendar].Levels.Count
SELECT [Measures].[CalendarLevelCount] ON 0
FROM [Adventure Works]
The most common scenario where hierarchy expressions are used is in conjunction with the
.Members function, to return all the members on a hierarchy. The following example returns all
the members of [Date].[Calendar] on the rows axis:
SELECT [Measures].[Internet Sales Amount] ON 0,
[Date].[Calendar].MEMBERS ON 1
FROM [Adventure Works]
A hierarchy identifier appears as Dimension_Name.Hierarchy_Name in the BNF notation used to
describe MDX statements.

See Also
Expressions (MDX)

Using Member Expressions
A member expression contains a member identifier, a member function, or an expression that
can be converted to a member.
Member identifiers can come in many different formats. The simplest form of a member
identifier consists of the member's name. For example:

SELECT Amount ON 0

FROM [Adventure Works]

However, if there are several members with the same name on different hierarchies, there is no
method to determine which member the query will return. For example, the following query
requests data for a member with the name [CY 2004]. The queryexecutes successfully, but there
are at least six members with that name in the Adventure Works cube:

SELECT [CY 2004] ON 0

FROM [Adventure Works]

Therefore, the most reliable form of member identifier is the member's unique name, which
guarantees to identify a specific member in a cube. Analysis Services can generate unique
names in several ways, but a unique name is always composed of at least two identifiers: the

 18

dimension name, and the member name or member key. A unique name appears in the
following format:

Dimension_Name.[Hierarchy_Name.] [[{Member_Name | &Member_Key}.]...]

{Member_Name | &Member_Key}

Here are some examples of member unique names from the Adventure Works cube:
[Measures].[Amount]

[Date].[Calendar Year].&[2004]

[Date].[Calendar].[Calendar Quarter].&[2004]&[1]

[Employee].[Employees].&[112]

[Product].[Product Categories].[All Products]

Many MDX functions exist that return members. For a full list, see MDX Function Reference
(MDX)

For more information about member names and member keys, see Working with
Members, Tuples, and Sets (MDX).

See Also
Expressions (MDX)

Using Tuple Expressions
A tuple is made up of one member from every dimension that is contained within a cube.
Therefore, a tuple uniquely identifies a single cell within the cube.

A tuple that references one or more members that are not valid is known as an empty
tuple.

The complete expression of a tuple identifier is made up of one or more explicitly specified
members, framed in parentheses:
(Member_expression [,Member_expression ...])
A tuple can be fully qualified, can contain implicit members, or can contain a single member.

Tuples and Implicit Members
A tuple that explicitly specifies a single member from every dimension that is contained within a
cube is known as a fully qualified tuple. However, a tuple does not have to be fully qualified.

Note

Note

http://msdn.microsoft.com/en-us/library/b6ec2439-caef-46d3-9fd7-5f4526cee334(SQL.110)�
http://msdn.microsoft.com/en-us/library/b6ec2439-caef-46d3-9fd7-5f4526cee334(SQL.110)�

 19

Any dimension not explicitly referenced within a tuple is implicitly referenced. The member for
the implicitly referenced dimension depends on the structure of the dimension and the attribute
relationships defined within it. If there is an explicit reference to a hierarchy on the same
dimension as the implicitly referenced hierarchy, and there is a direct or indirect relationship
defined between the explicitly referenced hierarchy and the implicitly referenced hierarchy, then
the tuple behaves as if it contains the member on the implicitly referenced hierarchy that exists
with the member on the explicitly referenced hierarchy. For example, if a cube contains a
Customer dimension with City and Country attributes, and there is a relationship defined
between these two attributes so that a City has one Country and a Country can contain many
Cities, then explicitly including the City 'London' in your tuple implicitly references the Country
'United Kingdom'. However, if no attribute relationships are defined, the relationship is in the
opposite direction (for example, although City might have a relationship with Country, you
cannot determine the City someone lives in just from knowing the Country they live in) or there
are no direct relationships between the two attributes defined (there could be a relationship
defined from Customer to City and Customer to Country, but no relationship defined between
City and Country) then the following rules apply:
• If the implicitly referenced hierarchy has a default member, the default member is added to

the tuple.
• If the implicitly referenced hierarchy has no default member, the (All) member of the default

hierarchy is used.
• If the implicitly referenced hierarchy has no default member the first member of the topmost

level of the hierarchy is used.

One-Member Tuples
If the tuple expression has a single member, MDX converts the member into a one-member
tuple for the purposes of evaluating the expression. In other words, providing the member
expression [Measures].[TestMeasure] instead of a tuple expression is functionally equivalent
to the tuple expression ([Measures].[TestMeasure]).

See Also
Expressions (MDX)
MDX Function Reference (MDX)

Using Set Expressions
A set consists of an ordered list of zero or more tuples. A set that does not contain any tuples is
known as an empty set.
The complete expression of a set consists of zero or more explicitly specified tuples, framed in
curly braces:
{ [{ Tuple_expression | Member_expression } [, { Tuple_expression | Member_expression }] ...] }

 20

The member expressions specified in a set expression are converted to one-member tuple
expressions.

Example
The following example shows two set expressions used on the Columns and Rows axes of a
query:
SELECT
{[Measures].[Internet Sales Amount], [Measures].[Internet Tax Amount]} ON
COLUMNS,
{([Product].[Product Categories].[Category].&[4], [Date].[Calendar].[Calendar
Year].&[2004]),
([Product].[Product Categories].[Category].&[1], [Date].[Calendar].[Calendar
Year].&[2003]),
([Product].[Product Categories].[Category].&[3], [Date].[Calendar].[Calendar
Year].&[2004])}
ON ROWS
FROM [Adventure Works]
On the Columns axis, the set
{[Measures].[Internet Sales Amount], [Measures].[Internet Tax Amount]}
consists of two members from the Measures dimension. On the Rows axis, the set
{([Product].[Product Categories].[Category].&[4], [Date].[Calendar].[Calendar Year].&[2004]),
([Product].[Product Categories].[Category].&[1], [Date].[Calendar].[Calendar Year].&[2003]),
([Product].[Product Categories].[Category].&[3], [Date].[Calendar].[Calendar Year].&[2004])}
consists of three tuples, each of which contains two explicit references to members on the
Product Categories hierarchy of the Product dimension and the Calendar hierarchy of the Date
dimension.
For examples of functions that return sets, see Working with Members, Tuples, and Sets (MDX).

See Also
Expressions (MDX)

Using Scalar Expressions
In Multidimensional Expressions (MDX), a scalar expression is an element of MDX syntax that,
when evaluated, returns a single value within the context of evaluation.
Scalar expressions include string, numeric, and date expressions in MDX.

http://msdn.microsoft.com/en-us/library/b6ec2439-caef-46d3-9fd7-5f4526cee334(SQL.110)�

 21

Scalar expressions are typically used in calculated member definitions, as calculated members
must return a scalar value. The following query shows examples of calculated members on the
Measures dimension that use different types of scalar expression:
WITH
MEMBER MEASURES.NumericValue AS 10
MEMBER MEASURES.NumericExpression AS 10 + 10
MEMBER MEASURES.NumericExpressionBasedOnMeasure AS [Measures].[Internet Sales
Amount] + 10
MEMBER MEASURES.StringValue AS "10"
MEMBER MEASURES.ConcatenatedString AS "10" + "10"
MEMBER MEASURES.StringFunction AS MEASURES.CURRENTMEMBER.NAME
MEMBER MEASURES.TodaysDate AS NOW()
SELECT
{MEASURES.NumericValue,MEASURES.NumericExpression,MEASURES.NumericExpressionB
asedOnMeasure,
MEASURES.StringValue, MEASURES.ConcatenatedString, MEASURES.StringFunction,
MEASURES.TodaysDate}
ON COLUMNS
FROM [Adventure Works]
The only data type that a measure, calculated or otherwise, can return is the OLE Variant type.
Therefore, sometimes you might need to cast a measure value to a particular type to receive the
behavior you expect. The following query shows an example of this:

WITH

//Two calculated measures that return strings

MEMBER MEASURES.NumericString1 AS "10"

MEMBER MEASURES.NumericString2 AS "10"

//In this case, the + operator acts to concatenate the strings

MEMBER MEASURES.Concatenation AS MEASURES.NumericString1 +

MEASURES.NumericString2

//Casting one value to an integer with the CINT function causes the second

measure

//to be treated as an integer too, so that the + operator now acts to add the

values

MEMBER MEASURES.Addition AS CINT(MEASURES.NumericString1) +

MEASURES.NumericString2

SELECT

 22

{MEASURES.NumericString1,MEASURES.NumericString2,MEASURES.Concatenation,MEASU

RES.Addition }

ON COLUMNS

FROM [Adventure Works]

See Also
Expressions (MDX)

Working with Empty Values
An empty value indicates that a specific member, tuple, or cell is empty. An empty cell value
indicates either that the data for the specified cell cannot be found in the underlying fact table,
or that the tuple for the specified cell represents a combination of members that is not
applicable for the cube.

Although an empty value is different from a value of zero, an empty value is typically
treated as zero most of the time.

The following query illustrates the behavior of empty and zero values:

WITH

//A calculated Product Category that always returns 0

MEMBER [Product].[Category].[All Products].ReturnZero AS 0

//Will return true for any null value

MEMBER MEASURES.ISEMPTYDemo AS ISEMPTY([Measures].[Internet Tax Amount])

//Will true for any null or zero value

//To be clear: the expression 0=null always returns true in MDX

MEMBER MEASURES.IsZero AS [Measures].[Internet Tax Amount]=0

SELECT

{[Measures].[Internet Tax Amount],MEASURES.ISEMPTYDemo,MEASURES.IsZero}

ON COLUMNS,

[Product].[Category].[Category].ALLMEMBERS

ON ROWS

FROM [Adventure Works]

WHERE([Date].[Calendar].[Calendar Year].&[2001])

The following information applies to empty values:
• The IsEmpty function returns TRUE if and only if the cell identified by the tuple specified in

the function is empty. Otherwise, the function returns FALSE.

Note

 23

The IsEmpty function cannot determine whether a member expression returns a null
value. To determine whether a null member is returned from an expression, use the
IS operator.

• When the empty cell value is an operand for any one of the numeric operators (+, -, *, /), the
empty cell value is treated as zero if the other operand is a nonempty value. If both
operands are empty, the numeric operator returns the empty cell value.

• When the empty cell value is an operand for the string concatenation operator (+), the
empty cell value is treated as an empty string if the other operand is a nonempty value. If
both operands are empty, the string concatenation operator returns the empty cell value.

• When the empty cell value is an operand for any one of the comparison operators (=. <>,
>=, <=, >, <), the empty cell value is treated as zero or an empty string, depending on
whether the data type of the other operand is numeric or string, respectively. If both
operands are empty, both operands are treated as zero.

• When collating numeric values, the empty cell value collates in the same place as zero.
Between the empty cell value and zero, empty collates before zero.

• When collating string values, the empty cell value collates in the same place as the empty
string. Between the empty cell value and the empty string, empty collates before an empty
string.

Dealing with Empty Values in MDX Statements and Cubes
In Multidimensional Expressions (MDX) statements, you can look for empty values and then
perform certain calculations on cells with valid (that is, not empty) data. Eliminating empty
values when performing calculations can be important because certain calculations, such as an
average, can be inaccurate if empty cell values are included.
If empty values are stored in your underlying fact table data, by default they will be converted to
zeroes when the cube is processed. You can use the Null Processing option on a measure to
control whether null facts are converted into 0, converted to an empty value, or even throws an
error during processing. If you do not want empty cell values appearing in your query results,
you should create queries, calculated members, or MDX Script statements that eliminate the
empty values or replace them with some other value.
To remove empty rows or columns from a query, you can use the NON EMPTY statement before
the axis set definition. For example, the following query only returns the Product Category Bikes
because that is the only Category that was sold in the Calendar Year 2001:
SELECT
{[Measures].[Internet Tax Amount]}
ON COLUMNS,
//Comment out the following line to display all the empty rows for other
Categories

Note

 24

NON EMPTY
[Product].[Category].[Category].MEMBERS
ON ROWS
FROM [Adventure Works]
WHERE([Date].[Calendar].[Calendar Year].&[2001])
More generally, to remove empty tuples from a set you can use the NonEmpty function. The
following query shows two calculated measures, one of which counts the number of Product
Categories and the second shows the number of Product Categories which have values for the
measure [Internet Tax Amount] and the Calendar Year 2001:
WITH
MEMBER MEASURES.CategoryCount AS
COUNT([Product].[Category].[Category].MEMBERS)
MEMBER MEASURES.NonEmptyCategoryCountFor2001 AS
COUNT(
NONEMPTY(
[Product].[Category].[Category].MEMBERS
,([Date].[Calendar].[Calendar Year].&[2001], [Measures].[Internet Tax
Amount])
))
SELECT
{MEASURES.CategoryCount,MEASURES.NonEmptyCategoryCountFor2001 }
ON COLUMNS
FROM [Adventure Works]
For more information, see NonEmpty (MDX).

Empty Values and Comparison Operators
When empty values are present in data, logical and comparison operators can potentially return
a third result of EMPTY instead of just TRUE or FALSE. This need for three-valued logic is a
source of many application errors. These tables outline the effect of introducing empty value
comparisons.
This table shows the results of applying an AND operator to two Boolean operands.

AND TRUE EMPTY FALSE

TRUE TRUE FALSE FALSE

EMPTY FALSE EMPTY FALSE

 25

AND TRUE EMPTY FALSE

FALSE FALSE FALSE FALSE

This table shows the results of applying an OR operator to two Boolean operands.

OR TRUE FALSE

TRUE TRUE TRUE

EMPTY TRUE TRUE

FALSE TRUE FALSE

This table shows how the NOT operator negates, or reverses, the result of a Boolean operator.

Boolean expression to which the NOT operator is
applied

Evaluates to

TRUE FALSE

EMPTY EMPTY

FALSE TRUE

See Also
Expressions (MDX)
MDX Operator Reference (MDX)
Expressions (MDX)

Operators (MDX Syntax)
In Multidimensional Expressions (MDX), operators let you perform the following actions:
• Change data, either permanently or temporarily.
• Search for values or objects that meet a specified condition.
• Implement a decision between values or expressions.
• Test for specific conditions before beginning or committing a transaction, or before

executing specific statements.
MDX supports the operators listed in the following table:

 26

To perform this type of operation Use

Assigns a value to a variable, or associates a
result set column with an alias.

MDX Syntax Elements (MDX)

Addition, subtraction, multiplication,
division.

Arithmetic Operators

Test for the truth of a condition, such as
AND, OR, NOT, and XOR.

Bitwise Operators

Compare a value against another value or
an expression.

Comparison Operators

Either permanently or temporarily combine
two strings into one string.

Concatenation Operators

Either permanently or temporarily combine
two set expressions into a single set.

Set Operators

Performs an operation on one operand. Unary Operators

In queries, anyone who can see the data in the cube to be used with some type of
operator can perform operations. However, you need the appropriate permissions before
you can successfully change the data.

When using multiple operators, the order in which MDX evaluates the operators is important.
Similarly, the user of operators may require that one data type be converted into another data
type before the operators can be evaluated.

Evaluating Complex Expressions
You can build an expression by using operators to combine several smaller expressions. In these
complex expressions, MDX evaluates the operators in order based on the definition of operator
precedence used by Microsoft SQL Server Analysis Services. MDX performs operators with
higher precedence before performing operators with lower precedence.

Understanding Operator Precedence
The following list shows operator precedence, from highest to lowest. Operators in the same line
are equal in precedence, and are evaluated from left to right unless otherwise forced by
parenthesis:
• IS
• AS

Note

 27

• DISTINCT
• :
• ^
• /, *
• +, -
• EXISTING
• <>, >=, =, <=, >, <
• NOT
• AND
• XOR
• OR
For more information about operators in MDX, see MDX Operator Reference (MDX).

Determining Results
When you combine simple expressions to form a complex expression, the rules for the operators
combined with the rules for data type precedence determine the data type of the resulting
value.
If the result is a character or Unicode value, the rules for the operators combined with the rules
for collation precedence determines the collation of the result. For more information about
collations, see Working with Languages and Collations (SSAS).
There are also rules that determine the precision, scale, and length of the result based on the
precision, scale, and length of the simple expressions.

Converting Data Types
MDX implicitly converts an object to a different type when that object is used in an expression
that requires a different type. The following table defines the conversion rules for each object.

Original Type Type Needed Conversion

Level Set <level>.members

Hierarchy Member <hierarchy>.defaultmember

Member Tuple (<Member>)

Tuple Member <tuple>.item(0)

Tuple Scalar <tuple>.value

http://msdn.microsoft.com/en-us/library/666cf8a7-223b-4be5-86c0-7fe2bcca0d09(SQL.110)�

 28

See Also
MDX Operator Reference
MDX Syntax Elements (MDX)

Arithmetic Operators
You can use arithmetic operators in Multidimensional Expressions (MDX) for any arithmetic
computations, including addition, subtraction, multiplication, and division.
MDX supports the arithmetic operators listed in the following table.

Operator Description

+ (Add) Adds two numbers.

/ (Divide) Divides one number by another number.

* (Multiply) Multiplies two numbers.

- (Subtract) Subtracts two numbers.

^ (Power) Raises one number by another number.

MDX does not include a function to obtain the square root of a number. To obtain the
square root of a number, raise it to the power of 0.5 using the ^ operatior.

Order of Precedence
The following rules determine the order of precedence for arithmetic operators in an MDX
expression:
• When there is more than one arithmetic operator in an expression, MDX performs

multiplication and division first, followed by subtraction and addition.
• When all arithmetic operators in an expression have the same level of precedence, the order

of execution is left to right.
• Expressions within parentheses take precedence over all other operations.

See Also
Operators (MDX Syntax)
Operators (MDX Syntax)

Note

 29

Bitwise Operators
Logical operators evaluate values and return a Boolean value. In Multidimensional Expressions
(MDX), logical operators do not perform bitwise operations.
MDX supports the logical operators listed in the following table.

Operator Description

AND Performs a logical conjunction on two
numeric expressions.

IS Performs a logical comparison on two
object expressions.

NOT Performs a logical negation on a numeric
expression.

OR Performs a logical disjunction on two
numeric expressions.

XOR Performs a logical exclusion on two
numeric expressions.

See Also
Operators (MDX Syntax)
Operators (MDX Syntax)

Comparison Operators
You use comparison operators with scalar data. You can use comparison operators in any
Multidimensional Expressions (MDX) expression.
To check for a condition, you can also use comparison operators in MDX statements and
functions, such as the MDX IIf function. However, if you use comparison operators to check for a
condition, make sure that you have appropriate permissions before trying to change data based
upon that condition. Anyone that has access to the actual data and can query that data can use
comparison operators in additional queries. But this access does not mean that these individuals
have or should have the appropriate permissions to change data. Also, to maintain data
integrity, limit the number of people that can query and change data.
Comparison operators evaluate to a Boolean data type, returning TRUE or FALSE based on the
outcome of the tested condition.
MDX supports the comparison operators listed in the following table.

 30

Operator Description

= (Equal To) For non-null arguments, returns TRUE if the
left argument is equal to the right
argument; otherwise, FALSE.
If either or both arguments evaluate to a
null value, the operator returns a null value,
unless the comparison 0=null is made, in
which case the Boolean contains TRUE.

<> (Not Equal To) For non-null arguments, returns TRUE if the
left argument is not equal to the right
argument; otherwise, FALSE.
If either or both arguments evaluate to a
null value, the operator returns a null value.

> (Greater Than) For non-null arguments, returns TRUE if the
left argument has a value that is greater
than the right argument; otherwise, FALSE.
If either or both arguments evaluate to a
null value, the operator returns a null value.

>= (Greater Than or Equal To) For non-null arguments, returns TRUE if the
left argument has a value that is higher
than or equal to the right argument;
otherwise, FALSE.
If either or both arguments evaluate to a
null value, the operator returns a null value.

< (Less Than) For non-null arguments, returns TRUE if the
left argument has a value that is less than
than the right argument; otherwise, FALSE.
If either or both arguments evaluate to a
null value, the operator returns a null value.

<= (Less Than or Equal To) For non-null arguments, returns TRUE if the
left argument has a value that is lower than
or equal to the right argument; otherwise,
FALSE.
If either or both arguments evaluate to a
null value, the operator returns a null value.

 31

See Also
Operators (MDX Syntax)
Operators (MDX Syntax)

Concatenation Operators
The concatenation operator is the plus sign (+). You can combine, or concatenate, two or more
character strings into a single character string. You can also concatenate binary strings.
The following code is an example of concatenation operator that combines the product name
with the product's unique name:

WITH MEMBER Measures.ProductName AS

 Product.Product.CurrentMember.Name + " (" +

Product.Product.CurrentMember.UniqueName + ")"

SELECT

 {Measures.ProductName} ON COLUMNS,

 Product.Product.Members ON ROWS

FROM [Adventure Works]

Language Considerations
When the strings used in a concatenation both have the same collation, the resulting
concatenated string has the same collation as the inputs. When the strings used in a
concatenation have different collations, the rules of collation precedence determine the collation
of the resulting concatenated string. For more information, see Operators (MDX Syntax).

See Also
MDX Operator Reference
Operators (MDX Syntax)

Set Operators
In Multidimensional Expressions (MDX), set operators perform operations on members or sets,
and return a set. You often use set operators as an alternate to several set functions in MDX
expressions.
MDX supports the set operators listed in the following table.

Operator Description

- (Except) Returns the difference between two sets,

http://msdn.microsoft.com/en-us/library/666cf8a7-223b-4be5-86c0-7fe2bcca0d09(SQL.110)�

 32

Operator Description

removing duplicate members.
This operator is functionally equivalent to
the Except function.

* (Crossjoin) Returns the cross product of two sets.
This operator is functionally equivalent to
the Crossjoin function.

: (Range) Returns a naturally ordered set, with the
two specified members as endpoints and all
members between the two specified
members included as members of the set.

+ (Union) Returns a union of two sets, excluding
duplicate members.
This operator is functionally equivalent to
the Operators (MDX Syntax) function.

See Also
MDX Function Reference
MDX Operator Reference
Operators (MDX Syntax)

Unary Operators
In Multidimensional Expressions (MDX), unary operators perform an operation on a single
operand, such as returning the negative or positive value of a numeric expression.
MDX supports the unary operators listed in the following table.

Operator Description

- (Negative) Returns the negative value of a numeric
expression.

+ (Positive) Returns the positive value of a numeric
expression.

The following example demonstrates the use of a unary operator to return the negative value of
a measure:

 33

WITH

 MEMBER [Measures].[NegDiscountAmount] AS

 -[Measures].[Discount Amount]

SELECT

 {[Measures].[Discount Amount],[Measures].[NegDiscountAmount]} on COLUMNS,

 NON EMPTY [Product].[Product].MEMBERS ON Rows

FROM [Adventure Works]

WHERE [Product].[Category].[Bikes]

In addition, MDX uses special unary operators to determine the aggregation operation
performed by the RollupChildren function. For more information on these special unary
operators, see Adding a Custom Aggregation to a Dimension.

See Also
Operators (MDX Syntax)

Assignment Operators
In Multidimensional Expressions (MDX), the assignment operator is the equal sign (=).
The assignment operator is used to assign values to subcubes in MDX Script. For more
information, see MDX Scripting Fundamentals (MDX).

See Also
Operators (MDX Syntax)

Functions (MDX Syntax)
Multidimensional Expressions (MDX) has several categories of intrinsic functions to perform
certain operations. The following table lists the function categories that are available in MDX.

For more information about individual functions, see MDX Syntax Elements (MDX).

Function Category Description

Array functions Provide arrays for use in stored procedures.
For more information, see Using Stored
Procedures.

Dimension functions Return a reference to a dimension from a

Note

http://msdn.microsoft.com/en-us/library/3199a6c2-a06d-47b9-bd1c-604dbb085318(SQL.110)�
http://msdn.microsoft.com/en-us/library/fdecb3ce-7c87-4bab-8000-532ba7a29f96(SQL.110)�

 34

Function Category Description

hierarchy, level, or member.
For more information, see Using
Dimension, Hierarchy, and Level Functions.

Hierarchy functions Return a reference to a hierarchy from a
level or member.
For more information, see Using
Dimension, Hierarchy, and Level Functions.

Level functions Return a reference to a level from a
member, dimension, hierarchy, or from a
string expression.
For more information, see Using
Dimension, Hierarchy, and Level Functions.

Logical functions Perform logical operations and
comparisons on objects and expressions.
For more information, see Using Logical
Functions.

Member functions Return a reference to a member from other
objects or from a string expression.
For more information, see Using Member
Functions.

Numeric functions Perform mathematical and statistical
functions on objects and expressions.
For more information, see Using
Mathematical Functions.

Set functions Return a reference to a set from other
objects or from a string expression.
For more information, see Using Set
Functions.

String functions Return string values from other objects or
from the server.
For more information, see Using String
Functions.

Tuple functions Return a reference to a tuple from a set or
from a string expression.
For more information, see Using Tuple

 35

Function Category Description

Functions.

Uses of Functions
Functions can be used or included in any MDX expression. Functions can also be nested (one
function used inside another function).

See Also
MDX Syntax Elements (MDX)

Using String Functions
You can use string functions on nearly every object in Multidimensional Expressions (MDX). In
stored procedures, you use string functions primarily to convert the object to a string
representation. You also use string functions to evaluate a string expression over an object in
order to return a value.
The most widely used string functions are Name and Uniquename. Respectively, these
functions return the name and unique name of an object. Mostly, they are used when
debugging calculations to discover what member a function is returning.

Examples
The following example queries show how to use these functions:
WITH
 //Returns the name of the current Product on rows
 MEMBER [Measures].[ProductName] AS [Product].[Product].CurrentMember.Name
 //Returns the uniquename of the current Product on rows
 MEMBER [Measures].[ProductUniqueName] AS
[Product].[Product].CurrentMember.Uniquename
 //Returns the name of the Product dimension
 MEMBER [Measures].[ProductDimensionName] AS [Product].Name
SELECT
{[Measures].[ProductName],[Measures].[ProductUniqueName],[Measures].[ProductD
imensionName]}
 ON COLUMNS,
 [Product].[Product].MEMBERS ON ROWS
FROM [Adventure Works]

 36

The Generate function can be used to execute a string function on every member of a set and
concatenate the results. This also can be useful when debugging calculations as it allows you to
visualize the contents of a set. The following example shows how to use it in this way:
WITH
 //Returns the names of the current Product and its ancestors up to the All
Member
 MEMBER [Measures].[AncestorNames] AS
 GENERATE(
ASCENDANTS([Product].[Product Categories].CurrentMember)
, [Product].[Product Categories].CurrentMember.Name, ", ")
SELECT
 {[Measures].[AncestorNames]}
 ON COLUMNS,
 [Product].[Product Categories].MEMBERS ON ROWS
FROM [Adventure Works]
Another group of widely used string functions are those that enable you to cast a string
containing the uniquename of an object or an expression which resolves to the object into the
object itself. The following example query demonstrates how the StrToMember and StrToSet
functions do this:
SELECT
 {StrToMember("[Measures].[Inter" + "net Sales Amount]")}
 ON COLUMNS,
 StrToSet("{
 [Product].[Product Categories].[Category].&[3],
 [Product].[Product Categories].[Product].&[477],
 [Product].[Product Categories].[Product].&[788],
 [Product].[Product Categories].[Product].&[708],
 [Product].[Product Categories].[Product].&[711]
 }")
 ON ROWS
FROM [Adventure Works]

The StrToMember and StrToSet functions should be used with caution. They can lead
to poor query performance if they are used within calculation definitions.

Note

 37

See Also
Generate (MDX)
Name (MDX)
UniqueName (MDX)
Using Stored Procedures (MDX)
Stored Procedures (MDX)
StrToMember (MDX)
StrToSet (MDX)

Using Mathematical Functions
A mathematical function performs a mathematical operation on numeric expressions and
returns the result of the operation.
By default, a number passed to a mathematical function will be interpreted as a double precision
floating point number.

See Also
Functions (MDX Syntax)

Using Logical Functions
A logical function performs a logical operation or comparison on objects and expressions and
returns a Boolean value. Logical functions are essential in Multidimensional Expressions (MDX)
to determine the position of a member.
The most commonly used logical function is the IsEmpty function. For more information on
how to use the IsEmpty function, see Working with Empty Values.
The following query shows how to use the IsLeaf and IsAncestor functions:
WITH
//Returns true if the CurrentMember on Calendar is a leaf member, ie it has
no children
MEMBER MEASURES.[IsLeafDemo] AS IsLeaf([Date].[Calendar].CurrentMember)
//Returns true if the CurrentMember on Calendar is an Ancestor of July 1st
2001
MEMBER MEASURES.[IsAncestorDemo] AS
IsAncestor([Date].[Calendar].CurrentMember, [Date].[Calendar].[Date].&[1])
 SELECT{MEASURES.[IsLeafDemo],MEASURES.[IsAncestorDemo] } ON 0,
 [Date].[Calendar].MEMBERS ON 1
 FROM [Adventure Works]

 38

See Also
Functions (MDX Syntax)

Using Member Functions
A member function is an Multidimensional Expressions (MDX) function that returns a member.
Member functions, like tuple functions and set functions, are essential to negotiating the
multidimensional structures found in Analysis Services.
Of the many member functions in MDX, the most important is the CurrentMember function,
which is used to determine the current member on a hierarchy. The following query illustrates
how to use it, along with the Parent, Ancestor, and Prevmember functions:
WITH
//Returns the name of the currentmember on the Calendar hierarchy
MEMBER MEASURES.[CurrentMemberDemo] AS [Date].[Calendar].CurrentMember.Name
//Returns the name of the parent of the currentmember on the Calendar
hierarchy
MEMBER MEASURES.[ParentDemo] AS [Date].[Calendar].CurrentMember.Parent.Name
//Returns the name of the ancestor of the currentmember on the Calendar
hierarchy at the Year level
MEMBER MEASURES.[AncestorDemo] AS ANCESTOR([Date].[Calendar].CurrentMember,
[Date].[Calendar].[Calendar Year]).Name
//Returns the name of the member before the currentmember on the Calendar
hierarchy
MEMBER MEASURES.[PrevMemberDemo] AS
[Date].[Calendar].CurrentMember.Prevmember.Name

SELECT{MEASURES.[CurrentMemberDemo],MEASURES.[ParentDemo],MEASURES.[AncestorD
emo],MEASURES.[PrevMemberDemo] } ON 0,
 [Date].[Calendar].MEMBERS ON 1
 FROM [Adventure Works]

See Also
Using Set Functions
Using Tuple Functions
Using Set Functions

 39

Using Tuple Functions
A tuple function retrieves a tuple from a set or retrieves a tuple by resolving the string
representation of a tuple.
Tuple functions, like member functions and set functions, are essential to negotiating the
multidimensional structures found in Analysis Services.
There are three tuple functions in MDX, Current (MDX), Item (Tuple) (MDX) and StrToTuple
(MDX). The following example query shows how to use of each of them:
WITH
//Creates a set of tuples consisting of Years and Countries
SET MyTuples AS [Date].[Calendar Year].[Calendar Year].MEMBERS *
[Customer].[Country].[Country].MEMBERS
//Returns a string representation of that set using the Current and Generate
functions
MEMBER MEASURES.CURRENTDEMO AS GENERATE(MyTuples,
TUPLETOSTR(MyTuples.CURRENT), ", ")
//Retrieves the fourth tuple from that set and displays it as a string
MEMBER MEASURES.ITEMDEMO AS TUPLETOSTR(MyTuples.ITEM(3))
//Creates a tuple consisting of the measure Internet Sales Amount and the
country Australia from a string
MEMBER MEASURES.STRTOTUPLEDEMO AS STRTOTUPLE("([Measures].[Internet Sales
Amount]" + ", [Customer].[Country].&[Australia])")
SELECT{MEASURES.CURRENTDEMO,MEASURES.ITEMDEMO,MEASURES.STRTOTUPLEDEMO} ON
COLUMNS
FROM [Adventure Works]

See Also
Using Set Functions
Using Member Functions
Using Set Functions

Using Set Functions
A set function retrieves a set from a dimension, hierarchy, level, or by traversing the absolute
and relative locations of members within these objects, constructing sets in a variety of ways.
Set functions, like member functions and tuple functions, are essential to negotiating the
multidimensional structures found in Analysis Services. Set functions are also essential to
obtaining results from Multidimensional Expressions (MDX) queries because set expressions
define the axes of an MDX query.

 40

One of the most common set functions is the Members (Set) (MDX) function, which retrieves a
set containing all of the members from a dimension, hierarchy, or level. The following is an
example of its use within a query:
SELECT
//Returns all of the members on the Measures dimension
[Measures].MEMBERS
ON Columns,
//Returns all of the members on the Calendar Year level of the Calendar Year
Hierarchy
//on the Date dimension
[Date].[Calendar Year].[Calendar Year].MEMBERS
ON Rows
FROM [Adventure Works]
Another commonly used function is the Crossjoin (MDX) function. It returns a set of tuples
representing the cartesian product of the sets passed into it as parameters. In practical terms,
this function enables you to create 'nested' or 'crosstabbed' axes in queries:
SELECT
//Returns all of the members on the Measures dimension
[Measures].MEMBERS
ON Columns,
//Returns a set containing every combination of all of the members
//on the Calendar Year level of the Calendar Year Hierarchy
//on the Date dimension and all of the members on the Category level
//of the Category hierarchy on the Product dimension
Crossjoin(
[Date].[Calendar Year].[Calendar Year].MEMBERS,
 [Product].[Category].[Category].MEMBERS)
ON Rows
FROM [Adventure Works]
The Descendants (MDX) function is similar the Children function, but is more powerful. It
returns the descendants of any member at one or more levels in a hierarchy:
SELECT
[Measures].[Internet Sales Amount]
ON Columns,
//Returns a set containing all of the Dates beneath Calendar Year
//2004 in the Calendar hierarchy of the Date dimension

 41

DESCENDANTS(
[Date].[Calendar].[Calendar Year].&[2004]
, [Date].[Calendar].[Date])
ON Rows
FROM [Adventure Works]
The Order (MDX) function enables you to order the contents of a set in ascending or descending
order according to a particular numeric expression. The following query returns the same
members on rows as the previous query, but now orders them by the Internet Sales Amount
measure:
SELECT
[Measures].[Internet Sales Amount]
ON Columns,
//Returns a set containing all of the Dates beneath Calendar Year
//2004 in the Calendar hierarchy of the Date dimension
//ordered by Internet Sales Amount
ORDER(
DESCENDANTS(
[Date].[Calendar].[Calendar Year].&[2004]
, [Date].[Calendar].[Date])
, [Measures].[Internet Sales Amount], BDESC)
ON Rows
FROM [Adventure Works]
This query also illustrates how the set returned from one set function, Descendants, can be
passed as a parameter to another set function, Order.
Filtering a set according to certain criteria is very useful when writing queries, and for this
purpose you can use the Filter (MDX) function, as shown in the following example:
SELECT
[Measures].[Internet Sales Amount]
ON Columns,
//Returns a set containing all of the Dates beneath Calendar Year
//2004 in the Calendar hierarchy of the Date dimension
//where Internet Sales Amount is greater than $70000
FILTER(
DESCENDANTS(
[Date].[Calendar].[Calendar Year].&[2004]
, [Date].[Calendar].[Date])

 42

, [Measures].[Internet Sales Amount]>70000)
ON Rows
FROM [Adventure Works]
Other, more sophisticated functions exist that allow you to filter a set in other ways. For
example, the following query shows the TopCount (MDX) function returns the top n items in a
set:
SELECT
[Measures].[Internet Sales Amount]
ON Columns,
//Returns a set containing the top 10 Dates beneath Calendar Year
//2004 in the Calendar hierarchy of the Date dimension by Internet Sales
Amount
TOPCOUNT(
DESCENDANTS(
[Date].[Calendar].[Calendar Year].&[2004]
, [Date].[Calendar].[Date])
,10, [Measures].[Internet Sales Amount])
ON Rows
FROM [Adventure Works]
Finally it is possible to perform a number of logical set operations using functions such as
Intersect (MDX), Union (MDX) and Except (MDX) functions. The following query shows examples
of the latter two functions:
SELECT
//Returns a set containing the Measures Internet Sales Amount, Internet Tax
Amount and
//Internet Total Product Cost
UNION(
{[Measures].[Internet Sales Amount], [Measures].[Internet Tax Amount]}
, {[Measures].[Internet Total Product Cost]}
)
ON Columns,
//Returns a set containing all of the Dates beneath Calendar Year
//2004 in the Calendar hierarchy of the Date dimension
//except the January 1st 2004
EXCEPT(
DESCENDANTS(

 43

[Date].[Calendar].[Calendar Year].&[2004]
, [Date].[Calendar].[Date])
,{[Date].[Calendar].[Date].&[915]})
ON Rows
FROM [Adventure Works]

See Also
Using Tuple Functions
Using Member Functions
Using Tuple Functions

Using Dimension, Hierarchy, and Level Functions
Dimension, hierarchy, and level functions are useful for traversing the multidimensional
structures found in Analysis Services. Typically, you use such functions in conjunction with other
functions to obtain information about the members of a dimension, hierarchy, or level.
The following example shows how to use the .Dimension, .Hierarchy, and .Level functions:
WITH
MEMBER MEASURES.DIMENSIONNAME AS
[Date].[Calendar].CURRENTMEMBER.DIMENSION.NAME
MEMBER MEASURES.HIERARCHYNAME AS
[Date].[Calendar].CURRENTMEMBER.HIERARCHY.NAME
MEMBER MEASURES.LEVELNAME AS [Date].[Calendar].LEVEL.NAME
SELECT
{MEASURES.DIMENSIONNAME, MEASURES.HIERARCHYNAME, MEASURES.LEVELNAME}
ON Columns,
[Date].[Calendar].MEMBERS
ON Rows
FROM [Adventure Works]

See Also
Dimension (MDX)
Functions (MDX Syntax)
Hierarchy (MDX)
Level (MDX)

 44

Using Stored Procedures
You can extend the functionality of Analysis Services and Multidimensional Expressions (MDX)
by writing .NET stored procedures or user-defined functions. For more information,
see ADOMD.NET Server Programming
When you reference or call a stored procedure, you specify the function name followed by
parentheses. Within the parentheses, you can specify expressions called arguments that provide
the data to be passed into the parameters. When you call a function, you must supply argument
values for all of the parameters, and you must specify the argument values in the same
sequence in which the parameters are defined in the user-defined function.
The following example query assumes that you have an assembly named SampleAssembly
registered on your Analysis Services Server:

SELECT SampleAssembly.RandomSample([Geography].[State-Province].Members, 5)

on ROWS,

[Date].[Calendar].[Calendar Year] on COLUMNS

FROM [Adventure Works]

WHERE [Measures].[Reseller Freight Cost]

Stored procedure is the terminology used in Microsoft SQL Server Analysis Services for
these types of functions. Earlier versions of Analysis Services called these types of
functions as user-defined functions.

Types of stored procedures
Analysis Services supports both COM and CLR assemblies. CLR assemblies are recommended
because of the enhanced security available to CLR assemblies. If Microsoft Office Excel is
installed on the server, Excel functions are also available.

Microsoft Visual Basic for Applications (VBA) COM Assemblies are registered
automatically.

See Also
Functions (MDX Syntax)

Comments (MDX Syntax)
Comments are non-executing text strings in program code. (Comments are also known as
remarks). You can use comments to document code, or temporarily disable parts of
Multidimensional Expressions (MDX) statements and scripts being diagnosed. By using
comments to document code, you can make future program code maintenance easier. You

Note

Note

http://msdn.microsoft.com/en-us/library/7f7ff5be-3826-43a5-b94d-ddeec5ddb2eb(SQL.110)�

 45

frequently use comments to record the program name, the author name, and the dates of major
code changes. You can also use comments to describe complex calculations or explain a
programming method.
Comments in MDX follow these guidelines:
• All alphanumeric characters or symbols can be used within the comment. Microsoft SQL

Server Analysis Services ignores all characters within a comment.
• There is no maximum length for a comment within a statement or script. A comment can be

made up of one or more lines.
MDX supports three types of commenting characters:
// (double forward slashes)

These comment characters can be used on the same line as code to be run or on a line by
themselves. Everything from the double forward slashes to the end of the line is part of the
comment. For a multiple-line comment, the double forward slashes must appear at the
starting of each comment line. For more information, see MDX Syntax Elements (MDX).

-- (double hyphens)

These comment characters can be used on the same line as code to be run or on a line by
themselves. Everything from the double hyphens to the end of the line is part of the
comment. For a multiple-line comment, the double hyphens must appear at the starting of
each comment line. For more information, see -- (Comment) (MDX).

/* ... */ (forward slash-asterisk character pairs)

These comment characters can be used on the same line as code to be run, on lines by
themselves, or even within executable code. Everything from the open comment pair (/*) to
the close comment pair (*/) is considered part of the comment. For a multiple-line comment,
the open-comment character pair (/*) must start the comment, and the close-comment
character pair (*/) must end the comment. No other comment characters can appear on any
lines of the comment. For more information, see /*...*/ (Comment).

Example
The following query shows examples of all three types of comment:
//An example of a comment using the double-forward slash
--An example of a comment using the double-hypen
/*An example of a
multi-line
comment*/
SELECT
{[Measures].[Internet Sales Amount]}
ON Columns,

 46

[Date].[Calendar].MEMBERS
ON Rows
FROM [Adventure Works]

See Also
MDX Syntax Elements (MDX)

Reserved Keywords (MDX Syntax)
Microsoft SQL Server Analysis Services reserves certain keywords for its exclusive use. For a list
of reserved keywords, see MDX Syntax Elements (MDX).
Reserved keywords follow these guidelines:
• You cannot include reserved keywords in a Multidimensional Expressions (MDX) statement

in any location except that defined by Analysis Services.
• No objects in the database should be specific a name that matches a reserved keyword. If

such a name exists, the object must always be referred to using delimited identifiers.
Although this method does allow for object names to be reserved words, using keywords to
name objects should be avoided.

• Use a naming convention that avoids using reserved keywords. Consonants or vowels can be
removed if an object name must look like a reserved keyword.

See Also
MDX Syntax Elements (MDX)

MDX Language Reference
The reference documentation for Multidimensional Expressions (MDX) is grouped into sections,
as described in the following table.

In This Section

Topic Description

Multidimensional Expressions (MDX)
Reference

Briefly describes the syntax conventions
used in the MDX Language Reference.

MDX Statement Reference Describes the scripting, data definition, and
data manipulation statements available in

 47

Topic Description

the MDX language.

MDX Operator Reference Lists the operators available in the MDX
language.

MDX Function Reference Describes the functions available in the
MDX language.

MDX Reserved Words Provides a list of words reserved for use by
the MDX language.

See Also
Multidimensional Expressions (MDX) Reference

MDX Syntax Conventions
The diagrams for Multidimensional Expressions (MDX) syntax in the MDX Language Reference
use these conventions.

Convention Usage

italic Indicates user-supplied arguments of MDX
syntax.

| (vertical bar) Separates syntax items within brackets or
braces. You can select only one of the
items.

[] (brackets) Indicates optional syntax items. Do not type
the brackets.

[,] ...n Indicates that the preceding item can be
repeated any number of times. The items
are sometimes separated by commas.

<label> ::= Indicates the name for a block of syntax.
This convention is used to group and label
portions of lengthy syntax or a unit of
syntax that can be used in more than one
place within a statement. Each location in
which the block of syntax can be used is
indicated with the label enclosed in angle

 48

Convention Usage

brackets: <label>.

See Also
MDX Language Reference (MDX)

MDX Statement Reference
Multidimensional Expressions (MDX) statements are separated into three groups, as described in
the following table.

In this Section

Topic Description

MDX Language Reference (MDX) Contains information about MDX scripting
statements that manage query context,
scope, and the control of flow within MDX
scripts.

MDX Data Definition Statements Contains information about MDX data
definition statements that create, drop, and
manipulate multidimensional objects.

MDX Data Manipulation Statements Contains information about MDX data
manipulation statements that retrieve and
manipulate data from multidimensional
objects.

See Also
MDX Language Reference

MDX Scripting Statements
In Multidimensional Expressions (MDX), the following statements manage context, scope, and
control of flow within MDX scripts.

 49

In this Section

Topic Description

MDX Scripting Fundamentals (MDX) Calculates a subcube, optionally
determining the solve order of dimensions
included within the subcube.

CASE Statement (MDX) Lets you conditionally return specific values
from multiple comparisons.

Existing Statement (MDX) Forces a specified set to be evaluated
within the current context.

FREEZE Statement Locks the cell values of a specified subcube
to their current values.

IF Statement (MDX) Executes a statement if the condition is
true.

SCOPE Statement Limits the scope of specified MDX
statements to a specified subcube.

See Also
MDX Statement Reference (MDX)
MDX Data Definition Statements
MDX Data Manipulation Statements
MDX Scripting Fundamentals (MDX)

CALCULATE Statement
Populates each cell in a cube with an aggregate value.

Syntax

CALCULATE

Arguments
None

http://msdn.microsoft.com/en-us/library/651ee9ac-04ef-4316-87c9-a3df5ac27d22(SQL.110)�
http://msdn.microsoft.com/en-us/library/fdecb3ce-7c87-4bab-8000-532ba7a29f96(SQL.110)�

 50

Remarks
The CALCULATE statement is automatically included as the first statement in a cube's MDX script
when you create a cube by using SQL Server Data Tools (SSDT). The CALCULATE statement tells
each cell in the cube to aggregate from lower granularity cells. After a cell is aggregated, if you
subsequently populate lower granularity cells by using expressions, it impacts the aggregated
value of higher granularity cells. You almost always want this aggregation to happen, but you
can remove it or cause other statements to execute before this statement.
The CALCULATE statement cannot be included in a nested subcube within the MDX script. A
nested subcube is defined by using the SCOPE statement. For more information about the
SCOPE statement, see Defining Assignments and Other Script Commands.

Calculated members are not aggregated.

See Also
MDX Scripting Statements (MDX)
MDX Scripting Fundamentals (MDX)
Creating and Editing MDX Scripts

FREEZE Statement
Locks the cell values of a specified subcube to their current values. When the cell values are
locked, changes to other cells have no effect on the cells that are locked.

Syntax

FREEZE Subcube_Expression

Arguments
Subcube_Expression

A valid Multidimensional Expressions (MDX) expression that returns a subcube.

Remarks
The FREEZE statement locks the values of cells in a specified subcube, preventing subsequent
statements in an MDX script from changing their values in subsequent calculation passes.
In the following example, A and B represent subcubes in an MDX calculation script:

B = 2;

A = B;

B = 3

At this point, both A and B are equal to 3.

Note

http://msdn.microsoft.com/en-us/library/fdecb3ce-7c87-4bab-8000-532ba7a29f96(SQL.110)�
http://msdn.microsoft.com/en-us/library/f28b9b22-3dc7-4a45-b4eb-2d023f2c94b8(SQL.110)�

 51

We now insert the Freeze function to lock the cells in the A subcube:

B = 2;

A = B;

FREEZE(A);

B = 3

A is now equal to 2, and B is equal to 3.

See Also
MDX Scripting Statements (MDX)

IF Statement
Executes a statement if the condition is true.

Syntax

IF expression THEN assignment END IF

Arguments
expression

A Multidimensional Expressions (MDX) expression that evaluates to a Boolean that returns
true or false.

assignment

An MDX expression that assigns a value to either a subcube or a calculated property.

Remarks
Use the IF statement for control flow, which is unlike the MDX Function Reference (MDX)
function and the CASE Statement (MDX) that can only be used to return values or objects.

Examples
In the following example, the scope is restricted to the Country level of the Customers
Geography hierarchy in the Customers dimension. If the current measure is Internet Sales
Amount, then the Internet Sales Amount is set to 10:
SCOPE ([Customer].[Customer Geography].[Country].MEMBERS);
 IF Measures.CurrentMember IS [Measures].[Internet Sales Amount] THEN this =
10 END IF;
END SCOPE;

 52

See Also
MDX Function Reference (MDX)

SCOPE Statement
Limits the scope of specified Multidimensional Expressions (MDX) statements to a specified
subcube.

Syntax

SCOPE(Subcube_Expression)
 [MDX_Statement]
END SCOPE

Subcube_Expression ::= (Auxiliary_Subcube [, Auxiliary_Subcube,...n])

Auxiliary_Subcube ::=
 Limited_Set
 | Root([dimension_name])
 | Leaves([dimension_name])

Limited_Set ::=
 single_tuple
 | member
 | Common_Grain_Members
 | hierarchy.members
 | level.members
 | {}
 | Descendants
 (
 Member
 , [level
 [
 , SELF
 | AFTER
 | BEFORE
 | SELF_AND_AFTER

 53

 | SELF_AND_BEFORE
 | SELF_BEFORE_AFTER
 | LEAVES
]
)
[* <limited set>]

Arguments
Subcube_Expression

A valid MDX subcube expression.

MDX_Statement

A valid MDX statement.

Common_Grain_Members

A valid MDX statement that evaluates to members that have the same grain.

single_tuple

A single tuple.

Remarks
The SCOPE statement determines the subcube that will be affected by the running of one or
more MDX statements. Unless an MDX statement is framed within a SCOPE statement, the
implicit scope of an MDX statement is the entire cube.

Hidden members are exposed in SCOPE statements.
SCOPE statements will create subcubes that expose "holes" regardless of the MDX
Compatibility setting. For example, the statement, Scope(Customer.State.members), can
include the states in countries or regions that do not contain states, but for which otherwise
invisible placeholder members were inserted.
Calculated members and named sets created within a SCOPE statement are unaffected by the
SCOPE statement.

Example
The following example, from the MDX calculation script in the Adventure Works sample
solution, defines the current scope as fiscal quarter in fiscal year 2005 and the sales amount
quota measure, and then assigns a value to the cells in the current scope by using the
ParallelPeriod function. The example then modifies the scope using another SCOPE statement,
and then performs another assignment using the This (MDX) function.

Scope

 (

Note

 54

 [Date].[Fiscal Year].&[2005],

 [Date].[Fiscal].[Fiscal Quarter].Members,

 [Measures].[Sales Amount Quota]

) ;

 This = ParallelPeriod

 (

 [Date].[Fiscal].[Fiscal Year], 1,

 [Date].[Fiscal].CurrentMember

) * 1.35 ;

/*-- Allocate equally to months in FY 2002 -----------------------------*/

 Scope

 (

 [Date].[Fiscal Year].&[2002],

 [Date].[Fiscal].[Month].Members

) ;

 This = [Date].[Fiscal].CurrentMember.Parent / 3 ;

 End Scope ;

End Scope ;

See Also
MDX Scripting Statements (MDX)

MDX Data Definition Statements
In Multidimensional Expressions (MDX), data definition statements create, drop, and manipulate
multidimensional objects. The following table lists the available data definition statements.

In this Section

 55

Topic Description

MDX Scripting Statements (MDX) Alters the structure of a specified cube.

CREATE ACTION Statement Creates an action that can be associated
with a cube, dimension, hierarchy, or
subordinate object.

CREATE CELL CALCULATION Statement Creates a calculation that evaluates an MDX
expression over a specified set of tuples
within a cube.

CREATE GLOBAL CUBE Statement (MDX) Creates and populates a locally persisted
cube, based on a subcube from a cube on
the server. A connection to the server is not
required to connect to the locally persisted
cube.

CREATE MEMBER Statement Creates a calculated member.

CREATE SESSION CUBE Statement (MDX) Creates and populates a cube available to
all queries in the same the session, based
on cubes on the server.

CREATE SET Statement Creates a named set for a specified cube.

CREATE SUBCUBE Statement Redefines the cube space of a specified
cube or subcube to a specified subcube.

DROP ACTION Statement Deletes a specified action from a specified
cube.

DROP CELL CALCULATION Statement Removes the specified cell calculation.

DROP MEMBER Statement Removes a calculated member.

DROP SET Statement Removes a named set.

DROP SUBCUBE Statement Drops a specified subcube, reverting to the
previously defined cube or subcube
definition with the specified name.

REFRESH CUBE Statement Refreshes the client cache for a cube.

See Also
MDX Statement Reference (MDX)
MDX Data Manipulation Statements

 56

MDX Scripting Statements

ALTER CUBE Statement
Alters the structure of a specified cube.

Syntax

ALTER CUBE
 Cube_Name | CURRENTCUBE
 <alter clause>
 [< alter clause> ...n]

< alter clause> ::=
 <create dimension member clause>
 | <remove dimension member clause>
 | <move dimension member clause>
 | <update clause>
 | <create cell calculation clause>

<create dimension member clause> ::=
CREATE DIMENSION MEMBER [ParentName.]MemberName
 , [[KEY = Key_Value]
 | [Property_Name = Property_Value[, ...n]]

<dropping clause>::=
DROP
 DIMENSION MEMBER Member_Name
 Member_Name ...n]
 [WITH DESCENDANTS]
 | [SESSION] [CALCULATED] MEMBER Member_Name
 [,Member_Name,...n]
 | SET Set_Name
 [,Set_Name,...n]
 | [SESSION] CELL CALCULATION CellCalc_Name
 [,CellCalc_Name,...n]
 | ACTION Action_Name

 57

<move dimension member clause> ::=
MOVE DIMENSION MEMBER MemberName
 [, SKIPPED_LEVELS = Unsigned_Integer]
 [WITH DESCENDANTS]
 UNDER ParentName

<update clause> ::=
UPDATE
 CUSTOM ROLLUP FOR MEMBER MemberName
 [,MemberName, ...n] AS MDX_Expression
 | DIMENSION Dimension_Name | Hierarchy_Name
 , DEFAULT_MEMBER = MDX_Expression
 | DIMENSION MEMBER MemberName AS
 [MDX_Expression]
 [Property_Name = Property_Value[, ...n]]

<create cell calculation clause>::=
CELL CALCULATION Calculation_Name
 FOR Set_Expression AS MDX_Expression
 [[CONDITION = 'Logical_Expression']
 | [DISABLED = { TRUE | FALSE }]
 | [DESCRIPTION =String]
 | [CALCULATION_PASS_NUMBER = Integer]
 | [CALCULATION_PASS_DEPTH = Integer]
 | [SOLVE_ORDER = Integer]
 | [Calculation_Name= Scalar_Expression], ...n]

Creating a Dimension Member
A new row is added to the underlying dimension table.

Arguments
ParentName

A valid string expression that provides the name of the parent of the new dimension
member, unless the dimension member is being created at the root.

 58

MemberName

A valid string expression that provides a member name.

Key_Value

A valid scalar expression that defines the new dimension member's key value.

Property_Name

A valid Multidimensional Expressions (MDX) identifier that represents a member property.

Property_Value

A valid Multidimensional Expressions (MDX) scalar expression that defines the calculated
member property's value.

Dropping a Dimension Member
Dropping a dimension member from a write-enabled dimension deletes the member and its
corresponding row from the underlying dimension table.

Arguments
Cube_Name

A valid string expression providing a cube name.

Member_Name

A valid string expression providing a member name or member key.

Remarks
If the WITH DESCENDANTS clause is not used, children of a dropped member become children
of the dropped member's parent. If the WITH DESCENDANTS clause is used, all descendants and
their rows in the dimension table are also dropped.

For information about dropping calculated members, named sets, actions, and cell
calculations, see DROP MEMBER Statement (MDX), DROP SET Statement (MDX), DROP
ACTION Statement (MDX), and DROP CELL CALCULATION Statement (MDX).

Updating the Default Dimension Member
This clause updates the default member of a cube and is used in the MDX calculation script to
define a default member. The default member can be specified for the database dimension, a
cube dimension, or for a user's login. The default member can also be changed during a session.

Arguments
Dimension_Name

A valid string that provides the name of a dimension.

Note

 59

MDX_Expression

A valid MDX expression that returns a single member.

Remarks
The specified MDX expression can be static or dynamic.

Moving a Dimension Member
A row is modified in the underlying dimension table.

Arguments
ParentName

A valid string expression that provides the name of the new parent for the dimension
member being moved.

MemberName

A valid string expression that provides a member name.

Unsigned_Integer

A valid number specifying the number of levels to skip.

If the WITH DESCENDANTS clause is specified, the entire tree is moved. If the WITH
DESCENDANTS clause is not specified, the children of a moved parent become the children of
the moved member's parent. The effect of a move is simply to update the values for the parent
key column in the underlying dimension table.

Updating a Dimension Member
The UPDATE DIMENSION MEMBER clause allows you to modify properties of a member as well
as the custom member formula associated with a member.

Arguments
MemberName

A valid string expression that provides a member name.

MDX_Expression

A valid MDX expression that returns a single member.

Property_Value

A valid MDX scalar expression that defines the calculated member property's value.

Creating a Cell Calculation
For more information about creating a cell calculation using the ALTER CUBE statement, see
CREATE CELL CALCULATION Statement (MDX).

 60

See Also
MDX Data Definition Statements (MDX)

CREATE ACTION Statement
Creates an action that can be associated with a cube, dimension, hierarchy, or subordinate
object.

Syntax

CREATE ACTION CURRENTCUBE | Cube_Name
 .Action_Name <action body>
<action body> ::=
FOR
 CUBE
 | Hierarchy_Name [MEMBERS]
 | Level_Name [MEMBERS]
 | CELLS
 | SET }
 AS 'MDX_Expression'
 [, TYPE = '
 { URL
 | HTML
 | STATEMENT
 | DATASET
 | ROWSET
 | COMMANDLINE
 | PROPRIETARY }
 ']
 [, INVOCATION = 'INTERACTIVE | ON_OPEN | BATCH ']
 [, APPLICATION = String_Expression]
 [, DESCRIPTION = String_Expression]
 [, CAPTION = 'MDX_Expression']

Arguments
Cube_Name

A valid string that provides a cube name.

 61

Action_ Name

A valid string that provides the name of the action being created.

Hierarchy_ Name

A valid string that provides a hierarchy name.

Level_ Name

A valid string that provides a level name.

Member_ Name

A valid string that provides a member name or member key.

MDX_Expression

A valid MDX expression.

String_Expression

A valid string expression.

Remarks
It is possible for client applications to create and run actions that are unsafe; it is also possible
for client applications to use unsafe functions. To avoid these situations, use the Safety Options
property. For more information, see Safety Options Property.

This statement is included for backwards compatibility. Actions new to SQL Server
Analysis Services, such as Drillthrough or Report actions, are not supported.

Action Types
The following table describes the different types of actions available in Microsoft SQL
Server Analysis Services.

Action type Description

URL The returned action string is a URL that should be opened
using an Internet browser.

Note
If this action does not start with http:// or https://,
the action will be unavailable to the browser unless
SafetyOptions is set to
DBPROPVAL_MSMD_SAFETY_OPTIONS_ALLOW_ALL.

HTML The returned action string is an HTML script. The string should
be saved to a file and the file should be rendered using an
Internet browser. In this case, a whole script may be run as part

Note

 62

Action type Description

of the generated HTML.

STATEMENT The returned action string is a statement that needs to be
executed by setting the ICommand::SetText method of a
command object to the string and calling the
ICommand::Execute method. If the command does not
succeed, an error is returned.

DATASET The returned action string is an MDX statement that needs to
be run by setting the ICommand::SetText method of a
command object to the string and calling the
ICommand::Execute method. The requested interface ID (IID)
should be IDataset. The command succeeds if a data set has
been created. The client application should allow the user to
browse the returned data set.

ROWSET Similar to DATASET, but instead of requesting an IID of
IDataset, the client application should ask for an IID of
IRowset. The command succeeds if a rowset has been created.
The client application should allow the user to browse the
returned rowset.

COMMANDLINE The client application should execute the action string. The
string is a command line.

PROPRIETARY A client application should not display, nor execute the action
unless the application has a custom, nongeneric knowledge of
the specific action. Proprietary actions are not returned to the
client application unless the client application explicitly asks for
these by setting the appropriate restriction on the
APPLICATION_NAME.

Invocation Types
The following table describes the different types of invocations available in Analysis Services.
The invocation type is used only by the client application to help determine when to invoke the
action. The invocation type does not actually determine the invocation behavior of the action.

Invocation type Description

INTERACTIVE The action should be invoked by the client
application through user interaction.

 63

Invocation type Description

ON_OPEN The action should be invoked by the client
application when the target object is
opened. This invocation type is not
currently implemented.

BATCH The action should be invoked by the client
application when the target object is
involved in a batch operation, as
determined by the client application. This
invocation type is not currently
implemented.

Scope
Each action is defined for a specific cube and has a unique name in that cube. An action can
have one of the scopes listed in the following table.
Cube scope

For actions independent of specific dimensions, members, or cells; for example: "Launch
terminal emulation for AS/400 production system".

Dimension scope

The action applies to a specific dimension. These actions are not dependent on specific
selection of levels or members.

Level scope

The action applies to a specific dimension level. These actions are not dependent on specific
selection of a member in that dimension.

Member scope

The action applies to specific level members.

Cell scope

The action applies to specific cells only.

Set scope

The action applies to a set only. The name, ActionParameterSet, is reserved for use by the
application inside the expression of the action.

See Also
MDX Data Definition Statements (MDX)

 64

CREATE CELL CALCULATION Statement
Creates a calculation that evaluates a Multidimensional Expressions (MDX) expression over a
specified set of tuples within a cube.

Syntax

[WITH <CELL CALCULATION clause> Calculation_Name
 [,WITH <CELL CALCULATION clause> Calculation_Name...n]
CREATE CELL CALCULATION CURRENTCUBE | Cube_Name.Calculation_Name

<CELL CALCULATION clause> ::=
 FOR Set_Expression AS 'MDX_Expression'
 [[CONDITION = 'Logical_Expression']
 | [DISABLED = { TRUE | FALSE }]
 | [DESCRIPTION =String]
 | [CALCULATION_PASS_NUMBER = Integer]
 | [CALCULATION_PASS_DEPTH = Integer]
 | [SOLVE_ORDER = Integer]
 | [Calculation_Name= Scalar_Expression], ...n]

Arguments
Cube_Name

A valid string that provides a cube name.

Calculation_Name

A valid string that provides a cell calculation name.

Set_Expression

A valid MDX expression that returns a set.

String

A valid string value.

MDX_Expression

A valid MDX expression.

Logical_Expression

A valid MDX logical expression.

Integer

A valid integer value.

 65

Calculation_Name

A valid string that provides the name of a cell calculation property.

Scalar_Expression

A valid MDX scalar expression.

Remarks
By using calculated cells, the client application can specify a rollup value for a particular set of
cells, instead of for an entire set of cells as in the case of a custom rollup formula or a calculated
member. For example, it is possible to specify that any cell in the set defined by
{[Canada],[Time].[2000]} can contain a value that is defined by a formula. Any other cells
that are not contained within this set are computed normally.

The Backus-Naur Form (BNF) of {*(<comment> | <whitespace> | <newline>)} will
be parsed as {*} for backwards compatibility.

See Also
MDX Data Definition Statements (MDX)
Creating Query-Scoped Cell Calculations (MDX)
Building Cell Calculations in MDX (MDX)
Using Cell Properties (MDX)
FORMAT_STRING Contents (MDX)
FORE_COLOR and BACK_COLOR Contents (MDX)
MDX Data Definition Statements (MDX)

CREATE GLOBAL CUBE Statement
Creates and populates a locally persisted cube, based on a subcube from a cube on the server. A
connection to the server is not required to connect to the locally persisted cube. For more
information about local cubes, see Local Cubes.

Syntax

CREATE GLOBAL CUBE local_cube_name STORAGE 'Cube_Location'
FROM source_cube_name (<param list>)

<param list>::= <param> ,<param list> | <param>

<param>::= <dims list> | <measures list>

Note

http://msdn.microsoft.com/en-us/library/f2d14a89-6286-4e74-9afb-091076f93f21(SQL.110)�
http://msdn.microsoft.com/en-us/library/45987daa-4400-41e9-add7-2428fd75709b(SQL.110)�
http://msdn.microsoft.com/en-us/library/068aea63-d419-4791-a960-3d74e76f808e(SQL.110)�
http://msdn.microsoft.com/en-us/library/a593c74d-8c5e-485e-bd92-08f9d22451d4(SQL.110)�
http://msdn.microsoft.com/en-us/library/c354c938-0328-4b8e-adc5-3b52fd2a7152(SQL.110)�
http://msdn.microsoft.com/en-us/library/ff8f40cb-2ac4-4fc2-9761-7f1b14c17c8c(SQL.110)�
http://msdn.microsoft.com/en-us/library/e52e1515-35a7-4dc3-9bbf-736d176ba0c7(SQL.110)�

 66

<measures list>::= <measure>[, <measures list>]

<dims list>::= <dim def> [, <dims list>]

<measure>::= MEASURE source_cube_name.measure_name [<visibility qualifier>] [AS
measure_name]

<dim def>::= <source dim def> | <derived dim def>

<source dim def>::= DIMENSION source_cube_name.dimension_name [<dim flags>]
[<visibility qualifier>] [AS dimension_name>] [FROM <dim from clause>] [<dim content def>]

<dim flags>::= NOT_RELATED_TO_FACTS

<dim from clause>::= < dim DM from clause> | <reg dim from clause>

<dim DM from clause>::= dm_model_name> COLUMN column_name

<dim reg from clause>::= dimension_name

<dim content def>::= (<level list> [,<grouping list>] [,<member slice list>] [,<default
member>])

<level list>::= <level def> [, <level list>]

<level def>::= LEVEL level_name [<level type>] [AS level_name] [<level content def>]

<level content def>::= (<property list>) | NO_PROPERTIES

<level type>::= GROUPING

<property list>::= <property def> [, <property list>]

<property def>::= PROPERTY property_name

 67

<grouping list>::= <grouping entity> [,<grouping list>]

<grouping entity>::= GROUP group_level_name.group_name (<mixed list>)

<grp mixed list>::= <grp mixed element> [,<grp mixed list>]

<grp mixed element>::= <grouping entity> | <member def>

<member slice list>::= <member list>

<member list>::= <member def> [, <member list>]

<member def>::= MEMBER member_name

<default member>::= DEFAULT_MEMBER AS MDX_expression

<visibility qualifier>::= HIDDEN

Syntax Elements
local_cube_name

The name of the local cube.

'Cube_Location'

The name and path for the locally persisted cube.

source_cube_name

The name of the cube on which the local cube is based.

source_cube_name.measure_name

The fully qualified name of the source measure being included in the local cube. Calculated
members of the Measures dimension are not permitted.

measure_name

The name of the measure in the local cube.

source_cube_name.dimension_name

The fully qualified name of the source dimension being included in the local cube.

dimension_name

The name of the dimension in the local cube.

 68

FROM <dim from clause>

Valid specification for derived dimension definition only.

NOT_RELATED_TO_FACTS

Valid specification for derived dimension definition only.

<level type>

Valid specification for derived dimension definition only.

Remarks
A local cube is defined in terms of the measures and definitions that define it. There are two
types of dimensions.
• Source dimensions - These are dimensions that were part of one of more source cubes
• Derived dimensions - These are dimensions that provide new analysis capabilities. A derived

dimension can be a regular dimension defined based on a source dimension that is either
sliced vertically or horizontally, or contains custom grouping of dimension members. A
derived dimension can also be a data mining dimension based on a data mining model.

The Dimension keyword can refer to either dimensions or hierarchies.
In a local cube, you can perform the following tasks:
• Eliminate dimensions that exist in the source cube
• Add or eliminate hierarchies from a dimension
• Eliminate measure groups or specific measures
The CREATE GLOBAL CUBE statement follows these rules:
• The CREATE GLOBAL CUBE statement automatically copies all commands, such as calculated

measures or actions, to the local cube. If a command contains a Multidimensional
Expressions (MDX) expression that references the parent cube explicitly, the local cube
cannot run that command. To prevent this problem, use the CURRENTCUBE keyword when
defining MDX expressions for commands. The CURRENTCUBE keyword uses the current
cube context when referencing a cube within an MDX expression.

• A global cube that is created from an existing global cube in a local cube file cannot be
saved in the same local cube file. For example, you create a global cube named SalesLocal1
and save this cube to the C:\SalesLocal.cub file. You then connect to the C:\SalesLocal.cub
file and create a second global cube named SalesLocal2. If you now try to save the
SalesLocal2 global cube to the C:\SalesLocal.cub file, you will receive an error. However, you
can save the SalesLocal2 global cube to a different local cube file.

• Global cubes do not support distinct count measures. Because cubes that include distinct
count measures are nonadditive, the CREATE GLOBAL CUBE statement cannot support the
creation or use of distinct count measures.

Note

 69

• When adding a measure to a local cube, you must also include at least one dimension that is
related to the measure being added.

• When adding a parent-child hierarchy to a local cube, levels and filters on a parent-child
hierarchy are ignored and the entire parent-child hierarchy is included.

• Member properties are not supported in local cubes.
• You cannot create a local cube from a perspective.
• When you include a semi-additive measure to a local cube, the following rules apply:

• You must include the Account dimension if the AggregateFunction property for the
measure being added is ByAccount.

• You must include the entire Time dimension if the AggregateFunction property measure
being added is FirstChild, LastChild, FirstNonEmpty, LastNonEmpty, or
AverageOfChildren.

• Data mining dimensions cannot be added to a local cube.
• Reference dimensions are materialized and added as regular dimensions.
• When you include a many-to-many dimension, the following rules apply:

• You must add the entire many-to-many dimension.
• You must add the intermediary measure group.
• You must add the entirety of all dimensions common to the two measure groups

involved in the many-to-may relationship.
The following example demonstrates creating a local, persisted version of the Adventure Works
cube that contains only the Reseller Sales Amount measure, the Reseller dimension, and the
Date dimension.

CREATE GLOBAL CUBE [LocalReseller]

 Storage 'C:\LocalAWReseller1.cub'

 FROM [Adventure Works]

 (

 MEASURE [Adventure Works].[Reseller Sales Amount],

 DIMENSION [Adventure Works].[Reseller],

 DIMENSION [Adventure Works].[Date]

)

The following example demonstrates slicing when you create a local cube. The global cube that
is created is based on the Adventure Works cube sliced vertically by the 2005 member of the
Fiscal Year level, and horizontally by the Fiscal Year and Month levels.

CREATE GLOBAL CUBE [LocalReseller]

 Storage 'C:\LocalAWReseller2.cub'

 FROM [Adventure Works]

 70

 (

 MEASURE [Adventure Works].[Reseller Sales Amount],

 DIMENSION [Adventure Works].[Reseller],

 DIMENSION [Adventure Works].[Date]

 (

LEVEL [Fiscal Year],

LEVEL [Month],

MEMBER [Date].[Fiscal].[Fiscal Year].&[2005]

)

)

See Also
CREATE SESSION CUBE Statement (MDX)
CREATE SESSION CUBE Statement (MDX)

CREATE KPI Statement
Creates a key performance indicator (KPI). A KPI is a collection of calculations that are associated
with a measure group in a cube and are used to evaluate business or scenario success.

Syntax

CREATE KPI CURRENTCUBE | <Cube Name>.KPI_Name AS KPI_Value
 [,Property_Name = Property_Value, ...n]

Arguments
KPI_Name

A valid string that provides a KPI name.

KPI_Value

A valid Multidimensional Expressions (MDX) expression that returns a numeric value.

Property_Name

A valid string that provides the name of a KPI property.

Property_Value

A valid scalar expression that defines the KPI property's value.

 71

Remarks
Specifying a cube other than the cube that is currently connected causes an error. Therefore,
you should use CURRENTCUBE in place of a cube name to denote the current cube.

KPI Properties
The following table lists all KPI properties. None of these properties have a default value.
Therefore, until a specific value has been assigned to a KPI property, queries against that
properties will return a null value.

Property identifier Meaning

GOAL A valid MDX expression that returns a
numeric value.

STATUS A valid MDX expression that returns a
numeric value.

STATUS_GRAPHIC A string that defines a set of graphic
images that will be used by the client
application.

TREND A valid MDX expression that returns a
numeric value.

TREND_GRAPHIC A string that defines a set of graphic
images that will be used by the client
application.

WEIGHT A valid MDX expression that returns a
numeric value.

CURRENT_TIME_MEMBER A valid MDX expression that returns a
member in the time dimension.
CURRENT_TIME_MEMBER sets the
reference point for all relative time
functions

PARENT_KPI A string that specifies the name of the
parent KPI.

CAPTION A string that the client application uses as
the caption for the KPI.

DISPLAY_FOLDER A string that specifies the path of the
display folder where the KPI is to be shown
by the client application. The folder level
separator is defined by the client

 72

Property identifier Meaning

application. For the tools and clients
supplied by Analysis Services, the backslash
(\) is the level separator. To provide
multiple display folders for a defined
member, use a semicolon (;) to separate the
folders

ASSOCIATED_MEASURE_GROUP A string that specifies the name of the
measure group to which all MDX
calculations should be referred.

The values for the GOAL, STATUS, and TREND properties are MDX expressions that should
evaluate between -1 to 1. However, it is the client application that defines the actual range of
values for these properties. When you use the tools and clients supplied by Analysis Services to
browse KPIs, values less than -1 are treated as -1, and values larger than 1 are treated as 1.
Both STATUS_GRAPHIC and TREND_GRAPHIC are string values that the client application uses to
identify the correct set of images to display. These strings also define the behavior of the display
function. This behavior includes the number of states to display (typically, this is an odd number)
and which images to use for each of those states.

KPI Graphics in SQL Server Data Tools
In SQL Server Data Tools (SSDT), KPI graphics can have either three or five states. The following
table defines the values for each of those states.

Number of states for KPI graphic Value of those states

3 Bad = -1 to -0.5
OK = -0.4999 to 0.4999
Good = 0.50 to 1

5 Bad = -1 to -0.75
Risk = -0.7499 to -0.25
OK = -0.2499 to 0.2499
Rising = 0.25 to 0.7499
Good = 0.75 to 1

For some graphics, such as the reversed gauge or reversed status arrow, the range is
inverted. That is, -1 is good, and 1 is bad.

Note

 73

In SQL Server Data Tools (SSDT), the name of the KPI graphic determines whether the graphic
has three or five states. The following table lists the usage, name, and number of states that SQL
Server Data Tools (SSDT) associates with its KPI graphics.

Use of graphic Name of KPI graphic Number of states

Status Shapes 3

Status Traffic Light 3

Status Road Signs 3

Status Gauge 3

Status Reversed Gauge 5

Status Thermometer 3

Status Cylinder 3

Status Faces 3

Status Variance arrow 3

Trend Standard Arrow 3

Trend Status Arrow 3

Trend Reversed status arrow 5

Trend Faces 3

See Also
DROP KPI Statement (MDX)
MDX Data Definition Statements (MDX)

CREATE MEASURE statement
Creates a measure in a Tabular Model.

Syntax

CREATE MEASURE Table_Name[Measure_Name] = DAX_Expression
[; CREATE MEASURE ...n]

 74

Arguments
Table_Name

A valid string literal that provides the name of the table where the measure will be created.

Measure_Name

A valid string literal that provides a measure name.

DAX_Expression

A valid DAX expression that returns a single scalar value.

Remarks
The Measure_Name must be enclosed in square parenthesis.
The CREATE MEASURE statement can only be used inside of a MDX script definition; see
MdxScript Element (ASSL).
You can also define a calculated member for use by a single query. To define a calculated
member that is limited to a single query, you use the WITH clause in the SELECT statement. For
more information, see Building Measures in MDX.

See Also
MDX Data Definition Statements (MDX)

CREATE MEMBER Statement
Creates a calculated member.

Syntax

CREATE [SESSION] [HIDDDEN] [CALCULATED] MEMBER CURRENTCUBE |
Cube_Name.Member_Name
 AS MDX_Expression
 [,Property_Name = Property_Value, ...n]
......[,SCOPE_ISOLATION = CUBE]

Arguments
Cube_Name

A valid string expression that provides the name of the cube where the member will be
created.

Member_Name

A valid string expression that provides a member name. Specify a fully qualified name to
create a member within a dimension other than the Measures dimension. If you do not

http://msdn.microsoft.com/en-us/library/0c59a550-dc95-4d50-948a-bb99348bdd86(SQL.110)�
http://msdn.microsoft.com/en-us/library/f0347835-4983-4d26-acbb-6c8fae7992bd(SQL.110)�

 75

provide a fully qualified member name, the member will be created in the Measures
dimension.

MDX_Expression

A valid Multidimensional Expressions (MDX) expression.

Property_Name

A valid string that provides the name of a calculated member property.

Property_Value

A valid scalar expression that defines the calculated member property's value.

Remarks
The CREATE MEMBER statement defines calculated members that are available throughout the
session, and therefore, can be used in multiple queries during the session. For more information,
see Creating Session-Scoped Calculated Members (MDX).
You can also define a calculated member for use by a single query. To define a calculated
member that is limited to a single query, you use the WITH clause in the SELECT statement. For
more information, see Using WITH to Create Calculated Members (MDX).
Property_Name can refer to either standard or optional calculated member properties. Standard
member properties are listed later in this topic. Calculated members created with CREATE
MEMBER without a SESSION value have session scope. Additionally, strings inside calculated
member definitions are delimited with double quotation marks. This is different from the
method defined by OLE DB, which specifies that strings should be delimited by single quotation
marks.
Specifying a cube other than the cube that is currently connected causes an error. Therefore,
you should use CURRENTCUBE in place of a cube name to denote the current cube.
For more information about member properties that are defined by OLE DB, see the OLE DB
documentation.

Scope
A calculated member can occur within one of the scopes listed in the following table.
Query scope

The visibility and lifetime of the calculated member is limited to the query. The calculated
member is defined in an individual query. Query scope overrides session scope. For more
information, see Using WITH to Create Calculated Members (MDX).

Session scope

The visibility and lifetime of the calculated member is limited to the session in which it is
created. (The lifetime is less than the session duration if a DROP MEMBER statement is issued
on the calculated member.) The CREATE MEMBER statement creates a calculated member
with session scope.

http://msdn.microsoft.com/en-us/library/2875ed89-2c26-4645-8ed9-8848479d110f(SQL.110)�
http://msdn.microsoft.com/en-us/library/c4507149-e67b-4e5d-9192-cc911acd9adc(SQL.110)�
http://msdn.microsoft.com/en-us/library/c4507149-e67b-4e5d-9192-cc911acd9adc(SQL.110)�

 76

Scope Isolation
When a cube Multidimensional Expressions (MDX) script contains calculated members, by
default the calculated members are resolved before any session-scoped calculations are
resolved and before any query-defined calculations are resolved.

In certain scenarios, the Aggregate (MDX) function and the VisualTotals (MDX) function
do not exhibit this behavior.

The behavior allows generic client applications to work with cubes that contain complex
calculations, without having to take into account the specific implementation of the calculations.
However, in certain scenarios, you might want to execute session or query-scoped calculated
members before certain calculations in the cube, and neither the Aggregate function nor the
VisualTotals function are applicable. To accomplish this, use the SCOPE_ISOLATION calculation
property.
Example
The following script is an example of a scenario where the SCOPE_ISOLATION calculation
property is required to produce the correct result.
Cube's MDX Script:
CREATE MEMBER CURRENTCUBE.Measures.ProfitRatio AS 'Measures.[Store

Sales]/Measures.[Store Cost]', SOLVE_ORDER = 10

MDX Query:
WITH MEMBER [Customer].[Customers].[USA]. USAWithoutWA AS

[Customer].[Customers].[Country].&[USA] - [Customer].[Customers].[State

Province.&[WA], SOLVE_ORDER=5

SELECT {USAWithoutWA} ON 0 FROM SALES

WHERE ProfitRatio

The desired result of the previous query is the ratio of sales for USA without WA, to store cost
for USA without WA. The previous query does not return the desired result; it returns the ratio of
USA minus the ratio of WA, which is a meaningless result. To achieve the desired result, you can
use the SCOPE_ISOLATION calculation property.
MDX Query using the SCOPE_ISOLATION calculation property:
WITH MEMBER [Customer].[Customers].[USA]. USAWithoutWA AS

[Customer].[Customers].[Country].&[USA] - [Customer].[Customers].[State

Province.&[WA], SOLVE_ORDER=5

,SCOPE_ISOLATION=CUBE

SELECT {USAWithoutWA} ON 0 FROM SALES

WHERE ProfitRatio

Note

 77

Standard Properties
Each calculated member has a set of default properties. When a client application is connected
to Microsoft Analysis Services, the default properties are either supported, or available to be
supported, as the administrator chooses.
Additional member properties may be available, depending upon the cube definition. The
following properties represent information relevant to the dimension level in the cube.

Property identifier Meaning

SOLVE_ORDER The order in which the calculated member
will be solved in cases where a calculated
member references one other calculated
member (that is, where calculated members
intersect each other).

FORMAT_STRING A Microsoft Office style format string that
the client application can use when
displaying cell values.

VISIBLE A value that indicates whether the
calculated member is visible in a schema
rowset. Visible calculated members can be
added to a set with the
AddCalculatedMembers function. A
nonzero value indicates that the calculated
member is visible. The default value for this
property is Visible.
Calculated members that are not visible
(where this value is set to zero) are
generally used as intermediate steps in
more complex calculated members. These
calculated members can also be referred to
by other types of members, such as
measures.

NON_EMPTY_BEHAVIOR The measure or set that is used to
determine the behavior of calculated
members when resolving empty cells.

CAPTION A string that the client application uses as
the caption for the member.

DISPLAY_FOLDER A string that identifies the path of the
display folder that the client application

 78

Property identifier Meaning

uses to show the member. The folder level
separator is defined by the client
application. For the tools and clients
supplied by Analysis Services, the backslash
(\) is the level separator. To provide
multiple display folders for a defined
member, use a semicolon (;) to separate the
folders.

ASSOCIATED_MEASURE_GROUP The name of the measure group to which
this member is associated.

See Also
DROP MEMBER Statement (MDX)
UPDATE MEMBER Statement (MDX)
MDX Data Definition Statements (MDX)

CREATE SESSION CUBE Statement
Creates and populates a session cube from an existing server cube. The session cube is only
visible within the current session; it cannot be browsed or queried from any other session. The
session cube is implicitly deleted when the session is closed.

Syntax

CREATE SESSION CUBE session_cube_name FROM <cube list> (<param list>)

<cube list>::= source_cube_name [,<cube list>]

<param list>::= <param> ,<param list> | <param>

<param>::= <dims list> | <measures list>

<measures list>::= <measure>[, <measures list>]

<dims list>::= <dim def> [, <dims list>]

 79

<measure>::= MEASURE source_cube_name.measure_name [<visibility qualifier>] [AS
measure_name]

<dim def>::= <source dim def> | <derived dim def>

<source dim def>::= DIMENSION source_cube_name.dimension_name [<dim flags>]
[<visibility qualifier>] [AS dimension_name>] [FROM <dim from clause>] [<dim content def>]

<dim flags>::= NOT_RELATED_TO_FACTS

<dim from clause>::= <reg dim from clause>

<dim reg from clause>::= dimension_name

<dim content def>::= (<level list> [,<grouping list>] [,<member slice list>] [,<default
member>])

<level list>::= <level def> [, <level list>]

<level def>::= LEVEL level_name [<level type>] [AS level_name] [<level content def>]

<level content def>::= (<property list>) | NO_PROPERTIES

<level type>::= GROUPING

<property list>::= <property def> [, <property list>]

<property def>::= PROPERTY property_name

<grouping list>::= <grouping entity> [,<grouping list>]

<grouping entity>::= GROUP group_level_name.group_name (<mixed list>)

<grp mixed list>::= <grp mixed element> [,<grp mixed list>]

<grp mixed element>::= <grouping entity> | <member def>

 80

<member slice list>::= <member list>

<member list>::= <member def> [, <member list>]

<member def>::= MEMBER member_name

<default member>::= DEFAULT_MEMBER AS MDX_expression

<visibility qualifier>::= HIDDEN

Syntax Elements
session_cube_name

The name of the session cube.

source_cube_name

The name of the cube on which the session cube is based.

source_cube_name.measure_name

The fully qualified name of the source measure being included in the session cube.
Calculated members of the Measures dimension are not permitted.

measure_name

The name of the measure in the session cube.

source_cube_name.dimension_name

The fully qualified name of the source dimension being included in the session cube.

dimension_name

The name of the dimension in the session cube.

FROM <dim from clause>

Valid specification for derived dimension definition only.

NOT_RELATED_TO_FACTS

Valid specification for derived dimension definition only.

<level type>

Valid specification for derived dimension definition only.

 81

Remarks
Unlike server and local cubes, a session cube is not persisted beyond the session that created
the session cube. A session cube is defined in terms of the measures and definitions that define
it. There are two types of dimensions.
• Source dimensions - These are dimensions that were part of one of more source cubes.
• Derived dimensions - These are dimensions that provide new analysis capabilities. A derived

dimension can be a regular dimension defined based on a source dimension that is either
sliced vertically or horizontally, or contains custom grouping of dimension members. A
derived dimension can also be a data mining dimension based on a data mining model.

The Dimension keyword can refer to either dimensions or hierarchies.
Session cubes are used primarily for dynamic grouping of attribute members into custom
member groups by client applications, such as Microsoft Excel. In a session cube, you can
perform the following tasks:
• Eliminate dimensions that exist in the source cube.
• Add or eliminate hierarchies from a dimension.
• Eliminate measure groups or specific measures.
• Add a new attribute, based on attribute binding, for purposes of creating groups against an

existing attribute..

Security on session cube objects is inherited from the underlying source objects. Other
objects, such as actions and calculation scripts, are also inherited by the session cube.

The CREATE SESSION CUBE statement follows these rules:
• You cannot perform grouping on parent-child hierarchies.
• You cannot perform grouping on ROLAP dimensions.
• You cannot perform grouping on linked dimensions.
• You cannot perform grouping on levels with custom rollups.
• You cannot perform grouping on discretized attribute hierarchies.
• You cannot perform grouping on unnatural hierarchies, which are hierarchies with many-to-

many relationships between levels (such as age and gender).
• Explicit references to a cube name in MDX script are broken by grouping because the

session cube has a different name. Use the CURRENTCUBE keyword instead.
• You cannot perform grouping on dimensions with explicit default members.
• When performing grouping, session-scoped calculated members on the original server cube

are dropped.
• When performing grouping on a cube dimension in a server cube, the grouping affects all

cube dimensions based on the same dimension.

Note

Important

 82

Example
The following example demonstrates creating a session-scoped version of the Adventure Works
cube that contains the Reseller Sales Amount measure, the Reseller dimension, the Product
dimension, the Geography dimension, and the Date dimension. Within this session cube, two
groups are created; one group contains countries in Europe and one group contains groups in
North America. This sample is a simplified version of a CREATE SESSION CUBE statement issued
by Microsoft Excel when a user creates a custom grouping of members.

CREATE SESSION CUBE [Adventure Works_XL_GROUPING1]

 FROM [Adventure Works]

 (MEASURE [Adventure Works].[Internet Sales Amount]

 ,MEASURE [Adventure Works].[Reseller Sales Amount]

 ,DIMENSION [Adventure Works].[Date].[Calendar]

 ,DIMENSION [Adventure Works].[Date].[Calendar Year]

 ,DIMENSION [Adventure Works].[Date].[Calendar Semester]

 ,DIMENSION [Adventure Works].[Date].[Calendar Quarter]

 ,DIMENSION [Adventure Works].[Date].[Month Name]

 ,DIMENSION [Adventure Works].[Date].[Date]

 ,DIMENSION [Adventure Works].[Geography].[Country]

 HIDDEN AS _XL_GROUPING81

 ,DIMENSION [Adventure Works].[Geography].[State-Province]

 ,DIMENSION [Adventure Works].[Geography].[City]

 ,DIMENSION [Adventure Works].[Geography].[Postal Code]

 ,DIMENSION [Adventure Works].[Geography].[Geography]

 ,DIMENSION [Adventure Works].[Product].[Product Categories]

 ,DIMENSION [Adventure Works].[Product].[Category]

 ,DIMENSION [Adventure Works].[Product].[Subcategory]

 ,DIMENSION [Adventure Works].[Product].[Product]

 ,DIMENSION [Adventure Works].[Product].[Product Key]

 ,DIMENSION [Adventure Works].[Reseller].[Reseller]

 ,DIMENSION [Adventure Works].[Reseller].[Geography Key]

 ,DIMENSION [Geography].[Country]

 NOT_RELATED_TO_FACTS FROM _XL_GROUPING81

 (LEVEL [(All)]

 ,LEVEL [Country1] GROUPING

 ,LEVEL [Country]

 83

 ,GROUP [Country1].[CountryXl_Grp_1]

 (MEMBER [Geography].[Country].&[Canada]

 ,MEMBER [Geography].[Country].&[United States])

 ,GROUP [Country1].[CountryXl_Grp_2]

 (MEMBER [Geography].[Country].&[France]

 ,MEMBER [Geography].[Country].&[Germany]

 ,MEMBER [Geography].[Country].&[United Kingdom])

)

)

See Also
CREATE GLOBAL CUBE Statement (MDX)
CREATE GLOBAL CUBE Statement (MDX)

CREATE SET Statement
Creates a named set with session scope for the current cube.

Syntax

CREATE [SESSION] [STATIC | DYNAMIC] [HIDDEN] SET
 CURRENTCUBE | Cube_Name
 .Set_Name AS 'Set_Expression'
 [,Property_Name = Property_Value, ...n]

Arguments
Cube_Name

A valid string expression that provides the name of the cube.

Set_Name

A valid string expression that provides the name for the named set being created.

Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Property_Name

A valid string that provides the name of a set property.

Property_Value

A valid scalar expression that defines the set property's value.

 84

Remarks
A named set is a set of dimension members (or an expression that defines a set) that you create
to use again. For example, a named set makes it possible to define a set of dimension members
that consists of the set of the top ten stores by sales. This set can be defined statically, or by
means of a function like TopCount. This named set can then be used wherever the set of the top
10 stores is needed.
The CREATE SET statement creates a named set that remains available throughout the session,
and therefore, can be used in multiple queries in a session. For more information, see MDX Data
Definition Statements (MDX).
You can also define a named set for use by a single query. To define such a set, you use the
WITH clause in the SELECT statement. For more information about the WITH clause, see Using
WITH to Create Named Sets.
The Set_Expression clause can contain any function that supports MDX syntax. Sets created with
the CREATE SET statement that do not specify the SESSION clause have session scope. Use the
WITH clause to create a set with query scope.
Specifying a cube other than the cube that is currently connected causes an error. Therefore,
you should use CURRENTCUBE in place of a cube name to denote the current cube.

Scope
A user-defined set can occur within one of the scopes listed in the following table.
Query scope

The visibility and lifetime of the set is limited to the query. The set is defined in an individual
query. Query scope overrides session scope. For more information, see Using WITH to
Create Named Sets.

Session scope

The visibility and lifetime of the set is limited to the session in which it is created. (The
lifetime is less than the session duration if a DROP SET statement is issued on the set.) The
CREATE SET statement creates a set with session scope. Use the WITH clause to create a set
with query scope.

Example
The following example creates a set called Core Products. The SELECT query then demonstrates
calling the newly created set. The CREATE SET statement must be executed before the SELECT
query can be executed - they cannot be executed in the same batch.

CREATE SET [Adventure Works].[Core Products] AS

'{[Product].[Category].[Bikes]}'

SELECT [Core Products] ON 0

 FROM [Adventure Works]

http://msdn.microsoft.com/en-us/library/2875ed89-2c26-4645-8ed9-8848479d110f(SQL.110)�
http://msdn.microsoft.com/en-us/library/2875ed89-2c26-4645-8ed9-8848479d110f(SQL.110)�
http://msdn.microsoft.com/en-us/library/78bc1e9a-1bc4-4a5a-ab0b-cf430c8fbfe1(SQL.110)�
http://msdn.microsoft.com/en-us/library/78bc1e9a-1bc4-4a5a-ab0b-cf430c8fbfe1(SQL.110)�
http://msdn.microsoft.com/en-us/library/78bc1e9a-1bc4-4a5a-ab0b-cf430c8fbfe1(SQL.110)�
http://msdn.microsoft.com/en-us/library/78bc1e9a-1bc4-4a5a-ab0b-cf430c8fbfe1(SQL.110)�

 85

Set Evaluation
Set evaluation can be defined to occur differently; it can be defined to occur only once at set
creation or can be defined to occur every time the set is used.
STATIC

Indicates that the set is evaluated only once at the time the CREATE SET statement is
evaluated.

DYNAMIC

Indicates that the set is to be evaluated every time it is used in a query.

Set Visibility
The set can be either visible or not to other users who query the cube.
HIDDEN

Specifies that the set is not visible to users who query the cube.

Standard Properties
Each set has a set of default properties. When a client application is connected to
Microsoft Analysis Services, the default properties are either supported, or available to be
supported, as the administrator chooses.

Property identifier Meaning

CAPTION A string that the client application uses as
the caption for the set.

DISPLAY_FOLDER A string that identifies the path of the
display folder that the client application
uses to show the set. The folder level
separator is defined by the client
application. For the tools and clients
supplied by Analysis Services, the backslash
(\) is the level separator. To provide
multiple display folders for a defined
set, use a semicolon (;) to separate the
folders.

See Also
DROP SET Statement (MDX)
MDX Data Definition Statements (MDX)

 86

CREATE SUBCUBE Statement
Redefines the cube space of a specified cube or subcube to a specified subcube. This statement
changes the apparent cube space for subsequent operations.

Syntax

CREATE SUBCUBE Cube_Name AS Select_Statement
 | NON VISUAL (Select_Statement)

Arguments
Cube_Name

The valid string expression that provides the name of the cube or perspective that is being
restricted, which becomes the name of the subcube.

Select_Statement

A valid Multidimensional Expressions (MDX) SELECT expression that does not contain WITH,
NON EMPTY, or HAVING clauses, and does not request dimension or cell properties.

See SELECT Statement (MDX) for a detailed syntax explanation on Select statements
and the NON VISUAL clause.

Remarks
When default members are excluded in the definition of a subcube, coordinates will
correspondingly change. For attributes that can be aggregated, the default member is moved to
the [All] member. For attributes that cannot be aggregated, the default member is moved to a
member that exists in the subcube. The following table contains example subcube and default
member combinations.

Original default member Can be aggregated Subselect Revised default member

Time.Year.All Yes {Time.Year.2003} No change

Time.Year.[1997] Yes {Time.Year.2003} Time.Year.All

Time.Year.[1997] No {Time.Year.2003} Time.Year.[2003]

Time.Year.[1997] Yes {Time.Year.2003,
Time.Year.2004}

Time.Year.All

Time.Year.[1997] No {Time.Year.2003,
Time.Year.2004}

Either Time.Year.[2003]
or
Time.Year.[2004]

 87

[All] members will always exist in a subcube.
Session objects created in the context of a subcube are dropped when the subcube is dropped.
For more information about subcubes, see DROP SUBCUBE Statement (MDX).

Example
The following example creates a subcube that restricts the apparent cube space to members
that exist with the country of Canada. It then uses the MEMBERS function to return all members
of the Country level of the Geography user-defined hierarchy - returning only the country of
Canada.

CREATE SUBCUBE [Adventure Works] AS

 SELECT [Geography].[Country].&[Canada] ON 0

 FROM [Adventure Works]

SELECT [Geography].[Country].[Country].MEMBERS ON 0

 FROM [Adventure Works]

The following example creates a subcube that restricts the apparent cube space to {Accessories,
Clothing} members in Products.Category and {[Value Added Reseller], [Warehouse]} in
Resellers.[Business Type].
CREATE SUBCUBE [Adventure Works] AS
 Select {[Category].Accessories, [Category].Clothing} on 0,
 {[Business Type].[Value Added Reseller], [Business
Type].[Warehouse]} on 1
 from [Adventure Works]

Querying the subcube for all members in Products.Category and Resellers.[Business Type] with
the following MDX:
select [Category].members on 0,
 [Business Type].members on 1
 from [Adventure Works]
 where [Measures].[Reseller Sales Amount]
Yields the following results:

 All Products Accessories Clothing

All Resellers $2,031,079.39 $506,172.45 $1,524,906.93

Value Added Reseller $767,388.52 $175,002.81 $592,385.71

http://msdn.microsoft.com/en-us/library/5403a62b-99ac-4d83-b02a-89bf78bf0f46(SQL.110)�

 88

Warehouse $1,263,690.86 $331,169.64 $932,521.23

Dropping and recreating the subcube using the NON VISUAL clause will create a subcube that
keeps the true totals for all members in Products.Category and Resellers.[Business Type],
whether they are visible or not in the subcube.
CREATE SUBCUBE [Adventure Works] AS
 NON VISUAL (Select {[Category].Accessories, [Category].Clothing} on 0,
 {[Business Type].[Value Added Reseller], [Business
Type].[Warehouse]} on 1
 from [Adventure Works])

Issuing the same MDX query from above:
select [Category].members on 0,
 [Business Type].members on 1
 from [Adventure Works]
 where [Measures].[Reseller Sales Amount]
Yields the following different results:

 All Products Accessories Clothing

All Resellers $80,450,596.98 $571,297.93 $1,777,840.84

Value Added Reseller $34,967,517.33 $175,002.81 $592,385.71

Warehouse $38,726,913.48 $331,169.64 $932,521.23

The [All Products] and [All Resellers], column and row respectively, contains totals for all
members not only those visible ones.

See Also
Key Concepts in MDX (MDX)
MDX Scripting Statements (MDX)
DROP SUBCUBE Statement
SELECT Statement (MDX)

DROP ACTION Statement
Deletes a specified action from a specified cube.

http://msdn.microsoft.com/en-us/library/4797ddc8-6423-497a-9a43-81a1af7eb36c(SQL.110)�

 89

Syntax

DROP ACTION CURRENTCUBE | Cube_Name
 .Action_Name

Arguments
Cube_Name

A valid string expression that provides the cube name.

Action_Name

A valid string expression that provides the name of the action being dropped.

See Also
MDX Data Definition Statements (MDX)
MDX Data Definition Statements (MDX)

DROP CELL CALCULATION Statement
Removes the specified cell calculation.

Syntax

DROP [SESSION] CELL CALCULATION CURRENTCUBE | Cube_Name.CellCalc_Name

Arguments
Cube_Name

A valid string expression that provides the name of a cube expression.

CellCalc_Name

A valid string expression that provides the name of the cell calculation to be dropped.

See Also
MDX Data Definition Statements (MDX)
MDX Data Definition Statements (MDX)

DROP KPI Statement
Drops the specified key performance indicator (KPI) from the specified cube.

Syntax

 90

DROP KPI CURRENTCUBE | Cube_Name.KPI_Name

Arguments
Cube_Name

A valid string that specifies the cube name.

KPI_Name

A valid string that specifies the name of the KPI that is to be dropped.

See Also
CREATE KPI Statement (MDX)
MDX Data Definition Statements (MDX)

DROP MEMBER Statement
Removes a calculated member.

Syntax

DROP MEMBER
 CURRENTCUBE | Cube_Name
 .Member_Name
 [,CURRENTCUBE | Cube_Name.Member_Name ...n]

Arguments
Cube_Name

A valid string expression that provides a cube name.

Member_Identifier

A valid string expression that provides a member name or member key.

See Also
MDX Data Definition Statements (MDX)
MDX Data Definition Statements (MDX)

DROP SET Statement
Removes a named set.

Syntax

 91

DROP [SESSION] SET
 <Cube_Reference>.Set_Name
 [,<Cube_Reference>.Set_Name ...n]

<Cube_Reference> ::= {CURRENTCUBE | Cube_Name}

Arguments
Cube_Name

A valid string expression that provides the name of the cube.

Set_Name

A valid string expression that provides that name of the named set to be dropped.

Remarks
For more information about named sets, see MDX Data Definition Statements (MDX).

See Also
MDX Data Definition Statements (MDX)

DROP SUBCUBE Statement
Drops a specified subcube, reverting to the previously defined cube or subcube definition with
the specified name.

Syntax

DROP SUBCUBE Subcube_Name

Arguments
Subcube_Name

A valid string expression that provides a subcube name.

See Also
CREATE SUBCUBE Statement (MDX)
CREATE SUBCUBE Statement

REFRESH CUBE Statement
Refreshes the client cache for a cube.

http://msdn.microsoft.com/en-us/library/213b0035-e96d-4ba0-83f2-ded206905603(SQL.110)�

 92

Syntax

REFRESH CUBE Cube_Name

Arguments
Cube_Name

A valid string expression that provides a cube name.

Remarks
For client applications connected to an instance of Microsoft SQL Server Analysis Services, this
statement causes the memory cached on the client application to be synchronized with the
server. While this will ordinarily be detected and updated automatically, the length of time
before this happens depends on the client connection string settings. The REFRESH CUBE
statement refreshes data immediately.
For client applications connected to a local cube, the REFRESH CUBE statement causes the local
cube file to be rebuilt.

Named sets that are stored on the server are not refreshed.

See Also
MDX Data Definition Statements (MDX)

UPDATE MEMBER Statement
Updates an existing calculated member.

Syntax

UPDATE MEMBER Cube_Name.Member_Name
 AS MDX_Expression
 [,Property_Name = Property_Value, ...n]
......[,SCOPE_ISOLATION = CUBE]

Arguments
Cube_Name

A valid string that specifies the name of the cube that contains the member.

Member_Name

A valid string that specifies the name of an existing member.

Important

 93

MDX_Expression

A valid Multidimensional Expressions (MDX) expression to which the member is to be
updated.

Property_Name

A valid string that specifies the name of a calculated member property.

Property_Value

A valid scalar expression that specifies the property value for the calculated member.

Remarks
The UPDATE MEMBER statement updates an existing calculated member while preserving the
relative precedence of this member with respect to other calculations. Therefore, you cannot use
the UPDATE MEMBER statement to change SOLVEORDER.
An UPDATE MEMBER statement cannot be specified in the MDX script for a cube.
Specifying a cube other than the cube that is currently connected causes an error. Therefore,
you should use CURRENTCUBE in place of a cube name to denote the current cube.
For more information about member properties that are defined by OLE DB, see the OLE DB
documentation.

Standard Properties
Each member has a set of default properties. The following table lists those default properties.

Property identifier Meaning

FORMAT_STRING A Microsoft Office style format string that
the client application can use to display cell
values.

VISIBLE A value that indicates whether the
calculated member is visible in a schema
rowset. Visible calculated members can be
added to a set with the
AddCalculatedMembers function. A
nonzero value indicates that the calculated
member is visible. The default value for this
property is Visible.
Calculated members that are not visible are
generally used as intermediate steps in
more complex calculated members. These
calculated members can also be referred to
by other types of members, such as

 94

Property identifier Meaning

measures.

NON_EMPTY_BEHAVIOR The measure or set that MDX uses to
determine the behavior of calculated
members when resolving empty cells.

CAPTION A string value that specifies the caption
that the client application uses to display
the member.

DISPLAY_FOLDER A string value that specifies the path of the
display folder where the member is to be
shown by the client application. The folder
level separator is defined by the client
application. For the tools and clients
supplied by Analysis Services, the backslash
(\) as the level separator. To provide
multiple display folders for a defined
member, use a semicolon (;) to separate the
folders.

ASSOCIATED_MEASURE_GROUP The name of the measure group to which
this member is associated.

See Also
DROP MEMBER Statement (MDX)
CREATE MEMBER Statement (MDX)
MDX Data Definition Statements (MDX)

MDX Data Manipulation Statements
In Multidimensional Expressions (MDX), data manipulation statements retrieve and manipulate
data from multidimensional objects. The following table lists the data manipulation statements
in MDX.

In this Section

Topic Description

MDX Scripting Statements (MDX) Runs a stored procedure that returns a void
either in the current scope or optionally on

 95

Topic Description

a specified cube.

CLEAR CALCULATIONS Statement Removes all calculations from the cube and
returns the cube to calculation pass 0.

DRILLTHROUGH Statement Retrieves the rowsets that were used to
create a specified cell in a cube.

SELECT Statement (MDX) Retrieves data from a specified cube.

UPDATE CUBE Statement Updates the value of a specified leaf or
nonleaf cell in a cube, optionally allocating
the value for a specified non-leaf cell across
dependent leaf cells.

See Also
MDX Statement Reference
MDX Data Definition Statements
MDX Scripting Statements

CALL Statement
Runs a stored procedure that returns a void either in the current scope or optionally on a
specified cube.

Syntax

CALL SP_Name
 [(SP_Argument
 [, SP_Argument ,...n]
)]
[ON Cube_Expression]

Arguments
SP_Name

A valid string expression that provides the name of a stored procedure.

SP_Argument

A valid string expression that provides an argument to the called stored procedure.

 96

Cube_Expression

A valid string cube expression providing the name of the cube.

Remarks
The CALL statement runs a specified registered stored procedure, optionally including one or
more arguments for the specified stored procedure. The CALL statement is for use only with
stored procedures that return voids. This statement cannot be combined with other functions or
operators within an MDX expression. Registered stored procedures that return values can be
called directly within MDX expressions and combined with other MDX functions and operators.
If a cube is not specified, the statement runs the stored procedure on the current cube.

If the stored procedure is not registered on the client, the CALL statement attempts to
call the stored procedure from an instance of Microsoft SQL Server Analysis Services.

See Also
Using Stored Procedures (MDX)
Stored Procedures (MDX)

CLEAR CALCULATIONS Statement
Removes all calculations from the cube and returns the cube to calculation pass 0.

Syntax

CLEAR CALCULATIONS [FROM Cube_Expression]

Arguments
Cube_Expression

A valid Multidimensional Expressions (MDX) cube expression.

Remarks
The FROM clause can be omitted when the context of the cube is known, such as in an MDX
script.

This statement can only be executed by a server or database administrator, or a member
of a role that has access to the source data in the cube (that is, ReadSourceData=true)

See Also
MDX Data Manipulation Statements (MDX)

Note

Note

 97

DRILLTHROUGH Statement
Retrieves the underlying table rows that were used to create a specified cell in a cube.

Syntax

DRILLTHROUGH [MAXROWS Unsigned_Integer]
 <MDX SELECT statement>
 [RETURN Set_of_Attributes_and_Measures
 [,Set_of_Attributes_and_Measures ...]
]

Arguments
Unsigned_Integer

A positive integer value.

MDX SELECT statement

Any valid Multidimensional Expressions (MDX) expressions SELECT statement.

Set_of_Attributes_and_Measures

A comma-separated list of dimension attributes and measures.

Remarks
Drillthrough is an operation in which an end user selects a single cell from a cube and retrieves a
result set from the source data for that cell in order to get more detailed information. By default,
a drillthrough result set is derived from the table rows that were evaluated to calculate the value
of the selected cube cell. For end users to drill through, their client applications must support
this capability. In Microsoft SQL Server Analysis Services, the results are retrieved directly from
MOLAP storage, unless ROLAP partitions or dimensions are queried.

Drillthrough security is based on the general security options defined on the cube. If a
user cannot get some data by using MDX, drillthrough will also restrict the user in the
exactly the same manner.

An MDX statement specifies the subject cell. The value specified by the MAXROWS argument
indicates the maximum number of rows that should be returned by the resulting rowset.
By default, the maximum number of rows that are returned is 10,000 rows. This means that if
you leave MAXROWS unspecified, you will get 10,000 rows or less. If this value is too low for
your scenario, you can set MAXROWS to a higher number, such as MAXROWS 20000. If it is too
low overall, you can increase the default by changing the
OLAP\Query\DefaultDrillthroughMaxRows server property. For more information about
changing this property, see Configure Server Properties in Analysis Services.

Important

http://msdn.microsoft.com/en-us/library/274b89cd-14ed-4666-bc13-eedf1de51e18(SQL.110)�

 98

Unless otherwise specified, the columns returned include all granularity attributes for all
dimensions related to the measure group of the specified measure, other than many-to-many
dimensions. Cube dimensions are preceded by $ to distinguish between dimensions and
measure groups. The RETURN clause is used to specify the columns returned by the
drillthrough query. The following functions can be applied to a single attribute or measure by
the RETURN clause.
Name(attribute_name)

Returns the name of the specified attribute member.

UniqueName(attribute_name)

Returns the unique name of the specified attribute member.

Key(attribute_name[, N])

Returns the key of the specified attribute member, where N specifies column in the
composite key (if any). The default value for N is 1.

Caption(attribute_name)

Returns the caption of the specified attribute member.

MemberValue(attribute_name)

Returns the member value of the specified attribute member.

Translation(attribute_name[, N])

Returns the translated value of the specified attribute member, where N is the language.

CustomRollup(attribute_name)

Returns the custom rollup expression of the specified attribute member.

CustomRollupProperties(attribute_name)

Returns the custom rollup properties of the specified attribute member.

UnaryOperator(attribute_name)

Returns the unary operator of the specified attribute member.

Example
The following example specifies cell for the month of July, 2007 for the reseller sales amount
measure (the default measure) for the country of Australia. The RETURN clause specifies that the
date of each sale, the product model name, the employee name, the sales amount, the tax
amount and the product cost values that underlie this cell be returned.

DRILLTHROUGH

SELECT

 ([Date].[Calendar].[Month].[July 2007])

ON 0

FROM [Adventure Works]

 99

WHERE [Geography].[Country].[Australia]

RETURN

 [$Date].[Date]

 ,KEY([$Product].[Model Name])

 ,NAME([$Employee].[Employee])

 ,[Reseller Sales].[Reseller Sales Amount]

 ,[Reseller Sales].[Reseller Tax Amount]

 ,[Reseller Sales].[Reseller Standard Product Cost]

See Also
MDX Data Manipulation Statements (MDX)

SELECT Statement
Retrieves data from a specified cube.

Syntax

[WITH <SELECT WITH clause>
 [, <SELECT WITH clause>...n]
]
SELECT
 [*
 | (<SELECT query axis clause>
 [, <SELECT query axis clause>,...n]
)
]
FROM
 <SELECT subcube clause>
 [<SELECT slicer axis clause>]
 [<SELECT cell property list clause>]

<SELECT WITH clause> ::=
 (CELL CALCULATION <CREATE CELL CALCULATION body clause>)
 | ([CALCULATED] MEMBER <CREATE MEMBER body clause>)
 | (SET <CREATE SET body clause>)
 | (MEASURE = <measure body clause>)

 100

<SELECT query axis clause> ::=
 [NON EMPTY] Set_Expression
 [<SELECT dimension property list clause>]
 ON
 Integer_Expression
 | AXIS(Integer)
 | COLUMNS
 | ROWS
 | PAGES
 | SECTIONS
 | CHAPTERS

<SELECT subcube clause> ::=
 Cube_Name
 | [NON VISUAL] (SELECT
 [*
 | (<SELECT query axis clause> [,
 <SELECT query axis clause>,...n])
]
 FROM
 <SELECT subcube clause>
 <SELECT slicer axis clause>)

<SELECT slicer axis clause> ::=
 WHERE Tuple_Expression

<SELECT cell property list clause> ::=
 [CELL] PROPERTIES CellProperty_Name
 [, CellProperty_Name,...n]

<SELECT dimension property list clause> ::=
 [DIMENSION] PROPERTIES
 (DimensionProperty_Name
 [,DimensionProperty_Name,...n])

 101

 | (LevelProperty_Name
 [, LevelProperty_Name,...n])
 | (MemberProperty_Name
 [, MemberProperty_Name,...n])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Integer

An integer between 0 and 127.

Cube_Name

A valid string that provides a cube name.

Tuple_Expression

A valid Multidimensional Expressions (MDX) expression that returns a tuple.

CellProperty_Name

A valid string that represents a cell property.

DimensionProperty_Name

A valid string that represents a dimension property.

LevelProperty_Name

A valid string that represents a level property.

MemberProperty_Name

A valid string that represents a member property.

Remarks
The <SELECT slicer axis clause> expression must contain members in dimensions and
hierarchies other than those referenced in the specified <SELECT query axis clause>
expressions.
If an attribute in the cube is omitted from the specified <SELECT query axis clause>
expressions and the <SELECT slicer axis clause> value, the attribute's default member is
implicitly added to the slicer axis.
The NON VISUAL option in the subselect statement enables you to filter out members while
keeping the true totals instead of filtered totals. This enables you to query for the top ten sales
(persons/products/regions) and obtain the true total of sales for all queried members, instead of
the total value of sales for the top ten returned. See the examples below for more information.
Calculated members can be included in <SELECT query axis clause> whenever the connection
was opened using the connection string parameter subqueries=1; see Supported XMLA

http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�

 102

Properties (XMLA) and
P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.ConnectionString for parameter
usage. An example is provided on calculated members in subselects.

Autoexists
When two or more attributes of the dimension are used in a SELECT statement, Analysis Services
evaluates the attributes' expressions to make sure that the members of those attributes are
properly confined to meet the criteria of all other attributes. For example, suppose you are
working with attributes from the Geography dimension. If you have one expression that returns
all members from the City attribute, and another expression that confines members from the
Country attribute to all countries in Europe, then this will result in the City members being
confined to only those cities that belong to countries in Europe. This characteristic of Analysis
Services is called Autoexists and applies only to attributes in the same dimension. Autoexists
only applies to attributes from the same dimension because it tries to prevent the dimension
records excluded in one attribute expression from being included by the other attribute
expressions. Autoexists can also be understood as the resulting intersection of the different
attributes expressions over the dimension records. See the following examples below:
//Obtain the Top 10 best reseller selling products by Name

with member [Measures].[PCT Discount] AS '[Measures].[Discount
Amount]/[Measures].[Reseller Sales Amount]', FORMAT_STRING = 'Percent'
 set Top10SellingProducts as 'topcount([Product].[Model Name].children,
10, [Measures].[Reseller Sales Amount])'
 set Preferred10Products as '
 {[Product].[Model Name].&[Mountain-200],
 [Product].[Model Name].&[Road-250],
 [Product].[Model Name].&[Mountain-100],
 [Product].[Model Name].&[Road-650],
 [Product].[Model Name].&[Touring-1000],
 [Product].[Model Name].&[Road-550-W],
 [Product].[Model Name].&[Road-350-W],
 [Product].[Model Name].&[HL Mountain Frame],
 [Product].[Model Name].&[Road-150],
 [Product].[Model Name].&[Touring-3000]
 }'

select {[Measures].[Reseller Sales Amount], [Measures].[Discount Amount],
[Measures].[PCT Discount]} on 0,
 Top10SellingProducts on 1

 103

from [Adventure Works]
The obtained result set is:

 Reseller Sales Amount Discount Amount PCT Discount

Mountain-200 $14,356,699.36 $19,012.71 0.13%

Road-250 $9,377,457.68 $4,032.47 0.04%

Mountain-100 $8,568,958.27 $139,393.27 1.63%

Road-650 $7,442,141.81 $39,698.30 0.53%

Touring-1000 $6,723,794.29 $166,144.17 2.47%

Road-550-W $3,668,383.88 $1,901.97 0.05%

Road-350-W $3,665,932.31 $20,946.50 0.57%

HL Mountain Frame $3,365,069.27 $174.11 0.01%

Road-150 $2,363,805.16 $0.00 0.00%

Touring-3000 $2,046,508.26 $79,582.15 3.89%

The obtained set of products seems to be the same as Preferred10Products; so, verifying the
Preferred10Products set:
with member [Measures].[PCT Discount] AS '[Measures].[Discount
Amount]/[Measures].[Reseller Sales Amount]', FORMAT_STRING = 'Percent'
 set Top10SellingProducts as 'topcount([Product].[Model Name].children,
10, [Measures].[Reseller Sales Amount])'
 set Preferred10Products as '
 {[Product].[Model Name].&[Mountain-200],
 [Product].[Model Name].&[Road-250],
 [Product].[Model Name].&[Mountain-100],
 [Product].[Model Name].&[Road-650],
 [Product].[Model Name].&[Touring-1000],
 [Product].[Model Name].&[Road-550-W],
 [Product].[Model Name].&[Road-350-W],
 [Product].[Model Name].&[HL Mountain Frame],
 [Product].[Model Name].&[Road-150],
 [Product].[Model Name].&[Touring-3000]
 }'

 104

select {[Measures].[Reseller Sales Amount], [Measures].[Discount Amount],
[Measures].[PCT Discount]} on 0,
 Preferred10Products on 1
from [Adventure Works]
As per the following results, both sets (Top10SellingProducts, Preferred10Products) are the same

 Reseller Sales Amount Discount Amount PCT Discount

Mountain-200 $14,356,699.36 $19,012.71 0.13%

Road-250 $9,377,457.68 $4,032.47 0.04%

Mountain-100 $8,568,958.27 $139,393.27 1.63%

Road-650 $7,442,141.81 $39,698.30 0.53%

Touring-1000 $6,723,794.29 $166,144.17 2.47%

Road-550-W $3,668,383.88 $1,901.97 0.05%

Road-350-W $3,665,932.31 $20,946.50 0.57%

HL Mountain Frame $3,365,069.27 $174.11 0.01%

Road-150 $2,363,805.16 $0.00 0.00%

Touring-3000 $2,046,508.26 $79,582.15 3.89%

In the previous examples we created two sets: one as a calculated expression and the other as a
constant expression. These examples illustrate the different flavors of Autoexists.
Autoexists can be applied deep or shallow to the expressions. The default setting is deep. The
following example will illustrate the concept of deep Autoexists. In the example we are filtering
Top10SellingProducts by [Product].[Product Line] attribute for those in [Mountain] group. Note
that both attributes (slicer and axis) belong to the same dimension, [Product].
with member [Measures].[PCT Discount] AS '[Measures].[Discount
Amount]/[Measures].[Reseller Sales Amount]', FORMAT_STRING = 'Percent'
 set Top10SellingProducts as 'topcount([Product].[Model Name].children,
10, [Measures].[Reseller Sales Amount])'
// Preferred10Products set removed for clarity
select {[Measures].[Reseller Sales Amount], [Measures].[Discount Amount],
[Measures].[PCT Discount]} on 0,
 Top10SellingProducts on 1
from [Adventure Works]

 105

where [Product].[Product Line].[Mountain]
Produces the following result set:

 Reseller Sales Amount Discount Amount PCT Discount

Mountain-200 $14,356,699.36 $19,012.71 0.13%

Mountain-100 $8,568,958.27 $139,393.27 1.63%

HL Mountain Frame $3,365,069.27 $174.11 0.01%

Mountain-300 $1,907,249.38 $876.95 0.05%

Mountain-500 $1,067,327.31 $17,266.09 1.62%

Mountain-400-W $592,450.05 $303.49 0.05%

LL Mountain Frame $521,864.42 $252.41 0.05%

ML Mountain
Frame-W

$482,953.16 $206.95 0.04%

ML Mountain Frame $343,785.29 $161.82 0.05%

Women's Mountain
Shorts

$260,304.09 $6,675.56 2.56%

In the previous result set we have seven newcomers to the list of Top10SellingProducts and
Mountain-200, Mountain-100 and HL Mountain Frame have moved to the top of the list. In the
previous result set those three values were interspersed
This is called Deep Autoexists, because the Top10SellingProducts set is evaluated to meet the
slicing conditions of the query. Deep Autoexists means that all expressions will be evaluated to
meet the deepest possible space after applying the slicer expressions, the sub select expressions
in the axis, and so on.
However, one might want to be able to do the analysis over the Top10SellingProducts as
equivalent to Preferred10Products, as in the following example:
with member [Measures].[PCT Discount] AS '[Measures].[Discount
Amount]/[Measures].[Reseller Sales Amount]', FORMAT_STRING = 'Percent'
 set Top10SellingProducts as 'topcount([Product].[Model Name].children,
10, [Measures].[Reseller Sales Amount])'
 set Preferred10Products as '
 {[Product].[Model Name].&[Mountain-200],
 [Product].[Model Name].&[Road-250],
 [Product].[Model Name].&[Mountain-100],

 106

 [Product].[Model Name].&[Road-650],
 [Product].[Model Name].&[Touring-1000],
 [Product].[Model Name].&[Road-550-W],
 [Product].[Model Name].&[Road-350-W],
 [Product].[Model Name].&[HL Mountain Frame],
 [Product].[Model Name].&[Road-150],
 [Product].[Model Name].&[Touring-3000]
 }'

select {[Measures].[Reseller Sales Amount], [Measures].[Discount Amount],
[Measures].[PCT Discount]} on 0,
 Preferred10Products on 1
from [Adventure Works]
where [Product].[Product Line].[Mountain]
Produces the following result set:

 Reseller Sales Amount Discount Amount PCT Discount

Mountain-200 $14,356,699.36 $19,012.71 0.13%

Mountain-100 $8,568,958.27 $139,393.27 1.63%

HL Mountain Frame $3,365,069.27 $174.11 0.01%

In the above results, the slicing gives a result that contains only those products from
Preferred10Products that are part of the [Mountain] group in [Product].[Product Line]; as
expected, because Preferred10Products is a constant expression.
This result set is also understood as shallow Autoexists. This is because the expression is
evaluated before the slicing clause. In the previous example, the expression was a constant
expression for illustration purposes in order to introduce the concept.
Autoexists behavior can be modified at the session level using the Autoexists connection string
property. The following example begins by opening a new session and adding the Autoexists=3
property to the connection string. You must open a new connection in order to do the example.
Once the connection is established with the Autoexist setting it will remain in effect until that
connection is finished.
with member [Measures].[PCT Discount] AS '[Measures].[Discount
Amount]/[Measures].[Reseller Sales Amount]', FORMAT_STRING = 'Percent'
 set Top10SellingProducts as 'topcount([Product].[Model Name].children,
10, [Measures].[Reseller Sales Amount])'

 107

//Preferred10Products set removed for clarity

select {[Measures].[Reseller Sales Amount], [Measures].[Discount Amount],
[Measures].[PCT Discount]} on 0,
 Top10SellingProducts on 1

from [Adventure Works]
where [Product].[Product Line].[Mountain]
The following result set now shows the shallow behavior of Autoexists.

 Reseller Sales Amount Discount Amount PCT Discount

Mountain-200 $14,356,699.36 $19,012.71 0.13%

Mountain-100 $8,568,958.27 $139,393.27 1.63%

HL Mountain Frame $3,365,069.27 $174.11 0.01%

Autoexists behavior can be modified by using the AUTOEXISTS=[1|2|3] parameter in the
connection string; see Supported XMLA Properties (XMLA) and
P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.ConnectionString for parameter
usage.

Examples
The following example returns the sum of the Measures.[Order Quantity] member,
aggregated over the first eight months of calendar year 2003 that are contained in the Date
dimension, from the Adventure Works cube.

WITH MEMBER [Date].[Calendar].[First8Months2003] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].[Month].[August 2003]

)

)

SELECT

 [Date].[Calendar].[First8Months2003] ON COLUMNS,

 [Product].[Category].Children ON ROWS

FROM

http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�

 108

 [Adventure Works]

WHERE

 [Measures].[Order Quantity]

To understand NON VISUAL, the following example is a query of [Adventure Works] to obtain
[Reseller Sales Amount] figures in a table where the product categories are the columns and the
reseller business types are the rows. Note that totals are given for both products and resellers.
The following SELECT statement:

select [Category].members on 0,
 [Business Type].members on 1
 from [Adventure Works]
 where [Measures].[Reseller Sales Amount]

Produces the following results:

 All Products Accessories Bikes Clothing Components

All
Resellers

$80,450,596.9
8

$571,297.9
3

$66,302,381.5
6

$1,777,840.8
4

$11,799,076.6
6

Specialty
Bike Shop

$6,756,166.18 $65,125.48 $6,080,117.73 $252,933.91 $357,989.07

Value
Added
Reseller

$34,967,517.3
3

$175,002.8
1

$30,892,354.3
3

$592,385.71 $3,307,774.48

Warehous
e

$38,726,913.4
8

$331,169.6
4

$29,329,909.5
0

$932,521.23 $8,133,313.11

To produce a table with data only for theAccessories and Clothing products, the Value Added
Reseller and Warehouse resellers, yet keeping the overall totals could be written as follows
using NON VISUAL:

select [Category].members on 0,
 [Business Type].members on 1
 from NON VISUAL (Select {[Category].Accessories, [Category].Clothing} on
0,
 {[Business Type].[Value Added Reseller], [Business
Type].[Warehouse]} on 1

 109

 from [Adventure Works])
 where [Measures].[Reseller Sales Amount]

Produces the following results:

 All Products Accessories Clothing

All Resellers $80,450,596.98 $571,297.93 $1,777,840.84

Value Added
Reseller

$34,967,517.33 $175,002.81 $592,385.71

Warehouse $38,726,913.48 $331,169.64 $932,521.23

To produce a table that visually totals the columns but for row totals brings the true total of all
[Category], the following query should be issued:

select [Category].members on 0,
 [Business Type].members on 1
 from NON VISUAL (Select {[Category].Accessories, [Category].Clothing} on 0
 from (Select {[Business Type].[Value Added Reseller],
[Business Type].[Warehouse]} on 0
 from [Adventure Works])
)
 where [Measures].[Reseller Sales Amount]

Note how NON VISUAL is only applied to [Category].
The above query produces the following results:

 All Products Accessories Clothing

All Resellers $73,694,430.80 $506,172.45 $1,524,906.93

Value Added Reseller $34,967,517.33 $175,002.81 $592,385.71

Warehouse $38,726,913.48 $331,169.64 $932,521.23

When compared with the previous results, you can observe that the [All Resellers] row now adds
up to the displayed values for [Value Added Reseller] and [Warehouse] but that the [All
Products] column shows the total value for all products, including those not displayed.

 110

The following example demonstrates how to use calculated members in subselects to filter on
them. To be able to reproduce this sample, the connection must be established using the
connection string parameter subqueries=1.
select Measures.allmembers on 0
from (
 Select { [Measures].[Reseller Sales Amount]
 , [Measures].[Reseller Total Product Cost]
 , [Measures].[Reseller Gross Profit]
 , [Measures].[Reseller Gross Profit Margin]
 } on 0
 from [Adventure Works]
)
The above query produces the following results:

Reseller Sales Amount Reseller Total Product
Cost

Reseller Gross Profit Reseller Gross
Profit Margin

$80,450,596.98 $79,980,114.38 $470,482.60 0.58%

See Also
Restricting the Query with Query and Slicer Axes (MDX)
MDX Data Manipulation Statements (MDX)
Restricting the Query with Query and Slicer Axes (MDX)

UPDATE CUBE Statement
Updates the value of a specified leaf or nonleaf cell in a cube, optionally allocating the value for
a specified non-leaf cell across dependent leaf cells.

Syntax

UPDATE [CUBE] Cube_Name
 SET
 <update clause>
 [, <update clause> ...n]

<update clause> ::=

http://msdn.microsoft.com/en-us/library/4797ddc8-6423-497a-9a43-81a1af7eb36c(SQL.110)�
http://msdn.microsoft.com/en-us/library/a64b8172-cd73-42f9-8847-52e967b9697a(SQL.110)�

 111

 Tuple_Expression[.VALUE]= New_Value
 [
 NO_ALLOCATION
 | USE_EQUAL_ALLOCATION
 | USE_EQUAL_INCREMENT
 | USE_WEIGHTED_ALLOCATION [BY Weight_Expression]
 | USE_WEIGHTED_INCREMENT [BY Weight_Expression]
]

Arguments
Cube_Name

A valid string that provides the name of a cube.

Tuple_Expression

A valid Multidimensional Expressions (MDX) expression that returns a tuple.

New_Value

A valid numeric expression.

Weight_Expression

A valid Multidimensional Expressions (MDX) numeric expression that returns a decimal value
between 0 and 1.

Remarks
The cell specified by the tuple expression can be any valid cell in the multidimensional space
(that is, the cell does not have to be a leaf cell). However, the cell must be aggregated with the
Sum aggregate function and must not include a calculated member in the tuple that is used to
identify the cell.
It may be helpful to think of the UPDATE CUBE statement as a subroutine that will
automatically generate a series of individual cell writeback operations to leaf and non-leaf cells
that will roll up into a specified sum.
The following table describes the methods of allocation.

Allocation method Description

USE_EQUAL_ALLOCATION Every leaf cell that contributes to the
updated cell will be assigned an equal value
based on the following expression:
<leaf cell value> =

<New Value> / Count(leaf cells that

 112

Allocation method Description

are contained in <tuple>)

USE_EQUAL_INCREMENT Every leaf cell that contributes to the
updated cell will be changed according to
the following expression:

<leaf cell value> = <leaf cell

value> +

(<New Value > - <existing value>) /

Count(leaf cells contained in

<tuple>)

USE_WEIGHTED_ALLOCATION Every leaf cell that contributes to the
updated cell will be assigned an equal value
that is based on the following expression:

<leaf cell value> = < New Value> *

Weight_Expression

USE_WEIGHTED_INCREMENT Every leaf cell that contributes to the
updated cell will be changed according to
the following expression:

<leaf cell value> = <leaf cell

value> +

(<New Value> - <existing value>) *

Weight_Expression

If a weight expression is not specified, the UPDATE CUBE statement implicitly uses the following
expression:

Weight_Expression = <leaf cell value> / <existing value>

A weight expression should be expressed as a decimal value between zero (0) and 1. This value
specifies the ratio of the allocated value that you want to assign to the leaf cells that are affected
by the allocation. The client application programmer's has the responsibility of creating
expressions whose rollup aggregate values will equal the allocated value of the expression.

The client application must consider the allocation of all dimensions concurrently to
avoid possible unexpected results, including incorrect rollup values or inconsistent data.

Each UPDATE CUBE allocation should be considered to be atomic for transactional purposes.
This means, that if any one of the allocation operations fails for any reason, such as an error in a
formula or a security violation, the whole UPDATE CUBE operation will fail. Before the

Caution

 113

calculations of the individual allocation operations are processed, a snapshot of the data is taken
to ensure that the resulting calculations are correct.

When used on a measure that contains integers, the USE_WEIGHTED_ALLOCATION
method can return imprecise results caused by incremental rounding changes.

When updated cells do not overlap, the Update Isolation Level connection string
property can be used to enhance performance for UPDATE CUBE.

See Also
MDX Data Manipulation Statements (MDX)
P:Microsoft.AnalysisServices.AdomdClient.AdomdConnection.ConnectionString

MDX Operator Reference
The Multidimensional Expressions (MDX) language supports arithmetic, logical, comparison, set,
string, and unary operators. The following table lists the supported operators and their
descriptions.

In This Section

Topic Description

-- (Comment) Indicates comment text that is provided by
the user.

- (Except) Performs a set operation that returns the
difference between two sets, removing
duplicate members.

- (Negative) (MDX) Performs a unary operation that returns the
negative value of a numeric expression.

- (Subtract) (MDX) Performs an arithmetic operation that
subtracts one number from another
number.

* (Crossjoin) Performs a set operation that returns the
cross product of two sets.

* (Multiply) (MDX) Performs an arithmetic operation that
multiplies two numbers.

Caution

Important

 114

Topic Description

/ (Divide) (MDX) Performs an arithmetic operation that
divides one number by another number.

^ (Power) Performs an arithmetic operation that
raises one number by another number.

/*...*/ (Comment) Indicates comment text that is provided by
the user.

// (Comment) Indicates user-provided text.

: (Range) Performs a set operation that returns a
naturally ordered set, with the two specified
members as endpoints, and all members
between the two specified members
included as members of the set.

+ (Add) (MDX) Performs an arithmetic operation that adds
two numbers.

+ (Positive) (MDX) Performs a unary operation that returns the
positive value of a numeric expression.

+ (String Concatenation) (MDX) Performs a string operation that
concatenates two or more character strings,
tuples, or a combination of strings and
tuples.

+ (Union) Performs a set operation that returns a
union of two sets, removing duplicates.

< (Less Than) (MDX) Performs a comparison operation that
determines whether the value of one MDX
expression is less than the value of another
MDX expression.

<= (Less Than or Equal To) (MDX) Performs a comparison operation that
determines whether the value of one MDX
expression is less than or equal to the value
of another MDX expression.

<> (Not Equal To) (MDX) Performs a comparison operation that
determines whether the value of one MDX
expression is not equal to the value of
another MDX expression.

= (Equal To) Performs a comparison operation that

 115

Topic Description

determines whether the value of one MDX
expression is equal to the value of another
MDX expression.

> (Greater Than) (MDX) Performs a comparison operation that
determines whether the value of one MDX
expression is greater than the value of
another MDX expression.

>= (Greater Than or Equal To) (MDX) Performs a comparison operation that
determines whether the value of one MDX
expression is greater than or equal to the
value of another MDX expression.

AND (MDX) Performs a logical conjunction on two
numeric expressions.

IS Performs a logical comparison on two
object expressions.

NOT (MDX) Performs a logical negation on a numeric
expression.

OR (MDX) Performs a logical disjunction on two
numeric expressions.

XOR Performs a logical exclusion on two
numeric expressions.

See Also
MDX Language Reference

-- (Comment)
Indicates comment text that is provided by the user.

Syntax

-- Comment_Text

 116

Parameters

Parameter Description

Comment_Text The string that contains the text of
the comment.

Remarks
Comments can be inserted on a separate line, nested at the end of a Multidimensional
Expressions (MDX) script line, or nested within an MDX statement. The server does not evaluate
the comment.
Use this operator for single-line or nested comments. Comments inserted with -- are delimited
by the newline character.
There is no maximum length for comments.

Examples
The following example demonstrates the use of this operator.
-- This member returns the gross profit margin for product types

-- and reseller types crossjoined by year.

SELECT

 [Date].[Calendar].[Calendar Year].Members *

 [Reseller].[Reseller Type].Children ON 0,

 [Product].[Category].[Category].Members ON 1

FROM -- Select from the Adventure Works cube.

 [Adventure Works]

WHERE

 [Measures].[Gross Profit Margin]

See Also
/*...*/ (Comment) (MDX)
// (Comment) (MDX)
MDX Operator Reference (MDX)

 117

- (Except)
Performs a set operation that returns the difference between two sets, removing duplicate
members.

Syntax

Set_Expression - Set_Expression

Parameters

Parameter Description

Set_Expression A valid Multidimensional Expressions
(MDX) expression that returns a set.

Return Value
A set that contains members that are not shared by both specified parameters.

Remarks
The - (Except) operator is functionally equivalent to the Except function.

Examples
The following example demonstrates the use of this operator:

// This query shows the quantity of orders for all product categories

// with the exception of Components.

SELECT

 [Measures].[Order Quantity] ON COLUMNS,

 [Product].[Product Categories].[All].Children

 - [Product].[Product Categories].[Components] ON ROWS

FROM

 [Adventure Works]

See Also
MDX Operator Reference (MDX)

 118

- (Negative)
Performs a unary operation that returns the negative value of a numeric expression.

Syntax

- Numeric_Expression

Parameters

Parameter Description

Numeric_Expression A valid Multidimensional Expressions
(MDX) expression that returns a
numeric value.

Return Value
A negative value that has the data type of the specified parameter.

Examples
The following example demonstrates the use of this operator.

-- This member creates a negative version of the

-- Reseller Freight Cost.

WITH MEMBER

 Measures.[Resell Cost as Negative]

 AS -Measures.[Reseller Freight Cost]

SELECT

 [Date].[Calendar Month of Year].Children ON COLUMNS,

 [Product].[Product Categories].Children ON ROWS

FROM

 [Adventure Works]

WHERE

 {[Measures].[Resell Cost as Negative]}

 119

See Also
MDX Operator Reference (MDX)

- (Subtract)
Performs an arithmetic operation that subtracts one number from another number.

Syntax

Numeric_Expression - Numeric_Expression

Parameters

Parameter Description

Numeric_Expression A valid Multidimensional Expressions
(MDX) expression that returns a
numeric value.

Return Value
A value with the data type of the parameter that has the higher precedence.

Remarks
Both expressions must be of the same data type, or one expression must be able to be implicitly
converted to the data type of the other expression. If one expression evaluates to a null value,
the operator returns the result of the non-null expression.

Examples
The following example demonstrates the use of this operator.

-- This member returns the increase or decrease

-- in gross profit margin over a month.

WITH MEMBER [Measures].[GPM Delta] AS

 (

(Measures.[Gross Profit Margin]) -

([Date].[Calendar].CurrentMember.PrevMember,

Measures.[Gross Profit Margin])

 120

), FORMAT_STRING = 'Percent'

SELECT

DESCENDANTS(

[Date].[Calendar].[Calendar Year].&[2002],

[Date].[Calendar].[Month]) ON 0,

[Product].[Category].[Category].Members ON 1

FROM

[Adventure Works]

WHERE

([Measures].[GPM Delta])

See Also
MDX Operator Reference (MDX)

* (Crossjoin)
Performs a set operation that returns the cross product of two sets.

Syntax

Set_Expression * Set_Expression

Parameter
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Return Value
A set that contains the cross product of both specified parameters.

Remarks
The * (Crossjoin) operator is functionally equivalent to the Crossjoin function.

Examples
The following example demonstrates the use of this operator.

 121

-- This query returns the gross profit margin for product types

-- and reseller types crossjoined by year.

SELECT

 [Date].[Calendar].[Calendar Year].Members *

 [Reseller].[Reseller Type].Children ON 0,

 [Product].[Category].[Category].Members ON 1

FROM

 [Adventure Works]

WHERE

 ([Measures].[Gross Profit Margin])

See Also
MDX Operator Reference (MDX)

* (Multiply)
Performs an arithmetic operation that multiplies two numbers.

Syntax

Numeric_Expression * Numeric_Expression

Parameters

Parameter Description

Numeric_Expression A valid Multidimensional Expressions
(MDX) expression that returns a
numeric value.

Return Value
A value with the data type of the parameter that has the higher precedence.

 122

Remarks
Both expressions must be of the same data type, or one expression must be able to be implicitly
converted to the data type of the other expression. If one expression evaluates to a null value,
the operator returns a null value.

See Also
MDX Operator Reference (MDX)

/ (Divide)
Performs an arithmetic operation that divides one number by another number.

Syntax

Dividend / Divisor

Parameters

Parameter Description

Dividend A valid Multidimensional Expressions
(MDX) expression that returns a
numeric value.

Divisor A valid MDX expression that returns a
numeric value.

Return Value
A value with the data type of the parameter that has the higher precedence.

Remarks
The actual value returned by the / (Divide) operator represents the quotient of the first
expression divided by the second expression.
Both expressions must be of the same data type, or one expression must be able to be implicitly
converted to the data type of the other expression. If Divisor evaluates to a null value, the
operator raises an error. If both Divisor and Dividend evaluate to a null value, the operator
returns a null value.

 123

Examples
The following example demonstrates the use of this operator.

-- This query returns the freight cost per user,

-- for products, averaged by month.

With Member [Measures].[Freight Per Customer] as

 [Measures].[Internet Freight Cost]

 /

 [Measures].[Customer Count]

SELECT

 [Ship Date].[Calendar].[Calendar Year] Members ON 0,

 [Product].[Category].[Category].Members ON 1

FROM

 [Adventure Works]

WHERE

 ([Measures].[Freight Per Customer])

Dividing a non-zero or non-null value by zero or null will return the value Infinity, which is
displayed in query results as the value "1.#INF". In most cases, you should check for division by
zero to avoid this situation. The following example shows you how:
//Returns 1.#INF when Internet Sales Amount is zero or null
Member [Measures].[Reseller to Internet Ratio] AS
[Measures].[Reseller Sales Amount]
/
[Measures].[Internet Sales Amount]
//Traps the division by zero scenario and returns null instead of 1.#INF
Member [Measures].[Reseller to Internet Ratio With Error Handling] AS
IIF([Measures].[Internet Sales Amount]=0, NULL,
[Measures].[Reseller Sales Amount]
/
[Measures].[Internet Sales Amount])

SELECT
{[Measures].[Reseller to Internet Ratio],[Measures].[Reseller to Internet
Ratio With Error Handling]} ON 0,

 124

 [Product].[Category].[Category].Members ON 1
FROM
 [Adventure Works]
WHERE([Date].[Calendar].[Calendar Year].&[2001])

See Also
IIf (MDX)
MDX Operator Reference (MDX)

^ (Power)
Performs an arithmetic operation that raises one number by another number.

Syntax

Numeric_Expression ^ Numeric_Expression

Parameters

Parameter Description

Numeric_Expression A valid Multidimensional Expressions
(MDX) expression that returns a
numeric value.

Return Value
A value with the data type of the parameter that has the higher precedence.

Remarks
Both expressions must be of the same data type, or one expression must be able to be implicitly
converted to the data type of the other expression. If one expression evaluates to a null value,
the operator returns a null value.

See Also
MDX Operator Reference (MDX)

 125

/*...*/ (Comment)
Indicates comment text that is provided by the user.

Syntax

/* Comment_Text */

Parameters

Parameter Description

Comment_Text The string that contains the text of
the comment.

Remarks
The server does not evaluate the text between the comment characters, /* and */. Comments
can be inserted on a separate line or within a Multidimensional Expressions (MDX) statement.
Multiple-line comments must be indicated by /* and */.
There is no maximum length for comments. Comments can be nested; for example, /* Test
/*Comment*/ Text*/ is an example of a nested comment.

Examples
The following example demonstrates the use of this operator.

/* This member returns the gross profit margin for product types

 and reseller types crossjoined by year. */

SELECT

 [Date].[Calendar].[Calendar Year].Members *

 [Reseller].[Reseller Type].Children ON 0,

 [Product].[Category].[Category].Members ON 1

FROM /* Select from the Adventure Works cube. */

 [Adventure Works]

WHERE

 [Measures].[Gross Profit Margin]

 126

See Also
// (Comment) (MDX)
-- (Comment) (MDX)
MDX Operator Reference (MDX)

// (Comment)
Indicates user-provided text.

Syntax

// Comment_Text

Parameters

Parameter Description

Comment_Text The string that contains the text of
the comment.

Remarks
Comments can be inserted on a separate line, nested at the end of a Multidimensional
Expressions (MDX) script line, or nested within an MDX statement. The server does not evaluate
the comment.
Use // for single-line comments only. Comments inserted with // are delimited by the newline
character.
There is no maximum length for comments.

Examples
The following example demonstrates the use of this operator.

// This member returns the gross profit margin for product types

// and reseller types crossjoined by year.

SELECT

 [Date].[Calendar].[Calendar Year].Members *

 [Reseller].[Reseller Type].Children ON 0,

 [Product].[Category].[Category].Members ON 1

 127

FROM // Select from the Adventure Works cube.

 [Adventure Works]

WHERE

 [Measures].[Gross Profit Margin]

See Also
/*...*/ (Comment) (MDX)
-- (Comment) (MDX)
MDX Operator Reference (MDX)

: (Range)
Performs a set operation that returns a naturally ordered set, with the two specified members as
endpoints, and all members between the two specified members included as members of the
set.

Syntax

Member_Expression : Member_Expression

Parameters

Parameter Description

Member_Expression A valid Multidimensional Expressions
(MDX) expression that returns a
member.

Return Value
A set that contains the specified members and all members between the specified members.

Remarks
Both parameters must specify members within the same level and hierarchy of a given
dimension. If both parameters specify the same member, the : (Range) operator returns a set
that contains just the specified member. If the first parameter is Null, then the set contains all
members from the beginning of the level of the member specified in the second parameter, up
to and including that member. If the second parameter is Null, then the set contains all

 128

members from the member specified in the first parameter, up to and including the last member
on the same level.
This set operator has no functional equivalent in MDX.

Examples
The following example demonstrates the use of this operator.

-- This query returns the freight cost per user

-- for products, averaged by month, for the first quarter.

With Member [Measures].[Freight Per Customer] as

 (

 [Measures].[Internet Freight Cost]

 /

 [Measures].[Customer Count]

)

SELECT

 {[Ship Date].[Calendar].[Month].&[2004]&[1] : [Ship

Date].[Calendar].[Month].&[2004]&[3]} ON 0,

 [Product].[Category].[Category].Members ON 1

FROM

 [Adventure Works]

WHERE

 ([Measures].[Freight Per Customer])

See Also
MDX Operator Reference (MDX)

+ (Add)
Performs an arithmetic operation that adds two numbers.

Syntax

Numeric_Expression + Numeric_Expression

 129

Parameters

Parameter Description

Numeric Expression A valid Multidimensional Expressions
(MDX) expression that returns a
numeric value.

Return Value
A value with the data type of the parameter that has the higher precedence.

Remarks
Both expressions must be of the same data type, or one expression must be able to be implicitly
converted to the data type of the other expression. If one expression evaluates to a null value,
the operator returns the result of the other expression.

See Also
MDX Operator Reference (MDX)

+ (Positive)
Performs a unary operation that returns the positive value of a numeric expression.

Syntax

+ Numeric_Expression

Parameters

Parameter Description

Numeric_Expression A valid Multidimensional Expressions
(MDX) expression that returns a
numeric value.

 130

Return Value
A positive value that has the data type of the specified parameter.

See Also
MDX Operator Reference (MDX)

+ (String Concatenation)
Performs a string operation that concatenates two or more character strings, tuples, or a
combination of strings and tuples.

Syntax

String_Expression + String_Expression

Parameters

Parameter Description

String_Expression A valid Multidimensional Expressions
(MDX) expression that returns a
string value.

Return Value
A value with the data type of the parameter that has the higher precedence.

Remarks
Both expressions must be of the same data type, or one expression must be able to be implicitly
converted to the data type of the other expression. If one expression evaluates to a null value,
the operator returns the result of the other expression.

See Also
MDX Operator Reference (MDX)

+ (Union)
Performs a set operation that returns a union of two sets, removing duplicate members.

 131

Syntax

Set_Expression + Set_Expression

Parameters

Parameter Description

Set_Expression A valid Multidimensional Expressions
(MDX) expression that returns a set.

Return Value
A set that contains the members of both specified sets.

Remarks
The + (Union) operator is functionally equivalent to the Union (MDX) function.

Examples
The following example demonstrates the use of this operator.

-- This member returns the gross profit margin for each year for North

American countries.

SELECT

 [Date].[Calendar].[Calendar Year].Members ON 0,

 {[Sales Territory].[Sales Territory].[Country].[United States]} +

 {[Sales Territory].[Sales Territory].[Country].[Canada]} ON 1

FROM

 [Adventure Works]

WHERE

 ([Measures].[Gross Profit Margin])

See Also
MDX Operator Reference (MDX)

 132

< (Less Than)
Performs a comparison operation that determines whether the value of one Multidimensional
Expressions (MDX) expression is less than the value of another MDX expression.

Syntax

MDX_Expression < MDX_Expression

Parameters

Parameter Description

MDX_Expression A valid MDX expression.

Return Value
A Boolean value based on the following conditions:
• true if both parameters are non-null, and the first parameter has a value that is lower than

the value of the second parameter.
• false if both parameters are non-null, and the first parameter has a value that is either equal

to or greater than the value of the second parameter.
• null if either or both parameters evaluate to a null value.

Examples
The following example demonstrates the use of this operator.

-- This query returns the gross profit margin (GPM)

-- for clothing sales where the GPM is less than 30%.

With Member [Measures].[LowGPM] as

 IIF(

 [Measures].[Gross Profit Margin] < .3,

 [Measures].[Gross Profit Margin],

 null)

SELECT NON EMPTY

 [Sales Territory].[Sales Territory Country].Members ON 0,

 [Product].[Category].[Clothing] ON 1

 133

FROM

 [Adventure Works]

WHERE

 ([Measures].[LowGPM])

See Also
MDX Operator Reference (MDX)

<= (Less Than or Equal To)
Performs a comparison operation that determines whether the value of one Multidimensional
Expressions (MDX) expression is less than or equal to the value of another MDX expression.

Syntax

MDX_Expression <= MDX_Expression

Parameters

Parameter Description

MDX_Expression A valid MDX expression.

Return Value
A Boolean value based on the following conditions:
• true if both parameters are non-null, and the first parameter has a value that is either less

than or equal to the value of the second parameter.
• false if both parameters are non-null, and the first parameter has a value that greater than

the value of the second parameter.
• null if either or both parameters evaluate to a null value.

Examples
The following example demonstrates the use of this operator.
-- This query returns the gross profit margin (GPM)

-- for Australia where the GPM is less than or equal to 30%.

With Member [Measures].[LowGPM] as

 134

 IIF(

 [Measures].[Gross Profit Margin] <= .5,

 [Measures].[Gross Profit Margin],

 null)

SELECT

NON EMPTY [Sales Territory].[Sales Territory Country].[Australia] ON 0,

 NON EMPTY [Product].[Category].Members ON 1

FROM

 [Adventure Works]

WHERE

 ([Measures].[LowGPM])

See Also
MDX Operator Reference (MDX)

<> (Not Equal To)
Performs a comparison operation that determines whether the value of one Multidimensional
Expressions (MDX) expression is not equal to the value of another MDX expression.

Syntax

MDX_Expression <> MDX_Expression

Parameters

Parameter Description

MDX_Expression A valid MDX expression.

Return Value
A Boolean value based on the following conditions:
• true if both parameters are non-null, and the first parameter is not equal to the second

parameter.
• false if both parameters are non-null, and the first parameter is equal to the second

parameter.

 135

• null if either or both parameters evaluate to a null value.

See Also
MDX Operator Reference (MDX)

= (Equal To)
Performs a comparison operation that determines whether the value of one Multidimensional
Expressions (MDX) expression is equal to the value of another MDX expression.

To compare objects, use the IS (MDX) operator. For example, use the IS operator when
you are checking if the current member on a query axis is a specific member.

Syntax

MDX_Expression = MDX_Expression

Parameters

Parameter Description

MDX_Expression A valid MDX expression.

Return Value
A Boolean value based on the following conditions:
• true if the value of the first parameter is equal to the value of the second parameter.
• false if the value of the first parameter is not equal to the value of the second parameter.
• true if both parameters are null, or one parameter is null and the other parameter is 0.

Examples
The following query shows examples of these conditions:
With
--Returns true
Member [Measures].bool1 as 1=1
--Returns false
Member [Measures].bool2 as 1=0

Note

 136

--Returns true
Member [Measures].bool3 as null=null
--Returns true
Member [Measures].bool4 as 0=null
--Returns false
Member [Measures].bool5 as 1=null
Select
{[Measures].bool1,[Measures].bool2,[Measures].bool3,[Measures].bool4,[Measure
s].bool5}
On 0
From [Adventure Works]

See Also
MDX Operator Reference (MDX)

> (Greater Than)
Performs a comparison operation that determines whether the value of one Multidimensional
Expressions (MDX) expression is greater than the value of another MDX expression.

Syntax

MDX_Expression > MDX_Expression

Parameters

Parameter Description

MDX_Expression A valid MDX expression.

Return Value
A Boolean value based on the following conditions:
• true if both parameters are non-null, and the first parameter has a value that is greater than

the value of the second parameter.
• false if both parameters are non-null, and the first parameter has a value that is either equal

to or lower than the value of the second parameter.
• null if either or both parameters evaluate to a null value.

 137

Examples
The following example query demonstrates the use of this operator.

-- This query returns the gross profit margin (GPM)

-- for Australia where the GPM is more than 50%.

With Member [Measures].[HighGPM] as

 IIF(

 [Measures].[Gross Profit Margin] > .5,

 [Measures].[Gross Profit Margin],

 null)

SELECT

NON EMPTY [Sales Territory].[Sales Territory Country].[Australia] ON 0,

 NON EMPTY [Product].[Category].Members ON 1

FROM

 [Adventure Works]

WHERE

 ([Measures].[HighGPM])

See Also
MDX Operator Reference (MDX)

>= (Greater Than or Equal To)
Performs a comparison operation that determines whether the value of one Multidimensional
Expressions (MDX) expression is greater than or equal to the value of another MDX expression.

Syntax

MDX_Expression >= MDX_Expression

Parameters

Parameter Description

MDX_Expression A valid MDX expression.

 138

Return Value
A Boolean value based on the following conditions:
• true if the first parameter has a value that is either greater than or equal to the value of the

second parameter.
• false if the first parameter has a value that is lower than the value of the second parameter.
• true if both parameters are null or if one parameter is null and the other parameter is 0.

Examples
The following example demonstrates the use of this operator.

-- This query returns the gross profit margin (GPM)

-- for Australia where the GPM is greater than or equal to 50%.

With Member [Measures].[HighGPM] as

 IIF(

 [Measures].[Gross Profit Margin] >= .5,

 [Measures].[Gross Profit Margin],

 null)

SELECT

 NON EMPTY [Sales Territory].[Sales Territory Country].[Australia] ON 0,

 NON EMPTY [Product].[Category].Members ON 1

FROM

 [Adventure Works]

WHERE

 ([Measures].[HighGPM])

See Also
MDX Operator Reference (MDX)

AND
Performs a logical conjunction on two numeric expressions.

Syntax

Expression1 AND Expression2

 139

Parameters

Parameter Description

Expression1 A valid Multidimensional Expressions
(MDX) expression that returns a
numeric value.

Expression2 A valid MDX expression that returns a
numeric value.

Return Value
A Boolean value that returns true if both parameters evaluate to true; otherwise, false.

Remarks
The AND operator treats both expressions as Boolean values (zero, 0, as false; otherwise, true)
before the operator performs the logical conjunction. The following table illustrates how the
AND operator performs the logical conjunction.

Expression1 Expression2 Return Value

true true true

true false false

false true false

false false false

Example

Code
-- This query returns the gross profit margin (GPM)

-- for clothing sales where the GPM is between 20% and 30%.

With Member [Measures].[LowGPM] as

 IIF(

 [Measures].[Gross Profit Margin] <= .3 AND

 [Measures].[Gross Profit Margin] >= .2,

 140

 [Measures].[Gross Profit Margin],

 null)

SELECT NON EMPTY

 [Sales Territory].[Sales Territory Country].Members ON 0,

 [Product].[Category].[Clothing] ON 1

FROM

 [Adventure Works]

WHERE

 ([Measures].[LowGPM])

See Also
MDX Operator Reference (MDX)

IS
Performs a logical comparison on two object expressions.

Syntax

Expression1 IS (Expression2 | NULL)

Parameters

Parameter Description

Expression1 A valid Multidimensional Expressions
(MDX) expression that returns an
MDX object reference.

Expression2 A valid MDX expression that returns
an MDX object reference.

Return Value
A Boolean value that returns true if both arguments refer to the same object; otherwise, false. If
the NULL keyword is specified, the operator returns true if Expression1 is null; otherwise, false.

 141

Remarks
The IS operator is often used to determine whether tuples and members are idempotent,
meaning that they are exactly equivalent.

Examples
The following example shows how to use the IS operator to check if the current member on an
axis is a specific member:
With
//Returns TRUE if the currentmember is Bikes
Member [Measures].[IsBikes?] AS
[Product].[Category].CurrentMember IS [Product].[Category].&[1]
SELECT
{[Measures].[IsBikes?]} ON 0,
 [Product].[Category].[Category].Members ON 1
FROM
 [Adventure Works]

See Also
MDX Operator Reference (MDX)

NOT
Performs a logical negation on a numeric expression.

Syntax

NOT Expression1

Parameters

Parameter Description

Expression1 A valid Multidimensional Expressions
(MDX) expression that returns a
numeric value.

 142

Return Value
A Boolean value that returns false if the argument evaluates to true; otherwise, true.

Remarks
The NOT operator treats the expression as a Boolean value (zero, 0, as false; otherwise, true)
before the operator performs the logical negation. The following table illustrates how the NOT
operator performs the logical negation.

Expression1 Return Value

true false

false true

See Also
MDX Operator Reference (MDX)

OR
Performs a logical disjunction on two numeric expressions.

Syntax

Expression1 OR Expression2

Parameters

Parameter Description

 A valid Multidimensional Expressions
(MDX) expression that returns a
numeric value.

 A valid MDX expression that returns a
numeric value.

 143

Return Value
A Boolean value that returns true if either or both arguments evaluate to true; otherwise, false.

Remarks
The OR operator treats both arguments as Boolean values (zero, 0, as false; otherwise, true)
before the operator performs the logical disjunction. The following table illustrates how the OR
operator performs the logical disjunction.

Expression1 Expression2 Return Value

true true true

true false true

false true true

false false false

Example
The following query contains a calculated measure that returns the string “MARRIED OR MALE”
if the current member on the Gender hierarchy of the Customer dimension is Male or the
current member on the Marital Status hierarchy of the Customer dimension is Married;
otherwise it returns the string “UNMARRIED OR FEMALE”.

WITH

MEMBER MEASURES.ORDEMO AS

IIF(

([Customer].[Gender].CURRENTMEMBER IS [Customer].[Gender].&[M])

OR

([Customer].[Marital Status].CURRENTMEMBER IS [Customer].[Marital

Status].&[M]),

"MARRIED OR MALE",

"UNMARRIED OR FEMALE")

SELECT [Customer].[Gender].[Gender].MEMBERS ON 0,

[Customer].[Marital Status].[Marital Status].MEMBERS ON 1

FROM [Adventure Works]

WHERE(MEASURES.ORDEMO)

 144

See Also
MDX Operator Reference (MDX)

XOR
Performs a logical exclusion on two numeric expressions.

Syntax

Expression1 XOR Expression2

Parameters

Parameter Description

Expression1 A valid Multidimensional Expressions
(MDX) expression that returns a
numeric value.

Expression2 A valid MDX expression that returns a
numeric value.

Return Value
A Boolean value that returns true if one and only one argument evaluates to true; otherwise,
false.

Remarks
The XOR operator treats both parameters as Boolean values (zero, 0, as false; otherwise, true)
before the operator performs the logical exclusion. The following table illustrates how the XOR
operator performs the logical exclusion.

Expression1 Expression2 Return Value

true true false

true false true

false true true

 145

Expression1 Expression2 Return Value

false false false

See Also
MDX Operator Reference (MDX)

MDX Function Reference
Microsoft SQL Server Analysis Services provides for the use of functions in Multidimensional
Expressions (MDX) syntax. Functions can be used in any valid MDX statement, and are frequently
used in queries, custom rollup definitions, and other calculations. This section provides
information about the MDX functions included with Analysis Services.
You can use the following tables to find functions by their category of return value, or you can
select a function by name from the alphabetical list in the table of contents.

Array Functions

Function Description

MDX Language Reference (MDX) Converts one or more sets to an array for
use in a user-defined function.

Hierarchy Functions

Function Description

Hierarchy Returns the hierarchy that contains a
specified member or level.

Dimension Returns the dimension that contains a
specified member, level, or hierarchy.

Dimensions Returns a hierarchy specified by a numeric
or string expression.

 146

Level Functions

Function Description

Level Returns the level of a member.

Levels Returns the level whose position in a
dimension or hierarchy is specified by a
numeric expression or whose name is
specified by a string expression.

Logical Functions

Function Description

IsAncestor Returns whether a specified member is an
ancestor of another specified member.

IsEmpty Returns whether the evaluated expression
is the empty cell value.

IsGeneration Returns whether a specified member is in a
specified generation.

IsLeaf Returns whether a specified member is a
leaf member.

IsSibling Returns whether a specified member is a
sibling of another specified member.

Member Functions

Function Description

Ancestor Returns the ancestor of a member at a
specified level or distance.

ClosingPeriod Returns the last sibling among the
descendants of a member at a specified
level.

 147

Function Description

Cousin Returns the child member with the same
relative position under a parent member as
the specified child member.

CurrentMember Returns the current member along a
specified dimension or hierarchy during
iteration.

DataMember Returns the system-generated data
member that is associated with a nonleaf
member of a dimension.

DefaultMember Returns the default member of a dimension
or hierarchy.

FirstChild Returns the first child of a member.

FirstSibling Returns the first child of the parent of a
member.

Item (Member) Returns a member from a specified tuple.

Lag Returns the member that is a specified
number of positions before a specified
member along the member's dimension.

LastChild Returns the last child of a specified
member.

LastSibling Returns the last child of the parent of a
specified member.

Lead Returns the member that is a specified
number of positions following a specified
member along the member's dimension.

LinkMember Returns the member equivalent to a
specified member in a specified hierarchy.

Members (Member) Returns a member specified by a string
expression.

NextMember Returns the next member in the level that
contains a specified member.

OpeningPeriod Returns the first sibling among the
descendants of a specified level, optionally
at a specified member.

 148

Function Description

ParallelPeriod Returns a member from a prior period in
the same relative position as a specified
member.

Parent Returns the parent of a member.

PrevMember Returns the previous member in the level
that contains a specified member.

StrToMember Returns the member specified by an MDX–
formatted string.

UnknownMember (MDX) Returns the unknown member associated
with a level or member.

ValidMeasure Returns a valid measure in a virtual cube by
forcing inapplicable dimensions to their top
level.

Numeric Functions

Function Description

Aggregate Returns a scalar value calculated by
aggregating either measures or an
optionally specified numeric expression
over the tuples of a specified set.

Avg (MDX) Returns the average value of measures or
the average value of an optional numeric
expression, evaluated over a specified set.

CalculationCurrentPass Returns the current calculation pass of a
cube for the specified query context.

CalculationPassValue Returns the value of a MDX expression
evaluated over the specified calculation
pass of a cube.

CoalesceEmpty Coalesces an empty cell value to a number
or string and returns the coalesced value.

Correlation Returns the correlation coefficient of two
series evaluated over a set.

 149

Function Description

Count (Dimension) Returns the number of dimensions in a
cube.

Count (Level) Returns the number of levels in a
dimension or hierarchy.

Count (Set) Returns the number of cells in a set.

Count (Tuple) Returns the number of dimensions in a
tuple.

Covariance Returns the population covariance of two
series evaluated over a set, using the biased
population formula.

CovarianceN Returns the sample covariance of two series
evaluated over a set, using the unbiased
population formula.

DistinctCount Returns the number of distinct, nonempty
tuples in a set.

IIf Returns one of two values determined by a
logical test.

LinRegIntercept Calculates the linear regression of a set and
returns the value of the intercept in the
regression line, .

LinRegPoint Calculates the linear regression of a set and
returns the value of y in the regression line,
.

LinRegR2 Calculates the linear regression of a set and
returns the coefficient of determination, R2.

LinRegSlope Calculates the linear regression of a set,
and returns the value of the slope in the
regression line, .

LinRegVariance Calculates the linear regression of a set,
and returns the variance associated with
the regression line, .

LookupCube Returns the value of an MDX expression
evaluated over another specified cube in
the same database.

 150

Function Description

Max (MDX) Returns the maximum value of a numeric
expression that is evaluated over a set.

Median Returns the median value of a numeric
expression that is evaluated over a set.

Min (MDX) Returns the minimum value of a numeric
expression that is evaluated over a set.

Ordinal Returns the zero-based ordinal value
associated with a level.

Predict Returns a value of a numeric expression
evaluated over a data mining model.

Rank Returns the one-based rank of a specified
tuple in a specified set.

RollupChildren Returns a value generated by rolling up the
values of the children of a specified
member using the specified unary operator.

Stddev Alias for Stdev.

StddevP Alias for StdevP.

Stdev Returns the sample standard deviation of a
numeric expression evaluated over a set,
using the unbiased population formula.

StdevP Returns the population standard deviation
of a numeric expression evaluated over a
set, using the biased population formula.

StrToValue Returns the value specified by an MDX–
formatted string.

Sum (MDX) Returns the sum of a numeric expression
evaluated over a set.

Value Returns the value of a measure.

Var Returns the sample variance of a numeric
expression evaluated over a set, using the
unbiased population formula.

Variance Alias for Var.

VarianceP Alias for VarP.

 151

Function Description

VarP Returns the population variance of a
numeric expression evaluated over a set,
using the biased population formula.

Set Functions

Function Description

AddCalculatedMembers Returns a set generated by adding
calculated members to a specified set.

AllMembers Returns a set that contains all members,
including calculated members, of the
specified dimension, hierarchy, or level.

Ancestors Returns a set of all ancestors of a member
at a specified level or distance.

Ascendants Returns the set of the ascendants of a
specified member, including the member
itself.

Axis Returns a set defined in an axis.

BottomCount Sorts a set in ascending order, and returns
the specified number of tuples with the
lowest values.

BottomPercent Sorts a set in ascending order, and returns
a set of tuples with the lowest values whose
cumulative total is equal to or less than a
specified percentage.

BottomSum Sorts a set in ascending order, and returns
a set of tuples with the lowest values whose
total is equal to or less than a specified
value.

Children Returns the children of a specified member.

Crossjoin Returns the cross product of one or more
sets.

CurrentOrdinal (MDX) Returns the current iteration number within

 152

Function Description

a set during iteration.

Descendants Returns the set of descendants of a
member at a specified level or distance,
optionally including or excluding
descendants in other levels.

Distinct Returns a set, removing duplicate tuples
from a specified set.

DrilldownLevel Drills down the members of a set to one
level below the lowest level represented in
the set, or to one level below an optionally
specified level of a member represented in
the set.

DrilldownLevelBottom Drills down the bottommost members of a
set, at a specified level, to one level below.

DrilldownLevelTop Drills down the topmost members of a set,
at a specified level, to one level below.

DrilldownMember Drills down the members in a specified set
that are present in a second specified set.
Alternatively, the function drills down on a
set of tuples.

DrilldownMemberBottom Drills down the members in a specified set
that are present in a second specified set,
limiting the result set to a specified number
of members. Alternatively, this function also
drills down on a set of tuples.

DrilldownMemberTop Drills down the members in a specified set
that are present in a second specified set,
limiting the result set to a specified number
of members. Alternatively, this function
drills down on a set of tuples.

DrillupLevel Drills up the members of a set that are
below a specified level.

DrillupMember Drills up the members in a specified set
that are present in a second specified set.

Except Finds the difference between two sets,
optionally retaining duplicates.

 153

Function Description

Exists Returns the set of members of one set that
exist with one or more tuples of one or
more other sets.

Extract Returns a set of tuples from extracted
dimension elements.

Filter Returns the set that results from filtering a
specified set based on a search condition.

Generate Applies a set to each member of another
set, and then joins the resulting sets by
union. Alternatively, this function returns a
concatenated string created by evaluating a
string expression over a set.

Head Returns the first specified number of
elements in a set, while retaining
duplicates.

Hierarchize Orders the members of a set in a hierarchy.

Intersect Returns the intersection of two input sets,
optionally retaining duplicates.

LastPeriods Returns a set of members up to and
including a specified member.

Members (Set) Returns the set of members in a dimension,
level, or hierarchy.

Mtd Returns a set of sibling members from the
same level as a given member, starting with
the first sibling and ending with the given
member, as constrained by the Year level in
the Time dimension.

NameToSet Returns a set that contains the member
specified by an MDX–formatted string.

NonEmptyCrossjoin Returns the cross product of one or more
sets as a set, excluding empty tuples and
tuples without associated fact table data.

Order Arranges members of a specified set,
optionally preserving or breaking the
hierarchy.

 154

Function Description

PeriodsToDate Returns a set of sibling members from the
same level as a given member, starting with
the first sibling and ending with the given
member, as constrained by a specified level
in the Time dimension.

Qtd Returns a set of sibling members from the
same level as a given member, starting with
the first sibling and ending with the given
member, as constrained by the Quarter
level in the Time dimension.

Siblings Returns the siblings of a specified member,
including the member itself.

StripCalculatedMembers Returns a set generated by removing
calculated members from a specified set.

StrToSet Returns the set specified by an MDX–
formatted string.

Subset Returns a subset of tuples from a specified
set.

Tail Returns a subset from the end of a set.

ToggleDrillState Toggles the drill state of members.

TopCount Sorts a set in descending order and returns
the specified number of elements with the
highest values.

TopPercent Sorts a set in descending order, and returns
a set of tuples with the highest values
whose cumulative total is equal to or less
than a specified percentage.

TopSum Sorts a set and returns the topmost
elements whose cumulative total is at least
a specified value.

Union (MDX) Returns the union of two sets, optionally
retaining duplicates.

Unorder (MDX) Removes any enforced ordering from a
specified set.

 155

Function Description

VisualTotals Returns a set generated by dynamically
totaling child members in a specified set,
optionally using a pattern for the name of
the parent member in the resulting cellset.

Wtd Returns a set of sibling members from the
same level as a given member, starting with
the first sibling and ending with the given
member, as constrained by the Week level
in the Time dimension.

Ytd Returns a set of sibling members from the
same level as a given member, starting with
the first sibling and ending with the given
member, as constrained by the Year level in
the Time dimension.

String Functions

Function Description

CalculationPassValue Returns the value of an MDX expression
evaluated over the specified calculation
pass of a cube.

CoalesceEmpty Coalesces an empty cell value to a number
or string and returns the coalesced value.

Generate Applies a set to each member of another
set, and then joins the resulting sets by
union. Alternatively, this function returns a
concatenated string created by evaluating a
string expression over a set.

IIf Returns one of two values determined by a
logical test.

LookupCube Returns the value of an MDX expression
evaluated over another specified cube in
the same database.

MemberToStr Returns an MDX–formatted string that

 156

Function Description

corresponds to a specified member.

Name Returns the name of a dimension,
hierarchy, level, or member.

Properties Returns a string, or a strongly-typed value,
that contains a member property value.

SetToStr Returns an MDX-formatted string of that
corresponds to a specified set.

TupleToStr Returns an MDX–formatted string that
corresponds to specified tuple.

UniqueName Returns the unique name of a specified
dimension, hierarchy, level, or member.

UserName Returns the domain name and user name
of the current connection.

Subcube Functions

Function Description

This Returns the current subcube.

Leaves Returns the set of leaf members in the
specified dimension, member, or tuple.

Tuple Functions

Function Description

Current Returns the current tuple from a set during
iteration.

Item (Tuple) Returns a tuple from a set.

Root Returns a tuple that consists of the All
members from each attribute hierarchy in a
cube, dimension, or tuple.

 157

Function Description

StrToTuple Returns the tuple specified by an MDX–
formatted string.

Other Functions

Function Description

Error (MDX) Raises an error, optionally providing a
specified error message.

See Also
MDX Language Reference (MDX)

AddCalculatedMembers
Returns a set generated by adding calculated members to a specified set.

Syntax

AddCalculatedMembers(Set_Expression)

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
By default, MDX excludes calculated members when it resolves set functions. The
AddCalculatedMembers function examines the set expression specified in Set_Expression, and
includes calculated members that are siblings of the members contained within the scope of
that set expression.

This function can be used only with one-dimensional set expressions.
Note

 158

Examples
The following example demonstrates the use of this function.

-- This query returns the calculated members for the cube

-- by retrieving all members, and then excluding non-calculated members.

SELECT

 AddCalculatedMembers(

 {[Measures].Members}

)-[Measures].Members ON COLUMNS

FROM [Adventure Works]

The following example returns the Measures.[Unit Price] member, in addition to all the
calculated members in the Measures dimension, from the Adventure Works cube.

SELECT

 AddCalculatedMembers({Measures.[Unit Price]}) ON COLUMNS

FROM

 [Adventure Works]

See Also
MDX Function Reference (MDX)

Aggregate
Returns a number that is calculated by aggregating over the cells returned by the set expression.
If a numeric expression is not provided, this function aggregates each measure within the
current query context by using the default aggregation operator that is specified for each
measure. If a numeric expression is provided, this function first evaluates, and then sums, the
numeric expression for each cell in the specified set.

Syntax

Aggregate(Set_Expression [,Numeric_Expression])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression

 159

of cell coordinates that return a number.

Remarks
If a set of empty tuples or an empty set is specified, this function returns an empty value.
The following table describes how the Aggregate function behaves with different aggregation
functions.

Aggregation Operator Result

Sum Returns the sum of values over the set.

Count Returns the count of values over the set.

Max Returns the maximum value over the set.

Min Returns the minimum value over the set.

Semi-additive aggregation functions Returns the calculation of semi-additive
behavior over the set after projecting the
shape to the time axis.

Distinct Count Aggregates across the fact data
contributing to the subcube when the slicer
axis includes a set.
Returns the distinct count for each member
of the set. The result depends on the
security on the cells being aggregated, and
not on the security on the cells that are
required for the computation. Cell security
on the set generates an error; cell security
below the granularity of the specified set is
ignored. Calculations on the set generate
an error. Calculations below granularity of
the set are ignored. Distinct count over a
set that includes a member and one or
more of its children returns the distinct
count across facts contributing to the child
member.

Attributes that cannot be aggregated Returns the sum of the values.

Mixed aggregation functions Not supported, and raises an error.

Unary operators Not respected; values are aggregated by
summing.

 160

Aggregation Operator Result

Calculated measures Solve order set to ensure calculated
measure applies.

Calculated members Normal rules apply, that is, the last solve
order takes precedence.

Assignments Assignments aggregate according to the
measure aggregation function. If the
measure aggregation function is distinct
count, the assignment is summed.

Examples
The following example returns the sum of the Measures.[Order Quantity] member,
aggregated over the first eight months of calendar year 2003 that are contained in the Date
dimension, from the Adventure Works cube.

WITH MEMBER [Date].[Calendar].[First8Months2003] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].[Month].[August 2003]

)

)

SELECT

 [Date].[Calendar].[First8Months2003] ON COLUMNS,

 [Product].[Category].Children ON ROWS

FROM

 [Adventure Works]

WHERE

 [Measures].[Order Quantity]

The following example aggregates over the first two months of the second semester of calendar
year 2003.
WITH MEMBER [Date].[Calendar].[First2MonthsSecondSemester2003] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Semester],

 161

 [Date].[Calendar].[Month].[August 2003]

)

)

SELECT

 [Date].[Calendar].[First2MonthsSecondSemester2003] ON COLUMNS,

 [Product].[Category].Children ON ROWS

FROM

 [Adventure Works]

WHERE

 [Measures].[Order Quantity]

The following example returns the count of the resellers whose sales have declined over the
previous time period, based on user-selected State-Province member values evaluated using the
Aggregate function. The Hierarchize and DrillDownLevel functions are used to return values
for declining sales for product categories in the Product dimension.

WITH MEMBER Measures.[Declining Reseller Sales] AS

 Count(

 Filter(

 Existing(Reseller.Reseller.Reseller),

 [Measures].[Reseller Sales Amount] < ([Measures].[Reseller Sales

Amount],

 [Date].Calendar.PrevMember)

)

)

MEMBER [Geography].[State-Province].x AS

 Aggregate (

 {[Geography].[State-Province].&[WA]&[US],

 [Geography].[State-Province].&[OR]&[US] }

)

SELECT NON EMPTY Hierarchize (

 AddCalculatedMembers (

 {DrillDownLevel({[Product].[All Products]})}

)

)

 DIMENSION PROPERTIES PARENT_UNIQUE_NAME ON COLUMNS

 162

FROM [Adventure Works]

WHERE ([Geography].[State-Province].x,

 [Date].[Calendar].[Calendar Quarter].&[2003]&[4],

 [Measures].[Declining Reseller Sales])

See Also
MDX Function Reference (MDX)
Children (MDX)
Hierarchize (MDX)
Count (Set) (MDX)
Filter (MDX)
AddCalculatedMembers (MDX)
DrilldownLevel (MDX)
Properties (MDX)
PrevMember (MDX)
MDX Function Reference (MDX)

AllMembers
Evaluates either a hierarchy or a level expression and returns a set that contains all members of
the specified hierarchy or level, which includes all calculated members in the hierarchy or level.

Syntax

Hierarchy syntax
Hierarchy_Expression.AllMembers

Level syntax
Level_Expression.AllMembers

Arguments
Hierarchy_Expression

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

 163

Remarks
The AllMembers function returns a set that contains all members, which includes calculated
members, in the specified hierarchy or level. The AllMembers function returns the calculated
members even if the specified hierarchy or level contains no visible members.

When a dimension contains only a single visible hierarchy, the hierarchy can be either
referred to by the dimension name or by the hierarchy name, because the dimension
name in this case is resolved to its only visible hierarchy. For example,
Measures.AllMembers is a valid MDX expression because it resolves to the only
hierarchy in the Measures dimension.

The AllMembers function is semantically similar to the AddCalculatedMembers (MDX)
function.

Examples
The following example returns all members in the [Date].[Calendar Year] attribute hierarchy
on the column axis, this includes calculated members, and the set of all children of the
[Product].[Model Name] attribute hierarchy on the row axis from the Adventure Works
cube.

SELECT

 [Date].[Calendar Year].AllMembers ON COLUMNS,

 [Product].[Model Name].Children ON ROWS

FROM

 [Adventure Works]

The following example returns all members in the Measures dimension on the column axis, this
includes all calculated members, and the set of all children of the [Product].[Model Name]
attribute hierarchy on the row axis from the Adventure Works cube.

SELECT

 Measures.AllMembers ON COLUMNS,

 [Product].[Model Name].Children ON ROWS

FROM

 [Adventure Works]

See Also
MDX Function Reference (MDX)
Children (MDX)

Important

Note

 164

MDX Function Reference (MDX)

Ancestor
A function that returns the ancestor of a specified member at a specified level or at a specified
distance from the member.

Syntax

Level syntax
Ancestor(Member_Expression, Level_Expression)

Numeric syntax
Ancestor(Member_Expression, Distance)

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Distance

A valid numeric expression that specifies the distance from the specified member.

Remarks
With the Ancestor function, you provide the function with an MDX member expression and
then provide either an MDX expression of a level that is an ancestor of the member or a numeric
expression that represents the number of levels above that member. With this information, the
Ancestors function returns the ancestor member at that level.

To return a set containing the ancestor member, instead of just the ancestor member,
use the MDX Function Reference (MDX) function.

If a level expression is specified, the Ancestor function returns the ancestor of specified member
at the specified level. If the specified member is not within the same hierarchy as specified level,
the function returns an error.
If a distance is specified, the Ancestor function returns the ancestor of the specified member
that is the number of steps specified up in the hierarchy specified by the member expression. A
member may be specified as a member of an attribute hierarchy, a user-defined hierarchy, or in

Note

 165

some cases, a parent-child hierarchy. A number of 1 returns a member's parent and a number of
2 returns a member's grandparent (if one exists). A number of 0 returns the member itself.

Use this form of the Ancestor function for cases in which the level of the parent is
unknown or cannot be named.

Examples
The following example uses a level expression and returns the Internet Sales Amount for each
State-Province in Australia and its percent of the total Internet Sales Amount for Australia.

WITH MEMBER Measures.x AS [Measures].[Internet Sales Amount] /

 (

 [Measures].[Internet Sales Amount],

 Ancestor

 (

 [Customer].[Customer Geography].CurrentMember,

 [Customer].[Customer Geography].[Country]

)

), FORMAT_STRING = '0%'

SELECT {[Measures].[Internet Sales Amount], Measures.x} ON 0,

{

 Descendants

 (

 [Customer].[Customer Geography].[Country].&[Australia],

 [Customer].[Customer Geography].[State-Province], SELF

)

} ON 1

FROM [Adventure Works]

The following example uses a numeric expression and returns the Internet Sales Amount for
each State-Province in Australia and its percent of the total Internet Sales Amount for all
countries.

WITH MEMBER Measures.x AS [Measures].[Internet Sales Amount] /

 (

 [Measures].[Internet Sales Amount],

 Ancestor

 ([Customer].[Customer Geography].CurrentMember, 2)

Note

 166

), FORMAT_STRING = '0%'

SELECT {[Measures].[Internet Sales Amount], Measures.x} ON 0,

{

 Descendants

 (

 [Customer].[Customer Geography].[Country].&[Australia],

 [Customer].[Customer Geography].[State-Province], SELF

)

} ON 1

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Ancestors
A function that returns the set of all ancestors of a specified member at a specified level or at a
specified distance from the member. With Microsoft SQL Server Analysis Services, the set
returned will always consist of a single member - Analysis Services does not support multiple
parents for a single member.

Syntax

Level syntax
Ancestors(Member_Expression, Level_Expression)

Numeric syntax
Ancestors(Member_Expression, Distance)

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Distance

A valid numeric expression that specifies the distance from the specified member.

 167

Remarks
With the Ancestors function, you provide the function with an MDX member expression and
then provide either an MDX expression of a level that is an ancestor of that member or a
numeric expression that represents the number of levels above that member. With this
information, the Ancestors function returns the set of members (which will be a set consisting
of one member) at that level.

To return an ancestor member, rather than an ancestor set, use the Ancestor function.
If a level expression is specified, the Ancestors function returns the set of all ancestors of the
specified member at the specified level. If the specified member is not within the same hierarchy
as the specified level, the function returns an error.
If a distance is specified, the Ancestors function returns the set of all members that are the
number of steps specified up in the hierarchy specified by the member expression. A member
may be specified as a member of an attribute hierarchy, a user-defined hierarchy, or, in some
cases, a parent-child hierarchy. A number of 1 returns the set of members at the parent level
and a number of 2 returns the set of members at the grandparent level (if one exists). A number
of 0 returns the set including only the member itself.

Use this form of the Ancestors function for cases in which the level of the parent is
unknown or cannot be named.

Examples
The following example uses the Ancestors function to return the Internet Sales Amount
measure for a member, its parent, and its grandparent. This example uses level expressions to
specify the levels to be returned. The levels are in the same hierarchy as the member specified in
the member expression.

SELECT {

 Ancestors([Product].[Product Categories].[Product].[Mountain-100 Silver,

38],[Product].[Product Categories].[Category]),

 Ancestors([Product].[Product Categories].[Product].[Mountain-100 Silver,

38],[Product].[Product Categories].[Subcategory]),

 Ancestors([Product].[Product Categories].[Product].[Mountain-100 Silver,

38],[Product].[Product Categories].[Product])

 } ON 0,

[Measures].[Internet Sales Amount] ON 1

FROM [Adventure Works]

The following example uses the Ancestors function to return the Internet Sales Amount
measure for a member, its parent, and its grandparent. This example uses numeric expressions

Note

Note

 168

to specify the levels being returned. The levels are in the same hierarchy as the member
specified in the member expression.

SELECT {

 Ancestors(

 [Product].[Product Categories].[Product].[Mountain-100 Silver, 38],2

),

 Ancestors(

 [Product].[Product Categories].[Product].[Mountain-100 Silver, 38],1

),

 Ancestors(

 [Product].[Product Categories].[Product].[Mountain-100 Silver, 38],0

)

 } ON 0,

[Measures].[Internet Sales Amount] ON 1

FROM [Adventure Works]

The following example uses the Ancestors function to return the Internet Sales Amount
measure for the parent of a member of an attribute hierarchy. This example uses a numeric
expression to specify the level being returned. Since the member in the member expression is a
member of an attribute hierarchy, its parent is the [All] level.

SELECT {

 Ancestors(

 [Product].[Product].[Mountain-100 Silver, 38],1

)

 } ON 0,

[Measures].[Internet Sales Amount] ON 1

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Ascendants
Returns the set of the ascendants of a specified member, including the member itself.

Syntax

 169

Ascendants(Member_Expression)

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
The Ascendants function returns all of the ancestors of a member from the member itself up to
the top of the member’s hierarchy; more specifically, it performs a post-order traversal of the
hierarchy for the specified member, and then returns all ascendant members related to the
member, including itself, in a set. This is in contrast to the Ancestor function, which returns a
specific ascendant member, or ancestor, at a specific level.

Examples
The following example returns the count of reseller orders for the [Sales
Territory].[Northwest] member and all the ascendants of that member from the
Adventure Works cube. The Ascendants function constructs the set that includes the [Sales
Territory].[Northwest] member and its ascendants for the ROWS axis.
SELECT

 Measures.[Reseller Order Count] ON COLUMNS,

 Order(

 Ascendants(

 [Sales Territory].[Northwest]

),

 DESC

) ON ROWS

FROM

 [Adventure Works]

See Also
MDX Function Reference (MDX)

Avg
Evaluates a set and returns the average of the non empty values of the cells in the set, averaged
over the measures in the set or over a specified measure.

 170

Syntax

Avg(Set_Expression [, Numeric_Expression])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
If a set of empty tuples or an empty set is specified, the Avg function returns an empty value.
The Avg function calculates the average of the nonempty values of cells in the specified set by
first calculating the sum of values across cells in the specified set, and then dividing the
calculated sum by the count of nonempty cells in the specified set.

Analysis Services ignores nulls when calculating the average value in a set of numbers.
If a specific numeric expression (typically a measure) is not specified, the Avg function averages
each measure within the current query context. If a specific measure is provided, the Avg
function first evaluates the measure over the set, and then the function calculates the average
based on the specified measure.

When using the CurrentMember function in a calculated member statement, you must
specify a numeric expression because no default measure exists for the current
coordinate in such a query context.

To force the inclusion of empty cells, the application must use the CoalesceEmpty function or
specify a valid Numeric_Expression that supplies a value of zero (0) for empty values. For more
information about empty cells, see the OLE DB documentation.

Examples
The following example returns the average for a measure over a specified set. Notice that the
specified measure can be either the default measure for the members of the specified set or a
specified measure.
WITH SET [NW Region] AS
 {[Geography].[State-Province].[Washington]
 , [Geography].[State-Province].[Oregon]

Note

Note

 171

 , [Geography].[State-Province].[Idaho]}
MEMBER [Geography].[Geography].[NW Region Avg] AS
 AVG ([NW Region]
 --Uncomment the line below to get an average by Reseller Gross Profit
Margin
 --otherwise the average will be by whatever the default measure is in the
cube,
 --or whatever measure is specified in the query
 --, [Measures].[Reseller Gross Profit Margin]
)
SELECT [Date].[Calendar Year].[Calendar Year].Members ON 0
FROM [Adventure Works]
WHERE ([Geography].[Geography].[NW Region Avg])

The following example returns the daily average of the Measures.[Gross Profit Margin]
measure, calculated across the days of each month in the 2003 fiscal year, from the Adventure
Works cube. The Avg function calculates the average from the set of days that are contained in
each month of the [Ship Date].[Fiscal Time] hierarchy. The first version of the calculation
shows the default behavior of Avg in excluding days that did not record any sales from the
average, the second version shows how to include days with no sales in the average.
WITH MEMBER Measures.[Avg Gross Profit Margin] AS
 Avg(
 Descendants(
 [Ship Date].[Fiscal].CurrentMember,
 [Ship Date].[Fiscal].[Date]
),
 Measures.[Gross Profit Margin]
), format_String='percent'
 MEMBER Measures.[Avg Gross Profit Margin Including Empty Days] AS
 Avg(
 Descendants(
 [Ship Date].[Fiscal].CurrentMember,
 [Ship Date].[Fiscal].[Date]
),
 CoalesceEmpty(Measures.[Gross Profit Margin],0)
), Format_String='percent'
SELECT

 172

 {Measures.[Avg Gross Profit Margin],Measures.[Avg Gross Profit Margin
Including Empty Days]} ON COLUMNS,
 [Ship Date].[Fiscal].[Fiscal Year].Members ON ROWS
FROM
 [Adventure Works]
WHERE([Product].[Product Categories].[Product].&[344])
The following example returns the daily average of the Measures.[Gross Profit Margin]
measure, calculated across the days of each semester in the 2003 fiscal year, from the
Adventure Works cube.

WITH MEMBER Measures.[Avg Gross Profit Margin] AS

 Avg(

 Descendants(

 [Ship Date].[Fiscal].CurrentMember,

 [Ship Date].[Fiscal].[Date]

),

 Measures.[Gross Profit Margin]

)

SELECT

 Measures.[Avg Gross Profit Margin] ON COLUMNS,

 [Ship Date].[Fiscal].[Fiscal Year].[FY 2003].Children ON ROWS

FROM

 [Adventure Works]

See Also
MDX Function Reference (MDX)

Axis
Returns the set of tuples on a specified axis.

Syntax

Axis(Axis_Number)

 173

Arguments
Axis_Number

A valid numeric expression that specifies the axis number.

Remarks
The Axis function uses the zero-based position of an axis to return the set of tuples on an axis.
For example, Axis(0) returns the COLUMNS axis, Axis(1) returns the ROWS axis, and so on.
The Axis function cannot be used on the filter axis. This function can be used to make calculated
members aware of the context of the query that is being run. For example, you might need a
calculated member that provides the sum of only those members selected on the Rows axis. It
can also be used to make the definition of one axis dependent on the definition of another. For
example, by ordering the contents of the Rows axis according to the value of the first item on
the Columns axis.

An axis can reference only a prior axis. For example, Axis(0) must occur after the
COLUMNS axis has been evaluated, such as on a ROW or PAGE axis.

Examples
The following example query shows how to use the Axis function:
WITH MEMBER MEASURES.AXISDEMO AS
SETTOSTR(AXIS(1))
SELECT MEASURES.AXISDEMO ON 0,
[Date].[Calendar Year].MEMBERS ON 1
FROM [Adventure Works]
The following example shows the use of the Axis function inside a calculated member:
WITH MEMBER MEASURES.AXISDEMO AS
SUM(AXIS(1), [Measures].[Internet Sales Amount])
SELECT {[Measures].[Internet Sales Amount],MEASURES.AXISDEMO} ON 0,
{[Date].[Calendar Year].&[2003], [Date].[Calendar Year].&[2004]} ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Note

 174

BottomCount
Sorts a set in ascending order, and returns the specified number of tuples in the specified set
with the lowest values.

Syntax

BottomCount(Set_Expression, Count [,Numeric_Expression])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Count

A valid numeric expression that specifies the number of tuples to be returned.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
If a numeric expression is specified, this function sorts the tuples in the specified set according
to the value of the specified numeric expression as evaluated over the set, in ascending order.
The BottomCount function then returns the specified number of tuples with the lowest value.

The BottomCount function, like the TopCount function, always breaks the hierarchy.
If a numeric expression is not specified, the function returns the set of members in natural order,
without any sorting, behaving like the Tail (MDX) function.

Example
The following example returns the Reseller Order Quantity measure by for each calendar year
for the bottom five Product SubCategory sales, ordered based on the Reseller Sales Amount
measure.
SELECT BottomCount([Product].[Product Categories].[Subcategory].Members

 , 10

 , [Measures].[Reseller Sales Amount]) ON 0,

 [Date].[Calendar].[Calendar Year].Members ON 1

FROM

Important

 175

 [Adventure Works]

WHERE

 [Measures].[Reseller Order Quantity]

See Also
MDX Function Reference (MDX)

BottomPercent
Sorts a set in ascending order, and returns a set of tuples with the lowest values whose
cumulative total is equal to or greater than a specified percentage.

Syntax

BottomPercent(Set_Expression, Percentage, Numeric_Expression)

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Percentage

A valid numeric expression that specifies the percentage of tuples to be returned.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
The BottomPercent function calculates the sum of the specified numeric expression evaluated
over a specified set, sorting the set in ascending order. The function then returns the elements
with the lowest values whose cumulative percentage of the total summed value is at least the
specified percentage. This function returns the smallest subset of a set whose cumulative total is
at least the specified percentage. The returned elements are ordered largest to smallest.

The BottomPercent function, like the TopPercent function, always breaks the hierarchy.
For more information, see Order function.

Important

 176

Example
The following example returns, for the Bike category, the smallest set of members of the City
level in the Geography hierarchy in the Geography dimension for fiscal year 2003 whose
cumulative total using the Reseller Sales Amount measure is at least 15% of the cumulative total
(beginning with the members of this set with the smallest number of sales).

SELECT

[Product].[Product Categories].Bikes ON 0,

BottomPercent

 ({[Geography].[Geography].[City].Members}

 , 15

 , ([Measures].[Reseller Sales Amount],[Product].[Product

Categories].Bikes)

) ON 1

FROM [Adventure Works]

WHERE ([Measures].[Reseller Sales Amount],[Date].[Fiscal].[Fiscal Year].[FY

2003])

See Also
MDX Function Reference (MDX)

BottomSum
Sorts a specified set in ascending order, and returns a set of tuples with the lowest values whose
sum is equal to or less than a specified value.

Syntax

BottomSum(Set_Expression, Value, Numeric_Expression)

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Value

A valid numeric expression that specifies the value against which each tuple is compared.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression

 177

of cell coordinates that return a number.

Remarks
The BottomSum function calculates the sum of a specified measure evaluated over a specified
set, sorting the set in ascending order. The function then returns the elements with the lowest
values whose total of the specified numeric expression is at least the specified value (sum). This
function returns the smallest subset of a set whose cumulative total is at least the specified
value. The returned elements are ordered smallest to largest.

The BottomSum function, like the TopSum function, always breaks the hierarchy.

Examples
The following example returns, for the Bike category, the smallest set of members of the City
level in the Geography hierarchy in the Geography dimension for fiscal year 2003, and whose
cumulative total, using the Reseller Sales Amount measure, is at least the sum of 50,000
(beginning with the members of this set with the smallest number of sales):
SELECT
[Product].[Product Categories].Bikes ON 0,
BottomSum
 ({[Geography].[Geography].[City].Members}
 , 50000
 , ([Measures].[Reseller Sales Amount],[Product].[Product
Categories].Bikes)
) ON 1
FROM [Adventure Works]
WHERE([Measures].[Reseller Sales Amount],[Date].[Fiscal].[Fiscal Year].[FY
2003])

See Also
MDX Function Reference (MDX)

CalculationCurrentPass
Returns the current calculation pass of a cube for the specified query context.

Syntax

Important

 178

CalculationCurrentPass()

Remarks
The CalculationCurrentPass function returns the zero-based index of the calculation pass for
the current query context. With automatic recursion resolution in SQL Server Analysis Services,
this function has little practical use.

See Also
MDX Function Reference (MDX)
IIf (MDX)
MDX Function Reference (MDX)

CalculationPassValue
Returns either the numeric or the string value of a Multidimensional Expressions (MDX)
expression evaluated over the specified calculation pass of a cube.

Syntax
Numeric syntax
CalculationPassValue(Numeric_Expression,Pass_Value [, ABSOLUTE | RELATIVE [,ALL]])

String syntax
CalculationPassValue(String_Expression ,Pass_Value [, ABSOLUTE | RELATIVE [,ALL]])

Arguments
Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

String_Expression

A valid string expression that is typically a valid Multidimensional Expressions (MDX)
expression of cell coordinates that return a number expressed as a string.

Pass_Value

A valid numeric expression that specifies the calculation pass number.

ABSOLUTE

An access flag value that specifies that the Pass_Value parameter contains the zero-based
index of the calculation pass. ABSOLUTE is the default access flag value if no access flag value
is specified.

 179

RELATIVE

An access flag value that specifies that the Pass_Value parameter contains a relative offset
from the calculation pass of the triggering calculation. If the offset resolves into a calculation
pass index less than 0, calculation pass 0 is used and no error occurs.

ALL

When this flag is set, all values are null except for those loaded by the storage engine. When
not set, the values are aggregated without any calculations applied.

Remarks
If a numeric expression is provided, the function returns a numeric value by evaluating the
specified MDX numeric expression in the specified calculation pass, and optionally modified by
an access flag and an access flag modifier.
If a string expression is provided, the function returns a string value by evaluating the specified
MDX string expression in the specified calculation pass, and optionally modified by an access
flag and an access flag modifier.
With automatic recursion resolution in SQL Server Analysis Services, this function has little
practical use.

Only administrators can use the CalculationPassValue function within an MDX script. An
error occurs if an MDX script that contains this function is run in the context of a role
that does not have administrator privileges.

See Also
MDX Function Reference (MDX)
IIf (MDX)
 MDX Function Reference (MDX)

CASE Statement
Lets you conditionally return specific values from multiple comparisons. There are two types of
case statements:
• A simple case statement that compares an expression to a set of simple expressions to

return specific values.
• A searched case statement that evaluates a set of Boolean expressions to return specific

values.

Syntax

Note

 180

Simple Case Statement
CASE [input_expression]
WHEN when_expression THEN when_true_result_expression
[...n]
[ELSE else_result_expression]
END

Search Case Statement
CASE
WHEN Boolean_expression THEN when_true_result_expression
[...n]
[ELSE else_result_expression]
END

Arguments
input_expression

A Multidimensional Expressions (MDX) expression that resolves to a scalar value.

when_expression

A specified scalar value against which the input_expression is evaluated, which when
evaluated to true, returns the scalar value of the else_result_expression.

when_true_result_expression

The scalar value returned when the WHEN clause evaluates to true.

else_result_expression

The scalar value returned when none of the WHEN clauses evaluate to true.

Boolean_expression

An MDX expression that evaluates to a scalar value.

Remarks
If there is no ELSE clause, and all WHEN clauses evaluate to false, the result is an empty cell.

Simple Case Expression
MDX evaluates a simple case expression by resolving the input_expression to a scalar value. This
scalar value is then compared to the scalar value of the when_expression. If the two scalar values
match, the CASE statement returns the value of the when_true_expression. If the two scalar
values do not match, the next WHEN clause is evaluated. If all of the WHEN clauses evaluate to
false, the value of else_result_expression from the ELSE clause, if any, is returned.

 181

In the following example, the Reseller Order Count measure is evaluated against several WHEN
clauses and returns a result based on the value of the Reseller Order Count measure for each
year. For Reseller Order Count values that do not match a scalar value specified in a
when_expression in a WHEN clause, the scalar value of the else_result_expression is returned.

WITH MEMBER [Measures].x AS

CASE [Measures].[Reseller Order Count]

 WHEN 0 THEN 'NONE'

 WHEN 1 THEN 'SMALL'

 WHEN 2 THEN 'SMALL'

 WHEN 3 THEN 'MEDIUM'

 WHEN 4 THEN 'MEDIUM'

 WHEN 5 THEN 'LARGE'

 WHEN 6 THEN 'LARGE'

 ELSE 'VERY LARGE'

END

SELECT Calendar.[Calendar Year] on 0

, NON EMPTY [Geography].[Postal Code].Members ON 1

FROM [Adventure Works]

WHERE [Measures].x

Searched Case Expression
To use the case expression to perform more complex evaluations, use the searched case
expression. This variation of the search expression allows you to evaluate whether an input
expression is within a range of values. MDX evaluates the WHEN clauses in the order that these
clauses appear in the CASE statement.
In the following example, the Reseller Order Count measure is evaluated against the specified
Boolean_expression for each of several WHEN clauses. A result is returned based on the value of
the Reseller Order Count measure for each year. Because WHEN clauses are evaluated in the
order they appear, all values larger than 6 can easily be assigned the value of "VERY LARGE"
without having to specify each value explicitly. For Reseller Order Count values that are not
specified in a WHEN clause, the scalar value of the else_result_expression is returned.

WITH MEMBER [Measures].x AS

CASE

 WHEN [Measures].[Reseller Order Count] > 6 THEN 'VERY LARGE'

 WHEN [Measures].[Reseller Order Count] > 4 THEN 'LARGE'

 WHEN [Measures].[Reseller Order Count] > 2 THEN 'MEDIUM'

 182

 WHEN [Measures].[Reseller Order Count] > 0 THEN 'SMALL'

 ELSE "NONE"

END

SELECT Calendar.[Calendar Year] on 0,

NON EMPTY [Geography].[Postal Code].Members on 1

FROM [Adventure Works]

WHERE [Measures].x

See Also
MDX Scripting Statements (MDX)

Children
Returns the set of children of a specified member.

Syntax

Member_Expression.Children

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
The Children function returns a naturally ordered set that contains the children of a specified
member. If the specified member has no children, this function returns an empty set.

Example
The following example returns the children of the United States member of the Geography
hierarchy in the Geography dimension.

SELECT [Geography].[Geography].[Country].&[United States].Children ON 0

FROM [Adventure Works]

The following example returns all members in the Measures dimension on the column axis, this
includes all calculated members, and the set of all children of the [Product].[Model Name]
attribute hierarchy on the row axis from the Adventure Works cube.
SELECT

 183

 Measures.AllMembers ON COLUMNS,

 [Product].[Model Name].Children ON ROWS

FROM

 [Adventure Works]

Release History

 Changed content:

• Updated syntax and
arguments to improve
clarity.

• Added updated examples.

See Also
MDX Function Reference (MDX)

ClosingPeriod
Returns the member that is the last sibling among the descendants of a specified member at a
specified level.

Syntax

ClosingPeriod([Level_Expression [,Member_Expression]])

Arguments
Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
This function is primarily intended to be used against a dimension with a type of Time, but can
be used with any dimension.

 184

• If a level expression is specified, the ClosingPeriod function uses the dimension that
contains the specified level and returns the last sibling among the descendants of the
default member at the specified level.

• If both a level expression and a member expression are specified, the ClosingPeriod
function returns the last sibling among the descendants of specified member at the specified
level.

• If neither a level expression nor a member expression is specified, the ClosingPeriod
function uses the default level and member of the dimension (if any) in the cube with a type
of Time.

The ClosingPeriod function is equivalent to the following MDX statement:
Tail(Descendants(Member_Expression, Level_Expression), 1).

The OpeningPeriod function is similar to the ClosingPeriod function, except that the
OpeningPeriod function returns the first sibling instead of the last sibling.

Examples
The following example returns the value for the default measure for FY2007 member of the Date
dimension (which has a semantic type of Time). This member is returned because the Fiscal Year
level is the first descendant of the [All] level, the Fiscal hierarchy is the default hierarchy because
it is the first user-defined hierarchy in the hierarchy collection, and the FY 2007 member is the
last sibling in this hierarchy at this level.

SELECT ClosingPeriod() ON 0

FROM [Adventure Works]

The following example returns the value for the default measure for November 30, 2006
member at the Date.Date.Date level for the Date.Date attribute hierarchy. This member is the
last sibling of the descendant of [All] level in the Date.Date attribute hierarchy.

SELECT ClosingPeriod ([Date].[Date].[Date]) ON 0

FROM [Adventure Works]

The following example returns the value for the default measure for December, 2003 member,
which is the last sibling of the descendant of the 2003 member at the year level in the Calendar
user-defined hierarchy.

SELECT ClosingPeriod ([Date].[Calendar].[Month],[Date].[Calendar].[Calendar

Year].&[2003]) ON 0

FROM [Adventure Works]

The following example returns the value for the default measure for June, 2003 member, which
is the last sibling of the descendant of the 2003 member at the year level in the Fiscal user-
defined hierarchy.

Note

 185

SELECT ClosingPeriod ([Date].[Fiscal].[Month],[Date].[Fiscal].[Fiscal

Year].&[2003]) ON 0

FROM [Adventure Works]

See Also
OpeningPeriod (MDX) (MDX)
MDX Function Reference (MDX)
LastSibling (MDX)

CoalesceEmpty
Converts an empty cell value to a specified nonempty cell value, which can be either a number
or string.

Syntax

Numeric syntax
CoalesceEmpty(Numeric_Expression1 [,Numeric_Expression2,...n])

String syntax
CoalesceEmpty(String_Expression1 [,String_Expression2,...n])

Arguments
Numeric_Expression1

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Numeric_Expression2

A valid numeric expression that is typically a specified numeric value.

String_Expression1

A valid string expression that is typically a Multidimensional Expressions (MDX) expression of
cell coordinates that returns a string.

String_Expression2

A valid string expression that is typically a specified string value that is substituted for a NULL
returned by the first string expression.

 186

Remarks
If one or more numeric expressions are specified, the CoalesceEmpty function returns the
numeric value of the first numeric expression (from left to right) that can be resolved to a
nonempty value. If none of the specified numeric expressions can be resolved to a nonempty
value, the function returns the empty cell value. Typically, the value for the second numeric
expression is the numeric value that is substituted for a NULL returned by the first numeric
expression.
If one or more string expressions are specified, the function returns the string value of the first
string expression (from left to right) that can be resolved to a nonempty value. If none of the
specified string expressions can be resolved to a nonempty value, the function returns the
empty cell value. Typically, the value for the second string expression value is the string value
that is substituted for a NULL returned by the first string expression.
The CoalesceEmpty function can only take values of the same type. In other words, all specified
value expressions must evaluate to only numeric data types or an empty cell value, or all
specified value expressions must evaluate to string data types or to an empty cell value. A single
call to this function cannot include both numeric and string expressions.
For more information about empty cells, see the OLE DB documentation.

Example
The following example queries the Adventure Works cube. This example returns the order
quantity of each product and the percentage of order quantities by category. The
CoalesceEmpty function ensures that null values are represented as zero (0) when formatting
the calculated members.

WITH

 MEMBER [Measures].[Order Percent by Category] AS

 CoalesceEmpty

 (

 ([Product].[Product Categories].CurrentMember,

 Measures.[Order Quantity]) /

 (

 Ancestor

 ([Product].[Product Categories].CurrentMember,

 [Product].[Product Categories].[Category]

), Measures.[Order Quantity]

), 0

), FORMAT_STRING='Percent'

SELECT

 187

 {Measures.[Order Quantity],

 [Measures].[Order Percent by Category]} ON COLUMNS,

{[Product].[Product].Members} ON ROWS

FROM [Adventure Works]

WHERE {[Date].[Calendar Year].[Calendar Year].&[2003]}

See Also
MDX Function Reference (MDX)

Correlation
Returns the correlation coefficient of x-y pairs of values evaluated over a set.

Syntax

Correlation(Set_Expression, Numeric_Expression_y [,Numeric_Expression_x])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression_y

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the y-axis.

Numeric_Expression_x

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the x-axis.

Remarks
The Correlation function calculates the correlation coefficient of two pairs of values by first
evaluating the specified set against the first numeric expression to obtain the values for the y-
axis. The function then evaluates the specified set against the second numeric expression, if
present, to obtain the set of values for the x-axis. If the second numeric expression is not
specified, the function uses the current context of the cells in the specified set as the values for
the x-axis.

Note

 188

The Correlation function ignores empty cells or cells that contain text or logical values.
However, the function includes cells with values of zero.

See Also
MDX Function Reference (MDX)

Count (Dimension)
Returns the number of hierarchies in a cube.

Syntax

Dimensions.Count

Remarks
Returns the number of hierarchies in a cube, including the [Measures].[Measures] hierarchy.

Example
The following example returns the number of hierarchies in the Adventure Works cube.

WITH MEMBER measures.X AS

 dimensions.count

SELECT Measures.X ON 0

FROM [Adventure Works]

See Also
Count (Tuple) (MDX)
Count (Hierarchy Levels) (MDX)
Count (Set) (MDX)
MDX Function Reference (MDX)

Count (Hierarchy Levels)
Returns the number of levels in hierarchy.

Syntax

Hierarchy_Expression.Levels.Count

 189

Arguments
Hierarchy_Expression

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Remarks
Returns the number of levels in a hierarchy, including the [All] level, if applicable.

When a dimension contains only a single visible hierarchy, the hierarchy can be referred
to either by the dimension name or by the hierarchy name, because the dimension name
is resolved to its only visible hierarchy. For example, Measures.Levels.Count is a valid
MDX expression because it resolves to the only hierarchy in the Measures dimension.

Example
The following example returns a count of the number of levels in the Product Categories user-
defined hierarchy in the Adventure Works cube.

WITH MEMBER measures.X AS

 [Product].[Product Categories].Levels.Count

Select Measures.X ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)
Count (Tuple) (MDX)
Count (Set) (MDX)
MDX Function Reference (MDX)

Count (Set)
Returns the number of cells in a set.

Syntax

Standard syntax
Count(Set_Expression [, (EXCLUDEEMPTY | INCLUDEEMPTY)])

Alternate syntax
Set_Expression.Count

Important

 190

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
The Count (Set) function includes or excludes empty cells, depending on the syntax used. If the
standard syntax is used, empty cells can be excluded or included by using the EXCLUDEEMPTY
or INCLUDEEMPTY flags, respectively. If the alternate syntax is used, the function always
includes empty cells.
To exclude empty cells in the count of a set, use the standard syntax and the optional
EXCLUDEEMPTY flag.

The Count (Set) function counts empty cells by default. In contrast, the Count function
in OLE DB that counts a set excludes empty cells by default.

Examples
The following example counts the number of cells in the set of members that consist of the
children of the Model Name attribute hierarchy in the Product dimension.

WITH MEMBER measures.X AS

 [Product].[Model Name].children.count

SELECT Measures.X ON 0

FROM [Adventure Works]

The following example counts the number of products in the Product dimension by using the
DrilldownLevel function in conjunction with the Count function.
Count(DrilldownLevel (

 [Product].[Product].[Product]))

The following example returns those resellers with declining sales compared to the previous
calendar quarter, by using the Count function in conjunction with the Filter function and a
number of other functions. This query uses the Aggregate function to support the selection of
multiple geography members, such as for selection from within a drop-down list in a client
application.

WITH MEMBER Measures.[Declining Reseller Sales] AS

 Count

 (Filter

 (Existing(Reseller.Reseller.Reseller),

 [Measures].[Reseller Sales Amount]

Note

 191

 < ([Measures].[Reseller Sales Amount],

 [Date].Calendar.PrevMember)

)

)

MEMBER [Geography].[State-Province].x AS

 Aggregate

 ({[Geography].[State-Province].&[WA]&[US],

 [Geography].[State-Province].&[OR]&[US] }

)

SELECT NON EMPTY HIERARCHIZE

 (AddCalculatedMembers

 ({DrillDownLevel

 ({[Product].[All Products]})

 })

) DIMENSION PROPERTIES PARENT_UNIQUE_NAME ON COLUMNS

FROM [Adventure Works]

WHERE ([Geography].[State-Province].x,

 [Date].[Calendar].[Calendar Quarter].&[2003]&[4]

 ,[Measures].[Declining Reseller Sales])

See Also
MDX Function Reference (MDX)
Count (Level) (MDX)
Count (Tuple) (MDX)
DrilldownLevel (MDX)
AddCalculatedMembers (MDX)
Hierarchize (MDX)
Properties (MDX)
Aggregate (MDX)
Filter (MDX)
PrevMember (MDX)
MDX Function Reference (MDX)

 192

Count (Tuple)
Returns the number of dimensions in a tuple.

Syntax

Tuple_Expression.Count

Arguments
Tuple_Expression

A valid Multidimensional Expressions (MDX) expression that returns a tuple.

Remarks
Returns the number of dimensions in a tuple.

Example
The calculated measure in the following query returns the value 2, which is the number of
hierarchies present in the tuple ([Measures].[Internet Sales Amount],
[Date].[Calendar].[Calendar Year].&[2001]):

WITH MEMBER MEASURES.COUNTTUPLE AS

COUNT(([Measures].[Internet Sales Amount], [Date].[Calendar].[Calendar

Year].&[2001]))

SELECT MEASURES.COUNTTUPLE ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)
Count (Level) (MDX)
Count (Set) (MDX)
MDX Function Reference (MDX)

Cousin
Returns the child member with the same relative position under a parent member as the
specified child member.

Syntax

 193

Cousin(Member_Expression , Ancestor_Member_Expression)

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Ancestor_Member_Expression

A valid Multidimensional Expressions (MDX) member expression that returns an ancestor
member.

Remarks
This function operates on the order and position of members within levels. If two hierarchies
exist, in which the first one has four levels and the second one has five levels, the cousin of the
third level of the first hierarchy is the third level of the second hierarchy.

Examples
The following example retrieves the cousin of the fourth quarter of fiscal year 2002, based on its
ancestor at the year level in fiscal year 2003. The retrieved cousin is the fourth quarter of fiscal
year 2003.

SELECT Cousin

 ([Date].[Fiscal].[Fiscal Quarter].[Q4 FY 2002],

 [Date].[Fiscal].[FY 2003]

) ON 0

FROM [Adventure Works]

The following example retrieves the cousin of the month of July of fiscal year 2002 based on its
ancestor at the quarter level in the second quarter of fiscal year 2004. The retrieved cousin is the
month of October of 2003.
SELECT Cousin

 ([Date].[Fiscal].[Month].[July 2002] ,

 [Date].[Fiscal].[Fiscal Quarter].[Q2 FY 2004]

) ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

 194

Covariance
Returns the population covariance of x-y pairs of values evaluated over a set, by using the
biased population formula (dividing by the number of x-y pairs).

Syntax

Covariance(Set_Expression,Numeric_Expression_y [,Numeric_Expression_x])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression_y

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the y-axis.

Numeric_Expression_x

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the x-axis.

Remarks
The Covariance function evaluates the specified set against the first numeric expression, to get
the values for the y-axis. The function then evaluates the specified set against the second
numeric expression, if specified, to get the set of values for the x-axis. If the second numeric
expression is not specified, the function uses the current context of the cells in the specified set
as values for the x-axis.
The Covariance function uses the biased population formula. This is in contrast to the
CovarianceN function that uses the unbiased population formula (dividing the number of x-y
pairs, then subtracting 1).

The Covariance function ignores empty cells or cells that contain text or logical values
are ignored. However, the function includes cells with values of zero.

Example
The following example shows how to use the Covariance function:
WITH

MEMBER [Measures].[CovarianceDemo] AS

Note

 195

COVARIANCE([Date].[Date].[Date].Members, [Measures].[Internet Sales Amount],

[Measures].[Internet Order Count])

SELECT {[Measures].[CovarianceDemo]} ON 0

FROM

[Adventure Works]

See Also
MDX Function Reference (MDX)

CovarianceN
Returns the sample covariance of x-y pairs of values evaluated over a set, by using the unbiased
population formula (dividing by the number of x-y pairs).

Syntax

CovarianceN(Set_Expression, Numeric_Expression_y [,Numeric_Expression_x])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression_y

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the y-axis.

Numeric_Expression_x

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the x-axis.

Remarks
The CovarianceN function evaluates the specified set against the first numeric expression, to
get the values for the y-axis. The function then evaluates the specified set against the second
numeric expression, if specified, to get the set of values for the x-axis. If the second numeric
expression is not specified, the function uses the current context of the cells in the specified set
as values for the x-axis.
The CovarianceN function uses the unbiased population formula. This is in contrast to the
Covariance function that uses the biased population formula (dividing by the number of x-y
pairs).

 196

The CovarianceN function ignores empty cells or cells that contain text or logical values.
However, the function includes cells with values of zero.

See Also
MDX Function Reference (MDX)

Crossjoin
Returns the cross product of one or more sets.

Syntax

Standard syntax
Crossjoin(Set_Expression1 ,Set_Expression2 [,...n])

Alternate syntax
Set_Expression1 * Set_Expression2 [* ...n]

Arguments
Set_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a set.

Set_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
The Crossjoin function returns the cross product of two or more specified sets. The order of
tuples in the resulting set depends on the order of the sets to be joined and the order of their
members. For example, when the first set consists of {x1, x2,...,xn}, and the second set consists of
{y1, y2, ..., yn}, the cross product of these sets is:
{(x1, y1), (x1, y2),...,(x1, yn), (x2, y1), (x2, y2),...,
(x2, yn),..., (xn, y1), (xn, y2),..., (xn, yn)}

If the sets in the cross join are composed of tuples from different attribute hierarchies in
the same dimension, this function will return only those tuples that actually exist. For
more information, see MDX Function Reference (MDX).

Note

Important

http://msdn.microsoft.com/en-us/library/4797ddc8-6423-497a-9a43-81a1af7eb36c(SQL.110)�

 197

Examples
The following query shows simple examples of the use of the Crossjoin function on the Columns
and Rows axis of a query:
SELECT
 [Customer].[Country].Members *
 [Customer].[State-Province].Members
ON 0,
Crossjoin(
[Date].[Calendar Year].Members,
[Product].[Category].[Category].Members)
ON 1
FROM [Adventure Works]
WHERE Measures.[Internet Sales Amount]
The following example shows the automatic filtering that takes place when different hierarchies
from the same dimension are crossjoined:
SELECT
Measures.[Internet Sales Amount]
ON 0,
//Only the dates in Calendar Years 2003 and 2004 will be returned here
Crossjoin(
{[Date].[Calendar Year].&[2003], [Date].[Calendar Year].&[2004]},
[Date].[Date].[Date].Members)
ON 1
FROM [Adventure Works]
The following three examples return the same results - the Internet Sales Amount by state for
states within the United States. The first two use the two cross join syntaxes and the third
demonstrates the use of the WHERE clause to return the same information.

Example 1

SELECT CROSSJOIN

 (

 {[Customer].[Country].[United States]},

 [Customer].[State-Province].Members

) ON 0

FROM [Adventure Works]

WHERE Measures.[Internet Sales Amount]

 198

Example 2

SELECT

 [Customer].[Country].[United States] *

 [Customer].[State-Province].Members

ON 0

FROM [Adventure Works]

WHERE Measures.[Internet Sales Amount]

Example 3

SELECT

 [Customer].[State-Province].Members

ON 0

FROM [Adventure Works]

WHERE (Measures.[Internet Sales Amount],

 [Customer].[Country].[United States])

See Also
MDX Function Reference (MDX)

Current
Returns the current tuple from a set during iteration.

Syntax

Set_Expression.Current

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
At each step during an iteration, the tuple being operated upon is the current tuple. The
Current function returns that tuple. This function is only valid during an iteration over a set.
MDX functions that iterate through a set include the Generate function.

Note

 199

This function only works with sets that are named, either using a set alias or by defining
a named set.

Examples
The following example shows how to use the Current function inside Generate:
WITH
//Creates a set of tuples consisting of all Calendar Years crossjoined with
//all Product Categories
SET MyTuples AS CROSSJOIN(
[Date].[Calendar Year].[Calendar Year].MEMBERS,
[Product].[Category].[Category].MEMBERS)
//Iterates through each tuple in the set and returns the name of the Calendar
//Year in each tuple
MEMBER MEASURES.CURRENTDEMO AS
GENERATE(MyTuples, MyTuples.CURRENT.ITEM(0).NAME, ", ")
SELECT MEASURES.CURRENTDEMO ON 0
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

CurrentMember
Returns the current member along a specified hierarchy during iteration.

Syntax

Hierarchy_Expression.CurrentMember

Arguments
Hierarchy_Expression

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Remarks
When iterating through a set of hierarchy members, at each step in the iteration, the member
being operated upon is the current member. The CurrentMember function returns that
member.

 200

When a dimension contains only a single visible hierarchy, the hierarchy can be referred
to either by the dimension name or by the hierarchy name, because the dimension name
is resolved to its only visible hierarchy. For example, Measures.CurrentMember is a valid
MDX expression because it resolves to the only hierarchy in the Measures dimension.

Examples
The following query shows how Currentmember can be used to find the current member from
hierarchies on the Columns, Rows and slice axis:
WITH MEMBER MEASURES.CURRENTDATE AS
[Date].[Calendar].CURRENTMEMBER.NAME
MEMBER MEASURES.CURRENTPRODUCT AS
[Product].[Product Categories].CURRENTMEMBER.NAME
MEMBER MEASURES.CURRENTMEASURE AS
MEASURES.CURRENTMEMBER.NAME
MEMBER MEASURES.CURRENTCUSTOMER AS
[Customer].[Customer Geography].CURRENTMEMBER.NAME
SELECT
[Product].[Product Categories].[Category].MEMBERS
*
{MEASURES.CURRENTDATE, MEASURES.CURRENTPRODUCT,MEASURES.CURRENTMEASURE,
MEASURES.CURRENTCUSTOMER}
ON 0,
[Date].[Calendar].MEMBERS
ON 1
FROM [Adventure Works]
WHERE([Customer].[Customer Geography].[Country].&[Australia])

The current member changes on a hierarchy used on an axis in a query. Therefore, the current
member on other hierarchies on the same dimension that are not used on an axis can also
change; this behavior is called 'auto-exists' and more details can be found in Key Concepts in
MDX (MDX). For example, the query below shows how the current member on the Calendar
Year hierarchy of the Date dimension changes with the current member on the Calendar
hierarchy, when the latter is displayed on the Rows axis:
WITH MEMBER MEASURES.CURRENTYEAR AS
[Date].[Calendar Year].CURRENTMEMBER.NAME
SELECT

Important

http://msdn.microsoft.com/en-us/library/4797ddc8-6423-497a-9a43-81a1af7eb36c(SQL.110)�
http://msdn.microsoft.com/en-us/library/4797ddc8-6423-497a-9a43-81a1af7eb36c(SQL.110)�

 201

{MEASURES.CURRENTYEAR}
ON 0,
[Date].[Calendar].MEMBERS
ON 1
FROM [Adventure Works]

CurrentMember is very important for making calculations aware of the context of the query
they are being used in. The following example returns the order quantity of each product and
the percentage of order quantities by category and model, from the Adventure Works cube.
The CurrentMember function identifies the product whose order quantity is to be used during
calculation.

WITH

 MEMBER [Measures].[Order Percent by Category] AS

 CoalesceEmpty

 (

 ([Product].[Product Categories].CurrentMember,

 Measures.[Order Quantity]) /

 (

 Ancestor

 ([Product].[Product Categories].CurrentMember,

 [Product].[Product Categories].[Category]

), Measures.[Order Quantity]

), 0

), FORMAT_STRING='Percent'

SELECT

 {Measures.[Order Quantity],

 [Measures].[Order Percent by Category]} ON COLUMNS,

{[Product].[Product].Members} ON ROWS

FROM [Adventure Works]

WHERE {[Date].[Calendar Year].[Calendar Year].&[2003]}

See Also
MDX Function Reference (MDX)

 202

CurrentOrdinal
Returns the current iteration number within a set during iteration.

Syntax

Set_Expression.CurrentOrdinal

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
When iterating through a set, such as with the Filter (MDX) or Generate (MDX) functions, the
CurrentOrdinal function returns the iteration number.

Examples
The following simple example shows how CurrentOrdinal can be used with Generate to return
a string containing the name of each item in a set along with its position in the set:
WITH SET MySet AS [Customer].[Customer Geography].[Country].MEMBERS
MEMBER MEASURES.CURRENTORDINALDEMO AS
GENERATE(MySet, CSTR(MySet.CURRENTORDINAL) + ") " +
MySet.CURRENT.ITEM(0).NAME, ", ")
SELECT MEASURES.CURRENTORDINALDEMO ON 0
FROM [Adventure Works]
The practical use of CurrentOrdinal is limited to very complex calculations. The following
example returns the number of products in the set that are unique, using the Order function to
order the non-empty tuples before utilizing the Filter function. The CurrentOrdinal function is
used to compare and eliminate ties.
WITH MEMBER [Measures].[PrdTies] AS Count

 (Filter

 (Order

 (NonEmpty

 ([Product].[Product].[Product].Members

 , {[Measures].[Reseller Order Quantity]}

)

 , [Measures].[Reseller Order Quantity]

 203

 , BDESC

) AS OrdPrds

 , NOT((OrdPrds.CurrentOrdinal < OrdPrds.Count

 AND [Measures].[Reseller Order Quantity] =

 ([Measures].[Reseller Order Quantity]

 , OrdPrds.Item

 (OrdPrds.CurrentOrdinal

)

)

)

 OR (OrdPrds.CurrentOrdinal > 1

 AND [Measures].[Reseller Order Quantity] =

 ([Measures].[Reseller Order Quantity]

 , OrdPrds.Item

 (OrdPrds.CurrentOrdinal-2)

)

)

))

)

SELECT {[Measures].[PrdTies]} ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

CustomData
Returns the value of the CustomData connection string property if defined; otherwise, null.

Syntax

CustomData()

 204

Return Value
The CustomData function can retrieve the CustomData connection string property and pass a
configuration setting to be used by Multidimensional Expressions (MDX) functions and
statements, such as UserName (MDX) and CALL Statement (MDX). For example, this function can
be used in a dynamic security expression to select the allowed/denied set members for the
string value in the CustomData connection string property.

Example
The following query displays the value returned by the CustomData function in a calculated
measure:

WITH MEMBER [Measures].CUSTOMDATADEMO AS CUSTOMDATA()

SELECT [Measures].CUSTOMDATADEMO ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

DataMember
Returns the system-generated data member that is associated with a nonleaf member of a
dimension.

Syntax

Member_Expression.DataMember

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
This function operates on nonleaf members in any hierarchy and can be used by the UPDATE
CUBE Statement (MDX) command to writeback data to a nonleaf member directly, rather than to
the leaf member's descendants.

Note

 205

Returns the specified member if the specified member is a leaf member, or if the nonleaf
member does not have an associated data member.

Example
The following example uses the DataMember function in a calculated measure to show the
sales quota for each individual employee:

WITH MEMBER measures.InvidualQuota AS

([Employee].[Employees].currentmember.datamember, [Measures].[Sales Amount

Quota])

,FORMAT_STRING='Currency'

SELECT {[Measures].[Sales Amount Quota],[Measures].InvidualQuota} ON COLUMNS,

[Employee].[Employees].MEMBERS ON ROWS

FROM [Adventure Works]

See Also
Key Concepts in MDX (MDX)
Key Concepts in MDX (MDX)

DefaultMember
Returns the default member of a hierarchy.

Syntax

Hierarchy_Expression.DefaultMember

Arguments
Hierarchy_Expression

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Remarks
The default member on an attribute is used to evaluate expressions when an attribute is not
included in a query.

Example
The following example uses the DefaultMember function, in conjunction with the Name
function, to return the default member for the Destination Currency dimension in the Adventure

http://msdn.microsoft.com/en-us/library/4797ddc8-6423-497a-9a43-81a1af7eb36c(SQL.110)�

 206

Works cube. The example returns US Dollar. The Name function is used to return the name of
the measure rather than the default property of the measure, which is value.

WITH MEMBER Measures.x AS

 [Destination Currency].[Destination Currency].DefaultMember.Name

SELECT Measures.x ON 0

FROM [Adventure Works]

See Also
Defining a Default Member
Defining a Default Member

Descendants
Returns the set of descendants of a member at a specified level or distance, optionally including
or excluding descendants in other levels.

Syntax

Member expression syntax using a level expression
Descendants(Member_Expression [, Level_Expression [,Desc_Flag]])

Member expression syntax using a numeric expression
Descendants(Member_Expression [, Distance [,Desc_Flag]])

Set expression syntax using a level expression
Descendants(Set_Expression [, Level_Expression [,Desc_Flag]])

Member expression syntax using a numeric expression
Descendants(Set_Expression [, Distance [,Desc_Flag]])

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

http://msdn.microsoft.com/en-us/library/db487856-ee21-49c3-aa08-d9136e193374(SQL.110)�

 207

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Distance

A valid numeric expression that specifies the distance from the specified member.

Desc_Flag

A valid string expression specifying a description flag that distinguishes among possible sets
of descendants.

Remarks
If a level is specified, the Descendants function returns a set that contains the descendants of
the specified member or the members of the specified set, at a specified level, optionally
modified by a flag specified in Desc_Flag.
If Distance is specified, the Descendants function returns a set that contains the descendants of
the specified member or the members of the specified set that are the specified number of
levels away in the hierarchy of the specified member, optionally modified by a flag specified in
Desc_Flag. Typically, you use this function with the Distance argument to deal with ragged
hierarchies. If the specified distance is zero (0), the function returns a set that consists only of the
specified member or the specified set.
If a set expression is specified, the Descendants function is resolved individually for each
member of the set, and the set is created again. In other words, the syntax used for the
Descendants function is functionally equivalent to the MDX Generate function.
If no level or distance is specified, the default value for the level used by the function is
determined by calling the Level function (<<Member>>.Level) for the specified member (if a
member is specified) or by calling the Level function for each member of the specified set (if a
set is specified). If no level expression, distance or flags are specified, the function performs as if
the following syntax were used:
Descendants
 (
 Member_Expression ,
 Member_Expression.Level ,
 SELF_BEFORE_AFTER
)
If a level is specified and a description flag is not specified, the function performs as if the
following syntax were used.
Descendants
 (
 Member_Expression ,
 Level_Expression,

 208

 SELF
)
By changing the value of the description flag, you can include or exclude descendants at the
specified level or distance, the children before or after the specified level or distance (until the
leaf node), and the leaf children regardless of the specified level or distance. The following table
describes the flags allowed in the Desc_Flag argument.

Flag Description

SELF Returns only descendant members from
the specified level or at the specified
distance. The function includes the
specified member, if the specified level is
the level of the specified member.

AFTER Returns descendant members from all
levels subordinate to the specified level or
distance.

BEFORE Returns descendant members from all
levels between the specified member and
the specified level, or at the specified
distance. It includes the specified member,
but does not include members from the
specified level or distance.

BEFORE_AND_AFTER Returns descendant members from all
levels subordinate to the level of the
specified member. It includes the specified
member, but does not include members
from the specified level or at the specified
distance.

SELF_AND_AFTER Returns descendant members from the
specified level or at the specified distance
and all levels subordinate to the specified
level, or at the specified distance.

SELF_AND_BEFORE Returns descendant members from the
specified level or at the specified distance,
and from all levels between the specified
member and the specified level, or at the
specified distance, including the specified
member.

 209

Flag Description

SELF_BEFORE_AFTER Returns descendant members from all
levels subordinate to the level of the
specified member, and includes the
specified member.

LEAVES Returns leaf descendant members between
the specified member and the specified
level, or at the specified distance.

Examples
The following example returns the specified member (United States), and the members between
the specified member (United States) and the members of the level before the specified level
(City), The example returns the specified member itself (United States), and the members of the
State-Province level (the level before the City level). This example includes commented
arguments to enable you to easily test other arguments for this function.
SELECT Descendants

 ([Geography].[Geography].[Country].&[United States]

 //, [Geography].[Geography].[Country]

 , [Geography].[Geography].[City]

 //, [Geography].[Geography].Levels (3)

 //, SELF

 //, AFTER

 , BEFORE

 // BEFORE_AND_AFTER

 //, SELF_AND_AFTER

 //, SELF_AND_BEFORE

 //,SELF_BEFORE_AFTER

 //,LEAVES

) ON 0

FROM [Adventure Works]

The following example returns the daily average of the Measures.[Gross Profit Margin]
measure, calculated across the days of each month in the 2003 fiscal year, from the Adventure
Works cube. The Descendants function returns a set of days determined from the current
member of the [Date].[Fiscal] hierarchy.

WITH MEMBER Measures.[Avg Gross Profit Margin] AS Avg

 210

 (

 Descendants

 ([Date].[Fiscal].CurrentMember,

 [Date].[Fiscal].[Date]

),

 Measures.[Gross Profit Margin]

)

SELECT

 Measures.[Avg Gross Profit Margin] ON COLUMNS,

 [Date].[Fiscal].[Month].Members ON ROWS

FROM [Adventure Works]

WHERE ([Date].[Fiscal Year].&[2003])

The following example uses a level expression and returns the Internet Sales Amount for each
State-Province in Australia, and returns the percentage of the total Internet Sales Amount for
Australia for by each State-Province. This example uses the Item function to extract the first (and
only) tuple from the set that is returned by the Ancestors function.

WITH MEMBER Measures.x AS

 [Measures].[Internet Sales Amount] /

 ([Measures].[Internet Sales Amount],

 Ancestors

 ([Customer].[Customer Geography].CurrentMember,

 [Customer].[Customer Geography].[Country]

).Item (0)

), FORMAT_STRING = '0%'

SELECT {[Measures].[Internet Sales Amount], Measures.x} ON 0,

{Descendants

 ([Customer].[Customer Geography].[Country].&[Australia],

 [Customer].[Customer Geography].[State-Province], SELF

)

} ON 1

FROM [Adventure Works]

 211

See Also
MDX Function Reference (MDX)

Dimension
Returns the hierarchy that contains a specified member, level, or hierarchy.

Syntax

Hierarchy syntax
Hierarchy_Expression.Dimension

Level syntax
Level_Expression.Dimension

Member syntax
Member_Expression.Dimension

Arguments
Hierarchy_Expression

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Examples
The following example uses the Dimension function, in conjunction with the Name function, to
return the hierarchy name of the specified member.

WITH member measures.x as [Product].[Product Model Lines].[Model].&[HL Road

Tire].Dimension.Name

SELECT measures.x on 0

FROM [Adventure Works]

 212

The following example uses the Dimension function, in conjunction with the Levels and the
Count functions, to return the number of levels in the hierarchy containing the specified
member.
WITH member measures.x as [Product].[Product Model Lines].[Model].&[HL Road

Tire].Dimension.Levels.Count

SELECT measures.x on 0

FROM [Adventure Works]

The following example uses the Dimension function, in conjunction with the Members and the
Count functions, to return the number of members in the hierarchy containing the specified
member.
WITH member measures.x as [Product].[Product Model Lines].[Model].&[HL Road

Tire].Dimension.Members.Count

SELECT measures.x on 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)
Count (Set) (MDX)
Levels (MDX)
Members (Set) (MDX)
MDX Function Reference (MDX)

Dimensions
Returns a hierarchy specified by a numeric or string expression.

Syntax

Numeric expression syntax
Dimensions(Hierarchy_Number)

String expression syntax
Dimensions(Hierarchy_Name)

Arguments
Hierarchy_Number

A valid numeric expression that specifies a hierarchy number.

 213

Hierarchy_Name

A valid string expression that specifies a hierarchy name

Remarks
If a hierarchy number is specified, the Dimensions function returns a hierarchy whose zero-
based position within the cube is specified hierarchy number.
If a hierarchy name is specified, the Dimensions function returns the specified hierarchy.
Typically, you use this string version of the Dimensions function with user-defined functions.

The Measures dimension is always represented by Dimensions(0).

Examples
The following examples use the Dimensions function to return the name, count of levels, and
count of members of a specified hierarchy, using both a numeric expression and a string
expression.

WITH MEMBER Measures.x AS Dimensions

 ('[Product].[Product Model Lines]').Name

SELECT Measures.x on 0

FROM [Adventure Works]

WITH MEMBER Measures.x AS Dimensions

 ('[Product].[Product Model Lines]').Levels.Count

SELECT Measures.x on 0

FROM [Adventure Works]

WITH MEMBER Measures.x AS Dimensions

 ('[Product].[Product Model Lines]').Members.Count

SELECT Measures.x on 0

FROM [Adventure Works]

WITH MEMBER Measures.x AS Dimensions(0).Name

SELECT Measures.x on 0

FROM [Adventure Works]

WITH MEMBER Measures.x AS Dimensions(0).Levels.Count

Note

 214

SELECT measures.x on 0

FROM [Adventure Works]

WITH MEMBER Measures.x AS Dimensions(0).Members.Count

SELECT measures.x on 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Distinct
Evaluates a specified set, removes duplicate tuples from the set, and returns the resulting set.

Syntax

Distinct(Set_Expression)

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
If the Distinct function finds duplicate tuples in the specified set, the function keeps only the
first instance of the duplicate tuple while leaving the order of the set intact.

Examples
The following example query shows how to use the Distinct function with a named set, as well as
how to use it with the Count function to find the number of distinct tuples in a set:
WITH SET MySet AS
{[Customer].[Customer Geography].[Country].&[Australia],[Customer].[Customer
Geography].[Country].&[Australia],
[Customer].[Customer Geography].[Country].&[Canada],[Customer].[Customer
Geography].[Country].&[France],
[Customer].[Customer Geography].[Country].&[United
Kingdom],[Customer].[Customer Geography].[Country].&[United Kingdom]}
MEMBER MEASURES.SETCOUNT AS

 215

COUNT(MySet)
MEMBER MEASURES.SETDISTINCTCOUNT AS
COUNT(DISTINCT(MySet))
SELECT {MEASURES.SETCOUNT, MEASURES.SETDISTINCTCOUNT} ON 0,
DISTINCT(MySet) ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

DistinctCount
Returns the number of distinct, nonempty tuples in a set.

Syntax

DistinctCount(Set_Expression)

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
The DistinctCount function is equivalent to Count(Distinct(Set_Expression),
EXCLUDEEMPTY).

Examples
The following query shows how to use the DistinctCount function:
WITH SET MySet AS
{[Customer].[Customer Geography].[Country].&[Australia],[Customer].[Customer
Geography].[Country].&[Australia],
[Customer].[Customer Geography].[Country].&[Canada],[Customer].[Customer
Geography].[Country].&[France],
[Customer].[Customer Geography].[Country].&[United
Kingdom],[Customer].[Customer Geography].[Country].&[United Kingdom]}
*
{([Date].[Calendar].[Date].&[20010701],[Measures].[Internet Sales Amount])}

 216

//Returns the value 3 because Internet Sales Amount is null
//for the UK on the date specified
MEMBER MEASURES.SETDISTINCTCOUNT AS
DISTINCTCOUNT(MySet)
SELECT {MEASURES.SETDISTINCTCOUNT} ON 0
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)
MDX Function Reference (MDX)

DrilldownLevel
Drills down the members of a set to one level below the lowest level represented in the set, or
to one level below an optionally specified level of a member represented in the set.

Syntax

Level expression syntax
DrilldownLevel(Set_Expression [, Level_Expression])
Numeric expression syntax
DrilldownLevel(Set_Expression [, ,Index])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Index

A valid numeric expression that specifies the hierarchy number to drill down into within the
set.

Remarks
The DrilldownLevel function returns a set of child members in a hierarchical order, based on
the members included in the specified set. Order is preserved among the original members in
the specified set, except that all child members included in the result set of the function are
included immediately under their parent member.

 217

If a level expression is specified, the function constructs a set in a hierarchical order by retrieving
the children of only those members that are at the specified level. If a level expression is
specified and there is no member at the specified level represented in the specified set, the
specified set is returned.
If an index value is specified, the function constructs a set in a hierarchical order by retrieving
the children of only those members that are at the next lowest level of the specified hierarchy
referenced in the specified set, based on a zero-based index.
If neither a level expression nor an index value is specified, the function constructs a set in a
hierarchical order by retrieving the children of only those members that are at the lowest level of
the first dimension referenced in the specified set.
Querying the XMLA property MdpropMdxDrillFunctions enables you to verify the level of
support that the server provides for the drilling functions; see Supported XMLA Properties
(XMLA) for details.

Examples
The following example counts the number of products in the Product dimension by using the
DrilldownLevel function in conjunction with the Count function.

Count(DrilldownLevel (

 [Product].[Product].[Product]))

The following example uses the numeric expression syntax to drilldown into the first hierarchy,
the Customer Geography hierarchy.

SELECT DRILLDOWNLEVEL

 ({[Customer].[Customer Geography].[Country].&[Canada]} *

{[Customer].[Gender].[All Customers]},,0)

 ON 0

FROM [Adventure Works]

The following example uses the numeric expression syntax to drilldown into the second
hierarchy, which is the Gender hierarchy.

SELECT DRILLDOWNLEVEL

 ({[Customer].[Customer Geography].[Country].&[Canada]} *

{[Customer].[Gender].[All Customers]},,1)

 ON 0

FROM [Adventure Works]

The following example returns the count of the resellers whose sales have declined over the
previous time period, based on user-selected State-Province member values evaluated by using
the Aggregate function. The Hierarchize and DrilldownLevel functions are used to return values
for declining sales for product categories in the Product dimension. The DrilldownLevel function

http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�

 218

is used to drill down to the next lowest level of the Product attribute hierarchy (because no level
is specified).

WITH MEMBER Measures.[Declining Reseller Sales] AS

 Count(

 Filter(

 Existing(Reseller.Reseller.Reseller),

 [Measures].[Reseller Sales Amount] < ([Measures].[Reseller Sales

Amount],

 [Date].Calendar.PrevMember)

)

)

MEMBER [Geography].[State-Province].x AS

 Aggregate (

 {[Geography].[State-Province].&[WA]&[US],

 [Geography].[State-Province].&[OR]&[US] }

)

SELECT NON EMPTY Hierarchize (

 AddCalculatedMembers (

 {DrilldownLevel ({[Product].[All Products]})}

))

 DIMENSION PROPERTIES PARENT_UNIQUE_NAME ON COLUMNS

FROM [Adventure Works]

WHERE ([Geography].[State-Province].x,

 [Date].[Calendar].[Calendar Quarter].&[2003]&[4],

 [Measures].[Declining Reseller Sales])

See Also
MDX Function Reference (MDX)

DrilldownLevelBottom
Drills down the bottommost members of a set, at a specified level, to one level below.

 219

Syntax

DrilldownLevelBottom(Set_Expression, Count [, Level_Expression [,Numeric_Expression]])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Count

A valid numeric expression that specifies the number of tuples to be returned.

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
If a numeric expression is specified, the DrilldownLevelBottom function sorts, in ascending
order, the children of each member in the specified set, according to the specified value, as
evaluated over the set of child members. If a numeric expression is not specified, the function
sorts, in ascending order, the children of each member in the specified set, according to the
values of the cells represented by the set of child members, as determined by the query context;
This behavior is similar to the BottomCount and Tail (MDX) functions which return a set of
members in natural order, without any sorting.
After sorting, the DrilldownLevelBottom function returns a set that contains the parent
members and the number of child members, specified in Count, with the lowest value.
The DrilldownLevelBottom function is similar to the DrilldownLevel function, but instead of
including all children for each member at the specified level, the DrilldownLevelBottom
function returns the bottom-most number of child members.
Querying the XMLA property MdpropMdxDrillFunctions enables you to verify the level of
support that the server provides for the drilling functions; see Supported XMLA Properties
(XMLA) for details.

Example
The following example returns the bottom three children of the Product Category level, based
on the default measure.

SELECT DrilldownLevelBottom

 ([Product].[Product Categories].children,

http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�

 220

 3,

 [Product].[Product Categories].[Category])

 ON 0

 FROM [Adventure Works]

See Also
MDX Function Reference (MDX)
MDX Function Reference (MDX)

DrilldownLevelTop
Drills down the topmost members of a set, at a specified level, to one level below.

Syntax

DrilldownLevelTop(<set_expression>, <count> [,[<level_expression>]
[,[<numeric_expression>][,INCLUDE_CALC_MEMBERS]]])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Count

A valid numeric expression that specifies the number of tuples to be returned.

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

INCLUDE_CALC_MEMBERS

A keyword to enable calculated members to be included in drilldown results

Remarks
If a numeric expression is specified, the DrilldownLevelTop function sorts, in descending order,
the children of each member in the specified set according to the value of the numeric

 221

expression, as evaluated over the set of child members. If a numeric expression is not specified,
the function sorts, in descending order, the children of each member in the specified set
according to the values of the cells represented by the set of child members, as determined by
the query context.
After sorting, the DrilldownLevelTop function returns a set that contains the parent members
and the number of child members, specified in Count, with the highest value.
The DrilldownLevelTop function is similar to the DrilldownLevel function, but instead of
including all children for each member at the specified level, the DrilldownLevelTop function
returns the topmost number of child members.
Querying the XMLA property MdpropMdxDrillFunctions enables you to verify the level of
support that the server provides for the drilling functions; see Supported XMLA Properties
(XMLA) for details.

See Also
MDX Function Reference (MDX)
MDX Function Reference (MDX)

DrilldownMember
Drills down the members in a specified set that are present in a second specified set.
Alternatively, the function drills down on a set of tuples by using the first tuple hierarchy or the
optionally specified hierarchy.

Syntax

DrillDownMember(<set_expression1>, <set_expression2> [,[<target_hierarchy>]]
[,[RECURSIVE][,INCLUDE_CALC_MEMBERS]])

Arguments

Term Definition

Set_Expression1 A valid Multidimensional Expressions (MDX)
expression that returns a set.

Set_Expression2 A valid Multidimensional Expressions (MDX)
expression that returns a set.

Target_Hierarchy A valid Multidimensional Expressions (MDX)
expression that returns a hierarchy.

http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�

 222

RECURSIVE A keyword that indicates recursive
comparison of sets.

INCLUDE_CALC_MEMBERS A keyword to enable calculated members
to be included in drilldown results.

Remarks
This function returns a set of child members that are ordered by hierarchy, and includes
members specified in the first set that are also present in the second set. Parent members will
not be drilled down if the first set contains the parent member and one or more children. The
first set can have any dimensionality, but the second set must contain a one-dimensional set.
Order is preserved among the original members in the first set, except that all child members
included in the result set of the function are included immediately under their parent member.
The function constructs the result set by retrieving the children for each member in the first set
that is also present in the second set. If RECURSIVE is specified, the function continues to
recursively compare the members of the result set against the second set, retrieving the children
for each member in the result set that is also present in the second set until no more members
from the result set can be found in the second set.
Querying the XMLA property MdpropMdxDrillFunctions enables you to verify the level of
support that the server provides for the drilling functions; see Supported XMLA Properties
(XMLA) for details.
The first set can contain tuples instead of members. Tuple drilldown is an extension of OLE DB,
and it returns a set of tuples instead of members.

A member will not get drilled down into if it is immediately followed by one of its
children. The order of members in the set matters for both the Drilldown* and Drillup*
families of functions.

Examples
The following example drills down into Australia, which is the member of the first set which is
also present in the second set.
SELECT DrilldownMember

 ([Geography].[Geography].Children,

 {[Geography].[Geography].[Country].[Australia],

 [Geography].[Geography].[State-Province].[New South Wales]}

)

 ON 0

 FROM [Adventure Works]

Important

http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�

 223

The following example drills down into Australia, which is the member of the first set which is
also present in the second set. However, because the RECURSIVE argument is present, the
function continues to recursively compare the members of the result set (members of the State-
Province level) against the second set, retrieving the children for each member in the result set
(members of the City level) that is also present in the second set until no more members from
the result set can be found in the second set.
SELECT DrilldownMember

 ([Geography].[Geography].Children,

 {[Geography].[Geography].[Country].[Australia],

 [Geography].[Geography].[State-Province].[New South Wales]}

 ,RECURSIVE)

 ON 0

 FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

DrilldownMemberBottom
Drills down the members in a specified set that are present in a second specified set, limiting the
result set to a specified number of members. Alternatively, this function also drills down on a set
of tuples by using the first tuple hierarchy or the optionally specified hierarchy.

Syntax

DrillDownMemberBottom(<set_expression1>, <set_expression2>, <count>
[,[<numeric_expresion>] [,[<hierarchy>]] [,[RECURSIVE][,INCLUDE_CALC_MEMBERS]]])

Arguments
Set_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a set.

Set_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a set.

Count

A valid numeric expression that specifies the number of tuples to be returned.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression

 224

of cell coordinates that return a number.

Hierarchy A valid Multidimensional Expressions (MDX)
expression that returns a hierarchy.

RECURSIVE A keyword that indicates recursive
comparison of sets.

INCLUDE_CALC_MEMBERS A keyword to enable calculated members
to be included in drilldown results.

Remarks
If a numeric expression is specified, the DrilldownMemberBottom function sorts, in ascending
order, the children of each member in the first set, according to the value of the numeric
expression, as evaluated over the set of child members. If a numeric expression is not specified,
the function sorts, in ascending order, the children of each member in the first set according to
the values of the cells represented by the set of child members, as determined by the query
context. This behavior is similar to the BottomCount and Tail (MDX) functions which return a set
of members in natural order, without any sorting.
After sorting, the DrilldownMemberBottom function returns a set that contains the parent
members and the number of child members, specified in Count, with the lowest value and are
contained by both sets.
If RECURSIVE is specified, the function sorts the first set as described previously, then
recursively compares the members of the first set, as organized in a hierarchy, against the
second set. The function retrieves the bottommost number of children for each member in the
first set that is also present in the second set.
The first set can contain tuples instead of members. Tuple drilldown is an extension of OLE DB,
and returns a set of tuples instead of members.
The DrilldownMemberBottom function is similar to the DrilldownMember function, but
instead of including all children for each member in the first set that is also present in the
second set, the DrilldownMemberBottom function returns the bottommost number of child
members for each member.
Querying the XMLA property MdpropMdxDrillFunctions enables you to verify the level of
support that the server provides for the drilling functions; see Supported XMLA Properties
(XMLA) for details.

See Also
MDX Function Reference (MDX)

http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�

 225

DrilldownMemberTop
Drills down the members in a specified set that are present in a second specified set, limiting the
result set to a specified number of members. Alternatively, this function drills down on a set of
tuples by using the first tuple hierarchy or the optionally specified hierarchy.

Syntax

DrillDownMemberTop(<set_expression1>, <set_expression2>, <count>
[,[<numeric_expression>] [,[<hierarchy>]] [,[RECURSIVE][,INCLUDE_CALC_MEMBERS]]])

Arguments
Set_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a set.

Set_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a set.

Count

A valid numeric expression that specifies the number of tuples to be returned.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Hierarchy A valid Multidimensional Expressions (MDX)
expression that returns a set.

RECURSIVE A keyword that indicates recursive
comparison of sets.

INCLUDE_CALC_MEMBERS A keyword to enable calculated members
to be included in drilldown results.

Remarks
If a numeric expression is specified, the DrilldownMemberTop function sorts, in descending
order, the children of each member in the first set according to the value of the numeric
expression, as evaluated over the set of child members. If a numeric expression is not specified,
the function sorts, in descending order, the children of each member in the first set according to
the values of the cells represented by the set of child members, as determined by the query

 226

context. This behavior is similar to the TopCount and Head (MDX) functions which return a set of
members in natural order, without any sorting.
After sorting, the DrilldownMemberTop function returns a set that contains the parent
members and the number of child members, specified in Count, with the highest value and are
contained in both sets.
If RECURSIVE is specified, the function sorts the first set as described previously, then
recursively compares the members of the first set, as organized in a hierarchy, against the
second set. The function retrieves the topmost number of children for each member in the first
set that is also present in the second set.
The first set can contain tuples instead of members. Tuple drilldown is an extension of OLE DB,
and returns a set of tuples instead of members.
The DrilldownMemberTop function is similar to the DrilldownMember function, but instead of
including all children for each member in the first set that is also present in the second set, the
DrilldownMemberTop function returns the topmost number of child members for each
member.
Querying the XMLA property MdpropMdxDrillFunctions enables you to verify the level of
support that the server provides for the drilling functions; see Supported XMLA Properties
(XMLA) for details.

See Also
MDX Function Reference (MDX)

DrillupLevel
Drills up the members of a set that are below a specified level.

Syntax

DrillupLevel(Set_Expression [, Level_Expression])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�

 227

Remarks
The DrillupLevel function returns a set of members organized hierarchically based on the
members included in the specified set. Order is preserved among the members in the specified
set.
If a level expression is specified, the DrillupLevel function constructs the set by retrieving only
those members that are above the specified level. If a level expression is specified and there is
no member of the specified level represented in the specified set, the specified set is returned.
If a level expression is not specified, the function constructs the set by retrieving only those
members that are one level higher than the lowest level of the first dimension referenced in the
specified set.

Example
The following example returns the set of members from the first set that are above the
Subcategory level.

SELECT DrillUpLevel

 ({[Product].[Product Categories].[All Products]

 ,[Product].[Product Categories].[Subcategory].&[32],

 [Product].[Product Categories].[Product].&[215]},

 [Product].[Product Categories].[Subcategory]

)

 ON 0

 FROM [Adventure Works]

 WHERE [Measures].[Internet Order Quantity]

See Also
MDX Function Reference (MDX)

DrillupMember
Returns the members in a specified set that are not descendants of members in a second
specified set.

Syntax

DrillupMember(Set_Expression1, Set_Expression2)

 228

Arguments
Set_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a set.

Set_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
The DrillupMember function returns a set of members based on the members specified in the
first set that are descendants of members in the second set. The first set can have any
dimensionality, but the second set must contain a one-dimensional set. Order is preserved
among the original members in the first set. The function constructs the set by including only
those members in the first set that are immediate descendants of members in the second set. If
the immediate ancestor of a member in the first set is not present in the second set, the
member in the first set is included in the set returned by this function. Descendants in the first
set that precede an ancestor member in the second set are also included.
The first set can contain tuples instead of members. Tuple drilldown is an extension of OLE DB,
and returns a set of tuples instead of members.

A member will get drilled up only if it is immediately followed by a child or a descendant.
The order of members in the set matters for both the Drilldown* and Drillup* families of
functions. Consider using the Hierarchize function to appropriately order the members
of the first set.

Example
The following example drills up on the United States member, meaning that the member
Colorado is not displayed on rows:
SELECT DrillUpMember
 (
 {[Geography].[Geography].[Country].[Canada]
 ,[Geography].[Geography].[Country].[United States]
 ,[Geography].[Geography].[State-Province].[Colorado]
 ,[Geography].[Geography].[State-Province].[Alberta]
 ,[Geography].[Geography].[State-Province].[Brunswick]
 }
 , {[Geography].[Geography].[Country].[United States]}
)
ON 0

Important

 229

FROM [Adventure Works]
However, since DrillupMember only drills up on those members that are followed immediately
by descendants in the first set, it does not drill up on the Canada member in the following
example:
SELECT DrillUpMember
 (
 {[Geography].[Geography].[Country].[Canada]
 ,[Geography].[Geography].[Country].[United States]
 ,[Geography].[Geography].[State-Province].[Colorado]
 ,[Geography].[Geography].[State-Province].[Alberta]
 ,[Geography].[Geography].[State-Province].[Brunswick]
 }
 , {[Geography].[Geography].[Country].[Canada]}
)
ON 0
FROM [Adventure Works]
The following example shows how the use of Hierarchize can avoid this issue, and drills up on
the Canada member.
SELECT DrillUpMember
 (
 Hierarchize
 (
 {[Geography].[Geography].[Country].[Canada]
 ,[Geography].[Geography].[Country].[United States]
 ,[Geography].[Geography].[State-Province].[Colorado]
 ,[Geography].[Geography].[State-Province].[Alberta]
 ,[Geography].[Geography].[State-Province].[Brunswick]
 }
), {[Geography].[Geography].[Country].[Canada]}
)
ON 0
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

 230

Error
Raises an error, optionally providing a specified error message.

Syntax

Error([Error_Text])

Arguments
Error_Text

A valid string expression containing the error message to be returned.

Examples
The following query shows how to use the Error function inside a calculated measure:
WITH MEMBER MEASURES.ERRORDEMO AS ERROR("THIS IS AN ERROR")
SELECT
MEASURES.ERRORDEMO ON 0
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Except
Evaluates two sets and removes those tuples in the first set that also exist in the second set,
optionally retaining duplicates.

Syntax

Except(Set_Expression1, Set_Expression2 [, ALL])

Arguments
Set_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a set.

Set_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a set.

 231

Remarks
If ALL is specified, the function retains duplicates found in the first set; duplicates found in the
second set will still be removed. The members are returned in the order they appear in the first
set.

Examples
The following example demonstrates the use of this function.

 //This query shows the quantity of orders for all products,

 //with the exception of Components, which are not

 //sold.

SELECT

 [Date].[Month of Year].Children ON COLUMNS,

 Except

 ([Product].[Product Categories].[All].Children ,

 {[Product].[Product Categories].[Components]}

) ON ROWS

FROM

 [Adventure Works]

WHERE

 ([Measures].[Order Quantity])

See Also
MDX Function Reference (MDX)
MDX Function Reference (MDX)

Exists
Returns the set of tuples of the first set specified that exist with one or more tuples of the
second set specified. This function performs manually what auto exists performs automatically.
For more information about auto exists, see IsEmpty (MDX).
If the optional <Measure Group Name> is provided, the function returns tuples that exist with
one or more tuples from the second set and those tuples that have associated rows in the fact
table of the specified measure group.

Syntax

http://msdn.microsoft.com/en-us/library/4797ddc8-6423-497a-9a43-81a1af7eb36c(SQL.110)�

 232

Exists(Set_Expression1 , Set_Expression2 [, MeasureGroupName])

Arguments
Set_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a set.

Set_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a set.

MeasureGroupName

A valid string expression specifying a measure group name.

Remarks
Measure group rows with measures containing null values contribute to Exists when the
MeasureGroupName argument is specified. This is the difference between this form of Exists and
the Nonempty function: if the NullProcessing property of these measures is set to Preserve, this
means the measures will show Null values when queries are run against that part of the cube;
NonEmpty will always remove tuples from a set that that have Null measure values, whereas
Exists with the MeasureGroupName argument will not filter tuples that have associated measure
group rows, even if the measure values are Null.

Examples
Customers who live in California:
SELECT [Measures].[Internet Sales Amount] ON 0,

EXISTS(

[Customer].[Customer].[Customer].MEMBERS

, {[Customer].[State-Province].&[CA]&[US]}

) ON 1

FROM [Adventure Works]

Customers who live in California with sales:

SELECT [Measures].[Internet Sales Amount] ON 0,

EXISTS(

[Customer].[Customer].[Customer].MEMBERS

, {[Customer].[State-Province].&[CA]&[US]}

, "Internet Sales") ON 1

FROM [Adventure Works]

 233

Customers with sales:

SELECT [Measures].[Internet Sales Amount] ON 0,

EXISTS(

[Customer].[Customer].[Customer].MEMBERS

, , "Internet Sales") ON 1

FROM [Adventure Works]

Customers whom bought Bikes:

SELECT [Measures].[Internet Sales Amount] ON 0,

EXISTS(

[Customer].[Customer].[Customer].MEMBERS

, {[Product].[Product Categories].[Category].&[1]}

, "Internet Sales") ON 1

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)
Crossjoin (MDX)
NonEmptyCrossjoin (MDX)
NonEmpty (MDX)
IsEmpty (MDX)

Extract
Returns a set of tuples from extracted hierarchy elements.

Syntax

Extract(Set_Expression, Hierarchy_Expression1 [,Hierarchy_Expression2, ...n])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

 234

Hierarchy_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Hierarchy_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Remarks
The Extract function returns a set that consists of tuples from the extracted hierarchy elements.
For each tuple in the specified set, the members of the specified hierarchies are extracted into
new tuples in the result set. This function always removes duplicate tuples.
The Extract function performs the opposite action of the Crossjoin function.

Examples
The following query shows how to use the Extract function on a set of tuples returned by the
NonEmpty function:
SELECT [Measures].[Internet Sales Amount] ON 0,
//Returns the distinct combinations of Customer and Date for all purchases
//of Bike Racks or Bike Stands
EXTRACT(
NONEMPTY(
[Customer].[Customer].[Customer].MEMBERS
*
[Date].[Date].[Date].MEMBERS
*
{[Product].[Product Categories].[Subcategory].&[26],[Product].[Product
Categories].[Subcategory].&[27]}
*
{[Measures].[Internet Sales Amount]}
)
, [Customer].[Customer], [Date].[Date])
ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

 235

Filter
Returns the set that results from filtering a specified set based on a search condition.

Syntax

Filter(Set_Expression, Logical_Expression)

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Logical_Expression

A valid Multidimensional Expressions (MDX) logical expression that evaluates to true or false.

Remarks
The Filter function evaluates the specified logical expression against each tuple in the specified
set. The function returns a set that consists of each tuple in the specified set where the logical
expression evaluates to true. If no tuples evaluate to true, an empty set is returned.
The Filter function works in a fashion similar to that of the IIf function. The IIf function returns
only one of two options based on the evaluation of an MDX logical expression, while the Filter
function returns a set of tuples that meet the specified search condition. In effect, the Filter
function executes IIf(Logical_Expression, Set_Expression.Current, NULL) on each
tuple in the set, and returns the resulting set.

Examples
The following example shows the use of the Filter function on the Rows axis of a query, to return
only the Dates where Internet Sales Amount is greater than $10000:
SELECT [Measures].[Internet Sales Amount] ON 0,
FILTER(
[Date].[Date].[Date].MEMBERS
, [Measures].[Internet Sales Amount]>10000)
ON 1
FROM
[Adventure Works]
The Filter function can also be using inside calculated member definitions. The following
example returns the sum of the Measures.[Order Quantity] member, aggregated over the
first nine months of 2003 contained in the Date dimension, from the Adventure Works cube.
The PeriodsToDate function defines the tuples in the set over which the Aggregate function

 236

operates. The Filter function limits those tuples being returned to those with lower values for
the Reseller Sales Amount measure for the previous time period.

WITH MEMBER Measures.[Declining Reseller Sales] AS Count

 (Filter

 (Existing

 (Reseller.Reseller.Reseller),

 [Measures].[Reseller Sales Amount] <

 ([Measures].[Reseller Sales

Amount],[Date].Calendar.PrevMember)

)

)

MEMBER [Geography].[State-Province].x AS Aggregate

({[Geography].[State-Province].&[WA]&[US],

 [Geography].[State-Province].&[OR]&[US] }

)

SELECT NON EMPTY HIERARCHIZE

 (AddCalculatedMembers

 ({DrillDownLevel

 ({[Product].[All Products]})}

)

) DIMENSION PROPERTIES PARENT_UNIQUE_NAME ON COLUMNS

FROM [Adventure Works]

WHERE ([Geography].[State-Province].x,

 [Date].[Calendar].[Calendar Quarter].&[2003]&[4],

 [Measures].[Declining Reseller Sales])

See Also
MDX Function Reference (MDX)

FirstChild
Returns the first child of a specified member.

Syntax

 237

Member_Expression.FirstChild

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Example
The following query returns the first child of fiscal year 2003 in the Fiscal hierarchy, which is the
first semester of Fiscal Year 2003.

SELECT [Date].[Fiscal].[Fiscal Year].&[2003].FirstChild ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)
MDX Function Reference (MDX)

FirstSibling
Returns the first child of the parent of a member.

Syntax

Member_Expression.FirstSibling

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Example
The following query returns the first sibling of fiscal year 2003 in the Fiscal hierarchy, which is
Fiscal Year 2002.

SELECT [Date].[Fiscal].[Fiscal Year].&[2003].FirstSibling ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

 238

Generate
Applies a set to each member of another set, and then joins the resulting sets by union.
Alternatively, this function returns a concatenated string created by evaluating a string
expression over a set.

Syntax

Set expression syntax
Generate(Set_Expression1 , Set_Expression2 [, ALL])

String expression syntax
Generate(Set_Expression1 , String_Expression [,Delimiter])

Arguments
Set_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a set.

Set_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a set.

String_Expression

A valid string expression that is typically the name of the current member
(CurrentMember.Name) of each tuple in the specified set.

Delimiter

A valid delimiter expressed as a string expression.

Remarks
If a second set is specified, the Generate function returns a set generated by applying the tuples
in the second set to each tuple in the first set, and then joining the resulting sets by union. If
ALL is specified, the function retains duplicates in the resulting set.
If a string expression is specified, the Generate function returns a string generated by evaluating
the specified string expression against each tuple in the first set, and then concatenating the
results. Optionally, the string can be delimited, separating each result in the resulting
concatenated string.

Examples

Set

 239

In the following example, the query returns a set containing the Measure Internet Sales amount
four times, because there are four members in the set [Date].[Calendar Year].[Calendar
Year].MEMBERS:
SELECT

GENERATE([Date].[Calendar Year].[Calendar Year].MEMBERS

, {[Measures].[Internet Sales Amount]}, ALL)

ON 0

FROM [Adventure Works]

Removing the ALL changes the query so that the Internet Sales Amount is returned once only:

SELECT

GENERATE([Date].[Calendar Year].[Calendar Year].MEMBERS

, {[Measures].[Internet Sales Amount]})

ON 0

FROM [Adventure Works]

The most common practical use of Generate is to evaluate a complex set expression, such as
TopCount, over a set of members. The following example query displays the top 10 Products for
each Calendar Year on Rows:

SELECT

{[Measures].[Internet Sales Amount]}

ON 0,

GENERATE(

[Date].[Calendar Year].[Calendar Year].MEMBERS

, TOPCOUNT(

[Date].[Calendar Year].CURRENTMEMBER

*

[Product].[Product].[Product].MEMBERS

,10, [Measures].[Internet Sales Amount]))

ON 1

FROM [Adventure Works]

Note that a different top 10 is displayed for each year, and that the use of Generate is the only
way to get this result. Simply crossjoining Calendar Years and the set of top 10 Products will
display the top 10 Products for all time, repeated for each year, as shown in the following
example:

SELECT

{[Measures].[Internet Sales Amount]}

 240

ON 0,

[Date].[Calendar Year].[Calendar Year].MEMBERS

*

TOPCOUNT(

[Product].[Product].[Product].MEMBERS

,10, [Measures].[Internet Sales Amount])

ON 1

FROM [Adventure Works]

String
The following example shows the use of Generate to return a string:

WITH

MEMBER MEASURES.GENERATESTRINGDEMO AS

GENERATE(

[Date].[Calendar Year].[Calendar Year].MEMBERS,

[Date].[Calendar Year].CURRENTMEMBER.NAME)

MEMBER MEASURES.GENERATEDELIMITEDSTRINGDEMO AS

GENERATE(

[Date].[Calendar Year].[Calendar Year].MEMBERS,

[Date].[Calendar Year].CURRENTMEMBER.NAME, " AND ")

SELECT

{MEASURES.GENERATESTRINGDEMO, MEASURES.GENERATEDELIMITEDSTRINGDEMO}

ON 0

FROM [Adventure Works]

• This form of the Generate function can be useful when debugging calculations, as it
enables you to return a string displaying the names of all the members in a set. This
might be easier to read than the strict MDX representation of a set that the SetToStr
(MDX) function returns.

See Also
MDX Function Reference (MDX)

Head
Returns the first specified number of elements in a set, while retaining duplicates.

Note

 241

Syntax

Head(Set_Expression [,Count])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Count

A valid numeric expression that specifies the number of tuples to be returned.

Remarks
The Head function returns the specified number of tuples from the beginning of the specified
set. The order of elements is preserved. The default value of Count is 1. If the specified number
of tuples is less than 1, the Head function returns an empty set. If the specified number of tuples
exceeds the number of tuples in the set, the function returns the original set.

Example
The following example returns top five selling subcategories of products, irrespective of
hierarchy, based on Reseller Gross Profit. The Head function is used to return only the first 5 sets
in the result after the result is ordered using the Order function.

SELECT

[Measures].[Reseller Gross Profit] ON 0,

Head

 (Order

 ([Product].[Product Categories].[SubCategory].members

 ,[Measures].[Reseller Gross Profit]

 ,BDESC

)

 ,5

) ON 1

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)
Item (Tuple) (MDX)

 242

Item (Member) (MDX)
Rank (MDX)
MDX Function Reference (MDX)

Hierarchize
Orders the members of a set in a hierarchy.

Syntax

Hierarchize(Set_Expression [, POST])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
The Hierarchize function organizes the members of specified set into hierarchical order. The
function always retains duplicates.
• If POST is not specified, the function sorts members in a level in their natural order. Their

natural order is the default ordering of the members along the hierarchy when no other sort
conditions are specified. Child members immediately follow their parent members.

• If POST is specified, the Hierarchize function sorts the members in a level using a post-
natural order. In other words, child members precede their parents.

Example
The following example drills up on the Canada member. The Hierarchize function is used to
organize the specified set members in hierarchical order, which is required by the
DrillUpMember function.

SELECT DrillUpMember

 (

 Hierarchize

 (

 {[Geography].[Geography].[Country].[Canada]

 ,[Geography].[Geography].[Country].[United States]

 ,[Geography].[Geography].[State-Province].[Alberta]

 ,[Geography].[Geography].[State-Province].[Brunswick]

 243

 ,[Geography].[Geography].[State-Province].[Colorado]

 }

), {[Geography].[Geography].[Country].[United States]}

)

ON 0

FROM [Adventure Works]

The following example returns the sum of the Measures.[Order Quantity] member,
aggregated over the first nine months of 2003 contained in the Date dimension, from the
Adventure Works cube. The PeriodsToDate function defines the tuples in the set over which
the Aggregate function operates. The Hierarchize function organizes the members of the
specified set of members from the Product dimension in hierarchical order.

WITH MEMBER Measures.[Declining Reseller Sales] AS Count

 (Filter

 (Existing

 (Reseller.Reseller.Reseller),

 [Measures].[Reseller Sales Amount] <

 ([Measures].[Reseller Sales

Amount],[Date].Calendar.PrevMember)

)

)

MEMBER [Geography].[State-Province].x AS Aggregate

({[Geography].[State-Province].&[WA]&[US],

 [Geography].[State-Province].&[OR]&[US] }

)

SELECT NON EMPTY HIERARCHIZE

 (AddCalculatedMembers

 ({DrillDownLevel

 ({[Product].[All Products]})}

)

) DIMENSION PROPERTIES PARENT_UNIQUE_NAME ON COLUMNS

FROM [Adventure Works]

WHERE ([Geography].[State-Province].x,

 [Date].[Calendar].[Calendar Quarter].&[2003]&[4],

 [Measures].[Declining Reseller Sales])

 244

See Also
MDX Function Reference (MDX)

Hierarchy
Returns the hierarchy that contains a specified member or level.

Syntax

Member expression syntax
Member_Expression.Hierarchy

Level expression syntax
Level_Expression.Hierarchy

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Examples
The following example returns the name of the Calendar hierarchy in the Data dimension in the
AdventureWorks cube.
WITH
MEMBER Measures.HierarchyName as
[Date].[Calendar].Currentmember.Hierarchy.Name
SELECT {Measures.HierarchyName} ON 0,
{[Date].[Calendar].[All Periods]} ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

IIf
Returns one of two values determined by a logical test.

 245

Syntax

IIf(Logical_Expression, Expression1, Expression2)

Arguments
Logical_Expression

A valid Multidimensional Expressions (MDX) logical expression that evaluates to true or false.

Expression1

A valid Multidimensional Expressions (MDX) expression.

Expression2

A valid Multidimensional Expressions (MDX) expression.

Remarks
The expression specified by the logical expression evaluates to false only if the value of this
expression is zero. Any other value evaluates to true.
If the specified logical expression evaluates to true, the IIf function returns the first expression.
Otherwise, the function returns the second expression.
The specified expressions can return values or MDX objects. Furthermore, the specified
expressions need not match in type.
The IIf function is not recommended for creating a set of members based on search criteria.
Instead, use the Filter function to evaluate each member in a specified set against a logical
expression and return a subset of members.

If either expression evaluates to NULL, the result set will be NULL when that condition is
met.

Examples
The following query shows a simple use of IIF inside a calculated measure to return one of two
different string values when the measure Internet Sales Amount is greater or less than $10000:
WITH MEMBER MEASURES.IIFDEMO AS
IIF([Measures].[Internet Sales Amount]>10000
, "Sales Are High", "Sales Are Low")
SELECT {[Measures].[Internet Sales Amount],MEASURES.IIFDEMO} ON 0,
[Date].[Date].[Date].MEMBERS ON 1
FROM [Adventure Works]

Note

 246

A very common use of IIF is to handle 'division by zero' errors within calculated measures, as in
the following example:
WITH
//Returns 1.#INF when the previous period contains no value
//but the current period does
MEMBER MEASURES.[Previous Period Growth With Errors] AS
([Measures].[Internet Sales Amount]-([Measures].[Internet Sales Amount],
[Date].[Date].CURRENTMEMBER.PREVMEMBER))
/
([Measures].[Internet Sales Amount], [Date].[Date].CURRENTMEMBER.PREVMEMBER)
,FORMAT_STRING='PERCENT'
//Traps division by zero and returns null when the previous period contains
//no value but the current period does
MEMBER MEASURES.[Previous Period Growth] AS
IIF(([Measures].[Internet Sales Amount],
[Date].[Date].CURRENTMEMBER.PREVMEMBER)=0,
NULL,
([Measures].[Internet Sales Amount]-([Measures].[Internet Sales Amount],
[Date].[Date].CURRENTMEMBER.PREVMEMBER))
/
([Measures].[Internet Sales Amount], [Date].[Date].CURRENTMEMBER.PREVMEMBER)
),FORMAT_STRING='PERCENT'
SELECT {[Measures].[Internet Sales Amount],MEASURES.[Previous Period Growth
With Errors], MEASURES.[Previous Period Growth]} ON 0,
DESCENDANTS(
[Date].[Calendar].[Calendar Year].&[2004],
[Date].[Calendar].[Date])
ON 1
FROM [Adventure Works]
WHERE([Product].[Product Categories].[Subcategory].&[26])
The following is an example of IIF returning one of two sets inside the Generate function to
create a complex set of tuples on Rows:
SELECT {[Measures].[Internet Sales Amount]} ON 0,
//If Internet Sales Amount is zero or null
//returns the current year and the All Customers member
//else returns the current year broken down by Country

 247

GENERATE(
[Date].[Calendar Year].[Calendar Year].MEMBERS
, IIF([Measures].[Internet Sales Amount]=0,
{([Date].[Calendar Year].CURRENTMEMBER, [Customer].[Country].[All
Customers])}
, {{[Date].[Calendar Year].CURRENTMEMBER} *
[Customer].[Country].[Country].MEMBERS}
))
ON 1
FROM [Adventure Works]
WHERE([Product].[Product Categories].[Subcategory].&[26])
Lastly, this example shows how to use Plan Hints:
WITH MEMBER MEASURES.X AS
IIF(
 [Measures].[Internet Sales Amount]=0
 , NULL
 , (1/[Measures].[Internet Sales Amount]) HINT EAGER)
SELECT {[Measures].x} ON 0,
[Customer].[Customer Geography].[Country].MEMBERS ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Instr
Returns the position of the first occurrence of one string within another.

Syntax
InStr([start,]searched_string, search_string[, compare])

Arguments
start

(Optional) A numeric expression that sets the starting position for each search. If this value is
omitted, the search begins at the first character position. If start is null, the function return
value is undefined.

 248

searched_string

The string expression to be searched.

search_string

The string expression that is to be searched for.

Compare

(optional) An integer value. This argument is always ignored. It is defined for compatibility
with other Instr functions in other languages.

Return Value
An integer value with the starting position of String2 in String1.
Also, InStr function returns the values listed in the following table depending on the condition:

Condition Return value

String1 is zero-length zero (0)

String1 is null undefined

String2 is zero-length start

String2 is null undefined

String2 is not found zero (0)

start is greater than Len(String2) zero (0)

Remarks

Instr always performs a case-insensitive comparison.

Example

Description
The following example shows the usage of the Instr function and shows different result
scenarios.

Code
with

 member [Date].[Date].[Results] as "Results"

Warning

 249

 member measures.[lowercase found in lowercase string] as InStr(

"abcdefghijklmnñopqrstuvwxyz", "o")

 member measures.[uppercase found in lowercase string] as InStr(

"abcdefghijklmnñopqrstuvwxyz", "O")

 member measures.[searched string is empty] as InStr("", "o")

 member measures.[searched string is null] as

iif(IsError(InStr(null, "o")), "Is Error", iif(IsNull(InStr(null, "o")),

"Is Null","Is undefined"))

 member measures.[search string is empty] as InStr(

"abcdefghijklmnñopqrstuvwxyz", "")

 member measures.[search string is empty start 10] as InStr(10,

"abcdefghijklmnñopqrstuvwxyz", "")

 member measures.[search string is null] as

iif(IsError(InStr(null, "o")), "Is Error", iif(IsNull(InStr(null, "o")),

"Is Null","Is undefined"))

 member measures.[found from start 10] as InStr(10,

"abcdefghijklmnñopqrstuvwxyz", "o")

 member measures.[NOT found from start 17] as InStr(17,

"abcdefghijklmnñopqrstuvwxyz", "o")

 member measures.[NULL start] as

iif(IsError(InStr(null, "abcdefghijklmnñopqrstuvwxyz", "o")), "Is Error",

iif(IsNull(InStr(null, "abcdefghijklmnñopqrstuvwxyz", "o")), "Is Null","Is

undefined"))

 member measures.[start greater than searched length] as InStr(170,

"abcdefghijklmnñopqrstuvwxyz", "o")

select [Results] on columns,

 { measures.[lowercase found in lowercase string]

 , measures.[uppercase found in lowercase string]

 , measures.[searched string is empty]

 , measures.[searched string is null]

 , measures.[search string is empty]

 , measures.[search string is empty start 10]

 , measures.[search string is null]

 , measures.[found from start 10]

 250

 , measures.[NOT found from start 17]

 , measures.[NULL start]

 , measures.[start greater than searched length]

 } on rows

from [Adventure Works]

Comments
The following table displays the obtained results.

 Results

lowercase found in lowercase string 16

uppercase found in lowercase string 16

searched string is empty 0

searched string is null Is undefined

search string is empty 1

search string is empty start 10 10

search string is null Is undefined

found from start 10 16

NOT found from start 17 0

NULL start Is undefined

start greater than searched length 0

Intersect
Returns the intersection of two input sets, optionally retaining duplicates.

Syntax

Intersect(Set_Expression1 , Set_Expression2 [, ALL])

 251

Arguments
Set_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a set.

Set_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
The Intersect function returns the intersection of two sets. By default, the function removes
duplicates from both sets prior to intersecting the sets. The two sets specified must have the
same dimensionality.
The optional ALL flag retains duplicates. If ALL is specified, the Intersect function intersects
nonduplicated elements as usual, and also intersects each duplicate in the first set that has a
matching duplicate in the second set. The two sets specified must have the same dimensionality.

Example
The following query returns the Years 2003 and 2004, the two members that appear in both the
sets specified:
SELECT
INTERSECT(
{[Date].[Calendar Year].&[2001], [Date].[Calendar
Year].&[2002],[Date].[Calendar Year].&[2003]}
, {[Date].[Calendar Year].&[2002],[Date].[Calendar Year].&[2003],
[Date].[Calendar Year].&[2004]})
ON 0
FROM
[Adventure Works]
The following query fails because the two sets specified contain members from different
hierarchies:
SELECT
INTERSECT(
{[Date].[Calendar Year].&[2001]}
, {[Customer].[City].&[Abingdon]&[ENG]})
ON 0
FROM
[Adventure Works]

 252

See Also
MDX Function Reference (MDX)

IsAncestor
Returns whether a specified member is an ancestor of another specified member.

Syntax

IsAncestor(Member_Expression1, Member_Expression2)

Arguments
Member_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a member.

Member_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
The IsAncestor function returns true if the first member specified is an ancestor of the second
member specified. Otherwise, the function returns false.

Example
The following example returns true if [Date].[Fiscal].CurrentMember is an ancestor of January
2003:
WITH MEMBER MEASURES.ISANCESTORDEMO AS
IsAncestor([Date].[Fiscal].CurrentMember,
[Date].[Fiscal].[Month].&[2003]&[1])
SELECT MEASURES.ISANCESTORDEMO ON 0,
[Date].[Fiscal].MEMBERS ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)
MDX Function Reference (MDX)

 253

IsEmpty
Returns whether the evaluated expression is the empty cell value.

Syntax

IsEmpty(Value_Expression)

Arguments
Value_Expression

A valid Multidimensional Expressions (MDX) expression that typically returns the cell
coordinates of a member or a tuple.

Remarks
The IsEmpty function returns true if the evaluated expression is an empty cell value. Otherwise,
this function returns false.

The default property for a member is the value of the member.
The IsEmpty function is the only way to reliably test for an empty cell because the empty cell
value has special meaning in Microsoft SQL Server Analysis Services.

If the evaluation of the value expression returns an error, the function will return false. A
value expression can return an error, for example, if a properties reference refers to an
invalid or non-existent property.

For more information about empty cells, see the OLE DB documentation.

Example
The following example returns TRUE if the Internet Sales Amount for the current member on the
Fiscal hierarchy of the Date dimension returns an empty cell:
WITH MEMBER MEASURES.ISEMPTYDEMO AS
IsEmpty([Measures].[Internet Sales Amount])
SELECT {[Measures].[Internet Sales Amount],MEASURES.ISEMPTYDEMO} ON 0,
[Date].[Fiscal].MEMBERS ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Note

Important

 254

MDX Function Reference (MDX)

IsGeneration
Returns whether a specified member is in a specified generation.

Syntax

IsGeneration(Member_Expression, Generation_Number)

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Generation_Number

A valid numeric expression that specifies the generation against which the specified member
is evaluated.

Remarks
The IsGeneration function returns true if the specified member is in the specified generation
number. Otherwise, the function returns false. Also, if the specified member evaluates to an
empty member, the IsGeneration function returns false.
For the purposes of generation indexing, leaf members are generation index 0. The generation
index of nonleaf members is determined by first getting the highest generation index from the
union of all child members for the specified member, then adding 1 to that index. Because of
how the generation index of nonleaf members is determined, a specific nonleaf member could
belong to more than one generation.

Example
The following example returns TRUE if [Date].[Fiscal].CurrentMember is part of the second
generation:
WITH MEMBER MEASURES.ISGENERATIONDEMO AS
IsGeneration([Date].[Fiscal].CURRENTMEMBER, 2)
SELECT {MEASURES.ISGENERATIONDEMO} ON 0,
[Date].[Fiscal].MEMBERS ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

 255

IsLeaf
Returns whether a specified member is a leaf member.

Syntax

IsLeaf(Member_Expression)

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
The IsLeaf function returns true if the specified member is a leaf member. Otherwise, the
function returns false.

Example
The following example returns TRUE if [Date].[Fiscal].CurrentMember is a leaf member:
WITH MEMBER MEASURES.ISLEAFDEMO AS
IsLeaf([Date].[Fiscal].CURRENTMEMBER)
SELECT {MEASURES.ISLEAFDEMO} ON 0,
[Date].[Fiscal].MEMBERS ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

IsSibling
Returns whether a specified member is a sibling of another specified member.

Syntax

IsSibling(Member_Expression1, Member_Expression2)

 256

Arguments
Member_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a member.

Member_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
The IsSibling function returns true if the first specified member is a sibling of the second
specified member. Otherwise, the function returns false.

Example
The following example returns TRUE if the current member on the Fiscal hierarchy of the Date
dimension is a sibling of July 2002:
WITH MEMBER MEASURES.ISSIBLINGDEMO AS
IsSibling([Date].[Fiscal].CURRENTMEMBER, [Date].[Fiscal].[Month].&[2002]&[7])
SELECT {MEASURES.ISSIBLINGDEMO} ON 0,
[Date].[Fiscal].MEMBERS ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Item (Member)
Returns a member from a specified tuple.

Syntax

Tuple_Expression.Item(Index)

Arguments
Tuple_Expression

A valid Multidimensional Expressions (MDX) expression that returns a tuple.

Index

A valid numeric expression that specifies the specific member by position within the tuple to
be returned.

 257

Remarks
The Item function returns a member from the specified tuple. The function returns the member
found at the zero-based position specified by Index.

Example
The following example returns the member [2003] - the first item in the tuple
[Date].[Calendar Year].&[2003], [Measures].[Internet Sales Amount]). - on
columns :
SELECT
{([Date].[Calendar Year].&[2003], [Measures].[Internet Sales Amount]
).Item(0)} ON 0
,{[Measures].[Reseller Sales Amount]} ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Item (Tuple)
Returns a tuple from a set.

Syntax

Index syntax
Set_Expression.Item(Index)

String expression syntax
Set_Expression.Item(String_Expression1 [,String_Expression2,...n])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

String_Expression1

A valid string expression that is a typically a tuple expressed in a string.

String_Expression2

A valid string expression that is a typically a tuple expressed in a string.

 258

Index

A valid numeric expression that specifies the specific tuple by position within the set to be
returned.

Remarks
The Item function returns a tuple from the specified set. There are three possible ways to call
the Item function:
• If a single string expression is specified, the Item function returns the specified tuple. For

example, "([2005].Q3, [Store05])".
• If more than one string expression is specified, the Item function returns the tuple defined

by the specified coordinates. The number of strings must match the number of axis, and
each string must identify a unique hierarchy. For example, "[2005].Q3", "[Store05]".

• If an integer is specified, the Item function returns the tuple that is in the zero-based
position specified by Index.

Examples
The following example returns ([1996],Sales):
{([1996],Sales), ([1997],Sales), ([1998],Sales)}.Item(0)
The following example uses a level expression and returns the Internet Sales Amount for each
State-Province in Australia and its percent of the total Internet Sales Amount for Australia. This
example uses the Item function to extract the first (and only tuple) from the set returned by the
Ancestors function.
WITH MEMBER Measures.x AS [Measures].[Internet Sales Amount] /

 ([Measures].[Internet Sales Amount],

 Ancestors

 ([Customer].[Customer Geography].CurrentMember,

 [Customer].[Customer Geography].[Country]

).Item (0)

), FORMAT_STRING = '0%'

SELECT {[Measures].[Internet Sales Amount], Measures.x} ON 0,

{ Descendants

 ([Customer].[Customer Geography].[Country].&[Australia],

 [Customer].[Customer Geography].[State-Province], SELF

)

} ON 1

FROM [Adventure Works]

 259

See Also
MDX Function Reference (MDX)

KPIGoal
Returns the member that calculates the value for the goal portion of the specified Key
Performance Indicator (KPI).

Syntax

KPIGoal(KPI_Name)

Arguments
KPI_Name

A valid string expression that specifies the name of a KPI.

Remarks

Example
The following example returns the KPI value, KPI goal, KPI status, and KPI trend for the channel
revenue measure for the descendants of three members of the Fiscal Year attribute hierarchy:

SELECT

 { KPIValue("Channel Revenue"),

 KPIGoal("Channel Revenue"),

 KPIStatus("Channel Revenue"),

 KPITrend("Channel Revenue")

 } ON Columns,

Descendants

 ({ [Date].[Fiscal].[Fiscal Year].&[2002],

 [Date].[Fiscal].[Fiscal Year].&[2003],

 [Date].[Fiscal].[Fiscal Year].&[2004]

 }, [Date].[Fiscal].[Fiscal Quarter]

) ON Rows

FROM [Adventure Works]

 260

See Also
MDX Function Reference (MDX)

KPIStatus
Returns a normalized value that represents the status portion of the specified Key Performance
Indicator (KPI).

Syntax

KPIStatus(KPI_Name)

Arguments
KPI_Name

A valid string expression that specifies the name of the KPI.

Remarks
The status value is generally a normalized value between -1 and 1.

Example
The following example returns the KPI value, KPI goal, KPI status, and KPI trend for the channel
revenue measure for the descendants of three members of the Fiscal Year attribute hierarchy:
SELECT

 { KPIValue("Channel Revenue"),

 KPIGoal("Channel Revenue"),

 KPIStatus("Channel Revenue"),

 KPITrend("Channel Revenue")

 } ON Columns,

Descendants

 ({ [Date].[Fiscal].[Fiscal Year].&[2002],

 [Date].[Fiscal].[Fiscal Year].&[2003],

 [Date].[Fiscal].[Fiscal Year].&[2004]

 }, [Date].[Fiscal].[Fiscal Quarter]

) ON Rows

FROM [Adventure Works]

 261

See Also
MDX Function Reference (MDX)

KPITrend
Returns the normalized value that represents the trend portion of the specified Key Performance
Indicator (KPI).

Syntax

KPITrend(KPI_Name)

Arguments
KPI_Name

A valid string expression that specifies the name of the KPI.

Remarks
The trend value is generally a normalized value between -1 and 1.

Example
The following example returns the KPI value, KPI goal, KPI status, and KPI trend for the channel
revenue measure for the descendants of three members of the Fiscal Year attribute hierarchy:
SELECT

 { KPIValue("Channel Revenue"),

 KPIGoal("Channel Revenue"),

 KPIStatus("Channel Revenue"),

 KPITrend("Channel Revenue")

 } ON Columns,

Descendants

 ({ [Date].[Fiscal].[Fiscal Year].&[2002],

 [Date].[Fiscal].[Fiscal Year].&[2003],

 [Date].[Fiscal].[Fiscal Year].&[2004]

 }, [Date].[Fiscal].[Fiscal Quarter]

) ON Rows

FROM [Adventure Works]

 262

See Also
MDX Function Reference (MDX)

KPIWeight
Returns the weight of the specified Key Performance Indicator (KPI).

Syntax

KPIWeight(KPI_Name)

Arguments
KPI_Name

A valid string expression that specifies the name of the KPI.

Remarks
The value returned is the contribution of the KPI to the parent.

See Also
MDX Function Reference (MDX)

KPICurrentTimeMember
Returns the current time member of the specified Key Performance Indicator (KPI).

Syntax

KPICurrentTimeMember(KPI_Name)

Arguments
KPI_Name

A valid string expression that specifies the name of the KPI.

Remarks
A KPI can have a different time member from the default member of the time dimension.

 263

See Also
MDX Function Reference (MDX)

KPIValue
Returns the member that calculates the value of the specified Key Performance Indicator (KPI).

Syntax

KPIValue(KPI_Name)

Arguments
KPI_Name

A valid string expression that specifies the name of the KPI.

Remarks

Example
The following example returns the KPI value, KPI goal, KPI status, and KPI trend for the channel
revenue measure for the descendants of three members of the Fiscal Year attribute hierarchy.

SELECT

 { KPIValue("Channel Revenue"),

 KPIGoal("Channel Revenue"),

 KPIStatus("Channel Revenue"),

 KPITrend("Channel Revenue")

 } ON Columns,

Descendants

 ({ [Date].[Fiscal].[Fiscal Year].&[2002],

 [Date].[Fiscal].[Fiscal Year].&[2003],

 [Date].[Fiscal].[Fiscal Year].&[2004]

 }, [Date].[Fiscal].[Fiscal Quarter]

) ON Rows

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

 264

Lag
Returns the member that is a specified number of positions before a specified member at the
member's level.

Syntax

Member_Expression.Lag(Index)

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Index

A valid numeric expression that specifies the number of member positions to lag.

Remarks
Member positions within a level are determined by the attribute hierarchy's natural order. The
numbering of the positions is zero-based.
If the specified lag is zero, the Lag function returns the specified member itself.
If the specified lag is negative, the Lag function returns a subsequent member.
Lag(1) is equivalent to the PrevMember function. Lag(-1) is equivalent to the NextMember
function.
The Lag function is similar to the Lead function, except that the Lead function looks in the
opposite direction to the Lag function. That is, Lag(n) is equivalent to Lead(-n).

Example
The following example returns the value for December 2001:

SELECT [Date].[Fiscal].[Month].[February 2002].Lag(2) ON 0

FROM [Adventure Works]

The following example returns the value for March 2002:

SELECT [Date].[Fiscal].[Month].[February 2002].Lag(-1) ON 0

FROM [Adventure Works]

 265

See Also
MDX Function Reference (MDX)

LastChild
Returns the last child of a specified member.

Syntax

Member_Expression.LastChild

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Example
The following example returns the value for September 2001, which is the last child of the first
fiscal quarter of fiscal year 2002.

SELECT [Date].[Fiscal].[Fiscal Quarter].[Q1 FY 2002].LastChild ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)
MDX Function Reference (MDX)

LastPeriods
Returns a set of members up to and including a specified member.

Syntax

LastPeriods(Index [,Member_Expression])

Arguments
Index

A valid numeric expression that specifies a number of periods.

 266

Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
If the specified number of periods is positive, the LastPeriods function returns a set of members
that start with the member that lags Index - 1 from the specified member expression, and ends
with the specified member. The number of members returned by the function is equal to Index.
If the specified number of periods is negative, the LastPeriods function returns a set of
members that start with the specified member and ends with the member that leads (- Index -
1) from the specified member. The number of members returned by the function is equal to the
absolute value of Index.
If the specified number of periods is zero, the LastPeriods function returns the empty set. This is
unlike the Lag function, which returns the specified member if 0 is specified.
If a member is not specified, the LastPeriods function uses Time.CurrentMember. If no
dimension is marked as a Time dimension, the function will parse and execute without an error,
but will cause a cell error in the client application.

Examples
The following example returns the default measure value for the second third, and fourth fiscal
quarters of fiscal year 2002.

SELECT LastPeriods(3,[Date].[Fiscal].[Fiscal Quarter].[Q4 FY 2002]) ON 0

FROM [Adventure Works]

• This example can also be written using the : (colon) operator:
• [Date].[Fiscal].[Fiscal Quarter].[Q4 FY 2002]: [Date].[Fiscal].[Fiscal

Quarter].[Q2 FY 2002]
The following example returns the default measure value for the first fiscal quarter of fiscal year
2002. Although the specified number of periods is three, only one can be returned because
there are no earlier periods in the fiscal year.

SELECT LastPeriods

 (3,[Date].[Fiscal].[Fiscal Quarter].[Q1 FY 2002]

) ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Note

 267

LastSibling
Returns the last child of the parent of a specified member.

Syntax

Member_Expression.LastSibling

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Example
The following example returns the default measure for the last day in July 2002.

SELECT [Date].[Fiscal].[Date].&[20020717].LastSibling

 ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Lead
Returns the member that is a specified number of positions following a specified member along
the member's level.

Syntax

Member_Expression.Lead(Index)

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Index

A valid numeric expression that specifies a number of member positions.

 268

Remarks
Member positions within a level are determined by the attribute hierarchy's natural order. The
numbering of the positions is zero-based.
If the specified lead is zero (0), the Lead function returns the specified member.
If the specified lead is negative, the Lead function returns a prior member.
Lead(1) is equivalent to the NextMember function. Lead(-1) is equivalent to the PrevMember
function.
The Lead function is similar to the Lag function, except that the Lag function looks in the
opposite direction to the Lead function. That is, Lead(n) is equivalent to Lag(-n).

Example
The following example returns the value for December 2001:
SELECT [Date].[Fiscal].[Month].[February 2002].Lead(-2) ON 0

FROM [Adventure Works]

The following example returns the value for March 2002:

SELECT [Date].[Fiscal].[Month].[February 2002].Lead(1) ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Leaves
Returns a set composed of all attributes (optionally limited to those belonging to a specific
dimension). For each attribute x in the return set, if x is the granularity attribute or is directly or
indirectly related to the granularity attribute, the granularity is set on attribute x without
affecting the slice. The Leaves function is designed for use inside a SCOPE statement or at the
left side of an assignment.

Syntax

Leaves([Dimension_expression])

 269

Arguments
Dimension_Expression

A valid Multidimensional Expressions (MDX) expression that returns a dimension.

Remarks
Leaf members are tuples that are formed by the cross join of the lowest level of all attribute
hierarchies. Calculated members are excluded.
• If a dimension name is specified, the Leaves function returns a set that contains the leaf

members of the key attribute for the specified dimension.
• If the dimension is associated with multiple measure groups, that of the measure in the

current scope is used.
• If a dimension name is not specified, the function returns a set that contains the leaf

members of the entire cube.

If the dimension expression resolves to a hierarchy, and the hierarchy unique name is
the same as the dimension unique name (cube dimension property
HierarchyUniqueNameStyle=ExcludeDimensionName, and the hierarchy
name=dimension name), then the dimension is used.

An error is generated if not all attributes have same granularity on measure groups in
current scope.

See Also
MDX Function Reference (MDX)

Level
Returns the level of a member.

Syntax

Member_Expression.Level

Arguments
Member_Expression

A valid Multidimensional Expression (MDX) that returns a member.

Note

Important

 270

Examples
The following example uses the Level function to return all months in the Adventure Works
cube.

SELECT[Date].[Fiscal].[Month].[February 2002].Level.Members ON 0,

[Measures].[Internet Sales Amount] ON 1

FROM [Adventure Works]

The following example uses the Level function to return the name of the level for the All-
Purpose Bike Stand in the Model Name attribute hierarchy in the Adventure Works cube.

WITH MEMBER Measures.x AS

 [Product].[Model Name].[All-Purpose Bike Stand].Level.Name

SELECT Measures.x ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Levels
Returns the level whose position in a dimension or hierarchy is specified by a numeric
expression or whose name is specified by a string expression.

Syntax

Numeric expression syntax
Hierarchy_Expression.Levels(Level_Number)

String expression syntax
Hierarchy_Expression.Levels(Level_Name)

Arguments
Hierarchy_Expression

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Level_Number

A valid numeric expression that specifies a level number.

Level_Name

A valid string expression that specifies a level name.

 271

Remarks
If a level number is specified, the Levels function returns the level associated with the specified
zero-based position.
If a level name is specified, the Levels function returns the specified level.

Use the string expression syntax for user-defined functions.

Examples
The following examples illustrate each of the Levels function syntaxes.

Numeric
The following example returns the Country level:

SELECT [Geography].[Geography].Levels(1) ON 0

FROM [Adventure Works]

String
The following example returns the Country level:
SELECT [Geography].[Geography].Levels('Country') ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

LinkMember
Returns the member equivalent to a specified member in a specified hierarchy.

Syntax

LinkMember(Member_Expression, Hierarchy_Expression)

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Hierarchy_Expression

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Note

 272

Remarks
The LinkMember function returns the member from the specified hierarchy that matches the
key values at each level of the specified member in a related hierarchy. Attributes at each level
must have the same key cardinality and data type. In unnatural hierarchies, if there is more than
one match for an attribute's key value, the result will be an error or indeterminate.

Examples
The following example uses the LinkMember function to return the default measure in the
Adventure Works cube for the ascendants of the July 1, 2002 member of the Date.Date attribute
hierarchy in the Calendar hierarchy.

SELECT Hierarchize

 (Ascendants

 (LinkMember

 ([Date].[Date].[July 1, 2002], [Date].[Calendar]

)

)

) ON 0

FROM [Adventure Works]

See Also
Hierarchize (MDX)
Ascendants (MDX)
MDX Function Reference (MDX)

LinRegIntercept
Calculates the linear regression of a set and returns the value of the x-intercept in the regression
line, .

Syntax

LinRegIntercept(Set_Expression, Numeric_Expression_y [,Numeric_Expression_x])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

 273

Numeric_Expression_y

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the y-axis.

Numeric_Expression_x

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the x-axis.

Remarks
Linear regression, that uses the least-squares method, calculates the equation of a regression
line (that is, the best-fit line for a series of points). The regression line has the following
equation, where is the slope and is the intercept:

The LinRegIntercept function evaluates the specified set against the first numeric expression to
obtain the values for the y-axis. The function then evaluates the specified set against the second
numeric expression, if specified, to obtain the values for the x-axis. If the second numeric
expression is not specified, the function uses the current context of the cells in the specified set
as values for the x-axis. Not specifying the the x-axis argument is frequently used with the Time
dimension.
After obtaining the set of points, the LinRegIntercept function returns the intercept of the
regression line (in the previous equation).

The LinRegIntercept function ignores empty cells or cells that contain text or logical
values. However, the function includes cells with values of zero.

Example
The following example returns the intercept of a regression line for the unit sales and the store
sales measures.

LinRegIntercept(LastPeriods(10),[Measures].[Unit Sales],[Measures].[Store

Sales])

See Also
MDX Function Reference (MDX)

LinRegPoint
Calculates the linear regression of a set, and returns the value of the y-intercept in the
regression line, for a particular value of x.

Note

 274

Syntax

LinRegPoint(Slice_Expression_x, Set_Expression, Numeric_Expression_y [
,Numeric_Expression_x])

Arguments
Slice_Expression_x

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the slicer axis.

Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression_y

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the y-axis.

Numeric_Expression_x

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the x-axis.

Remarks
Linear regression, that uses the least-squares method, calculates the equation of a regression
line (that is, the best-fit line for a series of points). The regression line has the following
equation, where is the slope and is the intercept:

The LinRegPoint function evaluates the specified set against the second numeric expression to
obtain the values for the y-axis. The function then evaluates the specified set against the third
numeric expression, if specified, to get the values for the x-axis. If the third numeric expression is
not specified, the function uses the current context of the cells in the specified set as the values
for the x-axis. Not specifying the x-axis argument is frequently used with the Time dimension.
Once the linear regression line has been calculated, the value of the equation is calculated for
the first numeric expression and then returned.

The LinRegPoint function ignores empty cells or cells that contain text. However, the
function includes cells with values of zero.

Example
The following example returns the predicted value of Unit Sales over the past ten periods based
on the statistical relationship between Unit Sales and Store Sales.

Note

 275

LinRegPoint([Measures].[Unit Sales],LastPeriods(10),[Measures].[Unit

Sales],[Measures].[Store Sales])

See Also
MDX Function Reference (MDX)

LinRegR2
Calculates the linear regression of a set and returns the coefficient of determination, R2.

Syntax

LinRegR2(Set_Expression, Numeric_Expression_y [,Numeric_Expression_x])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression_y

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the y-axis.

Numeric_Expression_x

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the x-axis.

Remarks
Linear regression, that uses the least-squares method, calculates the equation of a regression
line (that is, the best-fit line for a series of points). The regression line has the following
equation, where is the slope and is the intercept:

The LinRegR2 function evaluates the specified set against the first numeric expression to obtain
the values for the y-axis. The function then evaluates the specified set against the second
numeric expression, if specified, to obtain the values for the x-axis. If the second numeric
expression is not specified, the function uses the current context of the cells in the specified set
as the values for the x-axis. Not specifying the x-axis argument is frequently used with the Time
dimension.
After obtaining the set of points, the LinRegR2 function returns the statistical R2 that describes
the fit of the linear equation to the points.

 276

The LinRegR2 function ignores empty cells or cells that contain text or logical values.
However, the function includes cells with values of zero.

Example
The following example returns the statistical R2 that describes the goodness of fit of the linear
regression equation to the points for the unit sales and the store sales measures.

LinRegR2(LastPeriods(10), [Measures].[Unit Sales],[Measures].[Store Sales])

See Also
MDX Function Reference (MDX)

LinRegSlope
Calculates the linear regression of a set, and returns the value of the slope in the regression line,
.

Syntax

LinRegSlope(Set_Expression, Numeric_Expression_y [,Numeric_Expression_x])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression_y

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the y-axis.

Numeric_Expression_x

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the x-axis.

Remarks
Linear regression, that uses the least-squares method, calculates the equation of a regression
line (that is, the best-fit line for a series of points). The regression line has the following
equation, where is the slope and is the intercept:

Note

 277

The LinRegSlope function evaluates the specified set against the first numeric expression to
obtain the values for the y-axis. The function then evaluates the specified set expression against
the second numeric expression, if specified, to get the values for the x-axis. If the second
numeric expression is not specified, the function uses the current context of the cells in the
specified set as the values for the x-axis. Not specifying the x-axis argument is frequently used
with the Time dimension.
After obtaining the set of points, the LinRegSlope function returns the slope of the regression
line (in the previous equation).

The LinRegSlope function ignores empty cells or cells that contain text or logical values.
However, the function includes cells with values of zero.

Example
The following example returns the slope of a regression line for the unit sales and the store sales
measures.

LinRegSlope(LastPeriods(10),[Measures].[Unit Sales],[Measures].[Store Sales])

See Also
MDX Function Reference (MDX)

LinRegVariance
Calculates the linear regression of a set, and returns the variance associated with the regression
line, .

Syntax

LinRegVariance(Set_Expression, Numeric_Expression_y [,Numeric_Expression_x]])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression_y

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the y-axis.

Numeric_Expression_x

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number that represents values for the x-axis.

Note

 278

Remarks
Linear regression, that uses the least-squares method, calculates the equation of a regression
line (that is, the best-fit line for a series of points). The regression line has the following
equation, where is the slope and is the intercept:

The LinRegVariance function evaluates the specified set against the first numeric expression to
obtain the values for the y-axis. The function then evaluates the specified set against the second
numeric expression, if specified, to obtain the values for the x-axis. If the second numeric
expression is not specified, the function uses the current context of the cells in the specified set
as the values for the x-axis. Not specifying the x-axis argument is frequently used with the Time
dimension.
After obtaining the set of points, the LinRegVariance function returns the statistical variance
that describes the fit of the linear equation to the points.

The LinRegVariance function ignores empty cells or cells that contain text or logical
values. However, the function includes cells with values of zero.

Example
The following example returns the statistical variance that describes the fit of the linear equation
to the points for the unit sales and the store sales measures.

LinRegVariance(LastPeriods(10),[Measures].[Unit Sales],[Measures].[Store

Sales])

See Also
MDX Function Reference (MDX)

LookupCube
Returns the value of a Multidimensional Expressions (MDX) expression evaluated over another
specified cube in the same database.

Syntax

Numeric expression syntax
LookupCube(Cube_Name, Numeric_Expression)

String expression syntax
LookupCube(Cube_Name, String_Expression)

Note

 279

Arguments
Cube_Name

A valid string expression that specifies the name of a cube.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

String_Expression

A valid string expression that is typically a valid Multidimensional Expressions (MDX)
expression of cell coordinates that returns a string.

Remarks
If a numeric expression is specified, the LookupCube function evaluates the specified numeric
expression in the specified cube and returns the resulting numeric value.
If a string expression is specified, the LookupCube function evaluates the specified string
expression in the specified cube and returns the resulting string value.
The LookupCube function works on cubes within the same database as the source cube on
which the MDX query that contains the LookupCube function is running.

You must provide any necessary current members in the numeric or string expression
because the context of the current query does not carry over to the cube being queried.

Any calculation using the LookupCube function is likely to suffer from poor performance.
Instead of using this function, consider redesigning your solution so that all of the data you
need is present in one cube.

Examples
The following query demonstrates the use of LookupCube:
WITH MEMBER MEASURES.LOOKUPCUBEDEMO AS
LOOKUPCUBE("Adventure Works", "[Measures].[In" + "ternet Sales Amount]")
SELECT MEASURES.LOOKUPCUBEDEMO ON 0
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Max
Returns the maximum value of a numeric expression that is evaluated over a set.

Important

 280

Syntax

Max(Set_Expression [, Numeric_Expression])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
If a numeric expression is specified, the specified numeric expression is evaluated across the set
and then returns the maximum value from that evaluation. If a numeric expression is not
specified, the specified set is evaluated in the current context of the members of the set and
then returns the maximum value from that evaluation.

Analysis Services ignores nulls when calculating the maximum value in a set of numbers.

Example
The following example returns the maximum monthly sales for each quarter, subcategory, and
country in the Adventure Works cube.
WITH MEMBER Measures.x AS Max

 ([Date].[Calendar].CurrentMember.Children

 , [Measures].[Reseller Order Quantity]

)

SELECT Measures.x ON 0

,NON EMPTY [Date].[Calendar].[Calendar Quarter]*

 [Product].[Product Categories].[Subcategory].members *

 [Geography].[Geography].[Country].Members

ON 1

FROM [Adventure Works]

Note

 281

See Also
MDX Function Reference (MDX)

MeasureGroupMeasures
Returns a set of measures that belongs to the specified measure group.

Syntax

MEASUREGROUPMEASURES(MeasureGroupName)

Arguments
MeasureGroupName

A valid string expression that contains the name of the measure group from which to retrieve
the set of measures.

Remarks
The specified string must match the measure group name exactly. Square brackets for measure
group names with spaces are not required.

Example
The following example returns all of the measures in the Internet Sales measure group in the
Adventure Works cube.

SELECT MeasureGroupMeasures('Internet Sales') ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Median
Returns the median value of a numeric expression that is evaluated over a set.

Syntax

Median(Set_Expression [,Numeric_Expression])

 282

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
If a numeric expression is specified, the specified numeric expression is evaluated across the set
and then returns the median value from that evaluation. If a numeric expression is not specified,
the specified set is evaluated in the current context of the members of the set and returns the
median value from the evaluation.
The median value is the middle value in a set of ordered numbers. (The medial value is unlike
the mean value, which is the sum of a set of numbers divided by the count of numbers in the
set). The median value is determined by choosing the smallest value such that at least half of the
values in the set are no greater than the chosen value. If the number of values within the set is
odd, the median value corresponds to a single value. If the number of values within the set is
even, the median value corresponds to the sum of the two middle values divided by two.

Analysis Services ignores nulls when calculating the median value in a set of ordered
numbers.

Example
The following example returns the median monthly sales for each quarter, each subcategory,
and each country in the Adventure Works cube.

WITH MEMBER Measures.x AS Median

 ([Date].[Calendar].CurrentMember.Children

 , [Measures].[Reseller Order Quantity]

)

SELECT Measures.x ON 0

,NON EMPTY [Date].[Calendar].[Calendar Quarter]*

 [Product].[Product Categories].[Subcategory].members *

 [Geography].[Geography].[Country].Members

ON 1

FROM [Adventure Works]

Note

 283

See Also
MDX Function Reference (MDX)

Members (Set)
Returns the set of members in a dimension, level, or hierarchy.

Syntax

Hierarchy expression syntax
Hierarchy_Expression.Members

Level expression Syntax
Level_Expression.Members

Arguments
Hierarchy_Expression

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Remarks
If a hierarchy expression is specified, the Members (Set) function returns the set of all members
within the specified hierarchy, not including calculated members. To obtain the set of all
members, calculated or otherwise, on a hierarchy use the AllMembers (MDX) function
If a level expression is specified, the Members (Set) function returns the set of all members
within the specified level.

When a dimension contains only a single visible hierarchy, the hierarchy can be either
referred to either by the dimension name or by the hierarchy name, because the
dimension name in this scenario is resolved to its only visible hierarchy. For example,
Measures.Members is a valid MDX expression because it resolves to the only hierarchy in
the Measures dimension.

Examples
The following example returns the set of all members of the Calendar Year hierarchy in the
Adventure Works cube.

Important

 284

SELECT

 [Date].[Calendar].[Calendar Year].Members ON 0

FROM

 [Adventure Works]

The following example returns the 2003 order quantities for each member in the
[Product].[Products].[Product Line] level. The Members function returns a set that
represents all of the members in the level.
SELECT

 {Measures.[Order Quantity]} ON COLUMNS,

 [Product].[Product Line].[Product Line].Members ON ROWS

FROM

 [Adventure Works]

WHERE

 {[Date].[Calendar Year].[Calendar Year].&[2003]}

See Also
MDX Function Reference (MDX)
AllMembers

Members (String)
Returns a member specified by a string expression.

Syntax

Members(Member_Name)

Arguments
Member_Name

A valid string expression that specifies a member name.

Remarks
The Members (String) function returns a single member whose name is specified. Typically, you
use the Members (String) function with external functions, providing to the Members (String)

 285

function a string that identifies a member, and the Members (String) function returns the value
for this specified member.

Example
The following example uses the Members (String) function to convert the specified string to a
valid member, and then returns the default measure for the member specified in the string. The
specified string is in single quotes. The default measure is the Reseller Sales Amount measure.

SELECT Members ('[Geography].[Geography].[Country].&[United States] ') ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

MemberToStr
Returns a Multidimensional Expressions (MDX)–formatted string that corresponds to a specified
member.

Syntax

MemberToStr(Member_Expression)

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
This function returns a string containing the uniquename of a member. It is usually used to pass
a member’s uniquename to an external function.

Example
The following example returns the string [Geography].[Geography].[Country].&[United States] :
WITH MEMBER Measures.x AS MemberToStr
 ([Geography].[Geography].[Country].[United States])
SELECT Measures.x ON 0
FROM [Adventure Works]

 286

See Also
MDX Function Reference (MDX)

MemberValue
Returns the value of a member.

Syntax

Member_Expression.MemberValue

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that evaluates to a member.

Return Value
The member value returned contains the following information, listed in the order that this
information appears in the return value:
• The value binding, if it has been defined.
• The key with the original data type if either there is no name binding, or the key and the

caption are bound to the same column.
• The caption of the member.

Example
The following example returns the value binding, the member key, and the caption for the first
date in the Date dimension in the Adventure Works cube.

WITH MEMBER Measures.ValueColumn as [Date].[Calendar].[July 1,

2001].MemberValue

MEMBER Measures.KeyColumn as [Date].[Calendar].[July 1, 2001].Member_Key

MEMBER Measures.NameColumn as [Date].[Calendar].[July 1, 2001].Member_Name

SELECT {Measures.ValueColumn, Measures.KeyColumn, Measures.NameColumn} ON 0

from [Adventure Works]

See Also
MDX Function Reference (MDX)

 287

Min
Returns the minimum value of a numeric expression that is evaluated over a set.

Syntax

Min(Set_Expression [, Numeric_Expression])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
If a numeric expression is specified, the specified numeric expression is evaluated across the set
and then returns the minimum value from that evaluation. If a numeric expression is not
specified, the specified set is evaluated in the current context of the members of the set and
then returns the minimum value from that evaluation.

Analysis Services ignores nulls when calculating the minimum value in a set of numbers.

Example
The following example returns the minimum quarterly sales for each subcategory and each
country in the Adventure Works cube.

WITH MEMBER Measures.x AS Min

 ([Date].[Calendar].CurrentMember.Children

 , [Measures].[Reseller Order Quantity]

)

SELECT Measures.x ON 0

,NON EMPTY [Date].[Calendar].[Calendar Quarter]*

 [Product].[Product Categories].[Subcategory].members *

 [Geography].[Geography].[Country].Members

ON 1

FROM [Adventure Works]

Note

 288

See Also
MDX Function Reference (MDX)

Mtd
Returns a set of sibling members from the same level as a given member, starting with the first
sibling and ending with the given member, as constrained by the Year level in the Time
dimension.

Syntax

Mtd([Member_Expression])

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
If a member expression is not specified, the default is the current member of the first hierarchy
with a level of type Months in the first dimension of type Time in the measure group.
The Mtd function is a shortcut function for the PeriodsToDate function when the Type property
of the attribute hierarchy on which a level is based is set to Months. That is,
Mtd(Member_Expression) is equivalent to
PeriodsToDate(Month_Level_Expression,Member_Expression).

Example
The following example returns the sum of the month to date freight costs for Internet sales for
the month of July, 2002 through the 20th day of July.
WITH MEMBER Measures.x AS SUM

 (

 MTD([Date].[Calendar].[Date].[July 20, 2002])

 , [Measures].[Internet Freight Cost]

)

SELECT Measures.x ON 0

FROM [Adventure Works]

 289

See Also
MDX Function Reference (MDX)
MDX Function Reference (MDX)

Name
Returns the name of a dimension, hierarchy, level, or member.

Syntax

Dimension expression syntax
Dimension_Expression.Name

Hierarchy expression syntax
Hierarchy_Expression.Name

Level_expression syntax
Level_Expression.Name

Member expression syntax
Member_Expression.Name

Arguments
Dimension_Expression

A valid Multidimensional Expressions (MDX) expression that returns a dimension.

Hierarchy_Expression

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
The Name function returns the name of the object, not the unique name.

 290

Examples

Dimension, Hierarchy and Level Expression Example
The following example returns the dimension name for the Date dimension and the hierarchy
and level names for the July 2001 member.

WITH MEMBER Measures.DimensionName AS [Date].Name

MEMBER Measures.HierarchyName AS [Date].[Calendar].[July 2001].Hierarchy.Name

MEMBER Measures.LevelName as [Date].[Calendar].[July 2001].Level.Name

SELECT {Measures.DimensionName, Measures.HierarchyName, Measures.LevelName}

ON 0

from [Adventure Works]

Member Expression Example
The following example returns the member name, along with the member value, member key
and member caption.

WITH MEMBER MemberName AS [Date].[Calendar].[July 1, 2001].Name

MEMBER Measures.ValueColumn as [Date].[Calendar].[July 1, 2001].MemberValue

MEMBER Measures.KeyColumn as [Date].[Calendar].[July 1, 2001].Member_Key

MEMBER Measures.NameColumn as [Date].[Calendar].[July 1, 2001].Member_Name

SELECT {Measures.MemberName, Measures.ValueColumn, Measures.KeyColumn,

Measures.NameColumn} ON 0

from [Adventure Works]

See Also
MDX Function Reference (MDX)

NameToSet
Returns a set that contains the member specified by a Multidimensional Expressions (MDX)–
formatted string.

Syntax

NameToSet(Member_Name)

 291

Arguments
Member_Name

A valid string expression that represents the name of a member.

Remarks
If the specified member name exists, the NameToSet function returns a set containing that
member. Otherwise, the function returns an empty set.

The specified member name must only be a member name; it cannot be a member
expression. To use a member expression, see MDX Function Reference (MDX).

Example
The following returns the default measure value for the specified member name.

SELECT NameToSet('[Date].[Calendar].[July 2001]') ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

NextMember
Returns the next member in the level that contains a specified member.

Syntax

Member_Expression.NextMember

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
The NextMember function returns the next member, in the same level, that contains the
specified member.

Note

 292

Example
The following example returns the August 2001 member as the next member to the July 2001
member.

SELECT [Date].[Calendar].[Month].[July 2001].NextMember ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

NonEmpty
Returns the set of tuples that are not empty from a specified set, based on the cross product of
the specified set with a second set.

Syntax

NONEMPTY(set_expression1 [,set_expression2])

Arguments
set_expression1

A valid Multidimensional Expressions (MDX) expression that returns a set.

set_expression2

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
This function returns the tuples in the first specified set that are non-empty when evaluated
across the tuples in the second set. The NonEmpty function takes into account calculations and
preserves duplicate tuples. If a second set is not provided, the expression is evaluated in the
context of the current coordinates of the members of the attribute hierarchies and the measures
in the cube.

Use this function rather than the deprecated NonEmptyCrossjoin (MDX) function.

Non-empty is a characteristic of the cells references by the tuples, not the tuples
themselves.

Note

Important

 293

Examples
The following query shows a simple example of NonEmpty, returning all the Customers who
had a non-null value for Internet Sales Amount on July 1st 2001:
SELECT [Measures].[Internet Sales Amount] ON 0,
NONEMPTY(
[Customer].[Customer].[Customer].MEMBERS
, {([Date].[Calendar].[Date].&[20010701], [Measures].[Internet Sales
Amount])}
)
ON 1
FROM [Adventure Works]
The following example returns the set of tuples containing customers and purchase dates, using
the Filter function and the NonEmpty functions to find the last date that each customer made a
purchase:
WITH SET MYROWS AS FILTER
 (NONEMPTY
 ([Customer].[Customer Geography].[Customer].MEMBERS
 * [Date].[Date].[Date].MEMBERS
 , [Measures].[Internet Sales Amount]
) AS MYSET
 , NOT(MYSET.CURRENT.ITEM(0)
 IS MYSET.ITEM(RANK(MYSET.CURRENT, MYSET)).ITEM(0))
)
SELECT [Measures].[Internet Sales Amount] ON 0,
MYROWS ON 1
FROM [Adventure Works]

See Also
DefaultMember (MDX)
Filter (MDX)
IsEmpty (MDX)
MDX Function Reference (MDX)
NonEmptyCrossjoin (MDX)

 294

NonEmptyCrossjoin
Returns a set that contains the cross product of one or more sets, excluding empty tuples and
tuples without associated fact table data.

Syntax

NonEmptyCrossjoin(Set_Expression1 [,Set_Expression2, ...] [,Count])

Arguments
Set_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a set.

Set_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a set.

Count

A valid numeric expression that specifies the number of sets to be returned.

Remarks
The NonEmptyCrossjoin function returns the cross product of two or more sets as a set,
excluding empty tuples or tuples without data supplied by underlying fact tables. Because of
how the NonEmptyCrossjoin function works, all calculated members are automatically
excluded.
If Count is not specified, the function cross joins all specified sets and excludes empty members
from the resulting set. If a number of sets is specified, the function cross joins the numbers of
sets specified, starting with the first specified set. The NonEmptyCrossjoin function uses any
remaining sets that are specified in subsequent specified sets, but which have not been cross
joined to determine which members are considered nonempty in the resulting cross joined set.
The NonEmptyCrossjoin function respects the NON_EMPTY_BEHAVIOR setting of calculated
measures.

This function is deprecated and you should not use it; it is retained only to maintain
backwards compatibility. Instead, you should use the Exists (MDX) function with the
measure group name argument or the NonEmpty (MDX) function.

See Also
MDX Function Reference (MDX)

Important

 295

OpeningPeriod
Returns the first sibling among the descendants of a specified level, optionally at a specified
member.

Syntax

OpeningPeriod([Level_Expression [, Member_Expression]])

Arguments
Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
This function is primarily intended to be used the Time dimension, but can be used with any
dimension.
• If a level expression is specified, the OpeningPeriod function uses the hierarchy that

contains the specified level and returns the first sibling among the descendants of the
default member at the specified level.

• If both a level expression and a member expression are specified, the OpeningPeriod
function returns the first sibling among the descendants of specified member at the
specified level within the hierarchy containing the specified level.

• If neither a level expression nor a member expression are specified, the OpeningPeriod
function uses the default level and member of the dimension with a type of Time.

The ClosingPeriod function is similar to the OpeningPeriod function, except that the
ClosingPeriod function returns the last sibling instead of the first sibling.

Examples
The following example returns the value for the default measure for the FY2002 member of the
Date dimension (which has a type of Time). This member is returned because the Fiscal Year
level is the first descendant of the [All] level, the Fiscal hierarchy is the default hierarchy because
it is the first user-defined hierarchy in the hierarchy collection, and the FY2002 member is the
first sibling in this hierarchy at this level.

SELECT OpeningPeriod() ON 0

FROM [Adventure Works]

Note

 296

The following example returns the value for the default measure for July 1, 2001 member at the
Date.Date.Date level for the Date.Date attribute hierarchy. This member is the first sibling of the
descendant of [All] level in the Date.Date attribute hierarchy.
SELECT OpeningPeriod([Date].[Date].[Date]) ON 0

FROM [Adventure Works]

The following example returns the value for the default measure for January, 2003 member,
which is the first sibling of the descendant of the 2003 member at the year level in the Calendar
user-defined hierarchy.

SELECT OpeningPeriod([Date].[Calendar].[Month],[Date].[Calendar].[Calendar

Year].&[2003]) ON 0

FROM [Adventure Works]

The following example returns the value for the default measure for July, 2002 member, which is
the first sibling of the descendant of the 2003 member at the year level in the Fiscal user-
defined hierarchy.

SELECT OpeningPeriod([Date].[Fiscal].[Month],[Date].[Fiscal].[Fiscal

Year].&[2003]) ON 0

FROM [Adventure Works]

See Also
FirstSibling (MDX)
MDX Function Reference (MDX)
FirstSibling (MDX)

Order
Arranges members of a specified set, optionally preserving or breaking the hierarchy.

Syntax

Numeric expression syntax
Order(Set_Expression, Numeric_Expression
[, { ASC | DESC | BASC | BDESC }])

 297

String expression syntax
Order(Set_Expression, String_Expression
[, { ASC | DESC | BASC | BDESC }])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

String_Expression

A valid string expression that is typically a valid Multidimensional Expressions (MDX)
expression of cell coordinates that return a number expressed as a string.

Remarks
The Order function can either be hierarchical (as specified by using the ASC or DESC flag) or
nonhierarchical (as specified by using the BASC or BDESC flag; the B stands for "break
hierarchy"). If ASC or DESC is specified, the Order function first arranges the members
according to their position in the hierarchy, and then orders each level. If BASC or BDESC is
specified, the Order function arranges members in the set without regard to the hierarchy. In no
flag is specified, ASC is the default.
If the Order function is used with a set where two or more hierarchies are crossjoined, and the
DESC flag is used, only the members of the last hierarchy in the set are ordered. This is a change
from Analysis Services 2000 where all hierarchies in the set were ordered.

Examples
The following example returns, from the Adventure Works cube, the number of reseller orders
for all Calendar Quarters from the Calendar hierarchy on the Date dimension. The Order
function reorders the set for the ROWS axis. The Order function orders the set by [Reseller
Order Count] in descending hierarchical order as determined by the [Calendar] hierarchy.
SELECT
 Measures.[Reseller Order Count] ON COLUMNS,
 Order(
[Date].[Calendar].[Calendar Quarter].MEMBERS
 ,Measures.[Reseller Order Count]
 ,DESC

 298

) ON ROWS
FROM [Adventure Works]
Notice how in this example, when the DESC flag is changed to BDESC, the hierarchy is broken
and the list of Calendar Quarters is returned with no regard for the hierarchy:
SELECT
 Measures.[Reseller Order Count] ON COLUMNS,
 Order(
[Date].[Calendar].[Calendar Quarter].MEMBERS
 ,Measures.[Reseller Order Count]
 ,BDESC
) ON ROWS
FROM [Adventure Works]
The following example returns the Reseller Sales Measure for the top five selling subcategories
of products, irrespective of hierarchy, based on Reseller Gross Profit. The Subset function is used
to return only the first 5 tuples in the set after the result is ordered using the Order function.
SELECT Subset
 (Order
 ([Product].[Product Categories].[SubCategory].members
 ,[Measures].[Reseller Gross Profit]
 ,BDESC
)
 ,0
 ,5
) ON 0
FROM [Adventure Works]
The following example uses the Rank function to rank the members of the City hierarchy, based
on the Reseller Sales Amount measure, and then displays them in ranked order. By using the
Order function to first order the set of members of the City hierarchy, the sorting is done only
once and then followed by a linear scan before being presented in sorted order.

WITH

SET OrderedCities AS Order

 ([Geography].[City].[City].members

 , [Measures].[Reseller Sales Amount], BDESC

)

MEMBER [Measures].[City Rank] AS Rank

 ([Geography].[City].CurrentMember, OrderedCities)

 299

SELECT {[Measures].[City Rank],[Measures].[Reseller Sales Amount]} ON 0

,Order

 ([Geography].[City].[City].MEMBERS

 ,[City Rank], ASC)

 ON 1

FROM [Adventure Works]

The following example returns the number of products in the set that are unique, using the
Order function to order the non-empty tuples before utilizing the Filter function. The
CurrentOrdinal function is used to compare and eliminate ties.
WITH MEMBER [Measures].[PrdTies] AS Count

 (Filter

 (Order

 (NonEmpty

 ([Product].[Product].[Product].Members

 , {[Measures].[Reseller Order Quantity]}

)

 , [Measures].[Reseller Order Quantity]

 , BDESC

) AS OrdPrds

 , (OrdPrds.CurrentOrdinal < OrdPrds.Count

 AND [Measures].[Reseller Order Quantity] =

 ([Measures].[Reseller Order Quantity]

 , OrdPrds.Item

 (OrdPrds.CurrentOrdinal

)

)

)

 OR (OrdPrds.CurrentOrdinal > 1

 AND [Measures].[Reseller Order Quantity] =

 ([Measures].[Reseller Order Quantity]

 , OrdPrds.Item

 (OrdPrds.CurrentOrdinal-2)

)

)

 300

)

)

SELECT {[Measures].[PrdTies]} ON 0

FROM [Adventure Works]

To understand how the DESC flag works with sets of tuples, first consider the results of the
following query:

SELECT

{[Measures].[Tax Amount]} ON 0,

ORDER(

[Sales Territory].[Sales Territory].[Group].MEMBERS

,[Measures].[Tax Amount], DESC)

ON 1

FROM [Adventure Works]

On the Rows axis you can see that the Sales Territory Groups have been ordered in descending
order by Tax Amount, as follows: North America, Europe, Pacific, NA. Now see what happens if
we crossjoin the set of Sales Territory Groups with the set of Product Subcategories and apply
the Order function in the same way, as follows:

SELECT

{[Measures].[Tax Amount]} ON 0,

ORDER(

[Sales Territory].[Sales Territory].[Group].MEMBERS

*

{[Product].[Product Categories].[subCategory].Members}

,[Measures].[Tax Amount], DESC)

ON 1

FROM [Adventure Works]

While the set of Product Subcategories has been ordered in descending, hierarchical order, the
Sales Territory Groups are now not sorted and appear in the order they appear on the hierarchy:
Europe, NA, North America and Pacific. This is because only the last hierarchy in the set of
tuples, Product Subcategories, is sorted. To reproduce the behavior of Analysis Services 2000,
use a series of nested Generate functions to sort each set before it is crossjoined, for example:

 301

SELECT

{[Measures].[Tax Amount]} ON 0,

GENERATE(

ORDER(

[Sales Territory].[Sales Territory].[Group].MEMBERS

,[Measures].[Tax Amount], DESC)

,

ORDER(

[Sales Territory].[Sales Territory].CURRENTMEMBER

*

{[Product].[Product Categories].[subCategory].Members}

,[Measures].[Tax Amount], DESC))

ON 1

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Ordinal
Returns the zero-based ordinal value associated with a level.

Syntax

Level_Expression.Ordinal

Arguments
Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Remarks
The Ordinal function is frequently used in conjunction with the IIF and CurrentMember
functions to conditionally display different values at different hierarchy levels, based on the
ordinal position of each specific cell in the query result. For example, you can use the Ordinal

 302

function to perform calculations at certain levels and display a default value of "N/A" at other
levels.

Example
The following example returns the ordinal number for the Calendar Quarter level in the Calendar
hierarchy.

WITH MEMBER Measures.x AS [Date].[Calendar].[Calendar Quarter].Ordinal

SELECT Measures.x on 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

ParallelPeriod
Returns a member from a prior period in the same relative position as a specified member.

Syntax

ParallelPeriod([Level_Expression [,Index [, Member_Expression]]])

Arguments
Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Index

A valid numeric expression that specifies the number of parallel periods to lag.

Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
Although similar to the Cousin function, the ParallelPeriod function is more closely related to
time series. The ParallelPeriod function takes the ancestor of the specified member at the
specified level, finds the ancestor's sibling with the specified lag, and finally returns the parallel
period of the specified member among the descendants of the sibling.
The ParallelPeriod function has the following defaults:

 303

• If neither a level expression nor a member expression is specified, the default member value
is the current member of the first hierarchy on the first dimension with a type of Time in the
measure group.

• If a level expression is specified, but a member expression is not specified, the default
member value is Level_Expression.Hierarchy.CurrentMember.

• The default index value is 1.
• The default level is the level of the parent of the specified member.
The ParallelPeriod function is equivalent to the following MDX statement:
Cousin(Member_Expression, Ancestor(Member_Expression, Level_Expression)
.Lag(Numeric_Expression))

Example
The following example returns the parallel period for the month of October 2003 with a lag of
three periods, based on the quarter level, which returns the month of January, 2003.

SELECT ParallelPeriod ([Date].[Calendar].[Calendar Quarter]

 , 3

 , [Date].[Calendar].[Month].[October 2003])

 ON 0

 FROM [Adventure Works]

The following example returns the parallel period for the month of October 2003 with a lag of
three periods, based on the semester level, which returns the month of April, 2002.

SELECT ParallelPeriod ([Date].[Calendar].[Calendar Semester]

 , 3

 , [Date].[Calendar].[Month].[October 2003])

 ON 0

 FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Parent
Returns the parent of a member.

Syntax

Member_Expression.Parent

 304

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
The Parent function returns the parent member of the specified member.

Examples
The following examples return the parent of the July 1, 2001 member. The first example specifies
this member in the context of the Date attribute hierarchy and returns the All Periods member.

SELECT [Date].[Date].[July 1, 2001].Parent ON 0

FROM [Adventure Works]

The following example specifies the July 1, 2001 member in the context of the Calendar
hierarchy.

SELECT [Date].[Calendar].[July 1, 2001].Parent ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

PeriodsToDate
Returns a set of sibling members from the same level as a given member, starting with the first
sibling and ending with the given member, as constrained by a specified level in the Time
dimension.

Syntax

PeriodsToDate([Level_Expression [,Member_Expression]])

Arguments
Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

 305

Remarks
Within the scope of the specified level, the PeriodsToDate function returns the set of periods
on the same level as the specified member, starting with the first period and ending with
specified member.
• If a level is specified, the current member of the hierarchy is inferred

hierarchy.CurrentMember, where hierarchy is the hierarchy of the specified level.
• If neither a level nor a member is specified, the level is the parent level of the current

member of the first hierarchy on the first dimension of type Time in the measure group.
PeriodsToDate(Level_Expression, Member_Expression) is functionally equivalent to the
following MDX expression:
TopCount(Descendants(Ancestor(Member_Expression, Level_Expression),
Member_Expression.Level), 1):Member_Expression

Examples
The following example returns the sum of the Measures.[Order Quantity] member,
aggregated over the first eight months of calendar year 2003 that are contained in the Date
dimension, from the Adventure Works cube.

WITH MEMBER [Date].[Calendar].[First8Months2003] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].[Month].[August 2003]

)

)

SELECT

 [Date].[Calendar].[First8Months2003] ON COLUMNS,

 [Product].[Category].Children ON ROWS

FROM

 [Adventure Works]

WHERE

 [Measures].[Order Quantity]

The following example aggregates over the first two months of the second semester of calendar
year 2003.

WITH MEMBER [Date].[Calendar].[First2MonthsSecondSemester2003] AS

 Aggregate(

 PeriodsToDate(

 306

 [Date].[Calendar].[Calendar Semester],

 [Date].[Calendar].[Month].[August 2003]

)

)

SELECT

 [Date].[Calendar].[First2MonthsSecondSemester2003] ON COLUMNS,

 [Product].[Category].Children ON ROWS

FROM

 [Adventure Works]

WHERE

 [Measures].[Order Quantity]

See Also
MDX Function Reference (MDX)
MDX Function Reference (MDX)

Predict

• This function is in the process of being removed due to internal inconsistencies.
• Review the example section for a workaround using a DMX expression.

Returns a value of a numeric expression evaluated over a data mining model.

Syntax

Predict(Mining_Model_Name,String_Expression)

Arguments
Mining_Model_Name

A valid string expression that represents the name of a mining model.

String_Expression

A valid string expression that evaluates to a valid DMX expression for the specified mining
model.

Caution

 307

Remarks
The Predict function evaluates the specified string expression within the context of the specified
mining model.
Data mining syntax and functions are documented in Data Mining Expressions (DMX) reference.

Example
The following example predicts name of the cluster and the distance from it of a particular
customer using the Customer Clusters mining model:

WITH MEMBER MEASURES.CLNAME AS

PREDICT("Customer Clusters", "Cluster()")

MEMBER MEASURES.CLDISTANCE AS

PREDICT("Customer Clusters", "ClusterDistance(Cluster())")

SELECT {MEASURES.CLNAME, MEASURES.CLDISTANCE} ON 0

FROM [Adventure Works]

WHERE([Customer].[Customer Geography].[Customer].&[12012])

See Also
MDX Function Reference (MDX)

PrevMember
Returns the previous member in the level that contains a specified member.

Syntax

Member_Expression.PrevMember

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
The PrevMember function returns the previous member in the same level as the specified
member.

 308

Example
The following example shows a simple query that uses the PrevMember function to display the
name of the member immediately before the current member on the rows axis:
WITH MEMBER MEASURES.PREVMEMBERDEMO AS
[Date].[Calendar].CURRENTMEMBER.PREVMEMBER.NAME
SELECT MEASURES.PREVMEMBERDEMO ON 0,
[Date].[Calendar].MEMBERS ON 1
FROM [Adventure Works]
The following example returns the count of the resellers whose sales have declined over the
previous time period, based on user-selected State-Province member values evaluated using the
Aggregate function. The Hierarchize and DrillDownLevel functions are used to return values
for declining sales for product categories in the Product dimension. The PrevMember function
is used to compare the current time period with the previous time period.
WITH MEMBER Measures.[Declining Reseller Sales] AS

 Count(

 Filter(

 Existing(Reseller.Reseller.Reseller),

 [Measures].[Reseller Sales Amount] < ([Measures].[Reseller Sales

Amount],

 [Date].Calendar.PrevMember)

)

)

MEMBER [Geography].[State-Province].x AS

 Aggregate (

 {[Geography].[State-Province].&[WA]&[US],

 [Geography].[State-Province].&[OR]&[US] }

)

SELECT NON EMPTY Hierarchize (

 AddCalculatedMembers (

 {DrillDownLevel({[Product].[All Products]})}

)

)

 DIMENSION PROPERTIES PARENT_UNIQUE_NAME ON COLUMNS

FROM [Adventure Works]

WHERE ([Geography].[State-Province].x,

 309

 [Date].[Calendar].[Calendar Quarter].&[2003]&[4],

 [Measures].[Declining Reseller Sales])

See Also
MDX Function Reference (MDX)

Properties
Returns a string, or a strongly-typed value, that contains a member property value.

Syntax

Member_Expression.Properties(Property_Name [, TYPED])

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Property_Name

A valid string expression of a member property name.

Remarks
The Properties function returns the value of the specified member for the specified member
property. The member property can be any of the intrinsic member properties, such as NAME,
ID, KEY, or CAPTION, or it can be a user-defined member property. For more information, see
Intrinsic Member Properties (MDX) and User-defined Member Properties (MDX).
By default, the value is coerced to be a string. If TYPED is specified, the return value is strongly
typed.
• If the property type is intrinsic, the function returns the original type of the member.
• If the property type is user defined, the type of the return value is the same as the type of

the return value of the MemberValue function.

Properties ('Key') returns the same result as Key0 except for composite keys. Properties
('Key') will return null for composite keys. Use the Keyx syntax for composite keys, as
illustrated in the example. Properties ('Key0'), Properties('Key1'), Properties('Key2'), etc
collectively form the composite key.

Note

http://msdn.microsoft.com/en-us/library/84e6fe64-9b37-4e79-bedf-ae02e80bfce8(SQL.110)�
http://msdn.microsoft.com/en-us/library/b64cc581-e784-42c4-bec8-932abd687423(SQL.110)�

 310

Example
The following example returns both intrinsic and user-defined member properties, utilizing the
TYPED argument to return the strongly typed value for the Day Name member property.

WITH MEMBER Measures.MemberName AS

 [Date].[Calendar].[July 1, 2003].Properties('Name')

MEMBER Measures.MemberVal AS

 [Date].[Calendar].[July 1, 2003].Properties('Member_Value')

MEMBER Measures.MemberKey AS

 [Date].[Calendar].[July 1, 2003].Properties('Key')

MEMBER Measures.MemberID AS

 [Date].[Calendar].[July 1, 2003].Properties('ID')

MEMBER Measures.MemberCaption AS

 [Date].[Calendar].[July 1, 2003].Properties('Caption')

MEMBER Measures.DayName AS

 [Date].[Calendar].[July 1, 2003].Properties('Day Name', TYPED)

MEMBER Measures.DayNameTyped AS

 [Date].[Calendar].[July 1, 2003].Properties('Day Name')

MEMBER Measures.DayofWeek AS

 [Date].[Calendar].[July 1, 2003].Properties('Day of Week')

MEMBER Measures.DayofMonth AS

 [Date].[Calendar].[July 1, 2003].Properties('Day of Month')

MEMBER Measures.DayofYear AS

 [Date].[Calendar].[July 1, 2003].Properties('Day of Year')

SELECT {Measures.MemberName

 , Measures.MemberVal

 , Measures.MemberKey

 , Measures.MemberID

 , Measures.MemberCaption

 , Measures.DayName

 , Measures.DayNameTyped

 , Measures.DayofWeek

 , Measures.DayofMonth

 , Measures.DayofYear

 311

 } ON 0

FROM [Adventure Works]

The following example shows the use of the KEYx property.

WITH

MEMBER Measures.MemberKey AS

 [Customer].[Customer Geography].[State-

Province].&[QLD]&[AU].Properties('Key')

MEMBER Measures.MemberKey0 AS

 [Customer].[Customer Geography].[State-

Province].&[QLD]&[AU].Properties('Key0')

MEMBER Measures.MemberKey1 AS

 [Customer].[Customer Geography].[State-

Province].&[QLD]&[AU].Properties('Key1')

SELECT {Measures.MemberKey

 , Measures.MemberKey0

 , Measures.MemberKey1

 } ON 0

FROM [Adventure Works]

See Also
Using Member Properties (MDX)
MDX Function Reference (MDX)

Qtd
Returns a set of sibling members from the same level as a given member, starting with the first
sibling and ending with the given member, as constrained by the Quarter level in the Time
dimension.

Syntax

Qtd([Member_Expression])

http://msdn.microsoft.com/en-us/library/26b5ad08-3799-4a5e-89f3-dca25e637d45(SQL.110)�

 312

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
If a member expression is not specified, the default is the current member of the first hierarchy
with a level of type Quarters in the first dimension of type Time in the measure group.
The Qtd function is a shortcut function for the MDX Function Reference (MDX) function whose
level expression argument is set to Quarter. That is, Qtd(Member_Expression) is functionally
equivalent to PeriodsToDate(Quarter_Level_Expression, Member_Expression).

Example
The following example returns the sum of the Measures.[Order Quantity] member,
aggregated over the first two months of the third quarter of calendar year 2003 that are
contained in the Date dimension, from the Adventure Works cube.

WITH MEMBER [Date].[Calendar].[First2MonthsSecondSemester2003] AS

 Aggregate(

 QTD([Date].[Calendar].[Month].[August 2003])

)

SELECT

 [Date].[Calendar].[First2MonthsSecondSemester2003] ON COLUMNS,

 [Product].[Category].Children ON ROWS

FROM

 [Adventure Works]

WHERE

 [Measures].[Order Quantity]

See Also
MDX Function Reference (MDX)

Rank
Returns the one-based rank of a specified tuple in a specified set.

Syntax

Rank(Tuple_Expression, Set_Expression [,Numeric Expression])

 313

Arguments
Tuple_Expression

A valid Multidimensional Expressions (MDX) expression that returns a tuple.

Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
If a numeric expression is specified, the Rank function determines the one-based rank for the
specified tuple by evaluating the specified numeric expression against the tuple. If a numeric
expression is specified, the Rank function assigns the same rank to tuples with duplicate values
in the set. This assignment of the same rank to duplicate values affects the ranks of subsequent
tuples in the set. For example, a set consists of the following tuples, {(a,b), (e,f), (c,d)}.
The tuple (a,b) has the same value as the tuple (c,d). If the tuple (a,b) has a rank of 1, then
both (a,b) and (c,d) would have a rank of 1. However, the tuple (e,f) would have a rank of
3. There could be no tuple in this set with a rank of 2.
If a numeric expression is not specified, the Rank function returns the one-based ordinal
position of the specified tuple.
The Rank function does not order the set.

Example
The following example returns the set of tuples containing customers and purchase dates, by
using the Filter, NonEmpty, Item, and Rank functions to find the last date that each customer
made a purchase.
WITH SET MYROWS AS FILTER

 (NONEMPTY

 ([Customer].[Customer Geography].MEMBERS

 * [Date].[Date].[Date].MEMBERS

 , [Measures].[Internet Sales Amount]

) AS MYSET

 , NOT(MYSET.CURRENT.ITEM(0)

 IS MYSET.ITEM(RANK(MYSET.CURRENT, MYSET)).ITEM(0))

)

SELECT [Measures].[Internet Sales Amount] ON 0,

 314

MYROWS ON 1

FROM [Adventure Works]

The following example uses the Order function, rather than the Rank function, to rank the
members of the City hierarchy based on the Reseller Sales Amount measure and then displays
them in ranked order. By using the Order function to first order the set of members of the City
hierarchy, the sorting is done only once and then followed by a linear scan before being
presented in sorted order.

WITH

SET OrderedCities AS Order

 ([Geography].[City].[City].members

 , [Measures].[Reseller Sales Amount], BDESC

)

MEMBER [Measures].[City Rank] AS Rank

 ([Geography].[City].CurrentMember, OrderedCities)

SELECT {[Measures].[City Rank],[Measures].[Reseller Sales Amount]} ON 0

,Order

 ([Geography].[City].[City].MEMBERS

 ,[City Rank], ASC)

 ON 1

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)
MDX Function Reference (MDX)

RollupChildren
Returns a value generated by rolling up the values of the children of a specified member using
the specified unary operator.

Syntax

RollupChildren(Member_Expression, Unary_Operator)

 315

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Unary_Operator

A valid string expression that specifies a unary operator.

Remarks
The RollupChildren function rolls up the values of the children of the specified member using
the specified unary operator.
The following table describes the valid unary operators for this function.

Operator Result

+ total = total + current child

- total = total - current child

* total = total * current child

/ total = total / current child

% total = (total / current child) * 100

~ The child is not used in the rollup. Its value
is ignored.

If the operator in the member property does not appear in the list, an error occurs. The order of
evaluation is determined by the order of the siblings, not by the precedence of the operators.

Example
The following example uses a member property called "Alternate Rollup Operator" that contains
alternate values for unary operators to rollup up children of the Net Profit hierarchy in the
Account dimension in an alternate manner. This member property does not exist in the
Adventure Works cube, but could be created. This use of the RollupChildren function could be
used in a budgeting application for what-if analysis.

RollupChildren

 ([Account].[Net Profit]

 , [Account].CurrentMember.Properties ('Alternate Rollup Operator'))

 316

See Also
MDX Function Reference (MDX)

Root
Returns a tuple that consists of the All members from each attribute hierarchy within the current
scope in a cube, dimension, or tuple. For more information about Scope, see MDX Function
Reference (MDX).

If an attribute hierarchy does not have an All member, the tuple contains the default
member for that hierarchy.

Syntax

Cube syntax
Root ()
Dimension syntax
Root(Dimension_Name)
Tuple syntax
Root(Tuple_Expression)

Arguments
Dimension_Name

A valid string expression specifying a dimension name.

Tuple_Expression

A valid Multidimensional Expressions (MDX) expression that returns a tuple.

Remarks
If neither a dimension name nor a tuple expression is specified, the Root function returns a
tuple that contains the All member (or the default member if the All member does not exist)
from each attribute hierarchy in the cube. The order of members in the tuple is based on the
sequence in which the attribute hierarchies are defined within the cube.
If a dimension name is specified, the Root function returns a tuple that contains the All member
(or the default member if the All member does not exist) from each attribute hierarchy in the
specified dimension based on the context of the current member. The order of members in the
tuple is based on the sequence in which the attribute hierarchies are defined within the
dimension.

Note

 317

If a hierarchy name is specified, the Tuple function will pick the dimension name from
the hierarchy name specified.

If a tuple expression is specified, the Root function returns a tuple that contains the intersection
of the specified tuple and the All members of all other dimension attributes not explicitly
included in the specified tuple. The specified tuple must reference only one dimension, or an
error occurs.

Examples
The following example returns the tuple containing the All member (or the default if the All
member does not exist) from each hierarchy in the Adventure Works cube.
SELECT Root()ON 0

FROM [Adventure Works]

The following example returns the tuple containing the All member (or the default if the All
member does not exist) from each hierarchy in the Date dimension in the Adventure Works
cube and the value for the specified member of Measures dimension that intersects with these
default members.

SELECT Root([Date]) ON 0

FROM [Adventure Works]

WHERE [Measures].[Order Count]

The following example returns the tuple containing specified tuple member (July 1, 2001, along
with the All member (or the default if the All member does not exist) from each non-specified
hierarchy in the Date dimension Adventure Works cube and the value for the specified member
of Measures dimension that intersects with these members.

SELECT Root([Date].[July 1, 2001]) ON 0

FROM [Adventure Works]

WHERE [Measures].[Order Count]

See Also
MDX Function Reference (MDX)

SetToArray
Converts one or more sets to an array for use in a user-defined function.

Syntax

SetToArray(Set_Expression1 [,Set_Expression2,...n][,Numeric_Expression])

Note

 318

Arguments
Set_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a set.

Set_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
The SetToArray function converts one or more sets to an array for use in a user-defined
function. The number of dimensions in the resulting array is the same as the number of sets
specified.
The optional numeric expression can provide the values in the array cells. If a numeric
expression is not specified, the cross join of the sets is evaluated in the current context.
The cell coordinates in the resulting array correspond to the position of the sets in the list. For
example, there are three sets, SA, SB, and SC. Each of these sets has two elements. The MDX
statement, SetToArray(SA, SB, SC), creates the following three-dimensional array:
(SA1, SB1, SC1) (SA2, SB1, SC1) (SA1, SB2, SC1) (SA2, SB2, SC1)

(SA1, SB1, SC2) (SA2, SB1, SC2) (SA1, SB2, SC2) (SA2, SB2, SC2)

The return type of the SetToArray function is the VARIANT type, VT_ARRAY. Therefore,
the output of the SetToArray function should be used only as input to a user-defined
function.

Example
The following example returns an array.

SetToArray([Geography].[Geography].Members, [Measures].[Internet Sales

Amount])

See Also
MDX Function Reference (MDX)

SetToStr
Returns a Multidimensional Expressions (MDX)-formatted string of that corresponds to a
specified set.

Note

 319

Syntax

SetToStr(Set_Expression)

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
This function is used to transfer a string-representation of a set to an external function for
parsing. The string that is returned is enclosed in braces {}, with each item in the set separated
by a comma.

Example
The following example returns a string containing all of the members of the Geography.Country
attribute hierarchy.

WITH MEMBER Measures.x AS SetToStr (Geography.Geography.Children)

SELECT Measures.x ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Siblings
Returns the siblings of a specified member, including the member itself.

Syntax

Member_Expression.Siblings

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

 320

Example
The following example returns the default measure for the siblings of March of 2003, which are
January 2003 and February 2003, and including March 2003.

SELECT [Date].[Calendar].[Month].[March 2003].Siblings ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Stddev
Alias for the Stdev function.

See Also
MDX Function Reference (MDX)

StddevP
Alias for the StdevP function

See Also
MDX Function Reference (MDX)

Stdev
Returns the sample standard deviation of a numeric expression evaluated over a set, using the
unbiased population formula (dividing by n-1).

Syntax

Stdev(Set_Expression [,Numeric_Expression])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

 321

Remarks
The Stdev function uses the unbiased population formula, while the StdevP function uses the
biased population formula.

Example
The following example returns the standard deviation for Internet Order Quantity, evaluated
over the first three months of calendar year 2003, using the unbiased population formula.

WITH MEMBER Measures.x AS

 Stdev

 ({ [Date].[Calendar].[Month].[January 2003],

 [Date].[Calendar].[Month].[February 2003],

 [Date].[Calendar].[Month].[March 2003]},

 [Measures].[Internet Order Quantity])

SELECT Measures.x ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

StdevP
Returns the population standard deviation of a numeric expression evaluated over a set, using
the biased population formula (dividing by n).

Syntax

StdevP(Set_Expression [,Numeric_Expression])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

 322

Remarks
The StdevP function uses the biased population formula, while the Stdev function uses the
unbiased population formula.

Example
The following example returns the standard deviation for Internet Order Quantity evaluated over
the first three months of calendar year 2003 using the biased population formula.

WITH MEMBER Measures.x AS

 StdevP

 ({ [Date].[Calendar].[Month].[January 2003],

 [Date].[Calendar].[Month].[February 2003],

 [Date].[Calendar].[Month].[March 2003]},

 [Measures].[Internet Order Quantity])

SELECT Measures.x ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

StripCalculatedMembers
Returns a set generated by removing calculated members from a specified set.

Syntax

StripCalculatedMembers(Set_Expression)

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
The StripCalculatedMembers function removes calculated members from a set. Calculated
members can be added to a set by using the AddCalculatedMembers function, which returns
calculated members that are defined on the server, or calculated members that were added
within the query itself by using the WITH MEMBER syntax.

 323

Example
The following example removes all calculated members from the query.

WITH MEMBER Measures.MemberName AS

 [Date].[Calendar].[July 1, 2003].Properties('Name')

MEMBER Measures.MemberVal AS

 [Date].[Calendar].[July 1, 2003].Properties('Member_Value')

MEMBER Measures.MemberKey AS

 [Date].[Calendar].[July 1, 2003].Properties('Key')

MEMBER Measures.MemberID AS

 [Date].[Calendar].[July 1, 2003].Properties('ID')

MEMBER Measures.MemberCaption AS

 [Date].[Calendar].[July 1, 2003].Properties('Caption')

MEMBER Measures.DayName AS

 [Date].[Calendar].[July 1, 2003].Properties('Day Name', TYPED)

MEMBER Measures.DayNameTyped AS

 [Date].[Calendar].[July 1, 2003].Properties('Day Name')

MEMBER Measures.DayofWeek AS

 [Date].[Calendar].[July 1, 2003].Properties('Day of Week')

MEMBER Measures.DayofMonth AS

 [Date].[Calendar].[July 1, 2003].Properties('Day of Month')

MEMBER Measures.DayofYear AS

 [Date].[Calendar].[July 1, 2003].Properties('Day of Year')

SELECT StripCalculatedMembers(

 { Measures.DefaultMember

 , Measures.MemberName

 , Measures.MemberVal

 , Measures.MemberKey

 , Measures.MemberID

 , Measures.MemberCaption

 , Measures.DayName

 , Measures.DayNameTyped

 , Measures.DayofWeek

 324

 , Measures.DayofMonth

 , Measures.DayofYear

 }

) ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

StrToMember
Returns the member specified by a Multidimensional Expressions (MDX)–formatted string.

Syntax

StrToMember(Member_Name [,CONSTRAINED])

Arguments
Member_Name

A valid string expression specifying, directly or indirectly, a member.

Remarks
The StrToMember function returns the member specified in the string expression. The
StrToMember function is typically used with user-defined functions to return a member
specification from an external function back to an MDX statement, or when an MDX query is
parameterized.
• When the CONSTRAINED flag is used, the member name must be directly resolvable to a

qualified or unqualified member name. This flag is used to reduce the risk of injection
attacks via the specified string. If a string is provided that is not directly resolvable to a
qualified or unqualified member name, the following error appears: "The restrictions
imposed by the CONSTRAINED flag in the STRTOMEMBER function were violated."

• When the CONSTRAINED flag is not used, the specified member can resolve either directly
to a member name or can resolve to an MDX expression that resolves to a name.

• To better understand the differences between sets and members, see Using Set Expressions
and Using Member Expressions.

 325

Examples
The following example returns the Reseller Sales Amount measure for the Bayern member in the
State-Province attribute hierarchy using the StrToMember function. The specified string
provided the qualified member name.
SELECT {StrToMember ('[Geography].[State-Province].[Bayern]')}

ON 0,

{[Measures].[Reseller Sales Amount]} ON 1

FROM [Adventure Works]

The following example returns the Reseller Sales Amount measure for the Bayern member using
the StrToMember function. Since the member name string provided only an unqualified
member name, the query returns the first instance of the specified member, which happens to
be in the Customer Geography hierarchy in the Customer dimension, which does not intersect
with the Reseller Sales. Best practices dictate specifying the qualified name to ensure expected
results.

SELECT {StrToMember ('[Bayern]').Parent}

ON 0,

{[Measures].[Reseller Sales Amount]} ON 1

FROM [Adventure Works]

The following example returns the Reseller Sales Amount measure for the Bayern member in the
State-Province attribute hierarchy using the StrToMember function. The member name string
provided resolves to a qualified member name.
SELECT {StrToMember('[Geography].[Geography].[Country].[Germany].FirstChild',

CONSTRAINED)}

ON 0,

{[Measures].[Reseller Sales Amount]} ON 1

FROM [Adventure Works]

The following example returns an error due to the CONSTRAINED flag. While the member name
string provided contains a valid MDX member expression that resolves to a qualified member
name, the CONSTRAINED flag requires qualified or unqualified member names in the member
name string.

SELECT StrToMember ('[Geography].[Geography].[Country].[Germany].FirstChild',

CONSTRAINED)

ON 0

FROM [Adventure Works]

 326

See Also
MDX Function Reference (MDX)

StrToSet
Returns the set specified by a Multidimensional Expressions (MDX)–formatted string.

Syntax

StrToSet(Set_Specification [,CONSTRAINED])

Arguments
Set_Specification

A valid string expression specifying, directly or indirectly, a set.

Remarks
The StrToSet function returns the set specified in the string expression. The StrToSet function is
typically used with user-defined functions to return a set specification from an external function
back to an MDX statement, or when an MDX query is parameterized.
• When the CONSTRAINED flag is used, the set specification must contain qualified or

unqualified member names or a set of tuples containing qualified or unqualified member
names enclosed by braces {}. This flag is used to reduce the risk of injection attacks via the
specified string. If a string is provided that is not directly resolvable to qualified or
unqualified member names, the following error appears: "The restrictions imposed by the
CONSTRAINED flag in the STRTOSET function were violated."

• When the CONSTRAINED flag is not used, the specified set specification can resolve to a
valid Multidimensional Expressions (MDX) expression that returns a set.

• To better understand the differences between sets and members, see Using Set Expressions
and Using Member Expressions.

Examples
The following example returns the set of members of the State-Province attribute hierarchy
using the StrToSet function. The set specification provides a valid MDX set expression.

SELECT StrToSet ('[Geography].[State-Province].Members')

ON 0

FROM [Adventure Works]

 327

The following example returns an error due to the CONSTRAINED flag. While the set
specification provides a valid MDX set expression, the CONSTRAINED flag requires qualified or
unqualified member names in the set specification.
SELECT StrToSet ('[Geography].[State-Province].Members', CONSTRAINED)

ON 0

FROM [Adventure Works]

The following example returns the Reseller Sales Amount measure for the countries of Germany
and Canada. The set specification provided in the specified string contains qualified member
names, as required by the CONSTRAINED flag.

SELECT StrToSet

('{[Geography].[Geography].[Country].[Germany],[Geography].[Geography].[Count

ry].[Canada]}', CONSTRAINED)

ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

StrToTuple
Returns the tuple specified by a Multidimensional Expressions (MDX)–formatted string.

Syntax

StrToTuple(Tuple_Specification [,CONSTRAINED])

Arguments
Tuple_Specification

A valid string expression specifying, directly or indirectly, a tuple.

Remarks
The StrToTuple function returns the specified set. The StrToTuple function is typically used
with user-defined functions to return a tuple specification from an external function back to an
MDX statement.
• When the CONSTRAINED flag is used, the tuple specification must contain qualified or

unqualified member names. This flag is used to reduce the risk of injection attacks via the

 328

specified string. If a string is provided that is not directly resolvable to qualified or
unqualified member names, the following error appears: "The restrictions imposed by the
CONSTRAINED flag in the STRTOTUPLE function were violated."

• When the CONSTRAINED flag is not used, the specified tuple can resolve to a valid MDX
expression that returns a tuple.

Examples
The following example returns the Reseller Sales Amount measure for the Bayern member for
calendar year 2004. The tuple specification that is provided contains a valid MDX tuple
expression.

SELECT StrToTuple ('([Geography].[State-Province].[Bayern],[Date].[Calendar

Year].[CY 2004], [Measures].[Reseller Sales Amount])')

ON 0

FROM [Adventure Works]

The following example returns the Reseller Sales Amount measure for the Bayern member for
calendar year 2004. The tuple specification that is provided contains qualified member names, as
required by the CONSTRAINED flag.

SELECT StrToTuple ('([Geography].[State-Province].[Bayern],[Date].[Calendar

Year].[CY 2004], [Measures].[Reseller Sales Amount])', CONSTRAINED)

ON 0

FROM [Adventure Works]

The following example returns the Reseller Sales Amount measure for the Bayern member for
calendar year 2004. The tuple specification that is provided contains a valid MDX tuple
expression.

SELECT StrToTuple ('([Geography].[State-Province].[Bayern],[Date].[Calendar

Year].&[2003].NEXTMEMBER, [Measures].[Reseller Sales Amount])')

ON 0

FROM [Adventure Works]

The following example returns an error due to the CONSTRAINED flag. While the tuple
specification provided contains a valid MDX tuple expression, the CONSTRAINED flag requires
qualified or unqualified member names in the tuple specification.

SELECT StrToTuple ('([Geography].[State-Province].[Bayern],[Date].[Calendar

Year].&[2003].NEXTMEMBER, [Measures].[Reseller Sales Amount])', CONSTRAINED)

ON 0

 329

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

StrToValue
Returns the numeric value specified by a Multidimensional Expressions (MDX)–formatted string.

Syntax

StrToValue(MDX_Expression [,CONSTRAINED])

Arguments
MDX_Expression

A valid string expression that resolves, directly or indirectly, to a single cell.

Remarks
The StrToValue function returns the numeric value specified by the MDX expression. The
StrToValue function is typically used with user-defined functions to return an MDX expression
from an external function back to an MDX statement that can be resolved to a single cell.
• When the CONSTRAINED flag is used, the MDX expression must contain only a scalar value.

The CONSTRAINED flag is used to reduce the risk of injection attacks via the specified string.
If a MDX expression is provided that is not directly resolvable to a scalar value, the following
error appears: "The restrictions imposed by the CONSTRAINED flag in the STRTOVALUE
function were violated."

• When the CONSTRAINED flag is not used, the specified MDX expression can be as complex
as desired as long as it resolves to a valid Multidimensional Expressions (MDX) expression
that returns a single cell.

Returning the result of an MDX expression as a numeric value can be useful if the value
is stored as text and you want to perform arithmetic operations on the returned values.

Example
The following example uses the StrToValue function to return the weight of each bicycle as a
value.

WITH MEMBER Measures.x AS

StrToValue

Note

 330

 ([Product].[Product].CurrentMember.Properties ('Weight')

 ,CONSTRAINED

)

SELECT Measures.x ON 0

,[Product].[Product].[Product].Members ON 1

FROM [Adventure Works]

WHERE [Product].[Product Categories].[Bikes]

See Also
MDX Function Reference (MDX)

Subset
Returns a subset of tuples from a specified set.

Syntax

Subset(Set_Expression, Start [,Count])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Start

A valid numeric expression that specifies the position of the first tuple to be returned.

Count

A valid numeric expression that specifies the number of tuples to be returned.

Remarks
From the specified set, the Subset function returns a subset that contains the specified number
of tuples, beginning at the specified start position. The start position is based on a zero-based
index; that is, zero (0) corresponds to the first tuple in the specified set, 1 corresponds to the
second, and so on.
If Count is not specified, the function returns all tuples from Start to the end of the set.

 331

Example
The following example returns the Reseller Sales Measure for the top five selling subcategories
of products, irrespective of hierarchy, based on Reseller Gross Profit. The Subset function is used
to return only the first five sets in the result after the result is ordered using the Order function.
SELECT Subset

 (Order

 ([Product].[Product Categories].[SubCategory].members

 ,[Measures].[Reseller Gross Profit]

 ,BDESC

)

 ,0

 ,5

) ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Sum
Returns the sum of a numeric expression evaluated over a specified set.

Syntax

Sum(Set_Expression [, Numeric_Expression])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) set expression.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
If a numeric expression is specified, the specified numeric expression is evaluated across the set
and then summed. If a numeric expression is not specified, the specified set is evaluated in the

 332

current context of the members of the set and then summed. If the SUM function is applied to a
non-numeric expression, the results are undefined.

Analysis Services ignores nulls when calculating the sum of a set of numbers.

Examples
The following example returns the sum of Reseller Sales Amounts for all members of the
Product.Category attribute hierarchy for calendar years 2001 and 2002.
WITH MEMBER Measures.x AS SUM

 ({ [Date].[Calendar Year].&[2001]

 , [Date].[Calendar Year].&[2002] }

 , [Measures].[Reseller Sales Amount]

)

SELECT Measures.x ON 0

,[Product].[Category].Members ON 1

FROM [Adventure Works]

The following example returns the sum of the month-to-date freight costs for Internet sales for
the month of July, 2002 through the 20th day of July.

WITH MEMBER Measures.x AS SUM

 (

 MTD([Date].[Calendar].[Date].[July 20, 2002])

 , [Measures].[Internet Freight Cost]

)

SELECT Measures.x ON 0

FROM [Adventure Works]

The following example uses the WITH MEMBER keyword and the SUM function to define a
calculated member in the Measures dimension that contains the sum of the Reseller Sales
Amount measure for the Canada and United States members of the Country attribute hierarchy
in the Geography dimension.
WITH MEMBER Measures.NorthAmerica AS SUM

 (

 {[Geography].[Country].&[Canada]

 , [Geography].[Country].&[United States]}

 ,[Measures].[Reseller Sales Amount]

)

Note

 333

SELECT {[Measures].[NorthAmerica]} ON 0,

[Product].[Category].members ON 1

FROM [Adventure Works]

Often, the SUM function is used with the CURRENTMEMBER function or functions like YTD
that return a set that varies depending on the currentmember of a hierarchy. For example, the
following query returns the sum of the Internet Sales Amount measure for all dates from the
beginning of the calendar year to the date displayed on the Rows axis:
WITH MEMBER MEASURES.YTDSUM AS
SUM(YTD(), [Measures].[Internet Sales Amount])
SELECT {[Measures].[Internet Sales Amount], MEASURES.YTDSUM} ON 0,
[Date].[Calendar].MEMBERS ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Tail
Returns a subset from the end of a set.

Syntax

Tail(Set_Expression [,Count])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Count

A valid numeric expression that specifies the number of tuples to be returned.

Remarks
The Tail function returns the specified number of tuples from the end of the specified set. The
order of elements is preserved. The default value of Count is 1. If the specified number of tuples
is less than 1, the function returns the empty set. If the specified number of tuples exceeds the
number of tuples in the set, the function returns the original set.

 334

Example
The following example returns the Reseller Sales Measure for the top five selling subcategories
of products, irrespective of hierarchy, based on Reseller Gross Profit. The Tail function is used to
return only the last five sets in the result after the result is reverse-ordered using the Order
function.

SELECT Tail

 (Order

 ([Product].[Product Categories].[SubCategory].members

 ,[Measures].[Reseller Gross Profit]

 ,BASC

)

 ,5

) ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

This
Returns the current subcube for use with assignments in the Multidimensional Expressions
(MDX) calculation script.

Syntax

This

Remarks
The This function can be used in the place of any subcube expression to provide the current
subcube within the current scope within the MDX calculation script. The This function must be
used on the left side of an assignment.

Examples
The following MDX Script fragment shows how the This keyword can be used with SCOPE
statements to make assignments to subcubes:
Scope
 (

 335

 [Date].[Fiscal Year].&[2005],
 [Date].[Fiscal].[Fiscal Quarter].Members,
 [Measures].[Sales Amount Quota]
) ;

 This = ParallelPeriod
 (
 [Date].[Fiscal].[Fiscal Year], 1,
 [Date].[Fiscal].CurrentMember
) * 1.35 ;

/*-- Allocate equally to months in FY 2002 -----------------------------*/

 Scope
 (
 [Date].[Fiscal Year].&[2002],
 [Date].[Fiscal].[Month].Members
) ;

 This = [Date].[Fiscal].CurrentMember.Parent / 3 ;

 End Scope ;
End Scope;

See Also
MDX Function Reference (MDX)
Calculations

ToggleDrillState
Toggles the drill state of members.

Syntax

ToggleDrillState(Set_Expression1,Set_Expression2 [, RECURSIVE])

http://msdn.microsoft.com/en-us/library/6be84916-fd05-4efc-ab98-6adbbad80154(SQL.110)�

 336

Arguments
Set_Expression1

A valid Multidimensional Expressions (MDX) expression that returns a set.

Set_Expression2

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
The ToggleDrillState function toggles the drill state of each member of the second set that is
present in the first set. The first set can contain tuples with any dimensionality, but the second
set must contain members of a single dimension. The ToggleDrillState function is a
combination of the DrillupMember and DrilldownMember functions. If the member, m, of the
second set is present in the first set, and that member is drilled down (that is, has a descendant
immediately following it), then DrillupMember(Set_Expression1, {m}) is applied to the
member or tuple in the first set. If that m member is drilled up (that is, there is no descendant of
m that immediately follows m), DrilldownMember(Set_Expression1, {m}[, RECURSIVE]) is
applied to the first set.
If the optional RECURSIVE flag is used, drill up and drill down are applied recursively. For more
information about the recursive flag, see the DrillupMember and DrilldownMember functions.
Querying the XMLA property MdpropMdxDrillFunctions enables you to verify the level of
support that the server provides for the drilling functions; see Supported XMLA Properties
(XMLA) for details.

Example
The following example drills down on the Australia member of the first set, and drills up on the
United States member of the first set.

SELECT ToggleDrillState

 ({[Geography].[Geography].[Country].Members,

[Geography].[Geography].[Country].&[United States].Children},

 {[Geography].[Geography].[Country].[Australia]

 , [Geography].[Geography].[Country].&[United States]}

 --, RECURSIVE

) ON 0

 FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/5745f7b4-6b96-44d5-b77c-f2831a898e5e(SQL.110)�

 337

TopCount
Sorts a set in descending order and returns the specified number of elements with the highest
values.

Syntax

TopCount(Set_Expression,Count [,Numeric_Expression])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Count

A valid numeric expression that specifies the number of tuples to be returned.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
If a numeric expression is specified, the TopCount function sorts, in descending order, the
tuples in the set specified by the specified set according to the value specified by the numeric
expression, as evaluated over the specified set. After sorting the set, the TopCount function
then returns the specified number of tuples with the highest value.

Like the BottomCount function, the TopCount function always breaks the hierarchy.
If a numeric expression is not specified, the function returns the set of members in natural order,
without any sorting, behaving like the Head (MDX) function.

Examples
The following example returns the top 10 dates by Internet Sales Amount:
SELECT [Measures].[Internet Sales Amount] ON 0,
TOPCOUNT([Date].[Date].[Date].MEMBERS, 10, [Measures].[Internet Sales
Amount])
ON 1
FROM [Adventure Works]
The following example returns, for the Bike category, the first five members in the set containing
all combinations of members of the City level in the Geography hierarchy in the Geography

Important

 338

dimension and all fiscal years from the Fiscal hierarchy of the Date dimension, ordered by the
Reseller Sales Amount measure (beginning with the members of this set with the largest number
of sales).
SELECT [Measures].[Reseller Sales Amount] ON 0,

TopCount

 ({[Geography].[Geography].[City].Members

 *[Date].[Fiscal].[Fiscal Year].Members}

 , 5

 , [Measures].[Reseller Sales Amount]

) ON 1

FROM [Adventure Works]

WHERE([Product].[Product Categories].Bikes)

See Also
MDX Function Reference (MDX)

TopPercent
Sorts a set in descending order, and returns a set of tuples with the highest values whose
cumulative total is equal to or greater than a specified percentage.

Syntax

TopPercent(Set_Expression, Percentage, Numeric_Expression)

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Percentage

A valid numeric expression that specifies the percentage of tuples to be returned.

Important
Percentage needs to be a positive value; negative values generate an error.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

 339

Remarks
The TopPercent function calculates the sum of the specified numeric expression evaluated over
the specified set, sorting the set in descending order. The function then returns the elements
with the highest values whose cumulative percentage of the total summed value is at least the
specified percentage. This function returns the smallest subset of a set whose cumulative total is
at least the specified percentage. The returned elements are ordered largest to smallest.

• If Numeric_Expression returns any negative value then TopPercent returns only one (1)
row.

• See the second example for a detailed presentation of this behavior.

Like the BottomPercent function, the TopPercent function always breaks the hierarchy.

Example
The following example returns the best cities that help make the top 10% of the resellers' sales,
for the Bike category. The result is sorted in descending order, beginning with the city that has
the highest value of sales.
SELECT [Measures].[Reseller Sales Amount] ON 0,

TopPercent

 ({[Geography].[Geography].[City].Members}

 , 10

 , [Measures].[Reseller Sales Amount]

) ON 1

FROM [Adventure Works]

WHERE([Product].[Product Categories].[Bikes])

The above expression produces the following results:

 Reseller Sales Amount

Toronto $3,508,904.84

London $1,521,530.09

Seattle $1,209,418.16

Paris $1,170,425.18

The original set of data can be obtained with the following query and returns 588 rows:

Warning

Important

 340

SELECT [Measures].[Reseller Sales Amount] ON 0,

Order

 ({[Geography].[Geography].[City].Members}

 , [Measures].[Reseller Sales Amount]

 , BDESC

) ON 1

FROM [Adventure Works]

WHERE([Product].[Product Categories].[Bikes])

Example
The following walkthrough will help understand the effect of negative values in the
Numeric_Expression. First let's build some context where we can present the behavior.
The following query returns a table of Resellers 'Sales Amount', 'Total Product Cost' and 'Gross
Profit', sorted in descending order of profit. Please note there are only negative values for profit;
so, the smallest loss appears at the top.

SELECT { [Measures].[Reseller Sales Amount], [Measures].[Reseller Total

Product Cost], [Measures].[Reseller Gross Profit] } ON columns

 , ORDER([Product].[Product Categories].[Bikes].[Touring

Bikes].children, [Measures].[Reseller Gross Profit], BDESC) ON rows

FROM [Adventure Works]

The above query returns the following results; rows from the middle section were removed for
readability.

 Reseller Sales Amount Reseller Total Product Cost Reseller Gross Profit

Touring-2000 Blue,
50

$157,444.56 $163,112.57 ($5,668.01)

Touring-2000 Blue,
46

$321,027.03 $333,021.50 ($11,994.47)

Touring-3000 Blue,
62

$87,773.61 $100,133.52 ($12,359.91)

… … … …

Touring-1000 $1,016,312.83 $1,234,454.27 ($218,141.44)

 341

 Reseller Sales Amount Reseller Total Product Cost Reseller Gross Profit

Yellow, 46

Touring-1000
Yellow, 60

$1,184,363.30 $1,443,407.51 ($259,044.21)

Now, if you were asked to present the top 100% bikes by profit you would write a query like:

SELECT { [Measures].[Reseller Sales Amount], [Measures].[Reseller Total

Product Cost], [Measures].[Reseller Gross Profit] } ON columns

 , TOPPERCENT([Product].[Product Categories].[Bikes].[Touring

Bikes].children, 100,[Measures].[Reseller Gross Profit]) ON rows

FROM [Adventure Works]

Please note that the query asks for one hundred percent (100%); that means all rows should be
returned. However, because there are negative values in the Numeric_Expression , only one row
is returned.

 Reseller Sales Amount Reseller Total Product
Cost

Reseller Gross Profit

Touring-2000 Blue,
50

$157,444.56 $163,112.57 ($5,668.01)

See Also
MDX Function Reference (MDX)

TopSum
Sorts a set and returns the topmost elements whose cumulative total is at least a specified value.

Syntax

TopSum(Set_Expression, Value, Numeric_Expression)

 342

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Value

A valid numeric expression that specifies the value against which each tuple is compared.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
that returns a measure.

Remarks
The TopSum function calculates the sum of a specified measure evaluated over a specified set,
sorting the set in descending order. The function then returns the elements with the highest
values whose total of the specified numeric expression is at least the specified value. This
function returns the smallest subset of a set whose cumulative total is at least the specified
value. The returned elements are ordered largest to smallest.

Like the BottomSum function, the TopSum function always breaks the hierarchy.

Example
The following example returns, for the Bike category, the smallest set of members of the City
level in the Geography hierarchy in the Geography dimension whose cumulative total using the
Reseller Sales Amount measure is at least the sum of 6,000,000 (beginning with the members of
this set with the largest number of sales).
SELECT [Measures].[Reseller Sales Amount] ON 0,

TopSum

 ({[Geography].[Geography].[City].Members}

 , 6000000

 , [Measures].[Reseller Sales Amount]

) ON 1

FROM [Adventure Works]

WHERE([Product].[Product Categories].Bikes)

See Also
MDX Function Reference (MDX)

Important

 343

TupleToStr
Returns a Multidimensional Expressions (MDX)–formatted string that corresponds to a specified
tuple.

Syntax

TupleToStr(Tuple_Expression)

Arguments
Tuple_Expression

A valid Multidimensional Expressions (MDX) expression that returns a tuple.

Remarks
This function is used to transfer a string-representation of a tuple to an external function for
parsing. The string that is returned is enclosed in braces {} and each member, if more than one is
expressly defined in the tuple, is separated by a comma.

Examples
The following example returns the string ([Date].[Calendar
Year].&[2001],[Geography].[Geography].[Country].&[United States]) :

WITH MEMBER Measures.x AS TupleToStr

 (

 ([Date].[Calendar Year].&[2001]

 , [Geography].[Geography].[Country].&[United States]

)

)

SELECT Measures.x ON 0

FROM [Adventure Works]

The following example returns the same string as the previous example.

WITH SET s AS

 {

 ([Date].[Calendar Year].&[2001],

 [Geography].[Geography].[Country].&[United States]

)

 }

 344

MEMBER Measures.x AS TupleToStr (s.Item(0))

SELECT Measures.x ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Union
Returns a set that is generated by the union of two sets, optionally retaining duplicate members.

Syntax

Standard syntax
Union(Set_Expression1, Set_Expression2 [,...n][, ALL])

Alternate syntax 1
Set_Expression1 + Set_Expression2 [+...n]

Alternate syntax 2
{Set_Expression1 , Set_Expression2 [,...n]}

Arguments
Set Expression 1

A valid Multidimensional Expressions (MDX) expression that returns a set.

Set Expression 2

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
This function returns the union of two or more specified sets. With the standard syntax and with
alternate syntax 1, duplicates are eliminated by default. With the standard syntax, using the ALL
flag keeps duplicates in the joined set. Duplicates are deleted from the tail of the set. With
alternate syntax 2, duplicates are always retained.

Examples
The following examples demonstrate the behavior of the Union function using each syntax.

 345

Standard syntax, duplicates eliminated

SELECT Union

 ([Date].[Calendar Year].children

 , {[Date].[Calendar Year].[CY 2002]}

 , {[Date].[Calendar Year].[CY 2003]}

) ON 0

FROM [Adventure Works]

Standard syntax, duplicates retained

SELECT Union

 ([Date].[Calendar Year].children

 , {[Date].[Calendar Year].[CY 2002]}

 , {[Date].[Calendar Year].[CY 2003]}

 , ALL

) ON 0

FROM [Adventure Works]

Alternate syntax 1, duplicates eliminated

SELECT

 [Date].[Calendar Year].children

 + {[Date].[Calendar Year].[CY 2002]}

 + {[Date].[Calendar Year].[CY 2003]} ON 0

FROM [Adventure Works]

Alternate syntax 2, duplicates retained

SELECT

 {[Date].[Calendar Year].children

 , [Date].[Calendar Year].[CY 2002]

 , [Date].[Calendar Year].[CY 2003]} ON 0

FROM [Adventure Works]

 346

See Also
MDX Function Reference (MDX)Union) (MDX)
MDX Function Reference (MDX)

UniqueName
Returns the unique name of a specified dimension, hierarchy, level, or member.

Syntax

Dimension expression syntax
Dimension_Expression.UniqueName

Hierarchy expression syntax
Hierarchy_Expression.UniqueName

Level expression syntax
Level_Expression.UniqueName

Member expression syntax
Member_Expression.UniqueName

Arguments
Dimension_Expression

A valid Multidimensional Expressions (MDX) expression that resolves to a dimension.

Hierarchy_Expression

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Level_Expression

A valid Multidimensional Expressions (MDX) expression that returns a level.

Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
The UniqueName function returns the unique name of the object, not the name returned by the
Name function. The returned name does not include the name of the cube. The results returned

 347

depend upon the server-side settings or the MDX Unique Name Style connection string
property.

Example
The following example returns the unique name value for the Product dimension, the Product
Categories hierarchy, the Subcategory level, and the Bike Racks member in the Adventure Works
cube.

WITH MEMBER DimensionUniqueName

 AS [Product].UniqueName

MEMBER HierarchyUniqueName

 AS [Product].[Product Categories].UniqueName

MEMBER LevelUniqueName

 AS [Product].[Product Categories].[Subcategory].UniqueName

MEMBER MemberUniqueName

 AS [Product].[Product Categories].[Subcategory].[Bike Racks]

SELECT

 {DimensionUniqueName

 , HierarchyUniqueName

 , LevelUniqueName

 , MemberUniqueName }

 ON 0

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

UnknownMember
Returns the unknown member associated with a level or member.

Syntax

Member expression syntax
Member_Expression.UnknownMember

Hierarchy_expression syntax

 348

Hierarchy_Expression.UnknownMember

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Hierarchy_Expression

A valid Multidimensional Expressions (MDX) expression that returns a hierarchy.

Remarks
Microsoft SQL Server Analysis Services creates an unknown member to associate fact table data
with a hierarchy when the hierarchy is not known. The unknown member can be at one of the
following levels:
• At the top level for attribute hierarchies that are not aggregated.
• At the first level below the All level for natural hierarchies.
• At any level for unnatural hierarchies.
If a member expression is specified, the UnknownMember function returns the unknown
member child of the specified member. If the specified member does not exist, the function
returns null.
If a hierarchy expression is specified, the UnknownMember function returns the unknown
member at the top level if one exists.
If the unknown member does not exist on the level or member, the UnknownMember function
creates a null member.

If the unknown member does not exist on the hierarchy or member, an error is
generated.

Examples
The following example returns the unknown member for the All Products member in the
Product attribute hierarchy for all members of the Measures dimension.

SELECT [Product].[Product].[All Products].UnknownMember

 ON Columns,

[Measures].Members

 ON Rows

FROM [Adventure Works]

Note

 349

The following example returns the unknown member for the Product Categories hierarchy for all
members of the Measures dimension.

SELECT [Product].[Product Categories].UnknownMember

 ON Columns,

[Measures].Members

 ON Rows

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Unorder
Removes any enforced ordering from a specified set.

Syntax

Unorder(Set_Expression)

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Remarks
The Unorder function removes any ordering imposed on the tuples contained in the set by any
other function or statement, such as the Order function. The ordering of the tuples in the set
returned by the Unorder function is indeterminate.
The Unorder function is used as a hint to Microsoft SQL Server Analysis Services for query
optimization for set processing. If the order of tuples within a set is unimportant to a calculation
or query, using the Unorder function can provide a performance benefit in such cases. For
example, the NonEmpty (MDX) function may perform better when the set provided to this
function is unordered than if Analysis Services needs to preserve order, although with SQL
Server 2012 Analysis Services (SSAS), the query processor attempts to perform this function
automatically for many functions, such as Sum and Aggregate. The performance benefit of
using Unorder is only likely to be noticeable on very large sets consisting of millions of tuples.

 350

Example
The following pseudo-code illustrates the syntax for this function.

NonEmpty (UnOrder (<set_expression>))

See Also
MDX Function Reference (MDX)

UserName
Returns the domain name and user name of the current connection.

Syntax

UserName [()]

Remarks
The returned value is a string with the following format:
domain-name\user-name

Example
The following example returns the user name of the user that is executing the query.

WITH MEMBER Measures.x AS UserName

SELECT Measures.x ON COLUMNS

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

ValidMeasure
Returns the value of a measure in a cube by forcing inapplicable dimensions to their All level (or
default member if not aggregatable) when returning the result for a specified tuple.

Syntax

ValidMeasure(Tuple_Expression)

 351

Arguments
Tuple_Expression

A valid Multidimensional Expressions (MDX) expression that returns a tuple.

Remarks
The ValidMeasure function returns the value of a tuple, ignoring attributes that have no
relationship with the measure group of the Measure whose value the tuple returns. An attribute
can be unrelated to a measure for two reasons:
• The attribute's dimension has no relationship with the measure group of the measure in the

tuple.
• The attribute's dimension does not have a relationship with the measure group of the

measure, but the granularity attribute is not the key attribute, and the granularity attribute
does not have a direct relationship with the attribute in the tuple.

The behavior specified by this function is the default server-side behavior and is controlled by
the IgnoreUnrelatedDimensions property on the measure group object.
For each attribute in the specified tuple with granularity (that is to say, where the member in the
tuple is not the All member), the current coordinate for each such attribute is moved as follows:
• Related attributes to the specified attribute member are moved to the member that exists

with the current member.
• Relating attributes to the specified attribute member are moved to the All member (or the

default member if the hierarchy is not aggregatable).
• Unrelated attributes are moved to the All member (based on measure).

Example
The following query shows how the ValidMeasure function can be used to override the behavior
of the IgnoreUnrelatedDimensions property. In the Adventure Works cube, the Sales Targets
measure group has IgnoreUnrelatedDimensions set to False; since the Date dimension joins to
this measure group at the Calendar Quarter granularity, this means that the Sales Quota
measure will , by default, return null below Calendar Quarter (although there is also a calculation
in the MDX Script which allocates values down to the Month level too). Using the ValidMeasure
function in a calculated measure can be used to make the Sales Quota measure behave as if
IgnoreUnrelatedDimensions was set to True and force Sales Quota to display the value of the
current Calendar Quarter.

WITH MEMBER MEASURES.VTEST AS VALIDMEASURE([Measures].[Sales Amount Quota])

SELECT {[Measures].[Sales Amount Quota], MEASURES.VTEST} ON 0,

[Date].[Calendar].MEMBERS ON 1

FROM [Adventure Works]

 352

Similarly, the Sales Targets measure group has no relationship at all with the Promotion
dimension, so below the All Member of any hierarchy on Promotion it will return null. Again, this
behavior can be changed by using ValidMeasure:
WITH MEMBER MEASURES.VTEST AS VALIDMEASURE([Measures].[Sales Amount Quota])
SELECT {[Measures].[Sales Amount Quota], MEASURES.VTEST} ON 0,
[Promotion].[Promotions].members ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Value
Returns the value of the current member of the Measures dimension that intersects with the
current member of the attribute hierarchies in the context of the query.

Syntax

Member_Expression[.Value]

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
The Value function returns the value of the specified member as a string. The Value argument is
optional because the value of a member is the default property of a member, and is value that is
returned for a member if no other value is specified. For more information about properties of
members, see MDX Function Reference (MDX) and User-defined Member Properties (MDX).

Examples
The following example returns the value of a member as well explicitly returning the name of
the member.

WITH MEMBER [Date].[Calendar].NumericValue as [Date].[Calendar].[July 1,

2001].Value

MEMBER [Date].[Calendar].MemberName AS [Date].[Calendar].[July 1, 2001].Name

SELECT {[Date].[Calendar].NumericValue, [Date].[Calendar].MemberName} ON 0

http://msdn.microsoft.com/en-us/library/84e6fe64-9b37-4e79-bedf-ae02e80bfce8(SQL.110)�
http://msdn.microsoft.com/en-us/library/b64cc581-e784-42c4-bec8-932abd687423(SQL.110)�

 353

from [Adventure Works]

The following example returns the value of a member, as the default value that is returned for a
member on an axis.

SELECT {[Date].[Calendar].[July 1, 2001]} ON 0

from [Adventure Works]

See Also
MemberValue (MDX)
Properties (MDX)
Name (MDX)
UniqueName (MDX)
MDX Function Reference (MDX)

Var
Returns the sample variance of a numeric expression evaluated over a set, using the unbiased
population formula (dividing by n).

Syntax

Var(Set_Expression [,Numeric_Expression])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
The Var function returns the unbiased variance of a specified numeric expression evaluated over
a specified set.
The Var function uses the unbiased population formula, and the VarP function uses the biased
population formula.

See Also
MDX Function Reference (MDX)

 354

Variance
Alias for the Var function.

See Also
MDX Function Reference (MDX)

VarianceP
Alias for the VarP function.

See Also
MDX Function Reference (MDX)

VarP
Returns the population variance of a numeric expression evaluated over a set, using the biased
population formula (dividing by n-1).

Syntax

VarP(Set_Expression [,Numeric_Expression])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Numeric_Expression

A valid numeric expression that is typically a Multidimensional Expressions (MDX) expression
of cell coordinates that return a number.

Remarks
The VarP function returns the biased variance of a specified numeric expression, evaluated over
a specified set.
The VarP function uses the biased population formula, while the Var function uses the unbiased
population formula.

See Also
MDX Function Reference (MDX)

 355

VisualTotals
Returns a set generated by dynamically totaling child members in a specified set, optionally
using a pattern for the name of the parent member in the result set.

Syntax

VisualTotals(Set_Expression[,Pattern])

Arguments
Set_Expression

A valid Multidimensional Expressions (MDX) expression that returns a set.

Pattern

A valid string expression for the parent member of the set, that contains an asterisk (*) as the
substitution character for the parent name.

Remarks
The specified set expression can specify a set that contains members at any level within a single
dimension, generally members with an ancestor-descendant relationship. The VisualTotals
function totals the values of the child members in the specified set and ignores child members
that are not in the set in calculating the result totals. Totals are visually totaled for sets ordered
in hierarchy order. If the order of members in sets breaks the hierarchy, results are not visual
totals. For example, VisualTotals (USA, WA, CA, Seattle) does not return WA as Seattle, but rather
returns the values for WA, CA, and Seattle, then totals these values as the visual total for USA,
counting the sales for Seattle twice.

Applying the VisualTotals function to dimension members that are not related to a
measure or are under the measure group granularity will cause values to be replaced
with null.

Pattern, which is optional, specifies the format for the totals label. Pattern requires an asterisk (*)
as the substitution character for the parent member and the remainder of the text in the string
appears in the result concatenated with the parent name. To display a literal asterisk, use two
asterisks (**).

Examples
The following example returns the visual total for the third quarter of the 2001 calendar year
based on the single descendant specified - the month of July.

SELECT VisualTotals

Note

 356

 ({[Date].[Calendar].[Calendar Quarter].&[2001]&[3]

 ,[Date].[Calendar].[Month].&[2001]&[7]}) ON 0

FROM [Adventure Works]

The following example returns the [All] member of the Category attribute hierarchy in the
Product dimension together with two of its four children. The total returned for the [All] member
for the Internet Sales Amount measure is the total for the Accessories and Clothing members
only. Also, the pattern argument is used to specify the label for the [All Products] column.

SELECT

 VisualTotals

 ({[Product].[Category].[All Products]

 ,[Product].[Category].[Accessories]

 ,[Product].[Category].[Clothing]}

 , '* - Visual Total'

) ON Columns

, [Measures].[Internet Sales Amount] ON Rows

FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

Wtd
Returns a set of sibling members from the same level as a given member, starting with the first
sibling and ending with the given member, as constrained by the Week level in the Time
dimension.

Syntax

Wtd([Member_Expression])

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

 357

Remarks
If a member expression is not specified, the default is the current member of the first hierarchy
with a level of type Weeks in the first dimension of type Time (Time.CurrentMember) in the
measure group.
The Wtd function is a shortcut function for the PeriodsToDate function where the level is set to
Weeks. That is, Wtd(Member_Expression) is equivalent to
PeriodsToDate(Week_Level_Expression,Member_Expression).

See Also
MDX Function Reference (MDX)
Mtd (MDX)
Ytd (MDX)
MDX Function Reference (MDX)

Ytd
Returns a set of sibling members from the same level as a given member, starting with the first
sibling and ending with the given member, as constrained by the Year level in the Time
dimension.

Syntax

Ytd([Member_Expression])

Arguments
Member_Expression

A valid Multidimensional Expressions (MDX) expression that returns a member.

Remarks
If a member expression is not specified, the default is the current member of the first hierarchy
with a level of type Years in the first dimension of type Time in the measure group.
The Ytd function is a shortcut function for the PeriodsToDate function where the Type property
of the attribute hierarchy on which the level is based is set to Years. That is,
Ytd(Member_Expression) is equivalent to
PeriodsToDate(Year_Level_Expression,Member_Expression). Note that this function will
not work when the Type property is set to FiscalYears.

 358

Example
The following example returns the sum of the Measures.[Order Quantity] member,
aggregated over the first eight months of calendar year 2003 that are contained in the Date
dimension, from the Adventure Works cube.
WITH MEMBER [Date].[Calendar].[First8MonthsCY2003] AS

 Aggregate(

 YTD([Date].[Calendar].[Month].[August 2003])

)

SELECT

 [Date].[Calendar].[First8MonthsCY2003] ON COLUMNS,

 [Product].[Category].Children ON ROWS

FROM

 [Adventure Works]

WHERE

 [Measures].[Order Quantity]

Ytd is frequently used in combination with no parameters specified, meaning that the
CurrentMember (MDX) function will display a running cumulative year-to-date total in a report,
as shown in the following query:
WITH MEMBER MEASURES.YTDDEMO AS
AGGREGATE(YTD(), [Measures].[Internet Sales Amount])
SELECT {[Measures].[Internet Sales Amount], MEASURES.YTDDEMO} ON 0,
[Date].[Calendar].MEMBERS ON 1
FROM [Adventure Works]

See Also
MDX Function Reference (MDX)

MDX Reserved Words
The following table contains words reserved for use by Multidimensional Expressions (MDX).
You should not use these words as part of any identifier, such as a cube name, or user-defined
function name, in MDX.

ABSOLUTE DESC LEAVES SELF_BEFORE_AFTER

ACTIONPARAMETERSE
T

DESCENDANTS LEVEL SESSION

 359

ADDCALCULATEDME
MBERS

DESCRIPTION LEVELS SET

AFTER DIMENSION LINKMEMBER SETTOARRAY

AGGREGATE DIMENSIONS LINREGINTERCEPT SETTOSTR

ALL DISTINCT LINREGPOINT SORT

ALLMEMBERS DISTINCTCOUNT LINREGR2 STDDEV

ANCESTOR DRILLDOWNLEVEL LINREGSLOPE STDDEVP

ANCESTORS DRILLDOWNLEVELBOTT
OM

LINREGVARIANCE STDEV

AND DRILLDOWNLEVELTOP LOOKUPCUBE STDEVP

AS DRILLDOWNMEMBER MAX STORAGE

ASC DRILLDOWNMEMBERB
OTTOM

MEASURE STRIPCALCULATEDME
MBERS

ASCENDANTS DRILLDOWNMEMBERT
OP

MEDIAN STRTOMEMBER

AVERAGE DRILLUPLEVEL MEMBER STRTOSET

AXIS DRILLUPMEMBER MEMBERS STRTOTUPLE

BASC DROP MEMBERTOSTR STRTOVAL

BDESC EMPTY MIN STRTOVALUE

BEFORE END MTD SUBSET

BEFORE_AND_AFTER ERROR NAME SUM

BOTTOMCOUNT EXCEPT NAMETOSET TAIL

BOTTOMPERCENT EXCLUDEEMPTY NEST THIS

BOTTOMSUM EXTRACT NEXTMEMBER TOGGLEDRILLSTATE

BY FALSE NO_ALLOCATION TOPCOUNT

CACHE FILTER NO_PROPERTIES TOPPERCENT

CALCULATE FIRSTCHILD NON TOPSUM

CALCULATION FIRSTSIBLING NONEMPTYCROSSJ
OIN

TOTALS

CALCULATIONCURRE
NTPASS

FOR NOT_RELATED_TO_
FACTS

TREE

 360

CALCULATIONPASSVA
LUE

FREEZE NULL TRUE

CALCULATIONS FROM ON TUPLETOSTR

CALL GENERATE OPENINGPERIOD TYPE

CELL GLOBAL OR UNION

CELLFORMULASETLIST GROUP PAGES UNIQUE

CHAPTERS GROUPING PARALLELPERIOD UNIQUENAME

CHILDREN HEAD PARENT UPDATE

CLEAR HIDDEN PASS USE

CLOSINGPERIOD HIERARCHIZE PERIODSTODATE USE_EQUAL_ALLOCATI
ON

COALESCEEMPTY HIERARCHY POST USE_WEIGHTED_ALLOC
ATION

COLUMN IGNORE PREDICT USE_WEIGHTED_INCRE
MENT

COLUMNS IIF PREVMEMBER USERNAME

CORRELATION INCLUDEEMPTY PROPERTIES VALIDMEASURE

COUNT INDEX PROPERTY VALUE

COUSIN INTERSECT QTD VAR

COVARIANCE IS RANK VARIANCE

COVARIANCEN ISANCESTOR RECURSIVE VARIANCEP

CREATE ISEMPTY RELATIVE VARP

CREATEPROPERTYSET ISGENERATION ROLLUPCHILDREN VISUAL

CREATEVIRTUALDIME
NSION

ISLEAF ROOT VISUALTOTALS

CROSSJOIN ISSIBLING ROWS WHERE

CUBE ITEM SCOPE WITH

CURRENT LAG SECTIONS WTD

CURRENTCUBE LASTCHILD SELECT XOR

CURRENTMEMBER LASTPERIODS SELF YTD

 361

DEFAULT_MEMBER LASTSIBLING SELF_AND_AFTER

DEFAULTMEMBER LEAD SELF_AND_BEFORE

See Also
MDX Language Reference (MDX)
MDX Language Reference (MDX)

	Cover
	Contents
	Multidimensional Expressions (MDX) Reference
	MDX Syntax Elements
	Identifiers
	Using Regular Identifiers
	Using Delimited Identifiers

	Expressions
	Using Cube and Subcube Expressions
	Using Dimension Expressions
	Using Member Expressions
	Using Tuple Expressions
	Using Set Expressions
	Using Scalar Expressions
	Working with Empty Values

	Operators (MDX Syntax)
	Arithmetic Operators
	Bitwise Operators
	Comparison Operators
	Concatenation Operators
	Set Operators
	Unary Operators
	Assignment Operators

	Functions (MDX Syntax)
	Using String Functions
	Using Mathematical Functions
	Using Logical Functions
	Using Member Functions
	Using Tuple Functions
	Using Set Functions
	Using Dimension, Hierarchy, and Level Functions
	Using Stored Procedures

	Comments (MDX Syntax)
	Reserved Keywords (MDX Syntax)

	MDX Language Reference
	MDX Syntax Conventions
	MDX Statement Reference
	MDX Scripting Statements
	MDX Data Definition Statements
	MDX Data Manipulation Statements

	MDX Operator Reference
	-- (Comment)
	- (Except)
	- (Negative)
	- (Subtract)
	* (Crossjoin)
	* (Multiply)
	/ (Divide)
	^ (Power)
	/*...*/ (Comment)
	// (Comment)
	: (Range)
	+ (Add)
	+ (Positive)
	+ (String Concatenation)
	+ (Union)
	< (Less Than)
	<= (Less Than or Equal To)
	<> (Not Equal To)
	= (Equal To)
	> (Greater Than)
	>= (Greater Than or Equal To)
	AND
	IS
	NOT
	OR
	XOR

	MDX Function Reference
	AddCalculatedMembers
	Aggregate
	AllMembers
	Ancestor
	Ancestors
	Ascendants
	Avg
	Axis
	BottomCount
	BottomPercent
	BottomSum
	CalculationCurrentPass
	CalculationPassValue
	CASE Statement
	Children
	ClosingPeriod
	CoalesceEmpty
	Correlation
	Count (Dimension)
	Count (Hierarchy Levels)
	Count (Set)
	Count (Tuple)
	Cousin
	Covariance
	CovarianceN
	Crossjoin
	Current
	CurrentMember
	CurrentOrdinal
	CustomData
	DataMember
	DefaultMember
	Descendants
	Dimension
	Dimensions
	Distinct
	DistinctCount
	DrilldownLevel
	DrilldownLevelBottom
	DrilldownLevelTop
	DrilldownMember
	DrilldownMemberBottom
	DrilldownMemberTop
	DrillupLevel
	DrillupMember
	Error
	Except
	Exists
	Extract
	Filter
	FirstChild
	FirstSibling
	Generate
	Head
	Hierarchize
	Hierarchy
	IIf
	Instr
	Intersect
	IsAncestor
	IsEmpty
	IsGeneration
	IsLeaf
	IsSibling
	Item (Member)
	Item (Tuple)
	KPIGoal
	KPIStatus
	KPITrend
	KPIWeight
	KPICurrentTimeMember
	KPIValue
	Lag
	LastChild
	LastPeriods
	LastSibling
	Lead
	Leaves
	Level
	Levels
	LinkMember
	LinRegIntercept
	LinRegPoint
	LinRegR2
	LinRegSlope
	LinRegVariance
	LookupCube
	Max
	MeasureGroupMeasures
	Median
	Members (Set)
	Members (String)
	MemberToStr
	MemberValue
	Min
	Mtd
	Name
	NameToSet
	NextMember
	NonEmpty
	NonEmptyCrossjoin
	OpeningPeriod
	Order
	Ordinal
	ParallelPeriod
	Parent
	PeriodsToDate
	Predict
	PrevMember
	Properties
	Qtd
	Rank
	RollupChildren
	Root
	SetToArray
	SetToStr
	Siblings
	Stddev
	StddevP
	Stdev
	StdevP
	StripCalculatedMembers
	StrToMember
	StrToSet
	StrToTuple
	StrToValue
	Subset
	Sum
	Tail
	This
	ToggleDrillState
	TopCount
	TopPercent
	TopSum
	TupleToStr
	Union
	UniqueName
	UnknownMember
	Unorder
	UserName
	ValidMeasure
	Value
	Var
	Variance
	VarianceP
	VarP
	VisualTotals
	Wtd
	Ytd

	MDX Reserved Words

