

High Availability Solutions
SQL Server 2012 Books Online

Summary: This book introduces two SQL Server high-availability solutions that improve
the availability of servers or databases: AlwaysOn Failover Cluster Instances and
AlwaysOn Availability Groups. A high-availability solution masks the effects of a
hardware or software failure and maintains the availability of applications so that the
perceived downtime for users is minimized.

Category: Reference
Applies to: SQL Server 2012
Source: SQL Server Books Online (link to source content)
E-book publication date: June 2012

http://msdn.microsoft.com/en-us/library/ms190202.aspx�

Copyright © 2012 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents
High Availability Solutions ... 7

Windows Server Failover Clustering (WSFC) with SQL Server .. 8
WSFC Quorum Modes and Voting Configuration ... 15

View Cluster Quorum NodeWeight Settings ... 18
Configure Cluster Quorum NodeWeight Settings ... 20

WSFC Disaster Recovery through Forced Quorum ... 22
Force a WSFC Cluster to Start Without a Quorum .. 26

SQL Server Multi-Subnet Clustering ... 28

AlwaysOn Failover Cluster Instances .. 32
Failover Policy for Failover Cluster Instances ... 36

Configure HealthCheckTimeout Property Settings ... 41
Configure FailureConditionLevel Property Settings .. 43
View and Read Failover Cluster Instance Diagnostics Log ... 45

Failover Cluster Instance Administration and Maintenance .. 48
Add Dependencies to a SQL Server Resource ... 49
Recover from Failover Cluster Instance Failure ... 51
Change the IP Address of a Failover Cluster Instance .. 52

AlwaysOn Availability Groups .. 53
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups 57
Failover Clustering and AlwaysOn Availability Groups .. 77
Getting Started with AlwaysOn Availability Groups .. 81
Overview of AlwaysOn Availability Groups .. 90

Availability Modes (AlwaysOn Availability Groups) ... 97
Change the Availability Mode of an Availability Replica ... 102

Failover and Failover Modes (AlwaysOn Availability Groups) ... 105
Change the Failover Mode of an Availability Replica ... 116
Flexible Failover Policy for Automatic Failover of an Availability Group 119
Configure the Flexible Failover Policy to Control Conditions for Automatic Failover

(AlwaysOn Availability Groups) ... 123
Possible Failures During Sessions Between Availability Replicas ... 128

Active Secondaries: Backup on Secondary Replicas (AlwaysOn Availability Groups)............... 131
Configure Backup on Availability Replicas .. 134

Active Secondaries: Readable Secondary Replicas (AlwaysOn Availability Groups) 142
About Client Connection Access to Availability Replicas .. 149
Configure Read-Only Access on an Availability Replica .. 153

Availability Group Listeners, Client Connectivity, and Application Failover 158
Prerequisites, Restrictions, and Recommendations for AlwaysOn Client Connectivity 166
Create or Configure an Availability Group Listener ... 172
Configure Read-Only Routing for an Availability Group ... 181

Overview of Transact-SQL Statements for AlwaysOn Availability Groups 187
Overview of PowerShell Cmdlets for AlwaysOn Availability Groups .. 189

Configuration of a Server Instance for AlwaysOn Availability Groups ... 194
Enable and Disable AlwaysOn Availability Groups .. 196
Create a Database Mirroring Endpoint for AlwaysOn Availability Groups (SQL Server

PowerShell) ... 202
Troubleshoot AlwaysOn Availability Groups Configuration... 204

Creation and Configuration of Availability Groups ... 207
Use the New Availability Group Wizard (SQL Server Management Studio) 209

Specify Availability Group Name Page (New Availability Group Wizard/Add Database
Wizard) ... 215

Select Databases Page (New Availability Group Wizard/Add Database Wizard)................... 215
Specify Replicas Page (New Availability Group Wizard/Add Replica Wizard) 216
Select Initial Data Synchronization Page (AlwaysOn Availability Group Wizards) 222
Validation Page (AlwaysOn Availability Group Wizards) ... 226
Summary Page (AlwaysOn Availability Group Wizards) .. 227
Progress Page (AlwaysOn Availability Group Wizards) .. 228
Results Page (AlwaysOn Availability Group Wizards) ... 229

Use the New Availability Group Dialog Box (SQL Server Management Studio) 230
Create an Availability Group (Transact-SQL) .. 234
Create an Availability Group (SQL Server PowerShell) ... 248
Specify the Endpoint URL When Adding or Modifying an Availability Replica 254
Join a Secondary Replica to an Availability Group .. 258
Start Data Movement on an AlwaysOn Secondary Database ... 261

Manually Prepare a Secondary Database for an Availability Group.. 262
Join a Secondary Database to an Availability Group .. 269

Management of Logins and Jobs for the Databases of an Availability Group............................ 271
Troubleshoot AlwaysOn Availability Groups Configuration... 272

Administration of an Availability Group .. 276
Perform a Planned Manual Failover of an Availability Group.. 278
Perform a Forced Manual Failover of an Availability Group .. 280
Use the Fail Over Availability Group Wizard (SQL Server Management Studio) 294
Add a Database to an Availability Group .. 300

Use the Add Database to Availability Group Wizard (SQL Server Management Studio).... 304
Suspend an Availability Database .. 308
Resume an Availability Database ... 312
Remove a Secondary Database from an Availability Group .. 314
Remove a Primary Database from an Availability Group .. 317
Add a Secondary Replica to an Availability Group .. 319

Use the Add Replica to Availability Group Wizard (SQL Server Management Studio) 322
Change the Session-Timeout Period for an Availability Replica .. 327
Remove a Secondary Replica from an Availability Group... 329
Remove an Availability Group Listener .. 331
Remove an Availability Group ... 333
Troubleshoot a Failed Add-File Operation (AlwaysOn Availability Groups) 336

AlwaysOn Policies for Operational Issues with AlwaysOn Availability Groups 336

Use AlwaysOn Policies to View the Health of an Availability Group... 340
Use the AlwaysOn Dashboard (SQL Server Management Studio) .. 344

Options (SQL Server AlwaysOn, Dashboard Page) .. 353
Policy Evaluation Result (AlwaysOn) ... 353

WSFC cluster service is offline ... 354
Availability group is offline ... 355
Availability group is not ready for automatic failover .. 356
Some availability replicas are not synchronizing data ... 357
Some synchronous replicas are not synchronized .. 358
Some availability replicas do not have a healthy role .. 359
Some availability replicas are disconnected... 360
Availability replica does not have a healthy role .. 361
Availability replica is disconnected .. 361
Data synchronization state of availability database is not healthy ... 362
Availability replica is not joined .. 363
Availability database is suspended .. 364
Secondary database is not joined .. 365
Data synchronization state of some availability database is not healthy 366

Monitoring of Availability Groups.. 367
Monitor Availability Groups (Transact-SQL) ... 370
Use the Object Explorer Details to Monitor Availability Groups (SQL Server Management

Studio) .. 377
View Availability Group Properties .. 382

Availability Group Properties/New Availability Group (General Page) 384
Availability Group Properties/New Availability Group (Backup Preferences Page) 386

View Availability Replica Properties .. 387
Availability Replica Properties (General Page) ... 390

View Availability Group Listener Properties ... 392
AlwaysOn Availability Groups: Interoperability ... 394

Contained Databases with AlwaysOn Availability Groups .. 396
Cross-Database Transactions Not Supported For Database Mirroring or AlwaysOn

Availability Groups ... 396
Database Snapshots with AlwaysOn Availability Groups .. 397
Encrypted Databases with AlwaysOn Availability Groups ... 398
FILESTREAM and FileTable with AlwaysOn Availability Groups .. 399
Prerequisites for Migrating from Log Shipping to AlwaysOn Availability Groups 400
Configure Replication for AlwaysOn Availability Groups .. 402
Maintaining an AlwaysOn Publication Database ... 408
Replication Subscribers and AlwaysOn .. 411
Replication, Change Tracking, Change Data Capture, and AlwaysOn Availability Groups..... 420
Analysis Services with AlwaysOn Availability Groups ... 428
Reporting Services with AlwaysOn Availability Groups ... 435
Service Broker with AlwaysOn Availability Groups .. 441

The Database Mirroring Endpoint ... 443
Transport Security for Database Mirroring and AlwaysOn Availability Groups 447

Create a Database Mirroring Endpoint for Windows Authentication (Transact-SQL) 450
Set Up Login Accounts for Database Mirroring or AlwaysOn Availability Groups 456
Allow Network Access to a Database Mirroring Endpoint Using Windows Authentication 457
Use Certificates for a Database Mirroring Endpoint (Transact-SQL) .. 459

Allow a Database Mirroring Endpoint to Use Certificates for Outbound Connections
(Transact-SQL) ... 460

Allow a Database Mirroring Endpoint to Use Certificates for Inbound Connections (Transact-
SQL) ... 464

 7

High Availability Solutions
This topic introduces SQL Server high-availability solutions that improve the availability of
servers or databases. A high-availability solution masks the effects of a hardware or software
failure and maintains the availability of applications so that the perceived downtime for users is
minimized.

For information about which editions of SQL Server support a given high availability
solution, see the "High Availability (AlwaysOn)" section of Features Supported by the
Editions of SQL Server 2012.

In this Topic:
• Overview of SQL Server High-Availability Solutions
• Recommended Solutions for Using SQL Server to Protect Data

Overview of SQL Server High-Availability Solutions
SQL Server provides several options for creating high availability for a server or database. The
high-availability options include the following:
AlwaysOn Failover Cluster Instances

As part of the SQL Server AlwaysOn offering, AlwaysOn Failover Cluster Instances leverages
Windows Server Failover Clustering (WSFC) functionality to provide local high availability
through redundancy at the server-instance level—a failover cluster instance (FCI). An FCI is a
single instance of SQL Server that is installed across Windows Server Failover Clustering
(WSFC) nodes and, possibly, across multiple subnets. On the network, an FCI appears to be
an instance of SQL Server running on a single computer, but the FCI provides failover from
one WSFC node to another if the current node becomes unavailable.

For more information, see SQL Server Failover Cluster Instances (AlwaysOn
Failover Clustering).

AlwaysOn Availability Groups

AlwaysOn Availability Groups is an enterprise-level high-availability and disaster recovery
solution introduced in SQL Server 2012 to enable you to maximize availability for one or
more user databases. AlwaysOn Availability Groups requires that the SQL Server instances
reside on Windows Server Failover Clustering (WSFC) nodes. For more information,
see AlwaysOn Availability Groups (SQL Server).

Note
An FCI can leverage AlwaysOn Availability Groups to provide remote disaster recovery at the database
level. For more information, see Failover Clustering and AlwaysOn Availability Groups
(SQL Server).

Note

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�

 8

Recommended Solutions for Using SQL Server to Protect Data
Our recommendation for providing data protection for your SQL Server environment are as
follows:
• For data protection through a third-party shared disk solution (a SAN), we recommend that

you use AlwaysOn Failover Cluster Instances.
• For data protection through SQL Server, we recommend that you use AlwaysOn Availability

Groups.

If you are running an edition of SQL Server that does not support AlwaysOn
Availability Groups, we recommend log shipping. For information about which
editions of SQL Server support AlwaysOn Availability Groups, see the "High
Availability (AlwaysOn)" section of Features Supported by the Editions of SQL Server
2012.

See Also
Availability Enhancements (Database Engine)
Windows Server Failover Clustering (WSFC) with SQL Server
High Availability: Interoperability and Coexistence
Deprecated Database Engine Features in SQL Server 2012

Windows Server Failover Clustering (WSFC) with
SQL Server
A Windows Server Failover Clustering (WSFC) cluster is a group of independent servers that work
together to increase the availability of applications and services. SQL Server 2012 takes
advantage of WSFC services and capabilities to support AlwaysOn Availability Groups and SQL
Server Failover Cluster Instances.
In this topic:
Overview of Windows Server Failover Clustering
SQL Server AlwaysOn Technologies and WSFC
WSFC Health Monitoring and Failover
Relationship of SQL Server AlwaysOn Components to WSFC
Related Tasks
Related Content

Note

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2da566b-9803-4794-a861-232a7dd01b2d(SQL.110)�
http://msdn.microsoft.com/en-us/library/89fef397-e0cf-4e08-b598-25b8d4170523(SQL.110)�
http://msdn.microsoft.com/en-us/library/c10eeaa5-3d3c-49b4-a4bd-5dc4fb190142(SQL.110)�

 9

Overview of Windows Server Failover Clustering
Windows Server Failover Clustering provides infrastructure features that support the high-
availability and disaster recovery scenarios of hosted server applications such as Microsoft SQL
Server and Microsoft Exchange. If a cluster node or service fails, the services that were hosted on
that node can be automatically or manually transferred to another available node in a process
known as failover.
The nodes in the WSFC cluster work together to collectively provide these types of capabilities:
• Distributed metadata and notifications. WSFC service and hosted application metadata is

maintained on each node in the cluster. This metadata includes WSFC configuration and
status in addition to hosted application settings. Changes to a node's metadata or status are
automatically propagated to the other nodes in the cluster.

• Resource management. Individual nodes in the cluster may provide physical resources
such as direct-attached storage, network interfaces, and access to shared disk storage.
Hosted applications register themselves as a cluster resource, and may configure startup and
health dependencies upon other resources.

• Health monitoring. Inter-node and primary node health detection is accomplished
through a combination of heartbeat-style network communications and resource
monitoring. The overall health of the cluster is determined by the votes of a quorum of
nodes in the cluster.

• Failover coordination. Each resource is configured to be hosted on a primary node, and
each can be automatically or manually transferred to one or more secondary nodes. A
health-based failover policy controls automatic transfer of resource ownership between
nodes. Nodes and hosted applications are notified when failover occurs so that they may
react appropriately.

For more information, see: Failover Clusters in Windows Server 2008 R2

Terms and Definitions
WSFC cluster

A Windows Server Failover Clustering (WSFC) cluster is a group of independent servers that
work together to increase the availability of applications and services.

Failover cluster instance

An instance of a Windows service that manages an IP address resource, a network name
resource, and additional resources that are required to run one or more applications or
services. Clients can use the network name to access the resources in the group, similar to
using a computer name to access the services on a physical server. However, because a
failover cluster instance is a group, it can be failed over to another node without affecting the
underlying name or address.

Node

A Microsoft Windows Server system that is an active or inactive member of a server cluster.

http://technet.microsoft.com/en-us/library/ff182338(WS.10).aspx�

 10

Cluster resource

A physical or logical entity that can be owned by a node, brought online and taken offline,
moved between nodes, and managed as a cluster object. A cluster resource can be owned by
only a single node at any point in time.

Resource group

A collection of cluster resources managed as a single cluster object. Typically a resource
group contains all of the cluster resources that are required to run a specific application or
service. Failover and failback always act on resource groups.

Resource dependency

A resource on which another resource depends. If resource A depends on resource B, then B
is a dependency of A.

Network name resource

A logical server name that is managed as a cluster resource. A network name resource must
be used with an IP address resource.

Preferred owner

A node on which a resource group prefers to run. Each resource group is associated with a
list of preferred owners sorted in order of preference. During automatic failover, the resource
group is moved to the next preferred node in the preferred owner list.

Possible owner

A secondary node on which a resource can run. Each resource group is associated with a list
of possible owners. Resource groups can fail over only to nodes that are listed as possible
owners.

Quorum mode

The quorum configuration in a failover cluster that determines the number of node failures
that the cluster can sustain.

Forced quorum

The process to start the cluster even though only a minority of the elements that are required
for quorum are in communication.

For more information, see: Failover Cluster Glossary

SQL Server AlwaysOn Technologies and WSFC
SQL Server 2012 AlwaysOn is a new high availability and disaster recovery solution that takes
advantage of WSFC. AlwaysOn provides an integrated, flexible solution that increases

http://msdn.microsoft.com/en-us/library/aa372869(VS.85).aspx�

 11

application availability, provides better returns on hardware investments, and simplifies high
availability deployment and management.
Both AlwaysOn Availability Groups and AlwaysOn Failover Cluster Instances use WSFC as a
platform technology, registering components as WSFC cluster resources. Related resources are
combined into a resource group, which can be made dependent upon other WSFC cluster
resources. The WSFC cluster service can then sense and signal the need to restart the SQL Server
instance or automatically fail it over to a different server node in the WSFC cluster.

• To take full advantage of SQL Server AlwaysOn technologies, you should apply several
WSFC-related prerequisites.

• For more information, see: Prerequisites, Restrictions, and Recommendations for
AlwaysOn Availability Groups (SQL Server)

Instance-level High Availability with AlwaysOn Failover Cluster Instances
An AlwaysOn Failover Cluster Instance (FCI) is a SQL Server instance that is installed across nodes
in a WSFC cluster. This type of instance has resource dependencies on shared disk storage (via
Fibre Channel or iSCSI SAN) and on a virtual network name. The virtual network name has a
resource dependency on one or more virtual IP addresses, each in a different subnet. The SQL
Server service and the SQL Server Agent service are registered as resources, and both are made
dependent upon the virtual network name resource.
In the event of a failover, the WSFC service transfers ownership of instance's resources to a
designated failover node. The SQL Server instance is then re-started on the failover node, and
databases are recovered as usual. At any given moment, only a single node in the cluster can
host the FCI and underlying resources.

An AlwaysOn Failover Cluster Instance requires symmetrical shared disk storage such as
a storage area network (SAN) or SMB file share. The shared disk storage volumes must
be available to all potential failover nodes in the WSFC cluster.

For more information, see: AlwaysOn Failover Cluster Instances (FCI)

Database-level High Availability with AlwaysOn Availability Groups
An availability group is a set of user databases that fail over together. An availability group
consists of a primary availability replica and one to four secondary replicas that are maintained
through SQL Server log-based data movement for data protection without the need for shared
storage. Each replica is hosted by an instance of SQL Server on a different node of the WSFC
cluster. The availability group and a corresponding virtual network name are registered as
resources in the WSFC cluster.
An availability group listener on the primary replica's node responds to incoming client requests
to connect to the virtual network name, and based on attributes in the connection string, it
redirects each request to the appropriate SQL Server instance.

Important

Note

 12

In the event of a failover, instead of transferring ownership of shared physical resources to
another node, WSFC is leveraged to reconfigure a secondary replica on another SQL Server
instance to become the availability group's primary replica. The availability group's virtual
network name resource is then transferred to that instance.
At any given moment, only a single SQL Server instance may host the primary replica of an
availability group's databases, all associated secondary replicas must each reside on a separate
instance, and each instance must reside on separate physical nodes.

• AlwaysOn Availability Groups do not require deployment of a Failover Cluster Instance or
use of symmetric shared storage (SAN or SMB).

• A Failover Cluster Instance (FCI) may be used together with an availability group to
enhance the availability of an availability replica. However, to prevent potential race
conditions in the WSFC cluster, automatic failover of the availability group is not
supported to or from an availability replica that is hosted on a FCI.

For more information, see: AlwaysOn Availability Groups (SQL Server)

WSFC Health Monitoring and Failover
High availability for an AlwaysOn solution is accomplished though proactive health monitoring
of physical and logical WSFC cluster resources, together with automatic failover onto and re-
configuration of redundant hardware. A system administrator can also initiate a manual failover
of an availability group or SQL Server instance from one node to another.

Failover Policies for Nodes, Failover Cluster Instances, and Availability Groups
A failover policy is configured at the WSFC cluster node, the SQL Server Failover Cluster Instance
(FCI), and the availability group levels. These policies, based on the severity, duration, and
frequency of unhealthy cluster resource status and node responsiveness, can trigger a service
restart or an automatic failover of cluster resources from one node to another, or can trigger the
move of an availability group primary replica from one SQL Server instance to another.
Failover of an availability group replica does not affect the underlying SQL Server instance.
Failover of a FCI moves the hosted availability group replicas with the instance.
For more information, see: SQL Server Failover Policy

WSFC Resource Health Detection
Each resource in a WSFC cluster node can report its status and health, periodically or on-
demand. A variety of circumstances may indicate resource failure; e.g. power failure, disk or
memory errors, network communication errors, or non-responsive services.
WSFC cluster resources such as networks, storage, or services can be made dependent upon one
another. The cumulative health of a resource is determined by successively rolling up its health
with the health of each of its resource dependencies.

Note

 13

WSFC Inter-node Health Detection and Quorum Voting
Each node in a WSFC cluster participates in periodic heartbeat communication to share the
node's health status with the other nodes. Unresponsive nodes are considered to be in a failed
state.
A quorum node set is a majority of the voting nodes and witnesses in the WSFC cluster. The
overall health and status of a WSFC cluster is determined by a periodic quorum vote. The
presence of a quorum means that the cluster is healthy and able to provide node-level fault
tolerance.
A quorum mode is configured at the WSFC cluster level that dictates the methodology used for
quorum voting and when to perform an automatic failover or take the cluster offline.

• It is best practice to always have an odd number of quorum votes in a WSFC cluster. For
the purposes of quorum voting, SQL Server does not have to be installed on all nodes in
the cluster. An additional server can act as a quorum member, or the WSFC quorum
model can be configured to use a remote file share as a tie-breaker.

• For more information, see: Quorum Modes and Voting Configuration (SQL Server)

Disaster Recovery Through Forced Quorum
Depending upon operational practices and WSFC cluster configuration, you can incur both
automatic and manual failovers, and still maintain a robust, fault-tolerant SQL Server AlwaysOn
solution. However, if a quorum of the eligible voting nodes in the WSFC cluster cannot
communicate with one another, or if the WSFC cluster otherwise fails health validation, then the
WSFC cluster may go offline.

• If the WSFC cluster goes offline because of an unplanned disaster, or due to a persistent
hardware or communications failure, then manual administrative intervention is required
to force a quorum and bring the surviving cluster nodes back online in a non-fault-
tolerant configuration.

• Afterwards, a series of steps must also be taken to reconfigure the WSFC cluster, recover
the affected database replicas, and to re-establish a new quorum.

• For more information, see: Un-planned WSFC Quorum Failure with SQL Server

Relationship of SQL Server AlwaysOn Components to WSFC
Several layers of relationships exist between SQL Server AlwaysOn and WSFC features and
components.
AlwaysOn Availability Groups are hosted on SQL Server instances.

A client request to connect to a database Primary Replica or Secondary Replica on a logical
Availability Group Listener Network Name is redirected to the appropriate Instance

Tip

Important

 14

Network Name of the underlying SQL Server Instance or SQL Server Failover Cluster
Instance.

SQL Server instances are actively hosted on a single node.

If present, a stand-alone SQL Server Instance always resides on a single Node with a static
Instance Network Name. If present, a SQL Server Failover Instance is active on one of two
or more possible failover Nodes with a single virtual Instance Network Name.

Nodes are members of a WSFC cluster.

WSFC Configuration metadata and status for all nodes is stored on each node. Each server
may provide asymmetric Storage or Shared Storage (SAN) volumes for user or system
databases. Each server has at least one physical network interface on one or more IP subnets.

WSFC service monitors health and manages configuration for a group of servers.

The Windows Server Failover Cluster (WSFC) service propagates changes to WSFC
Configuration metadata and status to all nodes in the cluster. Partial metadata and status
may be stored on a WSFC Quorum Witness Remote File Share. Two or more active Nodes
or witness constitute a quorum to vote on the health of the cluster.

Related Tasks

 15

Related Content
Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
Windows Server Technologies: Failover Clusters
Failover Clusters in Windows Server 2008 R2

See Also
SQL Server Failover Cluster Instances (AlwaysOn Failover Clustering)
AlwaysOn Availability Groups (SQL Server)
Quorum Modes and Voting Configuration (SQL Server)
SQL Server Failover Policy
Un-planned WSFC Quorum Failure with SQL Server

WSFC Quorum Modes and Voting Configuration
Both SQL Server AlwaysOn Availability Groups and AlwaysOn Failover Cluster Instances take
advantage of Windows Server Failover Clustering (WSFC) as a platform technology. WSFC uses
a quorum-based approach to monitoring overall cluster health and maximize node-level fault
tolerance. A fundamental understanding of WSFC quorum modes and node voting
configuration is very important to designing, operating, and troubleshooting your AlwaysOn
high availability and disaster recovery solution.
In this topic:
Cluster Health Detection by Quorum
Quorum Modes
Voting and Non-Voting Nodes
Recommended Adjustments to Quorum Voting
Related Tasks
Related Content

Cluster Health Detection by Quorum
Each node in a WSFC cluster participates in periodic heartbeat communication to share the
node's health status with the other nodes. Unresponsive nodes are considered to be in a failed
state.
A quorum node set is a majority of the voting nodes and witnesses in the WSFC cluster. The
overall health and status of a WSFC cluster is determined by a periodic quorum vote. The
presence of a quorum means that the cluster is healthy and able to provide node-level fault
tolerance.
The absence of a quorum indicates that the cluster is not healthy. Overall WSFC cluster health
must be maintained in order to ensure that healthy secondary nodes are available for primary

http://go.microsoft.com/fwlink/?LinkId=227600�
http://technet.microsoft.com/en-us/library/cc732488(v=WS.10).aspx�
http://technet.microsoft.com/en-us/library/ff182338(WS.10).aspx�

 16

nodes to fail over to. If the quorum vote fails, the WSFC cluster will be set offline as a
precautionary measure. This will also cause all SQL Server instances registered with the cluster
to be stopped.

• If a WSFC cluster is set offline because of quorum failure, manual intervention is required
to bring it back online.

• For more information, see: WSFC Quorum Failure with SQL Server.

Quorum Modes
A quorum mode is configured at the WSFC cluster level that dictates the methodology used for
quorum voting. The Failover Cluster Manager utility will recommend a quorum mode based on
the number of nodes in the cluster.
The following quorum modes can be used to determine what constitutes a quorum of votes:
• Node Majority. More than one-half of the voting nodes in the cluster must vote

affirmatively for the cluster to be healthy.
• Node and File Share Majority. Similar to Node Majority quorum mode, except that a

remote file share is also configured as a voting witness, and connectivity from any node to
that share is also counted as an affirmative vote. More than one-half of the possible votes
must be affirmative for the cluster to be healthy.
As a best practice, the witness file share should not reside on any node in the cluster, and it
should be visible to all nodes in the cluster.

• Node and Disk Majority. Similar to Node Majority quorum mode, except that a shared disk
cluster resource is also designated as a voting witness, and connectivity from any node to
that shared disk is also counted as an affirmative vote. More than one-half of the possible
votes must be affirmative for the cluster to be healthy.

• Disk Only. A shared disk cluster resource is designated as a witness, and connectivity by
any node to that shared disk is counted as an affirmative vote.

When using an asymmetric storage configuration for AlwaysOn Availability Groups, you
should generally use the Node Majority quorum mode when you have an odd number of
voting nodes, or the Node and File Share Majority quorum mode when you have an even
number of voting nodes.

Voting and Non-Voting Nodes
By default, each node in the WSFC cluster is included as a member of the cluster quorum; each
node has a single vote in determining the overall cluster health, and each node will continuously
attempt to establish a quorum. The quorum discussion to this point has carefully qualified the
set of WSFC cluster nodes that vote on cluster health as voting nodes.

Important

Tip

 17

No individual node in a WSFC cluster can definitively determine that the cluster as a whole is
healthy or unhealthy. At any given moment, from the perspective of each node, some of the
other nodes may appear to be offline, or appear to be in the process of failover, or appear
unresponsive due to a network communication failure. A key function of the quorum vote is to
determine whether the apparent state of each of node in the WSFC cluster is indeed that actual
state of those nodes.
For all of the quorum models except ‘Disk Only’, the effectiveness of a quorum vote depends on
reliable communications between all of the voting nodes in the cluster. Network
communications between nodes on the same physical subnet should be considered reliable; the
quorum vote should be trusted.
However, if a node on another subnet is seen as non-responsive in a quorum vote, but it is
actually online and otherwise healthy, that is most likely due to a network communications
failure between subnets. Depending upon the cluster topology, quorum mode, and failover
policy configuration, that network communications failure may effectively create more than one
set (or subset) of voting nodes.
When more than one subset of voting nodes is able to establish a quorum on its own, that is
known as a split-brain scenario. In such a scenario, the nodes in the separate quorums may
behave differently, and in conflict with one another.

The split-brain scenario is only possible when a system administrator manually performs
a forced quorum operation, or in very rare circumstances, a forced failover; explicitly
subdividing the quorum node set.

In order to simplify your quorum configuration and increase up-time, you may want to adjust
each node’s NodeWeight setting so that the node’s vote is not counted towards the quorum.

• In order to use NodeWeight settings, the following hotfix must be applied to all servers
in the WSFC cluster:

• KB2494036: A hotfix is available to let you configure a cluster node that does not have
quorum votes in Windows Server 2008 and in Windows Server 2008 R2

Recommended Adjustments to Quorum Voting
When enabling or disabling a given node’s vote, follow these guidelines:
• Include all primary nodes. Each node that hosts an AlwaysOn Availability Group primary

replica or is the preferred owner of the AlwaysOn Failover Cluster Instance should have a
vote.

• Include possible automatic failover owners. Each node that could host a primary replica
or FCI, as the result of an automatic failover, should have a vote.

Note

Important

http://support.microsoft.com/kb/2494036�

 18

• Exclude secondary site nodes. In general, do not give votes to nodes that reside at a
secondary disaster recovery site. You do not want nodes in the secondary site to contribute
to a decision to take the cluster offline when there is nothing wrong with the primary site.

• Odd number of votes. If necessary, add a witness file share, a witness node, or a witness
disk to the cluster and adjust the quorum mode to prevent possible ties in the quorum vote.

• Re-assess vote assignments post-failover. You do not want to fail over into a cluster
configuration that does not support a healthy quorum.

• SQL Server exposes several system dynamic management views (DMVs) that can help
you manage settings related WSFC cluster configuration and node quorum voting.

• For more information,
see: sys.dm_hadr_cluster, sys.dm_hadr_cluster_members, sys.dm_os_cluster_nodes, sys.d
m_hadr_cluster_networks

Related Tasks
View cluster quorum NodeWeight settings
Configure cluster quorum NodeWeight settings

Related Content
Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
Windows Server Technologies: Failover Clusters
Failover Cluster Step-by-Step Guide: Configuring the Quorum in a Failover Cluster

See Also
WSFC Quorum Failure with SQL Server
Windows Server Failover Clustering (WSFC) with SQL Server

View Cluster Quorum NodeWeight Settings
This topic describes how to view NodeWeight settings for each member node in a Windows
Server Failover Clustering (WSFC) cluster. NodeWeight settings are used during quorum voting
to support disaster recovery and multi-subnet scenarios for AlwaysOn Availability Groups and
SQL Server Failover Cluster Instances.
• Before you start: Prerequisites, Security
• To view quorum NodeWeight settings using: Transact-SQL, PowerShell, cluster.exe
Before You Start

Prerequisites

Tip

http://msdn.microsoft.com/en-us/library/13ce70e4-9d43-4a80-a826-099e6213bf85(SQL.110)�
http://msdn.microsoft.com/en-us/library/feb20b3a-8835-41d3-9a1c-91d3117bc170(SQL.110)�
http://msdn.microsoft.com/en-us/library/c768b67c-82a4-47f5-850b-0ea282358d50(SQL.110)�
http://msdn.microsoft.com/en-us/library/ece32b15-d63f-4f93-92b7-e2930333e97a(SQL.110)�
http://msdn.microsoft.com/en-us/library/ece32b15-d63f-4f93-92b7-e2930333e97a(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://technet.microsoft.com/en-us/library/cc732488(v=WS.10).aspx�
http://technet.microsoft.com/en-us/library/cc770620(WS.10).aspx�

 19

This feature is supported only in Windows Server 2008 or later versions.

• In order to use NodeWeight settings, the following hotfix must be applied to all servers
in the WSFC cluster:

• KB2494036: A hotfix is available to let you configure a cluster node that does not have
quorum votes in Windows Server 2008 and in Windows Server 2008 R2

If this hotfix is not installed, the examples in this topic will return empty or NULL values
for NodeWeight.

Security
The user must be a domain account that is member of the local Administrators group on each
node of the WSFC cluster.
Using Transact-SQL

1. Connect to any SQL Server instance in the cluster.
2. Query the [sys].[dm_hadr_cluster_members] view.

Example (Transact-SQL)
The following example queries a system view to return values for all of the nodes in that
instance’s cluster.

SELECT member_name, member_state_desc, number_of_quorum_votes

 FROM sys.dm_hadr_cluster_members;

Using Powershell

1. Start an elevated Windows PowerShell via Run as Administrator.
2. Import the FailoverClusters module to enable cluster commandlets.
3. Use the Get-ClusterNode object to return a collection of cluster node objects.
4. Output the cluster node properties in a readable format.

Important

Tip

To view NodeWeight settings

To view NodeWeight settings

http://support.microsoft.com/kb/2494036�

 20

Example (Powershell)
The following example output some of the node properties for the cluster called “Cluster001”.

Import-Module FailoverClusters

$cluster = "Cluster001"

$nodes = Get-ClusterNode -Cluster $cluster

$nodes | Format-Table -property NodeName, State, NodeWeight

Using Cluster.exe

The cluster.exe utility is deprecated in the Windows Server 2008 R2 release. Please use
PowerShell with Failover Clustering for future development. The cluster.exe utility will be
removed in the next release of Windows Server. For more information, see Mapping
Cluster.exe Commands to Windows PowerShell Cmdlets for Failover Clusters.

1. Start an elevated Command Prompt via Run as Administrator.
2. Use cluster.exe to return node status and NodeWeight values

Example (Cluster.exe)
The following example outputs some of the node properties for the cluster called “Cluster001”.
cluster.exe Cluster001 node /status /properties

See Also
Quorum Modes and Voting Configuration
Configure Cluster Quorum NodeWeight Settings
sys.dm_hadr_cluster_members (Transact-SQL)
Failover Cluster Cmdlets in Windows PowerShell Listed by Task Focus

Configure Cluster Quorum NodeWeight Settings
This topic describes how to configure NodeWeight settings for a member node in a Windows
Server Failover Clustering (WSFC) cluster. NodeWeight settings are used during quorum voting

Note

To view NodeWeight settings

http://technet.microsoft.com/en-us/library/ee619744(WS.10).aspx�
http://technet.microsoft.com/en-us/library/ee619744(WS.10).aspx�
http://msdn.microsoft.com/en-us/library/feb20b3a-8835-41d3-9a1c-91d3117bc170(SQL.110)�
http://technet.microsoft.com/en-us/library/ee619761(WS.10).aspx�

 21

to support disaster recovery and multi-subnet scenarios for AlwaysOn Availability Groups and
SQL Server Failover Cluster Instances.
• Before you start: Prerequisites, Security
• To view quorum NodeWeight settings using: PowerShell, cluster.exe
Before You Start

Prerequisites
This feature is supported only in Windows Server 2008 or later versions.

• In order to use NodeWeight settings, the following hotfix must be applied to all servers
in the WSFC cluster:

• KB2494036: A hotfix is available to let you configure a cluster node that does not have
quorum votes in Windows Server 2008 and in Windows Server 2008 R2

If this hotfix is not installed, the examples in this topic will return empty or NULL values
for NodeWeight.

Security
The user must be a domain account that is member of the local Administrators group on each
node of the WSFC cluster.
Using Powershell

1. Start an elevated Windows PowerShell via Run as Administrator.
2. Import the FailoverClusters module to enable cluster commandlets.
3. Use the Get-ClusterNode object to set the NodeWeight property for each node in the

cluster.
4. Output the cluster node properties in a readable format.

Example (Powershell)
The following example changes the NodeWeight setting to remove the quorum vote for the
“AlwaysOnSrv1” node, and then outputs the settings for all nodes in the cluster.

Import-Module FailoverClusters

$node = “AlwaysOnSrv1”

Important

Tip

To configure NodeWeight settings

http://support.microsoft.com/kb/2494036�

 22

(Get-ClusterNode $node).NodeWeight = 0

$cluster = (Get-ClusterNode $node).Cluster

$nodes = Get-ClusterNode -Cluster $cluster

$nodes | Format-Table -property NodeName, State, NodeWeight

Using Cluster.exe

The cluster.exe utility is deprecated in the Windows Server 2008 R2 release. Please use
PowerShell with Failover Clustering for future development. The cluster.exe utility will be
removed in the next release of Windows Server. For more information, see Mapping
Cluster.exe Commands to Windows PowerShell Cmdlets for Failover Clusters.

1. Start an elevated Command Prompt via Run as Administrator.
2. Use cluster.exe to set NodeWeight values.

Example (Cluster.exe)
The following example changes the NodeWeight value to remove the quorum vote of the
“AlwaysOnSrv1” node in the “Cluster001” cluster.

cluster.exe Cluster001 node AlwaysOnSrv1 /prop NodeWeight=0

See Also
Quorum Modes and Voting Configuration
View cluster quorum NodeWeight settings
Failover Cluster Cmdlets in Windows PowerShell Listed by Task Focus

WSFC Disaster Recovery through Forced Quorum
Quorum failure is usually caused by a systemic disaster, or a persistent communications failure,
or a misconfiguration involving several nodes in the WSFC cluster. Manual intervention is
required to recovery from a quorum failure.
• Before you start: Prerequisites, Security

Note

To configure NodeWeight settings

http://technet.microsoft.com/en-us/library/ee619744(WS.10).aspx�
http://technet.microsoft.com/en-us/library/ee619744(WS.10).aspx�
http://technet.microsoft.com/en-us/library/ee619761(WS.10).aspx�

 23

• WSFC Disaster Recovery through the Forced Quorum Procedure To Recover from
Quorum Failure

Before You Start

Prerequisites
The Forced Quorum Procedure assumes that a healthy quorum existed before the quorum
failure.

• The user should be well-informed on the concepts and interactions of Windows Server
Failover Clustering, WSFC Quorum Models, SQL Server, and the environment's specific
deployment configuration.

• For more information, see: Windows Server Failover Clustering (WSFC) with SQL
Server, WSFC Quorum Modes and Voting Configuration (SQL Server)

Security
The user must be a domain account that is member of the local Administrators group on each
node of the WSFC cluster.

WSFC Disaster Recovery through the Forced Quorum Procedure
Remember that quorum failure will cause all clustered services, SQL Server instances, and
Availability Groups, in the WSFC cluster to be set offline, because the cluster, as configured,
cannot ensure node-level fault tolerance. A quorum failure means that healthy voting nodes in
the WSFC cluster no longer satisfy the quorum model. Some nodes may have failed completely,
and some may have just shut down the WSFC service and are otherwise healthy, except for the
loss of the ability to communicate with a quorum.
To bring the WSFC cluster back online, you must correct the root cause of the quorum failure
under the existing configuration, recover the affected databases as needed, and you may want
to reconfigure the remaining nodes in the WSFC cluster to reflect the surviving cluster topology.
You can use the forced quorum procedure on a WSFC cluster node to override the safety
controls that took the cluster offline. This effectively tells the cluster to suspend the quorum
voting checks, and lets you bring the WSFC cluster resources and SQL Server back online on any
of the nodes in the cluster.
This type of disaster recovery process should include the following steps:

1. Determine the scope of the failure. Identify which availability groups or SQL Server
instances are non-responsive, which cluster nodes are online and available for post-
disaster use, and examine the Windows event logs and the SQL Server system logs.
Where practical, you should preserve forensic data and system logs for later analysis.

Warning

To Recover from Quorum Failure:

http://msdn.microsoft.com/en-us/library/hh270278(v=SQL.110).aspx�
http://msdn.microsoft.com/en-us/library/hh270278(v=SQL.110).aspx�
http://msdn.microsoft.com/en-us/library/hh270280(v=SQL.110).aspx�

 24

2. Start the WSFC cluster by using forced quorum on a single node. Identify a node
with a minimal number of component failures, other than that the WSFC cluster service
was shut down. Verify that this node can communicate with a majority of the other
nodes.
On this node, manually force the cluster to come online using the forced quorum
procedure. To minimize potential data loss, select a node that was last hosting an
availability group primary replica.
For more information, see: Force a WSFC Cluster to Start Without a Quorum

Note
The forced quorum setting has a cluster-wide affect to block quorum checks
until the logical WSFC cluster achieves a majority of votes and automatically
transitions to a regular quorum mode of operation.

3. Start the WSFC service normally on each otherwise healthy node, one at a time.
You do not have to specify the forced quorum option when you start the cluster service
on the other nodes.
As the WSFC service on each node comes back online, it negotiates with the other
healthy nodes to synchronize the new cluster configuration state. Remember to do this
one node at a time to prevent potential race conditions in resolving the last known
state of the cluster.

Warning
Ensure that each node that you start can communicate with the other newly
online nodes. Consider disabling the WSFC service on the other nodes.
Otherwise, you run the risk of creating more than one quorum node set; that is
a split-brain scenario. If your findings in step 1 were accurate, this should not
occur.

4. Apply new quorum mode and node vote configuration. If all nodes in the cluster
were successfully restarted using the forced quorum procedure, and the root cause of
the quorum failure has been corrected. Then changes to the original quorum mode and
node vote configuration are not required.
Otherwise, you should evaluate the newly recovered cluster node and availability
replica topology, and change the quorum mode and vote assignments for each node
as appropriate. Un-recovered nodes should be set offline or have their node votes set
to zero.

Tip
At this point, the nodes and SQL Server instances in the cluster may appear to
be restored back to regular operation. However, a healthy quorum may still not
exist. Using the Failover Cluster Manager, or the AlwaysOn Dashboard within
SQL Server Management Studio, or the appropriate DMVs, verify that a quorum
has been restored.

http://msdn.microsoft.com/en-us/library/hh270275(v=SQL.110).aspx�

 25

5. Recover availability group database replicas as needed. Non-availability group
databases should recover and come back online on their own as part of the regular SQL
Server startup process.
You can minimize potential data loss and recovery time for the availability group
replicas by bringing them back online in this sequence: primary replica, synchronous
secondary replicas, asynchronous secondary replicas.

6. Repair or replace failed components and re-validate cluster. Now that you have
recovered from the initial disaster and quorum failure, you should repair or replace the
failed nodes and adjust related WSFC and AlwaysOn configurations accordingly. This
can include dropping availability group replicas, evicting nodes from the cluster, or
flattening and re-installing software on a node.
You must repair or remove all failed availability replicas. SQL Server will not truncate
the transaction log past the last known point of the farthest behind availability replica.
If a failed replica is not repaired or removed from the availability group, the transaction
logs will grow and you will run the risk of running out of transaction log space on the
other replicas.

Note
If you run the WSFC Validate a Configuration Wizard when an availability group listener
exists on the WSFC cluster, the wizard generates the following incorrect warning message:
"The RegisterAllProviderIP property for network name 'Name:<network_name>' is set to 1
For the current cluster configuration this value should be set to 0."
Please ignore this message.
7. Repeat step 4 as needed. The goal is to re-establish the appropriate level of fault

tolerance and high availability for healthy operations.
8. Conduct RPO/RTO analysis. You should analyze SQL Server system logs, database

timestamps, and Windows event logs to determine root cause of the failure, and to
document actual Recovery Point and Recovery Time experiences.

Related Tasks
• Force a Cluster to Start Without a Quorum
• Perform a Forced Manual Failover of an Availability Group (SQL Server)
• View cluster quorum NodeWeight settings
• Configure Cluster Quorum NodeWeight Settings

See Also
Windows Server Failover Clustering (WSFC) with SQL Server

 26

Force a WSFC Cluster to Start Without a Quorum
This topic describes how to force a Windows Server Failover Clustering (WSFC) cluster node to
start without a quorum. This may be required in disaster recovery and multi-subnet scenarios to
recover data and fully re-establish high-availability for AlwaysOn Availability Groups and SQL
Server Failover Cluster Instances.
• Before you start: Recommendations, Security
• To force a cluster to start without a quorum using: Failover Cluster

Manager, PowerShell, net.exe
• Follow up: After forcing the cluster to start without a quorum
Before You Start

Recommendations
Except where explicitly directed, the procedures in this topic should work if you execute them
from any node in the WSFC cluster. However, you may obtain better results, and avoid
networking issues, by executing these steps from the node that you intend to force to start
without a quorum.
Security
The user must be a domain account that is member of the local Administrators group on each
node of the WSFC cluster.
Using Failover Cluster Manager

1. Open a Failover Cluster Manager and connect to the desired cluster node to force
online.

2. In the Actions pane, click Force Cluster Start, and then click Yes – Force my cluster to
start.

3. In the left pane, in the Failover Cluster Manager tree, click the cluster name.
4. In the summary pane, confirm that the current Quorum Configuration value is:

Warning: Cluster is running in ForceQuorum state.

Using Powershell

To force a cluster to start without a quorum

 27

1. Start an elevated Windows PowerShell via Run as Administrator.
2. Import the FailoverClusters module to enable cluster commandlets.
3. Use Stop-ClusterNode to make sure that the cluster service is stopped.
4. Use Start-ClusterNode with –FixQuorum to force the cluster service to start.
5. Use Get-ClusterNode with –Propery NodeWieght = 1 to set the value the

guarantees that the node is a voting member of the quorum.
6. Output the cluster node properties in a readable format.

Example (Powershell)
The following example forces the AlwaysOnSrv02 node cluster service to start without a quorum,
sets the NodeWeight = 1, and then enumerates cluster node status from the newly forced node.

Import-Module FailoverClusters

$node = "AlwaysOnSrv02"

Stop-ClusterNode –Name $node

Start-ClusterNode –Name $node -FixQuorum

(Get-ClusterNode $node).NodeWeight = 1

$nodes = Get-ClusterNode -Cluster $node

$nodes | Format-Table -property NodeName, State, NodeWeight

Using Net.exe

1. Use Remote Desktop to connect to the desired cluster node to force online.
2. Start an elevated Command Prompt via Run as Administrator.
3. Use net.exe to make sure that the local cluster service is stopped.
4. Use net.exe with /forcequorum to force the local cluster service to start.

To force a cluster to start without a quorum

To force a cluster to start without a quorum

 28

Example (Net.exe)
The following example forces a node cluster service to start without a quorum, sets the
NodeWeight = 1, and then enumerates cluster node status from the newly forced node.

net.exe stop clussvc

net.exe start clussvc /forcequorum

Follow Up: After Forcing Cluster to Start without a Quorum

• You must re-evaluate and reconfigure NodeWeight values to correctly construct a new
quorum before bringing other nodes back online. Otherwise, the cluster may go back
offline again.

• For more information, see Quorum Modes and Voting Configuration.

• The procedures in this topic are only one step in bringing the WSFC cluster back online if
an un-planned quorum failure were to occur. You may also want to take additional steps
to prevent other WSFC cluster nodes from interfering with the new quorum
configuration. Other SQL Server features such as AlwaysOn Availability Groups, database
mirroring, and log shipping may also require subsequent actions to recover data and to
fully re-establish high-availability.

• For more information, see Perform a Forced Manual Failover of an Availability Group
(SQL Server).

See Also
Un-planned WSFC Quorum Failure with SQL Server
Configure Cluster Quorum NodeWeight Settings
Failover Cluster Cmdlets in Windows PowerShell Listed by Task Focus

SQL Server Multi-Subnet Clustering
A SQL Server multi-subnet failover cluster is a configuration where each failover cluster
node is connected to a different subnet or different set of subnets. These subnets can be in the
same location or in geographically dispersed sites. Clustering across geographically dispersed
sites is sometimes referred to as stretch clusters. As there is no shared storage that all the nodes
can access, data should be replicated between the data storage on the multiple subnets. With
data replication, there is more than one copy of the data available. Therefore, a multi-subnet
failover cluster provides a disaster recovery solution in addition to high availability.
In this Topic:

Warning

Important

http://technet.microsoft.com/en-us/library/ee619761(WS.10).aspx�

 29

• SQL Server Multi-Subnet Failover Cluster (Two-Nodes, Two-Subnets)
• IP Address Resource Considerations
• Client Recovery Latency During Failovers
• Related Content

SQL Server Multi-Subnet Failover Cluster (Two-Nodes, Two-Subnets)
The following illustration represents a two node, two subnet failover cluster instance (FCI) in SQL
Server 2012.

Multi-Subnet Failover Cluster Instance Configurations
The following are some examples of SQL Server FCIs that use multiple subnets:
• SQL Server FCI SQLCLUST1 includes Node1 and Node2. Node1 is connected to Subnet1.

Node2 is connected to Subnet2. SQL Server Setup sees this configuration as a multi-subnet
cluster and sets the IP address resource dependency to OR.

• SQL Server FCI SQLCLUST1 includes Node1, Node2, and Node3. Node1 and Node2 are
connected to Subnet1. Node 3 is connected to Subnet2. SQL Server Setup sees this
configuration as a multi-subnet cluster and sets the IP address resource dependency to OR.
Because Node1 and Node2 are on the same subnet, this configuration provides additional
local high availability.

 30

• SQL Server FCI SQLCLUST1 includes Node1 and Node2. Node1 is on Subnet1. Node2 is on
Subnet1 and Subnet2. SQL Server Setup sees this configuration as a multi-subnet cluster and
sets the IP address resource dependency to OR.

• SQL Server FCI SQLCLUST1 includes Node1 and Node2. Node1 is connected to Subnet1 and
Subnet2. Node2 is also connected to Subnet1 and Subnet2. The IP address resource
dependency is set to AND by SQL Server Setup.

This configuration is not considered as a multi-subnet failover cluster configuration
because the clustered nodes are on the same set of subnets.

IP Address Resource Considerations
In a multi-subnet failover cluster configuration, the IP addresses are not owned by all the nodes
in the failover cluster, and may not be all online during SQL Server startup. Beginning in SQL
Server 2012, you can set the IP address resource dependency to OR. This enables SQL Server to
be online when there is at least one valid IP address that it can bind to.

In the SQL Server versions earlier than SQL Server 2012, a stretch V-LAN technology was
used in multi-site cluster configurations to expose a single IP address for failover across
sites. With the new capability of SQL Server to cluster nodes across different subnets, you
can now configure SQL Server failover clusters across multiple sites without
implementing the stretch V-LAN technology.

IP Address Resource OR Dependency Considerations
You may want to consider the following failover behavior if you set the IP address resource
dependency is set to OR:
• When there is a failure of one of the IP addresses on the node that currently owns the SQL

Server cluster resource group, a failover is not triggered automatically until all the IP
addresses valid on that node fail.

• When a failover occurs, SQL Server will come online if it can bind to at least one IP address
that is valid on the current node. The IP addresses that did not bind to SQL Server at startup
will be listed in the error log.

When a SQL Server FCI is installed side-by-side with a standalone instance of the SQL Server
Database Engine, take care to avoid TCP port number conflicts on the IP addresses. Conflicts
usually occur when two instances of the Database Engine are both configured to use the default
TCP port (1433). To avoid conflicts, configure one instance to use a non-default fixed port.
Configuring a fixed port is usually easiest on the standalone instance. Configuring the Database
Engine to use different ports will prevent an unexpected IP Address/TCP port conflict that blocks
an instance startup when a SQL Server FCI fails to the standby node.

Client Recovery Latency During Failover

Note

Note

 31

A multi-subnet FCI by default enables the RegisterAllProvidersIP cluster resource for its network
name. In a multi-subnet configuration, both the online and offline IP addresses of the network
name will be registered at the DNS server. The client application then retrieves all registered IP
addresses from the DNS server and attempts to connect to the addresses either in order or in
parallel. This means that client recovery time in multi-subnet failovers no longer depend on DNS
update latencies. By default, the client tries the IP addresses in order. When the client uses the
new optional MultiSubnetFailover=True parameter in its connection string, it will instead try
the IP addresses simultaneously and connects to the first server that responds. This can help
minimize the client recovery latency when failovers occur. This optional parameter is supported
by the following data providers:
1. SQL Native Client 11.0
2. Data Provider for SQL Server in .NET Framework 4.02 or above

For .NET Framework 4.02 specifically, you must also specify the TCP port of the
database instance in your connection string.

3. Microsoft JDBC Driver 4.0 for SQL Server
With legacy client libraries or third party data providers, you cannot use the
MultiSubnetFailover parameter in your connection string. To help ensure that your client
application works optimally with multi-subnet FCI in SQL Server 2012, try to adjust the
connection timeout in the client connection string by 21 seconds for each additional IP address.
This ensures that the client’s reconnection attempt does not timeout before it is able to cycle
through all IP addresses in your multi-subnet FCI.
The default client connection time-out period for SQL Server Management Studio and sqlcmd is
15 seconds.

Related Content

Content Description Topic

Installing a SQL Server Failover Cluster How to: Create a New SQL Server Failover
Cluster (Setup)

In-place upgrade of your existing SQL
Server Failover Cluster

How to: Upgrade a SQL Server Failover
Cluster Instance (Setup)

Maintaining your existing SQL Server
Failover Cluster

How to: Add or Remove Nodes in a SQL
Server Failover Cluster (Setup)

Windows Failover Clustering Windows 2008 R2 Failover Multi-Site
Clustering

Important

http://msdn.microsoft.com/en-us/netframework/hh547167�
http://msdn.microsoft.com/en-us/library/30e06a7d-75e9-44e2-bca3-b3b0c4a33f61(SQL.110)�
http://msdn.microsoft.com/en-us/library/30e06a7d-75e9-44e2-bca3-b3b0c4a33f61(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea8b7d66-e5a1-402f-9928-8f7310e84f5c(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea8b7d66-e5a1-402f-9928-8f7310e84f5c(SQL.110)�
http://msdn.microsoft.com/en-us/library/fe20dca9-a4c1-4d32-813d-42f1782dfdd3(SQL.110)�
http://msdn.microsoft.com/en-us/library/fe20dca9-a4c1-4d32-813d-42f1782dfdd3(SQL.110)�
http://www.microsoft.com/windowsserver2008/en/us/failover-clustering-multisite.aspx�
http://www.microsoft.com/windowsserver2008/en/us/failover-clustering-multisite.aspx�

 32

AlwaysOn Failover Cluster Instances
As part of the SQL Server AlwaysOn offering, AlwaysOn Failover Cluster Instances leverages
Windows Server Failover Clustering (WSFC) functionality to provide local high availability
through redundancy at the server-instance level—a failover cluster instance (FCI). An FCI is a
single instance of SQL Server that is installed across Windows Server Failover Clustering (WSFC)
nodes and, possibly, across multiple subnets. On the network, an FCI appears to be an instance
of SQL Server running on a single computer, but the FCI provides failover from one WSFC node
to another if the current node becomes unavailable.
An FCI can leverage AlwaysOn Availability Groups to provide remote disaster recovery at the
database level. For more information, see Failover Clustering and AlwaysOn Availability Groups
(SQL Server).

Benefits of a Failover Cluster Instance
When there is hardware or software failure of a server, the applications or clients connecting to
the server will experience downtime. When a SQL Server instance is configured to be an FCI
(instead of a standalone instance), the high availability of that SQL Server instance is protected
by the presence of redundant nodes in the FCI. Only one of the nodes in the FCI owns the WSFC
resource group at a time. In case of a failure (hardware failures, operating system failures,
application or service failures), or a planned upgrade, the resource group ownership is moved to
another WSFC node. This process is transparent to the client or application connecting to SQL
Server and this minimize the downtime the application or clients experience during a failure. The
following lists some key benefits that SQL Server failover cluster instances provide:
• Protection at the instance level through redundancy
• Automatic failover in the event of a failure (hardware failures, operating system failures,

application or service failures)

In an AlwaysOn availability group, automatic failover from an FCI to other nodes
within the availability group is not supported. This means that FCIs and standalone
nodes should not be coupled together within an availability group if automatic
failover is an important component your high availability solution. However, this
coupling can be made for your disaster recovery solution.

• Support for a broad array of storage solutions, including WSFC cluster disks (iSCSI, Fiber
Channel, and so on) and server message block (SMB) file shares.

• Disaster recovery solution using a multi-subnet FCI or running an FCI-hosted database inside
an AlwaysOn availability group. With the new multi-subnet support in Microsoft SQL Server

Important

 33

2012, a multi-subnet FCI no longer requires a virtual LAN, increasing the manageability and
security of a multi-subnet FCI.

• Zero reconfiguration of applications and clients during failovers
• Flexible failover policy for granular trigger events for automatic failovers
• Reliable failovers through periodic and detailed health detection using dedicated and

persisted connections
• Configurability and predictability in failover time through indirect background checkpoints
• Throttled resource usage during failovers

Failover Cluster Instance Overview
An FCI runs in a WSFC resource group with one or more WSFC nodes. When the FCI starts up,
one of the nodes assume ownership of the resource group and brings its SQL Server instance
online. The resources owned by this node include:
• Network name
• IP address
• Shared disks
• SQL Server Database Engine service
• SQL Server Agent service
• SQL Server Analysis Services service, if installed
• One file share resource, if the FILESTREAM feature is installed
At any time, only the resource group owner (and no other node in the FCI) is running its
respective SQL Server services in the resource group. When a failover occurs, whether it be an
automatic failover or a planned failover, the following sequence of events happen:
1. Unless a hardware or system failure occurs, all dirty pages in the buffer cache are written to

disk.
2. All respective SQL Server services in the resource group are stopped on the active node.
3. The resource group ownership is transferred to another node in the FCI.
4. The new resource group owner starts its SQL Server services.
5. Client application connection requests are automatically directed to the new active node

using the same virtual network name (VNN).
The FCI is online as long as its underlying WSFC cluster is in good quorum health (the majority
of the quorum WSFC nodes are available as automatic failover targets). When the WSFC cluster
loses its quorum, whether due to hardware, software, network failure, or improper quorum
configuration, the entire WSFC cluster, along with the FCI, is brought offline. Manual
intervention is then required in this unplanned failover scenario to reestablish quorum in the
remaining available nodes in order to bring the WSFC cluster and FCI back online. For more
information, see WSFC Quorum Modes and Voting Configuration (SQL Server).

 34

Predictable Failover Time
Depending on when your SQL Server instance last performed a checkpoint operation, there can
be a substantial amount of dirty pages in the buffer cache. Consequently, failovers last as long
as it takes to write the remaining dirty pages to disk, which can lead to long and unpredictable
failover time. Beginning with Microsoft SQL Server 2012, the FCI can use indirect checkpoints to
throttle the amount of dirty pages kept in the buffer cache. While this does consume additional
resources under regular workload, it makes the failover time more predictable as well as more
configurable. This is very useful when the service-level agreement in your organization specifies
the recovery time objective (RTO) for your high availability solution. For more information on
indirect checkpoints, see Indirect Checkpoints.

Reliable Health Monitoring and Flexible Failover Policy
After the FCI starts successfully, the WSFC service monitors both the health of the underlying
WSFC cluster, as well as the health of the SQL Server instance. Beginning with Microsoft SQL
Server 2012, the WSFC service uses a dedicated connection to poll the active SQL Server
instance for detailed component diagnostics through a system stored procedure. The
implication of this is three-fold:
• The dedicated connection to the SQL Server instance makes it possible to reliably poll for

component diagnostics all the time, even when the FCI is under heavy load. This makes it
possible to distinguish between a system that is under heavy load and a system that actually
has failure conditions, thus preventing issues such as false failovers.

• The detailed component diagnostics makes it possible to configure a more flexible failover
policy, whereby you can choose what failure conditions trigger failovers and which failure
conditions do not.

• The detailed component diagnostics also enables better troubleshooting of automatic
failovers retroactively. The diagnostic information is stored to log files, which are collocated
with the SQL Server error logs. You can load them into the Log File Viewer to inspect the
component states leading up to the failover occurrence in order to determine what cause
that failover.

For more information, see Failover Policy for Failover Cluster Instances

Elements of a Failover Cluster Instance
An FCI consists of a set of physical servers (nodes) that contain similar hardware configuration as
well as identical software configuration that includes operating system version and patch level,
and SQL Server version, patch level, components, and instance name. Identical software
configuration is necessary to ensure that the FCI can be fully functional as it fails over between
the nodes.
WSFC Resource Group

A SQL Server FCI runs in a WSFC resource group. Each node in the resource group maintains
a synchronized copy of the configuration settings and check-pointed registry keys to ensure
full functionality of the FCI after a failover, and only one of the nodes in the cluster owns the

 35

resource group at a time (the active node). The WSFC service manages the server cluster,
quorum configuration, failover policy, and failover operations, as well as the VNN and virtual
IP addresses for the FCI. In case of a failure (hardware failures, operating system failures,
application or service failures) or a planned upgrade, the resource group ownership is moved
to another node in the FCI.The number of nodes that are supported in a WSFC resource
group depends on your SQL Server edition. Also, the same WSFC cluster can run multiple
FCIs (multiple resource groups), depending on your hardware capacity, such as CPUs,
memory, and number of disks.

SQL Server Binaries

The product binaries are installed locally on each node of the FCI, a process similar to SQL
Server stand-alone installations. However, during startup, the services are not started
automatically, but managed by WSFC.

Storage

Contrary to the AlwaysOn availability group, an FCI must use shared storage between all
nodes of the FCI for database and log storage. The shared storage can be in the form of
WSFC cluster disks, disks on a SAN, or file shares on an SMB. This way, all nodes in the FCI
have the same view of instance data whenever a failover occurs. This does mean, however,
that the shared storage has the potential of being the single point of failure, and FCI depends
on the underlying storage solution to ensure data protection.

Network Name

The VNN for the FCI provides a unified connection point for the FCI. This allows applications
to connect to the VNN without the need to know the currently active node. When a failover
occurs, the VNN is registered to the new active node after it starts. This process is transparent
to the client or application connecting to SQL Server and this minimize the downtime the
application or clients experience during a failure.

Virtual IPs

In the case of a multi-subnet FCI, a virtual IP address is assigned to each subnet in the FCI.
During a failover, the VNN on the DNS server is updated to point to the virtual IP address for
the respective subnet. Applications and clients can then connect to the FCI using the same
VNN after a multi-subnet failover.

SQL Server Failover Concepts and Tasks

Concepts and Tasks Topic

Describes the failure detection mechanism
and the flexible failover policy.

Failover Policy for Failover Cluster Instances

Describes concepts in FCI administration
and maintenance.

SQL Server Failover Cluster Adminstration
and Maintenance

 36

Concepts and Tasks Topic

Describes multi-subnet configuration and
concepts

SQL Server Multi-Subnet Clustering

Related Topics

Topic descriptions Topic

Describes how to install a new SQL Server
FCI.

How to: Create a New SQL Server Failover
Cluster (Setup)

Describes how to upgrade to a SQL Server
2012 failover cluster.

Upgrading a SQL Server Failover Cluster

Describes Windows Failover Clustering
Concepts and provides links to tasks
related to Windows Failover Clustering

Windows Server 2008: Overview of Failover
Clusters
Windows Server 2008 R2: Overview of
Failover Clusters

Describes the distinctions in concepts
between nodes in an FCI and replicas within
an availability group and considerations for
using an FCI to host a replica for an
availability group.

Failover Clustering and AlwaysOn
Availability Groups (SQL Server)

Failover Policy for Failover Cluster Instances
In a SQL Server failover cluster instance (FCI), only one node can own the Windows Server
Failover Cluster (WSFC) cluster resource group at a given time. The client requests are served
through this node in the FCI. In the case of a failure and an unsuccessful restart, the group
ownership is moved to another WSFC node in the FCI. This process is called failover. SQL Server
2012 increases the reliability of failure detection and provides a flexible failover policy.
A SQL Server FCI depends on the underlying WSFC service for failover detection. Therefore, two
mechanisms determine the failover behavior for FCI: the former is native WSFC functionality, and
the latter is functionality added by SQL Server setup.
• The WSFC cluster maintains the quorum configuration, which ensures a unique failover

target in an automatic failover. The WSFC service determines whether the cluster is in
optimal quorum health at all times and brings the resource group online and offline
accordingly.

http://msdn.microsoft.com/en-us/library/30e06a7d-75e9-44e2-bca3-b3b0c4a33f61(SQL.110)�
http://msdn.microsoft.com/en-us/library/30e06a7d-75e9-44e2-bca3-b3b0c4a33f61(SQL.110)�
http://msdn.microsoft.com/en-us/library/daac41fe-7d0b-4f14-84c2-62952ad8cbfa(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=177878�
http://go.microsoft.com/fwlink/?LinkId=177878�
http://go.microsoft.com/fwlink/?LinkId=177879�
http://go.microsoft.com/fwlink/?LinkId=177879�

 37

• The active SQL Server instance periodically reports a set of component diagnostics to the
WSFC resource group over a dedicated connection. The WSFC resource group maintains the
failover policy, which defines the failure conditions that trigger restarts and failovers.

This topic discusses the second mechanism above. For more information on the WSFC behavior
for quorum configuration and health detection, see WSFC Quorum Modes and Voting
Configuration (SQL Server).

Automatic failovers to and from an FCI are not allowed in an AlwaysOn availability group.
However, manual failovers to and from and FCI are allowed in an AlwaysOn availability
group.

Failover Policy Overview
The failover process can be broken down into the following steps:
1. Monitor the Health Status
2. Determining Failures
3. Responding to Failures

Monitor the Health Status
There are three types of health statuses that are monitored for the FCI:
• State of the SQL Server service
• Responsiveness of the SQL Server instance
• SQL Server component diagnostics

State of the SQL Server service
The WSFC service monitors the start state of the SQL Server service on the active FCI node to
detect when the SQL Server service is stopped.

Responsiveness of the SQL Server instance
During SQL Server startup, the WSFC service uses the SQL Server Database Engine resource DLL
to create a new connection to on a separate thread that is used exclusively for monitoring the
health status. This ensures that there the SQL instance has the required resources to report its
health status while under load. Using this dedicated connection, SQL Server runs
the sp_server_diagnostics (Transact-SQL) system stored procedure in repeat mode to
periodically report the health status of the SQL Server components to the resource DLL.
The resource DLL determines the responsiveness of the SQL instance using a health check
timeout. The HealthCheckTimeout property defines how long the resource DLL should wait for
the sp_server_diagnostics stored procedure before it reports the SQL instance as unresponsive
to the WSFC service. This property is configurable using T-SQL as well as in the Failover Cluster
Manager snap-in. For more information, see Configure HealthCheckTimeout Property Settings.
The following items describe how this property affects timeout and repeat interval settings:

Important

http://msdn.microsoft.com/en-us/library/62658017-d089-459c-9492-c51e28f60efe(SQL.110)�

 38

• The resource DLL calls the sp_server_diagnostics stored procedure and sets the repeat
interval to one-third of the HealthCheckTimeout setting.

• If the sp_server_diagnostics stored procedure is slow or is not returning information, the
resource DLL will wait for the interval specified by HealthCheckTimeout before it reports to
the WSFC service that the SQL instance is unresponsive.

• If the dedicated connection is lost, the resource DLL will retry the connection to the SQL
instance for the interval specified by HealthCheckTimeout before it reports to the WSFC
service that the SQL instance is unresponsive.

SQL Server component diagnostics
The system stored procedure sp_server_diagnostics periodically collects component diagnostics
on the SQL instance. The diagnostic information that is collected is surfaced as a row for each of
the following components and passed to the calling thread.
1. system
2. resource
3. query process
4. io_subsystem
5. events
The system, resource, and query process components are used for failure detection. The
io_subsytem and events components are used for diagnostic purposes only.
Each rowset of information is also written to the SQL Server cluster diagnostics log. For more
information, see View and Read SQL Server Failover Cluster Diagnostics Log.

While the sp_server_diagnostic stored procedure is used by SQL Server AlwaysOn
technology, it is available for use in any SQL Server instance to help detect and
troubleshoot problems.

Determining Failures
The SQL Server Database Engine resource DLL determines whether the detected health status is
a condition for failure using the FailureConditionLevel property. The FailureConditionLevel
property defines which detected health statuses cause restarts or failovers. Multiple levels of
options are available, ranging from no automatic restart or failover to all possible failure
conditions resulting in an automatic restart or failover. For more information about how to
configure this property, see Configure FailureConditionLevel Property Settings.
The failure conditions are set on an increasing scale. For levels 1-5, each level includes all the
conditions from the previous levels in addition to its own conditions. This means that with each
level, there is an increased probability of a failover or restart. The failure condition levels are
described in the following table.
Review sp_server_diagnostics (Transact-SQL) as this system stored procedure plays in important
role in the failure condition levels.

Tip

http://msdn.microsoft.com/en-us/library/62658017-d089-459c-9492-c51e28f60efe(SQL.110)�

 39

Level Condition Description

0 No automatic failover or
restart

• Indicates that no failover or
restart will be triggered
automatically on any failure
conditions. This level is for
system maintenance purposes
only.

1 Failover or restart on server
down

Indicates that a server restart or
failover will be triggered if the
following condition is raised:
• SQL Server service is down.

2 Failover or restart on server
unresponsive

Indicates that a server restart or
failover will be triggered if any of
the following conditions are
raised:
• SQL Server service is down.
• SQL Server instance is not

responsive (Resource DLL
cannot receive data from
sp_server_diagnostics within
the HealthCheckTimeout
settings).

31 Failover or restart on critical
server errors

Indicates that a server restart or
failover will be triggered if any of
the following conditions are
raised:
• SQL Server service is down.
• SQL Server instance is not

responsive (Resource DLL
cannot receive data from
sp_server_diagnostics within
the HealthCheckTimeout
settings).

• System stored procedure
sp_server_diagnostics returns
‘system error’.

4 Failover or restart on Indicates that a server restart or

 40

Level Condition Description

moderate server errors failover will be triggered if any of
the following conditions are
raised:
• SQL Server service is down.
• SQL Server instance is not

responsive (Resource DLL
cannot receive data from
sp_server_diagnostics within
the HealthCheckTimeout
settings).

• System stored procedure
sp_server_diagnostics returns
‘system error’.

• System stored procedure
sp_server_diagnostics returns
‘resource error’.

5 Failover or restart on any
qualified failure conditions

Indicates that a server restart or
failover will be triggered if any of
the following conditions are
raised:
• SQL Server service is down.
• SQL Server instance is not

responsive (Resource DLL
cannot receive data from
sp_server_diagnostics within
the HealthCheckTimeout
settings).

• System stored procedure
sp_server_diagnostics returns
‘system error’.

• System stored procedure
sp_server_diagnostics returns
‘resource error’.

• System stored procedure
sp_server_diagnostics returns
‘query_processing error’.

1 Default Value

 41

Responding to Failures
After one or more failure conditions are detected, how the WSFC service responds to the failures
depends on the WSFC quorum state and the restart and failover settings of the FCI resource
group. If the FCI has lost its WSFC quorum, then the entire FCI is brought offline and the FCI has
lost its high availability. If the FCI still retains its WSFC quorum, then the WSFC service may
respond by first attempting to restart the failed node and then failover if the restart attempts are
unsuccessful. The restart and failover settings are configured in the Failover Cluster Manager
snap-in. For more information these settings, see <Resource> Properties: Policies Tab.
For more information on maintaining quorum health, see WSFC Quorum Modes and Voting
Configuration (SQL Server).

See Also
ALTER SERVER CONFIGURATION (Transact-SQL)

Configure HealthCheckTimeout Property Settings
The HealthCheckTimeout setting is used to specify the length of time, in milliseconds, that the
SQL Server resource DLL should wait for information returned by the sp_server_diagnostics
stored procedure before reporting the AlwaysOn Failover Cluster Instance (FCI) as unresponsive.
Changes that are made to the timeout settings are effective immediately and do not require a
restart of the SQL Server resource.
• Before you begin: Limitations and Restrictions, Security
• To Configure HeathCheckTimeout setting, using: PowerShell,Failover Cluster Manager,

Transact-SQL
Before You Begin

Limitations and Restrictions
The default value for this property is 60,000 milliseconds (60 seconds). The minimum value is
15,000 milliseconds (15 seconds).

Security

Permissions
Requires ALTER SETTINGS and VIEW SERVER STATE permissions

Using Powershell

http://technet.microsoft.com/en-us/library/cc725685.aspx�
http://msdn.microsoft.com/en-us/library/f3059e42-5f6f-4a64-903c-86dca212a4b4(SQL.110)�

 42

1. Start an elevated Windows PowerShell via Run as Administrator.
2. Import the FailoverClusters module to enable cluster commandlets.
3. Use the Get-ClusterResource object to set the HealthCheckTimeout property for

the failover cluster instance.

Example (Powershell)
The following example changes the HealthCheckTimeout setting on the “AlwaysOnSrv1” failover
cluster instance to 60000 milliseconds.

Import-Module FailoverClusters

$fci = “AlwaysOnSrv1”

Get-ClusterResource $fci | Set-ClusterParameter HealthCheckTimeout 60000

Using the Failover Cluster Manager Snap-in
To configure HealthCheckTimeout setting
1. Open the Failover Cluster Manager snap-in.
2. Expand Services and Applications and select the FCI.
3. Right-click the SQL Server resource under Other Resources and select Properties from the

right-click menu. The SQL Server resource Properties dialog box opens.
4. Select the Properties tab, enter the desired value for the HealthCheckTimeout property,

and then click OK to apply the change.

Using Transact-SQL

For an example of this procedure, see Example (Transact-SQL), later in this section.
Using the Data Definition Language (DDL) statement ALTER SERVER CONFIGURATION, you
can specify the HealthCheckTimeOut property value. For syntax details, see Setting failover
cluster properties
Example (Transact-SQL)
The following example sets the HealthCheckTimeout option to 15,000 milliseconds (15
seconds).

ALTER SERVER CONFIGURATION

To configure HealthCheckTimeout settings

Note

 43

SET FAILOVER CLUSTER PROPERTY HealthCheckTimeout = 15000;

See Also
Failure Detection in SQL Server Failover Cluster

Configure FailureConditionLevel Property Settings
Use the FailureConditionLevel property to set the conditions for the AlwaysOn Failover Cluster
Instance (FCI) to fail over or restart. Changes to this property are applied immediately without
requiring a restart of the Windows Server Failover Cluster (WSFC) service or the FCI resource.
• Before you begin: Limitations and Restrictions, Security
• To configure FailureConditionLevel property settings using, PowerShell, Failover Cluster

Manager, Transact-SQL
Before You Begin

FailureConditionLevel Property Settings
The failure conditions are set on an increasing scale. For levels 1-5, each level includes all the
conditions from the previous levels in addition to its own conditions. This means that with each
level, there is an increased probability of a failover or restart. For more information,
see Determining Failures

Security

Permissions
Requires ALTER SETTINGS and VIEW SERVER STATE permissions

Using Powershell

1. Start an elevated Windows PowerShell via Run as Administrator.
2. Import the FailoverClusters module to enable cluster commandlets.
3. Use the Get-ClusterResource object to set the FailureConditionLevel property

for Failover Cluster Instance.

Example (Powershell)

To configure FailureConditionLevel settings

 44

The following example changes the FailureConditionLevel setting on the “AlwaysOnSrv1” failover
cluster instance to failover or restart on critical server errors.

Import-Module FailoverClusters

$fci = “AlwaysOnSrv1”

Get-ClusterResource $fci | Set-ClusterParameter FailureConditionLevel 3

Using the Failover Cluster Manager Snap-in
To configure FailureConditionLevel property settings:

1. Open the Failover Cluster Manager snap-in.
2. Expand the Services and Applications and select the FCI.
3. Right-click the SQL Server resource under Other Resources, and then select

Properties from the menu. The SQL Server resource Properties dialog box opens.
4. Select the Properties tab, enter the desired value for the FaliureConditionLevel

property, and then click OK to apply the change.

Using Transact-SQL
To configure FailureConditionLevel property settings:

For an example of this procedure, see Example (Transact-SQL), later in this section.
Using the Data Definition Language (DDL) statement ALTER SERVER CONFIGURATION, you
can specify the FailureConditionLevel property value. For syntax details, see Setting failover
cluster properties
Example (Transact-SQL)
The following example sets the FailureConditionLevel property to 0 indicating that no
failover or restart will be triggered automatically on any failure conditions.

ALTER SERVER CONFIGURATION SET FAILOVER CLUSTER PROPERTY

FailureConditionLevel = 0;

See Also
sp_server_diagnostics (Transact-SQL)
Failover Policy for Failover Cluster Instances

Note

http://msdn.microsoft.com/en-us/library/62658017-d089-459c-9492-c51e28f60efe(SQL.110)�

 45

View and Read Failover Cluster Instance Diagnostics Log
All critical errors and warning events for the SQL Server Resource DLL are written to the
Windows event log. A running log of the diagnostic information specific to SQL Server is
captured by the sp_server_diagnostics system stored procedure and is written to the SQL Server
failover cluster diagnostics (also known as the SQLDIAG logs) log files.
• Before you begin: Recommendations, Security
• To View the Diagnostic Log, using: SQL Server Management Studio, Transact-SQL
• To Configure Diagnostic Log settings, using: Transact-SQL
Before You Begin

Recommendations
By default, the SQLDIAG are stored under a local LOG folder of the SQL Server instance
directory, for example, 'C\Program Files\Microsoft SQL
Server\MSSQL11.<InstanceName>\MSSQL\LOG' of the owning node of the AlwaysOn Failover
Cluster Instance (FCI). The size of each SQLDIAG log file is fixed at 100 MB. Ten such log files are
stored on the computer before they are recycled for new logs.
The logs use the extended events file format. The sys.fn_xe_file_target_read_file system function
can be used to read the files that are created by Extended Events. One event, in XML format, is
returned per row. Query the system view to parse the XML data as a result-set. For more
information, see fn_xe_file_target_read_file (Transact-SQL).

Security

Permissions
VIEW SERVER STATE permission is needed to run fn_xe_file_target_read_file.
Open SQL Server Management Studio as Administrator

Using SQL Server Management Studio
To view the Diagnostic log files:
1. From the File menu, select Open, File, and choose the diagnostic log file you want to view.
2. The events are displayed as rows in the right pane, and by default name, and timestamp are

the only two columns displayed.
This also activates the ExtendedEvents menu.

3. To see more columns, go the ExtendedEvents menu, and select Choose Columns.
A dialog box opens with the available columns allowing you to select the columns for
display.

http://msdn.microsoft.com/en-us/library/62658017-d089-459c-9492-c51e28f60efe(SQL.110)�
http://msdn.microsoft.com/en-us/library/cc0351ae-4882-4b67-b0d8-bd235d20c901(SQL.110)�

 46

4. You can filter, and sort the event data using the ExtendedEvents menu and selecting the
Filter option.

Using Transact-SQL
To view the Diagnostic log files:
To view all the log items in the SQLDIAG log file, use the following query:
SELECT

 xml_data.value ('(event/@name)[1]','varchar(max)')AS 'Name'

,xml_data.value ('(event/@package)[1]','varchar(max)') AS 'Package'

 ,xml_data.value ('(event/@timestamp)[1]','datetime') AS 'Time'

 ,xml_data.value ('(event/data[@name=''state'']/value)[1]','int') AS 'State'

 ,xml_data.value ('event/data[@name=''state_desc'']/text)[1]','varchar(max)')

AS 'State Description'

 ,xml_data.value

('event/data[@name=''failure_condition_level'']/value)[1]','int') AS 'Failure

Conditions'

 ,xml_data.value ('event/data[@name=''node_name'']/value[1]','varchar(max)')

AS 'Node_Name'

 ,xml_data.value

('event/data[@name=''instancename'']/value)[1]','varchar(max)') AS 'Instance

Name'

 ,xml_data.value ('event/data[@name=''creation time'']/value[1])','datetime')

AS 'Creation Time'

 ,xml.data.value ('event/data[@name=''component'']/value)[1]','varchar(max)')

AS 'Component'

 ,xml_data.value ('event/data[@name=''data'']/value[1]','varchar(max)') AS

'Data'

 ,xml_data.value ('event/data[@name=''info'']/value[1]','varchar(max)') AS

'Info'

FROM

(SELECTobject_name AS 'event'

,CONVERT(xml,event_data) AS 'xml_data'

 FROM

 sys.fn_xe_file_target_read_file('<path to the file>','<path to the metadata

file>',NULL,NULL)

)

 47

You can filter the results for specific components or state using the WHERE clause.
Using Transact-SQL
To configure the Diagnostic Log Properties

For an example of this procedure, see Example (Transact-SQL), later in this section.
Using the Data Definition Language (DDL) statement, ALTER SERVER CONFIGURATION, you
can start or stop logging diagnostic data captured by the sp_server_diagnostics procedure, and
set SQLDIAG log configuration parameters such as the log file rollover count, log file size, and
file location. For syntax details, see Setting diagnostic log options
Examples (Transact-SQL)
Setting diagnostic log options
The examples in this section show how to set the values for the diagnostic log option.
A. Starting diagnostic logging
The following example starts the logging of diagnostic data.

ALTER SERVER CONFIGURATION SET DIAGNOSTICS LOG ON;

B. Stopping diagnostic logging
The following example stops the logging of diagnostic data.
ALTER SERVER CONFIGURATION SET DIAGNOSTICS LOG OFF;

C. Specifying the location of the diagnostic logs
The following example sets the location of the diagnostic logs to the specified file path.

ALTER SERVER CONFIGURATION

SET DIAGNOSTICS LOG PATH = 'C:\logs';

D. Specifying the maximum size of each diagnostic log
The following example set the maximum size of each diagnostic log to 10 megabytes.

ALTER SERVER CONFIGURATION

SET DIAGNOSTICS LOG MAX_SIZE = 10 MB;

See Also
Failure Detection in SQL Server Failover Cluster

Note

Note

http://msdn.microsoft.com/en-us/library/62658017-d089-459c-9492-c51e28f60efe(SQL.110)�

 48

Failover Cluster Instance Administration and
Maintenance
Maintenance tasks like adding or removing nodes from an existing AlwaysOn Failover Cluster
Instance (FCI) are accomplished using the SQL Server Setup program. Other administration tasks
like changing the IP address resource, recovering from certain FCI scenarios are accomplished
using the Failover Cluster Manager snap-in, which is the management snap-in for the Windows
Server Failover Clustering (WSFC) service.

Maintaining a Failover Cluster Instance
After you have installed an FCI, you can change or repair it using the SQL Server Setup program.
For example, you can add additional nodes to an FCI, run an FCI as a stand-alone instance, or
remove a node from a FCI configuration.

Adding a Node to an Existing Failover Cluster Instance
SQL Server Setup gives you the option of maintaining an existing FCI. If you choose this option,
you can add other nodes to your FCI by running SQL Server Setup on the computer that you
want to add to the FCI. For more information, see Before Installing Failover Clustering and How
to: Add or Remove Nodes in a SQL Server Failover Cluster (Setup).

Removing a Node from an Existing Failover Cluster Instance
You can remove a node from an FCI by running SQL Server Setup on the computer that you
want to remove from the FCI. Each node in an FCI is considered a peer without dependencies on
other nodes on the FCI, and you can remove any node. A damaged node does not have to be
available to be removed, and the removal process does not uninstall the SQL Server binaries
from the unavailable node. A removed node can be added back to a FCI at any time. For more
information, see How to: Add or Remove Nodes in a SQL Server Failover Cluster (Setup).

Changing Service Accounts
You should not change passwords for any of the SQL Server service accounts when an FCI node
is down or offline. If you must do this, you must reset the password again by using SQL Server
Configuration Manager when all nodes are back online.
If the service account for SQL Server is not an administrator in your cluster, the administrative
shares cannot be deleted on any nodes of the cluster. The administrative shares must be
available in a cluster for SQL Server to function.

Do not use the same account for the SQL Server service account and the WSFC service
account. If the password changes for the WSFC service account, your SQL Server
installation will fail.

On Windows Server 2008, service SIDs are used for SQL Server service accounts. For more
information, see Setting Up Windows Service Accounts.

Important

http://msdn.microsoft.com/en-us/library/30e06a7d-75e9-44e2-bca3-b3b0c4a33f61(SQL.110)�
http://msdn.microsoft.com/en-us/library/fe20dca9-a4c1-4d32-813d-42f1782dfdd3(SQL.110)�
http://msdn.microsoft.com/en-us/library/fe20dca9-a4c1-4d32-813d-42f1782dfdd3(SQL.110)�
http://msdn.microsoft.com/en-us/library/fe20dca9-a4c1-4d32-813d-42f1782dfdd3(SQL.110)�
http://msdn.microsoft.com/en-us/library/309b9dac-0b3a-4617-85ef-c4519ce9d014(SQL.110)�

 49

Administering a Failover Cluster Instance

Task Description Topic Link

Describes how to add dependencies to a
SQL Server resource.

How to: Add Dependencies to a SQL Server
Resource

Kerberos is a network authentication
protocol designed to provide strong
authentication for client/server applications.
Kerberos provides a foundation for
interoperability and helps to enhance the
security of enterprise-wide network
authentication. You can use Kerberos
authentication with SQL Server stand-alone
instances or with AlwaysOn FCIs.

Registering a Service Principal Name.

Provides links to content that describes
how to enable Kerberos authentication

Describes the procedure used to recover
from a SQL Server failover cluster failure.

Recover from Failover Cluster Failure

Describe the procedure used to change the
IP address resource for a SQL Server
failover cluster instance.

Change the IP Address of a SQL Server
Failover Cluster

See Also
How to: Configure HealthCheckTimeout Settings
How to: Configure FailureConditionLevel Property Settings
How to: View and Read SQL Server Failover Cluster Diagnostics Log

Add Dependencies to a SQL Server Resource
This topic describes how to add dependencies to an AlwaysOn Failover Cluster Instance (FCI)
resource by using the Failover Cluster Manager snap-in. The Failover Cluster Manager snap-in is
the cluster management application for the Windows Server Failover Clustering (WSFC) service.
• Before you begin: Limitations and Restrictions, Prerequisites
• To add a dependency to a SQL Server resource, using: Windows Failover Cluster Manager
Before You Begin
Limitations and Restrictions

http://msdn.microsoft.com/en-us/library/e38d5ce4-e538-4ab9-be67-7046e0d9504e(SQL.110)�

 50

It is important to note that if you add any other resources to the SQL Server group, those
resources must always have their own unique SQL network name resources and their own SQL
IP address resources.
Do not use the existing SQL network name resources and SQL IP address resources for anything
other than SQL Server. If SQL Server resources are shared with other resources, the following
problems may occur:
• Outages that are not expected may occur.
• Service pack installations may not be successful.
• The SQL Server Setup program may not be successful. If this problem occurs, you cannot

install additional instances of SQL Server or perform routine maintenance.
Consider these additional issues:
• FTP with SQL Server replication: For instances of SQL Server that use FTP with SQL Server

replication, your FTP service must use one of the same physical disks as the installation of
SQL Server that is set up to use the FTP service.

• SQL Server resource dependencies: If you add a resource to a SQL Server group and you
have a dependency on the SQL Server resource to make sure that SQL Server is available,
Microsoft recommends that you add a dependency on the SQL Server Agent resource. Do
not add a dependency on the SQL Server resource. To make sure that the computer that is
running SQL Server remains highly available, configure the SQL Server Agent resource so
that it does not affect the SQL Server group if the SQL Server Agent resource fails.

• File shares and printer resources: When you install File Share resources or Printer cluster
resources, they should not be put on the same physical disk resources as the computer that
is running SQL Server. If they are put on the same physical disk resources, you may
experience performance degradation and loss of service to the computer that is running SQL
Server.

• MS DTC considerations: After you install the operating system and configure your FCI, you
must configure Microsoft Distributed Transaction Coordinator (MS DTC) to work in a cluster
by using the Failover Cluster Manager snap-in. Failure to cluster MS DTC will not block SQL
Server Setup, but SQL Server application functionality may be affected if MS DTC is not
properly configured.
If you install MS DTC in your SQL Server group and you have other resources that are
dependent on MS DTC, MS DTC will not be available if this group is offline or during a
failover. Microsoft recommends that you put MS DTC in its own group with its own physical
disk resource, if it is possible.

Prerequisites
If you install SQL Server into a WSFC resource group with multiple disk drives and choose to
place your data on one of the drives, the SQL Server resource will be set to be dependent only
on that drive. To put data or logs on another disk, you must first add a dependency to the SQL
Server resource for the additional disk.
Using the Failover Cluster Manager Snap-in

 51

To add a dependency to a SQL Server resource
• Open the Failover Cluster Manager snap-in.
• Locate the group that contains the applicable SQL Server resource that you would like to

make dependent.
• If the resource for the disk is already in this group, go to step 4. Otherwise, locate the group

that contains the disk. If that group and the group that contains SQL Server are not owned
by the same node, move the group containing the resource for the disk to the node that
owns the SQL Server group.

• Select the SQL Server resource, open the Properties dialog box, and use the Dependencies
tab to add the disk to the set of SQL Server dependencies.

Recover from Failover Cluster Instance Failure
This topic describes how to recover from cluster failures by using the Failover Cluster Manager
snap-in after a failover occurs in SQL Server 2012. The Failover Cluster Manager snap-in is the
cluster management application for the Windows Serer Failover Clustering (WSFC) service.
• Recover from an irreparable failure
• Recover from a software failure
Recover from an irreparable failure
Use the following steps to recover from an irreparable failure. The failure could be caused, for
example, by the failure of a disk controller or the operating system. In this case, failure is caused
by hardware failure in Node 1 of a two-node cluster.
1. After Node 1 fails, the SQL Server FCI fails over to Node 2.
2. Evict Node 1 from the FCI. To do this, from Node 2, open the Failover Cluster Manager snap-

in, right-click Node1, click Move Actions, and then click Evict Node.
3. Verify that Node 1 has been evicted from the cluster definition.
4. Install new hardware to replace the failed hardware in Node 1.
5. Using the Failover Cluster Manager snap-in, add Node 1 to the existing cluster. For more

information, see How to: Read a SQL Server Setup Log File.
6. Ensure that the administrator accounts are the same on all cluster nodes.
7. Run SQL Server Setup to add Node 1 to the FCI. For more information, see How to: Add or

Remove Nodes in a SQL Server 2005 Failover Cluster (Setup).

Recover from a reparable failure
Us the following steps to recover from a reparable failure. In this case, failure is caused by Node
1 being down or offline but not irretrievably broken. This could be caused by an operating
system failure, hardware failure, or failure in the SQL Server instance itself.
1. After Node 1 fails, the FCI fails over to Node 2.

http://msdn.microsoft.com/en-us/library/a655225d-8c54-4b30-95fd-31f588167899(SQL.110)�
http://msdn.microsoft.com/en-us/library/fe20dca9-a4c1-4d32-813d-42f1782dfdd3(SQL.110)�
http://msdn.microsoft.com/en-us/library/fe20dca9-a4c1-4d32-813d-42f1782dfdd3(SQL.110)�

 52

2. Resolve the problem with Node 1.
3. Ensure that all nodes are online and the WSFC service is working.
4. Fail over SQL Server to the recovered node.

Change the IP Address of a Failover Cluster Instance
This topic describes how to change the IP address resource in an AlwaysOn Failover Cluster
Instance (FCI) by using the Failover Cluster Manager snap-in. The Failover Cluster Manager snap-
in is the cluster management application for the Windows Server Failover Clustering (WSFC)
service.
• Before you begin: Security
• To change the IP address resource, using: Transact-SQL,
Before You Begin
Before you begin, review the following SQL Server Books Online topic: Before Installing Failover
Clustering.
Security

Permissions
To maintain or update an FCI, you must be a local administrator with permission to logon as a
service on all nodes of the FCI.

Using the Failover Cluster Manager Snap-in
To change the IP address resource for an FCI
1. Open the Failover Cluster Manager snap-in.
2. Expand the Services and applications node, in the left pane and click on the FCI.
3. On the right pane, under the Server Name category, right-click the SQL Server Instance, and

select Properties option to open the Properties dialog box.
4. On the General tab, change the IP address resource.
5. Click OK to close the dialog box.
6. In the right-hand pane, right-click the SQL IP Address1(failover cluster instance name) and

select Take Offline. You will see the SQL IP Address1(failover cluster instance name), SQL
Network Name(failover cluster instance name), and SQL Server status change from Online to
Offline Pending, and then to Offline.

7. In the right-hand pane, right-click SQL Server, and then select Bring Online. You will see the
SQL IP Address1(failover cluster instance name), SQL Network Name(failover cluster instance
name), and SQL Server status change from Offline to Online Pending, and then to Online.

8. Close the Failover Cluster Manager snap-in.

http://msdn.microsoft.com/en-us/library/a655225d-8c54-4b30-95fd-31f588167899(SQL.110)�
http://msdn.microsoft.com/en-us/library/a655225d-8c54-4b30-95fd-31f588167899(SQL.110)�

 53

AlwaysOn Availability Groups
The AlwaysOn Availability Groups feature is a high-availability and disaster-recovery solution
that provides an enterprise-level alternative to database mirroring. Introduced in SQL Server
2012, AlwaysOn Availability Groups maximizes the availability of a set of user databases for an
enterprise. An availability group supports a failover environment for a discrete set of user
databases, known as availability databases, that fail over together. An availability group supports
a set of read-write primary databases and one to four sets of corresponding secondary
databases. Optionally, secondary databases can be made available for read-only access and/or
some backup operations.
An availability group fails over at the level of an availability replica. Failovers are not caused by
database issues such as a database becoming suspect due to a loss of a data file, deletion of a
database, or corruption of a transaction log.
In this Topic:
• Benefits
• Terms and Definitions
• Interoperability and Coexistence with Other Database Engine Features
• Related Tasks
• Related Content

Benefits
AlwaysOn Availability Groups provides a rich set of options that improve database availability
and that enable improved resource use. The key components are as follows:
• Supports up to five availability replicas. An availability replica is an instantiation of an

availability group that is hosted by a specific instance of SQL Server and maintains a local
copy of each availability database that belongs to the availability group. Each availability
group supports one primary replica and up to four secondary replicas. For more information,
see Overview of AlwaysOn Availability Groups.

Each availability replica must reside on a different node of a single Windows Server
Failover Clustering (WSFC) cluster. For more information about prerequisites,
restrictions, and recommendations for availability groups, see Considerations for
Deploying AlwaysOn Availability Groups (SQL Server).

• Supports alternative availability modes, as follows:
• Asynchronous-commit mode. This availability mode is a disaster-recovery solution that

works well when the availability replicas are distributed over considerable distances.
• Synchronous-commit mode. This availability mode emphasizes high availability and data

protection over performance, at the cost of increased transaction latency. A given

Important

 54

availability group can support up to three synchronous-commit availability replicas,
including the current primary replica.

For more information, see Availability Modes (AlwaysOn Availability Groups).
• Supports several forms of availability-group failover: automatic failover, planned manual

failover (generally referred as simply "manual failover"), and forced manual failover
(generally referred as simply "forced failover"). For more information, see Failover Modes
(AlwaysOn Availability Groups).

• Enables you to configure a given availability replica to support either or both of the
following active-secondary capabilities:
• Read-only connection access which enables read-only connections to the replica to

access and read its databases when it is running as a secondary replica. For more
information, see Read-Only Access to Secondary Replicas (AlwaysOn Availability Groups).

• Performing backup operations on its databases when it is running as a secondary replica.
For more information, see Backup on Secondary Replicas (AlwaysOn Availability Groups).

Using active secondary capabilities improves your IT efficiency and reduce cost through
better resource utilization of secondary hardware. In addition, offloading read-intent
applications and backup jobs to secondary replicas helps to improve performance on the
primary replica.

• Supports an availability group listener for each availability group. An availability group
listener is a server name to which clients can connect in order to access a database in a
primary or secondary replica of an AlwaysOn availability group. Availability group listeners
direct incoming connections to the primary replica or to a read-only secondary replica. The
listener provides fast application failover after an availability group fails over. For more
information, see Configuring Client Connectivity (AlwaysOn Availability Groups).

• Supports a flexible failover policy for greater control over availability-group failover. For
more information, see Failover Modes (AlwaysOn Availability Groups).

• Supports automatic page repair for protection against page corruption. For more
information, see Automatic Page Repair (Availability Groups/Database Mirroring).

• Supports encryption and compression, which provide a secure, high performing transport.
• Provides an integrated set of tools to simplify deployment and management of availability

groups, including:
• Tsql DDL statements for creating and managing availability groups. For more

information, see Overview of Transact-SQL Statements for AlwaysOn Availability Groups.
• SQL Server Management Studio tools, as follows:

• The New Availability Group Wizard creates and configures an availability group. In
some environments, this wizard can also automatically prepare the secondary
databases and start data synchronization for each of them. For more information,
see Create and Configure an Availability Group (New Availability Group Wizard).

• The Add Database to Availability Group Wizard adds one or more primary databases
to an existing availability group. In some environments, this wizard can also

http://msdn.microsoft.com/en-us/library/cf2e3650-5fac-4f34-b50e-d17765578a8e(SQL.110)�

 55

automatically prepare the secondary databases and start data synchronization for
each of them. For more information, see Use the Add Database to Availability Group
Wizard (SQL Server).

• The Add Replica to Availability Group Wizard adds one or more secondary replicas to
an existing availability group. In some environments, this wizard can also
automatically prepare the secondary databases and start data synchronization for
each of them. For more information, see Use the Add Replica to Availability Group
Wizard (SQL Server).

• The Fail Over Availability Group Wizard initiates a manual failover on an availability
group. Depending on the configuration and state of the secondary replica that you
specify as the failover target, the wizard can perform either a planned or forced
manual failover. For more information, see Use the Failover Availability Group Wizard
(SQL Server).

• The AlwaysOn Dashboard monitors AlwaysOn availability groups, availability replicas,
and availability databases and evaluates results for AlwaysOn policies. For more
information, see Use the Availability Group Dashboard (SQL Server Management Studio).

• The Object Explorer Details pane displays basic information about existing availability
groups. For more information, see Use Object Explorer Details to Monitor Availability
Groups (SQL Server Management Studio).

• PowerShell cmdlets. For more information, see Overview of PowerShell Cmdlets for
AlwaysOn Availability Groups (SQL Server).

Terms and Definitions

availability group

A container for a set of databases, availability databases, that fail over together.

availability database

A database that belongs to an availability group. For each availability database, the
availability group maintains a single read-write copy (the primary database) and one to four
read-only copies (secondary databases).

primary database

The read-write copy of an availability database.

secondary database

A read-only copy of an availability database.

availability replica

An instantiation of an availability group that is hosted by a specific instance of SQL Server
and maintains a local copy of each availability database that belongs to the availability group.
Two types of availability replicas exist: a single primary replica and one to four secondary

 56

replicas.

primary replica

The availability replica that makes the primary databases available for read-write connections
from clients and, also, sends transaction log records for each primary database to every
secondary replica.

secondary replica

An availability replica that maintains a secondary copy of each availability database, and
serves as a potential failover targets for the availability group. Optionally, a secondary replica
can support read-only access to secondary databases can support creating backups on
secondary databases.

availability group listener

A server name to which clients can connect in order to access a database in a primary or
secondary replica of an AlwaysOn availability group. Availability group listeners direct
incoming connections to the primary replica or to a read-only secondary replica.

For more information, see Overview of AlwaysOn Availability Groups (SQL Server).

Interoperability and Coexistence with Other Database Engine Features
AlwaysOn Availability Groups can be used with the following features or components of SQL
Server:
• Change Data Capture
• Change Tracking
• Contained databases
• Database encryption
• Database snapshots
• FILESTREAM
• FileTable
• Log shipping
• Remote Blob Store (RBS)
• Replication
• Service Broker
• SQL Server Agent
• Reporting Services

Note

Warning

http://msdn.microsoft.com/en-us/library/7d8c4684-9eb1-4791-8c3b-0f0bb15d9634(SQL.110)�
http://msdn.microsoft.com/en-us/library/5e0ef05a-8317-4c98-be20-b19d4cd78f12(SQL.110)�
http://msdn.microsoft.com/en-us/library/36af59d7-ce96-4a02-8598-ffdd78cdc948(SQL.110)�
http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/9a5a8166-bcbe-4680-916c-26276253eafa(SQL.110)�
http://msdn.microsoft.com/en-us/library/a57b629c-e9ed-48fd-9a48-ed3787d80c8f(SQL.110)�
http://msdn.microsoft.com/en-us/library/55da6b94-3a4b-4bae-850f-4bf7f6e918ca(SQL.110)�
http://msdn.microsoft.com/en-us/library/31c947cf-53e9-4ff4-939b-4c1d034ea5b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/3a5f4592-3c61-4b4d-9ceb-39716aeeba41(SQL.110)�
http://msdn.microsoft.com/en-us/library/8b8b3b57-fd46-44de-9a4e-e3a8e3999c1e(SQL.110)�
http://msdn.microsoft.com/en-us/library/8d1dc600-aabb-416f-b3af-fbc9fccfd0ec(SQL.110)�

 57

For information about restrictions and limitations for using other features with AlwaysOn
Availability Groups, see AlwaysOn Availability Groups: Interoperability and Coexistence.

Related Tasks
• Getting Started with AlwaysOn Availability Groups (SQL Server)

Related Content
• Video—Introduction to AlwaysOn: Microsoft SQL Server Code-Named "Denali" AlwaysOn

Series,Part 1: Introducing the Next Generation High Availability Solution
• Video—A Deep Dive into AlwaysOn: Microsoft SQL Server Code-Named "Denali"

AlwaysOn Series,Part 2: Building a Mission-Critical High Availability Solution Using AlwaysOn
• Whitepaper: Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and

Disaster Recovery
• Blogs: SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
Overview of AlwaysOn Availability Groups (SQL Server)
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)
Deployment: Configuring a Server Instance for AlwaysOn Availability Groups (SQL Server)
Creation and Configuration of Availability Groups (SQL Server)
Administration of an Availability Group (SQL Server)
Monitoring of Availability Groups (SQL Server)
Overview of Transact-SQL Statements
Overview of PowerShell Cmdlets for AlwaysOn Availability Group (SQL Server)

Prerequisites, Restrictions, and Recommendations for
AlwaysOn Availability Groups
This topic describes considerations for deploying AlwaysOn Availability Groups, including
prerequisites, restrictions, and recommendations for host computers, Windows Server Failover
Clustering (WSFC) clusters, server instances, and availability groups. For each of these
components security considerations and required permissions, if any, are indicated.

Before you deploy AlwaysOn Availability Groups, we strongly recommend that you read
every section of this topic.

In this Topic:
• .Net Hotfixes that Support AlwaysOn Availability Groups

Important

http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI302�
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI302�
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI404�
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI404�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 58

• Windows System Requirements and Recommendations
• SQL Server Instance Prerequisites and Restrictions
• Network Connectivity Recommendations
• Prerequisites and Restrictions for Using a SQL Server Failover Cluster Instance (FCI) to Host

an Availability Replica
• Availability Group Prerequisites and Restrictions
• Availability Database Prerequisites and Restrictions
• Related Content

.Net Hotfixes that Support AlwaysOn Availability Groups
Depending on the SQL Server 2012 components and features you will use with AlwaysOn
Availability Groups, you may need to install additional .Net hotfixes identified in the following
table. The hotfixes can be installed in any order.

 Dependent Feature Hotfix Link

 Reporting Services Hotfix for .Net 3.5 SP1 adds
support to SQL Client for
AlwaysOn features of Read-
intent, readonly, and
multisubnetfailover. The
hotfix needs to be installed
on each Reporting Services
report server.

KB 2654347: Hotfix for
.Net 3.5 SP1 to add
support for AlwaysOn
features

Windows System Requirements and Recommendations

In This Section:
• Checklist: Requirements
• Windows Hotfixes that Support AlwaysOn Availability Groups (Windows System)
• Recommendations for Computers That Host Availability Replicas (Windows System
• Permissions
• Related Tasks

Checklist: Requirements (Windows System)
To support the AlwaysOn Availability Groups feature, ensure that every computer that is to
participate in one or more availability groups meets the following fundamental requirements:

http://go.microsoft.com/fwlink/?LinkId=242896�
http://go.microsoft.com/fwlink/?LinkId=242896�
http://go.microsoft.com/fwlink/?LinkId=242896�
http://go.microsoft.com/fwlink/?LinkId=242896�

 59

 Requirement Link

 Ensure that the system is not a
domain controller.

Availability groups are not
supported on domain controllers.

 Ensure that each computer is
running either x86 (non-
WOW64) or x64 Windows
Server 2008 or later versions.

WOW64 (Windows 32-bit on
Windows 64-bit) does not support
AlwaysOn Availability Groups.

 Ensure that each computer is a
node in a Windows Server
Failover Clustering (WSFC)
cluster.

Windows Server Failover
Clustering (WSFC) with SQL Server

 Ensure that the WSFC cluster
contains sufficient nodes to
support your availability group
configurations.

A WSFC node can host only one
availability replica for a given
availability group. On a given
WSFC node, one or more
instances of SQL Server can host
availability replicas for many
availability groups.
Ask your database administrators
how many WSFC nodes are
required for to support the
availability replicas of the planned
availability groups.
Conceptual Overview of AlwaysOn
Availability Groups (SQL Server).

 Ensure that all applicable
Window hotfixes have been
installed on every node in the
WSFC cluster.

Important
A number of hotfixes are
required or recommended
for the nodes of a WSFC
cluster on which AlwaysOn
Availability Groups is being
deployed. For more
information, see Windows
Hotfixes that Support
AlwaysOn Availability
Groups (Windows System),
later in this section.

 60

Also ensure that your environment is correctly configured for connecting to an
availability group. For more information, see Prerequisites, Restrictions, and
Recommendations for AlwaysOn Client Connectivity.

Windows Hotfixes that Support AlwaysOn Availability Groups (Windows System)
Depending on your cluster topology, several additional Windows Server 2008 Service Pack 2
(SP2) or Windows Server 2008 R2 hotfixes might be applicable for supporting AlwaysOn
Availability Groups. The following table identifies these hotfixes. They hotfixes can be installed in
any order.

 Applies to
Win 2008
SP2

Applies to
Win 2008 R2
SP1

To Support… Hotfix Link

 √ √ Configuring
optimal WSFC
quorum

On each WSFC
node, ensure that
the hotfix
described in
Knowledge Base
article 2494036 is
installed.
This hotfix
supports
configuring
optimal quorum
with non-
automatic
failover targets.
This functionality
improves multi-
site clusters by
enabling you to
select which
nodes vote.

KB 2494036: A hotfix
is available to let you
configure a cluster
node that does not
have quorum votes in
Windows Server 2008
and in Windows
Server 2008 R2
For information
about quorum
voting, see WSFC
Quorum Modes and
Voting Configuration
(SQL Server)

 √ √ More efficient
use of network
bandwidth

On each WSFC
node, ensure that
the hotfix
described in
Knowledge Base

KB 2616514: Cluster
service sends
unnecessary registry
key change
notifications among

Important

http://support.microsoft.com/kb/2494036�
http://support.microsoft.com/kb/2494036�
http://support.microsoft.com/kb/2494036�
http://support.microsoft.com/kb/2494036�
http://support.microsoft.com/kb/2494036�
http://support.microsoft.com/kb/2494036�
http://support.microsoft.com/kb/2494036�
http://support.microsoft.com/kb/2494036�
http://support.microsoft.com/kb/2494036�
http://support.microsoft.com/kb/2616514�
http://support.microsoft.com/kb/2616514�
http://support.microsoft.com/kb/2616514�
http://support.microsoft.com/kb/2616514�
http://support.microsoft.com/kb/2616514�

 61

 Applies to
Win 2008
SP2

Applies to
Win 2008 R2
SP1

To Support… Hotfix Link

article 2616514 is
installed.
Without this
hotfix, the Cluster
service sends
unnecessary
registry
notifications
among cluster
nodes. This
behavior limits
network
bandwidth, which
is a serious issue
for AlwaysOn
Availability
Groups.

cluster nodes in
Windows Server 2008
or in Windows Server
2008 R2

 √ VPD storage
testing on disks
that are not
available to all
WSFC nodes

If a WSFC node is
running Windows
Server 2008 R2
Service Pack 1
(SP1) and the
Validate SCSI
Device Vital
Product Data
(VPD) storage
test fails after
incorrectly
running on disks
that are online
and not available
to all nodes in
the WSFC cluster,
install the hotfix
described in
Knowledge Base
article 2531907.
This hotfix

KB 2531907: Validate
SCSI Device Vital
Product Data (VPD)
test fails after you
install Windows
Server 2008 R2 SP1

http://support.microsoft.com/kb/2531907�
http://support.microsoft.com/kb/2531907�
http://support.microsoft.com/kb/2531907�
http://support.microsoft.com/kb/2531907�
http://support.microsoft.com/kb/2531907�
http://support.microsoft.com/kb/2531907�

 62

 Applies to
Win 2008
SP2

Applies to
Win 2008 R2
SP1

To Support… Hotfix Link

eliminates
incorrect
warnings or
errors in the
validation report
when disks are
online.

 √ Faster failover
to local replicas

If a WSFC node is
running Windows
Server 2008 R2
Service Pack 1
(SP1), ensure that
the hotfix
described in
Knowledge Base
article 2687741 is
installed.
This hotfix
improves the
performance of
AlwaysOn
Availability
Groups failover
to local replicas.

KB 2687741: A hotfix
that improves the
performance of the
"AlwaysOn
Availability Group"
feature in SQL Server
2012 is available for
Windows Server 2008
R2

 √ √ Asymmetric
storage—for
Failover Cluster
Instances (FCIs)

If any Failover
Cluster Instance
(FCI) will be
enabled for
AlwaysOn
Availability
Groups, install
the Windows
Server 2008
hotfix 976097.
This hotfix
enables the
Failover Cluster
Management

KB 976097: Hotfix to
add support for
asymmetric storages
to the Failover
Cluster Management
MMC snap-in for a
failover cluster that is
running Windows
Server 2008 or
Windows Server 2008
R2

http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�

 63

 Applies to
Win 2008
SP2

Applies to
Win 2008 R2
SP1

To Support… Hotfix Link

Microsoft
Management
Console (MMC)
snap-in to
support
asymmetric
storage—shared
disks that are
available on only
some of the
WSFC nodes.

 √ √ Internet
Protocol
Security (IPsec)

If your
environment uses
IPsec
connections, you
could experience
a long time delay
(about two or
three minutes)
when a client
computer
reestablishes the
IPsec connection
to a virtual
network name (in
this context, to
connect to the
availability group
listener). If you
use IPsec
connections, we
recommend that
you review the
specific scenarios
detailed in
Knowledge Base
article (KB
980915).

KB 980915: A long
time delay occurs
when you reconnect
an IPSec connection
from a computer that
is running Windows
Server 2003,
Windows Vista,
Windows Server
2008, Windows 7, or
Windows Server 2008
R2

http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�

 64

 Applies to
Win 2008
SP2

Applies to
Win 2008 R2
SP1

To Support… Hotfix Link

 √ √ IPv6 If you use IPv6,
we recommend
that you review
the specific
scenarios
detailed in
Knowledge Base
article 2578103
or 2578113,
depending on
your Windows
Server operating
system.
If your Windows
Server topology
uses IP version 6
(IPv6), the WSFC
Cluster service
requires about 30
seconds to fail
over the IPv6 IP
address. This
causes clients to
wait for about 30
seconds to
reconnect to the
IPv6 IP address.

• KB 2578103
(Windows Server
2008): The
Cluster service
takes about 30
seconds to fail
over IPv6 IP
addresses in
Windows Server
2008

• KB 2578113
(Windows Server
2008
R2): Windows
Server 2008
R2: The Cluster
service takes
about 30 seconds
to fail over IPv6 IP
addresses in
Windows Server
2008 R2

 √ √ No Router
Between
cluster and
application
server

If no router exists
between the
failover cluster
and the
application
server, the Cluster
service fails over
network-related
resources slowly.
This delays client

KB 2582281: Slow
failover operation if
no router exists
between the cluster
and an application
server

http://support.microsoft.com/kb/2578103�
http://support.microsoft.com/kb/2578103�
http://support.microsoft.com/kb/2578103�
http://support.microsoft.com/kb/2578103�
http://support.microsoft.com/kb/2578103�
http://support.microsoft.com/kb/2578103�
http://support.microsoft.com/kb/2578103�
http://support.microsoft.com/kb/2578103�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2582281�
http://support.microsoft.com/kb/2582281�
http://support.microsoft.com/kb/2582281�
http://support.microsoft.com/kb/2582281�
http://support.microsoft.com/kb/2582281�
http://support.microsoft.com/kb/2582281�

 65

 Applies to
Win 2008
SP2

Applies to
Win 2008 R2
SP1

To Support… Hotfix Link

reconnections
after an
availability group
fails over. In the
absence of a
router, we
recommend that
you review the
specific scenarios
detailed in
Knowledge Base
article 2582281
and install the
hotfix, if
applicable to
your
environment.

Top

Recommendations for Computers That Host Availability Replicas (Windows
System)
• Comparable systems: For a given availability group, all the availability replicas should run

on comparable systems that can handle identical workloads.
• Dedicated network adapters: For best performance, use a dedicated network adapter

(network interface card) for AlwaysOn Availability Groups.
• Sufficient disk space: Every computer on which a server instance hosts an availability

replica must possess sufficient disk space for all the databases in the availability group. Keep
in mind that as primary databases grow, their corresponding secondary databases grow the
same amount.

Permissions (Windows System)
To administer a WSFC cluster, the user must be a system administrator on every cluster node.
For more information about account for administering the cluster, see Appendix A: Failover
Cluster Requirements.

Related Tasks (Windows System)

http://technet.microsoft.com/en-us/library/dd197454(WS.10).aspx�
http://technet.microsoft.com/en-us/library/dd197454(WS.10).aspx�

 66

Task Topic

Set the HostRecordTTL (to the
recommended 60 seconds)

• Configure DNS settings in a Multi-Site
Failover Cluster

• DNS Registration with Network Name
Resource

For more information, see Windows 2008 R2 Failover Multi-Site Clustering

SQL Server Instance Prerequisites and Restrictions
Each availability group requires a set of failover partners, known as availability replicas, which
are hosted by instances of SQL Server. A given server instance can be a stand-alone instance or a
SQL Server failover cluster instance (FCI).
In This Section:
• Checklist: Prerequisites
• Restrictions
• Permissions
• Related Tasks

Checklist: Prerequisites (Server Instance)

 Prerequisite Links

 The host computer must be a
Windows Server Failover Clustering
(WSFC) node. The instances of SQL
Server that host availability replicas
for a given availability group must
reside on separate nodes of a single
WSFC cluster.

Windows Server Failover
Clustering (WSFC) with SQL
Server
Failover Clustering and
AlwaysOn Availability Groups
(SQL Server)

 If you want an availability group to
work with Kerberos:
• All server instances that host an

availability replica for the
availability group must use the
same SQL Server service

Register a Service Principal
Name for Kerberos Connections
Brief explanation:
Kerberos and SPNs enforce
mutual authentication. The SPN
maps to the Windows account

Note

http://go.microsoft.com/fwlink/?LinkId=217275�
http://go.microsoft.com/fwlink/?LinkId=217275�
http://go.microsoft.com/fwlink/?LinkId=217277�
http://go.microsoft.com/fwlink/?LinkId=217277�
http://www.microsoft.com/windowsserver2008/en/us/failover-clustering-multisite.aspx�
http://msdn.microsoft.com/en-us/library/e38d5ce4-e538-4ab9-be67-7046e0d9504e(SQL.110)�
http://msdn.microsoft.com/en-us/library/e38d5ce4-e538-4ab9-be67-7046e0d9504e(SQL.110)�

 67

 Prerequisite Links

account.
• The domain administrator

needs to manually register a
Service Principal Name (SPN)
with Active Directory on the
SQL Server service account for
the virtual network name (VNN)
of the availability group listener.
If the SPN is registered on an
account other than the SQL
Server service account,
authentication will fail.

Important
If you change the SQL
Server service account, the
domain administrator will
need to manually re-register
the SPN.

that starts the SQL Server
services. If the SPN is not
registered correctly or if it fails,
the Windows security layer
cannot determine the account
associated with the SPN, and
Kerberos authentication cannot
be used.

Note
NTLM does not have this
requirement.

 If you plan to use a SQL Server
failover cluster instance (FCI) to
host an availability replica, ensure
that you understand the FCI
restrictions and that the FCI
requirements are met.

Restrictions and Requirements
on Using a SQL Server Failover
Cluster Instance (FCI) to Host an
Availability Replica (later in this
topic)

 Each server instance must be
running the Enterprise Edition of
SQL Server 2012.

Features Supported by the
Editions of SQL Server "Denali"

 All the server instances that host
availability replicas for an
availability group must use the
same SQL Server collation.

Set or Change the Server
Collation

 Enable the AlwaysOn Availability
Groups feature on each server
instance that will host an availability
replica for any availability group.
On a given computer, you can
enable as many server instances for
AlwaysOn Availability Groups as

Enable and Disable the
AlwaysOn Availability Groups
Feature (SQL Server)

Important
If you delete and re-
create a WSFC cluster,
you must disable and re-

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/3242deef-6f5f-4051-a121-36b3b4da851d(SQL.110)�
http://msdn.microsoft.com/en-us/library/3242deef-6f5f-4051-a121-36b3b4da851d(SQL.110)�

 68

 Prerequisite Links

your SQL Server installation
supports.

enable the AlwaysOn
Availability Groups
feature on each server
instance that was
enabled for AlwaysOn
Availability Groups on
the original WSFC
cluster.

 Each server instance requires a
database mirroring endpoint. Note
that this endpoint is shared by all
the availability replicas and
database mirroring partners and
witnesses on the server instance.

noteDXDOC112778PADS
Security Note

Transport security for
AlwaysOn Availability
Groups is the same as for
database mirroring.

Database Mirroring Endpoint
Transport Security for Database
Mirroring and AlwaysOn
Availability Groups

 If any databases that use
FILESTREAM will be added to an
availability group, ensure that
FILESTREAM is enabled on every
server instance that will host an
availability replica for the
availability group.

Enable and Configure
FILESTREAM

 If any contained databases will be
added to an availability group,
ensure that the contained
database authentication server
option is set to 1 on every server
instance that will host an availability
replica for the availability group.

contained database
authentication Option
Set Server Configuration
Options

Permissions (Server Instance)

http://msdn.microsoft.com/en-us/library/78737e19-c65b-48d9-8fa9-aa6f1e1bce73(SQL.110)�
http://msdn.microsoft.com/en-us/library/78737e19-c65b-48d9-8fa9-aa6f1e1bce73(SQL.110)�
http://msdn.microsoft.com/en-us/library/b80768d2-ac20-4035-a335-d9adb74b3f6e(SQL.110)�
http://msdn.microsoft.com/en-us/library/b80768d2-ac20-4035-a335-d9adb74b3f6e(SQL.110)�
http://msdn.microsoft.com/en-us/library/9f38eba6-39b1-4f1d-ba24-ee4f7e2bc969(SQL.110)�
http://msdn.microsoft.com/en-us/library/9f38eba6-39b1-4f1d-ba24-ee4f7e2bc969(SQL.110)�

 69

Task Required Permissions

Creating the database mirroring endpoint Requires CREATE ENDPOINT permission, or
membership in the sysadmin fixed server
role. Also requires CONTROL ON
ENDPOINT permission. For more
information, see GRANT Endpoint
Permissions (Transact-SQL).

Enabling AlwaysOn Availability Groups Requires membership in the Administrator
group on the local computer and full
control on the WSFC cluster.

Related Tasks (Server Instance)

Task Topic

Determining whether database mirroring
endpoint exists

sys.database_mirroring_endpoints
(Transact-SQL)

Creating the database mirroring endpoint
(if it does not yet exist)

• Create a Mirroring Endpoint for
Windows Authentication (Transact-SQL)

• Use Certificates for a Database
Mirroring Endpoint (SQL Server)

• Create a Database Mirroring Endpoint
for AlwaysOn Availability Groups (SQL
Server PowerShell)

Enabling AlwaysOn Availability Groups Enable and Disable the AlwaysOn
Availability Groups Feature (SQL Server)

Network Connectivity Recommendations
We strongly recommend that you use the same network links for communications between
WSFC cluster members and communications between availability replicas. Using separate
network links can cause unexpected behaviors if some of links fail (even intermittently).
For example, for an availability group to support automatic failover, the secondary replica that is
the automatic-failover partner must be in the SYNCHRONIZED state. If the network link to this
secondary replica fails (even intermittently), the replica enters the UNSYNCHRONIZED state and
cannot begin to resynchronize until the link is restored. If the WSFC cluster requests an

http://msdn.microsoft.com/en-us/library/9eda885c-fc3a-4c9d-8de6-ce07fb35a934(SQL.110)�
http://msdn.microsoft.com/en-us/library/9eda885c-fc3a-4c9d-8de6-ce07fb35a934(SQL.110)�
http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�
http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�

 70

automatic failover while the secondary replica is unsynchronized, automatic failover will not
occur.

Prerequisites and Restrictions for Using a SQL Server Failover Cluster Instance (FCI)
to Host an Availability Replica
In This Section:
• Restrictions
• Checklist: Prerequisites
• Related Tasks

Restrictions (FCIs)

• The cluster nodes of an FCI can host only one replica for a given availability group: If

you add an availability replica on an FCI, the WSFC cluster nodes that are possible FCI
owners cannot host another replica for the same availability group. Every other replica must
be hosted by an instance of SQL Server 2012 that resides on a different WSFC node in the
same WSFC cluster.

• FCIs do not support automatic failover by availability groups: FCIs do not support
automatic failover by availability groups, so any availability replica that is hosted by an FCI
can be configured for manual failover only.

• Changing FCI network name: If you need to change the network name of an FCI that hosts
an availability replica, you will need to remove the replica from its availability group and then
add the replica back into the availability group. You cannot remove the primary replica, so if
you are renaming an FCI that is hosting the primary replica, you should fail over to a
secondary replica and then remove the former primary replica and add it back. Note that
renaming an FCI might alter the URL of its database mirroring endpoint. When you add the
replica ensure that you specify the current endpoint URL.

Checklist: Prerequisites (FCIs)

 Prerequisite Link

 Before you use an FCI to host
an availability replica, ensure
that your system administrator
has installed the Windows
Server 2008 hotfix described in
Knowledge Base article KB
976097. This hotfix enables the
Failover Cluster Management
Microsoft Management

KB 976097: Hotfix to add
support for asymmetric storages
to the Failover Cluster
Management MMC snap-in for
a failover cluster that is running
Windows Server 2008 or
Windows Server 2008 R2

http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�
http://support.microsoft.com/kb/976097�

 71

 Prerequisite Link

Console (MMC) snap-in to
support asymmetric storage—
shared disks that are available
on only some of the WSFC
nodes.

 Ensure that each SQL Server
failover cluster instance (FCI)
possesses the required shared
storage as per standard SQL
Server failover cluster instance
installation.

Related Tasks (FCIs)

Task Topic

Installing a SQL Server Failover Cluster How to: Create a New SQL Server Failover
Cluster (Setup)

In-place upgrade of your existing SQL
Server Failover Cluster

How to: Upgrade a SQL Server Failover
Cluster Instance (Setup)

Maintaining your existing SQL Server
Failover Cluster

How to: Add or Remove Nodes in a SQL
Server Failover Cluster (Setup)

For more information, see Failover Clustering and AlwaysOn Availability Groups (SQL Server).

Availability Group Prerequisites and Restrictions
In This Section:
• Restrictions
• Requirements
• Security
• Related Tasks

Restrictions (Availability Groups)

http://msdn.microsoft.com/en-us/library/30e06a7d-75e9-44e2-bca3-b3b0c4a33f61(SQL.110)�
http://msdn.microsoft.com/en-us/library/30e06a7d-75e9-44e2-bca3-b3b0c4a33f61(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea8b7d66-e5a1-402f-9928-8f7310e84f5c(SQL.110)�
http://msdn.microsoft.com/en-us/library/ea8b7d66-e5a1-402f-9928-8f7310e84f5c(SQL.110)�
http://msdn.microsoft.com/en-us/library/fe20dca9-a4c1-4d32-813d-42f1782dfdd3(SQL.110)�
http://msdn.microsoft.com/en-us/library/fe20dca9-a4c1-4d32-813d-42f1782dfdd3(SQL.110)�

 72

• Availability replicas must be hosted by different nodes of one WSFC cluster: For a
given availability group, availability replicas must be hosted by server instances running on
different nodes of the same WSFC cluster.

Virtual machines on the same physical computer can each host an availability replica
for the same availability group because each virtual machine acts as a separate
computer.

• Unique availability group name: Each availability group name must be unique on the
WSFC cluster. The maximum length for an availability group name is 128 characters.

• Maximum number of availability groups and availability databases per computer: The
actual number of databases and availability groups you can put on a computer (VM or
physical) depends on the hardware and workload, but there is no enforced limit. Microsoft
has extensively tested with 10 AGs and 100 DBs per physical machine. Signs of overloaded
systems can include, but are not limited to, worker thread exhaustion, slow response times
for AlwaysOn system views and DMVs, and/or stalled dispatcher system dumps. Please make
sure to thoroughly test your environment with a production-like workload to ensure it can
handle peak workload capacity within your application SLAs. When considering SLAs be sure
to consider load under failure conditions as well as expected response times.

• Do not use the Failover Cluster Manager to manipulate availability groups:
For example:
• Do not change any availability group properties, such as the possible owners.
• Do not use the Failover Cluster Manager to fail over availability groups. You must use

Transact-SQL or SQL Server Management Studio.

Prerequisites (Availability Groups)
When creating or reconfiguring an availability group configuration, ensure that you adhere to
the following requirements.

 Prerequisite Description

 If you plan to use a SQL Server
failover cluster instance (FCI) to
host an availability replica,
ensure that you understand the
FCI restrictions and that the FCI
requirements are met.

Prerequisites and Restrictions
for Using a SQL Server Failover
Cluster Instance (FCI) to Host an
Availability Replica (earlier in
this topic)

Security (Availability Groups)
• Security is inherited from the Windows Server Failover Clustering (WSFC) cluster. WSFC

provides two levels of user security at granularity of entire WSFC cluster APIs:

Note

 73

• Read-only access
• Full control

AlwaysOn Availability Groups needs full control, and enabling AlwaysOn Availability
Groups on an instance of SQL Server gives it full control of the WSFC cluster (through
Service SID).
You cannot directly add or remove security for a server instance in the WSFC Failover
Cluster Manager. To manage WSFC security sessions, use the SQL Server Configuration
Manager or the WMI equivalent from SQL Server.

• Each instance of SQL Server must have permissions to access the registry, cluster, and so
forth.

• We recommend that you use encryption for connections between server instances that host
AlwaysOn Availability Groups availability replicas.

Permissions (Availability Groups)

Task Required Permissions

Creating an availability group Requires membership in the sysadmin
fixed server role and either CREATE
AVAILABILITY GROUP server permission,
ALTER ANY AVAILABILITY GROUP
permission, or CONTROL SERVER
permission.

Altering an availability group Requires ALTER AVAILABILITY GROUP
permission on the availability group,
CONTROL AVAILABILITY GROUP
permission, ALTER ANY AVAILABILITY
GROUP permission, or CONTROL SERVER
permission.
In addition, joining a database to an
availability group requires membership in
the db_owner fixed database role.

Dropping/deleting an availability group Requires ALTER AVAILABILITY GROUP
permission on the availability group,
CONTROL AVAILABILITY GROUP
permission, ALTER ANY AVAILABILITY
GROUP permission, or CONTROL SERVER
permission. To drop an availability group
that is not hosted on the local replica
location you need CONTROL SERVER
permission or CONTROL permission on that

 74

Task Required Permissions

Availability Group.

Related Tasks (Availability Groups)

Task Topic

Creating an availability group • Use the Availability Group (New
Availability Group Wizard)

• Create an Availability Group (Transact-
SQL)

• Create an Availability Group (SQL Server
PowerShell)

• Specify the Endpoint URL When Adding
or Modifying an Availability Replica
(SQL Server)

Modifying the number of availability
replicas

• Add a Secondary Replica to an
Availability Group (SQL Server)

• Join a Secondary Replica to an
Availability Group (SQL Server)

• Remove a Secondary Replica from an
Availability Group (SQL Server)

Creating an availability group listener Create or Configure an Availability Group
Listener (SQL Server)

Dropping an availability group Deleting an Availability Group (SQL Server)

Availability Database Prerequisites and Restrictions
To be eligible to be added to an availability group, a database must meet the following
prerequisites and restrictions.
In This Section:
• Requirements
• Restrictions
• Recommendations for Computers That Host Availability Replicas (Windows System
• Permissions

 75

• Related Tasks

Checklist: Requirements (Availability Databases)
To be eligible to be added to an availability group, a database must:

 Requirements Link

 Be a user database. System
databases cannot belong to an
availability group.

 Reside on the instance of SQL
Server where you create the
availability group and be
accessible to the server
instance.

 Be a read-write database. Read-
only databases cannot be
added to an availability group.

 sys.databases (is_read_only = 0)

 Be a multi-user database. sys.databases (user_access = 0)

 Not use AUTO_CLOSE. sys.databases (is_auto_close_on
= 0)

 Use the full recovery model
(also known as, full recovery
mode).

 sys.databases (recovery_model =
1)

 Possess at least one full
database backup.

Note
After setting a database
to full recovery mode, a
full backup is required
to initiate the full-
recovery log chain.

Create a Full Database Backup

 Not belong to any existing
availability group.

 sys.databases
(group_database_id = NULL)

 Not be configured for database
mirroring.

sys.database_mirroring (If the
database does not participate in
mirroring, all columns prefixed
with "mirroring_" are NULL.)

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/586561fc-dfbb-4842-84f8-204a9100a534(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/480de2b0-2c16-497d-a6a3-bf7f52a7c9a0(SQL.110)�

 76

 Requirements Link

 Before adding a database that
uses FILESTREAM to an
availability group, ensure that
FILESTREAM is enabled on
every server instance that hosts
or will host an availability
replica for the availability
group.

Enable and Configure FILESTREAM

 Before adding a contained
database to an availability
group, ensure that the
contained database
authentication server option is
set to 1 on every server
instance that hosts or will host
an availability replica for the
availability group.

contained database authentication
Option
Set Server Configuration Options

AlwaysOn Availability Groups works with any supported database compatibility level.

Restrictions (Availability Databases)
• If the file path (including the drive letter) of a secondary database differs from the path of

the corresponding primary database, the following restrictions apply:
• New Availability Group Wizard/Add Database to Availability Group Wizard: The

Full option is not supported (on the Select Initial Data Synchronization Page page),
• RESTORE WITH MOVE: To create the secondary databases, the database files must be

RESTORED WITH MOVE on each instance of SQL Server that hosts a secondary replica.
• Impact on add-file operations: A later add-file operation on the primary replica might

fail on the secondary databases. This failure could cause the secondary databases to be
suspended. This, in turn, causes the secondary replicas to enter the NOT
SYNCHRONIZING state.

For information about responding to a failed ad-file operation, see Troubleshoot
a Failed Add-File Operation (AlwaysOn Availability Groups).

• You cannot drop a database that currently belongs to an availability group.

Follow Up for TDE Protected Databases

Note

Note

http://msdn.microsoft.com/en-us/library/78737e19-c65b-48d9-8fa9-aa6f1e1bce73(SQL.110)�
http://msdn.microsoft.com/en-us/library/b80768d2-ac20-4035-a335-d9adb74b3f6e(SQL.110)�
http://msdn.microsoft.com/en-us/library/b80768d2-ac20-4035-a335-d9adb74b3f6e(SQL.110)�
http://msdn.microsoft.com/en-us/library/9f38eba6-39b1-4f1d-ba24-ee4f7e2bc969(SQL.110)�

 77

If you use transparent data encryption (TDE), the service master key for creating and decrypting
other keys must be the same on every server instance that hosts an availability replica for the
availability group. For more information, see Moving a TDE Protected Database to Another SQL
Server.

Permissions (Availability Databases)
Requires ALTER permission on the database.

Related Tasks (Availability Databases)

Task Topic

Preparing a secondary database (manually) Prepare a Secondary Database for an
Availability Group (SQL Server)

Joining a secondary database to availability
group (manually)

Join a Secondary Database to an
Availability Group (SQL Server)

Modifying the number of availability
databases

• Add a Database to an Availability Group
(SQL Server)

• Remove a Database from a Secondary
Replica (AlwaysOn Availability Groups)

• Remove a Database from an Availability
Group (AlwaysOn Availability Groups)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
AlwaysOn Availability Groups (SQL Server)
Failover Clustering and AlwaysOn Availability Groups (SQL Server)
Prerequisites, Restrictions, and Recommendations for AlwaysOn Client Connectivity

Failover Clustering and AlwaysOn Availability Groups
AlwaysOn Availability Groups, the high availability and disaster recovery solution introduced in
SQL Server 2012, requires Windows Server Failover Clustering (WSFC). Also, though AlwaysOn

http://msdn.microsoft.com/en-us/library/fb420903-df54-4016-bab6-49e6dfbdedc7(SQL.110)�
http://msdn.microsoft.com/en-us/library/fb420903-df54-4016-bab6-49e6dfbdedc7(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 78

Availability Groups is not dependent upon SQL Server Failover Clustering, you can use a failover
clustering instance (FCI) to host an availability replica for an availability group. It is important to
know the role of each clustering technology, and to know what considerations are necessary as
you design your AlwaysOn Availability Groups environment.

For information about AlwaysOn Availability Groups concepts, see Overview of AlwaysOn
Availability Groups.

In This Topic:
• Windows Server Failover Clustering
• SQL Server Failover Clustering
• Restrictions on Using The WSFC Failover Cluster Manager with Availability Groups

Windows Server Failover Clustering and Availability Groups
Deploying AlwaysOn Availability Groups requires a Windows Server Failover Clustering (WSFC)
cluster. To be enabled for AlwaysOn Availability Groups, an instance of SQL Server must reside
on a WSFC node, and the WSFC cluster and node must be online. Furthermore, each availability
replica of a given availability group must reside on a different node of the same WSFC cluster.
The quorum for AlwaysOn Availability Groups is based on all nodes in the WSFC cluster
regardless of whether a given cluster node hosts any availability replicas. In contrast to database
mirroring, there is no witness role in AlwaysOn Availability Groups.
AlwaysOn Availability Groups relies on the Windows Failover Clustering (WSFC) cluster to
monitor and manage the current roles of the availability replicas that belong to a given
availability group and to determine how a failover event affects the availability replicas. A WSFC
resource group is created for every availability group that you create. The WSFC cluster monitors
this resource group to evaluate the health of the primary replica.
The overall health of a WSFC cluster is determined by the votes of a quorum of nodes in the
cluster. If the WSFC cluster goes offline because of an unplanned disaster, or due to a persistent
hardware or communications failure, then manual administrative intervention is required to
force a quorum and bring the surviving cluster nodes back online in a non-fault-tolerant
configuration.

If you delete and re-create a WSFC cluster, you must disable and re-enable the AlwaysOn
Availability Groups feature on each instance of SQL Server that hosted an availability
replica on the original WSFC cluster.

For information about running SQL Server on Windows Server Failover Clustering (WSFC) nodes
and about WSFC quorum, see Windows Server Failover Clustering (WSFC) with SQL Server.

SQL Server Failover Cluster Instances (FCIs) and Availability Groups

Note

Important

 79

You can set up a second layer of failover at the server-instance level by implementing SQL
Server failover clustering together with the WSFC cluster. An availability replica can be hosted by
either a standalone instance of SQL Server or an FCI instance. Only one FCI partner can host a
replica for a given availability group. When an availability replica is running on an FCI, the
possible owners list for the availability group will contain only the active FCI node.
AlwaysOn Availability Groups does not depend on any form of shared storage. However, if you
use a SQL Server failover cluster instance (FCI) to host one or more availability replicas, each of
those FCIs will require shared storage as per standard SQL Server failover cluster instance
installation.
For more information about additional prerequisites, see the "Prerequisites and Restrictions for
Using a SQL Server Failover Cluster Instance (FCI) to Host an Availability Replica" section
of Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL
Server).

Comparison of Failover Cluster Instances and Availability Groups
Regardless of the number of nodes in the FCI, an entire FCI hosts a single replica within an
availability group. The following table describes the distinctions in concepts between nodes in
an FCI and replicas within an availability group.

 Nodes within an FCI Replicas within an availability
group

Uses WSFC cluster Yes Yes

Protection level Instance Database

Storage type Shared Non-shared1

Storage solutions Direct attached, SAN, mount
points, SMB

Depends on node type

Readable secondaries No2 Yes

Applicable failover policy
settings

• WSFC quorum
• FCI-specific
• Availability group settings3

• WSFC quorum
• Availability group settings

Failed-over resources Server, instance, and database Database only

1While the replicas in an availability group do not share storage, a replica that is hosted by an
FCI uses a shared storage solution as required by that FCI. The storage solution is shared only by
nodes within the FCI and not between replicas of the availability group.
2Whereas synchronous secondary replicas in an availability group are always running on their
respective SQL Server instances, secondary nodes in an FCI actually have not started their

 80

respective SQL Server instances and are therefore not readable. In an FCI, a secondary node
starts its SQL Server instance only when the resource group ownership is transferred to it during
an FCI failover. However, on the active FCI node, when an FCI-hosted database belongs to an
availability group, if the local availability replica is running as a readable secondary replica, the
database is readable.
3Failover policy settings for the availability group apply to all replicas, whether it is hosted in a
standalone instance or an FCI instance.

For more information about Number of nodes within Failover Clustering and AlwaysOn
Availability Groups for different editions of SQL Server, see Features Supported by the
Editions of SQL Server 2012 (http://go.microsoft.com/fwlink/?linkid=232473).

Considerations for hosting an Availability Replica on an FCI

If you plan to host an availability replica on a SQL Server Failover Cluster Instance (FCI),
ensure that the Windows Server 2008 host nodes meet the AlwaysOn prerequisites and
restrictions for Failover Cluster Instances (FCIs). For more information, see Prerequisites,
Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server).

SQL Server Failover Cluster Instances (FCIs) do not support automatic failover by availability
groups, so any availability replica that is hosted by an FCI can only be configured for manual
failover.
You might need to configure a Windows Server Failover Clustering (WSFC) cluster to include
shared disks that are not available on all nodes. For example, consider a WSFC cluster across two
data centers with three nodes. Two of the nodes host a SQL Server failover clustering instance
(FCI) in the primary data center and have access to the same shared disks. The third node hosts
a stand-alone instance of SQL Server in a different data center and does not have access to the
shared disks from the primary data center. This WSFC cluster configuration supports the
deployment of an availability group if the FCI hosts the primary replica and the stand-alone
instance hosts the secondary replica.
When choosing an FCI to host an availability replica for a given availability group, ensure that an
FCI failover could not potentially cause a single WSFC node to attempt to host two availability
replicas for the same availability group.
The following example scenario illustrates how this configuration could lead to problems:
Marcel configures two a WSFC cluster with two nodes, NODE01 and NODE02. He installs a
SQL Server failover cluster instance, fciInstance1, on both NODE01 and NODE02 where
NODE01 is the current owner for fciInstance1.

On NODE02, Marcel installs another instance of SQL Server, Instance3, which is a stand-alone
instance.

Note

Important

http://go.microsoft.com/fwlink/?linkid=232473�
http://go.microsoft.com/fwlink/?linkid=232473�

 81

On NODE01, Marcel enables fciInstance1 for AlwaysOn Availability Groups. On NODE02, he
enables Instance3 for AlwaysOn Availability Groups. Then he sets up an availability group for
which fciInstance1 hosts the primary replica, and Instance3 hosts the secondary replica.

At some point fciInstance1 becomes unavailable on NODE01, and the WSFC cluster causes a
failover of fciInstance1 to NODE02. After the failover, fciInstance1 is a AlwaysOn Availability
Groups-enabled instance running under the primary role on NODE02. However, Instance3
now resides on the same WSFC node as fciInstance1. This violates the AlwaysOn Availability
Groups constraint.

To correct the problem that this scenario presents, the stand-alone instance, Instance3, must
reside on another node in the same WSFC cluster as NODE01 and NODE02.
For more information about SQL Server failover clustering, see AlwaysOn Failover Cluster
Instances (FCI).

Restrictions on Using The WSFC Failover Cluster Manager with Availability Groups
Do not use the Failover Cluster Manager to manipulate availability groups, for example:
• Do not change any availability group properties, such as the possible owners.
• Do not use the Failover Cluster Manager to fail over availability groups. You must use

Transact-SQL or SQL Server Management Studio.

See Also
Overview (AlwaysOn Availability Groups)
Enabling and Disabling Availability Groups (SQL Server)
Monitoring Availability Groups (Transact-SQL)
AlwaysOn Failover Cluster Instances (FCI)

Getting Started with AlwaysOn Availability Groups
This topic introduces the steps for configuring instances of SQL Server 2012 to support
AlwaysOn Availability Groups and for creating, managing, and monitoring an availability group.
• Before You Begin:

Recommended Reading
• Getting started with:

Configuring an instance of SQL Server to support AlwaysOn Availability Groups
Creating and configuring a new availability group
Managing availability groups, replicas, and databases
Monitoring availability groups

 82

• Related Content

Before You Begin

Recommended Reading
Before you create your first availability group, we recommend that you read the following topics:
• Overview of AlwaysOn Availability Groups (SQL Server)
• Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL

Server)

Configuring an Instance of SQL Server to Support AlwaysOn Availability Groups

 Step Links

 Enable AlwaysOn
Availability Groups. The
AlwaysOn Availability Groups
feature must be enabled on
every instance of SQL Server
2012 that is to participate in
an availability group.
Prerequisites: See "SQL
Server Instance Prerequisites
and Restrictions"
in Prerequisites, Restrictions,
and Recommendations for
AlwaysOn Availability Groups
(SQL Server).

Enable and disable AlwaysOn
Availability Groups

 Create database mirroring
endpoint (if none). Ensure
that each server instance
possesses a database
mirroring endpoint. The server
instance uses this endpoint to
receive AlwaysOn Availability
Groups connections from
other server instances.

To determine whether database
mirroring endpoint exists:
• sys.database_mirroring_endpoints
For Windows Authentication: To
create a database mirroring endpoint,
using:
• New Availability Group Wizard
• Transact-SQL
• SQL Server PowerShell
For certificate authentication: To
create a database mirroring endpoint,
using:
• Transact-SQL

http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�

 83

Creating and Configuring a New Availability Group

 Step Links

 Create the availability group.
Create the availability group on
the instance of SQL Server that
hosts the databases to be added
to the availability group.
Minimally, create the initial
primary replica on the instance of
SQL Server where you create the
availability group. You can specify
from one to four secondary
replicas. For information about
availability group and replica
properties, see CREATE
AVAILABILITY GROUP (Transact-
SQL).
We strongly recommend that you
create an availability group
listener.
Prerequisites: See "Availability
Group Prerequisites and
Restrictions", "Availability
Database Prerequisites and
Restrictions", and "SQL Server
Instance Prerequisites and
Restrictions" in Prerequisites,
Restrictions, and
Recommendations for AlwaysOn
Availability Groups (SQL Server).

To create an availability group
you can use any of the following
tools:
• New Availability Group Wizard
• Transact-SQL
• SQL Server PowerShell

 Join secondary replicas to the
availability group. Connect to
each instance of SQL Server 2012
that is hosting a secondary replica,
and join the local secondary
replica to the availability group.

Join a secondary replica to an
availability group

Tip
If you use the New
Availability Group Wizard,
this step is automated.

http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�

 84

 Step Links

 Prepare secondary databases.
On every server instance that is
hosting a secondary replica,
restore backups of the primary
databases using RESTORE WITH
NORECOVERY.

Manually prepare a secondary
database

Tip
The New Availability
Group Wizard can prepare
the secondary databases
for you. For more
information, see
"Prerequisites for using
full initial data
synchronization" in Select
Initial Data
Synchronization Page
(AlwaysOn Availability
Group Wizards).

 Join secondary databases to the
availability group. On every
server instance that is hosting a
secondary replica, join each local
secondary database to the
availability group. On joining the
availability group, a given
secondary database initiates data
synchronization with the
corresponding primary database.

Join a secondary database to an
availability group

Tip
The New Availability
Group Wizard can perform
this step if every
secondary database exists
on every secondary
replica.

 Create an availability group
listener. This step is necessary
unless you already created the
availability group listener while
creating the availability group.

Create or Configure an
Availability Group Listener (SQL
Server)

 Give the listener's DNS host
name to application
developers. Developers needs to
specify this DNS name in the
connection strings to direct
connection requests to the
availability group listener. For
more information, see

"Follow Up: After Creating an
Availability Group Listener"
in

Availability
Group Listeners, Client

Create or Configure an
Availability Group Listener (SQL
Server)

 85

 Step Links

Connectivity, and Application
Failover (SQL Server).

 Configure Where Backup
Jobs. If you want to perform
backups on secondary databases,
you must create a backup job
script that takes the automated
backup preference into account.
Create a script for each database
in the availability group on every
server instance that hosts an
availability replica for the
availability group.

"Follow Up: After Configuring
Backup on Secondary Replicas"
in Configure Backup on
Availability Replicas (SQL Server)

Managing Availability Groups, Replicas, and Databases

For information about availability group and replica properties, see CREATE
AVAILABILITY GROUP (Transact-SQL).

Managing existing availability groups involves one or more of the following tasks:

Task Link

Modify the flexible failover policy of the
availability group to control the conditions
that cause an automatic failover. This policy
is relevant only when automatic failover is
possible.

Configure the flexible failover policy of an
availability group

Perform a planned manual failover or a
forced manual failover (with possible data
loss). For more information, see Failover
and Failover Modes (AlwaysOn Availability
Groups).

• Perform a planned manual failover
• Perform a forced manual failover

Use a set of predefined policies to view the
health of an availability group and its
replicas and databases.

• Use policy-based management to view
the health of availability groups

• Use the AlwaysOn Group Dashboard

Note

http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�

 86

Task Link

Add or remove a secondary replica. • Add a secondary replica
• Remove a secondary replica

Suspend or resume an availability database.
Suspending a secondary database keeps at
its current point in time until you resume it.

• Suspend a database
• Resume a database

Add or remove a database. • Add a database
• Remove a secondary database
• Remove a primary database

Reconfigure or create an availability group
listener.

Create or configure an availability group
listener

Delete an availability group. Delete an availability group

Troubleshoot add file operations. This
might be required if the primary database
and a secondary database have different
file paths.

Troubleshoot a failed add-file operation

Alter availability replica properties.
• Change the Availability Mode
• Change the Failover Mode
• Configure Backup Priority (and

Automated Backup Preference)
• Configure Read-Only Access
• Configure Read-Only Routing
• Change the Session-Timeout Period

Monitoring Availability Groups
To monitor the properties and state of an AlwaysOn availability group you can use the following
tools.

Tool Brief Description Links

System Center Monitoring
pack for SQL Server

The Monitoring pack for SQL
Server (SQLMP) is the
recommended solution for

To download the monitoring
pack (SQLServerMP.msi) and SQL
Server Management Pack Guide

 87

Tool Brief Description Links

monitoring availability groups,
availability replica and
availability databases for IT
administrators. Monitoring
features that are particularly
relevance to AlwaysOn
Availability Groups include the
following:
• Automatic discoverability of

availability groups,
availability replicas, and
availability database from
among hundreds of
computers. This enables you
to easily keep track of your
AlwaysOn Availability
Groups inventory.

• Fully capable System Center
Operations Manager
(SCOM) alerting and
ticketing. These features
provide detailed knowledge
that enables faster
resolution to a problem.

• A custom extension to
AlwaysOn Health
monitoring using Policy
Based management (PBM).

• Health roll ups from
availability databases to
availability replicas.

• Custom tasks that manage
AlwaysOn Availability
Groups from the System
Center Operations Manager
console.

for System Center Operations
Manager
(SQLServerMPGuide.doc), see:
System Center Monitoring pack
for SQL Server

Transact-SQL AlwaysOn Availability Groups
catalog and dynamic
management views provide a
wealth of information about

Monitor Availability Groups
(Transact-SQL)

http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=10631�
http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=10631�

 88

Tool Brief Description Links

your availability groups and
their replicas, databases,
listeners, and WSFC cluster
environment.

SQL Server Management
Studio

The Object Explorer Details
pane displays basic information
about the availability groups
hosted on the instance of SQL
Server to which you are
connected.

Tip
Use this pane to select
multiple availability
groups, replicas, or
databases and to
perform routine
administrative tasks on
the selected objects; for
example, removing
multiple availability
replicas or databases
from an availability
group.

Use Object Explorer Details to
monitor availability groups

SQL Server Management
Studio

Properties dialog boxes enable
you to view the properties of
availability groups, replicas, or
listeners and, in some cases, to
change their values.

• Availability Group Properties
• Availability Replica Properties
• Availability Group Listener

Properties

System Monitor The SQLServer:Availability
Replica performance object
contains performance counters
that report information about
availability replicas.

SQL Server, HADR Availability
Replica

System Monitor The SQLServer:Database
Replica performance object
contains performance counters
that report information about
the secondary databases on a

SQL Server, HADR Database
Replica
SQL Server, Databases Object

http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/a5f6bdce-2b13-4924-aaeb-b50b57d624d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/a5f6bdce-2b13-4924-aaeb-b50b57d624d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/a7f9e7d4-fff4-4c72-8b3e-3f18dffc8919(SQL.110)�

 89

Tool Brief Description Links

given secondary replica.
The SQLServer:Databases
object in SQL Server contains
performance counters that
monitor transaction log
activities, among other things.
The following counters are
particularly relevant for
monitoring transaction-log
activity on availability databases:
Log Flush Write Time (ms),
Log Flushes/sec, Log Pool
Cache Misses/sec, Log Pool
Disk Reads/sec, and Log Pool
Requests/sec.

Related Content
• Video—Introduction to AlwaysOn: Microsoft SQL Server Code-Named "Denali" AlwaysOn

Series,Part 1: Introducing the Next Generation High Availability Solution
• Video—A Deep Dive into AlwaysOn: Microsoft SQL Server Code-Named "Denali"

AlwaysOn Series,Part 2: Building a Mission-Critical High Availability Solution Using AlwaysOn
• Whitepaper: Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and

Disaster Recovery
• Blogs: SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
AlwaysOn Availability Groups (SQL Server)
Overview of AlwaysOn Availability Groups
Configuration of a Server Instance for AlwaysOn Availability Groups (SQL Server)
Creation and Configuration of Availability Groups (SQL Server)
Availability Group Monitoring (SQL Server)
Overview of Transact-SQL Statements for AlwaysOn Availability Group
Overview of PowerShell Cmdlets for Availability Groups (SQL Server)

http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI302�
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI404�
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI404�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI302

 90

Overview of AlwaysOn Availability Groups
This topic introduces the AlwaysOn Availability Groups concepts that are central for configuring
and managing one or more availability groups in SQL Server 2012. For a summary of the
benefits offered by availability groups and an overview of AlwaysOn Availability Groups
terminology, see AlwaysOn Availability Groups (SQL Server).
An availability group supports a failover environment for a discrete set of user databases, known
as availability databases, that fail over together. An availability group supports a set of primary
databases and one to four sets of corresponding secondary databases. An availability group fails
over at the level of an availability replica. Failovers are not caused by database issues such as a
database becoming suspect due to a loss of a data file or corruption of a transaction log.
Each set of availability database is hosted by an availability replica. Two types of availability
replicas exist: a single primary replica. which hosts the primary databases, and one to four
secondary replicas, each of which hosts a set of secondary databases and serves as a potential
failover targets for the availability group. The primary replica makes the primary databases
available for read-write connections from clients. Also, in a process known as data
synchronization, which occurs at the database level. The primary replica sends transaction log
records of each primary database to every secondary database. Every secondary replica caches
the transaction log records (hardens the log) and then applies them to its corresponding
secondary database. Data synchronization occurs between the primary database and each
connected secondary database, independently of the other databases. Therefore, a secondary
database can be suspended or fail without affecting other secondary databases, and a primary
database can be suspended or fail without affecting other primary databases.
Optionally, you can configure one or more secondary replicas to support read-only access to
secondary databases, and you can configure any secondary replica to permit backups on
secondary databases.
Deploying AlwaysOn Availability Groups requires a Windows Server Failover Clustering (WSFC)
cluster. Each availability replica of a given availability group must reside on a different node of
the same WSFC cluster. A WSFC resource group is created for every availability group that you
create. The WSFC cluster monitors this resource group to evaluate the health of the primary
replica. The quorum for AlwaysOn Availability Groups is based on all nodes in the WSFC cluster
regardless of whether a given cluster node hosts any availability replicas. In contrast to database
mirroring, there is no witness role in AlwaysOn Availability Groups.

For information about the relationship of SQL Server AlwaysOn components to the WSFC
cluster, see Windows Server Failover Clustering (WSFC) with SQL Server.

The following illustration shows an availability group that contains the maximum number of
availability replicas, one primary replica and four secondary replicas.

Note

 91

In this Topic:
• Availability Databases
• Availability Replicas
• Availability Modes
• Types of Failover
• Client Connections
• Active Secondary Replicas
• Session-Timeout Period
• Automatic Page Repair
• Related Tasks
• Related Content

Availability Databases
To add a database to an availability group, the database must be an online, read-write database
that exists on the server instance that hosts the primary replica. When you add a database, it
joins the availability group as a primary database, while remaining available to clients. No
corresponding secondary database exists until backups of the new primary database are
restored to the server instance that hosts the secondary replica (using RESTORE WITH
NORECOVERY). The new secondary database is in the RESTORING state until it is joined to the
availability group. For more information, see Start Data Movement on an AlwaysOn Secondary
Database (SQL Server).
Joining places the secondary database into the ONLINE state and initiates data synchronization
with the corresponding primary database. Data synchronization is the process by which changes
to a primary database are reproduced on a secondary database. Data synchronization involves
the primary database sending transaction log records to the secondary database.

Important

 92

An availability database is sometimes called a database replica in Transact-SQL,
PowerShell, and SQL Server Management Objects (SMO) names. For example, the term
"database replica" is used in the names of the AlwaysOn dynamic management views
that return information about availability databases:
sys.dm_hadr_database_replica_states and
sys.dm_hadr_database_replica_cluster_states. However, in SQL Server Books Online,
the term "replica" typically refers to availability replicas. For example, "primary replica"
and "secondary replica" always refer to availability replicas.

Availability Replicas
Each availability group defines a set of two or more failover partners known as availability
replicas. Availability replicas are components of the availability group that are hosted by
separate instances of SQL Server residing on different nodes of a WSFC cluster. Each of these
server instances is either a SQL Server failover cluster instance (FCI) or stand-alone instance on
which you have enabled AlwaysOn Availability Groups. Each availability replica hosts a copy of
the availability databases in the availability group.
Every availability replica is assigned an initial role—either the primary role or the secondary role,
which is inherited by the availability databases of that replica. The role of a given replica
determines whether it hosts read-write databases or read-only databases. One replica, known as
the primary replica, is assigned the primary role and hosts read-write databases, which are
known as primary databases. At least one other replica, known as a secondary replica, is assigned
the secondary role. A secondary replica hosts read-only databases, known as secondary
databases.

When the role of an availability replica is indeterminate, such as during a failover, its
databases are temporarily in a NOT SYNCHRONIZING state. Their role is set to
RESOLVING until the role of the availability replica has resolved. If an availability replica
resolves to the primary role, its databases become the primary databases. If an
availability replica resolves to the secondary role, its databases become secondary
databases.

Availability Modes
The availability mode is a property of each availability replica. The availability mode determines
whether the primary replica waits to commit transactions on a database until a given secondary
replica has written the transaction log records to disk (hardened the log). AlwaysOn Availability
Groups supports two availability modes—asynchronous-commit mode and synchronous-commit
mode.
• Asynchronous-commit mode

An availability replica that uses this availability mode is known as an asynchronous-commit
replica. Under asynchronous-commit mode, the primary replica commits transactions
without waiting for acknowledgement that an asynchronous-commit secondary replica has

Note

 93

hardened the log. Asynchronous-commit mode minimizes transaction latency on the
secondary databases but allows them to lag behind the primary databases, making some
data loss possible.

• Synchronous-commit mode
An availability replica that uses this availability mode is known as a synchronous-commit
replica. Under synchronous-commit mode, before committing transactions, a synchronous-
commit primary replica waits for a synchronous-commit secondary replica to acknowledge
that it has finished hardening the log. Synchronous-commit mode ensures that once a given
secondary database is synchronized with the primary database, committed transactions are
fully protected. This protection comes at the cost of increased transaction latency.

For more information, see Availability Modes (AlwaysOn Availability Group).

Types of Failover
Within the context of a session between the primary replica and a secondary replica, the primary
and secondary roles are potentially interchangeable in a process known as failover. During a
failover the target secondary replica transitions to the primary role, becoming the new primary
replica. The new primary replica brings its databases online as the primary databases, and client
applications can connect to them. When the former primary replica is available, it transitions to
the secondary role, becoming a secondary replica. The former primary databases become
secondary databases and data synchronization resumes.
Three forms of failover exist—automatic, manual, and forced (with possible data loss). The form
or forms of failover supported by a given secondary replica depends on its availability mode,
and, for synchronous-commit mode, on the failover mode on the primary replica and target
secondary replica, as follows.
• Synchronous-commit mode supports two forms of failover—planned manual failover and

automatic failover, if the target secondary replica is currently synchronized with the avt1. The
support for these forms of failover depends on the setting of the failover mode property on
the failover partners. If failover mode is set to "manual" on either the primary or secondary
replica, only manual failover is supported for that secondary replica. If failover mode is set to
"automatic" on both the primary and secondary replicas, both automatic and manual failover
are supported on that secondary replica.
• Planned manual failover (without data loss)

A manual failover occurs after a database administrator issues a failover command and
causes a synchronized secondary replica to transition to the primary role (with
guaranteed data protection) and the primary replica to transition to the secondary role.
A manual failover requires that both the primary replica and the target secondary replica
are running under synchronous-commit mode, and the secondary replica must already
be synchronized.

• Automatic failover (without data loss)

 94

An automatic failover occurs in response to a failure that causes a synchronized
secondary replica to transition to the primary role (with guaranteed data protection).
When the former primary replica becomes available, it transitions to the secondary role.
Automatic failover requires that both the primary replica and the target secondary
replica are running under synchronous-commit mode with the failover mode set to
"Automatic". In addition, the secondary replica must already be synchronized, have
WSFC quorum, and meet the conditions specified by the flexible failover policy of the
availability group.

SQL Server Failover Cluster Instances (FCIs) do not support automatic failover by
availability groups, so any availability replica that is hosted by an FCI can only be
configured for manual failover.

• Under asynchronous-commit mode, the only form of failover is forced manual failover (with
possible data loss), known as forced failover. Forced failover can only be initiated manually,
and for this reason, is considered to be a kind of manual failover. However, forced failover is
a disaster recovery option that is supported only when the secondary replica is not
synchronized with the primary replica. Forced failover is the only form of failover that is
possible when the target secondary replica is not synchronized with the primary replica, even
for synchronous-commit mode.

If you issue a forced failover command on a synchronized secondary replica, the
secondary replica behaves the same as for a manual failover.

 For more information, see Failover Modes (AlwaysOn Availability Groups).

Client Connections
You can provide client connectivity to the primary replica of a given availability group by
creating an availability group listener. An availability group listener provides a set of resources
that is attached to a given availability group to direct client connections to the appropriate
availability replica.
An availability group listener is associated with a unique DNS name that serves as a virtual
network name (VNN), one or more virtual IP addresses (VIPs), and a TCP port number. For more
information, see Client Connectivity and Application Failover (AlwaysOn Availability Groups).

If an availability group possesses only two availability replicas and is not configured to
allow read-access to the secondary replica, clients can connect to the primary replica by
using a database mirroring connection string. This approach can be useful temporarily
after you migrate a database from database mirroring to AlwaysOn Availability Groups.
Before you add additional secondary replicas, you will need to create an availability

Important

Note

Tip

http://msdn.microsoft.com/en-us/library/0d5d2742-2614-43de-9ab9-864addb6299b(SQL.110)�

 95

group listener the availability group and update your applications to use the network
name of the listener.

Active Secondary Replicas
AlwaysOn Availability Groups supports active secondary replicas. Active secondary capabilities
include support for:
• Performing backup operations on secondary replicas

The secondary replicas support performing log backups and copy-only backups of a full
database, file, or filegroup. You can configure the availability group to specify a preference
for where backups should be performed. It is important to understand that the preference is
not enforced by SQL Server, so it has no impact on ad-hoc backups. The interpretation of
this preference depends on the logic, if any, that you script into your back jobs for each of
the databases in a given availability group. For an individual availability replica, you can
specify your priority for performing backups on this replica relative to the other replicas in
the same availability group. For more information, see Backup on Secondary Replicas
(AlwaysOn Availability Groups).

• Read-only access to one or more secondary replicas (readable secondary replicas)
Any availability replica can be configured to allow read-only access to its local databases
when performing the secondary role, though some operations are not fully supported. Also,
if you would like to prevent read-only workloads from running on the primary replica, you
can configure the replicas to allow only read-write access when running under the primary
role. For more information, see Readable Secondary Replicas (AlwaysOn Availability Groups).
If an availability group currently possesses an availability group listener and one or more
readable secondary replicas, SQL Server can route read-intent connection requests to one of
them (read-only routing). For more information, see Availability Group Listeners, Client
Connectivity, and Application Failover (SQL Server).

Session-Timeout Period
The session-timeout period is an availability-replica property that determines how long
connection with another availability replica can remain inactive before the connection is closed.
The primary and secondary replicas ping each other to signal that they are still active. Receiving
a ping from the other replica during the timeout period indicates that the connection is still
open and that the server instances are communicating. On receiving a ping, an availability
replica resets its session-timeout counter on that connection.
The session-timeout period prevents either replica from waiting indefinitely to receive a ping
from the other replica. If no ping is received from the other replica within the session-timeout
period, the replica times out. Its connection is closed, and the timed-out replica enters the
DISCONNECTED state. Even if a disconnected replica is configured for synchronous-commit
mode, transactions will not wait for that replica to reconnect and resynchronize.

 96

The default session-timeout period for each availability replica is 10 seconds. This value is user-
configurable, with a minimum of 5 seconds. Generally, we recommend that you keep the time-
out period at 10 seconds or greater. Setting the value to less than 10 seconds creates the
possibility of a heavily loaded system declaring a false failure.

In the resolving role, the session-timeout period does not apply because pinging does
not occur.

Automatic Page Repair
Each availability replica tries to automatically recover from corrupted pages on a local database
by resolving certain types of errors that prevent reading a data page. If a secondary replica
cannot read a page, the replica requests a fresh copy of the page from the primary replica. If the
primary replica cannot read a page, the replica broadcasts a request for a fresh copy to all the
secondary replicas and gets the page from the first to respond. If this request succeeds, the
unreadable page is replaced by the copy, which usually resolves the error.
For more information, see Automatic Page Repair (Availability Groups/Database Mirroring).

Related Tasks
• Getting Started with AlwaysOn Availability Groups (SQL Server)

Related Content
• Video—Introduction to AlwaysOn: Microsoft SQL Server Code-Named "Denali" AlwaysOn

Series,Part 1: Introducing the Next Generation High Availability Solution
• Video—A Deep Dive into AlwaysOn: Microsoft SQL Server Code-Named "Denali"

AlwaysOn Series,Part 2: Building a Mission-Critical High Availability Solution Using AlwaysOn
• Whitepaper: Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and

Disaster Recovery
• Blogs: SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
Availability Modes (AlwaysOn Availability Group)
Failover Modes (AlwaysOn Availability Group)
Overview of Transact-SQL Statements
Overview of PowerShell Cmdlets for AlwaysOn Availability Group (SQL Server)
Considerations for Deploying AlwaysOn Availability Groups (SQL Server)
Creating and Configuring an Availability Group (AlwaysOn Availability Groups)
Read-Only Access to Secondary Replicas

Note

http://msdn.microsoft.com/en-us/library/cf2e3650-5fac-4f34-b50e-d17765578a8e(SQL.110)�
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI302�
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI302�
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI404�
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2011/DBI404�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 97

Backup on Secondary Replicas (AlwaysOn Availability Groups)
Availability Group Listeners, Client Connectivity, and Application Failover (SQL Server)

Availability Modes (AlwaysOn Availability Groups)
In AlwaysOn Availability Groups, the availability mode is a replica property that determines
whether a given availability replica can run in synchronous-commit mode. For each availability
replica, the availability mode must be configured for either synchronous-commit mode or
asynchronous-commit mode. If the primary replica is configured for asynchronous-commit
mode, it does not wait for any secondary replica to write incoming transaction log records to
disk (to harden the log). If a given secondary replica is configured for asynchronous-commit
mode, the primary replica does not wait for that secondary replica to harden the log. If both the
primary replica and a given secondary replica are both configured for synchronous-commit
mode, the primary replica waits for the secondary replica to confirm that it has hardened the log
(unless the secondary replica fails to ping the primary replica within the primary's session-
timeout period).

If primary's session-timeout period is exceeded by a secondary replica, the primary
replica temporarily shifts into asynchronous-commit mode for that secondary replica.
When the secondary replica reconnects with the primary replica, they resume
synchronous-commit mode.

In this Topic:
• Supported Availability Modes
• Asynchronous-Commit Availability Mode
• Synchronous-Commit Availability Mode
• Related Tasks
• Related Content
Supported Availability Modes
AlwaysOn Availability Groups supports two availability modes—asynchronous-commit mode
and synchronous-commit mode, as follows:
• Asynchronous-commit mode is a disaster-recovery solution that works well when the

availability replicas are distributed over considerable distances. If every secondary replica is
running under asynchronous-commit mode, the primary replica does not wait for any of the
secondary replicas to harden the log. Rather, immediately after writing the log record to the
local log file, the primary replica sends the transaction confirmation to the client. The
primary replica runs with minimum transaction latency in relation to a secondary replica that
is configured for asynchronous-commit mode. If the current primary is configured for
asynchronous commit availability mode, it will commit transactions asynchronously for all
secondary replicas regardless of their individual availability mode settings.
For more information, see Asynchronous-Commit Availability Mode, later in this topic.

Note

 98

• Synchronous-commit mode emphasizes high availability over performance, at the cost of
increased transaction latency. Under synchronous-commit mode, transactions wait to send
the transaction confirmation to the client until the secondary replica has hardened the log to
disk. When data synchronization begins on a secondary database, the secondary replica
begins applying incoming log records from the corresponding primary database. As soon as
every log record has been hardened, the secondary database enters the SYNCHRONIZED
state. Thereafter, every new transaction is hardened by the secondary replica before the log
record is written to the local log file. When all the secondary databases of a given secondary
replica are synchronized, synchronous-commit mode supports manual failover and,
optionally, automatic failover.
For more information, see Synchronous-Commit Availability Mode, later in this topic.

The following illustration shows an availability group with five availability replicas. The primary
replica and one secondary replica are configured for synchronous-commit mode with automatic
failover. Another secondary replica is configured for synchronous-commit mode with only
manual failover, and two secondary replicas are configured for asynchronous-commit mode,
which supports only forced manual failover.

Asynchronous-Commit Availability Mode
Under asynchronous-commit mode, the secondary replica never becomes synchronized with the
primary replica. Though a given secondary database might catch up to the corresponding
primary database, any secondary database could lag behind at any point. Asynchronous-commit
mode can be useful in a disaster-recovery scenario in which the primary replica and the
secondary replica are separated by a significant distance and where you do not want small
errors to impact the primary replica or in or situations where performance is more important
than synchronized data protection. Furthermore, since the primary replica does not wait for
acknowledgements from the secondary replica, problems on the secondary replica never impact
the primary replica.

 99

An asynchronous-commit secondary replica attempts to keep up with the log records received
from the primary replica. But asynchronous-commit secondary databases always remain
unsynchronized and are likely to lag somewhat behind the corresponding primary databases.
Typically the gap between a asynchronous-commit secondary database and the corresponding
primary datagase is small. But the gap can become substantial if the server hosting the
secondary replica is over loaded or the network is slow.
The only form of failover supported by asynchronous-commit mode is forced failover (with
possible data loss). Forcing failover is a last resort intended only for situations in which the
current primary replica will remain unavailable for an extended period and immediate availability
of primary databases is more critical than the risk of possible data loss. The target secondary
replica transitions to the primary role, and its copies of the databases become the primary
database. Any remaining secondary databases, along with the former primary databases, once
they become available, are suspended until you manually resume them individually. Under
asynchronous-commit mode, any transaction logs that the original primary replica had not yet
sent to the former secondary replica are lost. This means that some or all of the new primary
databases might be lacking recently committed transactions. For more information on how
forced failover works and on best practices for using it, see Failover Modes (AlwaysOn
Availability Groups).
Synchronous-Commit Availability Mode

Under synchronous-commit availability mode (synchronous-commit mode), after being joined to
an availability group, a secondary database catches up to the corresponding primary database
and enters the SYNCHRONIZED state. The secondary database remains SYNCHRONIZED as long
as data synchronization continues. This guarantees that every transaction that is committed on a
given primary database has also been committed on the corresponding secondary database.
When every secondary database on a given secondary replica is synchronized, the
synchronization-health state of the secondary replica as a whole is HEALTHY.
In This Section:
• Factors That Disrupt Data Synchronization
• How Synchronization Works on a Secondary Replica
• Synchronous-Commit Mode with Only Manual Failover
• Synchronous-Commit Mode with Automatic Failover
Factors That Disrupt Data Synchronization
Once all of its databases are synchronized, a secondary replica enters the HEALTHY state. The
synchronized secondary replica will remain healthy unless one of the following occurs:
• A network or computer delay or glitch causes the session between the secondary replica and

primary replica to timeout.

Note

 100

For information about the session-time property of availability replicas, see Overview
of AlwaysOn Availability Groups.

• You suspend a secondary database on the secondary replica. The secondary replica ceases
to be synchronized, and its synchronization-health state is marked as NOT_HEALTHY. the
secondary replica cannot become healthy again until the suspended secondary database is
either resumed and resynchronized or removed from the availability group.

• You add a primary database the availability group. Previously synchronized secondary
replicas enter the NOT_HEALTHY synchronization-health state. This state indicates that at
least one database is in the NOT SYNCHRONIZING synchronization state. A given secondary
replica cannot be HEALTHY again until a corresponding secondary database has been
prepared on the replica, has been joined to the availability group, and has become
synchronized with the new primary database.

• You change the primary replica or the secondary replica to asynchronous-commit availability
mode. After changing to asynchronous-commit mode, the secondary replica will remain in
the HEALTHY synchronization-health state as long as data synchronization continues.
However, if only the primary replica is changed to asynchronous-commit mode, the
synchronous-commit secondary replica will enter the PARTIALLY_HEALTHY synchronization-
health state. This state indicates that at least one database is in the SYNCHRONIZING
synchronization state, but none of the databases are in the NOT SYNCHRONIZING state.

• You change any secondary replica to synchronous-commit availability mode. This causes
that secondary replica to be marked as in the PARTIALLY_HEALTHY synchronization-health
state. until all of its databases are in the SYNCHRONIZED synchronization state.

To view the synchronization health of an availability group, availability replica, or
availability database, query the synchronization_health or
synchronization_health_desc column
of sys.dm_hadr_availability_group_states, sys.dm_hadr_availability_replica_states,
or sys.dm_hadr_database_replica_states, respectively.

How Synchronization Works on a Secondary Replica
Under the synchronous-commit mode, after a secondary replica joins the availability group and
establishes a session with the primary replica, the secondary replica writes incoming log records
to disk (hardens the log) and sends a confirmation message to the primary replica. Once the
hardened log on the secondary database has caught up the end of log on the primary database,
the state of the secondary database is set to SYNCHRONIZED. The time required for
synchronization depends essentially on how far the secondary database was behind the primary
database at the start of the session (measured by the number of log records initially received
from the primary replica), the work load on the primary database, and the speed of the
computer of the server instance that hosts the secondary replica.
Synchronous operation is maintained in the following manner:

Tip

http://msdn.microsoft.com/en-us/library/d18019dd-f8dc-4492-b035-b1a639369b65(SQL.110)�
http://msdn.microsoft.com/en-us/library/d2e678bb-51e8-4a61-b223-5c0b8d08b8b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/1a17b0c9-2535-4f3d-8013-cd0a6d08f773(SQL.110)�

 101

1. On receiving a transaction from a client, the primary replica writes the log for the transaction
to the transaction log and concurrently sends the log record to the secondary replicas.

2. Once a log record is written to the transaction log of the primary database, the transaction
can be undone only if there is a failover at this point to a secondary that did not receive the
log. The primary replica waits for confirmation from the synchronous-commit secondary
replica.

3. The secondary replica hardens the log and returns an acknowledgement to the primary
replica.

4. On receiving the confirmation from the secondary replica, the primary replica finishes the
commit processing and sends a confirmation message to the client.

If a synchronous-commit secondary replica times out without confirming that it has
hardened the log, the primary marks that secondary replica as failed. The connected
state of the secondary replica changes to DISCONNECTED, and the primary replica
stops waiting for confirmation from the secondary replica. This behavior ensures that
a failed synchronous-commit secondary replica does not prevent hardening of the
transaction log on the primary replica.

Synchronous-commit mode protects your data by requiring the data to be synchronized
between two places, at the cost of somewhat increasing the latency of the transaction.
Synchronous-Commit Mode with Only Manual Failover
When these replicas are connected and the database is synchronized, manual failover is
supported. If the secondary replica goes down, the primary replica is unaffected. The primary
replica runs exposed if no SYNCHRONIZED replicas exist (that is, without sending data to any
secondary replica). If the primary replica is lost, the secondary replicas enter the RESOLVING
state, but the database owner can force a failover to the secondary replica (with possible data
loss). For more information, see Failover Modes (AlwaysOn Availability Groups).
Synchronous-Commit Mode with Automatic Failover
Automatic failover provides high availability by ensuring that the database is quickly made
available again after the loss of the primary replica. To configure an availability group for
automatic failover, you need to set both the current primary replica and one secondary replica
to synchronous-commit mode with automatic failover.
Furthermore, for an automatic failover to be possible at a given time, this secondary replica
must be synchronized with the primary replica (that is, the secondary databases are all
synchronized), and the Windows Server Failover Clustering (WSFC) cluster must have quorum. If
the primary replica becomes unavailable under these conditions, automatic failover occurs. The
secondary replica switches to the role of primary, and it offers its database as the primary
database. For more information, see the "Automatic Failover " section of the Failover Modes
(AlwaysOn Availability Groups) topic.

Note

Note

 102

For information about WSFC quorum and AlwaysOn Availability Groups, see For more
information, see WSFC Quorum Modes and Voting Configuration (SQL Server).

Related Tasks
To change the availability mode and failover mode
• Set the Availability Mode of an Availability Replica (SQL Server)
• Set the Failover Mode of an Availability Replica (SQL Server)
To adjust quorum votes
• View Cluster Quorum NodeWeight Settings
• Configure Cluster Quorum NodeWeight Settings
• Force a WSFC Cluster to Start Without a Quorum
To perform a manual failover
• Perform a Planned Manual Fail Over of an Availability Group (SQL Server)
• Perform a Forced Manual Failover of an Availability Group (SQL Server)
• Use the Fail Over Availability Group Wizard (SQL Server Management Studio)
To view availability group, availability replica, and database states
• sys.dm_hadr_availability_group_states
• sys.dm_hadr_availability_replica_states
• sys.dm_hadr_database_replica_states

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
AlwaysOn Availability Groups (SQL Server)
Failover Modes (AlwaysOn Availability Groups)
Windows Server Failover Clusters (WSFC) with SQL Server

Change the Availability Mode of an Availability Replica
This topic describes how to change the availability mode of an availability replica in an
AlwaysOn availability group in SQL Server 2012 by using SQL Server Management Studio,
Transact-SQL, or PowerShell. The availability mode is a replica property that controls the
whether the replica commits asynchronously or synchronously. Asynchronous-commit mode
maximizes performance at the expense of high availability and supports forced failover (with
possible data loss). This Synchronous-commit mode emphasizes high availability over
performance and, once the secondary replica is synchronized, supports manual failover and,

http://msdn.microsoft.com/en-us/library/d18019dd-f8dc-4492-b035-b1a639369b65(SQL.110)�
http://msdn.microsoft.com/en-us/library/d2e678bb-51e8-4a61-b223-5c0b8d08b8b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/1a17b0c9-2535-4f3d-8013-cd0a6d08f773(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 103

optionally, automatic failover. This replica property applies only when an availability replica is
performing the secondary role.
• Before you begin:

Prerequisites
Security

• To change the availability mode of an availability replica, using:
SQL Server Management Studio
Transact-SQL
PowerShell

Before You Begin
Prerequisites
• You must be connected to the server instance that hosts the primary replica.
Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To change the availability mode of an availability group
1. In Object Explorer, connect to the server instance that hosts the primary replica, and expand

the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Click the availability group whose replica you want to change.
4. Right-click the replica, and click Properties.
5. In the Availability Replica Properties dialog box, use the Availability mode drop list to

change the availability mode of this replica.

Using Transact-SQL
To change the availability mode of an availability group
1. Connect to the server instance that hosts the primary replica.
2. Use the ALTER AVAILABILITY GROUP statement, as follows:

ALTER AVAILABILITY GROUP group_name MODIFY REPLICA ON 'server_name'
 WITH ({
 AVAILABILITY_MODE = { SYNCHRONOUS_COMMIT | ASYNCHRONOUS_COMMIT }
 | FAILOVER_MODE = { AUTOMATIC | MANUAL }

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 104

 })
where group_name is the name of the availability group and server_name is the name of the
server instance that hosts the replica to be modified.

FAILOVER_MODE = AUTOMATIC is supported only if you also specify
AVAILABILITY_MODE = SYNCHRONOUS_COMMIT.

The following example, entered on the primary replica of the AccountsAG availability group,
changes the availability and failover modes to synchronous commit and automatic failover,
respectively, for the replica hosted by the INSTANCE09 server instance.

ALTER AVAILABILITY GROUP AccountsAG MODIFY REPLICA ON 'INSTANCE09'

 WITH (AVAILABILITY_MODE = SYNCHRONOUS_COMMIT);

ALTER AVAILABILITY GROUP AccountsAG MODIFY REPLICA ON 'INSTANCE09'

 WITH (FAILOVER_MODE = AUTOMATIC);

Using PowerShell
To change the availability mode of an availability group
1. Change directory (cd) to the server instance that hosts the primary replica.
2. Use the Set-SqlAvailabilityReplica cmdlet with the AvailabilityMode parameter and,

optionally, the FailoverMode parameter.
For example, the following command modifies the replica MyReplica in the availability
group MyAg to use synchronous-commit availability mode and to support automatic failover.

Set-SqlAvailabilityReplica -AvailabilityMode "SynchronousCommit" -

FailoverMode "Automatic" `

-Path

SQLSERVER:\Sql\PrimaryServer\InstanceName\AvailabilityGroups\MyAg\Repl

icas\MyReplica

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

See Also
Overview of AlwaysOn Availability Groups
Availability Modes (AlwaysOn Availability Groups)

Note

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 105

Failover Modes (AlwaysOn Availability Groups)

Failover and Failover Modes (AlwaysOn Availability Groups)
Within the context of an availability group, the primary role and secondary role of availability
replicas are typically interchangeable in a process known as failover. Three forms of failover
exist: automatic failover (without data loss), planned manual failover (without data loss), and
forced manual failover (with possible data loss). Automatic and planned manual failover
preserve all your data. An availability group fails over at the availability-replica level. That is, an
availability group fails over to one of its secondary replicas (the current failover target).

Issues at the database level, such as a database becoming suspect due to the loss of a
data file, deletion of a database, or corruption of a transaction log, do not cause an
availability group to failover.

During the failover, the failover target takes over the primary role, recovers its databases, and
brings them online as the new primary databases. The former primary replica, when available,
switches to the secondary role, and its databases become secondary databases. Potentially,
these roles can switch back and forth (or to a different failover target) in response to multiple
failures or for administrative purposes.
The form(s) of failover that a given availability replica supports is specified by the failover mode
property. For a given availability replica, the possible failover modes depends on the availability
mode of the replica, as follows:
• Synchronous-commit replicas support two settings—automatic or manual. The

"automatic" setting supports both automatic failover and manual failover. To prevent data
loss, automatic failover and planned failover require that the failover target be a
synchronous-commit secondary replica with a healthy synchronization state (this indicates
that every secondary database on the failover target is synchronized with its corresponding
primary database). Whenever an secondary replica does not meet both of these conditions,
it supports only forced manual failover.

• Asynchronous-commit replicas support only the manual failover mode. Moreover, because
they are never synchronized, they support only forced manual failover— often referred to as
simply "forced failover".

After a failover, client applications that need to access the primary databases must
connect to the new primary replica. Also, if the new secondary replica is configured to
allow read-only access, read-only client applications can connect to it. For information
about how clients connect to an availability group, see Availability Group Listeners, Client
Connectivity, and Application Failover.

Sections in This Topic:
• Terms and Definitions

Note

Note

 106

• Overview of Failover
• Automatic Failover
• Planned Manual Failover (Without Data Loss)
• Forced Manual Failover (with Possible Data Loss)
• Related Tasks
• Related Content
Terms and Definitions
Automatic failover

A failover that occurs automatically on the loss of the primary replica. Automatic failover is
supported only when the current primary and one secondary replica are both configured with
failover mode set to AUTOMATIC and the secondary replica currently synchronized. If the
failover mode of either the primary or secondary replica is MANUAL, automatic failover
cannot occur.

Planned manual failover (without data loss)

Planned manual failover, or manual failover, is a failover that is initiated by a database
administrator, typically, for administrative purposes. A planned manual failover is supported
only if both the primary replica and secondary replica are configured for synchronous-
commit mode and the secondary replica is currently synchronized (in the SYNCHRONIZED
state). When the target secondary replica is synchronized, manual failover (without data loss)
is possible even if the primary replica has crashed because the secondary databases are ready
for failover. A database administrator manually initiates a manual failover.

Forced manual failover (with possible data loss)

A failover that can be initiated by a database administrator when a planned manual failover is
not possible, because either no secondary replica is SYNCHRONIZED with the primary replica
(that is, no secondary replica is ready for failover) or the primary replica is not running.
Forced manual failover, or forced failover, risks possible data loss and is recommended strictly
for disaster recovery. This is the only form of failover supported by in asynchronous-commit
availability mode.

Automatic failover set

Within a given availability group, a pair of availability replicas (including the current primary
replica) that are configured for synchronous-commit mode with automatic failover, if any. An
automatic failover set takes effect only if the secondary replica is currently SYNCHRONIZED
with the primary replica.

Synchronous-commit failover set

Within a given availability group, a set of two or three availability replicas (including the
current primary replica) that are configured for synchronous-commit mode. A synchronous-
commit failover set takes effect only if the secondary replicas are configured for manual
failover mode and at least one secondary replica is currently SYNCHRONIZED with the

 107

primary replica.

Entire failover set

Within a given availability group, the set of all availability replicas whose operational state is
currently ONLINE, regardless of availability mode and of failover mode. The entire failover set
becomes relevant when no secondary replica is currently SYNCHRONIZED with the primary
replica.

Overview of Failover
The following table summarizes which forms of failover are supported under different availability
and failover modes. For each pairing, the effective availability mode and failover mode is
determined by the intersection of the modes of the primary replica plus the modes of one or
more secondary replicas.

 Asynchronous-commit
mode

Synchronous-commit
mode with manual-
failover mode

Synchronous-commit
mode with automatic-
failover mode

Automatic failover No No Yes

Manual failover No Yes Yes

Forced failover Yes Yes Yes*

* If you issue a forced failover command on a synchronized secondary replica, the secondary
replica behaves the same as for a manual failover.
The amount of time that the database will be unavailable during a failover depends on the type
of failover and its cause.

To support client connections after failover, except for contained databases, logins and
jobs defined on any of the former primary databases must be manually recreated on the
new primary database. For more information, see Management of Logins and Jobs After
an Availability Group Fails Over (SQL Server).

Failover Sets
When you configure an availability replica as synchronous commit with automatic failover, the
availability replica becomes part of the automatic failover set. However whether the set takes
effect depends the current primary. The forms of failover that are actually possible at a given
time depends on what failover sets are currently in effect.
For example, consider an availability group that has four availability replicas, as follows:

Important

 108

Replica Availability Mode and Failover Mode Settings

A Synchronous commit with automatic
failover

B Synchronous commit with automatic
failover

C Synchronous commit with manual failover
only

D Asynchronous commit (with only forced
manual failover)

The failover behavior for each secondary replica depends on which availability replica is
currently the primary replica. Basically, for a given secondary replica, the failover behavior is the
worst case given the current primary replica. The following figure illustrates how the failover
behavior of secondary replicas varies depending on the current primary replica, and whether it is
configured for asynchronous-commit mode (with only forced manual failover) or synchronous-
commit mode (with or without automatic failover).

Automatic Failover
An automatic failover causes a qualified secondary replica to automatically transition to the
primary role after the primary replica becomes unavailable. Automatic failover is best suited
when the WSFC node that hosts the primary replica is local to the node that hosts the secondary
replica. This is because data synchronization works best with low message latency between
computers and because client connections can remain local.

 109

In This Section:
• Conditions Required for an Automatic Failover
• How Automatic Failover Works
• To Enable Automatic Failover
Conditions Required for an Automatic Failover
Automatic failover occurs only under the following conditions:
• Both the primary replica and a secondary replica (the automatic failover target) are

configured for synchronous-commit mode and are both set to AUTOMATIC failover. If
either the primary or secondary replica is set MANUAL failover, automatic failover cannot
occur.

• The automatic failover target has a healthy synchronization state (this indicates that every
secondary database on the failover target is synchronized with its corresponding primary
database).
For more information, see Availability Modes (AlwaysOn Availability Groups).

• The Windows Server Failover Clustering (WSFC) cluster has quorum. For more information,
see WSFC Quorum Modes and Voting Configuration (SQL Server).

• The primary replica has become unavailable, and the failover-condition levels defined by
your the flexible failover policy have been met. For information about failover-condition
levels, see Flexible Failover Policy for Automatic Failover of an Availability Group (SQL
Server).

How Automatic Failover Works
An automatic failover initiates the following sequence of actions:
1. If the server instance that is hosting the current primary replica is still running, it changes the

state of the primary databases to DISCONNECTED and disconnects all clients.
2. If any log records are waiting in recovery queues on the target secondary replica, the

secondary replica applies the remaining log records to finish rolling forward the secondary
databases.

The amount of time required to apply the log to a given database depends on the
speed of the system, the recent work load, and the amount of log in the recovery
queue.

3. The former secondary replica transitions to the primary role. Its databases become the
primary databases. The new primary replica rolls back any uncommitted transactions (the
undo phase of recovery) as quickly as possible. Locks isolate these uncommitted
transactions, allowing roll back to occur in the background while clients use the database.
This process does not roll back any committed transactions.
Until a given secondary database is connected, it is briefly marked as NOT_SYNCHRONIZED.
Before the rollback recovery starts, secondary databases can connect to the new primary

Note

 110

databases and quickly transition to the SYNCHRONIZED state. The best case is usually for a
third synchronous-commit replica that remains in the secondary role after the failover.

4. Later, when the server instance that is hosting the former primary replica restarts, it
recognizes that another availability replica now owns the primary role. The former primary
replica transitions to the secondary role, and its databases become secondary databases. The
new secondary replica connects to the current primary replica and catches its database up to
the current primary databases as quickly as possible. As soon as the new secondary replica
has resynchronized its databases, failover is again possible, in the reverse direction.

To Configure Automatic Failover
An availability replica can be configured to support automatic failover at any point.
To configure automatic failover
1. Ensure that the secondary replica is configured to use the synchronous-commit availability

mode. For more information, see Set the Availability Mode of an Availability Replica (SQL
Server).

2. Set the failover mode to automatic. For more information, see Set the Failover Mode of an
Availability Replica (SQL Server).

3. Optionally, change the flexible failover policy of the availability group to specify the sorts of
failures that can cause an automatic failover to occur. For more information, see Configure
the Flexible Failover Policy to Control Conditions for Automatic Failover (AlwaysOn
Availability Groups) and Failover Policy for Failover Cluster Instances.

Planned Manual Failover (Without Data Loss)
A manual failover causes a synchronized secondary replica to transition to the primary role after
a database administrator issues a manual-failover command on the server instance that hosts
the target secondary replica. To support manual failover, the secondary replica and the current
primary replica must both be configured for synchronous-commit mode. Every secondary
database on the availability replica must be joined to the availability group and synchronized
with its corresponding primary database (that is, the secondary replica must be synchronized).
This guarantees that every transaction that was committed on a former primary database has
also been committed on the new primary database. Therefore, the new primary databases are
identical to the old primary databases.
The following figure illustrates the stages of a planned failover:
1. Before the failover, the primary replica is hosted by the server instance on Node01.
2. A database administrator initiates a planned failover. The failover target is the availability

replica hosted by the server instance on Node02.
3. The failover target (on Node02) becomes the new primary replica. Because this is a planned

failover, the former primary replica switches to the secondary role during the failover and
brings its databases online as secondary databases immediately.

 111

In This Section:
• Conditions Required for a Manual Failover
• How Manual Failover Works
• Maintaining Availability During Upgrades
Conditions Required for a Manual Failover
To support a manual failover, the current primary replica must be set to synchronous-commit
mode and a secondary replica must be:
• Configured for synchronous-commit mode.
• Currently synchronized with the primary replica.

 112

To manually fail over an availability group, you must be connected to the secondary replica that
is to become the new primary replica.
How a Planned Manual Failover Works
A planned manual failover, which must be initiated on the target secondary replica, initiates the
following sequence of actions:
1. To ensure that no new user transactions occur on the original primary databases, the WSFC

cluster sends a request to the primary replica to go offline.
2. If any log is waiting in the recovery queue of any secondary database, the secondary replica

finishes rolling forward that secondary database. The amount of time required depends on
the speed of the system, the recent workload, and the amount of log in the recovery queue.
To learn the current size of the recovery queue, use the Recovery Queue performance
counter. For more information, see SQL Server, HADR Database Replica.

The failover time can be regulated by limiting the size of the recovery queue.
However, this can cause the primary replica to slow down to allow the secondary
replica to keep up.

3. The secondary replica becomes the new primary replica, and the former primary replica
becomes the new secondary replica.

4. The new primary replica rolls back any uncommitted transactions and brings its databases
online as the primary databases. All secondary databases are briefly marked as NOT
SYNCHRONIZED until they connect and resynchronize to the new primary databases. This
process does not roll back any committed transactions.

5. When the former primary replica comes back online, it takes on the secondary role, and the
former primary database becomes the secondary database. The new secondary replica
quickly resynchronizes the new secondary databases with the corresponding primary
databases.

As soon as the new secondary replica has resynchronized the databases, failover is
again possible, but in the reverse direction.

After failover, clients must reconnect to the current primary database. For more information,
see Configuring Client Connectivity for an Availability Group (SQL Server).

Maintaining Availability During Upgrades
The database administrator for your availability groups can use manual failovers to maintain
database availability when you upgrade hardware or software. To use an availability group for
software upgrades, the server instance and/or computer node that hosts the target secondary
replica must have already received the upgrades.

Note

Note

Note

http://msdn.microsoft.com/en-us/library/a5f6bdce-2b13-4924-aaeb-b50b57d624d8(SQL.110)�

 113

Failing over availability groups should support a rolling upgrade, but this is not
guaranteed.

Forced Manual Failover (with Possible Data Loss)
Forcing failover of an availability group (with possible data loss) is a disaster recovery method
that allows you to use a secondary replica as a warm standby server. Because forcing failover
risks possible data loss, it should be used cautiously and sparingly. We recommend forcing
failover only if you must restore service to your availability databases immediately and are
willing to risk losing data. For more information about the prerequisites and recommendations
for forcing failover and for an example scenario that uses a forced failover to recover from a
catastrophic failure, see Perform a Forced Manual Failover of an Availability Group (SQL Server).

Forcing failover requires that the WSFC cluster have quorum. For information about
configuring quorum and forcing quorum, see Windows Server Failover Clustering (WSFC)
with SQL Server.

In This Section:
• How Forced Failover Works
• Risks of Forcing Failover
• Managing the Potential Data Loss
How Forced Failover Works
Forcing failover initiates a smooth transition of the primary role to the target secondary replica
which becomes the new primary replica and immediately serves its copies of the databases to
clients. When the former primary replica becomes available, it will transition to the secondary
role and its databases will become secondary databases.
Every secondary database (including the former primary databases, when they become
available). Depending on the previous data synchronization state of a suspended secondary
database it might be suitable for salvaging missing committed data for that primary database.
On a secondary replica that is configured for read-only access, you can query the secondary
databases to manually discover missing data. Then you can issue Transact-SQL statements on
the new primary databases to make any necessary changes.
Risks of Forcing Failover
It is essential to understand that forcing failover can cause data loss. Data loss is possible
because the secondary replica cannot communicate with the primary replica and, therefore,
cannot guarantee that the databases are synchronized. Forcing failover starts a new recovery
fork. Because the original primary databases and secondary databases are on different recovery
forks, each of them now contains data that the other database does not contain: each original
primary database contains whatever changes were not yet sent from its send queue to the
former secondary database (the unsent log); the former secondary databases contain whatever
changes occur after failover was forced.

Warning

 114

If failover is forced because the primary replica has failed, potential data loss is depends on
whether any transaction logs had not been sent to the secondary replica before the failure.
Under the asynchronous-commit mode, accumulated unsent log is always a possibility. Under
synchronous-commit mode, this is possible only until the secondary databases becomes
synchronized.
The following table summarizes the possibility of data loss for a particular database on a
secondary replica to which you force failover.

Availability mode of Secondary
Replica

Is database synchronized? Is data loss possible?

Synchronous-commit Yes No

Synchronous-commit No Yes

Asynchronous-commit No Yes

Secondary databases track only two recovery forks, so if you perform multiple forced failovers,
any secondary database that did start data synchronization with the previous force failover
might not be able to resume. If this occurs, any secondary databases that cannot be resumed
will need to be removed from the availability group, restored to the correct point in time, and
rejoined to the availability group. A restore will not work across multiple recovery forks,
therefore, be sure to perform a log backup after performing more than one forced failover.
Managing the Potential Data Loss
After failover is forced, once the former primary replica is available, assuming that its databases
are undamaged, you can attempt to manage the potential data loss. The available approach for
managing potential data loss depends on whether the original primary replica has connected to
the new primary replica. Assuming that the original primary replica can access the new primary
instance, reconnecting occurs automatically and transparently.
The Original Primary Replica Has Reconnected
Typically, after a failure, when the original primary replica restarts it quickly reconnects to its
partner. On reconnecting, the original primary replica becomes the secondary replica. Its
databases becomes the secondary databases and enter the SUSPENDED state. The new
secondary databases will not be not rolled back unless you resume them.
However, the suspended databases are inaccessible; therefore, you cannot inspect them to
evaluate what data would be lost if you were to resume a given database. Therefore, the
decision on whether to resume or remove a secondary database depends on whether you are
willing to accept any data loss, as follows:
• If losing any data would be unacceptable, you should remove the databases from the

availability group to salvage them.

 115

The database administrator can now recover the former primary databases and attempt to
recover the data that would have been lost. However, when a former primary database
comes online, it is divergent from the current primary database, so the database
administrator needs to make either the removed database or the current primary database
inaccessible to clients to avoid further divergence of the databases and to prevent client-
failover issues.

• If losing data would be acceptable to your business goals, you can resume the secondary
databases.
Resuming a new secondary database causes it to be rolled back as the first step in
synchronizing the database. If any log records were waiting in the send queue at the time of
failure, the corresponding transactions are lost, even if they were committed.

The Original Primary Replica Has Not Reconnected
If you can temporarily prevent the original primary replica from reconnecting over the network
to the new primary replica, you can inspect the original primary databases to evaluate what data
would be lost if they were resumed.
• If the potential data loss is acceptable

Allow the original primary replica to reconnect to the new primary replica. Reconnecting
causes the new secondary databases to be suspended. To start data synchronization on a
database, simply resume it. The new secondary replica drops the original recovery fork for
that database, losing any transactions that were never sent to or received by the former
secondary replica.

• If the data loss is unacceptable
If the original primary database contains critical data that would be lost if you resumed the
suspended database, you can preserve the data on the original primary database by
removing it from the availability group. This causes the database to enter the RESTORING
state. At this point, we recommend that you attempt to back up the tail of the removed
database's log. Then, you can update the current primary (the former secondary database)
by exporting the data you want to salvage from the original primary database and importing
it into the current primary database. We recommend taking a full database backup of the
updated primary database as quickly as possible.
Then, on the server instance that hosts the new secondary replica, you can delete the
suspended secondary database and create a new secondary database by restoring this
backup (and least one subsequent log backup) using RESTORE WITH NORECOVERY. We
recommend delaying additional log backups of the current primary databases until the
corresponding secondary databases are resumed.

Related Tasks
To configure failover behavior
• Set the Availability Mode of an Availability Replica (SQL Server)

 116

• Set the Failover Mode of an Availability Replica (SQL Server)
• Configure the Flexible Failover Policy to Control Conditions for Automatic Failover

(AlwaysOn Availability Groups)
To perform a manual fail over
• Perform a Planned Manual Failover of an Availability Group (SQL Server)
• Perform a Forced Failover of an Availability Group (SQL Server)
• Use the Failover Availability Group Wizard (SQL Server)
• Management of Logins and Jobs for the Databases of an Availability Group (SQL Server)
To configure WSFC Quorum Configuration
• Configure Cluster Quorum NodeWeight Settings
• View Quorum Node Weights
• Force Quorum Election
Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
AlwaysOn Availability Groups
Availability Modes (AlwaysOn Availability Groups)
Windows Server Failover Clusters (WSFC) with SQL Server
Cross-Database Transactions Not Supported For Database Mirroring or AlwaysOn Availability
Groups (SQL Server)
Failover Policy for Failover Cluster Instances
Flexible Failover Policy for Automatic Failover of an Availability Group (SQL Server)

Change the Failover Mode of an Availability Replica
This topic describes how to change the failover mode of an availability replica in an AlwaysOn
availability group in SQL Server 2012 by using SQL Server Management Studio, Transact-SQL, or
PowerShell. The failover mode is a replica property that determines the failover mode for
replicas that run under synchronous-commit availability mode. For more information,
see Failover Modes (AlwaysOn Availability Groups) and Availability Modes (AlwaysOn Availability
Groups).
• Before you begin:

Prerequisites and Restrictions
Security

• To change the availability mode of an availability replica, using:
SQL Server Management Studio

http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 117

Transact-SQL
PowerShell

Before You Begin
Prerequisites and Restrictions
• This task is supported only on primary replicas. You must be connected to the server

instance that hosts the primary replica.
• SQL Server Failover Cluster Instances (FCIs) do not support automatic failover by availability

groups, so any availability replica that is hosted by an FCI can only be configured for manual
failover.

Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To change the failover mode of an availability replica
1. In Object Explorer, connect to the server instance that hosts the primary replica, and expand

the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Click the availability group whose replica you want to change.
4. Right-click the replica, and click Properties.
5. In the Availability Replica Properties dialog box, use the Failover mode drop list to

change the failover mode of this replica.

Using Transact-SQL
To change the failover mode of an availability replica
1. Connect to the server instance that hosts the primary replica.
2. Use the ALTER AVAILABILITY GROUP statement, as follows:

ALTER AVAILABILITY GROUP group_name MODIFY REPLICA ON 'server_name'
 WITH ({
 AVAILABILITY_MODE = { SYNCHRONOUS_COMMIT | ASYNCHRONOUS_COMMIT }
 | FAILOVER_MODE = { AUTOMATIC | MANUAL }
 })
where
• group_name is the name of the availability group.
• { 'system_name[\instance_name]' | 'FCI_network_name[\instance_name]' }

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 118

Specifies the address of the instance of SQL Server that hosts the availability replica to be
altered. The components of this address are as follows:
system_name

Is the NetBIOS name of the computer system on which a stand-alone server instance
resides.

FCI_network_name

Is the network name that is used to access a SQL Server failover cluster in which a
target server instance is a SQL Server failover partner (an FCI).

instance_name

Is the name of the instance of SQL Server that hosts the target availability replica. For a
default server instance, instance_name is optional.

For more information about these parameters, see ALTER AVAILABILITY GROUP (Transact-
SQL).
The following example, entered on the primary replica of the MyAG availability group,
changes the failover mode to automatic failover on the availability replica that is located on
the default server instance on a computer named COMPUTER01.

ALTER AVAILABILITY GROUP MyAG MODIFY REPLICA ON 'COMPUTER01' WITH

 (FAILOVER_MODE = AUTOMATIC);

Using PowerShell
To change the failover mode of an availability replica
1. Change directory (cd) to the server instance that hosts the primary replica.
2. Use the Set-SqlAvailabilityReplica cmdlet with the FailoverMode parameter. When setting

a replica to automatic failover, you might need to use the AvailabilityMode parameter to
change the replica to synchronous-commit availability mode.
For example, the following command modifies the replica MyReplica in the availability
group MyAg to use synchronous-commit availability mode and to support automatic failover.

Set-SqlAvailabilityReplica -AvailabilityMode "SynchronousCommit" -

FailoverMode "Automatic" `

-Path

SQLSERVER:\Sql\PrimaryServer\InstanceName\AvailabilityGroups\MyAg\Repl

icas\MyReplica

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

Note

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�
http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�
http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 119

See Also
Overview of AlwaysOn Availability Groups
Availability Modes (AlwaysOn Availability Groups)
Failover Modes (AlwaysOn Availability Groups)

Flexible Failover Policy for Automatic Failover of an Availability Group
A flexible failover policy provides granular control over the conditions that cause automatic
failover for an availability group. By changing the failure conditions that trigger an automatic
failover and the frequency of health checks, you can increase or decrease the likelihood of an
automatic failover to support your SLA for high availability.
The flexible failover policy of an availability group is defined by its failure-condition level and
health-check timeout threshold. On detecting that an availability group has exceeded its failure
condition level or its health-check timeout threshold, the availability group's resource DLL
responds back to the Windows Server Failover Clustering (WSFC) cluster. The WSFC cluster then
initiates an automatic failover to the secondary replica.

If an availability group exceeds its WSFC failure threshold, the WSFC cluster will not
attempt an automatic failover for the availability group. Furthermore, the WSFC resource
group of the availability group remains in a failed state until either the cluster
administrator manually brings the failed resource group online or the database
administrator performs a manual failover of the availability group. The WSFC failure
threshold is defined as the maximum number of failures supported for the availability
group during a given time period. The default time period is six hours, and the default
value for the maximum number of failures during this period is n-1, where n is the
number of WSFC nodes. To change the failure-threshold values for a given availability
group, use the WSFC Failover Manager Console.

This topic contains the following sections:
• Health-Check Timeout Threshold
• Failure-Condition Level
• Related Tasks
• Related Content
Health-Check Timeout Threshold
WSFC resource DLL of the availability group performs a health check of the primary replica by
calling the sp_server_diagnostics stored procedure on the instance of SQL Server that hosts the
primary replica. sp_server_diagnostics returns results at an interval that equals 1/3 of the
health-check timeout threshold for the availability group. The default health-check timeout
threshold is 30 seconds, which causes sp_server_diagnostics to return at a 10-second interval. If
sp_server_diagnostics is slow or is not returning information, the resource DLL will wait for the

Important

http://msdn.microsoft.com/en-us/library/62658017-d089-459c-9492-c51e28f60efe(SQL.110)�

 120

full interval of the health-check timeout threshold before determining that the primary replica is
unresponsive. If the primary replica is unresponsive, an automatic failover is initiated, if currently
supported.

sp_server_diagnostics does not perform health checks at the database level.

Failure-Condition Level
Whether the diagnostic data and health information returned by sp_server_diagnostics
warrants an automatic failover depends on the failure-condition level of the availability group.
The failure-condition level specifies what failure conditions trigger an automatic failover. There
are five failure-condition levels, which range from the least restrictive (level one) to the most
restrictive (level five). A given level encompasses the less restrictive levels. Thus, the strictest
level, five, includes the four less restrictive conditions, and so forth.

Damaged databases and suspect databases are not detected by any failure-condition
level. Therefore, a database that is damaged or suspect (whether due to a hardware
failure, data corruption, or other issue) never triggers an automatic failover.

The following table describes the failure-conditions that corresponds to each level.

Level Failure Condition Tsql Value PowerShell Value

One On server down.
Specifies that an
automatic failover is
initiated when any of
the following occurs:
• The SQL Server

service is down.
• The lease of the

availability group
for connecting to
the WSFC cluster
expires because
no ACK is
received from the
server instance.

This is the least
restrictive level.

1 OnServerDown

Two On server 2 OnServerUnresponsive

Important

Important

 121

Level Failure Condition Tsql Value PowerShell Value

unresponsive.
Specifies that an
automatic failover is
initiated when any of
the following occurs:
• The instance of

SQL Server does
not connect to
cluster, and the
user-specified
health check
timeout
threshold of the
availability group
is exceeded.

• The availability
replica is in failed
state.

Three On critical server
error. Specifies that
an automatic failover
is initiated on critical
SQL Server internal
errors, such as
orphaned spinlocks,
serious write-access
violations, or too
much dumping.
This is the default
level.

3 OnCriticalServerError

Four On moderate server
error. Specifies that
an automatic failover
is initiated on
moderate SQL Server
internal errors, such
as a persistent out-
of-memory condition
in the SQL Server
internal resource

4 OnModerateServerError

 122

Level Failure Condition Tsql Value PowerShell Value

pool.

Five On any qualified
failure conditions.
Specifies that an
automatic failover is
initiated on any
qualified failure
conditions, including:
• Exhaustion of

SQL Engine
worker-threads.

• Detection of an
unsolvable
deadlock.

This is the most
restrictive level.

5 OnAnyQualifiedFailureConditions

Lack of response by an instance of SQL Server to client requests is irrelevant to
availability groups.

Related Tasks
To configure automatic failover
• Set the Availability Mode of an Availability Replica (SQL Server) (automatic failover requires

synchronous-commit availability mode)
• Set the Failover Mode of an Availability Replica (SQL Server)
• Configure the Flexible Failover Policy to Control Conditions for Automatic Failover

(AlwaysOn Availability Groups)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
Overview (AlwaysOn Availability Groups)
Availability Modes (AlwaysOn Availability Groups)

Note

http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 123

Failover Modes (AlwaysOn Availability Group)
Windows Server Failover Clustering (WSFC) with SQL Server
Failover Policy for Failover Cluster Instances
sp_server_diagnostics (Transact-SQL)

Configure the Flexible Failover Policy to Control Conditions for Automatic Failover
(AlwaysOn Availability Groups)
This topic describes how to configure the flexible failover policy for an AlwaysOn availability
group by using Transact-SQL or PowerShell in SQL Server 2012. A flexible failover policy
provides granular control over the conditions that cause automatic failover for an availability
group. By changing the failure conditions that trigger an automatic failover and the frequency of
health checks, you can increase or decrease the likelihood of an automatic failover to support
your SLA for high availability.
• Before you begin:

Limitations on Automatic Failovers
Prerequisites
Security

• To configure the flexible failover policy, using:
Transact-SQL
PowerShell

The flexible failover policy of an availability group cannot be configured by using SQL
Server Management Studio.

Before You Begin
Limitations on Automatic Failovers
• For an automatic failover to occur, the current primary replica and one secondary replica

must be configured for synchronous-commit availability mode with automatic failover and
the secondary replica must be synchronized with the primary replica.

• If an availability group exceeds its WSFC failure threshold, the WSFC cluster will not attempt
an automatic failover for the availability group. Furthermore, the WSFC resource group of
the availability group remains in a failed state until either the cluster administrator manually
brings the failed resource group online or the database administrator performs a manual
failover of the availability group. The WSFC failure threshold is defined as the maximum
number of failures supported for the availability group during a given time period. The
default time period is six hours, and the default value for the maximum number of failures
during this period is n-1, where n is the number of WSFC nodes. To change the failure-
threshold values for a given availability group, use the WSFC Failover Manager Console.

Prerequisites

Note

http://msdn.microsoft.com/en-us/library/62658017-d089-459c-9492-c51e28f60efe(SQL.110)�

 124

• You must be connected to the server instance that hosts the primary replica.
Security
Permissions

Task Permissions

To configure the flexible failover policy for
a new availability group

Requires membership in the sysadmin
fixed server role and either CREATE
AVAILABILITY GROUP server permission,
ALTER ANY AVAILABILITY GROUP
permission, or CONTROL SERVER
permission.

To modify the policy of an existing
availability group

Requires ALTER AVAILABILITY GROUP
permission on the availability group,
CONTROL AVAILABILITY GROUP
permission, ALTER ANY AVAILABILITY
GROUP permission, or CONTROL SERVER
permission.

Using Transact-SQL
To configure the flexible failover policy
1. Connect to the server instance that hosts the primary replica.
2. For a new availability group, use the CREATE AVAILABILITY GROUP Transact-SQL statement.

If you are modifying an existing availability group, use the ALTER AVAILABILITY GROUP
Transact-SQL statement.
• To set the failover condition level, use the FAILURE_CONDITION_LEVEL = n option,

where, n is an integer from 1 to 5.
For example, the following Transact-SQL statement changes the failure-condition level of
an existing availability group, AG1, to level one:

ALTER AVAILABILITY GROUP AG1 SET (FAILURE_CONDITION_LEVEL = 1);

The relationship of these integer values to the failure condition levels is as follows:

http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 125

Tsql Value Level Automatic Is Failover Initiated
When…

1 One On server down. The SQL
Server service stops because
of a failover or restart.

2 Two On server unresponsive. Any
condition of lower value is
satisfied, the SQL Server
service is connected to the
cluster and the health check
timeout threshold is exceeded,
or the current primary replica
is in a failed state.

3 Three On critical server error. Any
condition of lower value is
satisfied or an internal critical
server error occurs.
This is the default level.

4 Four On moderate server error. Any
condition of lower value is
satisfied or a moderate Server
error occurs.

5 Five On any qualified failure
conditions. Any condition of
lower value is satisfied or a
qualifying failure condition
occurs.

For more information about the failover condition levels, see Flexible Failover Policy for
Automatic Failover of an Availability Group (SQL Server).

• To configure the health check timeout threshold, use the HEALTH_CHECK_TIMEOUT = n
option, where, n is an integer from 15000 milliseconds (15 seconds) to 4294967295
milliseconds. The default value is 30000 milliseconds (30 seconds)
For example, the following Transact-SQL statement changes the health-check timeout
threshold of an existing availability group, AG1, to 60,000 milliseconds (one minute).

ALTER AVAILABILITY GROUP AG1 SET (HEALTH_CHECK_TIMEOUT = 60000);

Using PowerShell

 126

To configure the flexible failover policy
1. Set default (cd) to the server instance that hosts the primary replica.
2. When adding an availability replica to an availability group, use the New-

SqlAvailabilityGroup cmdlet. When modifying an existing availability replica, use the Set-
SqlAvailabilityGroup cmdlet.
• To set the failover condition level, use the FailureConditionLevel level parameter,

where, level is one of the following values:

 127

Value Level Automatic Is Failover
Initiated When…

OnServerDown One On server down. The SQL
Server service stops
because of a failover or
restart.

OnServerUnresponsive Two On server unresponsive.
Any condition of lower
value is satisfied, the SQL
Server service is
connected to the cluster
and the health check
timeout threshold is
exceeded, or the current
primary replica is in a
failed state.

OnCriticalServerError Three On critical server error.
Any condition of lower
value is satisfied or an
internal critical server
error occurs.
This is the default level.

OnModerateServerError Four On moderate server
error. Any condition of
lower value is satisfied or
a moderate Server error
occurs.

OnAnyQualifiedFailureConditions Five On any qualified failure
conditions. Any condition
of lower value is satisfied
or a qualifying failure
condition occurs.

For more information about the failover condition levels, see Flexible Failover Policy for
Automatic Failover of an Availability Group (SQL Server).
For example, the following command changes the failure-condition level of an existing
availability group, AG1, to level one.

Set-SqlAvailabilityGroup `

 128

-Path SQLSERVER:\Sql\PrimaryServer\InstanceName\AvailabilityGroups\MyAg

`

-FailureConditionLevel OnServerDown

• To set the health check timeout threshold, use the HealthCheckTimeout n parameter,
where, n is an integer from 15000 milliseconds (15 seconds) to 4294967295 milliseconds.
The default value is 30000 milliseconds (30 seconds).
For example, the following command changes the health-check timeout threshold of an
existing availability group, AG1, to 120,000 milliseconds (two minutes).

Set-SqlAvailabilityGroup `

-Path SQLSERVER:\Sql\PrimaryServer\InstanceName\AvailabilityGroups\MyAG

`

-HealthCheckTimeout 120000

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server PowerShell
environment. For more information, see SQL Server PowerShell Help.

To set up and use the SQL Server PowerShell provider
• Using the SQL Server PowerShell Provider
• SQL Server PowerShell Help

See Also
Overview of AlwaysOn Availability Groups (SQL Server)
Availability Modes (AlwaysOn Availability Groups)
Failover Modes (AlwaysOn Availability Group)
Windows Server Failover Clustering (WSFC) with SQL Server
Failover Policy for Failover Cluster Instances
sp_server_diagnostics (Transact-SQL)

Possible Failures During Sessions Between Availability Replicas
Physical, operating system, or SQL Server problems can cause a failure in a session between two
availability replicas. An availability replica does not regularly check the components on which
Sqlservr.exe relies to verify whether they are functioning correctly or have failed. However, for
some types of failures, the affected component reports an error to Sqlservr.exe. An error
reported by another component is called a hard error. To detect other failures that would
otherwise go unnoticed, AlwaysOn Availability Groups implements its own session-timeout
mechanism. Specifies the session-timeout period in seconds. This time-out period is the
maximum time that a server instance waits to receive a PING message from another instance
before considering that other instance to be disconnected. When a session timeout occurs

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/62658017-d089-459c-9492-c51e28f60efe(SQL.110)�

 129

between two availability replicas, the availability replicas assume that a failure has occurred and
declares a soft error.

Failures in databases other than the primary database are not detectable. Moreover, a
data disk failure is unlikely to be detected unless the database is restarted because of a
data disk failure.

The speed of error detection and, therefore, the reaction time to a failure, depends on whether
the error is hard or soft. Some hard errors, such as network failures are reported immediately.
However, in some cases, component-specific time-out periods can delay the reporting of some
hard errors. For soft errors, the length of the session-timeout period determines the speed of
error detection. By default, this period is 10 seconds. This is the minimum recommended value.
Failures Due to Hard Errors
Possible causes of hard errors include (but are not limited to) the following conditions:
• A broken connection or wire
• A bad network card
• A router change
• Changes in the firewall
• Endpoint reconfiguration
• Loss of the drive where the transaction log resides
• Operating system or process failure
For example, when the log drive on the primary database becomes unresponsive and fails, the
operating system informs Sqlservr.exe that a serious error has occurred.
Some components, such as network components and some IO subsystems, have their own time-
outs to determine failures. Such time-outs are independent of AlwaysOn Availability Groups,
which has no knowledge of them and is completely unaware of their behavior. In these cases,
the time-out delay increases the time between a failure and when the availability replica receives
the resulting hard error.

The only active error checking performed for availability replicas occurs for soft error
cases. For more information, see "Failures Due to Soft Errors," later in this topic.

To help you interpret the error conditions that occur on the network, ask a network engineer
what error messages are sent to a port when the following events occur on a TCP connection:
• DNS is not working.
• Cables are unplugged.
• Microsoft Windows has a firewall that blocks a specific port.
• The application that is monitoring a port fails.
• A Windows-based server is renamed.

Important

Note

 130

• A Windows-based server is rebooted.

AlwaysOn Availability Groups does not protect against problems specific to client
accessing the servers. For example, consider a case in which a public network adapter
handles client connections to the primary replica, while a private network interface card
handles traffic among the server instances that are hosting the replicas of an availability
group. In this case, failure of the public network adapter would prevent clients from
accessing the databases.

Failures Due to Soft Errors
Conditions that might cause session timeouts include (but are not limited to) the following:
• Network errors such as TCP link time-outs, dropped or corrupted packets, or packets that

are in an incorrect order.
• A hanging operating system, server, or database state.
• A Windows server timing out.
• Insufficient computing resources, such as a CPU or disk overload, the transaction log filling

up, or the system is running out of memory or threads. In these cases, you must increase the
time-out period, reduce the workload, or change the hardware to handle the workload.

The Session-Timeout Mechanism
Because soft errors are not detectable directly by a server instance, a soft error could potentially
cause an availability replica to wait indefinitely for a response from the other availability replica
in a session. To prevent this, AlwaysOn Availability Groups implements a session time-out
mechanism, based on the connected availability replicas sending out a ping on each open
connection at a fixed interval. Receiving a ping during the time-out period indicates that the
connection is still open and that the server instances are communicating over it. On receiving a
ping, a replica resets its time-out counter on that connection. For information about the
relationship of availability mode and session timeouts, see Availability Modes (AlwaysOn
Availability Groups).
The primary and secondary replicas ping each other to signal that they are still active, and a
session-timeout limit prevents either replica from waiting indefinitely to receive a ping from the
other replica. The session-timeout limit is a user-configurable replica property with a default
value of 10 seconds. Receiving a ping during the time-out period indicates that the connection
is still open and that the server instances are communicating over it. On receiving a ping, an
availability replica resets its time-out counter on that connection.
If no ping is received from the other replica within the session-timeout period, the connection
times out. The connection is closed, and the timed-out replica enters the DISCONNECTED state.
Even if a disconnected replica is configured for synchronous-commit mode, transactions will not
wait for that replica to reconnect and resynchronize.
Responding to an Error
Regardless of the type of error, a server instance that detects an error responds appropriately
based on the role of the instance, the availability mode of the session, and the state of any other

Note

 131

connection in the session. For information about what occurs on the loss of a partner,
see Availability Modes (AlwaysOn Availability Groups).
Related Tasks
To change the time-out value (synchronous-commit availability mode only)
• Set the Session-Timeout Period for an Availability Replica (SQL Server)
To view the current time-out value
• Query session_timeout in sys.availability_replicas (Transact-SQL).
See Also
AlwaysOn Availability Groups (SQL Server)

Active Secondaries: Backup on Secondary Replicas (AlwaysOn
Availability Groups)
The AlwaysOn Availability Groups active secondary capabilities include support for performing
backup operations on secondary replicas. Backup operations can put significant strain on I/O
and CPU (with backup compression). Offloading backups to a synchronized or synchronizing
secondary replica allows you to use the resources on server instance that hosts the primary
replica for your tier-1 workloads.

RESTORE statements are not allowed on either the primary or secondary databases of an
availability group.

• Supported Backup Types
• Configuring Where Backup Jobs Run
• Related Tasks
Supported Backup Types
Only BACKUP LOG is fully supported on secondary replicas. BACKUP DATABASE supports only
copy-only full backups of the database, files, or filegroups. Differential backups are not
supported on secondary replicas.

Copy-only backups do not impact the log chain. Also, copy-only backups do not clear
the differential bitmap.

Configuring Where Backup Jobs Run
Performing backups on a secondary replica to offload the backup workload from the primary
production server is a great benefit. But it introduces significant complexity to the process of
determining where backup jobs should run. To address this, you need to configure where
backup jobs run, as follows:

Note

Note

http://msdn.microsoft.com/en-us/library/0a06e9b6-a1e4-4293-867b-5c3f5a8ff62c(SQL.110)�

 132

1. Configure the availability group to specify which availability replicas where you would prefer
backups to be performed. For more information, see Specifying Where You Would Prefer to
Perform Backups, later in this section.

2. Create scripted backup jobs for every availability database on every server instance that
hosts an availability replica that is a candidate for performing backups. For more
information, see Scripting of Backup Jobs, later in this section.

Configuring Where You Would Prefer to Perform Backups
To configure the availability group use the following AlwaysOn Availability Groups settings:
• Automated backup preference (configured for the availability group as a whole)

At an availability group level, specify whether backups should or should not run on the
primary replica. The possible preferences for where backups should run are as follows:

Preference Description

Only on the primary replica Backups should always occur on the
primary replica. This alternative is useful if
you need backup features, such as creating
differential backups, that are not supported
when backup is run on a secondary replica.

On secondary replicas Backups should occur on a secondary
replica except when the primary replica is
the only replica online. In that case, the
backup should occur on the primary replica.
This is the default behavior.

Only on secondary replicas Backups should never be performed on the
primary replica. If the primary replica is the
only replica online, the backup should not
occur.

No preference Backup jobs should ignore the role of the
availability replicas when choosing the
replica to perform backups. Note backup
jobs might evaluate other factors such as
backup priority of each availability replica in
combination with its operational state and
connected state.

For information about how to specify these settings, see Configure Backup on Availability
Replicas (SQL Server).

• Backup priority (configured individually for each availability replica)

 133

To specify whether an availability replica is a candidate for running backup jobs, specify its
backup priority. By specifying different backup priorities for different availability replicas, you
can specify an ordered preference among secondary for running backup jobs. To indicate
the priority for a given availability replica, set backup priority to a value from 0 to 100, as
follows:

Setting Description

1..100 The relative priority of a given replica
relative to the backup priorities of the other
replicas in the availability group. 100 is the
highest priority.
By default, all secondary replicas have the
same backup priority (50), making all
replicasle equal candidates for running
backup jobs unless you specify a different
value for at least one replica.

0 The availability replica will never be chosen
for performing backups. This is useful, for
example, for a remote secondary replica to
which you do not want your production
backup jobs to fail over. This is also useful
for a computer that lacks the facilities to
handle backups.

For information about how to specify these settings, see Configure Backup on Availability
Replicas (SQL Server).

Scripting of Backup Jobs
The availability group and replica configuration settings have no effect unless you script backup
jobs to use these setting. On every availability replica whose backup priority is greater than zero
(>0), you need to script backup jobs for the databases in the availability group.
You can determine whether the current replica is the preferred backup replica by calling
the sys.fn_hadr_backup_is_preferred_replica function. If the availability replica that is hosted by
the current server instance is the preferred replica for backups, this function returns 1. If not, the
function returns 0. By running a simple script on each availability replica that that queries this
function, to determine which replica should run a given backup job, and if the function returns
'1', runs a backup job.
The logic for this script is as follows:
If (top-priority replica is local)

Run backup job

http://msdn.microsoft.com/en-us/library/61b9be77-e2f6-4da1-b2ae-a62cbe226145(SQL.110)�

 134

Else

Exit with success

If you use the Maintenance Plan Wizard to create a given backup job, the job will
automatically include the scripting logic that calls and checks the
sys.fn_hadr_backup_is_preferred_replica function. However, the backup job will not
return the “This is not the preferred replica…” message. Be sure to create the job(s) for
each availability database on every server instance that hosts an availability replica for
the availability group.

Scripting a backup job using this sort of logic enables you to schedule the job to run on every
availability replica on the same schedule. Each of these jobs looks at the same data to determine
which job should run, so only one of the scheduled job actually proceeds to the backup stage.
In the event of a failover, none of the scripts or jobs need to be touched. Also, if you reconfigure
an availability group to add an availability replica, managing the backup job requires simply
copying or scheduling the backup job. If you remove an availability replica, simply delete the
backup job from the server instance that hosted that replica.
For a sample script, see the "Follow Up: After Configuring Backup on Secondary Replicas"
section of Configure Backup on Availability Replicas (SQL Server).
Related Tasks
To configure backup on secondary replicas
• Configure Backup on Availability Replicas (SQL Server)
To determine whether the current replica is the preferred backup replica
• sys.fn_hadr_backup_is_preferred_replica
To create a backup job
• Use the Maintenance Plan Wizard
• Implement Jobs

See Also
Overview (AlwaysOn Availability Groups)
Copy-Only Backups (SQL Server)
CREATE AVAILABILITY GROUP (Transact-SQL)
ALTER AVAILABILITY GROUP (Transact-SQL)

Configure Backup on Availability Replicas
This topic describes how to configure backup on secondary replicas for an AlwaysOn availability
group by using SQL Server Management Studio, Transact-SQL, or PowerShell in SQL Server
2012.

Tip

http://msdn.microsoft.com/en-us/library/db65c726-9892-480c-873b-3af29afcee44(SQL.110)�
http://msdn.microsoft.com/en-us/library/61b9be77-e2f6-4da1-b2ae-a62cbe226145(SQL.110)�
http://msdn.microsoft.com/en-us/library/db65c726-9892-480c-873b-3af29afcee44(SQL.110)�
http://msdn.microsoft.com/en-us/library/69e06724-25c7-4fb3-8a5b-3d4596f21756(SQL.110)�
http://msdn.microsoft.com/en-us/library/f82d6918-a5a7-4af8-868e-4247f5b00c52(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 135

For an introduction to backup on secondary replicas, see Backup on Secondary Replicas
(AlwaysOn Availability Groups).

• Before you begin:
Limitations and Restrictions
Prerequisites
Security

• To configure backup on secondary replicas , using:
SQL Server Management Studio
Transact-SQL
PowerShell

• Follow Up: After configuring backup on secondary replicas
• To Obtain Information About Backup Preference Settings
• Related Content
Before You Begin
Limitations and Restrictions
• Only BACKUP LOG is fully supported on secondary replicas. BACKUP DATABASE supports

only copy-only full backups of the database, files, or filegroups. Differential backups are not
supported on secondary replicas.

Copy-only backups do not impact the log chain. Also, copy-only backups do not
clear the differential bitmap.

• To back up a secondary database, a secondary replica must be able to communicate with the
primary replica and must be SYNCHRONIZED or SYNCHRONIZING.

• Configuring an availability group to support backup on secondary replicas merely
establishes your backup preferences for where to perform backups. It is important to
understand that the preference is not enforced by SQL Server, so the automated backup
preference has no impact on ad-hoc backups. To take the automated backup preference
into account, on each availability replica whose backup priority is greater than zero (>0), you
need to script backup jobs for the databases in the availability group. For more information,
see Follow Up: After Configuring Backup on Secondary Replicas, later in this topic.

Prerequisites
• You must be connected to the server instance that hosts the primary replica.
Security
Permissions

Note

Note

 136

Task Permissions

To configure backup on secondary replicas
when creating an availability group

Requires membership in the sysadmin
fixed server role and either CREATE
AVAILABILITY GROUP server permission,
ALTER ANY AVAILABILITY GROUP
permission, or CONTROL SERVER
permission.

To modify an availability group or
availability replica

Requires ALTER AVAILABILITY GROUP
permission on the availability group,
CONTROL AVAILABILITY GROUP
permission, ALTER ANY AVAILABILITY
GROUP permission, or CONTROL SERVER
permission.

Using SQL Server Management Studio
To configure backup on secondary replicas
1. In Object Explorer, connect to the server instance that hosts the primary replica, and click the

server name to expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Click the availability group whose backup preferences you want to configure, and select the

Properties command.
4. In the Availability Group Properties dialog box, select Backup Preferences page.
5. On the Where should backups occur? panel, select the automated backup preference for

the availability group, one of:
Prefer Secondary

Specifies that backups should occur on a secondary replica except when the primary
replica is the only replica online. In that case, the backup should occur on the primary
replica. This is the default option.

Secondary only

Specifies that backups should never be performed on the primary replica. If the primary
replica is the only replica online, the backup should not occur.

Primary

Specifies that the backups should always occur on the primary replica. This option is useful
if you need backup features, such as creating differential backups, that are not supported
when backup is run on a secondary replica.

Important

 137

If you plan to use log shipping to prepare any secondary databases for an
availability group, set the automated backup preference to Primary until all the
secondary databases have been prepared and joined to the availability group.

Any Replica

Specifies that you prefer that backup jobs ignore the role of the availability replicas when
choosing the replica to perform backups. Note backup jobs might evaluate other factors
such as backup priority of each availability replica in combination with its operational state
and connected state.

There is no enforcement of the backup-preference setting. The interpretation of this
preference depends on the logic, if any, that you script into back jobs for the
databases in a given availability group. For more information, see Backup on
Secondary Replicas (AlwaysOn Availability Groups).

6. Use the Replica backup priorities grid to change the backup priority of the availability
replicas. This grid displays the current backup priority of each server instance that hosts a
replica for the availability group. The grid columns are as follows:
Server Instance

The name of the instance of SQL Server that hosts the availability replica.

Backup Priority (Lowest=1, Highest=100)

Specifies your priority for performing backups on this replica relative to the other replicas
in the same availability group. The value is an integer in the range of 0..100. 1 indicates the
lowest priority, and 100 indicates the highest priority. If Backup Priority = 1, the
availability replica would be chosen for performing backups only if no higher priority
availability replicas are currently available.

Exclude Replica

Select if you never want this availability replica to be chosen for performing backups. This
is useful, for example, for a remote availability replica to which you never want backups to
fail over.

7. To commit your changes, click OK.
Alternative ways to access the Backup Preferences page
• Use the New Availability Group Wizard
• Use the Add Replica to Availability Group Wizard
• Use the New Availability Group Dialog Box (SQL Server Management Studio)

Using Transact-SQL
To configure backup on secondary replicas
1. Connect to the server instance that hosts the primary replica.

Important

 138

2. For a new availability group, use the CREATE AVAILABILITY GROUP Transact-SQL statement.
If you are modifying an existing availability group, use the ALTER AVAILABILITY GROUP
Transact-SQL statement.
• Optionally, configure the automated backup preference for the availability group. The

default setting is to prefer secondary replicas. To change this setting, use the
AUTOMATED_BACKUP_PREFERENCE option, as follows:
… AUTOMATED_BACKUP_PREFERENCE = { PRIMARY | SECONDARY_ONLY | SECONDARY
| NONE }
where,
PRIMARY

Specifies that the backups should always occur on the primary replica. This option is
useful if you need backup features, such as creating differential backups, that are not
supported when backup is run on a secondary replica.

Important
If you plan to use log shipping to prepare any secondary databases for an
availability group, set the automated backup preference to PRIMARY until all
the secondary databases have been prepared and joined to the availability
group.

SECONDARY_ONLY

Specifies that backups should never be performed on the primary replica. If the
primary replica is the only replica online, the backup should not occur.

SECONDARY

Specifies that backups should occur on a secondary replica except when the primary
replica is the only replica online. In that case, the backup should occur on the primary
replica. This is the default behavior.

NONE

Specifies that you prefer that backup jobs ignore the role of the availability replicas
when choosing the replica to perform backups. Note backup jobs might evaluate other
factors such as backup priority of each availability replica in combination with its
operational state and connected state.

For example, the following command changes the automated backup preference of an
existing availability group, AG1, to PRIMARY:

ALTER AVAILABILITY GROUP [AG1] SET (AUTOMATED_BACKUP_PREFERENCE =

PRIMARY);

For an example of setting AUTOMATED_BACKUP_PREFERENCE for a new availability
group, see CREATE AVAILABILITY GROUP (Transact-SQL).

• To specify your priority for performing backups on a given availability replica relative to
the other replicas in the same availability group, specify the BACKUP_PRIORITY option

http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�

 139

when you add or modify an availability replica with the CREATE AVAILABILITY GROUP or
ALTER AVAILABILITY GROUP Transact-SQL statement, as follows:
… [ADD | MODIFY] REPLICA ON <server_instance> WITH (BACKUP_PRIORITY = n)
where, n is an integer in the range of 0..100. These values have the following meanings:
• 1..100 indicates that the availability replica could be chosen for performing backups.

1 indicates the lowest priority, and 100 indicates the highest priority. If
BACKUP_PRIORITY = 1, the availability replica would be chosen for performing
backups only if no higher priority availability replicas are currently available.

• 0 indicates that this availability replica will never be chosen for performing backups.
This is useful, for example, for a remote availability replica to which you never want
backups to fail over.

For example, to modify an existing availability replica to support backups when running
under the secondary role: ALTER AVAILABILITY GROUP [AG1] MODIFY REPLICA ON
computer01 WITH (BACKUP_PRIORITY = 70);
For an example of setting BACKUP_PRIORITY when creating an availability group,
see CREATE AVAILABILITY GROUP (Transact-SQL).

Using PowerShell
To configure backup on secondary replicas
1. Set default (cd) to the server instance that hosts the primary replica.
2. Optionally, configure the backup priority of each availability replica that you are adding or

modifying. This priority is used by the server instance that hosts the primary replica to
decide which replica should service an automated backup request on a database in the
availability group (the replica with highest priority is chosen). This priority can be any
number between 0 and 100, inclusive. A priority of 0 indicates that the replica should not be
considered as a candidate for servicing backup requests. The default setting is 50.
When adding an availability replica to an availability group, use the New-
SqlAvailabilityReplica cmdlet. When modifying an existing availability replica, use the Set-
SqlAvailabilityReplica cmdlet. In either case, specify the BackupPriority n parameter,
where n is a value from 0 to 100.
For example, the following command sets the backup priority of the availability replica
MyReplica to 60.
Set-SqlAvailabilityReplica -BackupPriority 60 `

-Path

SQLSERVER:\Sql\Computer\Instance\AvailabilityGroups\MyAg\AvailabilityR

eplicas\MyReplica

3. Optionally, configure the automated backup preference for the availability group that you
are creating or modifying. This preference indicates how a backup job should evaluate the
primary replica when choosing where to perform backups. The default setting is to prefer
secondary replicas.

http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�

 140

When creating an availability group, use the New-SqlAvailabilityGroup cmdlet. When
modifying an existing availability group, use the Set-SqlAvailabilityGroup cmdlet. In either
case, specify the AutomatedBackupPreference parameter.
where,
Primary

Specifies that the backups should always occur on the primary replica. This option is useful
if you need backup features, such as creating differential backups, that are not supported
when backup is run on a secondary replica.

Important
If you plan to use log shipping to prepare any secondary databases for an
availability group, set the automated backup preference to Primary until all the
secondary databases have been prepared and joined to the availability group.

SecondaryOnly

Specifies that backups should never be performed on the primary replica. If the primary
replica is the only replica online, the backup should not occur.

Secondary

Specifies that backups should occur on a secondary replica except when the primary
replica is the only replica online. In that case, the backup should occur on the primary
replica. This is the default behavior.

None

Specifies that you prefer that backup jobs ignore the role of the availability replicas when
choosing the replica to perform backups. Note backup jobs might evaluate other factors
such as backup priority of each availability replica in combination with its operational state
and connected state.

For example, the following command sets the AutomatedBackupPreference property on
the availability group MyAg to SecondaryOnly. Automated backups of databases in this
availability group will never occur on the primary replica, but will be redirected to the
secondary replica with the highest backup priority setting.
Set-SqlAvailabilityGroup `

-Path

SQLSERVER:\Sql\PrimaryServer\InstanceName\AvailabilityGroups\MyAg `

-AutomatedBackupPreference SecondaryOnly

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server PowerShell
environment. For more information, see SQL Server PowerShell Help.

To set up and use the SQL Server PowerShell provider
• Using the SQL Server PowerShell Provider

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 141

• SQL Server PowerShell Help

Follow Up: After Configuring Backup on Secondary Replicas
To take the automated backup preference into account for a given availability group, on each
server instance that hosts an availability replica whose backup priority is greater than zero (>0),
you need to script backup jobs for the databases in the availability group. To determine whether
the current replica is the preferred backup replica, use
the sys.fn_hadr_backup_is_preferred_replica function in your backup script. For example, a
typical snippet of a backup-job script would look like:

IF (NOT sys.fn_hadr_backup_is_preferred_replica(@DBNAME))

BEGIN

 Select ‘This is not the preferred replica, exiting with success’;

 RETURN 0 – This is a normal, expected condition, so the script returns

success

END

BACKUP DATABASE @DBNAME TO DISK=<disk>

 WITH COPY_ONLY;

If you use the Maintenance Plan Wizard to create a given backup job, the job will
automatically include the scripting logic that calls and checks the
sys.fn_hadr_backup_is_preferred_replica function. However, the backup job will not
return the “This is not the preferred replica…” message. Be sure to create the job(s) for
each availability database on every server instance that hosts an availability replica for
the availability group.

To Obtain Information About Backup Preference Settings
The following are useful for obtaining information that is relevant for backup on secondary.

View Information Relevant Columns

sys.fn_hadr_backup_is_preferred_replic
a

Is the current
replica the
preferred
backup replica?

Not applicable.

sys.availability_groups Automated
backup
preference

automated_backup_preference
automated_backup_preference_des
c

Tip

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/61b9be77-e2f6-4da1-b2ae-a62cbe226145(SQL.110)�
http://msdn.microsoft.com/en-us/library/db65c726-9892-480c-873b-3af29afcee44(SQL.110)�
http://msdn.microsoft.com/en-us/library/61b9be77-e2f6-4da1-b2ae-a62cbe226145(SQL.110)�
http://msdn.microsoft.com/en-us/library/61b9be77-e2f6-4da1-b2ae-a62cbe226145(SQL.110)�
http://msdn.microsoft.com/en-us/library/da7fa55f-c008-45d9-bcfc-3513b02d9e71(SQL.110)�

 142

View Information Relevant Columns

sys.availability_replicas Backup priority
of a given
availability
replica

backup_priority

sys.dm_hadr_availability_replica_states Is replica local
to the server
instance?
Current role
Operational
state
Connected
state
Synchronizatio
n health of an
availability
replica

is_local
role, role_desc
operational_state,
operational_state_desc
connected_state,
connected_state_desc
synchronization_health,
synchronization_health_desc

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
AlwaysOn Availability Groups (SQL Server)
Backup on Secondary Replicas

Active Secondaries: Readable Secondary Replicas (AlwaysOn
Availability Groups)
The AlwaysOn Availability Groups active secondary capabilities include support for read-only
access to one or more secondary replicas (readable secondary replicas). A readable secondary
replica allows read-only access to all its secondary databases. However, readable secondary
databases are not set to read-only. They are dynamic. A given secondary database changes as
changes on the corresponding primary database are applied to the secondary database. For a
typical secondary replica, the data in the secondary databases is in near real time. Furthermore,
full-text indexes are synchronized with the secondary databases. In many circumstances, data

http://msdn.microsoft.com/en-us/library/0a06e9b6-a1e4-4293-867b-5c3f5a8ff62c(SQL.110)�
http://msdn.microsoft.com/en-us/library/d2e678bb-51e8-4a61-b223-5c0b8d08b8b1(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 143

latency between a primary database and the corresponding secondary database is only a few
seconds.
Security settings that occur in the primary databases are persisted to the secondary databases.
This includes users, database roles, and applications roles together with their respective
permissions and transparent data encryption (TDE), if enabled on the primary database.

Though you cannot write data to secondary databases, you can write to read-write
databases on the server instance that hosts the secondary replica, including user
databases and system databases such as tempdb.

AlwaysOn Availability Groups also supports the re-routing of read-intent connection requests to
a readable secondary replica (read-only routing). For information about read-only routing,
see Using a Listener to Connect to a Read-Only Secondary Replica (Read-Only Routing).
In this Topic:
• Benefits
• Prerequisites for the Availability Group
• Limitations and Restrictions
• Performance Considerations
• Capacity Planning Considerations
• Related Tasks
• Related Content
Benefits
Directing read-only connections to readable secondary replicas provides the following benefits:
• Offloads your secondary read-only workloads from your primary replica, which conserves its

resources for your mission critical workloads. If you have mission critical read-workload or
the workload that cannot tolerate latency, you should run it on the primary.

• Improves your return on investment for the systems that host readable secondary replicas.
In addition, readable secondaries provide robust support for read-only operations, as follows:
• Temporary statistics on readable secondary database optimize read-only queries. For more

information, see Statistics for Read-Only Access Databases, later in this topic.
• Read-only workloads use row versioning to remove blocking contention on the secondary

databases. All queries that run against the secondary databases are automatically mapped to
snapshot isolation transaction level, even when other transaction isolation levels are
explicitly set. Also, all locking hints are ignored. This eliminates reader/writer contention.

Prerequisites for the Availability Group
• Readable secondary replicas (required)

Note

 144

The database administrator needs to configure one or more replicas so that, when running
under the secondary role, they allow either all connections (just for read-only access) or only
read-intent connections.

Optionally, the database administrator can configure any of the availability replicas to
exclude read-only connections when running under the primary role.

For more information, see About Client Connection Access to Availability Replicas (SQL
Server).

• Availability group listener
To support read-only routing, an availability group must possess an availability group
listener. The read-only client must direct its connection requests to this listener, and the
client's connection string must specify the application intent as "read-only." That is, they
must be read-intent connection requests.

• Read only routing
Read-only routing refers to the ability of SQL Server to route incoming read-intent
connection requests, that are directed to an availability group listener, to an available
readable secondary replica. The prerequisites for read-only routing are as follows:
• To support read-only routing, a readable secondary replica requires a read-only routing

URL. This URL takes effect only when the local replica is running under the secondary
role. The read-only routing URL must be specified on a replica-by-replica basis, as
needed. Each read-only routing URL is used for routing read-intent connection requests
to a specific readable secondary replica. Typically, every readable secondary replica is
assigned a read-only routing URL.

• Each availability replica that is to support read-only routing when it is the primary replica
requires a read-only routing list. A given read-only routing list takes effect only when the
local replica is running under the primary role. This list must be specified on a replica-by-
replica basis, as needed. Typically, each read-only routing list would contain every read-
only routing URL, with the URL of the local replica at the end of the list.

Read-intent connection requests are routed to the first available readable
secondary on the read-only routing list of the current primary replica. There is no
load balancing.

For more information, see Configure Read-Only Routing for an Availability Group (SQL
Server).

For information about availability group listeners and more information about read-only
routing, see Availability Group Listeners, Client Connectivity, and Application Failover
(AlwaysOn Availability Groups).

Note

Note

Note

 145

Limitations and Restrictions
Some operations are not fully supported, as follows:
• As soon as a readable secondary replica joins the availability group, the secondary replica

can start accepting connections to its secondary databases. However, if any active
transactions exist on a primary database, row versions will not be fully available immediately
on the corresponding secondary database. Any active transactions that existed on the
primary replica when the secondary replica was configured must be committed or rolled
back. Until this process completes, the transaction isolation level mapping on the secondary
database is incomplete and queries are temporarily blocked.

Running long transaction will impact the number of versioned rows kept.
• Change tracking and change data capture are not supported on secondary databases that

belong to a readable secondary replica:
• Change tracking is explicitly disabled on secondary databases.
• Change data capture can be enabled on a secondary database, but this is not supported.

• Because read operations are mapped to snapshot isolation transaction level, the cleanup of
ghost records on the primary replica can be blocked by transactions on one or more
secondary replicas. The ghost record cleanup task will automatically clean up the ghost
records on the primary replica when they are no longer needed by any secondary replica.
This is similar to what is done when you run transaction(s) on the primary replica. In the
extreme case on the secondary database, you will need to kill a long running read-query that
is blocking the ghost cleanup. Note, the ghost clean can be blocked if the secondary replica
gets disconnected or when data movement is suspended on the secondary database. This
state also prevents log truncation, so if this state persists, we recommend that you remove
this secondary database from the availability group.

• The DBCC SHRINKFILE operation might fail on the primary replica if the file contains ghost
records that are still needed on a secondary replica.

If you query the sys.dm_db_index_physical_stats dynamic management view on a server
instance that is hosting a readable secondary replica, you might encounter a REDO
blocking issue. This is because this dynamic management view acquires an IS lock on the
specified user table or view that can block requests by a REDO thread for an X lock on
that user table or view.

Performance Considerations
This section discusses several performance considerations for readable secondary databases
In This Section:
• Data Latency
• Read-Only Workload Impact

Note

Note

http://msdn.microsoft.com/en-us/library/d294dd8e-82d5-4628-aa2d-e57702230613(SQL.110)�

 146

• Indexing
• Statistics for Read-Only Access Databases
Data Latency
Implementing read-only access to secondary replicas is useful if your read-only workloads can
tolerate some data latency. In situations where data latency is unacceptable, consider running
read-only workloads against the primary replica.
The primary replica sends log records of changes on primary database to the secondary replicas.
On each secondary database, a dedicated redo thread applies the log records. On a read-access
secondary database, a given data change does not appear in query results until the log record
that contains the change has been applied to the secondary database and the transaction has
been committed on primary database.
This means that there is some latency, usually only a matter of seconds, between the primary
and secondary replicas. In unusual cases, however, for example if network issues reduce
throughput, latency can become significant. Latency increases when I/O bottlenecks occur and
when data movement is suspended. To monitor suspended data movement, you can use the
AlwaysOn Dashboard or the sys.dm_hadr_database_replica_states dynamic management view.
Read-Only Workload Impact
When you configure a secondary replica for read-only access, your read-only workloads on the
secondary databases consume system resources, such as CPU and I/O from redo threads,
especially if the read-only workloads are highly I/O-intensive.
Also, read-only workloads on the secondary replicas can block data definition language (DDL)
changes that are applied through log records. Even though the read operations do not take
shared locks because of row versioning, these operations take schema stability (Sch-S) locks,
which can block redo operations that are applying DDL changes.
Be aware of best practices around building queries, and exercise those best practices in the
secondary databases. For example, schedule long-running queries such as aggregations of data
during times of low activity.

If a redo thread is blocked by queries on a secondary replica, the
sqlserver.lock_redo_blocked XEvent is raised.

Indexing
To optimize read-only workloads on the readable secondary replicas, you may want to create
indexes on the tables in the secondary databases. Because you cannot make schema or data
changes on the secondary databases, create indexes in the primary databases and allow the
changes to transfer to the secondary database through the redo process.
To monitor index usage activity on an secondary replica, query the user_seeks, user_scans, and
user_lookups columns of the sys.dm_db_index_usage_stats dynamic management view.
Statistics for Read-Only Access Databases

Note

http://msdn.microsoft.com/en-us/library/1a17b0c9-2535-4f3d-8013-cd0a6d08f773(SQL.110)�
http://msdn.microsoft.com/en-us/library/d06a001f-0f72-4679-bc2f-66fff7958b86(SQL.110)�

 147

Statistics on columns of tables and indexed views are used to optimize query plans. For
availability groups, statistics that are created and maintained on the primary databases are
automatically persisted on the secondary databases as part of applying the transaction log
records. However, the read-only workload on the secondary databases may need different
statistics than those that are created on the primary databases. However, because secondary
databases are restricted to read-only access, statistics cannot be created on the secondary
databases.
To address this problem, the secondary replica creates and maintains temporary statistics for
secondary databases in tempdb. The suffix _readonly_database_statistic is appended to the
name of temporary statistics to differentiate them from the permanent statistics that are
persisted from the primary database.
Only SQL Server can create and update temporary statistics. However, you can delete temporary
statistics and monitor their properties using the same tools that you use for permanent statistics:
• Delete temporary statistics using the DROP STATISTICS Transact-SQL statement.
• Monitor statistics using the sys.stats and sys.stats_columns catalog views. sys_stats

includes a column, is_temporary, to indicate which statistics are permanent and which are
temporary.

For more information about SQL Server statistics, see Using Statistics to Improve Query
Performance.
In This Section:
• Stale Permanent Statistics on Secondary Databases
• Limitations and Restrictions
Stale Permanent Statistics on Secondary Databases
SQL Server detects when permanent statistics on a secondary database are stale. But changes
cannot be made to the permanent statistics except through changes on the primary database.
For query optimization, SQL Server creates temporary statistics on the secondary database and
uses these statistics instead of the stale permanent statistics.
When the permanent statistics are updated on the primary database, they are automatically
persisted to the secondary database. Then SQL Server uses the updated permanent statistics,
which are more current than the temporary statistics.
If the availability group fails over, temporary statistics are deleted on all of the secondary
replicas.
Limitations and Restrictions
• Because temporary statistics are stored in tempdb, a restart of the SQL Server service causes

all temporary statistics to disappear.
• The suffix _readonly_database_statistic is reserved for statistics generated by SQL Server. You

cannot use this suffix when creating statistics on a primary database. For more information,
see Statistics.

http://msdn.microsoft.com/en-us/library/222806b7-4e45-445b-8cd0-bd5461f3ca4a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�

 148

Capacity Planning Considerations
• Readable secondary replicas can require space in tempdb for two reasons:

• Snapshot isolation level copies row versions into tempdb.
• Temporary statistics for secondary databases are created and maintained in tempdb. The

temporary statistics can cause a slight increase in the size of tempdb. For more
information, see Statistics for Read-Only Access Databases, later in this section.

• When you configure read-access for one or more secondary replicas, the primary databases
add 14 bytes of overhead on deleted, modified, or inserted data rows to store pointers to
row versions on the secondary databases. This 14-byte overhead is carried over to the
secondary databases. As the 14-byte overhead is added to data rows, page splits might
occur.
The row version data is not generated by the primary databases. Instead, the secondary
databases generate the row versions. However, row versioning increases data storage in
both the primary and secondary databases.
The addition of the row version data depends on the snapshot isolation or read-committed
snapshot isolation (RCSI) level setting on the primary database. The table below describes
the behavior of versioning on a readable secondary database under different settings.

Readable secondary
replica?

Snapshot isolation or
RCSI level enabled?

Primary Database Secondary Database

No No No row versions or
14-byte overhead

No row versions or
14-byte overhead

No Yes Row versions and 14-
byte overhead

No row versions, but
14-byte overhead

Yes No No row versions, but
14-byte overhead

Row versions and 14-
byte overhead

Yes Yes Row versions and 14-
byte overhead

Row versions and 14-
byte overhead

Related Tasks
• Configure Read-Only Connection Access on an Availability Replica (SQL Server)
• Configure Read-Only Routing on an Availability Group (SQL Server)
• Create or Configure an Availability Group Listener (SQL Server
• Monitor Availability Groups (Transact-SQL)
• View and Change Availability Replica Properties (SQL Server Management Studio)
• Create an Availability Group (SQL Server)

 149

Related Content
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
Overview of AlwaysOn Availability Groups (SQL Server)
Client Connection Access to Availability Replicas (SQL Server)
Client Connectivity and Application Failover (AlwaysOn Availability Groups)
Using Statistics to Improve Query Performance

About Client Connection Access to Availability Replicas
In an AlwaysOn availability group, you can configure one or more availability replicas to allow
read-only connections when running under the secondary role (that is, when running as a
secondary replica). You can also configure each availability replica to allow or exclude read-only
connections when running under the primary role (that is, when running as the primary replica).
To facilitate client access to primary or secondary databases of a given availability group, you
should define an availability group listener. By default, the availability group listener directs
incoming connections to the primary replica. However, you can configure an availability group
to support read-only routing, which enables its availability group listener to redirect the
connection requests of read-intent applications to a readable secondary replica. For more
information, see Configure Read-Only Routing on an Availability Group.
During a failover, a secondary replica transitions to the primary role and the former primary
replica transitions to the secondary role. During the failover process, all client connections to
both the primary replica and secondary replicas are terminated. After the failover, when a client
reconnects to the availability group listener, the listener reconnects the client to the new primary
replica, except for a read-intent connect request. If read-only routing is configured on the client
and on the server instances that hosts the new primary replica and on at least one readable
secondary replica, read-intent connection requests are re-routed to a secondary replica that
supports the type of connection access that the client requires. To ensure a graceful client
experience after a failover, it is important to configure connection access for both the secondary
and primary roles of every availability replica.

For information about the availability group listener, which handles client connection
requests, see Client Connectivity and Application Failover (AlwaysOn Availability Groups).

In This Topic:
• Types of Connection Access Supported by the Secondary Role
• Types of Connection Access Supported by the Primary Role
• How the Connection Access Configuration Affects Client Connectivity

Note

http://blogs.msdn.com/b/sqlalwayson/�
http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�

 150

• Related Tasks
• Related Content
Types of Connection Access Supported by the Secondary Role
The secondary role supports three alternatives for client connections, as follows:
No connections

No user connections are allowed. Secondary databases are not available for read access. This
is the default behavior in the secondary role.

Only read-intent connections

The secondary database(s) are available only for connection for which the Application Intent
connection property is set to ReadOnly (read-intent connections).

For information about this connection property, see SQL Server Native Client Support
for High Availability, Disaster Recovery.

Allow any read-only connection

The secondary database(s) are all available for read access connections. This option allows
lower versioned clients to connect.

For more information, see Configure Connection Access on an Availability Replica (SQL Server).

Types of Connection Access Supported by the Primary Role
The primary role supports two alternatives for client connections, as follows:
All connections are allowed

Both read-write and read-only connections are allowed to primary databases. This is the
default behavior for the primary role.

Allow only read-write connections

When the Application Intent connection property is set to ReadWrite or is not set, the
connection is allowed. Connections for which the Application Intent connection string
keyword is set to ReadOnly are not allowed. Allowing only read-write connections can help
prevent your customers from connecting a read-intent work load to the primary replica by
mistake.

For information about this connection property, see Using Connection String
Keywords with SQL Server Native Client.

For more information, see Configure Connection Access on an Availability Replica (SQL Server).

How the Connection Access Configuration Affects Client Connectivity
The connection access settings of a replica determine whether a connection attempt fails or
succeeds. The following table summarizes whether a given connection attempt succeeds or fails
for each the connection-access setting.

http://msdn.microsoft.com/en-us/library/2b06186b-4090-4728-b96b-90d6ebd9f66f(SQL.110)�
http://msdn.microsoft.com/en-us/library/2b06186b-4090-4728-b96b-90d6ebd9f66f(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�

 151

Replica Role Connection Access
Supported on Replica

Connection Intent Connection-Attempt
Result

Secondary All Read-intent, read-
write, or no
connection intent
specified

Success

Secondary None (This is the
default secondary
behavior.)

Read-intent, read-
write, or no
connection intent
specified

Failure

Secondary Read-intent only Read-intent Success

Secondary Read-intent only Read-write or no
connection intent
specified

Failure

Primary All (This is the default
primary behavior.)

Read-only, read-write,
or no connection
intent specified

Success

Primary Read-write Read-intent only Failure

Primary Read-write Read-write or no
connection intent
specified

Success

For information about configuring an availability group to accept client connections to its
replicas, see Client Connectivity and Application Failover (AlwaysOn Availability Groups).
Example Connection-Access Configuration
Depending on how different availability replicas are configured for connection access, support
for client connections might change after an availability group fails over. For example, consider
an availability group for which reporting is performed on remote asynchronous-commit
secondary replicas. All of the read-only applications for the databases in this availability group
set their Application Intent connection property to ReadOnly, so that all read-only
connections are read-intent connections.
This example availability group possesses two synchronous-commit replicas at the main
computing center and two asynchronous-commit replicas at a satellite site. For the primary role,
all the replicas are configured for read-write access, which prevents read-intent connections to
the primary replica in all situations. The synchronous commit secondary role uses the default
connection-access configuration ("none"), which prevents all client connections under the
secondary role. In contrast, the asynchronous commit replicas are configured to permit read-

 152

intent connections under the secondary role. The following table summarize this example
configuration:

Replica Commit Mode Initial Role Connection Access
for Secondary Role

Connection Access
for Primary Role

Replica1 Synchronous Primary None Read-write

Replica2 Synchronous Secondary None Read-write

Replica3 Asynchronous Secondary Read-intentonly Read-write

Replica4 Asynchronous Secondary Read-intent only Read-write

Typically, in this example scenario, failovers occur only between the synchronous-commit
replicas, and immediately after the failover, read-intent applications are able to reconnect to
one of the asynchronous-commit secondary replicas. However, when a disaster occurs at the
main computing center both synchronous-commit replicas are lost. The database administrator
at the satellite site responds by performing a forced manual failover to an asynchronous-commit
secondary replica. The secondary databases on the remaining secondary replica are suspended
by the forced failover, making them unavailable for read-only workloads. The new primary
replica, which is configured for read-write connections, prevents the read-intent workload from
competing with the read-write workload. This means that until the database administrator
resumes the secondary databases on the remaining asynchronous-commit secondary replica,
read-intent clients cannot connect to any availability replica.

Related Tasks
• Configure Connection Access on an Availability Replica (SQL Server)
• Configure Read-Only Routing on an Availability Group
• Monitor Availability Groups (Transact-SQL)
• View and Change Availability Replica Properties (SQL Server Management Studio)
• Create an Availability Group (SQL Server)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
Overview of AlwaysOn Availability Groups (SQL Server)
Client Connectivity and Application Failover (AlwaysOn Availability Groups)

http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 153

Using Statistics to Improve Query Performance

Configure Read-Only Access on an Availability Replica
By default both read-write and read-intent access are allowed to the primary replica and no
connections are allowed to secondary replicas of an AlwaysOn availability group. This topic
describes how to configure connection access on an availability replica of an AlwaysOn
availability group in SQL Server 2012 by using SQL Server Management Studio, Transact-SQL, or
PowerShell.
For information about the implications of enabling read-only access for a secondary replica and
for an introduction to connection access, see Client Connection Access to Availability Replicas
(SQL Server) and Readable Secondary Replicas.
• Before you begin:

Prerequisites and Restrictions
Security

• To configure access on an availability replica, using:
SQL Server Management Studio
Transact-SQL
PowerShell

• Follow Up: After Configuring Read-Only Access for an Availability Replica
• Related Tasks
• Related Content
Before You Begin

Prerequisites and Restrictions
• To configure different connection access, you must be connected to the server instance that

hosts the primary replica.
Security
Permissions

Task Permissions

To configure replicas when creating an
availability group

Requires membership in the sysadmin
fixed server role and either CREATE
AVAILABILITY GROUP server permission,
ALTER ANY AVAILABILITY GROUP
permission, or CONTROL SERVER
permission.

To modify an availability replica Requires ALTER AVAILABILITY GROUP

http://msdn.microsoft.com/en-us/library/b86a88ba-4f7c-4e19-9fbd-2f8bcd3be14a(SQL.110)�

 154

Task Permissions

permission on the availability group,
CONTROL AVAILABILITY GROUP
permission, ALTER ANY AVAILABILITY
GROUP permission, or CONTROL SERVER
permission.

Using SQL Server Management Studio
To configure access on an availability replica
1. In Object Explorer, connect to the server instance that hosts the primary replica, and expand

the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Click the availability group whose replica you want to change.
4. Right-click the availability replica, and click Properties.
5. In the Availability Replica Properties dialog box, you can change the connection access for

the primary role and for the secondary role, as follows:
• For the secondary role, select a new value from the Readable secondary drop list, as

follows:
No

No user connections are allowed to secondary databases of this replica. They are not
available for read access. This is the default setting.

Read-intent only

Only read-only connections are allowed to secondary databases of this replica. The
secondary database(s) are all available for read access.

Yes

All connections are allowed to secondary databases of this replica, but only for read
access. The secondary database(s) are all available for read access.

• For the primary role, select a new value from the Connections in primary role drop list,
as follows:
Allow all connections

All connections are allowed to the databases in the primary replica. This is the default
setting.

Allow read/write connections

When the Application Intent property is set to ReadWrite or the Application Intent
connection property is not set, the connection is allowed. Connections where the
Application Intent connection property is set to ReadOnly are not allowed. This can

 155

help prevent customers from connecting a read-intent work load to the primary replica
by mistake. For more information about Application Intent connection property,
see Using Connection String Keywords with SQL Server Native Client.

Using Transact-SQL
To configure access on an availability replica

For an example of this procedure, see Example (Transact-SQL), later in this section.
1. Connect to the server instance that hosts the primary replica.
2. If you are specifying a replica for a new availability group, use the CREATE AVAILABILITY

GROUP Transact-SQL statement. If you are adding or modifying a replica of an existing
availability group, use the ALTER AVAILABILITY GROUP Transact-SQL statement.
• To configure connection access for the secondary role, in the ADD REPLICA or MODIFY

REPLICA WITH clause, specify the SECONDARY_ROLE option, as follows:
SECONDARY_ROLE (ALLOW_CONNECTIONS = { NO | READ_ONLY | ALL })
where,
NO

No direct connections are allowed to secondary databases of this replica. They are not
available for read access. This is the default setting.

READ_ONLY

Only read-only connections are allowed to secondary databases of this replica. The
secondary database(s) are all available for read access.

ALL

All connections are allowed to secondary databases of this replica, but only for read
access. The secondary database(s) are all available for read access.

3. To configure connection access for the primary role, in the ADD REPLICA or MODIFY
REPLICA WITH clause, specify the PRIMARY_ROLE option, as follows:
PRIMARY_ROLE (ALLOW_CONNECTIONS = { READ_WRITE | ALL })
where,
READ_WRITE

Connections where the Application Intent connection property is set to ReadOnly are
disallowed. When the Application Intent property is set to ReadWrite or the Application
Intent connection property is not set, the connection is allowed. For more information
about Application Intent connection property, see Using Connection String Keywords with
SQL Server Native Client.

ALL

All connections are allowed to the databases in the primary replica. This is the default

Note

http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�

 156

setting.

Example (Transact-SQL)
The following example adds a secondary replica to an availability group named AG2. A stand-
alone server instance, COMPUTER03\HADR_INSTANCE, is specified to host the new availability
replica. This replica configured to allow only read-write connections for the primary role and to
allow only read-intent connections for secondary role.

ALTER AVAILABILITY GROUP AG2

 ADD REPLICA ON

 'COMPUTER03\HADR_INSTANCE' WITH

 (

 ENDPOINT_URL = 'TCP://COMPUTER03:7022',

 PRIMARY_ROLE (ALLOW_CONNECTIONS = READ_WRITE),

 SECONDARY_ROLE (ALLOW_CONNECTIONS = READ_ONLY)

);

GO

Using PowerShell
To configure access on an availability replica

For a code example, see Example (PowerShell), later in this section.
1. Change directory (cd) to the server instance that hosts the primary replica.
2. When adding an availability replica to an availability group, use the New-

SqlAvailabilityReplica cmdlet. When modifying an existing availability replica, use the Set-
SqlAvailabilityReplica cmdlet. The relevant parameters are as follows:
• To configure connection access for the secondary role, specify the

ConnectionModeInSecondaryRole secondary_role_keyword parameter, where
secondary_role_keyword equals one of the following values:
AllowNoConnections

No direct connections are allowed to the databases in the secondary replica and the
databases are not available for read access. This is the default setting.

AllowReadIntentConnectionsOnly

Connections are allowed only to the databases in the secondary replica where the
Application Intent property is set to ReadOnly. For more information about this
property, see Using Connection String Keywords with SQL Server Native Client.

AllowAllConnections

All connections are allowed to the databases in the secondary replica for read-only

Note

http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�

 157

access.

• To configure connection access for the primary role, specify
ConnectionModeInPrimaryRole primary_role_keyword, where primary_role_keyword
equals one of the following values:
AllowReadWriteConnections

Connections where the Application Intent connection property is set to ReadOnly are
disallowed. When the Application Intent property is set to ReadWrite or the
Application Intent connection property is not set, the connection is allowed. For more
information about Application Intent connection property, see Using Connection String
Keywords with SQL Server Native Client.

AllowAllConnections

All connections are allowed to the databases in the primary replica. This is the default
setting.

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server 2012
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider
Example (PowerShell)
The following example, sets the both the ConnectionModeInSecondaryRole and
ConnectionModeInPrimaryRole parameters to AllowAllConnections.
Set-Location SQLSERVER:\SQL\PrimaryServer\default\AvailabilityGroups\MyAg

$primaryReplica = Get-Item "AvailabilityReplicas\PrimaryServer"

Set-SqlAvailabilityReplica -ConnectionModeInSecondaryRole

"AllowAllConnections" `

-InputObject $primaryReplica

Set-SqlAvailabilityReplica -ConnectionModeInPrimaryRole "AllowAllConnections"

`

-InputObject $primaryReplica

Follow Up: After Configuring Read-Only Access for an Availability Replica
Read-only access to a readable secondary replica
• When using the bcp Utility or sqlcmd Utility, you can specify read-only access to any

secondary replica that is enabled for read-only access by specifying the -K ReadOnly switch.
• To enable client applications to connect to readable secondary replicas:

Note

http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/c0af54f5-ca4a-4995-a3a4-0ce39c30ec38(SQL.110)�
http://msdn.microsoft.com/en-us/library/e1728707-5215-4c04-8320-e36f161b834a(SQL.110)�

 158

 Prerequisite Link

 Ensure that the availability
group has a listener.

Create or Configure an
Availability Group Listener
(SQL Server)

 Configure read-only routing
for the availability group.

Configure Read-Only Routing
on an Availability Group (SQL
Server)

Factors that might affect triggers and jobs after a failover
If you have triggers and jobs that will fail when running on a non-readable secondary database
or on a readable secondary database, you need to script the triggers and jobs to check on a
given replica to determine whether the database is a primary database or is a readable
secondary database. To obtain this information, use the DATABASEPROPERTYEX function to
return the Updatability property of the database. To identify a read-only database, specify
READ_ONLY as the value, as follows:

DATABASEPROPERTYEX([db name],’Updatability’) = N’READ_ONLY’

To identify a read-write database, specify READ_WRITE as the value.

Related Tasks
• Configure Read-Only Routing on an Availability Group (SQL Server)
• Create or Configure an Availability Group Listener (SQL Server)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
Overview of AlwaysOn Availability Groups (SQL Server)
Readable Secondary replicas
Client Connection Access to Availability Replicas (SQL Server)

Availability Group Listeners, Client Connectivity, and Application
Failover
This topic contains information about considerations for AlwaysOn Availability Groups client
connectivity and application-failover functionality.

http://msdn.microsoft.com/en-us/library/8a9e0ffb-28b5-4640-95b2-a54e3e5ad941(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 159

In This Topic:
• Availability Group Listeners
• Using a Listener to Connect to the Primary Replica
• Using a Listener to Connect to a Read-Only Secondary Replica (Read-Only Routing)

• To Configure Availability Replicas for Read-Only Routing
• Read-Only Application Intent and Read-Only Routing

• Bypassing Availability Group Listeners
• Behavior of Client Connections on Failover
• Supporting Availability Group Multi-Subnet Failovers
• Availability Group Listeners and SSL Certificates
• Availability Group Listeners and Server Principal Names (SPNs)
• Related Tasks
• Related Content
Availability Group Listeners
You can provide client connectivity to the database of a given availability group by creating an
availability group listener. An availability group listener is a virtual network name (VNN) to which
clients can connect in order to access a database in a primary or secondary replica of an
AlwaysOn availability group. An availability group listener enables a client to connect to an
availability replica without knowing the name of the physical instance of SQL Server to which the
client is connecting. The client connection string does not need to be modified to connect to
the current location of the current primary replica.
An availability group listener consists of a Domain Name System (DNS) listener name, listener
port designation, and one or more IP addresses. Only the TCP protocol is supported by
availability group listener. The DNS name of the listener must also be unique in the domain and
in NetBIOS. When you create a new availability group listener it becomes a resource in a cluster
with an associated virtual network name (VNN), virtual IP (VIP), and availability group
dependency. A client uses DNS to resolve the VNN into multiple IP addresses and then tries to
connect to each address, until a connection request succeeds or until the connection requests
time out.
If read-only routing is configured for one or more readable secondary replicas, read-intent client
connections to the primary replica are redirected to a readable secondary replica. Also, if the
primary replica goes offline on one instance of SQL Server, and a new primary replica comes
online on another instance of SQL Server, the availability group listener enables clients to
connect to the new primary replica.
For essential information about availability group listeners, see Prerequisites, Restrictions, and
Recommendations for AlwaysOn Client Connectivity (SQL Server).
In This Section:
• Availability Group Listener Configuration
• Selecting an Availability Group Listener Port

 160

Availability Group Listener Configuration
An availability group listener is defined by the following:
• The Virtual Network Name (VNN)
• The listener port (listens for incoming requests against the listener name)
• One or more Virtual IPs (VIPs) that are configured for one or more subnets to which the

availability group can failover
• Configured to use either DHCP or a static IP
For the majority of the common listener configurations, you can create the first availability
group listener simply by using Transact-SQL statements or PowerShell cmdlets. You can
configure an availability group listener to use the Dynamic Host Configuration Protocol (DHCP)
if an availability group resides on a single subnet. DHCP offers an easy setup for an availability
group that does not require disaster recovery to a remote site on a separate subnet.
However in a case where your availability groups extend across subnets in a multi-subnet
domain, an availability group listener must use static IP addresses, not DHCP.

We do not recommend using DHCP in conjunction with an availability group listener in a
production environment. In the event of down time, if the DHCP IP lease expires, it will
take additional time to re-register the new DHCP IP address associated with the listener
DNS name.

Hybrid network configurations and DHCP across subnets are not supported for availability
group listeners. This is because when a failover happens, a dynamic IP might be expired or
released, which jeopardizes overall high availability.
Selecting an Availability Group Listener Port
When configuring an availability group listener, you must designate a port. You can configure
the default port to 1433 in order to allow for simplicity of the client connection strings. If using
1433, you do not need to designate a port number in a connection string. Also, since each
availability group listener will have a separate virtual network name, each availability group
listener configured on a single WSFC can be configured to reference the same default port of
1433.
You can also designate a non-standard listener port; however this means that you will also need
to explicitly specify a target port in your connection string whenever connecting to the
availability group listener. You will also need to open permission on the firewall for the non-
standard port.
If you use the default port of 1433 for availability group listener VNNs, you will still need to
ensure that no other services on the cluster node are using this port; otherwise this would cause
a port conflict.
If one of the instances of SQL Server is already listening on TCP port 1433 via the instance
listener and there are no other services (including additional instances of SQL Server) on the
computer listening on port 1433, this will not cause a port conflict with the availability group

Important

 161

listener. This is because the availability group listener can share the same TCP port inside the
same service process. However multiple instances of SQL Server (side-by-side)should not be
configured to listen on the same port.

Using a Listener to Connect to the Primary Replica
To use an availability group listener to connect to the primary replica for read-write access, the
connection string specifies the availability group listener DNS name. If an availability group
primary replica changes to a new replica, existing connections that use an availability group
listener's network name are disconnected. New connections to the availability group listener are
then directed to the new primary replica. An example of a basic connection string for the
ADO.NET provider (System.Data.SqlClient) is as follows:

Server=tcp: AGListener,1433;Database=MyDB;IntegratedSecurity=SSPI

You can still choose to directly reference the instance of SQL Server name of the primary or
secondary replicas instead of using the availability group listener server name, however if you
choose to do so you will lose the benefit of new connections being directed automatically to the
current primary replica. You will also lose the benefit of read-only routing.

Using a Listener to Connect to a Read-Only Secondary Replica (Read-Only Routing)
Read-only routing refers to the ability of SQL Server to route incoming connections to an
availability group listener to a secondary replica that is configured to allow read-only workloads.
An incoming connection referencing an availability group listener name can automatically be
routed to a read-only replica if the following are true:
• At least one secondary replica is set to read-only access, and each read-only secondary

replica and the primary replica are configured to support read-only routing. For more
information, see To Configure Availability Replicas for Read-Only Routing, later in this
section.

• The connection string references an availability group listener, and the application intent of
the incoming connection is set to read-only (for example, by using the Application
Intent=ReadOnly keyword in the ODBC or OLEDB connection strings or connection
attributes or properties). For more information, see Read-Only Application Intent and Read-
Only Routing, later in this section.

To Configure Availability Replicas for Read-Only Routing
A database administrator must configure the availability replicas as follows:
1. For each availability replica that you want to configure as a readable secondary replica, a

database administrator must configure the following settings, which take effect only under
the secondary role:
• Connection access must be set to "all" or "read only".
• The read-only routing URL must be specified.

 162

2. For each of these replicas, a read-only routing list must be specified for the primary role.
Specify one or more server names as routing targets.

Related Tasks
• Configure Connection Access on an Availability Replica (SQL Server)
• Configure an Availability Group for Read-Only Routing (SQL Server)
Read-Only Application Intent and Read-Only Routing
The application intent connection string property expresses the client application’s request to be
directed either to a read-write or read-only version of an availability group database. To use
read-only routing, a client must use an application intent of read-only in the connection string
when connecting to the availability group listener. Without the read-only application intent,
connections to the availability group listener are directed to the database on the primary replica.
The application intent attribute is stored in the client’s session during login and the instance of
SQL Server will then process this intent and determine what to do according to the
configuration of the availability group and the current read-write state of the target database in
the secondary replica.
An example of a connection string for the ADO.NET provider (System.Data.SqlClient) that
designates read-only application intent is as follows:

Server=tcp:AGListener,1433;Database=AdventureWorks;IntegratedSecurity=SSPI;Ap

plicationIntent=ReadOnly

In this connection string example, the client is attempting to connect to an availability group
listener named AGListener on port 1433 (you may also omit the port if the availability group
listener is listening on 1433). The connection string has the ApplicationIntent property set to
ReadOnly, making this a read-intent connection string. Without this setting, the server would
not have attempted a read-only routing of the connection.
The primary database of the availability group processes the incoming read-only routing request
and attempts to locate an online, read-only replica that is joined to the primary replica and is
configured for read-only routing. The client receives back connection information from the
primary replica server and connects to the identified read-only replica.
Note that the application intent can be sent from a client driver to a down-level instance of SQL
Server. In this case, application intent of read-only is ignored and the connection proceeds as
normal.
You can bypass read-only routing by not setting the application intent connection property to
ReadOnly (when not designated, the default is ReadWrite during login) or by connecting
directly to the primary replica instance of SQL Server instead of using the availability group
listener name. Read-only routing will also not occur if you connect directly to a read-only
replica.
Related Tasks
• SQL Server Native Client Support for High Availability, Disaster Recovery
• Using Connection String Keywords with SQL Server Native Client

http://msdn.microsoft.com/en-us/library/2b06186b-4090-4728-b96b-90d6ebd9f66f(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�

 163

Bypassing Availability Group Listeners
While availability group listeners enable support for failover redirection and read-only routing,
client connections are not required to use them. A client connection can also directly reference
the instance of SQL Server instead of connecting to the availability group listener.
To the instance of SQL Server it is irrelevant whether a connection logs in using the availability
group listener or using another instance endpoint. The instance of SQL Server will verify the
state of the targeted database and either allow or disallow connectivity based on the
configuration of the availability group and the current state of the database on the instance. For
example, if a client application connects directly to a instance of SQL Server port and connects
to a target database hosted in an availability group, and the target database is in primary state
and online, then connectivity will succeed. If the target database is offline or in a transitional
state, connectivity to the database will fail.
Alternatively, while migrating from database mirroring to AlwaysOn Availability Groups,
applications can specify the database mirroring connection string as long as only one secondary
replica exists and it disallows user connections. For more information, see Using Database-
Mirroring Connection Strings with Availability Groups, later in this section.
Using Database-Mirroring Connection Strings with Availability Groups
If an availability group possesses only one secondary replica and is not configured to allow
read-access to the secondary replica, clients can connect to the primary replica by using a
database mirroring connection string. This approach can be useful while migrating an existing
application from database mirroring to an availability group, as long as you limit the availability
group to two availability replicas (a primary replica and one secondary replica). If you add
additional secondary replicas, you will need to create an availability group listener for the
availability group and update your applications to use the availability group listener DNS name.
When using database mirroring connection strings, the client can use either SQL Server Native
Client or .NET Framework Data Provider for SQL Server. The connection string provided by a
client must minimally supply the name of one server instance, the initial partner name, to
identify the server instance that initially hosts the availability replica to which you intend to
connect. Optionally, the connection string can also supply the name of another server instance,
the failover partner name, to identify the server instance that initially hosts the secondary replica
as the failover partner name.
For more information about database mirroring connection strings, see Connect Clients to a
Database Mirroring Session (SQL Server).

Behavior of Client Connections on Failover
When an availability group failover occurs, existing persistent connections to the availability
group are terminated and the client must establish a new connection in order to continue
working with the same primary database or read-only secondary database. While a failover is

http://msdn.microsoft.com/en-us/library/0d5d2742-2614-43de-9ab9-864addb6299b(SQL.110)�
http://msdn.microsoft.com/en-us/library/0d5d2742-2614-43de-9ab9-864addb6299b(SQL.110)�

 164

occurring on the server side, connectivity to the availability group may fail, forcing the client
application to retry connecting until the primary is brought fully back online.
If the availability group comes back online during a client application’s connection attempt but
before the connect timeout period, the client driver may successfully connect during one of its
internal retry attempts and no error will be surfaced to the application in this case.

Supporting Availability Group Multi-Subnet Failovers
If you are using client libraries that support the MultiSubnetFailover connection option in the
connection string, you can optimize availability group failover to a different subnet by setting
MultiSubnetFailover to “True” or "Yes", depending on the syntax of the provider you are using.

We recommend this setting for both single and multi-subnet connections to availability
groups listeners and to SQL Server Failover Cluster Instance names. Enabling this option
adds additional optimizations, even for single-subnet scenarios.

The MultiSubnetFailover connection option only works with the TCP network protocol and is
only supported when connecting to an availability group listener and for any virtual network
name connecting to SQL Server 2012.
An example of a for the ADO.NET provider (System.Data.SqlClient) connection string that
enables multi-subnet failover is as follows:

Server=tcp:AGListener,1433;Database=AdventureWorks;IntegratedSecurity=SSPI;

MultiSubnetFailover=True

The MultiSubnetFailover connection option should be set to True even if the availability group
only spans a single subnet. This allows you to preconfigure new clients to support future
spanning of subnets without any need for future client connection string changes and also
optimizes failover performance for single subnet failovers. While the MultiSubnetFailover
connection option is not required, it does provide the benefit of a faster subnet failover. This is
because the client driver will attempt to open up a TCP socket for each IP address in parallel
associated with the availability group. The client driver will wait for the first IP to respond with
success and once it does, will then use it for the connection.

Availability Group Listeners and SSL Certificates
When connecting to an availability group listener, if the participating instances of SQL Server
use SSL certificates in conjunction with session encryption, the connecting client driver will need
to support the Subject Alternate Name in the SSL certificate in order to force encryption. SQL
Server driver support for certificate Subject Alternative Name is planned for ADO.NET (SqlClient),
Microsoft JDBC and SQL Native Client (SNAC).
A X.509 certificate must be configured for each participating server node in the failover cluster
with a list of all availability group listeners set in the Subject Alternate Name of the certificate.

Note

 165

For example, if the WSFC has three availability group listeners with the names
AG1_listener.Adventure-Works.com, AG2_listener.Adventure-Works.com, and
AG3_listener.Adventure-Works.com, the Subject Alternative Name for the certificate should
be set as follows:

CN = ServerFQDN

SAN = ServerFQDN,AG1_listener.Adventure-Works.com, AG2_listener.Adventure-

Works.com, AG3_listener.Adventure-Works.com

Availability Group Listeners and Server Principal Names (SPNs)
A Server Principal Name (SPN) must be configured in Active Directory by a domain administrator
for each availability group listener name in order to enable Kerberos for the client connection to
the availability group listener. When registering the SPN, you must use the service account of
the server instance that hosts the availability replica . For the SPN to work across all replicas, the
same service account must be used for all instances in the WSFC cluster that hosts the
availability group.
Use the setspn Windows command line tool to configure the SPN. For example to configure an
SPN for an availability group named AG1listener.Adventure-Works.com hosted on a set of
instances of SQL Server all configured to run under the domain account corp/svclogin2:

setspn -A MSSQLSvc/AG1listener.Adventure-Works.com:1433 corp/svclogin2

For more information about manual registration of a SPN for SQL Server, see Register a Service
Principal Name for Kerberos Connections.

Related Tasks
• Prerequisites, Restrictions, and Recommendations for AlwaysOn Client Connectivity (SQL

Server)
• Create or Configure an Availability Group Listener (SQL Server)
• View Availability Group Listener Properties (SQL Server)
• Remove an Availability Group Listener (SQL Server)
• Configure Connection Access on an Availability Replica (SQL Server)
• Configure Read-Only Routing on an Availability Group (SQL Server)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• Introduction to the Availability Group Listener (a SQL Server AlwaysOn team blog)
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also

http://msdn.microsoft.com/en-us/library/e38d5ce4-e538-4ab9-be67-7046e0d9504e(SQL.110)�
http://msdn.microsoft.com/en-us/library/e38d5ce4-e538-4ab9-be67-7046e0d9504e(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/archive/2012/01/16/introduction-to-the-availability-group-listener.aspx�
http://blogs.msdn.com/b/sqlalwayson/�
http://www.AG1_listener.Adventure-Works.com
http://www.AG3_listener.Adventure-Works.com
http://www.AG2_listener.Adventure-Works.com
http://www.AG1_listener.Adventure-Works.com
http://www.AG2_listener.Adventure-Works.com
http://www.AG3_listener.Adventure-Works.com
http://www.AG1listener.Adventure-Works.com
http://www.MSSQLSvc/AG1listener.Adventure-Works.com:1433corp/svclogin2
http://www.AG2_listener.Adventure-Works.com

 166

Overview of AlwaysOn Availability Groups
Prerequisites, Restrictions, and Recommendations for AlwaysOn Client Connectivity (SQL Server)
Connection Access on Availability Replicas (SQL Server)
Readable Secondary Replicas
Connect Clients to a Database Mirroring Session (SQL Server)

Prerequisites, Restrictions, and Recommendations for AlwaysOn Client
Connectivity
This topic describes considerations for client connectivity to AlwaysOn Availability Groups,
including prerequisites, restrictions, and recommendations for client configurations and settings.
In this Topic:
• Limitations and Recommendations
• Windows Hotfixes that Support Availability Group Listeners
• SQL Server Instance Prerequisites
• Troubleshoot Failure to Create an Availability Group Listener Because of Active Directory

Quotas
• Permissions
• Related Tasks
• Related Content
Limitations and Recommendations
• Availability group listeners support only the TCP/IP protocol. To connect to an

availability group listener, a client must use a TCP connection string.
• To avoid potential NetBIOS conflicts, we recommend that you use a unique 15-

character prefix for every availability group listener name. If two WSFC clusters are
controlled by the same Active Directory and you try to create availability group listeners in
both clusters using names with more than 15 characters and with an identical 15 character
prefix, you will get an error reporting that the Virtual Network Name resource could not be
brought online.
For information about prefix naming rules for DNS names, see Assigning Domain Names, in
the Windows Server 2008 and Windows Server 2008 R2 documentation.

Windows Hotfixes that Support Availability Group Listeners
Depending on your cluster topology, several additional Windows Server 2008 Service Pack 2
(SP2) or Windows Server 2008 R2 hotfixes might be applicable for supporting connections to
availability group listeners. The following table identifies these hotfixes. The hotfixes can be
installed in any order.

Note

http://msdn.microsoft.com/en-us/library/0d5d2742-2614-43de-9ab9-864addb6299b(SQL.110)�
http://technet.microsoft.com/en-us/library/cc731265(WS.10).aspx�

 167

For information about all the hotfixes that support AlwaysOn Availability Groups,
see Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups
(SQL Server).

 Applies to
Win 2008
SP2

Applies to
Win 2008 R2
SP1

To Support… Hotfix Link

 √ √ Internet
Protocol
Security (IPsec)

If your
environment uses
IPsec connections,
you could
experience a long
time delay (about
two or three
minutes) when a
client computer
reestablishes the
IPsec connection
to a virtual
network name (in
this context, to
connect to the
availability group
listener). If you
use IPsec
connections, we
recommend that
you review the
specific scenarios
detailed in
Knowledge Base
article (KB
980915).

KB 980915: A long
time delay occurs
when you
reconnect an IPSec
connection from a
computer that is
running Windows
Server 2003,
Windows Vista,
Windows Server
2008, Windows 7,
or Windows Server
2008 R2

 √ √ IPv6 If your Windows
Server topology
uses IP version 6
(IPv6), the WSFC
Cluster service
requires about 30
seconds to fail
over the IPv6 IP

• KB 2578103
(Windows
Server
2008): The
Cluster service
takes about 30
seconds to fail
over IPv6 IP

http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/2578103�
http://support.microsoft.com/kb/2578103�
http://support.microsoft.com/kb/2578103�
http://support.microsoft.com/kb/2578103�
http://support.microsoft.com/kb/2578103�

 168

 Applies to
Win 2008
SP2

Applies to
Win 2008 R2
SP1

To Support… Hotfix Link

address. This
causes clients to
wait for about 30
seconds to
reconnect to the
IPv6 IP address.
If you use IPv6, we
recommend that
you review the
specific scenarios
detailed in
Knowledge Base
article 2578103 or
2578113,
depending on
your Windows
Server operating
system.

addresses in
Windows
Server 2008

• KB 2578113
(Windows
Server 2008
R2): Windows
Server 2008
R2:

The
Cluster service
takes about 30
seconds to fail
over IPv6 IP
addresses in
Windows
Server 2008 R2

 √ √ No Router
Between
cluster and
application
server

If no router exists
between the
failover cluster
and the
application server,
the Cluster service
fails over
network-related
resources slowly.
This delays client
reconnections
after an
availability group
fails over. In the
absence of a
router, we
recommend that
you review the
specific scenarios
detailed in

KB 2582281: Slow
failover operation
if no router exists
between the
cluster and an
application server

http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2582281�
http://support.microsoft.com/kb/2582281�
http://support.microsoft.com/kb/2582281�
http://support.microsoft.com/kb/2582281�
http://support.microsoft.com/kb/2582281�
http://support.microsoft.com/kb/2582281�
http://support.microsoft.com/kb/2578103�

 169

 Applies to
Win 2008
SP2

Applies to
Win 2008 R2
SP1

To Support… Hotfix Link

Knowledge Base
article 2582281
and install the
hotfix, if
applicable to your
environment.

 √ Faster failover
to local replicas

If a WSFC node is
running Windows
Server 2008 R2
Service Pack 1
(SP1), ensure that
the hotfix
described in
Knowledge Base
article 2687741 is
installed.
This hotfix
improves the
performance of
AlwaysOn
Availability
Groups failover to
local replicas.

KB 2687741: A
hotfix that
improves the
performance of the
"AlwaysOn
Availability Group"
feature in SQL
Server 2012 is
available for
Windows Server
2008 R2

Server Instance Prerequisites for Supporting Client Connections to Availability
Group Listeners (Server Instance)

For information about all the server-instance prerequisites and requirements for using
AlwaysOn Availability Groups, see Prerequisites, Restrictions, and Recommendations for
AlwaysOn Availability Groups (SQL Server).

 To Support… Prerequisite Links

 Keberos If you want an availability Register a Service Principal

Note

http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://support.microsoft.com/KB/2687741�
http://msdn.microsoft.com/en-us/library/e38d5ce4-e538-4ab9-be67-7046e0d9504e(SQL.110)�

 170

 To Support… Prerequisite Links

group to work with
Kerberos:
• All server instances that

host an availability
replica for the
availability group must
use the same SQL
Server service account.

• The domain
administrator needs to
manually register a
Service Principal Name
(SPN) with Active
Directory on the SQL
Server service account
for the virtual network
name (VNN) of the
availability group
listener. If the SPN is
registered on an
account other than the
SQL Server service
account, authentication
will fail.

Important
If you change the
SQL Server service
account, the
domain
administrator will
need to manually
re-register the SPN.

Name for Kerberos
Connections
Brief explanation:
Kerberos and SPNs enforce
mutual authentication. The
SPN maps to the Windows
account that starts the SQL
Server services. If the SPN
is not registered correctly
or if it fails, the Windows
security layer cannot
determine the account
associated with the SPN,
and Kerberos
authentication cannot be
used.

Note
NTLM does not
have this
requirement.

Troubleshoot Failure to Create an Availability Group Listener Because of Active
Directory Quotas
The creation of a new availability group listener may fail upon creation because you have
reached an Active Directory quota for the participating cluster node machine account. For more
information, see the following articles:

http://msdn.microsoft.com/en-us/library/e38d5ce4-e538-4ab9-be67-7046e0d9504e(SQL.110)�

 171

• How to Troubleshoot the Cluster Service Account When It Modifies Computer Objects
• Active Directory Quotas

Permissions
For information about the permissions required for creating or modifying an availability group
listener, see Create or Configure an Availability Group Listener (SQL Server).
Related Tasks
• Creation and Configuration of Availability Groups (SQL Server)
• Create or Configure an Availability Group Listener (SQL Server)
• View Availability Group Listener Properties (SQL Server)
• Remove an Availability Group Listener (SQL Server)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog
• Failover Cluster Step-by-Step Guide: Configuring Accounts in Active Directory
• A long time delay occurs when you reconnect an IPSec connection from a computer that is

running Windows Server 2003, Windows Vista, Windows Server 2008, Windows 7, or
Windows Server 2008 R2

• The Cluster service takes about 30 seconds to fail over IPv6 IP addresses in Windows Server
2008 R2

• Slow failover operation if no router exists between the cluster and an application server
• How to troubleshoot the Cluster service account when it modifies computer objects
• Active Directory Quotas
• Assigning Domain Names

See Also
Overview of AlwaysOn Availability Groups (SQL Server)
Failover Clustering and AlwaysOn Availability Groups (SQL Server)
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)
Client Connectivity and Application Failover (AlwaysOn Availability Groups)
Client Connection Access to Availability Replicas (SQL Server)

http://support.microsoft.com/kb/307532�
http://technet.microsoft.com/en-us/library/cc904295(WS.10).aspx�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�
http://technet.microsoft.com/en-us/library/cc731002(WS.10).aspx�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/980915�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2578113�
http://support.microsoft.com/kb/2582281�
http://support.microsoft.com/kb/307532�
http://technet.microsoft.com/en-us/library/cc904295(WS.10).aspx�
http://technet.microsoft.com/en-us/library/cc731265(WS.10).aspx�

 172

Create or Configure an Availability Group Listener
This topic describes how to create or configure a single availability group listener for an
AlwaysOn availability group by using SQL Server Management Studio, Transact-SQL, or
PowerShell in SQL Server 2012.
• Before you begin:

Does a Listener Exist for this Availability Group Already?
Limitations and Restrictions
Recommendations
Prerequisites
Requirements for the DNS Name of an Availability Group Listener
Windows Permissions
SQL Server Permissions

• To create or configure an availability group listener, using:
SQL Server Management Studio
Transact-SQL
PowerShell

• Follow Up:
After Creating an Availability Group Listener
To Create An Additional Listener for an Availability Group (Optional)

Before You Begin
Does a Listener Exist for this Availability Group Already?
To determine whether a listener already exists for the availability group
• View Availability Group Listener Properties (SQL Server)
Limitations and Restrictions
• You can create only one listener per availability group through SQL Server. Typically, each

availability group requires only one listener. However, some customer scenarios require
multiple listeners for one availability group. After creating a listener through SQL Server,
you can use Windows PowerShell for failover clusters or the WSFC Failover Cluster Manager
to create additional listeners. For more information, see To Create An Additional Listener for
an Availability Group (Optional), later in this topic.

Recommendations
Using a static IP address is recommended, although not required, for multiple subnet
configurations.
Prerequisites
• You must be connected to the server instance that hosts the primary replica.
• If you are setting up an availability group listener across multiple subnets and plan to use

static IP addresses, you need to get the static IP address of every subnet that hosts an

 173

availability replica for the availability group for which you are creating the listener. Usually,
you will need to ask your network administrators for the static IP addresses.

Before you create your first listener, we strongly recommend that you read Prerequisites,
Restrictions, and Recommendations for AlwaysOn Client Connectivity (SQL Server).

Requirements for the DNS Name of an Availability Group Listener
Each availability group listener requires a DNS host name that is unique in the domain and in
NetBIOS. The DNS name is a string value. This name can contain only alphanumeric characters,
dashes (-), and hyphens (_), in any order. DNS host names are case insensitive. The maximum
length is 63 characters, however, in SQL Server Management Studio, the maximum length you
can specify is 15 characters.
We recommend that you specify a meaningful string. For example, for an availability group
named AG1, a meaningful DNS host name would be ag1-listener.

NetBIOS recognizes only the first 15 chars in the dns_name. If you have two WSFC
clusters that are controlled by the same Active Directory and you try to create availability
group listeners in both of clusters using names with more than 15 characters and an
identical 15 character prefix, you will get an error reporting that the Virtual Network
Name resource could not be brought online. For information about prefix naming rules
for DNS names, see Assigning Domain Names.

Windows Permissions

Permissions Link

The cluster object name (CNO) of WSFC
cluster that is hosting the availability group
must have Create Computer objects
permission:
• If the Create Cluster wizard created this

WSFC cluster while running in a domain
user account with Create Computer
objects permission, cluster object name
(CNO) of this WSFC cluster already has
this permission.

• If the account that ran the Create
Cluster wizard did not have Create
Computer objects permission, give the
WSFC cluster name to your domain
administrators and ask them to grant
this permission to the cluster object

• Steps for configuring the account for the
person who installs the cluster
in Failover Cluster Step-by-Step Guide:
Configuring Accounts in Active
Directory

• Steps for prestaging the cluster name
account in Failover Cluster Step-by-Step
Guide: Configuring Accounts in Active
Directory

Important

Important

http://technet.microsoft.com/en-us/library/cc731265(WS.10).aspx�
http://technet.microsoft.com/en-us/library/cc731002(WS.10).aspx#BKMK_steps_installer�
http://technet.microsoft.com/en-us/library/cc731002(WS.10).aspx#BKMK_steps_installer�
http://technet.microsoft.com/en-us/library/cc731002(WS.10).aspx#BKMK_steps_installer�
http://technet.microsoft.com/en-us/library/cc731002(WS.10).aspx#BKMK_steps_precreating�
http://technet.microsoft.com/en-us/library/cc731002(WS.10).aspx#BKMK_steps_precreating�
http://technet.microsoft.com/en-us/library/cc731002(WS.10).aspx#BKMK_steps_precreating�

 174

Permissions Link

name (CNO) of the WSFC cluster.

Note
In some organizations, the
security policy prohibits
granting Create Computer
objects permission to individual
user accounts.

If your organization requires that you
prestage the computer account for a
listener virtual network name, you will need
membership in the Account Operator
group or your domain administrator's
assistance.

Tip
Generally, it is simplest not to
prestage the computer account for
a listener virtual network name. If
you can, let the account to be
created and configured
automatically when you run the
WSFC High Availability wizard.

Steps for prestaging an account for a
clustered service or application in Failover
Cluster Step-by-Step Guide: Configuring
Accounts in Active Directory.

SQL Server Permissions

Task Permissions

To create an availability group listener Requires membership in the sysadmin
fixed server role and either CREATE
AVAILABILITY GROUP server permission,
ALTER ANY AVAILABILITY GROUP
permission, or CONTROL SERVER
permission.

To modify an existing availability group
listener

Requires ALTER AVAILABILITY GROUP
permission on the availability group,
CONTROL AVAILABILITY GROUP
permission, ALTER ANY AVAILABILITY
GROUP permission, or CONTROL SERVER

http://technet.microsoft.com/en-us/library/cc731002(WS.10).aspx#BKMK_steps_precreating2�
http://technet.microsoft.com/en-us/library/cc731002(WS.10).aspx#BKMK_steps_precreating2�
http://technet.microsoft.com/en-us/library/cc731002(WS.10).aspx#BKMK_steps_precreating2�

 175

Task Permissions

permission.

Using SQL Server Management Studio

The New Availability Group wizard supports creation of the listener for a new availability
group.

To create or configure an availability group listener
1. In Object Explorer, connect to the server instance that hosts the primary replica of the

availability group, and click the server name to expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Click the availability group whose listener you want to configure, and choose one of the

following alternatives:
• To create a listener, right-click the Availability group Listeners node, and select the

New Listener command. This opens the New Availability Group Listener dialog box.
For more information, see Add Availability Group Listener (Dialog Box), later in this topic.

• To change the port number of an existing listener, expand the Availability group
Listeners node, right-click the listener, and select the Properties command. Enter the
new port number into the Port field, and click OK.

New Availability Group Listener (Dialog Box)
Listener DNS Name

Specifies the DNS host name of the availability group listener. The DNS name is a string
must be unique in the domain and in NetBIOS. This name can contain only alphanumeric
characters, dashes (-), and hyphens (_), in any order. DNS host names are case insensitive. The
maximum length is 15 characters.

For more information, see Requirements for the DNS Name of an Availability
Group Listener, earlier in this topic.

Port

The TPC port used by this listener.

Network Mode

Indicates the TCP protocol used by the listener, one of:

DHCP

The listener will us a dynamic IP address that is assigned by a server running the Dynamic
Host Configuration Protocol (DHCP). DHCP is limited to a single subnet.

Tip

 176

Important
We do not recommend DHCP in production environment. If there is a down time and the DHCP IP
lease expires, extra time is required to register the new DHCP network IP address that is associated
with the listener DNS name and impact the client connectivity. However, DHCP is good for setting
up your development and testing environment to verify basic functions of availability groups and
for integration with your applications.

Static IP

The listener will use one or more static IP addresses. Additional IP addresses are optional.
To create an availability group listener across multiple subnets, for each subnet you must
specify a static IP address in the listener configuration. Contact your network administrator
to get these static IP addresses.

If you select Static IP a subnet grid appears below the Network Mode field. This grid
displays information about each subnet that can be accessed by this availability group
listener. This grid is empty until you add a static IP address by clicking Add.

The columns are as follows:

Subnet

Displays the identifier of each subnet that you add to the availability group listener.

IP Address

Displays the IP address of a given subnet. For a given subnet, the IP address is either an
IPv4 address or an IPv6 address.

Add

Click to add to add a static IP address to a selected subnet or to another subnet for this
listener. This opens the Add IP Address dialog box. For more information, see the Add IP
Address Dialog Box (SQL Server Management Studio) help topic.

Remove

Click to remove the selected subnet from this listener.

OK

Click to create the specified availability group listener.

Using Transact-SQL
To create or configure an availability group listener
1. Connect to the server instance that hosts the primary replica.
2. Use the LISTENER option of the CREATE AVAILABILITY GROUP statement or the ADD

LISTENER option of the ALTER AVAILABILITY GROUP statement.
The following example adds an availability group listener to an existing availability group
named MyAg2. A unique DNS name, MyAg2ListenerIvP6, is specified for this listener. The
two replicas are on different subnets, so , as recommended, the listener uses static IP

http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 177

addresses. For each of the two availability replicas, the WITH IP clause specifies a static IP
address, 2001:4898:f0:f00f::cf3c and 2001:4898:e0:f213::4ce2, which use the IPv6
format. This example also specifies uses the optional PORT argument to specify port 60173
as the listener port.

ALTER AVAILABILITY GROUP MyAg2

 ADD LISTENER ‘MyAg2ListenerIvP6’ (WITH IP (

('2001:db88:f0:f00f::cf3c'),('2001:4898:e0:f213::4ce2')) , PORT =

60173);

GO

Using PowerShell
To create or configure an availability group listener
1. Change directory (cd) to the server instance that hosts the primary replica.
2. To create or modify an availability group listener use one of the following cmdlets:

New-SqlAvailabilityGroupListener

Creates a new availability group listener and attaches it to an existing availability group.
For example, the following New-SqlAvailabilityGroupListener command creates an
availability group listener named MyListener for the availability group MyAg. This listener
will use the IPv4 address passed to the -StaticIp parameter as its virtual IP address.

New-SqlAvailabilityGroupListener -Name MyListener `

-StaticIp '192.168.3.1/255.255.252.0' `

-Path SQLSERVER:\Sql\Computer\Instance\AvailabilityGroups\MyAg

Set-SqlAvailabilityGroupListener

Modifies the port setting on an existing availability group listener.
For example, the following Set-SqlAvailabilityGroupListener command sets the port
number for the availability group listener named MyListener to 1535. This port is used to
listen for connections to the listener.

Set-SqlAvailabilityGroupListener -Port 1535 `

-Path

SQLSERVER:\Sql\PrimaryServer\InstanceName\AvailabilityGroups\MyAg\AGListe

ners\MyListener

Add-SqlAGListenerstaticIp

Adds a static IP address to an existing availability group listener configuration. The IP
address can be an IPv4 address with subnet, or an IPv6 address.

 178

For example, the following Add-SqlAGListenerstaticIp command adds a static IPv4
address to the availability group listener MyListener on the availability group MyAg. This
IPv6 address serves as the virtual IP address of the listener on the subnet 255.255.252.0.
If the availability group spans multiple subnets, you should add a static IP address for each
subnet to the listener.

$path =

"SQLSERVER:\SQL\PrimaryServer\InstanceName\AvailabilityGroups\MyAg\AGList

eners\ MyListener" `

Add-SqlAGListenerstaticIp -Path $path `

-StaticIp "2001:0db8:85a3:0000:0000:8a2e:0370:7334"

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

Follow Up: After Creating an Availability Group Listener
Recommendations: After you define an availability group listener, we strongly recommend
that you do the following:
• Ask your network administrator to reserve the listener's IP address for its exclusive use.
• Give the listener's DNS host name to application developers to use in connection strings

when requesting client connections to this availability group.
Validate a Configuration Wizard issues an incorrect warning: If you run the WSFC Validate a
Configuration Wizard when an availability group listener exists on the WSFC cluster, the wizard
generates the following incorrect warning message:
"The RegisterAllProviderIP property for network name 'Name:<network_name>' is set to 1 For
the current cluster configuration this value should be set to 0."
Please ignore this message.

To Create An Additional Listener for an Availability Group (Optional)
After you create one listener through SQL Server, you can add an additional listener, as follows:
1. Create the listener using either of the following tools:

• Using WSFC Failover Cluster Manager:
i. Add a client access point and configure the IP address.
ii. Bring the listener online.
iii. Add a dependency to the WSFC availability group resource.

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 179

For information about the dialog boxes and tabs of the Failover Cluster Manager,
see User Interface: The Failover Cluster Manager Snap-In.

• Using Windows PowerShell for failover clusters:
i. Use Add-ClusterResource to create a network name and the IP address resources.
ii. Use Start-ClusterResource to start the network name resource.
iii. Use Add-ClusterResourceDependency to set the dependency between the network

name and the existing SQL Server Availability Group resource.
For information about using Windows PowerShell for failover clusters, see Overview of
Server Manager Commands.

2. Start SQL Server listening on the new listener. After creating the additional listener, connect
to the instance of SQL Server that hosts the primary replica of the availability group and use
SQL Server Management Studio, Transact-SQL, or PowerShell to modify the listener port.

For more information, see How to create multiple listeners for same availability group (a SQL
Server AlwaysOn team blog).
Related Tasks
• View Availability Group Listener Properties (SQL Server)
• Remove an Availability Group Listener (SQL Server)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn team blog

See Also
AlwaysOn Availability Groups
Client Connectivity and Application Failover (AlwaysOn Availability Groups)

Add IP Address Dialog Box (SQL Server Management Studio)
This F1 help topic describes the options of the Add IP Address dialog box. This dialog box
accessed from the New Availability Group Listener dialog box and the Listener tab of the
Specify Replicas page of the New Availability Group Wizard or the Add Replica to Availability
Group Wizard of SQL Server 2012.
Prerequisites
Before you begin to add subnets to an availability group listener, ensure that know the IP
address for each subnet and, for an IPv4 address, the subnet mask.
Add IP Address Options
Subnet

Use the drop list to select an address for the subnet that you are adding to the availability
group listener. By default a subnet possesses both an IPv4 address and an IPv6 address. The

http://technet.microsoft.com/en-us/library/cc772502.aspx�
http://technet.microsoft.com/en-us/library/ee460983.aspx�
http://technet.microsoft.com/en-us/library/ee461056.aspx�
http://technet.microsoft.com/en-us/library/ee461014.aspx�
http://technet.microsoft.com/en-us/library/cc732757.aspx#BKMK_wps�
http://technet.microsoft.com/en-us/library/cc732757.aspx#BKMK_wps�
http://blogs.msdn.com/b/sqlalwayson/archive/2012/02/03/how-to-create-multiple-listeners-for-same-availability-group-goden-yao.aspx�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 180

first time you use the Add IP Address dialog, the Subnet drop list displays both subnet
addresses for each subnet that hosts a replica for the availability group. To add a given
subnet to the listener, select one of its subnet addresses.

After you complete the Add IP Address dialog box and click OK to add a selected subnet
address to the listener, the Subnet drop list filters out that subnet address. All unselected
subnet addresses remain on the drop list. Be sure that you add one and only one subnet
address per subnet to the listener, or listener creation will fail.

Addresses

Use this field to enter a static IP address for the selected subnet address. Contact your
network administrator for this IP address. Ensure that you enter a valid address for the
selected subnet address, or listener creation will fail.

IPv4 Address

If you selected the IPv4 subnet address of a subnet, enter a valid IPv4 static address here.

Subnet Mask

For an IPv4 address, this read-only field displays the subnet mask of the selected subnet.

IPv6 Address

If you selected the IPv6 subnet address of a subnet, enter a valid IPv6 static address here.

OK

Click to create add the subnet whose address you selected, along with the static IP address
that you specified. A row containing these values will be added to the subnet grid of the New
Availability Group Listener or Specify Replicas dialog box.

Important
The Add IP Address dialog does not verify the IP address. Also the dialog does not prevent you from
adding the second subnet address for a subnet that you have already added to the availability group
listener.

Cancel

Click to cancel your selections, and return to the New Availability Group Listener dialog
box or Listener tab without adding a static IP address for any subnet.

Related Tasks
• Create or Configure an Availability Group Listener (SQL Server)
• Use the New Availability Group Wizard
• Use the Add Replica to Availability Group Wizard

See Also
AlwaysOn Availability Groups

 181

Client Connectivity and Application Failover (AlwaysOn Availability Groups)
Prerequisites, Restrictions, and Recommendations for AlwaysOn Client Connectivity (SQL Server)

Configure Read-Only Routing for an Availability Group
To configure an AlwaysOn availability group to support read-only routing in SQL Server 2012,
you can use either Transact-SQL or PowerShell. Read-only routing refers to the ability of SQL
Server to route qualifying read-only connection requests to an available AlwaysOn readable
secondary replica (that is, a replica that is configured to allow read-only workloads when
running under the secondary role). To support read-only routing, the availability group must
possess an availability group listener. Read-only clients must direct their connection requests to
this listener, and the client's connection strings must specify the application intent as "read-
only." That is, they must be read-intent connection requests.

For information about how to configure a readable secondary replica, see Configure
Read-Only Access on an Availability Replica (SQL Server).

• Before you begin:
Prerequisites
What Replica Properties Do you Need to Configure to Support Read-Only Routing?
Security

• To Configure read-only routing, using:
Transact-SQL
PowerShell

Configuring read-only routing is not supported by SQL Server Management Studio.
• Follow Up: After Configuring Read-Only Routing
• Related Tasks
• Related Content
Before You Begin
Prerequisites
• The availability group must possess an availability group listener. For more information,

see Create or Configure an Availability Group Listener.
• One or more availability replicas must be configured to accept read-only in the secondary

role (that is, to be readable secondary replicas). For more information, see Configure
Connection Access on an Availability Replica (SQL Server).

• You must be connected to the server instance that hosts the current primary replica.
What Replica Properties Do you Need to Configure to Support Read-Only
Routing?

Note

Note

 182

• For each readable secondary replica that is to support read-only routing, you need to specify
a read-only routing URL. This URL takes effect only when the local replica is running under
the secondary role. The read-only routing URL must be specified on a replica-by-replica
basis, as needed. Each read-only routing URL is used for routing read-intent connection
requests to a specific readable secondary replica. Typically, every readable secondary replica
is assigned a read-only routing URL.

• For each availability replica that you want to support read-only routing when it is the
primary replica, you need to specify a read-only routing list. A given read-only routing list
takes effect only when the local replica is running under the primary role. This list must be
specified on a replica-by-replica basis, as needed. Typically, each read-only routing list would
contain every read-only routing URL, with the URL of the local replica at the end of the list.

Read-intent connection requests are routed to the first available readable secondary
on the read-only routing list of the current primary replica. There is no load
balancing.

For information about availability group listeners and more information about read-only
routing, see Availability Group Listeners, Client Connectivity, and Application Failover
(AlwaysOn Availability Groups).

Security
Permissions

Task Permissions

To configure replicas when creating an
availability group

Requires membership in the sysadmin
fixed server role and either CREATE
AVAILABILITY GROUP server permission,
ALTER ANY AVAILABILITY GROUP
permission, or CONTROL SERVER
permission.

To modify an availability replica Requires ALTER AVAILABILITY GROUP
permission on the availability group,
CONTROL AVAILABILITY GROUP
permission, ALTER ANY AVAILABILITY
GROUP permission, or CONTROL SERVER
permission.

Using Transact-SQL

Note

Note

 183

To Configure read-only routing

For a code example, see Example (Transact-SQL), later in this section.
1. Connect to the server instance that hosts the primary replica.
2. If you are specifying a replica for a new availability group, use the CREATE AVAILABILITY

GROUP Transact-SQL statement. If you are adding or modifying a replica for an existing
availability group, use the ALTER AVAILABILITY GROUP Transact-SQL statement.
• To configure read-only routing for the secondary role, in the ADD REPLICA or MODIFY

REPLICA WITH clause, specify the SECONDARY_ROLE option, as follows:
SECONDARY_ROLE (READ_ONLY_ROUTING_URL = 'TCP://system-address:port')
The parameters of the read-only routing URL are as follows:
system-address

Is a string, such as a system name, a fully qualified domain name, or an IP address, that
unambiguously identifies the destination computer system.

port

Is a port number that is used by the Database Engine of the SQL Server instance.

For example: SECONDARY_ROLE (READ_ONLY_ROUTING_URL =
N'TCP://COMPUTER01.contoso.com:1433')
In a MODIFY REPLICA clause the ALLOW_CONNECTIONS is optional if the replica is
already configured to allow read-only connections.

• To configure read-only routing for the primary role, in the ADD REPLICA or MODIFY
REPLICA WITH clause, specify the PRIMARY_ROLE option, as follows:
PRIMARY_ROLE (READ_ONLY_ROUTING_LIST = (‘server’ [,...n]))
where, server identifies a server instance that hosts a read-only secondary replica in the
availability group.
For example: PRIMARY_ROLE (READ_ONLY_ROUTING_LIST=('Server1','Server2'))

You must set the read-only routing URL before configuring the read-only routing
list.

Example (Transact-SQL)
The following example modifies two availability replicas of an existing availability group, AG1 to
support read-only routing if one of these replicas currently owns the primary role. To identify
the server instances that host the availability replica, this example specifies the instance names—
COMPUTER01 and COMPUTER02.

ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

Note

Note

http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�
www.N'TCP://COMPUTER01.contoso.com:1433

 184

N'COMPUTER01' WITH

(SECONDARY_ROLE (ALLOW_CONNECTIONS = READ_ONLY));

ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

N'COMPUTER01' WITH

(SECONDARY_ROLE (READ_ONLY_ROUTING_URL =

N'TCP://COMPUTER01.contoso.com:1433'));

ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

N'COMPUTER02' WITH

(SECONDARY_ROLE (ALLOW_CONNECTIONS = READ_ONLY));

ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

N'COMPUTER02' WITH

(SECONDARY_ROLE (READ_ONLY_ROUTING_URL =

N'TCP://COMPUTER02.contoso.com:1433'));

ALTER AVAILABILITY GROUP [AG1]

MODIFY REPLICA ON

N'COMPUTER01' WITH

(PRIMARY_ROLE (READ_ONLY_ROUTING_LIST=('COMPUTER02','COMPUTER01')));

ALTER AVAILABILITY GROUP [AG1]

MODIFY REPLICA ON

N'COMPUTER02' WITH

(PRIMARY_ROLE (READ_ONLY_ROUTING_LIST=('COMPUTER01','COMPUTER02')));

GO

Using PowerShell
To Configure read-only routing

For a code example, see Example (PowerShell), later in this section.
1. Set default (cd) to the server instance that hosts the primary replica.

Note

www.N'TCP://COMPUTER01.contoso.com:1433
www.N'TCP://COMPUTER02.contoso.com:1433

 185

2. When adding an availability replica to an availability group, use the New-
SqlAvailabilityReplica cmdlet. When modifying an existing availability replica, use the Set-
SqlAvailabilityReplica cmdlet. The relevant parameters are as follows:
• To configure read-only routing for the secondary role, specify the

ReadonlyRoutingConnectionUrl "url" parameter.
where, url is the connectivity fully-qualified domain name (FQDN) and port to use when
routing to the replica for read-only connections. For example: -
ReadonlyRoutingConnectionUrl "TCP://DBSERVER8.manufacturing.Adventure-
Works.com:7024"

• To configure connection access for the primary role, specify ReadonlyRoutingList
"server" [,...n], where server identifies a server instance that hosts a read-only secondary
replica in the availability group. For example: -ReadOnlyRoutingList
"SecondaryServer","PrimaryServer"

You must set the read-only routing URL of a replica before configuring its read-
only routing list.

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see SQL Server PowerShell Help.

To set up and use the SQL Server PowerShell provider
• Using the SQL Server PowerShell Provider
• SQL Server PowerShell Help
Example (PowerShell)
The following example configures the primary replica and one secondary replica in an
availability group for read-only routing. First, the example assigns a read-only routing URL to
each replica. Then it sets the read-only routing list on the primary replica. Connections with the
"ReadOnly" property set in the connection string will be redirected to the secondary replica. If
this secondary replica is not readable (as determined by the ConnectionModeInSecondaryRole
setting), the connection will be directed back to the primary replica.

Set-Location SQLSERVER:\SQL\PrimaryServer\default\AvailabilityGroups\MyAg

$primaryReplica = Get-Item "AvailabilityReplicas\PrimaryServer"

$secondaryReplica = Get-Item "AvailabilityReplicas\SecondaryServer"

Set-SqlAvailabilityReplica -ReadOnlyRoutingConnectionUrl

"TCP://PrimaryServer.domain.com:1433" -InputObject $primaryReplica

Set-SqlAvailabilityReplica -ReadOnlyRoutingConnectionUrl

"TCP://SecondaryServer.domain.com:1433" -InputObject $secondaryReplica

Note

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://www.TCP://DBSERVER8.manufacturing.Adventure-Works.com:7024
http://www.TCP://DBSERVER8.manufacturing.Adventure-Works.com:7024
http://www.TCP://PrimaryServer.domain.com:1433
http://www.TCP://SecondaryServer.domain.com:1433

 186

Set-SqlAvailabilityReplica -ReadOnlyRoutingList

"SecondaryServer","PrimaryServer" -InputObject $primaryReplica

Follow Up: After Configuring Read-Only Routing
Once the current primary replica and the readable secondary replicas are configured to support
read-only routing in both roles, the readable secondary replicas can receive read read-intent
connection requests from clients that connect via the availability group listener.

When using the bcp Utility or sqlcmd Utility, you can specify read-only access to any
secondary replica that is enabled for read-only access by specifying the -K ReadOnly
switch.

Requirements and Recommendations for Client Connection-Strings
For a client application to use read-only routing, its connection string must satisfy the following
requirements:
• Use the TCP protocol.
• Set the application intent attribute/property to readonly.
• Reference the listener of an availability group that is configured to support read-only

routing.
• Reference a database in that availability group.
In addition, we recommend that connection strings enable multi-subnet failover, which supports
a parallel client thread for each replica on each subnet. This minimizes client reconnection time
after a failover.
The syntax for a connection string depends on the SQL Server provider an application is using.
The following example connection string for the .NET Framework Data Provider 4.0.2 for SQL
Server illustrates the parts of a connection string that are required and recommended to work
for read-only routing.

Server=tcp:MyAgListener,1433;Database=Db1;IntegratedSecurity=SSPI;Application

Intent=ReadOnly;MultiSubnetFailover=True

For more information about read-only application intent and read-only routing, see Availability
Group Listeners, Client Connectivity, and Application Failover (AlwaysOn Availability Groups).
Related Tasks
To view read-only routing configurations
• sys.availability_read_only_routing_lists (Transact-SQL)
• sys.availability_replicas (Transact-SQL) (read_only_routing_url column)
To configure client connection access
• Create or Configure an Availability Group Listener
• Configure Connection Access on an Availability Replica (SQL Server)

Tip

http://msdn.microsoft.com/en-us/library/c0af54f5-ca4a-4995-a3a4-0ce39c30ec38(SQL.110)�
http://msdn.microsoft.com/en-us/library/e1728707-5215-4c04-8320-e36f161b834a(SQL.110)�
http://msdn.microsoft.com/en-us/library/0686bc5a-c206-41ef-b40a-79a8259d51d2(SQL.110)�
http://msdn.microsoft.com/en-us/library/0a06e9b6-a1e4-4293-867b-5c3f5a8ff62c(SQL.110)�

 187

To use connection strings in applications
• SQL Server Native Client Support for High Availability, Disaster Recovery
• Using Connection String Keywords with SQL Server Native Client

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
AlwaysOn Availability Groups (SQL Server)
Overview of AlwaysOn Availability Groups (SQL Server)
Readable Secondary Availability Replicas
Client Connection Access to Availability Replicas (SQL Server)
Availability Group Listeners, Client Connectivity, and Application Failover (AlwaysOn Availability
Groups)

Overview of Transact-SQL Statements for AlwaysOn Availability Groups
This topic introduces the Transact-SQL statements that support deploying AlwaysOn Availability
Groups and creating and managing an given availability group, availability replica and
availability database.
In This Topic:
• CREATE ENDPOINT
• CREATE AVAILABILITY GROUP
• ALTER AVAILABILITY GROUP
• ALTER DATABASE SET HADR Options
• DROP AVAILABILITY GROUP
• Restrictions on the AVAILABILITY GROUP Transact-SQL statements
CREATE ENDPOINT
CREATE ENDPOINT … FOR DATABASE_MIRRORING creates a database mirroring endpoint, if
none exists on the server instance. Every server instance on which you intend to deploy
AlwaysOn Availability Groups or database mirroring requires a database mirroring endpoint.
Execute this statement on the server instance on which you are creating the endpoint. You can
create only one database mirroring endpoint on a given server instance. For more information,
see Database Mirroring Endpoint.
CREATE AVAILABILITY GROUP

http://msdn.microsoft.com/en-us/library/2b06186b-4090-4728-b96b-90d6ebd9f66f(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�
http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�

 188

CREATE AVAILABILITY GROUP creates a new availability group and optionally an availability
group listener. Minimally, you must specify your local server instance, which will become the
initial primary replica. Optionally, you can also specify up to four secondary replicas.
Execute CREATE AVAILABILITY GROUP on the instance of SQL Server that you want to host the
initial primary replica of your new availability group. This server instance must reside on a node
of a Windows Server Failover Cluster (WSFC) (for more information, see Prerequisites,
Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server).
ALTER AVAILABILITY GROUP
ALTER AVAILABILITY GROUP supports changing an existing availability group or availability
group listener and for failing over an availability group.
Execute ALTER AVAILABILITY GROUP on the instance of SQL Server that hosts the current
primary replica.
ALTER DATABASE … SET HADR …
The options of the SET HADR clause of the ALTER DATABASE statement enables you to join a
secondary database to the availability group of the corresponding primary database, remove a
joined database, and suspend data synchronization on a joined database, and resume data
synchronization.
DROP AVAILABILITY GROUP
DROP AVAILABILITY GROUP removes a specified availability group and all of its replicas. DROP
AVAILABILITY GROUP can be run from any AlwaysOn Availability Groups node in the WSFC
failover cluster.
Restrictions on the AVAILABILITY GROUP Transact-SQL Statements
The CREATE AVAILABILITY GROUP, ALTER AVAILABILITY GROUP, and DROP AVAILABILITY
GROUP Transact-SQL statements have the following limitations:
• With the exception of DROP AVAILABILITY GROUP, executing these statements requires that

the HADR service is enabled on the instance of SQL Server. For more information, see Enable
and Disable AlwaysOn Availability Groups (SQL Server).

• These statements cannot be executed within transactions or batches.
• Though they make a best effort to clean up after a failure, these statements do not

guarantee that they will roll back all changes on failure. However, systems should be able
cleanly handle and then ignore partial failures.

• These statements do not support expressions or variables.
• If a Transact-SQL statement is executed while another availability group action or recovery is

in process, the statement returns an error. Wait for the action or recovery to complete, and
retry the statement, if necessary.

See Also
Overview of AlwaysOn Availability Groups (SQL Server)

http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�
http://msdn.microsoft.com/en-us/library/20e6e803-d6d5-48d5-b626-d1e0a73d174c(SQL.110)�
http://msdn.microsoft.com/en-us/library/c1600289-c990-454a-b279-dba0ebd5d63e(SQL.110)�

 189

Overview of PowerShell Cmdlets for AlwaysOn Availability Groups
Microsoft PowerShell is a task-based command-line shell and scripting language designed
especially for system administration. AlwaysOn Availability Groups provides a set of PowerShell
cmdlets in SQL Server 2012 that enable you to deploy, manage, and monitor availability groups,
availability replicas, and availability databases.

A PowerShell cmdlet can complete by successfully initiating an action. This does not
indicate that the intended work, such as the fail over of an availability group, has
completed. When scripting a sequence of actions, you might have to check the status of
actions, and wait for them to complete.

This topic introduces the cmdlets for the following sets of tasks:
• Configuring a server instance for AlwaysOn Availability Groups
• Backing up and restoring databases and transaction logs
• Creating and managing an availability group
• Creating and managing an availability group listener
• Creating and managing an availability replica
• Adding and managing an availability database
• Monitoring availability group health

For a list of topics in SQL Server 2012 Books Online that describe how to use cmdlets to
perform AlwaysOn Availability Groups tasks, see the "Related Tasks" section of Overview
of AlwaysOn Availability Groups (SQL Server).

Configuring a Server Instance for AlwaysOn Availability Groups

Cmdlets Description Supported on

Disable-SqlAlwaysOn Disables the AlwaysOn
Availability Groups feature on a
server instance.

The server instance that is
specified by the Path,
InputObject, or Name
parameter. (Must be an
edition of SQL Server 2012
that supports AlwaysOn
Availability Groups.)

Enable-SqlAlwaysOn Enables AlwaysOn Availability
Groups on an instance of SQL
Server 2012 that supports the
AlwaysOn Availability Groups
feature. For information about

Any edition of SQL Server
2012 that supports
AlwaysOn Availability
Groups.

Note

Note

 190

Cmdlets Description Supported on

support for AlwaysOn
Availability Groups,
see Prerequisites, Restrictions,
and Recommendations for
AlwaysOn Availability Groups
(SQL Server).

New-SqlHadrEndPoint Creates a new database
mirroring endpoint on a server
instance. This endpoint is
required for data movement
between primary and
secondary databases.

Any instance of SQL Server

Set-SqlHadrEndpoint Changes the properties of an
existing database mirroring
endpoint, such as the name,
state, or authentication
properties.

A server instance that
supports AlwaysOn
Availability Groups and lacks
a database mirroring
endpoint

Backing Up and Restoring Databases and Transaction Logs

Cmdlets Description Supported on

Backup-SqlDatabase Creates a data or log
backup.

Any online database (for
AlwaysOn Availability Groups, a
database on the server instance
that hosts the primary replica)

Restore-SqlDatabase Restores a backup. Any instance of SQL Server (for
AlwaysOn Availability Groups, a
server instance that hosts a
secondary replica)

Important
When preparing a
secondary database, you
must use the -
NoRecovery parameter
in every Restore-
SqlDatabase command.

 191

For information about using these cmdlets to prepare a secondary database, see Manually
Prepare a Secondary Database for an Availability Group (SQL Server).

Creating and Managing an Availability Group

Cmdlets Description Supported on

New-SqlAvailabilityGroup Creates a new availability
group.

Server instance to host
primary replica

Remove-SqlAvailabilityGroup Deletes availability group. HADR-enabled server
instance

Set-SqlAvailabilityGroup Sets the properties of an
availability group; take an
availability group
online/offline

Server instance that hosts
primary replica

Switch-SqlAvailabilityGroup Initiates one of the following
forms of failover:
• A forced failover of an

availability group (with
possible data loss).

• A manual failover of an
availability group.

Server instance that hosts
target secondary replica

Creating and Managing an Availability Group Listener

Cmdlet Description Supported on

New-SqlAvailabilityGroupListener Creates a new availability
group listener and attaches
it to an existing availability
group.

Server instance that
hosts primary replica

Set-SqlAvailabilityGroupListener Modifies the port setting
on an existing availability
group listener.

Server instance that
hosts primary replica

Add-
SqlAvailabilityGroupListenerStaticIp

Adds a static IP address to
an existing availability

Server instance that
hosts primary replica

 192

Cmdlet Description Supported on

group listener
configuration. The IP
address can be an IPv4
address with subnet, or an
IPv6 address.

Creating and Managing an Availability Replica

Cmdlets Description Supported on

New-SqlAvailabilityReplica Creates a new availability
replica. You can Use the -
AsTemplate parameter to
create an in-memory
availability-replica object for
each new availability replica.

Server instance that hosts
primary replica

Join-SqlAvailabilityGroup Joins a secondary replica to
the availability group.

Server instance that hosts
secondary replica

Remove-SqlAvailabilityReplica Deletes an availability replica. Server instance that hosts
primary replica

Set-SqlAvailabilityReplica Sets the properties of an
availability replica.

Server instance that hosts
primary replica

Adding and Managing an Availability Database

Cmdlets Description Supported on

Add-SqlAvailabilityDatabase • On the primary replica,
adds a database to an
availability group.

• On a secondary replica,
joins a secondary
database to an
availability group.

Any server instance that
hosts an availability replica
(behavior differs for primary
and secondary replicas)

 193

Cmdlets Description Supported on

Remove-SqlAvailabilityDatabase • On the primary replica,
removes the database
from the availability
group.

• On a secondary replica,
removes the local
secondary database
from the local secondary
replica.

Any server instance that
hosts an availability replica
(behavior differs for primary
and secondary replicas)

Resume-SqlAvailabilityDatabase Resumes the data
movement for a suspended
availability database.

The server instance on which
the database was
suspended.

Suspend-SqlAvailabilityDatabase Suspends the data
movement for an availability
database.

Any server instance that
hosts an availability replica.

Monitoring Availability Group Health
The following SQL Server cmdlets enable you to monitor the health of an availability group and
its replicas and databases.

You must have CONNECT, VIEW SERVER STATE, and VIEW ANY DEFINITION permissions
to execute these cmdlets.

Cmdlet Description Supported on

Test-SqlAvailabilityGroup Assesses the health of an
availability group by
evaluating SQL Server policy
based management (PBM)
policies.

Any server instance that
hosts an availability replica.*

Test-SqlAvailabilityReplica Assesses the health of
availability replicas by
evaluating SQL Server policy
based management (PBM)
policies.

Any server instance that
hosts an availability replica.*

noteDXDOC112778PADS Security Note

 194

Cmdlet Description Supported on

Test-SqlDatabaseReplicaState Assesses the health of an
availability database on all
joined availability replicas by
evaluating SQL Server policy
based management (PBM)
policies.

Any server instance that
hosts an availability replica.*

* To view information about all of the availability replicas in an availability group, use to the
server instance that hosts the primary replica.
For more information, see Use Policy-Based Management to Monitor an Availability Group (SQL
Server).

See Also
Overview of AlwaysOn Availability Groups (SQL Server)
SQL Server PowerShell Help

Configuration of a Server Instance for AlwaysOn
Availability Groups
This topic contains information about the requirements for configuring an instance of SQL
Server to support SQL Server 2012.

For essential information about AlwaysOn Availability Groups prerequisites and
restrictions for Windows Server Failover Clustering (WSFC) nodes and for instances of
SQL Server, see Prerequisites, Restrictions, and Recommendations for AlwaysOn
Availability Groups (SQL Server).

In this Topic:
• Terms and Definitions
• To Configure a Server Instance to Support AlwaysOn Availability Groups
• Related Tasks
• Related Content

Terms and Definitions
AlwaysOn Availability Groups

A high-availability and disaster-recovery solution that provides an enterprise-level
replacement for database mirroring. An availability group supports a failover environment for

Important

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�

 195

a discrete set of user databases, known as availability databases, that fail over together.

availability replica

An instantiation of an availability group that is hosted by a specific instance of SQL Server
and that maintains a local copy of each availability database that belongs to the availability
group. Two types of availability replicas exist: a single primary replica and one to four
secondary replicas. The server instances that host the availability replicas for a given
availability group must reside on different nodes of a single Windows Server Failover
Clustering (WSFC) cluster.

database mirroring endpoint
An endpoint is a SQL Server object that enables SQL Server to communicate over the
network. To participate in database mirroring and/or AlwaysOn Availability Groups a server
instance requires a special, dedicated endpoint. All mirroring and availability group
connections on a server instance use the same database mirroring endpoint. This endpoint is
a special-purpose endpoint used exclusively to receive these connections from other server
instances.

To Configure a Server Instance to Support AlwaysOn Availability Groups
To support AlwaysOn Availability Groups, a server instance must reside on a node in the WSFC
failover cluster that hosts the availability group, be AlwaysOn Availability Groups enabled, and
possess a database mirroring endpoint.
1. Enable the AlwaysOn Availability Groups feature on every server instance that is to

participate in one or more availability groups. A given server instance can host only a single
availability replica for a given availability group.

2. Ensure that the server instance possesses a database mirroring endpoint.

Related Tasks
To enable AlwaysOn Availability Groups
• Enable and Disable the AlwaysOn Availability Groups Feature (SQL Server)
To determine whether a database mirroring endpoint exists
• sys.database_mirroring_endpoints (Transact-SQL)
To create a database mirroring endpoint
• Create a Database Mirroring Endpoint for AlwaysOn Availability Groups (SQL Server

PowerShell)
• Create a Mirroring Endpoint for Windows Authentication (Transact-SQL)
• Allow Database Mirroring to Use Certificates for Outbound Connections (Transact-SQL)

Related Content

http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�

 196

• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
Overview of AlwaysOn Availability Groups
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)
The Database Mirroring Endpoint (SQL Server)
AlwaysOn Availability Groups: Interoperability and Coexistence (SQL Server)
Failover Clustering and AlwaysOn Availability Groups (SQL Server)
Windows Server Failover Clustering (WSFC) with SQL Server
AlwaysOn Failover Cluster Instances (FCI)

Enable and Disable AlwaysOn Availability Groups
Enabling AlwaysOn Availability Groups is a prerequisite for a server instance to use availability
groups. Before you can create and configure any availability group, the AlwaysOn Availability
Groups feature must have been enabled on the each instance of SQL Server that will host an
availability replica for one or more availability groups.

If you delete and re-create a WSFC cluster, you must disable and re-enable the AlwaysOn
Availability Groups feature on each instance of SQL Server that hosted an availability
replica on the original WSFC cluster.

• Before you begin:
Prerequisites
Security

• How To:
• Determine Whether AlwaysOn Availability Groups is Enabled
• Enable AlwaysOn Availability Groups
• Disable AlwaysOn Availability Groups

Before You Begin
Prerequisites for Enabling AlwaysOn Availability Groups
• The server instance must reside on a Windows Server Failover Clustering (WSFC) node.
• The server instance must be running an edition of SQL Server that supports AlwaysOn

Availability Groups. For more information, see Features Supported by the Editions of SQL
Server "Denali".

Important

http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�

 197

• Enable AlwaysOn Availability Groups on only one server instance at a time. After enabling
AlwaysOn Availability Groups, wait until the SQL Server service has restarted before you
proceed to another server instance.

For information about additional prerequisites for creating and configuring availability groups,
see Prerequisites, Restrictions, and Recommendations (AlwaysOn Availability Groups).
Security
While AlwaysOn Availability Groups is enabled on an instance of SQL Server, the server instance
has full control on the WSFC cluster.
Permissions
Requires membership in the Administrator group on the local computer and full control on the
WSFC cluster. When enabling AlwaysOn by using PowerShell, open the Command Prompt
window using the Run as administrator option.
Requires Active Directory Create Objects and Manage Objects permissions.

Determine Whether AlwaysOn Availability Groups is Enabled
• SQL Server Management Studio
• Transact-SQL
• PowerShell
Using SQL Server Management Studio
To determine whether AlwaysOn Availability Groups is enabled
1. In Object Explorer, right-click the server instance, and click Properties.
2. In the Server Properties dialog box, click the General page. The Is HADR Enabled property

displays one of the following values:
• True, if AlwaysOn Availability Groups is enabled
• False, if AlwaysOn Availability Groups is disabled.

Using Transact-SQL
To determine whether AlwaysOn Availability Groups is enabled
1. Use the following SERVERPROPERTY statement:

SELECT SERVERPROPERTY ('IsHadrEnabled');

The setting of the IsHadrEnabled server property indicates whether an instance of SQL
Server is enabled for AlwaysOn Availability Groups, as follows:
• If IsHadrEnabled = 1, AlwaysOn Availability Groups is enabled.
• If IsHadrEnabled = 0, AlwaysOn Availability Groups is disabled.

For more information about the IsHadrEnabled server property,
see SERVERPROPERTY (Transact-SQL).

Note

http://msdn.microsoft.com/en-us/library/11e166fa-3dd2-42d8-ac4b-04f18c612c4a(SQL.110)�
http://msdn.microsoft.com/en-us/library/11e166fa-3dd2-42d8-ac4b-04f18c612c4a(SQL.110)�

 198

Using PowerShell
To determine whether AlwaysOn Availability Groups is enabled
1. Set default (cd) to the server instance on which you want to determine whether AlwaysOn

Availability Groups is enabled.
2. Enter the following PowerShell Get-Item command:

PS SQLSERVER:\SQL\NODE1\DEFAULT> get-item . | select IsHadrEnabled

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see SQL Server PowerShell Help.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Help

Enable AlwaysOn Availability Groups
To enable AlwaysOn, using:
• SQL Server Configuration Manager
• PowerShell
Using SQL Server Configuration Manager
To enable AlwaysOn Availability Groups
1. Connect to the Windows Server Failover Clustering (WSFC) node that hosts the SQL Server

instance where you want to enable AlwaysOn Availability Groups.
2. On the Start menu, point to All Programs, point to , point to Configuration Tools,

and click SQL Server Configuration Manager.
3. In SQL Server Configuration Manager, click SQL Server Services, right-click SQL Server

(<instance name>), where <instance name> is the name of a local server instance for which
you want to enable AlwaysOn Availability Groups, and click Properties.

4. Select the AlwaysOn High Availability tab.
5. Verify that Windows failover cluster name field contains the name of the local failover

cluster node. If this field is blank, this server instance currently does not support AlwaysOn
Availability Groups. Either the local computer is not a cluster node, the WSFC cluster has
been shut down, or this edition of SQL Server 2012 that does not support AlwaysOn
Availability Groups.

6. Select the Enable AlwaysOn Availability Groups check box, and click OK.
SQL Server Configuration Manager saves your change. Then, you must manually restart the
SQL Server service. This enables you to choose a restart time that is best for your business
requirements. When the SQL Server service restarts, AlwaysOn will be enabled, and the
IsHadrEnabled server property will be set to 1.

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 199

Using SQL Server PowerShell
To enable AlwaysOn
1. Change directory (cd) to a server instance that you want to enable for AlwaysOn Availability

Groups.
2. Use the Enable-SqlAlwaysOn cmdlet to enable AlwaysOn Availability Groups.

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server PowerShell
environment. For more information, see Get Help SQL Server PowerShell.

For information about how to control whether the Enable-SqlAlwaysOn cmdlet
restarts the SQL Server service, see When Does a Cmdlet Restart the SQL Server
Service?, later in this topic.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

Example: Enable-SqlAlwaysOn
The following PowerShell command enables AlwaysOn Availability Groups on an instance of SQL
Server (Computer\Instance).

Enable-SqlAlwaysOn -Path SQLSERVER:\SQL\Computer\Instance

Disable AlwaysOn Availability Groups
• Before you disable AlwaysOn:

Recommendations
• To disable AlwaysOn, using:

• SQL Server Configuration Manager
• PowerShell

• Follow Up: After Disabling AlwaysOn

Disable AlwaysOn on only one server instance at a time. After disabling AlwaysOn
Availability Groups, wait until the SQL Server service has restarted before you proceed to
another server instance.

Recommendations
Before you disable AlwaysOn on a server instance, we recommend that you do the following:
1. If the server instance is currently hosting the primary replica of an availability group that you

want to keep, we recommend that you manually fail over the availability group to a
synchronized secondary replica, if possible. For more information, see Perform a Planned
Manual Failover of an Availability Group (SQL Server).

Note

Important

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 200

2. Remove all local secondary replicas. For more information, see Remove a Secondary Replica
from an Availability Group (SQL Server).

Using SQL Server Configuration Manager
To disable AlwaysOn
1. Connect to the Windows Server Failover Clustering (WSFC) node that hosts the SQL Server

instance where you want to disable AlwaysOn Availability Groups.
2. On the Start menu, point to All Programs, point to , point to Configuration Tools,

and click SQL Server Configuration Manager.
3. In SQL Server Configuration Manager, click SQL Server Services, right-click SQL Server

(<instance name>), where <instance name> is the name of a local server instance for which
you want to disable AlwaysOn Availability Groups, and click Properties.

4. On the AlwaysOn High Availability tab, deselect the Enable AlwaysOn Availability
Groups check box, and click OK.
SQL Server Configuration Manager saves your change and restarts the SQL Server service.
When the SQL Server service restarts, AlwaysOn will be disabled, and the IsHadrEnabled
server property will be set to 0, to indicate that AlwaysOn Availability Groups is disabled.

5. We recommend that you read the information in Follow Up: After Disabling AlwaysOn, later
in this topic.

Using SQL Server PowerShell
To disable AlwaysOn
1. Change directory (cd) to a currently-enabled server instance that that you want to disenable

for AlwaysOn Availability Groups.
2. Use the Disable-SqlAlwaysOn cmdlet to enable AlwaysOn Availability Groups.

For example, the following command disables AlwaysOn Availability Groups on an instance
of SQL Server (Computer\Instance). This command requires restarting the instance, and you
will be prompted to confirm this restart.
Disable-SqlAlwaysOn -Path SQLSERVER:\SQL\Computer\Instance

For information about how to control whether the Disable-SqlAlwaysOn cmdlet
restarts the SQL Server service, see When Does a Cmdlet Restart the SQL Server
Service?, later in this topic.

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server PowerShell
environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

Follow Up: After Disabling AlwaysOn

Important

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 201

After you disable AlwaysOn Availability Groups, the instance of SQL Server must be restarted.
SQL Configuration Manager restarts the server instance automatically. However, if you used the
Disable-SqlAlwaysOn cmdlet, you will need to restart the server instance manually. For more
information, see sqlservr Application.
On the restarted server instance:
• Availability databases do not start up at SQL Server startup, making them inaccessible.
• The only supported AlwaysOn Transact-SQL statement is DROP AVAILABILITY GROUP.

CREATE AVAILABILITY GROUP, ALTER AVAILABILITY GROUP, and the SET HADR options of
ALTER DATABASE are not supported.

• SQL Server metadata and AlwaysOn Availability Groups configuration data in WSFC are
unaffected by disabling AlwaysOn Availability Groups.

If you permanently disable AlwaysOn Availability Groups on every server instance that hosts an
availability replica for one or more availability groups, we recommend that you complete the
following steps:
1. If you did not remove the local availability replicas before disabling AlwaysOn, delete (drop)

each availability group for which the server instance is hosting an availability replica. For
information about deleting an availability group, see Remove an Availability Group
(AlwaysOn Availability Groups).

2. To remove the metadata left behind, delete (drop) each affected availability group on a
server instance that is part of the original WSFC cluster.

3. Any primary databases continue to be accessible to all connections but the data
synchronization between the primary and secondary databases stops.

4. The secondary databases enter the RESTORING state. You can delete them, or you can
restore them by using RESTORE WITH RECOVERY. However, restored databases are no
longer participating in availability-group data synchronization.

When Does a Cmdlet Restart the SQL Server Service?
On a server instance that is currently running, using Enable-SqlAlwaysOn or Disable-
SqlAlwaysOn to change the current AlwaysOn setting could cause the SQL Server service to
restart. The restart behavior on depends on the following conditions:

-NoServiceRestart parameter
specified

-Force parameter specified Is the SQL Server service restarted?

No No By default. But the cmdlet
prompts you as follows:
To complete this action, we
must restart the SQL Server
service for server instance
'<instance_name>'. Do you
want to continue?

http://msdn.microsoft.com/en-us/library/60e8ef0a-0851-41cf-a6d8-cca1e04cbcdb(SQL.110)�
http://msdn.microsoft.com/en-us/library/c1600289-c990-454a-b279-dba0ebd5d63e(SQL.110)�

 202

-NoServiceRestart parameter
specified

-Force parameter specified Is the SQL Server service restarted?

[Y] Yes [N] No [S]
Suspend [?] Help (default is
"Y"):
If you specify N or S, the service
is not restarted.

No Yes Service is restarted.

Yes No Service is not restarted.

Yes Yes Service is not restarted.

See Also
AlwaysOn Availability Groups (SQL Server)
SERVERPROPERTY (Transact-SQL)

Create a Database Mirroring Endpoint for AlwaysOn Availability
Groups (SQL Server PowerShell)
This topic describes how to create a database mirroring endpoint for use by AlwaysOn
Availability Groups in SQL Server 2012 by using PowerShell.
In This Topic
• Before you begin: Security
• To create a database mirroring endpoint, using: PowerShell
Before You Begin
Security

The RC4 algorithm is deprecated. This feature will be removed in a future version of
Microsoft SQL Server. Do not use this feature in new development work, and modify
applications that currently use this feature as soon as possible. We recommend that you
use AES.

Permissions
Requires CREATE ENDPOINT permission, or membership in the sysadmin fixed server role. For
more information, see GRANT Endpoint Permissions (Transact-SQL).

Using PowerShell

noteDXDOC112778PADS Security Note

http://msdn.microsoft.com/en-us/library/11e166fa-3dd2-42d8-ac4b-04f18c612c4a(SQL.110)�
http://msdn.microsoft.com/en-us/library/9eda885c-fc3a-4c9d-8de6-ce07fb35a934(SQL.110)�

 203

To create a database mirroring endpoint
1. Change directory (cd) to the server instance for which you want to create the database

mirroring endpoint.
2. Use the New-SqlHadrEndpoint cmdlet to create the endpoint and then use the Set-

SqlHadrEndpoint to start the endpoint.
Example (PowerShell)
The following PowerShell commands create a database mirroring endpoint on an instance of
SQL Server (Machine\Instance). The endpoint uses port 5022.

This example works only on a server instance that currently lack a database mirroring
endpoint.

Create the endpoint.

$endpoint = New-SqlHadrEndpoint MyMirroringEndpoint -Port 5022 -Path

SQLSERVER:\SQL\Machine\Instance

Start the endpoint

Set-SqlHadrEndpoint -InputObject $endpoint -State "Started"

Related Tasks
To Configure a Database Mirroring Endpoint
• Create a Mirroring Endpoint for Windows Authentication (Transact-SQL)
• Use Certificates for a Database Mirroring Endpoint

• Allow Database Mirroring to Use Certificates for Outbound Connections (Transact-SQL)
• Allow a Database Mirroring Endpoint to Use Certificates for Inbound Connections

(Transact-SQL)
• Specify a Server Network Address (Database Mirroring)
• Specify the Endpoint URL When Adding or Modifying an Availability Replica (SQL Server)
To View Information About the Database Mirroring Endpoint
• sys.database_mirroring_endpoints (Transact-SQL)

See Also
Create an Availability Group (Transact-SQL)
AlwaysOn Availability Groups

Important

http://msdn.microsoft.com/en-us/library/a64d4b6b-9016-4f1e-a310-b1df181dd0c6(SQL.110)�
http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�

 204

Troubleshoot AlwaysOn Availability Groups Configuration
This topic provides information to help you troubleshoot typical problems with configuring
server instances for AlwaysOn Availability Groups. Typical configuration problems include
AlwaysOn Availability Groups is disabled, accounts are incorrectly configured, the database
mirroring endpoint does not exist, the endpoint is inaccessible (SQL Server Error 1418), network
access does not exist, and a join database command fails (SQL Server Error 35250).

Ensure that you are meeting the AlwaysOn Availability Groups prerequisites. For more
information, see Prerequisites, Restrictions, and Recommendations (AlwaysOn Availability
Groups).

Issue Summary

AlwaysOn Availability Groups Is Not
Enabled

If an instance of SQL Server is not enabled
for AlwaysOn Availability Groups, the
instance does not support availability
group creation and cannot host any
availability replicas.

Accounts Discusses requirements for correctly
configuring the accounts under which SQL
Server is running.

Endpoints Discusses how to diagnose issues with the
database mirroring endpoint of a server
instance.

System name Summarizes the alternatives for specifying
the system name of a server instance in an
endpoint URL.

Network access Documents the requirement that each
server instance that is hosting an
availability replica must be able to access
the port of each of the other server
instances over TCP.

Endpoint Access (SQL Server Error 1418) Contains information about this SQL Server
error message.

Join Database Fails (SQL Server Error 35250) Discusses the possible causes and
resolution of a failure to join secondary
databases to an availability group because
the connection to the primary replica is not

Note

 205

Issue Summary

active.

AlwaysOn Availability Groups Is Not Enabled
The AlwaysOn Availability Groups feature must be enabled on each of the instances of SQL
Server 2012. For more information, see Enabling and Disabling the AlwaysOn Availability Groups
Feature (SQL Server).
Accounts
The accounts under which SQL Server is running must be correctly configured.
1. Do the accounts have the correct permissions?

a. If the partners run as the same domain user account, the correct user logins exist
automatically in both master databases. This simplifies the security configuration the
database and is recommended.

b. If two server instances run as different accounts, the login each account must be created
in master on the remote server instance, and that login must be granted CONNECT
permissions to connect to the database mirroring endpoint of that server instance. For
more information, see Setting Up Login Accounts for Database Mirroring.

2. If SQL Server is running as a built-in account, such as Local System, Local Service, or Network
Service, or a nondomain account, you must use certificates for endpoint authentication. If
your service accounts are using domain accounts in the same domain, you can choose to
grant CONNECT access for each service account on all the replica locations or you can use
certificates. For more information, see Using Certificates for Database Mirroring.

Endpoints
Endpoints must be correctly configured.
1. Make sure that each instance of SQL Server that is going to host an availability replica (each

replica location) has a database mirroring endpoint. To determine whether a database
mirroring endpoint exists on a given server instance, use
the sys.database_mirroring_endpoints catalog view. For more information, see either How to:
Create a Mirroring Endpoint for Windows Authentication (Transact-SQL) or How to: Allow
Database Mirroring to Use Certificates for Outbound Connections (Transact-SQL).

2. Check that the port numbers are correct.
To identify the port currently associated with database mirroring endpoint of a server
instance, use the following Transact-SQL statement:
SELECT type_desc, port FROM sys.tcp_endpoints;

GO

http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�

 206

3. For AlwaysOn Availability Groups setup issues that are difficult to explain, we recommend
that you inspect each server instance to determine whether it is listening on the correct
ports. For information about verifying port availability, see MSSQLSERVER_1418.

4. Make sure that the endpoints are started (STATE=STARTED). On each server instance, use
the following Transact-SQL statement:

SELECT state_desc FROM sys.database_mirroring_endpoints

For more information about the state_desc column, see sys.endpoints (Transact-SQL).
To start an endpoint, use the following Transact-SQL statement:

ALTER ENDPOINT Endpoint_Mirroring

STATE = STARTED

AS TCP (LISTENER_PORT = <port_number>)

FOR database_mirroring (ROLE = ALL);

GO

For more information, see ALTER ENDPOINT (Transact-SQL).
5. Make sure that the login from the other server has CONNECT permission. To determine who

has CONNECT permission for an endpoint, on each server instance use the following
Transact-SQL statement:

SELECT 'Metadata Check';

SELECT EP.name, SP.STATE,

 CONVERT(nvarchar(38), suser_name(SP.grantor_principal_id))

 AS GRANTOR,

 SP.TYPE AS PERMISSION,

 CONVERT(nvarchar(46),suser_name(SP.grantee_principal_id))

 AS GRANTEE

 FROM sys.server_permissions SP , sys.endpoints EP

 WHERE SP.major_id = EP.endpoint_id

 ORDER BY Permission,grantor, grantee;

GO

System Name
For the system name of a server instance in an endpoint URL, you can use any name that
unambiguously identifies the system. The server address can be a system name (if the systems
are in the same domain), a fully qualified domain name, or an IP address (preferably, a static IP
address). Using the fully qualified domain name is guaranteed to work. For more information,

http://msdn.microsoft.com/en-us/library/6e9c7241-0201-44e0-9f8b-b3c4e293f0f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�
http://msdn.microsoft.com/en-us/library/70f35566-30cf-47c6-8394-dfe5d71629d3(SQL.110)�

 207

see Specifying the Endpoint URL When Adding or Modifying a "HADR" Availability Replica (SQL
Server).
Network Access
Each server instance that is hosting an availability replica must be able to access the port of each
of the other server instance over TCP. This is especially important if the server instances are in
different domains that do not trust each other (untrusted domains).
Endpoint Access (SQL Server Error 1418)
This SQL Server message indicates that the server network address specified in the endpoint
URL cannot be reached or does not exist, and it suggests that you verify the network address
name and reissue the command. For more information, see MSSQLSERVER_1418.

Join Database Fails (SQL Server Error 35250)
This section discusses the possible causes and resolution of a failure to join secondary databases
to the availability group because the connection to the primary replica is not active.
Resolution:
1. Check the firewall setting to see if whether allows the endpoint port communication

between the server instances that host primary replica and the secondary replica (port 5022
by default).

2. Check whether the network service account has connect permission to the endpoint.
See Also
Database Mirroring Transport Security
Create a Mirroring Endpoint for Windows Authentication (Transact-SQL)
Specifying the Endpoint URL for an Availability Replica (SQL Server)
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)
Creation and Configuration of Availability Groups (SQL Server)
Manually Prepare a Secondary Database for an Availability Group (SQL Server)
Troubleshooting a Failed Add-File Operation (AlwaysOn Availability Groups)

Creation and Configuration of Availability Groups
The topics in this section explain how to deploy a AlwaysOn Availability Groups implementation
on instances of SQL Server 2012 that reside on different Windows Server Failover Clustering
(WSFC) nodes within a single WSFC failover cluster.
Before you create your first availability group, we strongly recommend that you familiarize
yourself with the information in the following topics:
Prerequisites, Restrictions, and Recommendations (AlwaysOn Availability
Groups)

This topic describes the prerequisites, restrictions, and recommendations for computers;

http://msdn.microsoft.com/en-us/library/6e9c7241-0201-44e0-9f8b-b3c4e293f0f6(SQL.110)�

 208

WSFC nodes; instances of SQL Server; availability groups, replicas, and databases. This topic
also contains information about security considerations.

Getting Started with AlwaysOn Availability Groups (SQL Server)
Contains information about the steps for configuring a server instance, creating an
availability group, configuring the availability group for client connections, managing
availability groups, and monitoring availability groups.

In this Topic:
• Related Tasks
• Related Content

Related Tasks
To configure a server instance for AlwaysOn Availability Groups
• Enable and Disable AlwaysOn Availability Groups (SQL Server)
• Create a Database Mirroring Endpoint for AlwaysOn Availability Groups (SQL Server

PowerShell)
• Create a Database Mirroring Endpoint for Windows Authentication (Transact-SQL)
• Allow a Database Mirroring Endpoint to Use Certificates for Outbound Connections

(Transact-SQL)
To get started with configuring AlwaysOn Availability Groups
• Getting Started with AlwaysOn Availability Groups (SQL Server)
To create and configure a new availability group
• Create and Configure an Availability Group (New Availability Group Wizard)
• Create and Configure an Availability Group (Transact-SQL)
• Create and Configure an Availability Group (SQL Server PowerShell)
• Use the New Availability Group Dialog Box (SQL Server Management Studio)
• Specify the Endpoint URL When Adding or Modifying an Availability Replica (AlwaysOn

Availability Groups)
• Create or Configure an Availability Group Listener (SQL Server)
• Configure the Flexible Failover Policy to Control Conditions for Automatic Failover

(AlwaysOn Availability Groups)
• Configure Backup on Availability Replicas (SQL Server)
• Configure Connection Access on an Availability Replica (SQL Server)
• Configure Read-Only Routing on an Availability Group (SQL Server)
• Join a Secondary Replica to an Availability Group (SQL Server)
• Manually Start Data Synchronization on an AlwaysOn Secondary Database (SQL Server)
• Prepare a Secondary Database for an Availability Group (SQL Server)
• Join a Secondary Database to an Availability Group (SQL Server)

 209

• Management of Logins and Jobs for the Databases of an Availability Group (SQL Server)
To troubleshoot
• Troubleshoot AlwaysOn Availability Groups Configuration (SQL Server)
• Troubleshoot a Failed Add-File Operation (AlwaysOn Availability Groups)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
Overview of AlwaysOn Availability Groups
Administration of an Availability Group (SQL Server)
Policy-Based Management of Operational Issues with AlwaysOn Availability Groups (SQL Server)
Monitoring of Availability Groups (SQL Server)
AlwaysOn Availability Groups: Interoperability (SQL Server)

Use the New Availability Group Wizard (SQL Server Management
Studio)
This topic describes how to use the New Availability Group Wizard (in SQL Server Management
Studio) to create and configure an AlwaysOn availability group in SQL Server 2012. An
availability group defines a set of user databases that will fail over as a single unit and a set of
failover partners, known as availability replicas, that support failover.

For an introduction to availability groups, see Overview of AlwaysOn Availability Groups
(SQL Server).

• Before you begin:
Prerequisites, Restrictions, and Recommendations
Considerations for Using the New Availability Group Wizard (SQL Server Management
Studio)
Security

• To create and configure an availability group, using: New Availability Group Wizard (SQL
Server Management Studio)

As an alternative to using the New Availability Group Wizard, you can use Transact-SQL
or SQL Server PowerShell cmdlets. For more information, see Creating and Configuring

Note

Note

http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 210

an Availability Group (Transact-SQL) or Creating and Configuring an Availability Group
(SQL Server PowerShell).

Before You Begin
We strongly recommend that you read this section before attempting to create your first
availability group.
Prerequisites, Restrictions, and Recommendations
In most cases, you can use the New Availability Group Wizard to complete all of the tasks
require to create and configure an availability group. However, you might need to complete
some of the tasks manually.
• Before creating an availability group, verify that the instances of SQL Server that host

availability replicas reside on different Windows Server Failover Clustering (WSFC) node
within the same WSFC failover cluster. Also, verify that each of the server instance meets all
other AlwaysOn Availability Groups prerequisites. For more information, we strongly
recommend that you read Prerequisites, Restrictions, and Recommendations (AlwaysOn
Availability Groups).

• If a server instance that you select to host an availability replica does not yet have a
database mirroring endpoint, the wizard can create the endpoint and grant CONNECT
permission to the server instance service account if the server instance is running under a
domain user account. However, if the SQL Server service is running as a built-in account,
such as Local System, Local Service, or Network Service, or a nondomain account, you must
use certificates for endpoint authentication, and the wizard will be unable to create a
database mirroring endpoint on the server instance. In this case, we recommend that you
create the database mirroring endpoints manually before you launch the New Availability
Group Wizard. For more information, see Prerequisites, Restrictions, and Recommendations
for AlwaysOn Availability Groups (SQL Server).

• SQL Server Failover Cluster Instances (FCIs) do not support automatic failover by availability
groups, so any availability replica that is hosted by an FCI can only be configured for manual
failover.

• If a database is encrypted or even contains a Database Encryption Key (DEK), you cannot use
the New Availability Group Wizard or Add Database to Availability Group Wizard to add the
database to an availability group. Even if an encrypted database has been decrypted, its log
backups might contain encrypted data. In this case, full initial data synchronization could fail
on the database. This is because the restore log operation might require the certificate that
was used by the database encryption keys (DEKs), and that certificate might be unavailable.
To make a decrypted database eligible to add to an availability group using the wizard:
a. Create a log backup of the primary database.
b. Create a full database backup of the primary database.
c. Restore the database backup on the server instance that hosts the secondary replica.
d. Create a new log backup from primary database.
e. Restore this log backup on the secondary database.

 211

• Prerequisites for the wizard to perform full initial data synchronization
• All the database-file paths must be identical on every server instance that hosts a replica

for the availability group.
• No primary database name can exist on any server instance that hosts a secondary

replica. This means that none of the new secondary databases can exist yet.
• You will need to specify a network share in order for the wizard to create and access

backups. For the primary replica, the account used to start the Database Engine must
have read and write file-system permissions on a network share. For secondary replicas,
the account must have read permission on the network share.

The log backups will be part of your log backup chain. Store the log backup files
appropriately.

If you are unable to use the wizard to perform full initial data synchronization, you need to
prepare your secondary databases manually. You can do this before or after running the
wizard. For more information, see Manually Prepare a Secondary Database for an Availability
Group (SQL Server).

Security
Permissions
Requires membership in the sysadmin fixed server role and either CREATE AVAILABILITY GROUP
server permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL SERVER
permission.
Also requires CONTROL ON ENDPOINT permission if you want to allow Availability Group
Wizard to manage the database mirroring endpoint.

Using the New Availability Group Wizard
1. In Object Explorer, connect to the server instance that hosts the primary replica.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. To launch the New Availability Group Wizard, select the New Availability Group Wizard

command.
4. The first time you run this wizard, an Introduction page appears. To bypass this page in the

future, you can click Do not show this page again. After reading this page, click Next.
5. On the Specify Availability Group Name page, enter the name of the new availability

group in the Availability group name field. This name must be a valid SQL Server identifier
that is unique on the WSFC failover cluster and in your domain as a whole. The maximum
length for an availability group name is 128 characters.

6. On the Select Databases page, the grid lists user databases on the connected server
instance that are eligible to become the availability databases. Select one or more of the
listed databases to participate in the new availability group. These databases will initially be
the initial primary databases.

Important

 212

For each listed database, the Size column displays the database size, if known. The Status
column indicates whether a given database meets the prerequisites for availability
databases. It the prerequisites are not met, a brief status description indicates the reason
that the database is ineligible; for example, if it does not use the full recovery model. For
more information, click the status description.
If you change a database to make it eligible, click Refresh to update the databases grid.

7. On the Specify Replicas page, specify and configure one or more replicas for the new
availability group. This page contains four tabs. The following table introduces these tabs.
For more information, see the Specify Replicas Page (New Availability Group Wizard/Add
Replica Wizard) topic.

Tab Brief Description

Replicas Use this tab to specify each instance of SQL
Server that will host a secondary replica.
Note that the server instance to which you
are currently connected must host the
primary replica.

Endpoints Use this tab to verify any existing database
mirroring endpoints and also, if this
endpoint is lacking on a server instance
whose service accounts use Windows
Authentication, to create the endpoint
automatically.

Note
If any server instance is running
under a non-domain user account,
you need to do make a manual
change to your server instance
before you can proceed in the
wizard.

Backup Preferences Use this tab to specify your backup
preference for the availability group as a
whole and your backup priorities for the
individual availability replicas.

Listener Use this tab to create an availability group
listener. By default, the wizard does not
create a listener.

 213

8. On the Select Initial Data Synchronization page, choose how you want your new
secondary databases to be created and joined to the availability group. Choose one of the
following options:
• Full

Select this option if your environment meets the requirements for automatically starting
initial data synchronization (for more information, see Prerequisites, Restrictions, and
Recommendations , earlier in this topic).
If you select Full, after creating the availability group, the wizard will back up every
primary database and its transaction log to a network share and restore the backups on
every server instance that hosts an secondary replica. The wizard will then join every
secondary database to the availability group.
In the Specify a shared network location accessible by all replicas: field, specify a
backup share to which all of the server instance that host replicas have read-write access.
For more information, see Prerequisites, earlier in this topic.

• Join only
If you have manually prepared secondary databases on the server instances that will host
the secondary replicas, you can select this option. The wizard will join the existing
secondary databases to the availability group.

• Skip initial data synchronization
Select this option if you want to use your own database and log backups of your primary
databases. For more information, see Manually Start Data Synchronization on an
AlwaysOn Secondary Database (SQL Server).

9. The Validation page verifies whether the values you specified in this Wizard meet the
requirements of the New Availability Group Wizard. To make a change, click Previous to
return to an earlier wizard page to change one or more values. The click Next to return to
the Validation page, and click Re-run Validation.

10. On the Summary page, review your choices for the new availability group. To make a
change, click Previous to return to the relevant page. After making the change, click Next to
return to the Summary page.

When the SQL Server service account of a server instance that will host a new
availability replica does not already exist as a login, the New Availability Group
Wizard needs to create the login. On the Summary page, the wizard displays the
information for the login that is to be created. If you click Finish, the wizard creates
this login for the SQL Server service account and grants the login CONNECT
permission.

If you are satisfied with your selections, optionally click Script to create a script of the steps
the wizard will execute. Then, to create and configure the new availability group, click Finish.

noteDXDOC112778PADS Security Note

 214

11. The Progress page displays the progress of the steps for creating the availability group
(configuring endpoints, creating the availability group, and joining the secondary replica to
the group).

12. When these steps complete, the Results page displays the result of each step. If all these
steps succeed, the new availability group is completely configured. If any of the steps result
in an error, you might need to manually complete the configuration or use a wizard for the
failed step. For information about the cause of a given error, click the associated "Error" link
in the Result column.
When the wizard completes, click Close to exit.

Related Tasks
To complete availability group configuration
• Join a Secondary Replica to an Availability Group (SQL Server)
• Manually Prepare a Secondary Database for an Availability Group (SQL Server)
• Join a Secondary Database to an Availability Group (SQL Server)
• Create or Configure an Availability Group Listener (SQL Server)
Alternative ways to create an availability group
• Use the New Availability Group Dialog Box (SQL Server Management Studio)
• Create an Availability Group (Transact-SQL)
• Create and Configure an Availability Group (SQL Server PowerShell)
To enable AlwaysOn Availability Groups
• Enable and Disable the AlwaysOn Availability Groups Feature (SQL Server)
To configure a database mirroring endpoint
• Create a Database Mirroring Endpoint for AlwaysOn Availability Groups (SQL Server

PowerShell)
• Create a Mirroring Endpoint for Windows Authentication (Transact-SQL)
• Use Certificates for a Database Mirroring Endpoint
• Specify the Endpoint URL When Adding or Modifying an Availability Replica (SQL Server)
To troubleshoot AlwaysOn Availability Groups configuration
• Troubleshoot AlwaysOn Availability Groups Configuration (SQL Server)
• Troubleshoot a Failed Add-File Operation (AlwaysOn Availability Groups)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery

See Also
Database Mirroring Endpoint

http://go.microsoft.com/fwlink/?LinkId=227600�

 215

Overview of AlwaysOn Availability Groups
Prerequisites, Restrictions, and Recommendations (AlwaysOn Availability Groups)

Specify Availability Group Name Page (New Availability Group Wizard/Add
Database Wizard)
This topic describes the options of the Specify Availability Group Name page. This topic is
used by both the New Availability Group Wizard and Add Database to Availability Group Wizard
of SQL Server 2012.
Specify Availability Group Name Options
Specify an availability group name

Specify the name of the availability group. For a new availability group, specify a valid SQL
Server identifier that is unique across all availability groups in the WSFC cluster. The
maximum length for an availability group name is 128 characters.

Related Tasks
• Use the New Availability Group Wizard
• Use the Add Database to Availability Group Wizard
See Also
AlwaysOn Availability Groups

Select Databases Page (New Availability Group Wizard/Add Database Wizard)
This help topic describes the options of the Specify Databases page. This topic applies to the
New Availability Group Wizard and Add Database to Availability Group Wizard of SQL Server
2012.
Select Databases Options
The User databases on this instance of SQL Server grid lists every local user database. The
columns are as follows:
Name

Displays the name of a local user database.

Size

Displays the database size, if the size is available to the wizard.

Status

Displays a hyperlink whose text that indicates whether a given database meets the
prerequisites for being added to an availability group. If the status is "Meets prerequisites"
you can add the database to the availability group. If a database does not meet all of the
prerequisites, the Status hyperlink provides a brief explanation of why the database is
ineligible. For more information, click the hyperlink.

 216

You can leave the wizard on the Select Database page while you take action on a database
to meet a prerequisite. When you return to the Select Databases page, click Refresh to
update the grid.

Refresh

Click to refresh the grid. This is useful after you take action on a database to meet a
prerequisite.

Related Tasks
• Use the New Availability Group Wizard
• Use the Add Database to Availability Group Wizard

See Also
Overview of AlwaysOn Availability Groups
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)

Specify Replicas Page (New Availability Group Wizard/Add Replica Wizard)
This topic describes the options of the Specify Replicas page. This page applies to the New
Availability Group Wizard and the Add Replica to Availability Group Wizard of SQL Server 2012.
Use the Specify Replicas page to specify and configure one or more availability replicas to add
the availability group. This page contains four tabs, which are introduced in the following table.
Click the name of a tab in the table to go to the corresponding section, later in this topic.

Tab Brief Description

Replicas Use this tab to specify each instance of SQL
Server that will host or currently hosts a
secondary replica. Note that the server
instance to which you are currently
connected must host the primary replica.

Tip
Finish specifying all the replicas on
the Replicas tab before starting the
other tabs.

Endpoints Use this tab to verify any existing database
mirroring endpoints and also, if this
endpoint is lacking on a server instance
whose service accounts use Windows
Authentication, to create the endpoint

 217

Tab Brief Description

automatically.

Backup Preferences Use this tab to specify your backup
preference for the availability group as a
whole and your backup priorities for the
individual availability replicas.

Listener Use this tab, if available, to create an
availability group listener. By default, a
listener is not created.

Note
This tab is available only if you are
running the New Availability Group
Wizard.

Replicas Tab
Server Instance

Displays the name of the server instance that will host the availability replica.

If a server instance that you to use to host a secondary replica is not listed by the Availability
Replicas grid, click the Add Replica button.

Initial Role

Indicates the role that the new replica will initially perform: Primary or Secondary.

Automatic Failover (Up to 2)

Select this checkbox only if you want this availability replica to be an automatic-failover
partner. To configure automatic failover, you must choose this option for the initial primary
replica and for one secondary replica. Both of these replicas will use the synchronous-commit
availability mode. Only two replicas can support automatic failover.

For information about the synchronous-commit availability mode, see Availability
Modes . For information about automatic failover, see Failover Modes (AlwaysOn
Availability Groups).

Synchronous Commit (Up to 3)

If you selected Automatic Failover (Up to 2) for the replica, Synchronous Commit (Up to
3) is also selected. If the check box is blank, select it only if you want this replica to use
synchronous-commit mode with only planned manual failover. Only three replicas can use
synchronous-commit mode.

If you want this replica to use asynchronous-commit availability mode, leave this checkbox
blank. The replica will support only forced manual failover (with possible data loss). For
information about the asynchronous-commit availability mode, see Availability Modes .

 218

For information about planned manual failover and forced manual failover, see Failover
Modes (AlwaysOn Availability Groups).

Readable Secondary Role

Select a value from the Readable secondary drop list, as follows:

No

No direct connections are allowed to secondary databases of this replica. They are not
available for read access. This is the default setting.

Read-intent only

Only direct read-only connections are allowed to secondary databases of this replica. The
secondary database(s) are all available for read access.

Yes

All connections are allowed to secondary databases of this replica, but only for read access.
The secondary database(s) are all available for read access.

Add Replica

Click to add a secondary replica to the availability group.

Remove Replica

Click to remove the selected secondary replica from the availability group.

Endpoints Tab
For each server instance that will host an availability replica, the Endpoints tab displays actual
values of the existing database mirroring endpoint, if any, or suggested values for a potential
new endpoint that would use Windows Authentication. For both existing and potential
endpoints, the Endpoint values grid displays the following information:
Server Name

Displays the name of a server instance that will host an availability replica.

Endpoint URL

Displays the actual or proposed URL of the database mirroring endpoint. For a proposed new
endpoint, you can change this value. For information the format of these URLs,
see Specifying the Endpoint URL for an Availability Replica (SQL Server).

Port Number

Displays the actual or proposed port number of the endpoint. For a proposed new endpoint,
you can change this value.

Endpoint Name

Displays the actual or proposed name of the endpoint. For a proposed new endpoint, you
can change this value.

 219

Encrypt Data

Indicates whether data sent over this endpoint is encrypted. For a proposed new endpoint,
you can change this setting.

SQL Server Service Account

Username of the SQL Server service account.

For a server instance to use an endpoint that uses Windows Authentication, its SQL Server
service account must be a domain account.

This requirement determines your next configuration step, as follows:

• If every server instance is running under a domain service account, that is, if the SQL
Server Service Account column displays a domain service account for every server
instance, click Next.

• If any server instance is running under a non-domain service account, you need to do
make a manual change to your server instance before you can proceed in the wizard. In
this case, clicking Next brings up a warning dialog box; you should click No, which
returns you to theEndpoints tab. While leaving the wizard on the Specify Replicas
page, make one of the following changes to each server instance for which the SQL
Server Service Account column displays a nondomain service account, either:

• Use the SQL Server Configuration Manager to change the SQL Server service
account to a domain account. For more information, see How to: Change the
Service Startup Account for SQL Server (SQL Server Configuration
Manager).

• Use Transact-SQL or PowerShell to manually create a database mirroring endpoint
that uses a certificate. For more information, see CREATE ENDPOINT
(Transact-SQL) or Create a Database Mirroring Endpoint for
AlwaysOn Availability Groups (SQL Server PowerShell).

If you leave the Specify Availability Replicas page open while you configure endpoints,
return to the Endpoints tab and click Refresh to update the Endpoint values grid.

Backup Preferences Tab
To specify where backups should occur, choose one of the following options:
Prefer Secondary

Specifies that backups should occur on a secondary replica except when the primary replica is
the only replica online. In that case, the backup should occur on the primary replica. This is
the default option.

Secondary only

Specifies that backups should never be performed on the primary replica. If the primary
replica is the only replica online, the backup should not occur.

http://msdn.microsoft.com/en-us/library/d721c796-0397-46a7-901b-1a9a3c3fb385(SQL.110)�
http://msdn.microsoft.com/en-us/library/d721c796-0397-46a7-901b-1a9a3c3fb385(SQL.110)�
http://msdn.microsoft.com/en-us/library/d721c796-0397-46a7-901b-1a9a3c3fb385(SQL.110)�
http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�

 220

Primary

Specifies that the backups should always occur on the primary replica. This option is useful if
you need backup features, such as creating differential backups, that are not supported when
backup is run on a secondary replica.

Any Replica

Specifies that you prefer that backup jobs ignore the role of the availability replicas when
choosing the replica to perform backups. Note backup jobs might evaluate other factors such
as backup priority of each availability replica in combination with its operational state and
connected state.

There is no enforcement of the backup-preference setting. The interpretation of this
preference depends on the logic, if any, that you script into back jobs for the databases
in a given availability group. For more information, see Backup on Secondary Replicas
(AlwaysOn Availability Groups).

Replica backup priorities grid
Use the Replica backup priorities grid to specify your backup priorities for each of replicas of
the availability group. This grid contains the following columns:
Server Instance

Displays the name of the instance of SQL Server that hosts the availability replica.

Backup Priority (Lowest=1, Highest=100)

Assign the priority for backups being performed on this replica relative to the other replicas
in the same availability group. The default value is 50. You can select any other integer in the
range of 0..100. 1 indicates the lowest priority, and 100 indicates the highest priority. If you
set Backup Priority to 1, the availability replica will be choosen for performing backups only
if no higher priority availability replica is currently available.

Exclude Replica

To prevent this availability replica from ever being be chosen for performing backups. This is
useful, for example, for a remote availability replica to which you never want backups to fail
over.

Listener Tab
Specify your preference for an availability group listener that will provide a client connection
point, one of:
Do not create an availability group listener now.

Select to skip this step. You can create a listener later. For more information, see Create or
Configure an Availability Group Listener (SQL Server).

Important

 221

Create an availability group listener.

Specify your listener preferences for this availability group, as follows:

Listener DNS Name

Specify the network name of the listener. This name must be unique on the domain and
can contain only alphanumeric characters, dashes (-), and hyphens (_), in any order. When
specified by using the Listener tab, the DNS name can up to 15 characters long.

Important
If you enter an invalid DNS listener name (or port number) on the Listener tab, the Next button is
disabled on the Specify Replicas page.

Port

Specify the TPC port used by this listener.

Note
If you enter an invalid port number (or DNS listener name) on the Listener tab, the Next button is
disabled on the Specify Replicas page.

Network Mode

Use the drop list to select the network mode to be used by this listener, one of:

Static IP

Select if you want the listener to listen on more than one subnet. To use the static IP
network mode, an availability group listener must listen on every subnet that hosts an
availability replica for the availability group. For each subnet, click Add to select a subnet
address and to specify an IP address.

If Static IP is selected as the network mode (this is the default selection), a grid displays
the Subnet and IP Address columns, and the associated Add and Remove buttons are
displayed. Note that the grid is empty until you add the first subnet.

Subnet column

Displays the subnet address that you selected for each subnet you have added for the
listener.

IP Address column

Displays the IPv4 or IPv6 address that you specified for a given subnet.

Add

Click to add a subnet to this listener. This opens the Add IP Address dialog box. For
more information, see the Add IP Address Dialog Box (SQL Server
Management Studio) help topic.

Remove

Click to remove the subnet that is currently selected in the grid.

DHCP

 222

Select if you want the listener to listen on a single subnet and to use a dynamic IPv4
address that is assigned by a server running the Dynamic Host Configuration Protocol
(DHCP). DHCP is limited to a single subnet that is common to every server instance that
host an availability replica for the availability group.

Important
We do not recommend DHCP in production environment. If there is a down time and the DHCP
IP lease expires, extra time is required to register the new DHCP network IP address that is
associated with the listener DNS name and impact the client connectivity. However, DHCP is good
for setting up your development and testing environment to verify basic functions of availability
groups and for integration with your applications.

When DHCP is selected, the Subnet field is displayed.

Subnet

If you selected DHCP as the network mode, use the Subnet drop list to select an
address for the subnet that hosts the availability replicas of the availability group.

• After you define an availability group listener, we strongly recommend that you do the
following:

Related Tasks
• Use the New Availability Group Wizard (SQL Server Management Studio)
• Use the Add Replica to Availability Group Wizard
• Create or Configure an Availability Group Listener (SQL Server)
• Use Certificates for a Database Mirroring Endpoint (SQL Server)
• CREATE ENDPOINT (Transact-SQL)
• Create a Database Mirroring Endpoint for AlwaysOn Availability Groups (SQL Server

PowerShell)
See Also
Overview of AlwaysOn Availability Groups
CREATE AVAILABILITY GROUP (Transact-SQL)
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)

Select Initial Data Synchronization Page (AlwaysOn Availability Group Wizards)
Use the AlwaysOn Select Initial Data Synchronization page to indicate your preference for
initial data synchronization of new secondary databases. This page is shared by three wizards—
the New Availability Group Wizard, the Add Replica to Availability Group Wizard, and the Add
Database to Availability Group Wizard.

Important

http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�

 223

The possible choices include Full, Join only, or Skip initial data synchronization. Before you
select Full or Join only ensure that your environment meets the prerequisites.
In this topic:
• Recommendations
• Full
• Join only
• Skip initial data synchronization
• To Prepare Secondary Databases Manually
• Related Tasks
Recommendations
• Suspend log backup tasks for the primary databases during initial data synchronization.
• For large database, full backup and restore operations can take extensive time and

resources. In such cases, we recommend that you prepare secondary databases yourself. For
more information, see To Prepare Secondary Databases Manually, later in this topic.

• Full initial data synchronization requires you to specify a network share. Before you use a
wizard to perform full initial data synchronization, we recommend that you implement a
security plan for the access permissions on the network share folder. This precaution is
important because potentially sensitive data in the backup file can be accessed by anyone
who has a READ permission on the folder. Also, to protect your backup and restore
operations, we recommend that you secure the network channels between every server
instance that hosts an availability replica and the network share folder.
If your backup and restore operations must be highly secured, we recommend that you
select either the Join only or Skip initial data synchronization option.

Full
For each primary database, the Full option performs several operations in one workflow: create
a full and log backup of the primary database, create the corresponding secondary databases by
restoring these backups on every server instance that is hosting a secondary replica, and join
each secondary database to availability group.
Select this option only if your environment meets the following prerequisites for using full initial
data synchronization, and you want the wizard to automatically start data synchronization.
Prerequisites for using full initial data synchronization
• All the database-file paths must be identical on every server instance that hosts a replica for

the availability group.

If the backup and restore file paths differ between the server instance where you run
the wizard and any server instance that is to host a secondary replica. The backup
and restore operations must be performed manually using the WITH MOVE option.

Note

 224

For more information, see To Prepare Secondary Databases Manually, later in this
topic.

• No primary database name can exist on any server instance that hosts a secondary replica.
This means that none of the new secondary databases can exist yet.

• You will need to specify a network share in order for the wizard to create and access
backups. For the primary replica, the account used to start the Database Engine must have
read and write file-system permissions on a network share. For secondary replicas, the
account must have read permission on the network share.

The log backups will be part of your log backup chain. Store the log backup files
appropriately.

If prerequisites are not met
The wizard cannot create the secondary databases for this availability group. For information on
how to prepare them, see To Prepare Secondary Databases Manually, later in this topic.
If prerequisites are met
If these prerequisites are all met and you want the wizard to perform full initial data
synchronization, select the Full option and specify a network share. This will cause the wizard to
create full database and log backups of every selected database and to place these backups on
the network share that you specify. Then, on every server instance that hosts one of the new
secondary replicas, the wizard will create the secondary databases by restoring backups using
RESTORE WITH NORECOVERY. After creating each of the secondary databases, the wizard will
join the new secondary database to the availability group. As soon as a secondary database is
joined, data synchronizations starts on that database.
Specify a shared network location accessible by all replicas

To create and restore backups, the wizard requires that you specify a network share. The
account used to start the Database Engine on each server instance that will host an
availability replica must have read and write file-system permissions on the network share.

Important
The log backups will be part of your log backup chain. Store their backup files appropriately.

Join only
Select this option only if the new secondary databases already exist on each server instance that
hosts a secondary replica for the availability group. For information about preparing secondary
databases, see To Prepare Secondary Databases Manually, later in this section.
If you select Join only, the wizard will attempt to join each existing secondary database to the
availability group.
Skip initial data synchronization

Important

 225

Select this option if you want to perform your own database and log backups of every primary
database, restore them to every server instance that hosts a secondary replica. After you exit the
wizard, you will then need to join every secondary database on every secondary replica.

For more information, see Manually Start Data Synchronization on an AlwaysOn
Secondary Database (SQL Server).

To Prepare Secondary Databases Manually
To prepare secondary databases independently of any AlwaysOn Availability Groups wizard, you
can use either of the following approaches:
• Manually restore a recent database backup of the primary database using RESTORE WITH

NORECOVERY, and then restore each subsequent log backup using RESTORE WITH
NORECOVERY. If the primary and secondary databases have different file paths, you must
use the WITH MOVE option. Perform this restore sequence on every server instance that
hosts a secondary replica for the availability group. You can use Transact-SQL or PowerShell
to perform these backup and restore operations.
For more information:
Manually Prepare a Secondary Database for an Availability Group (SQL Server)

• If you are adding one or more log shipping primary databases to an availability group, you
might be able to migrate one or more of the corresponding secondary databases from log
shipping to AlwaysOn Availability Groups. For more information, see Prerequisites for
Migrating from Log Shipping to AlwaysOn Availability Groups (SQL Server).

After you have created all the secondary databases for the availability group, if you
want to perform backups on secondary replicas, you will need to re-configure the
automated backup preference of the availability group.

For more information:
Prerequisites for Migrating from Log Shipping to AlwaysOn Availability Groups (SQL Server)
Configure Backup on Availability Replicas (SQL Server)

After creating a secondary database, apply all current log backups to the new secondary
database.
Optionally, you can prepare all the secondary databases before you run the wizard. Then, on the
wizard's Specify Initial Data Synchronization page, select Join only to automatically join your
new secondary databases to the availability group.

Related Tasks
• Use the New Availability Group Wizard
• Use the Add Replica to Availability Group Wizard

Note

Note

 226

• Use the Add Database to Availability Group Wizard
• Use the Fail Over Availability Group Wizard
• Manually Start Data Synchronization on an AlwaysOn Secondary Database (SQL Server)
• Join a Secondary Database to an Availability Group (SQL Server)
• Use the New Availability Group Dialog Box (SQL Server Management Studio)

See Also
Overview of AlwaysOn Availability Groups

Validation Page (AlwaysOn Availability Group Wizards)
This help topic describes the options of the Validation page. This topic applies to the New
Availability Group Wizard, Add Replica to Availability Group Wizard, and Add Database to
Availability Group Wizard of SQL Server 2012. Use this page to validate that your environment
supports all the configuration choices you made on previous pages of the wizard.
Validation Page Options
Results of availability group validation.

This grid displays the results of each completed validation step. The grid columns are as
follows:

Name

Displays a phrase that describes a specific step.

Result

Displays one of the following hyperlink texts. For more information about the result of
given validation step, click the hyperlink.

Result Description

Error Indicates that the validation step failed.
Click the link to view the error message.

Skipped Indicates that the validation step was
skipped because it is not required by your
selections. Click the link to view the reason
that a step was skipped.

Success Indicates that the validation step
completed successfully

Warning Indicates a potential issue with the
availability group configuration. Click the
link to view the warning message.

 227

Re-run Validation

Click to repeat the validation steps if you make a change outside of the wizard in response to
a validation error.

Related Tasks

• Use the New Availability Group Wizard
• Use the Add Replica to Availability Group Wizard
• Use the Add Database to Availability Group Wizard

See Also
AlwaysOn Availability Groups

Summary Page (AlwaysOn Availability Group Wizards)
This help topic describes the options of the Summary page. This topic applies to the New
Availability Group Wizard, Add Replica to Availability Group Wizard, Add Database to Availability
Group Wizard and Fail Over Availability Group Wizard of SQL Server 2012. Use the grid on this
page to review your choices for the new availability group. To make one or more changes, click
Previous to return to the relevant page or pages. When you are ready, click Next to return to
the Summary page. Once you are satisfied with your choices, click Finish.
Summary Page Options
Script

Click to generate a Transact-SQL script for the actions listed in the summary grid. You will be
prompted to specify a destination for the script.

Previous

Click to return to the page immediately preceding the current page. You can use the
Previous button to navigate backward to any of the preceding pages and, optionally, change
any of your specified values.

Finish

Once you are satisfied with your choices, click to make the wizard proceed with creating the
availability group.

Cancel

Click to cancel the wizard. On the Summary page, cancelling the wizard causes it to exit
without performing any actions.

Related Tasks

 228

• Use the New Availability Group Wizard
• Use the Add Replica to Availability Group Wizard
• Use the Add Database to Availability Group Wizard
• Use the Fail Over Availability Group Wizard

See Also
AlwaysOn Availability Groups

Progress Page (AlwaysOn Availability Group Wizards)
Use this dialog box to view the progress of a AlwaysOn Availability Groups wizard that you are
running in SQL Server 2012. The progress bar indicates the relative progress of the steps that
the wizard is performing.
UI Element List
More details

Click the down arrow to display a progress grid that lists any completed steps, in order,
followed by the current in-progress operation. The grid contains the following columns:

Name

Displays a phrase that describes a specific step.

Status

Indicates the outcome of completed steps and the percentage of completion of the
current step, as follows:

Result Description

Error Indicates the operation for this step
experienced an error. Click the link to
display a message dialog box that
describes the error.

In Progress (percentage-completed) Indicates that the operation is occurring
now and estimates the percentage of this
step that has completed.

Success Indicates the operation for this step
completed successfully.

Fewer Details

Click to hide the progress grid.

 229

Cancel

Click to skip any remaining operations and then exit the wizard.

Related Tasks
• Use the New Availability Group Wizard
• Use the Add Replica to Availability Group Wizard
• Use the Add Database to Availability Group Wizard
• Use the Fail Over Availability Group Wizard
See Also
Overview of AlwaysOn Availability Groups (SQL Server)

Results Page (AlwaysOn Availability Group Wizards)
This help topic describes the options of the Results page. This topic applies to the New
Availability Group Wizard, Add Replica to Availability Group Wizard, Add Database to Availability
Group Wizard, and Fail Over Availability Group Wizard of SQL Server 2012. Use this page to view
the results of the wizard.
Results Page Options
The Summary grid contains the following columns:
Name

Displays a phrase that describes a specific operation.

Result

For each completed step, displays one of the following hyperlink texts.

Result Description

Error Indicates that the validation step failed.
Click the link to view the error message.

Success Indicates that the validation step
completed successfully.

Related Tasks
• Use the New Availability Group Wizard
• Use the Add Replica to Availability Group Wizard
• Use the Add Database to Availability Group Wizard
• Use the Fail Over Availability Group Wizard

See Also

 230

AlwaysOn Availability Groups

Use the New Availability Group Dialog Box (SQL Server Management
Studio)
This topic contains information about how to use the New Availability Group dialog box of
SQL Server Management Studio to create an AlwaysOn availability group on instances of SQL
Server 2012 that are enabled for AlwaysOn Availability Groups. An availability group defines a
set of user databases that will fail over as a single unit and a set of failover partners, known as
availability replicas, that support failover.

For an introduction to availability groups, see AlwaysOn Availability Groups.
• Before you begin:

Prerequisites
Limitations
Security
Summary of Tasks and Corresponding Transact-SQL Statements

• To create an availability group, using: The New Availability Group Dialog Box
• Follow up: After Using the New Availability Group Dialog Box to Create an Availability

Group

For information about alternative ways to create an availability group, see Related Tasks,
later in this topic.

Before You Begin
We strongly recommend that you read this section before attempting to create your first
availability group.
Prerequisites
• Before creating an availability group, verify that the instances of SQL Server that host

availability replicas reside on different Windows Server Failover Clustering (WSFC) node
within the same WSFC failover cluster. Also, verify that each of the server instance is enabled
for AlwaysOn Availability Groups and meets all other AlwaysOn Availability Groups
prerequisites. For more information, we strongly recommend that you read Prerequisites,
Restrictions, and Recommendations (AlwaysOn Availability Groups).

• Before you create an availability group, ensure that every server instance that will host an
availability replica has a fully functioning database mirroring endpoint. For more information,
see Database Mirroring Endpoint.

• To use the New Availability Group dialog box, you need to know the names of the server
instances that will host availability replicas. Also, you need know the names of any databases

Note

Note

 231

that you intend to add to your new availability group, and you need to ensure that these
databases meet the availability database prerequisites and restrictions described
in Prerequisites, Restrictions, and Recommendations (AlwaysOn Availability Groups). If you
enter invalid values, the new availability group will not work.

Limitations
The New Availability Group dialog box does not:
• Create an availability group listener.
• Join secondary replicas to the availability group.
• Perform initial data synchronization.
For information about these configuration tasks, see Follow Up: After Creating an Availability
Group, later in this topic.
Security
Permissions
Requires membership in the sysadmin fixed server role and either CREATE AVAILABILITY GROUP
server permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL SERVER
permission.

Using the New Availability Group Dialog Box (SQL Server Management Studio)
To create an availability group
1. In Object Explorer, connect to the server instance that hosts the primary replica, and click the

server name.
2. Expand the AlwaysOn High Availability node.
3. Right-click the Availability Groups node, and select the New Availability Group command.
4. This command opens up the New Availability Group dialog box.
5. On the General page, use the Availability group name field to enter a name for the new

availability group. This name must be a valid SQL Server identifier that is unique across all
availability groups in the WSFC cluster. The maximum length for an availability group name
is 128 characters.

6. In the Availability Databases grid, click Add and enter the name of a local database that
you want to belong to this availability group. Repeat this for every database to be added.
When you click OK, the dialog will verify whether your specified database meet the
prerequisites for belonging to an availability group. For information about these
prerequisites, see Prerequisites, Restrictions, and Recommendations for AlwaysOn
Availability Groups.

7. In the Availability Databases grid, click Add and enter the name of a server instance to
host a secondary replica. The dialog will not attempt to connect to these instances. If you
specify an incorrect server name, a secondary replica will be added but you will be unable to
connect to that replica.

 232

If you have added a replica and cannot connect to the host server instance, you can
remove the replica and add a new one. For more information, see Remove a
Secondary Replica from an Availability Group (SQL Server) and Add a Secondary
Replica to an Availability Group (SQL Server).

8. On the Select a page pane of the dialog box, click Backup Preferences. Then, on the
Backup Preferences page, specify where backups should occur based on replica role and
assign backup priorities to each server instances that will host an availability replica for this
availability group. For more information, see Availability Group Properties/New Availability
Group (Backup Preferences Page).

9. To create the availability group, click OK. This causes the dialog to verify whether that
specified databases meet the prerequisites.
To exit the dialog box without creating the availability group, click Cancel.

Follow Up: After Using the New Availability Group Dialog Box to Create an
Availability Group
• You will need to connect, in turn, to each server instance that is hosting a secondary replica

for the availability group and complete the following steps:
a. Join the secondary replica to the availability group. For more information, see Join a

Secondary Replica to an Availability Group (SQL Server).
b. Restore current backups of each primary database and its transaction log (using

RESTORE WITH NORECOVERY). For more information, see Prepare a Secondary Database
for an Availability Group (SQL Server).

c. Immediately join each newly prepared secondary database to the availability group. For
more information, see Join a Secondary Database to an Availability Group (SQL Server).

• We recommend that you create an availability group listener for the new availability group.
This requires that you be connected to the server instance that hosts the current primary
replica. For more information, see Create or Configure an Availability Group Listener (SQL
Server).

Related Tasks
To configure availability group and replica properties
• Set the Availability Mode of an Availability Replica (SQL Server)
• Set the Failover Mode of an Availability Replica (SQL Server)
• Create or Configure an Availability Group Listener (SQL Server)
• Configure the Flexible Failover Policy to Control Conditions for Automatic Failover

(AlwaysOn Availability Groups)

Tip

 233

• Specify the Endpoint URL When Adding or Modifying an Availability Replica (AlwaysOn
Availability Groups)

• Configure Backup on Availability Replicas (SQL Server)
• Configure Connection Access on an Availability Replica (SQL Server)
• Configure Read-Only Routing on an Availability Group (SQL Server)
• Change the Session-Timeout Period for an Availability Replica (SQL Server)
To complete availability group configuration
• Join a Secondary Replica to an Availability Group (SQL Server)
• Manually Prepare a Secondary Database for an Availability Group (SQL Server)
• Join a Secondary Database to an Availability Group (SQL Server)
• Create or Configure an Availability Group Listener (SQL Server)
Alternative ways to create an availability group
• Use the New Availability Group Wizard (SQL Server Management Studio)
• Create an Availability Group (Transact-SQL)
• Create and Configure an Availability Group (SQL Server PowerShell)
To enable AlwaysOn Availability Groups
• Enable and Disable the AlwaysOn Availability Groups Feature (SQL Server)
To configure a database mirroring endpoint
• Create a Database Mirroring Endpoint for AlwaysOn Availability Groups (SQL Server

PowerShell)
• Create a Mirroring Endpoint for Windows Authentication (Transact-SQL)
• Use Certificates for a Database Mirroring Endpoint
• Specify the Endpoint URL When Adding or Modifying an Availability Replica (SQL Server)
To troubleshoot AlwaysOn Availability Groups configuration
• Troubleshoot AlwaysOn Availability Groups Configuration (SQL Server)
• Troubleshoot a Failed Add-File Operation (AlwaysOn Availability Groups)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery

See Also
AlwaysOn Availability Groups (SQL Server)
Database Mirroring Endpoint
Client Connectivity and Application Failover (AlwaysOn Availability Groups)
Prerequisites, Restrictions, and Recommendations (AlwaysOn Availability Groups)

http://go.microsoft.com/fwlink/?LinkId=227600�

 234

Create an Availability Group (Transact-SQL)
This topic describes how to use Transact-SQL to create and configure an availability group on
instances of SQL Server 2012 on which the AlwaysOn Availability Groups feature is enabled. An
availability group defines a set of user databases that will fail over as a single unit and a set of
failover partners, known as availability replicas, that support failover.

For an introduction to availability groups, see Overview (AlwaysOn Availability Groups).
• Before you begin:

Prerequisites
Security
Summary of Tasks and Corresponding Transact-SQL Statements

• To create and configure an availability group, using: Transact-SQL
• Example: Configuring an Availability Group that Uses Windows Authentication
• Related Tasks
• Related Content

As an alternative to using Transact-SQL, you can use the Create Availability Group wizard
or SQL Server PowerShell cmdlets. For more information, see Use the New Availability
Group Wizard (SQL Server Management Studio), Use the New Availability Group Dialog
Box (SQL Server Management Studio), or Create an Availability Group (SQL Server
PowerShell).

Before You Begin
We strongly recommend that you read this section before attempting to create your first
availability group.
Prerequisites, Restrictions, and Recommendations
• Before creating an availability group, verify that the instances of SQL Server that host

availability replicas reside on different Windows Server Failover Clustering (WSFC) node
within the same WSFC failover cluster. Also, verify that each of the server instance meets all
other AlwaysOn Availability Groups prerequisites. For more information, we strongly
recommend that you read Prerequisites, Restrictions, and Recommendations (AlwaysOn
Availability Groups).

Security
Permissions
Requires membership in the sysadmin fixed server role and either CREATE AVAILABILITY GROUP
server permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL SERVER
permission.

Note

Note

 235

Summary of Tasks and Corresponding Transact-SQL Statements
The following table lists the basic tasks involved in creating and configuring an availability group
and indicates which Transact-SQL statements to use for these tasks. The AlwaysOn Availability
Groups tasks must be performed in the sequence in which they are presented in the table.

Task Transact-SQL Statement(s) Where to Perform Task*

Create database mirroring
endpoint (once per SQL
Server instance)

CREATE ENDPOINT
endpointName … FOR
DATABASE_MIRRORING

Execute on each server
instance that lacks database
mirroring endpoint.

Create availability group CREATE AVAILABILITY GROUP Execute on the server
instance that is to host the
initial primary replica.

Join secondary replica to
availability group

ALTER AVAILABILITY GROUP
group_name JOIN

Execute on each server
instance that hosts a
secondary replica.

Prepare the secondary
database

BACKUP and RESTORE. Create backups on the server
instance that hosts the
primary replica.
Restore backups on each
server instance that hosts a
secondary replica, using
RESTORE WITH
NORECOVERY.

Start data synchronization by
joining each secondary
database to availability group

ALTER DATABASE database_name
SET HADR AVAILABILITY GROUP
= group_name

Execute on each server
instance that hosts a
secondary replica.

* To perform a given task, connect to the indicated server instance or instances.

Using Transact-SQL to Create and Configure an Availability Group

For a sample configuration procedure containing code examples of each these Transact-
SQL statements, see Example: Configuring an Availability Group that Uses Windows
Authentication.

1. Connect to the server instance that is to host the primary replica.
2. Create the availability group by using the CREATE AVAILABILITY GROUP Transact-SQL

statement.

Note

http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/20e6e803-d6d5-48d5-b626-d1e0a73d174c(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�

 236

3. Join the new secondary replica to the availability group. For more information, see Joining a
Secondary Replica to an Availability Group (SQL Server).

4. For each database in the availability group, create a secondary database by restoring recent
backups of the primary database, using RESTORE WITH NORECOVERY. For more
information, see Example: Setting Up an Availability Group Using Windows Authentication
(Transact-SQL), starting with the step that restores the database backup.

5. Join every new secondary database to the availability group. For more information,
see Joining a Secondary Replica to an Availability Group (SQL Server).

Example: Configuring an Availability Group that Uses Windows Authentication
This example creates a sample AlwaysOn Availability Groups configuration procedure that uses
Transact-SQL to set up database mirroring endpoints that use Windows Authentication and to
create and configure an availability group and its secondary databases.
This example contains the following sections:
• Prerequisites for Using the Sample Configuration Procedure
• Sample Configuration Procedure
• Complete Code Example for Sample Configuration Procedure
Prerequisites for Using the Sample Configuration Procedure
This sample procedure has the following requirements:
• The server instances must support AlwaysOn Availability Groups. For more information,

see "HADR" Prerequisites and Restrictions.
• Two sample databases, MyDb1 and MyDb2, must exist on the server instance that will host

the primary replica. The following code examples create and configure these two databases
and create a full backup of each. Execute these code examples on the server instance on
which you intend to create the sample availability group. This server instance will host the
initial primary replica of the sample availability group.
a. The following Transact-SQL example creates these databases and alters them to use the

full recovery model:

-- Create sample databases:

CREATE DATABASE MyDb1;

GO

ALTER DATABASE MyDb1 SET RECOVERY FULL;

GO

CREATE DATABASE MyDb2;

GO

ALTER DATABASE MyDb2 SET RECOVERY FULL;

 237

GO

b. The following code example creates a full database backup of MyDb1 and MyDb2. This
code example uses a fictional backup share, \\FILESERVER\SQLbackups.

-- Backup sample databases:

BACKUP DATABASE MyDb1

TO DISK = N'\\FILESERVER\SQLbackups\MyDb1.bak'

 WITH FORMAT

GO

BACKUP DATABASE MyDb2

TO DISK = N'\\FILESERVER\SQLbackups\MyDb2.bak'

 WITH FORMAT

GO

[TopOfExample]
Sample Configuration Procedure
In this sample configuration, the availability replica will be created on two stand-alone server
instances whose service accounts run under different, but trusted, domains (DOMAIN1 and
DOMAIN2).
The following table summarizes the values used in this sample configuration.

Initial role System Host SQL Server Instance

Primary COMPUTER01 AgHostInstance

Secondary COMPUTER02 Default instance.

1. Create a database mirroring endpoint named dbm_endpoint on the server instance on which

you plan to create the availability group (this is an instance named AgHostInstance on
COMPUTER01). This endpoint uses port 7022. Note that the server instance on which you
create the availability group will host the primary replica.

-- Create endpoint on server instance that hosts the primary replica:

CREATE ENDPOINT dbm_endpoint

 STATE=STARTED

 AS TCP (LISTENER_PORT=7022)

 FOR DATABASE_MIRRORING (ROLE=ALL)

 238

GO

2. Create an endpoint dbm_endpoint on the server instance that will host the secondary replica
(this is the default server instance on COMPUTER02). This endpoint uses port 5022.

-- Create endpoint on server instance that hosts the secondary

replica:

CREATE ENDPOINT dbm_endpoint

 STATE=STARTED

 AS TCP (LISTENER_PORT=5022)

 FOR DATABASE_MIRRORING (ROLE=ALL)

GO

3.

If the service accounts of the server instances that are to host your availability
replicas run under the same domain account this step is unnecessary. Skip it and go
directly to the next step.

If the service accounts of the server instances run under different domain users, on each
server instance, create a login for the other server instance and grant this login permission to
access the local database mirroring endpoint.
The following code example shows the Transact-SQL statements for creating a login and
granting it permission on an endpoint. The domain account of the remote server instance is
represented here as domain_name\user_name.

-- If necessary, create a login for the service account,

domain_name\user_name

-- of the server instance that will host the other replica:

USE master;

GO

CREATE LOGIN [domain_name\user_name] FROM WINDOWS;

GO

-- And Grant this login connect permissions on the endpoint:

GRANT CONNECT ON ENDPOINT::dbm_endpoint

 TO [domain_name\user_name];

GO

Note

 239

4. On the server instance where the user databases reside, create the availability group.
The following code example creates an availability group named MyAG on the server
instance on which the sample databases, MyDb1 and MyDb2, were created. The local server
instance, AgHostInstance, on COMPUTER01 is specified first. This instance will host the
initial primary replica. A remote server instance, the default server instance on COMPUTER02,
is specified to host a secondary replica. Both availability replica are configured to use
asynchronous-commit mode with manual failover (for asynchronous-commit replicas
manual failover means forced failover with possible data loss).

-- Create the availability group, MyAG:

CREATE AVAILABILITY GROUP MyAG

 FOR

 DATABASE MyDB1, MyDB2

 REPLICA ON

 'COMPUTER01\AgHostInstance' WITH

 (

 ENDPOINT_URL = 'TCP://COMPUTER01.Adventure-Works.com:7022',

 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,

 FAILOVER_MODE = MANUAL

),

 'COMPUTER02' WITH

 (

 ENDPOINT_URL = 'TCP://COMPUTER02.Adventure-Works.com:5022',

 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,

 FAILOVER_MODE = MANUAL

);

GO

For additional Transact-SQL code examples of creating an availability group, see CREATE
AVAILABILITY GROUP (Transact-SQL).

5. On the server instance that hosts the secondary replica, join the secondary replica to the
availability group.
The following code example joins the secondary replica on COMPUTER02 to the MyAG
availability group.

-- On the server instance that hosts the secondary replica,

-- join the secondary replica to the availability group:

ALTER AVAILABILITY GROUP MyAG JOIN;

GO

http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://www.TCP://COMPUTER01.Adventure-Works.com:7022
http://www.TCP://COMPUTER02.Adventure-Works.com:5022

 240

6. On the server instance that hosts the secondary replica, create the secondary databases.
The following code example creates the MyDb1 and MyDb2 secondary databases by
restoring database backups using RESTORE WITH NORECOVERY.

-- On the server instance that hosts the secondary replica,

-- Restore database backups using the WITH NORECOVERY option:

RESTORE DATABASE MyDb1

 FROM DISK = N'\\FILESERVER\SQLbackups\MyDb1.bak'

 WITH NORECOVERY

GO

RESTORE DATABASE MyDb2

 FROM DISK = N'\\FILESERVER\SQLbackups\MyDb2.bak'

 WITH NORECOVERY

GO

7. On the server instance that hosts the primary replica, back up the transaction log on each of
the primary databases.

When you are configuring a real availability group, we recommend that, before
taking this log backup, you suspend log backup tasks for your primary databases
until you have joined the corresponding secondary databases to the availability
group.

The following code example creates a transaction log backup on MyDb1 and on MyDb2.
-- On the server instance that hosts the primary replica,

-- Backup the transaction log on each primary database:

BACKUP LOG MyDb1

TO DISK = N'\\FILESERVER\SQLbackups\MyDb1.bak'

 WITH NOFORMAT

GO

BACKUP LOG MyDb2

TO DISK = N'\\FILESERVER\SQLbackups\MyDb2.bak'

 WITHNOFORMAT

GO

Important

 241

Typically, a log backup must be taken on each primary database and then restored
on the corresponding secondary database (using WITH NORECOVERY). However, this
log backup might be unnecessary if the database has just been created and no log
backup has been taken yet or the recovery model has just been changed from
SIMPLE to FULL.

8. On the server instance that hosts the secondary replica, apply log backups to the secondary
databases.
The following code example applies backups to MyDb1 and MyDb2 secondary databases by
restoring database backups using RESTORE WITH NORECOVERY.

When you are preparing a real secondary database, you need to apply every log
backup taken since the database backup from which you created the secondary
database, starting with the earliest and always using RESTORE WITH NORECOVERY.
Of course, if you restore both full and differential database backups, you would only
need to apply the log backups taken after the differential backup.

-- Restore the transaction log on each secondary database,

-- using the WITH NORECOVERY option:

RESTORE LOG MyDb1

 FROM DISK = N'\\FILESERVER\SQLbackups\MyDb1.bak'

 WITH FILE=1, NORECOVERY

GO

RESTORE LOG MyDb2

 FROM DISK = N'\\FILESERVER\SQLbackups\MyDb2.bak'

 WITH FILE=1, NORECOVERY

GO

9. On the server instance that hosts the secondary replica, join the new secondary databases to
the availability group.
The following code example, joins the MyDb1 secondary database and then the MyDb2
secondary databases to the MyAG availability group.
-- On the server instance that hosts the secondary replica,

-- join each secondary database to the availability group:

ALTER DATABASE MyDb1 SET HADR AVAILABILITY GROUP = MyAG;

GO

Tip

Important

 242

ALTER DATABASE MyDb2 SET HADR AVAILABILITY GROUP = MyAG;

GO

[TopOfExample]
Complete Code Example for Sample Configuration Procedure
The following example merges the code examples from all the steps of the sample configuration
procedure. The following table summarized the placeholder values used in this code example.
For more information about the steps in this code example, see Prerequisites for Using the
Sample Configuration Procedure and Sample Configuration Procedure, earlier in this topic.

Placeholder Description

\\FILESERVER\SQLbackups Fictional backup share.

\\FILESERVER\SQLbackups\MyDb1.bak Backup file for MyDb1.

\\FILESERVER\SQLbackups\MyDb2.bak Backup file for MyDb2.

7022 Port number assigned to each database
mirroring endpoint.

COMPUTER01\AgHostInstance Server instance that hosts the initial primary
replica.

COMPUTER02 Server instance that hosts the initial
secondary replica. This is the default server
instance on COMPUTER02.

dbm_endpoint Name specified for each database mirroring
endpoint.

MyAG Name of sample availability group.

MyDb1 Name of first sample database.

MyDb2 Name of second sample database.

DOMAIN1\user1 Service account of the server instance that
is to host the initial primary replica.

DOMAIN2\user2 Service account of the server instance that
is to host the initial secondary replica.

TCP://COMPUTER01.Adventure-
Works.com:7022

Endpoint URL of the AgHostInstance
instance of SQL Server on COMPUTER01.

TCP://COMPUTER02.Adventure-
Works.com:5022

Endpoint URL of the default instance of
SQL Server on COMPUTER02.

http://www.TCP://COMPUTER01.Adventure-Works.com:7022
www.TCP://COMPUTER02.Adventure-Works.com:5022
www.TCP://COMPUTER02.Adventure-Works.com:5022

 243

For additional Transact-SQL code examples of creating an availability group, see CREATE
AVAILABILITY GROUP (Transact-SQL).

-- on the server instance that will host the primary replica,

-- create sample databases:

CREATE DATABASE MyDb1;

GO

ALTER DATABASE MyDb1 SET RECOVERY FULL;

GO

CREATE DATABASE MyDb2;

GO

ALTER DATABASE MyDb2 SET RECOVERY FULL;

GO

-- Backup sample databases:

BACKUP DATABASE MyDb1

TO DISK = N'\\FILESERVER\SQLbackups\MyDb1.bak'

 WITH FORMAT

GO

BACKUP DATABASE MyDb2

TO DISK = N'\\FILESERVER\SQLbackups\MyDb2.bak'

 WITH FORMAT

GO

-- Create the endpoint on the server instance that will host the primary

replica:

CREATE ENDPOINT dbm_endpoint

 STATE=STARTED

 AS TCP (LISTENER_PORT=7022)

 FOR DATABASE_MIRRORING (ROLE=ALL)

GO

Note

http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�
http://msdn.microsoft.com/en-us/library/a3d55df7-b4e4-43f3-a14b-056cba36ab98(SQL.110)�

 244

-- Create the endpoint on the server instance that will host the secondary

replica:

CREATE ENDPOINT dbm_endpoint

 STATE=STARTED

 AS TCP (LISTENER_PORT=7022)

 FOR DATABASE_MIRRORING (ROLE=ALL)

GO

-- If both service accounts run under the same domain account, skip this

step. Otherwise,

-- On the server instance that will host the primary replica,

-- create a login for the service account

-- of the server instance that will host the secondary replica,

DOMAIN2\user2,

-- and grant this login connect permissions on the endpoint:

USE master;

GO

CREATE LOGIN [DOMAIN2\user2] FROM WINDOWS;

GO

GRANT CONNECT ON ENDPOINT::dbm_endpoint

 TO [DOMAIN2\user2];

GO

-- If both service accounts run under the same domain account, skip this

step. Otherwise,

-- On the server instance that will host the secondary replica,

-- create a login for the service account

-- of the server instance that will host the primary replica, DOMAIN1\user1,

-- and grant this login connect permissions on the endpoint:

USE master;

GO

CREATE LOGIN [DOMAIN1\user1] FROM WINDOWS;

 245

GO

GRANT CONNECT ON ENDPOINT::dbm_endpoint

 TO [DOMAIN1\user1];

GO

-- On the server instance that will host the primary replica,

-- create the availability group, MyAG:

CREATE AVAILABILITY GROUP MyAG

 FOR

 DATABASE MyDB1, MyDB2

 REPLICA ON

 'COMPUTER01\AgHostInstance' WITH

 (

 ENDPOINT_URL = 'TCP://COMPUTER01.Adventure-Works.com:7022',

 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,

 FAILOVER_MODE = AUTOMATIC

),

 'COMPUTER02' WITH

 (

 ENDPOINT_URL = 'TCP://COMPUTER02.Adventure-Works.com:7022',

 AVAILABILITY_MODE = SYNCHRONOUS_COMMIT,

 FAILOVER_MODE = AUTOMATIC

);

GO

-- On the server instance that hosts the secondary replica,

-- join the secondary replica to the availability group:

ALTER AVAILABILITY GROUP MyAG JOIN;

GO

-- Restore database backups onto this server instance, using RESTORE WITH

NORECOVERY:

RESTORE DATABASE MyDb1

 FROM DISK = N'\\FILESERVER\SQLbackups\MyDb1.bak'

http://www.TCP://COMPUTER01.Adventure-Works.com:7022
http://www.TCP://COMPUTER02.Adventure-Works.com:7022

 246

 WITH NORECOVERY

GO

RESTORE DATABASE MyDb2

 FROM DISK = N'\\FILESERVER\SQLbackups\MyDb2.bak'

 WITH NORECOVERY

GO

-- Back up the transaction log on each primary database:

BACKUP LOG MyDb1

TO DISK = N'\\FILESERVER\SQLbackups\MyDb1.bak'

 WITH NOFORMAT

GO

BACKUP LOG MyDb2

TO DISK = N'\\FILESERVER\SQLbackups\MyDb2.bak'

 WITHNOFORMAT

GO

-- Restore the transaction log on each secondary database,

-- using the WITH NORECOVERY option:

RESTORE LOG MyDb1

 FROM DISK = N'\\FILESERVER\SQLbackups\MyDb1.bak'

 WITH FILE=1, NORECOVERY

GO

RESTORE LOG MyDb2

 FROM DISK = N'\\FILESERVER\SQLbackups\MyDb2.bak'

 WITH FILE=1, NORECOVERY

GO

-- On the server instance that hosts the secondary replica,

-- join each secondary database to the availability group:

ALTER DATABASE MyDb1 SET HADR AVAILABILITY GROUP = MyAG;

 247

GO

ALTER DATABASE MyDb2 SET HADR AVAILABILITY GROUP = MyAG;

GO

[TopOfExample]
Related Tasks
To configure availability group and replica properties
• Set the Availability Mode of an Availability Replica (SQL Server)
• Set the Failover Mode of an Availability Replica (SQL Server)
• Create or Configure an Availability Group Listener (SQL Server)
• Configure the Flexible Failover Policy to Control Conditions for Automatic Failover

(AlwaysOn Availability Groups)
• Specify the Endpoint URL When Adding or Modifying an Availability Replica (AlwaysOn

Availability Groups)
• Configure Backup on Availability Replicas (SQL Server)
• Configure Connection Access on an Availability Replica (SQL Server)
• Configure Read-Only Routing on an Availability Group (SQL Server)
• Change the Session-Timeout Period for an Availability Replica (SQL Server)
To complete availability group configuration
• Join a Secondary Replica to an Availability Group (SQL Server)
• Manually Prepare a Secondary Database for an Availability Group (SQL Server)
• Join a Secondary Database to an Availability Group (SQL Server)
• Create or Configure an Availability Group Listener (SQL Server)
Alternative ways to create an availability group
• Use the New Availability Group Wizard (SQL Server Management Studio)
• Use the New Availability Group Dialog Box (SQL Server Management Studio)
• Create and Configure an Availability Group (SQL Server PowerShell)
To enable AlwaysOn Availability Groups
• Enable and Disable the AlwaysOn Availability Groups Feature (SQL Server)
To configure a database mirroring endpoint
• Create a Database Mirroring Endpoint for AlwaysOn Availability Groups (SQL Server

PowerShell)
• Create a Mirroring Endpoint for Windows Authentication (Transact-SQL)
• Use Certificates for a Database Mirroring Endpoint
• Specify the Endpoint URL When Adding or Modifying an Availability Replica (SQL Server)

 248

To troubleshoot AlwaysOn Availability Groups configuration
• Troubleshoot AlwaysOn Availability Groups Configuration (SQL Server)
• Troubleshoot a Failed Add-File Operation (AlwaysOn Availability Groups)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
Database Mirroring Endpoint
Overview of AlwaysOn Availability Groups
Client Connectivity and Application Failover (AlwaysOn Availability Groups)
Prerequisites, Restrictions, and Recommendations (AlwaysOn Availability Groups)

Create an Availability Group (SQL Server PowerShell)
This topic describes how to use PowerShell cmdlets to create and configure an AlwaysOn
availability group by using PowerShell in SQL Server 2012. An availability group defines a set of
user databases that will fail over as a single unit and a set of failover partners, known as
availability replicas, which support failover.

For an introduction to availability groups, see Overview of AlwaysOn Availability Groups
(SQL Server).

• Before you begin:
Prerequisites, Restrictions, and Recommendations
Security
Summary of Tasks and Corresponding PowerShell Cmdlets
To Set Up and Use the SQL Server PowerShell Provider

• To create and configure an availability group, using: Using PowerShell to Create and
Configure an Availability Group

• Examples: Using PowerShell to Create an Availability Group
• Related Tasks
• Related Content

As an alternative to using PowerShell cmdlets, you can use the Create Availability Group
wizard or Transact-SQL. For more information, see Using the New Availability Group

Note

Note

http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 249

Wizard (SQL Server Management Studio) or Creating and Configuring an Availability
Group (Transact-SQL).

Before You Begin
We strongly recommend that you read this section before attempting to create your first
availability group.
Prerequisites, Restrictions, and Recommendations
• Before creating an availability group, verify that the host instances of SQL Server each

resides on a different Windows Server Failover Clustering (WSFC) node of a single WSFC
failover cluster. Also, verify that your server instances met the other server-instance
prerequisites and that all of the other AlwaysOn Availability Groups requirements are meet
and that you are aware of the recommendations. For more information, we strongly
recommend that you read Prerequisites, Restrictions, and Recommendations (AlwaysOn
Availability Groups).

Security
Permissions
Requires membership in the sysadmin fixed server role and either CREATE AVAILABILITY GROUP
server permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL SERVER
permission.

Summary of Tasks and Corresponding PowerShell Cmdlets
The following table lists the basic tasks involved in configuring an availability group and
indicates those that are supported by PowerShell cmdlets. The AlwaysOn Availability Groups
tasks must be performed in the sequence in which they are presented in the table.

Task PowerShell Cmdlets (if Available) or
Transact-SQL Statement

Where to Perform Task*

Create database mirroring
endpoint (once per SQL
Server instance)

New-SqlHadrEndPoint Execute on each server instance
that lacks database mirroring
endpoint.

Note
To alter an existing
database mirroring
endpoint, use Set-
SqlHadrEndpoint.

Create availability group First, use the New-
SqlAvailabilityReplica cmdlet
with the -AsTemplate

Execute on the server instance
that is to host the initial primary
replica.

 250

Task PowerShell Cmdlets (if Available) or
Transact-SQL Statement

Where to Perform Task*

parameter to create an in-
memory availability-replica
object for each of the two
availability replicas that you plan
to include in the availability
group.
Then, create the availability
group by using the New-
SqlAvailabilityGroup cmdlet
and referencing your
availability-replica objects.

Join secondary replica to
availability group

Join-SqlAvailabilityGroup Execute on each server instance
that is hosts a secondary replica.

Prepare the secondary
database

Backup-SqlDatabase and
Restore-SqlDatabase

Create backups on the server
instance that hosts the primary
replica.
Restore backups on each server
instance that hosts a secondary
replica, using the NoRecovery
restore parameter. If the file
paths differ between the
computers that host the primary
replica and the target secondary
replica, also use the RelocateFile
restore parameter.

Start data synchronization
by joining each secondary
database to availability
group

Add-SqlAvailabilityDatabase Execute on each server instance
that hosts a secondary replica.

* To perform a given task, change directory (cd) to the indicated server instance or instances.

To Set Up and Use the SQL Server PowerShell Provider
• SQL Server PowerShell Provider
• Get Help SQL Server PowerShell

http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�

 251

Using PowerShell to Create and Configure an Availability Group

To view the syntax and an example of a given cmdlet, use the Get-Help cmdlet in the
SQL Server PowerShell environment. For more information, see Get Help SQL Server
PowerShell.

1. Change directory (cd) to the server instance that is to host the primary replica.
2. Create an in-memory availability-replica object for the primary replica.
3. Create an in-memory availability-replica object for each of the secondary replicas.
4. Create the availability group.

The maximum length for an availability group name is 128 characters.
5. Join the new secondary replica to the availability group. For more information, see Joining a

Secondary Replica to an Availability Group (SQL Server).
6. For each database in the availability group, create a secondary database by restoring recent

backups of the primary database, using RESTORE WITH NORECOVERY.
7. Join every new secondary database to the availability group. For more information,

see Joining a Secondary Replica to an Availability Group (SQL Server).
8. Optionally, use the Windows dir command to verify the contents of the new availability

group.

Example: Using PowerShell to Create an Availability Group
The following PowerShell example creates and configures a simple availability group named
MyAG with two availability replicas and one availability database. The example:
1. Backs up MyDatabase and its transaction log.
2. Restores MyDatabase and its transaction log, using the -NoRecovery option.
3. Creates an in-memory representation of the primary replica, which will be hosted by the

local instance of SQL Server (named PrimaryComputer\Instance).
4. Creates an in-memory representation of the secondary replica, which will be hosted by an

instance of SQL Server (named SecondaryComputer\Instance).
5. Creates an availability group named MyAG.
6. Joins the secondary replica to the availability group.
7. Joins the secondary database to the availability group.

Backup my database and its log on the primary

Backup-SqlDatabase `

 -Database "MyDatabase" `

 -BackupFile "\\share\backups\MyDatabase.bak" `

Note

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�

 252

 -ServerInstance "PrimaryComputer\Instance"

Backup-SqlDatabase `

 -Database "MyDatabase" `

 -BackupFile "\\share\backups\MyDatabase.log" `

 -ServerInstance "PrimaryComputer\Instance" `

 -BackupAction Log

Restore the database and log on the secondary (using NO RECOVERY)

Restore-SqlDatabase `

 -Database "MyDatabase" `

 -BackupFile "\\share\backups\MyDatabase.bak" `

 -ServerInstance "SecondaryComputer\Instance" `

 -NoRecovery

Restore-SqlDatabase `

 -Database "MyDatabase" `

 -BackupFile "\\share\backups\MyDatabase.log" `

 -ServerInstance "SecondaryComputer\Instance" `

 -RestoreAction Log `

 -NoRecovery

Create an in-memory representation of the primary replica.

$primaryReplica = New-SqlAvailabilityReplica `

 -Name "PrimaryComputer\Instance" `

 -EndpointURL "TCP://PrimaryComputer.domain.com:5022" `

 -AvailabilityMode "SynchronousCommit" `

 -FailoverMode "Automatic" `

 -Version 11 `

 -AsTemplate

Create an in-memory representation of the secondary replica.

$secondaryReplica = New-SqlAvailabilityReplica `

http://www.TCP://PrimaryComputer.domain.com:5022

 253

 -Name "SecondaryComputer\Instance" `

 -EndpointURL "TCP://SecondaryComputer.domain.com:5022" `

 -AvailabilityMode "SynchronousCommit" `

 -FailoverMode "Automatic" `

 -Version 11 `

 -AsTemplate

Create the availability group

New-SqlAvailabilityGroup `

 -Name "MyAG" `

 -Path "SQLSERVER:\SQL\PrimaryComputer\Instance" `

 -AvailabilityReplica @($primaryReplica,$secondaryReplica) `

 -Database "MyDatabase"

Join the secondary replica to the availability group.

Join-SqlAvailabilityGroup -Path "SQLSERVER:\SQL\SecondaryComputer\Instance" -

Name "MyAG"

Join the secondary database to the availability group.

Add-SqlAvailabilityDatabase -Path

"SQLSERVER:\SQL\SecondaryComputer\Instance\AvailabilityGroups\MyAG" -Database

"MyDatabase"

Related Tasks
To configure a server instance for AlwaysOn Availability Groups
• Enable and Disable the AlwaysOn Availability Groups Feature (SQL Server)
• Create a Database Mirroring Endpoint for AlwaysOn Availability Groups (SQL Server

PowerShell)
To configure availability group and replica properties
• Set the Availability Mode of an Availability Replica (SQL Server)
• Set the Failover Mode of an Availability Replica (SQL Server)
• Create or Configure an Availability Group Listener (SQL Server)
• Configure the Flexible Failover Policy to Control Conditions for Automatic Failover

(AlwaysOn Availability Groups)
• Specify the Endpoint URL When Adding or Modifying an Availability Replica (AlwaysOn

Availability Groups)

http://www.TCP://SecondaryComputer.domain.com:5022

 254

• Configure Backup on Availability Replicas (SQL Server)
• Configure Connection Access on an Availability Replica (SQL Server)
• Configure Read-Only Routing on an Availability Group (SQL Server)
• Change the Session-Timeout Period for an Availability Replica (SQL Server)
To complete availability group configuration
• Join a Secondary Replica to an Availability Group (SQL Server)
• Manually Prepare a Secondary Database for an Availability Group (SQL Server)
• Join a Secondary Database to an Availability Group (SQL Server)
• Create or Configure an Availability Group Listener (SQL Server)
Alternative ways to create an availability group
• Use the New Availability Group Wizard (SQL Server Management Studio)
• Use the New Availability Group Dialog Box (SQL Server Management Studio)
• Create and Configure an Availability Group (Transact-SQL)
To troubleshoot AlwaysOn Availability Groups configuration
• Troubleshoot AlwaysOn Availability Groups Configuration (SQL Server)
• Troubleshoot a Failed Add-File Operation (AlwaysOn Availability Groups)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
Database Mirroring Endpoint
Overview of AlwaysOn Availability Groups (SQL Server)

Specify the Endpoint URL When Adding or Modifying an Availability
Replica
To host an availability replica for an availability group, a server instance must possess a database
mirroring endpoint. The server instance uses this endpoint to listen for AlwaysOn Availability
Groups messages from availability replicas hosted by other server instances. To define an
availability replica for an availability group, you must specify the endpoint URL of the server
instance that will host the replica. The endpoint URL identifies the transport protocol of the
database mirroring endpoint—TCP, the system address of the server instance, and the port
number associated with the endpoint.

Note

http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 255

The term "endpoint URL" is synonymous with the term "server network address" used by
the database mirroring user interface and documentation.

• Syntax for an Endpoint URL
• Finding the Fully Qualified Domain Name of A System
• Related Tasks
• Related Content
Syntax for an Endpoint URL
The syntax for an endpoint URL is of the form:
TCP://<system-address>:<port>
where
• <system-address> is a string that unambiguously identifies the target computer system.

Typically, the server address is a system name (if the systems are in the same domain), a fully
qualified domain name, or an IP address:
• Because the nodes of Windows Server Failover Clustering (WSFC) cluster are the same

domain, you can use the name of the computer system; for example, SYSTEM46.
• To use an IP address, it must be unique in your environment. We recommend that you

use an IP address only if it is static. The IP address can be IP Version 4 (IPv4) or IP Version
6 (IPv6). An IPv6 address must be enclosed within square brackets, for example:
[<IPv6_address>].
To learn the IP address of a system, at the Windows command prompt, enter the
ipconfig command.

• The fully qualified domain name is guaranteed to work. This is a locally defined address
string that takes different forms in different places. Often, but not always, a fully qualified
domain name is a compound name that includes the computer name and a series of
period-separated domain segments of the form:
computer_name.domain_segment[....domain_segment]
where computer_name is the network name of the computer running the server instance,
and domain_segment[....domain_segment] is the remaining domain information of the
server; for example: localinfo.corp.Adventure-Works.com.
The content and number of domain segments are determined within the company or
organization. For more information, see Finding the Fully Qualified Domain Name, later
in this topic.

• <port> is the port number used by the mirroring endpoint of the partner server instance.
A database mirroring endpoint can use any available port on the computer system. Each
port number must be associated with only one endpoint, and each endpoint is associated
with a single server instance; thus, different server instances on the same server listen on
different endpoints with different ports. Therefore, the port you specify in the endpoint URL
when you specify an availability replica will always direct incoming messages to the server
instance whose endpoint is associated with that port.

http://www.localinfo.corp.Adventure-Works.com

 256

IIn the endpoint URL, only the number of the port identifies the server instance that is
associated with the mirroring endpoint on the target computer. The following figure
illustrates the endpoint URLs of two server instances on a single computer. The default
instance uses port 7022 and the named instance uses port 7033. The endpoint URL for these
two server instances are, respectively: TCP://MYSYSTEM.Adventure-
works.MyDomain.com:7022 and TCP://MYSYSTEM.Adventure-
works.MyDomain.com:7033. Note that the address does not contain the name of the server
instance.

To identify the port currently associated with database mirroring endpoint of a server
instance, use the following Transact-SQL statement:

SELECT type_desc, port FROM sys.TCP_endpoints

Find the row whose type_desc value is "DATABASE_MIRRORING," and use the
corresponding port number.

Examples
A. Using a system name

www.TCP://MYSYSTEM.Adventureworks.MyDomain.com:7022
www.TCP://MYSYSTEM.Adventureworks.MyDomain.com:7022
www.TCP://MYSYSTEM.Adventureworks.MyDomain.com:7033
www.TCP://MYSYSTEM.Adventureworks.MyDomain.com:7033

 257

The following endpoint URL specifies a system name, SYSTEM46, and port 7022.
TCP://SYSTEM46:7022
B. Using a fully qualified domain name
The following endpoint URL specifies a fully qualified domain name,
DBSERVER8.manufacturing.Adventure-Works.com, and port 7024.
TCP://DBSERVER8.manufacturing.Adventure-Works.com:7024
C. Using IPv4
The following endpoint URL specifies an IPv4 address, 10.193.9.134, and port 7023.
TCP://10.193.9.134:7023
D. Using IPv6
The following endpoint URL contains an IPv6 address,
2001:4898:23:1002:20f:1fff:feff:b3a3, and port 7022.
TCP://[2001:4898:23:1002:20f:1fff:feff:b3a3]:7022

Finding the Fully Qualified Domain Name of A System
To find the fully qualified domain name of a system, at the Windows command prompt on that
system, enter:
IPCONFIG /ALL
To form the fully qualified domain name, concatenate the values of<host_name> and
<Primary_Dns_Suffix> as follows:
<host_name>.<Primary_Dns_Suffix>
For example, the IP configuration
Host Name : MYSERVER
Primary Dns Suffix . . . : mydomain.Adventure-Works.com
equates to the following fully qualified domain name:
MYSERVER.mydomain.Adventure-Works.com

If you need more information about a fully qualified domain name, see your system
administrator.

Related Tasks
To Configure a Database Mirroring Endpoint
• Create a Database Mirroring Endpoint for AlwaysOn Availability Groups (SQL Server

PowerShell)
• Create a Mirroring Endpoint for Windows Authentication (Transact-SQL)
• Use Certificates for a Database Mirroring Endpoint

Note

http://www.DBSERVER8.manufacturing.Adventure-Works.com
http://www.TCP://DBSERVER8.manufacturing.Adventure-Works.com:7024
http://www.mydomain.Adventure-Works.com
http://www.MYSERVER.mydomain.Adventure-Works.com

 258

• Allow Database Mirroring to Use Certificates for Outbound Connections (Transact-SQL)
• Allow a Database Mirroring Endpoint to Use Certificates for Inbound Connections

(Transact-SQL)
• Specify a Server Network Address (Database Mirroring)
• Specify the Endpoint URL When Adding or Modifying an Availability Replica (SQL Server)
• Troubleshoot AlwaysOn Availability Groups Configuration (SQL Server)
To View Information About the Database Mirroring Endpoint
• sys.database_mirroring_endpoints (Transact-SQL)
To add an availability replica
• Add a Secondary Replica to an Availability Group (SQL Server)
• Join a Secondary Replica to an Availability Group (SQL Server)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery

See Also
Creation and Configuration of Availability Groups (SQL Server)
Overview of AlwaysOn Availability Groups
CREATE ENDPOINT (Transact-SQL)

Join a Secondary Replica to an Availability Group
This topic describes how to join a secondary replica to an AlwaysOn availability group by using
SQL Server Management Studio, Transact-SQL, or PowerShell in SQL Server 2012. After a
secondary replica is added to an AlwaysOn availability group, the secondary replica must be
joined to the availability group. The join-replica operation must be performed on the instance of
SQL Server that is hosting the secondary replica.
• Before you begin:

Prerequisites
Security

• To prepare a secondary database, using:
SQL Server Management Studio
Transact-SQL
PowerShell

• Follow Up: Configure Secondary Databases
Before You Begin
Prerequisites

http://msdn.microsoft.com/en-us/library/a64d4b6b-9016-4f1e-a310-b1df181dd0c6(SQL.110)�
http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�

 259

• The primary replica of the availability group must currently be online.
• You must be connected to the server instance that hosts a secondary replica that has not yet

have been joined to the availability group.
• The local server instance must be able to connect to the database mirroring endpoint of the

server instance that is hosting the primary replica.

If any prerequisite is not met, the join operation fails. After a failed join attempt, you
might need to connect to the server instance that hosts the primary replica to remove
and re-add the secondary replica before you can join it to the availability group. For
more information, see Remove a Secondary Replica from an Availability Group (SQL
Server) and Add a Secondary Replica to an Availability Group (SQL Server).

Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To join an availability replica to an availability group
1. In Object Explorer, connect to the server instance that hosts the secondary replica, and click

the server name to expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Select the availability group of the secondary replica to which you are connected.
4. Right-click the secondary replica, and click Join to Availability Group.
5. This opens the Join Replica to Availability Group dialog box.
6. To join the secondary replica to the availability group, click OK.
Using Transact-SQL
To join an availability replica to an availability group
1. Connect to the server instance that hosts the secondary replica.
2. Use the ALTER AVAILABILITY GROUP statement, as follows:

ALTER AVAILABILITY GROUP group_name JOIN
where group_name is the name of the availability group.
The following example, joins the secondary replica to the MyAG availability group.

ALTER AVAILABILITY GROUP MyAG JOIN;

Important

Note

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 260

To see this Transact-SQL statement used in context, see Example: Setting Up an
Availability Group Using Windows Authentication (Transact-SQL).

Using PowerShell
To join an availability replica to an availability group
In the SQL Server PowerShell provider:
1. Change directory (cd) to the server instance that hosts the secondary replica.
2. Join the secondary replica to the availability group by executing the Join-

SqlAvailabilityGroup cmdlet with the name of the availability group.
For example, the following command joins a secondary replica hosted by the server instance
located at the specified path to the availability group named MyAg. This server instance must
host a secondary replica in this availability group.

Join-SqlAvailabilityGroup -Path

SQLSERVER:\SQL\SecondaryServer\InstanceName -Name 'MyAg'

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

Follow Up: Configure Secondary Databases
For every database in the availability group, you need a secondary database on the server
instance that is hosting the secondary replica. You can configure secondary databases either
before or after you join a secondary replica to an availability group, as follows:
1. Restore recent database and log backups of each primary database onto the server instance

that hosts the secondary replica, using RESTORE WITH NORECOVERY for every restore
operation. For more information, see Prepare a Secondary Database for an Availability Group
(SQL Server)).

2. Join each secondary database to the availability group. For more information, see Join a
Secondary Database to an Availability Group (SQL Server).

See Also
Creation and Configuration of Availability Groups (AlwaysOn Availability Groups)
AlwaysOn Availability Groups
Troubleshooting AlwaysOn Availability Groups Configuration (SQL Server)

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 261

Start Data Movement on an AlwaysOn Secondary Database
This topic contains information about how to start data synchronization after you add a
database to an AlwaysOn availability group. For each new primary replica, secondary databases
must be prepared on the server instances that host the secondary replicas. Then each of these
secondary databases must be manually joined to the availability group.

If the file paths are identical on every server instance that hosts an availability replica for
an availability group, the New Availability Group Wizard, Add Replica to Availability
Group Wizard, or Add Database to Availability Group Wizard might be able to
automatically start data synchronization for you.

To start data synchronization manually, you need to connect, in turn, to each server instance
that is hosting a secondary replica for the availability group and complete the following steps:
1. Restore current backups of each primary database and its transaction log (using RESTORE

WITH NORECOVERY). You can use either of the following alternative approaches:
• Manually restore a recent database backup of the primary database using RESTORE

WITH NORECOVERY, and then restore each subsequent log backup using RESTORE
WITH NORECOVERY. Perform this restore sequence on every server instance that hosts a
secondary replica for the availability group.
For more information:
Manually Prepare a Secondary Database for an Availability Group (SQL Server)

• If you are adding one or more log shipping primary databases to an availability group,
you might be able to migrate one or more of the corresponding secondary databases
from log shipping to AlwaysOn Availability Groups. Migrating a log shipping secondary
database requires that it use the same database name as the primary database and that
it reside on a server instance that is hosting a secondary replica for the availability group.
Furthermore, the availability group must be configured so that the primary replica is
preferred for backups and is a candidate for performing backups (that is, that has a
backup priority that is >0). Once the backup job has run on the primary database, you
will need to disable the backup job, and once the restore job has run on a given
secondary database, you will need to disable the restore job.

After you have created all the secondary databases for the availability group, if
you want to perform backups on secondary replicas, you will need to re-
configure the automated backup preference of the availability group.

For more information:
Prerequisites for Migrating from Log Shipping to AlwaysOn Availability Groups (SQL
Server)
Configure Backup on Availability Replicas (SQL Server)

2. As soon as possible, join each newly prepared secondary database to the availability group.

Note

Note

 262

For more information:
Join a Secondary Database to an Availability Group (SQL Server)

Related Tasks
• Use the New Availability Group Wizard
• Use the Add Replica to Availability Group Wizard
• Use the Add Database to Availability Group Wizard
See Also
AlwaysOn Availability Groups

Manually Prepare a Secondary Database for an Availability Group
This topic describes how to prepare a secondary database for an AlwaysOn availability group in
SQL Server 2012 by using SQL Server Management Studio, Transact-SQL, or PowerShell.
Preparing a secondary database requires two steps: (1) restoring a recent database backup of
the primary database and subsequent log backups onto each server instance that hosts the
secondary replica, using RESTORE WITH NORECOVERY, and (2) joining the restored database to
the availability group.

If you have an existing log shipping configuration, you might be able to convert the log
shipping primary database along with one or more of its secondary databases to an
AlwaysOn primary database and one or more AlwaysOn secondary databases. For more
information, see Prerequisites for Migrating from Log Shipping to AlwaysOn Availability
Groups (SQL Server).

• Before you begin:
Prerequisites and Restrictions
Recommendations
Security

• To prepare a secondary database, using:
SQL Server Management Studio
Transact-SQL
PowerShell

• Related Backup and Restore Tasks
• Follow Up: After Preparing a Secondary Database
Before You Begin

Prerequisites and Restrictions
• Make sure that the system where you plan to place database possesses a disk drive with

sufficient space for the secondary databases.

Tip

 263

• The name of the secondary database must be the same as the name of the primary
database.

• Use RESTORE WITH NORECOVERY for every restore operation.
• If the secondary database needs to reside on a different file path (including the drive letter)

than the primary database, the restore command must also use the WITH MOVE option for
each of the database files to specify them to the path of the secondary database.

• If you restore the database filegroup by filegroup, be sure to restore the whole database.
• After restoring the database, you must restore (WITH NORECOVERY) every log backup

created since the last restored data backup.

Recommendations
• On stand-alone instances of SQL Server, we recommend that, if possible, the file path

(including the drive letter) of a given secondary database be identical to the path of the
corresponding primary database. This is because if you move the database files when
creating a secondary database, a later add-file operation might fail on the secondary
database and cause the secondary database to be suspended.

• Before preparing your secondary databases, we strongly recommend that you suspend
scheduled log backups on the databases in the availability group until the initialization of
secondary replicas has completed.

Security
When a database is backed up, the TRUSTWORTHY database property is set to OFF. Therefore,
TRUSTWORTHY is always OFF on a newly restored database.
Permissions
BACKUP DATABASE and BACKUP LOG permissions default to members of the sysadmin fixed
server role and the db_owner and db_backupoperator fixed database roles. For more
information, see BACKUP (Transact-SQL).
When the database being restored does not exist on the server instance, the RESTORE
statement requires CREATE DATABASE permissions. For more information, see RESTORE
(Transact-SQL).
Using SQL Server Management Studio

If the backup and restore file paths are identical between the server instance that hosts
the primary replica and every instance that hosts a secondary replica, you should be able
create secondary databases by using New Availability Group Wizard, Add Replica to
Availability Group Wizard, or Add Database to Availability Group Wizard.

To prepare a secondary database
1. Unless you already have a recent database backup of the primary database, create a new full

or differential database backup. As a best practice, place this backup and any subsequent
log backups onto the recommended network share.

Note

http://msdn.microsoft.com/en-us/library/64b2a53d-4416-4a19-acc0-664a61b45348(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 264

2. Create at least one new log backup of the primary database.
3. On the server instance that hosts the secondary replica, restore the full database backup of

the primary database (and optionally a differential backup) followed by any subsequent log
backups.
On the RESTORE DATABASE Options page, select Leave the database non-operational,
and do not roll back the uncommitted transactions. Additional transaction logs can be
restored. (RESTORE WITH NORECOVERY).
If the file paths of the primary database and the secondary database differ, for example, if
the primary database is on drive 'F:' but the server instance that hosts the secondary replica
lacks an F: drive, include the MOVE option in your WITH clause.

4. To complete configuration of the secondary database, you need to join the secondary
database to the availability group. For more information, Join a Secondary Database to an
Availability Group (SQL Server).

For information about how to perform these backup and restore operations, see Related
Backup and Restore Tasks, later in this section.

Related Backup and Restore Tasks
To create a database backup
• Create a Full Database Backup (SQL Server)
• Create a Differential Database Backup (SQL Server)
To create a log backup
• Back Up a Transaction Log (SQL Server Management Studio)
To restore backups
• Restore a Database Backup (SQL Server Management Studio)
• Restore a Differential Database Backup (SQL Server Management Studio)
• Restore a Transaction Log Backup (SQL Server Management Studio)
• Restore a Database to a New Location (SQL Server Management Studio)

Using Transact-SQL
To prepare a secondary database

For an example of this procedure, see Example (Transact-SQL), earlier in this topic.
1. Unless you have a recent full backup of the primary database, connect to the server instance

that hosts the primary replica and create a full database backup. As a best practice, place this
backup and any subsequent log backups onto the recommended network share.

Note

Note

http://msdn.microsoft.com/en-us/library/586561fc-dfbb-4842-84f8-204a9100a534(SQL.110)�
http://msdn.microsoft.com/en-us/library/70f49794-b217-4519-9f2a-76ed61fa9f99(SQL.110)�
http://msdn.microsoft.com/en-us/library/3426b5eb-6327-4c7f-88aa-37030be69fbf(SQL.110)�
http://msdn.microsoft.com/en-us/library/24b3311d-5ce0-4581-9a05-5c7c726c7b21(SQL.110)�
http://msdn.microsoft.com/en-us/library/0dd971a4-ee38-4dd3-9f30-ef77fc58dd11(SQL.110)�
http://msdn.microsoft.com/en-us/library/1de2b888-78a6-4fb2-a647-ba4bf097caf3(SQL.110)�
http://msdn.microsoft.com/en-us/library/4da76d61-5e11-4bee-84f5-b305240d9f42(SQL.110)�

 265

2. On the server instance that hosts the secondary replica, restore the full database backup of
the primary database (and optionally a differential backup) followed by all subsequent log
backups. Use WITH NORECOVERY for every restore operation.
If the file paths of the primary database and the secondary database differ, for example, if
the primary database is on drive 'F:' but the server instance that hosts the secondary replica
lacks an F: drive, include the MOVE option in your WITH clause.

3. If any log backups have been taken on the primary database since the required log backup,
you must also copy these to the server instance that hosts the secondary replica and apply
each of those log backups to the secondary database, starting with the earliest and always
using RESTORE WITH NORECOVERY.

A log backup would not exist if the primary database has just been created and no
log backup has been taken yet or if the recovery model has just been changed from
simple to full.

4. To complete configuration of the secondary database, you need to join the secondary
database to the availability group. For more information, Join a Secondary Database to an
Availability Group (SQL Server).

For information about how to perform these backup and restore operations, see Related
Backup and Restore Tasks, later in this topic.

Transact-SQL Example
The following example prepares a secondary database. This example uses the sample
database, which uses the simple recovery model by default.
1. To use the database, modify it to use the full recovery model:

USE master;

GO

ALTER DATABASE MyDB1

SET RECOVERY FULL;

GO

2. After modifying the recovery model of the database from SIMPLE to FULL, create a full
backup, which can be used to create the secondary database. Because the recovery model
has just been changed, the WITH FORMAT option is specified to create a new media set. This
is useful to separate the backups under the full recovery model from any previous backups
made under the simple recovery model. For the purpose of this example, the backup file (C:\
.bak) is created on the same drive as the database.

For a production database, you should always back up to a separate device.

Note

Note

Note

 266

On the server instance that hosts the primary replica (INSTANCE01), create a full backup of
the primary database as follows:

BACKUP DATABASE MyDB1

 TO DISK = 'C:\MyDB1.bak'

 WITH FORMAT

GO

3. Copy the full backup to the server instance that hosts the secondary replica.
4. Restore the full backup, using RESTORE WITH NORECOVERY, onto the server instance that

hosts the secondary replica. The restore command depends on whether the paths of primary
and secondary databases are identical.
• If the paths are identical:

On the computer that hosts the secondary replica, restore the full backup as follows:

RESTORE DATABASE MyDB1

 FROM DISK = 'C:\MyDB1.bak'

 WITH NORECOVERY

GO

• If the paths differ:
If the path of the secondary database differs from the path of the primary database (for
instance, their drive letters differ), creating the secondary database requires that the
restore operation include a MOVE clause.

If the path names of the primary and secondary databases differ, you cannot add
a file. This is because on receiving the log for the add file operation, the server
instance of the secondary replica attempts to place the new file in the same path
as used by the primary database.

For example, the following command restores a backup of a primary database that
resides in the data directory of the default instance of SQL Server 2012, C:\Program
Files\Microsoft SQL Server\MSSQL11.MSSQLSERVER\MSSQL\DATA. The restore database
operation must move the database to the data directory of a remote instance of SQL
Server 2012 named (AlwaysOn1), which hosts the secondary replica on another cluster
node. There, the data and log files are restored to the C:\Program Files\Microsoft SQL
Server\MSSQL11.ALWAYSON1\MSSQL\DATA directory . The restore operation uses WITH
NORECOVERY, to leave the secondary database in the restoring database.

RESTORE DATABASE MyDB1

 FROM DISK='C:\MyDB1.bak'

 WITH NORECOVERY,

 MOVE 'MyDB1_Data' TO

Important

 267

 'C:\Program Files\Microsoft SQL

Server\MSSQL11.ALWAYSON1\MSSQL\DATA\MyDB1_Data.mdf',

 MOVE 'MyDB1_Log' TO

 'C:\Program Files\Microsoft SQL

Server\MSSQL11.ALWAYSON1\MSSQL\DATA\MyDB1_Data.ldf';

GO

5. After you restore the full backup, you must create a log backup on the primary database. For
example, the following Transact-SQL statement backs up the log to the a backup file named
E:\MyDB1_log.bak:
BACKUP LOG MyDB1

 TO DISK = 'E:\MyDB1_log.bak'

GO

6. Before you can join the database to the secondary replica, you must apply the required log
backup (and any subsequent log backups).
For example, the following Transact-SQL statement restores the first log from C:\MyDB1.bak:
RESTORE LOG MyDB1

 FROM DISK = 'E:\MyDB1_log.bak'

 WITH FILE=1, NORECOVERY

GO

7. If any additional log backups occur before the database joins the secondary replica, you
must also restore all of those log backups, in sequence, to the server instance that hosts the
secondary replica using RESTORE WITH NORECOVERY.
For example, the following Transact-SQL statement restores two additional logs from
E:\MyDB1_log.bak:

RESTORE LOG MyDB1

 FROM DISK = 'E:\MyDB1_log.bak'

 WITH FILE=2, NORECOVERY

GO

RESTORE LOG MyDB1

 FROM DISK = 'E:\MyDB1_log.bak'

 WITH FILE=3, NORECOVERY

GO

Using PowerShell
To prepare a secondary database

 268

1. If you need to create a recent backup of the primary database, change directory (cd) to the
server instance that hosts the primary replica.

2. Use the Backup-SqlDatabase cmdlet to create each of the backups.
3. Change directory (cd) to the server instance that hosts the secondary replica.
4. To restore the database and log backups of each primary database, use the restore-

SqlDatabase cmdlet, specifying the NoRecovery restore parameter. If the file paths differ
between the computers that host the primary replica and the target secondary replica, also
use the RelocateFile restore parameter.

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

5. To complete configuration of the secondary database, you need to join it to the availability
group. For more information, Join a Secondary Database to an Availability Group (SQL
Server).

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider
Sample Backup and Restore Script and Command
The following PowerShell commands back up a full database backup and transaction log to a
network share and restore those backups from that share. This example assumes that the file
path to which the database is restored is the same as the file path on which the database was
backed up.
Create database backup

Backup-SqlDatabase -Database "MyDB1" -BackupFile "\\share\backups\MyDB1.bak"

-ServerInstance "SourceMachine\Instance"

Create log backup

Backup-SqlDatabase -Database "MyDB1" -BackupAction "Log" -BackupFile

"\\share\backups\MyDB1.trn" -ServerInstance "SourceMachine\Instance"

Restore database backup

Restore-SqlDatabase -Database "MyDB1" -BackupFile "\\share\backups\MyDB1.bak"

-NoRecovery -ServerInstance "DestinationMachine\Instance"

Restore log backup

Restore-SqlDatabase -Database "MyDB1" -BackupFile "\\share\backups\MyDB1.trn"

-RestoreAction "Log" -NoRecovery –ServerInstance

"DestinationMachine\Instance"

Follow Up: After Preparing a Secondary Database

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 269

To complete configuration of the secondary database, join the newly restored database to the
availability group. For more information, see Join a Secondary Database to an Availability Group
(SQL Server).
See Also
Overview (AlwaysOn Availability Groups)
BACKUP (Transact-SQL)
RESTORE Arguments (Transact-SQL)
RESTORE (Transact-SQL)
Troubleshooting a Failed Add-File Operation (AlwaysOn Availability Groups)

Join a Secondary Database to an Availability Group
This topic explains how to join a secondary database to an AlwaysOn availability group by using
SQL Server Management Studio, Transact-SQL, or PowerShell in SQL Server 2012. After you
prepare a secondary database for a secondary replica, you need to join the database to the
availability group as soon as possible. This will start data movement from the corresponding
primary database to the secondary database.
• Before you begin:

Prerequisites
Security

• To prepare a secondary database, using:
SQL Server Management Studio
Transact-SQL
PowerShell

For information about what happens after a secondary database joins the group,
see AlwaysOn Availability Groups (SQL Server).

Before You Begin
Prerequisites
• You must be connected to the server instance that hosts the secondary replica.
• The secondary replica must already be joined to the availability group. For more information,

see Join a Secondary Replica to an Availability Group (SQL Server).
• The secondary database must have been prepared recently. For more information,

see Prepare a Secondary Database for an Availability Group (SQL Server).
Security
Permissions

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 270

Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To join a secondary database to an availability group
1. In Object Explorer, connect to the server instance that hosts the secondary replica, and

expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Expand the availability group that you want to change, and expand the Availability

Databases node.
4. Right-click the database, and click Join to Availability Group.
5. This opens the Join Databases to Availability Group dialog box. Verify the availability

group name, which is displayed on the title bar, and database name or names displayed in
the grid, and click OK, or click Cancel.

Using Transact-SQL
To join a secondary database to an availability group
1. Connect to the server instance that hosts the secondary replica.
2. Use the SET HADR clause of the ALTER DATABASE statement, as follows:

ALTER DATABASE database_name SET HADR AVAILABILITY GROUP = group_name
where database_name is the name of a database to be joined and group_name is the name
of the availability group.
The following example joins the secondary database, Db1, to the local secondary replica of
the MyAG availability group.

ALTER DATABASE Db1 SET HADR AVAILABILITY GROUP = MyAG;

To see this Transact-SQL statement used in context, see Example: Setting Up an
Availability Group Using Windows Authentication (Transact-SQL).

Using PowerShell
To join a secondary database to an availability group
1. Change directory (cd) to the server instance that hosts the secondary replica.
2. Use the Add-SqlAvailabilityDatabase cmdlet to join one or more secondary databases to

the availability group.
For example, the following command joins a secondary database, Db1, to the availability
group MyAG on one of the server instances that hosts a secondary replica.

Note

http://msdn.microsoft.com/en-us/library/20e6e803-d6d5-48d5-b626-d1e0a73d174c(SQL.110)�

 271

Add-SqlAvailabilityDatabase `

-Path

SQLSERVER:\SQL\SecondaryServer\InstanceName\AvailabilityGroups\MyAG `

-Database "Db1"

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

Related Tasks
• Join a Secondary Replica to an Availability Group (SQL Server)
• Manually Prepare a Secondary Database for an Availability Group (SQL Server)

See Also
ALTER AVAILABILITY GROUP (Transact-SQL)
AlwaysOn Availability Groups
Troubleshoot AlwaysOn Availability Groups Configuration (SQL Server)

Management of Logins and Jobs for the Databases of an Availability
Group
Logins and jobs that are associated with a database in an AlwaysOn availability group must be
reproduced on every instance of SQL Server that hosts an availability replica for the availability
group. If you are using partially contained databases, you can configure contained users in the
databases, and for these users, you do not need to create logins on the server instances that
host a secondary replica. For a non-contained availability database, you will need to create both
logins and any relevant jobs on the server instances that host the availability replicas. Backup
jobs require special consideration. The server instances that host the replicas of an availability
group might be configured differently, with different tape drive letters or such. The jobs for each
availability replica must allow for any such differences.
You should routinely maintain the same set of user logins and jobs on every primary database
and its corresponding secondary databases.

A database user for which the SQL Server login is undefined or is incorrectly defined on a
server instance cannot log in to the instance. Such a user is said to be an orphaned user
of the database on that server instance. If a user is orphaned on a given server instance,

Note

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 272

you can set up the user logins at any time. For more information, see Troubleshooting
Orphaned Users.

Related Tasks
• Create a Login (SQL Server Database Engine)
• Create a Database User.
• Create a Job

See Also
Overview of AlwaysOn Availability Groups (SQL Server)
Partially Contained Databases
Create Jobs

Troubleshoot AlwaysOn Availability Groups Configuration
This topic provides information to help you troubleshoot typical problems with configuring
server instances for AlwaysOn Availability Groups. Typical configuration problems include
AlwaysOn Availability Groups is disabled, accounts are incorrectly configured, the database
mirroring endpoint does not exist, the endpoint is inaccessible (SQL Server Error 1418), network
access does not exist, and a join database command fails (SQL Server Error 35250).

Ensure that you are meeting the AlwaysOn Availability Groups prerequisites. For more
information, see Prerequisites, Restrictions, and Recommendations (AlwaysOn Availability
Groups).

Issue Summary

AlwaysOn Availability Groups Is Not
Enabled

If an instance of SQL Server is not enabled
for AlwaysOn Availability Groups, the
instance does not support availability
group creation and cannot host any
availability replicas.

Accounts Discusses requirements for correctly
configuring the accounts under which SQL
Server is running.

Endpoints Discusses how to diagnose issues with the
database mirroring endpoint of a server
instance.

System name Summarizes the alternatives for specifying
the system name of a server instance in an

Note

http://msdn.microsoft.com/en-us/library/11eefa97-a31f-4359-ba5b-e92328224133(SQL.110)�
http://msdn.microsoft.com/en-us/library/11eefa97-a31f-4359-ba5b-e92328224133(SQL.110)�
http://msdn.microsoft.com/en-us/library/fb163e47-1546-4682-abaa-8c9494e9ddc7(SQL.110)�
http://msdn.microsoft.com/en-us/library/782798d3-9552-4514-9f58-e87be4b264e4(SQL.110)�
http://msdn.microsoft.com/en-us/library/b35af2b6-6594-40d1-9861-4d5dd906048c(SQL.110)�
http://msdn.microsoft.com/en-us/library/36af59d7-ce96-4a02-8598-ffdd78cdc948(SQL.110)�
http://msdn.microsoft.com/en-us/library/465fb7fc-7622-4252-a178-ea51691c935b(SQL.110)�

 273

Issue Summary

endpoint URL.

Network access Documents the requirement that each
server instance that is hosting an
availability replica must be able to access
the port of each of the other server
instances over TCP.

Endpoint Access (SQL Server Error 1418) Contains information about this SQL Server
error message.

Join Database Fails (SQL Server Error 35250) Discusses the possible causes and
resolution of a failure to join secondary
databases to an availability group because
the connection to the primary replica is not
active.

AlwaysOn Availability Groups Is Not Enabled
The AlwaysOn Availability Groups feature must be enabled on each of the instances of SQL
Server 2012. For more information, see Enabling and Disabling the AlwaysOn Availability Groups
Feature (SQL Server).
Accounts
The accounts under which SQL Server is running must be correctly configured.
1. Do the accounts have the correct permissions?

a. If the partners run as the same domain user account, the correct user logins exist
automatically in both master databases. This simplifies the security configuration the
database and is recommended.

b. If two server instances run as different accounts, the login each account must be created
in master on the remote server instance, and that login must be granted CONNECT
permissions to connect to the database mirroring endpoint of that server instance. For
more information, see Setting Up Login Accounts for Database Mirroring.

2. If SQL Server is running as a built-in account, such as Local System, Local Service, or Network
Service, or a nondomain account, you must use certificates for endpoint authentication. If
your service accounts are using domain accounts in the same domain, you can choose to
grant CONNECT access for each service account on all the replica locations or you can use
certificates. For more information, see Using Certificates for Database Mirroring.

Endpoints
Endpoints must be correctly configured.

 274

1. Make sure that each instance of SQL Server that is going to host an availability replica (each
replica location) has a database mirroring endpoint. To determine whether a database
mirroring endpoint exists on a given server instance, use
the sys.database_mirroring_endpoints catalog view. For more information, see either How to:
Create a Mirroring Endpoint for Windows Authentication (Transact-SQL) or How to: Allow
Database Mirroring to Use Certificates for Outbound Connections (Transact-SQL).

2. Check that the port numbers are correct.
To identify the port currently associated with database mirroring endpoint of a server
instance, use the following Transact-SQL statement:
SELECT type_desc, port FROM sys.tcp_endpoints;

GO

3. For AlwaysOn Availability Groups setup issues that are difficult to explain, we recommend
that you inspect each server instance to determine whether it is listening on the correct
ports. For information about verifying port availability, see MSSQLSERVER_1418.

4. Make sure that the endpoints are started (STATE=STARTED). On each server instance, use
the following Transact-SQL statement:

SELECT state_desc FROM sys.database_mirroring_endpoints

For more information about the state_desc column, see sys.endpoints (Transact-SQL).
To start an endpoint, use the following Transact-SQL statement:

ALTER ENDPOINT Endpoint_Mirroring

STATE = STARTED

AS TCP (LISTENER_PORT = <port_number>)

FOR database_mirroring (ROLE = ALL);

GO

For more information, see ALTER ENDPOINT (Transact-SQL).
5. Make sure that the login from the other server has CONNECT permission. To determine who

has CONNECT permission for an endpoint, on each server instance use the following
Transact-SQL statement:

SELECT 'Metadata Check';

SELECT EP.name, SP.STATE,

 CONVERT(nvarchar(38), suser_name(SP.grantor_principal_id))

 AS GRANTOR,

 SP.TYPE AS PERMISSION,

 CONVERT(nvarchar(46),suser_name(SP.grantee_principal_id))

 AS GRANTEE

 FROM sys.server_permissions SP , sys.endpoints EP

http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�
http://msdn.microsoft.com/en-us/library/6e9c7241-0201-44e0-9f8b-b3c4e293f0f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�
http://msdn.microsoft.com/en-us/library/70f35566-30cf-47c6-8394-dfe5d71629d3(SQL.110)�

 275

 WHERE SP.major_id = EP.endpoint_id

 ORDER BY Permission,grantor, grantee;

GO

System Name
For the system name of a server instance in an endpoint URL, you can use any name that
unambiguously identifies the system. The server address can be a system name (if the systems
are in the same domain), a fully qualified domain name, or an IP address (preferably, a static IP
address). Using the fully qualified domain name is guaranteed to work. For more information,
see Specifying the Endpoint URL When Adding or Modifying a "HADR" Availability Replica (SQL
Server).
Network Access
Each server instance that is hosting an availability replica must be able to access the port of each
of the other server instance over TCP. This is especially important if the server instances are in
different domains that do not trust each other (untrusted domains).
Endpoint Access (SQL Server Error 1418)
This SQL Server message indicates that the server network address specified in the endpoint
URL cannot be reached or does not exist, and it suggests that you verify the network address
name and reissue the command. For more information, see MSSQLSERVER_1418.

Join Database Fails (SQL Server Error 35250)
This section discusses the possible causes and resolution of a failure to join secondary databases
to the availability group because the connection to the primary replica is not active.
Resolution:
1. Check the firewall setting to see if whether allows the endpoint port communication

between the server instances that host primary replica and the secondary replica (port 5022
by default).

2. Check whether the network service account has connect permission to the endpoint.
See Also
Database Mirroring Transport Security
Create a Mirroring Endpoint for Windows Authentication (Transact-SQL)
Specifying the Endpoint URL for an Availability Replica (SQL Server)
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)
Creation and Configuration of Availability Groups (SQL Server)
Manually Prepare a Secondary Database for an Availability Group (SQL Server)
Troubleshooting a Failed Add-File Operation (AlwaysOn Availability Groups)

http://msdn.microsoft.com/en-us/library/6e9c7241-0201-44e0-9f8b-b3c4e293f0f6(SQL.110)�

 276

Administration of an Availability Group
Managing an existing AlwaysOn availability group in SQL Server 2012 involves one or more of
the following tasks:
• Altering the properties of an existing availability replica, for example to change client

connection access (for configuring readable secondary replicas), changing its failover mode,
availability mode, or session timeout setting.

• Adding or removing secondary replicas.
• Adding or removing a database.
• Suspending or resuming a database.
• Performing a planned manual failover (a manual failover) or a forced manual failover (a

forced failover).
• Creating or configuring an availability group listener.
• Managing readable secondary replicas for a given availability group. This involves

configuring one or more replicas to read-only access when running under the secondary
role, and configuring read-only routing.

• Managing backups on secondary replicas for a given availability group. This involves
configuring where you prefer that backup jobs run and then scripting backup jobs to
implement your backup preference. you need to script backup jobs for every database in the
availability group on every instance of SQL Server that hosts an availability replica.

• Deleting an availability group.
In This Topic:
• Related Tasks
• Related Content

Related Tasks
To configure an existing availability group
• Add a Secondary Replica to an Availability Group (SQL Server)
• Remove a Secondary Replica from an Availability Group (SQL Server)
• Add a Database to an Availability Group (SQL Server)
• Remove a Database from a Secondary Replica (AlwaysOn Availability Groups)
• Remove a Database from an Availability Group (AlwaysOn Availability Groups)
• Configure the Flexible Failover Policy to Control Conditions for Automatic Failover

(AlwaysOn Availability Groups)
To manage an availability group
• Configure Backup on Availability Replicas (SQL Server)
• Perform a Planned Manual Failover an Availability Group (SQL Server)
• Perform a Forced Manual Failover of an Availability Group (SQL Server)

 277

• Delete an Availability Group (SQL Server)
To manage an availability replica
• Add a Secondary Replica to an Availability Group (SQL Server)
• Join a Secondary Replica to an Availability Group (SQL Server)
• Remove a Secondary Replica from an Availability Group (SQL Server)
• Change the Availability Mode of an Availability Replica (SQL Server)
• Change the Failover Mode of an Availability Replica (SQL Server)
• Configure Backup on Availability Replicas (SQL Server)
• Configure Read-Only Access on an Availability Replica (SQL Server)
• Configure Read-Only Routing for an Availability Group (SQL Server)
• Change the Session-Timeout Period for an Availability Replica (SQL Server)
To manage an availability database
• Add a Database to an Availability Group (SQL Server)
• Join a Secondary Database to an Availability Group (SQL Server)
• Remove a Primary Database from an Availability Group (SQL Server)
• Remove a Secondary Database from an Availability Group (SQL Server)
• Suspend a Database on an Secondary Replica Location (SQL Server)
• Resume a Secondary Database on an Secondary Replica (SQL Server)
To monitor an availability group
• Monitoring of Availability Groups (SQL Server)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

See Also
AlwaysOn Availability Groups (SQL Server)
Overview of AlwaysOn Availability Groups
Configuration of a Server Instance for AlwaysOn Availability Groups (SQL Server)
Creation and Configuration of Availability Groups (SQL Server)
Read-Only Access to Secondary Replicas
Backup on Secondary Replicas (AlwaysOn Availability Groups)
Availability Group Listeners, Client Connectivity, and Application Failover (SQL Server)
AlwaysOn Policies for Operational Issues with AlwaysOn Availability Groups (SQL Server)
Availability Group Monitoring (SQL Server)

http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 278

AlwaysOn Availability Groups: Interoperability (SQL Server)
Overview of Transact-SQL Statements for AlwaysOn Availability Group
Overview of PowerShell Cmdlets for Availability Groups (SQL Server)

Perform a Planned Manual Failover of an Availability Group
This topic describes how to perform a manual failover without data loss (a planned manual
failover) on an availability group by using SQL Server Management Studio, Transact-SQL, or
PowerShell in SQL Server 2012. An availability group fails over at the level of an availability
replica. A planned manual failover, like any AlwaysOn Availability Groups failover, transitions a
secondary replica to primary role and, concurrently, transitions the former primary replica to the
secondary role.
A planned manual failover, which is supported only when the primary replica and the target
secondary replica are running in synchronous-commit mode and are currently synchronized,
preserves all the data in the secondary databases that are joined to the availability group on the
target secondary replica. Once the former primary replica transitions to the secondary role, its
databases become secondary databases and begin synchronizing with the new primary
databases. After they all transition into the SYNCHRONIZED state, the new secondary replica
becomes eligible to serve as the target of a future planned manual failover.

If the secondary and primary replicas are both configured for automatic failover mode,
once the secondary replica is synchronized, it can also serve as the target for an
automatic failover. For more information, see Availability Modes (AlwaysOn Availability
Groups).

• Before you begin:
Limitations and Restrictions
Prerequisites and Restrictions
Security

• To manually fail over an availability group, using:
SQL Server Management Studio
Transact-SQL
PowerShell

• Follow Up: After Manually Failing Over an Availability Group
Before You Begin
Limitations and Restrictions
• A failover command returns as soon as the target secondary replica has accepted the

command. However, database recovery occurs asynchronously after the availability group
has finished failing over.

Note

 279

• Cross-database consistency across databases within the availability group is not maintained
on failover.

Cross-database transactions and distributed transactions are not supported by
AlwaysOn Availability Groups. For more information, see Cross-Database
Transactions Not Supported For Database Mirroring or AlwaysOn Availability Groups
(SQL Server).

Prerequisites and Restrictions
• The target secondary replica and the primary replica must both be running in synchronous-

commit availability mode.
• The target secondary replica must currently be synchronized with the primary replica. This

requires that all the secondary databases on this secondary replica must have been joined to
the availability group and be synchronized with their corresponding primary databases (that
is, the local secondary databases must be SYNCHRONIZED).

To determine the failover readiness of an secondary replica, query the
is_failover_ready column in the sys.dm_hadr_database_cluster_states dynamic
management view, or look at the Failover Readiness column of the AlwaysOn Group
Dashboard.

• This task is supported only on the target secondary replica. You must be connected to the
server instance that hosts the target secondary replica.

Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To manually fail over an availability group
1. In Object Explorer, connect to a server instance that hosts a secondary replica of the

availability group that needs to be failed over, and expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Right-click the availability group to be failed over, and select the Failover command.
4. This launches the Failover Availability Group Wizard. For more information, see Use the

Failover Availability Group Wizard (SQL Server).

Using Transact-SQL
To manually fail over an availability group

Note

Tip

http://msdn.microsoft.com/en-us/library/6f719071-ebce-470d-aebd-1f55ee8cd70a(SQL.110)�

 280

1. Connect to the server instance that hosts the target secondary replica.
2. Use the ALTER AVAILABILITY GROUP statement, as follows:

ALTER AVAILABILITY GROUP group_name FAILOVER
where group_name is the name of the availability group.
The following example manually fails over the MyAg availability group to the connected
secondary replica.
ALTER AVAILABILITY GROUP MyAg FAILOVER;

Using PowerShell
To manually fail over an availability group
1. Change directory (cd) to the server instance that hosts the target secondary replica.
2. Use the Switch-SqlAvailabilityGroup cmdlet.

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server 2012
PowerShell environment. For more information, see SQL Server PowerShell Help.

The following example manually fails over the MyAg availability group to the secondary
replica with the specified path.

Switch-SqlAvailabilityGroup -Path

SQLSERVER:\Sql\SecondaryServer\InstanceName\AvailabilityGroups\MyAg

To set up and use the SQL Server PowerShell provider
• Using the SQL Server PowerShell Provider
• SQL Server PowerShell Help

Follow Up: After Manually Failing Over an Availability Group
If you failed over outside of the automatic failover set of the availability group, adjust the
quorum votes of the WSFC nodes to reflect your new availability group configuration. For more
information, see Windows Server Failover Clusters (WSFC) with SQL Server.

See Also
AlwaysOn Availability Groups
Failover Modes (AlwaysOn Availability Groups)
Perform a Forced Manual Failover of an Availability Group (SQL Server)

Perform a Forced Manual Failover of an Availability Group
If the WSFC cluster has quorum, after losing the primary replica of an AlwaysOn availability
group in SQL Server 2012, you can force the availability group to fail over, with the risk of

Note

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�
http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�

 281

possible data loss, to a secondary replica. This form of failover is known as a forced failover. After
a forced failover, the secondary replica to which the availability group was failed over becomes
the new primary replica. When the former primary replica becomes available, it transitions to the
secondary role, and its availability databases become secondary databases and transition into
the SUSPENDED state. While the databases are suspended, the database administrator can
attempt to recover any lost data.

Forcing service, which might involve some data loss, is strictly for disaster recovery.
Therefore, We strongly recommend that you force failover only if the primary replica is
no longer running, you have no SYNCHRONIZED replica to which you can perform a
manual failover. you are willing to risk losing data, and you must restore service to the
availability group immediately. Note that if you issue a forced failover command on a
synchronized secondary replica, the secondary replica behaves the same as for a manual
failover.

• Before you begin:
Limitations and Restrictions
Prerequisites
Recommendations
Security

• To force failover (with possible data loss), using:
SQL Server Management Studio
Transact-SQL
PowerShell

• Follow Up: Essential Tasks After a Forced Failover
• Example Scenario: Using a Forced Failover to Recover from a Catastrophic Failure
• Related Tasks
• Related Content
Before You Begin
Limitations and Restrictions
• Data loss is possible during the forced failover of an availability group. In addition, if the

primary replica is running when you initiate a forced failover, clients might still be connected
to former primary databases. Therefore, we strongly recommend that you force failover only
if the primary replica is no longer running and if you are willing to risk losing data in order to
restore access to databases in the availability group.

• When a database on a secondary replica is in the REVERTING or INITIALIZING state, forcing
failover would cause the database to fail to start as a primary database. If the database was
in the INTIAILIZGING state the you will need to apply the missing log records from a

Caution

 282

database backup or fully restore the database from scratch. If the database was in the
REVERTING state you will need to fully restore the database from backups.

• A failover command returns as soon as the target secondary replica has accepted the
command. However, database recovery occurs asynchronously after the availability group
has finished failing over.

• Cross-database consistency across databases within the availability group is not maintained
on failover.

Cross-database transactions and distributed transactions are not supported by
AlwaysOn Availability Groups. For more information, see Cross-Database
Transactions Not Supported For Database Mirroring or AlwaysOn Availability Groups
(SQL Server).

Prerequisites
• The WSFC cluster has quorum. If the cluster lacks quorum, for information about see WSFC

Quorum Failure with SQL Server.
• You must be able to connect to the server instance that hosts the target secondary replica.
Recommendations
• Do not force failover while the primary replica is still running.
• If any secondary replica is SYNCHRONIZED with the primary replica (in the FAILOVER_READY

state) or the primary replica is running, perform a planned manual failover instead of a
forced failover.

To determine the failover readiness of an secondary replica, query the
is_failover_ready column in the sys.dm_hadr_database_cluster_states dynamic
management view, or look at the Failover Readiness column of the AlwaysOn Group
Dashboard.

• If possible, force fail over only to a secondary replica whose secondary databases are either
in the NOT SYNCHRONIZED, SYNCHRONIZED, or SYNCHRONIZING state. For information
about the implications of forcing failover when a secondary database is in the INTIAILIZGING
or REVERTING state, see Limitations and Restrictions, earlier in this topic.

• Typically, the latency of a given secondary database, relative to the primary database, should
be similar on different asynchronous-commit secondary replicas. However, when forcing
failover, data loss can be a significant concern. Therefore, you consider taking time to
determine the relative latency of the copies of the databases on different secondary replicas.
To determine which copy of a given secondary database has the least latency, compare their
end-of-log LSNs. A higher the end-of-log LSN indicates less latency.

Note

Tip

Tip

http://msdn.microsoft.com/en-us/library/6f719071-ebce-470d-aebd-1f55ee8cd70a(SQL.110)�

 283

To compare end-of-log LSNs, connect to each online secondary replica, in turn, and
query sys.dm_hadr_database_replica_states for the end_of_log_lsn value of each
local secondary database. Then, compare the end-of-log LSNs of the different copies
of each database. Note that different databases might have their highest LSNs on
different secondary replicas. In this case, the most appropriate failover target
depends on the relative importance that you place on the data in the different
databases. That is, for which of these databases would you most want to minimize
possible data loss?

• If clients are able to connect to the original primary, a forced failover incurs some risk of split
brain behavior. Before you force failover, we strongly recommend that you prevent clients
from accessing the original primary replica. Otherwise, after failover is forced, the original
primary databases and the current primary databases could be updated independently of
the other.

Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To force failover (with possible data loss)
1. In Object Explorer, connect to a server instance that hosts a secondary replica of the

availability group that needs to be failed over, and expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Right-click the availability group to be failed over, and select the Failover command.
4. This launches the Failover Availability Group Wizard. For more information, see Use the

Failover Availability Group Wizard (SQL Server).
5. After forcing an availability group to fail over, complete the necessary follow-up steps. For

more information, see Follow Up: Essential Tasks After a Forced Failover, later in this topic.

Using Transact-SQL
To force failover (with possible data loss)
1. Connect to the server instance that hosts the secondary replica to which you are forcing

failover.
2. Use the ALTER AVAILABILITY GROUP statement, as follows:

ALTER AVAILABILITY GROUP group_name FORCE_FAILOVER_ALLOW_DATA_LOSS
where group_name is the name of the availability group.
The following example forces the AccountsAG availability group to fail over to the local
secondary replica.

http://msdn.microsoft.com/en-us/library/1a17b0c9-2535-4f3d-8013-cd0a6d08f773(SQL.110)�
http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 284

ALTER AVAILABILITY GROUP AccountsAG FORCE_FAILOVER_ALLOW_DATA_LOSS;

3. After forcing an availability group to fail over, complete the necessary follow-up steps. For
more information, see Follow Up: Essential Tasks After a Forced Failover, later in this topic.

Using PowerShell
To force failover (with possible data loss)
1. Change directory (cd) to the server instance that hosts the secondary replica to which you

are forcing failover.
2. Use the Switch-SqlAvailabilityGroup cmdlet with the AllowDataLoss parameter in one of

the following forms:
• -AllowDataLoss

By default -AllowDataLoss parameter causes Switch-SqlAvailabilityGroup to prompt
you to remind you that forcing failover might result in the loss of uncommitted
transactions and to request confirmation. To continue, enter Y; to cancel the operation,
enter N.
The following example performs a forced failover (with possible data loss) of the
availability group MyAg to the secondary replica on the server instance named
SecondaryServer\InstanceName. You will be prompted to confirm this operation.

Switch-SqlAvailabilityGroup `

 -Path

SQLSERVER:\Sql\SecondaryServer\InstanceName\AvailabilityGroups\MyAg `

 -AllowDataLoss

• -AllowDataLoss -Force
To initiate a forced failover without confirmation, specify both the -AllowDataLoss and -
Force parameters. This is useful if you want to include the command in a script and run it
without user interaction. However, use the -Force option with caution, because a forced
failover might result in the loss of data from databases participating the availability
group.
The following example performs a forced failover (with possible data loss) of the
availability group MyAg to the server instance named SecondaryServer\InstanceName.
The -Force option suppresses confirmation of this operation.

Switch-SqlAvailabilityGroup `

 -Path

SQLSERVER:\Sql\SecondaryServer\InstanceName\AvailabilityGroups\MyAg `

 -AllowDataLoss -Force

Note

 285

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

3. After forcing an availability group to fail over, complete the necessary follow-up steps. For
more information, see Follow Up: Essential Tasks After a Forced Failover, later in this topic.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

Follow Up: Essential Tasks After a Forced Failover
1. After a forced failover, the secondary replica to which you failed over becomes the new

primary replica. However, to make that availability replica accessible to clients, you might
need to reconfigure the WSFC quorum or adjust the availability-mode configuration of the
availability group, as follows:
• If you failed over outside of the automatic failover set: Adjust the quorum votes of

the WSFC nodes to reflect your new availability group configuration. If the WSFC node
that hosts the target secondary replica does not have a WSFC quorum vote, you might
need to force WSFC quorum.

An automatic failover set exists only if two availability replicas (including the
previous primary replica) are configured for synchronous-commit mode with
automatic failover.

To adjust quorum votes
• View Cluster Quorum NodeWeight Settings
• Configure Cluster Quorum NodeWeight Settings
• Force a WSFC Cluster to Start Without a Quorum

• If you failed over outside of the synchronous-commit failover set: We recommend
that you consider adjusting the availability mode and failover mode on the new primary
replica and on remaining secondary replicas to reflect your desired synchronous-commit
and automatic failover configuration.

A synchronous-commit failover set exists only if the current primary replica is
configured for synchronous-commit mode.

To change the availability mode and failover mode
• Set the Availability Mode of an Availability Replica (SQL Server)
• Set the Failover Mode of an Availability Replica (SQL Server)

2. After a forced failover, all secondary databases are suspended. This includes the former
primary databases, after the former primary replica comes back online and discovers that is
now an secondary replica). You must manually resume each suspended database individually
on the secondary replica.

Note

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 286

When a secondary database is resumed, it initiates data synchronization with the
corresponding primary database. The secondary database rolls back any log records that
were never committed on the new primary database. Therefore, if you are concerned about
possible data loss on the post-failover primary databases, you should attempt to create a
database snapshot on the suspended databases on one the synchronous-commit secondary
database.

The transaction log truncation is delayed on a primary database while any of its
secondary databases is suspended. Also the synchronization health of a
synchronous-commit secondary replica cannot transition to HEALTHY as long as any
local database remains suspended.

To create a database snapshot
• Create a Database Snapshot (Transact-SQL)
To resume an availability database
• Resume a Secondary Database on an Secondary Replica (SQL Server)

After resuming all the secondary databases, before attempting to fail over the group
again, wait for every secondary database on the next failover target to enter the
SYNCHRONIZING state. If any database is not yet SYNCHRONIZING, that database
will be prevented from coming online as a primary database, and re-establishing data
synchronization for the database might require restoring transaction logs, restoring a
full database backup, or failing over back to the previous primary replica.

3. If an availability replica that failed will not be returning to the availability replica or will return
too late for you to delay transaction log truncation on the new primary database, consider
removing the failed replica from the availability group to avoid running out of disk space for
your log files.
To remove an secondary replica
• Remove a Secondary Replica from an Availability Group (SQL Server)

4. If you follow a forced failover with one or more additional forced failovers, perform a log
backup after each additional forced failover in the series. For information about the reason
for this, see "Risks of Forcing Failover" in the "Forced Manual Failover (with Possible Data
Loss)" section of Failover Modes (AlwaysOn Availability Groups).
To perform a log backup
• Back Up a Transaction Log (SQL Server)

Example Scenario: Using a Forced Failover to Recover from a Catastrophic Failure
If the primary replica fails and no synchronized secondary replica is available, forcing the
availability group to fail over might be an appropriate response. The appropriateness of forcing
a failover depends on: (1) whether you expect the primary replica to be offline for longer than

Important

Caution

http://msdn.microsoft.com/en-us/library/187fbba3-c555-4030-9bdf-0f01994c5230(SQL.110)�
http://msdn.microsoft.com/en-us/library/3426b5eb-6327-4c7f-88aa-37030be69fbf(SQL.110)�

 287

your service level agreement (SLA) tolerates, and (2) whether you are willing to risk potential
data loss in order to make primary databases available quickly. If you decide that an availability
group requires a forced failover, the actual forced failover is but one step of a multi-step
process.
To illustrate the steps that are required to use a forced failover to recover from a catastrophic
failure, this topic presents one possible disaster recovery scenario. The example scenario
considers an availability group whose original topology consists of a main data center that hosts
three synchronous-commit availability replicas, including the primary replica, and a remote data
center that hosts two asynchronous-commit secondary replicas. The following figure illustrates
the original topology of this example availability group. The availability group is hosted by a
multi-subnet WSFC cluster with three nodes in the main data center (Node 01, Node 02, and
Node 03) and two nodes in a remote data center (Node 04 and Node 05).

The main data center shuts down unexpectedly. Its three availability replicas to go offline, and
their databases become unavailable. The following figure illustrates the impact of this failure on
the topology of the availability group.

 288

The database administrator (DBA) determines that the best possible response is to force failover
of the availability group to one of the remote, asynchronous-commit secondary replicas. This
example illustrates the typical steps involved when you force failover of the availability group to
a remote replica and, eventually, return the availability group to its original topology.
The failure-response presented here consists of the following two phases:
• Responding to the catastrophic failure of the main data center
• Returning the Availability Group to its Original Topology
Responding to the Catastrophic Failure of the Main Data Center
The following figure illustrates the series of actions performed at the remote data center in
response a catastrophic failure at the main data center.

 289

The steps in this figure indicate the following steps:

Step Action Links

1. The DBA or network
administrator ensures that
the WSFC cluster has a
healthy quorum. In this
example, quorum needs to
be forced.

• WSFC Quorum Modes and Voting
Configuration (SQL Server)

• WSFC Disaster Recovery through
Forced Quorum (SQL Server)

2. The DBA connects to the
server instance with the
least latency (on Node 04)
and performs a forced
manual failover. The forced

• sys.dm_hadr_database_replica_states
(Query the end_of_log_lsn column.
For more information,
see Recommendations, earlier in this
topic.)

http://msdn.microsoft.com/en-us/library/1a17b0c9-2535-4f3d-8013-cd0a6d08f773(SQL.110)�

 290

Step Action Links

failover transitions this
secondary replica to the
primary role and suspends
the secondary databases on
the remaining secondary
replica (on Node 05).

• Perform a Forced Manual Failover of
an Availability Group (SQL Server)

3. The DBA manually resumes
each of the secondary
databases on the remaining
secondary replica.

Resume an Availability Database (SQL
Server)

Returning the Availability Group to its Original Topology
The following figure illustrates the series of actions that return the availability group to its
original topology after the main data center comes back online and the WSFC nodes re-
establish communication with the WSFC cluster.

If the WSFC cluster quorum has been forced, as the offline nodes restart they could form
a new quorum if the following conditions both exist: (a) there is no network connectivity
between any of the nodes in the forced-quorum set, and (b) the restarting nodes are the
majority of the cluster nodes. This would result in a "split brain" condition in which the
availability group would possess two independent primary replicas, one at each data
center. Before forcing quorum to create a minority quorum set, see WSFC Disaster
Recovery through Forced Quorum (SQL Server).

Important

 291

The steps in this figure indicate the following steps:

 Step Links

1. The nodes in the main data
center come back online and re-
establish communication with
the WSFC cluster. Their

Resume an Availability Database (SQL
Server

Tip

 292

 Step Links

availability replicas come online
as secondary replicas with
suspended databases, and the
DBA will need to manually
resume each of these databases
soon.

If you are concerned about
possible data loss on the post-
failover primary databases, you
should attempt to create a
database snapshot on the
suspended databases on one the
synchronous-commit secondary
database. Keep in mind that the
transaction log truncation is
delayed on a primary database
while any of its secondary
databases is suspended. Also the
synchronization health of the
synchronous-commit secondary
replica cannot transition to
HEALTHY as long as any local
database remains suspended.

2. Once the databases are
resumed, the DBA changes the
new primary replica to
synchronous-commit mode
temporarily. This involves two
steps:
1. Change one offline

availability replica to
asynchronous-commit
mode.

2. Change the new primary
replica to synchronous-
commit mode.

Note
This step enables
resumed synchronous-
commit secondary
databases to become
SYNCHRONIZED.

Change the Availability Mode of an
Availability Replica (SQL Server)

3. Once the synchronous-commit
secondary replica on Node 03
(the original primary replica)

• sys.dm_hadr_database_replica_states
• Use AlwaysOn Policies to View the

Health of an Availability Group (SQL

http://msdn.microsoft.com/en-us/library/1a17b0c9-2535-4f3d-8013-cd0a6d08f773(SQL.110)�

 293

 Step Links

enters the HEALTHY
synchronization state, the DBA
performs a planned manual
failover to that replica, to make
it the primary replica again. The
replica on Node 04 returns to
being a secondary replica.

Server)
•

Perform a Planned Manual Failover
of an Availability Group (SQL Server)

4. The DBA connects to the new
primary replica and:
1. Changes the former primary

replica (in the remote
center) back to
asynchronous-commit
mode.

2. Changes the asynchronous-
commit secondary replica in
the main data center back to
synchronous-commit mode.

Change the Availability Mode of an
Availability Replica (SQL Server)

Related Tasks
To adjust quorum votes
• View Cluster Quorum NodeWeight Settings
• Configure Cluster Quorum NodeWeight Settings
• Force a WSFC Cluster to Start Without a Quorum
Planned manual failover:
• Perform a Planned Manual Fail Over of an Availability Group (SQL Server)
• Use the Fail Over Availability Group Wizard (SQL Server Management Studio)
To troubleshoot:
• Troubleshoot AlwaysOn Availability Groups Configuration (SQL Server)
• Troubleshoot a Failed Add-File Operation (AlwaysOn Availability Groups)

Related Content
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog

http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�

 294

See Also
AlwaysOn Availability Groups (SQL Server)
Availability Modes (AlwaysOn Availability Groups)
Failover Modes (AlwaysOn Availability Groups)
Client Connection Access to Availability Replicas (SQL Server)
Monitoring of Availability Groups (SQL Server)
Windows Server Failover Clusters (WSFC) with SQL Server

Use the Fail Over Availability Group Wizard (SQL Server Management
Studio)
This topic describes how to perform a planned manual failover or forced manual failover (forced
failover) on an AlwaysOn availability group by using SQL Server Management Studio, Transact-
SQL, or PowerShell in SQL Server 2012. An availability group fails over at the level of an
availability replica. If you fail over to a secondary replica in the SYNCHRONIZED state, the wizard
performs a planned manual failover (without data loss). If you fail over to a secondary replica in
the UNSYNCHRONIZED or NOT SYNCHRONIZING state, the wizard performs a forced manual
failover—also known as a forced failover (with possible data loss). Both forms of manual failover
transition the secondary replica to which you are connected to the primary role. A planned
manual failover currently transitions the former primary replica to the secondary role. After a
forced failover, when the former primary replica comes online, it transitions to the secondary
role.
• Before you begin:

Limitations and Restrictions
Prerequisites for Using the Failover Availability Group Wizard
Security

• To fail over an availability group, using:
SQL Server Management Studio

• Fail Over Availability Group Wizard pages:
Select New Primary Replica page (later in this topic)
Connect to Replica page (later in this topic)
Confirm Potential Data Loss page (later in this topic)
Summary Page (AlwaysOn Availability Group wizards)
Progress Page (AlwaysOn Availability Group wizards)
Results Page (AlwaysOn Availability Group wizards)

Before You Begin
Before your first planned manual failover, see the "Before You Begin" section in Perform a
Planned Manual Fail Over of an Availability Group.

 295

Before your first forced failover, see the "Before You Begin" and "Follow Up: Essential Tasks After
a Forced Failover" sections in Force Failover of an Availability Group (SQL Server).
Limitations and Restrictions
• A failover command returns as soon as the target secondary replica has accepted the

command. However, database recovery occurs asynchronously after the availability group
has finished failing over.

• Cross-database consistency across databases within the availability group is not maintained
on failover.

Cross-database transactions and distributed transactions are not supported by
AlwaysOn Availability Groups. For more information, see Cross-Database
Transactions Not Supported For Database Mirroring or AlwaysOn Availability Groups
(SQL Server).

Prerequisites for Using the Failover Availability Group Wizard
• You must be connected to the server instance that hosts an availability replica that is

currently available.
Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To Use the Failover Availability Group Wizard
1. In Object Explorer, connect to the server instance that hosts a secondary replica of the

availability group that needs to be failed over, and expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. To launch the Failover Availability Group Wizard, right-click the availability group that you

are going to fail over, and select Failover.
4. The information presented by the Introduction page depends on whether any secondary

replica is eligible for a planned failover. If this page says, "Perform a planned failover for
this availability group", you can failover the availability group without data loss.

5. On the Select New Primary Replica page, you can view the status of the current primary
replica and of the WSFC quorum, before you choose the secondary replica that will become
the new primary replica (the failover target). For a planned manual failover, be sure to select
a secondary replica whose Failover Readiness value is "No data loss". For a forced failover,
for all the possible failover targets, this value will be “Data loss, Warnings(#)”, where #
indicates the number of warnings that exist for a given secondary replica. To view the
warnings for a given failover target, click its “Failover Readiness” value.

Note

 296

For more information, see Select New Primary Replica page, later in this topic.
6. On the Connect to Replica page, connect to the failover target. For more information, see

Connect to Replica page, later in this topic.
7. If you are performing a forced failover, the wizard displays the Confirm Potential Data Loss

page. To proceed with the failover, you must select Click here to confirm failover with
potential data loss. For more information, see .Confirm Potential Data Loss page, later in
this topic.

8. On the Summary page, review the implications of failing over to the selected secondary
replica.
If you are satisfied with your selections, optionally click Script to create a script of the steps
the wizard will execute. Then, to failover the availability group to the selected secondary
replica, click Finish.

9. The Progress page displays the progress of failing over the availability group.
10. When the failover operation finishes, the Results page displays the result. When the wizard

completes, click Close to exit.
For more information, see Results Page (AlwaysOn Availability Group Wizards).

11. After a forced failover, see the "Follow Up: After a Forced Failover" section in the Force
Failover of an Availability Group (SQL Server).

Help for Pages that are Exclusive to This Wizard
This section describes the pages that are unique to the Fail Over Availability Group Wizard.
In This Section
• Select New Primary Replica page
• Connect to Replica page
• Confirm Potential Data Loss page
The other pages of this wizard share help with one or more of the other AlwaysOn Availability
Groups wizards and are documented in separate F1 help topics.
Select New Primary Replica Page
This section describes the options of the Select New Primary Replica page. Use this page to
select the secondary replica (failover target) to which the availability group will fail over. This
replica will become the new primary replica.
Page Options
Current Primary Replica

Displays the name of the current primary replica, if it is online.

Primary Replica Status

Displays the status of the current primary replica, if it is online.

 297

Quorum Status

Displays the WSFC quorum status for the availability replica, one of:

Value Description

Normal quorum The cluster has started with normal
quorum.

Forced quorum The cluster has started with forced quorum.

Unknown quorum The cluster quorum status is unavailable.

Not applicable The node that hosts the availability replica
has no quorum.

For more information, see WSFC Quorum Modes and Voting Configuration (SQL
Server).

Choose a new primary replica

Use this grid to select a secondary replica to become the new primary replica. The columns in
this grid are as follows:

Server Instance

Displays the name of a server instance that hosts a secondary replica.

Availability Mode

Displays the availability mode of the server instance, one of:

Value Description

Synchronous commit Under synchronous-commit mode, before
committing transactions, a synchronous-
commit primary replica waits for a
synchronous-commit secondary replica to
acknowledge that it has finished
hardening the log. Synchronous-commit
mode ensures that once a given secondary
database is synchronized with the primary
database, committed transactions are fully
protected.

Asynchronous commit Under asynchronous-commit mode, the
primary replica commits transactions
without waiting for acknowledgement that
an asynchronous-commit secondary

 298

replica has hardened the log.
Asynchronous-commit mode minimizes
transaction latency on the secondary
databases but allows them to lag behind
the primary databases, making some data
loss possible.

For more information, see Availability Modes (AlwaysOn Availability Groups).

Failover Mode

Displays the failover mode of the server instance, one of:

Value Description

Automatic A secondary replica that is configured for
automatic failover also supports planned
manual failover whenever the secondary
replica is synchronized with the primary
replica.

Manual Two types of manual failover exist:
planned (without data loss) and forced
(with possible data loss). For a given
secondary replica, only one of these is
supported, depending on the availability
mode and, for synchronous-commit mode,
the synchronization state of the secondary
replica. To determine which form of
manual failover is currently supported by a
given secondary replica, see the Failover
Readiness column of this grid.

For more information, see Failover Modes (AlwaysOn Availability Groups).

Failover Readiness

Displays failover readiness of the secondary replica, one of:

Value Description

No data loss This secondary replica currently supports
planned failover. This value occurs only
when a synchronous-commit mode

 299

secondary replica is currently synchronized
with the primary replica.

Data loss, Warnings(#) This secondary replica currently supports
forced failover (with possible data loss).
This value occurs whenever the secondary
replica is not synchronized with the
primary replica. Click the data-loss
warnings link for information about the
possible data loss.

Refresh

Click to update the grid.

Cancel

Click to cancel the wizard. On the Select New Primary Replica page, cancelling the wizard
cause it to exit without performing any actions.

Confirm Potential Data Loss Page
This section describes the options of the Confirm Potential Data Loss page, which is displayed
only if you are performing a forced failover. This topic is used only by the Fail Over Availability
Group Wizard. Use this page to indicate whether you are willing to risk possible data loss in
order to force the availability group to fail over.
Confirm Potential Data Loss Options
If the selected secondary replica is not synchronized with the primary replica, the wizard displays
a warning that failing over to this secondary replica could cause data loss on one or more
databases.
Click here to confirm failover with potential data loss.

If you are willing to risk data loss in order to make the databases in this availability group
available to users, click this checkbox. If you are not willing to risk data loss, you can either
click Previous to return to the Select New Primary Replica page, or click Cancel to exit the
wizard without failing over the availability group.

Cancel

Click to cancel the wizard. On the Confirm Potential Data Loss page, cancelling the wizard
cause it to exit without performing any actions.

Connect to Replica Page
This section describes the options of the Connect to Replica page of the Fail Over Availability
Group Wizard. This page is displayed only if you are not connected to the target secondary
replica. Use this page to connect to the secondary replica that you have selected as the new
primary replica.

 300

Page Options
Grid columns:

Server Instance

Displays the name of the server instance that will host the availability replica.

Connected As

Displays the account that is connected to the server instance, once the connection has
been established. If this column displays "Not Connected" for a given server instance, you
will need to click the Connect button.

Connect

Click if this server instance is running under a different account than other server instances
to which you need to connect.

Cancel

Click to cancel the wizard. On the Connect to Replica page, cancelling the wizard cause it to
exit without performing any actions.

See Also
Overview of AlwaysOn Availability Groups (SQL Server)
Availability Modes (AlwaysOn Availability Groups)
Failover Modes (AlwaysOn Availability Groups)
Perform a Planned Manual Fail Over of an Availability Group
Perform a Forced Manual Failover of an Availability Group (SQL Server)
WSFC Quorum Failure with SQL Server

Add a Database to an Availability Group
This topic describes how to add a database to an AlwaysOn availability group by using SQL
Server Management Studio, Transact-SQL, or PowerShell in SQL Server 2012.
• Before you begin:

 Prerequisites and Restrictions
Permissions

• To add a database to an availability group, using:
SQL Server Management Studio
Procedure Transact-SQL
PowerShell

Before You Begin
Prerequisites and Restrictions

 301

• You must be connected to the server instance that hosts the primary replica.
• The database must reside on the server instance that hosts the primary replica and comply

with the prerequisites and restrictions for availability databases. For more information,
see Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL
Server).

Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To add a database to an availability group
1. In Object Explorer, connect to the server instance that hosts the primary replica, and expand

the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Right-click the availability group, and select one of the following commands:

• To launch the Add Database to Availability Group Wizard, select the Add Database
command. For more information, see Add a Database to an Availability Group (Add
Database Wizard).

• To add one or more databases by specifying them in the Availability Group Properties
dialog box, select the Properties command. The steps for adding a database are as
follows:
i. In the Availability Databases pane, click the Add button. This creates and selects a

blank database field.
ii. Enter the name of a database that meets the availability-databases prerequisites.
To add another database, repeat the preceding steps. When you are done specifying
databases, click OK to complete the operation.
After you use the Availability Group Properties dialog box to add a database to an
availability group, you need to configure the corresponding secondary database on each
server instance that hosts a secondary replica. For more information, see Start Data
Movement on an AlwaysOn Secondary Database (SQL Server).

Using Transact-SQL
To add a database to an availability group
1. Connect to the server instance that hosts the server instance that hosts the primary replica.
2. Use the ALTER AVAILABILITY GROUP statement, as follows:

ALTER AVAILABILITY GROUP group_name ADD DATABASE database_name [,...n]

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 302

where group_name is the name of the availability group and database_name is the name of
a database to be added to the group.
The following example adds the MyDb3 database to the MyAG availability group.

-- Connect to the server instance that hosts the primary replica.

-- Add an existing database to the availability group.

ALTER AVAILABILITY GROUP MyAG ADD DATABASE MyDb3;

GO

3. After you add a database to an availability group, you need to configure the corresponding
secondary database on each server instance that hosts a secondary replica. For more
information, see Start Data Movement on an AlwaysOn Secondary Database (SQL Server).

Using PowerShell
To add a database to an availability group
1. Change directory (cd) to the server instance that hosts the primary replica.
2. Use the Add-SqlAvailabilityDatabase cmdlet.

For example, the following command adds the secondary database MyDd to the MyAG
availability group, whose primary replica is hosted by PrimaryServer\InstanceName.

Add-SqlAvailabilityDatabase `

-Path

SQLSERVER:\SQL\PrimaryServer\InstanceName\AvailabilityGroups\MyAG `

-Database "MyDb"

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

3. After you add a database to an availability group, you need to configure the corresponding
secondary database on each server instance that hosts a secondary replica. For more
information, see Start Data Movement on an AlwaysOn Secondary Database (SQL Server).

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider
For a complete example, see Example (PowerShell), below.
Example (PowerShell)
The following example shows the full process for preparing a secondary database from a
database on the server instance that hosts the primary replica of an availability group, adding
the database to an availability group (as a primary database), and then joining the secondary
database to the availability group. First, the example backs up the database and its transaction

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 303

log. Then the example restores the database and log backups to the server instances that host a
secondary replica.
The example calls Add-SqlAvailabilityDatabase twice: first on the primary replica to add the
database to the availability group, and then on the secondary replica to join the secondary
database on that replica to the availability group. If you have more than one secondary replica,
restore and join the secondary database on each of them.

$DatabaseBackupFile = "\\share\backups\MyDatabase.bak"

$LogBackupFile = "\\share\backups\MyDatabase.trn"

$MyAgPrimaryPath =

"SQLSERVER:\SQL\PrimaryServer\InstanceName\AvailabilityGroups\MyAg"

$MyAgSecondaryPath =

"SQLSERVER:\SQL\SecondaryServer\InstanceName\AvailabilityGroups\MyAg"

Backup-SqlDatabase -Database "MyDatabase" -BackupFile $DatabaseBackupFile -

ServerInstance "PrimaryServer\InstanceName"

Backup-SqlDatabase -Database "MyDatabase" -BackupFile $LogBackupFile -

ServerInstance "PrimaryServer\InstanceName" -BackupAction 'Log'

Restore-SqlDatabase -Database "MyDatabase" -BackupFile $DatabaseBackupFile -

ServerInstance "SecondaryServer\InstanceName" -NoRecovery

Restore-SqlDatabase -Database "MyDatabase" -BackupFile $LogBackupFile -

ServerInstance "SecondaryServer\InstanceName" -RestoreAction 'Log' -

NoRecovery

Add-SqlAvailabilityDatabase -Path $MyAgPrimaryPath -Database "MyDatabase"

Add-SqlAvailabilityDatabase -Path $MyAgSecondaryPath -Database "MyDatabase"

See Also
AlwaysOn Availability Groups
Creation and Configuration of Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)
Monitoring Availability Groups (Transact-SQL)

 304

Use the Add Database to Availability Group Wizard (SQL Server Management
Studio)
Use the Add Database to Availability Group Wizard to help you add one or more databases to
an existing AlwaysOn availability group.

For information about using Transact-SQL or PowerShell to add a database, see Add a
Database to an Availability Group (SQL Server).

In This Topic:
• Before you begin:

Prerequisites and Restrictions
Security

• To add a database, using: Add Database to Availability Group Wizard (SQL Server
Management Studio)

Before You Begin
If you have never added a database to an availability group, see the "Availability Databases"
section in Prerequisites and Restrictions for AlwaysOn Availability Groups (SQL Server).
Prerequisites, Restrictions, and Recommendations
• You must be connected to the server instance that hosts the current primary replica.
• If a database is encrypted or even contains a Database Encryption Key (DEK), you cannot use

the New Availability Group Wizard or Add Database to Availability Group Wizard to add the
database to an availability group. Even if an encrypted database has been decrypted, its log
backups might contain encrypted data. In this case, full initial data synchronization could fail
on the database. This is because the restore log operation might require the certificate that
was used by the database encryption keys (DEKs), and that certificate might be unavailable.
To make a decrypted database eligible to add to an availability group using the
wizard:
a. Create a log backup of the primary database.
b. Create a full database backup of the primary database.
c. Restore the database backup on the server instance that hosts the secondary replica.
d. Create a new log backup from primary database.
e. Restore this log backup on the secondary database.

• Prerequisites for using full initial data synchronization
• All the database-file paths must be identical on every server instance that hosts a replica

for the availability group.
• No primary database name can exist on any server instance that hosts a secondary

replica. This means that none of the new secondary databases can exist yet.

Note

 305

• You will need to specify a network share in order for the wizard to create and access
backups. For the primary replica, the account used to start the Database Engine must
have read and write file-system permissions on a network share. For secondary replicas,
the account must have read permission on the network share.

If you are unable to use the wizard to perform full initial data synchronization, you need to
prepare your secondary databases manually. You can do this before or after running the
wizard. For more information, see Manually Prepare a Secondary Database for an Availability
Group (SQL Server).

Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using the Add Database to Availability Group Wizard (SQL Server Management
Studio)
To Use the Add Database to Availability Group Wizard
1. In Object Explorer, connect to the server instance that hosts the primary replica of the

availability group, and expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Right-click the availability group to which you are adding a database, and select the Add

Database command. This command launches the Add Database to Availability Group
Wizard.

4. On the Select Databases page, select one or more databases. For more information,
see Select Databases Page (New Availability Group Wizard/Add Database Wizard).

5. On the Select Initial Data Synchronization page, choose how you want your new
secondary databases to be created and joined to the availability group. Choose one of the
following options:
• Full

Select this option if your environment meets the requirements for automatically starting
initial data synchronization (for more information, see Prerequisites, Restrictions, and
Recommendations , earlier in this topic).
If you select Full, after creating the availability group, the wizard will attempt to back up
every primary database and its transaction log to a network share and restore the
backups on every server instance that hosts an secondary replica. The wizard will then
join every secondary database to the availability group.
In the Specify a shared network location accessible by all replicas: field, specify a
backup share to which all of the server instance that host replicas have read-write access.

 306

The log backups will be part of your log backup chain. Store the log backup files
appropriately.

For information about the required file-system permissions, see Prerequisites,
earlier in this topic.

• Join only
If you have manually prepared secondary databases on the server instances that will host
the secondary replicas, you can select this option. The wizard will join the existing
secondary databases to the availability group.

• Skip initial data synchronization
Select this option if you want to use your own database and log backups of your primary
databases. For more information, see Manually Start Data Synchronization on an
AlwaysOn Secondary Database (SQL Server).

For more information, see Select Initial Data Synchronization Page (AlwaysOn Availability
Group wizards).

6. On the Connect to Existing Secondary Replicas page, if the instances of SQL Server that
host the availability replicas for this availability group are all running as a service in the same
user account, click Connect all. If any of the server instances are running as a service under
different accounts, click the individual Connect button to the right of each server instance
name.
For more information, see Connect to Existing Secondary Replicas Page (Add Replica
Wizard/Add Databases Wizard).

7. The Validation page verifies whether the values you specified in this Wizard meet the
requirements of the New Availability Group Wizard. To make a change, you can click
Previous to return to an earlier wizard page to change one or more values. The click Next to
return to the Validation page, and click Re-run Validation.
For more information, see Validation Page (AlwaysOn Availability Group Wizards).

8. On the Summary page, review your choices for the new availability group. To make a
change, click Previous to return to the relevant page. After making the change, click Next to
return to the Summary page.
For more information, see Summary Page (AlwaysOn Availability Group Wizards).
If you are satisfied with your selections, optionally click Script to create a script of the steps
the wizard will execute. Then, to create and configure the new availability group, click Finish.

9. The Progress page displays the progress of the steps for creating the availability group
(configuring endpoints, creating the availability group, and joining the secondary replica to
the group).
For more information, see Progress Page (AlwaysOn Availability Group Wizards).

10. When these steps complete, the Results page displays the result of each step. If all these
steps succeed, the new availability group is completely configured. If any of the steps result

noteDXDOC112778PADS Security Note

 307

in an error, you might need to manually complete the configuration. For information about
the cause of a given error, click the associated "Error" link in the Result column.
When the wizard completes, click Close to exit.
For more information, see Results Page (AlwaysOn Availability Group Wizards).

11. If initial data synchronization was not automatically started on all of you secondary database,
you need to configure any not-yet-joined secondary databases. For more information,
see Manually Start Data Synchronization on an AlwaysOn Secondary Database (SQL Server).

Related Tasks
• Prepare a Secondary Database for an Availability Group (SQL Server)
• Join a Secondary database to an Availability Group (SQL Server)

See Also
AlwaysOn Availability Groups (SQL Server)
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)
Add a Database to an Availability Group (SQL Server)
Manually Start Data Synchronization on an AlwaysOn Secondary Database (SQL Server)
Add a Database to an Availability Group (SQL Server)

Connect to Existing Secondary Replicas Page (Add Replica Wizard/Add Databases
Wizard)
This help topic describes the options of the Connect to Existing Secondary Replicas page. This
topic is used by the Add Replica to Availability Group Wizard and Add Database to Availability
Group Wizard of SQL Server 2012.
Grid columns:

Server Instance

Displays the name of the server instance that will host the availability replica.

Connected As

Displays the account that is connected to the server instance, once the connection has
been established. If this column displays "Not Connected" for a given server instance, you
will need to click either the Connect or Connect All button.

Connect

Click if this server instance is running under a different account than other server instances
to which you need to connect.

Connect All

Click only if every instance of SQL Server to which you need to connect is running as a service
in the same user account.

 308

Cancel

Click to cancel the wizard. On the Connect to Existing Secondary Replica page, cancelling
the wizard cause it to exit without performing any actions.

Related Tasks
• Use the Add Replica to Availability Group Wizard
• Use the Add Database to Availability Group Wizard

See Also
AlwaysOn Availability Groups

Suspend an Availability Database
You can suspend an availability database in AlwaysOn Availability Groups by using SQL Server
Management Studio, Transact-SQL, or PowerShell in SQL Server 2012. Note that a suspend
command needs to be issued on the server instance that hosts the database to be suspended or
resumed.
The effect of a suspend command depends on whether you suspend a secondary database or a
primary database, as follows:

Suspended Database Effect of Suspend Command

Secondary database Only the local secondary database is
suspended and its synchronization state
becomes NOT SYNCHRONIZING. Other
secondary databases are not affected. The
suspended database stops receiving and
applying data (log records) and begins to
fall behind the primary database. Existing
connections on the readable secondary
remain usable. New connections to the
suspended database on the readable
secondary are not allowed until data
movement is resumed.
The primary database remains available. If
you suspend each of the corresponding
secondary databases, the primary database
runs exposed.

Important
While a secondary database is

 309

Suspended Database Effect of Suspend Command

suspended, the send queue of the
corresponding primary database will
accumulate unsent transaction log
records. Connections to the
secondary replica return data that
was available at the time the data
movement was suspended.

Primary database The primary database stops data
movement to every connected secondary
database. The primary database continues
running, in an exposed mode. The primary
database remains available to clients, and
existing connections on a readable
secondary remain usable and new
connections can be made.

Suspending an AlwaysOn secondary database does not directly affect the availability of
the primary database. However, suspending a secondary database can impact
redundancy and failover capabilities for the primary database. This is in contrast to
database mirroring, where the mirroring state is suspended on both the mirror database
and the principal database. Suspending an AlwaysOn primary database suspends data
movement on all the corresponding secondary databases, and redundancy and failover
capabilities cease for that database until the primary database is resumed.

• Before you begin:
Limitations and Restrictions
Prerequisites
Recommendations
Security

• To suspend a database, using:
• SQL Server Management Studio

Transact-SQL
PowerShell

• Follow up: Avoiding a Full Transaction Log
• Related Tasks
Before You Begin
Limitations and Restrictions

Note

 310

A SUSPEND command returns as soon as it has been accepted by the replica that hosts the
target database, but actually suspending the database occurs asynchronously.
Prerequisites
You must be connected to the server instance that hosts the database that you want to suspend.
To suspend a primary database and the corresponding secondary databases, connect to the
server instance that hosts the primary replica. To suspend a secondary database while leaving
the primary database available, connect to the secondary replica.
Recommendations
During bottlenecks, suspending one or more secondary databases briefly might be useful to
improve performance temporarily on the primary replica. As long as a secondary database
remains suspended, the transaction log of the corresponding primary database cannot be
truncated. This causes log records to accumulate on the primary database. Therefore, we
recommend that you resume, or remove, a suspended secondary database quickly. For more
information, see Follow up: Avoiding a Full Transaction Log, later in this topic.
Security
Permissions
Requires ALTER permission on the database.
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To suspend a database
1. In Object Explorer, connect to the server instance that hosts the availability replica on which

you want to suspend a database, and expand the server tree. For more information, see
Prerequisites, earlier in this topic.

2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Expand the availability group.
4. Expand the Availability Databases node, right-click the database, and click Suspend Data

Movement.
5. In the Suspend Data Movement dialog box, click OK.

Object Explorer indicates that the database is suspended by changing the database icon to
display a pause indicator.

To suspend additional databases on this replica location, repeat steps 4 and 5 for each
database.

Using Transact-SQL

Note

 311

To suspend a database
1. Connect to the server instance that hosts the replica whose database you want to suspend.

For more information, see Prerequisites, earlier in this topic.
2. Suspend the database by using the following ALTER DATABASE statement:

ALTER DATABASE database_name SET HADR SUSPEND

Using PowerShell
To suspend a database
1. Change directory (cd) to the server instance that hosts the replica whose database you want

to suspend. For more information, see Prerequisites, earlier in this topic.
2. Use the Suspend-SqlAvailabilityDatabase cmdlet to suspend the availability group.

For example, the following command suspends data synchronization for the availability
database MyDb3 in the availability group MyAg on the server instance named
Computer\Instance.

Suspend-SqlAvailabilityDatabase `

-Path

SQLSERVER:\Sql\Computer\Instance\AvailabilityGroups\MyAg\Databases\MyD

b3

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

Follow Up: Avoiding a Full Transaction Log
Normally, when an automatic checkpoint is performed on a database, its transaction log is
truncated to that checkpoint after the next log backup. However, while a secondary database is
suspended, all of the current log records remain active on the primary database. If the
transaction log fills up (either because it reaches its maximum size or the server instance runs
out of space), the database cannot perform any more updates.
To avoid this problem, you should do one of the following:
• Add more log space for the primary database.
• Resume the secondary database before the log fills up. For more information, see Resume

an Availability Database (SQL Server).
• Remove the secondary database. For more information, see Remove a Database from a

Secondary Replica (SQL Server).
To troubleshoot a full transaction log

Note

http://msdn.microsoft.com/en-us/library/20e6e803-d6d5-48d5-b626-d1e0a73d174c(SQL.110)�
http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 312

• Troubleshoot a Full Transaction Log (SQL Server Error 9002)

Related Tasks
• Resume an Availability Database (SQL Server)
See Also
AlwaysOn Availability Groups (SQL Server)
Resume an Availability Database (SQL Server)

Resume an Availability Database
You can resume a suspended availability database in AlwaysOn Availability Groups by using SQL
Server Management Studio, Transact-SQL, or PowerShell in SQL Server 2012. Resuming a
suspended database puts the database into the SYNCHRONIZING state. Resuming the primary
database also resumes any of its secondary databases that were suspended as the result of
suspending the primary database. If any secondary database was suspended locally, from the
server instance that hosts the secondary replica, that secondary database must be resumed
locally. Once a given secondary database and the corresponding primary database are in the
SYNCHRONIZING state, data synchronization resumes on the secondary database.

Suspending and resuming an AlwaysOn secondary database does not directly affect the
availability of the primary database. However, suspending a secondary database can
impact redundancy and failover capabilities for the primary database, until the
suspended secondary database is resumed. This is in contrast to database mirroring,
where the mirroring state is suspended on both the mirror database and the principal
database until mirroring is resumed. Suspending an AlwaysOn primary database
suspends data movement on all the corresponding secondary databases, and
redundancy and failover capabilities cease for that database until the primary database is
resumed.

• Before you begin:
Limitations and Restrictions
Prerequisites
Security

• To resume a secondary database, using:
SQL Server Management Studio
Transact-SQL
PowerShell

• Related Tasks
Before You Begin
Limitations and Restrictions

Note

http://msdn.microsoft.com/en-us/library/0f23aa84-475d-40df-bed3-c923f8c1b520(SQL.110)�

 313

A RESUME command returns as soon as it has been accepted by the replica that hosts the target
database, but actually resuming the database occurs asynchronously.
Prerequisites
• You must be connected to the server instance that hosts the database to be resumed.
• The availability group must be online.
• The primary database must be online and available.
Security
Permissions
Requires ALTER permission on the database.
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To resume a secondary database
1. In Object Explorer, connect to the server instance that hosts the availability replica on which

you want to resume a database, and expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Expand the availability group.
4. Expand the Availability Databases node, right-click the database, and click Resume Data

Movement.
5. In the Resume Data Movement dialog box, click OK.

To resume additional databases on this replica location, repeat steps 4 and 5 for each
database.

Using Transact-SQL
To resume a secondary database that was suspended locally
1. Connect to the server instance that hosts the secondary replica whose database you want to

resume.
2. Resume the secondary database by using the following ALTER DATABASE statement:

ALTER DATABASE database_name SET HADR RESUME

Using PowerShell
To resume a secondary database
1. Change directory (cd) to the server instance that hosts the replica whose database you want

to resume. For more information, see Prerequisites, earlier in this topic.

Note

http://msdn.microsoft.com/en-us/library/20e6e803-d6d5-48d5-b626-d1e0a73d174c(SQL.110)�

 314

2. Use the Resume-SqlAvailabilityDatabase cmdlet to resume the availability group.
For example, the following command resumes data synchronization for the availability
database MyDb3 in the availability group MyAg.

Resume-SqlAvailabilityDatabase `

-Path

SQLSERVER:\Sql\Computer\Instance\AvailabilityGroups\MyAg\Databases\MyD

b3

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

Related Tasks
• Suspend an Availability Database (SQL Server)
See Also
Overview AlwaysOn Availability Groups (SQL Server)

Remove a Secondary Database from an Availability Group
This topic describes how to remove a secondary database from an AlwaysOn availability group
by using SQL Server Management Studio, Transact-SQL, or PowerShell in SQL Server 2012.
• Before you begin:

Prerequisites
Security

• To remove a secondary database, using:
SQL Server Management Studio
Transact-SQL
PowerShell

• Follow Up: After Removing a Secondary Database from an Availability Group
Before You Begin

Prerequisites and Restrictions
• This task is supported only on secondary replicas. You must be connected to the server

instance that hosts the secondary replica from which the database is to be removed.
Security
Permissions

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 315

Requires ALTER permission on the database.

Using SQL Server Management Studio
To remove a secondary database from an availability group
1. In Object Explorer, connect to the server instance that hosts the secondary replica from

which you want to remove one or more secondary databases, and expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Select the availability group, and expand the Availability Databases node.
4. This step depends on whether you want to remove multiple databases groups or only one

database, as follows:
• To remove multiple databases, use the Object Explorer Details pane to view and select

all the databases that you want to remove. For more information, see Use Object
Explorer Details to Monitor Availability Groups (SQL Server Management Studio).

• To remove a single database, select it in either the Object Explorer pane or the Object
Explorer Details pane.

5. Right-click the selected database or databases, and select Remove Secondary Database in
the command menu.

6. In the Remove Database from Availability Group dialog box, to remove all the listed
databases, click OK. If you do not want to remove all the listed databases, click Cancel.

Using Transact-SQL
To remove a secondary database from an availability group
1. Connect to the server instance that hosts the secondary replica.
2. Use the SET HADR clause of the ALTER DATABASE statement, as follows:

ALTER DATABASE database_name SET HADR OFF
where database_name is the name of a secondary database to be removed from the
availability group to which it belongs.
The following example removes the local secondary database MyDb2 from its availability
group.

ALTER DATABASE MyDb2 SET HADR OFF;

GO

Using PowerShell
To remove a secondary database from an availability group
1. Change directory (cd) to the server instance that hosts the secondary replica.
2. Use the Remove-SqlAvailabilityDatabase cmdlet, specifying the name of the availability

database to be removed from the availability group. When you are connected to a server

http://msdn.microsoft.com/en-us/library/20e6e803-d6d5-48d5-b626-d1e0a73d174c(SQL.110)�

 316

instance that hosts a secondary replica, only the local secondary database is removed from
the availability group.
For example, the following command removes the secondary database MyDb8 from the
secondary replica hosted by the server instance named SecondaryComputer\Instance.
Data synchronization to the removed secondary databases ceases. This command does not
affect the primary database or any other secondary databases.

Remove-SqlAvailabilityDatabase `

-Path

SQLSERVER:\Sql\SecondaryComputer\InstanceName\AvailabilityGroups\MyAg\

Databases\MyDb8

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

Follow Up: After Removing a Secondary Database from an Availability Group
When a secondary database is removed, it is no longer joined to the availability group and all
information about the removed secondary database is discarded by the availability group. The
removed secondary database is placed in the RESTORING state.

For a short time after removing a secondary database, you might be able to restart
AlwaysOn data synchronization on the database by re-joining it to the availability group.
For more information, see Join a Secondary Database to an Availability Group (SQL
Server).

At this point there are alternative ways of dealing with a removed secondary database:
• If you no longer need the secondary database, you can drop it.

For more information, see DROP DATABASE (Transact-SQL) or How to: Delete a database
(SQL Server Management Studio).

• If you want to access a removed secondary database after it has been removed from the
availability group, you can recover the database. However, if you recover a removed
secondary database, two divergent, independent databases that have the same name are
online. You must make sure that clients can access only the current primary database.
For more information, see Recover a Database Without Restoring Data (Transact-SQL).

See Also
Overview of AlwaysOn Availability Groups

Note

Tip

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/477396a9-92dc-43c9-9b97-42c8728ede8e(SQL.110)�
http://msdn.microsoft.com/en-us/library/1fd8c0f5-03e1-449a-af45-b8cacb479d9c(SQL.110)�
http://msdn.microsoft.com/en-us/library/1fd8c0f5-03e1-449a-af45-b8cacb479d9c(SQL.110)�
http://msdn.microsoft.com/en-us/library/7e8fa620-315d-4e10-a718-23fa5171c09e(SQL.110)�

 317

Remove a Primary Database from an Availability Group

Remove a Primary Database from an Availability Group
This topic describes how to remove both the primary database and the corresponding
secondary database(s) from an AlwaysOn availability group by using SQL Server Management
Studio, Transact-SQL, or PowerShell in SQL Server 2012.
• Before you begin:

Prerequisites and Restrictions
Security

• To remove an availability database, using:
SQL Server Management Studio
Transact-SQL
PowerShell

• Follow Up: After Removing an Availability Database from an Availability Group
Before You Begin

Prerequisites and Restrictions
• This task is supported only on primary replicas. You must be connected to the server

instance that hosts the primary replica.
Security

Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To remove an availability database
1. In Object Explorer, connect to the server instance that hosts the primary replica of the

database or databases to be removed, and expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Select the availability group, and expand the Availability Databases node.
4. This step depends on whether you want to remove multiple databases groups or only one

database, as follows:
• To remove multiple databases, use the Object Explorer Details pane to view and select

all the databases that you want to remove. For more information, see Use Object
Explorer Details to Monitor Availability Groups (SQL Server Management Studio).

 318

• To remove a single database, select it in either the Object Explorer pane or the Object
Explorer Details pane.

5. Right-click the selected database or databases, and select Remove Database from
Availability Group in the command menu.

6. In the Remove Databases from Availability Group dialog box, to remove all the listed
databases, click OK. If you do not want to remove all them, click Cancel.

Using Transact-SQL
To remove an availability database
1. Connect to the server instance that hosts the primary replica.
2. Use the ALTER AVAILABILITY GROUP statement, as follows:

ALTER AVAILABILITY GROUP group_name REMOVE DATABASE availability_database_name
where group_name is the name of the availability group and database_name is the name of
the database to be removed.
The following example removes a databases named Db6 from the MyAG availability group.
ALTER AVAILABILITY GROUP MyAG REMOVE DATABASE Db6;

Using PowerShell
To remove an availability database
1. Change directory (cd) to the server instance that hosts the primary replica.
2. Use the Remove-SqlAvailabilityDatabase cmdlet, specifying the name of the availability

database to be removed from the availability group. When you are connected to the server
instance that hosts the primary replica, the primary database and its corresponding
secondary databases are all removed from the availability group.
For example, the following command removes the availability database MyDb9 from the
availability group named MyAg. Because the command is executed on the server instance
that hosts the primary replica, the primary database and all its corresponding secondary
databases are removed from the availability group. Data synchronization will no longer
occur for this database on any secondary replica.

Remove-SqlAvailabilityDatabase `

-Path

SQLSERVER:\Sql\PrimaryComputer\InstanceName\AvailabilityGroups\MyAg\Da

tabases\MyDb9

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server 2012
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider

Note

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�
http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�

 319

• SQL Server PowerShell Provider

Follow Up: After Removing an Availability Database from an Availability Group
Removing an availability database from its availability group ends data synchronization between
the former primary database and the corresponding secondary databases. The former primary
database remains online. Every corresponding secondary database is placed in the RESTORING
state.
At this point there are alternative ways of dealing with a removed secondary database:
• If you no longer need a given secondary database, you can drop it.

For more information, see Delete a database (SQL Server Management Studio).
• If you want to access a removed secondary database after it has been removed from the

availability group, you can recover the database. However, if you recover a removed
secondary database, two divergent, independent databases that have the same name are
online. You must make sure that clients can access only one of them, typically the most
recent primary database.
For more information, see Recover a Database Without Restoring Data (Transact-SQL).

See Also
AlwaysOn Availability Groups
Remove a Secondary Database from an Availability Group

Add a Secondary Replica to an Availability Group
This topic describes how to add a replica to an existing AlwaysOn availability group by using
SQL Server Management Studio, Transact-SQL, or PowerShell. The new replica will be a
secondary replica.
• Before you begin:

Prerequisites and Restrictions
Security

• To add a replica, using: SQL Server Management Studio
Procedure Transact-SQL
PowerShell

• Follow Up: After Adding a Secondary Replica
Before You Begin
We strongly recommend that you read this section before attempting to create your first
availability group.
Prerequisites and Restrictions
• You must be connected to the server instance that hosts the primary replica.

http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/1fd8c0f5-03e1-449a-af45-b8cacb479d9c(SQL.110)�
http://msdn.microsoft.com/en-us/library/7e8fa620-315d-4e10-a718-23fa5171c09e(SQL.110)�

 320

For more information, see "Prerequisites, Restrictions, and Recommendations for AlwaysOn
Availability Groups (SQL Server).
Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.
Using SQL Server Management Studio
To add a replica
1. In Object Explorer, connect to the server instance that hosts the primary replica, and expand

the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Right-click the availability group, and select one of the following commands:

• Select the Add Replica command to launch the Add Replica to Availability Group
Wizard. For more information, see Use the Add Replica to Availability Group Wizard (SQL
Server Management Studio).

• Alternatively, select the Properties command to open the Availability Group
Properties dialog box. The steps for adding a replica in this dialog box are as follows:
i. In the Availability Replicas pane of the dialog box, click the Add button. This

creates and selects a replica entry in which the blank Server Instance field is selected.
ii. Enter the name of a server instance that meets the prerequisites for hosting an

availability replica.
To add an additional replicas, repeat the preceding steps. When you are done specifying
replicas, click OK to complete the operation.

Using Transact-SQL
To add a replica
1. Connect to the instance of SQL Server that hosts the primary replica.
2. Add the new secondary replica to the availability group by using the ADD REPLICA ON

clause of the ALTER AVAILABILITY GROUP statement. The ENDPOINT_URL,
AVAILABILITY_MODE, and FAILOVER_MODE options are required in an ADD REPLICA ON
clause. The other replica options— BACKUP_PRIORITY, SECONDARY_ROLE, PRIMARY_ROLE,
and SESSION_TIMEOUT—are optional. For more information, see ALTER AVAILABILITY
GROUP (Transact-SQL).
For example, the following Transact-SQL statement creates a new replica to an availability
group named MyAG on the default server instance hosted by COMPUTER04, whose endpoint
URL is TCP://COMPUTER04.Adventure-Works.com:5022'. This replica supports manual
failover and asynchronous-commit availability mode.

ALTER AVAILABILITY GROUP MyAG ADD REPLICA ON 'COMPUTER04'

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�
http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�
www.TCP://COMPUTER04.Adventure-Works.com:5022

 321

 WITH (

 ENDPOINT_URL = 'TCP://COMPUTER04.Adventure-Works.com:5022',

 AVAILABILITY_MODE = ASYNCHRONOUS_COMMIT,

 FAILOVER_MODE = MANUAL

);

Using PowerShell
To add a replica
1. Change directory (cd) to the server instance that hosts the primary replica.
2. Use the New-SqlAvailabilityReplica cmdlet.

For example, the following command adds an availability replica to an existing availability
group named MyAg. This replica supports manual failover and asynchronous-commit
availability mode. In the secondary role, this replica will support read access connections,
allowing you to offload read-only processing to this replica.

$agPath =

"SQLSERVER:\Sql\PrimaryServer\InstanceName\AvailabilityGroups\MyAg"

$endpointURL = "TCP://PrimaryServerName.domain.com:5022"

$failoverMode = "Manual"

$availabilityMode = "AsynchronousCommit"

$secondaryReadMode = "AllowAllConnections"

New-SqlAvailabilityReplica -Name SecondaryServer\Instance `

-EndpointUrl $endpointURL `

-FailoverMode $failoverMode `

-AvailabilityMode $availabilityMode `

-ConnectionModeInSecondaryRole $secondaryReadMode `

-Path $agPath

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

Follow Up: After Adding a Secondary Replica

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�
www.TCP://COMPUTER04.Adventure-Works.com:5022
www.TCP://PrimaryServerName.domain.com:5022

 322

To add a replica for an existing availability group, you must perform the following steps:
1. Connect to the server instance that is going to host the new secondary replica.
2. Join the new secondary replica to the availability group. For more information, see Join a

Secondary Replica to an Availability Group (SQL Server).
3. For each database in the availability group, create a secondary database on the server

instance that is hosting the secondary replica. For more information, see Prepare a Database
for a Secondary Replica (Transact-SQL).

4. Join each of the new secondary databases to the availability group. For more information,
see Join a Secondary Database to an Availability Group (SQL Server).

Related Tasks
To manage an availability replica
• Join a Secondary Replica to an Availability Group (SQL Server)
• Remove a Secondary Replica from an Availability Group (SQL Server)
• Configure Read-Only Access on a Secondary Availability Replica (SQL Server)
• Set the Availability Mode of an Availability Replica (SQL Server)
• Set the Failover Mode of an Availability Replica (SQL Server)
• Setting the Session-Timeout Period for an Availability Replica (SQL Server)
• Set the Session-Timeout Period for an Availability Replica (SQL Server)

See Also
ALTER AVAILABILITY GROUP (Transact-SQL)
AlwaysOn Availability Groups
Creation and Configuration of Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)
Monitoring Availability Groups (Transact-SQL)

Use the Add Replica to Availability Group Wizard (SQL Server Management
Studio)
Use the Add Replica to Availability Group Wizard to help you a add new secondary replica to an
existing AlwaysOn availability group.

For information about using Transact-SQL or PowerShell to add a secondary replica to an
availability group, see Add a Replica to an Availability Group (SQL Server).

• Before you begin:
Prerequisites

Note

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 323

Security
• To add a replica, using: Add Replica to Availability Group Wizard (SQL Server Management

Studio)
Before You Begin
If you have never added any availability replica to an availability group, see the "Server
instances" and "Availability groups and replicas" sections in Prerequisites, Restrictions, and
Recommendations for AlwaysOn Availability Groups (SQL Server).
Prerequisites
• You must be connected to the server instance that hosts the current primary replica.
• Before adding a secondary replica, verify that the host instance of SQL Server is in the same

Windows Server Failover Clustering (WSFC) cluster as the existing replicas but resides on a
different cluster node. Also, verify that this server instance meets all other AlwaysOn
Availability Groups prerequisites. For more information, see Prerequisites, Restrictions, and
Recommendations (AlwaysOn Availability Groups).

• If a server instance that you select to host an availability replica does not yet have a
database mirroring endpoint, the wizard can create the endpoint if the server instance is
running under a domain service account. However, if the SQL Server service is running as a
built-in account, such as Local System, Local Service, or Network Service, or a nondomain
account, you must use certificates for endpoint authentication, and the wizard will be unable
to create a database mirroring endpoint on the server instance. In this case, we recommend
that you create the database mirroring endpoints before you launch the Add Replica to
Availability Group Wizard. For more information, see Prerequisites, Restrictions, and
Recommendations for AlwaysOn Availability Groups (SQL Server).

• Prerequisites for using full initial data synchronization
• All the database-file paths must be identical on every server instance that hosts a replica

for the availability group.
• No primary database name can exist on any server instance that hosts a secondary

replica. This means that none of the new secondary databases can exist yet.
• You will need to specify a network share in order for the wizard to create and access

backups. For the primary replica, the account used to start the Database Engine must
have read and write file-system permissions on a network share. For secondary replicas,
the account must have read permission on the network share.

If you are unable to use the wizard to perform full initial data synchronization, you need to
prepare your secondary databases manually. You can do this before or after running the
wizard. For more information, see Manually Prepare a Secondary Database for an Availability
Group (SQL Server).

Security
Permissions

 324

Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using the Add Replica to Availability Group Wizard (SQL Server Management
Studio)
To Use the Add Replica to Availability Group Wizard
1. In Object Explorer, connect to the server instance that hosts the primary replica of the

availability group, and expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Right-click the availability group to which you are adding a secondary replica, and select the

Add Replica command. This launches the Add Replica to Availability Group Wizard.
4. On the Connect to Existing Secondary Replicas page, connect to every secondary replica

in the availability group. For more information, see Connect to Existing Secondary Replicas
Page (Add Replica Wizard/Add Databases Wizard).

5. On the Specify Replicas page, specify and configure one or more new secondary replicas
for the availability group. This page contains three tabs. The following table introduces these
tabs. For more information, see Specify Replicas page (New Availability Group Wizard/Add
Replica Wizard).

 325

Tab Brief Description

Replicas Use this tab to specify each instance of SQL
Server that will host a new secondary
replica.

Endpoints Use this tab to verify the existing database
mirroring endpoint, if any, for each new
secondary replica. If this endpoint is lacking
on a server instance whose service accounts
use Windows Authentication, the wizard
will attempt to create the endpoint
automatically.

Note
If any server instance is running
under a non-domain service
account, you need to do make a
manual change to your server
instance before you can proceed in
the wizard.

Backup Preferences Use this tab to specify your backup
preference for the availability group as a
whole, if you wish to modify the current
setting, and to specify your backup
priorities for the individual availability
replicas.

6. On the Select Initial Data Synchronization page, choose how you want your new

secondary databases to be created and joined to the availability group. Choose one of the
following options:
• Full

Select this option if your environment meets the requirements for automatically starting
initial data synchronization (for more information, see Prerequisites, Restrictions, and
Recommendations , earlier in this topic).
If you select Full, after creating the availability group, the wizard will back up every
primary database and its transaction log to a network share and restore the backups on
every server instance that hosts a new secondary replica. The wizard will then join every
new secondary database to the availability group.
In the Specify a shared network location accessible by all replicas: field, specify a
backup share to which all of the server instance that host replicas have read-write access.

 326

The log backups will be part of your log backup chain. Store the log backup files
appropriately.

For information about the required file-system permissions, see Prerequisites,
earlier in this topic.

• Join only
If you have manually prepared secondary databases on the server instances that will host
the new secondary replicas, you can select this option. The wizard will join these new
secondary databases to the availability group.

• Skip initial data synchronization
Select this option if you want to use your own database and log backups of your primary
databases. For more information, see Manually Start Data Synchronization on an
AlwaysOn Secondary Database (SQL Server).

7. The Validation page verifies whether the values you specified in this Wizard meet the
requirements of the Add Replica to Availability Group Wizard. To make a change, click
Previous to return to an earlier wizard page to change one or more values. The click Next to
return to the Validation page, and click Re-run Validation.

8. On the Summary page, review your choices for the new availability group. To make a
change, click Previous to return to the relevant page. After making the change, click Next to
return to the Summary page.
If you are satisfied with your selections, optionally click Script to create a script of the steps
the wizard will execute. Then, to create and configure the new availability group, click Finish.

9. The Progress page displays the progress of the steps for creating the availability group
(configuring endpoints, creating the availability group, and joining the secondary replica to
the group).

10. When these steps complete, the Results page displays the result of each step. If all these
steps succeed, the new availability group is completely configured. If any of the steps result
in an error, you might need to manually complete the configuration. For information about
the cause of a given error, click the associated "Error" link in the Result column.
When the wizard completes, click Close to exit.

After adding a replica, see the "Follow Up: After Adding a Replica" section in Add a
Replica to an Availability Group (SQL Server).

Related Tasks
• Add a Replica to an Availability Group (SQL Server)

See Also

noteDXDOC112778PADS Security Note

Important

 327

AlwaysOn Availability Groups (SQL Server)
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)
Add a Replica to an Availability Group (SQL Server)

Change the Session-Timeout Period for an Availability Replica
This topic describes how to configure the session-timeout period of an AlwaysOn availability
replica by using SQL Server Management Studio, Transact-SQL, or PowerShell in SQL Server
2012. The session-timeout period is a replica property that controls how many seconds (in
seconds) that an availability replica waits for a ping response from a connected replica before
considering the connection to have failed. By default, a replica waits 10 seconds for a ping
response. This replica property applies only the connection between a given secondary replica
and the primary replica of the availability group. For more information about the session-
timeout period, see Overview of AlwaysOn Availability Groups.
• Before you begin:

Prerequisites
Recommendations
Security

• To change the session-timeout period, using:
SQL Server Management Studio
Transact-SQL
PowerShell

Before You Begin
Prerequisites
• You must be connected to the server instance that hosts the primary replica.
Recommendations
We recommend that you keep the time-out period at 10 seconds or greater. Setting the value to
less than 10 seconds creates the possibility of a heavily loaded system missing PINGs and
declaring a false failure.
Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To change the session-timeout period for an availability replica

 328

1. In Object Explorer, connect to the server instance that hosts the primary replica, and expand
the server tree.

2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Click the availability group whose availability replica you want to configure.
4. Right-click the replica to be configured, and click Properties.
5. In the Availability Replica Properties dialog box, use the Session timeout (seconds) field

to change the number of seconds for the session-timeout period on this replica.

Using Transact-SQL
To change the session-timeout period for an availability replica
1. Connect to the server instance that hosts the primary replica.
2. Use the ALTER AVAILABILITY GROUP statement, as follows:

ALTER AVAILABILITY GROUP group_name
 MODIFY REPLICA ON 'instance_name' WITH (SESSION_TIMEOUT = seconds)
where group_name is the name of the availability group, instance_name is the name of the
server instance that hosts the availability replica to be modified, and seconds specifies the
minimum number of seconds that the replica must wait before applying log to databases
when acting as a secondary replica. The default is 0 seconds, which indicates that there is no
apply delay.
The following example, entered on the primary replica of the AccountsAG availability group,
changes the session-timeout value to 15 seconds for the replica located on the INSTANCE09
server instance.

ALTER AVAILABILITY GROUP AccountsAG

 MODIFY REPLICA ON 'INSTANCE09' WITH (SESSION_TIMEOUT = 15);

Using PowerShell
To change the session-timeout period for an availability replica
1. Change directory (cd) to the server instance that hosts the primary replica.
2. Use the Set-SqlAvailabilityReplica cmdlet with the SessionTimeout parameter to change

the number of seconds for the session-timeout period on a specified availability replica.
For example, the following command sets the session-timeout period to 15 seconds.

Set-SqlAvailabilityReplica –SessionTimeout 15 `

-Path

SQLSERVER:\Sql\PrimaryServer\InstanceName\AvailabilityGroups\MyAg\Repl

icas\MyReplica

Note

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 329

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

See Also
Overview of AlwaysOn Availability Groups

Remove a Secondary Replica from an Availability Group
This topic describes how to remove a secondary replica from an AlwaysOn availability group by
using SQL Server Management Studio, Transact-SQL, or PowerShell in SQL Server 2012.
• Before you begin:

Limitations and Restrictions
Prerequisites
Security

• To remove a secondary replica, using:
SQL Server Management Studio
Transact-SQL
PowerShell

• Follow Up: After Removing a Secondary Replica
Before You Begin

Limitations and Restrictions
• This task is supported only on the primary replica.
• Only a secondary replica can be removed from an availability group.
Prerequisites
• You must be connected to the server instance that hosts the primary replica of the

availability group.
Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To remove a secondary replica

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 330

1. In Object Explorer, connect to the server instance that hosts the primary replica, and expand
the server tree.

2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Select the availability group, and expand the Availability Replicas node.
4. This step depends on whether you want to remove multiple replicas or only one replica, as

follows:
• To remove multiple replicas, use the Object Explorer Details pane to view and select all

the replicas that you want to remove. For more information, see Use Object Explorer
Details to Monitor Availability Groups (SQL Server Management Studio).

• To remove a single replica, select it in either the Object Explorer pane or the Object
Explorer Details pane.

5. Right-click the selected secondary replica or replicas, and select Remove from Availability
Group in the command menu.

6. In the Remove Secondary Replicas from Availability Group dialog box, to remove all the
listed secondary replicas, click OK. If you do not want to remove all the listed replicas, click
Cancel.

Using Transact-SQL
To remove a secondary replica
1. Connect to the server instance that hosts the primary replica.
2. Use the ALTER AVAILABILITY GROUP statement, as follows:

ALTER AVAILABILITY GROUP group_name REMOVE REPLICA ON 'instance_name' [,...n]
where group_name is the name of the availability group and instance_name is the server
instance where the secondary replica is located.
The following example removes a secondary replica from the MyAG availability group. The
target secondary replica is located on a server instance named HADR_INSTANCE on a
computer named COMPUTER02.

ALTER AVAILABILITY GROUP MyAG REMOVE REPLICA ON

'COMPUTER02\HADR_INSTANCE';

Using PowerShell
To remove a secondary replica
1. Change directory (cd) to the server instance that hosts the primary replica.
2. Use the Remove-SqlAvailabilityReplica cmdlet.

For example, the following command removes the availability replica on the server
MyReplica from the availability group named MyAg. This command must be run on the
server instance that hosts the primary replica of the availability group.

Remove-SqlAvailabilityReplica `

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 331

-Path

SQLSERVER:\SQL\PrimaryServer\InstanceName\AvailabilityGroups\MyAg\Repl

icas\MyReplica

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

Follow Up: After Removing a Secondary Replica
If you specify a replica that is currently unavailable, when the replica comes online, it will
discover that it has been removed.
Removing a replica causes it to stop receiving data. After a secondary replica confirms that it has
been removed from the global store, the replica removes the availability group settings from its
databases, which remain on the local server instance in the RECOVERING state.

See Also
Overview of AlwaysOn Availability Groups
Add a Secondary Replica to an Availability Group (SQL Server)
Delete an Availability Group (SQL Server)

Remove an Availability Group Listener
This topic describes how to remove an availability group listener from an AlwaysOn availability
group by using SQL Server Management Studio, Transact-SQL, or PowerShell in SQL Server
2012.
• Before you begin:

Prerequisites
Recommendations
Security

• To remove a listener, using:
SQL Server Management Studio
Transact-SQL
PowerShell

Before You Begin
Prerequisites

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 332

• You must be connected to the server instance that hosts the primary replica.
Recommendations
Before you delete an availability group listener, we recommend that you ensure that no
applications are using it.
Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission.

Using SQL Server Management Studio
To remove an availability group listener
1. In Object Explorer, connect to the server instance that hosts the primary replica, and click the

server name to expand the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Expand the node of the availability group, and expand the Availability Groups Listeners

node.
4. Right-click the listener to be removed, and select the Delete command.
5. This opens the Remove Listener from Availability Group dialog box. For more

information, see Remove Listener from Availability Group, later in this topic.
Remove Listener from Availability Group (Dialog Box)
Name

The name of the listener to be removed.

Result

Displays a link, either Success or Error, which you can click for more information.

Using Transact-SQL
To remove an availability group listener
1. Connect to the server instance that hosts the primary replica.
2. Use the ALTER AVAILABILITY GROUP statement, as follows:

ALTER AVAILABILITY GROUP group_name REMOVE LISTENER ‘dns_name’
where group_name is the name of the availability group and dns_name is the DNS name of
the availability group listener.
The following example deletes the listener of the AccountsAG availability group. The DNS
name is AccountsAG_Listener.

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 333

ALTER AVAILABILITY GROUP AccountsAG REMOVE LISTENER

‘AccountsAG_Listener’;

Using PowerShell
To remove an availability group listener
1. Set default (cd) to the server instance that hosts the primary replica.
2. Use the built in Remove-Item cmdlet to remove a listener. For example, the following

command removes a listener named MyListener from an availability group named MyAg.

Remove-Item `

SQLSERVER:\Sql\PrimaryServer\InstanceName\AvailabilityGroups\MyAg\AGLi

steners\MyListener

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see SQL Server PowerShell Help.

Related Tasks
• Create or Configure an Availability Group Listener (SQL Server)
• View Availability Group Listener Properties (SQL Server)

See Also
AlwaysOn Availability Groups (SQL Server)
Client Connectivity and Application Failover (AlwaysOn Availability Groups)

Remove an Availability Group
This topic describes how to delete (drop) an AlwaysOn availability group by using SQL Server
Management Studio, Transact-SQL, or PowerShell in SQL Server 2012. You can drop an
availability group from any Windows Server Failover Clustering (WSFC) node that possesses the
correct security credentials for the availability group. This enables you to delete an availability
group when none of its availability replicas remain. Dropping an availability group deletes any
associated availability group listener.

If a server instance that hosts one of the availability replicas is offline when you delete an
availability group, after coming online, the server instance will drop the local availability
replica.

• Before you begin:

Note

Note

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�

 334

Limitations and Restrictions
Security

• To delete an availability group, using:
SQL Server Management Studio
Transact-SQL
PowerShell

Before You Begin
Limitations and Restrictions
When the availability group is online, deleting it from a secondary-replica causes the primary
replica to transition to the RESOLVING state.
If you delete an availability group from a computer that has been removed or evicted from the
WSFC failover cluster, the availability group is only deleted locally.
Security
Permissions
Requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL
SERVER permission. To drop an availability group that is not hosted by the local server instance
you need CONTROL SERVER permission or CONTROL permission on that Availability Group.

Using SQL Server Management Studio
To delete an availability group
1. In Object Explorer, connect to the server instance that hosts primary replica, if possible, or

connect to another server instance that is enabled for AlwaysOn Availability Groups on a
WSFC node that possess the correct security credentials for the availability group. Expand
the server tree.

2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. This step depends on whether you want to delete multiple availability groups or only one

availability group, as follows:
• To delete multiple availability groups (whose primary replicas are on the connected

server instance), use the Object Explorer Details pane to view and select all the
availability groups that you want to delete. For more information, see Use Object
Explorer Details to Monitor Availability Groups (SQL Server Management Studio).

• To delete a single availability group, select it in either the Object Explorer pane or the
Object Explorer Details pane.

4. Right-click the selected availability group or groups, and select the Delete command.
5. In the Remove Availability Group dialog box, to delete all the listed availability groups,

click OK. If you do not want to remove all the listed availability groups, click Cancel.

 335

Using Transact-SQL
To delete an availability group
1. Connect to the server instance that hosts the primary replica, if possible, or connect to

another server instance that is enabled for AlwaysOn Availability Groups on a WSFC node
that possess the correct security credentials for the availability group.

2. Use the DROP AVAILABILITY GROUP statement, as follows
DROP AVAILABILITY GROUP group_name
where group_name is the name of the availability group to be dropped.
The following example deletes the MyAG availability group.
DROP AVAILABILITY GROUP MyAG;

Using PowerShell
To delete an availability group
In the SQL Server PowerShell provider:
1. Change directory (cd) to the server instance that hosts the primary replica, if possible, or

connect to another server instance that is enabled for AlwaysOn Availability Groups on a
WSFC node that possess the correct security credentials for the availability group.

2. Use the Remove-SqlAvailabilityGroup cmdlet.
For example, the following command removes the availability group named MyAg. This
command can be executed on any server instance that hosts an availability replica for the
availability group.

Remove-SqlAvailabilityGroup `

-Path SQLSERVER:\Sql\Computer\Instance\AvailabilityGroups\MyAg

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see Get Help SQL Server PowerShell.

To set up and use the SQL Server PowerShell provider
• SQL Server PowerShell Provider

See Also
AlwaysOn Availability Groups
Creation and Configuration of Availability Groups

Note

http://msdn.microsoft.com/en-us/library/c1600289-c990-454a-b279-dba0ebd5d63e(SQL.110)�
http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�

 336

Troubleshoot a Failed Add-File Operation (AlwaysOn Availability
Groups)
In some AlwaysOn availability group deployments, file paths differ between the system that
hosts the primary replica and systems that host a secondary replica. If the file path of an add-file
operation does not exist on a secondary replica, the add-file operation will succeed on the
primary database. But the add-file operation will cause the secondary database to be
suspended. This, in turn, causes the secondary replica to enter the NOT SYNCHRONIZING state.

We recommend that, if possible, the file path (including the drive letter) of a given
secondary database be identical to the path of the corresponding primary database.

Problem Resolution
To resolve this problem the database owner must complete the following steps:
1. Remove the secondary database from the availability group. For more information,

see Removing a Database from a Secondary Replica (AlwaysOn Availability Groups).
2. On the existing secondary database, restore a full backup of the filegroup that contains the

added file to the secondary database, using WITH NORECOVERY and WITH MOVE
(specifying the file path on the server instance that hosts the secondary replica). For more
information, see How to: Restore a Database to a New Location (SQL Server Management
Studio).

3. Back up the transaction log that contains the add-file operation on the primary database,
and manually restore the log backup on the secondary database using WITH NORECOVERY
and WITH MOVE.

4. Prepare the secondary database for re-joining the availability group, by restoring, WITH NO
RECOVERY, any other outstanding log backups from the primary database.

5. Rejoin the secondary database to the availability group. For more information, see Joining a
Secondary Database to an Availability Group (SQL Server).

See Also
Overview of AlwaysOn Availability Groups
Manually Prepare a Secondary Database for an Availability Group (SQL Server)
Troubleshoot Orphaned Users (SQL Server)
Troubleshoot AlwaysOn Availability Groups Configuration (SQL Server)

AlwaysOn Policies for Operational Issues with
AlwaysOn Availability Groups
The AlwaysOn Availability Groups health model evaluates a set of predefined policy based
management (PBM) policies. You can use theses for viewing the health of an availability group
and its availability replicas and databases in SQL Server 2012.

Note

http://msdn.microsoft.com/en-us/library/4da76d61-5e11-4bee-84f5-b305240d9f42(SQL.110)�
http://msdn.microsoft.com/en-us/library/4da76d61-5e11-4bee-84f5-b305240d9f42(SQL.110)�
http://msdn.microsoft.com/en-us/library/11eefa97-a31f-4359-ba5b-e92328224133(SQL.110)�

 337

In this Topic:
• Terms and Definitions
• Predefined Policies and Issues
• AlwaysOn Dashboard
• Extending the AlwaysOn Health Model
• Related Tasks
• Related Content

Terms and Definitions
AlwaysOn predefined policies

A set of built-in policies that allow a database administrator to check an availability group
and its availability replicas and databases for compliance with the states that are defined by
the AlwaysOn policies.

AlwaysOn Availability Groups
A high-availability and disaster-recovery solution that provides an enterprise-level alternative
to database mirroring.

availability group

A container for a discrete set of user databases, known as availability databases, that fail over
together.

availability replica

An instantiation of an availability group that is hosted by a specific instance of SQL Server
and that maintains a local copy of each availability database that belongs to the availability
group. Two types of availability replicas exist: a single primary replica and one to four
secondary replicas. The server instances that host the availability replicas for a given
availability group must reside on different nodes of a single Windows Server Failover
Clustering (WSFC) cluster.

availability database

A database that belongs to an availability group. For each availability database, the
availability group maintains a single read-write copy (the primary database) and one to four
read-only copies (secondary databases).

AlwaysOn Dashboard

A SQL Server Management Studio dashboard that provides an at-a-glance view of the health
of an availability group. For more information, see AlwaysOn Dashboard, later in this
topic.

Predefined Policies and Issues
The following table summarizes the predefined policies.

 338

Policy name Issue Category* Facet

WSFC Cluster State WSFC cluster service is
offline.

Critical Instance of SQL
Server

Availability Group Online
State

Availability group is
offline.

Critical Availability group

Availability Group
Automatic Failover
Readiness

Availability group is not
ready for automatic
failover.

Critical Availability group

Availability Replicas Data
Synchronization State

Some availability
replicas are not
synchronizing data.

Warning Availability group

Synchronous Replicas
Data Synchronization
State

Some synchronous
replicas are not
synchronized.

Warning Availability group

Availability Replicas Role
State

Some availability
replicas do not have a
healthy role.

Warning Availability group

Availability Replicas
Connection State

Some availability
replicas are
disconnected.

Warning Availability group

Availability Replica Role
State

Availability replica does
not have a healthy role.

Critical Availability replica

Availability Replica
Connection State

Availability replica is
disconnected.

Critical Availability replica

Availability Replica Join
State

Availability Replica is not
joined.

Warning Availability replica

Availability Replica Data
Synchronization State

Data synchronization
state of some availability
database is not healthy.

Warning Availability replica

Availability Database
Suspension State

Availability database is
suspended.

Warning Availability database

Availability Database
Join State

Secondary database is
not joined.

Warning Availability database

Availability Database Availability database Data synchronization Warning

 339

Policy name Issue Category* Facet

Data Synchronization
State

state of availability
database is not healthy.

*For AlwaysOn policies, the category names are used as IDs. Changing the name of an
AlwaysOn category would break its health-evaluation functionality. Therefore, do not
modify the names of AlwaysOn categories.

AlwaysOn Dashboard
The AlwaysOn Dashboard gives you an at-a-glance view of the health of an availability group.
The AlwaysOn Dashboard includes the following features:
• Enables you to easily display details about a given availability group, its availability replicas,

and its databases.
• Displays visual indications of key states to help database administrators make quick

operational decisions.
• Provides launch points for troubleshooting scenarios.
• For a given operational issue, populates the Policy Evaluation Result dialog box with

information about specific AlwaysOn health policy violations and with links to remediation
help.

• Provides an health extended event viewer to show previous events for AlwaysOn-specific
issues.

• If failing over the availability group is a possible remediation for an issue, provides a launch
point for the links Fail Over Availability Group Wizard. This wizard takes a database
administrator through the manual failover process.

Extending the AlwaysOn Health Model
Extending the AlwaysOn Availability Groups health model is simply a matter of creating your
own user-defined policies and putting them into certain categories based on the type of object
that you are monitoring. After you a alter few settings, the AlwaysOn dashboard will
automatically evaluate your own user-defined policies, as well as the AlwaysOn predefined
policies.
A user-defined policy can use any of the available PBM facets, including those used by the
AlwaysOn predefined policies (see Predefined Policies and Issues, earlier in this topic). The
Server facet provides the following properties for monitoring AlwaysOn Availability Groups
health: (IsHadrEnabled and HadrManagerStatus). The Server facet also provides properties the
following policies for monitoring the WSFC cluster configuration: ClusterQuorumType, and
ClusterQuorumState.

Important

 340

For more information, see The AlwaysOn Health Model Part 2 -- Extending the Health Model (a
SQL Server AlwaysOn Team blog).

Related Tasks
• Use Policy-Based Management to View the Health of an Availability Group (SQL Server)
• Use the Availability Group Dashboard (SQL Server Management Studio)
• WSFC Disaster Recovery through Forced Quorum (SQL Server)
• Force a WSFC Cluster to Start Without a Quorum
• Perform a Forced Manual Failover of an Availability Group (SQL Server)
• Troubleshoot a Failed Add-File Operation (AlwaysOn Availability Groups)

Related Content
• The AlwaysOn Health Model Part 1 -- Health Model Architecture
• The AlwaysOn Health Model Part 2 -- Extending the Health Model
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery

See Also
AlwaysOn Availability Groups (SQL Server)
Overview of AlwaysOn Availability Groups (SQL Server)
Administration of an Availability Group (SQL Server)
Monitoring of Availability Groups (SQL Server)

Use AlwaysOn Policies to View the Health of an Availability Group
This topic describes how to determine the operational health of an AlwaysOn availability group
by using an AlwaysOn policy in SQL Server Management Studio or PowerShell in SQL Server
2012. For information about AlwaysOn Policy Based Management, see Policy-Based
Management of Operational Issues with AlwaysOn Availability Groups (SQL Server).

For AlwaysOn policies, the category names are used as IDs. Changing the name of an
AlwaysOn category would break its health-evaluation functionality. Therefore, the names
of AlwaysOn category should never be modified.

• Before you begin: Security
• Use AlwaysOn policies to view the health of an availability group, using:

AlwaysOn Dashboard
PowerShell

Important

http://blogs.msdn.com/b/sqlalwayson/archive/2012/02/13/extending-the-alwayson-health-model.aspx�
http://blogs.msdn.com/b/sqlalwayson/archive/2012/02/13/extending-the-alwayson-health-model.aspx�
http://blogs.msdn.com/b/sqlalwayson/archive/2012/02/13/extending-the-alwayson-health-model.aspx�
http://go.microsoft.com/fwlink/?LinkId=227600�

 341

Before You Begin
Security
Permissions
Requires CONNECT, VIEW SERVER STATE, and VIEW ANY DEFINITION permissions.

Using the AlwaysOn Dashboard
To open the AlwaysOn Dashboard
1. In Object Explorer, connect to the server instance that hosts one of the availability replicas.

To view information about all of the availability replicas in an availability group, use to the
server instance that hosts the primary replica.

2. Click the server name to expand the server tree.
3. Expand the AlwaysOn High Availability node.

Either right-click the Availability Groups node or expand this node and right-click a specific
availability group.

4. Select the Show Dashboard command.
For information about how to use the AlwaysOn Dashboard, see Use the AlwaysOn Group
Dashboard (SQL Server Management Studio).

Using PowerShell
Use AlwaysOn policies to view the health of an availability group
1. Set default (cd) to a server instance that hosts one of the availability replicas. To view

information about all of the availability replicas in an availability group, use to the server
instance that hosts the primary replica.

2. Use the following cmdlets:
Test-SqlAvailabilityGroup

Assesses the health of an availability group by evaluating SQL Server policy based
management (PBM) policies. You must have CONNECT, VIEW SERVER STATE, and VIEW
ANY DEFINITION permissions to execute this cmdlet.
For example, the following command shows all availability groups with a health state of
"Error" on the server instance Computer\Instance.
Get-ChildItem SQLSERVER:\Sql\Computer\Instance\AvailabilityGroups `

| Test-SqlAvailabilityGroup | Where-Object { $_.HealthState -eq "Error" }

Test-SqlAvailabilityReplica

Assesses the health of availability replicas by evaluating SQL Server policy based
management (PBM) policies. You must have CONNECT, VIEW SERVER STATE, and VIEW
ANY DEFINITION permissions to execute this cmdlet.
For example, the following command evaluates the health of the availability replica named

 342

MyReplica in the availability group MyAg and outputs a brief summary.

Test-SqlAvailabilityReplica `

-Path

SQLSERVER:\Sql\Computer\Instance\AvailabilityGroups\MyAg\AvailabilityRepl

icas\MyReplica

Test-SqlDatabaseReplicaState

Assesses the health of an availability database on all joined availability replicas by
evaluating SQL Server policy based management (PBM) policies.
For example, the following command evaluates the health of all availability databases in
the availability group MyAg and outputs a brief summary for each database.
Get-ChildItem

SQLSERVER:\Sql\Computer\Instance\AvailabilityGroups\MyAg\DatabaseReplicaS

tates `

 | Test-SqlDatabaseReplicaState

These cmdlets accept the following options:

 343

Option Description

AllowUserPolicies Runs user policies found in the AlwaysOn
policy categories.

InputObject A collection of objects that, represent
availability groups, availability replicas, or
availability database states (depending on
which cmdlet you are using). The cmdlet
will compute the health of the specified
objects.

NoRefresh When this parameter is set, the cmdlet will
not manually refresh the objects specified
by the -Path or -InputObject parameter.

Path The path to the availability group, one or
more availability replicas, or database
replica cluster state of the availability
database (depending on which cmdlet you
are using). This is an optional parameter. If
not specified, the value of this parameter
defaults to the current working location.

ShowPolicyDetails Shows the result of each policy evaluation
performed by this cmdlet. The cmdlet
outputs one object per policy evaluation,
and this object has fields describing the
results of evaluation (whether the policy
passed or not, the policy name and
category, and so forth).

For example, the following Test-SqlAvailabilityGroup command specifies the -
ShowPolicyDetails parameter to show the result of each policy evaluation performed by
this cmdlet for each policy-based management (PBM) policy that was executed on the
availability group named MyAg.

Test-SqlAvailabilityGroup `

-Path SQLSERVER:\Sql\Computer\Instance\AvailabilityGroups\AgName `

-ShowPolicyDetails

Note

 344

To view the syntax of a cmdlet, use the Get-Help cmdlet in the SQL Server
PowerShell environment. For more information, see SQL Server PowerShell Help.

To set up and use the SQL Server PowerShell provider
• Using the SQL Server PowerShell Provider
• SQL Server PowerShell Help

Related Content
SQL Server AlwaysOn Team Blogs—Monitoring AlwaysOn Health with PowerShell:
• Part 1: Basic Cmdlet Overview
• Part 2: Advanced Cmdlet Usage
• Part 3: A Simple Monitoring Application
• Part 4: Integration with SQL Server Agent

See Also
Overview of AlwaysOn Availability Groups (SQL Server)
Administration of an Availability Group (SQL Server)
Monitoring of Availability Groups (SQL Server)
Policy-Based Management of Operational Issues with AlwaysOn Availability Groups (SQL Server)

Use the AlwaysOn Dashboard (SQL Server Management Studio)
Database administrators use the AlwaysOn Dashboard to obtains an at-a-glance view the health
of an AlwaysOn availability group and its availability replicas and databases in SQL Server 2012.
Some of the typical uses for the AlwaysOn Dashboard are:
• Choosing a replica for a manual failover.
• Estimating data loss if you force failover.
• Evaluating data-synchronization performance.
• Evaluating the performance impact of a synchronous-commit secondary replica
The AlwaysOn Dashboard provides key availability group states and performance indicators
allowing you to easily make high availability operational decisions using the following types of
information.
• Replica roll-up state
• Synchronization mode and state
• Estimate Data Loss
• Estimated Recovery Time (redo catch up)
• Database Replica details
• Synchronization mode and state

http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/b97acc43-fcd2-4ae5-b218-e183bab916f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/968c316d-db83-4c24-8ea6-9f18736842f7(SQL.110)�
http://blogs.msdn.com/b/sqlalwayson/archive/2012/02/13/monitoring-alwayson-health-with-powershell-part-1.aspx�
http://blogs.msdn.com/b/sqlalwayson/archive/2012/02/13/monitoring-alwayson-health-with-powershell-part-2.aspx�
http://blogs.msdn.com/b/sqlalwayson/archive/2012/02/15/monitoring-alwayson-health-with-powershell-part-3.aspx�
http://blogs.msdn.com/b/sqlalwayson/archive/2012/02/15/the-always-on-health-model-part-4.aspx�

 345

• Time to restore log
In This Topic:
• Before you begin:

Prerequisites
Security
Permissions

• Getting started with:
AlwaysOn Dashboard
To Change AlwaysOn Dashboard Options

• Dashboard panes:
Availability Groups Summary
Availability Group Details
Availability Replica Details
To Group Availability Group Information

• Related Tasks
Before You Begin
Prerequisites
You must be connected to the instance of SQL Server (server instance) that hosts either the
primary replica or a secondary replica of an availability group.
Security

Permissions
Requires CONNECT, VIEW SERVER STATE, and VIEW ANY DEFINITION permissions.

To start the AlwaysOn Dashboard
1. In Object Explorer, connect to the instance of SQL Server on which you want to run the

AlwaysOn Dashboard.
2. Expand the AlwaysOn High Availability node, right-click the Availability Groups node,

and then click Show Dashboard.

To Change AlwaysOn Dashboard Options
You can use the SQL Server Management Studio Options dialog box to configure the SQL
Server AlwaysOn Dashboard behavior for automatic refreshing and enabling an auto-defined
AlwaysOn policy.
1. From the Tools menu, click Options.

 346

2. To automatically refresh the dashboard, in the Options dialog box, select Turn on
automatic refresh, enter the refresh interval in seconds, and then enter the number of times
you want to retry the connection.

3. To enable a user-defined policy, select Enable user-defined AlwaysOn policy.
Availability Group Summary
The availability group screen displays a summary line for each availability group for which the
connected server instance hosts a replica. This pane displays the following columns.
Availability Group Name

The name of an availability group for which the connected server instance hosts a replica.

Primary Instance

Name of the server instance that is hosting the primary replica of the availability group.

Failover Mode

Displays the failover mode for which the replica is configured. The possible failover mode
values are:

• Automatic. Indicates that one or more replicas is in automatic-failover mode.

• Manual. Indicates that no replica is automatic-failover mode.

Issues

Click the Issues link to open troubleshooting documentation for a given issue. For a list of all
the AlwaysOn policy issues, see Policy-Based Management of AlwaysOn
Availability Groups (SQL Server).

Click the column headings to sort the availability group information by the name of the
availability group, primary instance, failover mode, or Issue.

Availability Group Details

The following detail information is displayed for the availability group that you select from the
summary screen:
Availability group state

Displays the state of health for the availability group.

Primary instance

Name of the server instance that is hosting the primary replica of the availability group.

Failover mode

Displays the failover mode for which the replica is configured. The possible failover mode
values are:

• Automatic. Indicates that one or more replicas is in automatic-failover mode.

Tip

 347

• Manual. Indicates that no replica is automatic-failover mode.

Cluster state

Name and state of the cluster where the instance of the connected server and the availability
group is a member node.

Availability Replica Details
The Availability replica pane displays the following columns:
Name

The name of the server instance that hosts the availability replica. This column is shown by
default.

Role

Indicates the current role of the availability replica, either Primary or Secondary. For
information about AlwaysOn Availability Groups roles, see "HADR" Overview (SQL
Server). This column is shown by default.

Failover Mode

Displays the failover mode for which the replica is configured. The possible failover mode
values are:

• Automatic. Indicates that one or more replicas is in automatic-failover mode.

• Manual. Indicates that no replica is automatic-failover mode.

Synchronization State

Indicates whether a secondary replica is currently synchronized with primary replica. This
column is shown by default. The possible values are:

• Not Synchronized. One or more databases in the replica are not synchronized or have
not yet been joined to the availability group.

• Synchronizing. One or more databases in the replica are being synchronized.

• Synchronized. All databases in the secondary replica are synchronized with the
corresponding primary databases on the current primary replica, if any, or on the last
primary replica.

Note
In performance mode, the database is never in the synchronized state.

• NULL. Unknown state. This value occurs when the local server instance cannot
communicate with the WSFC failover cluster (that is the local node is not part of WSFC
quorum).

Issues

Lists the issue name. This value is shown by default. For a list of all the AlwaysOn policy
issues, see Policy-Based Management of AlwaysOn Availability Groups (SQL

 348

Server)

Availability Mode

.

Indicates the replica property that that you set separately for each availability replica. This
value is hidden by default. The possible values are:

• Asynchronous. The secondary replica never becomes synchronized with the primary
replica.

• Synchronous. When catching up to the primary database, a secondary database enters
this state, and it remains caught up as long as data synchronization continues for the
database.

Primary Connection Mode

Indicates the mode that is used to connect to the primary replica. This value is hidden by
default.

Secondary Connection Mode

Indicates the mode that is used to connect to the secondary replica. This value is hidden by
default.

Connection State

Indicates whether a secondary replica is currently connected to the primary replica. This
column is hidden by default. The possible values are:

• Disconnected. For a remote availability replica, indicates that it is disconnected from the
local availability replica. The response of the local replica to the Disconnected state
depends on its role, as follows:

• On the primary replica, if a secondary replica is disconnected, the secondary
databases are marked as Not Synchronized on the primary replica, and the primary
replica waits for the secondary to reconnect.

• On the secondary replica, upon detecting that it is disconnected, the secondary
replica attempts to reconnect to the primary replica.

• Connected. A remote availability replica that is currently connected to the local replica.

Operational State

Indicates the current operational state of the secondary replica. This value is hidden by
default. The possible values are:

0. Pending failover

1. Pending

2. Online

3. Offline

4. Failed

5. Failed, no quorum

NULL. Replica is not local

 349

Last Connection Error No.

Number of the last connection error. This value is hidden by default.

Last Connection Error Description

Description of the last connection error. This value is hidden by default.

Last Connection Error Timestamp

Timestamp of the last connection error. This value is hidden by default.

For information about performance counters for availability replicas, see SQL Server,
HADR Availability Replica.

To Group Availability Group Information
To group the information, click Group by, and select one of the following:
• Availability replicas
• Availability databases
• Synchronization state
• Failover readiness
• Issues
The pane that displays the grouped information displays the following columns:
Name

The name of the availability database. This value is shown by default.

 Replica

The name of the instance of SQL Server that hosts the availability replica. This value is shown
by default.

Synchronization State

Indicates whether the availability database is currently synchronized with primary replica. This
value is shown by default. The possible synchronization states are:

• Not synchronizing.

• For the primary role, indicates that the database is not ready to synchronize its
transaction log with the corresponding secondary databases.

• For a secondary database, indicates that the database has not started log
synchronization because of a connection issue, is being suspended, or is going
through transition states during startup or a role switch.

• Synchronizing.

On a primary replica:

• For a primary database, indicates that this database is ready to accept a scan

Note

http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�

 350

request from a secondary database.

• On a secondary replica, indicates that there is active data movement going on for
that secondary database.

On a secondary replica, indicates that there is active data movement going on for that
replica.

• Synchronized.

For a primary database, indicates that at least one secondary database is synchronized.

For a secondary database, indicates that the database is synchronized with the
corresponding primary database.

• Reverting.

Indicates the phase in the undo process when a secondary database is actively getting
pages from the primary database.

Caution
When a database is in the REVERTING state, forcing failover to the secondary replica can leave
that database in a state in which it cannot be started.

• Initializing.

Indicates the phase of undo when the transaction log required for a secondary database
to catch up to the undo LSN is being shipped and hardened on a secondary replica.

Caution
When a database is in the INITIALIZING state, forcing failover to the secondary replica will always
leave that database in a state in which it cannot be started.

Failover Readiness

Indicates which availability replica can be failed over with or without potential data loss. This
column is shown by default. The possible values are:

• Data Loss

• No Data Loss

Issues

Lists the issue name. This column is shown by default. The possible values are:

• Warnings. Click to display the thresholds and warnings issues.

• Critical. Click to display the critical issues.

For a list of all the AlwaysOn policy issues, see Policy-Based Management of
AlwaysOn Availability Groups (SQL Server).

Suspended

Indicates whether the database is Suspended or has been Resumed. This value is hidden by
default.

 351

Suspend Reason

Indicates the reason for the suspended state. This value is hidden by default.

Estimate Data Loss (seconds)

Indicates the time difference of the last transaction log record in the primary replica and
secondary replica. If the primary replica fails, all transaction log records within the time
window will be lost. This value is hidden by default.

Estimated Recovery Time (seconds)

Indicates the time in seconds it takes to redo the catch-up time. The catch-up time is the time
it will take for the secondary replica to catch up with the primary replica. This value is hidden
by default.

Synchronization Performance (seconds)

Indicates the time in seconds it takes to synchronize between the primary and secondary
replicas. This value is hidden by default.

Log Send Queue Size (KB)

Indicates the amount of log records in the log files of the primary database that have not
been sent to the secondary replica. This value is hidden by default.

Log Send Rate (KB/sec)

Indicates the rate in KB per second at which log records are being sent to the secondary
replica This value is hidden by default.

Redo Queue Size (KB)

Indicates the amount of log records in the log files of the secondary replica that have not yet
been redone. This value is hidden by default.

Redo Rate (KB/sec)

Indicates the rate in KB per second at which the log records are being redone. This value is
hidden by default.

FileStream Send Rate (KB/sec)

Indicates the rate of the FileStream in KB per second at which transactions are being sent to
the replica. This value is hidden by default.

End of Log LSN

Indicates the actual log sequence number (LSN) that corresponds to the last log record in the
log cache on the primary and secondary replicas. This value is hidden by default.

Recovery LSN

Indicates the end of the transaction log before the replica writes any new log records after
recovery or failover on the primary replica. This value is hidden by default.

Truncation LSN

Indicates the minimum log truncation value for the primary replica. This value is hidden by

 352

default.

Last Commit LSN

Indicates the actual LSN corresponding to the last commit record in the transaction log. This
value is hidden by default.

Last Commit Time

Indicates the time corresponding to the last commit record. This value is hidden by default.

Last Sent LSN

Indicates the point up to which all log blocks have been sent by the primary replica. This
value is hidden by default.

Last Sent Time

Indicates the time when the last log block was sent. This value is hidden by default.

Last Received LSN

Indicates the point up to which all log blocks have been received by the secondary replica
that hosts the secondary database. This value is hidden by default.

Last Received Time

Indicates the time when the log block identifier in last message received was read on the
secondary replica. This value is hidden by default.

Last Hardened LSN

Indicates the point up to which all log records have been flushed to disk on the secondary
replica. This value is hidden by default.

Last Hardened Time

Indicates the time when the log-block identifier was received for the last hardened LSN on
the secondary replica. This value is hidden by default.

Last Redone LSN

Indicates the actual LSN of the log record that was redone last on the secondary replica. This
value is hidden by default.

Last Redone Time

Indicates the time when the last log record was redone on the secondary database. This value
is hidden by default.

Related Tasks
• Use Policy-Based Management to Monitor an Availability Group (SQL Server)

See Also
sys.dm_os_performance_counters (Transact-SQL)

http://msdn.microsoft.com/en-us/library/a1c3e892-cd48-40d4-b6be-2a9246e8fbff(SQL.110)�

 353

Monitoring of Availability Groups (SQL Server)

Options (SQL Server AlwaysOn, Dashboard Page)
Use the SQL Server AlwaysOn Dashboard page of the SQL Server Management Studio
Options dialog box to configure the AlwaysOn Dashboard.
To access this page:
On the Tools menu, click Options, expand the SQL Server AlwaysOn folder, and then click
Dashboard.
On This Page
Turn on automatic refresh.

Click to enable automatic refresh. The options are:

• The Refresh interval (in seconds) field displays the number of seconds at which the
dashboard will refresh. The default value is 30. When automatic refresh is enabled, you
can edit this field to change the refresh interval.

• The Number of connection retries displays the number of times that the dashboard
will attempt to connect to an instance of SQL Server that hosts an availability replica for
an availability group that the Dashboard is monitoring. The default value is 65535. When
automatic refresh is enabled, you can edit this field to change the number of connection
retries.

Enable your user-defined AlwaysOn policy.

If you have defined your own AlwaysOn policy, click this option to enable your policy.

See Also
Use the Availability Group Dashboard (SQL Server Management Studio)

Policy Evaluation Result (AlwaysOn)
Use the Policy Evaluation Result page of the AlwaysOn Dashboard to view any current policy
issues.
In This Topic:
• Dialog-Box Options
• Related Tasks
Dialog-Box Options
Detected Issue

Displays a row for each detected issue. The icon associated with an issue provides a visual
indicator to indicate the severity of the issue, as follows:

Icon Severity

 354

 Critical

 Warning

Description

This grid displays a brief description of the selected issue.

More Information

Click this link to open the help topic for the selected issue.

Related Tasks
• Use the Availability Group Dashboard (SQL Server Management Studio)
• Use Policy-Based Management to View the Health of an Availability Group (SQL Server)

See Also
AlwaysOn Availability Groups
Policy-Based Management of Operational Issues with AlwaysOn Availability Groups (SQL Server)

WSFC cluster service is offline
Introduction

Policy Name WSFC Cluster State

Issue WSFC cluster service is offline.

Category Critical

Facet Instance of SQL Server

Description
This policy checks the state of the Windows Server Failover Cluster (WSFC). The policy is in an
unhealthy state and an alert is raised when the WSFC cluster is offline or in the forced quorum
state. All availability groups hosted within this cluster are offline or a disaster recovery action is
required.
The policy state is healthy when the cluster state is in the normal quorum.

For this release of SQL Server 2012, information about possible causes and solutions is
located at WSFC cluster service is offline on the TechNet Wiki.

Possible Causes

Note

http://go.microsoft.com/fwlink/p/?LinkId=220849�

 355

This issue can be caused by a cluster service issue or by the loss of the quorum in the cluster.
Possible Solution
Use the Cluster Administrator tool to perform the forced quorum or disaster recovery workflow.
If you cannot resolve the issue by performing the forced quorum or disaster recovery, contact
your cluster administrator to help resolve this issue. For more information, see Force a WSFC
Cluster to Start Without a Quorum in SQL Server Books Online.
See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Availability group is offline
Introduction

Policy Name Availability Group Online State

Issue Availability group is offline.

Category Critical

Facet Availability group

Description
This policy checks the online or offline state of the availability group. The policy is in an
unhealthy state and an alert is raised when the cluster resource of the availability group is offline
or the availability group does not have a primary replica.
The policy state is healthy when the cluster resource of the availability group is online and the
availability group has a primary replica.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Availability group is offline on the TechNet Wiki.

Possible Causes
This issue can be caused by a failure in the server instance that hosts the primary replica or by
the Windows Server Failover Cluster (WSFC) availability group resource going offline. Following
are possible causes for the availability group to be offline:
• The availability group is not configured with automatic failover mode. The primary replica

becomes unavailable and the role of all replicas in the availability group become
RESOLVING.
• The primary replica instance service is down or unresponsive.

Note

http://go.microsoft.com/fwlink/p/?LinkId=220850�

 356

• The availability group has a connectivity issue with the cluster.
• The availability group is configured with automatic failover mode and does not complete

successfully.
• During the automatic failover, the primary readiness check on the target replica fails, and

there is no replica available to become the new primary.
• The availability group resource in the cluster becomes offline.

• Any dependent cluster resource encounters a critical issue and becomes offline. The
availability group resource is also offline until the dependent resource becomes online.

• A critical issue in the cluster turns off the availability group resource.
• There is an automatic, manual, or forced failover in progress for the availability group.
Possible Solutions
Following are possible solutions for this issue:
• If the SQL Server instance of the primary replica is down, restart the server and then verify

that the availability group recovers to a healthy state.
• If the automatic failover appears to have failed, verify that the databases on the replica are

synchronized with the previously known primary replica, and then failover to the primary
replica. If the databases are not synchronized, select a replica with a minimum loss of data,
and then recover to failover mode.

• If the resource in the cluster is offline while the instances of SQL Server appear to be healthy,
use Failover Cluster Manager to check the cluster health or other cluster issues on the server.
You can also use the Failover Cluster Manager to attempt to turn the availability group
resource online.

• If there is a failover in progress, wait for the failover to complete.
See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Availability group is not ready for automatic failover
Introduction

Policy Name Availability Group Automatic Failover
Readiness

Issue Availability group is not ready for
automatic failover.

Category Critical

 357

Facet Availability group

Description
This policy checks to verify that the availability group has at least one secondary replica that is
failover ready. The policy is in an unhealthy state and an alert is raised when the failover mode
of the primary replica is automatic, however none of the secondary replicas in the availability
group are failover ready.
The policy is in a healthy state when at least one secondary replica is automatic failover ready.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Availability group is not ready for automatic failover on the TechNet Wiki.

Possible Causes
The availability group is not ready for automatic failover. The primary replica is configured for
automatic failover; however, the secondary replica is not ready for automatic failover. The
secondary replica that is configured for automatic failover might be unavailable or its data
synchronization state is currently not SYNCHRONIZED.
Possible Solutions
Following are possible solutions for this issue:
• Verify that at least one secondary replica is configured as automatic failover. If there is not a

secondary replica configured as automatic failover, update the configuration of a secondary
replica to be the automatic failover target with synchronous commit.

• Use the policy to verify that the data is in a synchronization state and the automatic failover
target is SYNCHRONIZED, and then resolve the issue at the availability replica.

See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Some availability replicas are not synchronizing data
Introduction

Policy Name Availability Replicas Data Synchronization
State

Issue Some availability replicas are not
synchronizing data.

Category Warning

Note

http://go.microsoft.com/fwlink/p/?LinkId=220851�

 358

Facet Availability group

Description
This policy rolls up the data synchronization state of all availability replicas in the availability
group and checks if the synchronization of any availability replica is not operational. The policy
is in an unhealthy state if any of the data synchronization states of the availability replica is NOT
SYNCRONIZING.
This policy is in a healthy state if none of the data synchronization states of the availability
replica is NOT SYNCHRONIZING.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Some availability replicas are not synchronizing data on the TechNet Wiki.

Possible Causes
In this availability group, at least one secondary replica has a NOT SYNCHRONIZING
synchronization state and is not receiving data from the primary replica.
Possible Solution
Use the availability replica policy state to find the availability replica with a NOT
SYNCHROINIZING state, and then resolve the issue at the availability replica.
See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Some synchronous replicas are not synchronized
Introduction

Policy Name Synchronous Replicas Data Synchronization
State

Issue Some synchronous replicas are not
synchronized.

Category Warning

Facet Availability group

Description

Note

http://go.microsoft.com/fwlink/p/?LinkId=220852�

 359

This policy rolls up the data synchronization state of all availability replicas and checks for any
availability replicas that are not in the expected synchronization state. The policy is in an
unhealthy state when any asynchronous replica is not in a SYNCHRONIZING state and any
synchronous replica is not in a SYNCHRONIZED state. The policy state is otherwise healthy.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Some synchronous replicas are not synchronized on the TechNet Wiki.

Possible Causes
In this availability group, at least one synchronous replica is not currently synchronized. The
replica synchronization state could be either SYNCHONIZING or NOT SYNCHRONIZING.
Possible Solution
Use the availability replica policy state to find the availability replica with the incorrect
synchronization state, and then resolve the issue at the availability replica.
See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Some availability replicas do not have a healthy role
Introduction

Policy Name Availability Replicas Role State

Issue Some availability replicas do not have a
healthy role.

Category Warning

Facet Availability group

Description
This policy rolls up the connection state of all availability replicas and checks if there are any
availability replicas that are not in a healthy role. The policy is in an unhealthy state when any
availability replica is neither primary nor secondary. The policy is otherwise in a healthy state.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Some availability replicas do not have a healthy role on the TechNet Wiki.

Possible Causes

Note

Note

http://go.microsoft.com/fwlink/p/?LinkId=220853�
http://go.microsoft.com/fwlink/p/?LinkId=220854�

 360

In this availability group, at least one availability replica does not currently have the primary or
secondary role.
Possible Solution
Use the availability replica policy state to find the availability replica whose role is not primary or
secondary, and then resolve the issue at the availability replica.
See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Some availability replicas are disconnected
Introduction

Policy Name Availability Replicas Connection State

Issue Some availability replicas are disconnected.

Category Warning

Facet Availability group

Description
This policy rolls up the connection state of all availability replicas and checks for any availability
replicas that are DISCONENCTED. The policy is in an unhealthy state when any availability replica
is DISCONNECTED. The policy is otherwise in a healthy state.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Some availability replicas are disconnected on the TechNet Wiki.

Possible Causes
In this availability group, at least one secondary replica is not connected to the primary replica.
The connected state is DISCONNECTED.
Possible Solution
Use the availability replica policy state to find the availability replica that is DISCONNECTED, and
then resolve the issue at the availability replica.
See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Note

http://go.microsoft.com/fwlink/p/?LinkId=220855�

 361

Availability replica does not have a healthy role
Introduction

Policy Name Availability Replica Role State

Issue Availability replica does not have a healthy
role.

Category Critical

Facet Availability replica

Description
This policy checks the state of the role of the availability replica. The policy is in an unhealthy
state when the role of the availability replica is neither primary nor secondary. The policy is
otherwise in a healthy state.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Availability replica does not have a healthy role on the TechNet Wiki.

Possible Causes
The role of this availability replica is unhealthy. The replica does not have either the primary or
secondary role.
Possible Solution: Information_still_to_come

See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Availability replica is disconnected
Introduction

Policy Name Availability Replica Connection State

Issue Availability replica is disconnected.

Category Critical

Note

http://go.microsoft.com/fwlink/p/?LinkId=220856�

 362

Facet Availability replica

Description
This policy checks the connection state between availability replicas. The policy is in an
unhealthy state when the connection state of the availability replica is DISCONNECTED. The
policy is otherwise in a healthy state.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Availability replica is disconnected on the TechNet Wiki.

Possible Causes
The secondary replica is not connected to the primary replica. The connected state is
DISCONNECTED. This issue can be caused by the following:
• The connection port might be in conflict with another application.
• The encryption type or algorithm is mismatched.
• The connection endpoint has been deleted or has not been started.
• The transport is disconnected.
Possible Solutions
Following are possible solutions for this issue:
• Check the database mirroring endpoint configuration for the instances of the primary and

secondary replica and update the mismatched configuration.
• Check if the port is conflicting, and if so, change the port number.
See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Data synchronization state of availability database is not healthy
Introduction

Policy Name Availability Database Data Synchronization
State

Issue Data synchronization state of availability
database is not healthy.

Category Warning

Note

http://go.microsoft.com/fwlink/p/?LinkId=220857�

 363

Facet Availability database

Description
This policy rolls up the data synchronization state of all availability databases (also known as
"database replicas") in the availability replica. The policy is in an unhealthy sate when any
database replica is not in the expected data synchronization state. The policy is otherwise in a
healthy state.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Data synchronization state of some availability database is not healthy on the
TechNet Wiki.

Possible Causes
The data synchronization state of this availability database is unhealthy. On an asynchronous-
commit availability replica, every availability database should be in the SYNCHRONIZING state.
On a synchronous-commit replica, every availability database must be in the SYNCHRONIZED
state.
Possible Solution
Use the database replica policy to find the database replica with an unhealthy data
synchronization state, and then resolve the issue at the database replica.
See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Availability replica is not joined
Introduction

Policy Name Availability Replica Join State

Issue Availability Replica is not joined.

Category Warning

Facet Availability replica

Description

Note

http://go.microsoft.com/fwlink/p/?LinkId=220858�

 364

This policy checks the join state of the availability replica. The policy is in an unhealthy state
when the availability replica is added to the availability group, but is not joined properly. The
policy is otherwise in a healthy state.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Availability replica is not joined on the TechNet Wiki.

Possible Causes
The secondary replica is not joined to the availability group. For an availability replica to be
successfully joined to the availability group, the join state must be Joined Standalone Instance
(1) or Joined Failover Cluster (2).
Possible Solution
Use Transact-SQL, PowerShell, or SQL Server Management Studio to join the secondary replica
to the availability group. For more information about joining secondary replicas to availability
groups, see Joining a Secondary Replica to an Availability Group (SQL Server).
See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Availability database is suspended
Introduction

Policy Name Availability Database Suspension State

Issue Availability database is suspended.

Category Warning

Facet Availability database

Description
This policy checks the state of data movement of the secondary database (also known as a
"secondary database replica"). The policy is in an unhealthy state when the data movement is
suspended. The policy is otherwise in a healthy state.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Availability database is suspended on the TechNet Wiki.

Possible Causes

Note

Note

http://go.microsoft.com/fwlink/p/?LinkId=220859�
http://msdn.microsoft.com/en-sg/library/ff878473(en-us,SQL.110).aspx�
http://go.microsoft.com/fwlink/p/?LinkId=220860�

 365

Data synchronization on this availability database might have been suspended because of the
following:
• Due to an error, the system might have suspended data synchronization.
• The database administrator might have suspended data synchronization for maintenance

purposes.
Possible Solution
Resume data synchronization. If the issue persists, check the availability group in the Event log,
and then diagnose why the system suspended data movement.
See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Secondary database is not joined
Introduction

Policy Name Availability Database Join State

Issue Secondary database is not joined.

Category Warning

Facet Availability database

Description
This policy checks the join state of the secondary database (also known as a "secondary
database replica"). The policy is in an unhealthy state when the dataset replica is not joined. The
policy is otherwise in a healthy state.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Secondary database is not joined on the TechNet Wiki.

Possible Causes
This secondary database is not joined to the availability group. The configuration of this
secondary database is incomplete.
Possible Solution
Use Transact-SQL, PowerShell, or SQL Server Management Studio to join the secondary replica
to the availability group. For more information about joining secondary replicas to availability
groups, see Joining a Secondary Replica to an Availability Group (SQL Server).

Note

http://go.microsoft.com/fwlink/p/?LinkId=220862�
http://msdn.microsoft.com/en-sg/library/ff878473(en-us,SQL.110).aspx�

 366

See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Data synchronization state of some availability database is not healthy
Introduction

Policy Name Availability Replica Data Synchronization
State

Issue Data synchronization state of some
availability database is not healthy.

Category Warning

Facet Availability replica

Description
This policy checks the data synchronization state of the availability database (also known as a
"database replica"). The policy is in an unhealthy state when the data synchronization state is
NOT SYNCHRONIZING or the state is not SYNCHRONIZED for the synchronous-commit
database replica.

For this release of SQL Server 2012, information about possible causes and solutions is
located at Data synchronization state of availability database is not healthy on the
TechNet Wiki.

Possible Causes
At least one availability database on the replica has an unhealthy data synchronization state. If
this is an asynchronous-commit availability replica, all availability databases should be in the
SYNCHRONIZING state. If this is a synchronous-commit availability replica, all availability
databases should be in the SYNCHRONIZED state. This issue can be caused by the following:
• The availability replica might be disconnected.
• The data movement might be suspended.
• The database might not be accessible.
• There might be a temporary delay issue due to network latency or the load on the primary

or secondary replica.
Possible Solution

Note

http://go.microsoft.com/fwlink/p/?LinkId=220863�

 367

Resolve any connection or data movement suspend issues. Check the events for this issue using
SQL Server Management Studio, and find the database error. Follow the troubleshooting steps
for the specific error.
See Also
AlwaysOn Availability Groups (SQL Server)
Use the Availability Group Dashboard (SQL Server Management Studio)

Monitoring of Availability Groups
To monitor the properties and state of an AlwaysOn availability group you can use the following
tools.

Tool Brief Description Links

System Center Monitoring
pack for SQL Server

The Monitoring pack for SQL
Server (SQLMP) is the
recommended solution for
monitoring availability groups,
availability replica and
availability databases for IT
administrators. Monitoring
features that are particularly
relevance to AlwaysOn
Availability Groups include the
following:
• Automatic discoverability of

availability groups,
availability replicas, and
availability database from
among hundreds of
computers. This enables you
to easily keep track of your
AlwaysOn Availability
Groups inventory.

• Fully capable System Center
Operations Manager
(SCOM) alerting and
ticketing. These features
provide detailed knowledge
that enables faster
resolution to a problem.

To download the monitoring
pack (SQLServerMP.msi) and SQL
Server Management Pack Guide
for System Center Operations
Manager
(SQLServerMPGuide.doc), see:
System Center Monitoring pack
for SQL Server

http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=10631�
http://www.microsoft.com/en-us/download/details.aspx?displaylang=en&id=10631�

 368

Tool Brief Description Links

• A custom extension to
AlwaysOn Health
monitoring using Policy
Based management (PBM).

• Health roll ups from
availability databases to
availability replicas.

• Custom tasks that manage
AlwaysOn Availability
Groups from the System
Center Operations Manager
console.

Transact-SQL AlwaysOn Availability Groups
catalog and dynamic
management views provide a
wealth of information about
your availability groups and
their replicas, databases,
listeners, and WSFC cluster
environment.

Monitor Availability Groups
(Transact-SQL)

SQL Server Management
Studio

The Object Explorer Details
pane displays basic information
about the availability groups
hosted on the instance of SQL
Server to which you are
connected.

Tip
Use this pane to select
multiple availability
groups, replicas, or
databases and to
perform routine
administrative tasks on
the selected objects; for
example, removing
multiple availability
replicas or databases
from an availability
group.

Use Object Explorer Details to
Monitor Availability Groups (SQL
Server Management Studio)

 369

Tool Brief Description Links

SQL Server Management
Studio

Properties dialog boxes enable
you to view the properties of
availability groups, replicas, or
listeners and, in some cases, to
change their values.

• View Availability Group
Properties (SQL Server
Management Studio)

• View Availability Replica
Properties (SQL Server
Management Studio)

• View Availability Group
Listener Properties (SQL
Server)

System Monitor The SQLServer:Availability
Replica performance object
contains performance counters
that report information about
availability replicas.

SQL Server, HADR Availability
Replica

System Monitor The SQLServer:Database
Replica performance object
contains performance counters
that report information about
the secondary databases on a
given secondary replica.
The SQLServer:Databases
object in SQL Server contains
performance counters that
monitor transaction log
activities, among other things.
The following counters are
particularly relevant for
monitoring transaction-log
activity on availability databases:
Log Flush Write Time (ms),
Log Flushes/sec, Log Pool
Cache Misses/sec, Log Pool
Disk Reads/sec, and Log Pool
Requests/sec.

SQL Server, HADR Database
Replica and SQL Server,
Databases Object

See Also
AlwaysOn Availability Groups Catalog Views (Transact-SQL)
AlwaysOn Availability Groups Dynamic Management Views and Functions (Transact-SQL)

http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/a5f6bdce-2b13-4924-aaeb-b50b57d624d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/a5f6bdce-2b13-4924-aaeb-b50b57d624d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/a7f9e7d4-fff4-4c72-8b3e-3f18dffc8919(SQL.110)�
http://msdn.microsoft.com/en-us/library/a7f9e7d4-fff4-4c72-8b3e-3f18dffc8919(SQL.110)�
http://msdn.microsoft.com/en-us/library/ff53e873-8ff6-4628-af84-4ec52fa4951c(SQL.110)�
http://msdn.microsoft.com/en-us/library/17a77e24-d8b8-4f8a-8a7c-05d6c5d32d96(SQL.110)�

 370

AlwaysOn Availability Groups
Automatic Page Repair (Availability Groups/Database Mirroring)
Use the AlwaysOn Group Dashboard (SQL Server Management Studio)

Monitor Availability Groups (Transact-SQL)
For monitoring availability groups and replicas and the associated databases by using Transact-
SQL, AlwaysOn Availability Groups provides a set of catalog and dynamic management views
and server properties. Using Transact-SQL SELECT statements, you can use the views to monitor
availability groups and their replicas and databases. The information returned for a given
availability group depends on whether you are connected to the instance of SQL Server that is
hosting the primary replica or a secondary replica.

Many of these views can be joined using their ID columns to return information from
multiple views in a single query.

In This Topic:
• Permissions
• Using Transact-SQL to monitor:

AlwaysOn Availability Groups feature on a server instance
Availability groups on the WSFC cluster
Availability groups
Availability replicas
Availability databases
Availability group listeners

• Related Tasks
Permissions
AlwaysOn Availability Groups catalog views require VIEW ANY DEFINITION permission on the
server instance. AlwaysOn Availability Groups dynamic management views require VIEW SERVER
STATE permission on the server.
Monitoring the AlwaysOn Availability Groups Feature on a Server Instance
To monitor the AlwaysOn Availability Groups feature on a server instance, use the following
built-in function:
SERVERPROPERTY

Returns server property information about whether AlwaysOn Availability Groups is enabled
and, if so, whether it has started on the server instance.

Column names: IsHadrEnabled, HadrManagerStatus

Monitoring Availability Groups on the WSFC Cluster

Tip

http://msdn.microsoft.com/en-us/library/cf2e3650-5fac-4f34-b50e-d17765578a8e(SQL.110)�
http://msdn.microsoft.com/en-us/library/11e166fa-3dd2-42d8-ac4b-04f18c612c4a(SQL.110)�

 371

To monitor the Windows Server Failover Clustering (WSFC) cluster that hosts a local server
instance that is enabled for AlwaysOn Availability Groups, use the following views:
sys.dm_hadr_cluster

If the Windows Server Failover Clustering (WSFC) node that hosts an instance of SQL Server
with AlwaysOn Availability Groups enabled has WSFC quorum, sys.dm_hadr_cluster returns
a row that exposes the cluster name and information about the quorum. If the WSFC node
has no quorum, no rows are returned.

Column names: cluster_name, quorum_type, quorum_type_desc, quorum_state,
quorum_state_desc

sys.dm_hadr_cluster_members
If the WSFC node that hosts the local AlwaysOn-enabled instance of SQL Server has WSFC
quorum, returns a row for each of the members that constitute the quorum and the state of
each of them.

Column names: member_name, member_type, member_type_desc, member_state,
member_state_desc, number_of_quorum_votes

sys.dm_hadr_cluster_networks
Returns a row for every member that is participating in an availability group's subnet
configuration. You can use this dynamic management view to validate the network virtual IP
that is configured for each availability replica.

Column names: member_name, network_subnet_ip, network_subnet_ipv4_mask,
network_subnet_prefix_length, is_public, is_ipv4

Primary key: member_name + network_subnet_IP + network_subnet_prefix_length

sys.dm_hadr_instance_node_ma p
For every instance of SQL Server that hosts an availability replica that is joined to its
AlwaysOn availability group, returns the name of the Windows Server Failover Clustering
(WSFC) node that hosts the server instance. This dynamic management view has the
following uses:

• This dynamic management view is useful for detecting an availability group with multiple
availability replicas that are hosted on the same WSFC node, which is an unsupported
configuration that could occur after an FCI failover if the availability group is incorrectly
configured.

• When multiple SQL Server instances are hosted on the same WSFC node, the Resource
DLL uses this dynamic management view to determine the instance of SQL Server to
connect to.

Column names: ag_resource_id, instance_name, node_name

sys.dm_hadr_name_id_map
Shows the mapping of AlwaysOn availability groups that the current instance of SQL Server
has joined to three unique IDs: an availability group ID, a WSFC resource ID, and a WSFC

http://msdn.microsoft.com/en-us/library/13ce70e4-9d43-4a80-a826-099e6213bf85(SQL.110)�
http://msdn.microsoft.com/en-us/library/feb20b3a-8835-41d3-9a1c-91d3117bc170(SQL.110)�
http://msdn.microsoft.com/en-us/library/ece32b15-d63f-4f93-92b7-e2930333e97a(SQL.110)�
http://msdn.microsoft.com/en-us/library/ccfaf62c-9f87-43cf-a5e7-8942e91dd041(SQL.110)�
http://msdn.microsoft.com/en-us/library/e07bb8a9-37de-4a39-a257-950d7c3ae8fb(SQL.110)�

 372

Group ID. The purpose of this mapping is to handle the scenario in which the WSFC
resource/group is renamed.

Column names: ag_name, ag_id, ag_resource_id, ag_group_id

Also see sys.dm_hadr_availability_replica_cluster_nodes and
sys.dm_hadr_availability_replica_cluster_states in the Monitoring Availability Replicas
section and sys.availability_databases_cluster and
sys.dm_hadr_database_replica_cluster_states in the Monitoring Availability Databases
section, later in this topic.

For information about WSFC clusters and AlwaysOn Availability Groups, see Windows Server
Failover Clustering (WSFC) with SQL Server and Failover Clustering and AlwaysOn Availability
Groups (SQL Server).

Monitoring Availability Groups
To monitor the availability groups for which the server instance hosts an availability replica, use
the following views:
sys.availability_groups

Returns a row for each availability group for which the local instance of SQL Server hosts an
availability replica. Each row contains a cached copy of the availability group metadata.

Column names: group_id, name, resource_id, resource_group_id, failure_condition_level,
health_check_timeout, automated_backup_preference, automated_backup_preference_desc

sys.availability_groups_cluster
Returns a row for each availability group in the WSFC cluster. Each row contains the
availability group metadata from the Windows Server Failover Clustering (WSFC) cluster.

Column names: group_id, name, resource_id, resource_group_id, failure_condition_level,
health_check_timeout, automated_backup_preference, automated_backup_preference_desc

sys.dm_hadr_availability_group_states
Returns a row for each availability group that possesses an availability replica on the local
instance of SQL Server. Each row displays the states that define the health of a given
availability group.

Column names: group_id, primary_replica, primary_recovery_health,
primary_recovery_health_desc, secondary_recovery_health, secondary_recovery_health_desc,
synchronization_health, synchronization_health_desc

Monitoring Availability Replicas
To monitor availability replicas, use the following views and system function:

Note

http://msdn.microsoft.com/en-us/library/da7fa55f-c008-45d9-bcfc-3513b02d9e71(SQL.110)�
http://msdn.microsoft.com/en-us/library/d0f4683f-cdf0-4227-8b68-720ffe58f158(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18019dd-f8dc-4492-b035-b1a639369b65(SQL.110)�

 373

sys.availability_replicas
Returns a row for every availability replica in each availability group for which the local
instance of SQL Server hosts an availability replica.

Column names: replica_id, group_id, replica_metadata_id, replica_server_name, owner_sid,
endpoint_url, availability_mode, availability_mode_desc, failover_mode, failover_mode_desc,
session_timeout, primary_role_allow_connections, primary_role_allow_connections_desc,
secondary_role_allow_connections, secondary_role_allow_connections_desc, create_date,
modify_date, backup_priority, read_only_routing_url

sys.availability_read_only_routing_lists
Returns a row for the read only routing list of each availability replica in an AlwaysOn
availability group in the WSFC failover cluster.

Column names: replica_id, routing_priority, read_only_replica_id

sys.dm_hadr_availability_replica_cluster_nodes
Returns a row for every availability replica (regardless of join state) of the AlwaysOn
availability groups in the Windows Server Failover Clustering (WSFC) cluster.

Column names: group_name, replica_server_name, node_name

sys.dm_hadr_availability_replica_cluster_states
Returns a row for each replica (regardless of join state) of all AlwaysOn availability groups
(regardless of replica location) in the Windows Server Failover Clustering (WSFC) cluster.

Column names: replica_id, replica_server_name, group_id, join_state, join_state_desc

sys.dm_hadr_availability_replica_states
Returns a row showing the state of each local availability replica and a row for each remote
availability replica in the same availability group.

Column names: replica_id, group_id, is_local, role, role_desc, operational_state,
operational_state_desc, connected_state, connected_state_desc, recovery_health,
recovery_health_desc, synchronization_health, synchronization_health_desc,
last_connect_error_number, last_connect_error_description, and
last_connect_error_timestamp

sys.fn_hadr_backup_is_preferred_replica
Determines whether the current replica is the preferred backup replica.

For information about performance counters for availability replicas (the
SQLServer:Availability Replica performance object), see SQL Server, HADR Availability
Replica.

Monitoring Availability Databases
To monitor availability databases, use the following views:

Note

http://msdn.microsoft.com/en-us/library/0a06e9b6-a1e4-4293-867b-5c3f5a8ff62c(SQL.110)�
http://msdn.microsoft.com/en-us/library/0686bc5a-c206-41ef-b40a-79a8259d51d2(SQL.110)�
http://msdn.microsoft.com/en-us/library/dbd7e416-badd-4332-a45c-438aa0145a99(SQL.110)�
http://msdn.microsoft.com/en-us/library/2e0dd780-6a71-4f4b-b7f7-6e063bec71d6(SQL.110)�
http://msdn.microsoft.com/en-us/library/d2e678bb-51e8-4a61-b223-5c0b8d08b8b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/61b9be77-e2f6-4da1-b2ae-a62cbe226145(SQL.110)�
http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�

 374

sys.availability_databases_cluster
Contains one row for each database on the instance of SQL Server that are part of all
AlwaysOn Availability Groups in the cluster, regardless of whether the local copy database
has been joined to the availability group yet.

Note
When a database is added to an availability group, the primary database is automatically joined to the
group. Secondary databases must be prepared on each secondary replica before they can be joined to
the availability group.

Column names: group_id, group_database_id, database_name

sys.databases
Contains one row per database in the instance of SQL Server. If a database belongs to an
availability replica, the row for that database displays the GUID of the replica and the unique
identifier of the database within its availability group.

AlwaysOn Availability Groups column names: replica_id, group_database_id

sys.dm_hadr_auto_page_repair
Returns a row for every automatic page-repair attempt on any availability database on an
availability replica that is hosted for any availability group by the server instance. This view
contains rows for the latest automatic page-repair attempts on a given primary or secondary
database, with a maximum of 100 rows per database. As soon as a database reaches the
maximum, the row for its next automatic page-repair attempt replaces one of the existing
entries.

Column names: database_id, file_id, page_id, error_type, page_status, modification_time

sys.dm_hadr_database_replica_state s
Returns a row for each database that is participating in any availability group for which the
local instance of SQL Server is hosting an availability replica.

Column names: database_id, group_id, replica_id, group_database_id, is_local,
synchronization_state, synchronization_state_desc, is_commit_participant,
synchronization_health, synchronization_health_desc, database_state, database_state_desc,
is_suspended, suspend_reason, suspend_reason_desc, recovery_lsn, truncation_lsn,
last_sent_lsn, last_sent_time, last_received_lsn, last_received_time, last_hardened_lsn,
last_hardened_time, last_redone_lsn, last_redone_time, log_send_queue_size, log_send_rate,
redo_queue_size, redo_rate, filestream_send_rate, end_of_log_lsn, last_commit_lsn,
last_commit_time, low_water_mark_for_ghosts

sys.dm_hadr_database_replica_cluster_states
Returns a row containing information intended to provide you with insight into the health of
the availability databases in each availability group on the Windows Server Failover Clustering
(WSFC) cluster. This dynamic management view is useful when planning or responding to a
failover or for discovering which secondary replica in an availability group is holding up log

http://msdn.microsoft.com/en-us/library/8d9c57e5-7f39-4315-b466-92748231140a(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7840adf-4a1b-41ac-bc94-102c07ad1c79(SQL.110)�
http://msdn.microsoft.com/en-us/library/1a17b0c9-2535-4f3d-8013-cd0a6d08f773(SQL.110)�
http://msdn.microsoft.com/en-us/library/6f719071-ebce-470d-aebd-1f55ee8cd70a(SQL.110)�

 375

truncation on a given primary database.

Column names: replica_id, group_database_id, database_name, is_failover_ready,
is_pending_secondary_suspend, is_database_joined, recovery_lsn, truncation_lsn

Note
The primary replica location is the authoritative source for an availability group.

For information about the AlwaysOn Availability Groups performance counters for
availability databases (the SQLServer:Database Replica performance object), see SQL
Server, HADR Database Replica. Also, to monitor transaction-log activity on availability
databases, use the following counters of the SQLServer:Databases performance object:
Log Flush Write Time (ms), Log Flushes/sec, Log Pool Cache Misses/sec, Log Pool
Disk Reads/sec, and Log Pool Requests/sec. For more information, see SQL Server,
Databases Object.

Monitoring Availability Group Listeners
To monitor the availability group listeners on subnets of the WSFC cluster, use the following
views:
sys.availability_group_listener_ip_addresses

Returns a row for every conformant virtual IP address that is currently online for an
availability group listener.

Column names: listener_id, ip_address, ip_subnet_mask, is_dhcp, network_subnet_ip,
network_subnet_prefix_length, network_subnet_ipv4_mask, state, state_desc

sys.availability_group_listener s
For a given availability group, returns either zero rows indicating that no network name is
associated with the availability group, or returns a row for each availability-group listener
configuration in the WSFC cluster.

Column names: group_id, listener_id, dns_name, port, is_conformant,
ip_configuration_string_from_cluster

sys.dm_tcp_listener_states
Returns a row containing dynamic-state information for each TCP listener.

Column names: listener_id, ip_address, is_ipv4, port, type, type_desc, state, state_desc,
start_time

Primary key: listener_id

For information about availability group listeners, see Availability Group Listeners, Client
Connectivity, and Application Failover (AlwaysOn Availability Groups).

Related Tasks

Note

http://msdn.microsoft.com/en-us/library/a5f6bdce-2b13-4924-aaeb-b50b57d624d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/a5f6bdce-2b13-4924-aaeb-b50b57d624d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/a7f9e7d4-fff4-4c72-8b3e-3f18dffc8919(SQL.110)�
http://msdn.microsoft.com/en-us/library/a7f9e7d4-fff4-4c72-8b3e-3f18dffc8919(SQL.110)�
http://msdn.microsoft.com/en-us/library/e515fa6b-1354-4110-9b70-ab2e6164c992(SQL.110)�
http://msdn.microsoft.com/en-us/library/b5e7d1fb-3ffb-4767-8135-604c575016b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/9997ffed-a4c1-428f-8bac-3b9e4b16d7cf(SQL.110)�

 376

AlwaysOn Availability Groups monitoring tasks:
• Use Object Explorer Details to Monitor Availability Groups (SQL Server Management Studio)
• View Availability Group Properties (SQL Server Management Studio)
• View Availability Replica Properties (SQL Server Management Studio)
• View Availability Group Listener Properties (SQL Server)
AlwaysOn Availability Groups monitoring reference (Transact-SQL):
• SERVERPROPERTY (Transact-SQL)
• sys.availability_group_listener_ip_addresses (Transact-SQL)
• sys.availability_group_listeners (Transact-SQL)
• sys.availability_databases_cluster (Transact-SQL)
• sys.availability_groups (Transact-SQL)
• sys.availability_read_only_routing_lists (Transact-SQL)
• sys.availability_replicas (Transact-SQL)
• sys.dm_hadr_availability_replica_cluster_nodes (Transact-SQL)
• sys.dm_hadr_availability_replica_cluster_states (Transact-SQL)
• sys.database_mirroring_endpoints (Transact-SQL)
• sys.dm_hadr_auto_page_repair (Transact-SQL)
• sys.dm_hadr_availability_group_states (Transact-SQL)
• sys.dm_hadr_availability_replica_cluster_states (Transact-SQL)
• sys.dm_hadr_availability_replica_states (Transact-SQL)
• sys.dm_hadr_database_replica_states (Transact-SQL)
• sys.dm_hadr_database_replica_cluster_states (Transact-SQL)
• sys.dm_hadr_cluster (Transact-SQL)
• sys.dm_hadr_cluster_members (Transact-SQL)
• sys.dm_hadr_cluster_networks (Transact-SQL)
• sys.dm_hadr_database_replica_cluster_states (Transact-SQL)
• sys.dm_hadr_database_replica_states (Transact-SQL)
• sys.dm_hadr_instance_node_map
• sys.dm_hadr_name_id_map
• sys.dm_os_performance_counters (Transact-SQL)
• sys.dm_tcp_listener_states (Transact-SQL)
• sys.fn_hadr_backup_is_preferred_replica
AlwaysOn performance counters:
• SQL Server, HADR Availability Replica
• SQL Server, HADR Database Replica

http://msdn.microsoft.com/en-us/library/11e166fa-3dd2-42d8-ac4b-04f18c612c4a(SQL.110)�
http://msdn.microsoft.com/en-us/library/e515fa6b-1354-4110-9b70-ab2e6164c992(SQL.110)�
http://msdn.microsoft.com/en-us/library/b5e7d1fb-3ffb-4767-8135-604c575016b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/8d9c57e5-7f39-4315-b466-92748231140a(SQL.110)�
http://msdn.microsoft.com/en-us/library/da7fa55f-c008-45d9-bcfc-3513b02d9e71(SQL.110)�
http://msdn.microsoft.com/en-us/library/0686bc5a-c206-41ef-b40a-79a8259d51d2(SQL.110)�
http://msdn.microsoft.com/en-us/library/0a06e9b6-a1e4-4293-867b-5c3f5a8ff62c(SQL.110)�
http://msdn.microsoft.com/en-us/library/dbd7e416-badd-4332-a45c-438aa0145a99(SQL.110)�
http://msdn.microsoft.com/en-us/library/2e0dd780-6a71-4f4b-b7f7-6e063bec71d6(SQL.110)�
http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7840adf-4a1b-41ac-bc94-102c07ad1c79(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18019dd-f8dc-4492-b035-b1a639369b65(SQL.110)�
http://msdn.microsoft.com/en-us/library/2e0dd780-6a71-4f4b-b7f7-6e063bec71d6(SQL.110)�
http://msdn.microsoft.com/en-us/library/d2e678bb-51e8-4a61-b223-5c0b8d08b8b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/1a17b0c9-2535-4f3d-8013-cd0a6d08f773(SQL.110)�
http://msdn.microsoft.com/en-us/library/6f719071-ebce-470d-aebd-1f55ee8cd70a(SQL.110)�
http://msdn.microsoft.com/en-us/library/13ce70e4-9d43-4a80-a826-099e6213bf85(SQL.110)�
http://msdn.microsoft.com/en-us/library/feb20b3a-8835-41d3-9a1c-91d3117bc170(SQL.110)�
http://msdn.microsoft.com/en-us/library/ece32b15-d63f-4f93-92b7-e2930333e97a(SQL.110)�
http://msdn.microsoft.com/en-us/library/6f719071-ebce-470d-aebd-1f55ee8cd70a(SQL.110)�
http://msdn.microsoft.com/en-us/library/1a17b0c9-2535-4f3d-8013-cd0a6d08f773(SQL.110)�
http://msdn.microsoft.com/en-us/library/ccfaf62c-9f87-43cf-a5e7-8942e91dd041(SQL.110)�
http://msdn.microsoft.com/en-us/library/e07bb8a9-37de-4a39-a257-950d7c3ae8fb(SQL.110)�
http://msdn.microsoft.com/en-us/library/a1c3e892-cd48-40d4-b6be-2a9246e8fbff(SQL.110)�
http://msdn.microsoft.com/en-us/library/9997ffed-a4c1-428f-8bac-3b9e4b16d7cf(SQL.110)�
http://msdn.microsoft.com/en-us/library/61b9be77-e2f6-4da1-b2ae-a62cbe226145(SQL.110)�
http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/a5f6bdce-2b13-4924-aaeb-b50b57d624d8(SQL.110)�

 377

• SQL Server, Databases Object
Policy-based management for AlwaysOn Availability Groups
• Use Policy-Based Management to View the Health of an Availability Group (SQL Server)
• Use the AlwaysOn Group Dashboard (SQL Server Management Studio)

See Also
AlwaysOn Availability Groups (SQL Server)
Overview of AlwaysOn Availability Groups
Monitoring (AlwaysOn Availability Groups)

Use the Object Explorer Details to Monitor Availability Groups (SQL
Server Management Studio)
This topic describes how to use the Object Explorer Details pane of SQL Server Management
Studio to monitor and manage existing AlwaysOn availability groups, availability replicas, and
availability databases.

For information about using the Object Explorer Details pane, see Using Object Explorer
Details and SQL Server Object Search.

• Before you begin: Prerequisites
• To Monitor an Availability Group, using: SQL Server Management Studio
• Object Explorer Details:

Availability Group Details
Availability Replica Details
Availability Database Details

Before You Begin
Prerequisites
You must be connected to the instance of SQL Server (server instance) that hosts either the
primary replica or a secondary replica.
Using SQL Server Management Studio
To monitor availability groups, availability replicas, and availability databases
1. On the View menu, click Object Explorer Details, or press the F7 key.
2. In Object Explorer, connect to the instance of SQL Server on which you want to monitor an

availability group, and click the server name to expand the server tree.
3. Expand the AlwaysOn High Availability node and the Availability Groups node.
4. The Object Explorer Details pane displays every availability group for which the connected

server instance hosts a replica. For each availability group, the Server Instance (Primary)

Note

http://msdn.microsoft.com/en-us/library/a7f9e7d4-fff4-4c72-8b3e-3f18dffc8919(SQL.110)�
http://msdn.microsoft.com/en-us/library/b963e3c2-dc9e-4d38-bd28-2e00fe9e0e47(SQL.110)�
http://msdn.microsoft.com/en-us/library/b963e3c2-dc9e-4d38-bd28-2e00fe9e0e47(SQL.110)�

 378

column displays the name of the server instance that is currently hosting the primary replica.
To display more information about a given availability group, select it in Object Explorer.

5. The Object Explorer Details pane then displays the Availability Replicas and Availability
Databases nodes for this availability group:
• When you expand the Availability Group node in Object Explorer and select the

Availability Replicas node, the Object Explorer Details pane displays information
about each of the availability replicas in the group. For more information, see Availability
Replica Details, later in this topic.
To perform operations on multiple availability replicas, select them, and right-click them
to open up a context menu that lists the available commands.

• When you expand the Availability Group node in Object Explorer and select the
Availability Databases node, the Object Explorer Details pane displays information
about each of the availability databases in the group. For more information, see
Availability Database Details, later in this topic.
To perform operations on multiple availability databases, select them, and right-click
them to open up a context menu that lists the available commands.

Availability Groups Details
The Availability Groups details screen displays the following columns:
Name

Lists the Availability Replicas, Availability Databases, and Availability Group Listeners
folders of the selected availability group.

Availability Replica Details
The Availability Replica details screen displays the following columns:
Server Instance

Displays the name of the server instance that hosts the availability replica, along with an icon
that indicates the current connection state of the server instance to the local server instance.

Role

Indicates the current role of the availability replica, either Primary or Secondary. For
information about AlwaysOn Availability Groups roles, see "HADR" Overview (SQL
Server).

Connection Mode in Secondary Role

Indicates whether the databases of a given availability replica that is performing the
secondary role (that is, is acting as a secondary replica) can accept connections from clients.

The possible values are as follows:

 379

Value Description

Disallow Connections No direct connections are allowed to the
availability databases when this availability
replica is acting as a secondary replica.
Secondary databases are not available for
read access.

Allow Only Read Intent Connections Only direct read-only connections are
allowed when this replica acting as a
secondary replica. All database(s) in the
replica are available for read access.

Allow All Connections All connections are allowed to these
databases for read-only access when this
replica acting as a secondary replica.

Connection State

Indicates whether a secondary replica is currently connected to the primary replica. The
possible values are as follows:

Value Description

Disconnected For a remote availability replica, indicates
that it is disconnected from the local
availability replica. The response of the
local replica to the Disconnected state
depends on its role, as follows:
• On the primary replica, if a secondary

replica is disconnected, the secondary
databases are marked as Not
Synchronized on the primary replica,
and the primary replica waits for the
secondary to reconnect.

• On the secondary replica, upon
detecting that it is disconnected, the
secondary replica attempts to
reconnect to the primary replica.

Connected A remote availability replica that is
currently connected to the local replica.

NULL If the local replica is a secondary replica,
this value is NULL for other secondary

 380

replicas.

Synchronization State

Indicates whether a secondary replica is currently synchronized with primary replica. The
possible values are as follows:

Value Description

Not Synchronized The database is not synchronized or has
not yet been joined to the availability
group.

Synchronized The database is synchronized with the
primary database on the current primary
replica, if any, or on the last primary replica.

Note
In performance mode, the database
is never in the Synchronized state.

NULL Unknown state. This value occurs when the
local server instance cannot communicate
with the WSFC failover cluster (that is the
local node is not part of WSFC quorum).

For information about performance counters for availability replicas, see SQL Server,
HADR Availability Replica.

Availability Database Details
The Availability Database details screen displays the following properties of the availability
databases in a given availability group:
Name

The name of the availability database.

Synchronization State

Indicates whether the availability database is currently synchronized with primary replica.

The possible synchronization states are as follows:

Value Description

Synchronizing The secondary database has received the
transaction log records for the primary

Note

http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�

 381

database that are not yet written to disk
(hardened).

nNote
In asynchronous-commit mode, the
synchronization state is always
Synchronizing.

Suspended

Indicates whether the availability database is currently online. The possible values are as
follows:

Value Description

Suspended This state indicates that the database is
suspended locally and needs to be
manually resumed.
On the primary replica, the value is
unreliable for a secondary database. To
reliably determine whether a secondary
database is suspended, query it on the
secondary replica that hosts the database.

Not Joined Indicates that the secondary database
either has not been joined to the
availability group or has been removed
from the group.

Online Indicates that the database is not
suspended on the local availability replica
and that the database is connected.

Not Connected Indicates that the secondary replica is
currently unable to connect to the primary
replica.

For information about performance counters for availability databases, see SQL Server,
HADR Database Replica.

See Also
sys.dm_os_performance_counters (Transact-SQL)

Note

http://msdn.microsoft.com/en-us/library/a5f6bdce-2b13-4924-aaeb-b50b57d624d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/a5f6bdce-2b13-4924-aaeb-b50b57d624d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/a1c3e892-cd48-40d4-b6be-2a9246e8fbff(SQL.110)�

 382

Use the Availability Group Dashboard (SQL Server Management Studio)
View Availability Group Properties (SQL Server)
View Availability Replica Properties (SQL Server)

View Availability Group Properties
This topic describes how to view the properties of an availability group for an AlwaysOn
availability group by using SQL Server Management Studio or Transact-SQL in SQL Server 2012.
• To view availability group properties, using:

SQL Server Management Studio
Transact-SQL

Using SQL Server Management Studio
To view and change the properties an availability group
1. In Object Explorer, connect to the server instance that hosts the primary replica, and expand

the server tree.
2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Right-click the availability group whose properties you want to view, and select the

Properties command.
4. In the Availability Group Properties dialog box, use the General and Backup Preferences

pages to view and, in some cases, change properties of the selected availability group. For
more information, see Availability Group Properties (General Page) and Availability Group
Properties (Backup Preferences Page).
Use the Permissions page to view the current logins, roles, and explicit permissions
associated with the availability group. For more information, see Permissions or Securables
Page.

Using Transact-SQL
To view the properties and state of an availability group
To query the properties and states of the availability groups for which the server instance hosts
an availability replica, use the following views:
sys.availability_groups

Returns a row for each availability group for which the local instance of SQL Server hosts an
availability replica. Each row contains a cached copy of the availability group metadata.

Column names: group_id, name, resource_id, resource_group_id, failure_condition_level,
health_check_timeout, automated_backup_preference, automated_backup_preference_desc

sys.availability_groups_cluster
Returns a row for each availability group in the WSFC cluster. Each row contains the
availability group metadata from the Windows Server Failover Clustering (WSFC) cluster.

http://msdn.microsoft.com/en-us/library/b3bf077a-bec2-4161-ac0c-460586199906(SQL.110)�
http://msdn.microsoft.com/en-us/library/b3bf077a-bec2-4161-ac0c-460586199906(SQL.110)�
http://msdn.microsoft.com/en-us/library/da7fa55f-c008-45d9-bcfc-3513b02d9e71(SQL.110)�
http://msdn.microsoft.com/en-us/library/d0f4683f-cdf0-4227-8b68-720ffe58f158(SQL.110)�

 383

Column names: group_id, name, resource_id, resource_group_id, failure_condition_level,
health_check_timeout, automated_backup_preference, automated_backup_preference_desc

sys.dm_hadr_availability_group_state s
Returns a row for each availability group that possesses an availability replica on the local
instance of SQL Server. Each row displays the states that define the health of a given
availability group.

Column names: group_id, primary_replica, primary_recovery_health,
primary_recovery_health_desc, secondary_recovery_health, secondary_recovery_health_desc,
synchronization_health, synchronization_health_desc

Related Tasks
To view information about availability groups
• View and Change Availability Replica Properties
• View Availability Group Listener Properties (SQL Server)
• Use Policy-Based Management to View the Health of an Availability Group (SQL Server)
• Use the AlwaysOn Group Dashboard (SQL Server Management Studio)
• Monitor Availability Groups (Transact-SQL)
To configure an existing availability group
• Add a Secondary Replica to an Availability Group (SQL Server)
• Remove a Secondary Replica from an Availability Group (SQL Server)
• Add a Database to an Availability Group (SQL Server)
• Remove a Database from a Secondary Replica (AlwaysOn Availability Groups)
• Create or Configure an Availability Group Listener (SQL Server)
• Remove an Availability Group Listener (SQL Server)
• Remove a Database from an Availability Group (AlwaysOn Availability Groups)
• Delete an Availability Group (SQL Server)
To manually fail over an availability group
• Manually Fail Over an Availability Group (SQL Server)
• Force Failover of an Availability Group (SQL Server)

See Also
Overview of AlwaysOn Availability Groups
Monitor Availability Groups (Transact-SQL)
Policy-Based Management of Operational Issues with AlwaysOn Availability Groups (SQL Server)

http://msdn.microsoft.com/en-us/library/d18019dd-f8dc-4492-b035-b1a639369b65(SQL.110)�

 384

Availability Group Properties/New Availability Group (General Page)
This topic applies to the General tab of both the New Availability Group dialog box and the
Availability Group Properties dialog box. The New Availability Group dialog box enables
you to create a new availability group without using the New Availability Group Wizard. The
Availability Group Properties dialog box enables you to view and alter the configuration of an
existing availability group.
To view availability group properties
• Viewing Availability Group Properties (SQL Server)
• Using the Availability Group Dashboard (SQL Server Management Studio)
UI Element List
Availability group name

Name of the availability group. This is a user-specified name that must be unique within the
Windows Server Failover Cluster (WSFC).

Availability Databases
Database Name

Name of a database that has been added to the availability group.

Add

Click to add a database to the availability group.

Remove

Click to remove a selected database from the availability group.

Availability Replicas
Server instance

Server name of the instance of SQL Server that is hosting this replica and, for a non-default
instance, its instance name.

Role

Primary

Currently the primary replica.

Secondary

Currently a secondary replica.

Resolving

Currently the replica role is in the process of being resolved to either the primary or
secondary role.

Availability Mode

The availability mode of the replica, one of:

Asynchronous commit

 385

The primary replica can commit transactions without waiting for the secondary to write the
log to disk.

Synchronous commit

The primary replica waits to commit a given transaction until the secondary replica has
written the transaction to disk.

For more information, see Availability Modes (AlwaysOn Availability Group).

Failover Mode

The failover mode of the replica, one of:

Automatic

Automatic failover. The replica is a target for automatic failovers. This is supported only if
the availability mode is set to synchronous commit.

Manual

Manual failover. The replica can only be failed over to manually by the database
administrator.

Connections in Primary Role

The type of client connections supported when the replica owns the primary role.

Allow all connections

All connections are allowed to the databases in the primary replica. This is the default
setting.

Allow read/write connections

Connections where the Application Intent connection property is set to ReadOnly are
disallowed. When the Application Intent property is set to ReadWrite or the Application
Intent connection property is not set, the connection is allowed. For more information
about Application Intent connection property, see Using Connection String
Keywords with SQL Server Native Client.

Readable Secondary

Whether an availability replica that is performing the secondary role (that is, a secondary
replica) can accept connections from clients, one of:

No

No direct connections are allowed to secondary databases of this replica. They are not
available for read access. This is the default setting.

Read-intent only

Only direct read-only connections are allowed to secondary databases of this replica. The
secondary database(s) are all available for read access.

Yes

All connections are allowed to secondary databases of this replica, but only for read access.

http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�

 386

The secondary database(s) are all available for read access.

Session Timeout (seconds)

The number of seconds for the session-timeout period on this replica.

Endpoint URL

The URL of the endpoint. For information the format of these URLs, see Specify the
Endpoint URL When Adding or Modifying an Availability Replica (SQL
Server).

Add

Click to add a secondary replica to the availability group.

Remove

Click to remove a secondary replica from the availability group.

See Also
Overview (AlwaysOn Availability Group)

Availability Group Properties/New Availability Group (Backup Preferences Page)
Use this dialog box to view and change the backup preferences of the selected availability
group.
To view availability group properties
• View Availability Group Properties (SQL Server)
• Use the Availability Group Dashboard (SQL Server Management Studio)
Where should backups occur?

Prefer Secondary

Specifies that backups should occur on a secondary replica except when the primary replica is
the only replica online. In that case, the backup should occur on the primary replica. This is
the default option.

Secondary only

Specifies that backups should never be performed on the primary replica. If the primary
replica is the only replica online, the backup should not occur.

Primary

Specifies that the backups should always occur on the primary replica. This option is useful if
you need backup features, such as creating differential backups, that are not supported when
backup is run on a secondary replica.

Any Replica

Specifies that you prefer that backup jobs ignore the role of the availability replicas when
choosing the replica to perform backups. Note backup jobs might evaluate other factors such

 387

as backup priority of each availability replica in combination with its operational state and
connected state.

There is no enforcement of the backup-preference setting. The interpretation of this
preference depends on the logic, if any, that you script into back jobs for the databases
in a given availability group. For more information, see Backup on Secondary Replicas
(AlwaysOn Availability Groups).

Replica backup priorities
This grid displays the current backup priority of each server instance that hosts a replica for the
availability group. Use this grid to change the backup priority of one or more availability
replicas.
Server Instance

The name of the instance of SQL Server that hosts the availability replica.

Backup Priority (Lowest=1, Highest=100)

Specifies your priority for performing backups on this replica relative to the other replicas in
the same availability group. The value is an integer in the range of 0..100. 1 indicates the
lowest priority, and 100 indicates the highest priority. If Backup Priority = 1, the availability
replica would be chosen for performing backups only if no higher priority availability replicas
are currently available.

Exclude Replica

Select if you never want this availability replica to be chosen for performing backups. This is
useful, for example, for a remote availability replica to which you never want backups to fail
over.

See Also
Backup on Secondary Replicas (AlwaysOn Availability Groups)
ALTER AVAILABILITY GROUP

View Availability Replica Properties
This topic describes how to view the properties of an availability replica for an AlwaysOn
availability group by using SQL Server Management Studio or Transact-SQL in SQL Server 2012.
• To view availability replica properties, using:

SQL Server Management Studio
Transact-SQL

Using SQL Server Management Studio
To view and change properties an availability replica
1. In Object Explorer, connect to the server instance that hosts the primary replica, and expand

the server tree.

Important

http://msdn.microsoft.com/en-us/library/f039d0de-ade7-4aaf-8b7b-d207deb3371a(SQL.110)�

 388

2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Expand the availability group to which the availability replica belongs, and expand the

Availability Replicas node.
4. Right-click the availability replica whose properties you want to view, and select the

Properties command.
5. In the Availability Replica Properties dialog box, use the General page to view the

properties of this replica. If you are connected to the primary replica, you can change the
following properties: availability mode, failover mode, connection access for the primary
role, read-access for the secondary role (readable-secondary), and the session-timeout value.
For more information, see Availability Replica Properties (General Page).

Using Transact-SQL
To view properties and states of availability replicas
To view the properties and states of availability replicas, use the following views and system
function:
sys.availability_replicas

Returns a row for every availability replica in each availability group for which the local
instance of SQL Server hosts an availability replica.

Column names: replica_id, group_id, replica_metadata_id, replica_server_name, owner_sid,
endpoint_url, availability_mode, availability_mode_desc, failover_mode, failover_mode_desc,
session_timeout, primary_role_allow_connections, primary_role_allow_connections_desc,
secondary_role_allow_connections, secondary_role_allow_connections_desc, create_date,
modify_date, backup_priority, read_only_routing_url

sys.availability_read_only_routing_lists
Returns a row for the read only routing list of each availability replica in an AlwaysOn
availability group in the WSFC failover cluster.

Column names: replica_id, routing_priority, read_only_replica_id

sys.dm_hadr_availability_replica_cluster_nodes
Returns a row for every availability replica (regardless of join state) of the AlwaysOn
availability groups in the Windows Server Failover Clustering (WSFC) cluster.

Column names: group_name, replica_server_name, node_name

sys.dm_hadr_availability_replica_cluster_states
Returns a row for each replica (regardless of join state) of all AlwaysOn availability groups
(regardless of replica location) in the Windows Server Failover Clustering (WSFC) cluster.

Column names: replica_id, replica_server_name, group_id, join_state, join_state_desc

sys.dm_hadr_availability_replica_states
Returns a row showing the state of each local availability replica and a row for each remote

http://msdn.microsoft.com/en-us/library/0a06e9b6-a1e4-4293-867b-5c3f5a8ff62c(SQL.110)�
http://msdn.microsoft.com/en-us/library/0686bc5a-c206-41ef-b40a-79a8259d51d2(SQL.110)�
http://msdn.microsoft.com/en-us/library/dbd7e416-badd-4332-a45c-438aa0145a99(SQL.110)�
http://msdn.microsoft.com/en-us/library/2e0dd780-6a71-4f4b-b7f7-6e063bec71d6(SQL.110)�
http://msdn.microsoft.com/en-us/library/d2e678bb-51e8-4a61-b223-5c0b8d08b8b1(SQL.110)�

 389

availability replica in the same availability group.

Column names: replica_id, group_id, is_local, role, role_desc, operational_state,
operational_state_desc, connected_state, connected_state_desc, recovery_health,
recovery_health_desc, synchronization_health, synchronization_health_desc,
last_connect_error_number, last_connect_error_description, and
last_connect_error_timestamp

sys.fn_hadr_backup_is_preferred_replica
Determines whether the current replica is the preferred backup replica. Returns 1 if the
database on the current server instance is the preferred replica. Otherwise, it returns 0.

For information about performance counters for availability replicas (the
SQLServer:Availability Replica performance object), see SQL Server, HADR Availability
Replica.

Related Tasks
To view information about availability groups
• View Availability Group Properties
• View Availability Group Listener Properties (SQL Server)
• Use Policy-Based Management to View the Health of an Availability Group (SQL Server)
• Use the AlwaysOn Group Dashboard (SQL Server Management Studio)
• Monitor Availability Groups (Transact-SQL)
To manage availability replicas
• Add a Secondary Replica to an Availability Group (SQL Server)
• Join a Secondary Replica to an Availability Group (SQL Server)
• Configure Read-Only Access on a Secondary Availability Replica (SQL Server)
• Set the Availability Mode of an Availability Replica (SQL Server)
• Set the Failover Mode of an Availability Replica (SQL Server)
• Set the Session-Timeout Period for an Availability Replica (SQL Server)
• Remove a Secondary Replica from an Availability Group (SQL Server)
To manage an availability database
• Add a Database to an Availability Group (SQL Server)
• Join a Secondary Database to an Availability Group (SQL Server)
• Suspend a Database on an Secondary Replica Location (SQL Server)
• Resume a Secondary Database on an Secondary Replica (SQL Server)
• Remove a Secondary Database from an Availability Group (SQL Server)
• Remove a Primary Database from an Availability Group (SQL Server)

Note

http://msdn.microsoft.com/en-us/library/61b9be77-e2f6-4da1-b2ae-a62cbe226145(SQL.110)�
http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/e402f996-c1fb-484a-b804-45c49972f2e0(SQL.110)�

 390

See Also
Overview of AlwaysOn Availability Groups
Monitor Availability Groups (Transact-SQL)
Policy-Based Management of Operational Issues with AlwaysOn Availability Groups (SQL Server)
Administration of an Availability Group (SQL Server)

Availability Replica Properties (General Page)
Use this dialog box to view the properties of an availability replica.
Task List
To view availability replica properties
• View Availability Replica Properties (SQL Server)
• Use the Availability Group Dashboard (SQL Server Management Studio)
UI Element List
Availability group name

Name of the availability group. This is a user-specified name that must be unique within the
Windows Server Failover Cluster (WSFC).

Server instance

Server name of the instance of SQL Server that is hosting this replica and, for a non-default
instance, its instance name.

Role

Primary

Currently the primary replica.

Secondary

Currently a secondary replica.

Resolving

Currently the replica role is in the process of being resolved to either the primary or
secondary role.

Availability mode

The availability mode of the replica, one of:

Asynchronous commit

The primary replica can commit transactions without waiting for the secondary to write the
log to disk.

Synchronous commit

The primary replica waits to commit a given transaction until the secondary replica has

 391

written the transaction to disk.

For more information, see Availability Modes (AlwaysOn Availability Group).

Failover mode

The failover mode of the replica, one of:

Automatic

Automatic failover. The replica is a target for automatic failovers. This is supported only if
the availability mode is set to synchronous commit.

Manual

Manual failover. The replica can only be failed over to manually by the database
administrator.

Connections in primary role

The type of client connections supported when the replica owns the primary role.

Allow all connections

All connections are allowed to the databases in the primary replica. This is the default
setting.

Allow read/write connections

Connections where the Application Intent connection property is set to ReadOnly are
disallowed. When the Application Intent property is set to ReadWrite or the application
intent connection property is not set, the connection is allowed.

Readable Secondary

Whether an availability replica that is performing the secondary role (that is, a secondary
replica) can accept connections from clients, one of:

No

No direct connections are allowed to secondary databases of this replica. They are not
available for read access. This is the default setting.

Read-intent only

Only direct read-only connections are allowed to secondary databases of this replica. The
secondary database(s) are all available for read access.

Yes

All connections are allowed to secondary databases of this replica, but only for read access.
The secondary database(s) are all available for read access.

For more information, see Read-Only Access to Secondary replicas (AlwaysOn
Availability Group).

Session timeout (seconds)

The time-out period, in seconds. The time-out period is the maximum time that the replica
waits to receive a message from another replica before considering connection between the

 392

primary and secondary replica have failed. Session timeout detects whether secondaries are
connected the primary replica. On detecting a failed connection with a secondary replica, the
primary replica considers the secondary replica to be NOT_SYNCHRONIZED. On detecting a
failed connection with the primary replica, a secondary replica simply attempts to reconnect.

Note
Session timeouts do not cause automatic failovers.

Endpoint URL

String representation of the user-specified database mirroring endpoint that is used by
connections between primary and secondary replicas for data synchronization. For
information about the syntax of endpoint URLs, see Specifying the Endpoint URL
When Adding or Modifying an Availability Replica (AlwaysOn Availability
Group).

See Also
Overview (AlwaysOn Availability Group)

View Availability Group Listener Properties
This topic describes how to view the properties of an AlwaysOn availability group listener by
using SQL Server Management Studio or Transact-SQL in SQL Server 2012.
• To view listener properties, using:

 SQL Server Management Studio
Transact-SQL

Using SQL Server Management Studio
To view listener properties
1. In Object Explorer, connect to a server instance that hosts any availability replica of the

availability group whose listener you want to view. Click the server name to expand the
server tree.

2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Expand the node of the availability group, and expand the Availability Groups Listeners

node.
4. Right-click the listener that you want to view, and select the Properties command.
5. This opens the Availability Group Listener Properties dialog box. For more information,

see Availability Group Listener Properties (Dialog Box), later in this topic.

Availability Group Listener Properties (Dialog Box)
Listener DNS Name

The network name of the availability group listener.

 393

Port

The TPC port used by this listener.

Note
If you are connected the primary replica, you can use this field to modify the port number of the
listener. This requires ALTER AVAILABILITY GROUP permission on the availability group, CONTROL
AVAILABILITY GROUP permission, ALTER ANY AVAILABILITY GROUP permission, or CONTROL SERVER
permission.

Network Mode

Indicates the TCP protocol used by the listener, one of:

DHCP

The listener uses an dynamic IP address that is assigned by a server running the Dynamic
Host Configuration Protocol (DHCP).

Static IP

The listener uses one or more Static IP addresses. To access the different subnets, an
availability group listener must use static IP addresses.

The grid displays each of the subnets on which the listener listens and the IP address
associated with that subnet.

Using Transact-SQL
To view listener properties
To monitor the availability group listeners, use the following views:
sys.availability_group_listener_ip_addresses

Returns a row for every conformant virtual IP address that is currently online for an
availability group listener.

Column names: listener_id, ip_address, ip_subnet_mask, is_dhcp, network_subnet_ip,
network_subnet_prefix_length, network_subnet_ipv4_mask, state, state_desc

sys.availability_group_listeners
For a given availability group, returns either zero rows indicating that no network name is
associated with the availability group, or returns a row for each availability-group listener
configuration in the WSFC cluster.

Column names: group_id, listener_id, dns_name, port, is_conformant,
ip_configuration_string_from_cluster

sys.dm_tcp_listener_states
Returns a row containing dynamic-state information for each TCP listener.

Column names: listener_id, ip_address, is_ipv4, port, type, type_desc, state, state_desc,
start_time

http://msdn.microsoft.com/en-us/library/e515fa6b-1354-4110-9b70-ab2e6164c992(SQL.110)�
http://msdn.microsoft.com/en-us/library/b5e7d1fb-3ffb-4767-8135-604c575016b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/9997ffed-a4c1-428f-8bac-3b9e4b16d7cf(SQL.110)�

 394

For more information about using Transact-SQL to monitor your AlwaysOn Availability
Groups environment, see Monitor Availability Groups (Transact-SQL).

Related Tasks
• Create or Configure an Availability Group Listener (SQL Server)
• Remove an Availability Group Listener (SQL Server)

See Also
AlwaysOn Availability Groups (SQL Server)
Availability Group Listeners, Client Connectivity, and Application Failover (AlwaysOn Availability
Groups)
Monitor Availability Groups (Transact-SQL)

AlwaysOn Availability Groups: Interoperability
This topic documents interoperability of AlwaysOn Availability Groups with other SQL Server
features in SQL Server 2012.
In This Topic:
• Features That Interoperate with AlwaysOn Availability Groups
• Features that Do Not Interoperate with AlwaysOn Availability Groups

Features That Interoperate with AlwaysOn Availability Groups
The following table lists SQL Server features that interoperate with AlwaysOn Availability Groups
in SQL Server 2012. A link in the More Information column indicates that interoperability
considerations exist for a given feature.

Feature More Information

Change data capture Replication, Change Tracking, Change Data
Capture, and AlwaysOn Availability Groups
(SQL Server)

Change tracking Replication, Change Tracking, Change Data
Capture, and AlwaysOn Availability Groups
(SQL Server)

Contained databases Contained Databases with AlwaysOn
Availability Groups (SQL Server)

Database encryption Encrypted Databases with AlwaysOn

Note

 395

Feature More Information

Availability Groups (SQL Server)

Database snapshots Database Snapshots with AlwaysOn
Availability Groups (SQL Server)

FILESTREAM and FileTable FILESTREAM and FileTable with AlwaysOn
Availability Groups (SQL Server)

Full-text search Note
Full-Text indexes are synchronized
with AlwaysOn secondary
databases.

Log shipping Log Shipping and AlwaysOn Availability
Groups (SQL Server)

Remote Blob Store (RBS)

Replication • Configure Replication for AlwaysOn
Availability Groups

• Maintaining an AlwaysOn Publication
Database

• Replication, Change Tracking, Change
Data Capture, and AlwaysOn Availability
Groups (SQL Server)

• Replication Subscribers and AlwaysOn

Analysis Services Analysis Services with AlwaysOn Availability
Groups

Reporting Services Utilize read only secondary replicas as a
reporting data source and reduce the load
on your primary read-write replica.
Reporting Services with AlwaysOn
Availability Groups (SQL Server)

Service Broker Service Broker with AlwaysOn Availability
Groups (SQL Server) 881c20e5-1c99-44eb-
b393-09fc5ea0f122

SQL Server Agent

Features that Do Not Interoperate with AlwaysOn Availability Groups

 396

AlwaysOn Availability Groups does not interoperate with the following features:
• Cross-database transactions/distributed transactions

For information about why such transactions are not supported, see Cross-Database
Transactions Not Supported For Database Mirroring or AlwaysOn Availability Groups (SQL
Server).

• Database mirroring

See Also
Overview of AlwaysOn Availability Groups
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)

Contained Databases with AlwaysOn Availability Groups
This topic contains information about the using a contained database with AlwaysOn Availability
Groups in SQL Server 2012.
In this Topic:
• Prerequisites
• Related Tasks
Prerequisites
• Before adding a contained database to an availability group, ensure that the contained

database authentication server option is set to 1 on every server instance that hosts an
availability replica for the availability group. For more information, see contained database
authentication Option and Set Server Configuration Options.

Related Tasks
• Set Server Configuration Options

See Also
Overview of AlwaysOn Availability Groups
Contained Databases

Cross-Database Transactions Not Supported For Database Mirroring or
AlwaysOn Availability Groups
Cross-database transactions and distributed transactions are not supported by AlwaysOn
Availability Groups or by database mirroring. This is because transaction atomicity/integrity
cannot be guaranteed for the following reasons:
• For cross-database transactions: Each database commits independently. Therefore, even for

databases in a single availability group, a failover could occur after one database commits a

http://msdn.microsoft.com/en-us/library/b80768d2-ac20-4035-a335-d9adb74b3f6e(SQL.110)�
http://msdn.microsoft.com/en-us/library/b80768d2-ac20-4035-a335-d9adb74b3f6e(SQL.110)�
http://msdn.microsoft.com/en-us/library/9f38eba6-39b1-4f1d-ba24-ee4f7e2bc969(SQL.110)�
http://msdn.microsoft.com/en-us/library/9f38eba6-39b1-4f1d-ba24-ee4f7e2bc969(SQL.110)�
http://msdn.microsoft.com/en-us/library/36af59d7-ce96-4a02-8598-ffdd78cdc948(SQL.110)�

 397

transaction but before the other database does. For database mirroring this issue is
compounded because after a failover, the mirrored database is typically on a different server
instance from the other database, and even if both databases are mirrored between the
same two partners, there is no guarantee that both databases will fail over at the same time.

• For distributed transactions: After a failover, the new principal server/primary replica is
unable to connect to the distributed transaction coordinator on the previous principal
server/primary replica. Therefore, the new principal server/primary replica cannot obtain the
transaction status.

The following database mirroring example illustrates how a logical inconsistency could occur. In
this example, an application uses a cross-database transaction to insert two rows of data: one
row is inserted into a table in a mirrored database, A, and the other row is inserted into a table
in another database, B. Database A is being mirrored in high-safety mode with automatic
failover. While the transaction is being committed, database A becomes unavailable, and the
mirroring session automatically fails over to the mirror of database A.
After the failover, the cross-database transaction might be successfully committed on database
B but not on the failed-over database. This would occur if the original principal server for
database A had not sent the log for the cross-database transaction to the mirror server before
the failure. After the failover, that transaction would not exist on the new principal server.
Databases A and B would become inconsistent, because the data inserted in database B remains
intact, but the data inserted in database A has been lost.
A similar scenario can occur while using a MS DTC transaction. For example, after failover, the
new principal contacts MS DTC. But MS DTC has no knowledge of the new principal server, and
it terminates any transactions that are "preparing to commit," which are considered committed
in other databases.

Database Snapshots with AlwaysOn Availability Groups
You can create a database snapshot on an primary or secondary database in an availability
group. The replica role must be either PRIMARY or SECONDARY, not in the RESOLVING state.
We recommend that the database synchronization state be SYNCHRONIZING or
SYNCHRONIZED when you create a database snapshot. However, database snapshots can be
created when the database synchronization state is NOT SYNCHRONIZING.
A database snapshot on a secondary replica should continue to work if the replica is
DISCONNECTED from the primary replica.
Some AlwaysOn Availability Groups conditions cause both the source database and its database
snapshots to be restarted, temporarily disconnecting users. These conditions are as follows:
• The primary replica changes roles, whether because the current primary replica goes off line

and comes back online on the same server instance or because the availability group fails
over.

• The database enters the secondary role.

 398

If the availability replica that hosts database snapshots is failed over, the database snapshots
remain on the server instance where they were created. Users can continue to use the snapshots
after the failover.If performance is a concern in your environment, we recommend that you
create database snapshots only on secondary databases that are hosted by a secondary replica
that is configured for manual failover mode. If you ever manually fail over the availability group
to this secondary replica, you can create a new set of database snapshots on another secondary
replica, redirect clients to the new database snapshots, and drop all of the database snapshots
from the now primary databases.
See Also
AlwaysOn Availability Groups (SQL Server)
Database Snapshots (SQL Server)

Encrypted Databases with AlwaysOn Availability Groups
This topic contains information about the using currently encrypted or recently decrypted
databases with AlwaysOn Availability Groups in SQL Server 2012.
In this Topic:
• Limitations and Restrictions
• Related Tasks
Limitations and Restrictions

• If a database is encrypted or even contains a Database Encryption Key (DEK), you cannot use

the New Availability Group Wizard or Add Database to Availability Group Wizard to add the
database to an availability group. Even if an encrypted database has been decrypted, its log
backups might contain encrypted data. In this case, full initial data synchronization could fail
on the database. This is because the restore log operation might require the certificate that
was used by the database encryption keys (DEKs), and that certificate might be unavailable.
To make a decrypted database eligible to add to an availability group using the wizard:
a. Create a log backup of the primary database.
b. Create a full database backup of the primary database.
c. Restore the database backup on the server instance that hosts the secondary replica.
d. Create a new log backup from primary database.
e. Restore this log backup on the secondary database.

Related Tasks
• Manually Prepare a Secondary Database for an Availability Group (SQL Server)
• Use the New Availability Group Wizard (SQL Server Management Studio)
• Use the Add Database to Availability Group Wizard (SQL Server Management Studio)

http://msdn.microsoft.com/en-us/library/00179314-f23e-47cb-a35c-da6f180f86d3(SQL.110)�

 399

See Also
Overview of AlwaysOn Availability Groups (SQL Server)
Transparent Data Encryption (TDE)

FILESTREAM and FileTable with AlwaysOn Availability Groups
This topic contains information about the using the FILESTREAM and FileTable features with
AlwaysOn Availability Groups in SQL Server 2012.
In this Topic:
• Prerequisites
• Using Virtual Network Names (VNNs) for FILESTREAM and FileTable Access
• Related Tasks
• Related Content
Prerequisites
• Before adding a database that uses FILESTREAM, with or without FileTable, to an availability

group, ensure that FILESTREAM is enabled on every server instance that hosts an availability
replica for the availability group. For more information, see Enable and Configure
FILESTREAM.

Using Virtual Network Names (VNNs) for FILESTREAM and FileTable Access
When you enable FILESTREAM on an instance of SQL Server, an instance-level share is created
to provide access to the FILESTREAM data. You access this share by using the computer name in
the following format:
\\<computer_name>\<filestream_share_name>
In an AlwaysOn availability group, however, the name of the computer is virtualized by using a
Virtual Network Name, or VNN. When the computer is the primary replica in an availability
group, and databases in the availability group contain FILESTREAM data, then a VNN-scoped
share is also created to provide access to the FILESTREAM data. This does not affect Transact-
SQL access to FILESTREAM data. However applications that use file system APIs have to use the
VNN-scoped share, which has a path in the following format:
\\<VNN>\<filestream_share_name>
This VNN-scoped share is created when one of the following events occurs.
• You add a database that contains FILESTREAM data to an AlwaysOn availability group on the

primary replica. In this case, the share \\<computer_name>\<filestream_share_name>
already exists. The share \\<VNN>\<filestream_share_name> is created.

• You enable FILESTREAM for file i/o streaming access on a primary replica that has availability
groups. The following shares are created:
a. \\<computer_name>\<filestream_share_name>
b. \\<VNN1>\<filestream_share_name> for availability group 1.
c. \\<VNN2>\<filestream_share_name> for availability group 2.

http://msdn.microsoft.com/en-us/library/c75d0d4b-4008-4e71-9a9d-cee2a566bd3b(SQL.110)�
http://msdn.microsoft.com/en-us/library/78737e19-c65b-48d9-8fa9-aa6f1e1bce73(SQL.110)�
http://msdn.microsoft.com/en-us/library/78737e19-c65b-48d9-8fa9-aa6f1e1bce73(SQL.110)�

 400

These VNN-scoped shares are also propagated to all secondary replicas.
When the database that contains FILESTREAM or FileTable data belongs to an AlwaysOn
availability group:
• The FILESTREAM and FileTable functions accept or return virtual network names (VNNs)

instead of computer names. For more information about these functions, see Filestream and
FileTable Functions (Transact-SQL).

• All access to FILESTREAM or FileTable data through the file system APIs should use VNNs
instead of computer names. For more information, see FILESTREAM and FileTable with
AlwaysOn Availability Groups (SQL Server).

If your application tries to access the share by using the computer name in the format
\\<computer_name>\<filestream_share_name> when the database is part of an availability
group, then an error is raised.
If your application tries to access the share by using a VNN-scoped path when the database is
not part of an availability group, then the request may succeed. In this case, the virtual network
name is resolved to the computer name. However this usage is strongly discouraged, since the
VNN-scoped path will stop working if the availability group is dropped.
Related Tasks

• Enable and Configure FILESTREAM
• Enable the Prerequisites for FileTable

Related Content
None.
See Also
Overview of AlwaysOn Availability Groups

Prerequisites for Migrating from Log Shipping to AlwaysOn
Availability Groups
This topic describes the prerequisites for converting a log shipping primary database along with
one or more of its secondary databases to an AlwaysOn primary database and secondary
database(s).
In This Topic:
• Availability Group Prerequisites
• Log Shipping Prerequisites
• Related Tasks
• Related Content
Availability Group Prerequisites

http://msdn.microsoft.com/en-us/library/71f729df-d340-4cf9-9a6d-305fcb39b009(SQL.110)�
http://msdn.microsoft.com/en-us/library/71f729df-d340-4cf9-9a6d-305fcb39b009(SQL.110)�
http://msdn.microsoft.com/en-us/library/78737e19-c65b-48d9-8fa9-aa6f1e1bce73(SQL.110)�
http://msdn.microsoft.com/en-us/library/6286468c-9dc9-4eda-9961-071d2a36ebd6(SQL.110)�

 401

To allow backup jobs to run on the primary replica of the availability group, use the following
AlwaysOn Availability Groups backup settings:

Property Setting

Automated backup preference of
availability group

Only on the primary replica

Backup priority of the primary replica. >0

For more information:
View Availability Group Properties (SQL Server)
Configure Backup on Availability Replicas (SQL Server)
Log Shipping Prerequisites
• The log shipping primary database must reside on the instance of SQL Server that hosts the

initial/current primary replica of the availability group.
• For a given log shipping secondary database to be converted to an AlwaysOn secondary

database, it must:
• Use the same name as the primary database.
• Reside on a server instance that hosts a secondary replica for the availability group.

Once the backup job has run on the primary database, disable the backup job, and once the
restore job has run on a given secondary database, disable the restore job.

After you have created all the secondary databases for the availability group, if you want
to perform backups on secondary replicas, you need to re-configure the automated
backup preference of the availability group.

For more information:
Converting a logshipping configuration to Availability Group (a SQL Server blog)
Related Tasks
Log shipping
• Upgrade Log Shipping to SQL Server 2012 (Transact-SQL)
• Remove Log Shipping
AlwaysOn Availability Groups
• Use the New Availability Group Wizard (SQL Server Management Studio)
• Use the New Availability Group Dialog Box (SQL Server Management Studio)
• Create an Availability Group (Transact-SQL)
• Create and Configure an Availability Group (SQL Server PowerShell)

Note

http://blogs.msdn.com/b/sqlalwayson/archive/2012/01/09/converting-a-logshipping-configuration-to-availability-group.aspx�
http://msdn.microsoft.com/en-us/library/b1289cc3-f5be-40bb-8801-0e3eed40336e(SQL.110)�
http://msdn.microsoft.com/en-us/library/859373db-c744-4a4b-8479-45163f61e8cb(SQL.110)�

 402

• Join a Secondary Database to an Availability Group (SQL Server)
• Configure Backup on Availability Replicas (SQL Server)
Related Content
• Converting a logshipping configuration to Availability Group
• Add a Log Shipping Primary Database and Secondary Database(s) to an Existing Availability

Group
• Microsoft SQL Server AlwaysOn Solutions Guide for High Availability and Disaster Recovery
• SQL Server AlwaysOn Team Blog: The official SQL Server AlwaysOn Team Blog
See Also
Log Shipping Overview
Overview of AlwaysOn Availability Groups
Monitoring of Availability Groups (SQL Server)

Configure Replication for AlwaysOn Availability Groups
Configuring replication and AlwaysOn availability groups involves seven steps. Each step is
described in more detail in the following sections.
1. Configure the database publications and subscriptions.
2. Configure the AlwaysOn availability group.
3. Insure that all secondary replica hosts are configured for replication.
4. Configure the secondary replica hosts as replication publishers.
5. Redirect the original publisher to the Availability Group Listener Name.
6. Run the validation stored procedure to verify the configuration.
7. Add the original publisher to Replication Monitor.
Steps 1 and 2 can be performed in either order.
1. Configure the Database Publications and Subscriptions
Configure the distributor
The distributor should not be a host for any of the current (or intended) replicas of the
availability group that the publishing database is (or will become) a member of.
1. Configure distribution at the distributor. If stored procedures are being used for

configuration, run sp_adddistributor. Use the @password parameter to identify the
password that will be used when a remote publisher connects to the distributor. The
password will also be needed at each remote publisher when the remote distributor is set
up.

USE master;

GO

EXEC sys.sp_adddistributor

http://blogs.msdn.com/b/sqlalwayson/archive/2012/01/09/converting-a-logshipping-configuration-to-availability-group.aspx�
http://blogs.msdn.com/b/sqlalwayson/archive/2012/02/01/use-log-shipping-to-prepare-secondary-databases-for-an-existing-availability-group.aspx�
http://blogs.msdn.com/b/sqlalwayson/archive/2012/02/01/use-log-shipping-to-prepare-secondary-databases-for-an-existing-availability-group.aspx�
http://go.microsoft.com/fwlink/?LinkId=227600�
http://blogs.msdn.com/b/sqlalwayson/�
http://msdn.microsoft.com/en-us/library/55da6b94-3a4b-4bae-850f-4bf7f6e918ca(SQL.110)�

 403

 @distributor = 'MyDistributor',

 @password = '**Strong password for distributor**';

2. Create the distribution database at the distributor. If stored procedures are being used for
configuration, run sp_adddistributiondb.

USE master;

GO

EXEC sys.sp_adddistributiondb

 @database = 'distribution',

 @security_mode = 1;

3. Configure the remote publisher. If stored procedures are being used to configure the
distributor, run sp_adddistpublisher. The @security_mode parameter is used to determine
how the publisher validation stored procedure that is run from the replication agents,
connects to the current primary. If set to 1 Windows authentication is used to connect to the
current primary. If set to 0, SQL Server authentication is used with the specified @login and
@password values. The login and password specified must be valid at each secondary
replica for the validation stored procedure to successfully connect to that replica.

If any modified replication agents run on a computer other than the distributor, use
of Windows authentication for the connection to the primary will require Kerberos
authentication to be configured for the communication between the replica host
computers. Use of a SQL Server login for the connection to the current primary will
not require Kerberos authentication.

USE master;

GO

EXEC sys.sp_adddistpublisher

 @publisher = 'AGPrimaryReplicaHost',

 @distribution_db = 'distribution',

 @working_directory = '\\MyReplShare\WorkingDir',

 @login = 'MyPubLogin',

 @password = '**Strong password for publisher**';

For more information, see sp_adddistpublisher (Transact-SQL).
Configure the publisher at the original publisher
1. Configure remote distribution. If stored procedures are being used to configure the

publisher, run sp_adddistributor. Specify the same value for @password as that used when
sp_adddistrbutor was run at the distributor to set up distribution.

exec sys.sp_adddistributor

Note

http://msdn.microsoft.com/en-us/library/04e15011-a902-4074-b38c-3ec2fc73b838(SQL.110)�

 404

 @distributor = 'MyDistributor',

 @password = 'MyDistPass'

2. Enable the database for replication. If stored procedures are being used to configure the
publisher, run sp_replicationdboption. If both transactional and merge replication are to be
configured for the database, each must be enabled.
USE master;

GO

EXEC sys.sp_replicationdboption

 @dbname = 'MyDBName',

 @optname = 'publish',

 @value = 'true';

EXEC sys.sp_replicationdboption

 @dbname = 'MyDBName',

 @optname = 'merge publish',

 @value = 'true';

3. Create the replication publication, articles, and subscriptions. For more information about
how to configure replication, see Publishing Data and Database objects.

2. Configure the AlwaysOn Availability Group
At the intended primary, create the availability group with the published (or to be published)
database as a member database. If using the Availability Group Wizard, you can either allow the
wizard to initially synchronize the secondary replica databases or you can perform the
initialization manually by using backup and restore.
Create a DNS listener for the availability group that will be used by the replication agents to
connect to the current primary. The listener name that is specified will be used as the target of
redirection for the original publisher/published database pair. For example, if you are using DDL
to configure the availability group, the following code example can be used to specify an
availability group listener for an existing availability group named MyAG:

ALTER AVAILABILITY GROUP 'MyAG'

 ADD LISTENER 'MyAGListenerName' (WITH IP (('10.120.19.155',

'255.255.254.0')));

For more information, see Creation and Configuration of Availability Groups (SQL Server).

3. Insure that all of the Secondary Replica Hosts are Configured for Replication

 405

At each secondary replica host, verify that SQL Server has been configured to support
replication. The following query can be run at each secondary replica host to determine whether
replication is installed:
USE master;

GO

DECLARE @installed int;

EXEC @installed = sys.sp_MS_replication_installed;

SELECT @installed;

If @installed is 0, replication must be added to the SQL Server installation.

4. Configure the Secondary Replica Hosts as Replication Publishers
A secondary replica cannot act as a replication publisher or republisher but replication must be
configured so that the secondary can take over after a failover. At the distributor, configure
distribution for each secondary replica host. Specify the same distribution database and working
directory as was specified when the original publisher was added to the distributor. If you are
using stored procedures to configure distribution, use sp_adddistpublisher to associate the
remote publishers with the distributor. If @login and @password were used for the original
publisher, specify the same values for each when you add the secondary replica hosts as
publishers.

EXEC sys.sp_adddistpublisher

 @publisher = 'AGSecondaryReplicaHost',

 @distribution_db = 'distribution',

 @working_directory = '\\MyReplShare\WorkingDir',

 @login = 'MyPubLogin',

 @password = '**Strong password for publisher**';

At each secondary replica host, configure distribution. Identify the distributor of the original
publisher as the remote distributor. Use the same password as that used when
sp_adddistributor was run originally at the distributor. If stored procedures are being used to
configure distribution, the @password parameter of sp_adddistributor is used to specify the
password.

EXEC sp_adddistributor

 @distributor = 'MyDistributor',

 @password = '**Strong password for distributor**';

At each secondary replica host, make sure that the push subscribers of the database
publications appear as linked servers. If stored procedures are being used to configure the
remote publishers, use sp_addlinkedserver to add the subscribers (if not already present) as
linked servers to the publishers.

 406

EXEC sys.sp_addlinkedserver

 @server = 'MySubscriber';

5. Redirect the Original Publisher to the AG Listener Name
At the distributor, in the distribution database, run the stored procedure sp_redirect_publisher
to associate the original publisher and the published database with the availability group
listener name of the availability group.

USE distribution;

GO

EXEC sys.sp_redirect_publisher

@original_publisher = 'MyPublisher',

 @publisher_db = 'MyPublishedDB',

 @redirected_publisher = 'MyAGListenerName';

6. Run the Replication Validation Stored Procedure to Verify the Configuration
At the distributor, in the distribution database, run the stored procedure
sp_validate_replica_hosts_as_publishers to verify that all replica hosts are now configured to
serve as publishers for the published database.

USE distribution;

GO

DECLARE @redirected_publisher sysname;

EXEC sys.sp_validate_replica_hosts_as_publishers

 @original_publisher = 'MyPublisher',

 @publisher_db = 'MyPublishedDB',

 @redirected_publisher = @redirected_publisher output;

The stored procedure sp_validate_replica_hosts_as_publishers should be run from a login with
sufficient authorization at each availability group replica host to query for information about the
availability group. Unlike sp_validate_redirected_publisher, it uses the credentials of the caller
and does not use the login retained in msdb.dbo.MSdistpublishers to connect to the availability
group replicas.

• sp_validate_replica_hosts_as_publishers will fail with the following error when
validating secondary replica hosts that do not allow read access, or require read intent to
be specified.

• Msg 21899, Level 11, State 1, Procedure sp_hadr_verify_subscribers_at_publisher, Line
109

Note

 407

• The query at the redirected publisher 'MyReplicaHostName' to determine whether there
were sysserver entries for the subscribers of the original publisher 'MyOriginalPublisher'
failed with error '976', error message 'Error 976, Level 14, State 1, Message: The target
database, 'MyPublishedDB', is participating in an availability group and is currently not
accessible for queries. Either data movement is suspended or the availability replica is
not enabled for read access. To allow read-only access to this and other databases in the
availability group, enable read access to one or more secondary availability replicas in
the group. For more information, see the ALTER AVAILABILITY GROUP statement in
SQL Server Books Online.'.

• One or more publisher validation errors were encountered for replica host
'MyReplicaHostName'.

This is expected behavior. You must verify the presence of the subscriber server entries at these
secondary replica hosts by querying for the sysserver entries directly at the host.

7. Add the Original Publisher to Replication Monitor
At each availability group replica, add the original publisher to Replication Monitor.

Related Tasks
Replication
• Maintaining An AlwaysOn Publication Database
• Replication, Change Tracking, Change Data Capture, and AlwaysOn Availability Groups
• Administration (Replication)
To create and configure an availability group
• Use the New Availability Group Wizard (SQL Server Management Studio)
• Use the New Availability Group Dialog Box (SQL Server Management Studio)
• Create an Availability Group (Transact-SQL)
• Create and Configure an Availability Group (SQL Server PowerShell)
• Specify the Endpoint URL When Adding or Modifying an Availability Replica (AlwaysOn

Availability Groups)
• Create a Database Mirroring Endpoint for AlwaysOn Availability Groups (SQL Server

PowerShell)
• Join a Secondary Replica to an Availability Group (SQL Server)
• Prepare a Secondary Database for an Availability Group (SQL Server)
• Join a Secondary Database to an Availability Group (SQL Server)
• Create or Configure an Availability Group Listener (SQL Server)

See Also

http://msdn.microsoft.com/en-us/library/a3d4e7c6-feb5-411b-8bb9-70b6d943420c(SQL.110)�

 408

Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)
Overview of AlwaysOn Availability Groups
AlwaysOn Availability Groups: Interoperability
SQL Server Replication

Maintaining an AlwaysOn Publication Database
This topic discusses special considerations for maintaining a publication database when you use
AlwaysOn availability groups.
In This Topic:
• Maintaining a Published Database in an Availability Group
• Removing a Published Database from an Availability Group
• Related Tasks
Maintaining a Published Database in an Availability Group
Maintaining an AlwaysOn publication database is basically the same as maintaining a standard
publication database, with the following considerations:
• Administration must occur at the primary replica host. In SQL Server Management Studio,

publications appear under the Local Publications folder for the primary replica host and
also for readable secondary replicas. After failover, you might have to manually refresh
Management Studio for the change to be reflected if the secondary that was promoted to
primary was not readable.

• Replication Monitor always displays publication information under the original publisher.
However, this information can be viewed in Replication Monitor from any replica by adding
the original publisher as a server.

• When using stored procedures or Replication Management Objects (RMO) to administer
replication at the current primary, for cases in which you specify the Publisher name, you
must specify the name of the instance on which the database was enabled for replication
(the original publisher). To determine the appropriate name, use the
PUBLISHINGSERVERNAME function. When a publishing database joins an availability
group, the replication metadata stored in the secondary database replicas is identical to that
at the primary. Consequently, for publication databases enabled for replication at the
primary, the publisher instance name stored in system tables at the secondary is the name of
the primary, not the secondary. This affects replication configuration and maintenance if the
publication database fails over to a secondary. For example, if you are configuring
replication with stored procedures at a secondary after failover, and you want a pull
subscription to a publication database that was enabled at a different replica, you must
specify the name of the original publisher instead of the current publisher as the @publisher
parameter of sp_addpullsubscription or sp_addmergepulllsubscription. However, if you
enable a publication database after failover, the publisher instance name stored in the

http://msdn.microsoft.com/en-us/library/3a5f4592-3c61-4b4d-9ceb-39716aeeba41(SQL.110)�

 409

system tables is the name of the current primary host. In this case, you would use the host
name of the current primary replica for the @publisher parameter.

For some procedures, such as sp_addpublication, the @publisher parameter is
supported only for publishers that are not instances of SQL Server; in these cases, it is
not relevant for SQL Server AlwaysOn.

• To synchronize a subscription in Management Studio after a failover, synchronize pull
subscriptions from the subscriber and synchronize push subscriptions from the active
publisher.

Removing a Published Database from an Availability Group
Consider the following issues if a published database is removed from an availability group, or if
an availability group that has a published member database is dropped.
• If the publication database at the original publisher is removed from an availability group

primary replica, you must run sp_redirect_publisher without specifying a value for the
@redirected_publisher parameter in order to remove the redirection for the
publisher/database pair.

EXEC sys.sp_redirect_publisher

 @original_publisher = 'MyPublisher',

 @published_database = 'MyPublishedDB';

The database will be left in the recovering state at the primary and must be restored. Once
you do this, replication should work unchanged against the original Publisher.

• If the publication database fails over from the original publisher to a replica and the
database is removed from the availability group primary replica, use the stored procedure
sp_redirect_publisher to explicitly redirect the original publisher to the new publisher. The
database will be left in the recovering state and must be restored. Once you do this,
replication should continue to work as it did under the availability group.

EXEC sys.sp_redirect_publisher

 @original_publisher = 'MyPublisher',

 @published_database = 'MyPublishedDB',

 @redirected_publisher = 'MyNewPublisher';

Do not remove the remote server for the original publisher from the distributor, even if the
server can no longer be accessed. The server metadata for the original publisher is needed at
the distributor to satisfy publication metadata queries.

• If a complete availability group is removed, the behavior with regard to a member replicated
database is the same as when a published database is removed from an availability group.
Replication can be resumed from the last primary as soon as the database has been restored
and the redirection has been modified. If the database is restored at its original publisher,

Note

 410

redirection should be removed. If the database is restored at a different host, redirection
should be explicitly directed to the new host.

When an availability group is removed that has published member databases, or a
published database is removed from an availability group, all copies of the published
databases will be left in the recovering state. If restored, each will appear as a
published database. Only one copy should be retained with publication metadata. To
disable replication for a published database copy, first remove all subscriptions and
publications from the database.

Run sp_dropsubscription to remove publication subscriptions. Make sure to set the
parameter @ignore_distributributor to 1 to preserve the metadata for the active publishing
database at the distributor.

USE MyDBName;

GO

EXEC sys.sp_dropsubscription

 @subscriber = 'MySubscriber',

 @publication = 'MyPublication',

 @article = 'all',

 @ignore_distributor = 1;

Run sp_droppublication to remove all publications. Again, set the parameter
@ignore_distributor to 1 to preserve the metadata for the active publishing database at the
distributor.
EXEC sys.sp_droppublication

 @publication = 'MyPublication',

 @ignore_distributor = 1;

Run sp_replicationdboption to disable replication for the database.

EXEC sys.sp_replicationdboption

 @dbname = 'MyDBName',

 @optname = 'publish',

 @value = 'false';

At this point, the copy of the published database can be retained or dropped.

Related Tasks
• Configuring Replication for AlwaysOn Availability Groups

Note

 411

• Replication, Change Tracking, Change Data Capture, and AlwaysOn Availability Groups (SQL
Server)

• Administration (Replication)
• Replication Subscribers and AlwaysOn

See Also
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)
Overview of AlwaysOn Availability Groups
AlwaysOn Availability Groups: Interoperability
SQL Server Replication

Replication Subscribers and AlwaysOn
When an AlwaysOn availability group containing a database that is a replication subscriber fails
over to an AlwaysOn secondary availability group, the replication subscription will fail. To
resume replication, a replication administrator must manually reconfigure the subscriber. This
topic provides a high-level overview of the process.
What is Supported
SQL Server replication supports the automatic failover of the publisher, and the manual failover
of the subscriber. The failover of a distributor on an AlwaysOn availability group is not
supported.
Cause of Failure
Failover of a Pull Subscription
A pull subscription fails upon AlwaysOn failover, because pull agent cannot find the jobs stored
in the msdb database of the AlwaysOn primary; which is not available because the primary has
failed.
Failover of a Push Subscription
A push subscription fails upon AlwaysOn failover, because the push agent can no longer
connect to original subscription database on original subscriber.
How to Recover the Subscription
How to resume the merge and distribution agents after subscriber availability group failover?
1. Execute sp_subscription_cleanup to remove the old subscription on the subscriber. Perform

this action on the new primary AlwaysOn availability group (which was formerly the
secondary AlwaysOn availability group).

2. Recreate the subscription in one of the following two ways:
• Remove the subscribed tables on the subscriber, and create a new subscription,

beginning with a new snapshot.
• For transactional replication, you can rely on the existing data as a starting point and

execute the following two steps.

http://msdn.microsoft.com/en-us/library/a3d4e7c6-feb5-411b-8bb9-70b6d943420c(SQL.110)�
http://msdn.microsoft.com/en-us/library/3a5f4592-3c61-4b4d-9ceb-39716aeeba41(SQL.110)�

 412

i. Execute the following statement on the secondary availability group subscriber to get
LSN of last transaction received.

SELECT transaction_timestamp FROM MSreplication_subscriptions;
ii. Create a new subscription, using the @sync_type = 'initialize from LSN' and

@subscriptionlsn = LSN arguments. The following example demonstrates this
statement.

EXEC sp_addsubscription
@publication = 'MyPublication',
@subscriber = 'ALWAYSON-SRV5',
@destination_db = 'DB_Subscriber',
@subscription_Type = 'Push',
@sync_Type = 'initialize from LSN',
@subscriptionlsn = <insert the lsn value from the previous step>,
@article = 'all',
@update_mode = 'read only',
@subscriber_type = 0;

• For merge replication, changes performed on the subscriber between after the failover
and before the recreation of the subscription will not be replicated.

• For transactional replication, if the subscription is recreated within the retention period,
the changes performed between the failover and the recreation of the subscription will
be replicated.

The current support is inconvenient for merge replication subscribers however the main
scenario for merge replication is disconnected users (desktops, laptops, handset devices)
which will not use AlwaysOn on the subscriber.

Examples
This lengthy example creates a replication environment on servers with AlwaysOn availability
groups and then demonstrates the failover actions. Your server names and parameter values,
such as lsn values, will be different.
The replication topology for this example is:

Publisher (primary) (secondary)

(server names) ALWAYSON-SRV2 ALWAYSON-SRV3

-------------- -------------- --------------

Distributor

Important

Note

 413

(server and instance name) ALWAYSON-SRV8\distributor

-------------- -------------- --------------

Subscriber (primary) (secondary)

(server names) ALWAYSON-SRV4 ALWAYSON-SRV5

Configure Replication on AlwaysOn, Configure the Published Database on an
AlwaysOn AG, and Failover the Primary Publisher to its Secondary
The first portion of the example creates the replication environment.

------- BEGIN: Configure schema on Publisher -------

:Connect ALWAYSON-SRV2

CREATE DATABASE DB_Publisher;

GO

USE DB_Publisher;

GO

CREATE TABLE T1 (col1 int PRIMARY KEY, col2 varchar(256));

GO

INSERT INTO T1 VALUES (1, 'Row 1');

GO

SELECT * FROM DB_Publisher..T1;

------- END: Configure schema on Publisher -------

------- BEGIN: Configure schema on Subscriber -------

:Connect ALWAYSON-SRV4

CREATE DATABASE DB_Subscriber;

------- END: Configure schema on Subscriber -------

------- BEGIN: on Distributor, configure the distributor

-- as a remote distributor for the primary publisher -------

:connect ALWAYSON-SRV8\distributor

-- configure the remote publisher

USE master;

GO

EXEC sys.sp_adddistpublisher

 414

@publisher = 'alwayson-srv2',

@distribution_db='distribution',

@working_directory='C:\Program Files\Microsoft SQL

Server\MSSQL11.DISTRIBUTOR\MSSQL\ReplData',

@security_mode=1;

------- END: on Distributor, configure the distributor

-- as a remote distributor for the primary publisher -------

------- BEGIN: Configure Replication on Publisher -------

:connect ALWAYSON-SRV2

-- Configure the remote distributor

USE master;

EXEC sp_adddistributor @distributor = N'ALWAYSON-SRV8\distributor', @password

= N'SQLServer2012';

GO

-- configure the publication database

USE master;

GO

EXEC sys.sp_replicationdboption @dbname='DB_Publisher', @optname='publish',

@value='true';

GO

-- create the publication for transactionnal replication

USE [DB_Publisher];

EXEC sp_addpublication @publication = N'MyPublication', @description =

N'Transactional publication of database ''DB_Publisher'' from Publisher

''ALWAYSON-SRV2''.', @sync_method = N'concurrent', @retention = 0,

@allow_push = N'true', @allow_pull = N'true', @allow_anonymous = N'true',

@enabled_for_internet = N'false', @snapshot_in_defaultfolder = N'true',

@compress_snapshot = N'false', @ftp_port = 21, @allow_subscription_copy =

N'false', @add_to_active_directory = N'false', @repl_freq = N'continuous',

@status = N'active', @independent_agent = N'true', @immediate_sync = N'true',

@allow_sync_tran = N'false', @allow_queued_tran = N'false', @allow_dts =

N'false', @replicate_ddl = 1, @allow_initialize_from_backup = N'false',

@enabled_for_p2p = N'false', @enabled_for_het_sub = N'false';

GO

 415

EXEC sp_addpublication_snapshot @publication = N'MyPublication',

@frequency_type = 1, @frequency_interval = 1, @frequency_relative_interval =

1, @frequency_recurrence_factor = 0, @frequency_subday = 8,

@frequency_subday_interval = 1, @active_start_time_of_day = 0,

@active_end_time_of_day = 235959, @active_start_date = 0, @active_end_date =

0, @job_login = null, @job_password = null, @publisher_security_mode = 1;

USE [DB_Publisher];

EXEC sp_addarticle @publication = N'MyPublication', @article = N'T1',

@source_owner = N'dbo', @source_object = N'T1', @type = N'logbased',

@description = null, @creation_script = null, @pre_creation_cmd = N'drop',

@schema_option = 0x000000000803509F, @identityrangemanagementoption =

N'manual', @destination_table = N'T1', @destination_owner = N'dbo',

@vertical_partition = N'false', @ins_cmd = N'CALL sp_MSins_dboT1', @del_cmd =

N'CALL sp_MSdel_dboT1', @upd_cmd = N'SCALL sp_MSupd_dboT1';

GO

EXEC sp_changepublication @publication = 'MyPublication', @property =

'allow_initialize_from_backup', @value = 'true';

-- Start the snapshot agent

-- create push subscription

:Connect to SRV2

USE [DB_Publisher];

EXEC sp_addsubscription @publication = N'MyPublication', @subscriber =

N'ALWAYSON-SRV4', @destination_db = N'DB_Subscriber', @subscription_type =

N'Push', @sync_type = N'automatic', @article = N'all', @update_mode = N'read

only', @subscriber_type = 0;

EXEC sp_addpushsubscription_agent @publication = N'MyPublication',

@subscriber = N'ALWAYSON-SRV4', @subscriber_db = N'DB_Subscriber', @job_login

= null, @job_password = null, @subscriber_security_mode = 1, @frequency_type

= 1, @frequency_interval = 0, @frequency_relative_interval = 0,

@frequency_recurrence_factor = 0, @frequency_subday = 0,

@frequency_subday_interval = 0, @active_start_time_of_day = 0,

@active_end_time_of_day = 0, @active_start_date = 0, @active_end_date =

19950101, @enabled_for_syncmgr = N'False', @dts_package_location =

N'Distributor';

 416

GO

-- Sync the distribution agent

-- Connect to the subscriber and check that data is there

:connect ALWAYSON-SRV4

SELECT * FROM DB_Subscriber.dbo.T1;

--Check replication is running properly

--Connect to publisher and change data

:connect ALWAYSON-SRV2

USE DB_Publisher;

GO

UPDATE t1 SET col2 = 'Something else' WHERE col1 = 1;

GO

SELECT * FROM DB_Publisher..T1;

GO

-- Run distribution agent and check that data is there

:connect ALWAYSON-SRV4

SELECT * FROM DB_Subscriber..T1;

------- BEGIN: Configure Replication on Publisher -------

------- BEGIN: Configure AlwaysOn on the Publisher -------

-- Connect to primary publisher

:connect ALWAYSON-SRV2

BACKUP DATABASE DB_Publisher TO DISK = '\\alwayson-

srv8\MyBackups\DB_Publisher_Full';

-- From the UI create an AG with the wizard

-- Connect to publisher secondary to insure

-- it is configured for Replication

:connect ALWAYSON-SRV3

 417

SELECT @@SERVERNAME;

USE master;

GO

DECLARE @installed int;

EXEC @installed = sys.sp_MS_replication_installed;

SELECT @installed;

-- Declare the publisher secondary as

-- a potential failover publisher

:connect ALWAYSON-SRV8\distributor

USE master;

GO

EXEC sys.sp_adddistpublisher

@publisher = 'ALWAYSON-SRV3',

@distribution_db='distribution',

@working_directory='C:\Program Files\Microsoft SQL

Server\MSSQL11.DISTRIBUTOR\MSSQL\ReplData',

@security_mode=1;

-- Connect to publisher secondary to configure

-- the remote distributor

:connect ALWAYSON-SRV3

USE master;

EXEC sp_adddistributor @distributor = N'ALWAYSON-SRV8\distributor', @password

= N'SQLServer2012';

GO

-- ensure each push subscriber appear as linked servers

EXEC sys.sp_addlinkedserver @server = 'ALWAYSON-SRV4';

GO

EXEC sys.sp_addlinkedserver @server = 'ALWAYSON-SRV5';

GO

-- Redirect the original publisher

-- to the publisher AG listener name

 418

:connect ALWAYSON-SRV8\distributor

USE distribution;

GO

EXEC sys.sp_redirect_publisher

@original_publisher = 'ALWAYSON-SRV2',

@publisher_db = 'DB_Publisher',

@redirected_publisher = 'PublisherAGList';

GO

-- Show the new metadata table that has been created

-- and filled to persist this configuration

SELECT * FROM distribution..MSredirected_publishers;

-- Run the Replication validation stored procedure

-- to verify that primary and secondary publishers

-- can serve as publishers for the published database

USE distribution;

GO

DECLARE @redirected_publisher sysname;

EXEC sys.sp_validate_replica_hosts_as_publishers @original_publisher =

'ALWAYSON-SRV2', @publisher_db = 'DB_Publisher', @redirected_publisher =

@redirected_publisher OUTPUT;

SELECT @redirected_publisher;

------- END: Configure AlwaysOn on the publisher -------

Subscriber Failover and Recovery Steps of a Subscription for
Transactional Replication
This portion of the example demonstrates the failover actions.

------- BEGIN: Configure AlwaysOn on the Subscriber -------

:Connect to SRV4

BACKUP DATABASE DB_Subscriber TO DISK = '\\alwayson-

srv8\MyBackups\DB_Subscriber_Full';

-- From the UI create an AG with the wizard

------- END: Configure AlwaysOn on the Subscriber -------

------- BEGIN: demo subscriber failover and recovery steps -------

 419

-- Failover the subscriber AG

:connect to ALWAYSON-SRV5

ALTER AVAILABILITY GROUP SubscriberAG FAILOVER;

-- Get the LSN from the last transaction received

-- by the subscriber

:Connect to SRV5

SELECT transaction_timestamp, * FROM

DB_Subscriber..MSreplication_subscriptions;

--0x00000023000000E60003000000000000

-- Cleanup old subscription from new subscription DB

EXEC sp_subscription_cleanup @publisher = 'ALWAYSON-SRV2', @publisher_db =

'DB_Publisher';

-- Create new subscription to the new Subscriber Primary based

-- on the LSN of the last successful sync

:Connect to PublisherAGList

USE DB_Publisher;

GO

EXEC sp_addsubscription -- past the LSN before executing

@publication = 'MyPublication',

@subscriber = 'ALWAYSON-SRV5',

@destination_db = 'DB_Subscriber',

@subscription_Type = 'Push',

@sync_Type = 'initialize from LSN',

@subscriptionlsn = 0x00000023000000E60003000000000000,

@article = 'all',

@update_mode = 'read only',

@subscriber_type = 0;

-- Note that the distribution agent is running

 420

-- Note that data is replicated from publisher

------- END: demo subscriber failover and recovery steps -------

Replication, Change Tracking, Change Data Capture, and AlwaysOn
Availability Groups
Replication, Change Data Capture (CDC), and Change Tracking (CT) are supported on AlwaysOn
Availability Groups. AlwaysOn helps provide high availability and additional database recovery
capabilities.
In this Topic:
• Overview of Replication on AlwaysOn Availability Groups

• Publisher Redirection
• Changes to Replication Agents to Support AlwaysOn Availability Groups
• Stored Procedures Supporting AlwaysOn
• Change Data Capture
• Change Tracking

• Prerequisites, Restrictions, and Considerations for Using Replication with AlwaysOn
Availability Groups

• Related Tasks
Overview of Replication on AlwaysOn Availability Groups

Publisher Redirection
When a published database is AlwaysOn aware, the distributor that provides agent access to the
publishing database is configured with redirected_publishers entries. These entries redirect the
originally configured publisher/database pair, making use of an availability group listener name
to connect to the publisher and publishing database. Established connections through the
availability group listener name will fail on failover. When the replication agent restarts after
failover, the connection will automatically be redirected to the new primary.
In an AlwaysOn Availability Group an AlwaysOn secondary cannot be a publisher. Republishing
is not supported when replication is combined with AlwaysOn.
If a published database is a member of an AlwaysOn availability group and the publisher is
redirected, it must be redirected to an availability group listener name associated with the
availability group. It may not be redirected to an explicit node.

After failover to a secondary, Replication Monitor is unable to adjust the name of the
publishing instance of SQL Server and will continue to display replication information
under the name of the original primary instance of SQL Server. After failover, a tracer

Note

 421

token cannot be entered by using the Replication Monitor, however a tracer token
entered on the new publisher by using Transact-SQL, is visible in Replication Monitor.

(top)
General Changes to Replication Agents to Support AlwaysOn Availability Groups
Three replication agents were modified to support AlwaysOn Availability Groups. The Log
Reader, Snapshot, and Merge agents were modified to query the distribution database for the
redirected publisher and to use the returned availability group listener name, if a redirected
publisher was declared, to connect to the database publisher.
By default, when the agents query the distributor to determine whether the original publisher
has been redirected, the suitability of the current target or redirection will be verified prior to
returning the redirected host to the agent. This is recommended behavior. However, if agent
start up occurs very frequently the overhead associated with the validation stored procedure
may be deemed too costly. A new command line switch, BypassPublisherValidation, has been
added to the Logreader, Snapshot, and Merge agents. When the switch is used, the redirected
publisher is returned immediately to the agent and execution of the validation stored procedure
is bypassed.
Failures returned from the validation stored procedure are logged in the agent history logs.
Those errors with severity greater than or equal to 16 will cause the agents to terminate. Some
retry capabilities have been built in to the agents to handle the expected disconnect from a
published database when it fails over to a new primary.
(top)
Log Reader Agent Modifications
The Logreader Agent has the following changes.
• Replicated Database Consistency

When a published database is a member of an AlwaysOn availability group, by default the
log reader will not process log records that have not already been hardened at all availability
group secondary replicas. This insures that on failover, all rows replicated to a subscriber
also are present at the new primary.
When the publisher has only two AlwaysOn replicas (one primary and one secondary) and a
failover happens, the original primary remains down because the logreader does not move
forward until all secondaries are brought back online or until the failing AlwaysOn replicas
are removed from the availability group. The logreader, now running against the secondary,
will not proceed forward since AlwaysOn cannot harden any changes to any secondary. To
allow the logreader to proceed further and still have disaster recovery capacity, remove the
original primary from the Availability Group using ALTER AVAILABITY GROUP
<group_name> REMOVE REPLICA. Then add another secondary to the availability group.

• Trace flag 1448
Trace flag 1448 enables the replication log reader to move forward even if the async
secondaries have not acknowledged the reception of a change. Even with this trace flag
enabled the log reader always waits for the sync secondaries. The log reader will not go

 422

beyond the min ack of the sync secondaries. This trace flag applies to the instance of SQL
Server, not just an availability group, an availability database, or a log reader instance. Takes
effect immediately without a restart. This trace flag can be activated ahead of time or when
an async secondary fails.

(top)
Stored Procedures Supporting AlwaysOn
• sp_redirect_publisher

The stored procedure sp_redirect_publisher is used to specify a redirected publisher for an
existing publisher/database pair. If the publisher database belongs to an AlwaysOn
availability group, the redirected publisher is the availability group listener name.

• sp_get_redirected_publisher
The stored procedure sp_get_redirected_publisher is used by replication agents to query a
distributor to determine whether a publisher/database pair has a defined redirected
publisher. This stored procedure serves two purposes. First, it allows the agent to determine
whether the original publisher has been redirected. Second, it may also initiate a validation
stored procedure run at the distributor (sp_validate_redirected_publisher) that verifies the
suitability of the target node of the redirection to serve as a publisher for the named
database.
To execute this stored procedure the caller must either be a member of the sysadmin server
role, the db_owner database role for the distribution database, or a member of a
Publication Access List for a defined publication associated with the publisher database.

• sp_validate_redirected_publisher
This stored procedure attempts to validate that the current publisher is capable of hosting
the published database. It can be called at any time to verify that the current host for the
published database is capable of supporting replication.

• sp_validate_replicate_hosts_as_publishers
While it is useful for the agents to insure that the current primary can function as the
replication publisher for a publisher database, a more general validation capability is needed
to establish the validity of an entire AlwaysOn replication topology. The stored procedure
sp_validate_replica_hosts_as_publishers is designed to fill this need.
This stored procedure is always run manually. The caller must either be sysadmin at the
distributor, dbowner of the distribution database, or a member of the Publication Access
List of a publication of the publisher database. In addition, the login of the caller must be a
valid login for all of the availability group replica hosts, and have select privileges on the
availability group database associated with the publisher database.

(top)
Change Data Capture
Databases enabled for Change Data Capture (CDC) are able to leverage AlwaysOn Availability
Groups in order to insure not only that the database remains available in the event of failure, but
that changes to the database tables continue to be monitored and deposited in the CDC change

 423

tables. The order in which CDC and AlwaysOn Availability Groups are configured is not
important. CDC enabled databases can be added to AlwaysOn Availability Groups, and
databases that are members of an AlwaysOn Availability Groups can be enabled for CDC. In
both cases, however, CDC configuration is always performed on the current or intended
AlwaysOn primary replica.
• Harvesting Changes for Change Data Capture Without Replication

If CDC is enabled for a database, but replication is not, the capture process used to harvest
changes from the log and deposit them in CDC change tables runs at the CDC host as its
own SQL Agent job.
 In order to resume the harvesting of changes after failover, the stored procedure
sp_cdc_add_job must be run at the new primary to create the local capture job.
The following example creates the capture job.
EXEC sys.sp_cdc_add_job @job_type = 'capture';

• Harvesting Changes for Change Data Capture With Replication
If both CDC and replication are enabled for a database, the log reader handles the
population of the CDC change tables. In this case, the techniques used by replication to
leverage AlwaysOn availability groups will insure that changes continue to be harvested from
the log and deposited in CDC change tables after failover. Nothing additional needs to be
done for CDC in this configuration to insure that the change tables are populated.

• Change Data Capture Cleanup
To insure that appropriate cleanup occurs at the new primary, a local cleanup job should
always be created. The following example creates the cleanup job.
EXEC sys.sp_cdc_add_job @job_type = 'cleanup';

You should create the jobs at all of the possible failover targets before failover, and
mark them as disabled until the replica at a host becomes primary. The CDC jobs
running at the old primary should be also disabled when the local database becomes
a secondary replica. To disable and enable jobs, use the @enabled option
of sp_update_job (Transact-SQL). For more information about creating CDC jobs,
see sys.sp_cdc_add_job (Transact-SQL).

• Adding CDC Roles to an AlwaysOn Primary Database Replica
When a table is enabled for CDC, it is possible to associate a database role with the capture
instance. If a role is specified, the user wishing to use the CDC table-valued functions to
access changes for the table must not only have select access to the tracked table columns,
but must also be a member of the named role. If the specified role does not already exist,
the role will be created. When database roles are automatically added to a database that is a
member of a primary replica, the roles are also propagated to the availability group
secondary replica databases.

• Client Applications Accessing CDC Change Data and Always On

Note

http://msdn.microsoft.com/en-us/library/cbdfea38-9e42-47f3-8fc8-5978b82e2623(SQL.110)�
http://msdn.microsoft.com/en-us/library/c4458738-ed25-40a6-8294-a26ca5a05bd9(SQL.110)�

 424

Client applications that use the table-valued functions (TVFs) or linked servers to access
change table data also need the ability to locate an appropriate CDC host after failover. The
availability group listener name is the mechanism provided by AlwaysOn to transparently
allow a connection to be retargeted to a different host. Once an availability group listener
name is associated with an availability group, it is available to be used in TCP connection
strings. Two different connection scenarios are supported through the availability group
listener name.
• One insures that connection requests are always directed to the current primary.
• One insures that connection requests are directed to a read-only secondary.
If used to locate a read-only secondary, a read-only routing list must also be defined for the
availability group. For more information on routing access to readable secondaries, see To
Configure Availability Replicas for Read-Only Routing.

There is some propagation delay associated with the creation of an availability group
listener name and its use by client applications to access an availability group
database replica.

Use the following query to determine whether an availability group listener name has been
defined for the availability group hosting a CDC database. The query will return the
availability group listener name if one has been created.

SELECT dns_name

FROM sys.availability_group_listeners AS l

INNER JOIN sys.availability_databases_cluster AS d

 ON l.group_id = d.group_id

WHERE d.database_name = N'MyCDCDB';

• Redirecting the Query Load to a Readable Secondary
While in many cases a client application will always want to connect to the current primary
replica that is not the only way to leverage AlwaysOn availability groups. If an availability
group is configured to support readable secondary replicas, change data can also be
gathered from secondary nodes.
When an availability group is configured, the ALLOW_CONNECTIONS attribute associated
with the SECONDARY_ROLE is used to specify the type of secondary access supported. If
configured as ALL, all connections to the secondary will be allowed, but only those requiring
read only access will succeed. If configured as READ_ONLY, it is necessary to specify read
only intent when making the connection to the secondary database in order for the
connection to succeed.
The following query can be used to determine whether read-only intent is needed to
connect to an availability group readable secondary.

SELECT g.name AS AG, replica_server_name,

secondary_role_allow_connections_desc

Note

 425

FROM sys.availability_replicas AS r

JOIN sys.availability_groups AS g

 ON r.group_id = g.group_id

WHERE g.name = N'MY_AG_NAME;

Either the availability group listener name or the explicit node name can be used to locate
the secondary. If the availability group listener name is used, access will be directed to any
suitable secondary.
When sp_addlinkedserver is used to create a linked server to access the secondary, the
@datasrc parameter is used for the availability group listener name or the explicit server
name, and the @provstr parameter is used to specify read-only intent.

EXEC sp_addlinkedserver

@server = N'linked_svr',

@srvproduct=N'SqlServer',

@provider=N'SQLNCLI11',

@datasrc=N'AG_Listener_Name',

@provstr=N'ApplicationIntent=ReadOnly',

@catalog=N'MY_DB_NAME';

• Client Access to CDC Change Data and Domain Logins
In general, you should use domain logins for client access to change data residing in
databases that are members of AlwaysOn availability groups. To insure continued access to
change data after failover, the domain user will need access privileges on all of the hosts
supporting availability group replicas. If a database user is added to a database in a primary
replica, and the user is associated with a domain login, the database user is propagated to
secondary databases and continues to be associated with the specified domain login. If the
new database user is associated with a SQL Server authentication login, the user at the
secondary databases will be propagated without a login. While the associated SQL Server
authentication login could be used to access change data at the primary where the database
user was originally defined, that node is the only one where access would be possible. The
SQL Server authentication login would not be able to access data from any secondary
database, nor from any new primary databases other than the original database where the
database user was defined.

(top)
Change Tracking
A database enabled for Change Tracking (CT) can be part of an AlwaysOn availability group. No
additional configuration is needed. Change Tracking client applications that use the CDC table-
valued functions (TVFs) to access change data will need the ability to locate the primary replica
after failover. If the client application connects through the availability group listener name,
connection requests will always be appropriately directed to the current primary replica.

 426

• Change tracking data must always be obtained from the primary replica. An attempt to
access change data from a secondary replica will result in the following error:

• Msg 22117, Level 16, State 1, Line1
• For databases that are members of a secondary replica, change tracking is not

supported. Run change tracking queries on the databases in the primary replica.
(top)
Prerequisites, Restrictions, and Considerations for Using Replication
This section describes considerations for deploying replication with AlwaysOn Availability
Groups, including prerequisites, restrictions, and recommendations.
Prerequisites
• The Distributor, all Publishers, and merge pull Subscribers must be running SQL Server 2012

or later.
• Placing the distribution database on an availability group is not supported.
• The Publisher instances satisfy all the prerequisites required to participate in an AlwaysOn

availability group. For more information see Prerequisites, Restrictions, and
Recommendations for AlwaysOn Availability Groups (SQL Server).

Restrictions
Supported combinations of replication on AlwaysOn Availability Groups:

 Publisher Distributor3 Subscriber

Transactional Yes1 No Yes2

P2P No No No

Merge Yes No Yes2

Snapshot Yes No Yes2

1 Does not include support for bi-directional and reciprocal transactional replication.
2 Failover to the replica database is manual procedure. Automatic failover is not provided.
3 The Distributor database is not supported for use with AlwaysOn Availability Groups or
Database Mirroring.
(top)
Considerations
• The distribution database is not supported for use with AlwaysOn Availability Groups or

Database Mirroring. Replication configuration is coupled to the SQL Server instance where
the Distributor is configured; therefore the distribution database cannot be mirrored or

Note

 427

replicated. To provide high availability for the Distributor, use a SQL Server failover cluster.
For more information, see AlwaysOn Failover Cluster Instances (FCI).

• Subscriber failover to a secondary replica database, while supported, is a relatively complex
manual procedure. The procedure is essentially identical to the method used to fail over a
mirrored subscriber database. Subscribers must be running SQL Server 2012 or later to
participate in an availability group.

• Metadata and objects that exist outside the database are not propagated to the secondary
replicas, including logins, jobs, linked servers. If you require the metadata and objects at the
new primary after failover, you must copy them manually. For more information,
see Management of Logins and Jobs for the Databases of an Availability Group (SQL Server).

(top)
Related Tasks
Replication
• Configure Replication for AlwaysOn Availability Groups
• Maintaining An AlwaysOn Publication Database
• Administration (Replication)
Change data capture
• Enable and Disable Change Data Capture
• Administer and Monitor Change Data Capture
• Work with Change Data
Change tracking
• Enable and Disable Change Tracking
• Manage Change Tracking
• Work with Change Tracking

See Also
Replication Subscribers and AlwaysOn
Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server)
Overview of AlwaysOn Availability Groups
AlwaysOn Availability Groups: Interoperability
AlwaysOn Failover Cluster Instances (FCI)
About Change Data Capture
About Change Tracking
SQL Server Replication
Track Data Changes
sys.sp_cdc_add_job (Transact-SQL)

http://msdn.microsoft.com/en-us/library/a3d4e7c6-feb5-411b-8bb9-70b6d943420c(SQL.110)�
http://msdn.microsoft.com/en-us/library/b741894f-d267-4b10-adfe-cbc14aa6caeb(SQL.110)�
http://msdn.microsoft.com/en-us/library/23bda497-67b2-4e7b-8e4d-f1f9a2236685(SQL.110)�
http://msdn.microsoft.com/en-us/library/5346b852-1af8-4080-b278-12efb9b735eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/1c92ec7e-ae53-4498-8bfd-c66a42a24d54(SQL.110)�
http://msdn.microsoft.com/en-us/library/94a8d361-e897-4d6d-9a8f-1bb652e7a850(SQL.110)�
http://msdn.microsoft.com/en-us/library/5aec22ce-ae6f-4048-8a45-59ed05f04dc5(SQL.110)�
http://msdn.microsoft.com/en-us/library/7d8c4684-9eb1-4791-8c3b-0f0bb15d9634(SQL.110)�
http://msdn.microsoft.com/en-us/library/5e0ef05a-8317-4c98-be20-b19d4cd78f12(SQL.110)�
http://msdn.microsoft.com/en-us/library/3a5f4592-3c61-4b4d-9ceb-39716aeeba41(SQL.110)�
http://msdn.microsoft.com/en-us/library/7a34be46-15b4-4b6b-8497-cfd8f9f14234(SQL.110)�
http://msdn.microsoft.com/en-us/library/c4458738-ed25-40a6-8294-a26ca5a05bd9(SQL.110)�

 428

Analysis Services with AlwaysOn Availability Groups
An AlwaysOn availability group is a predefined collection of SQL Server relational databases that
failover together when conditions trigger a failover in any one database, redirecting requests to
a mirrored database on another instance in the same availability group. If you are using
availability groups as your high availability solution, you can use a database in that group as a
data source in an Analysis Services tabular or multidimensional solution. All of the following
Analysis Services operations work as expected when using an availability database: processing or
importing data, querying relational data directly (using ROLAP storage or DirectQuery mode),
and writeback.
Processing and querying are read-only workloads. You can improve performance by offloading
these workloads to a readable secondary replica. Additional configuration is required for this
scenario. Use the checklist in this topic to ensure you follow all the steps.
Prerequisites
Checklist: Use a secondary replica for read-only operations
Create an Analysis Services data source that uses an AlwaysOn availability database
Test the configuration
What happens after a failover occurs
Writeback when using an AlwaysOn availability database
Prerequisites
You must have a SQL Server login on all replicas. You must be a sysadmin to configure
availability groups, listeners, and databases, but users only need db_datareader permissions to
access the database from an Analysis Services client.
Use a data provider that supports the tabular data stream (TDS) protocol version 7.4 or newer,
such as the SQL Server Native Client 11.0 or the Data Provider for SQL Server in .NET Framework
4.02.
(For read-only workloads). The secondary replica role must be configured for read-only
connections, the availability group must have a routing list, and the connection in the Analysis
Services data source must specify the availability group listener. Instructions are provided in this
topic.
Checklist: Use a secondary replica for read-only operations
Unless your Analysis Services solution includes writeback, you can configure a data source
connection to use a readable secondary replica. If you have a fast network connection, the
secondary replica has very low data latency, providing nearly identical data as the primary
replica. By using the secondary replica for Analysis Services operations, you can reduce read-
write contention on the primary replica and get better utilization of secondary replicas in your
availability group.
By default, both read-write and read-intent access are allowed to the primary replica and no
connections are allowed to secondary replicas. Additional configuration is required to set up a
read-only client connection to a secondary replica. Configuration requires setting properties on

 429

the secondary replica and running a T-SQL script that defines a read-only routing list. Use the
following procedures to ensure you have performed both steps.

The following steps assume an existing AlwaysOn availability group and databases. If you
are configuring a new group, use the New Availability Group Wizard to create the group
and join the databases. The wizard checks for prerequisites, provides guidance for each
step, and performs the initial synchronization. For more information, see Use the New
Availability Group Wizard (SQL Server Management Studio).

1. In Object Explorer, connect to the server instance that hosts the primary replica, and
expand the server tree.

Note
These steps are taken from Configure Read-Only Access on an Availability
Replica (SQL Server), which provides additional information and alternative
instructions for performing this task.

2. Expand the AlwaysOn High Availability node and the Availability Groups node.
3. Click the availability group whose replica you want to change. Expand Availability

Replicas.
4. Right-click the secondary replica, and click Properties.
5. In the Availability Replica Properties dialog box, change the connection access for

the secondary role, as follows:
• In the Readable secondary drop list, select Read-intent only.
• In the Connections in primary role drop list, select Allow all connections. This is

the default.
• Optionally, in Availability mode drop list, select Synchronous commit. This step is

not required, but setting it ensures that there is data parity between the primary
and secondary replica.
This property is also a requirement for planned failover. If you want to perform a
planned manual failover for testing purposes, set Availability mode to
Synchronous commit for both the primary and secondary replica.

1. Connect to the primary replica.

Note
These steps are taken from Configure Read-Only Routing for an Availability
Group (SQL Server), which provides additional information and alternative
instructions for performing this task.

Note

Step 1: Configure access on an availability replica

Step 2: Configure read-only routing

 430

2. Open a query window and paste in the following script. This script does three things:
enables readable connections to a secondary replica (which is off by default), sets the
read-only routing URL, and creates the routing list that prioritizes how connection
requests are directed. The first statement, allowing readable connections, is redundant
if you already set the properties in Management Studio, but are included for
completeness.
ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

N'COMPUTER01' WITH

(SECONDARY_ROLE (ALLOW_CONNECTIONS = READ_ONLY));

ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

N'COMPUTER01' WITH

(SECONDARY_ROLE (READ_ONLY_ROUTING_URL =

N'TCP://COMPUTER01.contoso.com:1433'));

ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

N'COMPUTER02' WITH

(SECONDARY_ROLE (ALLOW_CONNECTIONS = READ_ONLY));

ALTER AVAILABILITY GROUP [AG1]

 MODIFY REPLICA ON

N'COMPUTER02' WITH

(SECONDARY_ROLE (READ_ONLY_ROUTING_URL =

N'TCP://COMPUTER02.contoso.com:1433'));

ALTER AVAILABILITY GROUP [AG1]

MODIFY REPLICA ON

N'COMPUTER01' WITH

(PRIMARY_ROLE

(READ_ONLY_ROUTING_LIST=('COMPUTER02','COMPUTER01')));

ALTER AVAILABILITY GROUP [AG1]

www.N'TCP://COMPUTER01.contoso.com:1433
www.N'TCP://COMPUTER02.contoso.com:1433

 431

MODIFY REPLICA ON

N'COMPUTER02' WITH

(PRIMARY_ROLE

(READ_ONLY_ROUTING_LIST=('COMPUTER01','COMPUTER02')));

GO

3. Modify the script, replacing placeholders with values that are valid for your
deployment:
• Replace ‘Computer01’ with the name of the server instance that hosts the primary

replica.
• Replace ‘Computer02’ with the name of the server instance that hosts the

secondary replica.
• Replace ‘contoso.com’ with the name of your domain, or omit it from the script if all

computers are in the same domain. Keep the port number if the listener is using the
default port. The port that is actually used by the listener is listed in the properties
page in Management Studio.

4. Execute the script.
Next, create a data source in an Analysis Services model that uses a database from the
group you just configured.

Create an Analysis Services data source using an AlwaysOn availability database
This section explains how to create an Analysis Services data source that connects to a database
in an availability group. You can use these instructions to configure a connection to either a
primary replica (default) or a readable secondary replica that you configured based on steps in a
previous section. AlwaysOn configuration settings, plus the connection properties set in the
client, will determine whether a primary or secondary replica is used.

1. In SQL Server Data Tools, in an Analysis Services Multidimensional and Data Mining
Model project, right-click Data Sources and select New Data Source. Click New to
create a new data source.
Alternatively, for a tabular model project, click the Model menu, and then click Import
from Data Source.

2. In Connection Manager, in Provider, choose a provider that supports the Tabular Data
Stream (TDS) protocol. The SQL Server Native Client 11.0 supports this protocol.

3. In Connection Manager, in Server Name, enter the name of the availability group
listener, and then choose a database that is available in the group.
The availability group listener redirects a client connection to a primary replica for read-
write requests or to a secondary replica if you specify read-intent in the connection
string. Because replica roles will change during a failover (where the primary becomes
the secondary and a secondary becomes a primary), you should always specify the

http://www.contoso.com

 432

listener so that the client connection is redirected accordingly.
To determine the name of the availability group listener, you can either ask a database
administrator or connect to an instance in the availability group and view its AlwaysOn
availability configuration. In the screenshot below, the availability group listener is
AdventureWorks2.

4. Still in Connection Manager, click All in the left navigation pane to view the property

grid of data provider.
Set Application Intent to READONLY if you are configuring a read-only client
connection to a secondary replica. Otherwise, keep the READWRITE default to redirect
the connection to the primary replica.

5. In Impersonation Information, select Use a specific Windows user name and
password, and then enter a Windows domain user account that has a minimum of
db_datareader permissions on the database.
Do not choose Use the credentials of the current user or Inherit. You can choose
Use the service account, but only if that account has read permissions on the
database.
Finish the data source and close the Data Source Wizard.

6. Add MultiSubnetFailover=Yes to the connection string to provide faster detection
and connection to the active server. For more information about this property, see SQL
Server Native Client Support for High Availability, Disaster Recovery.
This property is not visible in the property grid. To add the property, right-click the data
source and choose View Code. Add MultiSubnetFailover=Yes to the connection

http://msdn.microsoft.com/en-us/library/2b06186b-4090-4728-b96b-90d6ebd9f66f(SQL.110)�
http://msdn.microsoft.com/en-us/library/2b06186b-4090-4728-b96b-90d6ebd9f66f(SQL.110)�

 433

string.

The data source is now defined. You can now proceed to build a model, starting with the data
source view, or in the case of tabular models, creating relationships. When you are at a point
where data must be retrieved from the availability database (for example when you are ready to
process or deploy the solution), you can test the configuration to verify data is accessed from
the secondary replica.
Test the configuration
After you configure the secondary replica and create a data source connection in Analysis
Services, you can confirm that processing and query commands are redirected to the secondary
replica. You can also perform a planned manual failover to verify your recovery plan for this
scenario.

1. Start SQL Server Profiler and connect to the SQL Server instance hosting the secondary
replica.
As the trace runs, the SQL:BatchStarting and SQL:BatchCompleting events will show
the queries issued from Analysis Services that are executing on the database engine
instance. These events are selected by default so all you need to do is start the trace.

2. In SQL Server Data Tools, open the Analysis Services project or solution containing a
data source connection you want to test. Be sure that the data source specifies the
availability group listener and not an instance in the group.
This step is important. Routing to the secondary replica will not occur if you specify a
server instance name.

3. Arrange the application windows so that you can view SQL Server Profiler and SQL
Server Data Tools side by side.

4. Deploy the solution, and when it completes, stop the trace.
In the trace window, you should see events from the application Microsoft SQL Server
Analysis Services. You should see SELECT statements that retrieve data from a
database on the server instance that hosts the secondary replica, proving that the
connection was made via the listener to the secondary replica.

1. In Management Studio check the primary and secondary replicas to ensure that both
are configured for synchronous-commit mode and are currently synchronized.
The following steps assume a secondary replica is configured for synchronous commit.
To verify synchronization, open a connection to each instance that hosts the primary
and secondary replicas, expand the Databases folder, and ensure that the database has
(Synchronized) and (Synchronizing) appended to its name in each replica.

Step 1: Confirm the data source connection is redirected to the secondary replica

Step 2: Perform a planned failover to test the configuration

 434

Note
These steps are taken from Perform a Planned Manual Failover of an Availability
Group (SQL Server), which provides additional information and alternative
instructions for performing this task.

2. In SQL Server Profiler, start traces for each replica and view the traces side-by-side. In
the following steps, you will compare traces, confirming that the SQL queries used for
processing or querying from Analysis Services switch from one replica to the other.

3. Execute a processing or query command from within Analysis Services. Because you
configured the data source for a read-only connection, you should see the command
execute on the secondary replica.

4. In Management Studio, connect to the secondary replica.
5. Expand the AlwaysOn High Availability node and the Availability Groups node.
6. Right-click the availability group to be failed over, and select the Failover command.

This starts the Fail Over Availability Group Wizard. Use the wizard to choose which
replica to make the new primary replica.

7. Confirm that failover succeeded:
• In Management Studio, expand the availability groups to view the (primary) and

(secondary) designations. The instance that was previously a primary replica should
now be a secondary replica.

• View the dashboard to determine if any health issues were detected. Right-click the
availability group and select Show Dashboard.

8. Wait one or two minutes for the failover to complete on the backend.
9. Repeat the processing or query command in the Analysis Services solution, and then

watch the traces side by side in SQL Server Profiler. You should see evidence of
processing on the other instance, which is now the new secondary replica.

What happens after a failover occurs
During a failover, a secondary replica transitions to the primary role and the former primary
replica transitions to the secondary role. All client connections are terminated, ownership of the
availability group listener moves with the primary replica role to a new SQL Server instance, and
the listener endpoint is bound to the new instance’s virtual IP addresses and TCP ports. For more
information, see About Client Connection Access to Availability Replicas (SQL Server).
If failover occurs during processing, the following error occurs in Analysis Services in the log file
or output window: “OLE DB error: OLE DB or ODBC error: Communication link failure; 08S01; TPC
Provider: An existing connection was forcibly closed by the remote host. ; 08S01.”
This error should resolve if you wait a minute and try again. If the availability group is configured
correctly for readable secondary replica, processing will resume on the new secondary replica
when you retry processing.

 435

Persistent errors are most likely due to a configuration problem. You can try re-running the T-
SQL script to resolve problems with the routing list, read-only routing URLs, and read-intent on
the secondary replica. You should also verify that the primary replica allows all connections.
Writeback when using an AlwaysOn availability database
Writeback is an Analysis Services feature that supports What If analysis in Excel. It is also
commonly used for budgeting and forecasting tasks in custom applications.
Support for writeback requires a READWRITE client connection. In Excel, if you attempt to write
back on a read-only connection, the following error will occur: “Data could not be retrieved from
the external data source.” “Data could not be retrieved from the external data source.”
If you configured a connection to always access a readable secondary replica, you must now
configure a new connection that uses a READWRITE connection to the primary replica.
To do this, create an additional data source in an Analysis Services model to support the read-
write connection. When creating the additional data source, use the same listener name and
database that you specified in the read-only connection, but instead of modifying Application
Intent, keep the default that supports READWRITE connections. You can now add new fact or
dimension tables to your data source view that are based on the read-write data source, and
then enable writeback on the new tables.
See Also
Availability Group Listeners, Client Connectivity, and Application Failover (SQL Server)
Readable Secondary Replicas (AlwaysOn Availability Groups)
AlwaysOn Policies for Operational Issues with AlwaysOn Availability Groups (SQL Server)
Define a Data Source (SSAS - Multidimensional Models)
Enable Dimension Writeback

Reporting Services with AlwaysOn Availability Groups
This topic contains information about configuring Reporting Services to work with AlwaysOn
Availability Groups (AG) in SQL Server 2012. The three scenarios for using Reporting Services
and AlwaysOn Availability Groups are databases for report data sources, report server databases,
and report design. The supported functionality and required configuration is different for the
three scenarios.
A key benefit of using AlwaysOn Availability Groups with Reporting Services data sources is to
leverage readable secondary replicas as a reporting data source while, at the same time the
secondary replicas are providing a failover for a primary database.
For general information on AlwaysOn Availability Groups, see AlwaysOn FAQ for SQL Server
2012 (http://msdn.microsoft.com/en-us/sqlserver/gg508768).
In This Topic:
Requirements for Using Reporting Services and AlwaysOn Availability Groups
Report Data Sources and Availability Groups

http://msdn.microsoft.com/en-us/library/9fab8298-10dc-45a9-9a91-0c8e6d947468(SQL.110)�
http://msdn.microsoft.com/en-us/library/a4b5eb5a-366d-4fc8-ad0d-5bdb8e7b4163(SQL.110)�
http://msdn.microsoft.com/en-us/sqlserver/gg508768�
http://msdn.microsoft.com/en-us/sqlserver/gg508768�

 436

Report Design and Availability Groups
Report Server Databases and Availability Groups

Differences between SharePoint Native Mode
Prepare Report Server Databases for Availability Groups
Steps to complete disaster recovery of Report Server Databases
Report Server Behavior When a Failover Occurs

Requirements for using Reporting Services and AlwaysOn Availability Groups
To use AlwaysOn Availability Groups with SQL Server 2012 Reporting Services, you need to
download and install a hotfix for .Net 3.5 SP1. The hotfix adds support to SQL Client for AG
features and support of the connection string properties ApplicationIntent and
MultiSubnetFailover. If the Hotfix is not installed on each computer that hosts a report server,
then users attempting to preview reports will see an error message similar to the following, and
the error message will be written to the report server trace log:
Error message:
The message occurs when you include one of the AlwaysOn Availability Groups properties in the
Reporting Services connection string, but the server does not recognize the property. The noted
error message will be seen when you click the ‘Test Connection’ button in Reporting Services
user interfaces and when you preview the report if remote errors are enabled on the report
servers.
For more information on the required hotfix, see KB 2654347A hotfix introduces support for the
AlwaysOn features from SQL Server 2012 to the .NET Framework 3.5 SP1.
For information on other AlwaysOn Availability Groups requirements, see Prerequisites,
Restrictions, and Recommendations for AlwaysOn Availability Groups (SQL Server).

Reporting Services configuration files such as RSreportserver.config are not supported
as part of AlwaysOn Availability Groups functionality. If you manually make changes to a
configuration file on one of the report servers, you will need to manually update the
replicas.

Top
Report Data Sources and Availability Groups
The behavior of Reporting Services data sources based on AlwaysOn Availability Groups can
vary depending on how your administrator has configured the AG environment.
To utilize AlwaysOn Availability Groups for report data sources you need to configure the report
data source connection string is to use the availability group Listener DNS name. Supported data
sources are the following:
• ODBC data source using SQL Native Client.
• SQL Client, with the .Net hotfix applied to the report server.

Note

http://go.microsoft.com/fwlink/?LinkId=242896�
http://go.microsoft.com/fwlink/?LinkId=242896�

 437

The connection string can also contain new AlwaysOn connection properties that configure the
report query requests to use secondary replica for read-only reporting. Use of secondary replica
for reporting requests will reduce the load on a read-write primary replica. The following
illustration is an example of a three replica AG configuration where the Reporting Services data
source connection strings have been configured with ApplicationIntent=ReadOnly. In this
example the report query requests are sent to a secondary replica and not the primary replica.

The following is an example connection string, where the [AvailabilityGroupListenerName] is the
Listener DNS Name that was configured when replicas were created:
Data Source=[AvailabilityGroupListenerName];Initial Catalog =
AdventureWorks2008R2; ApplicationIntent=ReadOnly
The Test Connection button in Reporting Services user interfaces will validate if a connection
can be established but it will not validate AG configuration. For example if you include
ApplicationIntent in a connection string to a server that is not part of AG, the extra parameter is
ignored and the Test Connection button will only validate a connection can be established to
the specified server.
Depending on how your reports are created and published will determine where you edit the
connection string:
• Native mode: Use Report Manager for shared data sources and reports that are already

published to a native mode report server.
• SharePoint Mode: Use SharePoint configuration pages within the document libraries for

reports that are already published to a SharePoint server.
• Report Design: SQL Server Report Builder for SQL Server 2012 or SQL Server Data Tools

(SSDT) when you are creating new reports. See the ‘Report Design’ section in this topic or
more information.

Additional Resources:
Manage Report Data Sources

http://msdn.microsoft.com/en-us/library/0475aded-c8fe-4337-a2b5-4df0ec4c46af(SQL.110)�

 438

For more information on the available connection string properties, see Using Connection String
Keywords with SQL Server Native Client.

For more information on availability group listeners, see Create or Configure an Availability
Group Listener (SQL Server).

Considerations: Secondary replicas will typically experience a delay in receiving data changes
from the primary replica. The following factors can affect the update latency between the
primary and secondary replicas:
• The number of secondary replicas. The delay increases with each secondary replica added to

the configuration.
• Geographic location and distance between the primary and secondary replicas. For example

the delay is typically larger if the secondary replicas are in a different data center than if they
were in the same building as the primary replica.

• Configuration of the availability mode for each replica. The availability mode determines
whether the primary replica waits to commit transactions on a database until a secondary
replica has written the transaction to disk. For more information, see the ‘Availability Modes’
section of Overview of AlwaysOn Availability Groups (SQL Server).

When using a read-only secondary as a Reporting Services data source, it is important to ensure
that data update latency meets the needs of the report users.

Top
Report Design and Availability Groups
When designing reports in SQL Server Report Builder for SQL Server 2012 or a report project in
SQL Server Data Tools (SSDT), a user can configure a report data source connection string to
contain new connection properties provided by AlwaysOn Availability Groups. Support for the
new connection properties depends on where a user previews the report.
• Local preview: SQL Server Report Builder for SQL Server 2012 and SQL Server Data Tools

(SSDT) use the .Net framework 4.0 and support AlwaysOn Availability Groups connection
string properties.

• Remote or server mode preview: If after publishing reports to the report server or using
preview in SQL Server Report Builder for SQL Server 2012, you see an error similar to the
following, it is an indication you are previewing reports against the report server and the
.Net Framework 3.5 SP1 Hotfix for AlwaysOn Availability Groups has not been installed on
the report server.

Error message:
Top

Report Server Databases and Availability Groups
Reporting Services offers limited support for using AlwaysOn Availability Groups with report
server databases. The report server databases can be configured in AG to be part of a replica;
however Reporting Services will not automatically use a different replica for the report server
databases when a failover occurs.

http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�

 439

Manual actions or custom automation scripts need to be used to complete the failover and
recovery. Until these actions are completed, some features of the report server may not work
correctly after the AlwaysOn Availability Groups failover.

When planning failover and disaster recovery for the report server databases, it is
advised you always backup a copy of the report server encryption key.

Top

Differences between SharePoint Native Mode
This section summarizes the differences between how SharePoint mode and Native mode report
servers interact with AlwaysOn Availability Groups.
A SharePoint report server creates 3 databases for each Reporting Services service application
you create. The connection to the report server databases in SharePoint mode is configured in
SharePoint Central Administration when you create the service application. The default names of
the databases include a GUID that is associated with the service application. The following are
example database names, for a SharePoint mode report server:
• ReportingService_85c08ac3c8e64d3cb400ad06ed5da5d6
• ReportingService_85c08ac3c8e64d3cb400ad06ed5da5d6TempDB
• ReportingService_85c08ac3c8e64d3cb400ad06ed5da5d6_Alerting
Native mode report servers use 2 databases. The following are example database names, for a
native mode report server:
• ReportServer
• ReportServerTempDB
Native mode does not support or use the Alerting databases and related features. You configure
native mode report servers in the Reporting Services Configuration Manager. For SharePoint
mode you configure the service application database name to be the name of the “client access
point” you created as part of the SharePoint configuration. For more information on configuring
SharePoint with AlwaysOn Availability Groups, see Configure and manage SQL Server availability
groups for SharePoint Server (http://go.microsoft.com/fwlink/?LinkId=245165).

• SharePoint mode report servers use a synchronization process between the Reporting
Services service application databases and the SharePoint content databases. It is
important to maintain the report server databases and content databases together. You
should consider configuring them in the same availability groups so they failover and
recover as a set. Consider the following scenario:

Top
Prepare Report Server Databases for Availability Groups

Note

Note

http://go.microsoft.com/fwlink/?LinkId=245165�
http://go.microsoft.com/fwlink/?LinkId=245165�
http://go.microsoft.com/fwlink/?LinkId=245165�

 440

The following are the basic steps of preparing and adding the report server databases to an
AlwaysOn Availability Groups:
• Create your Availability Group and configure a Listener DNS name.
• Primary Replica: Configure the report server databases to be part of a single availability

group and create a primary replica that includes all of the report server databases. This
includes

• Secondary Replicas: Create one or more secondary replicas. The common approach to
copying the databases from the primary replica to the secondary replica(s) is to restore the
databases to each secondary replica using ‘RESTORE WITH NORECOVERY’. For more
information on creating secondary replicas and verifying data synchronization is working,
see Start Data Movement on an AlwaysOn Secondary Database (SQL Server).

• Report Server Credentials: You need to create the appropriate report server credentials on
the secondary replicas that you created on the primary. The exact steps depend on what
type of authentication you are using in your Reporting Services environment; Window
Reporting Services service account, Windows user account, or SQL Server authentication. For
more information, see Configure a Report Server Database Connection (Native Mode)

• Update the database connection to use the Lister DNS Name. for natve mode report servers,
change the Report Server Database Name in ssRSnoverison configuration manager. For
SharePoint mode, change the Database server name for the Reporting Services service
application(s).

Top
Steps to complete disaster recovery of Report Server Databases
The following steps need to be completed after a AlwaysOn Availability Groups failover to a
secondary replica:
1. Stop the instance of the SQL Agent service that was being used by the primary database

engine hosting the Reporting Services databases.
2. Start SQL Agent service on the computer that is the new primary replica.
3. Stop the Report Server service.

If the report server is in native mode, stop the report server Windows server using Reporting
Services configuration manager.
If the report server is configured for SharePoint mode, stop the Reporting Services shared
service in SharePoint Central Administration.

4. Start the report server service or Reporting Services SharePoint service.
5. Verify that reports can run against the new primary replica.

Top
Report Server Behavior When a Failover Occurs
When report server databases failover and you have updated the report server environment to
use the new primary replica, there are some operational issues that result from the failover and

http://msdn.microsoft.com/en-us/library/9759a9fb-35e9-4215-969b-a9f1fea18487(SQL.110)�

 441

recovery process. The impact of these issues will vary depending on the Reporting Services load
at the time of failover as well as the length of time it takes for AlwaysOn Availability Groups to
failover to a secondary replica and for the report server administrator to update the reporting
environment to use the new primary replica.
• The execution of background processing may occur more than once due to retry logic and

the inability of the report server to mark scheduled work as completed during the failover
period.

• The execution of background processing that would have normally been triggered to run
during the period of the failover will not occur because SQL Server Agent will not be able to
write data into the report server database and this data will not be synchronized to the new
primary replica.

• After the database failover completes and after the report server service is re-started, SQL
Server Agent jobs will be re-created automatically. Until the SQL agent jobs are recreated,
any background executions associated with SQL Server Agent jobs will not be processed.
This includes Reporting Services subscriptions, schedules, an snapshots.

Top
See Also
SQL Server Native Client Support for High Availability, Disaster Recovery
AlwaysOn Availability Groups (SQL Server)
Get Started with AlwaysOn Availability Groups (SQL Server)
Using Connection String Keywords with SQL Server Native Client
SQL Server Native Client Support for High Availability, Disaster Recovery
Client Connection Access to Availability Replicas (SQL Server)

Service Broker with AlwaysOn Availability Groups
This topic contains information about configuring Service Broker to work with AlwaysOn
Availability Groups in SQL Server 2012.
In This Topic:
• Requirements for a Service in an Availability Group to Receive Remote Messages
• Requirements for Sending Messages to a Remote Service in an Availability Group
Requirements for a Service in an Availability Group to Receive Remote Messages
1. Ensure that the availability group possesses a listener.

For more information, see Create or Configure an Availability Group Listener (SQL Server).
2. Ensure that the Service Broker endpoint exists and is correctly configured.

On every instance of SQL Server that hosts an availability replica for the availability group,
configure the Service Broker endpoint, as follows:
• Set LISTENER_IP to 'ALL'. This setting enables connections on any valid IP address that is

bound to the availability group listener.

http://msdn.microsoft.com/en-us/library/2b06186b-4090-4728-b96b-90d6ebd9f66f(SQL.110)�
http://msdn.microsoft.com/en-us/library/16008eec-eddf-4d10-ae99-29db26ed6372(SQL.110)�
http://msdn.microsoft.com/en-us/library/2b06186b-4090-4728-b96b-90d6ebd9f66f(SQL.110)�

 442

• Set the Service Broker PORT to the same port number on all the host server instances.

To view the port number of the Service Broker endpoint on a given server
instance, query the port column of the sys.tcp_endpoints catalog view, where
type_desc = 'SERVICE_BROKER'.

The following example creates a Windows authenticated Service Broker endpoint that uses
the default Service Broker port (4022) and listens to all valid IP addresses.

CREATE ENDPOINT [SSBEndpoint]

 STATE = STARTED

 AS TCP (LISTENER_PORT = 4022, LISTENER_IP = ALL)

 FOR SERVICE_BROKER (AUTHENTICATION = WINDOWS)

For more information, see CREATE ENDPOINT (Transact-SQL).
3. Grant CONNECT permission on the endpoint.

Grant CONNECT permission on the Service Broker endpoint either to PUBLIC or to a login.
The following example grants the connection on a Service Broker endpoint named
broker_endpoint to PUBLIC.

GRANT CONNECT ON ENDPOINT::[broker_endpoint] TO [PUBLIC]

For more information, see GRANT (Transact-SQL).
4. Ensure that msdb contains either an AutoCreatedLocal route or a route to the specific

service.

By default, each user database, including msdb, contains the route
AutoCreatedLocal. This route matches any service name and broker instance and
specifies that the message should be delivered within the current instance.
AutoCreatedLocal has lower priority than routes that explicitly specify a specific
service that communicates with a remote instance.

For information about creating routes, see Service Broker Routing Examples (in the SQL
Server 2008 R2 version of Books Online) and CREATE ROUTE (Transact-SQL).

Requirements for Sending Messages to a Remote Service in an Availability Group
1. Create a route to the target service.

Configure the route as follows:
• Set ADDRESS to the listener IP address of availability group that hosts the service

database.
• Set PORT to the port that you specified in the Service Broker endpoint of each of the

remote SQL Server instances.

Tip

Note

http://msdn.microsoft.com/en-us/library/43cc3afa-cced-4463-8e97-fbfdaf2e4fa8(SQL.110)�
http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/a760c16a-4d2d-43f2-be81-ae9315f38185(SQL.110)�
http://msdn.microsoft.com/en-us/library/ms166090(SQL.105).aspx�
http://msdn.microsoft.com/en-us/library/7e695364-1a98-4cfd-8ebd-137ac5a425b3(SQL.110)�

 443

The following example creates a route named RouteToTargetService for the
ISBNLookupRequestService service. The route targets the availability group listener,
MyAgListener, which uses port 4022.
CREATE ROUTE [RouteToTargetService] WITH

SERVICE_NAME = 'ISBNLookupRequestService',

ADDRESS = 'TCP://MyAgListener:4022';

For more information, see CREATE ROUTE (Transact-SQL).
2. Ensure that msdb contains either an AutoCreatedLocal route or a route to the specific

service. (For more information, see Requirements for a Service in an Availability Group to
Receive Remote Messages, earlier in this topic.)

Related Tasks
• CREATE ENDPOINT (Transact-SQL)
• CREATE ROUTE (Transact-SQL)
• GRANT (Transact-SQL)
• Create or Configure an Availability Group Listener (SQL Server).
• Creation and Configuration of Availability Groups (SQL Server)
• Set Up Login Accounts for Database Mirroring or AlwaysOn Availability Groups (SQL Server)

See Also
Overview of AlwaysOn Availability Groups
Availability Group Listeners, Client Connectivity, and Application Failover
SQL Server Service Broker

The Database Mirroring Endpoint
To participate in AlwaysOn Availability Groups or database mirroring a server instance requires
its own, dedicated database mirroring endpoint. This endpoint is a special-purpose endpoint that
is used exclusively to receive connections from other server instances. On a given server
instance, every AlwaysOn Availability Groups or database mirroring connection to any other
server instance uses a single database mirroring endpoint.
Database mirroring endpoints use Transmission Control Protocol (TCP) to send and receive
messages between the server instances participating database mirroring sessions or hosting
availability replicas. The database mirroring endpoint listens on a unique TCP port number.

Note

http://msdn.microsoft.com/en-us/library/7e695364-1a98-4cfd-8ebd-137ac5a425b3(SQL.110)�
http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/7e695364-1a98-4cfd-8ebd-137ac5a425b3(SQL.110)�
http://msdn.microsoft.com/en-us/library/a760c16a-4d2d-43f2-be81-ae9315f38185(SQL.110)�
http://msdn.microsoft.com/en-us/library/8b8b3b57-fd46-44de-9a4e-e3a8e3999c1e(SQL.110)�

 444

Client connections to a principal server or primary replica do not use the database
mirroring endpoint.

The database mirroring feature will be removed in a future version of Microsoft SQL
Server. Avoid using this feature in new development work, and plan to modify
applications that currently use database mirroring to use AlwaysOn Availability Groups
instead.

In this Topic:
• Server Network Address
• Determining the Authentication Type for a Database Mirroring Endpoint
• Related Tasks

Server Network Address
The network address of a server instance (its server network address or Endpoint URL) contains
the port number of its endpoint, as well as the system and domain name of its host computer.
The port number uniquely identifies a specific server instance.
The following figure illustrates how two server instances on the same server are uniquely
identified. The server network addresses of both server instances contain the same system
name, MYSYSTEM, and domain name, Adventure-Works.MyDomain.com. To enable the system
to route connections to a server instance, a server network address includes the port number
associated with the mirroring endpoint of a particular server instance.

Note

http://www.Adventure-Works.MyDomain.com

 445

By default, an instance of SQL Server does not contain a database mirroring endpoint. These
must be created manually as part of setting up a database mirroring session. The system
administrator must create a separate endpoint in each server instance that is to participate in
database mirroring. Note that if more than one server instance on a given computer requires a
database mirroring endpoint, specify a different port number for each endpoint.

If the computer running SQL Server has a firewall, the firewall configuration must allow
both incoming and outgoing connections for the port specified in the endpoint.

For database mirroring and AlwaysOn Availability Groups, authentication and encryption are
configured on the endpoint. For more information, see Database Mirroring Transport Security.

Do not reconfigure an in-use database mirroring endpoint. The server instances use each
other's endpoints to learn the state of the other systems. If the endpoint is reconfigured,
it might restart, which can appear to be an error to the other server instances. This is
particularly important for automatic failover mode, in which reconfiguring the endpoint
on a partner could cause a failover to occur.

noteDXDOC112778PADS Security Note

Important

 446

Determining the Authentication Type for a Database Mirroring Endpoint
It is important to understand that the SQL Server service accounts of your server instances
determine what type of authentication you can use for your database mirroring endpoints, as
follows:
• If every server instance is running under a domain service account, you can use Windows

Authentication for your database mirroring endpoints. If all the server instances run as the
same domain user account, the correct user logins exist automatically in both master
databases. This simplifies the security configuration for the availability databases and is
recommended.
If any server instances that are hosting the availability replicas for an availability group run as
different accounts, the login each account must be created in master on the other server
instance. Then, that login must be granted CONNECT permissions to connect to the
database mirroring endpoint of that server instance. For more information, Setting Up Login
Accounts for Database Mirroring.
If your server instances use Windows Authentication, you can create database mirroring
endpoints by using Transact-SQL, PowerShell, or the New Availability Group Wizard.

If a server instance that is to host an availability replica lacks a database mirroring
endpoint, the New Availability Group Wizard can automatically create a database
mirroring endpoint that uses Windows Authentication. For more information, see Use
the Availability Group (New Availability Group Wizard).

• If any server instance is running under a built-in account, such as Local System, Local Service,
or Network Service, or a nondomain account, you must use certificates for endpoint
authentication. If you are using certificates for your database mirroring endpoints, your
system administrator must configure each server instance to use certificates on both
outbound and inbound connections.
There is no automated method for configuring database mirroring security using certificates.
You will need to use either CREATE ENDPOINT Transact-SQL statement or the New-
SqlHadrEndpoint PowerShell cmdlet. For more information, see CREATE ENDPOINT
(Transact-SQL). For information about enabling certificate authentication on a server
instance, see Use Certificates for a Database Mirroring Endpoint.

Related Tasks
To Configure a Database Mirroring Endpoint
• Create a Mirroring Endpoint for Windows Authentication (Transact-SQL)
• Use Certificates for a Database Mirroring Endpoint

• Allow Database Mirroring to Use Certificates for Outbound Connections (Transact-SQL)

Note

http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�

 447

• Allow a Database Mirroring Endpoint to Use Certificates for Inbound Connections
(Transact-SQL)

• Specify a Server Network Address (Database Mirroring)
• Specify the Endpoint URL When Adding or Modifying an Availability Replica (SQL Server)
• Use the New Availability Group Wizard (SQL Server Management Studio)
To View Information About the Database Mirroring Endpoint
• sys.database_mirroring_endpoints (Transact-SQL)

See Also
Transport Security for Database Mirroring and AlwaysOn Availability Groups (SQL Server)
Troubleshoot Database Mirroring Configuration
sys.dm_hadr_availability_replica_states (Transact-SQL)
sys.dm_db_mirroring_connections

Transport Security for Database Mirroring and
AlwaysOn Availability Groups
Transport security in SQL Server 2005 and later versions involves authentication and, optionally,
encryption of messages exchanged between the databases. For database mirroring and
AlwaysOn Availability Groups, authentication and encryption are configured on the database
mirroring endpoint. For an introduction to database mirroring endpoints, see The Database
Mirroring Endpoint.
In this Topic:
• Authentication
• Data Encryption
• Related Tasks

Authentication
Authentication is the process of verifying that a user is who the user claims to be. Connections
between database mirroring endpoints require authentication. Connection requests from a
partner or witness, if any, must be authenticated.
The type of authentication used by a server instance for database mirroring or AlwaysOn
Availability Groups is a property of the database mirroring endpoint. Two types of transport
security are available for database mirroring endpoints: Windows Authentication (the Security
Support Provider Interface (SSPI)) and certificate-based authentication.

Windows Authentication

http://msdn.microsoft.com/en-us/library/a64d4b6b-9016-4f1e-a310-b1df181dd0c6(SQL.110)�
http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�
http://msdn.microsoft.com/en-us/library/87d3801b-dc52-419e-9316-8b1f1490946c(SQL.110)�
http://msdn.microsoft.com/en-us/library/d2e678bb-51e8-4a61-b223-5c0b8d08b8b1(SQL.110)�
http://msdn.microsoft.com/en-us/library/e4df91b6-0240-45d0-ae22-cb2c0d52e0b3(SQL.110)�

 448

Under Windows Authentication, each server instance logs in to the other side using the
Windows credentials of the Windows user account under which the process is running. Windows
Authentication might require some manual configuration of login accounts, as follows:

• If the instances of SQL Server run as services under the same domain account, no extra

configuration is required.
• If the instances of SQL Server run as services under different domain accounts (in the same

or trusted domains), the login of each account must be created in master on each of the
other server instances, and that login must be granted CONNECT permissions on the
endpoint.

• If the instances of SQL Server run as the Network Service account, the login of the each host
computer account (DomainName\ComputerName$) must be created in master on each of
the other servers, and that login must be granted CONNECT permissions on the endpoint.
This is because a server instance running under the Network Service account authenticates
using the domain account of the host computer.

For an example of setting up a database mirroring session using Windows
Authentication, see Example of Setting Up Database Mirroring.

Certificates
In some situations, such as when server instances are not in trusted domains or when SQL Server
is running as a local service, Windows Authentication is unavailable. In such cases, instead of
user credentials, certificates are required to authenticate connection requests. The mirroring
endpoint of each server instance must be configured with its own locally created certificate.
The encryption method is established when the certificate is created. For more information,
see How to: Allow Database Mirroring to Use Certificates for Outbound Connections (Transact-
SQL). Carefully manage the certificates that you use.
A server instance uses the private key of its own certificate to establish its identity when setting
up a connection. The server instance that receives the connection request uses the public key of
the sender's certificate to authenticate the sender's identity. For example, consider two server
instances, Server_A and Server_B. Server_A uses its private key to encrypt the connection header
before sending a connection request to Server_B. Server_B uses the public key of Server_A's
certificate to decrypt the connection header. If the decrypted header is correct, Server_B knows
that the header was encrypted by Server_A, and the connection is authenticated. If the
decrypted header is incorrect, Server_B knows that the connection request is inauthentic and
refuses the connection.

Data Encryption
By default, a database mirroring endpoint requires encryption of data sent over mirroring
connections. In this case, the endpoint can connect only to endpoints that also use encryption.
Unless you can guarantee that your network is secure, we recommend that you require

Note

http://msdn.microsoft.com/en-us/library/35800769-aede-4aac-b077-0e0e487e302f(SQL.110)�

 449

encryption for your database mirroring connections. However, you can disable encryption or
make it supported, but not required. If encryption is disabled, data is never encrypted and the
endpoint cannot connect to an endpoint that requires encryption. If encryption is supported,
data is encrypted only if the opposite endpoint either supports or requires encryption.

Mirroring endpoints created by SQL Server Management Studio are created with
encryption either required or disabled. To change the encryption setting to SUPPORTED,
use the ALTER ENDPOINT Transact-SQL statement. For more information, see ALTER
ENDPOINT (Transact-SQL).

Optionally, you can control the encryption algorithms that can be used by an endpoint, by
specifying one of the following values for the ALGORITHM option in a CREATE ENDPOINT
statement or ALTER ENDPOINT statement:

ALGORITHM value Description

RC4 Specifies that the endpoint must use the
RC4 algorithm. This is the default.

Note
The RC4 algorithm is deprecated.
This feature will be removed in a
future version of Microsoft SQL
Server. Do not use this feature in
new development work, and modify
applications that currently use this
feature as soon as possible. We
recommend that you use AES.

AES Specifies that the endpoint must use the
AES algorithm.

AES RC4 Specifies that the two endpoints will
negotiate for an encryption algorithm with
this endpoint giving preference to the AES
algorithm.

RC4 AES Specifies that the two endpoints will
negotiate for an encryption algorithm with
this endpoint giving preference to the RC4
algorithm.

If connecting endpoints specify both algorithms but in different orders, the endpoint accepting
the connection wins.

Note

http://msdn.microsoft.com/en-us/library/70f35566-30cf-47c6-8394-dfe5d71629d3(SQL.110)�
http://msdn.microsoft.com/en-us/library/70f35566-30cf-47c6-8394-dfe5d71629d3(SQL.110)�

 450

• The RC4 algorithm is only supported for backward compatibility. New material can only
be encrypted using RC4 or RC4_128 when the database is in compatibility level 90 or
100. (Not recommended.) Use a newer algorithm such as one of the AES algorithms
instead. In SQL Server 2012 material encrypted using RC4 or RC4_128 can be decrypted
in any compatibility level.

• Though considerably faster than AES, RC4 is a relatively weak algorithm, while AES is a
relatively strong algorithm. Therefore, we recommend that you use the AES algorithm.

For information about the Transact-SQL syntax for specifying encryption, see CREATE ENDPOINT
(Transact-SQL).

Related Tasks
To configure transport security for a database mirroring endpoint
• Create a Database Mirroring Endpoint for Windows Authentication (Transact-SQL)
• How to: Configure a Database Mirroring Session (SQL Server Management Studio)
• How to: Create a Mirroring Endpoint for Windows Authentication (Transact-SQL)
• How to: Allow Database Mirroring to Use Certificates for Outbound Connections (Transact-

SQL)

See Also
Choosing an Encryption Algorithm
ALTER ENDPOINT (Transact-SQL)
DROP ENDPOINT (Transact-SQL)
Security and Protection (Database Engine)
Setting up Login Accounts for Database Mirroring
The Database Mirroring Endpoint
sys.database_mirroring_endpoints (Transact-SQL)
sys.dm_database_mirroring_connections
Troubleshooting Database Mirroring Setup
Troubleshoot AlwaysOn Availability Groups Configuration (SQL Server)

Create a Database Mirroring Endpoint for Windows
Authentication (Transact-SQL)
This topic describes how to create a database mirroring endpoint that uses Windows
Authentication in SQL Server 2012 by using Transact-SQL. To support database mirroring or
AlwaysOn Availability Groups each instance of SQL Server requires a database mirroring

Note

http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/7cb418d6-dce1-4a0d-830e-9c5ccfe3bd72(SQL.110)�
http://msdn.microsoft.com/en-us/library/8227028c-a9c9-489d-bd27-fbf8242634ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/70f35566-30cf-47c6-8394-dfe5d71629d3(SQL.110)�
http://msdn.microsoft.com/en-us/library/6aca7412-66a5-4fa4-86b2-061512ff2080(SQL.110)�
http://msdn.microsoft.com/en-us/library/dfb39d16-722a-4734-94bb-98e61e014ee7(SQL.110)�
http://msdn.microsoft.com/en-us/library/5d98cf2a-9fc2-4610-be72-b422b8682681(SQL.110)�
http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�
http://msdn.microsoft.com/en-us/library/e4df91b6-0240-45d0-ae22-cb2c0d52e0b3(SQL.110)�
http://msdn.microsoft.com/en-us/library/87d3801b-dc52-419e-9316-8b1f1490946c(SQL.110)�

 451

endpoint. A server instance can have only one database mirroring endpoint, which has a single
port. A database mirroring endpoint can use any port that is available on the local system when
the endpoint is created. All database mirroring sessions on a server instance listen on that port,
and all incoming connections for database mirroring use that port.

If a database mirroring endpoint exists and is already in use, we recommend that you use
that endpoint. Dropping an in-use endpoint disrupts existing sessions.

In This Topic
• Before you begin: Security
• To create a database mirroring endpoint, using: Transact-SQL

Before You Begin

Security
The authentication and encryption methods of the server instance are established by the system
administrator.

The RC4 algorithm is deprecated. This feature will be removed in a future version of
Microsoft SQL Server. Do not use this feature in new development work, and modify
applications that currently use this feature as soon as possible. We recommend that you
use AES.

Permissions
Requires CREATE ENDPOINT permission, or membership in the sysadmin fixed server role. For
more information, see GRANT Endpoint Permissions (Transact-SQL).

Using Transact-SQL

1. Connect to the instance of SQL Server on which you want to create a database
mirroring endpoint.

2. From the Standard bar, click New Query.
3. Determine if a database mirroring endpoint already exists by using the following

statement:

SELECT name, role_desc, state_desc FROM

sys.database_mirroring_endpoints

Important
If a database mirroring endpoint already exists for the server instance, use that
endpoint for any other sessions you establish on the server instance.

Important

noteDXDOC112778PADS Security Note

To Create a Database Mirroring Endpoint That Uses Windows Authentication

http://msdn.microsoft.com/en-us/library/9eda885c-fc3a-4c9d-8de6-ce07fb35a934(SQL.110)�

 452

4. To use Transact-SQL to create an endpoint to use with Windows Authentication, use a
CREATE ENDPOINT statement. The statement takes the following general form:
CREATE ENDPOINT <endpointName>
 STATE=STARTED
 AS TCP (LISTENER_PORT = <listenerPortList>)
 FOR DATABASE_MIRRORING
 (
 [AUTHENTICATION = WINDOWS [<authorizationMethod>]
]
 [[,] ENCRYPTION = REQUIRED
 [ALGORITHM { <algorithm> }]
]
 [,] ROLE = <role>
)
where
• <endpointName> is a unique name for the database mirroring endpoint of the

server instance.
• STARTED specifies that the endpoint is to be started and to begin listening for

connections. A database mirroring endpoint typically is created in the STARTED
state. Alternatively, you can start a session in a STOPPED state (the default) or
DISABLED state.

• <listenerPortList> is a single port number (nnnn) on which you want the server to
listen for database mirroring messages. Only TCP is allowed; specifying any other
protocol causes an error.
A port number can be used only once per computer system. A database mirroring
endpoint can use any port that is available on the local system when the endpoint
is created. To identify the ports currently being used by TCP endpoints on the
system, use the following Transact-SQL statement:

SELECT name, port FROM sys.tcp_endpoints

Important
Each server instance requires one and only one unique listener port.

• For Windows Authentication, the AUTHENTICATION option is optional, unless you
want the endpoint to use only NTLM or Kerberos to authenticate connections.
<authorizationMethod> specifies the method used to authenticate connections as
one of the following: NTLM, KERBEROS, or NEGOTIATE. The default, NEGOTIATE,
causes the endpoint to use the Windows negotiation protocol to choose either
NTLM or Kerberos. Negotiation enables connections with or without authentication,
depending on the authentication level of the opposite endpoint.

 453

• ENCRYPTION is set to REQUIRED by default. This means that all connections to this
endpoint must use encryption. However, you can disable encryption or make it
optional on an endpoint. The alternatives are as follows:

Value Definition

DISABLED Specifies that data sent over a
connection is not encrypted.

SUPPORTED Specifies that the data is encrypted only
if the opposite endpoint specifies either
SUPPORTED or REQUIRED.

REQUIRED Specifies that data sent over a
connection must be encrypted.

If an endpoint requires encryption, the other endpoint must have ENCRYPTION set
to either SUPPORTED or REQUIRED.

• <algorithm> provides the option of specifying the encryption standards for the
endpoint. The value of <algorithm> can be one following algorithms or
combinations of algorithms: RC4, AES, AES RC4, or RC4 AES.
AES RC4 specifies that this endpoint will negotiate for the encryption algorithm,
giving preference to the AES algorithm. RC4 AES specifies that this endpoint will
negotiate for the encryption algorithm, giving preference to the RC4 algorithm. If
both endpoints specify both algorithms but in different orders, the endpoint
accepting the connection wins.

Note
The RC4 algorithm is deprecated. This feature will be removed in a future
version of Microsoft SQL Server. Do not use this feature in new development
work, and modify applications that currently use this feature as soon as
possible. We recommend that you use AES.

• <role> defines the role or roles that the server can perform. Specifying ROLE is
required. However, the role of the endpoint is relevant only for database mirroring.
For AlwaysOn Availability Groups, the role of the endpoint is ignored.
To allow a server instance to serve as one role for one database mirroring session
and different role for another session, specify ROLE=ALL. To restrict a server
instance to being either a partner or a witness, specify ROLE=PARTNER or
ROLE=WITNESS, respectively.

Note
For more information about Database Mirroring options for different
editions of SQL Server, see Features Supported by the Editions of SQL Server

http://go.microsoft.com/fwlink/?linkid=232473�

 454

2012
For a complete description of the CREATE ENDPOINT syntax, see

 (http://go.microsoft.com/fwlink/?linkid=232473).
CREATE ENDPOINT

(Transact-SQL).

Note
To change an existing endpoint, use ALTER ENDPOINT.

Example: Creating Endpoints to Support for Database Mirroring (Transact-SQL)
The following example creates database mirroring endpoints for the default server instances on
three separate computer systems:

Role of server instance Name of host computer

Partner (initially in the principal role) SQLHOST01\.

Partner (initially in the mirror role) SQLHOST02\.

Witness SQLHOST03\.

In this example, all three endpoints use port number 7022, though any available port number
would work. The AUTHENTICATION option is unnecessary, because the endpoints use the
default type, Windows Authentication. The ENCRYPTION option is also unnecessary, because the
endpoints are all intended to negotiate the authentication method for a connection, which is the
default behavior for Windows Authentication. Also, all of the endpoints require the encryption,
which is the default behavior.
Each server instance is limited to serving as either a partner or a witness, and the endpoint of
each server expressly specifies which role (ROLE=PARTNER or ROLE=WITNESS).

Each server instance can have only one endpoint. Therefore, if you want a server instance
to be a partner in some sessions and the witness in others, specify ROLE=ALL.

--Endpoint for initial principal server instance, which

--is the only server instance running on SQLHOST01.

CREATE ENDPOINT endpoint_mirroring

 STATE = STARTED

 AS TCP (LISTENER_PORT = 7022)

 FOR DATABASE_MIRRORING (ROLE=PARTNER);

GO

--Endpoint for initial mirror server instance, which

--is the only server instance running on SQLHOST02.

Important

http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/70f35566-30cf-47c6-8394-dfe5d71629d3(SQL.110)�
http://go.microsoft.com/fwlink/?linkid=232473�

 455

CREATE ENDPOINT endpoint_mirroring

 STATE = STARTED

 AS TCP (LISTENER_PORT = 7022)

 FOR DATABASE_MIRRORING (ROLE=PARTNER);

GO

--Endpoint for witness server instance, which

--is the only server instance running on SQLHOST03.

CREATE ENDPOINT endpoint_mirroring

 STATE = STARTED

 AS TCP (LISTENER_PORT = 7022)

 FOR DATABASE_MIRRORING (ROLE=WITNESS);

GO

Related Tasks
To Configure a Database Mirroring Endpoint
• Create a Database Mirroring Endpoint for AlwaysOn Availability Groups (SQL Server

PowerShell)
• Use Certificates for a Database Mirroring Endpoint

• Allow Database Mirroring to Use Certificates for Outbound Connections (Transact-SQL)
• Allow a Database Mirroring Endpoint to Use Certificates for Inbound Connections

(Transact-SQL)
• Specify a Server Network Address (Database Mirroring)
• Specify the Endpoint URL When Adding or Modifying an Availability Replica (SQL Server)
To View Information About the Database Mirroring Endpoint
• sys.database_mirroring_endpoints (Transact-SQL)

See Also
ALTER ENDPOINT (Transact-SQL)
Choosing an Encryption Algorithm
CREATE ENDPOINT
Specifying a Server Network Address (Database Mirroring)
Example of Setting Up Database Mirroring Using Windows Authentication
The Database Mirroring Endpoint

http://msdn.microsoft.com/en-us/library/a64d4b6b-9016-4f1e-a310-b1df181dd0c6(SQL.110)�
http://msdn.microsoft.com/en-us/library/f2285199-97ad-473c-a52d-270044dd862b(SQL.110)�
http://msdn.microsoft.com/en-us/library/70f35566-30cf-47c6-8394-dfe5d71629d3(SQL.110)�
http://msdn.microsoft.com/en-us/library/8227028c-a9c9-489d-bd27-fbf8242634ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/a64d4b6b-9016-4f1e-a310-b1df181dd0c6(SQL.110)�
http://msdn.microsoft.com/en-us/library/35800769-aede-4aac-b077-0e0e487e302f(SQL.110)�

 456

Set Up Login Accounts for Database Mirroring or
AlwaysOn Availability Groups
For two server instances to connect to each other's database mirroring endpoint point, the login
account of each instance requires access to the other instance. Also, each login account requires
connect permission to the database mirroring endpoint of the other instance.
The impact of this requirement depends on whether the server instances run as the same
domain user account:
• If the server instances run as the same domain user account, the correct user logins exist

automatically in both master databases. This simplifies the security configuration the
database and is recommended.

• If the server instances run as different user accounts, user logins on the server instance that
hosts the principal server or primary replica must be manually reproduced on the server
instance that hosts the mirror server or on every server instance that hosts a secondary
replica. For more information, see Create a Login for a Different Account and Grant Connect
Permission, later in this topic.

Create a Login for a Different Account
If two server instances run as different accounts, the system administrator must use the CREATE
LOGIN Transact-SQL statement to create a login for the startup service account of the remote
instance in the syslogins table of the master database of each server instance. For more
information, see CREATE LOGIN (Transact-SQL).

If you run SQL Server under a non-domain account, you must use certificates. For more
information, see Use Certificates for a Database Mirroring Endpoint (SQL Server).

For example, for the server instance sqlA, which runs under loginA, to connect to the server
instance sqlB, which runs under loginB, loginA must be in the syslogins table on sqlB, and
loginB must be in the syslogins table on sqlA. In addition, for a database mirroring session that
includes a witness server instance (sqlC) and in which the three server instances run under
different domain accounts, the following logins must be created:

On instance... Create logins for and grant connection permission
to ...

sqlA sqlB and sqlC

sqlB sqlA and sqlC

sqlC sqlA and sqlB

Important

http://msdn.microsoft.com/en-us/library/eb737149-7c92-4552-946b-91085d8b1b01(SQL.110)�

 457

It is possible to connect with the network service account by using the machine account
instead of a domain user. If the machine account is used, it must be added as a user on
the other server instance.

Grant Connect Permission
Once a login has been created on a server instance, the login must be granted permission to
connect to the database mirroring endpoint of the server instance. The system administrator
grants the connect permission using a GRANT Transact-SQL statement. For more information,
see GRANT (Transact-SQL).

Related Tasks
• Create a Login (SQL Server Database Engine)
• Allow Database Mirroring Network Access Using Windows Authentication (Transact-SQL).
• Use Certificates for a Database Mirroring Endpoint (SQL Server)

See Also
Database Mirroring Endpoint
Troubleshooting Database Mirroring Setup
Troubleshoot AlwaysOn Availability Groups Configuration

Allow Network Access to a Database Mirroring
Endpoint Using Windows Authentication
Using Windows Authentication for connecting the database mirroring endpoints of two
instances of SQL Server requires manual configuration of login accounts under the following
conditions:
• If the instances of SQL Server run as services under different domain accounts (in the same

or trusted domains), the login of each account must be created in master on each of the
remote server instances and that login must be granted CONNECT permissions on the
endpoint.

• If the instances of SQL Server run as the Network Service account, the login of the each host
computer account (DomainName\ComputerName$) must be created in master on each of
the remote server instances and that login must be granted CONNECT permissions on the
endpoint. This is because a server instance running under the Network Service account
authenticates using the domain account of the host computer.

Ensure that an endpoint exists for each of the server instances. For more information,
see Create a Database Mirroring Endpoint for Windows Authentication (Transact-SQL).

Note

Note

http://msdn.microsoft.com/en-us/library/a760c16a-4d2d-43f2-be81-ae9315f38185(SQL.110)�
http://msdn.microsoft.com/en-us/library/fb163e47-1546-4682-abaa-8c9494e9ddc7(SQL.110)�
http://msdn.microsoft.com/en-us/library/87d3801b-dc52-419e-9316-8b1f1490946c(SQL.110)�

 458

Procedures

1. For the user account of each instance of SQL Server, create a login on the other
instances of SQL Server. Use a CREATE LOGIN statement with the FROM WINDOWS
clause.
For more information, see Create a Login (SQL Server Database Engine.

2. Also, to ensure that the login user has access to the endpoint, use the GRANT
statement to grant connect permissions on the endpoint to the login. Note that
granting connect permissions to the endpoint is unnecessary if the user is an
Administrator.
For more information, see Grant a Permission to a Principal.

Example

Description
The following Transact-SQL example creates a SQL Server login for a user account named
Otheruser that belongs to a domain called Adomain. The example then grants this user connect
permissions to a pre-existing database mirroring endpoint named Mirroring_Endpoint.

Code
USE master;

GO

CREATE LOGIN [Adomain\Otheruser] FROM WINDOWS;

GO

GRANT CONNECT on ENDPOINT::Mirroring_Endpoint TO [Adomain\Otheruser];

GO

See Also
Overview of AlwaysOn Availability Groups (SQL Server)
Database Mirroring
Transport Security for Database Mirroring and AlwaysOn Availability Groups (SQL Server)
The Database Mirroring Endpoint (SQL Server)

To configure logins for Windows Authentication

http://msdn.microsoft.com/en-us/library/eb737149-7c92-4552-946b-91085d8b1b01(SQL.110)�
http://msdn.microsoft.com/en-us/library/fb163e47-1546-4682-abaa-8c9494e9ddc7(SQL.110)�
http://msdn.microsoft.com/en-us/library/a760c16a-4d2d-43f2-be81-ae9315f38185(SQL.110)�
http://msdn.microsoft.com/en-us/library/4107389d-05b6-4aa3-9fa8-95b40cdf05dc(SQL.110)�
http://msdn.microsoft.com/en-us/library/a7f95ddc-5154-4ed5-8117-c9fcf2221f13(SQL.110)�

 459

Use Certificates for a Database Mirroring Endpoint
(Transact-SQL)
To enable certificate authentication for database mirroring on a given server instance, the
system administrator must configure each server instance to use certificates on both outbound
and inbound connections. Outbound connections must be configured first.

All mirroring connections on a server instance use a single database mirroring endpoint,
and you must specify the authentication method of the server instance when you create
the endpoint. Therefore, you can use only one form of authentication per server instance
for database mirroring.

Configuring Outbound Connections
Follow these steps on each server instance that you are configuring for database mirroring:
1. In the master database, create a database master key.
2. In the master database, create an encrypted certificate on the server instance.
3. Create an endpoint for the server instance using its certificate.
4. Back up the certificate to a file and securely copy it to the other system or systems.
You must complete these steps for each partner and the witness, if there is one.
For more information, see Database Mirroring Endpoint.

Configuring Inbound Connections
Next, follow these steps for each partner that you are configuring for database mirroring. In the
master database:
1. Create a login for the other system.
2. Create a user for that login.
3. Obtain the certificate for the mirroring endpoint of the other server instance.
4. Associate the certificate with the user created in step 2.
5. Grant CONNECT permission on the login for that mirroring endpoint.
If there is a witness, you must also set up inbound connections for it. This requires setting up
logins, users, and certificates for the witness on both of the partners, and vice versa.
For more information, see How to: Allow Database Mirroring to Use Certificates for Inbound
Connections (Transact-SQL).

Security
Unless you can guarantee that your network is secure, we recommend that you use encryption
for database mirroring connections. For more information, see The Database Mirroring
Endpoint.

Note

 460

When copying a certificate to another system, use a secure copy method. Be extremely careful
to keep all of your certificates secure.

See Also
How to: Create a Database Master Key
CREATE MASTER KEY (Transact-SQL)
Database Mirroring Transport Security
Security and Protection (Database Engine)
The Database Mirroring Endpoint

Allow a Database Mirroring Endpoint to Use Certificates for Outbound
Connections (Transact-SQL)
This topic describes the steps for configuring server instances to use certificates to authenticate
outbound connections for database mirroring. Outbound connection configuration must be
done before you can set up inbound connections.

All mirroring connections on a server instance use a single database mirroring endpoint,
and you must specify the authentication method of the server instance when you create
the endpoint.

The process of configuring outbound connections, involves the following general steps:
1. In the master database, create a database Master Key.
2. In the master database, create an encrypted certificate on the server instance.
3. Create an endpoint for the server instance using its certificate.
4. Back up the certificate to a file and securely copy it to the other system or systems.
You must complete these steps for each partner and the witness, if there is one.
The following procedure describes these steps in detail. For each step, the procedure provides
an example for configuring a server instance on a system named HOST_A. The accompanying
Example section demonstrates the same steps for another server instance on a system named
HOST_B.
Procedure

1. On the master database, create the database Master Key, if none exists. To view the
existing keys for a database, use the sys.symmetric_keys catalog view.
To create the database Master Key, use the following Transact-SQL command:

CREATE MASTER KEY ENCRYPTION BY PASSWORD =

'<1_Strong_Password!>';

Note

To configure server instances for outbound mirroring connections (On HOST_A)

http://msdn.microsoft.com/en-us/library/8cb24263-e97d-4e4d-9429-6cf494a4d5eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/1710a305-1a4f-48ec-836c-11ffd0356d76(SQL.110)�
http://msdn.microsoft.com/en-us/library/dfb39d16-722a-4734-94bb-98e61e014ee7(SQL.110)�
http://msdn.microsoft.com/en-us/library/d410eae1-3a52-45de-b9a1-52d2bd93a8eb(SQL.110)�

 461

GO

Use a unique, strong password, and record it in a safe place.
For more information, see CREATE MASTER KEY (Transact-SQL) and How to: Create a
Database Master Key.

2. In the master database, create an encrypted certificate on the server instance to use for
its outbound connections for database mirroring.
For example, to create a certificate for the HOST_A system.

Important
If you intend to use the certificate for more than one year, specify the expiry
date in UTC time by using the EXPIRY_DATE option in your CREATE CERTIFICATE
statement. Also, we recommend that you use SQL Server Management Studio
to create a Policy-Based Management rule to alert you when your certificates
are expiring. Using the Policy Management Create New Condition dialog box,
create this rule on the @ExpirationDate field of the Certificate facet. For more
information, see Administering Servers by Using Policy-Based Management
and Securing SQL Server.

USE master;

CREATE CERTIFICATE HOST_A_cert

 WITH SUBJECT = 'HOST_A certificate for database mirroring',

 EXPIRY_DATE = '11/30/2013';

GO

For more information, see CREATE CERTIFICATE (Transact-SQL).
To view the certificates in the master database, you can use the following Transact-SQL
statements:

USE master;

SELECT * FROM sys.certificates;

For more information, see sys.certificates (Transact-SQL).
3. Ensure that the database mirroring endpoint exist on each of the server instances.

If a database mirroring endpoint already exists for the server instance, you should reuse
that endpoint for any other sessions you establish on the server instance. To determine
whether a database mirroring endpoint exists on a server instance and to view its
configuration, use the following statement:

SELECT name, role_desc, state_desc, connection_auth_desc,

encryption_algorithm_desc

 FROM sys.database_mirroring_endpoints;

If no endpoint exists, create an endpoint that uses this certificate for outbound
connections and that uses the certificate's credentials for verification on the other

http://msdn.microsoft.com/en-us/library/1710a305-1a4f-48ec-836c-11ffd0356d76(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cb24263-e97d-4e4d-9429-6cf494a4d5eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/8cb24263-e97d-4e4d-9429-6cf494a4d5eb(SQL.110)�
http://msdn.microsoft.com/en-us/library/ef2a7b3b-614b-405d-a04a-2464a019df40(SQL.110)�
http://msdn.microsoft.com/en-us/library/4d93489e-e9bb-45b3-8354-21f58209965d(SQL.110)�
http://msdn.microsoft.com/en-us/library/a4274b2b-4cb0-446a-a956-1c8e6587515d(SQL.110)�
http://msdn.microsoft.com/en-us/library/e5046102-a65c-401e-b80d-05636884dec9(SQL.110)�

 462

system. This is a server-wide endpoint that is used by all mirroring sessions in which the
server instance participates.
For example, to create a mirroring endpoint for the example server instance on
HOST_A.

CREATE ENDPOINT Endpoint_Mirroring

 STATE = STARTED

 AS TCP (

 LISTENER_PORT=7024

 , LISTENER_IP = ALL

)

 FOR DATABASE_MIRRORING (

 AUTHENTICATION = CERTIFICATE HOST_A_cert

 , ENCRYPTION = REQUIRED ALGORITHM AES

 , ROLE = ALL

);

GO

For more information, see CREATE ENDPOINT (Transact-SQL).
4. Back up the certificate and copy it to the other system or systems. This is necessary in

order to configure inbound connections on the other system.

BACKUP CERTIFICATE HOST_A_cert TO FILE = 'C:\HOST_A_cert.cer';

GO

For more information, see BACKUP CERTIFICATE (Transact-SQL).
Copy this certificate using any secure method you choose. Be extremely careful to keep
all of your certificates secure.

The example code in the preceding steps configure outbound connections on HOST_A.
You now need to perform the equivalent outbound steps for HOST_B. These steps are
illustrated in the following Example section.

Example
Description
The following example demonstrates configuring HOST_B for outbound connections.
Code
USE master;

--Create the database Master Key, if needed.

CREATE MASTER KEY ENCRYPTION BY PASSWORD = '<Strong_Password_#2>';

GO

http://msdn.microsoft.com/en-us/library/6405e7ec-0b5b-4afd-9792-1bfa5a2491f6(SQL.110)�
http://msdn.microsoft.com/en-us/library/509b9462-819b-4c45-baae-3d2d90d14a1c(SQL.110)�

 463

-- Make a certifcate on HOST_B server instance.

CREATE CERTIFICATE HOST_B_cert

 WITH SUBJECT = 'HOST_B certificate for database mirroring',

 EXPIRY_DATE = '11/30/2013';

GO

--Create a mirroring endpoint for the server instance on HOST_B.

CREATE ENDPOINT Endpoint_Mirroring

 STATE = STARTED

 AS TCP (

 LISTENER_PORT=7024

 , LISTENER_IP = ALL

)

 FOR DATABASE_MIRRORING (

 AUTHENTICATION = CERTIFICATE HOST_B_cert

 , ENCRYPTION = REQUIRED ALGORITHM AES

 , ROLE = ALL

);

GO

--Backup HOST_B certificate.

BACKUP CERTIFICATE HOST_B_cert TO FILE = 'C:\HOST_B_cert.cer';

GO

--Using any secure copy method, copy C:\HOST_B_cert.cer to HOST_A.

Comments
Copy the certificate to the other system using any secure method you choose. Be extremely
careful to keep all of your certificates secure.

After you set up outbound connections, you must configure inbound connections on
each server instance for the other server instance or instances. For more information,
see How to: Allow Database Mirroring to Use Certificates for Inbound Connections
(Transact-SQL).

For information on creating a mirror database, including a Transact-SQL example, see Prepare a
Mirror Database for Mirroring (SQL Server).
For a Transact-SQL example of establishing a high-performance mode session, see Example:
Setting Up Database Mirroring Using Certificates.
Security

Important

http://msdn.microsoft.com/en-us/library/8676f9d8-c451-419b-b934-786997d46c2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/8676f9d8-c451-419b-b934-786997d46c2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/8676f9d8-c451-419b-b934-786997d46c2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/df489ecd-deee-465c-a26a-6d1bef6d7b66(SQL.110)�
http://msdn.microsoft.com/en-us/library/df489ecd-deee-465c-a26a-6d1bef6d7b66(SQL.110)�

 464

Unless you can guarantee that your network is secure, we recommend that you use encryption
for database mirroring connections.
When copying a certificate to another system, use a secure copy method.
See Also
Choosing an Encryption Algorithm
Prepare a Mirror Database for Mirroring (SQL Server)
ALTER ENDPOINT (Transact-SQL)
Example: Setting Up Database Mirroring Using Certificates
The Database Mirroring Endpoint
Troubleshooting Database Mirroring Setup
Setting up an Encrypted Mirror Database

Allow a Database Mirroring Endpoint to Use Certificates for Inbound
Connections (Transact-SQL)
This topic describes the steps for configuring server instances to use certificates to authenticate
inbound connections for database mirroring. Before you can set up inbound connections, you
must configure outbound connections on each server instance. For more information, see How
to: Allow Database Mirroring to Use Certificates for Outbound Connections (Transact-SQL).
The process of configuring inbound connections, involves the following general steps:
1. Create a login for other system.
2. Create a user for that login.
3. Obtain the certificate for the mirroring endpoint of the other server instance.
4. Associate the certificate with the user created in step 2.
5. Grant CONNECT permission on the login for that mirroring endpoint.
If there is a witness, you must also set up inbound connections for it. This requires setting up
logins, users, and certificates for the witness on both of the partners, and vice versa.
The following procedure describes these steps in detail. For each step, the procedure provides
an example for configuring a server instance on a system named HOST_A. The accompanying
Example section demonstrates the same steps for another server instance on a system named
HOST_B.
Procedures

1. Create a login for the other system.
The following example creates a login for the system, HOST_B, in the master database
of the server instance on HOST_A; in this example, the login is named HOST_B_login.
Substitute a password of your own for the sample password.

To configure server instances for inbound mirroring connections (on HOST_A)

http://msdn.microsoft.com/en-us/library/8227028c-a9c9-489d-bd27-fbf8242634ae(SQL.110)�
http://msdn.microsoft.com/en-us/library/8676f9d8-c451-419b-b934-786997d46c2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/70f35566-30cf-47c6-8394-dfe5d71629d3(SQL.110)�
http://msdn.microsoft.com/en-us/library/df489ecd-deee-465c-a26a-6d1bef6d7b66(SQL.110)�
http://msdn.microsoft.com/en-us/library/87d3801b-dc52-419e-9316-8b1f1490946c(SQL.110)�
http://msdn.microsoft.com/en-us/library/7329a575-be29-46e0-abc6-1344db37920c(SQL.110)�

 465

USE master;

CREATE LOGIN HOST_B_login

 WITH PASSWORD = '1Sample_Strong_Password!@#';

GO

For more information, see CREATE LOGIN (Transact-SQL).
To view the logins on this server instance, you can use the following Transact-SQL
statement:

SELECT * FROM sys.server_principals

For more information, see sys.server_principals (Transact-SQL).
2. Create a user for that login.

The following example creates a user, HOST_B_user, for the login created in the
preceding step.

USE master;

CREATE USER HOST_B_user FOR LOGIN HOST_B_login;

GO

For more information, see CREATE USER (Transact-SQL).
To view the users on this server instance, you can use the following Transact-SQL
statement:

SELECT * FROM sys.sysusers;

For more information, see sys.sysusers (Transact-SQL).
3. Obtain the certificate for the mirroring endpoint of the other server instance.

If you have not already done so when configuring outbound connections, obtain a
copy of the certificate for the mirroring endpoint of the remote server instance. To do
this, back up the certificate on that server instance as described in How to: Allow
Database Mirroring to Use Certificates for Outbound Connections (Transact-SQL).
When copying a certificate to another system, use a secure copy method. Be extremely
careful to keep all of your certificates secure.
For more information, see BACKUP CERTIFICATE (Transact-SQL).

4. Associate the certificate with the user created in step 2.
The following example, associates the certificate of HOST_B with its user on HOST_A.
USE master;

CREATE CERTIFICATE HOST_B_cert

 AUTHORIZATION HOST_B_user

 FROM FILE = 'C:\HOST_B_cert.cer'

GO

For more information, see CREATE CERTIFICATE (Transact-SQL).

http://msdn.microsoft.com/en-us/library/eb737149-7c92-4552-946b-91085d8b1b01(SQL.110)�
http://msdn.microsoft.com/en-us/library/c5dbe0d8-a1c8-4dc4-b9b1-22af20effd37(SQL.110)�
http://msdn.microsoft.com/en-us/library/01de7476-4b25-4d58-85b7-1118fe64aa80(SQL.110)�
http://msdn.microsoft.com/en-us/library/5f0e6a8d-c983-44f6-97e9-aab5bff67d18(SQL.110)�
http://msdn.microsoft.com/en-us/library/509b9462-819b-4c45-baae-3d2d90d14a1c(SQL.110)�
http://msdn.microsoft.com/en-us/library/a4274b2b-4cb0-446a-a956-1c8e6587515d(SQL.110)�

 466

To view the certificates on this server instance, use the following Transact-SQL
statement:

SELECT * FROM sys.certificates

For more information, see sys.certificates (Transact-SQL).
5. Grant CONNECT permission on the login for the remote mirroring endpoint.

For example, to grant permission on HOST_A to the remote server instance on HOST_B
to connect to its local login—that is, to connect to HOST_B_login—use the following
Transact-SQL statements:

USE master;

GRANT CONNECT ON ENDPOINT::Endpoint_Mirroring TO [HOST_B_login];

GO

For more information, see GRANT Endpoint Permissions (Transact-SQL).
This completes setting up certificate authentication for HOST_B to log in to HOST_A.
You now need to perform the equivalent inbound steps for HOST_A on HOST_B. These
steps are illustrated in the inbound portion of the example in the Example section, below.

Example
Description
The following example demonstrates configuring HOST_B for inbound connections.

This example uses a certificate file containing the HOST_A certificate that is created by a
code snippet in How to: Allow Database Mirroring to Use Certificates for Outbound
Connections (Transact-SQL).

Code
USE master;

--On HOST_B, create a login for HOST_A.

CREATE LOGIN HOST_A_login WITH PASSWORD = 'AStrongPassword!@#';

GO

--Create a user, HOST_A_user, for that login.

CREATE USER HOST_A_user FOR LOGIN HOST_A_login

GO

--Obtain HOST_A certificate. (See the note

-- preceding this example.)

--Asscociate this certificate with the user, HOST_A_user.

CREATE CERTIFICATE HOST_A_cert

 AUTHORIZATION HOST_A_user

Note

http://msdn.microsoft.com/en-us/library/e5046102-a65c-401e-b80d-05636884dec9(SQL.110)�
http://msdn.microsoft.com/en-us/library/9eda885c-fc3a-4c9d-8de6-ce07fb35a934(SQL.110)�

 467

 FROM FILE = 'C:\HOST_A_cert.cer';

GO

--Grant CONNECT permission for the server instance on HOST_A.

GRANT CONNECT ON ENDPOINT::Endpoint_Mirroring TO HOST_A_login

GO

Comments
If you intend to run in high-safety mode with automatic failover, you must repeat the same set
up steps to configure the witness for outbound and inbound connections.
For information on creating a mirror database, including a Transact-SQL example, see Prepare a
Mirror Database for Mirroring (SQL Server).
For a Transact-SQL example of establishing a high-performance mode session, see Example:
Setting Up Database Mirroring Using Certificates.
Security
When copying a certificate to another system, use a secure copy method. Be extremely careful
to keep all of your certificates secure.
See Also
Database Mirroring Transport Security
GRANT Endpoint Permissions (Transact-SQL)
Setting up an Encrypted Mirror Database
The Database Mirroring Endpoint
Troubleshooting Database Mirroring Setup

http://msdn.microsoft.com/en-us/library/8676f9d8-c451-419b-b934-786997d46c2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/8676f9d8-c451-419b-b934-786997d46c2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/df489ecd-deee-465c-a26a-6d1bef6d7b66(SQL.110)�
http://msdn.microsoft.com/en-us/library/df489ecd-deee-465c-a26a-6d1bef6d7b66(SQL.110)�
http://msdn.microsoft.com/en-us/library/9eda885c-fc3a-4c9d-8de6-ce07fb35a934(SQL.110)�
http://msdn.microsoft.com/en-us/library/7329a575-be29-46e0-abc6-1344db37920c(SQL.110)�
http://msdn.microsoft.com/en-us/library/87d3801b-dc52-419e-9316-8b1f1490946c(SQL.110)�

	Cover
	Contents
	High Availability Solutions
	Windows Server Failover Clustering (WSFC) with SQL Server
	WSFC Quorum Modes and Voting Configuration
	View Cluster Quorum NodeWeight Settings
	Configure Cluster Quorum NodeWeight Settings

	WSFC Disaster Recovery through Forced Quorum
	Force a WSFC Cluster to Start Without a Quorum

	SQL Server Multi-Subnet Clustering

	AlwaysOn Failover Cluster Instances
	Failover Policy for Failover Cluster Instances
	Configure HealthCheckTimeout Property Settings
	Configure FailureConditionLevel Property Settings
	View and Read Failover Cluster Instance Diagnostics Log

	Failover Cluster Instance Administration and Maintenance
	Add Dependencies to a SQL Server Resource
	Recover from Failover Cluster Instance Failure
	Change the IP Address of a Failover Cluster Instance

	AlwaysOn Availability Groups
	Prerequisites, Restrictions, and Recommendations for AlwaysOn Availability Groups
	Failover Clustering and AlwaysOn Availability Groups
	Getting Started with AlwaysOn Availability Groups
	Overview of AlwaysOn Availability Groups
	Availability Modes (AlwaysOn Availability Groups)
	Failover and Failover Modes (AlwaysOn Availability Groups)
	Active Secondaries: Backup on Secondary Replicas (AlwaysOn Availability Groups)
	Active Secondaries: Readable Secondary Replicas (AlwaysOn Availability Groups)
	Availability Group Listeners, Client Connectivity, and Application Failover
	Overview of Transact-SQL Statements for AlwaysOn Availability Groups
	Overview of PowerShell Cmdlets for AlwaysOn Availability Groups

	Configuration of a Server Instance for AlwaysOn Availability Groups
	Enable and Disable AlwaysOn Availability Groups
	Create a Database Mirroring Endpoint for AlwaysOn Availability Groups (SQL Server PowerShell)
	Troubleshoot AlwaysOn Availability Groups Configuration

	Creation and Configuration of Availability Groups
	Use the New Availability Group Wizard (SQL Server Management Studio)
	Use the New Availability Group Dialog Box (SQL Server Management Studio)
	Create an Availability Group (Transact-SQL)
	Create an Availability Group (SQL Server PowerShell)
	Specify the Endpoint URL When Adding or Modifying an Availability Replica
	Join a Secondary Replica to an Availability Group
	Start Data Movement on an AlwaysOn Secondary Database
	Management of Logins and Jobs for the Databases of an Availability Group
	Troubleshoot AlwaysOn Availability Groups Configuration

	Administration of an Availability Group
	Perform a Planned Manual Failover of an Availability Group
	Perform a Forced Manual Failover of an Availability Group
	Use the Fail Over Availability Group Wizard (SQL Server Management Studio)
	Add a Database to an Availability Group
	Suspend an Availability Database
	Resume an Availability Database
	Remove a Secondary Database from an Availability Group
	Remove a Primary Database from an Availability Group
	Add a Secondary Replica to an Availability Group
	Change the Session-Timeout Period for an Availability Replica
	Remove a Secondary Replica from an Availability Group
	Remove an Availability Group Listener
	Remove an Availability Group
	Troubleshoot a Failed Add-File Operation (AlwaysOn Availability Groups)

	AlwaysOn Policies for Operational Issues with AlwaysOn Availability Groups
	Use AlwaysOn Policies to View the Health of an Availability Group
	Use the AlwaysOn Dashboard (SQL Server Management Studio)
	WSFC cluster service is offline
	Availability group is offline
	Availability group is not ready for automatic failover
	Some availability replicas are not synchronizing data
	Some synchronous replicas are not synchronized
	Some availability replicas do not have a healthy role
	Some availability replicas are disconnected
	Availability replica does not have a healthy role
	Availability replica is disconnected
	Data synchronization state of availability database is not healthy
	Availability replica is not joined
	Availability database is suspended
	Secondary database is not joined
	Data synchronization state of some availability database is not healthy

	Monitoring of Availability Groups
	Monitor Availability Groups (Transact-SQL)
	Use the Object Explorer Details to Monitor Availability Groups (SQL Server Management Studio)
	View Availability Group Properties
	View Availability Replica Properties
	View Availability Group Listener Properties

	AlwaysOn Availability Groups: Interoperability
	Contained Databases with AlwaysOn Availability Groups
	Cross-Database Transactions Not Supported For Database Mirroring or AlwaysOn Availability Groups
	Database Snapshots with AlwaysOn Availability Groups
	Encrypted Databases with AlwaysOn Availability Groups
	FILESTREAM and FileTable with AlwaysOn Availability Groups
	Prerequisites for Migrating from Log Shipping to AlwaysOn Availability Groups
	Configure Replication for AlwaysOn Availability Groups
	Maintaining an AlwaysOn Publication Database
	Replication Subscribers and AlwaysOn
	Replication, Change Tracking, Change Data Capture, and AlwaysOn Availability Groups
	Analysis Services with AlwaysOn Availability Groups
	Reporting Services with AlwaysOn Availability Groups
	Service Broker with AlwaysOn Availability Groups

	The Database Mirroring Endpoint
	Transport Security for Database Mirroring and AlwaysOn Availability Groups
	Create a Database Mirroring Endpoint for Windows Authentication (Transact-SQL)
	Set Up Login Accounts for Database Mirroring or AlwaysOn Availability Groups
	Allow Network Access to a Database Mirroring Endpoint Using Windows Authentication
	Use Certificates for a Database Mirroring Endpoint (Transact-SQL)
	Allow a Database Mirroring Endpoint to Use Certificates for Outbound Connections (Transact-SQL)
	Allow a Database Mirroring Endpoint to Use Certificates for Inbound Connections (Transact- SQL)

