

Migrating Data-Centric
Applications to Windows Azure
Kun Cheng, Selcin Turkarslan, Norberto Garcia, Steve
Howard, Shaun Tinline-Jones, Sreedhar Pelluru, Silvano
Coriani, Jaime Alva Bravo

Contributors: James Podgorski, Rama Ramani
Reviewers: Paolo Salvatori, Stuart Ozer, Drew McDaniel, Jason Chen,
Ganesh Srinivasan, Lindsey Allen, Evgeny Krivosheev, Valery Mizonov,
Avilay Parekh, Christian Martinez, Shawn Hernan, Mark Simms, Adrian
Bethune, Bill Gibson, Adam Mahood

Summary: The guide, Migrating Data-Centric Applications to Windows Azure,
provides experienced developers and information technology (IT) professionals with
detailed guidance on how to migrate their data-centric applications to Windows
Azure Cloud Services, while also providing an introduction on how to migrate those
same applications to Windows Azure Virtual Machines. By using this guide, you will
have the planning process, migration considerations, and prescriptive how to’s
needed for a positive migration experience.

Capturing the best practices from the real-world engagements of CAT and the
technical expertise of the SQL Database Content team, Migrating Data-Centric
Applications to Windows Azure can help you simplify the migration process, provide
guidance on the most appropriate migration tools, and drive a successful
implementation of your migration plan.

Category: Guide
Applies to: Windows Azure
Source: MSDN Library (link to source content)
E-book publication date: June 2012

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email
address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by this
book.

1

About This Guide
Migrating Data-Centric Applications to Windows Azure provides experienced developers and
information technology (IT) professionals with detailed guidance on how to migrate their data-
centric applications to Windows Azure Cloud Services, while also providing an introduction on
how to migrate those same applications to Windows Azure Virtual Machines. By using this
guide, you will have the planning process, migration considerations, and prescriptive how to’s
needed for a positive migration experience.

This guide has the following parts:

Part 1: Planning and Implementing a Migration

Overview of the Migration Life Cycle

Provides step-by-step instructions for migrating your applications and data to Windows
Azure.

Planning a Migration

Provides a walk through on several concerns and steps you should consider as you plan
a migration to Windows Azure.

Implementing the Migration Plan

Provides guidance on the final steps of migration to Windows Azure.

Part 2: Migration Considerations, Best Practices, and How To

Migrating with Windows Azure Virtual Machines

Provides an overview on the Windows Azure Virtual Machines (VM) and guidance on
how you can migrate your existing SQL Server databases to Windows Azure using SQL
Server in a Windows Azure Virtual Machine.

Migrating with Windows Azure Cloud Services

Provides an overview on the Windows Azure Cloud Services and guidance on how to
migrate your existing applications and databases to Windows Azure using the
functionalities provided by the Windows Azure Cloud Services platform.

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

2

Related Sections
Migrating Data-Centric Applications to Windows Azure is part of the Windows Azure Developer
Guidance section of the Windows Azure library. If you like this guide, you might also be
interested in the following topics in Windows Azure Developer Guidance:

• Planning and Designing Windows Azure Applications

• Developing Windows Azure Applications

• Testing, Managing, Monitoring and Optimizing Windows Azure Applications

• Node.js Developer Guidance (Windows Azure)

• PHP Developer Guidance (Windows Azure)

• Java Developer Guidance (Windows Azure)

• Other Third Party Software on Windows Azure

http://msdn.microsoft.com/library/windowsazure/hh674495�
http://msdn.microsoft.com/library/windowsazure/hh674486�
http://msdn.microsoft.com/library/windowsazure/hh674492�
http://msdn.microsoft.com/library/windowsazure/hh674489�
http://msdn.microsoft.com/library/windowsazure/hh674487�
http://msdn.microsoft.com/library/hh690943.aspx�
http://msdn.microsoft.com/library/windowsazure/hh696550�

Part 1:
Planning and Implementing

a Migration

4

Overview of the Migration Life Cycle
Authors: Kun Cheng, Selcin Turkarslan, Norberto Garcia
Reviewers: Paolo Salvatori, Steve Howard, Stuart Ozer

The migration life cycle is a standard methodology that provides you the step-by-step
instructions for migrating your applications and data to Windows Azure. The main migration
steps are Analysis Phase, Application Migration Phase, Data Migration Phase, Testing and
Optimization Phase, and Operation and Management Phase as shown in the diagram below.

This topic explains each phase in detail with links to further information.

Analysis Phase
The goal of this phase is to understand the business needs that require the Windows Azure
Solution. After identifying the business goals, review the existing application architecture to
identify the main differences between Windows Azure and on-premises solutions and
determine if you need to re-design the existing an on-premises application to meet the business
needs of a Windows Azure solution. The following tasks and questions help you create a cloud
migration plan:

• Define business requirements: There are many potential questions raised by business
scenarios when an application runs on Windows Azure:

o Is Windows Azure deployment solution targeting new customers and users?

o Would it require multi-tenancy to support multiple customers?

o Is the application meeting the compliance regulations when the data is hosted
in the Microsoft data center(s) instead of customer sites?

Overview of the Migration Life Cycle

5

o Which applications are more suited to the cloud architecturally and
strategically?

o Which service is best for my applications and databases: Windows Azure Cloud
Services or Windows Azure Virtual Machines?

The answers to these questions impact the way that an application is designed to
behave on the Windows Azure platform.

• Determine feature discrepancies: Can you run your existing application in the cloud
with no changes? For example, Windows Azure SQL Database (SQL Database) does not
support all of the features that on-premise SQL Server does. If you want to move an on-
premise application that uses CLR (Common Language Runtime) to SQL Database, you
need to re-design the application by moving CLR logic from SQL Server to the application
layer, or rewriting the CLR logic by using the Transact-SQL statements that are
supported by SQL Database. Note that SQL Database does not support SQL CLR
currently.

Starting with the Windows Azure 2012 Preview release, the new Virtual Machine
capabilities have been added to Windows Azure. With Windows Azure Virtual Machines,
you can migrate your existing SQL Server applications built on Windows Server platform
to Windows Azure Platform with minimal or no code changes. With SQL Server in
Windows Azure VM, administrators and developers can still use the same development
and administration tools that are available on-premises. The performance of a relational
database in Windows Azure Virtual Machine depends on many factors, including the VM
size, the number and configuration of disks, the network, the configuration of the
database software and the application workload. We recommend that developers
benchmark their application on several VM sizes and storage configurations to select
the most appropriate one. For more information, see Migrating with SQL Server in
Windows Azure Virtual Machines.

• Prepare a plan for performance and scalability: Many legacy applications were
designed to be tightly integrated between the application logic and the data access
components. For legacy applications, it makes sense to decouple components of the
application to perform and scale better on Windows Azure. If the application is too
chatty or doing an excessive data inquiry, consider using Windows Azure Caching Service
or implement your own caching mechanism to batch up data access queries and to
reduce roundtrips between your application and data. If the application to be migrated
deals with large databases or high transaction volume, migrating to SQL Database is
likely to require a re-design of the database model. This is because a single SQL
Database instance can handle a limited number of transactions per second and have a
limited database size. While dealing with large databases or high transaction volume,
consider implementing a scale-out architecture utilizing multiple databases in SQL
Database or start using SQL Database Federations instead of expensive scale-up systems
in on-premises.

http://msdn.microsoft.com/library/windowsazure/gg278356.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

6

• Prepare a plan for application life cycle management: It is important to consider
application versioning and upgrade scenarios on Windows Azure. Depending on your
Service Level Agreement, you might have to maintain multiple versions of your
application to support your different tiers of customers. You may also want to minimize
downtime when upgrading an application on Windows Azure. We recommend that you
carefully maintain the staging environment and the production environment on
Windows Azure. Make sure that you are able to roll back upgrades in case of
compatibility issues. Your upgrade roll back plan should cover first your application and
then your database.

After this phase, we recommend that you build a pilot project as it gives a clear understanding
of the Windows Azure Platform services and tools.

Application Migration Phase
Once you decide to migrate your application to the cloud, start with a pilot version of your
application with minimal data to build a proof-of-concept. First, implement necessary code
changes in your application to meet the Windows Azure deployment goals in terms of business
and technical requirements. Then, compile and deploy the application code to the appropriate
roles on Windows Azure.

In general, most existing on-premises applications can run in Windows Azure Cloud Services
with very minimal or no changes but this might create some performance, scalability, and
security problems. To optimize performance and to enable future scalability, we recommend
that you consider re-designing your application by using multiple roles before migrating to
Windows Azure Cloud Services. For more information, see Development Considerations for
Windows Azure Cloud Services. We recommend you first move your entire application to
Windows Azure Cloud Services and then the data. Due to security, performance or other
reasons, some parts of the application may need to live on-premises. This requires hybrid
solutions. For more information, see Building Hybrid Solutions with Windows Azure.

If you decide to use SQL Server in Windows Azure VM, modify your existing SQL Server
applications to connect to the SQL Server database in Windows Azure VM. For more information
on how to migrate your existing SQL Server databases to a SQL Server in Windows Azure VM,
see Migrating with SQL Server in Windows Azure Virtual Machines topic.

Data Migration Phase
If you use Windows Azure Cloud Services, move relational data from on-premise SQL Server to
SQL Database and move unstructured data to Windows Azure storage like Blob, Table, or
Windows Azure Drives. For more information, see Migrating Data to Other Data Management

http://www.windowsazure.com/develop/net/fundamentals/hybrid-solutions/�

Overview of the Migration Life Cycle

7

Services in Windows Azure and Migrating SQL Server Databases to Windows Azure SQL
Database.

If you decide to use SQL Server on Windows Azure Virtual Machines, see Migrating with SQL
Server in Windows Azure Virtual Machines topic to learn how to migrate your existing SQL
Server databases to a SQL Server VM in Windows Azure.

Testing and Optimization Phase
After you migrate your application and data to the cloud, perform functional and performance
tests. At this phase, test your application in the cloud and confirm that it works as expected.
Then, compare performance results between on-premise and Windows Azure. After that,
resolve any feature, functionality, performance, or scalability issues in your cloud application.
For more information, see Implementing the Migration Plan.

Operation and Management Phase
After the testing and optimization phase, set up and implement application monitoring and
tracing with Windows Azure Diagnostics. Windows Azure Diagnostics enables you to collect
diagnostic data from an application running in Windows Azure. You can use diagnostic data for
debugging and troubleshooting, measuring performance, monitoring resource usage, traffic
analysis and capacity planning, and auditing. For more information, see Diagnostics and
Debugging in Windows Azure in the MSDN library.

If you need to synchronize data between on-premise and SQL Database or between different
SQL Database servers, set up and configure SQL Data Sync service. In addition, we recommend
that you set up and configure data recovery plan in case of user errors or natural disasters. For
more information, see High Availability and Disaster Recovery Considerations with Windows
Azure SQL Database.

8

Planning a Migration
Authors: Steve Howard
Reviewers: James Podgorski, Paolo Salvatori, Selcin Turkarslan, Stuart Ozer

When you begin planning your migration, you will need to begin considering several key factors
such as cost, business and technical requirements, timeline, and any testing that will be required
in the process of the migration. This section provides a walk through on several concerns and
steps you should consider as you plan a migration to the Windows Azure:

• Plan for cost

• Identify key business and technical requirements that Windows Azure can help resolve

• Perform analysis and design

• Plan the timeline

• Make a plan for the interim

• Make a plan for testing

• Identify the resources needed

• Plan the application management in Windows Azure

Plan for cost
Cost is one of the biggest questions which needs be answered and it is recommended that it be
addressed early in the decision making and planning process when considering the migration of
an on-premises application to Windows Azure. Pricing an application for Windows Azure
depends on a number of factors such as the network traffic load, input/output characteristics of
the application, and volume of data processed by the application. Calculating price is outside the
scope of this topic. We recommend that you use the Windows Azure pricing calculator to help
estimate cost as you begin planning your migration. You can find the Windows Azure pricing
calculator here.

When calculating the cost to your organization, remember to include direct Windows Azure
costs during development and testing. In an on-premises development project, you pay for
development and testing servers. Similarly, in the Windows Azure environment, you need to pay
for the resources you use during development and testing. Additionally, you should calculate
training and learning costs, and costs associated with porting the application to the Windows
Azure. We recommend that you conduct performance testing and capacity planning to assess
how much capacity you will need for your application in advance. The Windows Azure Cost
Assessment article can help you understand the costs of a typical Windows Azure application.

http://www.windowsazure.com/pricing/calculator/�

Planning a Migration

9

Identify key business and technical requirements
that Windows Azure can help resolve
Windows Azure can address some business and technical requirements very well. While this list
is not all inclusive, applications with these characteristics are good candidates for migration to
Windows Azure:

• Distributed user base: Windows Azure data centers are located across several
continents. Interconnection between the data centers allows for high performance data
distribution where necessary. Windows Azure features such as Content Distribution
Network (CDN) and Data Synchronization services allow you to keep relevant or high-
use data distributed across data centers near end users. Having users hit the data
centers close to their geographical location minimizes length of round trip, thus
optimizing the user experience.

• Variable load: You need to purchase hardware for on-premises applications handle peak
load. For example, a retail outlet typically buys servers to be able to handle the load for
holiday shopping seasons. Similarly, an accounting department may plan additional
infrastructure to be able to handle peak loads at end of month or end of year closing
cycles. The rest of the time, servers intended to handle such peak loads are
underutilized. On the other hand, applications architected for elastic-scale can take
advantage of Windows Azure to bring new instances of applications online during peak
times, and return to lower levels of processing power and capacity during periods of
lower need. In this way, Windows Azure allows you, with properly architected and
managed applications, to pay only for what you need.

• Multi-tenancy: For service providers, Windows Azure allows several ways to provide
your application services to any number of customers on the same infrastructure, thus
minimizing your operational costs.

• Need to focus on applications: Service providers in particular want to focus their
resources on development of applications and features more than on maintaining
infrastructure. Windows Azure frees you from much of the administrative overhead
required by the infrastructure hosting on-premises or traditional hosted-server
applications. It allows you to focus your resources on the development of applications
and features instead.

• Minimizing infrastructure resource requirements: When you architect your applications
to take advantage of the elastic scale that Windows Azure provides, instances of roles
and resources can be allocated as they are needed as well. There is no up-front
hardware investment and no need to maintain servers capable of handling peak load
during times of low utilization.

In addition to the traditional platform as a service oriented advantages; Windows Azure can host
virtual machines. These virtual machines can run any Windows Azure supported operating
system, and can run applications in the same way they would run on-premises. For a list of

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

10

supported operating systems, see Overview of Windows Azure Virtual Machines. These virtual
machines can also be part of a larger application architecture which may include instances of
web or worker roles, and other Windows Azure components. Virtual machines are a way to port
some services or application parts that may not otherwise be easily portable to Azure. For more
information, see Migrating with Windows Azure Virtual Machines topic.

Perform analysis and design
In the analysis and design phase, you should identify the applications that you plan to move to
Windows Azure. Then, begin designing the Windows Azure implementation and the plan of
implementation. During this phase, you should plan the outline of the architecture design and
timeline.

Some of the key elements of the planning are:

• Identify current challenges: The following list shows some examples of challenges that
should be identified in planning for any re-architecture need:

o Application components that are not performing up to standard at current
loads on the current architecture: For example, if a SQL query is not performing
satisfactorily, you should tune it prior to migration or further design. You should
also re-design and scale-out any application-tier components.

o Determine Elastic Scale Requirements: You should identify how your
application can be decomposed into functional, independently scalable units
which can run independently of each other.

o Uneven load patterns: You should identify the uneven load patterns and design
the application for scale-out to handle the peak periods. You should make plans
on how to manage the level of scale out from peak periods to low demand
periods.

o Growth projections: Often, growth projections are what first alert an IT
department that a change of paradigm may be necessary. Decide where scale
out may be a solution to address growth projections. The growth projections
may also be the indicator that you need to consider paradigm shifts such as
switching to a paradigm of big-data analytics in certain data warehouse-centric
applications. At the planning stage, you should discuss these options. Keep in
mind that you may not be able to know the solution for sure until later in the
design and implementation process. You should list such contingencies and
determining factors so you can evaluate them at the proper time, such as during
the initial migration or at a later date.

• Identify technical requirements: Learn what the requirements of each component of
your application are at both peak and off-peak times. Then, plan for scale for each
component. Each component might have a different ability and mechanism to scale.

Planning a Migration

11

Technical requirements can be more than just performance. For example, high
availability and disaster recovery requirements, or requirements for maximum network
latency should be determined and compared with Windows Azure capabilities when
planning a migration. The following list shows some examples of technical
requirements:

o Use of relational storage: Examine the data stored in the relational databases.
Data that is truly transactional and relational in nature, or data that requires
truly transactional processing should stay in relational storage. You may use a
Windows Azure SQL Database (SQL Database) or SQL Server running in Virtual
Machines to store this type of data. You can store other type of data in
Windows Azure Tables, Windows Azure Blob storage, or Windows Azure drives
efficiently. We recommend that you identify the type of storage that is needed
for each part of your data.

o Choosing your relational data storage: The choice of SQL Database or SQL
Server running in Windows Azure Virtual Machines depends on several factors.
If you want to avoid the administrative overhead of high-availability, load
balancing and transparent failover, SQL Database is the best choice. However;
for an intermediate state while migrating an application, or for special cases
where features are not yet available in SQL Database, SQL Server running in
Windows Azure Virtual Machines might be the best solution. The answers to
these questions depend on the situation and the solution. The following list
shows some considerations on this:

 Database size: Windows Azure SQL Databases are currently limited to 5
GB of data for the Web Edition Database and to 150 GB of data for the
Business Edition Database. To scale a database beyond this size, you
must use federations or sharding. For a list of guidelines and limitations
for federations in SQL Database, see Federation Guidelines and
Limitations. This allows for more processing power in retrieval of data,
but introduces limitations in joins and aggregation related to data
locality. For detailed information on federations, see Federations in SQL
Database (SQL Database). For the most up-to-date information on
available database editions and sizes, see Accounts and Billing in SQL
Database.

 Number of databases: By default, SQL Database supports up to 6
servers per subscription and 150 databases in each SQL Database
server, including the master database. An extension of this limit is
available. For more information, contact a customer support
representative at the Microsoft Online Services Customer Portal.

 Cross-database queries: SQL Database currently does not support cross
database joins or other cross database queries. If you have unions or

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

12

joins that require data from more than one database in SQL Database,
you must perform that logic in the application-tier of your application.

 Common Language Runtime (CLR) objects: SQL Database does not
currently support CLR stored procedures, aggregations, triggers, or
functions. You should port stored procedures, triggers, or functions in
Transact-SQL to run on SQL Database. Complex logic or operations, such
as aggregations, that cannot be performed in Transact-SQL at the
database-tier should be moved to the application tier. You may use a
worker role to perform such work.

 Data types: SQL Database does not provide support for some of SQL
Server's system data types. For the most up-to-date information, see
Data Types (SQL Database) in the SQL MSDN library.

 Replication: Replication types such as transactional replication or merge
replication are not available in SQL Database. You can set up and run
them in SQL Server running in Windows Azure Virtual Machines. You
can use SQL Data Sync to synchronize data between SQL Database
instances. But the SQL Data Sync service may not be satisfactory where
transactional consistency or complex conflict resolutions are required.
Warning: SQL Data Sync is currently available only as a Preview and is
meant only for product feedback for future releases and should not be
used in production environments.

 Full Text Search: Windows Azure SQL Database does not currently
support Full-text Search. If your application runs full-text queries against
character data in SQL Server tables, you may want to consider migrating
your database to a SQL Server in a Windows Azure Virtual Machine. For
more information on the preview release of the SQL Server in Windows
Azure VM, see Migrating with SQL Server in Windows Azure Virtual
Machines topic.

 Licensing: SQL Database charges per month for the database size
chosen. SQL Server requires a license when running in a Windows Azure
Virtual Machine.

 Login and security: Windows Authentication (integrated security) is not
supported in SQL Database but is available for SQL Server running in
Windows Azure Virtual Machines. For more security guidelines and
limitations of SQL Database, see Security Guidelines and Limitations
(SQL Database).

 Feature parity: For more information on similarities and differences
between SQL Server and SQL Database, SQL Database Overview.

• Login and User Security: With new network enhancements to Windows Azure, an active
directory domain from the on-premises network can be extended to Windows Azure.
For more information, see Migrating with Windows Azure Virtual Machines. For detailed

Planning a Migration

13

information on SQL Database Security Administration, see Managing Databases and
Logins in SQL Database.

• Functional decomposition of the application: Identify where the application can be
broken down into functional units so that it can run in separate Windows Azure roles or
virtual machines. You can do this to produce elastic scale and also to allow for hybrid
applications if some applications are not good fits for cloud computing.

• Payment Card Industry (PCI) and other regulatory requirements: Prior to moving an
application or component to Windows Azure, check the current status of required
certifications or requirements. In cases such as PCI compliance requirements, you may
want to remove some parts of the application and database from what is migrated to
Windows Azure, and run a hybrid application. This allows for the benefits of Windows
Azure and cloud computing on most components while still allowing for tight
institutional control and compliance for the parts of the data and application for which it
is required.

• Key components that cannot be hosted in Windows Azure Platform: You may not be
able to host some components or some types of data in the public cloud due to some
other concerns. Identify these components and consider a hybrid application. With
hybrid architecture, you can host some components in Windows Azure to realize the full
benefit of Windows Azure and cloud computing. At the same time you can still achieve
tight institutional control and compliance for the parts of the data and application for
which it is required.

Plan the timeline
Once you define the scope of the migration, the amount of work for each step in the migration
plan becomes clear as well. Look at each application and data component and estimate the time
and resources required for development, testing and migration. When functionally decomposing
your application, develop those decomposed components in parallel to produce the elastically
scalable components.

Set project milestones such as functional and performance testing, and release dates in your
migration plan. Your migration may proceed in a series of steps and iterations as different
components are made ready for Azure, or as components are ready to be moved to Windows
Azure web roles and worker roles.

Make a plan for the interim
When the timeline for development and migration is set, plan for growth in that time period and
decide what must be done to the existing application and infrastructure. This kind of planning

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

14

allows you to operate your existing system until your migration is complete. When forming this
interim plan, identify current pain points and identify what must be done to allow continued
operations, and at what scale operations can continue on the interim infrastructure. In addition,
identify steps that you may need to allow the continued operations. Often these steps may be
as simple as tuning a SQL query or adding a web server depending on your particular
application’s characteristics. Identify contingency plans in case of faster than expected growth
or unexpected surges. When making contingency plans, consider if surges or growth can be
handled by scaling out to Windows Azure Virtual Machines as this may allow you to handle
these situations without additional hardware investment.

Make a plan for testing
Any migration plan should include plans for comprehensive functionality testing and load
testing. A description of testing methodologies is beyond the scope of this article. The following
list shows some critical points to remember when testing:

• Automate test scripts

• Test all tiers and components of your application

• Test on ratios of activities that represent the real ratios on your systems

• Test to a level of your highest expected utilization or beyond

We recommend that you include time for building and running tests as well as fixing problems
found by testing.

Identify the resources needed
When you define the business and technical requirements, identify the resources needed to
execute the migration successfully. You may need to bring these in for the migration. There are
three primary areas to look at when identifying resources:

• Personnel: You may need to bring in additional employees with additional skill sets in
order to successfully migrate your application. In addition, after the migration, roles of
technical staff may change and skills may need updating. For example, consider the
roles of Account Administrator and service administrators to manage logins, access and
service and scale levels.

• Tools: Identify the tools you need to develop, test, and deploy your Windows Azure
application. For more information, see Windows Azure Tools for Microsoft Visual Studio
andTools and Utilities Support (SQL Database).

• Consulting: You may need specific expertise for migrating your application. A migration
specialist may save considerable time and money by helping you avoid common pitfalls.

http://msdn.microsoft.com/library/ee405484.aspx�

Planning a Migration

15

Plan the application management in Windows
Azure
For small applications, the Windows Azure Management portal may be sufficient for
management of Windows Azure deployments. The Windows Azure Management portal allows
you to log in and manage the deployments and applications including changing the number of
instance roles, and managing SQL Database instances. However, for complex applications and
applications that provide a service to customers, the Windows Azure Management portal may
not be sufficient.

Windows Azure exposes the REST API to allow you to programmatically manage applications
and VMs hosted in Windows Azure as well provisioning and using Windows Azure storage. You
can write a management interface to handle scaling and monitoring of your Windows Azure
environment. Your migration plan should include a plan for managing the application after
migration, especially if this management is to include a custom interface or automation.

For more information on the REST API for management of your Windows Azure deployments
see API References for Windows Azure.

See Also
Real World: Simulating Load on a Windows Azure Application

Using Visual Studio Load Tests in Windows Azure Roles

http://msdn.microsoft.com/library/ff800682.aspx�
http://msdn.microsoft.com/library/windowsazure/hh508977.aspx�
http://msdn.microsoft.com/library/windowsazure/hh674491(v=vs.103).aspx�

16

Implementing the Migration Plan
Authors: Kun Cheng, Steve Howard
Contributors: Selcin Turkarslan

Windows Azure is an internet-scale computing and services platform hosted in Microsoft data
centers. With Windows Azure, developers and administrators do not need to implement the
underlying software and hardware infrastructure since all the underlying operating system,
hardware, network, storage resources, and platform updates are taken care of by Microsoft
automatically.

We strongly recommend that after you migrate your application to the cloud, run the functional
and performance tests on your application just like you do for any newly deployed application.
Since Windows Azure is different than your on-premises platform, you must consider the
following important issues when implementing the migration:

• Setting up for validation tests

• Synchronizing databases to minimize cut over time

• Backup and restore

• Cut over to Windows Azure

Note that the focus of this topic is primarily the Windows Azure Cloud Services. For preliminary
guidance on migration with SQL Server in Windows Azure Virtual Machines, see Migrating with
Windows Azure Virtual Machines.

Setting up for validation tests
While migrating your applications to the cloud, you must know how to test and debug your
application so that you can be sure that it works as expected in the cloud. The following is a list
of approaches that you can use to test your application:

• Windows Azure Tools for Microsoft Visual Studio: You can build your application and
then you can run and debug this application locally using the compute and storage
emulators that are provided as part of the Windows Azure Tools. This allows you to
develop your application locally before you publish it to Windows Azure. Windows
Azure Tools for Microsoft Visual Studio extends Visual Studio 2010 and it enables you to
test your application with compute and storage emulators, which provide most of
Windows Azure functions. We recommend that you perform this type of testing at the
early stages of the functional testing. For more information, see Windows Azure Tools
for Microsoft Visual Studio.

http://msdn.microsoft.com/library/ee405484.aspx�
http://msdn.microsoft.com/library/ee405484.aspx�

Implementing the Migration Plan

17

• SQL Server Data Tools: SQL Server Data Tools (SSDT) offers an integrated environment
within Visual Studio 2010 that you can use to design databases, create or edit database
objects and data, or execute queries for all supported SQL platforms; including off-
premise Windows Azure SQL Database and on-premises Microsoft SQL Server 2012. It
enables you to test your database project solutions using either the local default
database or Windows Azure SQL Database by examining the relational data access part
of the application. For more information, see SQL Server Data Tools.

Note: Both Windows Azure Tools for Microsoft Visual Studio and SSDT enable you to
perform the basic functionality and compatibility tests on your application with offline
and online data sources. In order to test all aspects of a real cloud application in terms
of functionality, performance and scalability, you need to do a simulation testing on
Windows Azure where the application is deployed to and running on.

• Automated Test Framework: Many existing applications already have an automated
test framework that can be used to make sure all the components or functions of the
application work as expected. When an application runs on Windows Azure, the
automated test framework may or may not work depending on how it is designed. If the
automated test framework is required to run from on-premises but can connect to an
application on Windows Azure by using the defined end points, it may still work.
Otherwise, we recommend that you host both the automated test framework and your
application on Windows Azure to mitigate potential connection-losses and latency
problems.

• Visual Studio Load Testing: If an application does not have an existing automated test
framework, we recommend that you create a new automated test framework and use
Visual Studio Load Testing to do a simulation testing with multiple concurrent users. For
more information, see Using Visual Studio Load Tests in Windows Azure Roles.

Synchronizing databases to minimize cut over time
Between testing, staging, and production, you should try to minimize the actual cut over time as
much as possible. It may take hours or days to copy a large database from on-premises to
Windows Azure. In addition, it is unlikely that you want your application down for the amount of
time required to fully migrate the existing data. That’s why you must have a plan to minimize
any downtime due to cut over. Note that cut over means the time required to execute the final
move to Windows Azure. Prior to cut over, look at your tables and decide which tables contain
static data and which tables contain data that might change during cut over. For static data, you
do not need to move any data at cut over time. However, if there is any doubt as to whether or
not data in a particular table might change during cut over, you should include logic in your
system to migrate all changes afterwards. We also recommend that you consider if all data from
your on-premises systems need to be migrated to the cloud before your application goes live on

http://msdn.microsoft.com/library/bb401006.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

18

Windows Azure. If your application can go live and allow the data to catch up later, you can
eliminate any down time.

However, if the data in Windows Azure must be consistent with the data on-premises prior to
going live on Windows Azure, consider minimizing the amount of data that must migrate at cut
over time as it helps to minimize the downtime required for the actual cut over.In some cases, it
might be appropriate to move some of your data prior to cut over, and then to move the
remaining data after the actual cut over. In such cases, your migration plan should clearly
identify the data that must be migrated first and also the remaining data that can be migrated
after cut over. This allows your application to go live on Windows Azure with less downtime as
your application can be on production while you migrate the remaining data.You can use the
following data synchronization methods to perform the data migration before cut over:

Windows Azure SQL Data Sync
Windows Azure SQL Data Sync service provides data synchronization capabilities for Windows
Azure SQL databases. The service currently has two main capabilities:

• Synchronization of data between on-premises SQL Server databases and Windows Azure
SQL Database instances, allowing on-premises and cloud-based applications to utilize
the same data.

• Synchronization of data between two or more Windows Azure SQL Database instances;
the instances can be in the same data center, different data centers or different regions.

Windows Azure SQL Data Sync is a good option for synchronizing on-premises databases and
Windows Azure SQL Database instances in the following situations:

• You need to do parallel testing of applications.

• You need to run your application in parallel prior to the final move of all on-premises
data operations to Windows Azure.

• While migrating to Windows Azure, you need to run the application on-premises and at
the same time minimal downtime is necessary.

• You need to do continuous data synchronization as part of a hybrid solution between
on-premises and Windows Azure application.

Note that in order to track incremental data changes, SQL Data Sync adds change tracking table
for each table that is being synchronized when synchronization is configured. When using SQL
Data Sync, you must plan to leave space for the change tracking tables that to keep the data
synchronized. In addition, you should not make changes to the table structures or primary keys
of tables that are being synchronized after the synchronization is set up unless you re-initialize
the synchronization group. SQL Data Sync is not optimal for situations where intermediate or
ongoing data synchronization will be required. For more information, see SQL Data Sync.

Warning: SQL Data Sync is currently available only as a Preview and is meant only for product
feedback for future releases and should not be used in production environments.

Implementing the Migration Plan

19

Replication, mirroring or log shipping
You can use replication, mirroring, or log shipping to move data from on-premises SQL Server to
other on-premises SQL Server or to an instance of SQL Server running in a Windows Azure
Virtual Machine. But you cannot use them for moving data into or out of Windows Azure SQL
Database. For more information, see Replication and Log Shipping and Database Mirroring and
Log Shipping.

Custom Extract Transform and Load (ETL)
In order to minimize the time needed to transfer data at cut over time, you should move as
much data as possible to Windows Azure Platform prior to the actual cut over. You can create a
custom ETL job to move the changed data from your on-premises system to your Windows
Azure environment. When migrating from on-premises SQL Server 2008 or later, we recommend
using Change Data Capture or Change Data Tracking to ensure that all the changed data, and no
more than the changed data are actually moved from the on-premises database to the Windows
Azure SQL Database instance. For more information on these two features, see Track Data
Changes in the SQL Server Books Online.For databases that do not use Change Data Capture or
Change Data Tracking, you need to create a tracking system for your changes and the data that
has been migrated. In all cases, having the minimal data to move at the time of actual cut over is
the key to minimize the down time needed for the actual cut over.

Export a Data-Tier Application (DAC)
Using DAC, you can export data from a SQL Server instance and place it into Windows Azure
Blob storage where it can be imported into a Windows Azure SQL Database. With DAC, you can
set up filters on which tables should be imported or exported. But you cannot set up the row
level filters. That’s why DAC is appropriate where entire tables fit within a single database but
does not work well for federated databases. DAC is not optimal for migrating data for
applications where ongoing data synchronization will be required. For more information,
see Export a Data-tier Application in the SQL Server Books Online.

Backup and restore
The purpose of creating database backups is to enable you to recover from data loss caused by
administrative errors, application errors, or the total loss of a data center. Backing up and
restoring data is different in Windows Azure SQL Database than an on-premise SQL Server and
must work with the available resources and tools. Therefore, a reliable use of backup and
restore for recovery requires a Windows Azure SQL Database backup and restore strategy.

http://msdn.microsoft.com/library/ms151224.aspx�
http://msdn.microsoft.com/library/ms187016.aspx�
http://msdn.microsoft.com/library/ms187016.aspx�
http://msdn.microsoft.com/library/bb933994(v=sql.110).aspx�
http://msdn.microsoft.com/library/bb933994(v=sql.110).aspx�
http://msdn.microsoft.com/library/hh213241(v=sql.110).aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

20

There are three general categories of issues that a Windows Azure SQL Database instance may
need to recover from:

• Infrastructure or hardware failures: Within a data center, hardware failures might
occur. For example, the physical node running your Windows Azure SQL Database
instance may crash.

• Application or user generated issues or failures: Users or applications can make
unwanted changes to data. This may need a revert operation. For example, a user might
modify some data that belongs to the wrong customer, and so on.

• Loss of data center facilities: The current Windows Azure SQL Database service level
agreement specifically has an exception for factors outside Microsoft’s reasonable
control, such as disasters. In the event of a disaster, the data center might be damaged
in such a way that databases can’t be recovered from the replicas or the on-site
backups.

You ultimately need to decide what level of risk you are willing to tolerate with respect to data
stored within Windows Azure SQL Database data centers. For detailed information on the
available backup and restore tools and how to build disaster recovery strategies around them,
see Business Continuity in SQL Database article in the MSDN library.

Cut over to Windows Azure
When you perform the actual migration of your application to Windows Azure, you can follow
the following approaches:

• Run in parallel: With this approach, your application may run in parallel both on on-
premises and Windows Azure. This enables you to perform live tests on your application
in the Windows Azure before your application becomes fully dependent on the cloud.
Your tests should include but not be limited to the following: functionality testing,
performance testing, and scalability testing. After you finish testing your new system on
the Windows Azure completely, perform the final data migration and do shut down your
on-premises system.

• Pause and cut over: This approach is appropriate when all data needs to be
synchronized prior to going fully live on Windows Azure. Using this approach, all
functional and performance testing should be complete on the Windows Azure first.
Then, set your system to replicate data to your Windows Azure environment using one
of the data synchronization methods specified above. We recommend that you keep the
data as close to synchronized as possible by minimizing the amount of time required for
the last synchronization or ETL operation prior to final cutover. When it is time to cut
over to Windows Azure, bring the on-premises system down, perform the last data
synchronization, and bring your application up on Windows Azure.

Part 2:
Migration Considerations,
Best Practices, and How To

22

Migrating with Windows Azure Virtual
Machines
[This documentation is for preview only, and is subject to change in later releases. For the most
up-to-date information, see Migrating with Windows Azure Virtual Machines in the MSDN
library.]

This section provides an overview on the Windows Azure Virtual Machines (VM) and its
accompanying technologies and functionalities. In addition, the section provides guidance on
how you can migrate your existing SQL Server databases to Windows Azure using Windows
Azure Virtual Machines.

In This Section

Topic Description

Overview of Windows Azure Virtual
Machines

Provides an overview on Windows Azure
Virtual Machines feature.

Migrating with SQL Server in Windows Azure
Virtual Machines

Provides a migration path for your existing
SQL Server databases to Windows Azure
using the Windows Azure Virtual Machines
feature.

http://msdn.microsoft.com/library/windowsazure/jj156159�

Migrating with Windows Azure Virtual Machines

23

Overview of Windows Azure Virtual Machines
Authors: Selcin Turkarslan
Reviewers: Drew McDaniel, Jason Chen, Ganesh Srinivasan, Lindsey Allen, Steve Howard

[This documentation is for preview only, and is subject to change in later releases. For the most
up-to-date information, see Migrating with Windows Azure Virtual Machines in the MSDN
library.]

Starting with the Windows Azure 2012 Preview release, the new Virtual Machine capabilities
have been added to the Windows Azure. As part of this enhancement, Windows Azure has
released a new version of the Windows Azure Management Portal and expanded its existing
offerings and capabilities.

This topic provides an overview on Windows Azure Virtual Machines feature. For more
information on a migration path for your existing SQL Server databases using the Windows
Azure Virtual Machines, see Migrating with SQL Server in Windows Azure Virtual Machines
topic.

Windows Azure and Virtual Machines
Starting with the Windows Azure Preview release, Windows Azure provides the following
capabilities:

• Deploy a virtual machine: You can create your own virtual machine directly in the cloud
by using an image that is provided in the Image Gallery of the Windows Azure
Management Portal, without uploading any Windows Server or Linux image created on-
premises. To do this, you can use the Management Portal, PowerShell, or the
programmable API interface (REST). After generating your own disk, you can manage
that disk by using remote desktop access to the virtual machine

• Bring your own virtual machine: The new Management Portal and Windows Azure
Software Development Kit (SDK) allow you to bring your own virtual machines to the
cloud. For example, your disk may already have SQL Server installed. In this case, upload
your image to your Blob storage account and use that image to instantiate a new virtual
machine.

In addition, Windows Azure provides a new set of network virtualization and site-to-site VPN-
based cross-premises connectivity capabilities as part of the new Windows Azure Virtual
Network feature. Windows Azure Virtual Network provides the following capabilities:

• You can extend your corporate network into the Windows Azure platform using Virtual
Networks. In addition, Virtual Networks feature allows cloud applications to connect to
each other by hosting in the same Virtual Network.

• You can use a subset of your corporate’s private IPv4 address space for virtual machines
hosted in Windows Azure.

http://msdn.microsoft.com/library/windowsazure/jj156159�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

24

• You can have stable IPv4 addresses for your virtual machines.

• Windows Azure supports a hosted virtual private network (VPN) gateway that enables
connectivity between the cloud and on-premises using a secure IPSec connection.

• You can provision and manage Virtual Networks by using the Windows Azure
Management Portal. You can provision and manage Virtual Machines by using the
Windows Azure Management Portal.

• Windows Azure Virtual Network supports the industry standard virtual private network
(VPN) devices.

• You can leverage on-premises Active Directory or DNS servers in the cloud. Windows
Azure Virtual Machine feature enables your virtual machines running in Windows Azure
to be joined to your corporate domains running on-premises by using your on-premise
Active Directory services.

• Windows Azure Virtual Machine model enables your virtual machines running in
Windows Azure to be joined to your corporate domains running on-premises by using
your on-premise Active Directory services.

The following diagram demonstrates that Windows Azure Virtual Machines can easily enable
customers to extend their enterprise networks into Windows Azure. This brings a great
advantage for migrating existing applications to Windows Azure. You can easily support hybrid
applications that span cloud and on-premises. You can manage your own virtual networks
within Windows Azure and leverage the hosted VPN gateway to establish connectivity between
on-premises and cloud. You can enable virtual machines running in Windows Azure to be joined
to your corporate domains running on-premises.

Migrating with Windows Azure Virtual Machines

25

Windows Azure Supplied Virtual Machine Images
Starting with the Windows Azure Preview release, Windows Azure allows customers to deploy
virtual machines by using Windows Azure supplied platform images. When you click the Virtual
Machines panel on the portal, you can see several platform images available to you by default.

After choosing a desired platform image, you can create and then connect to a virtual machine
on Windows Azure. Once you instantiate a platform supplied image, you are responsible for
maintaining it. Windows Azure refreshes the Windows Azure platform supplied base images
periodically. But Windows Azure does not force updates to the operating system disks already
deployed by customers. Similarly, Linux partners will refresh the Linux base images periodically.

The following is a list of applications that are supported in the virtual machines running on
Windows Azure:

Applications Details

Microsoft SQL Server • Supported versions when you bring your own virtual machine:
SQL Server 2008, SQL Server 2008 R2, and SQL Server 2012 all
editions.

• Supported versions in the image gallery: SQL Server 2012
Evaluation.

• Supported applications: SQL Server Database Engine, SQL
Server Analysis Services, SQL Server Reporting Services, SQL
Server Integration Services, SQL Server Manageability tools,
SQL Connectivity SDK, SQL Server Setup, and upgrade and
migration tools, such as Data-tier applications (DAC), backup,
restore, attach, and detach. Note that Master Data Services is
not supported currently.

Windows Server Active
Directory

Supported Versions: Windows Server 2008 R2

Microsoft SharePoint Supported Versions: SharePoint 2010 All versions

Linux Support You can upload a Linux virtual hard drive (VHD) file to run in
Windows Azure. To see the list of supported versions, visit
Windows Azure Management Portal.

Windows Azure uses the System Preparation (Sysprep) tool to capture a running Windows
Server virtual machines for repeat deployment. Customers can keep all of the deployed
operating system and data disks in their customer-owned Windows Azure Blob Storage account
as standard VHD files.

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

26

List of important concepts
• An operating system image is a virtual hard drive file that you can use as a template to

create a new virtual machine. An image is a template because it doesn’t have specific
settings like a configured virtual machine, such as the computer name and user account
settings.

• A virtual machine disk is a virtual hard drive that can be booted and mounted as a
running version of an operating system instance. A disk can also be attached to a
running instance as a data drive separate from the operating system drive.

• You can capture a running virtual machine as an image. But this operation does not
capture the attached disks. The captured VM can be used to create multiple VMs. The
end result is a new image file in the same storage account as the OS disk of the VM that
was captured.

• A Windows Azure application can have multiple virtual machines. All virtual machines in
a cloud service can resolve the IP of other virtual machines by using the Windows Azure
supplied DNS name. You can control the network access by using the firewall settings.

High Availability and Disaster Recovery when using Windows
Azure Virtual Machines
To provide disaster recovery of data and disks, Windows Azure utilizes the recently announced
Geo-Replication capability of Windows Azure Storage. All changes made by the application or by
the customer to the customer-owned operating system disks or data disks are preserved, even
in case of a hardware failure, by using Windows Azure Blob Storage. As described at Introducing
Geo-replication for Windows Azure Storage blog post, Windows Azure Blobs and Tables are geo-
replicated between two data centers apart from each other on the same continent, to provide
additional data durability in the case of a major disaster, at no additional cost. When you launch
a Virtual Machine, Windows Azure Storage geo-replication replicates your operating system and
data disks to a second geographical region by default.

In the Windows Azure Preview release, database mirroring and log shipping are the supported
high availability features for SQL Server applications. Currently, there is no support for Windows
Server Failover Clustering (WSFC) with SQL Server and SQL Server 2012 AlwaysOn features. If
the hardware hosting your virtual machine fails, Windows Azure recovers the same virtual
machine on another machine. To prevent data and configuration losses due to user and
application errors, we recommend that you back up your data in your virtual machines
periodically.

http://go.microsoft.com/fwlink/?LinkId=243171�
http://go.microsoft.com/fwlink/?LinkId=243171�
http://go.microsoft.com/fwlink/?LinkId=243171�

Migrating with Windows Azure Virtual Machines

27

Common Application Patterns when using Windows Azure
Virtual Machines
The following application patterns are some examples that can leverage the advantages of the
new Windows Azure Virtual Machine:

• Existing non-mission critical database applications

• New database applications to be deployed to SQL Server in Windows Azure VM when
Windows Azure SQL Database does not provide all the necessary features

• A quick and easy development and test environment for new applications to be
eventually deployed on-premises

• A backup solution for on-premises database applications

• A solution that can scale on-demand easily and rapidly at peak times

• A solution that can overcome virtualization platform inefficiencies on-premises

Application Programming Interface Support for Windows Azure
Virtual Machines
Windows Azure enables you to manage your applications and virtual machines by using the
REST API and PowerShell cmdlets. For more information, see API References for Windows Azure
in the MSDN library.

http://msdn.microsoft.com/library/ff800682.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

28

Migrating with SQL Server in Windows Azure Virtual
Machines
Authors: Selcin Turkarslan
Reviewers: Evgeny Krivosheev, Paolo Salvatori, Lindsey Allen, Steve Howard

[This documentation is for preview only, and is subject to change in later releases. For the most
up-to-date information, see Migrating with Windows Azure Virtual Machines in the MSDN
library.]

Starting with the Windows Azure 2012 Preview release, you can easily migrate your existing SQL
Server applications built on Windows Server platform to Windows Azure Virtual Machines. This
topic provides an overview of this new offering and a decision work flow when to choose SQL
Server in VM and Windows Azure SQL Database (SQL Database).

SQL Server in VM enables you to reduce the total cost of ownership of deployment,
management and maintenance of enterprise breadth applications by easily migrating these
applications to the public cloud. Migrating existing SQL Server applications to Windows Azure
Virtual Machines requires minimal or no code changes. With SQL Server in VM, administrators
and developers can still use the same development and administration tools that are available
on-premises.

When to use SQL Server in a Windows Azure Virtual Machine
Using SQL Server in a Windows Azure Virtual Machine can enable many of the on-premises
scenarios in the cloud:

• Rapid application development and testing: Develop a database application that
requires some validation in a production like environment. Instead of purchasing a new
hardware to do validation or testing of your new application, use SQL Server in VM.
Simply, create a VM by using the platform supplied SQL Server on Windows Server
image or upload your own image to the cloud. Then, connect to your new machine,
move your data and setup your application, test and perform fixes.

• Virtualization platform total cost of ownership: Move the existing on-premises
virtualization platform to a public cloud. Instead of purchasing a new hardware to run
the increasing number of enterprise breadth applications in your own virtualization
platform on-premises, move them to the public cloud by leveraging the SQL Server
infrastructure in a Windows Azure Virtual Machine.

• Application data backup: Take backups of enterprise breadth database applications by
using the SQL Server infrastructure in a Windows Azure Virtual Machine. Instead of
allocating compute, storage, and network resources on-premises to take backups of
your database applications, use SQL Server in VM. Simply, identify which database
applications are good candidates to be backed up in the cloud. After you move

http://msdn.microsoft.com/library/windowsazure/jj156159�

Migrating with Windows Azure Virtual Machines

29

applications and data to the cloud, use Windows Azure Virtual Network to establish
connection between on-premises and cloud and setup scheduled jobs and alerts to do
backup in Virtual Machine disk.

• Rapid on-demand scale: Get additional computer, storage, and network resources to
handle seasonal application usage peaks. Instead of purchasing an additional hardware
just needed for a specific time period, use the SQL Server infrastructure in Windows
Azure Virtual Machines.

• Data availability and mobility: Hosting SQL Server databases in Windows Azure Virtual
Machines makes them available to both on-premises and cloud applications.

Choosing between SQL Server in Windows Azure Virtual Machine
vs. Windows Azure SQL Database
The following decision work flow explains when to choose SQL Server in VM and Windows Azure
SQL Database:

• For new database applications, use either Windows Azure SQL Database (SQL Database)
or SQL Server in VM in Windows Azure:

o If SQL Database supports all the required features, provision a new SQL
Database instance in Windows Azure. Develop your new database application
by using Windows Azure SDK and plugins for Visual Studio 2010, Java, PHP, or
Node.js. Deploy your application to Windows Azure and create your tables in
SQL Database.

o If SQL Database does not support all the required features and you do not want
to invest in re-design changes in your application database, provision a new
Windows Azure Virtual Machine with SQL Server platform supplied image at the
new Management Portal. Create a database deployment package by using SQL
Server Data Tools, deploy this database package to SQL Server in Windows
Azure Virtual Machine. You can manage, upgrade, and monitor your database
by using the traditional administrative tools, such as SQL Server Management
Studio.

• For existing database applications, identify which databases you want to migrate to SQL
Server in Windows Azure Virtual Machines first. Then, follow one of these two options:

o Convert physical or virtual machines to Hyper-V VHDs by using System Center
2012 Virtual Machine Manager a physical-to-virtual machine (P2V) or a virtual-
to-virtual (V2V) wizard. Upload virtual machines to Windows Azure Storage by
using Csupload command-line tool. You can also deploy a new virtual machine
by using the uploaded virtual machine. You can manage, upgrade, and monitor
your database by using the traditional administrative tools, such as SQL Server
Management Studio.

http://msdn.microsoft.com/en-us/library/windowsazure/gg466228.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

30

o Provision a new Windows Azure Virtual Machine with SQL Server platform
supplied image as well as an application-tier cloud compute resources at the
Windows Azure Management Portal. Create a database deployment package by
using SQL Server Data Tools and SQL Server Management Studio. Migrate the
existing application-tier to Windows Azure Project by using Windows Azure SDK
and plugins for Visual Studio 2010, Java, PHP, or Node.js. Deploy an application-
tier to Windows Azure and access your data on the cloud.

Migrating database schema and data to SQL Server in a Windows
Azure Virtual Machine
While migrating your database and data to SQL Server in a Windows Azure Virtual Machine,
follow these steps in the order specified:

1. Prepare your database schema and data file on-premises using DAC, backup, or detach.
For more information, see How to prepare schema and data on–premises and upload
them to an instance of SQL Server in VM below.

2. Optionally, compress and encrypt your files before transmitting them to Windows
Azure.

3. Transmit your database schema, data and log files to Windows Azure. If you use the
CsUpload tool, first place your files in a virtual hard drive (VHD) and then upload the
VHD to Windows Azure. For more information, see How to move your database schema
and data file to Windows Azure Virtual Machine below.

4. Load your database schema and data file to SQL Server in Windows Azure VM. For more
information, see How to prepare schema and data on–premises and upload them to an
instance of SQL Server in VM below.

5. Recreate any metadata that the migration tools could not create on the SQL Server on
Windows Azure Virtual Machine.

How to prepare schema and data on–premises and upload them
to an instance of SQL Server in VM
This section describes how to prepare your database schema and data files on-premises. There
are several options that you can choose depending on your needs:

• Option 1: Data-tier Applications .BACPAC or .DACPAC files

• Option 2. Backup and Restore

• Option 3. Detach and Attach

• Option 4. Other SQL Server Techniques

Migrating with Windows Azure Virtual Machines

31

Option 1: Data-tier Applications .BACPAC or .DACPAC files
You can use a Data-tier Application (DAC) to prepare your database schema and data file to be
transmitted from on-premises to the cloud:

• A .DACPAC file: A .dacpac file includes the definitions of all SQL Server objects - such as
tables, views, and instance objects – associated with a user’s database. A DACPAC is
focused on capturing and deploying database schema, including upgrading an existing
database. For more information on to extract a data-tier application (DAC) package from
an existing SQL Server database, see Extract a DAC From a Database.

• A .BACPAC file: A .bacpac file includes the database schema as well as the data stored in
the database. A BACPAC is focused on capturing schema and data. It is the logical
equivalent of a database backup and cannot be used to upgrade existing databases. For
more information on how to create a .bacpac file, see Export a Data-tier Application.

You can export the schema and the data of a database to a BACPAC file. Then, you can import
the schema and the data into a new database in the host server. Both of these capabilities are
supported by the database management tools: Server Management Studio and the DACFx API.
For more information, see Import a BACPAC File to Create a New User Database and
the Microsoft.SqlServer.Dac Namespace in the MSDN library.

Notes:

• DAC operation does not encrypt the BACPAC or DACPAC files automatically. You should
ensure that the communication between on-premises and cloud is secure. You can also
encrypt the bacpac or dacfile file separately to get additional protection when the file is
at rest in Windows Azure Blob Storage or on-premises disk storage.

• DAC does not support full-text catalogs.

• To improve security, SQL Server Authentication logins are stored in a DAC package
without a password. When the package is deployed or upgraded, the login is created as
a disabled login with a generated password. To enable the logins, log in using a login
that has ALTER ANY LOGIN permission and use ALTER LOGIN to enable the login and
assign a new password that can be communicated to the user. This is not needed for
Windows Authentication logins because their passwords are not managed by SQL
Server.

Option 2. Backup and Restore
To move a database to another instance of SQL Server or to another server, you can use backup
and restore operations. If both SQL Server on-premises and SQL Server in VM have the same
version, you can copy a database backup file to the virtual machine and then restore the
database. For more information, see Back Up and Restore of SQL Server Databases.

http://msdn.microsoft.com/library/hh231291�
http://msdn.microsoft.com/library/hh213241�
http://msdn.microsoft.com/library/hh710052.aspx�
http://msdn.microsoft.com/library/microsoft.sqlserver.dac.aspx�
http://msdn.microsoft.com/library/ms187048(v=sql.110).aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

32

Notes:

• Backup and restore is faster than DAC.

• You can create a compressed backup of your data. For more information, see Backup
Compression.

• You can use the existing and familiar tools such as the SQL Server Management Studio
Backup Wizard as well as third-party tools.

• When you move the database to another server instance, you must re-create all the
metadata of the dependent entities and objects in master and msdb on the destination
server instance. For more information, see Manage Metadata When Making a Database
Available on Another Server Instance.

Option 3. Detach and Attach
To move a database to another instance of SQL Server or to another server, you can use detach
and attach operations. Copy the data (.mdf, .ndf), and log (.ldf) files to a local folder of the
virtual machine, and then attach the database. For more information, see Move a Database
Using Detach and Attach.

Notes:

• Detaching a database removes it from the instance of SQL Server but leaves the
database intact within its data files and transaction log files. It requires the source
database to go offline. It is best for upgrading databases or moving very large databases.

• You cannot detach a database if any of the following are true:

o The database is replicated and published.

o A database snapshot exists on the database.

o The database is being mirrored in a database mirroring session.

o The database is suspect.

o The database is a system database.

• It’s recommend that you take a new full backup and restart differential backups prior to
detach.

• You can compress the detached files by using a separate compression utility.

• When you attach a database onto another server instance, to provide a consistent
experience to users and applications, you might have to re-create some or all of the
metadata for the database, such as logins and jobs, on the other server instance. For
more information, see Manage Metadata When Making a Database Available on
Another Server Instance.

http://msdn.microsoft.com/library/bb964719.aspx�
http://msdn.microsoft.com/library/bb964719.aspx�
http://msdn.microsoft.com/library/ms187580(v=sql.110).aspx�
http://msdn.microsoft.com/library/ms187580(v=sql.110).aspx�
http://msdn.microsoft.com/en-us/library/ms187858.aspx�
http://msdn.microsoft.com/en-us/library/ms187858.aspx�
http://msdn.microsoft.com/library/ms187580(v=sql.110).aspx�
http://msdn.microsoft.com/library/ms187580(v=sql.110).aspx�

Migrating with Windows Azure Virtual Machines

33

Option 4. Other SQL Server Techniques
You can use the following additional techniques to copy or move databases between servers:

• You can use the Copy Database Wizard in SQL Server Management Studio to copy or
move databases between servers or to upgrade a SQL Server database to a later version.
For more information, see Use the Copy Database Wizard.

• The SQL Server Import and Export Wizard provides a method of copying data between
data sources and of constructing basic packages. For more information about the
wizard, see SQL Server Import and Export Wizard. The purpose of the SQL Server Import
and Export Wizard is to copy data from a source to a destination. The wizard can also
create a destination database and destination tables for you. However, if you have to
copy multiple databases or tables, or other kinds of database objects, you should use
the Copy Database Wizard instead.

• You can use the Generate and Publish Scripts Wizard to create scripts for transferring a
database between instances of the SQL Server Database Engine. The generated scripts
can be run on another instance of the Database Engine. You can also use the wizard to
publish the contents of a database directly to a Web service created by using the
Database Publishing Services. You can create scripts for an entire database, or limit it to
specific objects. For more information, see Generate and Publish Scripts Wizard.

• You can use the Transfer class of the SQL Server Management Objects (SMO) library. For
more information, see Transferring Data. SMO allows the source and target databases
to remain online and does not require moving the database files to/from Windows
Azure blob storage in a separate step. The disadvantage of SMO is that it would use a
client connection to the database on either side which would use TDS and be very
inefficient for large data sets.

• The Transfer Database Task can either copy or move a SQL Server database between
two instances of SQL Server. The database can be transferred by using online or offline
mode. When you use online mode, the database remains attached and it is transferred
by using SQL Management Object (SMO) to copy the database objects. When you use
offline mode, the database is detached, the database files are copied or moved, and the
database is attached at the destination after the transfer finishes successfully.

How to move your database schema and data file to Windows
Azure Virtual Machine
You can copy small files (database backups, BACPAC, or DACPAC files) to the virtual machine
using copy/paste while connected using remote desktop. To transfer large files select one of the
following options:

• Use the CSUpload Command-Line Tool (CSUpload.exe) to upload VHD files to Windows
Azure. A VHD file may include a database. For more information, see How to Upload a
VHD to Windows Azure.

http://msdn.microsoft.com/library/ms188664.aspx�
http://msdn.microsoft.com/library/ms141209.aspx�
http://msdn.microsoft.com/library/bb895179.aspx�
http://msdn.microsoft.com/library/ms162563.aspx�
http://msdn.microsoft.com/library/ms141204(v=sql.110).aspx�
http://msdn.microsoft.com/library/windowsazure/gg465385.aspx�
http://msdn.microsoft.com/library/windowsazure/gg465385.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

34

• Upload the file to BLOB storage in the same data center as the virtual machine, and then
remote desktop to the virtual machine and download the file from BLOB storage. For
more information, see Understanding Cloud Storage.

• Copy the schema and data files to a shared folder in the virtual machine directly.

• Transfer the file by using FTP. For more information about FTP, see FTP Publishing
Service.

• Use a web browser to download a database from the Internet. For example, you can
download the AdventureWorks database from codeplex.

The following table describes some common transfer methods that you can use when you want
to move files to Windows Azure Virtual Machine. The table also explains the advantages and
disadvantages of each method.

Transfer Method Advantages Disadvantages

VHD copy to the
Windows Azure Blob
storage by using
CsUpload tool

• Fast, optimized for
Windows Azure

• Tools can handle
unreliable connections

• Secure transfer

• Microsoft provides CSUpload
command-line utility. If a
graphical user interface is
needed, you can use the
third-party tools currently.

• Before using the CSUpload
tool to upload a VHD to
Windows Azure, you must
prepare a VHD; and create
and upload a management
certificate at the portal.

• You need to attach the
uploaded VHD to a Windows
Azure virtual machine.

File copy to the virtual
machine share

• Simple to use

• Multiple client tools are
available

• File placed to the virtual
machine directly

• It requires a VPN connection.

• Only a few file copy tools
support restart and resume.

Microsoft SharePoint • Simple to use

• Multiple client tools are
available

• File placed to the virtual
machine directly

A secure transfer might be hard
to achieve.

http://www.windowsazure.com/en-us/develop/net/fundamentals/cloud-storage/�
http://www.iis.net/download/FTP�
http://www.iis.net/download/FTP�
http://msftdbprodsamples.codeplex.com/�

Migrating with Windows Azure Virtual Machines

35

For information on how to setup, configure, and deploy SQL Server Virtual Machine in Windows
Azure, see Tutorial: Provisioning a SQL Server Virtual Machine on Windows Azure. This tutorial
describes how to use the Windows Azure Management Portal to select and install a virtual
machine from the gallery. In addition, it shows how to connect to the virtual machine using
Remote Desktop and also how to connect to SQL Server in the virtual machine using SQL Server
Management Studio.

For supplementary information, see Getting Started with SQL Server on a Windows Azure Virtual
Machine and Creating and Uploading a Virtual Hard Disk that Contains the Windows Server
Operating System.

http://www.windowsazure.com/en-us/manage/windows/common-tasks/install-sql-server/�
http://www.windowsazure.com/en-us/manage/windows/common-tasks/sql-server-on-a-vm/�
http://www.windowsazure.com/en-us/manage/windows/common-tasks/sql-server-on-a-vm/�
http://www.windowsazure.com/en-us/manage/windows/common-tasks/upload-a-vhd/�
http://www.windowsazure.com/en-us/manage/windows/common-tasks/upload-a-vhd/�

36

Migrating with Windows Azure Cloud
Services
This section describes the Windows Azure Cloud Services and its accompanying technologies
and functionalities. In addition, the section provides guidance on how to use these technologies
and functionalities when migrating your applications and databases to Windows Azure Cloud
Services environment. The section provides detailed comparison charts on when to use which
storage options and migration tools.

In This Section

Topic Description

Development Considerations for
Windows Azure Cloud Services

Provides introductory information on the
Windows Azure Cloud Services as well as the
primary supported technologies that you need
to use while developing or migrating
applications to Windows Azure Services.

Overview of Data Management Services
in Windows Azure

Describes the data management offerings
provided by Windows Azure, such as Windows
Azure Tables, Blobs, Queues, Windows Azure
SQL Database, and other related features
Windows Azure Drives, Local Storage.

Migrating SQL Server Databases to
Windows Azure SQL Database

Provides guidance on how to migrate a
database from SQL Server to Windows Azure
SQL Database, including migration of both the
data object definitions in the schemas, and the
data in the tables.

Migrating Data to Other Data
Management Services in Windows Azure

Provides guidance on migrating your
applications to use Windows Azure Data
Management offerings: Table, Blob, and Queue
as well as other related features: Windows
Azure Drives (backed by Page Blob) and Local
Storage.

Considerations for Migrating to Windows
Azure Caching

Providence guidance on when to use Windows
Azure Caching service while migrating your data
to Windows Azure

Migrating with Windows Azure Cloud Services

37

Topic Description

Migrating Applications that Use
Messaging Technologies

Providence guidance on when to use messaging
technologies while migrating your data to
Windows Azure

Migrating Data to Local Storage Providence guidance on when to use local
storage while migrating your data to Windows
Azure

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

38

Development Considerations for Windows Azure
Cloud Services
Authors: Selcin Turkarslan
Reviewers: Valery Mizonov, Avilay Parekh, Paolo Salvatori, Steve Howard

[This documentation is for preview only, and is subject to change in later releases. For the most
up-to-date information, see Development Considerations for Windows Azure Cloud Services in
the MSDN library.]

When you consider migrating your applications to Windows Azure Cloud Services, we
recommend you first understand and learn Windows Azure Cloud Services. The Introducing
Windows Azure article provides information on the components of Windows Azure, data
management, and the supported programming software development kits (SDKs).

This topic aims to provide introductory information on implementing a Windows Azure
application. Due to all infinite different scenarios, it’s recommended that developers choose the
most appropriate techniques and solutions for their applications and users.

Migrating an existing application to Windows Azure includes:

• Adding Windows Azure specific configuration and some custom code

• Repackaging your existing application as a Windows Azure application

• Deploying your application as a cloud service running on Windows Azure virtual
machine.

A Windows Azure cloud service includes both your application code and its configurations
settings on Windows Azure. When you develop an application for the cloud, the general
architectural patterns are still applicable, such as developers must architect their applications to
handle availability, scalability, reliability, and security in a distributed environment. In addition,
developers need to consider service level agreements, capacity planning, customer billing,
auditing, application monitoring, traffic analysis, and managing costs as well as when to scale up
or down.

Creating a cloud service in Windows Azure
In a traditional private data center environment, you are responsible for purchasing, setting up,
and maintaining hardware to run your services. With Windows Azure, you can design and build
applications that can scale on-demand by allocating virtualized resources. While some on-
premises applications can run in Windows Azure with very minimal or no changes, most
applications can really benefit from designing and architecting for the cloud. In order to take the
full advantage of Windows Azure, we recommend that you modify your application by using
multiple roles before migrating to Windows Azure.

http://msdn.microsoft.com/library/windowsazure/jj156146�
https://www.windowsazure.com/en-us/manage/windows/fundamentals/intro-to-windows-azure/�
https://www.windowsazure.com/en-us/manage/windows/fundamentals/intro-to-windows-azure/�

Migrating with Windows Azure Cloud Services

39

For example, web services hosted in legacy data centers often combine multiple functions into a
single application, which does not scale well. They also store application state on a local disk
drive, which does not work in Windows Azure Cloud Services environment. When migrating
from an existing web application to Windows Azure, we recommend that you convert your
legacy application code to Windows Azure web or worker roles. For more information on
Windows Azure roles, see Overview of Creating a Hosted Service for Windows Azure in the
MSDN library.

In Windows Azure Cloud Services, every application is implemented as one or more roles. Each
role contains the code and configuration information required to carry out some part of your
application's function. A web role is intended to be used by front-end services and code that
interacts directly with web browsers or other HTTP clients—it runs on IIS, Microsoft's web
server. A worker role is typically used to perform background processing and support tasks, and
is most suited for middle-tier services. Each role can have multiple instances. Each instance runs
the same code that has been written for the role but each role instance resides in a separate
virtual machine in the Windows Azure data center. For each role, you can indicate the desired
VM size that instances of that role should use. For more information, see How to Configure
Virtual Machine Sizes in the MSDN library. In addition to the functional differences between the
roles, each role serves as a scaling unit for your application. In other words, you can have 20
instances of your web role to serve more traffic and only 5 instances of your worker role to
process requests from the web role asynchronously. If you just want to create a simple ASP.NET,
PHP, Node.js application or WCF service, for example, you might use only a web role. We
recommend that you perform detailed functional and performance tests on your cloud service
to determine the optimal number of role instances and VM sizes before uploading your
application to production. For more information on cloud service concepts, see Windows Azure
Application Model.

We recommend that you consider taking advantage of the available storage options that are
provided by Windows Azure. This helps to simplify your application logic and improves your
cloud service’s performance. That’s why, it is very important to understand the limitations of
each data storage option while planning the application migration and have a solid knowledge
of when to use which data storage option for your cloud service. For more information on
available storage options in Windows Azure, see Overview of Data Management Services in
Windows Azure in Windows Azure. In addition, you may want to use the Windows Azure
Caching service to provide memory-based high-speed storage for Windows Azure applications.
Caching increases performance by temporarily storing information from other backend sources,
and can reduce the costs associated with database storage access transactions in the cloud. If
you plan to migrate an application that has strong dependencies on the underlying file-system,
see Migrating Data to Drives topic for a detailed guidance. Using Windows Azure Cloud Drive
allows you to migrate an application that must continue maintaining its state in the traditional
NTFS file system. For best performance results, deploy your application to data centers that are
closest to your majority of clients and to the data center that is hosting your storage account or
Windows Azure SQL Database instances. However, you might choose a data center closer to
your company or closer to your data if you have some jurisdictional or legal concerns about your

http://msdn.microsoft.com/library/gg432976.aspx�
http://msdn.microsoft.com/library/windowsazure/ee814754�
http://msdn.microsoft.com/library/windowsazure/ee814754�
https://www.windowsazure.com/en-us/develop/overview/�
https://www.windowsazure.com/en-us/develop/overview/�
https://www.windowsazure.com/en-us/develop/net/how-to-guides/cache/�
https://www.windowsazure.com/en-us/develop/net/how-to-guides/cache/�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

40

data and where it resides. For more information, see Performance Considerations with Windows
Azure SQL Database.

Application Development in Windows Azure
Before you start implementing your Windows Azure cloud service, you must first get a Windows
Azure subscription. For more information, see WindowsAzure.com site. Then, you must prepare
your development environment. Because the Windows Azure fabric is a 64-bit environment, it's
recommended that you develop your service in a 64-bit environment, using the 64-bit edition of
the SDK, if possible. Developing in a 64-bit environment minimizes the possibility that your
service may behave differently after it has been published to the cloud.

For detailed information on Windows Azure Application Model and Deployment Guidance,
see Windows Azure Developer Center. For .NET Applications, install Windows Azure SDK for
.NET, which includes both Windows Azure Tools for Microsoft Visual Studio and Windows Azure
Client Libraries for .NET. The Windows Azure Tools are available for Visual Studio 2010 and
Visual Web Developer 2010. The Windows Azure Tools installer will install the correct version of
the Windows Azure Tools for your version of Visual Studio or Visual Web Developer. Source
code for the Windows Azure .NET client libraries is also available on GitHub with an open source
license.

To enable client applications running on various different platforms to connect to the cloud,
Microsoft chose ODBC as the standard client connectivity API for native client applications
connecting to Windows Azure SQL Database (SQL Database). The SQL Server Native Client OLE
DB Provider will ship for the last time in SQL Server 2012 and is not supported in SQL Database.
When writing applications on Windows or on Windows Azure, you should use the SQL Server
Native Client ODBC driver that comes with SQL Server 2008 R2 or later. It's recommended that
you adopt ODBC in the development of your new and future versions of your application. For
existing applications that use OLE DB, we recommend that you consider migrating those
applications to ODBC as a part of your future roadmap. For more information on how to convert
an OLE DB application to an ODBC application, see Guidance of OLE DB to ODBC Conversion
white paper. Starting with the Windows Azure Preview release, Windows Azure provides a new
service to the service providers: Windows Azure Web Sites. This new service enables developers
to quickly create and deploy a web site to Windows Azure. With this new service, you can
develop and publish your web sites directly at the Windows Azure Portal. For more information,
see Windows Azure Web Sites at WindowsAzure.com site.

As with any other application development, you must architect your application to handle
availability, disaster recovery, and security in a multi-tenant, distributed, cloud environment. For
more information, see High Availability and Disaster Recovery Considerations with Windows
Azure SQL Database in Windows Azure and Security Resources for Windows Azure. We
recommend that you address the security requirements at the beginning of the software
development life before onboarding an application onto Windows Azure. For more information
on application development in Windows Azure, see Developing Windows Azure Applications.

http://www.windowsazure.com/�
https://www.windowsazure.com/en-us/develop/overview/�
https://www.windowsazure.com/en-us/develop/net/�
https://www.windowsazure.com/en-us/develop/net/�
http://go.microsoft.com/fwlink/?LinkID=251261�
http://www.windowsazure.com/en-us/manage/services/web-sites/�
http://msdn.microsoft.com/library/windowsazure/ff934690.aspx�

Migrating with Windows Azure Cloud Services

41

There are many different technologies that developers may want to use to build applications in
the cloud. To provide an experience where developers can build applications on Windows Azure
using the languages and frameworks they already know, Windows Azure has supported Open
Source Software Communities and added incremental improvements to Windows Azure. The
following lists some of these enhancements:

• For Java applications, install Windows Azure SDK for Java, which includes both Windows
Azure Emulator and Eclipse Tooling and Windows Azure Client Libraries for Java.
Windows Azure SDK for Java allows you to build Windows Azure applications in Java. For
more information, see Java Developer Guidance. Source code for the Windows Azure
SDK for Java client libraries is also available on GitHub with an open source license.

• For PHP applications, install Windows Azure SDK for PHP, which includes both Windows
Azure Command-Line Tools for PHP and Windows Azure Client Libraries for PHP.
Windows Azure SDK for PHP provides a programming model for PHP developers in the
Windows Azure. For more information, see PHP Developer Guidance. Source code for
the Windows Azure SDK for PHP is available on CodePlex with an open source
license.For Node.js applications, install Windows Azure SDK for Node.js, which includes
both Windows Azure PowerShell for Node.js and Node.js libraries for Windows Azure
blob, table, and queue storage. To help get started developing with Node.js, new
content, tutorials, samples and application templates can be found at Node.js Developer
Guidance. Windows Azure SDK for Nde.js includes Windows Azure PowerShell for
Node.js, providing command-line tools for development and deployment of Node.js
applications. Source code for the Windows Azure SDK for Node.js client libraries is also
available on GitHub with an open source license.

For the most-up-to date information, see WindowsAzure.com site.

Logging, Testing, Diagnosing, and Debugging Windows Azure
Applications
Since Windows Azure is a multi-tenant dynamic scalable platform on the cloud, you need to
consider cloud-specific monitoring and diagnostics techniques when you design your
application. We recommend that you consider monitoring and diagnostics at the beginning of
your software development life cycle. We recommend that you evaluate if your existing
monitoring and diagnostics techniques would provide an adequate service after the application
is deployed on the cloud. For example, an application generating large log files may require
tuning in its diagnostic and logging settings. Therefore, it produces a small number of log files
that can be quickly inspected or downloaded to the on-premises environment for further
analysis.

The following list provides some available troubleshooting tools and techniques for Windows
Azure:

https://www.windowsazure.com/en-us/develop/java/�
http://msdn.microsoft.com/library/windowsazure/hh690943(v=vs.103).aspx�
http://www.windowsazure.com/en-us/develop/php/�
http://msdn.microsoft.com/library/windowsazure/hh674487(v=vs.103).aspx�
http://phpazure.codeplex.com/�
https://www.windowsazure.com/en-us/develop/nodejs/�
http://msdn.microsoft.com/library/windowsazure/hh674489(v=vs.103).aspx�
http://msdn.microsoft.com/library/windowsazure/hh674489(v=vs.103).aspx�
https://github.com/WindowsAzure/azure-sdk-for-node�
https://www.windowsazure.com/en-us/develop/overview/�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

42

• Windows Azure Diagnostics (WAD): It collects operations and diagnostic data from your
Windows Azure service. Windows Azure Diagnostics logs diagnostic data from various
data sources, such as, IIS 7.0 logs, Windows Diagnostics infrastructure logs, , Windows
Event logs, performance counters, crash dumps, and Custom error logs, at a regular
configurable interval and persists the collected information into the Windows Azure
Table and Blob storage for analysis. For more information, see Overview of Windows
Azure Diagnostics.

• System Center Windows Azure Management Pack (MP): The Windows Azure
Monitoring Management Pack enables you to monitor the availability and performance
of applications that are running on Windows Azure. For more information, see Guide for
Monitoring Pack for Windows Azure Applications. We recommend that you use both
Windows Azure Diagnostics and the System Center Windows Azure Management Pack
to effectively monitor the availability and performance of your Windows Azure
applications. For an additional video, see System Center 2012: Manage Applications
Across Private and Public Clouds.

• Windows Azure Storage Analytics: Performs logging and provides metrics data for a
storage account. You can use this data to trace requests, analyze usage trends, and
diagnose issues with your storage account. For more information, see Storage Analytics
in the MSDN library.

• SQL Database Connection Management: Handle error codes by implementing re-try
logic in your application. For more information, see Connection Management in SQL
Database at TechNet wiki.

• Windows Azure PowerShell Cmdlets: The Windows Azure PowerShell Cmdlets enable
you to browse, configure, and manage Windows Azure cloud and data management
services directly from PowerShell. These tools can be helpful when developing and
testing applications that use Windows Azure Services. For more information,
see Windows Azure PowerShell Cmdlets.

As with any other application, your Windows Azure cloud service also needs detailed testing
before uploading to production, such as functionality, end-to-end execution, performance,
scalability, security, and so on.

For a detailed prescriptive guidance, see Troubleshooting Best Practices for Developing
Windows Azure Applications. For supplementary information, see Monitoring Hosted Services
and Logging Data in Windows Azure and Testing, Managing, Monitoring and Optimizing
Windows Azure Applications in the MSDN library.

http://msdn.microsoft.com/library/windowsazure/hh411552.aspx�
http://msdn.microsoft.com/library/windowsazure/hh411552.aspx�
http://technet.microsoft.com/en-us/library/gg276367.aspx�
http://technet.microsoft.com/en-us/library/gg276367.aspx�
http://technet.microsoft.com/en-us/edge/Video/hh770200�
http://technet.microsoft.com/en-us/edge/Video/hh770200�
http://msdn.microsoft.com/library/windowsazure/hh343270.aspx�
http://social.technet.microsoft.com/wiki/contents/articles/1541.sql-azure-connection-management-en-us.aspx�
http://social.technet.microsoft.com/wiki/contents/articles/1541.sql-azure-connection-management-en-us.aspx�
http://wappowershell.codeplex.com/�
http://msdn.microsoft.com/library/windowsazure/hh771389.aspx�
http://msdn.microsoft.com/library/windowsazure/hh771389.aspx�
http://msdn.microsoft.com/library/gg433120.aspx�
http://msdn.microsoft.com/library/gg433120.aspx�
http://msdn.microsoft.com/library/gg433120.aspx�

Migrating with Windows Azure Cloud Services

43

Cloud-based networking and connectivity options in Windows
Azure
Windows Azure offers a range of networking capabilities to help you integrate existing
applications with the cloud and manage your network traffic. The primary networking and
connectivity components in Windows Azure are below:

• Windows Azure Service Bus: We recommend that you use Windows Azure Service Bus
for any service-to-service communication within Windows Azure and also to keep
integration between on-premise servers and the Windows Azure. The Service Bus
provides secure messaging and relay capabilities in the application layer. The Windows
Azure Service Bus offers a cloud-based communication infrastructure that supports a
common secure messaging service on a public network with a simple unified namespace
like https://myhostname.servicebus.windows.net. The Service Bus supports the
following programming models: .NET API, REST API, and WCF.

• Windows Azure Access Control Service: We recommend that you use Windows Azure
Access Control to provide a federated, claims-based access control for cloud-hosted
WCF and REST web services and end-user applications. Access Control is a Windows
Azure service that provides an easy way of authenticating users who need to access
your web applications and services without having to factor complex authentication
logic into your code. The service also provides an integration with Windows Identity
Foundation (WIF). For more information on ACS, see How to Authenticate Web Users
with Windows Azure Access Control Service.

• Windows Azure Connect: We recommend that you use Windows Azure Connect to
enable a secure connection between on-premise servers and Windows Azure. This
provides a migration path to Windows Azure for existing applications by enabling direct
IP-based network connectivity with existing on-premises services and infrastructure. In
addition, Windows Azure Connect simplifies direct connectivity to cloud-hosted virtual
machines, enabling remote administration and troubleshooting via the same tools used
for on-premises applications. For more information, see Connecting Local Computers to
Windows Azure Roles.

• Windows Azure Traffic Manager: Traffic Manager allows you to load balance incoming
traffic across multiple hosted Windows Azure services whether they’re running in the
same datacenter or across different datacenters around the world. By effectively
managing traffic, you can ensure high performance, availability and resiliency of your
applications. Windows Azure Traffic Manager is currently in Community Technology
Preview (CTP) and available at no charge.

http://msdn.microsoft.com/library/ee748484.aspx�
http://msdn.microsoft.com/library/ee748484.aspx�
https://www.windowsazure.com/en-us/develop/net/how-to-guides/access-control/�
https://www.windowsazure.com/en-us/develop/net/how-to-guides/access-control/�
http://msdn.microsoft.com/library/windowsazure/gg433122.aspx�
http://msdn.microsoft.com/library/windowsazure/gg433122.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

44

• Windows Azure Content Delivery Network: The Windows Azure Content Delivery
Network (CDN) offers developers a global solution for caching content at locations
closest to your customers or users to provide the best experience for your application.
The CDN caches Windows Azure blobs and the static content output of compute
instances at strategically placed locations to provide maximum bandwidth for delivering
content to users. You can enable CDN delivery for your content providers using the
Windows Azure Platform Management Portal. For more information, see Overview of
the Windows Azure CDN.

• Windows Azure Virtual Network: Starting with Windows Azure Preview release,
Windows Azure supports this new service to provide a secure site-to-site network
connectivity between on-premises and cloud. For more information, see Overview of
Windows Azure Virtual Machines in the MSDN library.

• Windows Azure SQL Data Sync (SQL Data Sync): The service currently has two main
capabilities. It allows you to synchronize data between on-premises SQL Server
databases and the databases in Windows Azure SQL Database, allowing on-premises
and cloud-based applications to utilize the same data. In addition, you can synchronize
data between two or more SQL Database instances; the databases can be in the same
data center, different data centers or different regions. SQL Data Sync is often used with
Windows Azure Traffic Manager.

Warning: SQL Data Sync is currently available only as a Preview and is meant only for
product feedback for future releases and should not be used in production
environments.

For more information, see Networking and Caching in Windows Azure.

Application Deployment and Management in Windows Azure
After you complete developing your cloud service or application, compile and upload it to
Windows Azure. There are four different deployment scenarios:

• New Deployment

• Configuration Change

• Incremental Code Upgrade

• Major Upgrade

Windows Azure allows you to configure multiple subscriptions under one Windows Azure
account. This enables you to create separate development and testing environments for your
service. In this case, consider deploying your service to a test subscription first, and then to a
production subscription. After you deploy your cloud service to a production subscription, you
can use the staging environment for continuous testing. When you are ready for your service to
go live, you can move it to the production environment.

http://msdn.microsoft.com/library/windowsazure/ff919703.aspx�
http://msdn.microsoft.com/library/windowsazure/ff919703.aspx�
http://msdn.microsoft.com/en-us/library/windowsazure/gg433091.aspx�

Migrating with Windows Azure Cloud Services

45

See Also
Planning and Designing Applications for Windows Azure

Moving Applications to the Cloud

Windows Azure Tools for Microsoft Visual Studio

Development Considerations for Windows Azure Cloud Services

http://msdn.microsoft.com/library/gg615406.aspx�
http://msdn.microsoft.com/library/ff728592.aspx�
http://msdn.microsoft.com/library/ff687127.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

46

Overview of Data Management Services in
Windows Azure
Authors: Sreedhar Pelluru
Contributors: James Podgorski, Silvano Coriani
Reviewers: Christian Martinez, Steve Howard, Kun Cheng, Paolo Salvatori, Shawn Hernan

The Windows Azure Platform offers following data management services:

Data Management Service Purpose

Windows Azure Table service Provides durable storage for structured data.

Windows Azure Blob service Provides durable storage for large binary objects
such as video or audio.

Windows Azure SQL Database Relational Database Management System.

These offerings are hosted in Windows Azure data centers and are available to your applications
whether they are running on-premises, hosted within a Windows Azure data center, or hosted
within a competing cloud service. The data storage offerings provide many benefits such as high
availability, scalability, easy manageability, limitless storage, and security.

If you are running your application code in a Windows Azure data center, then the virtual
machine (VM) that is hosting your application exposes two additional storage options called
Local Storage and Windows Azure Drives. Local Storage provides a temporary storage for an
application instance. An Azure drive provides a durable drive that is backed by a page blob.

Windows Azure Table Service
Table service offers a massively scalable non-relational structured storage in the cloud. It
provides a non-relational key/property-bag collection useful for storing tabular data such as
customer information, orders, news feeds, and game scores. If you have structured data that is
currently stored in a SQL Server database or any other data store and does not require server-
side computation such as joins, sorts, views, and sorted procedures, consider storing that data in
Windows Azure Tables. See Migrating Data to Table Storage for more details.

Windows Azure Blob Service
Blob service provides a way to store large amounts of unstructured, text or binary data, such as
pictures, audio, and video files. If your application stores large binary objects in a SQL Server
database or stores large amount of unstructured data on a file system, consider using the Azure
Blob service. See Migrating Data to Blob Storage for more details.

Migrating with Windows Azure Cloud Services

47

Windows Azure Drive
Windows Azure Drive is implemented as a page blob that contains an NTFS-formatted Virtual
Hard Drive (VHD). It enables existing applications that use file system to store data to run on
Windows Azure with minimal changes to the code. If you have an application that stores data on
a file system, and you cannot migrate the data to Windows Azure Tables or Blob service, you can
use local storage for non-persistent storage, or Windows Azure Drive for persistent storage.
See Migrating Data to Drives for more details.

Windows Azure SQL Database
Windows Azure SQL Database provides a Relational Database Management System for the
Windows Azure platform, and is based on SQL Server technology. Windows Azure SQL Database
exposes a tabular data stream (TDS) interface, and Transact-SQL (T-SQL), so many of the tools
and applications that work with SQL Server also work with Windows Azure SQL Database.
Applications written using existing technologies such as ADO.NET and ODBC to communicate
with SQL Server can be updated to access Windows Azure SQL Database instances with minimal
code changes. Windows Azure SQL Database also provides standard SQL Server features such as
stored procedures, views, multiple indexes, joins, and aggregations.

If your application uses a SQL Server database, you could easily migrate the database to a
Windows Azure SQL Database instance on the Windows Azure Platform. However, if the
application uses SQL Server features that Windows Azure SQL Database does not support, you
will need to modify the database solution design. See Migrating SQL Server Databases to
Windows Azure SQL Database section for the detailed information.

Windows Azure SQL Database vs. Table Storage
The Table Storage stores structured data as SQL Database does. Therefore, when migrating
applications from on-premises to the Windows Azure Platform, a common question that arises
is whether to use Table Storage or SQL Database.

The main difference between SQL Database and Table Storage is: SQL Database is a relational
database management system that provides the data-processing capabilities through queries,
transactions, and stored procedures that are executed on the server side. Whereas, Table
Storage does not provide a relational data store and the data-processing capabilities that the
SQL Database supports. Therefore, if your application stores and retrieves large data sets but
does not require server-side data processing, the Windows Azure Table is a better choice. If your
application requires data-processing over large data sets, then SQL Database is a better choice.

There are several other factors you need to consider before deciding between SQL Database and
Azure Table Storage. The following table compares features of Azure Table Storage with SQL
Database.

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

48

Comparison Criteria Table Storage SQL Database

Maximum Entity Size Entities in Table Storage are
limited to 1 MB each with no
more than 255 properties
that include three required
properties: PartitionKey,
RowKey, Timestamp.

Rows can be up to 8 MB in size,
and can contain 1024 columns.

Data Relationships No. Table Storage does not
provide any way to represent
relationships between data.

Yes. SQL Database allows you
to define relationship between
data stored in different tables
by using foreign keys.

Server-side Processing Table Storage supports basic
operations such as insert,
update, delete, and select. It
does not support joins,
stored procedures, triggers,
or any processing on the
storage engine side, such as
SQL Database does.

SQL Database provides
standard SQL Server features
such as stored procedures,
views, multiple indexes, joins,
and aggregations.

Transaction support Limited. Table Storage
supports transactions for
entities in the same table and
the same partition. Up to 100
operations are supported in a
transaction. Table store
supports optimistic
concurrency.

See Entity Group
Transactions for more details.

Yes. SQL Database supports
typical ACID transactions with
in the same database.
Transactions are not supported
across databases. SQL
Database also supports
optimistic concurrency.

High Availability/Fault
Tolerance

Yes. Tables stored on
Windows Azure are
replicated to three locations
within the same data center
for resiliency against
hardware failures.

Yes. Three copies of a SQL
Database instances are
maintained within the data
center you choose.

Geo replication Yes. Windows Azure tables
are replicated between two
geographically separated

No. A SQL Database instance is
not replicated to other sub-
regions by default.

http://go.microsoft.com/fwlink/?LinkId=253487�
http://go.microsoft.com/fwlink/?LinkId=253487�

Migrating with Windows Azure Cloud Services

49

Comparison Criteria Table Storage SQL Database

data centers on the same
continent, to provide
additional data durability in
the case of a major disaster.

Maximum Data Size 100 TB for each storage
account. A storage account
(tables, blobs, and queues
together) is allowed to store
100 TB of data. Therefore,
maximum size of an Azure
table is 100 TB.

150 GB for each database. The
maximum allowed database
size in SQL Database currently
is 150 GB. Consider
using Federations to store
larger data.

Management Protocol and
Tools

REST over HTTPS. You can
use Azure Storage Explorer
from CodePlex or other third-
party tools such as Cloud
Storage Studio.

REST over HTTPS (or) TDS over
SSL. You can use Azure
Management Portal or SQL
Server Management Studio to
manage a SQL Database
instance. These tools use TDS
(Tabular Data Stream) protocol
over an SSL (Secure Socket
Layer) connection to access
SQL Database.

Data Access The data stored in the Table
Storage can be accessed by
using the HTTP(S) REST API or
.NET Client Library for WCF
Data Services. See How to
Use the Table Storage.

Applications written using
existing technologies such as
ADO.NET and ODBC that
communicate with SQL Server
can be used to access SQL
Database instances with
minimal code changes.

A SQL Database instance is
accessible to applications that
run in Windows Azure, on-
premises or on non-Azure
cloud platforms.

Schema for a table No fixed schema. Each entity
(row) can have different
properties. For example, you
can store order information
in one row and customer

Fixed schema for the table
once defined. All rows must
adhere to the schema rules.

http://go.microsoft.com/fwlink/?LinkID=253536�
http://go.microsoft.com/fwlink/?LinkId=253490�
http://go.microsoft.com/fwlink/?LinkId=253490�
http://go.microsoft.com/fwlink/?LinkId=253491�
http://go.microsoft.com/fwlink/?LinkId=253491�
http://go.microsoft.com/fwlink/?LinkId=253492�
http://go.microsoft.com/fwlink/?LinkId=253492�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

50

Comparison Criteria Table Storage SQL Database

information in another row of
the same table.

Supported Data Types Byte array, Boolean,
DateTime, Double, GUID,
Int32, Int64, String

See SQL Database Supported
Data Types.

Cost See Windows Azure Pricing
Details.

See Windows Azure Pricing
Details.

Java API Support Yes Yes

Node.js API Support Yes No. Currently not supported.

Authentication 256-bit Symmetric Key is
used to authenticate users.

SQL Authentication is used to
authenticate users who access
a SQL Database instance.

Windows Azure Platform
Management Portal uses
Windows Live ID to
authenticate users.

Similarity with existing data
stores used on-premises.

No. Similar to SQL Server with
some limitations.

Accessible from on-premise
applications or applications
hosted in non-Windows Azure
platforms

Yes Yes

Local Storage
Windows Azure Local Storage represents a reserved directory in the file system of the virtual
machine in which an instance of a role is running. It provides a fast, temporary, nonpersistent
storage on the file system of the virtual machine (VM). You can use standard file system APIs to
access the storage. See Migrating Data to Local Storage for more details.

See Also
WindowsAzure Portal: Data Storage Offerings in Windows Azure

http://go.microsoft.com/fwlink/?LinkId=253494�
http://go.microsoft.com/fwlink/?LinkId=253494�
http://go.microsoft.com/fwlink/?LinkId=253495�
http://go.microsoft.com/fwlink/?LinkId=253495�
http://go.microsoft.com/fwlink/?LinkId=253495�
http://go.microsoft.com/fwlink/?LinkId=253495�
http://go.microsoft.com/fwlink/?LinkId=253496�
http://go.microsoft.com/fwlink/?LinkId=253497�

Migrating with Windows Azure Cloud Services

51

Migrating SQL Server Databases to Windows Azure
SQL Database
Author: Shaun Tinline-Jones
Reviewer: Shawn Hernan

This section describes how to migrate an on-premise relational database to Windows Azure SQL
Database. It describes how to migrate both the data object definitions in the schemas, and the
data in the tables. It also describes how to determine which database objects are not supported
by Windows Azure SQL Database, and application changes that might be required to use the
database in Windows Azure SQL Database.

Migration Overview
Windows Azure SQL Database operates as a Windows Azure service hosted in Microsoft data
centers, so it has a different operating environment than an instance of the SQL Server Database
Engine running on an on-premises server. While there are many similarities between the SQL
Server Database Engine and Windows Azure SQL Database, there are also differences. These
differences mean that the scope of a project to move a database from an instance of the
Database Engine to Windows Azure SQL Database is more like a migration project than a simple
move of a database from one instance to another. Even if the database only uses objects
supported by Windows Azure SQL Database, there may be changes required to ensure that the
applications that use the database continue to run well against a web service.

The engineering changes that must be considered for a migration include:

1. Remove any dependencies the database has on other SQL Server features, such as
replication, that are not present in Windows Azure SQL Database.

2. Remove any dependencies the database has on database object types or Transact-SQL
syntax, such as distributed queries, that are not supported by Windows Azure SQL
Database.

3. If you plan to use the database only in Windows Azure SQL Database, you can optionally
decide to incorporate support for features unique to Windows Azure SQL Database,
such as federating the database to take advantage of the elastic scale-out capabilities of
Windows Azure. If you plan to deploy different copies of the database to either on-
premises instances of SQL Server or Windows Azure SQL Database, then only use
features and objects supported in both environments.

Important

Adding support for features unique to Windows Azure SQL Database can increase
the complexity of a migration project. Consider adding this support in a subsequent
project, unless the feature is required to host the database in Windows Azure SQL
Database.

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

52

4. Make required changes to the applications that use the database. These fall into three
categories:

a. Change any application code that is dependent on any of the features that were
altered in or removed from the database.

b. Add any application code required to take full advantage of Windows Azure SQL
Database features added to the database, such as federation.

c. Make the application changes required to operate effectively when the
database is hosted in a Windows Azure SQL Database environment. For
example, moving a database from an on-premises server to a Windows Azure
data center can affect network latency, and make it more important for the
application to minimize the amount of data transmitted across the network.

5. Decide on a migration process, build the packages required to use that process, and
then run the process.

Making extensive changes to the database and applications often drive most of the costs for a
migration project. The business requirements for the database must also be a good match for
the capabilities of Windows Azure SQL Database. For more information about determining
whether a database is a good candidate for migration, see Planning a Migration.

In addition to migrating a database from an on-premise instance of the SQL Server Database
Engine, you can use a SQL Server Migration Assistant to migrate an Oracle, MySQL, or Access
database to Windows Azure SQL Database.

In This Section
The topics in this section give more detailed guidance about these aspects of migrating a
database to Windows Azure SQL Database.

Description Topic

Planning and running a Windows Azure SQL Database
migration project, including guidance about determining the
scope of changes required to the database and associated
applications.

Managing a Windows Azure
SQL Database Migration
Project

Review the application changes that may be required to
support good levels of performance when a database is
migrated to Windows Azure SQL Database.

Performance
Considerations with
Windows Azure SQL
Database

Provides guidance on high availability and disaster recovery
strategies to help protect data from user mistakes, application
errors, hardware failure, data center shutdown due to natural
disasters, and so on.

High Availability and
Disaster Recovery
Considerations with
Windows Azure SQL
Database

Migrating with Windows Azure Cloud Services

53

Description Topic

Choosing the migration tools and processes best suited for a
particular project. Outlines the steps for using the tools and
processes.

Choosing Tools to Migrate a
Database to Windows
Azure SQL Database

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

54

Managing a Windows Azure SQL Database Migration Project
Author: Shaun Tinline-Jones
Contributor: Steve Howard
Reviewer: Shawn Hernan

This topic describes the best practices for planning and migrating a database to Windows Azure
SQL Database as part of a Windows Azure migration project. It covers assessing the complexity
of the database migration, setting project goals for the database migration, and managing the
subproject through the design, develop, test, stabilization, and implementation phases.

Introduction
Database migration is a subproject of the larger solution migration project. There are typically
integration points and dependencies between the application and database migration projects.
But, the database migration can usually proceed in parallel with few bottlenecks.

The approach to a Windows Azure SQL Database migration project should keep in mind three
perspectives:

• The lifecycle of the project should be agile and iterative in nature. Create an initial plan
based on early research. During the planning for a new iteration, refine the plan based
on the research done in previous iterations.

• The size and complexity of the database and its associated applications drives many
factors in a migration project:

o The complexity of the database drives the engineering effort required to
migrate the database.

o The size of the database, the amount of data it contains, drives how long it
takes to populate the new database and cut over from the on-premises
database to the database hosted in Windows Azure SQL Database.

• Migrating a database to a new platform often drives database changes that affect the
other solution tiers using the database. The migration project must coordinate
development work across all the affected tiers, and provide a unified deployment of all
the changed components.

Each database to be migrated can be classified in to one of four quadrants defined by size and
complexity. Which quadrant a database falls into helps you understand the scope of a project
required to migrate the database to Windows Azure SQL Database, and to choose a good
mechanism for the migration. The quadrants are:

Migrating with Windows Azure Cloud Services

55

Project Size and Complexity Quadrants

A large database requires a longer cutover to Windows Azure SQL Database as more time is
required to transfer data across the Internet. More complexity in the database means a greater
chance that changes will be required, driving a higher amount of engineering work.

Understanding the size and complexity of the source database is a key aspect in setting the goal
for the migration project.

Analysis
During the analysis phase, the goal and the vision of the project are set. The overall project goals
must include the goals for the database to be migrated.

Business Requirements

All databases must meet business requirements, such as availability, recovery, response time,
and compliance with security and privacy rules. When you migrate a database to Windows
Azure SQL Database, configure the database service so that it complies with these business
requirements, or negotiate a new set of requirements that can be met by Windows Azure SQL
Database. You may also have to change your administration processes. For example, if you are
currently taking nightly database backups, you may need to change to the database copy or
data-tier application export features supported by Windows Azure SQL Database.

The business requirements cannot be determined by analyzing the existing database and
application code. You must gather the requirements from the stakeholders and administrators,
and reviews of process documents such as service level agreements.

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

56

Define the Database Subproject Goal

The Windows Azure migration project goals related to database migration must meet the
business requirements for the database, and reflect the size and complexity of the database.
Complex databases require a larger engineering effort to migrate than simple databases. A
project to migrate a complex database can reduce risk by limiting the initial project to migrating
the features used in the on-premises database. Incorporating features unique to Windows Azure
SQL Database, such as federations, can be done in follow-on projects.

The analysis phase provides the higher-level guidance for the planning and designing phase. It is
important to review the full set of issues that might affect the migration in the analysis phase,
but do not focus too deeply on details during this phase. The first iteration of the planning and
design phases must then dive deeper into details to form more granular designs and plans. Put
in place a feedback process to adjust the vision and scoping documents with the results of the
early planning and design work.

Assess Project Complexity

Assessing the complexity of a Windows Azure SQL Database migration project means
determining the amount of change required to complete a successful migration. Different stages
in a Windows Azure SQL Database migration project require increasingly accurate assessments
of the scope of the engineering changes driven by the migration. An initial general assessment
should be factored into the project goal definition and the decision to launch the project. It also
forms the basis of early project planning and design work. The results of more in-depth research
done later in the project should be reflected in increasingly detailed project plans, designs, and
possibly in adjustments to the project goals.

Dependencies on Features Not Supported by Windows Azure SQL Database

Address all dependencies on features not supported by Windows Azure SQL Database as part of
the migration project. Initially identifying these dependencies can be done without requiring
access to the production system. This is done by comparing the existing documentation about
the features supported by Windows Azure SQL Database against the database design
documents or application specs. The documentation can also be reviewed by people familiar
with the database and application designs. Later, certain kinds of dependencies can be
confirmed by using tools such as the SQL Azure Migration Wizard.

Many on-premises databases have dependencies on services outside of the database. Examples
include participation in a replication topology, a SQL Server Integration Services extraction
process, or recurring maintenance tasks managed by SQL Server Agent. The migration project
must include the cost and development time required to change the dependencies on any such
services. Remove dependencies on any of the services that do not support Windows Azure SQL
Database. You may have to make changes to other systems that do support Windows Azure SQL
Database due to the architectural differences between SQL Server and Windows Azure SQL
Database.

Migrating with Windows Azure Cloud Services

57

In addition, on-premises databases may have Transact-SQL objects not supported in Windows
Azure SQL Database databases. The applications accessing the database, and code in database
objects such as stored procedures or triggers, may also be using syntax elements not supported
by Windows Azure SQL Database.

The initial assessment of the database complexity can be made by reviewing the database and
application designs or code against the issues discussed in the following sources:

• General Guidelines and Limitations (SQL Azure Database)

• Security Guidelines and Limitations (SQL Azure Database)

• SQL Server Feature Limitations (SQL Azure Database)

• Tools and Utility Support (SQL Azure Database)

• Unsupported Transact-SQL Statements (SQL Azure Database)

• Partially Supported Transact-SQL Statements (SQL Azure Database)

• Supported Transact-SQL Statements (SQL Azure Database)

The Scope of Application Changes Driven by Database Changes

Migrating a database to SQL Database often requires changes to the applications and systems
that use the database.

First you must make the changes required for applications to operate effectively in a Windows
Azure SQL Database environment. Windows Azure SQL Database is a web service hosted outside
your data center. This means that some database best practices that have little impact when the
database server is in the same rack as the application server become important when the
database is migrated to Windows Azure SQL Database. Each database hosted in Windows Azure
SQL Database is clustered across multiple servers to improve overall availability. However,
certain operations, or the failure of your current server, may cause a transient failover event
that closes all open connections and rolls back their active transactions. This makes it important
for your applications to have robust retry logic that restarts a transaction when the application
gets a disconnect error.

For more information about the application changes required to support good performance,
see Performance Considerations with Windows Azure SQL Database.

Additional application changes required to operate effectively with SQL Azure are discussed in
the following documents:

• SQL Azure Delivery Guide

• Handling Transactions in SQL Azure

You must also make any applications changes required to adjust to all changes made to the
database. For example, if a user-defined aggregate is removed from the database, you must
change any application that runs Transact-SQL statements that reference the aggregate.

http://msdn.microsoft.com/library/ee336245.aspx�
http://msdn.microsoft.com/library/ff394108.aspx�
http://msdn.microsoft.com/library/ff394115.aspx�
http://msdn.microsoft.com/library/ee621784.aspx�
http://msdn.microsoft.com/library/ee336253.aspx�
http://msdn.microsoft.com/library/ee336267.aspx�
http://msdn.microsoft.com/library/ee336270.aspx�
http://social.technet.microsoft.com/wiki/contents/articles/3398.sql-azure-delivery-guide-en-us.aspx�
http://social.technet.microsoft.com/wiki/contents/articles/handling-transactions-in-sql-azure.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

58

Plan and Design
Planning and design work should start during the complexity assessment. A key part of this
phase is doing increasingly detailed research for the issues covered in these two sections:

• Dependencies on Features Not Supported by SQL Azure

• Scope of Application Changes Driven by Database Changes

As features that need to be changed are identified, formulate the initial estimates of the work
required for those changes in the early iterations of the project. Each subsequent iteration
should perform a more comprehensive review of the database to identify all changes, and
formulate more detailed definitions of the scope of changes required. Set up a feedback process
where the project goals and scope can be adjusted to reflect the results of the more detailed
research done during the planning and design iterations. The first iteration does not require
access to the production environment, but does need a reasonably accurate reflection of what
exists in production.

You can achieve this initial planning view by leveraging SQL Azure Migration Wizard
(SQLAzureMW) and ramping up on the differences between on-premises SQL Server and
Windows Azure SQL Database. These are discussed in more detail under the respective
headings. SQL Server Data Tools (SSDT) is a potentially useful tool at this stage, especially if the
Application Lifecycle Management (ALM) of the data tier includes the use of this tool or scripts
of the database objects. The effort is low, a little more than the SQL Azure Migration Wizard, but
not too onerous. The elegance lies in the usual Visual Studio productivity features, such as
double-clicking a warning and been taken directly to the offending line.

You can check your assessment for issues such as Transact-SQL support by using a number of
tools:

• You can connect the SQL Azure Migration Wizard to a test or production copy of the on-
premises database and generate a report of objects that must be changed to run on SQL
Azure. For more information, see How to: Use the SQL Azure Migration Wizard.

• If all of the objects in the on-premises database are supported by a data-tier application
(DAC), you can extract a DAC package and either:

o Run the DAC package through the SQL Azure Compatibility Assessment
Service for a report on required changes (currently in beta).

o Import the DAC package to create a database project in SQL Server Data
Tools, and set the project target to SQL Azure.

o For more information, see How to: Use a DAC Package to Migrate a
Database to Windows Azure SQL Database.

While the assessment tools can help identify features that are not supported in Windows Azure
SQL Database, they do not necessarily identify alternative features that can be used to
accomplish the same functionality. The project planners must understand the business uses of
the functionality and design alternatives that will also support those business uses. The decision
to proceed should be based on an assessment of the costs of developing and deploying the

Migrating with Windows Azure Cloud Services

59

alternatives, rather than simply using the missing feature support as a reason to not use
Windows Azure SQL Database.

Avoid including non-migration objectives, especially for complex migrations. Adding complexity
is a common reason migration projects fail. A common area that gets into scope is the desire to
leverage a scale-out database model. Only do this if it is necessary, such as:

• You are migrating a database that is larger than the maximum size supported by SQL
Database.

• The business case is only viable if multi-tenancy is implemented at the outset.

• The computing requirements of the database exceed that possible with a single
Windows Azure SQL Database database.

A scale-out federation requires a data model change, which impacts all of the solution tiers.
Elastic-scale and/or multi-tenancy is often the value proposition of the cloud, and can be
tempting to implement at the outset. But attempting that level of change often changes the
nature of project from a migration to a new feature introduction with a higher degree of risk.

Planning and designing should include cost considerations. Cost factors need to be assessed
during each phase and with each iteration, and are an important part of each decision on
whether to proceed. This element might get excluded from planning and design as the
probability of this risk becoming an issue is low, however the severity of underestimating costs
can be quite high.

A key success factor is to identify risks, and assign them a probability and severity rating. List all
risks, even ones that seem trivial. Ensure that all stakeholders agree that the more likely risks
have been appropriately rated. Ensure each likely risk has a mitigation plan with an acceptable
level of planning should the risk turn into an issue. Establish a process for adding plans for new
risks found during all phases of the migration. Issues found and resolved during the final
deployment phase should be recorded as risks for future projects. It is also important to assess
the risks as they apply to a Cloud environment, not how they apply in more familiar on-premises
environments.

It is important that the project have a comprehensive review of all the features used by the
database against the set of features supported in Windows Azure SQL Database, coupled with
estimates of the conversion costs and the costs of running the database in Windows Azure SQL
Database. This review should occur at an early enough iteration that the project can be canceled
if the costs outweigh the benefits. One Windows Azure SQL Database migration project ran in to
difficulties relatively late because the project planners were not aware the data compression
used by the on-premises database is not supported by Windows Azure SQL Database. This was a
substantial change to the projected costs of running the database on Windows Azure SQL
Database, and is the type of issue that should be identified relatively early in the project.

Each iteration through the planning and design phase should include a deeper assessment of the
changes required in the data tier. For instance, the second iteration may include creating a
profiler trace of the functional testing environment, and running that through the SQLAzureMW.
A third iteration may progress to the performance testing environment, where Performance

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

60

Monitoring tools are included in your toolbox of identifying potential areas for getting ready to
migrate.

Windows Azure SQL Database does not support SQL Server 2000 and SQL Server 2005 features
that were removed from SQL Server 2008 and later versions. For example, Windows Azure SQL
Database does not support the *= or =* syntax for specifying joins. Therefore, migrating these
databases to Windows Azure SQL Database must also address many of the same issues
encountered when upgrading from SQL Server 2000 or SQL Server 2005. You can use tools such
as Performance Monitor counters, XEvents, and SQL Server Upgrade Advisors to find these
dependencies. For more information about researching these issues, see Upgrade Database
Engine.

Develop
Development is a distinct operation of performing tasks generated from the planning and design
phase. The people assigned to development tasks should not be assigned tasks in other phases
of the migration project.

Most databases migrated to Windows Azure SQL Database require changes that impact the
application tiers. As soon as things such as data types, number of columns returned, dynamic
Transact-SQL or input parameters are changed, then the data tier of the application code will
need modification. Even if no database objects are changed by the migration, the SQL Azure
architecture drives requirements for application changes such as robust retry logic and error
handling. In short, database development should be integrated with the application tier
development.

The database development work can be done using any database development tools that
support SQL Server databases. An advantage of using a tool such as SSDT that has logic for
Windows Azure SQL Database is that you can set the database project build target to SQL Azure,
at which point SSDT will identify incompatible syntax as you write the code. For more
information, see Microsoft SQL Server Data Tools. Prior to the release of SSDT, developers have
used the Windows Azure Emulation Kit, and connected to SQL Server Express. This adds
convenience and provides some sense of offline development, but is still an on-premises feature
set and therefore can be misleading in what is possible in Windows Azure SQL Database. A more
productive and efficient experience is identifying issues as close to planning time as possible,
and by the time you are coding it needs to be as you write the code. If you are not developing
using a tool that has logic for Windows Azure SQL Database, then you can start developing
against a Windows Azure SQL Database database as soon as possible. Offline development tools
such as SSDT offer the value proposition of multiple developers working concurrently on the
same project. SSDT also integrates with source control and build features, such as that found in
Team Foundation Server. If the migration affects both application and database code, the
database project can be integrated into the same build environment. If the migration affects
both the applications and database, then the SSDT project can be integrated into the same
solution as the application projects build processes. These are benefits you can enjoy over and

http://msdn.microsoft.com/library/bb933942.aspx�
http://msdn.microsoft.com/library/bb933942.aspx�
http://msdn.microsoft.com/data/gg427686�

Migrating with Windows Azure Cloud Services

61

above the obvious connectivity challenges when developing directly against Windows Azure SQL
Database.

When the migration requires relatively few data model changes, then import that data model
into SSDT and begin applying the changes. The value proposition here is that the individual
development resources can work on their respective focus areas and integrate them during the
build phase. If the Windows Azure SQL Database solution demands federated data model, then
it depends on the number of database objects that will need to be modified, but for the most
part build from scratch.

Developing federated solutions is still quite challenging, as these are not handled well by any
development tools. There are also cases where the tools do not pick up an issue, therefore it is
recommended you build and deploy the latest changes to Windows Azure SQL Database as part
of the daily build routine. It's tempting to not deploy, as that would fall under the umbrella of
"Deployment Testing" as opposed to "Build Testing", however while the tools are still maturing,
demonstrate Windows Azure readiness with simple deployment steps, which is simply creating
the database in Windows Azure SQL Database. There are many other risks that make
Deployment Testing still a necessary and distinct testing activity.

In each project iteration, the development team must give the planning team regular feedback
and respond to their cycles proactively. Recognize that it is less risky to validate regularly and
then fail and recover fast than it is code for long periods without validating. This is not a new
paradigm; it's simply that failure to adhere to these paradigms when developing cloud-based
solutions can be very costly.

Test
Similar to the other activities in the application lifecycle of a migration project, there are
activities and objectives that remain constant irrespective that this is a migration to Windows
Azure SQL Database. For testing areas that are importanat for Windows Azure SQL Database,
but are common for planners and developers to overlook are:

• Error handling

• Retry logic

• Responding to throttling

• Deploying changes

• Scale-out paradigm

• Network latency effects

• Security

• Logging

Pay attention to these as they provide a basis from which functionality and performance test
use cases can be derived. There are many testing tools out there, what's important is the ability
to isolate the database activity. Functional testing will increase productivity mitigating the
immaturity of development tools to precisely catch SQL Server functionality that does not

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

62

appear in Windows Azure SQL Database. Depending on the development tools and build
mechanisms, the functional testing may not produce issues, and merely serve as additional
insurance before the more lengthy and costly performance test harnesses.

Testing the migrated solution should address new use cases that had little impact for on-
premises implementations. Create tests that force errors that demand the need for transaction
re-tries, and test the impact of hitting maximum and peak loads. Good Cloud solutions work to
reduce the troubleshooting time. This can be achieved by developing application logic that logs
activity and regularly analyzes the current health of the system. Since logging actions in the
database can be expensive and limited to writing to another table, the application code that
executes the database calls should be logging errors, warnings and durations. For example, a
customer spent several hours troubleshooting some servers that were exhibiting poor
performance. They attempted to leverage many tools to reactively identify the cause of the
issue to that they could resolve it. After several hours the servers suddenly began to work as
expected. The issue had nothing to do with their application but rather that a platform upgrade
was underway. The effort to resolve the problem could have been significantly reduced if the
application had been better engineered to log data points and the administrators were regularly
analyzing the solutions health. They could have provided their help desk engineer with better
data that made it easier to identify the root cause of the problem. Of course, the future uses of
this type of data may include re-directing consumers to a different data center.

An area that can be easily forgotten about is the deployment experience. The testing should
include the deployment experience, and provide insights or confidence into how future changes
can be applied to an existing environment. Deploying a new database, seeding it and making it
ready for production use is quite different from deploying changes to an existing production
environment. This is no different to on-premises considerations but is mentioned for 2 reasons:

• Deployment actions that worked on-premises may not work for cloud-based solutions.

• It's a fair amount of extra effort to include this in the test plan, with few immediate
returns.

Testing must also participate in the iterative model, where issues are fed back to the
development and planning teams. In the beginning the tests may be quite rudimentary and very
similar to the on-premises test harnesses. With each iteration, incorporate more cloud-aware
test cases. The test cases should cover the issues identified in the documentation linked to from
the Assessing Complexity section above.

Migration complexity may be the result of downtime constraints, which increases the priority of
testing the proposed deployment plan.

Stabilize
This stage is no different from its purpose in normal Software Development Lifecycle. For the
migration project it's about reaching the point where developers are only working on issues
raised by the tests, it's no longer coding the first version of the migrated version of the
database.

Migrating with Windows Azure Cloud Services

63

Deploy
Similar to stabilization, the deployment phase for migrating to the cloud is no different from on-
premises migration projects. Good testing increases the probability of success in this phase.

Good communications is a key success factor for the migration. Regular status updates with an
appropriate level of detail for the consumer of the status is vital for a good experience, or at
least an experience that can remain aware of the broader business objectives of migrating to
the cloud.

Success in the deployment phase depends on the quality of the work done in the previous
phases. Poor research, planning, development, and testing greatly increase the risk of
encountering problems during the deployment. Sometimes the deployment problems are
severe enough to stop the project with a rollback to the on-premises systems. In some cases
they have left organizations questioning their ability to use Cloud-based systems. Good
research, planning, development and testing usually result in a deployment that runs according
to plan. Even if problems are encountered, good planning often has built contingencies that
reduce the impact of the problems.

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

64

Performance Considerations with Windows Azure SQL Database
Authors: Silvano Coriani, Steve Howard
Reviewers: Mark Simms, Valery Mizonov, Kun Cheng, Paolo Salvatori, Jaime Alva Bravo

This article covers application best practices that improve the performance of applications that
use a database that has been migrated to Windows Azure SQL Database. When a database
server shares the same rack as the application server, these best practices may not have much
impact. However, when the database server moves to a remote data center, these same best
practices are critical for maintaining good performance. Also, Windows Azure is a shared
environment in that all resources are shared with other applications, roles, and databases.
Through network load balancing and gateway components, Windows Azure maintains economy
of scale, and provides computing and network resources most efficiently to the environment as
a whole. Take these factors into account when designing applications for and deploying
applications to Windows Azure.

This article covers design and implementation best practices to optimize performance for the
Windows Azure SQL Database environment. Specifically, this article reviews best practices to
address two areas that can cause perceived performance issues when on-premises databases
are migrated to Windows Azure SQL Database:

• Connection management

• Network latency between the application-tier and the database tier

Connection Management in Windows Azure SQL Database
Database connections may be terminated more frequently when a database is hosted in
Windows Azure SQL Database than an on-premises environment. Users may perceive these
terminations as a performance issue if applications do not quickly detect the loss of a
connection and reconnect in the case of a temporary, or transient, error. As a provider of a
large-scale, multitenant database service on shared resources, Windows Azure SQL Database
clusters each database across three nodes, and balances resources between cluster nodes to
provide a good experience to all tenants. An example of a transient error is when Windows
Azure SQL Database detects heavy usage of a server that hosts multiple databases. In this case,
Windows Azure SQL Database may fail over one of the databases to a secondary cluster node
that has a lower processing load. The failover terminates all open connections to the database,
and rolls back outstanding transactions. The applications must quickly detect the error,
reconnect to the database, and retry their last transaction.

The following list outlines some of the reasons why Windows Azure SQL Database may
terminate connections:

• The overall Windows Azure SQL Database network topology involves firewalls, load
balancers, and Tabular Data Stream (TDS) gateways. Each of these topology components
adds a layer between the data access code and the database node. Errors in these
additional layers can terminate connections.

Migrating with Windows Azure Cloud Services

65

• Windows Azure SQL Database continuously gathers and analyzes database usage
statistics. Based on those statistics, Windows Azure SQL Database may terminate
connections when necessary to keep the service in a healthy state.

• Denial-of-service attacks result in Windows Azure SQL Database blocking connections
from a specific IP address for a period of time.

• Some failover events may cause Windows Azure SQL Database to abruptly terminate a
session. (Note that any connections opened on a node prior to a failover event will not
be available on the new node after failover.)

The previous list is just some of the reasons for connection terminations. For more information
about connection errors and details on how to manage connections in Windows Azure SQL
Database, see the following documents:

• SQL Azure Connection Management—this article on the TechNet wiki provides a
complete list of connection errors, troubleshooting tips, and best practices.

• Connection Loss Errors—this section of the Error Messages topic in the MSDN library
provides an up-to-date list of most connection errors.

• SQL Azure Throttling and Decoding Error Codes—this section of the Error Messages
topic in the MSDN Library explains how to decode error codes that result from resource
throttling.

• SQL Azure Performance and Elasticity Guide—this article on the TechNet wiki gives
supplementary information on performance considerations.

Options for Handling Connection Management in Code

To help manage Windows Azure SQL Database connection issues, Microsoft has worked to
provide the following functionality:

• A consistent approach on how to specify basic information, like server names and
security credentials, or full fidelity using tools like bulk copy program (bpc.exe). For
example, starting with SQL Server Native Client 11, JDBC version 4.0, and .NET
Framework Data Provider for SQL Server (System.Data.SqlClient) from the .NET
Framework version 4.0, you do not need to specify username@server when accessing
Windows Azure SQL Database.

• A focus on ensuring that all connection technologies can maintain a connection, even
during idle periods.For example, unlike Windows, the Java platform does not natively
manage “keep alive” intervals for database connections. Hence, JDBC components that
connect to Windows Azure SQL Database require some changes to the registry setting to
ensure that idle connections are not dropped.
For more information, see the MSDN Library topic, Connecting to a Database on SQL
Azure.

In addition, Microsoft has continuously deployed a number of updates in most common data
access libraries and Windows Azure SQL Database service releases. Perhaps the most significant
of these updates is The Transient Fault Handling Application Block, an application library that

http://social.technet.microsoft.com/wiki/contents/articles/sql-azure-connection-management.aspx�
http://msdn.microsoft.com/library/ff394106.aspx#bkmk_throt_errors�
http://msdn.microsoft.com/library/ff394106.aspx#throttling�
http://social.technet.microsoft.com/wiki/contents/articles/sql-azure-performance-and-elasticity-guide.aspx�
http://msdn.microsoft.com/library/hh290696.aspx�
http://msdn.microsoft.com/library/hh290696.aspx�
http://msdn.microsoft.com/library/hh680934(v=pandp.50).aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

66

provides robust transient fault handling logic. (Transient faults are errors that occur because of
some temporary condition such as network connectivity issues or service unavailability.) The
next section provides a high-level look at how to apply the Transient Fault Handling Application
Block to an application.

A Quick Look at How to Use the Transient Fault Handling Application Block

The Transient Fault Handling Application Block encapsulates information about the transient
faults that can occur when you use the following Windows Azure services in your application:

• Windows Azure SQL Database

• Windows Azure Service Bus

• Windows Azure Storage

• Windows Azure Caching Service

Each of these services can have different transient faults. Thus, the Transient Fault Handling
Application Block uses specific error detection policies for each service. Similarly, different
applications require different fault handling strategies. To accommodate these differences, the
Transient Fault Handling Application Block provides different retry logic approaches that deal
with the various transient fault scenarios. These out-of-the-box policies can be extended by
creating custom classes that expose well-defined interfaces.

Using the Transient Fault Handling Application Block inside existing applications has very little
impact. Based on its design, the Transient Fault Handling Application Block offers several classes
and extension methods that mimic the behavior of a typical ADO.NET data access layer.

To demonstrate the ease of use of this application library, the next few paragraphs show how to
apply the Transient Fault Handling Application Block to some existing code. The following
example shows a simple method that queries a database and consumes the result set:
 public static void ReadFromDB()
 {

 using (SqlConnection conn = new SqlConnection(connString))
 {
 try
 {
 conn.Open();

 SqlCommand selectCommand =
new SqlCommand(@"SELECT SOH.SalesOrderID
 FROM SalesLT.SalesOrderHeader SOH
 JOIN SalesLT.SalesOrderDetail SOD ON SOH.SalesOrderID =
SOD.SalesOrderID
 JOIN SalesLT.Product P ON SOD.ProductID = P.ProductID
 JOIN SalesLT.Customer C ON SOH.CustomerID = C.CustomerID
 JOIN SalesLT.CustomerAddress CA on C.CustomerID = CA.CustomerID

 JOIN SalesLT.Address A on CA.AddressID = A.AddressID

 WHERE A.City=@City", conn);

Migrating with Windows Azure Cloud Services

67

 selectCommand.Parameters.Add(new SqlParameter("@City",
SqlDbType.VarChar, 20, ParameterDirection.Input, false, 0, 0, "", DataRowVersion.Current,
"London"));
 selectCommand.CommandType = CommandType.Text;

 IDataReader dataReader = selectCommand.ExecuteReader();

 while (dataReader.Read())
 {
 Console.WriteLine("OrderID: {0}", dataReader["SalesOrderID"]);
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: {0}",e.Message);
 }
 }

To make this code more robust, first define an appropriate retry strategy. An incremental retry
strategy is best. To implement this strategy, first use the
Microsoft.Practices.EnterpriseLibrary.WindowsAzure.TransientFaultHandling.SqlAzure.SqlAzure
TransientErrorDetectionStrategy class. This class intercepts error codes that are related to
transient fault conditions. Then, substitute the System.Data.SqlClientSqlConnection class with
the
Microsoft.Practices.EnterpriseLibrary.WindowsAzure.TransientFaultHandling.SqlAzure.ReliableS
qlConnection class, as shown in the following code example:
 public static void ReadFromDBWithReliableConnection()
 {

 // Define retry Strategy and Policy
 var retryStrategy = new Incremental(5, TimeSpan.FromSeconds(1),
TimeSpan.FromSeconds(2));
 var retryPolicy = new
RetryPolicy<SqlAzureTransientErrorDetectionStrategy>(retryStrategy);

 // Receive notifications about retries.
 retryPolicy.Retrying += new
EventHandler<RetryingEventArgs>(retryPolicy_Retrying);

 using (ReliableSqlConnection conn = new
ReliableSqlConnection(connString,retryPolicy))
 {
 try
 {
 conn.Open();

 SqlCommand selectCommand = new SqlCommand(@"SELECT SOH.SalesOrderID
 FROM SalesLT.SalesOrderHeader SOH
 JOIN SalesLT.SalesOrderDetail SOD ON
SOH.SalesOrderID = SOD.SalesOrderID
 JOIN SalesLT.Product P ON SOD.ProductID =
P.ProductID
 JOIN SalesLT.Customer C ON SOH.CustomerID =
C.CustomerID
 JOIN SalesLT.CustomerAddress CA on C.CustomerID =
CA.CustomerID

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

68

 JOIN SalesLT.Address A on CA.AddressID =
A.AddressID
 WHERE A.City=@City");

 selectCommand.Parameters.Add(new SqlParameter("@City",
SqlDbType.VarChar, 20, ParameterDirection.Input, false, 0, 0, "", DataRowVersion.Current,
"London"));
 selectCommand.CommandType = CommandType.Text;

 IDataReader dataReader =
conn.ExecuteCommand<IDataReader>(selectCommand);

 while (dataReader.Read())
 {
 Console.WriteLine("OrderID: {0}", dataReader["SalesOrderID"]);
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: {0}", e.Message);
 }
 }

 }

The previous code example, while adding appropriate retry logic, also replaced the existing
SQLConnection code with the ReliableSQLConnection code. To minimize the amount of code to
be rewritten, there is an alternative approach—using the extension methods supplied with the
Transient Fault Handling Application block. This approach not only minimizes the amount of
rewriting needed, but also offers a generic way to add retry capabilities to an ADO.Net
application. To use the extension methods, replace the Open() and various Execute methods
(such as ExecuteScalar(), ExecuteReader(), or ExecuteNonQuery()) with their retry-capable
equivalents, such as OpenWithRetry() or ExecuteScalarWithRetry(). This is shown in the
following code example:
 public static void ReadFromDBWithExecute()
 {

 // Define retry Strategy and Policy
 var retryStrategy = new Incremental(5, TimeSpan.FromSeconds(1),
TimeSpan.FromSeconds(2));
 var retryPolicy = new
RetryPolicy<SqlAzureTransientErrorDetectionStrategy>(retryStrategy);

 // Receive notifications about retries.
 retryPolicy.Retrying += new
EventHandler<RetryingEventArgs>(retryPolicy_Retrying);

 try
 {
 retryPolicy.ExecuteAction(
 () =>
 {
 using (SqlConnection conn = new SqlConnection(connString))
 {
 conn.OpenWithRetry();

Migrating with Windows Azure Cloud Services

69

 SqlCommand selectCommand = new SqlCommand(@"SELECT
SOH.SalesOrderID
 FROM SalesLT.SalesOrderHeader SOH
 JOIN SalesLT.SalesOrderDetail SOD ON
SOH.SalesOrderID = SOD.SalesOrderID
 JOIN SalesLT.Product P ON SOD.ProductID =
P.ProductID
 JOIN SalesLT.Customer C ON SOH.CustomerID
= C.CustomerID
 JOIN SalesLT.CustomerAddress CA on
C.CustomerID = CA.CustomerID
 JOIN SalesLT.Address A on CA.AddressID =
A.AddressID
 WHERE A.City=@City",conn);

 selectCommand.Parameters.Add(new SqlParameter("@City",
SqlDbType.VarChar, 20, ParameterDirection.Input, false, 0, 0, "", DataRowVersion.Current,
"London"));
 selectCommand.CommandType = CommandType.Text;

 // Execute the above query using a retry-aware ExecuteCommand
method which will
 // automatically retry if the query has failed (or connection
was dropped)
 IDataReader dataReader =
selectCommand.ExecuteReaderWithRetry(retryPolicy);

 while (dataReader.Read())
 {
 Console.WriteLine("OrderID: {0}",
dataReader["SalesOrderID"]);
 }
 }
 });
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception: {0}", e.Message);
 }

 }

The Transient Fault Handling Application Block supports the declaration of configurable retry
policies. For more information about declaring retry policies, see Specifying Retry Strategies in
the Configuration

The code examples shown here offer a quick glimpse at how to use the Transient Fault Handling
Application Block. More detailed information about how to use this application library in a
TechNet Wiki tutorial: Retry Logic for Transient Failures in SQL Azure

Network Latency in Windows Azure SQL Database
Besides connections errors, network latency is the other most encountered performance issue
among current Windows Azure SQL Database users.

http://msdn.microsoft.com/library/hh680900(PandP.50).aspx�
http://msdn.microsoft.com/library/hh680900(PandP.50).aspx�
http://social.technet.microsoft.com/wiki/contents/articles/4235.retry-logic-for-transient-failures-in-sql-azure-en-us.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

70

While the impact of internet latency is well known, people tend to underestimate the impact of
latency between the application and Windows Azure SQL Database. Even when the same data
center hosts the application and databases, the latency is typically higher than that of a
traditional on-premises environment. This higher latency stems from the multi-tenant nature of
Azure. In addition, this higher latency amplifies the impact of “chatty” application behaviors as
each call to the database will experience the additional latency that could add up to overall
performance degradation. Hence, “chatty” applications take significantly longer when accessing
a database hosted in Windows Azure SQL Database than a SQL Server database hosted on-
premises.

Besides latency between the application and Windows Azure SQL Database, there is increased
latency in communications between the various distributed components of your solution. This
type of latency is perhaps one of the biggest differences between on-premises and cloud
applications. This type of latency carries through for communications between both user and
application, and application and Windows Azure SQL Database.

From an end-user perspective, all of these causes for network latency correspond to the
following perceived response time for a user:

Response Time = 2 x (Latency_1 + Latency_2) + Application_Processing_Time +
Query_Exec_Time

Where

• Latency_1 is the latency between the end user and the data center that is hosting the
application. (This type of latency can also be found in on-premises environments as
well.)

• Latency_2 is the latency between the application and the databases in Windows Azure
SQL Database.

To ensure performance optimization, we recommend you perform the following basic actions
first:

• Minimize Latency_1 by selecting a data center closest to majority of your users.

• Minimize Latency_2 by colocating the data with the Windows Azure application to
minimize network round-trips.

• Minimize Application_Processing_Time and Query_Exec_Time by following the general
best practices that you would use for on-premises databases when accessing the data
layer, handling performance, and coding for optimization.

Minimize the Distance between Data and Applications

Keeping your databases hosted as closely as possible to where the application runs is important.
If your application is running in the North Central US data center, then hosting your database in
the North Central US data center will give you the shortest round trip, and thus the shortest
distance related latency.

Migrating with Windows Azure Cloud Services

71

While it is possible to access a database hosted in Windows Azure from an application hosted
on-premises, keep in mind that this will result in higher latency for data access, and will also
result in data egress charges from the data center.

In cases where data needs to be accessed in multiple geographical locales, make use of Content
Delivery Network to distribute static data across multiple sites. Alternatively, create multiple
copies of a database in different data centers and use SQL Data Sync to synchronize data across
them. These approaches help applications running in multiple geographical sites by locating the
data closer to the different instances of the application and reducing overall latency.

Note

SQL Data Sync is currently available only as a Preview and is meant only for product
feedback for future releases and should not be used in production environments.

Minimize Network Round Trips

Minimizing network round trips, while important for on-premises application, is especially
important with Windows Azure. Queries processed by Windows Azure SQL Database must go
through layers of network load balancing, as well as the TDS protocol gateway prior to being
received by Windows Azure SQL Database. While this abstraction enables Windows Azure SQL
Database to provide scaling and availability the end user, this abstraction also requires a certain
amount of processing that result in a small amount of latency on each round trip. Applications
that send data to Windows Azure SQL Database in many sequential round trips may notice a
significant performance hit.

To minimize the effects of round trips, follow the same best practices that you would for on-
premises applications:

• Use stored procedures, especially to encapsulate complex data access logic and
transactional behaviors—When making sequential calls where the second call depends
on data returned by the first, using a stored procedure to perform the logic to make the
second call eliminates one or more round trips and accelerates performance. This
approach will naturally reduce round trips and resource locking and usage on the server
side.

• Minimize the use of cursors or row by row access—Use set based operations where
possible. If cursors must be used, use a client side cursor.

• Use table-valued parameters to send multiple rows to Windows Azure SQL Database
in each round trip—Windows Azure SQL Database uses table-valued parameters just as
on-premises versions of the SQL Server Database Engine do. Table-valued parameters
help reduce multiple calls to the same stored procedure to process a set of
records/values. You can also pass tabular parameters to a single parameterized query,
such as a SELECT, INSERT, UPDATE, or DELETE command.

For more information, see the following Books Online topic, Use Table-Valued
Parameters.

http://msdn.microsoft.com/library/bb510489.aspx�
http://msdn.microsoft.com/library/bb510489.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

72

• Use local caching where possible—Local caching can allow you to reuse the same
results without multiple round trips to Windows Azure SQL Database. Also, keep in mind
you can cache calls to store procedures that return the same value when given the
same.

• Use Windows Azure caching where possible—Use Windows Azure caching for read-
only lookup data to minimize the network traffic to Windows Azure SQL Database. For
more information, see Reduce Network Round Trips by Using Windows Azure Caching.

• Cache metadata and data where possible.

• Avoid metadata retrieval at runtime when possible.

• Avoid classes like SqlCommandBuilder—These classes query metadata at runtime,
which results in additional roundtrips.

• Batch SQL statements together when possible— You can concatenate multiple
Transact-SQL statements in a single batch command to retrieve multiple result sets or to
execute multiple DML operations in a single network round trip. This approach is
especially true when dealing with large amounts of consecutive INSERT operations.

• Avoid application-based transaction management—Encapsulating transaction
management operations—BEGIN TRAN, COMMIT/ROLLBACK—into stored procedures
can reduce network roundtrips and locking.

Follow General Best Practices for On-Premises Databases

After you minimize the distance between the data and your users, and minimize network round
trips, the next step is to ensure that your application follows the general best practices for on-
premises databases. By applying well-known best practices and recommendations to your
application’s data access layer, along with performance and optimization best practices, you
should notice a “multiplied” benefit effect in a high-latency environment, like the cloud.

The general best practices for database interaction with on-premises databases include the
following recommendations:

• Open a connection late and close it as soon as possible—To minimize resource
utilization and minimize the possibility of throttling, open a connection in the
application only at the point at which the code needs that connection. Furthermore,
return the connection to the pool immediately after the code finishes with the
connection by disposing of the connection object. (An exception to this return policy is
when there is more immediate work to complete. In this case, return the connection
only when the all the most immediate work is done.)

• Leverage connection pooling—At the process level, connection pools will contain
connections targeting the same database and using the same security context. Where
possible use the same connection string for all connections that have the same
characteristics.

http://msdn.microsoft.com/library/gg278356.aspx�

Migrating with Windows Azure Cloud Services

73

• Retrieve only the data you need—Carefully define your SELECT list and WHERE clause.
This approach allows you to minimize the use of network bandwidth, and also allows
you to effectively index your database for performance.

• Keep transactions as short as possible, and avoid involving unnecessary resources—
Suboptimal data model design and excessive round trips between the application code
and databases are common issues, but may not be critical in on-premises deployments
due to a low latency connectivity environment. These applications may also be difficult
to modify because of the following reasons:

o Existing architectural constraints.

o Monolithic design where data access and business logic are tightly
connected and interdependent.

o Some aspects, such as row-by-row data processing, that are required by the
application logic itself and hard to modify without a massive rewrite.

Besides these general best practices, there are additional best practices that relate to the
technologies that you use in your application. For instance, applications that use the .NET
Framework are able to use technologies like ADO.NET, Entity Framework, and WCF Data
Services. These technologies offer reduced development times and provide higher flexibility in
implementing the data access layer for any application style. These technologies also fit well
with a service orientation by decoupling layers, offering schema flexibility, using open data
architectures (such as, OData) and offering “disconnected” design by nature. Yet, despite their
benefits, these technologies may generate the same kind of issues described for legacy
applications, such as chattiness, if you do not take into consideration an appropriate data design
and operation optimization (this includes optimal data representation, cache usage, and batch
data–related operations to reduce unnecessary round trips).

The following sections describe some of the best practices for these technologies, as well as
employing asynchronous programming to your Azure applications.

Best Practices for ODBC and JDBC

For data access libraries, such as ODBC and JDBC, where client-side support for intelligent
operations (such as sorting, filtering, and so on) is limited, you can still apply existing
optimization techniques like reducing cursor-based operations and row-by-row processing.
When cursors must be used, use read only, forward only cursors to retrieve values, and use SQL
commands to make data modifications rather than using positioned updates in cursors.

Best Practices for ADO.NET

With ADO.NET, there are several optimizations that can be applied in order to maximize the
efficiency of your data access code:

• Choose the appropriate execution mode with SqlCommand—For example if you only
need to retrieve a scalar value, use the ExecuteScalar() method, or the
ExecuteNonQuery() if you don’t need to retrieve a result set

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

74

• Use the UpdateBatchSize property when using the SqlDataAdapter class to execute
multiple operations—this batches multiple commands as they are transmitted across
the network thus minimizing network roundtrips.

• Use SqlDataAdapter to implement direct database interactions through the use of
stored procedures for SELECT, INSERT, UPDATE and DELETE operations.

• Set the SerializationFormat property to Binary when using Datasets as a client side
cache—This reduces the amount of data transmitted over the wire.

Best Practices for Entity Framework

When it comes to data access development, there is a lot of interest in Entity Framework for the
following reasons:

• Provides a rich object-to-relational mapping environment that can dramatically reduce
development time.

• Introduces more flexibility by decoupling physical database schema definition from the
conceptual representation of your application data.

• Provides a complete set of services to deal with persistence.

• Reduces network roundtrips by being able to load result sets from Windows Azure SQL
Database into object sets in the application memory, and reuse these in a disconnected
fashion without the need to interact with the back end for every operation.

However, as with any other programming tool, Entity Framework can generate some
performance issues if you fail to apply specific attention to dealing with database interactions.
Furthermore, the Windows Azure environment amplifies these performance concerns.

To optimize Entity Framework usage with Windows Azure SQL Database, follow these best
practice guidelines:

• Explicitly disable tracking of object state at the ObjectStateManager level for both
entities and relationships— Apply this guideline if your application does not need to
track object state because of a typical read only usage.

• Disable Lazy Loading to better control the interaction between your code and the
database— In order to reduce round trips, you would preload everything you need in a
single interaction. You can batch multiple commands both in loading and in persisting
data to the data store can be applied by extending the object context with specific
methods.

• Use stored procedures for data store interactions where possible—Where stored
procedures cannot be used, use parameterized queries and indexed views as a way to
improve performance.

• Execute multiple database operations in a single round trip by integrating table-valued
parameters and mapping object sets to stored procedure tabular parameters—You
can use this approach even if it is not directly supported by the design tools.

• Map multiple result sets to objects in a single operation where possible.

Migrating with Windows Azure Cloud Services

75

• Map object sets to the System.Data.SqlClient.SqlBulkCopy.WriteToServer() method
for massive data insert activities—The SQLBulkCopy method allows the SQL Server
Database Engine and Windows Azure SQL Database to make use of bulk operation
logging optimizations that allows large inserts to be performed more quickly in many
cases.

For more information, see Using the Entity Framework to Reduce Network Latency to SQL
Azure.

Best Practices for Asynchronous Programming

Some database operations, such as command executions, may take a significant amount of time
to complete. In such cases, single-threaded applications must block other operations and wait
for the command to finish before continuing their other operations. In contrast, assigning the
long-running operation to a background thread allows the foreground thread to remain active
throughout the operation.

ADO.NET supports these same design patterns in its SqlCommand class. Specifically, pairing the
BeginExecuteNonQuery(), BeginExecuteReader(), and BeginExecuteXmlReader() methods with
the EndExecuteNonQuery(), EndExecuteReader(), and EndExecuteXmlReader() methods,
respectively, provides asynchronous support.

These asynchronous methods will not save you from applying all the optimizations and best
practices mentioned in the previous sections. However, by allowing other operations to run in
parallel with the query in Windows Azure SQL Database, these asynchronous methods help
reduce the impact of long running database operations in your data access layer.

http://msdn.microsoft.com/magazine/gg309181.aspx�
http://msdn.microsoft.com/magazine/gg309181.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

76

High Availability and Disaster Recovery Considerations with
Windows Azure SQL Database
Authors: Kun Cheng, Selcin Turkarslan
Reviewers: Steve Howard, Adrian Bethune

When migrating on-premises SQL Server database to Windows Azure SQL Database (SQL
Database), a frequently asked question is how to implement a backup and restore strategy to
protect data from user mistakes, application errors, hardware failure, data center shutdown due
to natural disasters, and other database disasters. Unlike on-premises deployments, SQL
Database is designed to mask physical database file management and operations from database
administers. Note that a SQL Database server is a logical server that defines a group of
databases. Databases associated with your SQL Database server may reside on separate physical
computers in the Microsoft data center. An individual logical database might share the space of
a single physical database with another logical database. In a multitenant Windows Azure
environment, traditional SQL Server backup and restore tools do not work.

How to help protect your database from failure of individual servers,
devices or network connectivity
Each SQL Database instance has three replicas residing on three different physical machines
within a datacenter, one primary and 2 secondary replicas. All reads and writes go through the
primary replica, and any changes are replicated to the secondary replicas asynchronously.

SQL Database uses a quorum-based commit scheme where the write must be completed to the
primary replica and one secondary replica before we considering the transaction committed. If
the hardware fails on the primary replica, the SQL Database fabric detects the failure and fails
over to the secondary replica. Therefore, there are also at least two transactionally physical
consistent copies of your data in a data center. The three replicas for every Windows Azure SQL
Database instance protect your data from failure of individual servers, devices, or network
connectivity. In addition to the redundant replicas, the Windows Azure SQL Database fabric
maintains a minimum of 14 days of backups taken in five minute increments for all the
databases in the data center. These backups are stored in the data center as a safe guard against
simultaneous or catastrophic hardware and system failures.

The SQL Database environment is designed to maintain the server available along with data
integrity of your data in case of hardware failures. During a failover event, a SQL Database
instance may be inaccessible for a brief moment. Your application needs to have re-try logic to
handle such failover events. But you can use the same connection string to re-establish the
connection after the failover to the secondary replica. For more information on how to handle
the connection-loss errors, see Connection Management in SQL Azure article in the TechNet
Wiki.

http://go.microsoft.com/fwlink/p/?LinkId=204656�

Migrating with Windows Azure Cloud Services

77

How to help protect your database from unwanted deletions or
modifications
User or application error is one of the most common data-loss or corruption scenarios in many
software applications. A user could drop a table or application by mistake or submit a
transaction twice. These types of mistakes are hard to control and recover from. You can use the
following tools to deal with such problems:

• Database Copy

• SQL Database Import/Export Service

• Bcp and SQL Server Integration Services

Database Copy allows you to create a copy of your database either in the same server or in a
different server in the same data center. It’s an online, asynchronous, and transactional
consistent operation. Since it’s an asynchronous operation, you can issue the copy command
and then monitor the progress by querying sys.dm_database_copies (SQL Database) system
view.

In order to copy a SQL Database instance, your login must be a member of the server level
dbmanager role at the destination server and be DBO of the source database on the source
server. The login must have the same login name and password on both SQL Database servers:
source and destination. The frequency at which you choose to copy your database can vary and
depends on business needs. To recover from user or application errors, we recommend that you
create a daily copy and maintain two or three running copies on a rotating basis by dropping the
oldest copy every day after a fresh copy completes.

Note that although we recommend daily copies, you can copy your database more frequently.
We recommend that you perform database copy operation no more frequently than hourly.
Each database copy process, although executing independently of all other database copy
processes, will produce a copy of the database which is transactionally consistent as of the end
of the copy process. Each copy counts toward the database limit of 150 databases for each SQL
Database server, and will be charged as a separate database. Therefore, copying too frequently
presents a situation where you may run out of available databases in your account and pay
needlessly for database copies that are nearly identical. For more information, see Copying
Databases in SQL Database topic in the SQL Database MSDN library.

In addition to database copy, you can use the SQL Database Import/Export Service. This service
allows you to import or export both data and schema in a package with .bacpac extension. The
package is in a compressed format containing all SQL Database compatible objects like tables,
views, indexes, constraints, triggers, stored procedures, logins, users and so on. The service can
directly import or export BACPAC files between a SQL Database instance and Windows Azure
Blob storage. You can access the Import/Export Service via the Windows Azure Management
Portal. If you would like to import or export directly between on-premises SQL Server and SQL
Database without using Windows Azure Blob storage, use the classes provided in
the Microsoft.SqlServer.Dac Namespace Similarly, you can use DacIESvcCli.exe in the SQL DAC
Examplesprovided at the CodePlex site.

http://msdn.microsoft.com/library/microsoft.sqlserver.dac.aspx�
http://sqldacexamples.codeplex.com/releases�
http://sqldacexamples.codeplex.com/releases�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

78

Unlike the Database Copy, the Import/Export Service does not produce a backup that is
transactionally consistent. To do a backup, we recommend that you lock down your database
and stop transactions before exporting the data and schema.

The Bulk copy utility (BCP.exe), SQL Server Integration Services (SSIS), and
System.Data.SqlClient.SqlBulkCopy are also similar to the Import/Export Service. Currently SQL
Database supports BCP, Bulk Copy API and SSIS to move data. You need to create schema
objects in SQL Database before loading the data. Using BCP or SSIS as a bulk copy mechanism
enables you to control what objects you move from within a database and what data you move
from those objects. You can also specify different parameters like batch size, packet size, and
number of streams to achieve best throughput depending on network bandwidth and latency.

How to help protect your database from widespread loss of data center
facilities
To help protect against any data center loss in the event of a disaster, you need to create offsite
storage of database backups outside of the data center, in which your database application is
deployed. To achieve that, we recommend that you use both the database copy described in the
previous section and the SQL Database Import/Export Service.

We recommend that you use the following suggested tools to manage your overall backup and
restore strategy:

• Implement a backup and restore strategy to handle user and application errors using:

o Database Copy

o SQL Database Import/Export Service

o Bcp or SQL Server Integration Services

• Implement an advanced backup and restore strategy to handle widespread loss of data
center facilities using:

o Import/Export Service to migrate a database copy to one or more secondary
data centers and, optionally, within your own on-premise SQL Server.

For more information on backup, restore, and disaster recovery options in Windows Azure, see
Business Continuity in SQL Azure and Business Continuity for Windows Azure articles in the
MSDN library.

Migrating with Windows Azure Cloud Services

79

Choosing Tools to Migrate a Database to Windows Azure SQL
Database
Author: Shaun Tinline-Jones
Contributor: Steve Howard
Reviewer: Shawn Hernan

This topic discusses how to choose the best set of tools for a project to migrate a database to
Windows Azure SQL Database. In general, database migration involves the transfer of both the
schema and data. Some migration tools handle both schema and data; other tools only handle
one or the other.

Choose Migration Tools
There are several processes and tools you can use to migrate a database to Windows Azure SQL
Database. Choosing a tool depends on the type, size, and complexity of the database being
migrated.

Tools to Migrate a non-SQL Server Database

A SQL Server Migration Assistant can be used to migrate database from other products such as
Access, MySQL, Oracle, or Sybase to Windows Azure SQL Database. For more information,
see How to: Use a SQL Server Migration Assistant with Windows Azure SQL Database.

Microsoft Codename “Data Transfer” can transfer data in a CSV or Excel file to Windows Azure
SQL Database. For more information, see SQL Azure Labs.

Tools to Migrate Between SQL Azure Services

To migrate data from one database in Windows Azure SQL Database to another database, you
can use SQL Azure database copy and SQL Azure Data Sync.

Windows Azure SQL Database supports a database copy feature. The feature creates a database
in Windows Azure SQL Database which is a transactionally consistent copy of an existing
database. To copy a database, you must be connected to the master database of the Windows
Azure SQL Database service where the new database will be created, and use the CREATE
DATABASE command:
CREATE DATABASE destination_database_name AS COPY OF
[source_server_name.]source_database_name

The new database can be on the same service, or on a different service. The user running this
statement must be in the dbmanager role on the destination service (to create a new database)
and must be dbowner in the source database. For more information, see Copying Databases in
SQL Azure.

http://www.microsoft.com/en-us/sqlazurelabs/labs/datatransfer.aspx�
http://msdn.microsoft.com/library/ff951624.aspx�
http://msdn.microsoft.com/library/ff951624.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

80

SQL Data Sync enables creating and scheduling regular synchronizations between Windows
Azure SQL Database and databases hosed on either SQL Server or Windows Azure SQL Database.
For more information, see SQL Data Sync.

Tools to Migrate a SQL Server Database

SQL Server to Windows Azure SQL Database migration projects can be broadly classified based
on size and complexity:

1. Size: the amount of data and number of schema objects to be transferred. The more
data there is, the longer it takes to transfer the database into Windows Azure SQL
Database, and the more likely it is for Windows Azure SQL Database to throttle the
migration process. For large migrations it is important to select a migration process that
can perform optimizations such as launching concurrent data load operations, or
separating operations into smaller batches that are less likely to be throttled. A
migration tool that can automatically retry throttled operations is more important for a
large migration. A database usually crosses the threshold from small or large at around
200 MB of data. A database with a very large number of objects, such as 1,000 or more,
would also be classified as a large database. If the migration process performs the
schema transfer as a single transaction, that transfer is likely to be throttled due to the
amount of log space used by the transaction.

2. Complexity: the scope of engineering changes needed to the database and associated
applications. Having more objects with complicated structures increases the probability
that the database contains syntax elements not supported in Windows Azure SQL
Database, which drives more development work as part of the migration project. A
simple migration project would include a database that requires no schema changes to
run in Windows Azure SQL Database, coupled with applications that only need
connection string changes. A complex migration project could result from either a
database that requires schema changes to address elements not supported on Windows
Azure SQL Database, or applications that need changes to work effectively with a
remote database.

http://msdn.microsoft.com/library/hh456371.aspx�

Migrating with Windows Azure Cloud Services

81

Databases can be classed into four categories, or quadrants:

Project Size and Complexity Quadrants

A migration project that is originally assessed as small and simple can move another quadrant as
more information is found during later research. Some of the reasons include:

• The migration of a relatively small database may need data transfer optimizations if the
cutover window is short.

• The database requires schema changes that impact code in the applications that use the
database.

• The applications need changes required to operate effectively in a SQL Database
environment, such as robust retry logic or code changes to reduce network latency.

The most common reason for classifying a database migration as complex is when changes are
needed to the database schema, the applications, or both. For example, schema changes
typically require changes to the applications using the database. These changes mean
incorporating development work as part of the project, and coordinating the deployment of
both the new database and new versions of the applications that use the database. For these
projects, pick a migration tool that supports development project work. For more information
about the kinds of schema and application changes that might be required, see Managing a
Windows Azure SQL Database Migration Project.

Migrating a database to Windows Azure SQL Database requires transferring both the schema
and data. Some migration tools can be used by themselves because they transfer both schema
and data, such as the SQL Azure Migration Wizard and the Data-tier Application (DAC) BACPAC
files. Other tools only transfer the schema, such as DAC packages, or data, such as bcp. If a

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

82

migration requirement leads to using a tool that transfers only data or schema, such deciding to
use bcp to transfer the data for a large project, then pair the use of that tool with one that
transfers the other parts of the database.

While tools such as the SQL Azure Migration Wizard and the SQL Server Data Tools (SSDT) find
most objects and syntax not supported on Windows Azure SQL Database, the current versions of
the tools do not find all such issues. The tools are good for initial analysis and finding most
issues during database development. The most reliable way to test that all schema issues have
been addressed is to perform a test deployment of the database to Windows Azure SQL
Database. The most reliable way to test that all Transact-SQL syntax issues have been addressed
in application code is to perform a functional test of the application running against a copy of
the database in a test Windows Azure SQL Database system.

It is common for complex migration projects that require many schema changes to incorporate
several tasks and use multiple tools, such as:

• Extract the schema into a database project in SSDT.

• Set the project target to Windows Azure SQL Database to do the first analysis of objects
not supported by Windows Azure SQL Database. Leave the target set to Windows Azure
SQL Database so that future database development work can benefit from real-time
flagging of syntax not supported on Windows Azure SQL Database.

• Run a database development task to make all required schema changes. Once SSDT
reports that no unsupported objects remain, perform a test deployment to Windows
Azure SQL Database to ensure that the objects remaining in the database are supported
by Windows Azure SQL Database.

• Run a concurrent application development task to make all code changes driven by the
schema changes. Generate traces of the Transact-SQL statements generated by the
applications, and use the SQL Azure Migration Wizard to scan for syntax not supported
on Windows Azure SQL Database.

• Build a data transfer process that will perform any transformations needed to get the
data from the old schema structures into the new schema. This may be most easily
accomplished by using SQL Server Integration Services.

• Perform integrated database and application testing. It is important to do fairly
comprehensive functional testing on a database after it is running on Windows Azure
SQL Database to ensure that Transact-SQL statements generated by the applications
work on Windows Azure SQL Database.

• Build deployment packages for the database schema and applications. Build the scripts
required to run the data transfer process against the production systems.

• Perform an integrated production deployment of the database schema, applications,
and run the data transfer process.

For more information about running a Windows Azure SQL Database project, see Managing a
Windows Azure SQL Database Migration Project.

Migrating with Windows Azure Cloud Services

83

The SQL Azure Migration Wizard requires the least amount of overhead to run, and can be
configured to capture gaps where the tool may have not picked up an issue, or be modified to
no longer consider something as an issue. The tool is applicable in any of the quadrants, and is
probably the best tool during the envisioning phase of a migration project. A feature of the tool
that no other tool offers is the ability to analyze SQL Profiler Trace files. This provides significant
coverage in its ability to include dynamic Transact-SQL. Trace analysis can also improve quality
of the end-to-end functional testing. The wizard can break data and schema transfers into
multiple operations, and will retry operations that fail. These features improve its ability to
migrate large databases. There is also a feature that accommodates a simple Federations
migration.

The SQL Server Data Tools (SSDT) provides useful practical functionality in all the quadrants. Its
tight integration with Visual Studio makes it particularly useful in migrations that are considered
complex. It has limited support for developing Windows Azure SQL Database solutions that
leverage Federations. The analysis occurs when the objects are imported into the tool and
warning and errors are raised during the build process. SSDT has powerful features and can
accommodate complex solutions. SSDT is Microsoft's recommended tool for developing against
Windows Azure SQL Database databases, as well as on-premises SQL Server databases.

Comparing SQL Server Migration Tools

This table summarizes the characteristics of the tools and processes that can be used to migrate
a SQL Server database to Windows Azure SQL Database:

Tools Schema SQL Database
Compatibility
Check

Data Data
Transfer
Efficiency

Note

SQL Azure
Migration
Wizard

Yes Yes Yes Good • Great capabilities,
e.g. evaluate trace
files

• Open source on
CodePlex

• Not supported by
Microsoft

SQL Server
Data Tools

Yes Yes No N/A • Good for
managing
migration
development work

• Handles complex
schema changes

• Full SQL Database

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

84

Tools Schema SQL Database
Compatibility
Check

Data Data
Transfer
Efficiency

Note

support

DAC Package Yes Yes No N/A • Entity containing
all database
objects, but no
data

• Full SQL Database
support

DAC BACPAC
Import Export

Yes Yes Yes Good • Export/import of
DAC plus data
with DAC
framework

• Service for cloud-
only support
available

• SQL DAC
Examples
available on
CodePlex

Generate
Scripts
Wizard

Yes Some Yes Poor • Has explicit
option for SQL
Database scripts
generation

• Good for smaller
database

bcp No N/A Yes Good • Efficient transfer
of data to
existing table

• Each bcp
command
transfer one
database

SQL Server
Integration
Services

No N/A Yes Good • Most flexibility

Migrating with Windows Azure Cloud Services

85

Tools Schema SQL Database
Compatibility
Check

Data Data
Transfer
Efficiency

Note

SQL Server
Import and
Export Wizard

No N/A Yes Good • Simple UI on top
of SSIS; also
available in SQL
Server
Management
Studio

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

86

How to: Use the SQL Azure Migration Wizard
Author: Shaun Tinline-Jones

The SQL Azure Migration Wizard is a shared source UI tool that helps migrating SQL Server
databases to Windows Azure SQL Database. Other than migrating data, it can also be used to
identify compatibility issues, fix them where possible, and notify you of the issues it finds.

Before you begin: Recommendations, Limitations and Restrictions, Prerequisites

Use the SQL Azure Migration Wizard to: Migrate a Database, Analyze a Database, Analyze a
Transact-SQL File, Analyze a Trace File

Before You Begin

The SQL Azure Migration Wizard is a flexible and easy tool for migrating simple SQL Server
databases to SQL Azure. For more complex databases, the wizard is a good tool for identifying
the changes needed to meet Windows Azure SQL Database requirements.

Recommendations

The SQL Azure Migration Wizard supports these main tasks:

• Migrate both the schema and data of a simple database to Windows Azure SQL
Database. The wizard can be configured to perform multiple concurrent bulk copy
operations when loading large amounts of data.

• Help analyze larger, more complex databases during the envisioning or planning stages:

o Analyze the database for objects not supported by Windows Azure SQL
Database.

o Review a Transact-SQL file for syntax not supported by Windows Azure SQL
Database. The wizard can analyze either a Transact-SQL script file or a SQL
Server Profiler trace file.

Before running the Wizard, download and review the manual from the Documentation tab in
the Codeplex project.

The wizard can be run in a graphical wizard mode or a command prompt utility mode. The
wizard uses two configuration files that you can modify to tailor the operation of the wizard. The
configuration files establish the default behavior when running in the graphical mode, and
controls the behavior when running in the command-prompt mode.

• The file NotSupportedByAzureFile.config contains Regex entries that define the objects
not supported by Windows Azure SQL Database. You can tailor the configuration file to
look for additional patterns you want to exclude from any of the databases you plan to
host in Windows Azure SQL Database.

• The file SQLAzureMW.exe.config controls utility behaviors, such as how to make
connections, which Transact-SQL file to analyze, or data copy behaviors. You can modify
the file to tailor the default wizard behaviors for your site.

Migrating with Windows Azure Cloud Services

87

The SQL Azure Migration Wizard combines three features to support more reliable bulk copy
operations at higher rates than other options, such as using a Data-tier Application (DAC)
BACPAC.

• The SQL Azure Migration Wizard has built-in logic for handling connection loss. It divides
the schema updates into individual batches, where each batch is managed as a separate
transaction. The wizard runs until Windows Azure SQL Database terminates the
connection. If the wizard encounters a connection error before the schema updates are
complete, it reestablishes a new connection with Windows Azure SQL Database and
picks up processing after the last successfully committed transaction. In the same
manner, when using bcp to upload the data to Windows Azure SQL Database, the wizard
chunks the data into individual batches and uses retry logic to figure out the last
successful record uploaded before the connection was closed. Then it has bcp restart
the data upload with the next set of records.

• You can configure the wizard to use multiple, concurrent bulk copy processes to speed
the loading of large amounts of data. The wizard cannot perform multiple concurrent
bulk copy operations against a single table, but can schedule concurrent bulk copy
operations against different tables.

• You can reduce the chance of Windows Azure SQL Database throttling the wizard by
specifying a wait period between bulk copy batches and configuring a small batch size.
You must balance batch size against the number of batches. If the batch size is too
small, it may result in a large number of batches that have to be transmitted individually
across the network, creating network latency issues. Do some experiments to find a
batch size that is small enough to avoid throttling but large enough to reduce network
latency.

[Top]

Limitations and Restrictions

Note

The SQL Azure Migration Wizard is a shared source tool built and supported by the
community.

The SQL Azure Migration Wizard does not include a Transact-SQL parser, it does pattern
matching based on Regex definitions in the file NotSupportedByAzureFile.config. Some pattern
matches might be false positives. Also, the config file supplied with the wizard is not guaranteed
to have patterns for all items not supported by Windows Azure SQL Database. To keep the
migration project moving, you can update the configuration file to add patterns as you find
them in. For general issues, you can also consider submitting them to the CodePlex project to be
incorporated in future versions of the wizard. When your project needs a more rigorous analysis
of a database, consider extracting a DAC package file and importing that into a SQL Server Data
Tools project where you can set SQL Azure as the project target. While the SQL Server Data Tool
will analyze the project using a Transact-SQL parser, it may not find all Windows Azure SQL
Database incompatibilities in a database.

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

88

The most reliable way to determine whether all schema issues have been addressed is to
perform a test deployment of the new database schema to Windows Azure SQL Database. The
most reliable way to determine if all Transact-SQL issues have been addressed in application
code is to perform a functional test of the application running against a copy of the database
deployed to Windows Azure SQL Database.

The wizard is a good tool for the initial analysis of any database. Other tools, however, are
better for managing development work on complex databases that require many changes
before they can run on Windows Azure SQL Database. For example, in the Regex pattern
definitions you can specify replacements for the patterns found by the wizard, but this
functionality is limited. To manage more complex changes, consider using another tool, such as
extracting a DAC package file and importing that into a SQL Server Data Tools project.

Generating a profiler trace from a production system may slow performance too much. It is
better to generate a trace from a test system. If you must profile a production system, minimize
the impact by tracing only statement completed events.

[Top]

Prerequisites

The SQL Azure Migration Wizard can be downloaded from the SQL Azure Migration Wizard
project on Codeplex. Unzip the package to your local computer, and run SQLAzureMW.exe.

[Top]

Migrate a Database by Using the SQL Azure Migration Wizard

To migrate a database:

1. Select the process you want the wizard to guide you through.

2. Select the source you want to script.

3. Select database objects to script.

4. Generate the script. You have the option to modify the script afterwards.

5. Enter information for connecting to target server. You have the option to create the
destination database on Windows Azure SQL Database.

6. Run the script against destination server.

[Top]

Analyze a Database by Using the SQL Azure Migration Wizard

To analyze a database for migration issues:

1. Select the process you want the wizard to guide you through.

2. Select the source you want to analyze.

3. Select database objects to analyze.

4. Generate the script.

http://sqlazuremw.codeplex.com/�

Migrating with Windows Azure Cloud Services

89

5. Review the Summary Results pane for issues reported by the Wizard.

[Top]

Analyze a Transact-SQL File by Using the SQL Azure Migration Wizard

To analyze a database for migration issues:

1. Select the process you want the wizard to guide you through.

2. Select the Transact-SQL file you want to analyze as the source.

3. Generate the script.

4. Review the Summary Results pane for issues reported by the Wizard.

[Top]

Analyze a Trace File by Using the SQL Azure Migration Wizard

To analyze a database for migration issues:

1. Select the process you want the wizard to guide you through.

2. Select the trace file you want to analyze as the source.

3. Generate the script.

4. Review the Summary Results pane for issues reported by the Wizard.

[Top]

Resources

Using the SQL Azure Migration Wizard (video)

SQL Azure Migration Wizard Discussion Forum

http://channel9.msdn.com/posts/SQL-Azure-Migration-Wizard-Part-2-Using-the-SQL-Azure-Migration-Wizard�
http://sqlazuremw.codeplex.com/discussions�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

90

How to: Use SQL Server Data Tools to Migrate a Database to Windows
Azure SQL Database
Author: Shaun Tinline-Jones
Reviewer: Bill Gibson

The SQL Server Data Tools (SSDT) is used for offline development of databases for SQL Server
and Windows Azure SQL Database. SSDT is a good choice for managing database development
work in database migration projects.

Before you begin: Recommendations, Limitations and Restrictions, Prerequisites

Use the SQL Server Data Tools with: DAC Packages, Direct Connections

Before You Begin

Databases being migrated to Windows Azure SQL Database may require schema changes to
address dependencies on features not supported by Windows Azure SQL Database. SSDT
database projects are a good tool for managing the database development, test, and
deployment work. SSDT supports integration of the database project into a Visual Studio
solution that also includes the application projects when application changes are required as
part of the migration.

Recommendations

Complex migration projects that require many schema changes usually have to incorporate
several tasks, such as:

• Import the schema into a database project in SSDT.

• Set the project target to SQL Azure perform a build to do the first analysis of objects not
supported by Windows Azure SQL Database. The build will display a list of errors for
objects not supported on Windows Azure SQL Database. Leave the target set to SQL
Azure so that SSDT will validate syntax against the Windows Azure SQL Database
requirements as database schema changes are made.

• Run a database development task to make all required schema changes, working
through the list of build errors and resolving each reported issue. Once a build of that
project reports that no unsupported objects remain, perform a test deployment to
Windows Azure SQL Database to ensure that the objects remaining in the database are
supported by Windows Azure SQL Database.

• Run a concurrent application development task to make all code changes driven by the
schema changes. Generate traces of the Transact-SQL statements generated by the
applications, and use the SQL Azure Migration Wizard to scan for syntax not supported
on Windows Azure SQL Database. Also run a concurrent development task to build the
processes for transferring data from the source database to the new version.

• Build a deployment package for the database schema.

Migrating with Windows Azure Cloud Services

91

• Perform integrated database and application testing. Deploy the database to a test
Windows Azure SQL Database service. Import a representative set of data as a test of
the data transfer processes. Do a fairly comprehensive functional test of the application
against the test database to ensure that Transact-SQL statements generated by the
applications work on Windows Azure SQL Database.

• Perform an integrated production deployment of the database schema, applications,
and run the data transfer process.

For more information about running a Windows Azure SQL Database project, see Managing a
Windows Azure SQL Database Migration Project.

For more information about doing database development using SSDT, see SQL Server Data Tools
(SSDT).

For more information about using SSDT to migrate a database to Windows Azure SQL Database,
see Migrating a Database to SQL Azure using SSDT.

Limitations and Restrictions

The current version of SSDT does not detect all schema issues when the project target property
is set to Windows Azure SQL Database. After SSDT reports no Windows Azure SQL Database
schema issues, verify that by deploying the database to a test Windows Azure SQL Database
service.

[Top]

Prerequisites

For information about installing SSDT, see Install SQL Server Data Tools.

[Top]

Use SSDT With DAC Packages

When using SSDT to manage the database changes required by a migration, you can use DAC
packages as the mechanism for transferring the schema changes.

1. Use SQL Server Management Studio or a PowerShell script to extract a DAC package
from the source database.

2. Create a database project in SSDT, and import the DAC package.

3. Set the target property of the SSDT database project to SQL Azure.

4. Make all changes required to ensure that all database objects are supported by
Windows Azure SQL Database.

5. Set the project build property to DAC package.

6. Build the project to generate a DAC package.

7. Use SQL Server Management Studio or a PowerShell script to deploy the DAC package to
the Windows Azure SQL Database service.

http://msdn.microsoft.com/en-us/library/hh272686(VS.103).aspx�
http://msdn.microsoft.com/en-us/library/hh272686(VS.103).aspx�
http://blogs.msdn.com/b/ssdt/archive/2012/04/19/migrating-a-database-to-sql-azure-using-ssdt.aspx�
http://msdn.microsoft.com/en-us/library/hh500335(VS.103).aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

92

For more information about extracting and deploying DAC packages, see How to: Use a DAC
Package to Migrate a Database to Windows Azure SQL Database.

[Top]

Use SSDT With Direct Connections

You can connect directly to the source database to import the schema. After completing the
work to ensure that all objects are supported on Windows Azure SQL Database, you can connect
to the destination Windows Azure SQL Database service to publish a database containing the
new schema.

1. Create a database project in SSDT.

2. Connect directly to the source database and import the schema to the SSDT project.

3. Set the target property of the SSDT database project to Windows Azure SQL Database.

4. Make all changes required to ensure that all database objects are supported by
Windows Azure SQL Database.

5. To deploy the new schema, connect to the destination Windows Azure SQL Database
service and perform a publish operation.

For more information about extracting and deploying DAC packages, see How to: Use a DAC
Package to Migrate a Database to Windows Azure SQL Database.

[Top]

See Also

Choosing Tools to Migrate a Database to Windows Azure SQL Database

How to: Use a DAC Package to Migrate a Database to Windows Azure SQL Database

Migrating with Windows Azure Cloud Services

93

How to: Use a DAC BACPAC to Migrate a Database to Windows Azure SQL
Database
Author: Shaun Tinline-Jones
Reviewer: Adam Mahood

You can migrate both the schema and the data from a SQL Server database by exporting a
BACPAC from an existing database, placing the BACPAC file in a Windows Azure Blob service
account, and then importing the BACPAC to Windows Azure SQL Database.

Before you begin: Recommendations, Limitations and Restrictions, Prerequisites

Process to: Migrate a DAC BACPAC

Before You Begin

A data-tier application (DAC) is a self-contained unit for developing, deploying, and managing
data-tier objects. A DAC enables data-tier developers and database administrators to package
Microsoft SQL Server objects, including database objects and instance objects, into a single
entity called a DAC package (.dacpac file). The BACPAC format extends the DAC package format
to include BACPAC-specific metadata and JavaScript Object Notation (JSON)–encoded table data
in addition to the standard DAC package contents. You can package your SQL Server database
into a BACPAC file, and use it to migrate both the schema and table data to Windows Azure SQL
Database.

Recommendations

A DAC package and BACPAC target different scenarios.

1. A BACPAC contains both schema and data, but does not support being imported to a
database project for schema modification. The primary use of a BACPAC is to move a
database from one database service to another (either instances of the Database Engine
or Windows Azure SQL Database). A BACPAC can also be used to archive an existing
database in an open format. These uses make it a good tool for migrations where the
database requires no schema changes.

2. DAC packages contain only schema information, but you can import the package into an
SSDT database project for further development work. The primary use for a DAC
package is in deploying a database schema to development, testing, and then
production environments.

The Import and Export Service for SQL Azure can directly import or export BACPAC files between
a database on Windows Azure SQL Database and Windows Azure Blob service. The Import and
Export Service for SQL Azure provides public REST endpoints for the submission of requests.
The Windows Azure Platform Portal has an interface for calling the Import and Export Service for
SQL Azure.

[Top]

http://windows.azure.com/�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

94

Limitations and Restrictions

A DAC BACPAC can only be used for migrations where no database changes are required to
address objects not supported on Windows Azure SQL Database. If such changes are required,
consider either:

1. Using a DAC package and the SQL Server Data Tools (SSDT) to modify the database
schema and make the required changes before deploying to Windows Azure SQL
Database. For more information, see How to: Use a DAC Package to Migrate a Database
to Windows Azure SQL Database.

2. Making all schema changes in the source database before exporting the DAC BACPAC.

There is a SQL DAC Examples project that builds an unsupported command prompt utility that
can be used to export and import BACPACs. You can download the SQL DAC Examples project
from CodePlex. The project requires the DAC Framework. For more information about using the
utility built from the project, see DAC Framework Client Side Tools Reference.

[Top]

Prerequisites

To work with a DAC BACPAC, you must have installed the client DAC software, known as the
DAC Framework. The DAC Framework is included with SQL Server Data Tools and the SQL Server
utilities such as SQL Server Management Studio. When working with SQL Database, the
recommended version of the DAC Framework to use is the one included in SQL Server Data
Tools and SQL Server 2012. You can also upgrade earlier versions of the DAC framework by
installing these three packages from the SQL Server 2012 Feature Pack:

• Microsoft System CLR Types for Microsoft SQL Server 2012

• Microsoft SQL Server 2012 Transact-SQL Script DOM

• Microsoft SQL Server 2012 Data-tier Application Framework

For information about compatibility between versions of the DAC Framework and versions of
SQL Server, see DAC Support For SQL Server Objects and Versions.

[Top]

Migrating a DAC BACPAC File

The steps to migrate a database from SQL Server to SQL Database are:

1. Export an Existing SQL Server Database

You can use the Export Data-tier Application wizard in the SQL Server 2012 version of
SQL Server Management Studio to export a BACPAC file directly to a Windows Azure
Blob service account. To launch the wizard, right click the database in Object Explorer,
select Tasks, and then select Export Data-tier Application. On the Export Settings page,
use the control Save to Windows Azure to specify a Windows Azure Blob service
location. Optionally, you can use the SQL DAC Examples utility. For more information
about exporting a BACPAC from SQL Server, see Export a Data-tier Application.

http://sqldacexamples.codeplex.com/�
http://sqldacexamples.codeplex.com/wikipage?title=Import%20Export%20Client%20Side%20Tools&referringTitle=Home�
http://www.microsoft.com/en-us/download/details.aspx?id=29065�
http://msdn.microsoft.com/en-us/library/ee210549.aspx�
http://msdn.microsoft.com/library/hh213241.aspx�

Migrating with Windows Azure Cloud Services

95

You must have a Windows Azure storage account to export a BACPAC to Windows Azure
storage. For more information, see How to Create a Storage Account.

2. Move the BACPAC File to Windows Azure Blob Service

If you used the SQL DAC Example to export the BACPAC to a local file on your computer
and want to use the Windows Azure management portal to import the BACPAC to
ssSDS, move the BACPAC file to a Windows Azure Blob account. You can copy the file by
using either the Windows Azure Management Platform Tool or Microsoft Codename
“Data Transfer”.

If you plan to use the SQL DAC Example to perform the import to Windows Azure SQL
Database, you do not need to copy the BACPAC file to a Windows Azure Blob service.

3. Import the BACPAC to Windows Azure SQL Database

Once exported, the BACPAC can be imported to create a database on Windows Azure
SQL Database. You can use the Windows Azure management portal to import a BACPAC
stored in a Windows Azure Blob service. On the ribbon, select Import to launch the
Import Database from Windows Storage window. Optionally, you can use the SQL DAC
Example to import a BACPAC saved to a local file on your computer. For more
information about importing a BACPAC to Windows Azure SQL Database, see How To:
Import a Data-tier Application.

[Top]

Resources

How to Use Data-Tier Application Import and Export with SQL Azure

http://msdn.microsoft.com/library/gg433066.aspx�
http://wapmmc.codeplex.com/�
https://web.datatransfer.azure.com/�
https://web.datatransfer.azure.com/�
http://msdn.microsoft.com/library/hh335291.aspx�
http://msdn.microsoft.com/library/hh335291.aspx�
http://msdn.microsoft.com/library/hh335291.aspx�
http://social.technet.microsoft.com/wiki/contents/articles/2639.how-to-use-data-tier-application-import-and-export-with-sql-azure-en-us.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

96

How to: Use a DAC Package to Migrate a Database to Windows Azure SQL
Database
Author: Shaun Tinline-Jones
Reviewer: Adam Mahood

Data-tier Applications (DAC) support easily extracting the schema, code, and configuration of a
database into a single package file. The DAC package can then be used to either deploy a new
copy of the database on another system, or import the database definition into a SQL Server
Data Tools (SSDT) project for further development. DAC packages do not contain data, only the
definitions of the objects in the database.

Before you begin: Recommendations, Limitations and Restrictions, Prerequisites

Process to: Migrate a DAC Package

Before You Begin

A data-tier application (DAC) is a self-contained unit for developing, deploying, and managing
data-tier objects. A DAC enables data-tier developers and database administrators to package
Microsoft SQL Server objects, including database objects and instance objects, into a single
entity called a DAC package (.dacpac file). There are two ways to generate a DAC package file.
You can build an SSDT database project to create a DAC package, or you can extract a DAC
package from an existing database. The DAC package is a compressed file that contains an XML
representation of the database object definitions, or the metadata of the database. You can
then deploy the package to create copy of the database in Windows Azure SQL Database.

Recommendations

A DAC package is a good tool to use with SQL Server Data Tools to implement any database
changes required to migrate a database to Windows Azure SQL Database. Import the DAC
package to create a database project, make any required modifications, and then build the
project to create a new DAC package.

Using a DAC package and an SSDT database project to transfer the schema in a migration is a
good choice when there will be additional development work after the migration project is
finished. DAC packages are versioned, and there is a DAC upgrade process. You can use one
version of the DAC package to transfer the schema during the migration. If additional
development work is done after the migration, you can build a new version of the DAC package
and use that to upgrade the production database. For more information about DAC upgrades,
see Upgrade a Data-tier Application.

[Top]

Limitations and Restrictions

A DAC package does not contain any of the table data, so can only be used to migrate schema
definitions. Another process must be used to migrate the data. For more information about

http://msdn.microsoft.com/library/ee634742.aspx�

Migrating with Windows Azure Cloud Services

97

selecting a data transfer process, see Choosing Tools to Migrate a Database to Windows Azure
SQL Database.

If no database changes are required for the migration, you can alternatively extract a DAC
BACPAC file to migrate both the database definitions and data. A BACPAC file includes both a
JavaScript Object Notation (JSON) encoded set of the table data, and the same schema
definitions found in a DAC package. For more information, see How to: Use a DAC BACPAC to
Migrate a Database to Windows Azure SQL Database.

Within an SSDT database project, you can specify predeployment and postdeployment scripts.
These are Transact-SQL scripts that can perform any action, including inserting data in the
postdeployment scripts. However it is not recommended to insert a large amount of data by
using DAC package deployment scripts.

[Top]

Prerequisites

To work with DAC packages, you must have installed the client DAC software, known as the DAC
Framework. The DAC Framework is included with SQL Server Data Tools and the SQL Server
utilities such as SQL Server Management Studio. When working with SQL Database, the
recommended version of the DAC Framework to use is the one included in SQL Server Data
Tools and SQL Server 2012. You can also upgrade earlier versions of the DAC framework by
installing these three packages from the SQL Server 2012 Feature Pack:

• Microsoft System CLR Types for Microsoft SQL Server 2012

• Microsoft SQL Server 2012 Transact-SQL Script DOM

• Microsoft SQL Server 2012 Data-tier Application Framework

For information about compatibility between versions of the DAC Framework and versions of
SQL Server, see DAC Support For SQL Server Objects and Versions.

[Top]

Migrating a DAC Package

To migrate a SQL Server database schema to Windows Azure SQL Database, first extract a
package from an existing database, remove any dependencies on objects not supported in
Windows Azure SQL Database, and then deploy the DAC package to Windows Azure SQL
Database.

1. Extract a DAC package from a SQL Server database:

You can extract a DAC package from an existing database in the SQL Server Database
Engine using either a PowerShell script or the Extract Data-tier Application Wizard in
SQL Server Management Studio. For information about prerequisites and how to
perform an extraction, see Extract a DAC From a Database.

The extraction involves the following main steps:

http://www.microsoft.com/download/details.aspx?id=29065�
http://msdn.microsoft.com/library/ee210549.aspx�
http://msdn.microsoft.com/library/hh231291.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

98

a. Set the DAC properties, including DAC application name, version, description,
and the package file location.

b. Validate that all the database objects are supported by a DAC.

c. Build the package.

2. Validate The DAC Package Before Deploying to Windows Azure SQL Database:

It is a good practice to review the contents of a DAC package before deploying it into
production, especially when the package was not developed in your organization. For
more information, see Validate a DAC Package.

DAC packages support some object types that are not supported by Windows Azure SQL
Database. You can use the experimental SQL Azure Compatibility Assessment service to
determine whether a DAC package contains objects not supported by Windows Azure
SQL Database before attempting to deploy the package to SQL Database. For more
information and a tutorial about using the service, see SQL Azure Compatibility
Assessment Service.

Before you can migrate a database to SQL Database, remove any dependencies on
objects that are reported as exceptions by either the DAC extraction process or the SQL
Azure Compatibility Assessment service. Removing these objects from the database will
probably require changes to the applications that use the database.

3. Deploy the DAC package to SQL Database:

You can deploy a DAC package to ssSDS using either a PowerShell script or the Deploy
Data-tier Application Wizard in SQL Server Management Studio. For information about
prerequisites and how to perform a deployment, see Deploy a Data-tier Application. The
Deploy Data-tier Application Wizard can also be launched from the SQL Azure
Management Portal, for more information seeDatabase Administration (Management
Portal for SQL Azure).

The deployment involves the following main steps:

a. Select the DAC package.

b. Validate the content of the package.

c. Configure the database deployment properties, where you specify the database
on Windows Azure SQL Database.

d. Deploy the package.

[Top]

Resources

Data-tier Applications

Import into a Database Project

http://go.microsoft.com/fwlink/?LinkId=236463�
http://www.microsoft.com/en-us/sqlazurelabs/labs/sqlassessment.aspx�
http://www.microsoft.com/en-us/sqlazurelabs/labs/sqlassessment.aspx�
http://msdn.microsoft.com/library/ee210569.aspx�
http://msdn.microsoft.com/library/hh324978.aspx�
http://msdn.microsoft.com/library/hh324978.aspx�
http://msdn.microsoft.com/library/ee210546.aspx�
http://msdn.microsoft.com/library/hh864423(VS.103).aspx�

Migrating with Windows Azure Cloud Services

99

How to: Generate Scripts to Migrate a Database to Windows Azure SQL
Database
Author: Shaun Tinline-Jones

The Generate Scripts Wizard can be used to create Transact-SQL scripts for SQL Server database
and/or related objects within the selected database. You can then use the scripts to transfer
schema and/or data to Windows Azure SQL Database.

Before you begin: Recommendations, Prerequisites

Use the Generate Scripts Wizard to: Migrate a Database

Before You Begin

Recommendations

Using the Generate Scripts wizard to migrate a SQL Server database to Windows Azure SQL
Database should be limited to:

• Teams who have experience with the wizard.

• Migrating simple databases that need few schema changes to run on Windows Azure
SQL Database. The scripts generated from the source database can be modified before
being used to create the new version of the database on Windows Azure SQL Database,
but using a database project in the SQL Server Data Tools has richer support for making
schema changes.

• Migrating small databases that do not have much data. The wizard generates scripts
that use insert statements instead of bulk copies to transfer the data. The insert
statements can be throttled when the tables contain too much data, and are not as fast
as bulk copies.

Be careful when choosing options in the wizard. It is easy to select an option that prevents the
transfer of important information, such as the option to not generate indexes.

[Top]

Prerequisites

The Generate Scripts Wizard is installed with SQL Server. Use the wizard from SQL Server 2008
R2 or later.

[Top]

Migrate a Database by Using the Generate Scripts Wizard

Using the wizard involves the following main steps:

1. Open SQL Server Management Studio and connect to an instance of the Database
Engine.

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

100

2. In Object Explorer, right click a database to open a menu, select Tasks…, and then select
Generate Scripts.

3. Choose objects to export.

4. Set scripting options. You have the options to save the script to file, clipboard, new
query window; or publish it to a web service.

5. Set advanced scripting options.

By default, the script is generated for stand-alone SQL Server instance. To change the
configuration, click the Advanced button from the Set Scripting Options dialog, and
then set the Script for the database engine type property to SQL Azure.

You can also set the Types of data to script to one of the following based on your
requirements: Schema only, Data only, Schema and data.

After the script is created, you have the option to modify the script before running the script
against a Windows Azure SQL Database database to transfer the database.

[Top]

Resources

How to: Migrate a Database by Using the Generate Scripts Wizard (SQL Azure Database)

http://msdn.microsoft.com/library/ee621790.aspx�

Migrating with Windows Azure Cloud Services

101

How to: Use bcp to Migrate a Database to Windows Azure SQL Database
Author: Shaun Tinline-Jones

You can use the SQL Server bcp utility for high-performance data movement when migrating a
SQL Server database to Windows Azure SQL Database. You first use bcp to copy the data out of
a source table and into a data file. You then run it again to copy the data from the data file into
the destination table. bcp moves only data, so it must be used with another process for
database schema migration.

Before you begin: Recommendations, Limitations and Restrictions, Prerequisites

Use bcp to: Migrate Data

Before You Begin

The bcp utility is a command-line utility that is designed for high performance bulk upload to
SQL Server or Windows Azure SQL Database. It is not a migration tool. It does not extract or
create a schema. You must first transfer the schema to a database in Windows Azure SQL
Database using one of the schema migration tools, such as the Generate Scripts wizard, or
extracting and deploying a data-tier application (DAC) package. For help identifying a schema
migration process, see Choosing Tools to Migrate a Database to Windows Azure SQL Database.

The bcp utility calls the SQL Server bulk copy functionality that is also exposed in the SQL Server
application programming interfaces (API). Several of the migration tools, such as the SQL Azure
Migration Wizard and DAC BACPACs also use bulk copy functionality to transfer data.

Recommendations

Utilize bulk copy best practices to improve performance when copying data into a large
destination table. For example:

• Use the –N option to transfer data in the native mode so that no data type conversion is
needed.

• Use the –b option to specify a batch size. Each batch is imported and logged as a
separate transaction. By default, all the rows in the data file are imported as one batch.
If a transaction fails, only insertions from the current batch are rolled back. Identify the
best batch size and using the batch size is a good practice for reducing connection lose
to Windows Azure SQL Database during data migration.

• Use bcp hints:

o Use the –h “TABLOCK” hint on the import to specify using a bulk update table-
level lock for the duration of the bulk load operation. This reduces lock
overhead by using a single table lock instead of a lock for each row.

o The –h “ORDER(…)” hint on the export to sort the data file. Bulk import
performance is improved if the data being imported is sorted according to the
clustered index on the table.

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

102

• For large tables, split the import copy into multiple streams that you can run
concurrently. If you bulk copied the data from the source table into a single data file,
use the –F firstrow and –L lastrow parameters to specify which part of the data file is
processed by each run of bcp.

For more information about bulk copy best practices, see Optimizing Bulk Import Performance.

If you are using IDENTITY to generate the primary keys in a table, use the bcp –E parameter to
preserve the keys generated in the source database. -E should prevent any foreign key violations
during the import, provided no other updates are made to the tables while the import is
running. Ensure that no other updates are possible, such as by putting the database in read-only
mode.

Note

bcp operates one table at a time, so does not maintain transactional integrity across
multiple tables when extracting data from a source database. You can address this issue by
putting the source database in single-user or read-only mode during an export.

[Top]

Limitations and Restrictions

The tables in the destination database must be empty for bulk copy import. You cannot perform
multiple bulk copy imports to the same table unless you truncate or delete all the rows inserted
by the previous bulk copy.

[Top]

Prerequisites

bcp ships with SQL Server. Install the client utilities from SQL Server 2008 R2 or later versions of
SQL Server to get a version of bcp supported for use with Windows Azure SQL Database.

[Top]

Using bcp to Migrate Data

There are five steps involved using bcp to move the data from a table in the source database to
the copy of the table in the destination database:

1. Migrate the schema.

Use a schema transfer mechanism, such as the Generate Scripts wizard or a DAC
BACPAC, to create a copy of the database in Windows Azure SQL Database. At the end
of the process all of the tables should have been created in the SQL Database database,
but not contain any data.

2. Export the data into data files.

For each table in the source SQL Server database, run a bcp out operation to copy the
data from the table to a data file. This is an example of exporting the data from one
table into a data file:

http://msdn.microsoft.com/library/ms190421(SQL.105).aspx�

Migrating with Windows Azure Cloud Services

103

bcp tableName out C:\filePath\exportFileName.dat –S serverName –T –n –q

The out parameter indicates copying data out of SQL Server. The -n parameter performs
the bulk-copy operation using the native database data types of the data. The -q
parameter executes the SET QUOTED_IDENTIFIERS ON statement in the connection
between the bcp utility and the instance of the Database Engine.

3. Perform bulk copy optimizations

Make any destination database schema changes needed to speed the performance of
copying data into large tables, such as disabling non-clustered indexes, triggers, and
constraints.

4. Import the data file into SQL Database

Run the bcp utility for each table in the Windows Azure SQL Database destination
database, copying the data from the export data file to the table. This example has three
runs of bcp to copy data into a single table from a data file that has approximately
300,000 rows. Each run copies about 100,000 of the rows.
Bcp tableName in c:\filePath\exportFileName.dat –n –U userName@serverName –S
tcp:serverName.database.windows.net –P password –b 200 –L 99999 –h”TABLOCK”
Bcp tableName in c:\filePath\exportFileName.dat –n –U userName@serverName –S
tcp:serverName.database.windows.net –P password –b 200 –F 100000 –L 199999 –
h”TABLOCK”
Bcp tableName in c:\filePath\exportFileName.dat –n –U userName@serverName –S
tcp:serverName.database.windows.net –P password –b 200 –F 200000 –h”TABLOCK”

The in parameter indicates copying data into Windows Azure SQL Database. The –b
parameter specifies the number of rows per batch of imported data. The –L lastrow and
–F firstrow parameters are used to specify which part of the data file is processed by
each run.

5. Remove schema optimizations

Restore any schema items that were removed to optimize the bulk inserts. For example,
enable any non-clustered indexes, triggers, or constraints that were disabled in step 3.

[Top]

Resources

bcp utility

http://msdn.microsoft.com/library/ms162802.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

104

How to: Use Integration Services to Migrate a Database to Windows Azure
SQL Database
Author: Shaun Tinline-Jones

SQL Server Integration Services (SSIS) can be used when complex transformations of data are
required to migrate a database from an on-premises instance of SQL Server to Windows Azure
SQL Database.

Before you begin: Recommendations, Limitations and Restrictions, Prerequisites

Use the SQL Server Integration Services to: Migrate a Database

Before You Begin

SSIS can be used to perform a broad range of data migration tasks. SSIS provides support for
complex workflow and data transformation between the source and destination. It is a good
choice to transfer of data for databases that require many changes to work on Windows Azure
SQL Database. You can use SSIS data transfer packages with another mechanism for transferring
the database schema, such as a Data-tier Application package.

Recommendations

The most powerful use of SSIS is to perform complex transformations for migrations that require
significant schema changes. In these projects, it is best to use another mechanism to manage
the development of the new schema (such as using SQL Server Data Tools). But use SSIS data
transfer packages to handle transforming the source data into the format specified for the
destination database. While SSIS provides package types for transferring schema information,
they are most useful when there are no changes between the source and destination databases.
Another time to consider using SSIS is when you must optimize the data load time to fit within
the cutover window for the project.

The SSIS Import/Export Wizard can be quickly used to create packages that move data from a
single data source to a destination with no transformations. You can use the wizard to generate
basic packages that map data from a source table to its destination. You can then edit the
package to add robust error handling and retry logic.

The SSIS ADO.NET adapter supports SQL Database. It provides an option to bulk load data
specifically for Windows Azure SQL Database. Use the SSIS ADO.NET Destination adapter to
transfer data to Windows Azure SQL Database.

For each Windows Azure SQL Database ADO.NET destination, make sure to use the Use Bulk
Insert when possible option. That allows you to use bulk load capabilities to improve the
transfer performance. Another way to improve performance is to split source data into multiple
files on the file system. In SSIS Designer, you can reference the files using the Flat File
Component.

[Top]

Migrating with Windows Azure Cloud Services

105

Limitations and Restrictions

SSIS is not available as a Windows Azure service similar to Windows Azure SQL Database. You
can run SSIS packages on an on-premises instance of SQL Server to transfer data to Windows
Azure SQL Database.

A package might fail due to throttling or network issues. Design packages so that they can be
resumed at the point of failure, without redoing all the work that completed before the failure.

Connecting to Windows Azure SQL Database by using OLEDB is not supported.

[Top]

Prerequisites

The version of SQL Server Integration Services in SQL Server 2008 R2 or later support Windows
Azure SQL Database.

[Top]

Migrate a Database by Using SQL Server Integration Services

The following is a screenshot for configuring the ADO.NET Connection to Windows Azure SQL
Database:

[Top]

Resources

Designing and Implementing Packages (Integration Services)

http://msdn.microsoft.com/library/ms141091.aspx�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

106

How to: Use the Import and Export Wizard to Migrate a Database to
Windows Azure SQL Database
Author: Shaun Tinline-Jones

When migrating a SQL Server database to Windows Azure SQL Database, the SQL Server Import
and Export Wizard in an easy way to create a SQL Server Integration Services package to transfer
data. The package can then be modified to add more robust error handling and retry logic.

Before you begin: Recommendations, Limitations and Restrictions, Prerequisites

Use the Import Export Wizard to: Migrate Data

SQL Server Import and Export Wizard

Recommendations

The SQL Server Import and Export wizard configures the source and destination connections for
a package. It then adds any data transformations that are required to perform an export from
one of several data sources, such as a SQL Server database, or import to a data source such as
Windows Azure SQL Database. You can run the package immediately, save it to run later, or
modify the package in SSIS Designer.

The SSIS ADO.NET adapter supports Windows Azure SQL Database. It provides an option to bulk
load data specifically for Windows Azure SQL Database. Use the SSIS ADO.NET Destination
adapter to transfer data to Windows Azure SQL Database.

[Top]

Limitations and Restrictions

While the SQL Server Import and Export Wizard can transfer schema information, it only
transfers table definitions, not indexes or other constraints. Windows Azure SQL Database
requires all tables have a clustered index, so only use the Import and Export Wizard to transfer
data. Use another process to transfer the schema, such as the Generate Scripts Wizard or data-
tier application (DAC) packages. For more information, see Choosing Tools to Migrate a
Database to Windows Azure SQL Database.

A package might fail due to throttling or network issues. Build the package so that it can be
resumed at the point of failure instead of having to rerun the entire package after a failure.

Connecting to Windows Azure SQL Database by using OLEDB is not supported.

Note

On a 64-bit computer, Integration Services installs the 64-bit version of the SQL Server
Import and Export Wizard (DTSWizard.exe). However, some data sources, such as Access or
Excel, only have a 32-bit provider available. To work with these data sources, you might
have to install and run the 32-bit version of the wizard. To install the 32-bit version of the

http://msdn.microsoft.com/library/ms137973.aspx�

Migrating with Windows Azure Cloud Services

107

wizard, select either Client Tools or Business Intelligence Development Studio during SQL
Server setup.

[Top]

Prerequisites

The SQL Server Import and Export Wizard installed with the client utilities from SQL Server 2008
R2 or later supports Windows Azure SQL Database.

[Top]

Migrate Data by Using the Import and Export Wizard

There are several ways to start the wizard, either from the command prompt or from the
various SQL Server tools:

1. On the Start menu, point to All Programs. Point to Microsoft SQL Server 2012, and then
click either Import and Export Data (64-bit) or Import and Export Data (32-bit).

2. In Business Intelligence Development Studio, right-click the SSIS Packages folder from
Solution Explorer, and then click SSIS Import and Export Wizard.

3. In Business Intelligence Development Studio, on the Project menu, click SSIS Import and
Export Wizard.

4. In SQL Server Management Studio, connect to the Database Engine server type. Expand
Databases, right-click a database, point to Tasks, and then click Import Data or Export
data.

5. In a command prompt window, run DTSWizard.exe. The 64-bit wizard is located in
C:\Program Files\Microsoft SQL Server\110\DTS\Binn. The 32-bit wizard is located in
C:\Program Files (x86)\Microsoft SQL Server\110\DTS\Binn.

The migration involves the following main steps:

1. Choose a data source from which to copy data.

2. Choose a destination where to copy data to.

To export data to Windows Azure SQL Database, choose the .NET Framework Data
Provider for SQLServer as the destination:

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

108

3. Specify table copy or query.

4. Select source objects.

5. Save and run the package.

Note

If you save the package, you must add the package to an existing Integration Services
project before you can change the package or run the package in BI Development Studio.

[Top]

Resources

Run the SQL Server Import and Export Wizard

SQL Server Import and Export Wizard

http://msdn.microsoft.com/library/ms140052.aspx�
http://msdn.microsoft.com/library/ms141209.aspx�

Migrating with Windows Azure Cloud Services

109

How to: Use a SQL Server Migration Assistant with Windows Azure SQL
Database
Author: Shaun Tinline-Jones

There are several SQL Server Migration Assistants that can be used to migrate databases to
Windows Azure SQL Database from other database products, such as Oracle, MySQL, Sybase,
and Microsoft Access.

Before you begin: Prerequisites

Use a SQL Server Migration Assistant to: Migrate a Database

Before You Begin

SQL Server Migration Assistant (SSMA) is a family of products to reduce the cost and risk of
migration from Oracle, Sybase, MySQL, and Microsoft Access databases to Windows Azure SQL
Database or SQL Server. SSMA automates all aspects of migration, including migration
assessment analysis, schema and SQL statement conversion, data migration, as well as
migration testing.

Prerequisites

An SSMA is a web download. To download the latest version, see the SQL Server Migration Tools
product. As of this writing, the following are the most recent versions:

• Microsoft SQL Server Migration Assistant for Access v5.2

• Microsoft SQL Server Migration Assistant for MySQL v5.2

• Microsoft SQL Server Migration Assistant for Oracle v5.2

• Microsoft SQL Server Migration Assistant for Sybase v5.2

SSMA is installed by using a Windows Installer-based wizard. SSMA is free, but must be activated
by downloading a registration key. After you install and run the application, the application
prompts you to register and download the registration key.

[Top]

Migrate a Database By Using a SQL Server Migration Assistant

The migration process of the SSMA for Access involves the following steps:

1. Create a new migration wizard. Make sure selecting SQL Azure in the Migrate To box.

2. Add Access databases.

3. Select the Access objects to migrate.

4. Connect to Windows Azure SQL Database.

5. Link tables. If you want to use your existing Access applications with Windows Azure SQL
Database, you can link your original Access tables to the migrated Windows Azure SQL
Database tables. Linking modifies your Access database so that your queries, forms,

http://www.microsoft.com/download/details.aspx?id=28763�
http://www.microsoft.com/download/details.aspx?id=28764�
http://www.microsoft.com/download/details.aspx?id=28766�
http://www.microsoft.com/download/details.aspx?id=28765�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

110

reports, and data access pages use the data in the Windows Azure SQL Database
database instead of the data in your Access database.

6. Convert selected objects.

7. Load converted objects into Windows Azure SQL Database database.

8. Migrate data for selected Access objects.

[Top]

Resources

SQL Server Migration Assistant

Migrating Microsoft Access Applications to SQL Azure (video)

SQL Server: Manage the Migration

http://msdn.microsoft.com/library/hh302873(SQL.105).aspx�
http://www.microsoft.com/en-us/showcase/details.aspx?uuid=a39ddb0d-61ff-49ab-b5e5-c1fad9963a3e�
http://technet.microsoft.com/magazine/hh334645.aspx�

Migrating with Windows Azure Cloud Services

111

Considerations for Migrating Partitioned Data to Windows Azure
SQL Database
Authors: Shaun Tinline-Jones
Contributors: Sreedhar Pelluru
Reviewers: Rama Ramani, Valery Mizonov, Kun Cheng, Steve Howard

Data partitioning is a well-established and common technique in on-premises solutions to
manage very large database systems. In this technique, data in a large database is split and
distributed across partitions, primarily to improve manageability, performance, and availability
of the database. Database administrators and database developers who have traditionally
worked with SQL Server have employed partitioning for variety of reasons such as the following:

• Increasing the efficiency of data management

• Improving the responsiveness of queries

• Increasing the concurrency of queries

• Adding more computing power by leveraging multiple physical servers

• Maintaining a level of availability

• Overcoming limitations of physical storage

• Reducing the width of a table

When considering a migration to the Windows Azure SQL Database platform from on-premises
SQL Server, there may be additional reasons for partitioning data, such as:

• Multi-tenancy

• Accessing more compute power

• Avoiding throttling

• Unavailability of data

• More cost effective storage costs

• Data size constraints

The features of SQL Server that are typically used for partitioning data in on-premises solutions
include: Replication, Table Partitioning, Partitioned Views, Distributed Partitioned
Views, Filegroup Strategies, and Cross-database queries (Distributed Queries). Windows Azure
SQL Database supports all the features except Partitioned Views. SQL Database does
offer Federations, which is not available in the on-premises version.

If the solution that you are migrating is a simple one, which relies on a single database that does
not demand significant resources, then there is a high probability that it doesn’t use any
features that strive to partition data. If the solution uses features mentioned above or has
significant computing demands, then transposing the features over to SQL Database is likely to
require a re-design of the database model.

http://go.microsoft.com/fwlink/?LinkId=253530�
http://go.microsoft.com/fwlink/?LinkId=253531�
http://go.microsoft.com/fwlink/?LinkId=253532�
http://go.microsoft.com/fwlink/?LinkId=253533�
http://go.microsoft.com/fwlink/?LinkId=253533�
http://go.microsoft.com/fwlink/?LinkId=253534�
http://go.microsoft.com/fwlink/?LinkId=253535�
http://go.microsoft.com/fwlink/?LinkId=253536�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

112

Transposing existing on-premises features to SQL Database

Replication

In terms of partitioning, replication can be used in scenarios such as the following:

• Moving subsets of data from multiple sources to a single location

• A single database serves as the read-write database, and multiple subscribers of that
database serve as load-balanced read-only databases.

• Subsets of data serve different users based on parameters such as geographic location
and then data is replicated to a solution that combines all these subsets (publishers).

The most typical reasons for implementing replication are:

• Creating a read-only replica of a read/write OLTP database.

• Maintaining a warm standby copy of a database.

• Populating a data staging area.

• Make only relevant data available to subset of users.

• Improve computing and management efficiencies based on subsets of data.

SQL Database does not support replication. The SQL Database feature that is closest to the
Replication feature is the Windows Azure SQL Data Sync feature. This feature relies on triggers
and Change Data Capture (CDC) tables and scheduled jobs to achieve replication of the data. It’s
possible to replicate certain tables; however it’s not possible to select a subset of data from a
table.

First, consider the reasons behind the on-premises replication design. If the purpose is disaster
recovery (DR), SQL Database has it covered. If the purpose is geographical DR, then SQL
Database doesn’t cover it as yet. If it is to offload computing resources, where the subscribers
are using the identical design, then SQL Database has the option of Federations.

Federations in SQL Database are a way to achieve greater scalability and performance from the
database tier of your application through horizontal partitioning. One or more tables within a
database are split by row and portioned across multiple databases (Federation members). This
type of horizontal partitioning is often referred to as “sharding.”

Table Partitioning

The data of partitioned tables is divided into units that can be spread across more than one
filegroup in a database. The data is partitioned horizontally, so that groups of rows are mapped
into individual partitions. Generally, a large table is partitioned if the table contains, or is
expected to contain, lots of data that are used in different ways and queries and updates against
the table are not performing as intended, or maintenance tasks such as backing up takes too
long. Table partitioning is typically implemented to store data on different volumes, improve
backup/restore efficiencies, improve performance of queries, and increase the concurrency of
queries.

http://go.microsoft.com/fwlink/?LinkId=253537�
http://go.microsoft.com/fwlink/?LinkId=253536�

Migrating with Windows Azure Cloud Services

113

SQL Database doesn’t support table partitioning at this time. SQL Database avoids the need for
table partitioning if the purpose was to overcome disk capacity considerations. Consider
using SQL Database Federations when migrating to SQL Database.

Partitioned Views

Partitioned Views let you divide a large table in a database into a series of smaller tables that
contain specific subsets of the data and then build a UNION ALL view over the small tables so
that the view appears as a single table containing all of the data. The partitioned views are
typically used for the same reason as the partitioned tables.

SQL Database supports Partitioned Views; hence, migrating partitioned views to SQL Database
should be straightforward.

Distributed Partitioned Views

A Distributed Partitioned Views joins horizontally partitioned data from a set of member tables
spread across different database instances on different database servers. You can use
distributed partitioned views to leverage the processing power of different database servers,
improve performance of queries by breaking large table into smaller tables, and share the load
across a federation of database servers.

SQL Database does not support Distributed Partitioned Views as of yet. Consider using SQL
Database Federations.

Filegroup Strategies

Filegroups are named collection of files and are used to simplify data placement and
administrative tasks such as backup and restore functions. They are typically used to improve
database performance by storing data across multiple disks, multiple disk controllers, or RAID
(redundant array of independent) disk systems. When multiple file groups are used, the files in a
database can be backed up and restored individually.

Filegroups are not supported in SQL Database. If you are using filegroups for administrative
purposes, you don’t need to worry about it anymore because SQL Database takes care of it. If it
is for performance reasons, consider using SQL Database Federations.

Cross-database Queries

Cross-database queries (Distributed Queries) are typically used to access data distributed across
multiple instances of SQL Server.

The SQL Database data access model does not support cross-database queries at this time, and
the USE command is not supported. It is possible to code cross-database joins or comparisons in
the application after the data has been returned from the appropriate databases. Consider
using SQL Database Federations as it is the partitioning solution that is supported by SQL
Database.

http://go.microsoft.com/fwlink/?LinkId=253536�
http://go.microsoft.com/fwlink/?LinkID=253532�
http://go.microsoft.com/fwlink/?LinkID=253533�
http://go.microsoft.com/fwlink/?LinkId=253536�
http://go.microsoft.com/fwlink/?LinkId=253536�
http://go.microsoft.com/fwlink/?LinkId=253536�
http://go.microsoft.com/fwlink/?LinkId=253535�
http://go.microsoft.com/fwlink/?LinkId=253536�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

114

Migrating Data to Other Data Management Services
in Windows Azure
Authors: Sreedhar Pelluru
Contributors: Rama Ramani

[This documentation is for preview only, and is subject to change in later releases. For the most
up-to-date information, see Migrating Data to Other Data Management Services in Windows
Azure in the MSDN library.]

The Overview of Data Management Services in Windows Azure topic provided you the overview
of the data management services in the Windows Azure Platform. This section provides
guidance on migrating your on-premises applications to use the following data management
services: Windows Azure Table service, Windows Azure Blob service, and Windows Azure Queue
service as well as other related features: Azure Drive and Local Storage.

The following table compares Table Storage, Blob Storage, Local Storage and Drives to help you
decide which storage to use for your scenario.

Comparison
Criteria

Local
Storage

Azure Drive Table storage Blob storage

Durability Non-durable.

It can be
persisted
across
recycles of
the same
application
instance, but
if the
instance fails
over to
different
hardware,
the data
does not
move with
the instance.

Durable.

An Azure drive
is backed by a
durable page
blob. If the VM
onto which a
drive is
mounted fails,
the drive can
be mounted by
another VM
with all the
data that was
persisted to
the blob
storage.

Durable.

Table storage
provides scalable
and durable storage
for structured data.

Durable.

Blob storage
provides scalable
and durable storage
for unstructured
objects such as
images, audio and
video files.

Data Access File System
API.

You can

File System
API.

You can access

REST API or Storage
Client Library

Table storage can be

REST API or Storage
Client Library

Blob storage can be

Migrating with Windows Azure Cloud Services

115

Comparison
Criteria

Local
Storage

Azure Drive Table storage Blob storage

access local
storage by
using file
system APIs.
Therefore,
you may be
able to run
the
application
with minimal
code
changes on
the Azure
Platform.

a Windows
Azure drive by
using file
system APIs.
Therefore, you
may be able to
run the
application
with minimal
code changes
on the Azure
Platform.

accessed from
anywhere and any
client by using the
REST API. You can
also access Table
storage using
Storage Client
Libraries that
provide language
specific (such as
.NET, Java, Node.js
and PHP) wrappers
around the REST
API.

accessed from
anywhere and any
client by using the
REST API. You can
also access Blob
storage using
Storage Client
Libraries that
provide language
specific (such as
.NET, Java, Node.js,
and PHP) wrappers
around the REST
API.

Concurrency No.

Local Storage
is only
accessible
from one
application
instance. It is
not shared
with other
instances.

Yes, but
limited.

Only one
instance has
Read/Write
access at any
given time to
an Azure drive,
but several
other instances
can have read-
only access.

Yes.

Table storage is
shared by any
applications that
can use REST API to
access the storage.
Concurrent access
to Table storage is
supported
through ETags.

Yes.

Blob storage is
shared by any
applications that
can use REST API to
access the storage.
Concurrent access
to Blob storage is
supported
through ETags.

Pricing Windows
Azure
Compute
account is
required.

Local Storage
is Included in
the price of
the Azure
Compute
account, and
limited

Windows
Azure Storage
account is
required. For
up-to-date
pricing
information,
see Windows
Azure Pricing
Details.

Table storage
requires you to have
a Windows Azure
Storage Account.

Blob storage
requires you to have
a Windows Azure
Storage Account.

http://go.microsoft.com/fwlink/?LinkId=253498�
http://go.microsoft.com/fwlink/?LinkId=253498�
http://go.microsoft.com/fwlink/?LinkID=253495�
http://go.microsoft.com/fwlink/?LinkID=253495�
http://go.microsoft.com/fwlink/?LinkID=253495�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

116

Comparison
Criteria

Local
Storage

Azure Drive Table storage Blob storage

according to
the size of
the compute
instance. No
additional
storage
account is
required.

Latency
(access from a
Windows Azure
Compute
instance)

Local storage
is on the VM
itself, so
accessing it
is fast
compared
with
accessing an
Azure drive.

Slower
compared to
Local Storage
since the data
is not stored
on the VM
itself; it is
stored in the
blob storage.
Latency
increases if the
Azure drive is
located in a
different data
center location
than the
Compute
instance.

Slower compared to
Local Storage since
the data is not
stored on the VM
itself. Latency
increases if the table
storage is located in
a different data
center from the role
instance or VM
accessing it.

Slower compared to
Local Storage since
the data is not
stored on the VM
itself. Latency
increases if the
BLOB storage is in a
different data
center from the role
instances, VMs, or
machines that
access the storage.

Scalability No

Only one
application
instance can
access the
local storage.
Hence, it
does not
provide any
scalability.

Yes, but
limited.

Only one
application
instance can
have write
access to an
Azure drive,
but several
application
instances can
have read

Yes.

Windows Azure
Storage System
automatically
distributes
partitions across all
the storage nodes
based on the usage
patterns of the
partitions. For
example, if there is
high traffic to some

Yes.

Azure Blob storage
supports a massively
scalable blob
distribution system
via the Windows
Azure CDN, where
hot blobs are served
from many servers
to scale out and
meet the traffic
needs of your

http://go.microsoft.com/fwlink/?LinkId=253499�

Migrating with Windows Azure Cloud Services

117

Comparison
Criteria

Local
Storage

Azure Drive Table storage Blob storage

access. of your partitions,
the system
automatically
spreads them to
separate storage
nodes so that the
traffic load is spread
across many
servers.

application.
Furthermore, the
system is highly
available and
durable.

High
availability/Fault
tolerance

No Yes

An Azure drive
is backed by
Blob storage,
which provides
high
availability.

Yes.

Blobs, tables, and
queues stored on
Windows Azure are
replicated to three
locations within the
same data center
for resiliency against
hardware failures.
Additionally, your
data is replicated
across different
fault domains to
increase availability
as with all Azure
storage services.

Yes.

Blobs, tables, and
queues stored on
Windows Azure are
replicated to three
locations within the
same data center
for resiliency against
hardware failures.
Additionally, your
data is replicated
across different
fault domains to
increase availability
as with all Azure
storage services.

Disaster recovery No Yes

An Azure drive
is backed by
Blob storage,
which provides
disaster
recovery.

Yes.

Windows Azure
blobs and tables are
also replicated
between two
geographically
separated data
centers on the same
continent, to
provide additional
data durability in
the case of a major
disaster.

Yes.

Windows Azure
blobs and tables are
also replicated
between two
geographically
separated data
centers on the same
continent, to
provide additional
data durability in
the case of a major
disaster.

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

118

Comparison
Criteria

Local
Storage

Azure Drive Table storage Blob storage

Security Can only be
accessed
from the
virtual
machine on
which it
exists.

Only one
application
instance can
have write
access to an
Azure drive,
but several
application
instances can
have read
access.

Every request you
make to the
Windows Azure
storage services
must be
authenticated,
unless it is an
anonymous request
against a public
container resource.
See Authenticating
Access to Your
Storage Account for
more details.

Every request you
make to the
Windows Azure
storage services
must be
authenticated,
unless it is an
anonymous request
against a public
container resource.
See Authenticating
Access to Your
Storage Account for
more details.

Some of the scenarios where you can use data management services of Windows Azure are:

• Use the service to provide another disaster recovery (DR) location for on-premises data.

• Share portions of on-premises data with partners without changing on-premises
infrastructure.

• Move data closer to compute nodes in the cloud.

• Handle peak loads for data access that is known in advance by migrating data to cloud,
scaling it out and then letting clients access it.

In This Section
• Migrating Data to Table Storage

• Migrating Data to Blob Storage

• Migrating Data to Drives

RelatedTopics
• Migrating Applications that Use Messaging Technologies

• Migrating Data to Local Storage

http://go.microsoft.com/fwlink/?LinkId=253500�
http://go.microsoft.com/fwlink/?LinkId=253500�
http://go.microsoft.com/fwlink/?LinkId=253500�
http://go.microsoft.com/fwlink/?LinkId=253500�
http://go.microsoft.com/fwlink/?LinkId=253500�
http://go.microsoft.com/fwlink/?LinkId=253500�

Migrating with Windows Azure Cloud Services

119

Migrating Data to Table Storage
Authors: Sreedhar Pelluru
Contributors: James Podgorski
Reviewers: Valery Mizonov, Kun Cheng, Steve Howard

Azure Table storage offers a massively scalable non-relational structured storage in the cloud.
An Azure table is a collection of entities (rows). An entity can have up to 255 properties
(columns) where each property has name, type, and value attributes. Each entity in a table has
three reserved properties: PartitionKey, RowKey, and Timestamp. Table storage uses partition
key to partition or distribute entities over the Azure Storage nodes. A partition in Table storage
contains entities with the same partition key. A row key uniquely identifies an entity within the
partition and the timestamp is a read-only system maintained property for tracking changes.
Table storage does not require you to define a schema for entities in a table. A table can have
entities that contain different set of properties. For a detailed overview of Table storage,
see Windows Azure Portal.

Migration Considerations
Consider various factors such as the following ones when migrating your applications to use the
Azure Table storage.

• What type of data can be stored in Table storage?

• How can the data stored in Table storage be accessed from the migrated application?

• Does the storage support high-availability, scalability, disaster recovery, and security
requirements of the migrated application?

• How do you upload any existing data to Table storage?

http://go.microsoft.com/fwlink/?LinkID=253497�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

120

Data Considerations

The first step to perform in the migration process is to determine whether Table storage is a
good fit for storing the data that your on-premises application uses. Table storage is optimized
for storing data that meets the following requirements.

• The data is structured and typically stored in tabular format.

• The data is non-relational. The data you are planning to store in one table is not related
to data in other tables. Azure Table storage does not support storing relational data by
using mechanisms such as referential integrity in databases. Table storage is optimized
for storing non-relational structured data.

• The data does not require server-side processing. Ensure that your data does not
require any server-side processing such as joins, stored procedures, and triggers, which
a relational database supports. Table storage does not support server-side processing. It
does support basic operations such as Insert, Update, Delete, and Select with simple
server-side filtering by PartitionKey and RowKey.

• The data is primarily indexed and searched by using a lookup value or key. The partition
key identifies the partition and the row key identifies a unique row within the partition.
The partition key and row key together uniquely identify an entity in the table. After you
determine Table storage is a good fit to store the data, evaluate what part of the data
you can use as a partition key for the table. See Designing a Scalable Partitioning
Strategy for Windows Azure Table storage.

• The data can be stored by using the data types that the Table storage supports.
The supported data types for Table storage are: String, Byte Array, GUID, DateTime,
Int32, Int64, Double, and Boolean.

• The data does not require cross-partition transactions. Table storage does not support
distributed or cross-partition transactions; it supports only entity-group transactions.
Therefore, choosing the right partition key and storing related data in the same partition
is important. For example, you may want to store information about a customer and the
orders he places in the same partition so that you can update both customer
information and order information within a single transaction to achieve data integrity.

• (Optional) The data size can grow to gigabytes/terabytes. The maximum size of an Azure
table is 100 TB, which is actually the size limit for the Windows Azure Storage (includes
tables, blobs, and queues).

• (Optional) The data stored in one row can be different in structure and type from the
data stored in another row of the table. Windows Azure Table storage does not require
you to define a fixed schema for the rows or entities. Hence, you can store different
types of data in the same table. For example, you can store order information in one
row and customer information in another row of the same table.

Table storage vs. Windows Azure SQL Database

Table storage stores structured data as Windows Azure SQL Database does. Therefore, when
migrating applications from on-premises to the Windows Azure Platform, a common question
that arises is whether to use Table storage or SQL Database. The main difference between SQL

http://go.microsoft.com/fwlink/?LinkId=253503�
http://go.microsoft.com/fwlink/?LinkId=253503�
http://go.microsoft.com/fwlink/?LinkID=253494�
http://go.microsoft.com/fwlink/?LinkID=253487�

Migrating with Windows Azure Cloud Services

121

Database and Table storage is: SQL Database is a relational database management system that
provides data-processing capabilities through joins, views, and stored procedures, whereas,
Windows Azure Table storage is not a relational data store and does not provide data processing
capabilities that the SQL Database supports.

If your application stores and retrieves large data sets but does not require data processing,
then the Windows Azure Table is a better choice and if your application requires data processing
over large data sets and is relational in nature, then SQL Database is a better choice. There are
several other factors you need to consider before deciding between SQL Database and Azure
Table storage though. See the comparison table in Overview of Data Management Services in
Windows Azure topic for more detailed comparison.

Data Access Considerations

Client applications written in any programming language and running on any operating system
can access the Azure Table storage using HTTP(S) REST API. Table storage can also be accessed
by using client libraries that target specific operating systems and programming languages.
Libraries exist for .NET, Node.js, Java, and PHP, and are available for download on Windows
Azure Developer Center. For example, the .NET Storage Client Library provides strongly typed
.NET wrappers around the REST API to make the development easier for .NET developers.

If your existing on-premises application uses structured but non-relational data and you
consider using the Table storage to store that data on the Windows Azure Platform, you will be
expected to rewrite the part of the code that accesses the data by using the Storage Client
Library.

Benefits of Table storage

When you store your data in the Azure Table storage, you automatically get several important
benefits such as the following ones:

• Scalability: Windows Azure Storage System automatically distributes partitions across
all the storage nodes based on the usage patterns of the partitions. For example, if there
is high traffic to some of your partitions, the system automatically spreads them to
separate storage nodes so that the traffic load is spread across many servers.

• High Availability/Fault tolerance: Tables stored on Windows Azure are stored in three
replicated copies in the same data center for resiliency against hardware failures.
Regardless of which storage service you use, your data is replicated across different
fault domains to increase availability.

• Disaster recovery: Windows Azure tables are also replicated between two
geographically separated data centers on the same continent, to provide additional data
durability in the case of a major disaster.

• Security: Every request you make to the Windows Azure storage services must be
authenticated unless it is an anonymous request against a public container resource.
See Authenticating Access to Your Storage Account for more details.

http://go.microsoft.com/fwlink/?LinkId=253504�
http://go.microsoft.com/fwlink/?LinkId=253504�
http://go.microsoft.com/fwlink/?LinkID=253500�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

122

• Data access from any client, anywhere: Table storage can be accessed using the REST
API via HTTP(S). Therefore, any client application on any operating system can access
Table storage using REST.

Uploading Existing Data to Azure Table storage

After you redesign your application to take advantage of the massively scalable non-relational
Table storage, you might need to transfer existing data from a File System or a SQL Server
database to the Table storage. To do so, you can either write code by yourself using the HTTP(S)
REST API, or the .NET Client Library for Table storage, or use tools such as the following ones:

• Azure File Upload Utility. This utility allows users to upload the data from a delimited
flat file to the Azure Table storage.

• Azure Database Upload Utility. This utility allows users to upload data from a SQL Server
database to Azure Table storage.

• Cloud Storage Studio from Red Gate Software. Third-party tools such as this tool allow
you to manage Azure Cloud Storage including Table storage.

See Also

How to get the most out of Windows Azure Tables

http://go.microsoft.com/fwlink/?LinkId=253506�
http://go.microsoft.com/fwlink/?LinkId=253507�
http://go.microsoft.com/fwlink/?LinkID=253491�
http://blogs.msdn.com/b/windowsazurestorage/archive/2010/11/06/how-to-get-most-out-of-windows-azure-tables.aspx�

Migrating with Windows Azure Cloud Services

123

Migrating Data to Blob Storage
Authors: Sreedhar Pelluru
Contributors: James Podgorski
Reviewers: Christian Martinez, Valery Mizonov, Kun Cheng, Steve Howard

The Windows Azure Blob service enables applications to store large amounts of unstructured
text or binary data, such as video, audio, and image files. Blob storage contains zero or more
blob containers and a container contains zero or more blobs. A blob is any single entity
comprised of binary data, such as a file or an image.

The storage service offers two types of blobs: Block Blob and Page Blob.

• Block Blob is comprised of blocks, each of which is identified by a block ID. You create or
modify a block blob by writing a set (or list) of blocks and committing them by their
block IDs. Each block can be of a different size, up to a maximum of 4 MB. The maximum
size for a block blob is 200 GB, and a block blob can include no more than 50,000 blocks.
Block Blobs allow you to insert, delete, and reorder blocks with in a blob and to
simultaneously upload multiple blocks of a blob. It is designed to enable uploading and
downloading of large blobs efficiently. Consider using block blob if the application stores
large files that multiple readers access concurrently.

• Page blobs are a collection of 512-byte pages optimized for random read and write
operations. Each page in a page blob is referenced by using an offset from the beginning
of the blob. To add or update the contents of a page blob, you write a page or pages by
specifying an offset and a range that align to 512-byte page boundaries. A write to a
page blob can overwrite just one page, some pages, or up to 4 MB of the page blob. A
write to a page blob occurs in-place and is immediately committed to the blob. The
maximum size of the blob is 1 TB and the blob size must be a multiple of 512 bytes.

For a detailed overview of Blob storage, see Windows Azure Portal.

Block Blob vs. Page Blob
Block blobs let you upload large blobs, up to 200 GB, efficiently. They are optimized with
features that help you manage large files over networks. One such feature is being able to
upload and download multiple blocks in parallel and determine the sequence at time of

http://go.microsoft.com/fwlink/?LinkID=253497�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

124

committal. Page blobs, on the other hand, are optimized for random read and write access,
where pages are aligned on a 512-byte boundary.

The following are some of the scenarios where Page Blobs are used:

• An application that accesses files with range-based updates. The application treats a
page blob as a file and uses ranged writes to update parts of the blob that have
changed. Exclusive write access can be obtained for page blob updates.

• Custom logging for applications that treat a page blob as a circular buffer. When the
page blob is filled, the application can start writing data from the beginning of the blob
structure.

Migration Considerations
Consider various factors such as the following ones when migrating your applications to use
Azure Blob storage.

• What type of data can be stored in Blob storage?

• How can the data stored in Blob storage be accessed from the migrated application?

• Does the storage support high availability, scalability, disaster recovery, and security
requirements of the migrated application?

• How can the existing data be uploaded to Blob storage?

Data Considerations

Before redesigning your application to use Blob storage, first evaluate whether Blob storage is a
good fit for the data you are trying to store. Blob storage is designed for storing large amounts
of unstructured text or binary data such as documents, pictures, audio, and video.

Blob storage can also be used to store files/binaries that your application depends on. By storing
dependent files in a blob, you can update dependent files without updating or uploading the
entire application package (.Cspkg) file. It also allows you to have different versions of
dependent files in separate blobs and application to load dependent files specific to a certain
version dynamically.

Blob storage vs. Windows Azure SQL Database

Windows Azure SQL Database supports varbinary(max) data type to support storing large
objects in the database. If your application stores and accesses binary large objects such as
pictures, audio, and video in a SQL Server database, determine whether to use SQL Database or
Blob storage when you migrate your application to the Windows Azure Platform.

If you are using the FILESTREAM attribute on a varbinary column to store files of size is greater
than 2 GB in a SQL Server database, consider using Blob storage when you migrate to the Azure
Platform because SQL Database does not support FILESTREAM at this time. Even when the file
size is less than 2 GB and you do not use the FILESTREAM feature of SQL Server, consider using

Migrating with Windows Azure Cloud Services

125

Blob storage because, depending on the nature of your application, it may be cheaper and more
scalable, and because it can be accessed by any client using the REST API.

After you store large objects in Blob storage, you can store a reference to the blob in a column
in a table in your SQL Database instance. The maximum size of SQL Database instance is
currently 150 GB. Therefore, if you store large objects in a SQL Database instance, you might run
out of space. The maximum size of blob storage is 100 TB, which is actually the size limit for the
Windows Azure Storage. The maximum size of each blob in blob storage is 200 GB (Block Blob)
or 1 TB (Page Blob).

For example, if you are migrating an on-premises web application which has graphic resources
such as images, you can store the URL to the image in SQL Database (or Table Storage) and have
the client program retrieve the URL and display the image from the URL.

The performance of your application might be affected by moving blobs out of SQL Database
and storing only a reference to the blob in Blob storage because the client application queries
the SQL Database instance first to determine the location of the blob and then query Blob
storage to get the blob data such as images or large objects. Consider that it is not possible to
backup/restore data from both SQL Database and Blob storage together, so backups of Blob
storage and SQL Database are not guaranteed to be transactionally consistent.

Another thing to consider is the number of transactions that the application performs against
the data store. SQL Database has no separate charge for transactions performed against it
whereas transactions performed against Windows Azure Storage are charged. Data that is
accessed less frequently may be a good candidate for Windows Azure Storage, whereas data
that is accessed more frequently may be more economically stored in SQL Database.

Data Access Considerations

Client applications written in any programming language and running on any operating system
can access Azure Blob storage using HTTP(S) REST API. Blob storage can also be accessed by
using the client libraries that target specific operating systems and programming languages.
Libraries exist for .NET, Node.js, Java, and PHP, and are available on Windows Azure Developer
Center. For example, the .NET Storage Client Library provides strongly typed .NET wrappers
around the REST API to make the development easier for .NET developers.

http://go.microsoft.com/fwlink/?LinkID=253504�
http://go.microsoft.com/fwlink/?LinkID=253504�
http://go.microsoft.com/fwlink/?LinkID=253504�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

126

If you decide to store unstructured data used by your application in Blob storage on the
Windows Azure Platform, you will be expected to rewrite the part of the code that accesses the
data by using the Storage Client Library.

Benefits of Blob storage

When you store your data in Azure Blob storage, you automatically get several important
benefits such as the following ones:

• Scalability. Azure Blob storage supports a massively scalable blob distribution system via
the Windows Azure CDN. The CDN serves hot blobs from many servers to scale out and
meet the traffic needs of your application. Furthermore, the system is highly available
and durable.

• High Availability/Fault tolerance: Blobs stored on Windows Azure are replicated to
three locations in the same data center for resiliency against hardware failures.
Additionally, your data is replicated across different fault domains to increase
availability as with all Azure storage services.

• Disaster recovery: Windows Azure blobs are also replicated between two geographically
separated data centers on the same continent, to provide additional data durability in
the case of a major disaster.

• Security: Every request you make to the Windows Azure Storage services must be
authenticated unless it is an anonymous request against a public container resource.
See Authenticating Access to Your Storage Account for more details.

• Data access from any client, anywhere: Windows Azure Blob storage can be accessed
using the REST API via HTTP. Any client application on any operating system can access
the Blob storage using REST.

Migrating Existing Data to Azure Blob storage
After you redesign your application to take advantage of the massively scalable Blob storage,
you might need to migrate existing data from a File System or a SQL Server database. To do so,
you can either write code by using the HTTP(S) REST API or .NET Client Library for the Blob
storage or use tools such as Cloud Storage Studio from Red Gate Software.

http://go.microsoft.com/fwlink/?LinkID=253499�
http://go.microsoft.com/fwlink/?LinkID=253500�
http://go.microsoft.com/fwlink/?LinkID=253491�

Migrating with Windows Azure Cloud Services

127

Migrating Data to Drives
Authors: Sreedhar Pelluru
Reviewers: Valery Mizonov, Kun Cheng, Steve Howard

A Windows Azure drive is a page blob, which contains an NTFS-formatted virtual hard drive
(VHD). You can create a VHD on your computer, upload it to the blob storage or use the REST
API to have Windows Azure create the blob, and mount the blob as an Azure drive on to the VM
(associated with a compute node) running your application code. The VM has a device driver for
file system that accepts file system I/O requests and translates them into operations on the
VHD. If the machine fails, another machine can run the same code and mount the VHD accessing
the data that was saved previously.

See Windows Azure Drives Whitepaper for a detailed overview of Windows Azure Drives.

Migration Considerations
Your Windows Azure applications in the cloud can use the existing NTFS APIs to access a
Windows Azure drive. This makes it easier to migrate on-premises applications that use the
NTFS API (or standard .NET Framework API such as FileStream) to store and access data on a file
system to the Azure Platform with minimal changes to the code.

It is important to note that only one machine at a time can mount a Windows Azure drive for
writing. Therefore, this feature is not for applications that are scaling out to multiple instances
that require write access. However, it is possible for multiple VMs to mount a read-only
(snapshot) version of the blob simultaneously.

If you require reliable durability of your data, want to share data between instances, or access
your data outside of Windows Azure, use Windows Azure Table Service, Blob Service, Queue

http://go.microsoft.com/?linkid=9710117�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

128

Service or Windows Azure SQL Database instead of drive. If you want to share the data between
instances with only one instance with the write access, consider using Azure Drives. See the
comparison table in Migrating Data to Other Data Management Services in Windows Azure for
detailed comparison between these storages.

Uploading Data to Azure Drive
You can create a VHD with all the data, upload the VHD into a page blob, and mount the blob as
a drive onto the VM (associated with a compute node) that hosts your application instance. The
following tools can help you in this process.

• VHD Upload Utility from Windows Azure Platform Training Kit helps you upload a VHD file to
a page blob. Source code for this tool can be found in <WindowsAzurePlatformTrainingKit
Folder>\Labs\ExploringWindowsAzureStorageVS2010\Source\Assets\VHDUpload folder.

• Azure Drive Explorer enables you to manage your Windows Azure drives easily.

• Cloud Storage Studio by Red Gate Software. It has a functionality that allows you to create
empty page blobs or upload existing virtual hard drives (VHD) from your computer as page
blobs which you can mount as Windows Azure drives later.

See Also
Windows Azure Drives Whitepaper

http://go.microsoft.com/fwlink/?LinkId=253526�
http://go.microsoft.com/fwlink/?LinkId=253527�
http://go.microsoft.com/fwlink/?LinkID=253491�
http://go.microsoft.com/?linkid=9710117�

Migrating with Windows Azure Cloud Services

129

Considerations for Migrating to Windows Azure
Caching
Authors: Jaime Alva Bravo
Contributors: Sreedhar Pelluru

[This documentation is for preview only, and is subject to change in later releases. For the most
up-to-date information, see Considerations for Migrating to Windows Azure Caching in the
MSDN library.]

Windows Azure Caching service provides a cache-aside distributed, in-memory, application
cache service for Windows Azure applications. It increases application performance by
temporarily storing information from other backend sources in RAM memory. Applications can
access data from in-memory cache much quicker than from backend stores such as Windows
Azure SQL Database instances. This also reduces the costs associated with database transactions
in the cloud. See Windows Azure Caching service documentation for more details.

Migration Considerations
If your on-premises application uses Windows Server AppFabric Caching, migrating to Windows
Azure Caching is straight forward. If it does not use Windows Server AppFabric Caching, refactor
your application to use Windows Azure Caching. The following table describes types of data that
are most suitable to be stored in Windows Azure cache.

Data Type Description

Reference Reference data is a version of source data that changes infrequently or not
at all. It is either a direct copy of the original data or it is aggregated and
transformed from multiple data sources. Reference data is refreshed
periodically, usually at configured intervals or when data changes.

Because reference data does not change frequently, it is an ideal candidate
for Caching. Instead of using computing resources to re-aggregate and
transform reference data each time it is requested, reference data can be
saved to the cache and reused for subsequent requests. Caching reference
data across multiple applications or users in this way can help increase
application scale and performance.

Examples of reference data include flight schedules and catalogs. For
example, consider a catalog application that aggregates product
information across multiple applications and data sources. The most
common operation on the catalog data is a shared read: browsing. A
catalog browse operation iterates over lots of product data, filters it,

http://msdn.microsoft.com/en-us/library/windowsazure/jj156173�
http://go.microsoft.com/fwlink/?LinkId=253539�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

130

Data Type Description

personalizes it, and presents the selected data to several users.

Activity Activity data is generated as part of a business transaction by an executing
activity. The data originates as part of the business transaction. Then, at
the close of the business transaction, the data is retired to the data source
as historical or log information.

Examples of activity data include purchase orders, application session
states, or an online shopping cart. Consider the shopping cart data in an
online buying application. Each shopping cart is exclusive per each online
buying session and is its own individual data collection. During the buying
session, the shopping cart is cached and updated with selected products.
The shopping cart is visible and available only to the buying transaction.
Upon checkout, as soon as the payment is applied, the shopping cart is
retired from the cache to a data source application for additional
processing. After the data source application processes the business
transaction, the shopping cart information is logged for auditing and
historical purposes.

While the buying session is active, the shopping cart is accessed both for
read and write activities but is not shared. The exclusive access and close
proximity to the activity data makes it appropriate for distributed Caching.

Resource Both reference (shared read) and activity (exclusive write) data are ideal
for caching. But not all application data falls into these two categories.
There is also data that is shared, concurrently read and written into, and
accessed by lots of transactions. Such data is known as resource data.

Examples of resource data include user accounts and auction items. For
example, consider an auction item. The auction item includes the
description of the item and the current bidding information (such as the
current bid, and who bid). The bidding information is volatile, unique to
each bid, and concurrently accessed by many users for read and write
operations. As this sample shows, resource data is a candidate for Caching
because the business logic can be cached close to the resource data.

If your on-premises application uses Windows Server AppFabric Caching, be aware of some of
the differences between Windows Server AppFabric Caching and Windows Azure Caching and
accommodate for features that your on-premises Caching solution uses but Windows Azure
Cache does not support. See Differences between Caching On-Premises and in the Cloud article
for more details

The most important difference between Windows Server AppFabric Caching and Azure Caching
is that the Azure Caching service offers you a distributed in-memory cache solution without

http://go.microsoft.com/fwlink/?LinkId=253540�

Migrating with Windows Azure Cloud Services

131

requiring you to set up any infrastructure or administration. With the on-premises solution of
Windows Server AppFabric, you have to obtain machines, install Windows Server on each
machine, and then create and manage the cache cluster across those machines. In the cloud
solution, Windows Azure handles most of the administration tasks for using Caching. You
provision your named cache online, and that provides you with the connection and security
information required to use the cache.

The Azure Caching service offerings vary in the price based on the required total cache size, data
transfer, and concurrent connections. These limitations are required due to the shared nature of
the service. When you purchase any offer, you purchase the ability to access a part of the total
memory allocated to a cache cluster, hence these quotas (size, data transfer, and concurrent
connections) are enforced to secure the fair usage of the service by every tenant.

In an on-premises environment, Windows Server AppFabric Caching cluster is typically reserved
or dedicated for your applications. In an on-premises scenario, the need to plan for the capacity
of your cluster is necessary to understand what cluster characteristics are required since there is
the need to avoid over consumption of the cache cluster resources (network bandwidth,
connections, and cache memory). Even when the cache cluster is over consumed, the cluster is
likely to continue responding (not optimally but retrieves data). However when these limits are
reached in Azure, the service will no longer be available until the hour on when the quota was
reached come to an end. For example, if the quota was reached at 1:55 P.M, the service will be
unavailable until 2 P.M (as per the clock on the data center the service is purchased from). See
the following two capacity planning papers on MSDN: Windows Server AppFabric Caching
Capacity Planning Guide and the other Windows Azure Caching Capacity Planning Guide.

See Also
How to best leverage Windows Azure Caching service in a web role to avoid most common
issues

http://go.microsoft.com/fwlink/?LinkId=253541�
http://go.microsoft.com/fwlink/?LinkId=253542�
http://go.microsoft.com/fwlink/?LinkId=253542�
http://go.microsoft.com/fwlink/?LinkId=253543�
http://go.microsoft.com/fwlink/?LinkId=253544�
http://go.microsoft.com/fwlink/?LinkId=253544�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

132

Migrating Applications that Use Messaging
Technologies
Authors: Kun Cheng
Contributors: Sreedhar Pelluru, Valery Mizonov, Christian Martinez, Rama Ramani
Reviewers: Steve Howard

Message queues are commonly used for applications to communicate with each other, or
communicate within components of an application itself. In architecting for modern
applications, architects and developers can use message queues to establish an asynchronous
communication channel. A message queue allows senders to send messages and proceed with
other tasks without waiting for a response from receivers. Receivers receive and process
messages independently without blocking senders. The mechanism helps decouple otherwise
tightly integrated components of an application and makes possible a more flexible and scalable
solution.

When migrating an application from on-premise to Azure, we recommend that architects and
developers examine the current architecture and identify possibilities of using Windows Azure
Queues or Service Bus to take advantage of a loosely coupled architecture and the ability to
scale especially on the Windows Azure Platform.

Windows Azure Queues are based on Windows Azure storage and provide a basic queueing
mechanism to support point-to-point communication. It supports access via REST-based HTTP or
HTTPS. Each message queue supports capacity of up to 100 TB (limit of current storage account).
Each message can be up to 64 KB in size. See this article for more details.

The most common use of Windows Azure queues is for web role as sender to enqueue work
items and worker role as receiver to dequeue and process the work items asynchronously.

http://go.microsoft.com/fwlink/?LinkId=253663�

Migrating with Windows Azure Cloud Services

133

Windows Azure platform also offers queue-based messaging via Windows Azure Service Bus. In
addition to queuing, Windows Azure Service Bus also provides secure messaging as well as relay
capabilities to support distributed applications on Azure or hybrid deployments of applications
across on-premises and Azure. For messaging mechanisms, Service Bus supports both point-to-
point communication via Service Bus queues and publish-subscribe (pub-sub) model via Service
Bus topics and subscriptions. Services Bus Topics and Subscriptions allow multiple subscribers to
listen to a single publisher at the same time. Relay capabilities enable hybrid solution scenario
where enterprise assets on-premise or in private cloud can be extended and communicate with
cloud resources. Service Bus supports access via REST-based HTTP/HTTPS or the TCP protocol.
Each Service Bus queue can be up to 5 GB in capacity. Each message can be up to 256 KB.

There are many differences between Windows Azure Queue and Service Bus Queue including
authentication, transaction support, and WCF integration. See Windows Azure Queues and
Windows Azure Service Queues – Compared and Contrasted article for detailed comparison
between the two.

MSMQ Migration
 Windows applications commonly use Microsoft Message Queuing (MSMQ) as a queueing
mechanism. It allows applications that run on separate servers in separate processes
communicate with each other in a durable, loosely coupled fashion. It also enables applications
that reside in heterogeneous network environments to exchange information even when they
are not online at the same time. It provides guaranteed message delivery, distributed
transaction support, efficient routing, security, and priority-based messaging.

When migrating applications that rely on MSMQ technology to Windows Azure Platform, keep
in mind Windows Azure doesn’t support the technology today. The migration requires you to
change the code to use Windows Azure queues. Rest of the topic provides different options for
migrating your applications that rely on MSMQ technology to the Windows Azure Platform.

Windows Azure Service Bus
In many ways, Service Bus is the closest queuing feature Windows Azure has to MSMQ. They
share many similar functions like basic queueing operations, transaction support, and dead
lettering. However, using Service Bus requires different APIs than MSMQ does and semantics
differ in many ways. The following list provides a few key differences in terms of sizing and
performance.

• Service Bus messages size is capped at 256 KB (both header and body) while MSMQ
messages can be up to 4 MB in size.

• Service Bus queues are limited in size to a maximum of 5 GB. MSMQ queue size is
limited by computer hardware or configurable quotas.

http://go.microsoft.com/fwlink/?LinkId=253660�
http://go.microsoft.com/fwlink/?LinkId=253661�
http://go.microsoft.com/fwlink/?LinkId=253661�
http://go.microsoft.com/fwlink/?LinkId=253662�
http://go.microsoft.com/fwlink/?LinkId=253509�
http://go.microsoft.com/fwlink/?LinkId=253509�

MIGRATING DATA-CENTRIC APPLICATIONS TO WINDOWS AZURE

134

• Service Bus queue throughput could reach up to 2,000 messages/sec whereas MSMQ
can reach above 6,000 messages/sec (based on 1k benchmark). See Optimizing
Performance in a Microsoft Message Queue Server Environment whitepaper for more
details. .

To facilitate the migration, it is possible, however, to establish a link between MSMQ on-
premise and Service Bus on Azure via a bridge. The sample code is shared here.

Windows Azure Queue
Windows Azure queue provides a basic point-to-point communication channel. It does not
support heterogeneous environments like MSMQ does. In addition, it does not natively support
features that a typical MSMQ environment does like automatic dead lettering, transactions, and
ordering guarantee. But application developers can implement the necessary features on top of
Windows Azure queue to achieve MSMQ like functions. It does however require application
customization.

Windows Azure Worker Role
With Windows Server built-in support of MSMQ, running MSMQ on the same node as Worker
role has full functionality of MSMQ on-premise version. However worker role is subject to
failover and service maintenance. When it happens, all the state information such as messages
stored in the local MSMQ storage are lost and becomes unrecoverable. Unless MSMQ was used
in a stateless fashion and the application is designed to be able to handle the role failover
situation, it is not recommended to run MSMQ in a worker role instance.

http://go.microsoft.com/fwlink/?LinkId=253510�
http://go.microsoft.com/fwlink/?LinkId=253510�
http://go.microsoft.com/fwlink/?LinkId=253511�

Migrating with Windows Azure Cloud Services

135

Migrating Data to Local Storage
Authors: Sreedhar Pelluru
Reviewers: Valery Mizonov, Kun Cheng, Steve Howard

Local Storage is provided as part of the Windows Azure Compute offering and provides
temporary storage for a running application instance. When you run your application in
Windows Azure, it is hosted in a virtual machine (VM) that has a virtual hard drive connected to
it. Local storage represents a directory on the file system on the hard drive.

You can create multiple local storages for each instance. The default size of local storage is 1
MB. The storage size can be increased to the maximum that your compute instance allows. The
maximum disk space for a compute instance depends on the VM size selected for your instance.

Migration Considerations
Your Windows Azure applications in the cloud can use the existing NTFS APIs to access
the local storage. This makes it easier to migrate on-premises applications that use the
NTFS API (or standard .NET Framework API such as FileStream) to store and access
temporary data on a file system to the Azure Platform with minimal changes to the code.

It is important to note that the local storage on a VM is only accessible by the local
application instances on the VM. It can be configured to persist when the Web or
Worker Role the instance runs in is recycled; however this only applies to a simple
recycle of the role. If the instance is restarted on different hardware, such as in the case
of hardware failure or hardware maintenance, data in the local storage is not moved
along with the instance even if it was configured to persist through a recycle.

If you require reliable durability of your data, want to share data between instances, or
access your data outside of Windows Azure, use the Windows Azure Table Service or
Windows Azure Blob Service or Windows Azure SQL Database instead of local storage. If
you want to share the data between instances with only one instance with the write
access, consider using Azure Drives. See the comparison table in Migrating Data to Other
Data Management Services in Windows Azure for detailed comparison between these
storages.

See Also
How to Configure Virtual Machine Sizes

How to Configure Local Storage Resources

http://go.microsoft.com/fwlink/?LinkId=253524�
http://go.microsoft.com/fwlink/?LinkId=253525�

