

1

Getting Started with Entity

Framework 6 Code First using MVC 5
Tom Dykstra, Rick Anderson

Summary: The Contoso University sample web application demonstrates how to create

ASP.NET MVC 5 applications using the Entity Framework 6, Code First workflow. This

tutorial shows how to build the application using Visual Studio 2013.

Category: Step-by-Step, Guide

Applies to: Entity Framework 6, MVC 5, Visual Studio 2013

Source: ASP.NET (http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-

mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application)

E-book publication date: April, 2014

For more titles, visit the E-Book Gallery for Microsoft

Technologies.

http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
http://social.technet.microsoft.com/wiki/contents/articles/11608.e-book-gallery-for-microsoft-technologies.aspx
http://social.technet.microsoft.com/wiki/contents/articles/11608.e-book-gallery-for-microsoft-technologies.aspx

2

Copyright © 2014 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means

without the written permission of the publisher.

Microsoft and the trademarks listed at

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the

Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events

depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,

logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any

express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors

will be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

3

Table of Contents

Contents
Creating an Entity Framework Data Model ... 9

Introduction .. 9

Software versions used in the tutorial ... 9

Tutorial versions ... 9

Questions and comments .. 9

The Contoso University Web Application .. 10

Prerequisites .. 11

Create an MVC Web Application ... 12

Set Up the Site Style .. 13

Install Entity Framework 6 .. 17

Create the Data Model .. 17

The Student Entity .. 18

The Enrollment Entity .. 19

The Course Entity ... 20

Create the Database Context ... 21

Specifying entity sets ... 22

Specifying the connection string .. 22

Specifying singular table names... 22

Set up EF to initialize the database with test data ... 23

Set up EF to use a SQL Server Express LocalDB database .. 26

Creating a Student Controller and Views ... 26

View the Database ... 31

Conventions ... 33

Summary .. 33

Implementing Basic CRUD Functionality with the Entity Framework in ASP.NET MVC Application 34

Create a Details Page .. 37

Route data .. 38

Update the Create Page .. 41

Update the Edit HttpPost Page .. 46

Entity States and the Attach and SaveChanges Methods .. 47

4

Updating the Delete Page ... 50

Ensuring that Database Connections Are Not Left Open ... 53

Handling Transactions ... 54

Summary .. 54

Sorting, Filtering, and Paging with the Entity Framework in an ASP.NET MVC Application 55

Add Column Sort Links to the Students Index Page ... 56

Add Sorting Functionality to the Index Method .. 56

Add Column Heading Hyperlinks to the Student Index View .. 58

Add a Search Box to the Students Index Page ... 60

Add Filtering Functionality to the Index Method .. 60

Add a Search Box to the Student Index View... 62

Add Paging to the Students Index Page .. 63

Install the PagedList.MVC NuGet Package ... 64

Add Paging Functionality to the Index Method ... 65

Add Paging Links to the Student Index View .. 67

Create an About Page That Shows Student Statistics ... 71

Create the View Model ... 71

Modify the Home Controller .. 72

Modify the About View... 73

Summary .. 74

Connection Resiliency and Command Interception with the Entity Framework in an ASP.NET MVC

Application.. 75

Enable connection resiliency .. 75

Enable Command Interception.. 77

Create a logging interface and class .. 77

Create interceptor classes ... 80

Test logging and connection resiliency .. 86

Summary .. 91

Code First Migrations and Deployment with the Entity Framework in an ASP.NET MVC Application ... 92

Enable Code First Migrations .. 92

Set up the Seed Method .. 96

Execute the First Migration ... 101

Deploy to Windows Azure .. 103

5

Using Code First Migrations to Deploy the Database .. 103

Get a Windows Azure account ... 103

Create a web site and a SQL database in Windows Azure ... 103

Deploy the application to Windows Azure.. 107

Advanced Migrations Scenarios .. 122

Code First Initializers ... 122

Summary .. 123

Creating a More Complex Data Model for an ASP.NET MVC Application .. 124

Customize the Data Model by Using Attributes ... 125

The DataType Attribute ... 126

The StringLengthAttribute .. 128

The Column Attribute .. 130

Complete Changes to the Student Entity .. 132

The Required Attribute .. 133

The Display Attribute ... 134

The FullName Calculated Property .. 134

Create the Instructor Entity .. 134

The Courses and OfficeAssignment Navigation Properties .. 135

Create the OfficeAssignment Entity .. 136

The Key Attribute ... 137

The ForeignKey Attribute .. 137

The Instructor Navigation Property ... 137

Modify the Course Entity ... 138

The DatabaseGenerated Attribute .. 139

Foreign Key and Navigation Properties .. 139

Create the Department Entity ... 139

The Column Attribute .. 140

Foreign Key and Navigation Properties .. 141

Modify the Enrollment Entity .. 141

Foreign Key and Navigation Properties .. 142

Many-to-Many Relationships ... 142

Entity Diagram Showing Relationships .. 145

Customize the Data Model by adding Code to the Database Context.. 147

6

Seed the Database with Test Data ... 148

Add a Migration and Update the Database .. 154

Summary .. 157

Reading Related Data with the Entity Framework in an ASP.NET MVC Application 158

Lazy, Eager, and Explicit Loading of Related Data .. 160

Performance considerations ... 161

Disable lazy loading before serialization ... 161

Create a Courses Page That Displays Department Name ... 162

Create an Instructors Page That Shows Courses and Enrollments ... 165

Create a View Model for the Instructor Index View ... 168

Create the Instructor Controller and Views ... 168

Modify the Instructor Index View ... 171

Adding Explicit Loading .. 178

Summary .. 179

Updating Related Data with the Entity Framework in an ASP.NET MVC Application 180

Customize the Create and Edit Pages for Courses .. 183

Adding an Edit Page for Instructors ... 191

Adding Course Assignments to the Instructor Edit Page .. 195

Update the DeleteConfirmed Method ... 205

Add office location and courses to the Create page ... 205

Handling Transactions ... 209

Summary .. 209

Async and Stored Procedures with the Entity Framework in an ASP.NET MVC Application 210

Why bother with asynchronous code .. 212

Create the Department controller ... 213

Use stored procedures for inserting, updating, and deleting .. 217

Deploy to Windows Azure .. 221

Summary .. 222

Handling Concurrency with the Entity Framework 6 in an ASP.NET MVC 5 Application (10 of 12) 223

Concurrency Conflicts .. 224

Pessimistic Concurrency (Locking) ... 225

Optimistic Concurrency ... 225

Detecting Concurrency Conflicts ... 228

7

Add an Optimistic Concurrency Property to the Department Entity... 229

Modify the Department Controller ... 230

Testing Optimistic Concurrency Handling ... 233

Updating the Delete Page ... 240

Summary .. 248

Implementing Inheritance with the Entity Framework 6 in an ASP.NET MVC 5 Application (11 of 12)249

Options for mapping inheritance to database tables ... 249

Create the Person class ... 251

Make Student and Instructor classes inherit from Person .. 252

Add the Person Entity Type to the Model .. 253

Create and Update a Migrations File .. 253

Testing .. 255

Deploy to Windows Azure .. 258

Summary .. 260

Advanced Entity Framework 6 Scenarios for an MVC 5 Web Application (12 of 12) 261

Performing Raw SQL Queries ... 263

Calling a Query that Returns Entities ... 264

Calling a Query that Returns Other Types of Objects .. 265

Calling an Update Query .. 267

No-Tracking Queries .. 273

Examining SQL sent to the database .. 278

Repository and unit of work patterns ... 283

Proxy classes .. 284

Automatic change detection ... 286

Automatic validation .. 286

Entity Framework Power Tools... 286

Entity Framework source code .. 289

Summary .. 289

Acknowledgments ... 289

VB ... 289

Common errors, and solutions or workarounds for them .. 289

Cannot create/shadow copy.. 290

Update-Database not recognized ... 290

8

Validation failed .. 290

HTTP 500.19 error .. 290

Error locating SQL Server instance .. 291

9

Creating an Entity Framework Data Model

Download Completed Project

Introduction

The Contoso University sample web application demonstrates how to create ASP.NET MVC 5

applications using the Entity Framework 6 and Visual Studio 2013. This tutorial uses the Code

First workflow. For information about how to choose between Code First, Database First, and

Model First, see Entity Framework Development Workflows.

The sample application is a web site for a fictional Contoso University. It includes functionality

such as student admission, course creation, and instructor assignments. This tutorial series

explains how to build the Contoso University sample application. You can download the

completed application.

Software versions used in the tutorial

 Visual Studio 2013

 .NET 4.5

 Entity Framework 6 (EntityFramework 6.1.0 NuGet package)

 Windows Azure SDK 2.2 (or later, for the optional Azure deployment steps)

The tutorial should also work with Visual Studio 2013 Express for Web or Visual Studio 2012.

The VS 2012 version of the Windows Azure SDK is required for Windows Azure deployment

with Visual Studio 2012.

Tutorial versions

For previous versions of this tutorial, see the EF 4.1 / MVC 3 e-book and Getting Started with

EF 5 using MVC 4.

Questions and comments

Please leave feedback on how you liked this tutorial and what we could improve in the

comments at the bottom of the pages in the version of this tutorial on the ASP.NET site. If you

have questions that are not directly related to the tutorial, you can post them to the ASP.NET

Entity Framework forum, the Entity Framework and LINQ to Entities forum, or

StackOverflow.com.

If you run into a problem you can’t resolve, you can generally find the solution to the problem by

comparing your code to the completed project that you can download. For some common errors

and how to solve them, see Common errors, and solutions or workarounds for them.

http://code.msdn.microsoft.com/ASPNET-MVC-Application-b01a9fe8
http://msdn.microsoft.com/en-us/library/ms178359.aspx#dbfmfcf
http://code.msdn.microsoft.com/ASPNET-MVC-Application-b01a9fe8
http://code.msdn.microsoft.com/ASPNET-MVC-Application-b01a9fe8
http://www.microsoft.com/visualstudio/eng/2013-downloads
http://go.microsoft.com/fwlink/p/?linkid=323510
http://www.microsoft.com/visualstudio/eng/2013-downloads#d-2013-express
http://go.microsoft.com/fwlink/p/?linkid=323511
http://social.technet.microsoft.com/wiki/contents/articles/11608.e-book-gallery-for-microsoft-technologies.aspx#GettingStartedwiththeEntityFramework4.1usingASP.NETMVC
http://www.asp.net/mvc/tutorials/getting-started-with-ef-5-using-mvc-4
http://www.asp.net/mvc/tutorials/getting-started-with-ef-5-using-mvc-4
http://forums.asp.net/1227.aspx
http://forums.asp.net/1227.aspx
http://social.msdn.microsoft.com/forums/en-US/adodotnetentityframework/threads/
http://stackoverflow.com/
http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/advanced-entity-framework-scenarios-for-an-mvc-web-application#errors

10

The Contoso University Web Application

The application you'll be building in these tutorials is a simple university web site.

Users can view and update student, course, and instructor information. Here are a few of the

screens you'll create.

11

The UI style of this site has been kept close to what's generated by the built-in templates, so that

the tutorial can focus mainly on how to use the Entity Framework.

Prerequisites

See Software Versions at the top of the chapter. Entity Framework 6 is not a prerequisite

because you install the EF NuGet package is part of the tutorial.

12

Create an MVC Web Application

Open Visual Studio and create a new C# Web project named "ContosoUniversity".

In the New ASP.NET Project dialog box select the MVC template.

Click Change Authentication.

13

In the Change Authentication dialog box, select No Authentication, and then click OK. For

this tutorial you won't be requiring users to log on or restricting access based on who's logged on.

Back in the New ASP.NET Project dialog box, click OK to create the project.

Set Up the Site Style

14

A few simple changes will set up the site menu, layout, and home page.

Open Views\Shared_Layout.cshtml, and make the following changes:

 Change each occurrence of "My ASP.NET Application" and "Application name" to

"Contoso University".

 Add menu entries for Students, Courses, Instructors, and Departments.

The changes are highlighted.

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8" />

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>@ViewBag.Title - Contoso University</title>

 @Styles.Render("~/Content/css")

 @Scripts.Render("~/bundles/modernizr")

</head>

<body>

 <div class="navbar navbar-inverse navbar-fixed-top">

 <div class="navbar-inner">

 <div class="container">

 <button type="button" class="btn btn-navbar" data-

toggle="collapse" data-target=".nav-collapse">

 </button>

 @Html.ActionLink("Contoso University", "Index", "Home", null,

new { @class = "brand" })

 <div class="nav-collapse collapse">

 <ul class="nav">

 @Html.ActionLink("Home", "Index", "Home")

 @Html.ActionLink("About", "About", "Home")

 @Html.ActionLink("Students", "Index",

"Student")

 @Html.ActionLink("Courses", "Index",

"Course")

 @Html.ActionLink("Instructors", "Index",

"Instructor")

 @Html.ActionLink("Departments", "Index",

"Department")

 </div>

 </div>

 </div>

 </div>

 <div class="container">

 @RenderBody()

 <hr />

 <footer>

 <p>© @DateTime.Now.Year - Contoso University</p>

15

 </footer>

 </div>

 @Scripts.Render("~/bundles/jquery")

 @Scripts.Render("~/bundles/bootstrap")

 @RenderSection("scripts", required: false)

</body>

</html>

In Views\Home\Index.cshtml, replace the contents of the file with the following code to replace

the text about ASP.NET and MVC with text about this application:

@{

 ViewBag.Title = "Home Page";

}

<div class="jumbotron">

 <h1>Contoso University</h1>

</div>

<div class="row">

 <div class="col-md-4">

 <h2>Welcome to Contoso University</h2>

 <p>Contoso University is a sample application that

 demonstrates how to use Entity Framework 6 in an

 ASP.NET MVC 5 web application.</p>

 </div>

 <div class="col-md-4">

 <h2>Build it from scratch</h2>

 <p>You can build the application by following the steps in the

tutorial series on the ASP.NET site.</p>

 <p><a class="btn btn-default"

href="http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-

mvc/">See the tutorial »</p>

 </div>

 <div class="col-md-4">

 <h2>Download it</h2>

 <p>You can download the completed project from the Microsoft Code

Gallery.</p>

 <p><a class="btn btn-default"

href="http://code.msdn.microsoft.com/ASPNET-MVC-Application-

b01a9fe8">Download »</p>

 </div>

</div>

Press CTRL+F5 to run the site. You see the home page with the main menu.

16

17

Install Entity Framework 6

From the Tools menu click Library Package Manager and then click Package Manager

Console.

In the Package Manager Console window enter the following command:

Install-Package EntityFramework

The image shows 6.0.0 being installed, but NuGet will install the latest version of Entity

Framework (excluding pre-release versions), which as of the most recent update to the tutorial is

6.1.0.

This step is one of a few steps that this tutorial has you do manually, but which could have been

done automatically by the ASP.NET MVC scaffolding feature. You're doing them manually so

that you can see the steps required to use the Entity Framework. You'll use scaffolding later to

create the MVC controller and views. An alternative is to let scaffolding automatically install the

EF NuGet package, create the database context class, and create the connection string. When

you're ready to do it that way, all you have to do is skip those steps and scaffold your MVC

controller after you create your entity classes.

Create the Data Model

Next you'll create entity classes for the Contoso University application. You'll start with the

following three entities:

18

There's a one-to-many relationship between Student and Enrollment entities, and there's a one-

to-many relationship between Course and Enrollment entities. In other words, a student can be

enrolled in any number of courses, and a course can have any number of students enrolled in it.

In the following sections you'll create a class for each one of these entities.

Note If you try to compile the project before you finish creating all of these entity classes, you'll

get compiler errors.

The Student Entity

In the Models folder, create a class file named Student.cs and replace the template code with the

following code:

using System;

using System.Collections.Generic;

namespace ContosoUniversity.Models

{

 public class Student

 {

 public int ID { get; set; }

 public string LastName { get; set; }

19

 public string FirstMidName { get; set; }

 public DateTime EnrollmentDate { get; set; }

 public virtual ICollection<Enrollment> Enrollments { get; set; }

 }

}

The ID property will become the primary key column of the database table that corresponds to

this class. By default, the Entity Framework interprets a property that's named ID or classnameID

as the primary key.

The Enrollments property is a navigation property. Navigation properties hold other entities

that are related to this entity. In this case, the Enrollments property of a Student entity will

hold all of the Enrollment entities that are related to that Student entity. In other words, if a

given Student row in the database has two related Enrollment rows (rows that contain that

student's primary key value in their StudentID foreign key column), that Student entity's

Enrollments navigation property will contain those two Enrollment entities.

Navigation properties are typically defined as virtual so that they can take advantage of certain

Entity Framework functionality such as lazy loading. (Lazy loading will be explained later, in the

Reading Related Data tutorial later in this series.)

If a navigation property can hold multiple entities (as in many-to-many or one-to-many

relationships), its type must be a list in which entries can be added, deleted, and updated, such as

ICollection.

The Enrollment Entity

In the Models folder, create Enrollment.cs and replace the existing code with the following code:

namespace ContosoUniversity.Models

{

 public enum Grade

 {

 A, B, C, D, F

 }

20

 public class Enrollment

 {

 public int EnrollmentID { get; set; }

 public int CourseID { get; set; }

 public int StudentID { get; set; }

 public Grade? Grade { get; set; }

 public virtual Course Course { get; set; }

 public virtual Student Student { get; set; }

 }

}

The EnrollmentID property will be the primary key; this entity uses the classnameID pattern

instead of ID by itself as you saw in the Student entity. Ordinarily you would choose one pattern

and use it throughout your data model. Here, the variation illustrates that you can use either

pattern. In a later tutorial, you'll you'll see how using ID without classname makes it easier to

implement inheritance in the data model.

The Grade property is an enum. The question mark after the Grade type declaration indicates

that the Grade property is nullable. A grade that's null is different from a zero grade — null

means a grade isn't known or hasn't been assigned yet.

The StudentID property is a foreign key, and the corresponding navigation property is Student.

An Enrollment entity is associated with one Student entity, so the property can only hold a

single Student entity (unlike the Student.Enrollments navigation property you saw earlier,

which can hold multiple Enrollment entities).

The CourseID property is a foreign key, and the corresponding navigation property is Course.

An Enrollment entity is associated with one Course entity.

Entity Framework interprets a property as a foreign key property if it's named <navigation

property name><primary key property name> (for example, StudentID for the Student

navigation property since the Student entity's primary key is ID). Foreign key properties can

also be named the same simply <primary key property name> (for example, CourseID since the

Course entity's primary key is CourseID).

The Course Entity

http://msdn.microsoft.com/en-us/data/hh859576.aspx
http://msdn.microsoft.com/en-us/library/2cf62fcy.aspx

21

In the Models folder, create Course.cs, replacing the template code with the following code:

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models

{

 public class Course

 {

 [DatabaseGenerated(DatabaseGeneratedOption.None)]

 public int CourseID { get; set; }

 public string Title { get; set; }

 public int Credits { get; set; }

 public virtual ICollection<Enrollment> Enrollments { get; set; }

 }

}

The Enrollments property is a navigation property. A Course entity can be related to any

number of Enrollment entities.

We'll say more about the DatabaseGenerated attribute in a later tutorial in this series. Basically,

this attribute lets you enter the primary key for the course rather than having the database

generate it.

Create the Database Context

The main class that coordinates Entity Framework functionality for a given data model is the

database context class. You create this class by deriving from the System.Data.Entity.DbContext

class. In your code you specify which entities are included in the data model. You can also

customize certain Entity Framework behavior. In this project, the class is named

SchoolContext.

To create a folder in the ContosoUniversity project, right-click the project in Solution Explorer

and click Add, and then click New Folder. Name the new folder DAL (for Data Access Layer).

In that folder create a new class file named SchoolContext.cs, and replace the template code with

the following code:

using ContosoUniversity.Models;

using System.Data.Entity;

using System.Data.Entity.ModelConfiguration.Conventions;

namespace ContosoUniversity.DAL

{

 public class SchoolContext : DbContext

 {

 public SchoolContext() : base("SchoolContext")

 {

 }

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.schema.databasegeneratedattribute%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext%28v=VS.103%29.aspx

22

 public DbSet<Student> Students { get; set; }

 public DbSet<Enrollment> Enrollments { get; set; }

 public DbSet<Course> Courses { get; set; }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)

 {

modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();

 }

 }

}

Specifying entity sets

This code creates a DbSet property for each entity set. In Entity Framework terminology, an

entity set typically corresponds to a database table, and an entity corresponds to a row in the

table.

You could have omitted the DbSet<Enrollment> and DbSet<Course> statements and it would

work the same. The Entity Framework would include them implicitly because the Student entity

references the Enrollment entity and the Enrollment entity references the Course entity.

Specifying the connection string

The name of the connection string (which you'll add to the Web.config file later) is passed in to

the constructor.

public SchoolContext() : base("SchoolContext")

{

}

You could also pass in the connection string itself instead of the name of one that is stored in the

Web.config file. For more information about options for specifying the database to use, see

Entity Framework - Connections and Models.

If you don't specify a connection string or the name of one explicitly, Entity Framework assumes

that the connection string name is the same as the class name. The default connection string

name in this example would then be SchoolContext, the same as what you're specifying

explicitly.

Specifying singular table names

The modelBuilder.Conventions.Remove statement in the OnModelCreating method prevents

table names from being pluralized. If you didn't do this, the generated tables in the database

would be named Students, Courses, and Enrollments. Instead, the table names will be

Student, Course, and Enrollment. Developers disagree about whether table names should be

pluralized or not. This tutorial uses the singular form, but the important point is that you can

select whichever form you prefer by including or omitting this line of code.

http://msdn.microsoft.com/en-us/library/system.data.entity.dbset%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/data/jj592674
http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext.onmodelcreating%28v=vs.103%29.aspx

23

Set up EF to initialize the database with test data

The Entity Framework can automatically create (or drop and re-create) a database for you when

the application runs. You can specify that this should be done every time your application runs or

only when the model is out of sync with the existing database. You can also write a Seed method

that the Entity Framework automatically calls after creating the database in order to populate it

with test data.

The default behavior is to create a database only if it doesn't exist (and throw an exception if the

model has changed and the database already exists). In this section you'll specify that the

database should be dropped and re-created whenever the model changes. Dropping the database

causes the loss of all your data. This is generally OK during development, because the Seed

method will run when the database is re-created and will re-create your test data. But in

production you generally don't want to lose all your data every time you need to change the

database schema. Later you'll see how to handle model changes by using Code First Migrations

to change the database schema instead of dropping and re-creating the database.

In the DAL folder, create a new class file named SchoolInitializer.cs and replace the template

code with the

following code, which causes a database to be created when needed and loads test data into the

new database.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Web;

using System.Data.Entity;

using ContosoUniversity.Models;

namespace ContosoUniversity.DAL

{

 public class SchoolInitializer : System.Data.Entity.

DropCreateDatabaseIfModelChanges<SchoolContext>

 {

 protected override void Seed(SchoolContext context)

 {

 var students = new List<Student>

 {

 new

Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Pa

rse("2005-09-01")},

 new

Student{FirstMidName="Meredith",LastName="Alonso",EnrollmentDate=DateTime.Par

se("2002-09-01")},

 new

Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse(

"2003-09-01")},

 new

Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime.Par

se("2002-09-01")},

24

 new

Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2002-

09-01")},

 new

Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse

("2001-09-01")},

 new

Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse(

"2003-09-01")},

 new

Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse

("2005-09-01")}

 };

 students.ForEach(s => context.Students.Add(s));

 context.SaveChanges();

 var courses = new List<Course>

 {

 new Course{CourseID=1050,Title="Chemistry",Credits=3,},

 new Course{CourseID=4022,Title="Microeconomics",Credits=3,},

 new Course{CourseID=4041,Title="Macroeconomics",Credits=3,},

 new Course{CourseID=1045,Title="Calculus",Credits=4,},

 new Course{CourseID=3141,Title="Trigonometry",Credits=4,},

 new Course{CourseID=2021,Title="Composition",Credits=3,},

 new Course{CourseID=2042,Title="Literature",Credits=4,}

 };

 courses.ForEach(s => context.Courses.Add(s));

 context.SaveChanges();

 var enrollments = new List<Enrollment>

 {

 new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},

 new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},

 new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},

 new Enrollment{StudentID=2,CourseID=1045,Grade=Grade.B},

 new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},

 new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},

 new Enrollment{StudentID=3,CourseID=1050},

 new Enrollment{StudentID=4,CourseID=1050,},

 new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},

 new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},

 new Enrollment{StudentID=6,CourseID=1045},

 new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},

 };

 enrollments.ForEach(s => context.Enrollments.Add(s));

 context.SaveChanges();

 }

 }

}

The Seed method takes the database context object as an input parameter, and the code in the

method uses

that object to add new entities to the database. For each entity type, the code creates a collection

of new

entities, adds them to the appropriate DbSet property, and then saves the changes to the database.

It isn't

25

necessary to call the SaveChanges method after each group of entities, as is done here, but doing

that helps

you locate the source of a problem if an exception occurs while the code is writing to the

database.

To tell Entity Framework to use your initializer class, add an element to the entityFramework

element in the application Web.config file (the one in the root project folder), as shown in the

following example:

<entityFramework>

 <contexts>

 <context type="ContosoUniversity.DAL.SchoolContext, ContosoUniversity">

 <databaseInitializer type="ContosoUniversity.DAL.SchoolInitializer,

ContosoUniversity" />

 </context>

 </contexts>

 <defaultConnectionFactory

type="System.Data.Entity.Infrastructure.LocalDbConnectionFactory,

EntityFramework">

 <parameters>

 <parameter value="v11.0" />

 </parameters>

 </defaultConnectionFactory>

 <providers>

 <provider invariantName="System.Data.SqlClient"

type="System.Data.Entity.SqlServer.SqlProviderServices,

EntityFramework.SqlServer" />

 </providers>

</entityFramework>

The context type specifies the fully qualified context class name and the assembly it's in, and

the databaseinitializer type specifies the fully qualified name of the initializer class and

the assembly it's in. (When you don't want EF to use the initializer, you can set an attribute on

the context element: disableDatabaseInitialization="true".) For more information, see

Entity Framework - Config File Settings.

As an alternative to setting the initializer in the Web.config file is to do it in code by adding a

Database.SetInitializer statement to the Application_Start method in in the

Global.asax.cs file. For more information, see Understanding Database Initializers in Entity

Framework Code First.

The application is now set up so that when you access the database for the first time in a given

run of the

application, the Entity Framework compares the database to the model (your SchoolContext

and entity classes). If there's a difference, the application drops and re-creates the database.

Note: When you deploy an application to a production web server, you must remove or disable

code that drops and re-creates the database. You'll do that in a later tutorial in this series.

http://msdn.microsoft.com/en-us/data/jj556606
http://www.codeguru.com/csharp/article.php/c19999/Understanding-Database-Initializers-in-Entity-Framework-Code-First.htm
http://www.codeguru.com/csharp/article.php/c19999/Understanding-Database-Initializers-in-Entity-Framework-Code-First.htm

26

Set up EF to use a SQL Server Express LocalDB database

LocalDB is a lightweight version of the SQL Server Express Database Engine. It's easy to install

and configure, starts on demand, and runs in user mode. LocalDB runs in a special execution

mode of SQL Server Express that enables you to work with databases as .mdf files. You can put

LocalDB database files in the App_Data folder of a web project if you want to be able to copy

the database with the project. The user instance feature in SQL Server Express also enables you

to work with .mdf files, but the user instance feature is deprecated; therefore, LocalDB is

recommended for working with .mdf files. In Visual Studio 2012 and later versions, LocalDB is

installed by default with Visual Studio.

Typically SQL Server Express is not used for production web applications. LocalDB in

particular is not recommended for production use with a web application because it is not

designed to work with IIS.

In this tutorial you'll work with LocalDB. Open the application Web.config file and add a

connectionStrings element preceding the appSettings element, as shown in the following

example. (Make sure you update the Web.config file in the root project folder. There's also a

Web.config file is in the Views subfolder that you don't need to update.)

<connectionStrings>

 <add name="SchoolContext" connectionString="Data

Source=(LocalDb)\v11.0;Initial Catalog=ContosoUniversity1;Integrated

Security=SSPI;" providerName="System.Data.SqlClient"/>

</connectionStrings>

<appSettings>

 <add key="webpages:Version" value="3.0.0.0" />

 <add key="webpages:Enabled" value="false" />

 <add key="ClientValidationEnabled" value="true" />

 <add key="UnobtrusiveJavaScriptEnabled" value="true" />

</appSettings>

The connection string you've added specifies that Entity Framework will use a LocalDB database

named ContosoUniversity1.mdf. (The database doesn't exist yet; EF will create it.) If you wanted

the database to be created in your App_Data folder, you could add

AttachDBFilename=|DataDirectory|\ContosoUniversity1.mdf to the connection string.

For more information about connection strings, see SQL Server Connection Strings for

ASP.NET Web Applications.

You don't actually have to have a connection string in the Web.config file. If you don't supply a

connection string, Entity Framework will use a default one based on your context class. For more

information, see Code First to a New Database.

Creating a Student Controller and Views

Now you'll create a web page to display data, and the process of requesting the data will

automatically trigger

http://blogs.msdn.com/b/sqlexpress/archive/2011/07/12/introducing-localdb-a-better-sql-express.aspx
http://msdn.microsoft.com/en-us/library/jj653752.aspx
http://msdn.microsoft.com/en-us/library/jj653752.aspx
http://msdn.microsoft.com/en-us/data/jj193542

27

the creation of the database. You'll begin by creating a new controller. But before you do that,

build the project to make the model and context classes available to MVC controller scaffolding.

1. Right-click the Controllers folder in Solution Explorer, select Add, and then click New

Scaffolded Item.

2. In the Add Scaffold dialog box, select MVC 5 Controller with views, using Entity

Framework.

3. In the Add Controller dialog box, make the following selections and then click Add:

o Controller name: StudentController.

o Model class: Student (ContosoUniversity.Models). (If you don't see this option

in the drop-down list, build the project and try again.)

o Data context class: SchoolContext (ContosoUniversity.DAL).

o Leave the default values for the other fields.

28

When you click Add, the scaffolder creates a StudentController.cs file and a set of views

(.cshtml files) that work with the controller. In the future when you create projects that

use Entity Framework you can also take advantage of some additional functionality of the

scaffolder: just create your first model class, don't create a connection string, and then in

the Add Controller box specify new context class. The scaffolder will create your

DbContext class and your connection string as well as the controller and views.

4. Visual Studio opens the Controllers\StudentController.cs file. You see a class variable

has been created that instantiates a database context object:

private SchoolContext db = new SchoolContext();

The Index action method gets a list of students from the Students entity set by reading

the Students property of the database context instance:

 public ViewResult Index()

{

 return View(db.Students.ToList());

}

The Student\Index.cshtml view displays this list in a table:

<table>

 <tr>

29

 <th>

 @Html.DisplayNameFor(model => model.LastName)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.FirstMidName)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.EnrollmentDate)

 </th>

 <th></th>

 </tr>

@foreach (var item in Model) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.LastName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.FirstMidName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.EnrollmentDate)

 </td>

 <td>

 @Html.ActionLink("Edit", "Edit", new { id=item.ID }) |

 @Html.ActionLink("Details", "Details", new { id=item.ID })

|

 @Html.ActionLink("Delete", "Delete", new { id=item.ID })

 </td>

 </tr>

}

5. Press CTRL+F5 to run the project. (If you get a "Cannot create Shadow Copy" error,

close the browser and try again.)

Click the Students tab to see the test data that the Seed method inserted. Depending on

how narrow your browser window is, you'll see the Student tab link in the top address bar

or you'll have to click the upper right corner to see the link.

30

31

View the Database

When you ran the Students page and the application tried to access the database, EF saw that

there was no database and so it created one, then it ran the seed method to populate the database

with data.

You can use either Server Explorer or SQL Server Object Explorer (SSOX) to view the

database in Visual Studio. For this tutorial you'll use Server Explorer. (In Visual Studio Express

editions earlier than 2013, Server Explorer is called Database Explorer.)

1. Close the browser.

32

2. In Server Explorer, expand Data Connections, expand School Context

(ContosoUniversity), and then expand Tables to see the tables in your new database.

3. Right-click the Student table and click Show Table Data to see the columns that were

created and the rows that were inserted into the table.

33

4. Close the Server Explorer connection.

The ContosoUniversity1.mdf and .ldf database files are in the C:\Users\<yourusername>

folder.

Because you're using the DropCreateDatabaseIfModelChanges initializer, you could now

make a change to the Student class, run the application again, and the database would

automatically be re-created to match your change. For example, if you add an EmailAddress

property to the Student class, run the Students page again, and then look at the table again, you

will see a new EmailAddress column.

Conventions

The amount of code you had to write in order for the Entity Framework to be able to create a

complete database for you is minimal because of the use of conventions, or assumptions that the

Entity Framework makes. Some of them have already been noted or were used without your

being aware of them:

 The pluralized forms of entity class names are used as table names.

 Entity property names are used for column names.

 Entity properties that are named ID or classnameID are recognized as primary key

properties.

 A property is interpreted as a foreign key property if it's named <navigation property

name><primary key property name> (for example, StudentID for the Student

navigation property since the Student entity's primary key is ID). Foreign key properties

can also be named the same simply <primary key property name> (for example,

EnrollmentID since the Enrollment entity's primary key is EnrollmentID).

You've seen that conventions can be overridden. For example, you specified that table names

shouldn't be pluralized, and you'll see later how to explicitly mark a property as a foreign key

property. You'll learn more about conventions and how to override them in the Creating a More

Complex Data Model tutorial later in this series. For more information about conventions, see

Code First Conventions.

Summary

You've now created a simple application that uses the Entity Framework and SQL Server

Express LocalDB to store and display data. In the following tutorial you'll learn how to perform

basic CRUD (create, read, update, delete) operations.

.

http://msdn.microsoft.com/en-us/data/jj679962

34

Implementing Basic CRUD Functionality

with the Entity Framework in ASP.NET

MVC Application

In the previous tutorial you created an MVC application that stores and displays data using the

Entity Framework and SQL Server LocalDB. In this tutorial you'll review and customize the

CRUD (create, read, update, delete) code that the MVC scaffolding automatically creates for you

in controllers and views.

Note It's a common practice to implement the repository pattern in order to create an abstraction

layer between your controller and the data access layer. To keep these tutorials simple and

focused on teaching how to use the Entity Framework itself, they don't use repositories. For

information about how to implement repositories, see the ASP.NET Data Access Content Map.

In this tutorial, you'll create the following web pages:

http://www.asp.net/whitepapers/aspnet-data-access-content-map

35

36

37

Create a Details Page

The scaffolded code for the Students Index page left out the Enrollments property, because

that property holds a collection. In the Details page you'll display the contents of the collection

in an HTML table.

38

In Controllers\StudentController.cs, the action method for the Details view uses the Find

method to retrieve a single Student entity.
public ActionResult Details(int? id)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 Student student = db.Students.Find(id);

 if (student == null)

 {

 return HttpNotFound();

 }

 return View(student);

}

The key value is passed to the method as the id parameter and comes from route data in the

Details hyperlink on the Index page.

Route data

Route data is data that the model binder found in a URL segment specified in the routing table.

For example, the default route specifies controller, action, and id segments:

 routes.MapRoute(

 name: "Default",

 url: "{controller}/{action}/{id}",

 defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional }

);

In the following URL, the default route maps Instructor as the controller, Index as the

action and 1 as the id; these are route data values.

http://localhost:1230/Instructor/Index/1?courseID=2021

"?courseID=2021" is a query string value. The model binder will also work if you pass the id as

a query string value:

http://localhost:1230/Instructor/Index?id=1&CourseID=2021

The URLs are created by ActionLink statements in the Razor view. In the following code, the

id parameter matches the default route, so id is added to the route data.

 @Html.ActionLink("Select", "Index", new { id = item.PersonID })

In the following code, courseID doesn't match a parameter in the default route, so it's added as a

query string.

@Html.ActionLink("Select", "Index", new { courseID = item.CourseID })

http://msdn.microsoft.com/en-us/library/gg696418%28v=VS.103%29.aspx

39

1. Open Views\Student\Details.cshtml. Each field is displayed using a DisplayFor helper,

as shown in the following example:

<dt>

 @Html.DisplayNameFor(model => model.LastName)

</dt>

<dd>

 @Html.DisplayFor(model => model.LastName)

</dd>

2. After the EnrollmentDate field and immediately before the closing </dl> tag, add the

highlighted code to display a list of enrollments, as shown in the following example:

 <dt>

 @Html.DisplayNameFor(model => model.EnrollmentDate)

 </dt>

 <dd>

 @Html.DisplayFor(model => model.EnrollmentDate)

 </dd>

 <dt>

 @Html.DisplayNameFor(model => model.Enrollments)

 </dt>

 <dd>

 <table class="table">

 <tr>

 <th>Course Title</th>

 <th>Grade</th>

 </tr>

 @foreach (var item in Model.Enrollments)

 {

 <tr>

 <td>

 @Html.DisplayFor(modelItem =>

item.Course.Title)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Grade)

 </td>

 </tr>

 }

 </table>

 </dd>

 </dl>

</div>

<p>

 @Html.ActionLink("Edit", "Edit", new { id = Model.ID }) |

 @Html.ActionLink("Back to List", "Index")

</p>

If code indentation is wrong after you paste the code, press CTRL-K-D to correct it.

This code loops through the entities in the Enrollments navigation property. For each

Enrollment entity in the property, it displays the course title and the grade. The course

40

title is retrieved from the Course entity that's stored in the Course navigation property of

the Enrollments entity. All of this data is retrieved from the database automatically

when it's needed. (In other words, you are using lazy loading here. You did not specify

eager loading for the Courses navigation property, so the enrollments were not retrieved

in the same query that got the students. Instead, the first time you try to access the

Enrollments navigation property, a new query is sent to the database to retrieve the data.

You can read more about lazy loading and eager loading in the Reading Related Data

tutorial later in this series.)

3. Run the page by selecting the Students tab and clicking a Details link for Alexander

Carson. (If you press CTRL+F5 while the Details.cshtml file is open, you'll get an HTTP

400 error because Visual Studio tries to run the Details page but it wasn't reached from a

link that specifies the student to display. In that case, just remove "Student/Details" from

the URL and try again, or close the browser, right-click the project, and click View, and

then click View in Browser.)

You see the list of courses and grades for the selected student:

41

Update the Create Page

1. In Controllers\StudentController.cs, replace the HttpPost Create action method with

the following code to add a try-catch block and remove ID from the Bind attribute for

the scaffolded method:

[HttpPost]

http://msdn.microsoft.com/en-us/library/system.web.mvc.bindattribute%28v=vs.108%29.aspx

42

[ValidateAntiForgeryToken]

public ActionResult Create([Bind(Include = "LastName, FirstMidName,

EnrollmentDate")]Student student)

{

 try

 {

 if (ModelState.IsValid)

 {

 db.Students.Add(student);

 db.SaveChanges();

 return RedirectToAction("Index");

 }

 }

 catch (DataException /* dex */)

 {

 //Log the error (uncomment dex variable name and add a line

here to write a log.

 ModelState.AddModelError("", "Unable to save changes. Try

again, and if the problem persists see your system administrator.");

 }

 return View(student);

}

This code adds the Student entity created by the ASP.NET MVC model binder to the

Students entity set and then saves the changes to the database. (Model binder refers to

the ASP.NET MVC functionality that makes it easier for you to work with data submitted

by a form; a model binder converts posted form values to CLR types and passes them to

the action method in parameters. In this case, the model binder instantiates a Student

entity for you using property values from the Form collection.)

You removed ID from the Bind attribute because ID is the primary key value which SQL

Server will set automatically when the row is inserted. Input from the user does not set

the ID value.

Security Note: The ValidateAntiForgeryToken attribute helps prevent cross-

site request forgery attacks. It requires a corresponding

Html.AntiForgeryToken() statement in the view, which you'll see later.

The Bind attribute protects against over-posting. For example, suppose the

Student entity includes a Secret property that you don't want this web page to

update.

 public class Student

 {

 public int ID { get; set; }

 public string LastName { get; set; }

 public string FirstMidName { get; set; }

 public DateTime EnrollmentDate { get; set; }

 public string Secret { get; set; }

 public virtual ICollection<Enrollment> Enrollments { get;

set; }

http://www.asp.net/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
http://www.asp.net/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages

43

 }

Even if you don't have a Secret field on the web page, a hacker could use a tool

such as fiddler, or write some JavaScript, to post a Secret form value. Without

the Bind attribute limiting the fields that the model binder uses when it creates a

Student instance, the model binder would pick up that Secret form value and

use it to update the Student entity instance. Then whatever value the hacker

specified for the Secret form field would be updated in your database. The

following image shows the fiddler tool adding the Secret field (with the value

"OverPost") to the posted form values.

The value "OverPost" would then be successfully added to the Secret property of

the inserted row, although you never intended that the web page be able to update

that property.

It's a security best practice to use the Include parameter with the Bind attribute

to whitelist fields. It's also possible to use the Exclude parameter to blacklist

fields you want to exclude. The reason Include is more secure is that when you

add a new property to the entity, the new field is not automatically protected by an

Exclude list.

Another alternative approach, and one preferred by many, is to use only view

models with model binding. The view model contains only the properties you

want to bind. Once the MVC model binder has finished, you copy the view model

properties to the entity instance.

http://fiddler2.com/home
http://msdn.microsoft.com/en-us/library/system.web.mvc.bindattribute%28v=vs.108%29.aspx

44

Other than the Bind attribute, the try-catch block is the only change you've made to the

scaffolded code. If an exception that derives from DataException is caught while the

changes are being saved, a generic error message is displayed. DataException exceptions

are sometimes caused by something external to the application rather than a programming

error, so the user is advised to try again. Although not implemented in this sample, a

production quality application would log the exception. For more information, see the

Log for insight section in Monitoring and Telemetry (Building Real-World Cloud Apps

with Windows Azure).

The code in Views\Student\Create.cshtml is similar to what you saw in Details.cshtml,

except that EditorFor and ValidationMessageFor helpers are used for each field

instead of DisplayFor. Here is the relevant code:

<div class="form-group">

 @Html.LabelFor(model => model.LastName, new { @class = "control-

label col-md-2" })

 <div class="col-md-10">

 @Html.EditorFor(model => model.LastName)

 @Html.ValidationMessageFor(model => model.LastName)

 </div>

</div>

Create.chstml also includes @Html.AntiForgeryToken(), which works with the

ValidateAntiForgeryToken attribute in the controller to help prevent cross-site request

forgery attacks.

No changes are required in Create.cshtml.

2. Run the page by selecting the Students tab and clicking Create New.

3. Enter names and an invalid date and click Create to see the error message.

http://msdn.microsoft.com/en-us/library/system.data.dataexception.aspx
http://msdn.microsoft.com/en-us/library/system.data.dataexception.aspx
http://www.asp.net/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/monitoring-and-telemetry#log
http://www.asp.net/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/monitoring-and-telemetry#log
http://www.asp.net/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
http://www.asp.net/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages

45

This is server-side validation that you get by default; in a later tutorial you'll see how to

add attributes that will generate code for client-side validation also. The following

highlighted code shows the model validation check in the Create method.

if (ModelState.IsValid)

{

 db.Students.Add(student);

 db.SaveChanges();

 return RedirectToAction("Index");

}

4. Change the date to a valid value and click Create to see the new student appear in the

Index page.

46

Update the Edit HttpPost Page

In Controllers\StudentController.cs, the HttpGet Edit method (the one without the HttpPost

attribute) uses the Find method to retrieve the selected Student entity, as you saw in the

Details method. You don't need to change this method.

47

However, replace the HttpPost Edit action method with the following code to add a try-catch

block:

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Edit([Bind(Include = "ID, LastName, FirstMidName,

EnrollmentDate")]Student student)

{

 try

 {

 if (ModelState.IsValid)

 {

 db.Entry(student).State = EntityState.Modified;

 db.SaveChanges();

 return RedirectToAction("Index");

 }

 }

 catch (DataException /* dex */)

 {

 //Log the error (uncomment dex variable name and add a line here to

write a log.

 ModelState.AddModelError("", "Unable to save changes. Try again, and if

the problem persists see your system administrator.");

 }

 return View(student);

}

This code is similar to what you saw in the HttpPost Create method. However, instead of

adding the entity created by the model binder to the entity set, this code sets a flag on the entity

indicating it has been changed. When the SaveChanges method is called, the Modified flag

causes the Entity Framework to create SQL statements to update the database row. All columns

of the database row will be updated, including those that the user didn't change, and concurrency

conflicts are ignored.

Entity States and the Attach and SaveChanges Methods

The database context keeps track of whether entities in memory are in sync with their

corresponding rows in the database, and this information determines what happens when you call

the SaveChanges method. For example, when you pass a new entity to the Add method, that

entity's state is set to Added. Then when you call the SaveChanges method, the database context

issues a SQL INSERT command.

An entity may be in one of the following states:

 Added. The entity does not yet exist in the database. The SaveChanges method must issue

an INSERT statement.

 Unchanged. Nothing needs to be done with this entity by the SaveChanges method.

When you read an entity from the database, the entity starts out with this status.

 Modified. Some or all of the entity's property values have been modified. The

SaveChanges method must issue an UPDATE statement.

http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext.savechanges%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entitystate.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbset.add%28v=vs.103%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext.savechanges%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entitystate.aspx

48

 Deleted. The entity has been marked for deletion. The SaveChanges method must issue

a DELETE statement.

 Detached. The entity isn't being tracked by the database context.

In a desktop application, state changes are typically set automatically. In a desktop type of

application, you read an entity and make changes to some of its property values. This causes its

entity state to automatically be changed to Modified. Then when you call SaveChanges, the

Entity Framework generates a SQL UPDATE statement that updates only the actual properties that

you changed.

The disconnected nature of web apps doesn't allow for this continuous sequence. The DbContext

that reads an entity is disposed after a page is rendered. When the HttpPost Edit action method

is called, a new request is made and you have a new instance of the DbContext, so you have to

manually set the entity state to Modified. Then when you call SaveChanges, the Entity

Framework updates all columns of the database row, because the context has no way to know

which properties you changed.

If you want the SQL Update statement to update only the fields that the user actually changed,

you can save the original values in some way (such as hidden fields) so that they are available

when the HttpPost Edit method is called. Then you can create a Student entity using the

original values, call the Attach method with that original version of the entity, update the entity's

values to the new values, and then call SaveChanges. For more information, see Entity states

and SaveChanges and Local Data in the MSDN Data Developer Center.

The HTML and Razor code in Views\Student\Edit.cshtml is similar to what you saw in

Create.cshtml, and no changes are required.

Run the page by selecting the Students tab and then clicking an Edit hyperlink.

http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/data/jj592676
http://msdn.microsoft.com/en-us/data/jj592676
http://msdn.microsoft.com/en-us/data/jj592872

49

Change some of the data and click Save. You see the changed data in the Index page.

50

Updating the Delete Page

In Controllers\StudentController.cs, the template code for the HttpGet Delete method uses the

Find method to retrieve the selected Student entity, as you saw in the Details and Edit

methods. However, to implement a custom error message when the call to SaveChanges fails,

you'll add some functionality to this method and its corresponding view.

51

As you saw for update and create operations, delete operations require two action methods. The

method that is called in response to a GET request displays a view that gives the user a chance to

approve or cancel the delete operation. If the user approves it, a POST request is created. When

that happens, the HttpPost Delete method is called and then that method actually performs the

delete operation.

You'll add a try-catch block to the HttpPost Delete method to handle any errors that might

occur when the database is updated. If an error occurs, the HttpPost Delete method calls the

HttpGet Delete method, passing it a parameter that indicates that an error has occurred. The

HttpGet Delete method then redisplays the confirmation page along with the error message,

giving the user an opportunity to cancel or try again.

1. Replace the HttpGet Delete action method with the following code, which manages

error reporting:

public ActionResult Delete(int? id, bool? saveChangesError=false)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 if (saveChangesError.GetValueOrDefault())

 {

 ViewBag.ErrorMessage = "Delete failed. Try again, and if the

problem persists see your system administrator.";

 }

 Student student = db.Students.Find(id);

 if (student == null)

 {

 return HttpNotFound();

 }

 return View(student);

}

This code accepts an optional parameter that indicates whether the method was called

after a failure to save changes. This parameter is false when the HttpGet Delete

method is called without a previous failure. When it is called by the HttpPost Delete

method in response to a database update error, the parameter is true and an error

message is passed to the view.

2. Replace the HttpPost Delete action method (named DeleteConfirmed) with the

following code, which performs the actual delete operation and catches any database

update errors.

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Delete(int id)

{

 try

 {

 Student student = db.Students.Find(id);

http://msdn.microsoft.com/en-us/library/dd264739.aspx

52

 db.Students.Remove(student);

 db.SaveChanges();

 }

 catch (DataException/* dex */)

 {

 //Log the error (uncomment dex variable name and add a line

here to write a log.

 return RedirectToAction("Delete", new { id = id,

saveChangesError = true });

 }

 return RedirectToAction("Index");

}

This code retrieves the selected entity, then calls the Remove method to set the entity's

status to Deleted. When SaveChanges is called, a SQL DELETE command is

generated. You have also changed the action method name from DeleteConfirmed to

Delete. The scaffolded code named the HttpPost Delete method DeleteConfirmed to

give the HttpPost method a unique signature. (The CLR requires overloaded methods

to have different method parameters.) Now that the signatures are unique, you can stick

with the MVC convention and use the same name for the HttpPost and HttpGet delete

methods.

If improving performance in a high-volume application is a priority, you could avoid an

unnecessary SQL query to retrieve the row by replacing the lines of code that call the

Find and Remove methods with the following code:

Student studentToDelete = new Student() { ID = id };

db.Entry(studentToDelete).State = EntityState.Deleted;

This code instantiates a Student entity using only the primary key value and then sets the

entity state to Deleted. That's all that the Entity Framework needs in order to delete the

entity.

As noted, the HttpGet Delete method doesn't delete the data. Performing a delete

operation in response to a GET request (or for that matter, performing any edit operation,

create operation, or any other operation that changes data) creates a security risk. For

more information, see ASP.NET MVC Tip #46 — Don't use Delete Links because they

create Security Holes on Stephen Walther's blog.

3. In Views\Student\Delete.cshtml, add an error message between the h2 heading and the h3

heading, as shown in the following example:

<h2>Delete</h2>

<p class="error">@ViewBag.ErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>

Run the page by selecting the Students tab and clicking a Delete hyperlink:

http://msdn.microsoft.com/en-us/library/system.data.entity.dbset.remove%28v=vs.103%29.aspx
http://stephenwalther.com/blog/archive/2009/01/21/asp.net-mvc-tip-46-ndash-donrsquot-use-delete-links-because.aspx
http://stephenwalther.com/blog/archive/2009/01/21/asp.net-mvc-tip-46-ndash-donrsquot-use-delete-links-because.aspx

53

4. Click Delete. The Index page is displayed without the deleted student. (You'll see an

example of the error handling code in action in the concurrency tutorial.)

Ensuring that Database Connections Are Not Left Open

To make sure that database connections are properly closed and the resources they hold freed up,

you have to dispose the context instance when you are done with it. That is why the scaffolded

54

code provides a Dispose method at the end of the StudentController class in

StudentController.cs, as shown in the following example:

protected override void Dispose(bool disposing)

{

 db.Dispose();

 base.Dispose(disposing);

}

The base Controller class already implements the IDisposable interface, so this code simply

adds an override to the Dispose(bool) method to explicitly dispose the context instance.

Handling Transactions

By default the Entity Framework implicitly implements transactions. In scenarios where you

make changes to multiple rows or tables and then call SaveChanges, the Entity Framework

automatically makes sure that either all of your changes succeed or all fail. If some changes are

done first and then an error happens, those changes are automatically rolled back. For scenarios

where you need more control -- for example, if you want to include operations done outside of

Entity Framework in a transaction -- see Working with Transactions on MSDN.

Summary

You now have a complete set of pages that perform simple CRUD operations for Student

entities. You used MVC helpers to generate UI elements for data fields. For more information

about MVC helpers, see Rendering a Form Using HTML Helpers (the page is for MVC 3 but is

still relevant for MVC 5).

In the next tutorial you'll expand the functionality of the Index page by adding sorting and

paging.

http://msdn.microsoft.com/en-us/library/system.idisposable.dispose%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-US/data/dn456843
http://msdn.microsoft.com/en-us/library/dd410596%28v=VS.98%29.aspx

55

Sorting, Filtering, and Paging with the Entity

Framework in an ASP.NET MVC

Application

In the previous tutorial you implemented a set of web pages for basic CRUD operations for

Student entities. In this tutorial you'll add sorting, filtering, and paging functionality to the

Students Index page. You'll also create a page that does simple grouping.

The following illustration shows what the page will look like when you're done. The column

headings are links that the user can click to sort by that column. Clicking a column heading

repeatedly toggles between ascending and descending sort order.

56

Add Column Sort Links to the Students Index Page

To add sorting to the Student Index page, you'll change the Index method of the Student

controller and add code to the Student Index view.

Add Sorting Functionality to the Index Method

In Controllers\StudentController.cs, replace the Index method with the following code:

public ActionResult Index(string sortOrder)

{

57

 ViewBag.NameSortParm = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";

 ViewBag.DateSortParm = sortOrder == "Date" ? "date_desc" : "Date";

 var students = from s in db.Students

 select s;

 switch (sortOrder)

 {

 case "name_desc":

 students = students.OrderByDescending(s => s.LastName);

 break;

 case "Date":

 students = students.OrderBy(s => s.EnrollmentDate);

 break;

 case "date_desc":

 students = students.OrderByDescending(s => s.EnrollmentDate);

 break;

 default:

 students = students.OrderBy(s => s.LastName);

 break;

 }

 return View(students.ToList());

}

This code receives a sortOrder parameter from the query string in the URL. The query string

value is provided by ASP.NET MVC as a parameter to the action method. The parameter will be

a string that's either "Name" or "Date", optionally followed by an underscore and the string

"desc" to specify descending order. The default sort order is ascending.

The first time the Index page is requested, there's no query string. The students are displayed in

ascending order by LastName, which is the default as established by the fall-through case in the

switch statement. When the user clicks a column heading hyperlink, the appropriate sortOrder

value is provided in the query string.

The two ViewBag variables are used so that the view can configure the column heading

hyperlinks with the appropriate query string values:

ViewBag.NameSortParm = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";

ViewBag.DateSortParm = sortOrder == "Date" ? "date_desc" : "Date";

These are ternary statements. The first one specifies that if the sortOrder parameter is null or

empty, ViewBag.NameSortParm should be set to "name_desc"; otherwise, it should be set to an

empty string. These two statements enable the view to set the column heading hyperlinks as

follows:

Current sort order Last Name Hyperlink Date Hyperlink

Last Name ascending descending ascending

Last Name descending ascending ascending

Date ascending ascending descending

Date descending ascending ascending

58

The method uses LINQ to Entities to specify the column to sort by. The code creates an

IQueryable variable before the switch statement, modifies it in the switch statement, and calls

the ToList method after the switch statement. When you create and modify IQueryable

variables, no query is sent to the database. The query is not executed until you convert the

IQueryable object into a collection by calling a method such as ToList. Therefore, this code

results in a single query that is not executed until the return View statement.

As an alternative to writing different LINQ statements for each sort order, you can dynamically

create a LINQ statement. For information about dynamic LINQ, see Dynamic LINQ.

Add Column Heading Hyperlinks to the Student Index View

In Views\Student\Index.cshtml, replace the <tr> and <th> elements for the heading row with the

highlighted code:

<p>

 @Html.ActionLink("Create New", "Create")

</p>

<table>

 <tr>

 <th>

 @Html.ActionLink("Last Name", "Index", new { sortOrder =

ViewBag.NameSortParm })

 </th>

 <th>First Name

 </th>

 <th>

 @Html.ActionLink("Enrollment Date", "Index", new { sortOrder =

ViewBag.DateSortParm })

 </th>

 <th></th>

 </tr>

@foreach (var item in Model) {

This code uses the information in the ViewBag properties to set up hyperlinks with the

appropriate query string values.

Run the page and click the Last Name and Enrollment Date column headings to verify that

sorting works.

http://msdn.microsoft.com/en-us/library/bb386964.aspx
http://msdn.microsoft.com/en-us/library/bb351562.aspx
http://go.microsoft.com/fwlink/?LinkID=323957

59

After you click the Last Name heading, students are displayed in descending last name order.

60

Add a Search Box to the Students Index Page

To add filtering to the Students Index page, you'll add a text box and a submit button to the view

and make corresponding changes in the Index method. The text box will let you enter a string to

search for in the first name and last name fields.

Add Filtering Functionality to the Index Method

61

In Controllers\StudentController.cs, replace the Index method with the following code (the

changes are highlighted):

public ViewResult Index(string sortOrder, string searchString)

{

 ViewBag.NameSortParm = String.IsNullOrEmpty(sortOrder) ? "name_desc" :

"";

 ViewBag.DateSortParm = sortOrder == "Date" ? "date_desc" : "Date";

 var students = from s in db.Students

 select s;

 if (!String.IsNullOrEmpty(searchString))

 {

 students = students.Where(s =>

s.LastName.ToUpper().Contains(searchString.ToUpper())

 ||

s.FirstMidName.ToUpper().Contains(searchString.ToUpper()));

 }

 switch (sortOrder)

 {

 case "name_desc":

 students = students.OrderByDescending(s => s.LastName);

 break;

 case "Date":

 students = students.OrderBy(s => s.EnrollmentDate);

 break;

 case "date_desc":

 students = students.OrderByDescending(s => s.EnrollmentDate);

 break;

 default:

 students = students.OrderBy(s => s.LastName);

 break;

 }

 return View(students.ToList());

}

You've added a searchString parameter to the Index method. You've also added to the LINQ

statement a where clausethat selects only students whose first name or last name contains the

search string. The search string value is received from a text box that you'll add to the Index

view. The statement that adds the where clause is executed only if there's a value to search for.

Note In many cases you can call the same method either on an Entity Framework entity set or as

an extension method on an in-memory collection. The results are normally the same but in some

cases may be different.

For example, the .NET Framework implementation of the Contains method returns all rows

when you pass an empty string to it, but the Entity Framework provider for SQL Server Compact

4.0 returns zero rows for empty strings. Therefore the code in the example (putting the Where

statement inside an if statement) makes sure that you get the same results for all versions of

SQL Server. Also, the .NET Framework implementation of the Contains method performs a

case-sensitive comparison by default, but Entity Framework SQL Server providers perform case-

insensitive comparisons by default. Therefore, calling the ToUpper method to make the test

http://msdn.microsoft.com/en-us/library/bb535040.aspx

62

explicitly case-insensitive ensures that results do not change when you change the code later to

use a repository, which will return an IEnumerable collection instead of an IQueryable object.

(When you call the Contains method on an IEnumerable collection, you get the .NET

Framework implementation; when you call it on an IQueryable object, you get the database

provider implementation.)

Null handling may also be different for different database providers or when you use an

IQueryable object compared to when you use an IEnumerable collection. For example, in some

scenarios a Where condition such as table.Column != 0 may not return columns that have

null as the value. For more information, see Incorrect handling of null variables in 'where'

clause.

Add a Search Box to the Student Index View

In Views\Student\Index.cshtml, add the highlighted code immediately before the opening table

tag in order to create a caption, a text box, and a Search button.

<p>

 @Html.ActionLink("Create New", "Create")

</p>

@using (Html.BeginForm())

{

 <p>

 Find by name: @Html.TextBox("SearchString")

 <input type="submit" value="Search" /></p>

}

<table>

 <tr>

Run the page, enter a search string, and click Search to verify that filtering is working.

http://data.uservoice.com/forums/72025-entity-framework-feature-suggestions/suggestions/1015361-incorrect-handling-of-null-variables-in-where-cl
http://data.uservoice.com/forums/72025-entity-framework-feature-suggestions/suggestions/1015361-incorrect-handling-of-null-variables-in-where-cl

63

Notice the URL doesn't contain the "an" search string, which means that if you bookmark this

page, you won't get the filtered list when you use the bookmark. You'll change the Search button

to use query strings for filter criteria later in the tutorial.

Add Paging to the Students Index Page

64

To add paging to the Students Index page, you'll start by installing the PagedList.Mvc NuGet

package. Then you'll make additional changes in the Index method and add paging links to the

Index view. PagedList.Mvc is one of many good paging and sorting packages for ASP.NET

MVC, and its use here is intended only as an example, not as a recommendation for it over other

options. The following illustration shows the paging links.

Install the PagedList.MVC NuGet Package

The NuGet PagedList.Mvc package automatically installs the PagedList package as a

dependency. The PagedList package installs a PagedList collection type and extension methods

for IQueryable and IEnumerable collections. The extension methods create a single page of

65

data in a PagedList collection out of your IQueryable or IEnumerable, and the PagedList

collection provides several properties and methods that facilitate paging. The PagedList.Mvc

package installs a paging helper that displays the paging buttons.

From the Tools menu, select Library Package Manager and then Package Manager Console.

In the Package Manager Console window, make sure ghe Package source is nuget.org and the

Default project is ContosoUniversity, and then enter the following command:

Install-Package PagedList.Mvc

Add Paging Functionality to the Index Method

In Controllers\StudentController.cs, add a using statement for the PagedList namespace:

using PagedList;

Replace the Index method with the following code:

public ViewResult Index(string sortOrder, string currentFilter, string

searchString, int? page)

{

 ViewBag.CurrentSort = sortOrder;

 ViewBag.NameSortParm = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";

 ViewBag.DateSortParm = sortOrder == "Date" ? "date_desc" : "Date";

 if (searchString != null)

 {

66

 page = 1;

 }

 else

 {

 searchString = currentFilter;

 }

 ViewBag.CurrentFilter = searchString;

 var students = from s in db.Students

 select s;

 if (!String.IsNullOrEmpty(searchString))

 {

 students = students.Where(s =>

s.LastName.ToUpper().Contains(searchString.ToUpper())

 ||

s.FirstMidName.ToUpper().Contains(searchString.ToUpper()));

 }

 switch (sortOrder)

 {

 case "name_desc":

 students = students.OrderByDescending(s => s.LastName);

 break;

 case "Date":

 students = students.OrderBy(s => s.EnrollmentDate);

 break;

 case "date_desc":

 students = students.OrderByDescending(s => s.EnrollmentDate);

 break;

 default: // Name ascending

 students = students.OrderBy(s => s.LastName);

 break;

 }

 int pageSize = 3;

 int pageNumber = (page ?? 1);

 return View(students.ToPagedList(pageNumber, pageSize));

}

This code adds a page parameter, a current sort order parameter, and a current filter parameter to

the method signature:

public ActionResult Index(string sortOrder, string currentFilter, string

searchString, int? page)

The first time the page is displayed, or if the user hasn't clicked a paging or sorting link, all the

parameters will be null. If a paging link is clicked, the page variable will contain the page

number to display.

A ViewBag property provides the view with the current sort order, because this must be included

in the paging links in order to keep the sort order the same while paging:

ViewBag.CurrentSort = sortOrder;

67

Another property, ViewBag.CurrentFilter, provides the view with the current filter string.

This value must be included in the paging links in order to maintain the filter settings during

paging, and it must be restored to the text box when the page is redisplayed. If the search string

is changed during paging, the page has to be reset to 1, because the new filter can result in

different data to display. The search string is changed when a value is entered in the text box and

the submit button is pressed. In that case, the searchString parameter is not null.

if (searchString != null)

{

 page = 1;

}

else

{

 searchString = currentFilter;

}

At the end of the method, the ToPagedList extension method on the students IQueryable object

converts the student query to a single page of students in a collection type that supports paging.

That single page of students is then passed to the view:

int pageSize = 3;

int pageNumber = (page ?? 1);

return View(students.ToPagedList(pageNumber, pageSize));

The ToPagedList method takes a page number. The two question marks represent the null-

coalescing operator. The null-coalescing operator defines a default value for a nullable type; the

expression (page ?? 1) means return the value of page if it has a value, or return 1 if page is

null.

Add Paging Links to the Student Index View

In Views\Student\Index.cshtml, replace the existing code with the following code. the changes are

highlighted.

@model PagedList.IPagedList<ContosoUniversity.Models.Student>

@using PagedList.Mvc;

<link href="~/Content/PagedList.css" rel="stylesheet" type="text/css" />

@{

 ViewBag.Title = "Students";

}

<h2>Students</h2>

<p>

 @Html.ActionLink("Create New", "Create")

</p>

@using (Html.BeginForm("Index", "Student", FormMethod.Get))

{

 <p>

http://msdn.microsoft.com/en-us/library/ms173224.aspx
http://msdn.microsoft.com/en-us/library/ms173224.aspx

68

 Find by name: @Html.TextBox("SearchString", ViewBag.CurrentFilter as

string)

 <input type="submit" value="Search" />

 </p>

}

<table class="table">

 <tr>

 <th>

 @Html.ActionLink("Last Name", "Index", new { sortOrder =

ViewBag.NameSortParm, currentFilter=ViewBag.CurrentFilter })

 </th>

 <th>

 First Name

 </th>

 <th>

 @Html.ActionLink("Enrollment Date", "Index", new { sortOrder =

ViewBag.DateSortParm, currentFilter=ViewBag.CurrentFilter })

 </th>

 <th></th>

 </tr>

@foreach (var item in Model) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.LastName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.FirstMidName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.EnrollmentDate)

 </td>

 <td>

 @Html.ActionLink("Edit", "Edit", new { id=item.ID }) |

 @Html.ActionLink("Details", "Details", new { id=item.ID }) |

 @Html.ActionLink("Delete", "Delete", new { id=item.ID })

 </td>

 </tr>

}

</table>

Page @(Model.PageCount < Model.PageNumber ? 0 : Model.PageNumber) of

@Model.PageCount

@Html.PagedListPager(Model, page => Url.Action("Index",

 new { page, sortOrder = ViewBag.CurrentSort, currentFilter =

ViewBag.CurrentFilter }))

The @model statement at the top of the page specifies that the view now gets a PagedList object

instead of a List object.

The using statement for PagedList.Mvc gives access to the MVC helper for the paging

buttons.

69

The code uses an overload of BeginForm that allows it to specify FormMethod.Get.

@using (Html.BeginForm("Index", "Student", FormMethod.Get))

{

 <p>

 Find by name: @Html.TextBox("SearchString", ViewBag.CurrentFilter as

string)

 <input type="submit" value="Search" />

 </p>

}

The default BeginForm submits form data with a POST, which means that parameters are passed

in the HTTP message body and not in the URL as query strings. When you specify HTTP GET,

the form data is passed in the URL as query strings, which enables users to bookmark the

URL. The W3C guidelines for the use of HTTP GET recommend that you should use GET when

the action does not result in an update.

The text box is initialized with the current search string so when you click a new page you can

see the current search string.

 Find by name: @Html.TextBox("SearchString", ViewBag.CurrentFilter as string)

The column header links use the query string to pass the current search string to the controller so

that the user can sort within filter results:

 @Html.ActionLink("Last Name", "Index", new { sortOrder=ViewBag.NameSortParm,

currentFilter=ViewBag.CurrentFilter })

The current page and total number of pages are displayed.

Page @(Model.PageCount < Model.PageNumber ? 0 : Model.PageNumber) of

@Model.PageCount

If there are no pages to display, "Page 0 of 0" is shown. (In that case the page number is greater

than the page count because Model.PageNumber is 1, and Model.PageCount is 0.)

The paging buttons are displayed by the PagedListPager helper:

@Html.PagedListPager(Model, page => Url.Action("Index", new { page }))

The PagedListPager helper provides a number of options that you can customize, including

URLs and styling. For more information, see TroyGoode / PagedList on the GitHub site.

Run the page.

http://msdn.microsoft.com/en-us/library/system.web.mvc.html.formextensions.beginform%28v=vs.108%29.aspx
http://msdn.microsoft.com/en-us/library/system.web.mvc.formmethod%28v=vs.100%29.aspx/css
http://msdn.microsoft.com/en-us/library/system.web.mvc.html.formextensions.beginform%28v=vs.108%29.aspx
http://www.w3.org/2001/tag/doc/whenToUseGet.html
https://github.com/TroyGoode/PagedList

70

Click the paging links in different sort orders to make sure paging works. Then enter a search

string and try paging again to verify that paging also works correctly with sorting and filtering.

71

Create an About Page That Shows Student Statistics

For the Contoso University website's About page, you'll display how many students have

enrolled for each enrollment date. This requires grouping and simple calculations on the groups.

To accomplish this, you'll do the following:

 Create a view model class for the data that you need to pass to the view.

 Modify the About method in the Home controller.

 Modify the About view.

Create the View Model

72

Create a ViewModels folder in the project folder. In that folder, add a class file

EnrollmentDateGroup.cs and replace the template code with the following code:

using System;

using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.ViewModels

{

 public class EnrollmentDateGroup

 {

 [DataType(DataType.Date)]

 public DateTime? EnrollmentDate { get; set; }

 public int StudentCount { get; set; }

 }

}

Modify the Home Controller

In HomeController.cs, add the following using statements at the top of the file:

using ContosoUniversity.DAL;

using ContosoUniversity.ViewModels;

Add a class variable for the database context immediately after the opening curly brace for the

class:

public class HomeController : Controller

{

 private SchoolContext db = new SchoolContext();

Replace the About method with the following code:

public ActionResult About()

{

 IQueryable<EnrollmentDateGroup> data = from student in db.Students

 group student by student.EnrollmentDate into dateGroup

 select new EnrollmentDateGroup()

 {

 EnrollmentDate = dateGroup.Key,

 StudentCount = dateGroup.Count()

 };

 return View(data.ToList());

}

The LINQ statement groups the student entities by enrollment date, calculates the number of

entities in each group, and stores the results in a collection of EnrollmentDateGroup view

model objects.

Add a Dispose method:

73

protected override void Dispose(bool disposing)

{

 db.Dispose();

 base.Dispose(disposing);

}

Modify the About View

Replace the code in the Views\Home\About.cshtml file with the following code:

@model IEnumerable<ContosoUniversity.ViewModels.EnrollmentDateGroup>

@{

 ViewBag.Title = "Student Body Statistics";

}

<h2>Student Body Statistics</h2>

<table>

 <tr>

 <th>

 Enrollment Date

 </th>

 <th>

 Students

 </th>

 </tr>

@foreach (var item in Model) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.EnrollmentDate)

 </td>

 <td>

 @item.StudentCount

 </td>

 </tr>

}

</table>

Run the app and click the About link. The count of students for each enrollment date is

displayed in a table.

74

Summary

In this tutorial you've seen how to create a data model and implement basic CRUD, sorting,

filtering, paging, and grouping functionality. In the next tutorial you'll begin looking at more

advanced topics by expanding the data model.

75

Connection Resiliency and Command

Interception with the Entity Framework in

an ASP.NET MVC Application

So far the application has been running locally in IIS Express on your development computer. To

make a real application available for other people to use over the Internet, you have to deploy it

to a web hosting provider, and you have to deploy the database to a database server.

In this tutorial you'll learn how to use two features of Entity Framework 6 that are especially

valuable when you are deploying to the cloud environment: connection resiliency (automatic

retries for transient errors) and command interception (catch all SQL queries sent to the database

in order to log or change them).

This connection resiliency and command interception tutorial is optional. If you skip this tutorial,

a few minor adjustments will have to be made in subsequent tutorials.

Enable connection resiliency

When you deploy the application to Windows Azure, you'll deploy the database to Windows

Azure SQL Database, a cloud database service. Transient connection errors are typically more

frequent when you connect to a cloud database service than when your web server and your

database server are directly connected together in the same data center. Even if a cloud web

server and a cloud database service are hosted in the same data center, there are more network

connections between them that can have problems, such as load balancers.

Also a cloud service is typically shared by other users, which means its responsiveness can be

affected by them. And your access to the database might be subject to throttling. Throttling

means the database service throws exceptions when you try to access it more frequently than is

allowed in your Service Level Agreement (SLA).

Many or most connection problems when you're accessing a cloud service are transient, that is,

they resolve themselves in a short period of time. So when you try a database operation and get a

type of error that is typically transient, you could try the operation again after a short wait, and

the operation might be successful. You can provide a much better experience for your users if

you handle transient errors by automatically trying again, making most of them invisible to the

customer. The connection resiliency feature in Entity Framework 6 automates that process of

retrying failed SQL queries.

The connection resiliency feature must be configured appropriately for a particular database

service:

76

 It has to know which exceptions are likely to be transient. You want to retry errors caused

by a temporary loss in network connectivity, not errors caused by program bugs, for

example.

 It has to wait an appropriate amount of time between retries of a failed operation. You

can wait longer between retries for a batch process than you can for an online web page

where a user is waiting for a response.

 It has to retry an appropriate number of times before it gives up. You might want to retry

more times in a batch process that you would in an online application.

You can configure these settings manually for any database environment supported by an Entity

Framework provider, but default values that typically work well for an online application that

uses Windows Azure SQL Database have already been configured for you, and those are the

settings you'll implement for the Contoso University application.

All you have to do to enable connection resiliency is create a class in your assembly that derives

from the DbConfiguration class, and in that class set the SQL Database execution strategy, which

in EF is another term for retry policy.

1. In the DAL folder, add a class file named SchoolConfiguration.cs.

2. Replace the template code with the following code:

using System.Data.Entity;

using System.Data.Entity.SqlServer;

namespace ContosoUniversity.DAL

{

 public class SchoolConfiguration : DbConfiguration

 {

 public SchoolConfiguration()

 {

 SetExecutionStrategy("System.Data.SqlClient", () => new

SqlAzureExecutionStrategy());

 }

 }

}

The Entity Framework automatically runs the code it finds in a class that derives from

DbConfiguration. You can use the DbConfiguration class to do configuration tasks in

code that you would otherwise do in the Web.config file. For more information, see

EntityFramework Code-Based Configuration.

3. In StudentController.cs, add a using statement for

System.Data.Entity.Infrastructure.

using System.Data.Entity.Infrastructure;

4. Change all of the catch blocks that catch DataException exceptions so that they catch

RetryLimitExceededException exceptions instead. For example:

http://msdn.microsoft.com/en-us/data/jj680699.aspx
http://msdn.microsoft.com/en-us/data/jj680699

77

catch (RetryLimitExceededException /* dex */)

{

 //Log the error (uncomment dex variable name and add a line here to

write a log.

 ModelState.AddModelError("", "Unable to save changes. Try again,

and if the problem persists see your system administrator.");

}

You were using DataException to try to identify errors that might be transient in order

to give a friendly "try again" message. But now that you've turned on a retry policy, the

only errors likely to be transient will already have been tried and failed several times and

the actual exception returned will be wrapped in the RetryLimitExceededException

exception.

For more information, see Entity Framework Connection Resiliency / Retry Logic.

Enable Command Interception

Now that you've turned on a retry policy, how do you test to verify that it is working as

expected? It's not so easy to force a transient error to happen, especially when you're running

locally, and it would be especially difficult to integrate actual transient errors into an automated

unit test. To test the connection resiliency feature, you need a way to intercept queries that Entity

Framework sends to SQL Server and replace the SQL Server response with an exception type

that is typically transient.

You can also use query interception in order to implement a best practice for cloud applications:

log the latency and success or failure of all calls to external services such as database services.

EF6 provides a dedicated logging API that can make it easier to do logging, but in this section of

the tutorial you'll learn how to use the Entity Framework's interception feature directly, both for

logging and for simulating transient errors.

Create a logging interface and class

A best practice for logging is to do it by using an interface rather than hard-coding calls to

System.Diagnostics.Trace or a logging class. That makes it easier to change your logging

mechanism later if you ever need to do that. So in this section you'll create the logging interface

and a class to implement it./p>

1. Create a folder in the project and name it Logging.

2. In the Logging folder, create a class file named ILogger.cs, and replace the template code

with the following code:

using System;

namespace ContosoUniversity.Logging

{

 public interface ILogger

 {

http://msdn.microsoft.com/en-us/data/dn456835
http://www.asp.net/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/monitoring-and-telemetry#log
http://msdn.microsoft.com/en-us/data/dn469464
http://msdn.microsoft.com/en-us/data/dn469464
http://www.asp.net/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/monitoring-and-telemetry#log

78

 void Information(string message);

 void Information(string fmt, params object[] vars);

 void Information(Exception exception, string fmt, params

object[] vars);

 void Warning(string message);

 void Warning(string fmt, params object[] vars);

 void Warning(Exception exception, string fmt, params object[]

vars);

 void Error(string message);

 void Error(string fmt, params object[] vars);

 void Error(Exception exception, string fmt, params object[]

vars);

 void TraceApi(string componentName, string method, TimeSpan

timespan);

 void TraceApi(string componentName, string method, TimeSpan

timespan, string properties);

 void TraceApi(string componentName, string method, TimeSpan

timespan, string fmt, params object[] vars);

 }

}

The interface provides three tracing levels to indicate the relative importance of logs, and

one designed to provide latency information for external service calls such as database

queries. The logging methods have overloads that let you pass in an exception. This is so

that exception information including stack trace and inner exceptions is reliably logged

by the class that implements the interface, instead of relying on that being done in each

logging method call throughout the application.

The TraceApi methods enable you to track the latency of each call to an external service

such as SQL Database.

3. In the Logging folder, create a class file named Logger.cs, and replace the template code

with the following code:

using System;

using System.Diagnostics;

using System.Text;

namespace ContosoUniversity.Logging

{

 public class Logger : ILogger

 {

 public void Information(string message)

 {

 Trace.TraceInformation(message);

 }

 public void Information(string fmt, params object[] vars)

 {

79

 Trace.TraceInformation(fmt, vars);

 }

 public void Information(Exception exception, string fmt, params

object[] vars)

 {

 Trace.TraceInformation(FormatExceptionMessage(exception,

fmt, vars));

 }

 public void Warning(string message)

 {

 Trace.TraceWarning(message);

 }

 public void Warning(string fmt, params object[] vars)

 {

 Trace.TraceWarning(fmt, vars);

 }

 public void Warning(Exception exception, string fmt, params

object[] vars)

 {

 Trace.TraceWarning(FormatExceptionMessage(exception, fmt,

vars));

 }

 public void Error(string message)

 {

 Trace.TraceError(message);

 }

 public void Error(string fmt, params object[] vars)

 {

 Trace.TraceError(fmt, vars);

 }

 public void Error(Exception exception, string fmt, params

object[] vars)

 {

 Trace.TraceError(FormatExceptionMessage(exception, fmt,

vars));

 }

 public void TraceApi(string componentName, string method,

TimeSpan timespan)

 {

 TraceApi(componentName, method, timespan, "");

 }

 public void TraceApi(string componentName, string method,

TimeSpan timespan, string fmt, params object[] vars)

 {

 TraceApi(componentName, method, timespan,

string.Format(fmt, vars));

 }

80

 public void TraceApi(string componentName, string method,

TimeSpan timespan, string properties)

 {

 string message = String.Concat("Component:", componentName,

";Method:", method, ";Timespan:", timespan.ToString(), ";Properties:",

properties);

 Trace.TraceInformation(message);

 }

 private static string FormatExceptionMessage(Exception

exception, string fmt, object[] vars)

 {

 // Simple exception formatting: for a more comprehensive

version see

 // http://code.msdn.microsoft.com/windowsazure/Fix-It-app-

for-Building-cdd80df4

 var sb = new StringBuilder();

 sb.Append(string.Format(fmt, vars));

 sb.Append(" Exception: ");

 sb.Append(exception.ToString());

 return sb.ToString();

 }

 }

}

The implementation uses System.Diagnostics to do the tracing. This is a built-in feature

of .NET which makes it easy to generate and use tracing information. There are many

"listeners" you can use with System.Diagnostics tracing, to write logs to files, for

example, or to write them to blob storage in Windows Azure. See some of the options,

and links to other resources for more information, in Troubleshooting Windows Azure

Web Sites in Visual Studio. For this tutorial you'll only look at logs in the Visual Studio

Output window.

In a production application you might want to consider tracing packages other than

System.Diagnostics, and the ILogger interface makes it relatively easy to switch to a

different tracing mechanism if you decide to do that.

Create interceptor classes

Next you'll create the classes that the Entity Framework will call into every time it is going to

send a query to the database, one to simulate transient errors and one to do logging. These

interceptor classes must derive from the DbCommandInterceptor class. In them you write

method overrides that are automatically called when query is about to be executed. In these

methods you can examine or log the query that is being sent to the database, and you can change

the query before it's sent to the database or return something to Entity Framework yourself

without even passing the query to the database.

1. To create the interceptor class that will log every SQL query that is sent to the database,

create a class file named SchoolInterceptorLogging.cs in the DAL folder, and replace the

template code with the following code:

http://www.windowsazure.com/en-us/develop/net/tutorials/troubleshoot-web-sites-in-visual-studio/
http://www.windowsazure.com/en-us/develop/net/tutorials/troubleshoot-web-sites-in-visual-studio/

81

using System;

using System.Data.Common;

using System.Data.Entity;

using System.Data.Entity.Infrastructure.Interception;

using System.Data.Entity.SqlServer;

using System.Data.SqlClient;

using System.Diagnostics;

using System.Reflection;

using System.Linq;

using ContosoUniversity.Logging;

namespace ContosoUniversity.DAL

{

 public class SchoolInterceptorLogging : DbCommandInterceptor

 {

 private ILogger _logger = new Logger();

 private readonly Stopwatch _stopwatch = new Stopwatch();

 public override void ScalarExecuting(DbCommand command,

DbCommandInterceptionContext<object> interceptionContext)

 {

 base.ScalarExecuting(command, interceptionContext);

 _stopwatch.Restart();

 }

 public override void ScalarExecuted(DbCommand command,

DbCommandInterceptionContext<object> interceptionContext)

 {

 _stopwatch.Stop();

 if (interceptionContext.Exception != null)

 {

 _logger.Error(interceptionContext.Exception, "Error

executing command: {0}", command.CommandText);

 }

 else

 {

 _logger.TraceApi("SQL Database",

"SchoolInterceptor.ScalarExecuted", _stopwatch.Elapsed, "Command: {0}:

", command.CommandText);

 }

 base.ScalarExecuted(command, interceptionContext);

 }

 public override void NonQueryExecuting(DbCommand command,

DbCommandInterceptionContext<int> interceptionContext)

 {

 base.NonQueryExecuting(command, interceptionContext);

 _stopwatch.Restart();

 }

 public override void NonQueryExecuted(DbCommand command,

DbCommandInterceptionContext<int> interceptionContext)

 {

 _stopwatch.Stop();

 if (interceptionContext.Exception != null)

 {

82

 _logger.Error(interceptionContext.Exception, "Error

executing command: {0}", command.CommandText);

 }

 else

 {

 _logger.TraceApi("SQL Database",

"SchoolInterceptor.NonQueryExecuted", _stopwatch.Elapsed, "Command:

{0}: ", command.CommandText);

 }

 base.NonQueryExecuted(command, interceptionContext);

 }

 public override void ReaderExecuting(DbCommand command,

DbCommandInterceptionContext<DbDataReader> interceptionContext)

 {

 base.ReaderExecuting(command, interceptionContext);

 _stopwatch.Restart();

 }

 public override void ReaderExecuted(DbCommand command,

DbCommandInterceptionContext<DbDataReader> interceptionContext)

 {

 _stopwatch.Stop();

 if (interceptionContext.Exception != null)

 {

 _logger.Error(interceptionContext.Exception, "Error

executing command: {0}", command.CommandText);

 }

 else

 {

 _logger.TraceApi("SQL Database",

"SchoolInterceptor.ReaderExecuted", _stopwatch.Elapsed, "Command: {0}:

", command.CommandText);

 }

 base.ReaderExecuted(command, interceptionContext);

 }

 }

}

For successful queries or commands, this code writes an Information log with latency

information. For exceptions, it creates an Error log.

2. To create the interceptor class that will generate dummy transient errors when you enter

"Throw" in the Search box, create a class file named

SchoolInterceptorTransientErrors.cs in the DAL folder, and replace the template code

with the following code:

using System;

using System.Data.Common;

using System.Data.Entity;

using System.Data.Entity.Infrastructure.Interception;

using System.Data.Entity.SqlServer;

using System.Data.SqlClient;

using System.Diagnostics;

using System.Reflection;

using System.Linq;

83

using ContosoUniversity.Logging;

namespace ContosoUniversity.DAL

{

 public class SchoolInterceptorTransientErrors :

DbCommandInterceptor

 {

 private int _counter = 0;

 private ILogger _logger = new Logger();

 public override void ReaderExecuting(DbCommand command,

DbCommandInterceptionContext<DbDataReader> interceptionContext)

 {

 bool throwTransientErrors = false;

 if (command.Parameters.Count > 0 &&

command.Parameters[0].Value.ToString() == "Throw")

 {

 throwTransientErrors = true;

 command.Parameters[0].Value = "an";

 command.Parameters[1].Value = "an";

 }

 if (throwTransientErrors && _counter < 4)

 {

 _logger.Information("Returning transient error for

command: {0}", command.CommandText);

 _counter++;

 interceptionContext.Exception =

CreateDummySqlException();

 }

 }

 private SqlException CreateDummySqlException()

 {

 // The instance of SQL Server you attempted to connect to

does not support encryption

 var sqlErrorNumber = 20;

 var sqlErrorCtor =

typeof(SqlError).GetConstructors(BindingFlags.Instance |

BindingFlags.NonPublic).Where(c => c.GetParameters().Count() ==

7).Single();

 var sqlError = sqlErrorCtor.Invoke(new object[] {

sqlErrorNumber, (byte)0, (byte)0, "", "", "", 1 });

 var errorCollection =

Activator.CreateInstance(typeof(SqlErrorCollection), true);

 var addMethod = typeof(SqlErrorCollection).GetMethod("Add",

BindingFlags.Instance | BindingFlags.NonPublic);

 addMethod.Invoke(errorCollection, new[] { sqlError });

 var sqlExceptionCtor =

typeof(SqlException).GetConstructors(BindingFlags.Instance |

BindingFlags.NonPublic).Where(c => c.GetParameters().Count() ==

4).Single();

84

 var sqlException =

(SqlException)sqlExceptionCtor.Invoke(new object[] { "Dummy",

errorCollection, null, Guid.NewGuid() });

 return sqlException;

 }

 }

}

This code only overrides the ReaderExecuting method, which is called for queries that

can return multiple rows of data. If you wanted to check connection resiliency for other

types of queries, you could also override the NonQueryExecuting and ScalarExecuting

methods, as the logging interceptor does.

When you run the Student page and enter "Throw" as the search string, this code creates a

dummy SQL Database exception for error number 20, a type known to be typically

transient. Other error numbers currently recognized as transient are 64, 233, 10053,

10054, 10060, 10928, 10929, 40197, 40501, abd 40613, but these are subject to change in

new versions of SQL Database.

The code returns the exception to Entity Framework instead of running the query and

passing back query results. The transient exception is returned four times, and then the

code reverts to the normal procedure of passing the query to the database.

Because everything is logged, you'll be able to see that Entity Framework tries to execute

the query four times before finally succeeding, and the only difference in the application

is that it takes longer to render a page with query results.

The number of times the Entity Framework will retry is configurable; the code specifies

four times because that's the default value for the SQL Database execution policy. If you

change the execution policy, you'd also change the code here that specifies how many

times transient errors are generated. You could also change the code to generate more

exceptions so that Entity Framework will throw the RetryLimitExceededException

exception.

The value you enter in the Search box will be in command.Parameters[0] and

command.Parameters[1] (one is used for the first name and one for the last name).

When the value "Throw" is found, it is replaced in those parameters by "an" so that some

students will be found and returned.

This is just a convenient way to test connection resiliency based on changing some input

to the application UI. You can also write code that generates transient errors for all

queries or updates, as explained later in the comments about the DbInterception.Add

method.

3. In Global.asax, add the following using statements:

using ContosoUniversity.DAL;

85

using System.Data.Entity.Infrastructure.Interception;

4. Add the highlighted line to the Application_Start method:

protected void Application_Start()

{

 AreaRegistration.RegisterAllAreas();

 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);

 RouteConfig.RegisterRoutes(RouteTable.Routes);

 BundleConfig.RegisterBundles(BundleTable.Bundles);

 DbInterception.Add(new SchoolInterceptorTransientErrors());

 DbInterception.Add(new SchoolInterceptorLogging());

}

These lines of code are what causes your interceptor code to be run when Entity

Framework sends queries to the database. Notice that because you created separate

interceptor classes for transient error simulation and logging, you can independently

enable and disable them.

You can add interceptors using the DbInterception.Add method anywhere in your

code; it doesn't have to be in the Application_Start method. Another option is to put

this code in the DbConfiguration class that you created earlier to configure the execution

policy.

public class SchoolConfiguration : DbConfiguration

{

 public SchoolConfiguration()

 {

 SetExecutionStrategy("System.Data.SqlClient", () => new

SqlAzureExecutionStrategy());

 DbInterception.Add(new SchoolInterceptorTransientErrors());

 DbInterception.Add(new SchoolInterceptorLogging());

 }

}

Wherever you put this code, be careful not to execute DbInterception.Add for the same

interceptor more than once, or you'll get additional interceptor instances. For example, if

you add the logging interceptor twice, you'll see two logs for every SQL query.

Interceptors are executed in the order of registration (the order in which the

DbInterception.Add method is called). The order might matter depending on what

you're doing in the interceptor. For example, an interceptor might change the SQL

command that it gets in the CommandText property. If it does change the SQL command,

the next interceptor will get the changed SQL command, not the original SQL command.

You've written the transient error simulation code in a way that lets you cause transient

errors by entering a different value in the UI. As an alternative, you could write the

interceptor code to always generate the sequence of transient exceptions without

checking for a particular parameter value. You could then add the interceptor only when

you want to generate transient errors. If you do this, however, don't add the interceptor

86

until after database initialization has completed. In other words, do at least one database

operation such as a query on one of your entity sets before you start generating transient

errors. The Entity Framework executes several queries during database initialization, and

they aren't executed in a transaction, so errors during initialization could cause the

context to get into an inconsistent state.

Test logging and connection resiliency

1. Press F5 to run the application in debug mode, and then click the Students tab.

2. Look at the Visual Studio Output window to see the tracing output. You might have to

scroll up past some JavaScript errors to get to the logs written by your logger.

Notice that you can see the actual SQL queries sent to the database. You see some initial

queries and commands that Entity Framework does to get started, checking the database

version and migration history table (you'll learn about migrations in the next tutorial).

And you see a query for paging, to find out how many students there are, and finally you

see the query that gets the student data.

87

88

3. In the Students page, enter "Throw" as the search string, and click Search.

You'll notice that the browser seems to hang for several seconds while Entity Framework

is retrying the query several times. The first retry happens very quickly, then the wait

before increases before each additional retry. This process of waiting longer before each

retry is called exponential backoff.

When the page displays, showing students who have "an" in their names, look at the

output window, and you'll see that the same query was attempted five times, the first four

times returning transient exceptions. For each transient error you'll see the log that you

write when generating the transient error in the SchoolInterceptorTransientErrors

class ("Returning transient error for command...") and you'll see the log written when

SchoolInterceptorLogging gets the exception.

89

Since you entered a search string, the query that returns student data is parameterized:

SELECT TOP (3)

 [Project1].[ID] AS [ID],

 [Project1].[LastName] AS [LastName],

 [Project1].[FirstMidName] AS [FirstMidName],

 [Project1].[EnrollmentDate] AS [EnrollmentDate]

 FROM (SELECT [Project1].[ID] AS [ID], [Project1].[LastName] AS

[LastName], [Project1].[FirstMidName] AS [FirstMidName],

[Project1].[EnrollmentDate] AS [EnrollmentDate], row_number() OVER

(ORDER BY [Project1].[LastName] ASC) AS [row_number]

 FROM (SELECT

 [Extent1].[ID] AS [ID],

90

 [Extent1].[LastName] AS [LastName],

 [Extent1].[FirstMidName] AS [FirstMidName],

 [Extent1].[EnrollmentDate] AS [EnrollmentDate]

 FROM [dbo].[Student] AS [Extent1]

 WHERE ((CAST(CHARINDEX(UPPER(@p__linq__0),

UPPER([Extent1].[LastName])) AS int)) > 0) OR ((

CAST(CHARINDEX(UPPER(@p__linq__1), UPPER([Extent1].[FirstMidName])) AS

int)) > 0)

) AS [Project1]

) AS [Project1]

 WHERE [Project1].[row_number] > 0

 ORDER BY [Project1].[LastName] ASC

You're not logging the value of the parameters, but you could do that. If you want to see

the parameter values, you can write logging code to get parameter values from the

Parameters property of the DbCommand object that you get in the interceptor methods.

Note that you can't repeat this test unless you stop the application and restart it. If you

wanted to be able to test connection resiliency multiple times in a single run of the

application, you could write code to reset the error counter in

SchoolInterceptorTransientErrors.

4. To see the difference the execution strategy (retry policy) makes, comment out the

SetExecutionStrategy line in SchoolConfiguration.cs, run the Students page in debug

mode again, and search for "Throw" again.

This time the debugger stops on the first generated exception immediately when it tries to

execute the query the first time.

91

5. Uncomment the SetExecutionStrategy line in SchoolConfiguration.cs.

Summary

In this tutorial you've seen how to enable connection resiliency and log SQL commands that

Entity Framework composes and sends to the database. In the next tutorial you'll deploy the

application to the Internet, using Code First Migrations to deploy the database.

92

Code First Migrations and Deployment with

the Entity Framework in an ASP.NET MVC

Application

So far the application has been running locally in IIS Express on your development computer. To

make a real application available for other people to use over the Internet, you have to deploy it

to a web hosting provider. In this tutorial you'll deploy the Contoso University application to the

cloud in a Windows Azure Web Site.

The tutorial contains the following sections:

 Enable Code First Migrations. The Migrations feature enables you to change the data

model and deploy your changes to production by updating the database schema without

having to drop and re-create the database.

 Deploy to Windows Azure. This step is optional; you can continue with the remaining

tutorials without having deployed the project.

Enable Code First Migrations

When you develop a new application, your data model changes frequently, and each time the

model changes, it gets out of sync with the database. You have configured the Entity Framework

to automatically drop and re-create the database each time you change the data model. When you

add, remove, or change entity classes or change your DbContext class, the next time you run the

application it automatically deletes your existing database, creates a new one that matches the

model, and seeds it with test data.

This method of keeping the database in sync with the data model works well until you deploy the

application to production. When the application is running in production it is usually storing data

that you want to keep, and you don't want to lose everything each time you make a change such

as adding a new column. The Code First Migrations feature solves this problem by enabling

Code First to update the database schema instead of dropping and re-creating the database. In

this tutorial, you'll deploy the application, and to prepare for that you'll enable Migrations.

1. Disable the initializer that you set up earlier by commenting out or deleting the contexts

element that you added to the application Web.config file.

<entityFramework>

 <!--<contexts>

 <context type="ContosoUniversity.DAL.SchoolContext,

ContosoUniversity">

 <databaseInitializer

type="ContosoUniversity.DAL.SchoolInitializer, ContosoUniversity" />

 </context>

 </contexts>-->

http://msdn.microsoft.com/en-us/data/jj591621

93

 <defaultConnectionFactory

type="System.Data.Entity.Infrastructure.LocalDbConnectionFactory,

EntityFramework">

 <parameters>

 <parameter value="v11.0" />

 </parameters>

 </defaultConnectionFactory>

 <providers>

 <provider invariantName="System.Data.SqlClient"

type="System.Data.Entity.SqlServer.SqlProviderServices,

EntityFramework.SqlServer" />

 </providers>

</entityFramework>

2. Also in the application Web.config file, change the name of the database in the

connection string to ContosoUniversity2.

<connectionStrings>

 <add name="SchoolContext" connectionString="Data

Source=(LocalDb)\v11.0;Initial Catalog=ContosoUniversity2;Integrated

Security=SSPI;" providerName="System.Data.SqlClient" />

</connectionStrings>

This change sets up the project so that the first migration will create a new database. This

isn't required but you'll see later why it's a good idea.

3. From the Tools menu, click Library Package Manager and then Package Manager

Console.

94

4. At the PM> prompt enter the following commands:

enable-migrations
add-migration InitialCreate

The enable-migrations command creates a Migrations folder in the ContosoUniversity

project, and it puts in that folder a Configuration.cs file that you can edit to configure

Migrations.

(If you missed the step above that directs you to change the database name, Migrations

will find the existing database and automatically do the add-migration command. That's

OK, it just means you won't run a test of the migrations code before you deploy the

database. Later when you run the update-database command nothing will happen

because the database will already exist.)

95

Like the initializer class that you saw earlier, the Configuration class includes a Seed

method.

internal sealed class Configuration :

DbMigrationsConfiguration<ContosoUniversity.DAL.SchoolContext>

{

 public Configuration()

 {

 AutomaticMigrationsEnabled = false;

 }

 protected override void Seed(ContosoUniversity.DAL.SchoolContext

context)

 {

 // This method will be called after migrating to the latest

version.

 // You can use the DbSet<T>.AddOrUpdate() helper extension

method

 // to avoid creating duplicate seed data. E.g.

96

 //

 // context.People.AddOrUpdate(

 // p => p.FullName,

 // new Person { FullName = "Andrew Peters" },

 // new Person { FullName = "Brice Lambson" },

 // new Person { FullName = "Rowan Miller" }

 //);

 //

 }

}

The purpose of the Seed method is to enable you to insert or update test data after Code

First creates or updates the database. The method is called when the database is created

and every time the database schema is updated after a data model change.

Set up the Seed Method

When you are dropping and re-creating the database for every data model change, you use the

initializer class's Seed method to insert test data, because after every model change the database

is dropped and all the test data is lost. With Code First Migrations, test data is retained after

database changes, so including test data in the Seed method is typically not necessary. In fact,

you don't want the Seed method to insert test data if you'll be using Migrations to deploy the

database to production, because the Seed method will run in production. In that case you want

the Seed method to insert into the database only the data that you need in production. For

example, you might want the database to include actual department names in the Department

table when the application becomes available in production.

For this tutorial, you'll be using Migrations for deployment, but your Seed method will insert

test data anyway in order to make it easier to see how application functionality works without

having to manually insert a lot of data.

1. Replace the contents of the Configuration.cs file with the following code, which will load

test data into the new database.

namespace ContosoUniversity.Migrations

{

 using ContosoUniversity.Models;

 using System;

 using System.Collections.Generic;

 using System.Data.Entity;

 using System.Data.Entity.Migrations;

 using System.Linq;

 internal sealed class Configuration :

DbMigrationsConfiguration<ContosoUniversity.DAL.SchoolContext>

 {

 public Configuration()

 {

 AutomaticMigrationsEnabled = false;

 }

http://msdn.microsoft.com/en-us/library/hh829453%28v=vs.103%29.aspx
http://msdn.microsoft.com/en-us/library/hh829453%28v=vs.103%29.aspx

97

 protected override void

Seed(ContosoUniversity.DAL.SchoolContext context)

 {

 var students = new List<Student>

 {

 new Student { FirstMidName = "Carson", LastName =

"Alexander",

 EnrollmentDate = DateTime.Parse("2010-09-01") },

 new Student { FirstMidName = "Meredith", LastName =

"Alonso",

 EnrollmentDate = DateTime.Parse("2012-09-01") },

 new Student { FirstMidName = "Arturo", LastName =

"Anand",

 EnrollmentDate = DateTime.Parse("2013-09-01") },

 new Student { FirstMidName = "Gytis", LastName =

"Barzdukas",

 EnrollmentDate = DateTime.Parse("2012-09-01") },

 new Student { FirstMidName = "Yan", LastName =

"Li",

 EnrollmentDate = DateTime.Parse("2012-09-01") },

 new Student { FirstMidName = "Peggy", LastName =

"Justice",

 EnrollmentDate = DateTime.Parse("2011-09-01") },

 new Student { FirstMidName = "Laura", LastName =

"Norman",

 EnrollmentDate = DateTime.Parse("2013-09-01") },

 new Student { FirstMidName = "Nino", LastName =

"Olivetto",

 EnrollmentDate = DateTime.Parse("2005-08-11") }

 };

 students.ForEach(s => context.Students.AddOrUpdate(p =>

p.LastName, s));

 context.SaveChanges();

 var courses = new List<Course>

 {

 new Course {CourseID = 1050, Title = "Chemistry",

Credits = 3, },

 new Course {CourseID = 4022, Title = "Microeconomics",

Credits = 3, },

 new Course {CourseID = 4041, Title = "Macroeconomics",

Credits = 3, },

 new Course {CourseID = 1045, Title = "Calculus",

Credits = 4, },

 new Course {CourseID = 3141, Title = "Trigonometry",

Credits = 4, },

 new Course {CourseID = 2021, Title = "Composition",

Credits = 3, },

 new Course {CourseID = 2042, Title = "Literature",

Credits = 4, }

 };

 courses.ForEach(s => context.Courses.AddOrUpdate(p =>

p.Title, s));

 context.SaveChanges();

 var enrollments = new List<Enrollment>

 {

98

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Alexander").ID,

 CourseID = courses.Single(c => c.Title ==

"Chemistry").CourseID,

 Grade = Grade.A

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Alexander").ID,

 CourseID = courses.Single(c => c.Title ==

"Microeconomics").CourseID,

 Grade = Grade.C

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Alexander").ID,

 CourseID = courses.Single(c => c.Title ==

"Macroeconomics").CourseID,

 Grade = Grade.B

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Alonso").ID,

 CourseID = courses.Single(c => c.Title ==

"Calculus").CourseID,

 Grade = Grade.B

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Alonso").ID,

 CourseID = courses.Single(c => c.Title ==

"Trigonometry").CourseID,

 Grade = Grade.B

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Alonso").ID,

 CourseID = courses.Single(c => c.Title ==

"Composition").CourseID,

 Grade = Grade.B

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Anand").ID,

 CourseID = courses.Single(c => c.Title ==

"Chemistry").CourseID

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Anand").ID,

 CourseID = courses.Single(c => c.Title ==

"Microeconomics").CourseID,

 Grade = Grade.B

 },

 new Enrollment {

99

 StudentID = students.Single(s => s.LastName ==

"Barzdukas").ID,

 CourseID = courses.Single(c => c.Title ==

"Chemistry").CourseID,

 Grade = Grade.B

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Li").ID,

 CourseID = courses.Single(c => c.Title ==

"Composition").CourseID,

 Grade = Grade.B

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Justice").ID,

 CourseID = courses.Single(c => c.Title ==

"Literature").CourseID,

 Grade = Grade.B

 }

 };

 foreach (Enrollment e in enrollments)

 {

 var enrollmentInDataBase = context.Enrollments.Where(

 s =>

 s.Student.ID == e.StudentID &&

 s.Course.CourseID ==

e.CourseID).SingleOrDefault();

 if (enrollmentInDataBase == null)

 {

 context.Enrollments.Add(e);

 }

 }

 context.SaveChanges();

 }

 }

}

The Seed method takes the database context object as an input parameter, and the code in

the method uses that object to add new entities to the database. For each entity type, the

code creates a collection of new entities, adds them to the appropriate DbSet property,

and then saves the changes to the database. It isn't necessary to call the SaveChanges

method after each group of entities, as is done here, but doing that helps you locate the

source of a problem if an exception occurs while the code is writing to the database.

Some of the statements that insert data use the AddOrUpdate method to perform an

"upsert" operation. Because the Seed method runs every time you execute the update-

database command, typically after each migration, you can't just insert data, because the

rows you are trying to add will already be there after the first migration that creates the

database. The "upsert" operation prevents errors that would happen if you try to insert a

row that already exists, but it overrides any changes to data that you may have made

while testing the application. With test data in some tables you might not want that to

http://msdn.microsoft.com/en-us/library/hh829453%28v=vs.103%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbset%28v=vs.103%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext.savechanges%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.migrations.idbsetextensions.addorupdate%28v=vs.103%29.aspx

100

happen: in some cases when you change data while testing you want your changes to

remain after database updates. In that case you want to do a conditional insert operation:

insert a row only if it doesn't already exist. The Seed method uses both approaches.

The first parameter passed to the AddOrUpdate method specifies the property to use to

check if a row already exists. For the test student data that you are providing, the

LastName property can be used for this purpose since each last name in the list is unique:

context.Students.AddOrUpdate(p => p.LastName, s)

This code assumes that last names are unique. If you manually add a student with a

duplicate last name, you'll get the following exception the next time you perform a

migration.

Sequence contains more than one element

For information about how to handle redundant data such as two students named

"Alexander Carson", see Seeding and Debugging Entity Framework (EF) DBs on Rick

Anderson's blog. For more information about the AddOrUpdate method, see Take care

with EF 4.3 AddOrUpdate Method on Julie Lerman's blog.

The code that creates Enrollment entities assumes you have the ID value in the entities

in the students collection, although you didn't set that property in the code that creates

the collection.

new Enrollment {

 StudentID = students.Single(s => s.LastName == "Alexander").ID,

 CourseID = courses.Single(c => c.Title == "Chemistry").CourseID,

 Grade = Grade.A

},

You can use the ID property here because the ID value is set when you call SaveChanges

for the students collection. EF automatically gets the primary key value when it inserts

an entity into the database, and it updates the ID property of the entity in memory.

The code that adds each Enrollment entity to the Enrollments entity set doesn't use the

AddOrUpdate method. It checks if an entity already exists and inserts the entity if it

doesn't exist. This approach will preserve changes you make to an enrollment grade by

using the application UI. The code loops through each member of the Enrollment List

and if the enrollment is not found in the database, it adds the enrollment to the database.

The first time you update the database, the database will be empty, so it will add each

enrollment.

foreach (Enrollment e in enrollments)

{

 var enrollmentInDataBase = context.Enrollments.Where(

 s => s.Student.ID == e.Student.ID &&

 s.Course.CourseID == e.Course.CourseID).SingleOrDefault();

http://msdn.microsoft.com/en-us/library/system.data.entity.migrations.idbsetextensions.addorupdate%28v=vs.103%29.aspx
http://blogs.msdn.com/b/rickandy/archive/2013/02/12/seeding-and-debugging-entity-framework-ef-dbs.aspx
http://thedatafarm.com/blog/data-access/take-care-with-ef-4-3-addorupdate-method/
http://thedatafarm.com/blog/data-access/take-care-with-ef-4-3-addorupdate-method/
http://msdn.microsoft.com/en-us/library/6sh2ey19.aspx

101

 if (enrollmentInDataBase == null)

 {

 context.Enrollments.Add(e);

 }

}

2. Build the project.

Execute the First Migration

When you executed the add-migration command, Migrations generated the code that would

create the database from scratch. This code is also in the Migrations folder, in the file named

<timestamp>_InitialCreate.cs. The Up method of the InitialCreate class creates the database

tables that correspond to the data model entity sets, and the Down method deletes them.

public partial class InitialCreate : DbMigration

{

 public override void Up()

 {

 CreateTable(

 "dbo.Course",

 c => new

 {

 CourseID = c.Int(nullable: false),

 Title = c.String(),

 Credits = c.Int(nullable: false),

 })

 .PrimaryKey(t => t.CourseID);

 CreateTable(

 "dbo.Enrollment",

 c => new

 {

 EnrollmentID = c.Int(nullable: false, identity: true),

 CourseID = c.Int(nullable: false),

 StudentID = c.Int(nullable: false),

 Grade = c.Int(),

 })

 .PrimaryKey(t => t.EnrollmentID)

 .ForeignKey("dbo.Course", t => t.CourseID, cascadeDelete: true)

 .ForeignKey("dbo.Student", t => t.StudentID, cascadeDelete: true)

 .Index(t => t.CourseID)

 .Index(t => t.StudentID);

 CreateTable(

 "dbo.Student",

 c => new

 {

 ID = c.Int(nullable: false, identity: true),

 LastName = c.String(),

 FirstMidName = c.String(),

 EnrollmentDate = c.DateTime(nullable: false),

 })

 .PrimaryKey(t => t.ID);

102

 }

 public override void Down()

 {

 DropForeignKey("dbo.Enrollment", "StudentID", "dbo.Student");

 DropForeignKey("dbo.Enrollment", "CourseID", "dbo.Course");

 DropIndex("dbo.Enrollment", new[] { "StudentID" });

 DropIndex("dbo.Enrollment", new[] { "CourseID" });

 DropTable("dbo.Student");

 DropTable("dbo.Enrollment");

 DropTable("dbo.Course");

 }

}

Migrations calls the Up method to implement the data model changes for a migration. When you

enter a command to roll back the update, Migrations calls the Down method.

This is the initial migration that was created when you entered the add-

migration InitialCreate command. The parameter (InitialCreate in the example) is used

for the file name and can be whatever you want; you typically choose a word or phrase that

summarizes what is being done in the migration. For example, you might name a later migration

"AddDepartmentTable".

If you created the initial migration when the database already exists, the database creation code is

generated but it doesn't have to run because the database already matches the data model. When

you deploy the app to another environment where the database doesn't exist yet, this code will

run to create your database, so it's a good idea to test it first. That's why you changed the name of

the database in the connection string earlier -- so that migrations can create a new one from

scratch.

1. In the Package Manager Console window, enter the following command:

update-database

The update-database command runs the Up method to create the database and then it

runs the Seed method to populate the database. The same process will run automatically

in production after you deploy the application, as you'll see in the following section.

103

2. Use Server Explorer to inspect the database as you did in the first tutorial, and run the

application to verify that everything still works the same as before.

Deploy to Windows Azure

So far the application has been running locally in IIS Express on your development

computer. To make it available for other people to use over the Internet, you have to deploy it to

a web hosting provider. In this section of the tutorial you'll deploy it to a Windows Azure Web

Site. This section is optional; you can skip this and continue with the following tutorial, or you

can adapt the instructions in this section for a different hosting provider of your choice.

Using Code First Migrations to Deploy the Database

To deploy the database you'll use Code First Migrations. When you create the publish profile

that you use to configure settings for deploying from Visual Studio, you'll select a check box

labeled Execute Code First Migrations (runs on application start). This setting causes the

deployment process to automatically configure the application Web.config file on the destination

server so that Code First uses the MigrateDatabaseToLatestVersion initializer class.

Visual Studio doesn't do anything with the database during the deployment process while it is

copying your project to the destination server. When you run the deployed application and it

accesses the database for the first time after deployment, Code First checks if the database

matches the data model. If there's a mismatch, Code First automatically creates the database (if it

doesn't exist yet) or updates the database schema to the latest version (if a database exists but

doesn't match the model). If the application implements a Migrations Seed method, the method

runs after the database is created or the schema is updated.

Your Migrations Seed method inserts test data. If you were deploying to a production

environment, you would have to change the Seed method so that it only inserts data that you

want to be inserted into your production database. For example, in your current data model you

might want to have real courses but fictional students in the development database. You can

write a Seed method to load both in development, and then comment out the fictional students

before you deploy to production. Or you can write a Seed method to load only courses, and enter

the fictional students in the test database manually by using the application's UI.

Get a Windows Azure account

You'll need a Windows Azure account. If you don't already have one, but you do have an MSDN

subscription, you can activate your MSDN subscription benefits. Otherwise, you can create a

free trial account in just a couple of minutes. For details, see Windows Azure Free Trial.

Create a web site and a SQL database in Windows Azure

Your Windows Azure Web Site will run in a shared hosting environment, which means it runs

on virtual machines (VMs) that are shared with other Windows Azure clients. A shared hosting

http://www.windowsazure.com/en-us/pricing/member-offers/msdn-benefits-details/?WT.mc_id=A443DD604
http://www.windowsazure.com/en-us/pricing/free-trial/?WT.mc_id=A443DD604

104

environment is a low-cost way to get started in the cloud. Later, if your web traffic increases, the

application can scale to meet the need by running on dedicated VMs.

You'll deploy the database to Windows Azure SQL Database. SQL Database is a cloud-based

relational database service that is built on SQL Server technologies. Tools and applications that

work with SQL Server also work with SQL Database.

1. In the Windows Azure Management Portal, click Web Sites in the left tab, and then click

New.

2. Click CUSTOM CREATE.

https://manage.windowsazure.com/

105

The New Web Site - Custom Create wizard opens.

3. In the New Web Site step of the wizard, enter a string in the URL box to use as the

unique URL for your application. The complete URL will consist of what you enter here

plus the suffix that you see next to the text box. The illustration shows "ConU", but that

URL is probably taken so you will have to choose a different one.

4. In the Region drop-down list, choose a region close to you. This setting specifies which

data center your web site will run in.

5. In the Database drop-down list, choose Create a free 20 MB SQL database.

106

6. In the DB CONNECTION STRING NAME, enter SchoolContext.

7. Click the arrow that points to the right at the bottom of the box. The wizard advances to

the Database Settings step.

8. In the Name box, enter ContosoUniversityDB.

107

9. In the Server box, select New SQL Database server. Alternatively, if you previously

created a server, you can select that server from the drop-down list.

10. Enter an administrator LOGIN NAME and PASSWORD. If you selected New SQL

Database server you aren't entering an existing name and password here, you're entering

a new name and password that you're defining now to use later when you access the

database. If you selected a server that you created previously, you’ll enter credentials for

that server. For this tutorial, you won't select the Advanced check box. The

Advanced options enable you to set the database collation.

11. Choose the same Region that you chose for the web site.

12. Click the check mark at the bottom right of the box to indicate that you're finished.

The Management Portal returns to the Web Sites page, and the Status column shows that

the site is being created. After a while (typically less than a minute), the Status column

shows that the site was successfully created. In the navigation bar at the left, the number

of sites you have in your account appears next to the Web Sites icon, and the number of

databases appears next to the SQL Databases icon.

Deploy the application to Windows Azure

1. In Visual Studio, right-click the project in Solution Explorer and select Publish from the

context menu.

http://msdn.microsoft.com/en-us/library/aa174903%28v=SQL.80%29.aspx

108

2. In the Profile tab of the Publish Web wizard, click Import.

3. If you have not previously added your Windows Azure subscription in Visual Studio,

perform the following steps. These steps enable Visual Studio to connect to your

109

Windows Azure subscription so that the drop-down list under Import from a Windows

Azure web site will include your web site.

As an alternative, you can sign in directly to your Windows Azure account without

downloading a subscription file. To use this method, click Sign In instead of Manage

subscriptions in the next step. This alternative is simpler, but as this tutorial is being

written in November, 2013, only the subscription file download enables Server Explorer

to connect to Windows Azure SQL Database.

a. In the Import Publish Profile dialog box, click Manage subscriptions.

b. In the Manage Windows Azure Subscriptions dialog box, click the Certificates tab,

and then click Import.

110

c. In the Import Windows Azure Subscriptions dialog box, click Download

subscription file .

d. In your browser window, save the .publishsettings file.

111

Security Note: The publishsettings file contains your credentials (unencoded) that are

used to administer your Windows Azure subscriptions and services. The security best

practice for this file is to store it temporarily outside your source directories (for example

in the Downloads folder), and then delete it once the import has completed. A malicious

user who gains access to the .publishsettings file can edit, create, and delete your

Windows Azure services.

e. In the Import Windows Azure Subscriptions dialog box, click Browse and navigate

to the .publishsettings file.

112

e. Click Import.

4. Close the Manage Windows Azure Subscriptions box.

5. In the Import Publish Profile dialog box, select Import from a Windows Azure web

site, select your web site from the drop-down list, and then click OK.

113

6. In the Connection tab, click Validate Connection to make sure that the settings are

correct.

114

7. When the connection has been validated, a green check mark is shown next to the

Validate Connection button. Click Next.

115

8. Open the Remote connection string drop-down list under SchoolContext and select the

connection string for the database you created.

9. Select Execute Code First Migrations (runs on application start).

116

This setting causes the deployment process to automatically configure the application

Web.config file on the destination server so that Code First uses the

MigrateDatabaseToLatestVersion initializer class.

10. Click Next.

11. In the Preview tab, click Start Preview.

117

The tab displays a list of the files that will be copied to the server. Displaying the preview

isn't required to publish the application but is a useful function to be aware of. In this

case, you don't need to do anything with the list of files that is displayed. The next time

you deploy this application, only the files that have changed will be in this list.

118

12. Click Publish.

Visual Studio begins the process of copying the files to the Windows Azure server.

13. The Output window shows what deployment actions were taken and reports successful

completion of the deployment.

119

14. Upon successful deployment, the default browser automatically opens to the URL of the

deployed web site.

The application you created is now running in the cloud. Click the Students tab.

120

At this point your SchoolContext database has been created in the Windows Azure SQL

Database because you selected Execute Code First Migrations (runs on app start). The

Web.config file in the deployed web site has been changed so that

the MigrateDatabaseToLatestVersion initializer runs the first time your code reads or writes data

in the database (which happened when you selected the Students tab):

http://msdn.microsoft.com/en-us/library/hh829476%28v=vs.103%29.aspx

121

The deployment process also created a new connection string (SchoolContext_DatabasePublish)

for Code First Migrations to use for updating the database schema and seeding the database.

You can find the deployed version of the Web.config file on your own computer in

ContosoUniversity\obj\Release\Package\PackageTmp\Web.config. You can access the deployed

Web.config file itself by using FTP. For instructions, see ASP.NET Web Deployment using

Visual Studio: Deploying a Code Update. Follow the instructions that start with "To use an FTP

tool, you need three things: the FTP URL, the user name, and the password."

Note: The web app doesn't implement security, so anyone who finds the URL can change the

data. For instructions on how to secure the web site, see Deploy a Secure ASP.NET MVC app

with Membership, OAuth, and SQL Database to a Windows Azure Web Site. You can prevent

other people from using the site by using the Windows Azure Management Portal or Server

Explorer in Visual Studio to stop the site.

http://www.asp.net/mvc/tutorials/deployment/visual-studio-web-deployment/deploying-a-code-update
http://www.asp.net/mvc/tutorials/deployment/visual-studio-web-deployment/deploying-a-code-update
http://www.windowsazure.com/en-us/develop/net/tutorials/web-site-with-sql-database/
http://www.windowsazure.com/en-us/develop/net/tutorials/web-site-with-sql-database/

122

Advanced Migrations Scenarios

If you deploy a database by running migrations automatically as shown in this tutorial, and you

are deploying to a web site that runs on multiple servers, you could get mutiple servers trying to

run migrations at the same time. Migrations are atomic, so if two servers try to run the same

migration, one will succeed and the other will fail (assuming the operations can't be done twice).

In that scenario if you want to avoid those issues, you can call migrations manually and set up

your own code so that it only happens once. For more information, see Running and Scripting

Migrations from Code on Rowan Miller's blog and Migrate.exe (for executing migrations from

the command line) on MSDN.

For information about other migrations scenarios, see Migrations Screencast Series.

Code First Initializers

In the deployment section you saw the MigrateDatabaseToLatestVersion initializer being used.

Code First also provides other initializers, including CreateDatabaseIfNotExists (the

default), DropCreateDatabaseIfModelChanges (which you used earlier) and

DropCreateDatabaseAlways. The DropCreateAlways initializer can be useful for setting up

conditions for unit tests. You can also write your own initializers, and you can call an initializer

explicitly if you don't want to wait until the application reads from or writes to the database. At

the time this tutorial is being written in November, 2013, you can only use the Create and

http://romiller.com/2012/02/09/running-scripting-migrations-from-code/
http://romiller.com/2012/02/09/running-scripting-migrations-from-code/
http://msdn.microsoft.com/en-us/data/jj618307
http://blogs.msdn.com/b/adonet/archive/2014/03/12/migrations-screencast-series.aspx
http://msdn.microsoft.com/en-us/library/hh829476%28v=vs.103%29.aspx
http://msdn.microsoft.com/en-us/library/gg679221%28v=vs.103%29.aspx
http://msdn.microsoft.com/en-us/library/gg679604%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/gg679506%28v=VS.103%29.aspx

123

DropCreate initializers before you enable migrations. The Entity Framework team is working on

making these initializers usable with migrations as well.

For more information about initializers, see Understanding Database Initializers in Entity

Framework Code First and chapter 6 of the book Programming Entity Framework: Code First by

Julie Lerman and Rowan Miller.

Summary

In this tutorial you've seen how to enable migrations and deploy the application. In the next

tutorial you'll begin looking at more advanced topics by expanding the data model.

http://www.codeguru.com/csharp/article.php/c19999/Understanding-Database-Initializers-in-Entity-Framework-Code-First.htm
http://www.codeguru.com/csharp/article.php/c19999/Understanding-Database-Initializers-in-Entity-Framework-Code-First.htm
http://shop.oreilly.com/product/0636920022220.do

124

Creating a More Complex Data Model for an

ASP.NET MVC Application

In the previous tutorials you worked with a simple data model that was composed of three

entities. In this tutorial you'll add more entities and relationships and you'll customize the data

model by specifying formatting, validation, and database mapping rules. You'll see two ways to

customize the data model: by adding attributes to entity classes and by adding code to the

database context class.

When you're finished, the entity classes will make up the completed data model that's shown in

the following illustration:

125

Customize the Data Model by Using Attributes

126

In this section you'll see how to customize the data model by using attributes that specify

formatting, validation, and database mapping rules. Then in several of the following sections

you'll create the complete School data model by adding attributes to the classes you already

created and creating new classes for the remaining entity types in the model.

The DataType Attribute

For student enrollment dates, all of the web pages currently display the time along with the date,

although all you care about for this field is the date. By using data annotation attributes, you can

make one code change that will fix the display format in every view that shows the data. To see

an example of how to do that, you'll add an attribute to the EnrollmentDate property in the

Student class.

In Models\Student.cs, add a using statement for the

System.ComponentModel.DataAnnotations namespace and add DataType and

DisplayFormat attributes to the EnrollmentDate property, as shown in the following example:

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models

{

 public class Student

 {

 public int ID { get; set; }

 public string LastName { get; set; }

 public string FirstMidName { get; set; }

 [DataType(DataType.Date)]

 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",

ApplyFormatInEditMode = true)]

 public DateTime EnrollmentDate { get; set; }

 public virtual ICollection<Enrollment> Enrollments { get; set; }

 }

}

The DataType attribute is used to specify a data type that is more specific than the database

intrinsic type. In this case we only want to keep track of the date, not the date and time.

The DataType Enumeration provides for many data types, such as Date, Time, PhoneNumber,

Currency, EmailAddress and more. The DataType attribute can also enable the application to

automatically provide type-specific features. For example, a mailto: link can be created for

DataType.EmailAddress, and a date selector can be provided for DataType.Date in browsers that

support HTML5. The DataType attributes emits HTML 5 data- (pronounced data dash)

attributes that HTML 5 browsers can understand. The DataType attributes do not provide any

validation.

DataType.Date does not specify the format of the date that is displayed. By default, the data

field is displayed according to the default formats based on the server's CultureInfo.

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.datatypeattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.datatype.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.datatype.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.datatype.aspx
http://html5.org/
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.datatypeattribute.aspx
http://ejohn.org/blog/html-5-data-attributes/
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.datatypeattribute.aspx
http://msdn.microsoft.com/en-us/library/vstudio/system.globalization.cultureinfo%28v=vs.110%29.aspx

127

The DisplayFormat attribute is used to explicitly specify the date format:

[DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode =

true)]

The ApplyFormatInEditMode setting specifies that the specified formatting should also be

applied when the value is displayed in a text box for editing. (You might not want that for some

fields — for example, for currency values, you might not want the currency symbol in the text

box for editing.)

You can use the DisplayFormat attribute by itself, but it's generally a good idea to use the

DataType attribute also. The DataType attribute conveys the semantics of the data as opposed to

how to render it on a screen, and provides the following benefits that you don't get with

DisplayFormat:

 The browser can enable HTML5 features (for example to show a calendar control, the

locale-appropriate currency symbol, email links, some client-side input validation, etc.).

 By default, the browser will render data using the correct format based on your locale.

 The DataType attribute can enable MVC to choose the right field template to render the

data (the DisplayFormat uses the string template). For more information, see Brad

Wilson's ASP.NET MVC 2 Templates. (Though written for MVC 2, this article still

applies to the current version of ASP.NET MVC.)

If you use the DataType attribute with a date field, you have to specify the DisplayFormat

attribute also in order to ensure that the field renders correctly in Chrome browsers. For more

information, see this StackOverflow thread.

For more information about how to handle other date formats in MVC, go to MVC 5

Introduction: Examining the Edit Methods and Edit View and search in the page for

"internationalization".

Run the Student Index page again and notice that times are no longer displayed for the

enrollment dates. The same will be true for any view that uses the Student model.

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.displayformatattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.datatypeattribute.aspx
http://msdn.microsoft.com/en-us/library/vstudio/wyzd2bce.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.datatypeattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.displayformatattribute.aspx
http://bradwilson.typepad.com/blog/2009/10/aspnet-mvc-2-templates-part-1-introduction.html
http://stackoverflow.com/questions/12633471/mvc4-datatype-date-editorfor-wont-display-date-value-in-chrome-fine-in-ie
http://www.asp.net/mvc/tutorials/mvc-5/introduction/examining-the-edit-methods-and-edit-view
http://www.asp.net/mvc/tutorials/mvc-5/introduction/examining-the-edit-methods-and-edit-view

128

The StringLengthAttribute

You can also specify data validation rules and validation error messages using attributes. The

StringLength attribute sets the maximum length in the database and provides client side and

server side validation for ASP.NET MVC. You can also specify the minimum string length in

this attribute, but the minimum value has no impact on the database schema.

Suppose you want to ensure that users don't enter more than 50 characters for a name. To add

this limitation, add StringLength attributes to the LastName and FirstMidName properties, as

shown in the following example:

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models

{

 public class Student

 {

 public int ID { get; set; }

 [StringLength(50)]

 public string LastName { get; set; }

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.stringlengthattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.stringlengthattribute.aspx

129

 [StringLength(50, ErrorMessage = "First name cannot be longer than 50

characters.")]

 public string FirstMidName { get; set; }

 [DataType(DataType.Date)]

 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",

ApplyFormatInEditMode = true)]

 public DateTime EnrollmentDate { get; set; }

 public virtual ICollection<Enrollment> Enrollments { get; set; }

 }

}

The StringLength attribute won't prevent a user from entering white space for a name. You can

use the RegularExpression attribute to apply restrictions to the input. For example the following

code requires the first character to be upper case and the remaining characters to be alphabetical:

[RegularExpression(@"^[A-Z]+[a-zA-Z''-'\s]*$")]

The MaxLength attribute provides similar functionality to the StringLength attribute but doesn't

provide client side validation.

Run the application and click the Students tab. You get the following error:

The model backing the 'SchoolContext' context has changed since the database was created.

Consider using Code First Migrations to update the database

(http://go.microsoft.com/fwlink/?LinkId=238269).

The database model has changed in a way that requires a change in the database schema, and

Entity Framework detected that. You'll use migrations to update the schema without losing any

data that you added to the database by using the UI. If you changed data that was created by the

Seed method, that will be changed back to its original state because of the AddOrUpdate method

that you're using in the Seed method. (AddOrUpdate is equivalent to an "upsert" operation from

database terminology.)

In the Package Manager Console (PMC), enter the following commands:

add-migration MaxLengthOnNames
update-database

The add-migration command creates a file named <timeStamp>_MaxLengthOnNames.cs. This

file contains code in the Up method that will update the database to match the current data model.

The update-database command ran that code.

The timestamp prepended to the migrations file name is used by Entity Framework to order the

migrations. You can create multiple migrations before running the update-database command,

and then all of the migrations are applied in the order in which they were created.

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.stringlengthattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.regularexpressionattribute.aspx
http://msdn.microsoft.com/en-us/library/System.ComponentModel.DataAnnotations.MaxLengthAttribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.stringlengthattribute.aspx
http://go.microsoft.com/fwlink/?LinkId=238269
http://msdn.microsoft.com/en-us/library/hh846520%28v=vs.103%29.aspx
http://msdn.microsoft.com/en-us/library/hh846520%28v=vs.103%29.aspx

130

Run the Create page, and enter either name longer than 50 characters. When you click Create,

client side validation shows an error message.

The Column Attribute

You can also use attributes to control how your classes and properties are mapped to the

database. Suppose you had used the name FirstMidName for the first-name field because the

field might also contain a middle name. But you want the database column to be named

FirstName, because users who will be writing ad-hoc queries against the database are

accustomed to that name. To make this mapping, you can use the Column attribute.

131

The Column attribute specifies that when the database is created, the column of the Student table

that maps to the FirstMidName property will be named FirstName. In other words, when your

code refers to Student.FirstMidName, the data will come from or be updated in the FirstName

column of the Student table. If you don't specify column names, they are given the same name

as the property name.

In the Student.cs file, add a using statement for

System.ComponentModel.DataAnnotations.Schema and add the column name attribute to the

FirstMidName property, as shown in the following highlighted code:

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models

{

 public class Student

 {

 public int ID { get; set; }

 [StringLength(50)]

 public string LastName { get; set; }

 [StringLength(50, ErrorMessage = "First name cannot be longer than 50

characters.")]

 [Column("FirstName")]

 public string FirstMidName { get; set; }

 [DataType(DataType.Date)]

 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",

ApplyFormatInEditMode = true)]

 public DateTime EnrollmentDate { get; set; }

 public virtual ICollection<Enrollment> Enrollments { get; set; }

 }

}

The addition of the Column attribute changes the model backing the SchoolContext, so it won't

match the database. Enter the following commands in the PMC to create another migration:

add-migration ColumnFirstName

update-database

In Server Explorer, open the Student table designer by double-clicking the Student table.

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.schema.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.schema.columnattribute.aspx

132

The following image shows the original column name as it was before you applied the first two

migrations. In addition to the column name changing from FirstMidName to FirstName, the

two name columns have changed from MAX length to 50 characters.

You can also make database mapping changes using the Fluent API, as you'll see later in this

tutorial.

Note If you try to compile before you finish creating all of the entity classes in the following

sections, you might get compiler errors.

Complete Changes to the Student Entity

http://msdn.microsoft.com/en-us/data/jj591617

133

In Models\Student.cs, replace the code you added earlier with the following code. The changes

are highlighted.

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models

{

 public class Student

 {

 public int ID { get; set; }

 [Required]

 [StringLength(50)]

 [Display(Name = "Last Name")]

 public string LastName { get; set; }

 [Required]

 [StringLength(50, ErrorMessage = "First name cannot be longer than 50

characters.")]

 [Column("FirstName")]

 [Display(Name = "First Name")]

 public string FirstMidName { get; set; }

 [DataType(DataType.Date)]

 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",

ApplyFormatInEditMode = true)]

 [Display(Name = "Enrollment Date")]

 public DateTime EnrollmentDate { get; set; }

 [Display(Name = "Full Name")]

 public string FullName

 {

 get

 {

 return LastName + ", " + FirstMidName;

 }

 }

 public virtual ICollection<Enrollment> Enrollments { get; set; }

 }

}

The Required Attribute

The Required attribute makes the name properties required fields. The Required attribute is

not needed for value types such as DateTime, int, double, and float. Value types cannot be

assigned a null value, so they are inherently treated as required fields. You could remove the

Required attribute and replace it with a minimum length parameter for the StringLength

attribute:

 [Display(Name = "Last Name")]

 [StringLength(50, MinimumLength=1)]

 public string LastName { get; set; }

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.requiredattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.requiredattribute.aspx

134

The Display Attribute

The Display attribute specifies that the caption for the text boxes should be "First Name", "Last

Name", "Full Name", and "Enrollment Date" instead of the property name in each instance

(which has no space dividing the words).

The FullName Calculated Property

FullName is a calculated property that returns a value that's created by concatenating two other

properties. Therefore it has only a get accessor, and no FullName column will be generated in

the database.

Create the Instructor Entity

Create Models\Instructor.cs, replacing the template code with the following code:

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models

{

 public class Instructor

 {

 public int ID { get; set; }

 [Required]

 [Display(Name = "Last Name")]

 [StringLength(50)]

 public string LastName { get; set; }

 [Required]

 [Column("FirstName")]

 [Display(Name = "First Name")]

 [StringLength(50)]

 public string FirstMidName { get; set; }

135

 [DataType(DataType.Date)]

 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",

ApplyFormatInEditMode = true)]

 [Display(Name = "Hire Date")]

 public DateTime HireDate { get; set; }

 [Display(Name = "Full Name")]

 public string FullName

 {

 get { return LastName + ", " + FirstMidName; }

 }

 public virtual ICollection<Course> Courses { get; set; }

 public virtual OfficeAssignment OfficeAssignment { get; set; }

 }

}

Notice that several properties are the same in the Student and Instructor entities. In the

Implementing Inheritance tutorial later in this series, you'll refactor this code to eliminate the

redundancy.

You can put multiple attributes on one line, so you could also write the instructor class as

follows:

public class Instructor

{

 public int ID { get; set; }

 [Display(Name = "Last Name"),StringLength(50, MinimumLength=1)]

 public string LastName { get; set; }

 [Column("FirstName"),Display(Name = "First Name"),StringLength(50,

MinimumLength=1)]

 public string FirstMidName { get; set; }

 [DataType(DataType.Date),Display(Name = "Hire Date")]

 public DateTime HireDate { get; set; }

 [Display(Name = "Full Name")]

 public string FullName

 {

 get { return LastName + ", " + FirstMidName; }

 }

 public virtual ICollection<Course> Courses { get; set; }

 public virtual OfficeAssignment OfficeAssignment { get; set; }

}

The Courses and OfficeAssignment Navigation Properties

The Courses and OfficeAssignment properties are navigation properties. As was explained

earlier, they are typically defined as virtual so that they can take advantage of an Entity

http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/implementing-inheritance-with-the-entity-framework-in-an-asp-net-mvc-application
http://msdn.microsoft.com/en-us/library/9fkccyh4%28v=vs.110%29.aspx

136

Framework feature called lazy loading. In addition, if a navigation property can hold multiple

entities, its type must implement the ICollection<T> Interface. For example IList<T> qualifies

but not IEnumerable<T> because IEnumerable<T> doesn't implement Add.

An instructor can teach any number of courses, so Courses is defined as a collection of Course

entities.

public virtual ICollection<Course> Courses { get; set; }

Our business rules state an instructor can only have at most one office, so OfficeAssignment is

defined as a single OfficeAssignment entity (which may be null if no office is assigned).

public virtual OfficeAssignment OfficeAssignment { get; set; }

Create the OfficeAssignment Entity

Create Models\OfficeAssignment.cs with the following code:

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models

{

 public class OfficeAssignment

 {

 [Key]

 [ForeignKey("Instructor")]

 public int InstructorID { get; set; }

 [StringLength(50)]

 [Display(Name = "Office Location")]

 public string Location { get; set; }

 public virtual Instructor Instructor { get; set; }

 }

}

Build the project, which saves your changes and verifies you haven't made any copy and paste

errors the compiler can catch.

http://msdn.microsoft.com/en-us/magazine/hh205756.aspx
http://msdn.microsoft.com/en-us/library/92t2ye13.aspx
http://msdn.microsoft.com/en-us/library/5y536ey6.aspx
http://msdn.microsoft.com/en-us/library/9eekhta0.aspx
http://msdn.microsoft.com/en-us/library/63ywd54z.aspx

137

The Key Attribute

There's a one-to-zero-or-one relationship between the Instructor and the OfficeAssignment

entities. An office assignment only exists in relation to the instructor it's assigned to, and

therefore its primary key is also its foreign key to the Instructor entity. But the Entity

Framework can't automatically recognize InstructorID as the primary key of this entity

because its name doesn't follow the ID or classnameID naming convention. Therefore, the Key

attribute is used to identify it as the key:

[Key]

[ForeignKey("Instructor")]

public int InstructorID { get; set; }

You can also use the Key attribute if the entity does have its own primary key but you want to

name the property something different than classnameID or ID. By default EF treats the key as

non-database-generated because the column is for an identifying relationship.

The ForeignKey Attribute

When there is a one-to-zero-or-one relationship or a one-to-one relationship between two

entities (such as between OfficeAssignment and Instructor), EF can't work out which end of

the relationship is the principal and which end is dependent. One-to-one relationships have a

reference navigation property in each class to the other class. The ForeignKey Attribute can be

applied to the dependent class to establish the relationship. If you omit the ForeignKey Attribute,

you get the following error when you try to create the migration:

Unable to determine the principal end of an association between the types

'ContosoUniversity.Models.OfficeAssignment' and 'ContosoUniversity.Models.Instructor'. The

principal end of this association must be explicitly configured using either the relationship fluent

API or data annotations.

Later in the tutorial you'll see how to configure this relationship with the fluent API.

The Instructor Navigation Property

The Instructor entity has a nullable OfficeAssignment navigation property (because an

instructor might not have an office assignment), and the OfficeAssignment entity has a non-

nullable Instructor navigation property (because an office assignment can't exist without an

instructor -- InstructorID is non-nullable). When an Instructor entity has a related

OfficeAssignment entity, each entity will have a reference to the other one in its navigation

property.

You could put a [Required] attribute on the Instructor navigation property to specify that there

must be a related instructor, but you don't have to do that because the InstructorID foreign key

(which is also the key to this table) is non-nullable.

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.keyattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.keyattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.schema.foreignkeyattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.schema.foreignkeyattribute.aspx

138

Modify the Course Entity

In Models\Course.cs, replace the code you added earlier with the following code:

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models

{

 public class Course

 {

 [DatabaseGenerated(DatabaseGeneratedOption.None)]

 [Display(Name = "Number")]

 public int CourseID { get; set; }

 [StringLength(50, MinimumLength = 3)]

 public string Title { get; set; }

 [Range(0, 5)]

 public int Credits { get; set; }

 public int DepartmentID { get; set; }

 public virtual Department Department { get; set; }

 public virtual ICollection<Enrollment> Enrollments { get; set; }

 public virtual ICollection<Instructor> Instructors { get; set; }

 }

}

The course entity has a foreign key property DepartmentID which points to the related

Department entity and it has a Department navigation property. The Entity Framework doesn't

require you to add a foreign key property to your data model when you have a navigation

property for a related entity. EF automatically creates foreign keys in the database wherever they

are needed. But having the foreign key in the data model can make updates simpler and more

efficient. For example, when you fetch a course entity to edit, the Department entity is null if

you don't load it, so when you update the course entity, you would have to first fetch the

139

Department entity. When the foreign key property DepartmentID is included in the data model,

you don't need to fetch the Department entity before you update.

The DatabaseGenerated Attribute

The DatabaseGenerated attribute with the None parameter on the CourseID property specifies

that primary key values are provided by the user rather than generated by the database.

[DatabaseGenerated(DatabaseGeneratedOption.None)]

[Display(Name = "Number")]

public int CourseID { get; set; }

By default, the Entity Framework assumes that primary key values are generated by the database.

That's what you want in most scenarios. However, for Course entities, you'll use a user-specified

course number such as a 1000 series for one department, a 2000 series for another department,

and so on.

Foreign Key and Navigation Properties

The foreign key properties and navigation properties in the Course entity reflect the following

relationships:

 A course is assigned to one department, so there's a DepartmentID foreign key and a

Department navigation property for the reasons mentioned above.
 public int DepartmentID { get; set; }

public virtual Department Department { get; set; }

 A course can have any number of students enrolled in it, so the Enrollments navigation

property is a collection:

public virtual ICollection<Enrollment> Enrollments { get; set; }

 A course may be taught by multiple instructors, so the Instructors navigation property

is a collection:

public virtual ICollection<Instructor> Instructors { get; set; }

Create the Department Entity

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.schema.databasegeneratedattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.schema.databasegeneratedoption%28v=vs.110%29.aspx

140

Create Models\Department.cs with the following code:

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models

{

 public class Department

 {

 public int DepartmentID { get; set; }

 [StringLength(50, MinimumLength=3)]

 public string Name { get; set; }

 [DataType(DataType.Currency)]

 [Column(TypeName = "money")]

 public decimal Budget { get; set; }

 [DataType(DataType.Date)]

 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",

ApplyFormatInEditMode = true)]

 [Display(Name = "Start Date")]

 public DateTime StartDate { get; set; }

 public int? InstructorID { get; set; }

 public virtual Instructor Administrator { get; set; }

 public virtual ICollection<Course> Courses { get; set; }

 }

}

The Column Attribute

Earlier you used the Column attribute to change column name mapping. In the code for the

Department entity, the Column attribute is being used to change SQL data type mapping so that

the column will be defined using the SQL Server money type in the database:

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.schema.columnattribute.aspx
http://msdn.microsoft.com/en-us/library/ms179882.aspx

141

[Column(TypeName="money")]

public decimal Budget { get; set; }

Column mapping is generally not required, because the Entity Framework usually chooses the

appropriate SQL Server data type based on the CLR type that you define for the property. The

CLR decimal type maps to a SQL Server decimal type. But in this case you know that the

column will be holding currency amounts, and the money data type is more appropriate for that.

For more information about CLR data types and how they match to SQL Server data types, see

SqlClient for Entity FrameworkTypes.

Foreign Key and Navigation Properties

The foreign key and navigation properties reflect the following relationships:

 A department may or may not have an administrator, and an administrator is always an

instructor. Therefore the InstructorID property is included as the foreign key to the

Instructor entity, and a question mark is added after the int type designation to mark

the property as nullable.The navigation property is named Administrator but holds an

Instructor entity:
 public int? InstructorID { get; set; }

public virtual Instructor Administrator { get; set; }

 A department may have many courses, so there's a Courses navigation property:

public virtual ICollection<Course> Courses { get; set; }

Note By convention, the Entity Framework enables cascade delete for non-nullable foreign keys

and for many-to-many relationships. This can result in circular cascade delete rules, which will

cause an exception when you try to add a migration. For example, if you didn't define the

Department.InstructorID property as nullable, you'd get the following exception message:

"The referential relationship will result in a cyclical reference that's not allowed." If your

business rules required InstructorID property to be non-nullable, you would have to use the

following fluent API statement to disable cascade delete on the relationship:
modelBuilder.Entity().HasRequired(d =>

d.Administrator).WithMany().WillCascadeOnDelete(false);

Modify the Enrollment Entity

http://msdn.microsoft.com/en-us/library/ms179882.aspx
http://msdn.microsoft.com/en-us/library/bb896344.aspx

142

In Models\Enrollment.cs, replace the code you added earlier with the following code
using System.ComponentModel.DataAnnotations;

namespace ContosoUniversity.Models

{

 public enum Grade

 {

 A, B, C, D, F

 }

 public class Enrollment

 {

 public int EnrollmentID { get; set; }

 public int CourseID { get; set; }

 public int StudentID { get; set; }

 [DisplayFormat(NullDisplayText = "No grade")]

 public Grade? Grade { get; set; }

 public virtual Course Course { get; set; }

 public virtual Student Student { get; set; }

 }

}

Foreign Key and Navigation Properties

The foreign key properties and navigation properties reflect the following relationships:

 An enrollment record is for a single course, so there's a CourseID foreign key property

and a Course navigation property:
 public int CourseID { get; set; }

public virtual Course Course { get; set; }

 An enrollment record is for a single student, so there's a StudentID foreign key property

and a Student navigation property:
 public int StudentID { get; set; }

public virtual Student Student { get; set; }

Many-to-Many Relationships

143

There's a many-to-many relationship between the Student and Course entities, and the

Enrollment entity functions as a many-to-many join table with payload in the database. This

means that the Enrollment table contains additional data besides foreign keys for the joined

tables (in this case, a primary key and a Grade property).

The following illustration shows what these relationships look like in an entity diagram. (This

diagram was generated using the Entity Framework Power Tools; creating the diagram isn't part

of the tutorial, it's just being used here as an illustration.)

Each relationship line has a 1 at one end and an asterisk (*) at the other, indicating a one-to-

many relationship.

If the Enrollment table didn't include grade information, it would only need to contain the two

foreign keys CourseID and StudentID. In that case, it would correspond to a many-to-many join

table without payload (or a pure join table) in the database, and you wouldn't have to create a

http://visualstudiogallery.msdn.microsoft.com/72a60b14-1581-4b9b-89f2-846072eff19d

144

model class for it at all. The Instructor and Course entities have that kind of many-to-many

relationship, and as you can see, there is no entity class between them:

A join table is required in the database, however, as shown in the following database diagram:

145

The Entity Framework automatically creates the CourseInstructor table, and you read and

update it indirectly by reading and updating the Instructor.Courses and

Course.Instructors navigation properties.

Entity Diagram Showing Relationships

The following illustration shows the diagram that the Entity Framework Power Tools create for

the completed School model.

146

Besides the many-to-many relationship lines (* to *) and the one-to-many relationship lines (1 to

*), you can see here the one-to-zero-or-one relationship line (1 to 0..1) between the Instructor

147

and OfficeAssignment entities and the zero-or-one-to-many relationship line (0..1 to *)

between the Instructor and Department entities.

Customize the Data Model by adding Code to the Database

Context

Next you'll add the new entities to the SchoolContext class and customize some of the mapping

using fluent API calls. The API is "fluent" because it's often used by stringing a series of method

calls together into a single statement, as in the following example:

 modelBuilder.Entity<Course>()

 .HasMany(c => c.Instructors).WithMany(i => i.Courses)

 .Map(t => t.MapLeftKey("CourseID")

 .MapRightKey("InstructorID")

 .ToTable("CourseInstructor"));

In this tutorial you'll use the fluent API only for database mapping that you can't do with

attributes. However, you can also use the fluent API to specify most of the formatting,

validation, and mapping rules that you can do by using attributes. Some attributes such as

MinimumLength can't be applied with the fluent API. As mentioned previously, MinimumLength

doesn't change the schema, it only applies a client and server side validation rule

Some developers prefer to use the fluent API exclusively so that they can keep their entity

classes "clean." You can mix attributes and fluent API if you want, and there are a few

customizations that can only be done by using fluent API, but in general the recommended

practice is to choose one of these two approaches and use that consistently as much as possible.

To add the new entities to the data model and perform database mapping that you didn't do by

using attributes, replace the code in DAL\SchoolContext.cs with the following code:

using ContosoUniversity.Models;

using System.Data.Entity;

using System.Data.Entity.ModelConfiguration.Conventions;

namespace ContosoUniversity.DAL

{

 public class SchoolContext : DbContext

 {

 public DbSet<Course> Courses { get; set; }

 public DbSet<Department> Departments { get; set; }

 public DbSet<Enrollment> Enrollments { get; set; }

 public DbSet<Instructor> Instructors { get; set; }

 public DbSet<Student> Students { get; set; }

 public DbSet<OfficeAssignment> OfficeAssignments { get; set; }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)

 {

 modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();

 modelBuilder.Entity<Course>()

http://msdn.microsoft.com/en-us/data/jj591617

148

 .HasMany(c => c.Instructors).WithMany(i => i.Courses)

 .Map(t => t.MapLeftKey("CourseID")

 .MapRightKey("InstructorID")

 .ToTable("CourseInstructor"));

 }

 }

}

The new statement in the OnModelCreating method configures the many-to-many join table:

 For the many-to-many relationship between the Instructor and Course entities, the

code specifies the table and column names for the join table. Code First can configure the

many-to-many relationship for you without this code, but if you don't call it, you will get

default names such as InstructorInstructorID for the InstructorID column.
 modelBuilder.Entity<Course>()

 .HasMany(c => c.Instructors).WithMany(i => i.Courses)

 .Map(t => t.MapLeftKey("CourseID")

 .MapRightKey("InstructorID")

 .ToTable("CourseInstructor"));

The following code provides an example of how you could have used fluent API instead of

attributes to specify the relationship between the Instructor and OfficeAssignment entities:

modelBuilder.Entity<Instructor>()

 .HasOptional(p => p.OfficeAssignment).WithRequired(p => p.Instructor);

For information about what "fluent API" statements are doing behind the scenes, see the Fluent

API blog post.

Seed the Database with Test Data

Replace the code in the Migrations\Configuration.cs file with the following code in order to

provide seed data for the new entities you've created.

namespace ContosoUniversity.Migrations

{

 using ContosoUniversity.Models;

 using ContosoUniversity.DAL;

 using System;

 using System.Collections.Generic;

 using System.Data.Entity;

 using System.Data.Entity.Migrations;

 using System.Linq;

 internal sealed class Configuration :

DbMigrationsConfiguration<SchoolContext>

 {

 public Configuration()

 {

 AutomaticMigrationsEnabled = false;

 }

http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext.onmodelcreating%28v=vs.103%29.aspx
http://blogs.msdn.com/b/aspnetue/archive/2011/05/04/entity-framework-code-first-tutorial-supplement-what-is-going-on-in-a-fluent-api-call.aspx
http://blogs.msdn.com/b/aspnetue/archive/2011/05/04/entity-framework-code-first-tutorial-supplement-what-is-going-on-in-a-fluent-api-call.aspx

149

 protected override void Seed(SchoolContext context)

 {

 var students = new List<Student>

 {

 new Student { FirstMidName = "Carson", LastName =

"Alexander",

 EnrollmentDate = DateTime.Parse("2010-09-01") },

 new Student { FirstMidName = "Meredith", LastName = "Alonso",

 EnrollmentDate = DateTime.Parse("2012-09-01") },

 new Student { FirstMidName = "Arturo", LastName = "Anand",

 EnrollmentDate = DateTime.Parse("2013-09-01") },

 new Student { FirstMidName = "Gytis", LastName =

"Barzdukas",

 EnrollmentDate = DateTime.Parse("2012-09-01") },

 new Student { FirstMidName = "Yan", LastName = "Li",

 EnrollmentDate = DateTime.Parse("2012-09-01") },

 new Student { FirstMidName = "Peggy", LastName =

"Justice",

 EnrollmentDate = DateTime.Parse("2011-09-01") },

 new Student { FirstMidName = "Laura", LastName = "Norman",

 EnrollmentDate = DateTime.Parse("2013-09-01") },

 new Student { FirstMidName = "Nino", LastName =

"Olivetto",

 EnrollmentDate = DateTime.Parse("2005-09-01") }

 };

 students.ForEach(s => context.Students.AddOrUpdate(p =>

p.LastName, s));

 context.SaveChanges();

 var instructors = new List<Instructor>

 {

 new Instructor { FirstMidName = "Kim", LastName =

"Abercrombie",

 HireDate = DateTime.Parse("1995-03-11") },

 new Instructor { FirstMidName = "Fadi", LastName =

"Fakhouri",

 HireDate = DateTime.Parse("2002-07-06") },

 new Instructor { FirstMidName = "Roger", LastName =

"Harui",

 HireDate = DateTime.Parse("1998-07-01") },

 new Instructor { FirstMidName = "Candace", LastName =

"Kapoor",

 HireDate = DateTime.Parse("2001-01-15") },

 new Instructor { FirstMidName = "Roger", LastName =

"Zheng",

 HireDate = DateTime.Parse("2004-02-12") }

 };

 instructors.ForEach(s => context.Instructors.AddOrUpdate(p =>

p.LastName, s));

 context.SaveChanges();

 var departments = new List<Department>

 {

 new Department { Name = "English", Budget = 350000,

150

 StartDate = DateTime.Parse("2007-09-01"),

 InstructorID = instructors.Single(i => i.LastName ==

"Abercrombie").ID },

 new Department { Name = "Mathematics", Budget = 100000,

 StartDate = DateTime.Parse("2007-09-01"),

 InstructorID = instructors.Single(i => i.LastName ==

"Fakhouri").ID },

 new Department { Name = "Engineering", Budget = 350000,

 StartDate = DateTime.Parse("2007-09-01"),

 InstructorID = instructors.Single(i => i.LastName ==

"Harui").ID },

 new Department { Name = "Economics", Budget = 100000,

 StartDate = DateTime.Parse("2007-09-01"),

 InstructorID = instructors.Single(i => i.LastName ==

"Kapoor").ID }

 };

 departments.ForEach(s => context.Departments.AddOrUpdate(p =>

p.Name, s));

 context.SaveChanges();

 var courses = new List<Course>

 {

 new Course {CourseID = 1050, Title = "Chemistry",

Credits = 3,

 DepartmentID = departments.Single(s => s.Name ==

"Engineering").DepartmentID,

 Instructors = new List<Instructor>()

 },

 new Course {CourseID = 4022, Title = "Microeconomics",

Credits = 3,

 DepartmentID = departments.Single(s => s.Name ==

"Economics").DepartmentID,

 Instructors = new List<Instructor>()

 },

 new Course {CourseID = 4041, Title = "Macroeconomics",

Credits = 3,

 DepartmentID = departments.Single(s => s.Name ==

"Economics").DepartmentID,

 Instructors = new List<Instructor>()

 },

 new Course {CourseID = 1045, Title = "Calculus",

Credits = 4,

 DepartmentID = departments.Single(s => s.Name ==

"Mathematics").DepartmentID,

 Instructors = new List<Instructor>()

 },

 new Course {CourseID = 3141, Title = "Trigonometry",

Credits = 4,

 DepartmentID = departments.Single(s => s.Name ==

"Mathematics").DepartmentID,

 Instructors = new List<Instructor>()

 },

 new Course {CourseID = 2021, Title = "Composition",

Credits = 3,

 DepartmentID = departments.Single(s => s.Name ==

"English").DepartmentID,

 Instructors = new List<Instructor>()

151

 },

 new Course {CourseID = 2042, Title = "Literature",

Credits = 4,

 DepartmentID = departments.Single(s => s.Name ==

"English").DepartmentID,

 Instructors = new List<Instructor>()

 },

 };

 courses.ForEach(s => context.Courses.AddOrUpdate(p => p.CourseID,

s));

 context.SaveChanges();

 var officeAssignments = new List<OfficeAssignment>

 {

 new OfficeAssignment {

 InstructorID = instructors.Single(i => i.LastName ==

"Fakhouri").ID,

 Location = "Smith 17" },

 new OfficeAssignment {

 InstructorID = instructors.Single(i => i.LastName ==

"Harui").ID,

 Location = "Gowan 27" },

 new OfficeAssignment {

 InstructorID = instructors.Single(i => i.LastName ==

"Kapoor").ID,

 Location = "Thompson 304" },

 };

 officeAssignments.ForEach(s =>

context.OfficeAssignments.AddOrUpdate(p => p.InstructorID, s));

 context.SaveChanges();

 AddOrUpdateInstructor(context, "Chemistry", "Kapoor");

 AddOrUpdateInstructor(context, "Chemistry", "Harui");

 AddOrUpdateInstructor(context, "Microeconomics", "Zheng");

 AddOrUpdateInstructor(context, "Macroeconomics", "Zheng");

 AddOrUpdateInstructor(context, "Calculus", "Fakhouri");

 AddOrUpdateInstructor(context, "Trigonometry", "Harui");

 AddOrUpdateInstructor(context, "Composition", "Abercrombie");

 AddOrUpdateInstructor(context, "Literature", "Abercrombie");

 context.SaveChanges();

 var enrollments = new List<Enrollment>

 {

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Alexander").ID,

 CourseID = courses.Single(c => c.Title == "Chemistry"

).CourseID,

 Grade = Grade.A

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Alexander").ID,

 CourseID = courses.Single(c => c.Title ==

"Microeconomics").CourseID,

152

 Grade = Grade.C

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Alexander").ID,

 CourseID = courses.Single(c => c.Title ==

"Macroeconomics").CourseID,

 Grade = Grade.B

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Alonso").ID,

 CourseID = courses.Single(c => c.Title == "Calculus"

).CourseID,

 Grade = Grade.B

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Alonso").ID,

 CourseID = courses.Single(c => c.Title == "Trigonometry"

).CourseID,

 Grade = Grade.B

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Alonso").ID,

 CourseID = courses.Single(c => c.Title == "Composition"

).CourseID,

 Grade = Grade.B

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Anand").ID,

 CourseID = courses.Single(c => c.Title == "Chemistry"

).CourseID

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Anand").ID,

 CourseID = courses.Single(c => c.Title ==

"Microeconomics").CourseID,

 Grade = Grade.B

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName ==

"Barzdukas").ID,

 CourseID = courses.Single(c => c.Title ==

"Chemistry").CourseID,

 Grade = Grade.B

 },

 new Enrollment {

 StudentID = students.Single(s => s.LastName == "Li").ID,

 CourseID = courses.Single(c => c.Title ==

"Composition").CourseID,

 Grade = Grade.B

 },

 new Enrollment {

153

 StudentID = students.Single(s => s.LastName ==

"Justice").ID,

 CourseID = courses.Single(c => c.Title ==

"Literature").CourseID,

 Grade = Grade.B

 }

 };

 foreach (Enrollment e in enrollments)

 {

 var enrollmentInDataBase = context.Enrollments.Where(

 s =>

 s.Student.ID == e.StudentID &&

 s.Course.CourseID == e.CourseID).SingleOrDefault();

 if (enrollmentInDataBase == null)

 {

 context.Enrollments.Add(e);

 }

 }

 context.SaveChanges();

 }

 void AddOrUpdateInstructor(SchoolContext context, string courseTitle,

string instructorName)

 {

 var crs = context.Courses.SingleOrDefault(c => c.Title ==

courseTitle);

 var inst = crs.Instructors.SingleOrDefault(i => i.LastName ==

instructorName);

 if (inst == null)

 crs.Instructors.Add(context.Instructors.Single(i =>

i.LastName == instructorName));

 }

 }

}

As you saw in the first tutorial, most of this code simply updates or creates new entity objects

and loads sample data into properties as required for testing. However, notice how the Course

entity, which has a many-to-many relationship with the Instructor entity, is handled:

var courses = new List<Course>

{

 new Course {CourseID = 1050, Title = "Chemistry", Credits = 3,

 DepartmentID = departments.Single(s => s.Name ==

"Engineering").DepartmentID,

 Instructors = new List<Instructor>()

 },

 ...

};

courses.ForEach(s => context.Courses.AddOrUpdate(p => p.CourseID, s));

context.SaveChanges();

When you create a Course object, you initialize the Instructors navigation property as an

empty collection using the code Instructors = new List<Instructor>(). This makes it

possible to add Instructor entities that are related to this Course by using the

154

Instructors.Add method. If you didn't create an empty list, you wouldn't be able to add these

relationships, because the Instructors property would be null and wouldn't have an Add

method. You could also add the list initialization to the constructor.

Add a Migration and Update the Database

From the PMC, enter the add-migration command (don't do the update-database command

yet):

add-Migration ComplexDataModel

If you tried to run the update-database command at this point (don't do it yet), you would get

the following error:

The ALTER TABLE statement conflicted with the FOREIGN KEY constraint

"FK_dbo.Course_dbo.Department_DepartmentID". The conflict occurred in database

"ContosoUniversity", table "dbo.Department", column 'DepartmentID'.

Sometimes when you execute migrations with existing data, you need to insert stub data into the

database to satisfy foreign key constraints, and that's what you have to do now. The generated

code in the ComplexDataModel Up method adds a non-nullable DepartmentID foreign key to the

Course table. Because there are already rows in the Course table when the code runs, the

AddColumn operation will fail because SQL Server doesn't know what value to put in the column

that can't be null. Therefore have to change the code to give the new column a default value, and

create a stub department named "Temp" to act as the default department. As a result, existing

Course rows will all be related to the "Temp" department after the Up method runs. You can

relate them to the correct departments in the Seed method.

Edit the <timestamp>_ComplexDataModel.cs file, comment out the line of code that adds the

DepartmentID column to the Course table, and add the following highlighted code (the

commented line is also highlighted):

 CreateTable(

 "dbo.CourseInstructor",

 c => new

 {

 CourseID = c.Int(nullable: false),

 InstructorID = c.Int(nullable: false),

 })

 .PrimaryKey(t => new { t.CourseID, t.InstructorID })

 .ForeignKey("dbo.Course", t => t.CourseID, cascadeDelete: true)

 .ForeignKey("dbo.Instructor", t => t.InstructorID, cascadeDelete:

true)

 .Index(t => t.CourseID)

 .Index(t => t.InstructorID);

 // Create a department for course to point to.

 Sql("INSERT INTO dbo.Department (Name, Budget, StartDate) VALUES ('Temp',

0.00, GETDATE())");

155

 // default value for FK points to department created above.

 AddColumn("dbo.Course", "DepartmentID", c => c.Int(nullable: false,

defaultValue: 1));

 //AddColumn("dbo.Course", "DepartmentID", c => c.Int(nullable: false));

 AlterColumn("dbo.Course", "Title", c => c.String(maxLength: 50));

When the Seed method runs, it will insert rows in the Department table and it will relate existing

Course rows to those new Department rows. If you haven't added any courses in the UI, you

would then no longer need the "Temp" department or the default value on the

Course.DepartmentID column. To allow for the possibility that someone might have added

courses by using the application, you'd also want to update the Seed method code to ensure that

all Course rows (not just the ones inserted by earlier runs of the Seed method) have valid

DepartmentID values before you remove the default value from the column and delete the

"Temp" department.

After you have finished editing the <timestamp>_ComplexDataModel.cs file, enter the update-

database command in the PMC to execute the migration.

update-database

Note: It's possible to get other errors when migrating data and making schema changes. If

you get migration errors you can't resolve, you can either change the database name in the

connection string or delete the database. The simplest approach is to rename the database

in Web.config file. The following example shows the name changed to CU_Test:

 <add name="SchoolContext" connectionString="Data

Source=(LocalDb)\v11.0;Initial Catalog=CU_Test;Integrated

Security=SSPI;"

 providerName="System.Data.SqlClient" />

With a new database, there is no data to migrate, and the update-database command is

much more likely to complete without errors. For instructions on how to delete the

database, see How to Drop a Database from Visual Studio 2012.

If that fails, another thing you can try is re-initialize the database by entering the

following command in the PMC:

update-database -TargetMigration:0

Open the database in Server Explorer as you did earlier, and expand the Tables node to see that

all of the tables have been created. (If you still have Server Explorer open from the earlier time,

click the Refresh button.)

http://romiller.com/2013/05/17/how-to-drop-a-database-from-visual-studio-2012/

156

You didn't create a model class for the CourseInstructor table. As explained earlier, this is a

join table for the many-to-many relationship between the Instructor and Course entities.

Right-click the CourseInstructor table and select Show Table Data to verify that it has data in

it as a result of the Instructor entities you added to the Course.Instructors navigation

property.

157

Summary

You now have a more complex data model and corresponding database. In the following tutorial

you'll learn more about different ways to access related data.

158

Reading Related Data with the Entity

Framework in an ASP.NET MVC

Application

In the previous tutorial you completed the School data model. In this tutorial you'll read and

display related data — that is, data that the Entity Framework loads into navigation properties.

The following illustrations show the pages that you'll work with.

159

160

Lazy, Eager, and Explicit Loading of Related Data

There are several ways that the Entity Framework can load related data into the navigation

properties of an entity:

 Lazy loading. When the entity is first read, related data isn't retrieved. However, the first

time you attempt to access a navigation property, the data required for that navigation

property is automatically retrieved. This results in multiple queries sent to the database —

one for the entity itself and one each time that related data for the entity must be

retrieved. The DbContext class enables lazy loading by default.

 Eager loading. When the entity is read, related data is retrieved along with it. This

typically results in a single join query that retrieves all of the data that's needed. You

specify eager loading by using the Include method.

 Explicit loading. This is similar to lazy loading, except that you explicitly retrieve the

related data in code; it doesn't happen automatically when you access a navigation

property. You load related data manually by getting the object state manager entry for an

entity and calling the Collection.Load method for collections or the Reference.Load

method for properties that hold a single entity. (In the following example, if you wanted

to load the Administrator navigation property, you'd replace Collection(x =>

x.Courses) with Reference(x => x.Administrator).) Typically you'd use explicit

loading only when you've turned lazy loading off.

http://msdn.microsoft.com/en-us/library/gg696220%28v=vs.103%29.aspx
http://msdn.microsoft.com/en-us/library/gg679166%28v=vs.103%29.aspx

161

Because they don't immediately retrieve the property values, lazy loading and explicit loading

are also both known as deferred loading.

Performance considerations

If you know you need related data for every entity retrieved, eager loading often offers the best

performance, because a single query sent to the database is typically more efficient than separate

queries for each entity retrieved. For example, in the above examples, suppose that each

department has ten related courses. The eager loading example would result in just a single (join)

query and a single round trip to the database. The lazy loading and explicit loading examples

would both result in eleven queries and eleven round trips to the database. The extra round trips

to the database are especially detrimental to performance when latency is high.

On the other hand, in some scenarios lazy loading is more efficient. Eager loading might cause a

very complex join to be generated, which SQL Server can't process efficiently. Or if you need to

access an entity's navigation properties only for a subset of a set of the entities you're processing,

lazy loading might perform better because eager loading would retrieve more data than you need.

If performance is critical, it's best to test performance both ways in order to make the best choice.

Lazy loading can mask code that causes performance problems. For example, code that doesn't

specify eager or explicit loading but processes a high volume of entities and uses several

navigation properties in each iteration might be very inefficient (because of many round trips to

the database). An application that performs well in development using an on premise SQL server

might have performance problems when moved to Windows Azure SQL Database due to the

increased latency and lazy loading. Profiling the database queries with a realistic test load will

help you determine if lazy loading is appropriate. For more information see Demystifying Entity

Framework Strategies: Loading Related Data and Using the Entity Framework to Reduce

Network Latency to SQL Azure.

Disable lazy loading before serialization

If you leave lazy loading enabled during serialization, you can end up querying significantly

more data than you intended. Serialization generally works by accessing each property on an

instance of a type. Property access triggers lazy loading, and those lazy loaded entities are

serialized. The serialization process then accesses each property of the lazy-loaded entities,

potentially causing even more lazy loading and serialization. To prevent this run-away chain

reaction, turn lazy loading off before you serialize an entity.

http://msdn.microsoft.com/en-us/magazine/hh205756.aspx
http://msdn.microsoft.com/en-us/magazine/hh205756.aspx
http://msdn.microsoft.com/en-us/magazine/gg309181.aspx
http://msdn.microsoft.com/en-us/magazine/gg309181.aspx

162

Serialization can also be complicated by the proxy classes that the Entity Framework uses, as

explained in the Advanced Scenarios tutorial.

One way to avoid serialization problems is to serialize data transfer objects (DTOs) instead of

entity objects, as shown in the Using Web API with Entity Framework tutorial.

If you don't use DTOs, you can disable lazy loading and avoid proxy issues by disabling proxy

creation.

Here are some other ways to disable lazy loading:

 For specific navigation properties, omit the virtual keyword when you declare the

property.

 For all navigation properties, set LazyLoadingEnabled to false, put the following code

in the constructor of your context class:

this.Configuration.LazyLoadingEnabled = false;

Create a Courses Page That Displays Department Name

The Course entity includes a navigation property that contains the Department entity of the

department that the course is assigned to. To display the name of the assigned department in a

list of courses, you need to get the Name property from the Department entity that is in the

Course.Department navigation property.

Create a controller named CourseController for the Course entity type, using the same

options for the MVC 5 Controller with views, using Entity Framework scaffolder that you did

earlier for the Student controller, as shown in the following illustration:

http://www.asp.net/web-api/overview/creating-web-apis/using-web-api-with-entity-framework/using-web-api-with-entity-framework,-part-6
http://msdn.microsoft.com/en-US/data/jj592886.aspx
http://msdn.microsoft.com/en-US/data/jj592886.aspx
http://msdn.microsoft.com/en-US/data/jj574232

163

Open Controllers\CourseController.cs and look at the Index method:

public ActionResult Index()

{

 var courses = db.Courses.Include(c => c.Department);

 return View(courses.ToList());

}

The automatic scaffolding has specified eager loading for the Department navigation property

by using the Include method.

Open Views\Course\Index.cshtml and replace the template code with the following code. The

changes are highlighted:

@model IEnumerable<ContosoUniversity.Models.Course>

@{

 ViewBag.Title = "Courses";

}

<h2>Courses</h2>

<p>

 @Html.ActionLink("Create New", "Create")

</p>

164

<table class="table">

 <tr>

 <th>

 @Html.DisplayNameFor(model => model.CourseID)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.Title)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.Credits)

 </th>

 <th>

 Department

 </th>

 <th></th>

 </tr>

@foreach (var item in Model) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.CourseID)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Title)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Credits)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Department.Name)

 </td>

 <td>

 @Html.ActionLink("Edit", "Edit", new { id=item.CourseID }) |

 @Html.ActionLink("Details", "Details", new { id=item.CourseID })

|

 @Html.ActionLink("Delete", "Delete", new { id=item.CourseID })

 </td>

 </tr>

}

</table>

You've made the following changes to the scaffolded code:

 Changed the heading from Index to Courses.

 Added a Number column that shows the CourseID property value. By default, primary

keys aren't scaffolded because normally they are meaningless to end users. However, in

this case the primary key is meaningful and you want to show it.

 Moved the Department column to the right side and changed its heading. The scaffolder

correctly chose to display the Name property from the Department entity, but here in the

Course page the column heading should be Department rather than Name.

Notice that for the Department column, the scaffolded code displays the Name property of the

Department entity that's loaded into the Department navigation property:

165

<td>

 @Html.DisplayFor(modelItem => item.Department.Name)

</td>

Run the page (select the Courses tab on the Contoso University home page) to see the list with

department names.

Create an Instructors Page That Shows Courses and

Enrollments

166

In this section you'll create a controller and view for the Instructor entity in order to display

the Instructors page:

167

168

This page reads and displays related data in the following ways:

 The list of instructors displays related data from the OfficeAssignment entity. The

Instructor and OfficeAssignment entities are in a one-to-zero-or-one relationship.

You'll use eager loading for the OfficeAssignment entities. As explained earlier, eager

loading is typically more efficient when you need the related data for all retrieved rows of

the primary table. In this case, you want to display office assignments for all displayed

instructors.

 When the user selects an instructor, related Course entities are displayed. The

Instructor and Course entities are in a many-to-many relationship. You'll use eager

loading for the Course entities and their related Department entities. In this case, lazy

loading might be more efficient because you need courses only for the selected instructor.

However, this example shows how to use eager loading for navigation properties within

entities that are themselves in navigation properties.

 When the user selects a course, related data from the Enrollments entity set is displayed.

The Course and Enrollment entities are in a one-to-many relationship. You'll add

explicit loading for Enrollment entities and their related Student entities. (Explicit

loading isn't necessary because lazy loading is enabled, but this shows how to do explicit

loading.)

Create a View Model for the Instructor Index View

The Instructors page shows three different tables. Therefore, you'll create a view model that

includes three properties, each holding the data for one of the tables.

In the ViewModels folder, create InstructorIndexData.cs and replace the existing code with the

following code:

using System.Collections.Generic;

using ContosoUniversity.Models;

namespace ContosoUniversity.ViewModels

{

 public class InstructorIndexData

 {

 public IEnumerable<Instructor> Instructors { get; set; }

 public IEnumerable<Course> Courses { get; set; }

 public IEnumerable<Enrollment> Enrollments { get; set; }

 }

}

Create the Instructor Controller and Views

Create an InstructorController controller with EF read/write actions as shown in the

following illustration:

169

Open Controllers\InstructorController.cs and add a using statement for the ViewModels

namespace:

using ContosoUniversity.ViewModels;

The scaffolded code in the Index method specifies eager loading only for the

OfficeAssignment navigation property:

public ActionResult Index()

{

 var instructors = db.Instructors.Include(i => i.OfficeAssignment);

 return View(instructors.ToList());

}

Replace the Index method with the following code to load additional related data and put it in

the view model:

public ActionResult Index(int? id, int? courseID)

{

 var viewModel = new InstructorIndexData();

 viewModel.Instructors = db.Instructors

 .Include(i => i.OfficeAssignment)

 .Include(i => i.Courses.Select(c => c.Department))

 .OrderBy(i => i.LastName);

170

 if (id != null)

 {

 ViewBag.InstructorID = id.Value;

 viewModel.Courses = viewModel.Instructors.Where(

 i => i.ID == id.Value).Single().Courses;

 }

 if (courseID != null)

 {

 ViewBag.CourseID = courseID.Value;

 viewModel.Enrollments = viewModel.Courses.Where(

 x => x.CourseID == courseID).Single().Enrollments;

 }

 return View(viewModel);

}

The method accepts optional route data (id) and a query string parameter (courseID) that

provide the ID values of the selected instructor and selected course, and passes all of the required

data to the view. The parameters are provided by the Select hyperlinks on the page.

The code begins by creating an instance of the view model and putting in it the list of instructors.

The code specifies eager loading for the Instructor.OfficeAssignment and the

Instructor.Courses navigation property.

var viewModel = new InstructorIndexData();

viewModel.Instructors = db.Instructors

 .Include(i => i.OfficeAssignment)

 .Include(i => i.Courses.Select(c => c.Department))

 .OrderBy(i => i.LastName);

The second Include method loads Courses, and for each Course that is loaded it does eager

loading for the Course.Department navigation property.

.Include(i => i.Courses.Select(c => c.Department))

As mentioned previously, eager loading is not required but is done to improve performance.

Since the view always requires the OfficeAssignment entity, it's more efficient to fetch that in

the same query. Course entities are required when an instructor is selected in the web page, so

eager loading is better than lazy loading only if the page is displayed more often with a course

selected than without.

If an instructor ID was selected, the selected instructor is retrieved from the list of instructors in

the view model. The view model's Courses property is then loaded with the Course entities

from that instructor's Courses navigation property.

if (id != null)

{

 ViewBag.InstructorID = id.Value;

 viewModel.Courses = viewModel.Instructors.Where(i => i.ID ==

id.Value).Single().Courses;

171

}

The Where method returns a collection, but in this case the criteria passed to that method result in

only a single Instructor entity being returned. The Single method converts the collection into

a single Instructor entity, which gives you access to that entity's Courses property.

You use the Single method on a collection when you know the collection will have only one

item. The Single method throws an exception if the collection passed to it is empty or if there's

more than one item. An alternative is SingleOrDefault, which returns a default value (null in

this case) if the collection is empty. However, in this case that would still result in an exception

(from trying to find a Courses property on a null reference), and the exception message would

less clearly indicate the cause of the problem. When you call the Single method, you can also

pass in the Where condition instead of calling the Where method separately:

.Single(i => i.ID == id.Value)

Instead of:

.Where(I => i.ID == id.Value).Single()

Next, if a course was selected, the selected course is retrieved from the list of courses in the view

model. Then the view model's Enrollments property is loaded with the Enrollment entities

from that course's Enrollments navigation property.

 if (courseID != null)

 {

 ViewBag.CourseID = courseID.Value;

 viewModel.Enrollments = viewModel.Courses.Where(

 x => x.CourseID == courseID).Single().Enrollments;

 }

Modify the Instructor Index View

In Views\Instructor\Index.cshtml, replace the template code with the following code. The

changes are highlighted:

@model ContosoUniversity.ViewModels.InstructorIndexData

@{

 ViewBag.Title = "Instructors";

}

<h2>Instructors</h2>

<p>

 @Html.ActionLink("Create New", "Create")

</p>

<table class="table">

 <tr>

 <th>Last Name</th>

http://msdn.microsoft.com/en-us/library/system.linq.enumerable.single.aspx
http://msdn.microsoft.com/en-us/library/bb342451.aspx

172

 <th>First Name</th>

 <th>Hire Date</th>

 <th>Office</th>

 <th></th>

 </tr>

 @foreach (var item in Model.Instructors)

 {

 string selectedRow = "";

 if (item.ID == ViewBag.InstructorID)

 {

 selectedRow = "success";

 }

 <tr class="@selectedRow">

 <td>

 @Html.DisplayFor(modelItem => item.LastName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.FirstMidName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.HireDate)

 </td>

 <td>

 @if (item.OfficeAssignment != null)

 {

 @item.OfficeAssignment.Location

 }

 </td>

 <td>

 @Html.ActionLink("Select", "Index", new { id = item.ID }) |

 @Html.ActionLink("Edit", "Edit", new { id = item.ID }) |

 @Html.ActionLink("Details", "Details", new { id = item.ID })

|

 @Html.ActionLink("Delete", "Delete", new { id = item.ID })

 </td>

 </tr>

 }

 </table>

You've made the following changes to the existing code:

 Changed the model class to InstructorIndexData.

 Changed the page title from Index to Instructors.

 Added an Office column that displays item.OfficeAssignment.Location only if

item.OfficeAssignment is not null. (Because this is a one-to-zero-or-one relationship,

there might not be a related OfficeAssignment entity.)

<td>

 @if (item.OfficeAssignment != null)

 {

 @item.OfficeAssignment.Location

 }

</td>

173

 Added code that will dynamically add class="success" to the tr element of the

selected instructor. This sets a background color for the selected row using a Bootstrap

class.

string selectedRow = "";

if (item.InstructorID == ViewBag.InstructorID)

{

 selectedRow = "success";

}

<tr class="@selectedRow" valign="top">

 Added a new ActionLink labeled Select immediately before the other links in each row,

which causes the selected instructor ID to be sent to the Index method.

Run the application and select the Instructors tab. The page displays the Location property of

related OfficeAssignment entities and an empty table cell when there's no related

OfficeAssignment entity.

http://www.asp.net/visual-studio/overview/2013/creating-web-projects-in-visual-studio#bootstrap

174

In the Views\Instructor\Index.cshtml file, after the closing table element (at the end of the file),

add the following code. This code displays a list of courses related to an instructor when an

instructor is selected.

@if (Model.Courses != null)

{

 <h3>Courses Taught by Selected Instructor</h3>

 <table class="table">

 <tr>

 <th></th>

 <th>Number</th>

 <th>Title</th>

 <th>Department</th>

 </tr>

 @foreach (var item in Model.Courses)

 {

 string selectedRow = "";

 if (item.CourseID == ViewBag.CourseID)

 {

 selectedRow = "success";

 }

 <tr class="@selectedRow">

 <td>

 @Html.ActionLink("Select", "Index", new { courseID =

item.CourseID })

 </td>

 <td>

 @item.CourseID

 </td>

 <td>

 @item.Title

 </td>

 <td>

 @item.Department.Name

 </td>

 </tr>

 }

 </table>

}

This code reads the Courses property of the view model to display a list of courses. It also

provides a Select hyperlink that sends the ID of the selected course to the Index action method.

Run the page and select an instructor. Now you see a grid that displays courses assigned to the

selected instructor, and for each course you see the name of the assigned department.

175

176

After the code block you just added, add the following code. This displays a list of the students

who are enrolled in a course when that course is selected.

@if (Model.Enrollments != null)

{

 <h3>

 Students Enrolled in Selected Course

 </h3>

 <table class="table">

 <tr>

 <th>Name</th>

 <th>Grade</th>

 </tr>

 @foreach (var item in Model.Enrollments)

 {

 <tr>

 <td>

 @item.Student.FullName

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Grade)

 </td>

 </tr>

 }

 </table>

}

This code reads the Enrollments property of the view model in order to display a list of students

enrolled in the course.

Run the page and select an instructor. Then select a course to see the list of enrolled students and

their grades.

177

178

Adding Explicit Loading

Open InstructorController.cs and look at how the Index method gets the list of enrollments for a

selected course:

 if (courseID != null)

 {

 ViewBag.CourseID = courseID.Value;

 viewModel.Enrollments = viewModel.Courses.Where(

 x => x.CourseID == courseID).Single().Enrollments;

 }

When you retrieved the list of instructors, you specified eager loading for the Courses

navigation property and for the Department property of each course. Then you put the Courses

collection in the view model, and now you're accessing the Enrollments navigation property

from one entity in that collection. Because you didn't specify eager loading for the

Course.Enrollments navigation property, the data from that property is appearing in the page

as a result of lazy loading.

If you disabled lazy loading without changing the code in any other way, the Enrollments

property would be null regardless of how many enrollments the course actually had. In that case,

to load the Enrollments property, you'd have to specify either eager loading or explicit loading.

You've already seen how to do eager loading. In order to see an example of explicit loading,

replace the Index method with the following code, which explicitly loads the Enrollments

property. The code changed are highlighted.

public ActionResult Index(int? id, int? courseID)

{

 var viewModel = new InstructorIndexData();

 viewModel.Instructors = db.Instructors

 .Include(i => i.OfficeAssignment)

 .Include(i => i.Courses.Select(c => c.Department))

 .OrderBy(i => i.LastName);

 if (id != null)

 {

 ViewBag.InstructorID = id.Value;

 viewModel.Courses = viewModel.Instructors.Where(

 i => i.ID == id.Value).Single().Courses;

 }

 if (courseID != null)

 {

 ViewBag.CourseID = courseID.Value;

 // Lazy loading

 //viewModel.Enrollments = viewModel.Courses.Where(

 // x => x.CourseID == courseID).Single().Enrollments;

 // Explicit loading

 var selectedCourse = viewModel.Courses.Where(x => x.CourseID ==

courseID).Single();

 db.Entry(selectedCourse).Collection(x => x.Enrollments).Load();

179

 foreach (Enrollment enrollment in selectedCourse.Enrollments)

 {

 db.Entry(enrollment).Reference(x => x.Student).Load();

 }

 viewModel.Enrollments = selectedCourse.Enrollments;

 }

 return View(viewModel);

}

After getting the selected Course entity, the new code explicitly loads that course's Enrollments

navigation property:

db.Entry(selectedCourse).Collection(x => x.Enrollments).Load();

Then it explicitly loads each Enrollment entity's related Student entity:

db.Entry(enrollment).Reference(x => x.Student).Load();

Notice that you use the Collection method to load a collection property, but for a property that

holds just one entity, you use the Reference method.

Run the Instructor Index page now and you'll see no difference in what's displayed on the page,

although you've changed how the data is retrieved.

Summary

You've now used all three ways (lazy, eager, and explicit) to load related data into navigation

properties. In the next tutorial you'll learn how to update related data.

180

Updating Related Data with the Entity

Framework in an ASP.NET MVC Application

In the previous tutorial you displayed related data; in this tutorial you'll update related data. For

most relationships, this can be done by updating either foreign key fields or navigation

properties. For many-to-many relationships, the Entity Framework doesn't expose the join table

directly, so you add and remove entities to and from the appropriate navigation properties.

The following illustrations show some of the pages that you'll work with.

181

182

183

Customize the Create and Edit Pages for Courses

When a new course entity is created, it must have a relationship to an existing department. To

facilitate this, the scaffolded code includes controller methods and Create and Edit views that

184

include a drop-down list for selecting the department. The drop-down list sets the

Course.DepartmentID foreign key property, and that's all the Entity Framework needs in order

to load the Department navigation property with the appropriate Department entity. You'll use

the scaffolded code, but change it slightly to add error handling and sort the drop-down list.

In CourseController.cs, delete the four Create and Edit methods and replace them with the

following code:

public ActionResult Create()

{

 PopulateDepartmentsDropDownList();

 return View();

}

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Create([Bind(Include =

"CourseID,Title,Credits,DepartmentID")]Course course)

{

 try

 {

 if (ModelState.IsValid)

 {

 db.Courses.Add(course);

 db.SaveChanges();

 return RedirectToAction("Index");

 }

 }

 catch (RetryLimitExceededException /* dex */)

 {

 //Log the error (uncomment dex variable name and add a line here to

write a log.)

 ModelState.AddModelError("", "Unable to save changes. Try again, and if

the problem persists, see your system administrator.");

 }

 PopulateDepartmentsDropDownList(course.DepartmentID);

 return View(course);

}

public ActionResult Edit(int? id)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 Course course = db.Courses.Find(id);

 if (course == null)

 {

 return HttpNotFound();

 }

 PopulateDepartmentsDropDownList(course.DepartmentID);

 return View(course);

}

[HttpPost]

185

[ValidateAntiForgeryToken]

public ActionResult Edit([Bind(Include =

"CourseID,Title,Credits,DepartmentID")]Course course)

{

 try

 {

 if (ModelState.IsValid)

 {

 db.Entry(course).State = EntityState.Modified;

 db.SaveChanges();

 return RedirectToAction("Index");

 }

 }

 catch (RetryLimitExceededException /* dex */)

 {

 //Log the error (uncomment dex variable name and add a line here to

write a log.)

 ModelState.AddModelError("", "Unable to save changes. Try again, and if

the problem persists, see your system administrator.");

 }

 PopulateDepartmentsDropDownList(course.DepartmentID);

 return View(course);

}

private void PopulateDepartmentsDropDownList(object selectedDepartment =

null)

{

 var departmentsQuery = from d in db.Departments

 orderby d.Name

 select d;

 ViewBag.DepartmentID = new SelectList(departmentsQuery, "DepartmentID",

"Name", selectedDepartment);

}

Add the following using statement at the beginning of the file:

using System.Data.Entity.Infrastructure;

The PopulateDepartmentsDropDownList method gets a list of all departments sorted by name,

creates a SelectList collection for a drop-down list, and passes the collection to the view in a

ViewBag property. The method accepts the optional selectedDepartment parameter that allows

the calling code to specify the item that will be selected when the drop-down list is rendered. The

view will pass the name DepartmentID to the DropDownList helper, and the helper then knows

to look in the ViewBag object for a SelectList named DepartmentID.

The HttpGet Create method calls the PopulateDepartmentsDropDownList method without

setting the selected item, because for a new course the department is not established yet:

public ActionResult Create()

{

 PopulateDepartmentsDropDownList();

 return View();

}

http://www.asp.net/mvc/tutorials/javascript/working-with-the-dropdownlist-box-and-jquery/using-the-dropdownlist-helper-with-aspnet-mvc

186

The HttpGet Edit method sets the selected item, based on the ID of the department that is

already assigned to the course being edited:

public ActionResult Edit(int? id)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 Course course = db.Courses.Find(id);

 if (course == null)

 {

 return HttpNotFound();

 }

 PopulateDepartmentsDropDownList(course.DepartmentID);

 return View(course);

}

The HttpPost methods for both Create and Edit also include code that sets the selected item

when they redisplay the page after an error:

 catch (RetryLimitExceededException /* dex */)

 {

 //Log the error (uncomment dex variable name and add a line here to

write a log.)

 ModelState.AddModelError("", "Unable to save changes. Try again, and if

the problem persists, see your system administrator.");

 }

 PopulateDepartmentsDropDownList(course.DepartmentID);

 return View(course);

This code ensures that when the page is redisplayed to show the error message, whatever

department was selected stays selected.

The Course views are already scaffolded with drop-down lists for the department field, but you

don't want the DepartmentID caption for this field, so make the following highlighted change to

the Views\Course\Create.cshtml file to change the caption.

@model ContosoUniversity.Models.Course

@{

 ViewBag.Title = "Create";

}

<h2>Create</h2>

@using (Html.BeginForm())

{

 @Html.AntiForgeryToken()

 <div class="form-horizontal">

 <h4>Course</h4>

187

 <hr />

 @Html.ValidationSummary(true)

 <div class="form-group">

 @Html.LabelFor(model => model.CourseID, new { @class = "control-

label col-md-2" })

 <div class="col-md-10">

 @Html.EditorFor(model => model.CourseID)

 @Html.ValidationMessageFor(model => model.CourseID)

 </div>

 </div>

 <div class="form-group">

 @Html.LabelFor(model => model.Title, new { @class = "control-

label col-md-2" })

 <div class="col-md-10">

 @Html.EditorFor(model => model.Title)

 @Html.ValidationMessageFor(model => model.Title)

 </div>

 </div>

 <div class="form-group">

 @Html.LabelFor(model => model.Credits, new { @class = "control-

label col-md-2" })

 <div class="col-md-10">

 @Html.EditorFor(model => model.Credits)

 @Html.ValidationMessageFor(model => model.Credits)

 </div>

 </div>

 <div class="form-group">

 <label class="control-label col-md-2"

for="DepartmentID">Department</label>

 <div class="col-md-10">

 @Html.DropDownList("DepartmentID", String.Empty)

 @Html.ValidationMessageFor(model => model.DepartmentID)

 </div>

 </div>

 <div class="form-group">

 <div class="col-md-offset-2 col-md-10">

 <input type="submit" value="Create" class="btn btn-default"

/>

 </div>

 </div>

 </div>

}

<div>

 @Html.ActionLink("Back to List", "Index")

</div>

@section Scripts {

 @Scripts.Render("~/bundles/jqueryval")

}

188

Make the same change in Views\Course\Edit.cshtml.

Normally the scaffolder doesn't scaffold a primary key because the key value is generated by the

database and can't be changed and isn't a meaningful value to be displayed to users. For Course

entities the scaffolder does include an text box for the CourseID field because it understands that

the DatabaseGeneratedOption.None attribute means the user should be able enter the primary

key value. But it doesn't understand that because the number is meaningful you want to see it in

the other views, so you need to add it manually.

In Views\Course\Edit.cshtml, add a course number field before the Title field. Because it's the

primary key, it's displayed, but it can't be changed.

<div class="form-group">

 @Html.LabelFor(model => model.CourseID, new { @class = "control-label

col-md-2" })

 <div class="col-md-10">

 @Html.DisplayFor(model => model.CourseID)

 </div>

</div>

There's already a hidden field (Html.HiddenFor helper) for the course number in the Edit view.

Adding an Html.LabelFor helper doesn't eliminate the need for the hidden field because it

doesn't cause the course number to be included in the posted data when the user clicks Save on

the Edit page.

In Views\Course\Delete.cshtml and Views\Course\Details.cshtml, change the department name

caption from "Name" to "Department" and add a course number field before the Title field.

<dt>

 Department

</dt>

<dd>

 @Html.DisplayFor(model => model.Department.Name)

</dd>

<dt>

 @Html.DisplayNameFor(model => model.CourseID)

</dt>

<dd>

 @Html.DisplayFor(model => model.CourseID)

</dd>

Run the Create page (display the Course Index page and click Create New) and enter data for a

new course:

189

Click Create. The Course Index page is displayed with the new course added to the list. The

department name in the Index page list comes from the navigation property, showing that the

relationship was established correctly.

190

Run the Edit page (display the Course Index page and click Edit on a course).

191

Change data on the page and click Save. The Course Index page is displayed with the updated

course data.

Adding an Edit Page for Instructors

When you edit an instructor record, you want to be able to update the instructor's office

assignment. The Instructor entity has a one-to-zero-or-one relationship with the

OfficeAssignment entity, which means you must handle the following situations:

192

 If the user clears the office assignment and it originally had a value, you must remove

and delete the OfficeAssignment entity.

 If the user enters an office assignment value and it originally was empty, you must create

a new OfficeAssignment entity.

 If the user changes the value of an office assignment, you must change the value in an

existing OfficeAssignment entity.

Open InstructorController.cs and look at the HttpGet Edit method:

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 Instructor instructor = db.Instructors.Find(id);

 if (instructor == null)

 {

 return HttpNotFound();

 }

 ViewBag.ID = new SelectList(db.OfficeAssignments, "InstructorID",

"Location", instructor.ID);

 return View(instructor);

}

The scaffolded code here isn't what you want. It's setting up data for a drop-down list, but you

what you need is a text box. Replace this method with the following code:

public ActionResult Edit(int? id)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 Instructor instructor = db.Instructors

 .Include(i => i.OfficeAssignment)

 .Where(i => i.ID == id)

 .Single();

 if (instructor == null)

 {

 return HttpNotFound();

 }

 return View(instructor);

}

This code drops the ViewBag statement and adds eager loading for the associated

OfficeAssignment entity. You can't perform eager loading with the Find method, so the Where

and Single methods are used instead to select the instructor.

Replace the HttpPost Edit method with the following code. which handles office assignment

updates:

[HttpPost, ActionName("Edit")]

193

[ValidateAntiForgeryToken]

public ActionResult EditPost(int? id)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 var instructorToUpdate = db.Instructors

 .Include(i => i.OfficeAssignment)

 .Where(i => i.ID == id)

 .Single();

 if (TryUpdateModel(instructorToUpdate, "",

 new string[] { "LastName", "FirstMidName", "HireDate",

"OfficeAssignment" }))

 {

 try

 {

 if

(String.IsNullOrWhiteSpace(instructorToUpdate.OfficeAssignment.Location))

 {

 instructorToUpdate.OfficeAssignment = null;

 }

 db.Entry(instructorToUpdate).State = EntityState.Modified;

 db.SaveChanges();

 return RedirectToAction("Index");

 }

 catch (RetryLimitExceededException /* dex */)

 {

 //Log the error (uncomment dex variable name and add a line here to

write a log.

 ModelState.AddModelError("", "Unable to save changes. Try again, and

if the problem persists, see your system administrator.");

 }

 }

 return View(instructorToUpdate);

}

The reference to RetryLimitExceededException requires a using statement; to add it, right-

click RetryLimitExceededException, and then click Resolve - using

System.Data.Entity.Infrastructure.

The code does the following:

194

 Changes the method name to EditPost because the signature is now the same as the

HttpGet method (the ActionName attribute specifies that the /Edit/ URL is still used).

 Gets the current Instructor entity from the database using eager loading for the

OfficeAssignment navigation property. This is the same as what you did in the HttpGet

Edit method.

 Updates the retrieved Instructor entity with values from the model binder. The

TryUpdateModel overload used enables you to whitelist the properties you want to

include. This prevents over-posting, as explained in the second tutorial.

 if (TryUpdateModel(instructorToUpdate, "",

new string[] { "LastName", "FirstMidName", "HireDate",

"OfficeAssignment" }))

 If the office location is blank, sets the Instructor.OfficeAssignment property to null

so that the related row in the OfficeAssignment table will be deleted.

if

(String.IsNullOrWhiteSpace(instructorToUpdate.OfficeAssignment.Location

))

{

 instructorToUpdate.OfficeAssignment = null;

}

 Saves the changes to the database.

In Views\Instructor\Edit.cshtml, after the div elements for the Hire Date field, add a new field

for editing the office location:

<div class="form-group">

 @Html.LabelFor(model => model.OfficeAssignment.Location, new { @class =

"control-label col-md-2" })

 <div class="col-md-10">

 @Html.EditorFor(model => model.OfficeAssignment.Location)

 @Html.ValidationMessageFor(model => model.OfficeAssignment.Location)

 </div>

</div>

Run the page (select the Instructors tab and then click Edit on an instructor). Change the Office

Location and click Save.

http://msdn.microsoft.com/en-us/library/dd470908%28v=vs.108%29.aspx

195

Adding Course Assignments to the Instructor Edit Page

Instructors may teach any number of courses. Now you'll enhance the Instructor Edit page by

adding the ability to change course assignments using a group of check boxes, as shown in the

following screen shot:

196

The relationship between the Course and Instructor entities is many-to-many, which means

you do not have direct access to the foreign key properties which are in the join table. Instead,

you add and remove entities to and from the Instructor.Courses navigation property.

197

The UI that enables you to change which courses an instructor is assigned to is a group of check

boxes. A check box for every course in the database is displayed, and the ones that the instructor

is currently assigned to are selected. The user can select or clear check boxes to change course

assignments. If the number of courses were much greater, you would probably want to use a

different method of presenting the data in the view, but you'd use the same method of

manipulating navigation properties in order to create or delete relationships.

To provide data to the view for the list of check boxes, you'll use a view model class. Create

AssignedCourseData.cs in the ViewModels folder and replace the existing code with the

following code:

namespace ContosoUniversity.ViewModels

{

 public class AssignedCourseData

 {

 public int CourseID { get; set; }

 public string Title { get; set; }

 public bool Assigned { get; set; }

 }

}

In InstructorController.cs, replace the HttpGet Edit method with the following code. The

changes are highlighted.

public ActionResult Edit(int? id)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 Instructor instructor = db.Instructors

 .Include(i => i.OfficeAssignment)

 .Include(i => i.Courses)

 .Where(i => i.ID == id)

 .Single();

 PopulateAssignedCourseData(instructor);

 if (instructor == null)

 {

 return HttpNotFound();

 }

 return View(instructor);

}

private void PopulateAssignedCourseData(Instructor instructor)

{

 var allCourses = db.Courses;

 var instructorCourses = new HashSet<int>(instructor.Courses.Select(c =>

c.CourseID));

 var viewModel = new List<AssignedCourseData>();

 foreach (var course in allCourses)

 {

 viewModel.Add(new AssignedCourseData

 {

198

 CourseID = course.CourseID,

 Title = course.Title,

 Assigned = instructorCourses.Contains(course.CourseID)

 });

 }

 ViewBag.Courses = viewModel;

}

The code adds eager loading for the Courses navigation property and calls the new

PopulateAssignedCourseData method to provide information for the check box array using

the AssignedCourseData view model class.

The code in the PopulateAssignedCourseData method reads through all Course entities in

order to load a list of courses using the view model class. For each course, the code checks

whether the course exists in the instructor's Courses navigation property. To create efficient

lookup when checking whether a course is assigned to the instructor, the courses assigned to the

instructor are put into a HashSet collection. The Assigned property is set to true for courses

the instructor is assigned. The view will use this property to determine which check boxes must

be displayed as selected. Finally, the list is passed to the view in a ViewBag property.

Next, add the code that's executed when the user clicks Save. Replace the EditPost method with

the following code, which calls a new method that updates the Courses navigation property of

the Instructor entity. The changes are highlighted.

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Edit(int? id, string[] selectedCourses)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 var instructorToUpdate = db.Instructors

 .Include(i => i.OfficeAssignment)

 .Include(i => i.Courses)

 .Where(i => i.ID == id)

 .Single();

 if (TryUpdateModel(instructorToUpdate, "",

 new string[] { "LastName", "FirstMidName", "HireDate",

"OfficeAssignment" }))

 {

 try

 {

 if

(String.IsNullOrWhiteSpace(instructorToUpdate.OfficeAssignment.Location))

 {

 instructorToUpdate.OfficeAssignment = null;

 }

 UpdateInstructorCourses(selectedCourses, instructorToUpdate);

 db.Entry(instructorToUpdate).State = EntityState.Modified;

http://msdn.microsoft.com/en-us/library/bb359438.aspx

199

 db.SaveChanges();

 return RedirectToAction("Index");

 }

 catch (RetryLimitExceededException /* dex */)

 {

 //Log the error (uncomment dex variable name and add a line here

to write a log.

 ModelState.AddModelError("", "Unable to save changes. Try again,

and if the problem persists, see your system administrator.");

 }

 }

 PopulateAssignedCourseData(instructorToUpdate);

 return View(instructorToUpdate);

}

private void UpdateInstructorCourses(string[] selectedCourses, Instructor

instructorToUpdate)

{

 if (selectedCourses == null)

 {

 instructorToUpdate.Courses = new List<Course>();

 return;

 }

 var selectedCoursesHS = new HashSet<string>(selectedCourses);

 var instructorCourses = new HashSet<int>

 (instructorToUpdate.Courses.Select(c => c.CourseID));

 foreach (var course in db.Courses)

 {

 if (selectedCoursesHS.Contains(course.CourseID.ToString()))

 {

 if (!instructorCourses.Contains(course.CourseID))

 {

 instructorToUpdate.Courses.Add(course);

 }

 }

 else

 {

 if (instructorCourses.Contains(course.CourseID))

 {

 instructorToUpdate.Courses.Remove(course);

 }

 }

 }

}

The method signature is now different from the HttpGet Edit method, so the method name

changes from EditPost back to Edit.

Since the view doesn't have a collection of Course entities, the model binder can't automatically

update the Courses navigation property. Instead of using the model binder to update the

Courses navigation property, you'll do that in the new UpdateInstructorCourses method.

Therefore you need to exclude the Courses property from model binding. This doesn't require

200

any change to the code that calls TryUpdateModel because you're using the whitelisting overload

and Courses isn't in the include list.

If no check boxes were selected, the code in UpdateInstructorCourses initializes the Courses

navigation property with an empty collection:

if (selectedCourses == null)

{

 instructorToUpdate.Courses = new List<Course>();

 return;

}

The code then loops through all courses in the database and checks each course against the ones

currently assigned to the instructor versus the ones that were selected in the view. To facilitate

efficient lookups, the latter two collections are stored in HashSet objects.

If the check box for a course was selected but the course isn't in the Instructor.Courses

navigation property, the course is added to the collection in the navigation property.

if (selectedCoursesHS.Contains(course.CourseID.ToString()))

{

 if (!instructorCourses.Contains(course.CourseID))

 {

 instructorToUpdate.Courses.Add(course);

 }

}

If the check box for a course wasn't selected, but the course is in the Instructor.Courses

navigation property, the course is removed from the navigation property.

else

{

 if (instructorCourses.Contains(course.CourseID))

 {

 instructorToUpdate.Courses.Remove(course);

 }

}

In Views\Instructor\Edit.cshtml, add a Courses field with an array of check boxes by adding the

following code immediately after the div elements for the OfficeAssignment field and before

the div element for the Save button:

<div class="form-group">

 <div class="col-md-offset-2 col-md-10">

 <table>

 <tr>

 @{

 int cnt = 0;

 List<ContosoUniversity.ViewModels.AssignedCourseData>

courses = ViewBag.Courses;

http://msdn.microsoft.com/en-us/library/dd470908%28v=vs.98%29.aspx

201

 foreach (var course in courses)

 {

 if (cnt++ % 3 == 0)

 {

 @:</tr><tr>

 }

 @:<td>

 <input type="checkbox"

 name="selectedCourses"

 value="@course.CourseID"

 @(Html.Raw(course.Assigned ?

"checked=\"checked\"" : "")) />

 @course.CourseID @: @course.Title

 @:</td>

 }

 @:</tr>

 }

 </table>

 </div>

</div>

After you paste the code, if line breaks and indentation don't look like they do here, manually fix

everything so that it looks like what you see here. The indentation doesn't have to be perfect, but

the @</tr><tr>, @:<td>, @:</td>, and @</tr> lines must each be on a single line as shown or

you'll get a runtime error.

This code creates an HTML table that has three columns. In each column is a check box

followed by a caption that consists of the course number and title. The check boxes all have the

same name ("selectedCourses"), which informs the model binder that they are to be treated as a

group. The value attribute of each check box is set to the value of CourseID. When the page is

posted, the model binder passes an array to the controller that consists of the CourseID values

for only the check boxes which are selected.

When the check boxes are initially rendered, those that are for courses assigned to the instructor

have checked attributes, which selects them (displays them checked).

After changing course assignments, you'll want to be able to verify the changes when the site

returns to the Index page. Therefore, you need to add a column to the table in that page. In this

case you don't need to use the ViewBag object, because the information you want to display is

already in the Courses navigation property of the Instructor entity that you're passing to the

page as the model.

In Views\Instructor\Index.cshtml, add a Courses heading immediately following the Office

heading, as shown in the following example:

<tr>

 <th>Last Name</th>

 <th>First Name</th>

 <th>Hire Date</th>

 <th>Office</th>

 <th>Courses</th>

202

 <th></th>

</tr>

Then add a new detail cell immediately following the office location detail cell:

<td>

 @if (item.OfficeAssignment != null)

 {

 @item.OfficeAssignment.Location

 }

</td>

<td>

 @{

 foreach (var course in item.Courses)

 {

 @course.CourseID @: @course.Title

 }

 }

</td>

<td>

 @Html.ActionLink("Select", "Index", new { id = item.ID }) |

 @Html.ActionLink("Edit", "Edit", new { id = item.ID }) |

 @Html.ActionLink("Details", "Details", new { id = item.ID }) |

 @Html.ActionLink("Delete", "Delete", new { id = item.ID })

</td>

Run the Instructor Index page to see the courses assigned to each instructor:

203

204

Click Edit on an instructor to see the Edit page.

Change some course assignments and click Save. The changes you make are reflected on the

Index page.

205

Note: The approach taken here to edit instructor course data works well when there is a limited

number of courses. For collections that are much larger, a different UI and a different updating

method would be required.

Update the DeleteConfirmed Method

In InstructorController.cs, delete the DeleteConfirmed method and insert the following code in

its place.

[HttpPost, ActionName("Delete")]

[ValidateAntiForgeryToken]

public ActionResult DeleteConfirmed(int id)

{

 Instructor instructor = db.Instructors

 .Include(i => i.OfficeAssignment)

 .Where(i => i.ID == id)

 .Single();

 instructor.OfficeAssignment = null;

 db.Instructors.Remove(instructor);

 var department = db.Departments

 .Where(d => d.InstructorID == id)

 .SingleOrDefault();

 if (department != null)

 {

 department.InstructorID = null;

 }

 db.SaveChanges();

 return RedirectToAction("Index");

}

This code makes two changes:

 Deletes the office assignment record (if any) when the instructor is deleted.

 If the instructor is assigned as administrator of any department, removes the instructor

assignment from that department. Without this code, you would get a referential integrity

error if you tried to delete an instructor who was assigned as administrator for a

department.

Add office location and courses to the Create page

In InstructorController.cs, delete the HttpGet and HttpPost Create methods, and then add the

following code in their place:

public ActionResult Create()

{

 var instructor = new Instructor();

206

 instructor.Courses = new List<Course>();

 PopulateAssignedCourseData(instructor);

 return View();

}

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Create([Bind(Include =

"LastName,FirstMidName,HireDate,OfficeAssignment")]Instructor instructor,

string[] selectedCourses)

{

 if (selectedCourses != null)

 {

 instructor.Courses = new List<Course>();

 foreach (var course in selectedCourses)

 {

 var courseToAdd = db.Courses.Find(int.Parse(course));

 instructor.Courses.Add(courseToAdd);

 }

 }

 if (ModelState.IsValid)

 {

 db.Instructors.Add(instructor);

 db.SaveChanges();

 return RedirectToAction("Index");

 }

 PopulateAssignedCourseData(instructor);

 return View(instructor);

}

This code is similar to what you saw for the Edit methods except that initially no courses are

selected. The HttpGet Create method calls the PopulateAssignedCourseData method not

because there might be courses selected but in order to provide an empty collection for the

foreach loop in the view (otherwise the view code would throw a null reference exception).

The HttpPost Create method adds each selected course to the Courses navigation property before

the template code that checks for validation errors and adds the new instructor to the database.

Courses are added even if there are model errors so that when there are model errors (for an

example, the user keyed an invalid date) so that when the page is redisplayed with an error

message, any course selections that were made are automatically restored.

Notice that in order to be able to add courses to the Courses navigation property you have to

initialize the property as an empty collection:

instructor.Courses = new List<Course>();

As an alternative to doing this in controller code, you could do it in the Course model by

changing the property getter to automatically create the collection if it doesn't exist, as shown in

the following example:

private ICollection<Course> _courses;

public virtual ICollection<Course> Courses

207

{

 get

 {

 return _courses ?? (_courses = new List<Course>());

 }

 set

 {

 _courses = value;

 }

}

If you modify the Courses property in this way, you can remove the explicit property

initialization code in the controller.

In Views\Instructor\Create.cshtml, add an office location text box and course check boxes after

the hire date field and before the Submit button.

<div class="form-group">

 @Html.LabelFor(model => model.OfficeAssignment.Location, new { @class =

"control-label col-md-2" })

 <div class="col-md-10">

 @Html.EditorFor(model => model.OfficeAssignment.Location)

 @Html.ValidationMessageFor(model => model.OfficeAssignment.Location)

 </div>

</div>

<div class="form-group">

 <div class="col-md-offset-2 col-md-10">

 <table>

 <tr>

 @{

 int cnt = 0;

 List<ContosoUniversity.ViewModels.AssignedCourseData>

courses = ViewBag.Courses;

 foreach (var course in courses)

 {

 if (cnt++ % 3 == 0)

 {

 @:</tr><tr>

 }

 @:<td>

 <input type="checkbox"

 name="selectedCourses"

 value="@course.CourseID"

 @(Html.Raw(course.Assigned ?

"checked=\"checked\"" : "")) />

 @course.CourseID @: @course.Title

 @:</td>

 }

 @:</tr>

 }

 </table>

 </div>

</div>

208

After you paste the code, fix line breaks and indentation as you did earlier for the Edit page.

Run the Create page and add an instructor.

209

Handling Transactions

As explained in the Basic CRUD Functionality tutorial, by default the Entity Framework

implicitly implements transactions. For scenarios where you need more control -- for example, if

you want to include operations done outside of Entity Framework in a transaction -- see Working

with Transactions on MSDN.

Summary

You have now completed this introduction to working with related data. So far in these tutorials

you've worked with code that does synchronous I/O. You can make the application use web

server resources more efficiently by implementing asynchronous code, and that's what you'll do

in the next tutorial.

http://msdn.microsoft.com/en-US/data/dn456843
http://msdn.microsoft.com/en-US/data/dn456843

210

Async and Stored Procedures with the Entity

Framework in an ASP.NET MVC

Application

In earlier tutorials you learned how to read and update data using the synchronous programming

model. In this tutorial you see how to implement the asynchronous programming model.

Asynchronous code can help an application perform better because it makes better use of server

resources.

In this tutorial you'll also see how to use stored procedures for insert, update, and delete

operations on an entity.

Finally, you'll redeploy the application to Windows Azure, along with all of the database

changes that you've implemented since the first time you deployed.

The following illustrations show some of the pages that you'll work with.

211

212

Why bother with asynchronous code

A web server has a limited number of threads available, and in high load situations all of the

available threads might be in use. When that happens, the server can’t process new requests until

the threads are freed up. With synchronous code, many threads may be tied up while they aren’t

actually doing any work because they’re waiting for I/O to complete. With asynchronous code,

when a process is waiting for I/O to complete, its thread is freed up for the server to use for

processing other requests. As a result, asynchronous code enables server resources to be use

more efficiently, and the server is enabled to handle more traffic without delays.

In earlier versions of .NET, writing and testing asynchronous code was complex, error prone,

and hard to debug. In .NET 4.5, writing, testing, and debugging asynchronous code is so much

213

easier that you should generally write asynchronous code unless you have a reason not to.

Asynchronous code does introduce a small amount of overhead, but for low traffic situations the

performance hit is negligible, while for high traffic situations, the potential performance

improvement is substantial.

For more information about asynchronous programming, see the following resources:

 Entity Framework Async Query and Save

 Using Asynchronous Methods in ASP.NET MVC 4

 How to Build ASP./NET Web Applications Using Async (Video)

Create the Department controller

Create a Department controller the same way you did the earlier controllers, except this time

select the Use async controller actions check box.

The following highlights show how what was added to the synchronous code for the Index

method to make it asynchronous:

public async Task<ActionResult> Index()

{

 var departments = db.Departments.Include(d => d.Administrator);

 return View(await departments.ToListAsync());

http://msdn.microsoft.com/en-us/data/jj819165
http://www.asp.net/mvc/tutorials/mvc-4/using-asynchronous-methods-in-aspnet-mvc-4
http://channel9.msdn.com/Events/TechEd/NorthAmerica/2013/DEV-B337#fbid=zFSkpWSceNP

214

}

Four changes were applied to enable the Entity Framework database query to execute

asynchronously:

 The method is marked with the async keyword, which tells the compiler to generate

callbacks for parts of the method body and to automatically create the

Task<ActionResult> object that is returned.

 The return type was changed from ActionResult to Task<ActionResult> . The

Task<T> type represents ongoing work with a result of type T.

 The await keyword was applied to the web service call. When the compiler sees this

keyword, behind the scenes it splits the method into two parts. The first part ends with the

operation that is started asynchronously. The second part is put into a callback method

that is called when the operation completes.

 The asynchronous version of the ToList extension method was called.

Why is the departments.ToList statement modified but not the

departments = db.Departments statement? The reason is that only statements that cause

queries or commands to be sent to the database are executed asynchronously. The

departments = db.Departments statement sets up a query but the query is not executed until

the ToList method is called. Therefore, only the ToList method is executed asynchronously.

In the Details method and the HttpGet Edit and Delete methods, the Find method is the one

that causes a query to be sent to the database, so that's the method that gets executed

asynchronously:

public async Task<ActionResult> Details(int? id)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 Department department = await db.Departments.FindAsync(id);

 if (department == null)

 {

 return HttpNotFound();

 }

 return View(department);

}

In the Create , HttpPost Edit, and DeleteConfirmed methods, it is the SaveChanges method

call that causes a command to be executed, not statements such as

db.Departments.Add(department) which only cause entities in memory to be modified.

public async Task<ActionResult> Create(Department department)

{

 if (ModelState.IsValid)

 {

 db.Departments.Add(department);

 await db.SaveChangesAsync();

215

 return RedirectToAction("Index");

 }

Open Views\Department\Index.cshtml, and replace the template code with the following code:

@model IEnumerable<ContosoUniversity.Models.Department>

@{

 ViewBag.Title = "Departments";

}

<h2>Departments</h2>

<p>

 @Html.ActionLink("Create New", "Create")

</p>

<table class="table">

 <tr>

 <th>

 @Html.DisplayNameFor(model => model.Name)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.Budget)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.StartDate)

 </th>

 <th>

 Administrator

 </th>

 <th></th>

 </tr>

@foreach (var item in Model) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.Name)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Budget)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.StartDate)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Administrator.FullName)

 </td>

 <td>

 @Html.ActionLink("Edit", "Edit", new { id=item.DepartmentID }) |

 @Html.ActionLink("Details", "Details", new { id=item.DepartmentID

}) |

 @Html.ActionLink("Delete", "Delete", new { id=item.DepartmentID

})

 </td>

 </tr>

}

</table>

216

This code changes the title from Index to Departments, moves the Administrator name to the

right, and provides the full name of the administrator.

In the Create, Delete, Details, and Edit views, change the caption for the InstructorID field to

"Administrator" the same way you changed the department name field to "Department" in the

Course views.

In the Create and Edit views use the following code:

<label class="control-label col-md-2"

for="InstructorID">Administrator</label>

In the Delete and Details views use the following code:

<dt>

 Administrator

</dt>

Run the application, and click the Departments tab.

217

Everything works the same as in the other controllers, but in this controller all of the SQL

queries are executing asynchronously.

Some things to be aware of when you are using asynchronous programming with the Entity

Framework:

 The async code is not thread safe. In other words, in other words, don't try to do multiple

operations in parallel using the same context instance.

 If you want to take advantage of the performance benefits of async code, make sure that

any library packages that you're using (such as for paging), also use async if they call any

Entity Framework methods that cause queries to be sent to the database.

Use stored procedures for inserting, updating, and deleting

218

Some developers and DBAs prefer to use stored procedures for database access. In earlier

versions of Entity Framework you can retrieve data using a stored procedure by executing a raw

SQL query, but you can't instruct EF to use stored procedures for update operations. In EF 6 it's

easy to configure Code First to use stored procedures.

1. In DAL\SchoolContext.cs, add the highlighted code to the OnModelCreating method.

protected override void OnModelCreating(DbModelBuilder modelBuilder)

{

 modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();

 modelBuilder.Entity<Course>()

 .HasMany(c => c.Instructors).WithMany(i => i.Courses)

 .Map(t => t.MapLeftKey("CourseID")

 .MapRightKey("InstructorID")

 .ToTable("CourseInstructor"));

 modelBuilder.Entity<Department>().MapToStoredProcedures();

}

This code instructs Entity Framework to use stored procedures for insert, update, and

delete operations on the Department entity.

2. In Package Manage Console, enter the following command:

add-migration DepartmentSP

Open Migrations\<timestamp>_DepartmentSP.cs to see the code in the Up method that

creates Insert, Update, and Delete stored procedures:

public override void Up()

{

 CreateStoredProcedure(

 "dbo.Department_Insert",

 p => new

 {

 Name = p.String(maxLength: 50),

 Budget = p.Decimal(precision: 19, scale: 4, storeType:

"money"),

 StartDate = p.DateTime(),

 InstructorID = p.Int(),

 },

 body:

 @"INSERT [dbo].[Department]([Name], [Budget], [StartDate],

[InstructorID])

 VALUES (@Name, @Budget, @StartDate, @InstructorID)

 DECLARE @DepartmentID int

 SELECT @DepartmentID = [DepartmentID]

 FROM [dbo].[Department]

 WHERE @@ROWCOUNT > 0 AND [DepartmentID] =

scope_identity()

 SELECT t0.[DepartmentID]

 FROM [dbo].[Department] AS t0

http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/advanced-entity-framework-scenarios-for-an-mvc-web-application
http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/advanced-entity-framework-scenarios-for-an-mvc-web-application

219

 WHERE @@ROWCOUNT > 0 AND t0.[DepartmentID] =

@DepartmentID"

);

 CreateStoredProcedure(

 "dbo.Department_Update",

 p => new

 {

 DepartmentID = p.Int(),

 Name = p.String(maxLength: 50),

 Budget = p.Decimal(precision: 19, scale: 4, storeType:

"money"),

 StartDate = p.DateTime(),

 InstructorID = p.Int(),

 },

 body:

 @"UPDATE [dbo].[Department]

 SET [Name] = @Name, [Budget] = @Budget, [StartDate] =

@StartDate, [InstructorID] = @InstructorID

 WHERE ([DepartmentID] = @DepartmentID)"

);

 CreateStoredProcedure(

 "dbo.Department_Delete",

 p => new

 {

 DepartmentID = p.Int(),

 },

 body:

 @"DELETE [dbo].[Department]

 WHERE ([DepartmentID] = @DepartmentID)"

);

}

3. In Package Manage Console, enter the following command:

update-database

4. Run the application in debug mode, click the Departments tab, and then click Create

New.

5. Enter data for a new department, and then click Create.

220

6. In Visual Studio, look at the logs in the Output window to see that a stored procedure

was used to insert the new Department row.

221

Code First creates default stored procedure names. If you are using an existing database, you

might need to customize the stored procedure names in order to use stored procedures already

defined in the database. For information about how to do that, see Entity Framework Code First

Insert/Update/Delete Stored Procedures .

If you want to customize what generated stored procedures do, you can edit the scaffolded code

for the migrations Up method that creates the stored procedure. That way your changes are

reflected whenever that migration is run and will be applied to your production database when

migrations runs automatically in production after deployment.

If you want to change an existing stored procedure that was created in a previous migration, you

can use the Add-Migration command to generate a blank migration, and then manually write

code that calls the AlterStoredProcedure method.

Deploy to Windows Azure

This section requires you to have completed the optional Deploying the app to Windows Azure

section in the Migrations and Deployment tutorial of this series. If you had migrations errors that

you resolved by deleting the database in your local project, skip this section.

1. In Visual Studio, right-click the project in Solution Explorer and select Publish from the

context menu.

2. Click Publish.

http://msdn.microsoft.com/en-us/data/dn468673
http://msdn.microsoft.com/en-us/data/dn468673
http://msdn.microsoft.com/en-us/library/system.data.entity.migrations.dbmigration.alterstoredprocedure.aspx
http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/migrations-and-deployment-with-the-entity-framework-in-an-asp-net-mvc-application

222

Visual Studio deploys the application to Windows Azure, and the application opens in

your default browser, running in Windows Azure.

3. Test the application to verify it's working.

The first time you run a page that accesses the database, the Entity Framework runs all of

the migrations Up methods required to bring the database up to date with the current data

model. You can now use all of the web pages that you added since the last time you

deployed, including the Department pages that you added in this tutorial.

Summary

In this tutorial you saw how to improve server efficiency by writing code that executes

asynchronously, and how to use stored procedures for insert, update, and delete operations. In the

next tutorial, you'll see how to prevent data loss when multiple users try to edit the same record

at the same time.

223

Handling Concurrency with the Entity

Framework 6 in an ASP.NET MVC 5

Application (10 of 12)

In earlier tutorials you learned how to update data. This tutorial shows how to handle conflicts

when multiple users update the same entity at the same time.

You'll change the web pages that work with the Department entity so that they handle

concurrency errors. The following illustrations show the Index and Delete pages, including some

messages that are displayed if a concurrency conflict occurs.

224

Concurrency Conflicts

A concurrency conflict occurs when one user displays an entity's data in order to edit it, and then

another user updates the same entity's data before the first user's change is written to the

database. If you don't enable the detection of such conflicts, whoever updates the database last

overwrites the other user's changes. In many applications, this risk is acceptable: if there are few

users, or few updates, or if isn't really critical if some changes are overwritten, the cost of

programming for concurrency might outweigh the benefit. In that case, you don't have to

configure the application to handle concurrency conflicts.

225

Pessimistic Concurrency (Locking)

If your application does need to prevent accidental data loss in concurrency scenarios, one way

to do that is to use database locks. This is called pessimistic concurrency. For example, before

you read a row from a database, you request a lock for read-only or for update access. If you lock

a row for update access, no other users are allowed to lock the row either for read-only or update

access, because they would get a copy of data that's in the process of being changed. If you lock

a row for read-only access, others can also lock it for read-only access but not for update.

Managing locks has disadvantages. It can be complex to program. It requires significant database

management resources, and it can cause performance problems as the number of users of an

application increases. For these reasons, not all database management systems support

pessimistic concurrency. The Entity Framework provides no built-in support for it, and this

tutorial doesn't show you how to implement it.

Optimistic Concurrency

The alternative to pessimistic concurrency is optimistic concurrency. Optimistic concurrency

means allowing concurrency conflicts to happen, and then reacting appropriately if they do. For

example, John runs the Departments Edit page, changes the Budget amount for the English

department from $350,000.00 to $0.00.

226

Before John clicks Save, Jane runs the same page and changes the Start Date field from

9/1/2007 to 8/8/2013.

227

John clicks Save first and sees his change when the browser returns to the Index page, then Jane

clicks Save. What happens next is determined by how you handle concurrency conflicts. Some

of the options include the following:

 You can keep track of which property a user has modified and update only the

corresponding columns in the database. In the example scenario, no data would be lost,

because different properties were updated by the two users. The next time someone

browses the English department, they'll see both John's and Jane's changes — a start date

of 8/8/2013 and a budget of Zero dollars.

228

This method of updating can reduce the number of conflicts that could result in data loss,

but it can't avoid data loss if competing changes are made to the same property of an

entity. Whether the Entity Framework works this way depends on how you implement

your update code. It's often not practical in a web application, because it can require that

you maintain large amounts of state in order to keep track of all original property values

for an entity as well as new values. Maintaining large amounts of state can affect

application performance because it either requires server resources or must be included in

the web page itself (for example, in hidden fields) or in a cookie.

 You can let Jane's change overwrite John's change. The next time someone browses the

English department, they'll see 8/8/2013 and the restored $350,000.00 value. This is

called a Client Wins or Last in Wins scenario. (All values from the client take precedence

over what's in the data store.) As noted in the introduction to this section, if you don't do

any coding for concurrency handling, this will happen automatically.

 You can prevent Jane's change from being updated in the database. Typically, you would

display an error message, show her the current state of the data, and allow her to reapply

her changes if she still wants to make them. This is called a Store Wins scenario. (The

data-store values take precedence over the values submitted by the client.) You'll

implement the Store Wins scenario in this tutorial. This method ensures that no changes

are overwritten without a user being alerted to what's happening.

Detecting Concurrency Conflicts

You can resolve conflicts by handling OptimisticConcurrencyException exceptions that the

Entity Framework throws. In order to know when to throw these exceptions, the Entity

Framework must be able to detect conflicts. Therefore, you must configure the database and the

data model appropriately. Some options for enabling conflict detection include the following:

 In the database table, include a tracking column that can be used to determine when a row

has been changed. You can then configure the Entity Framework to include that column

in the Where clause of SQL Update or Delete commands.

The data type of the tracking column is typically rowversion. The rowversion value is a

sequential number that's incremented each time the row is updated. In an Update or

Delete command, the Where clause includes the original value of the tracking column

(the original row version) . If the row being updated has been changed by another user,

the value in the rowversion column is different than the original value, so the Update or

Delete statement can't find the row to update because of the Where clause. When the

Entity Framework finds that no rows have been updated by the Update or Delete

command (that is, when the number of affected rows is zero), it interprets that as a

concurrency conflict.

 Configure the Entity Framework to include the original values of every column in the

table in the Where clause of Update and Delete commands.

http://msdn.microsoft.com/en-us/library/system.data.optimisticconcurrencyexception.aspx
http://msdn.microsoft.com/en-us/library/ms182776%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms182776%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms182776%28v=sql.110%29.aspx

229

As in the first option, if anything in the row has changed since the row was first read, the

Where clause won't return a row to update, which the Entity Framework interprets as a

concurrency conflict. For database tables that have many columns, this approach can

result in very large Where clauses, and can require that you maintain large amounts of

state. As noted earlier, maintaining large amounts of state can affect application

performance. Therefore this approach is generally not recommended, and it isn't the

method used in this tutorial.

If you do want to implement this approach to concurrency, you have to mark all non-

primary-key properties in the entity you want to track concurrency for by adding the

ConcurrencyCheck attribute to them. That change enables the Entity Framework to

include all columns in the SQL WHERE clause of UPDATE statements.

In the remainder of this tutorial you'll add a rowversion tracking property to the Department

entity, create a controller and views, and test to verify that everything works correctly.

Add an Optimistic Concurrency Property to the

Department Entity

In Models\Department.cs, add a tracking property named RowVersion:

public class Department

{

 public int DepartmentID { get; set; }

 [StringLength(50, MinimumLength = 3)]

 public string Name { get; set; }

 [DataType(DataType.Currency)]

 [Column(TypeName = "money")]

 public decimal Budget { get; set; }

 [DataType(DataType.Date)]

 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}", ApplyFormatInEditMode

= true)]

 [Display(Name = "Start Date")]

 public DateTime StartDate { get; set; }

 [Display(Name = "Administrator")]

 public int? InstructorID { get; set; }

 [Timestamp]

 public byte[] RowVersion { get; set; }

 public virtual Instructor Administrator { get; set; }

 public virtual ICollection<Course> Courses { get; set; }

}

The Timestamp attribute specifies that this column will be included in the Where clause of

Update and Delete commands sent to the database. The attribute is called Timestamp because

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.concurrencycheckattribute.aspx
http://msdn.microsoft.com/en-us/library/ms182776%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.timestampattribute.aspx
http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.timestampattribute.aspx

230

previous versions of SQL Server used a SQL timestamp data type before the SQL rowversion

replaced it. The .Net type for rowversion is a byte array.

If you prefer to use the fluent API, you can use the IsConcurrencyToken method to specify the

tracking property, as shown in the following example:

modelBuilder.Entity<Department>()

 .Property(p => p.RowVersion).IsConcurrencyToken();

By adding a property you changed the database model, so you need to do another migration. In

the Package Manager Console (PMC), enter the following commands:

Add-Migration RowVersion

Update-Database

Modify the Department Controller

In Controllers\DepartmentController.cs, add a using statement:

using System.Data.Entity.Infrastructure;

In the DepartmentController.cs file, change all four occurrences of "LastName" to "FullName"

so that the department administrator drop-down lists will contain the full name of the instructor

rather than just the last name.

ViewBag.InstructorID = new SelectList(db.Instructors, "InstructorID",

"FullName");

Replace the existing code for the HttpPost Edit method with the following code:

[HttpPost]

[ValidateAntiForgeryToken]

public async Task<ActionResult> Edit(

 [Bind(Include = "DepartmentID, Name, Budget, StartDate, RowVersion,

InstructorID")]

 Department department)

{

 try

 {

 if (ModelState.IsValid)

 {

 db.Entry(department).State = EntityState.Modified;

 await db.SaveChangesAsync();

 return RedirectToAction("Index");

 }

 }

 catch (DbUpdateConcurrencyException ex)

 {

 var entry = ex.Entries.Single();

 var clientValues = (Department)entry.Entity;

 var databaseEntry = entry.GetDatabaseValues();

http://msdn.microsoft.com/en-us/library/ms182776%28v=SQL.90%29.aspx
http://msdn.microsoft.com/en-us/library/ms182776%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/ms182776%28v=sql.110%29.aspx
http://msdn.microsoft.com/en-us/library/gg679501%28v=VS.103%29.aspx

231

 if (databaseEntry == null)

 {

 ModelState.AddModelError(string.Empty,

 "Unable to save changes. The department was deleted by

another user.");

 }

 else

 {

 var databaseValues = (Department)databaseEntry.ToObject();

 if (databaseValues.Name != clientValues.Name)

 ModelState.AddModelError("Name", "Current value: "

 + databaseValues.Name);

 if (databaseValues.Budget != clientValues.Budget)

 ModelState.AddModelError("Budget", "Current value: "

 + String.Format("{0:c}", databaseValues.Budget));

 if (databaseValues.StartDate != clientValues.StartDate)

 ModelState.AddModelError("StartDate", "Current value: "

 + String.Format("{0:d}", databaseValues.StartDate));

 if (databaseValues.InstructorID != clientValues.InstructorID)

 ModelState.AddModelError("InstructorID", "Current value: "

 +

db.Instructors.Find(databaseValues.InstructorID).FullName);

 ModelState.AddModelError(string.Empty, "The record you attempted

to edit "

 + "was modified by another user after you got the original

value. The "

 + "edit operation was canceled and the current values in the

database "

 + "have been displayed. If you still want to edit this

record, click "

 + "the Save button again. Otherwise click the Back to List

hyperlink.");

 department.RowVersion = databaseValues.RowVersion;

 }

 }

 catch (RetryLimitExceededException /* dex */)

 {

 //Log the error (uncomment dex variable name and add a line here to

write a log.

 ModelState.AddModelError(string.Empty, "Unable to save changes. Try

again, and if the problem persists contact your system administrator.");

 }

 ViewBag.InstructorID = new SelectList(db.Instructors, "ID", "FullName",

department.InstructorID);

 return View(department);

}

The view will store the original RowVersion value in a hidden field. When the model binder

creates the department instance, that object will have the original RowVersion property value

and the new values for the other properties, as entered by the user on the Edit page. Then when

the Entity Framework creates a SQL UPDATE command, that command will include a WHERE

clause that looks for a row that has the original RowVersion value.

232

If no rows are affected by the UPDATE command (no rows have the original RowVersion

value), the Entity Framework throws a DbUpdateConcurrencyException exception, and the

code in the catch block gets the affected Department entity from the exception object.

var entry = ex.Entries.Single();

This object has the new values entered by the user in its Entity property, and you can get the

values read from the database by calling the GetDatabaseValues method.

var clientValues = (Department)entry.Entity;

var databaseEntry = entry.GetDatabaseValues();

The GetDatabaseValues method returns null if someone has deleted the row from the database;

otherwise, you have to cast the object returned to the Department class in order to access the

Department properties.

if (databaseEntry == null)

{

 ModelState.AddModelError(string.Empty,

 "Unable to save changes. The department was deleted by another

user.");

}

else

{

 var databaseValues = (Department)databaseEntry.ToObject();

Next, the code adds a custom error message for each column that has database values different

from what the user entered on the Edit page:

if (databaseValues.Name != currentValues.Name)

 ModelState.AddModelError("Name", "Current value: " +

databaseValues.Name);

 // ...

A longer error message explains what happened and what to do about it:

ModelState.AddModelError(string.Empty, "The record you attempted to edit "

 + "was modified by another user after you got the original value. The"

 + "edit operation was canceled and the current values in the database "

 + "have been displayed. If you still want to edit this record, click "

 + "the Save button again. Otherwise click the Back to List hyperlink.");

Finally, the code sets the RowVersion value of the Department object to the new value retrieved

from the database. This new RowVersion value will be stored in the hidden field when the Edit

page is redisplayed, and the next time the user clicks Save, only concurrency errors that happen

since the redisplay of the Edit page will be caught.

In Views\Department\Edit.cshtml, add a hidden field to save the RowVersion property value,

immediately following the hidden field for the DepartmentID property:

http://msdn.microsoft.com/en-us/library/system.data.entity.infrastructure.dbupdateconcurrencyexception%28v=VS.103%29.aspx

233

@model ContosoUniversity.Models.Department

@{

 ViewBag.Title = "Edit";

}

<h2>Edit</h2>

@using (Html.BeginForm())

{

 @Html.AntiForgeryToken()

 <div class="form-horizontal">

 <h4>Department</h4>

 <hr />

 @Html.ValidationSummary(true)

 @Html.HiddenFor(model => model.DepartmentID)

 @Html.HiddenFor(model => model.RowVersion)

Testing Optimistic Concurrency Handling

Run the site and click Departments:

234

Right click the Edit hyperlink for the English department and select Open in new tab, then click

the Edit hyperlink for the English department. The two tabs display the same information.

235

Change a field in the first browser tab and click Save.

236

The browser shows the Index page with the changed value.

237

Change a field in the second browser tab and click Save.

238

Click Save in the second browser tab. You see an error message:

239

Click Save again. The value you entered in the second browser tab is saved along with the

original value of the data you changed in the first browser. You see the saved values when the

Index page appears.

240

Updating the Delete Page

For the Delete page, the Entity Framework detects concurrency conflicts caused by someone else

editing the department in a similar manner. When the HttpGet Delete method displays the

confirmation view, the view includes the original RowVersion value in a hidden field. That value

is then available to the HttpPost Delete method that's called when the user confirms the

deletion. When the Entity Framework creates the SQL DELETE command, it includes a WHERE

clause with the original RowVersion value. If the command results in zero rows affected

(meaning the row was changed after the Delete confirmation page was displayed), a concurrency

exception is thrown, and the HttpGet Delete method is called with an error flag set to true in

order to redisplay the confirmation page with an error message. It's also possible that zero rows

were affected because the row was deleted by another user, so in that case a different error

message is displayed.

In DepartmentController.cs, replace the HttpGet Delete method with the following code:

public ActionResult Delete(int? id, bool? concurrencyError)

241

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 Department department = db.Departments.Find(id);

 if (department == null)

 {

 return HttpNotFound();

 }

 if (concurrencyError.GetValueOrDefault())

 {

 if (department == null)

 {

 ViewBag.ConcurrencyErrorMessage = "The record you attempted to

delete "

 + "was deleted by another user after you got the original

values. "

 + "Click the Back to List hyperlink.";

 }

 else

 {

 ViewBag.ConcurrencyErrorMessage = "The record you attempted to

delete "

 + "was modified by another user after you got the original

values. "

 + "The delete operation was canceled and the current values

in the "

 + "database have been displayed. If you still want to delete

this "

 + "record, click the Delete button again. Otherwise "

 + "click the Back to List hyperlink.";

 }

 }

 return View(department);

}

The method accepts an optional parameter that indicates whether the page is being redisplayed

after a concurrency error. If this flag is true, an error message is sent to the view using a

ViewBag property.

Replace the code in the HttpPost Delete method (named DeleteConfirmed) with the

following code:

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Delete(Department department)

{

 try

 {

 db.Entry(department).State = EntityState.Deleted;

 db.SaveChanges();

 return RedirectToAction("Index");

242

 }

 catch (DbUpdateConcurrencyException)

 {

 return RedirectToAction("Delete", new { concurrencyError=true });

 }

 catch (DataException /* dex */)

 {

 //Log the error (uncomment dex variable name after DataException and

add a line here to write a log.

 ModelState.AddModelError(string.Empty, "Unable to delete. Try again,

and if the problem persists contact your system administrator.");

 return View(department);

 }

}

In the scaffolded code that you just replaced, this method accepted only a record ID:

 public ActionResult DeleteConfirmed(int id)

You've changed this parameter to a Department entity instance created by the model binder.

This gives you access to the RowVersion property value in addition to the record key.

 public ActionResult Delete(Department department)

You have also changed the action method name from DeleteConfirmed to Delete. The

scaffolded code named the HttpPost Delete method DeleteConfirmed to give the

HttpPost method a unique signature. (The CLR requires overloaded methods to have different

method parameters.) Now that the signatures are unique, you can stick with the MVC convention

and use the same name for the HttpPost and HttpGet delete methods.

If a concurrency error is caught, the code redisplays the Delete confirmation page and provides a

flag that indicates it should display a concurrency error message.

In Views\Department\Delete.cshtml, replace the scaffolded code with the following code that

adds an error message field and hidden fields for the DepartmentID and RowVersion properties.

The changes are highlighted.

@model ContosoUniversity.Models.Department

@{

 ViewBag.Title = "Delete";

}

<h2>Delete</h2>

<p class="error">@ViewBag.ConcurrencyErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>

<div>

 <h4>Department</h4>

 <hr />

 <dl class="dl-horizontal">

243

 <dt>

 Administrator

 </dt>

 <dd>

 @Html.DisplayFor(model => model.Administrator.FullName)

 </dd>

 <dt>

 @Html.DisplayNameFor(model => model.Name)

 </dt>

 <dd>

 @Html.DisplayFor(model => model.Name)

 </dd>

 <dt>

 @Html.DisplayNameFor(model => model.Budget)

 </dt>

 <dd>

 @Html.DisplayFor(model => model.Budget)

 </dd>

 <dt>

 @Html.DisplayNameFor(model => model.StartDate)

 </dt>

 <dd>

 @Html.DisplayFor(model => model.StartDate)

 </dd>

 </dl>

 @using (Html.BeginForm()) {

 @Html.AntiForgeryToken()

 @Html.HiddenFor(model => model.DepartmentID)

 @Html.HiddenFor(model => model.RowVersion)

 <div class="form-actions no-color">

 <input type="submit" value="Delete" class="btn btn-default" /> |

 @Html.ActionLink("Back to List", "Index")

 </div>

 }

</div>

This code adds an error message between the h2 and h3 headings:

<p class="error">@ViewBag.ConcurrencyErrorMessage</p>

It replaces LastName with FullName in the Administrator field:

<dt>

 Administrator

</dt>

244

<dd>

 @Html.DisplayFor(model => model.Administrator.FullName)

</dd>

Finally, it adds hidden fields for the DepartmentID and RowVersion properties after the

Html.BeginForm statement:

@Html.HiddenFor(model => model.DepartmentID)

@Html.HiddenFor(model => model.RowVersion)

Run the Departments Index page. Right click the Delete hyperlink for the English department

and select Open in new tab, then in the first tab click the Edit hyperlink for the English

department.

In the first window, change one of the values, and click Save :

245

The Index page confirms the change.

246

In the second tab, click Delete.

247

 You see the concurrency error message, and the Department values are refreshed with what's

currently in the database.

248

If you click Delete again, you're redirected to the Index page, which shows that the department

has been deleted.

Summary

This completes the introduction to handling concurrency conflicts. For information about other

ways to handle various concurrency scenarios, see Optimistic Concurrency Patterns and Working

with Property Values on MSDN. The next tutorial shows how to implement table-per-hierarchy

inheritance for the Instructor and Student entities.

http://msdn.microsoft.com/en-us/data/jj592904
http://msdn.microsoft.com/en-us/data/jj592677
http://msdn.microsoft.com/en-us/data/jj592677

249

Implementing Inheritance with the Entity

Framework 6 in an ASP.NET MVC 5

Application (11 of 12)

In the previous tutorial you handled concurrency exceptions. This tutorial will show you how to

implement inheritance in the data model.

In object-oriented programming, you can use inheritance to facilitate code reuse. In this tutorial,

you'll change the Instructor and Student classes so that they derive from a Person base class

which contains properties such as LastName that are common to both instructors and students.

You won't add or change any web pages, but you'll change some of the code and those changes

will be automatically reflected in the database.

Options for mapping inheritance to database tables

The Instructor and Student classes in the School data model have several properties that are

identical:

Suppose you want to eliminate the redundant code for the properties that are shared by the

Instructor and Student entities. Or you want to write a service that can format names without

caring whether the name came from an instructor or a student. You could create a Person base

class which contains only those shared properties, then make the Instructor and Student

entities inherit from that base class, as shown in the following illustration:

http://en.wikipedia.org/wiki/Inheritance_%28object-oriented_programming%29
http://en.wikipedia.org/wiki/Code_reuse

250

There are several ways this inheritance structure could be represented in the database. You could

have a Person table that includes information about both students and instructors in a single

table. Some of the columns could apply only to instructors (HireDate), some only to students

(EnrollmentDate), some to both (LastName, FirstName). Typically, you'd have a discriminator

column to indicate which type each row represents. For example, the discriminator column might

have "Instructor" for instructors and "Student" for students.

This pattern of generating an entity inheritance structure from a single database table is called

table-per-hierarchy (TPH) inheritance.

251

An alternative is to make the database look more like the inheritance structure. For example, you

could have only the name fields in the Person table and have separate Instructor and Student

tables with the date fields.

This pattern of making a database table for each entity class is called table per type (TPT)

inheritance.

Yet another option is to map all non-abstract types to individual tables. All properties of a class,

including inherited properties, map to columns of the corresponding table. This pattern is called

Table-per-Concrete Class (TPC) inheritance. If you implemented TPC inheritance for the

Person, Student, and Instructor classes as shown earlier, the Student and Instructor tables

would look no different after implementing inheritance than they did before.

TPC and TPH inheritance patterns generally deliver better performance in the Entity Framework

than TPT inheritance patterns, because TPT patterns can result in complex join queries.

This tutorial demonstrates how to implement TPH inheritance. TPH is the default inheritance

pattern in the Entity Framework, so all you have to do is create a Person class, change the

Instructor and Student classes to derive from Person, add the new class to the DbContext,

and create a migration. (For information about how to implement the other inheritance patterns,

see Mapping the Table-Per-Type (TPT) Inheritance and Mapping the Table-Per-Concrete Class

(TPC) Inheritance in the MSDN Entity Framework documentation.)

Create the Person class

In the Models folder, create Person.cs and replace the template code with the following code:

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

http://msdn.microsoft.com/en-us/data/jj591617#2.5
http://msdn.microsoft.com/en-us/data/jj591617#2.6
http://msdn.microsoft.com/en-us/data/jj591617#2.6

252

namespace ContosoUniversity.Models

{

 public abstract class Person

 {

 public int ID { get; set; }

 [Required]

 [StringLength(50)]

 [Display(Name = "Last Name")]

 public string LastName { get; set; }

 [Required]

 [StringLength(50, ErrorMessage = "First name cannot be longer than 50

characters.")]

 [Column("FirstName")]

 [Display(Name = "First Name")]

 public string FirstMidName { get; set; }

 [Display(Name = "Full Name")]

 public string FullName

 {

 get

 {

 return LastName + ", " + FirstMidName;

 }

 }

 }

}

Make Student and Instructor classes inherit from Person

In Instructor.cs, derive the Instructor class from the Person class and remove the key and

name fields. The code will look like the following example:

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models

{

 public class Instructor : Person

 {

 [DataType(DataType.Date)]

 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",

ApplyFormatInEditMode = true)]

 [Display(Name = "Hire Date")]

 public DateTime HireDate { get; set; }

 public virtual ICollection<Course> Courses { get; set; }

 public virtual OfficeAssignment OfficeAssignment { get; set; }

 }

}

253

Make similar changes to Student.cs. The Student class will look like the following example:

using System;

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models

{

 public class Student : Person

 {

 [DataType(DataType.Date)]

 [DisplayFormat(DataFormatString = "{0:yyyy-MM-dd}",

ApplyFormatInEditMode = true)]

 [Display(Name = "Enrollment Date")]

 public DateTime EnrollmentDate { get; set; }

 public virtual ICollection<Enrollment> Enrollments { get; set; }

 }

}

Add the Person Entity Type to the Model

In SchoolContext.cs, add a DbSet property for the Person entity type:

 public DbSet<Person> People { get; set; }

This is all that the Entity Framework needs in order to configure table-per-hierarchy inheritance.

As you'll see, when the database is updated, it will have a Person table in place of the Student

and Instructor tables.

Create and Update a Migrations File

In the Package Manager Console (PMC), enter the following command:

Add-Migration Inheritance

Run the Update-Database command in the PMC. The command will fail at this point because

we have existing data that migrations doesn't know how to handle. You get an error message like

the following one:

Could not drop object 'dbo.Instructor' because it is referenced by a FOREIGN KEY constraint.

Open Migrations\<timestamp>_Inheritance.cs and replace the Up method with the following

code:

public override void Up()

{

254

 // Drop foreign keys and indexes that point to tables we're going to

drop.

 DropForeignKey("dbo.Enrollment", "StudentID", "dbo.Student");

 DropIndex("dbo.Enrollment", new[] { "StudentID" });

 RenameTable(name: "dbo.Instructor", newName: "Person");

 AddColumn("dbo.Person", "EnrollmentDate", c => c.DateTime());

 AddColumn("dbo.Person", "Discriminator", c => c.String(nullable: false,

maxLength: 128, defaultValue: "Instructor"));

 AlterColumn("dbo.Person", "HireDate", c => c.DateTime());

 AddColumn("dbo.Person", "OldId", c => c.Int(nullable: true));

 // Copy existing Student data into new Person table.

 Sql("INSERT INTO dbo.Person (LastName, FirstName, HireDate,

EnrollmentDate, Discriminator, OldId) SELECT LastName, FirstName, null AS

HireDate, EnrollmentDate, 'Student' AS Discriminator, ID AS OldId FROM

dbo.Student");

 // Fix up existing relationships to match new PK's.

 Sql("UPDATE dbo.Enrollment SET StudentId = (SELECT ID FROM dbo.Person

WHERE OldId = Enrollment.StudentId AND Discriminator = 'Student')");

 // Remove temporary key

 DropColumn("dbo.Person", "OldId");

 DropTable("dbo.Student");

 // Re-create foreign keys and indexes pointing to new table.

 AddForeignKey("dbo.Enrollment", "StudentID", "dbo.Person", "ID",

cascadeDelete: true);

 CreateIndex("dbo.Enrollment", "StudentID");

}

This code takes care of the following database update tasks:

 Removes foreign key constraints and indexes that point to the Student table.

 Renames the Instructor table as Person and makes changes needed for it to store Student

data:

o Adds nullable EnrollmentDate for students.

o Adds Discriminator column to indicate whether a row is for a student or an

instructor.

o Makes HireDate nullable since student rows won't have hire dates.

o Adds a temporary field that will be used to update foreign keys that point to

students. When you copy students into the Person table they'll get new primary

key values.

 Copies data from the Student table into the Person table. This causes students to get

assigned new primary key values.

 Fixes foreign key values that point to students.

 Re-creates foreign key constraints and indexes, now pointing them to the Person table.

(If you had used GUID instead of integer as the primary key type, the student primary key values

wouldn't have to change, and several of these steps could have been omitted.)

255

Run the update-database command again.

(In a production system you would make corresponding changes to the Down method in case

you ever had to use that to go back to the previous database version. For this tutorial you won't

be using the Down method.)

Note: It's possible to get other errors when migrating data and making schema changes. If

you get migration errors you can't resolve, you can continue with the tutorial by changing

the connection string in the Web.config file or by deleting the database. The simplest

approach is to rename the database in the Web.config file. For example, change the

database name to ContosoUniversity2 as shown in the following example:

<add name="SchoolContext"

 connectionString="Data Source=(LocalDb)\v11.0;Initial

Catalog=ContosoUniversity2;Integrated Security=SSPI;"

 providerName="System.Data.SqlClient" />

With a new database, there is no data to migrate, and the update-database command is

much more likely to complete without errors. For instructions on how to delete the

database, see How to Drop a Database from Visual Studio 2012. If you take this approach

in order to continue with the tutorial, skip the deployment step at the end of this tutorial

or deploy to a new site and database. If you deploy an update to the same site you've been

deploying to already, EF will get the same error there when it runs migrations

automatically. If you want to troubleshoot a migrations error, the best resource is one of

the Entity Framework forums or StackOverflow.com.

Testing

Run the site and try various pages. Everything works the same as it did before.

In Server Explorer, expand Data Connections\SchoolContext and then Tables, and you see

that the Student and Instructor tables have been replaced by a Person table. Expand the Person

table and you see that it has all of the columns that used to be in the Student and Instructor

tables.

http://romiller.com/2013/05/17/how-to-drop-a-database-from-visual-studio-2012/

256

Right-click the Person table, and then click Show Table Data to see the discriminator column.

257

The following diagram illustrates the structure of the new School database:

258

Deploy to Windows Azure

This section requires you to have completed the optional Deploying the app to Windows Azure

section in Part 3, Sorting, Filtering, and Paging of this tutorial series. If you had migrations

errors that you resolved by deleting the database in your local project, skip this step; or create a

new site and database, and deploy to the new environment.

1. In Visual Studio, right-click the project in Solution Explorer and select Publish from the

context menu.

259

2. Click Publish.

260

The Web app will open in your default browser.

3. Test the application to verify it's working.

The first time you run a page that accesses the database, the Entity Framework runs all of

the migrations Up methods required to bring the database up to date with the current data

model.

Summary

You've implemented table-per-hierarchy inheritance for the Person, Student, and Instructor

classes. For more information about this and other inheritance structures, see TPT Inheritance

Pattern and TPH Inheritance Pattern on MSDN. In the next tutorial you'll see some ways to

implement the repository and unit of work patterns.

http://msdn.microsoft.com/en-us/data/jj618293
http://msdn.microsoft.com/en-us/data/jj618293
http://msdn.microsoft.com/en-us/data/jj618292

261

Advanced Entity Framework 6 Scenarios for

an MVC 5 Web Application (12 of 12)

In the previous tutorial you implemented table-per-hierarchy inheritance. This tutorial includes

introduces several topics that are useful to be aware of when you go beyond the basics of

developing ASP.NET web applications that use Entity Framework Code First. Step-by-step

instructions walk you through the code and using Visual Studio for the following topics:

 Performing raw SQL queries
 Performing no-tracking queries
 Examining SQL sent to the database

The tutorial introduces several topics with brief introductions followed by links to resources for

more information:

 Repository and unit of work patterns
 Proxy classes
 Automatic change detection
 Automatic validation
 EF tools for Visual Studio
 Entity Framework source code

The tutorial also includes the following sections:

 Summary
 Acknowledgments
 A note about VB
 Common errors, and solutions or workarounds for them

For most of these topics, you'll work with pages that you already created. To use raw SQL to do

bulk updates you'll create a new page that updates the number of credits of all courses in the

database:

262

And to use a no-tracking query you'll add new validation logic to the Department Edit page:

263

Performing Raw SQL Queries

The Entity Framework Code First API includes methods that enable you to pass SQL commands

directly to the database. You have the following options:

264

 Use the DbSet.SqlQuery method for queries that return entity types. The returned objects

must be of the type expected by the DbSet object, and they are automatically tracked by

the database context unless you turn tracking off. (See the following section about the

AsNoTracking method.)

 Use the Database.SqlQuery method for queries that return types that aren't entities. The

returned data isn't tracked by the database context, even if you use this method to retrieve

entity types.

 Use the Database.ExecuteSqlCommand for non-query commands.

One of the advantages of using the Entity Framework is that it avoids tying your code too closely

to a particular method of storing data. It does this by generating SQL queries and commands for

you, which also frees you from having to write them yourself. But there are exceptional

scenarios when you need to run specific SQL queries that you have manually created, and these

methods make it possible for you to handle such exceptions.

As is always true when you execute SQL commands in a web application, you must take

precautions to protect your site against SQL injection attacks. One way to do that is to use

parameterized queries to make sure that strings submitted by a web page can't be interpreted as

SQL commands. In this tutorial you'll use parameterized queries when integrating user input into

a query.

Calling a Query that Returns Entities

The DbSet<TEntity> class provides a method that you can use to execute a query that returns an

entity of type TEntity. To see how this works you'll change the code in the Details method of

the Department controller.

In DepartmentController.cs, replace the db.Departments.Find method call with a

db.Departments.SqlQuery method call, as shown in the following highlighted code:

public async Task<ActionResult> Details(int? id)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 // Commenting out original code to show how to use a raw SQL query.

 //Department department = await db.Departments.FindAsync(id);

 // Create and execute raw SQL query.

 string query = "SELECT * FROM Department WHERE DepartmentID = @p0";

 Department department = await db.Departments.SqlQuery(query,

id).SingleOrDefaultAsync();

 if (department == null)

 {

 return HttpNotFound();

 }

 return View(department);

http://msdn.microsoft.com/en-us/library/system.data.entity.dbset.sqlquery.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbextensions.asnotracking.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.database.sqlquery.aspx
http://msdn.microsoft.com/en-us/library/gg679456.aspx
http://msdn.microsoft.com/en-us/library/gg696460.aspx

265

}

To verify that the new code works correctly, select the Departments tab and then Details for

one of the departments.

Calling a Query that Returns Other Types of Objects

Earlier you created a student statistics grid for the About page that showed the number of

students for each enrollment date. The code that does this in HomeController.cs uses LINQ:

var data = from student in db.Students

 group student by student.EnrollmentDate into dateGroup

 select new EnrollmentDateGroup()

 {

 EnrollmentDate = dateGroup.Key,

 StudentCount = dateGroup.Count()

 };

Suppose you want to write the code that retrieves this data directly in SQL rather than using

LINQ. To do that you need to run a query that returns something other than entity objects, which

means you need to use the Database.SqlQuery method.

http://msdn.microsoft.com/en-us/library/system.data.entity.database.sqlquery%28v=VS.103%29.aspx

266

In HomeController.cs, replace the LINQ statement in the About method with a SQL statement,

as shown in the following highlighted code:

public ActionResult About()

{

 // Commenting out LINQ to show how to do the same thing in SQL.

 //IQueryable<EnrollmentDateGroup> = from student in db.Students

 // group student by student.EnrollmentDate into dateGroup

 // select new EnrollmentDateGroup()

 // {

 // EnrollmentDate = dateGroup.Key,

 // StudentCount = dateGroup.Count()

 // };

 // SQL version of the above LINQ code.

 string query = "SELECT EnrollmentDate, COUNT(*) AS StudentCount "

 + "FROM Person "

 + "WHERE Discriminator = 'Student' "

 + "GROUP BY EnrollmentDate";

 IEnumerable<EnrollmentDateGroup> data =

db.Database.SqlQuery<EnrollmentDateGroup>(query);

 return View(data.ToList());

}

Run the About page. It displays the same data it did before.

267

Calling an Update Query

Suppose Contoso University administrators want to be able to perform bulk changes in the

database, such as changing the number of credits for every course. If the university has a large

number of courses, it would be inefficient to retrieve them all as entities and change them

individually. In this section you'll implement a web page that enables the user to specify a factor

by which to change the number of credits for all courses, and you'll make the change by

executing a SQL UPDATE statement. The web page will look like the following illustration:

268

In CourseContoller.cs, add UpdateCourseCredits methods for HttpGet and HttpPost:

public ActionResult UpdateCourseCredits()

{

 return View();

}

[HttpPost]

public ActionResult UpdateCourseCredits(int? multiplier)

{

 if (multiplier != null)

 {

 ViewBag.RowsAffected = db.Database.ExecuteSqlCommand("UPDATE Course

SET Credits = Credits * {0}", multiplier);

 }

 return View();

}

When the controller processes an HttpGet request, nothing is returned in the

ViewBag.RowsAffected variable, and the view displays an empty text box and a submit button,

as shown in the preceding illustration.

When the Update button is clicked, the HttpPost method is called, and multiplier has the

value entered in the text box. The code then executes the SQL that updates courses and returns

the number of affected rows to the view in the ViewBag.RowsAffected variable. When the view

gets a value in that variable, it displays the number of rows updated instead of the text box and

submit button, as shown in the following illustration:

269

In CourseController.cs, right-click one of the UpdateCourseCredits methods, and then click

Add.

270

In Views\Course\UpdateCourseCredits.cshtml, replace the template code with the following

code:

@model ContosoUniversity.Models.Course

@{

 ViewBag.Title = "UpdateCourseCredits";

}

<h2>Update Course Credits</h2>

@if (ViewBag.RowsAffected == null)

{

 using (Html.BeginForm())

 {

 <p>

 Enter a number to multiply every course's credits by:

@Html.TextBox("multiplier")

 </p>

271

 <p>

 <input type="submit" value="Update" />

 </p>

 }

}

@if (ViewBag.RowsAffected != null)

{

 <p>

 Number of rows updated: @ViewBag.RowsAffected

 </p>

}

<div>

 @Html.ActionLink("Back to List", "Index")

</div>

Run the UpdateCourseCredits method by selecting the Courses tab, then adding

"/UpdateCourseCredits" to the end of the URL in the browser's address bar (for example:

http://localhost:50205/Course/UpdateCourseCredits). Enter a number in the text box:

Click Update. You see the number of rows affected:

272

Click Back to List to see the list of courses with the revised number of credits.

273

For more information about raw SQL queries, see Raw SQL Queries on MSDN.

No-Tracking Queries

When a database context retrieves table rows and creates entity objects that represent them, by

default it keeps track of whether the entities in memory are in sync with what's in the database.

The data in memory acts as a cache and is used when you update an entity. This caching is often

unnecessary in a web application because context instances are typically short-lived (a new one

is created and disposed for each request) and the context that reads an entity is typically disposed

before that entity is used again.

You can disable tracking of entity objects in memory by using the AsNoTracking method.

Typical scenarios in which you might want to do that include the following:

http://msdn.microsoft.com/en-us/data/jj592907
http://msdn.microsoft.com/en-us/library/gg679352%28v=vs.103%29.aspx

274

 A query retrieves such a large volume of data that turning off tracking might noticeably

enhance performance.

 You want to attach an entity in order to update it, but you earlier retrieved the same entity

for a different purpose. Because the entity is already being tracked by the database

context, you can't attach the entity that you want to change. One way to handle this

situation is to use the AsNoTracking option with the earlier query.

In this section you'll implement business logic that illustrates the second of these scenarios.

Specifically, you'll enforce a business rule that says that an instructor can't be the administrator

of more than one department. (Depending on what you've done with the Departments page so

far, you might already have some departments that have the same administrator. In a production

application you would apply a new rule to existing data also, but for this tutorial that isn't

necessary.)

In DepartmentController.cs, add a new method that you can call from the Edit and Create

methods to make sure that no two departments have the same administrator:

private void ValidateOneAdministratorAssignmentPerInstructor(Department

department)

{

 if (department.InstructorID != null)

 {

 Department duplicateDepartment = db.Departments

 .Include("Administrator")

 .Where(d => d.InstructorID == department.InstructorID)

 .FirstOrDefault();

 if (duplicateDepartment != null && duplicateDepartment.DepartmentID

!= department.DepartmentID)

 {

 string errorMessage = String.Format(

 "Instructor {0} {1} is already administrator of the {2}

department.",

 duplicateDepartment.Administrator.FirstMidName,

 duplicateDepartment.Administrator.LastName,

 duplicateDepartment.Name);

 ModelState.AddModelError(string.Empty, errorMessage);

 }

 }

}

Add code in the try block of the HttpPost Edit method to call this new method if there are no

validation errors. The try block now looks like the following example:

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Edit(

 [Bind(Include = "DepartmentID, Name, Budget, StartDate, RowVersion,

PersonID")]

 Department department)

{

 try

 {

275

 if (ModelState.IsValid)

 {

 ValidateOneAdministratorAssignmentPerInstructor(department);

 }

 if (ModelState.IsValid)

 {

 db.Entry(department).State = EntityState.Modified;

 db.SaveChanges();

 return RedirectToAction("Index");

 }

 }

 catch (DbUpdateConcurrencyException ex)

 {

 var entry = ex.Entries.Single();

 var clientValues = (Department)entry.Entity;

Run the Department Edit page and try to change a department's administrator to an instructor

who is already the administrator of a different department. You get the expected error message:

276

Now run the Department Edit page again and this time change the Budget amount. When you

click Save, you see an error page that results from the code you added in

ValidateOneAdministratorAssignmentPerInstructor:

277

The exception error message is:

278

Attaching an entity of type 'ContosoUniversity.Models.Department' failed because another entity

of the same type already has the same primary key value. This can happen when using the

'Attach' method or setting the state of an entity to 'Unchanged' or 'Modified' if any entities in the

graph have conflicting key values. This may be because some entities are new and have not yet

received database-generated key values. In this case use the 'Add' method or the 'Added' entity

state to track the graph and then set the state of non-new entities to 'Unchanged' or 'Modified' as

appropriate.

This happened because of the following sequence of events:

 The Edit method calls the ValidateOneAdministratorAssignmentPerInstructor

method, which retrieves all departments that have Kim Abercrombie as their

administrator. That causes the English department to be read. As a result of this read

operation, the English department entity that was read from the database is now being

tracked by the database context.

 The Edit method tries to set the Modified flag on the English department entity created

by the MVC model binder, which implicitly causes the context to try to attach that entity.

But the context can't attach the entry created by the model binder because the context is

already tracking an entity for the English department.

One solution to this problem is to keep the context from tracking in-memory department entities

retrieved by the validation query. There's no disadvantage to doing this, because you won't be

updating this entity or reading it again in a way that would benefit from it being cached in

memory.

In DepartmentController.cs, in the ValidateOneAdministratorAssignmentPerInstructor

method, specify no tracking, as shown in the following:

Department duplicateDepartment = db.Departments

 .Include("Administrator")

 .Where(d => d.PersonID == department.PersonID)

 .AsNoTracking()

 .FirstOrDefault();

Repeat your attempt to edit the Budget amount of a department. This time the operation is

successful, and the site returns as expected to the Departments Index page, showing the revised

budget value.

Examining SQL sent to the database

Sometimes it's helpful to be able to see the actual SQL queries that are sent to the database. In an

earlier tutorial you saw how to do that in interceptor code; now you'll see some ways to do it

without writing interceptor code. To try this out, you'll look at a simple query and then look at

what happens to it as you add options such eager loading, filtering, and sorting.

In Controllers/CourseController, replace the Index method with the following code, in order to

temporarily stop eager loading:

279

public ActionResult Index()

{

 var courses = db.Courses;

 var sql = courses.ToString();

 return View(courses.ToList());

}

Now set a breakpoint on the return statement (F9 with the cursor on that line). Press F5 to run

the project in debug mode, and select the Course Index page. When the code reaches the

breakpoint, examine the query variable. You see the query that's sent to SQL Server. It's a

simple Select statement.

{SELECT

[Extent1].[CourseID] AS [CourseID],

[Extent1].[Title] AS [Title],

[Extent1].[Credits] AS [Credits],

[Extent1].[DepartmentID] AS [DepartmentID]

FROM [Course] AS [Extent1]}

Click the magnifying class to see the query in the Text Visualizer.

280

281

Now you'll add a drop-down list to the Courses Index page so that users can filter for a particular

department. You'll sort the courses by title, and you'll specify eager loading for the Department

navigation property.

In CourseController.cs, replace the Index method with the following code:

public ActionResult Index(int? SelectedDepartment)

{

 var departments = db.Departments.OrderBy(q => q.Name).ToList();

 ViewBag.SelectedDepartment = new SelectList(departments, "DepartmentID",

"Name", SelectedDepartment);

 int departmentID = SelectedDepartment.GetValueOrDefault();

 IQueryable<Course> courses = db.Courses

 .Where(c => !SelectedDepartment.HasValue || c.DepartmentID ==

departmentID)

 .OrderBy(d => d.CourseID)

 .Include(d => d.Department);

 var sql = courses.ToString();

 return View(courses.ToList());

}

Restore the breakpoint on the return statement.

The method receives the selected value of the drop-down list in the SelectedDepartment

parameter. If nothing is selected, this parameter will be null.

A SelectList collection containing all departments is passed to the view for the drop-down list.

The parameters passed to the SelectList constructor specify the value field name, the text field

name, and the selected item.

For the Get method of the Course repository, the code specifies a filter expression, a sort order,

and eager loading for the Department navigation property. The filter expression always returns

true if nothing is selected in the drop-down list (that is, SelectedDepartment is null).

In Views\Course\Index.cshtml, immediately before the opening table tag, add the following

code to create the drop-down list and a submit button:

@using (Html.BeginForm())

{

 <p>Select Department: @Html.DropDownList("SelectedDepartment","All")

 <input type="submit" value="Filter" /></p>

}

With the breakpoint still set, run the Course Index page. Continue through the first times that the

code hits a breakpoint, so that the page is displayed in the browser. Select a department from the

drop-down list and click Filter:

282

This time the first breakpoint will be for the departments query for the drop-down list. Skip that

and view the query variable the next time the code reaches the breakpoint in order to see what

the Course query now looks like. You'll see something like the following:

SELECT

 [Project1].[CourseID] AS [CourseID],

 [Project1].[Title] AS [Title],

 [Project1].[Credits] AS [Credits],

 [Project1].[DepartmentID] AS [DepartmentID],

 [Project1].[DepartmentID1] AS [DepartmentID1],

 [Project1].[Name] AS [Name],

283

 [Project1].[Budget] AS [Budget],

 [Project1].[StartDate] AS [StartDate],

 [Project1].[InstructorID] AS [InstructorID],

 [Project1].[RowVersion] AS [RowVersion]

 FROM (SELECT

 [Extent1].[CourseID] AS [CourseID],

 [Extent1].[Title] AS [Title],

 [Extent1].[Credits] AS [Credits],

 [Extent1].[DepartmentID] AS [DepartmentID],

 [Extent2].[DepartmentID] AS [DepartmentID1],

 [Extent2].[Name] AS [Name],

 [Extent2].[Budget] AS [Budget],

 [Extent2].[StartDate] AS [StartDate],

 [Extent2].[InstructorID] AS [InstructorID],

 [Extent2].[RowVersion] AS [RowVersion]

 FROM [dbo].[Course] AS [Extent1]

 INNER JOIN [dbo].[Department] AS [Extent2] ON

[Extent1].[DepartmentID] = [Extent2].[DepartmentID]

 WHERE @p__linq__0 IS NULL OR [Extent1].[DepartmentID] = @p__linq__1

) AS [Project1]

 ORDER BY [Project1].[CourseID] ASC

You can see that the query is now a JOIN query that loads Department data along with the

Course data, and that it includes a WHERE clause.

Remove the var sql = courses.ToString() line.

Repository and unit of work patterns

Many developers write code to implement the repository and unit of work patterns as a wrapper

around code that works with the Entity Framework. These patterns are intended to create an

abstraction layer between the data access layer and the business logic layer of an application.

Implementing these patterns can help insulate your application from changes in the data store

and can facilitate automated unit testing or test-driven development (TDD). However, writing

additional code to implement these patterns is not always the best choice for applications that use

EF, for several reasons:

 The EF context class itself insulates your code from data-store-specific code.

 The EF context class can act as a unit-of-work class for database updates that you do

using EF.

 Features introduced in Entity Framework 6 make it easier to implement TDD without

writing repository code.

For more information about how to implement the repository and unit of work patterns, see the

Entity Framework 5 version of this tutorial series. For information about ways to implement

TDD in Entity Framework 6, see the following resources:

 How EF6 Enables Mocking DbSets more easily

 Testing with a mocking framework

 Testing with your own test doubles

http://www.asp.net/mvc/tutorials/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
http://www.asp.net/mvc/tutorials/getting-started-with-ef-5-using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-application
http://thedatafarm.com/data-access/how-ef6-enables-mocking-dbsets-more-easily/
http://msdn.microsoft.com/en-us/data/dn314429
http://msdn.microsoft.com/en-us/data/dn314431

284

Proxy classes

When the Entity Framework creates entity instances (for example, when you execute a query), it

often creates them as instances of a dynamically generated derived type that acts as a proxy for

the entity. For example, see the following two debugger images. In the first image, you see that

the student variable is the expected Student type immediately after you instantiate the entity.

In the second image, after EF has been used to read a student entity from the database, you see

the proxy class.

285

This proxy class overrides some virtual properties of the entity to insert hooks for performing

actions automatically when the property is accessed. One function this mechanism is used for is

lazy loading.

Most of the time you don't need to be aware of this use of proxies, but there are exceptions:

 In some scenarios you might want to prevent the Entity Framework from creating proxy

instances. For example, when you're serializing entities you generally want the POCO

classes, not the proxy classes. One way to avoid serialization problems is to serialize data

transfer objects (DTOs) instead of entity objects, as shown in the Using Web API with

Entity Framework tutorial. Another way is to disable proxy creation.

 When you instantiate an entity class using the new operator, you don't get a proxy

instance. This means you don't get functionality such as lazy loading and automatic

change tracking. This is typically okay; you generally don't need lazy loading, because

you're creating a new entity that isn't in the database, and you generally don't need change

tracking if you're explicitly marking the entity as Added. However, if you do need lazy

loading and you need change tracking, you can create new entity instances with proxies

using the Create method of the DbSet class.

 You might want to get an actual entity type from a proxy type. You can use the

GetObjectType method of the ObjectContext class to get the actual entity type of a

proxy type instance.

For more information, see Working with Proxies on MSDN.

http://www.asp.net/web-api/overview/creating-web-apis/using-web-api-with-entity-framework/using-web-api-with-entity-framework,-part-6
http://www.asp.net/web-api/overview/creating-web-apis/using-web-api-with-entity-framework/using-web-api-with-entity-framework,-part-6
http://msdn.microsoft.com/en-US/data/jj592886.aspx
http://msdn.microsoft.com/en-us/library/gg679504.aspx
http://msdn.microsoft.com/en-us/library/system.data.objects.objectcontext.getobjecttype.aspx
http://msdn.microsoft.com/en-us/data/JJ592886.aspx

286

Automatic change detection

The Entity Framework determines how an entity has changed (and therefore which updates need

to be sent to the database) by comparing the current values of an entity with the original values.

The original values are stored when the entity is queried or attached. Some of the methods that

cause automatic change detection are the following:

 DbSet.Find
 DbSet.Local
 DbSet.Remove
 DbSet.Add
 DbSet.Attach
 DbContext.SaveChanges
 DbContext.GetValidationErrors
 DbContext.Entry
 DbChangeTracker.Entries

If you're tracking a large number of entities and you call one of these methods many times in a

loop, you might get significant performance improvements by temporarily turning off automatic

change detection using the AutoDetectChangesEnabled property. For more information, see

Automatically Detecting Changes on MSDN.

Automatic validation

When you call the SaveChanges method, by default the Entity Framework validates the data in

all properties of all changed entities before updating the database. If you've updated a large

number of entities and you've already validated the data, this work is unnecessary and you could

make the process of saving the changes take less time by temporarily turning off validation. You

can do that using the ValidateOnSaveEnabled property. For more information, see Validation on

MSDN.

Entity Framework Power Tools

Entity Framework Power Tools is a Visual Studio add-in that was used to create the data model

diagrams shown in these tutorials. The tools can also do other function such as generate entity

classes based on the tables in an existing database so that you can use the database with Code

First. After you install the tools, some additional options appear in context menus. For example,

when you right-click your context class in Solution Explorer, you get an option to generate a

diagram. When you're using Code First you can't change the data model in the diagram, but you

can move things around to make it easier to understand.

http://msdn.microsoft.com/en-us/library/system.data.entity.infrastructure.dbcontextconfiguration.autodetectchangesenabled.aspx
http://msdn.microsoft.com/en-us/data/jj556205
http://msdn.microsoft.com/en-us/library/system.data.entity.infrastructure.dbcontextconfiguration.validateonsaveenabled.aspx
http://msdn.microsoft.com/en-us/data/gg193959
http://visualstudiogallery.msdn.microsoft.com/72a60b14-1581-4b9b-89f2-846072eff19d

287

288

289

Entity Framework source code

The source code for Entity Framework 6 is available at http://entityframework.codeplex.com/.

Besides source code, you can get nightly builds, issue tracking, feature specs, design meeting

notes, and more. You can file bugs, and you can contribute your own enhancements to the EF

source code.

Although the source code is open, Entity Framework is fully supported as a Microsoft product.

The Microsoft Entity Framework team keeps control over which contributions are accepted and

tests all code changes to ensure the quality of each release.

Summary

This completes this series of tutorials on using the Entity Framework in an ASP.NET MVC

application. For more information about how to work with data using the Entity Framework, see

the EF documentation page on MSDN and ASP.NET Data Access - Recommended Resources.

For more information about how to deploy your web application after you've built it, see

ASP.NET Web Deployment - Recommended Resources in the MSDN Library.

For information about other topics related to MVC, such as authentication and authorization, see

the ASP.NET MVC - Recommended Resources.

Acknowledgments

 Tom Dykstra wrote the original version of this tutorial, co-authored the EF 5 update, and

wrote the EF 6 update. Tom is a senior programming writer on the Microsoft Web

Platform and Tools Content Team.

 Rick Anderson (twitter @RickAndMSFT) did most of the work updating the tutorial for

EF 5 and MVC 4 and co-authored the EF 6 update. Rick is a senior programming writer

for Microsoft focusing on Azure and MVC.

 Rowan Miller and other members of the Entity Framework team assisted with code

reviews and helped debug many issues with migrations that arose while we were

updating the tutorial for EF 5 and EF 6.

VB

When the tutorial was originally produced for EF 4.1, we provided both C# and VB versions of

the completed download project. Due to time limitations and other priorities we have not done

that for this version. If you build a VB project using these tutorials and would be willing to share

that with others, please let us know.

Common errors, and solutions or workarounds for them

http://entityframework.codeplex.com/
https://entityframework.codeplex.com/wikipage?title=Nightly%20Builds
http://entityframework.codeplex.com/workitem/list/basic
http://entityframework.codeplex.com/wikipage?title=specs
http://entityframework.codeplex.com/wikipage?title=Design%20Meeting%20Notes
http://entityframework.codeplex.com/wikipage?title=Design%20Meeting%20Notes
http://msdn.microsoft.com/en-us/data/ee712907
http://www.asp.net/whitepapers/aspnet-data-access-content-map
http://www.asp.net/whitepapers/aspnet-web-deployment-content-map
http://www.asp.net/mvc/overview/getting-started/aspnet-mvc-content-map
http://blogs.msdn.com/b/rickandy/
http://twitter.com/RickAndMSFT
http://www.romiller.com/

290

Cannot create/shadow copy

Error Message:

Cannot create/shadow copy '<filename>' when that file already exists.

Solution

 Wait a few seconds and refresh the page.

Update-Database not recognized

Error Message (from the Update-Database command in the PMC):

The term 'Update-Database' is not recognized as the name of a cmdlet, function, script file, or

operable program. Check the spelling of the name, or if a path was included, verify that the path

is correct and try again.

Solution

 Exit Visual Studio. Reopen project and try again.

Validation failed

Error Message (from the Update-Database command in the PMC):

Validation failed for one or more entities. See 'EntityValidationErrors' property for more details.

Solution

One cause of this problem is validation errors when the Seed method runs. See Seeding and

Debugging Entity Framework (EF) DBs for tips on debugging the Seed method.

HTTP 500.19 error

Error Message:

HTTP Error 500.19 - Internal Server Error

The requested page cannot be accessed because the related configuration data for the page is

invalid.

Solution

http://blogs.msdn.com/b/rickandy/archive/2013/02/12/seeding-and-debugging-entity-framework-ef-dbs.aspx
http://blogs.msdn.com/b/rickandy/archive/2013/02/12/seeding-and-debugging-entity-framework-ef-dbs.aspx

291

One way you can get this error is from having multiple copies of the solution, each of them using

the same port number. You can usually solve this problem by exiting all instances of Visual

Studio, then restarting the project you're working on. If that doesn't work, try changing the port

number. Right click on the project file and then click properties. Select the Web tab and then

change the port number in the Project Url text box.

Error locating SQL Server instance

Error Message:

A network-related or instance-specific error occurred while establishing a connection to SQL

Server. The server was not found or was not accessible. Verify that the instance name is correct

and that SQL Server is configured to allow remote connections. (provider: SQL Network

Interfaces, error: 26 - Error Locating Server/Instance Specified)

Solution

Check the connection string. If you have manually deleted the database, change the name of the

database in the construction string.

