

1

Getting Started with Entity

Framework 6 Code First using MVC 5
Tom Dykstra, Rick Anderson

Summary : The Contoso University sample web application demonstrates how to create

ASP.NET MVC 5 applications using the Entity Framework 6, Code First workflow. This

tutorial shows how to build the application using Visual Studio 2013.

Category: Step-by-Step, Guide

Applies to : Entity Framework 6, MVC 5, Visual Studio 2013

Source: ASP.NET (http://www.asp.net/mvc/tutorials/getting -started-with-ef-using-

mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application)

E-book publication date : April, 2014

For more titles, visit the E-Book Gallery for Microsoft

Technologies.

http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/creating-an-entity-framework-data-model-for-an-asp-net-mvc-application
http://social.technet.microsoft.com/wiki/contents/articles/11608.e-book-gallery-for-microsoft-technologies.aspx
http://social.technet.microsoft.com/wiki/contents/articles/11608.e-book-gallery-for-microsoft-technologies.aspx

2

Copyright © 2014 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means

without the written permission of the publisher.

Microsoft and the trademarks listed at

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN -US.aspx are trademarks of the

Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events

depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,

logo, person, place, or event is intended or should be inferred.

This book expresses the authorõs views and opinions. The information contained in this book is provided without any

express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors

will be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

3

Table of Contents

Contents
Creating an Entity Framework Data Model ... 9

Introduction .. 9

Software versions used in the tutorial ... 9

Tutorial versions ... 9

Questions and comments .. 9

The Contoso University Web Application .. 10

Prerequisites .. 11

Create an MVC Web Application ... 12

Set Up the Site Style .. 13

Install Entity Framework 6 .. 17

Create the Data Model .. 17

The Student Entity .. 18

The Enrollment Entity .. 19

The Course Entity ... 20

Create the Database Context ... 21

Specifying entity sets ... 22

Specifying the connection string .. 22

Specifying singular table names... 22

Set up EF to initialize the database with test data ... 23

Set up EF to use a SQL Server Express LocalDB database .. 26

Creating a Student Controller and Views ... 26

View the Database ... 31

Conventions ... 33

Summary .. 33

Implementing Basic CRUD Functionality with the Entity Framework in ASP.NET MVC Application 34

Create a Details Page .. 37

Route data .. 38

Update the Create Page .. 41

Update the Edit HttpPost Page .. 46

Entity States and the Attach and SaveChanges Methods .. 47

4

Updating the Delete Page ... 50

Ensuring that Database Connections Are Not Left Open ... 53

Handling Transactions ... 54

Summary .. 54

Sorting, Filtering, and Paging with the Entity Framework in an ASP.NET MVC Application 55

Add Column Sort Links to the Students Index Page ... 56

Add Sorting Functionality to the Index Method .. 56

Add Column Heading Hyperlinks to the Student Index View .. 58

Add a Search Box to the Students Index Page ... 60

Add Filtering Functionality to the Index Method .. 60

Add a Search Box to the Student Index View... 62

Add Paging to the Students Index Page .. 63

Install the PagedList.MVC NuGet Package ... 64

Add Paging Functionality to the Index Method ... 65

Add Paging Links to the Student Index View .. 67

Create an About Page That Shows Student Statistics ... 71

Create the View Model ... 71

Modify the Home Controller .. 72

Modify the About View... 73

Summary .. 74

Connection Resiliency and Command Interception with the Entity Framework in an ASP.NET MVC

Application.. 75

Enable connection resiliency .. 75

Enable Command Interception.. 77

Create a logging interface and class .. 77

Create interceptor classes ... 80

Test logging and connection resiliency .. 86

Summary .. 91

Code First Migrations and Deployment with the Entity Framework in an ASP.NET MVC Application ... 92

Enable Code First Migrations .. 92

Set up the Seed Method .. 96

Execute the First Migration ... 101

Deploy to Windows Azure .. 103

5

Using Code First Migrations to Deploy the Database .. 103

Get a Windows Azure account ... 103

Create a web site and a SQL database in Windows Azure ... 103

Deploy the application to Windows Azure.. 107

Advanced Migrations Scenarios .. 122

Code First Initializers ... 122

Summary .. 123

Creating a More Complex Data Model for an ASP.NET MVC Application .. 124

Customize the Data Model by Using Attributes ... 125

The DataType Attribute ... 126

The StringLengthAttribute .. 128

The Column Attribute .. 130

Complete Changes to the Student Entity .. 132

The Required Attribute .. 133

The Display Attribute ... 134

The FullName Calculated Property .. 134

Create the Instructor Entity .. 134

The Courses and OfficeAssignment Navigation Properties .. 135

Create the OfficeAssignment Entity .. 136

The Key Attribute ... 137

The ForeignKey Attribute .. 137

The Instructor Navigation Property ... 137

Modify the Course Entity ... 138

The DatabaseGenerated Attribute .. 139

Foreign Key and Navigation Properties .. 139

Create the Department Entity ... 139

The Column Attribute .. 140

Foreign Key and Navigation Properties .. 141

Modify the Enrollment Entity .. 141

Foreign Key and Navigation Properties .. 142

Many-to-Many Relationships ... 142

Entity Diagram Showing Relationships .. 145

Customize the Data Model by adding Code to the Database Context.. 147

6

Seed the Database with Test Data ... 148

Add a Migration and Update the Database .. 154

Summary .. 157

Reading Related Data with the Entity Framework in an ASP.NET MVC Application 158

Lazy, Eager, and Explicit Loading of Related Data .. 160

Performance considerations ... 161

Disable lazy loading before serialization ... 161

Create a Courses Page That Displays Department Name ... 162

Create an Instructors Page That Shows Courses and Enrollments ... 165

Create a View Model for the Instructor Index View ... 168

Create the Instructor Controller and Views ... 168

Modify the Instructor Index View ... 171

Adding Explicit Loading .. 178

Summary .. 179

Updating Related Data with the Entity Framework in an ASP.NET MVC Application 180

Customize the Create and Edit Pages for Courses .. 183

Adding an Edit Page for Instructors ... 191

Adding Course Assignments to the Instructor Edit Page .. 195

Update the DeleteConfirmed Method ... 205

Add office location and courses to the Create page ... 205

Handling Transactions ... 209

Summary .. 209

Async and Stored Procedures with the Entity Framework in an ASP.NET MVC Application 210

Why bother with asynchronous code .. 212

Create the Department controller ... 213

Use stored procedures for inserting, updating, and deleting .. 217

Deploy to Windows Azure .. 221

Summary .. 222

Handling Concurrency with the Entity Framework 6 in an ASP.NET MVC 5 Application (10 of 12) 223

Concurrency Conflicts .. 224

Pessimistic Concurrency (Locking) ... 225

Optimistic Concurrency ... 225

Detecting Concurrency Conflicts ... 228

7

Add an Optimistic Concurrency Property to the Department Entity... 229

Modify the Department Controller ... 230

Testing Optimistic Concurrency Handling ... 233

Updating the Delete Page ... 240

Summary .. 248

Implementing Inheritance with the Entity Framework 6 in an ASP.NET MVC 5 Application (11 of 12)249

Options for mapping inheritance to database tables ... 249

Create the Person class ... 251

Make Student and Instructor classes inherit from Person .. 252

Add the Person Entity Type to the Model .. 253

Create and Update a Migrations File .. 253

Testing .. 255

Deploy to Windows Azure .. 258

Summary .. 260

Advanced Entity Framework 6 Scenarios for an MVC 5 Web Application (12 of 12) 261

Performing Raw SQL Queries ... 263

Calling a Query that Returns Entities ... 264

Calling a Query that Returns Other Types of Objects .. 265

Calling an Update Query .. 267

No-Tracking Queries .. 273

Examining SQL sent to the database .. 278

Repository and unit of work patterns ... 283

Proxy classes .. 284

Automatic change detection ... 286

Automatic validation .. 286

Entity Framework Power Tools... 286

Entity Framework source code .. 289

Summary .. 289

Acknowledgments ... 289

VB ... 289

Common errors, and solutions or workarounds for them .. 289

Cannot create/shadow copy.. 290

Update-Database not recognized ... 290

8

Validation failed .. 290

HTTP 500.19 error .. 290

Error locating SQL Server instance .. 291

9

Creating an Entity Framework Data Model

Download Completed Project

Introduction

The Contoso University sample web application demonstrates how to create ASP.NET MVC 5

applications using the Entity Framework 6 and Visual Studio 2013. This tutorial uses the Code

First workflow. For information about how to choose between Code First, Database First, and

Model First, see Entity Framework Development Workflows.

The sample application is a web site for a fictional Contoso University. It includes functionality

such as student admission, course creation, and instructor assignments. This tutorial series

explains how to build the Contoso University sample application. You can download the

completed application.

Software versions used in the tutorial

¶ Visual Studio 2013

¶ .NET 4.5

¶ Entity Framework 6 (EntityFramework 6.1.0 NuGet package)

¶ Windows Azure SDK 2.2 (or later, for the optional Azure deployment steps)

The tutorial should also work with Visual Studio 2013 Express for Web or Visual Studio 2012.

The VS 2012 version of the Windows Azure SDK is required for Windows Azure deployment

with Visual Studio 2012.

Tutorial versions

For previous versions of this tutorial, see the EF 4.1 / MVC 3 e-book and Getting Started with

EF 5 using MVC 4.

Questions and comments

Please leave feedback on how you liked this tutorial and what we could improve in the

comments at the bottom of the pages in the version of this tutorial on the ASP.NET site. If you

have questions that are not directly related to the tutorial, you can post them to the ASP.NET

Entity Framework forum, the Entity Framework and LINQ to Entities forum, or

StackOverflow.com.

If you run into a problem you canôt resolve, you can generally find the solution to the problem by

comparing your code to the completed project that you can download. For some common errors

and how to solve them, see Common errors, and solutions or workarounds for them.

http://code.msdn.microsoft.com/ASPNET-MVC-Application-b01a9fe8
http://msdn.microsoft.com/en-us/library/ms178359.aspx#dbfmfcf
http://code.msdn.microsoft.com/ASPNET-MVC-Application-b01a9fe8
http://code.msdn.microsoft.com/ASPNET-MVC-Application-b01a9fe8
http://www.microsoft.com/visualstudio/eng/2013-downloads
http://go.microsoft.com/fwlink/p/?linkid=323510
http://www.microsoft.com/visualstudio/eng/2013-downloads#d-2013-express
http://go.microsoft.com/fwlink/p/?linkid=323511
http://social.technet.microsoft.com/wiki/contents/articles/11608.e-book-gallery-for-microsoft-technologies.aspx#GettingStartedwiththeEntityFramework4.1usingASP.NETMVC
http://www.asp.net/mvc/tutorials/getting-started-with-ef-5-using-mvc-4
http://www.asp.net/mvc/tutorials/getting-started-with-ef-5-using-mvc-4
http://forums.asp.net/1227.aspx
http://forums.asp.net/1227.aspx
http://social.msdn.microsoft.com/forums/en-US/adodotnetentityframework/threads/
http://stackoverflow.com/
http://www.asp.net/mvc/tutorials/getting-started-with-ef-using-mvc/advanced-entity-framework-scenarios-for-an-mvc-web-application#errors

10

The Contoso University Web Application

The application you'll be building in these tutorials is a simple university web site.

Users can view and update student, course, and instructor information. Here are a few of the

screens you'll create.

11

The UI style of this site has been kept close to what's generated by the built-in templates, so that

the tutorial can focus mainly on how to use the Entity Framework.

Prerequisites

See Software Versions at the top of the chapter. Entity Framework 6 is not a prerequisite

because you install the EF NuGet package is part of the tutorial.

12

Create an MVC Web Application

Open Visual Studio and create a new C# Web project named "ContosoUniversity".

In the New ASP.NET Project dialog box select the MVC template.

Click Change Authentication.

13

In the Change Authentication dialog box, select No Authentication, and then click OK . For

this tutorial you won't be requiring users to log on or restricting access based on who's logged on.

Back in the New ASP.NET Project dialog box, click OK to create the project.

Set Up the Site Style

14

A few simple changes will set up the site menu, layout, and home page.

Open Views\Shared_Layout.cshtml, and make the following changes:

¶ Change each occurrence of "My ASP.NET Application" and "Application name" to

"Contoso University".

¶ Add menu entries for Students, Courses, Instructors, and Departments.

The changes are highlighted.

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf - 8" />

 <meta name="viewport" content="width=device - width, initial - scale=1.0">

 <title>@ViewBag.Title - Contoso University </title>

 @Styles.Render("~/Content/css")

 @Scripts.Render("~/bundles/modernizr")

</head>

<body>

 <div class="navbar navbar - inverse navbar - fixed - top">

 <div class="navbar - inner">

 <div class="container">

 <button type="button" class="btn btn - navbar" data -

togg le="collapse" data - target=".nav - collapse">

 </button>

 @Html.ActionLink(" Contoso University ", "Index", "Home", null,

new { @class = "brand" })

 <div class="nav - collapse collapse">

 <ul class="nav">

 @Html.ActionLink("Home", "Index", "Home")

 @Html.ActionLink("About", "About", "Home")

 @Html.ActionLink("Students", "Index",

"Student")

 @Html.ActionLink("Courses", "Index",

"Course")

 @Html.ActionLink("Instructors", "Index",

"Instructor")

 @Html.ActionLink("Departments", "Index",

"Department")

 </div>

 </div>

 </div>

 </div>

 <div class="container">

 @RenderBody()

 <hr />

 <footer>

 <p>© @DateTime.Now.Year - Contoso University </p>

15

 </footer>

 </div>

 @Scripts.Render("~/bundles/jquery")

 @Scripts.Render("~/bundles/bootstrap")

 @RenderSection("scripts", required: false)

</body>

</html>

In Views\Home\Index.cshtml, replace the contents of the file with the following code to replace

the text about ASP.NET and MVC with text about this application:

@{

 ViewBag.Title = "Home Page";

}

<div class="jumbotron">

 <h1>Contoso University</h1>

</div>

<div class="row">

 <div class="col - md- 4">

 <h2>Welcome to Contoso University</h2>

 <p>Contoso University is a sample application that

 demonstrates how to use Entity Framework 6 in an

 ASP.NET MVC 5 web application.</p>

 </div>

 <div class="col - md- 4">

 <h2>Build it from scratch</h2>

 <p>You can build the application by following the steps in the

tutorial seri es on the ASP.NET site.</p>

 <p><a class="btn btn - default"

href="http://www.asp.net/mvc/tutorials/getting - started - with - ef - using -

mvc/">See the tutorial »</p>

 </div>

 <div class="col - md- 4">

 <h2>Download it</h2>

 <p>You can download the completed project from the Microsoft Code

Gallery.</p>

 <p><a class="btn btn - default"

href="http://code.msdn.microsoft.com/ASPNET - MVC- Application -

b01a9fe8">Download »</p>

 </div>

</div>

Press CTRL+F5 to run the site. You see the home page with the main menu.

16

17

Install Entity Framework 6

From the Tools menu click Library Package Manager and then click Package Manager

Console.

In the Package Manager Console window enter the following command:

Install - Package EntityFramew ork

The image shows 6.0.0 being installed, but NuGet will install the latest version of Entity

Framework (excluding pre-release versions), which as of the most recent update to the tutorial is

6.1.0.

This step is one of a few steps that this tutorial has you do manually, but which could have been

done automatically by the ASP.NET MVC scaffolding feature. You're doing them manually so

that you can see the steps required to use the Entity Framework. You'll use scaffolding later to

create the MVC controller and views. An alternative is to let scaffolding automatically install the

EF NuGet package, create the database context class, and create the connection string. When

you're ready to do it that way, all you have to do is skip those steps and scaffold your MVC

controller after you create your entity classes.

Create the Data Model

Next you'll create entity classes for the Contoso University application. You'll start with the

following three entities:

18

There's a one-to-many relationship between Student and Enrollment entities, and there's a one-

to-many relationship between Course and Enrollment entities. In other words, a student can be

enrolled in any number of courses, and a course can have any number of students enrolled in it.

In the following sections you'll create a class for each one of these entities.

Note If you try to compile the project before you finish creating all of these entity classes, you'll

get compiler errors.

The Student Entity

In the Models folder, create a class file named Student.cs and replace the template code with the

following code:

using System;

using System.Collections.Generic;

namespace ContosoUniversity.Models

{

 public class Student

 {

 public int ID { get; set; }

 public string LastName { get; set; }

19

 public string FirstMidName { get; set; }

 public DateTime EnrollmentDate { get; set; }

 public virtual ICollection<Enrollment> Enrollments { get; set; }

 }

}

The ID property will become the primary key column of the database table that corresponds to

this class. By default, the Entity Framework interprets a property that's named ID or classnameID

as the primary key.

The Enrollments property is a navigation property. Navigation properties hold other entities

that are related to this entity. In this case, the Enrollments property of a Student entity will

hold all of the Enrollment entities that are related to that Student entity. In other words, if a

given Student row in the database has two related Enrollment rows (rows that contain that

student's primary key value in their StudentID foreign key column), that Student entity's

Enrollments navigation property will contain those two Enrollment entities.

Navigation properties are typically defined as virtual so that they can take advantage of certain

Entity Framework functionality such as lazy loading. (Lazy loading will be explained later, in the

Reading Related Data tutorial later in this series.)

If a navigation property can hold multiple entities (as in many-to-many or one-to-many

relationships), its type must be a list in which entries can be added, deleted, and updated, such as

ICollection .

The Enrollment Entity

In the Models folder, create Enrollment.cs and replace the existing code with the following code:

namespace ContosoUniversity.Models

{

 public enum Grade

 {

 A, B, C, D, F

 }

20

 public class Enrollment

 {

 public int EnrollmentID { get; set; }

 public int CourseI D { get; set; }

 public int StudentID { get; set; }

 public Grade? Grade { get; set; }

 public virtual Course Course { get; set; }

 public virtual Student Student { get; set; }

 }

}

The EnrollmentID property will be the primary key; this entity uses the classnameID pattern

instead of ID by itself as you saw in the Student entity. Ordinarily you would choose one pattern

and use it throughout your data model. Here, the variation illustrates that you can use either

pattern. In a later tutorial, you'll you'll see how using ID without classname makes it easier to

implement inheritance in the data model.

The Grade property is an enum. The question mark after the Grade type declaration indicates

that the Grade property is nullable. A grade that's null is different from a zero grade ð null

means a grade isn't known or hasn't been assigned yet.

The StudentID property is a foreign key, and the corresponding navigation property is Student .

An Enrollment entity is associated with one Student entity, so the property can only hold a

single Student entity (unlike the Student.Enrollments navigation property you saw earlier,

which can hold multiple Enrollment entities).

The CourseID property is a foreign key, and the corresponding navigation property is Course .

An Enrollment entity is associated with one Course entity.

Entity Framework interprets a property as a foreign key property if it's named <navigation

property name><primary key property name> (for example, StudentID for the Student

navigation property since the Student entity's primary key is ID). Foreign key properties can

also be named the same simply <primary key property name> (for example, CourseID since the

Course entity's primary key is CourseID).

The Course Entity

http://msdn.microsoft.com/en-us/data/hh859576.aspx
http://msdn.microsoft.com/en-us/library/2cf62fcy.aspx

21

In the Models folder, create Course.cs, replacing the template code with the following code:

using System.Collections.Generic;

using System.ComponentModel.DataAnnotations.Schema;

namespace ContosoUniversity.Models

{

 public class Course

 {

 [DatabaseGenerated(DatabaseGeneratedOption.None)]

 public int CourseID { get; set; }

 public string Title { get; set; }

 public int Credits { get; set; }

 public virtual ICollection<Enrollment> Enrollments { get; set; }

 }

}

The Enrollments property is a navigation property. A Course entity can be related to any

number of Enrollment entities.

We'll say more about the DatabaseGenerated attribute in a later tutorial in this series. Basically,

this attribute lets you enter the primary key for the course rather than having the database

generate it.

Create the Database Context

The main class that coordinates Entity Framework functionality for a given data model is the

database context class. You create this class by deriving from the System.Data.Entity.DbContext

class. In your code you specify which entities are included in the data model. You can also

customize certain Entity Framework behavior. In this project, the class is named

SchoolContext .

To create a folder in the ContosoUniversity project, right-click the project in Solution Explorer

and click Add, and then click New Folder. Name the new folder DAL (for Data Access Layer).

In that folder create a new class file named SchoolContext.cs, and replace the template code with

the following code:

using ContosoUniversity.Models;

using System .Data.Entity;

using System.Data.Entity.ModelConfiguration.Conventions;

namespace ContosoUniversity.DAL

{

 public class SchoolContext : DbContext

 {

 public SchoolContext() : base("SchoolContext")

 {

 }

http://msdn.microsoft.com/en-us/library/system.componentmodel.dataannotations.schema.databasegeneratedattribute%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext%28v=VS.103%29.aspx

22

 publ ic DbSet<Student> Students { get; set; }

 public DbSet<Enrollment> Enrollments { get; set; }

 public DbSet<Course> Courses { get; set; }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)

 {

modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();

 }

 }

}

Specifying entity sets

This code creates a DbSet property for each entity set. In Entity Framework terminology, an

entity set typically corresponds to a database table, and an entity corresponds to a row in the

table.

You could have omitted the DbSet<Enrollment> and DbSet<Course> statements and it would

work the same. The Entity Framework would include them implicitly because the Student entity

references the Enrollment entity and the Enrollment entity references the Course entity.

Specifying the connection string

The name of the connection string (which you'll add to the Web.config file later) is passed in to

the constructor.

public SchoolContext() : base("SchoolContext")

{

}

You could also pass in the connection string itself instead of the name of one that is stored in the

Web.config file. For more information about options for specifying the database to use, see

Entity Framework - Connections and Models.

If you don't specify a connection string or the name of one explicitly, Entity Framework assumes

that the connection string name is the same as the class name. The default connection string

name in this example would then be SchoolContext , the same as what you're specifying

explicitly.

Specifying singular table names

The modelBuilder.Convent ions.Remove statement in the OnModelCreating method prevents

table names from being pluralized. If you didn't do this, the generated tables in the database

would be named Students , Courses , and Enrollments . Instead, the table names will be

Student , Course , and Enrollment . Developers disagree about whether table names should be

pluralized or not. This tutorial uses the singular form, but the important point is that you can

select whichever form you prefer by including or omitting this line of code.

http://msdn.microsoft.com/en-us/library/system.data.entity.dbset%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/data/jj592674
http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext.onmodelcreating%28v=vs.103%29.aspx

23

Set up EF to initialize the database with test data

The Entity Framework can automatically create (or drop and re-create) a database for you when

the application runs. You can specify that this should be done every time your application runs or

only when the model is out of sync with the existing database. You can also write a Seed method

that the Entity Framework automatically calls after creating the database in order to populate it

with test data.

The default behavior is to create a database only if it doesn't exist (and throw an exception if the

model has changed and the database already exists). In this section you'll specify that the

database should be dropped and re-created whenever the model changes. Dropping the database

causes the loss of all your data. This is generally OK during development, because the Seed

method will run when the database is re-created and will re-create your test data. But in

production you generally don't want to lose all your data every time you need to change the

database schema. Later you'll see how to handle model changes by using Code First Migrations

to change the database schema instead of dropping and re-creating the database.

In the DAL folder, create a new class file named SchoolInitializer.cs and replace the template

code with the

following code, which causes a database to be created when needed and loads test data into the

new database.

using System;

using System.Collections.Generic;

using System.Linq;

using S ystem.Web;

using System.Data.Entity;

using ContosoUniversity.Models;

namespace ContosoUniversity.DAL

{

 public class SchoolInitializer : System.Data.Entity.

DropCreateDatabaseIfModelChanges<SchoolContext>

 {

 protected override void Seed(Scho olContext context)

 {

 var students = new List<Student>

 {

 new

Student{FirstMidName="Carson",LastName="Alexander",EnrollmentDate=DateTime.Pa

rse("2005 - 09- 01")},

 new

Student{FirstMidName="Meredith",LastNam e="Alonso",EnrollmentDate=DateTime.Par

se("2002 - 09- 01")},

 new

Student{FirstMidName="Arturo",LastName="Anand",EnrollmentDate=DateTime.Parse(

"2003 - 09- 01")},

 new

Student{FirstMidName="Gytis",LastName="Barzdukas",EnrollmentDate=DateTime. Par

se("2002 - 09- 01")},

24

 new

Student{FirstMidName="Yan",LastName="Li",EnrollmentDate=DateTime.Parse("2002 -

09- 01")},

 new

Student{FirstMidName="Peggy",LastName="Justice",EnrollmentDate=DateTime.Parse

("2001 - 09- 01")},

 new

Student{FirstMidName="Laura",LastName="Norman",EnrollmentDate=DateTime.Parse(

"2003 - 09- 01")},

 new

Student{FirstMidName="Nino",LastName="Olivetto",EnrollmentDate=DateTime.Parse

("2005 - 09- 01")}

 };

 students.F orEach(s => context.Students.Add(s));

 context.SaveChanges();

 var courses = new List<Course>

 {

 new Course{CourseID=1050,Title="Chemistry",Credits=3,},

 new Course{CourseID=4022,Title="Microeconomics ",Credits=3,},

 new Course{CourseID=4041,Title="Macroeconomics",Credits=3,},

 new Course{CourseID=1045,Title="Calculus",Credits=4,},

 new Course{CourseID=3141,Title="Trigonometry",Credits=4,},

 new Course{CourseI D=2021,Title="Composition",Credits=3,},

 new Course{CourseID=2042,Title="Literature",Credits=4,}

 };

 courses.ForEach(s => context.Courses.Add(s));

 context.SaveChanges();

 var enrollments = new List<E nrollment>

 {

 new Enrollment{StudentID=1,CourseID=1050,Grade=Grade.A},

 new Enrollment{StudentID=1,CourseID=4022,Grade=Grade.C},

 new Enrollment{StudentID=1,CourseID=4041,Grade=Grade.B},

 new Enrollme nt{StudentID=2,CourseID=1045,Grade=Grade.B},

 new Enrollment{StudentID=2,CourseID=3141,Grade=Grade.F},

 new Enrollment{StudentID=2,CourseID=2021,Grade=Grade.F},

 new Enrollment{StudentID=3,CourseID=1050},

 new Enrollment{StudentID=4,CourseID=1050,},

 new Enrollment{StudentID=4,CourseID=4022,Grade=Grade.F},

 new Enrollment{StudentID=5,CourseID=4041,Grade=Grade.C},

 new Enrollment{StudentID=6,CourseID=1045},

 new Enrollment{StudentID=7,CourseID=3141,Grade=Grade.A},

 };

 enrollments.ForEach(s => context.Enrollments.Add(s));

 context.SaveChanges();

 }

 }

}

The Seed method takes the database context object as an input parameter, and the code in the

method uses

that object to add new entities to the database. For each entity type, the code creates a collection

of new

entities, adds them to the appropriate DbSet property, and then saves the changes to the database.

It isn't

25

necessary to call the SaveChanges method after each group of entities, as is done here, but doing

that helps

you locate the source of a problem if an exception occurs while the code is writing to the

database.

To tell Entity Framework to use your initializer class, add an element to the entityFramework

element in the application Web.config file (the one in the root project folder), as shown in the

following example:

<entityFramework>

 <contexts>

 <context type="ContosoUniversity.DAL.SchoolContext, ContosoUniversity">

 <databaseInitializer type="ContosoUniversity.DAL.SchoolInitializer,

ContosoUniversity" />

 </context>

 </contexts>

 <defaultConnectionFactory

type="System.Data.Entity.Infrastructure.LocalDbConnectionFactory,

EntityFramework">

 <parameters>

 <parameter value="v11.0" />

 </parameters>

 </defaultConnectionFactory>

 <providers>

 <provider invariantName="System.Data.SqlClient"

type="System.Data.Entity.SqlServer.SqlProviderServices,

EntityFramework.SqlServer" />

 </providers>

</entityFramework>

The context type specifies the fully qualified context class name and the assembly it's in, and

the databaseinitializer type specifies the fully qualified name of the initializer class and

the assembly it's in. (When you don't want EF to use the initializer, you can set an attribute on

the context element: disableDatabaseInitialization="true" .) For more information, see

Entity Framework - Config File Settings.

As an alternative to setting the initializer in the Web.config file is to do it in code by adding a

Database.SetInitializer statement to the Application_Start method in in the

Global.asax.cs file. For more information, see Understanding Database Initializers in Entity

Framework Code First.

The application is now set up so that when you access the database for the first time in a given

run of the

application, the Entity Framework compares the database to the model (your SchoolContext

and entity classes). If there's a difference, the application drops and re-creates the database.

Note: When you deploy an application to a production web server, you must remove or disable

code that drops and re-creates the database. You'll do that in a later tutorial in this series.

http://msdn.microsoft.com/en-us/data/jj556606
http://www.codeguru.com/csharp/article.php/c19999/Understanding-Database-Initializers-in-Entity-Framework-Code-First.htm
http://www.codeguru.com/csharp/article.php/c19999/Understanding-Database-Initializers-in-Entity-Framework-Code-First.htm

26

Set up EF to use a SQL Server Express LocalDB database

LocalDB is a lightweight version of the SQL Server Express Database Engine. It's easy to install

and configure, starts on demand, and runs in user mode. LocalDB runs in a special execution

mode of SQL Server Express that enables you to work with databases as .mdf files. You can put

LocalDB database files in the App_Data folder of a web project if you want to be able to copy

the database with the project. The user instance feature in SQL Server Express also enables you

to work with .mdf files, but the user instance feature is deprecated; therefore, LocalDB is

recommended for working with .mdf files. In Visual Studio 2012 and later versions, LocalDB is

installed by default with Visual Studio.

Typically SQL Server Express is not used for production web applications. LocalDB in

particular is not recommended for production use with a web application because it is not

designed to work with IIS.

In this tutorial you'll work with LocalDB. Open the application Web.config file and add a

connectionStrings element preceding the appSettings element, as shown in the following

example. (Make sure you update the Web.config file in the root project folder. There's also a

Web.config file is in the Views subfolder that you don't need to update.)

<connectionStrings>

 <add name="SchoolContext" connectionString="Data

Source=(LocalDb) \ v11.0;Initial Catalog=ContosoUniversity1;Integrated

Security=SSPI;" providerName="System.Data.SqlClien t"/>

</connectionStrings>

<appSettings>

 <add key="webpages:Version" value="3.0.0.0" />

 <add key="webpages:Enabled" value="false" />

 <add key="ClientValidationEnabled" value="true" />

 <add key="UnobtrusiveJavaScriptEnabled" value="true" />

</appSettings>

The connection string you've added specifies that Entity Framework will use a LocalDB database

named ContosoUniversity1.mdf. (The database doesn't exist yet; EF will create it.) If you wanted

the database to be created in your App_Data folder, you could add

AttachDBFilename=|DataDirectory| \ ContosoUniversity1.mdf to the connection string.

For more information about connection strings, see SQL Server Connection Strings for

ASP.NET Web Applications.

You don't actually have to have a connection string in the Web.config file. If you don't supply a

connection string, Entity Framework will use a default one based on your context class. For more

information, see Code First to a New Database.

Creating a Student Controller and Views

Now you'll create a web page to display data, and the process of requesting the data will

automatically trigger

http://blogs.msdn.com/b/sqlexpress/archive/2011/07/12/introducing-localdb-a-better-sql-express.aspx
http://msdn.microsoft.com/en-us/library/jj653752.aspx
http://msdn.microsoft.com/en-us/library/jj653752.aspx
http://msdn.microsoft.com/en-us/data/jj193542

27

the creation of the database. You'll begin by creating a new controller. But before you do that,

build the project to make the model and context classes available to MVC controller scaffolding.

1. Right-click the Controllers folder in Solution Explorer, select Add, and then click New

Scaffolded Item.

2. In the Add Scaffold dialog box, select MVC 5 Controller with views, using Entity

Framework.

3. In the Add Controller dialog box, make the following selections and then click Add:

o Controller name: StudentController.

o Model class: Student (ContosoUniversity.Models). (If you don't see this option

in the drop-down list, build the project and try again.)

o Data context class: SchoolContext (ContosoUniversity.DAL).

o Leave the default values for the other fields.

28

When you click Add, the scaffolder creates a StudentController.cs file and a set of views

(.cshtml files) that work with the controller. In the future when you create projects that

use Entity Framework you can also take advantage of some additional functionality of the

scaffolder: just create your first model class, don't create a connection string, and then in

the Add Controller box specify new context class. The scaffolder will create your

DbContext class and your connection string as well as the controller and views.

4. Visual Studio opens the Controllers\StudentController.cs file. You see a class variable

has been created that instantiates a database context object:

private SchoolContext db = new SchoolContext();

The Index action method gets a list of students from the Students entity set by reading

the Students property of the database context instance:

 public ViewResult Index()

{

 return View(db.Students.ToList());

}

The Student\Index.cshtml view displays this list in a table:

<table>

 <tr>

29

 <th>

 @Html.DisplayNameFor(model => model.LastName)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.FirstMidName)

 </th>

 <th>

 @Html.DisplayNameFor(model => model.EnrollmentDate)

 </th>

 <th>< /th>

 </tr>

@foreach (var item in Model) {

 <tr>

 <td>

 @Html.DisplayFor(modelItem => item.LastName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.FirstMidName)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.EnrollmentDate)

 </td>

 <td>

 @Html.ActionLink("Edit", "Edit", new { id=item.ID }) |

 @Html.ActionLink("Details", "Details", new { id=item.ID })

|

 @Html.ActionLink("Delete", "D elete", new { id=item.ID })

 </td>

 </tr>

}

5. Press CTRL+F5 to run the project. (If you get a "Cannot create Shadow Copy" error,

close the browser and try again.)

Click the Students tab to see the test data that the Seed method inserted. Depending on

how narrow your browser window is, you'll see the Student tab link in the top address bar

or you'll have to click the upper right corner to see the link.

30

31

View the Database

When you ran the Students page and the application tried to access the database, EF saw that

there was no database and so it created one, then it ran the seed method to populate the database

with data.

You can use either Server Explorer or SQL Server Object Explorer (SSOX) to view the

database in Visual Studio. For this tutorial you'll use Server Explorer. (In Visual Studio Express

editions earlier than 2013, Server Explorer is called Database Explorer.)

1. Close the browser.

32

2. In Server Explorer, expand Data Connections, expand School Context

(ContosoUniversity), and then expand Tables to see the tables in your new database.

3. Right-click the Student table and click Show Table Data to see the columns that were

created and the rows that were inserted into the table.

33

4. Close the Server Explorer connection.

The ContosoUniversity1.mdf and .ldf database files are in the C: \ Users \ <yourusername>

folder.

Because you're using the DropCreateDatabaseIfModelChanges initializer, you could now

make a change to the Student class, run the application again, and the database would

automatically be re-created to match your change. For example, if you add an EmailAddress

property to the Student class, run the Students page again, and then look at the table again, you

will see a new EmailAddress column.

Conventions

The amount of code you had to write in order for the Entity Framework to be able to create a

complete database for you is minimal because of the use of conventions, or assumptions that the

Entity Framework makes. Some of them have already been noted or were used without your

being aware of them:

¶ The pluralized forms of entity class names are used as table names.

¶ Entity property names are used for column names.

¶ Entity properties that are named ID or classnameID are recognized as primary key

properties.

¶ A property is interpreted as a foreign key property if it's named <navigation property

name><primary key property name> (for example, StudentID for the Student

navigation property since the Student entity's primary key is ID). Foreign key properties

can also be named the same simply <primary key property name> (for example,

EnrollmentID since the Enrollment entity's primary key is EnrollmentID).

You've seen that conventions can be overridden. For example, you specified that table names

shouldn't be pluralized, and you'll see later how to explicitly mark a property as a foreign key

property. You'll learn more about conventions and how to override them in the Creating a More

Complex Data Model tutorial later in this series. For more information about conventions, see

Code First Conventions.

Summary

You've now created a simple application that uses the Entity Framework and SQL Server

Express LocalDB to store and display data. In the following tutorial you'll learn how to perform

basic CRUD (create, read, update, delete) operations.

.

http://msdn.microsoft.com/en-us/data/jj679962

34

Implementing Basic CRUD Functionality

with the Entity Framework in ASP.NET

MVC Application

In the previous tutorial you created an MVC application that stores and displays data using the

Entity Framework and SQL Server LocalDB. In this tutorial you'll review and customize the

CRUD (create, read, update, delete) code that the MVC scaffolding automatically creates for you

in controllers and views.

Note It's a common practice to implement the repository pattern in order to create an abstraction

layer between your controller and the data access layer. To keep these tutorials simple and

focused on teaching how to use the Entity Framework itself, they don't use repositories. For

information about how to implement repositories, see the ASP.NET Data Access Content Map.

In this tutorial, you'll create the following web pages:

http://www.asp.net/whitepapers/aspnet-data-access-content-map

35

36

37

Create a Details Page

The scaffolded code for the Students Index page left out the Enrollments property, because

that property holds a collection. In the Details page you'll display the contents of the collection

in an HTML table.

38

In Controllers\StudentController.cs, the action method for the Details view uses the Find

method to retrieve a single Student entity.
public ActionResult Details(int? id)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 Student student = db.Students.Find(id);

 if (student == null)

 {

 return HttpNotFound();

 }

 return View(student);

}

The key value is passed to the method as the id parameter and comes from route data in the

Details hyperlink on the Index page.

Route data

Route data is data that the model binder found in a URL segment specified in the routing table.

For example, the default route specifies controller , action , and id segments:

 routes.MapRoute(

 name: "Default",

 url: "{controller}/{action}/{id}",

 defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional }

);

In the following URL, the default route maps I nstructor as the controller , Index as the

action and 1 as the id ; these are route data values.

http://localhost:1230/Instructor/Index/1?courseID=2021

"?courseID=2021" is a query string value. The model binder will also work if you pass the id as

a query string value:

http://localhost:1230/Instructor/Index?id=1&CourseID=2021

The URLs are created by ActionLink statements in the Razor view. In the following code, the

id parameter matches the default route, so id is added to the route data.

 @Html.ActionLink("Select", "Index", new { id = item.PersonID })

In the following code, courseID doesn't match a parameter in the default route, so it's added as a

query string.

@Html.ActionLink("Select", "Index", new { courseID = item.CourseID })

http://msdn.microsoft.com/en-us/library/gg696418%28v=VS.103%29.aspx

39

1. Open Views\Student\Details.cshtml. Each field is displayed using a DisplayFor helper,

as shown in the following example:

<dt>

 @Html.DisplayNameFor(model => model.LastName)

</dt>

<dd>

 @Html.DisplayFor(model => model.LastName)

</dd>

2. After the EnrollmentDate field and immediately before the closing </dl> tag, add the

highlighted code to display a list of enrollments, as shown in the following example:

 <dt>

 @Html.DisplayNameFor(model => model.EnrollmentDate)

 </dt>

 <dd>

 @Html.DisplayFor(model => model.EnrollmentDate)

 </dd>

 <dt>

 @Html.DisplayNameFor(model => model.Enrollments)

 </dt>

 <dd>

 <table class="table">

 <tr>

 <th>Course Title</th>

 <th>Grade</th>

 </tr>

 @foreach (var item in Model.Enrollments)

 {

 <tr>

 <td>

 @Html.DisplayFor(modelItem =>

item.Course.Title)

 </td>

 <td>

 @Html.DisplayFor(modelItem => item.Grade)

 </td>

 </tr>

 }

 </table>

 </dd >

 </dl>

</div>

<p>

 @Html.ActionLink("Edit", "Edit", new { id = Model.ID }) |

 @Html.ActionLink("Back to List", "Index")

</p>

If code indentation is wrong after you paste the code, press CTRL-K-D to correct it.

This code loops through the entities in the Enrollments navigation property. For each

Enrollment entity in the property, it displays the course title and the grade. The course

40

title is retrieved from the Course entity that's stored in the Course navigation property of

the Enrollments entity. All of this data is retrieved from the database automatically

when it's needed. (In other words, you are using lazy loading here. You did not specify

eager loading for the Courses navigation property, so the enrollments were not retrieved

in the same query that got the students. Instead, the first time you try to access the

Enrollments navigation property, a new query is sent to the database to retrieve the data.

You can read more about lazy loading and eager loading in the Reading Related Data

tutorial later in this series.)

3. Run the page by selecting the Students tab and clicking a Details link for Alexander

Carson. (If you press CTRL+F5 while the Details.cshtml file is open, you'll get an HTTP

400 error because Visual Studio tries to run the Details page but it wasn't reached from a

link that specifies the student to display. In that case, just remove "Student/Details" from

the URL and try again, or close the browser, right-click the project, and click View, and

then click View in Browser.)

You see the list of courses and grades for the selected student:

41

Update the Create Page

1. In Controllers\StudentController.cs, replace the HttpPost Create action method with

the following code to add a try - catch block and remove ID from the Bind attribute for

the scaffolded method:

[HttpPost]

http://msdn.microsoft.com/en-us/library/system.web.mvc.bindattribute%28v=vs.108%29.aspx

42

[ValidateAntiForgeryToken]

public ActionResult Create([Bind(Include = "LastName, FirstMidName,

EnrollmentDate")]Student student)

{

 try

 {

 if (ModelState.IsValid)

 {

 db.Students.Add(student);

 db.SaveChanges();

 return RedirectToAction("Index");

 }

 }

 catch (DataException /* dex */)

 {

 //Log the error (uncomment dex variable name and add a line

here to write a log.

 ModelState.AddModelError("", "Unable to save changes. Try

again, and if the problem persists see your system administrator.");

 }

 return View(student);

}

This code adds the Student entity created by the ASP.NET MVC model binder to the

Students entity set and then saves the changes to the database. (Model binder refers to

the ASP.NET MVC functionality that makes it easier for you to work with data submitted

by a form; a model binder converts posted form values to CLR types and passes them to

the action method in parameters. In this case, the model binder instantiates a Student

entity for you using property values from the Form collection.)

You removed ID from the Bind attribute because ID is the primary key value which SQL

Server will set automatically when the row is inserted. Input from the user does not set

the ID value.

Security Note: The ValidateAntiForgeryToken attribute helps prevent cross-

site request forgery attacks. It requires a corresponding

Html.AntiForgeryToken() statement in the view, which you'll see later.

The Bind attribute protects against over-posting. For example, suppose the

Student entity includes a Secret property that you don't want this web page to

update.

 public class Student

 {

 public int ID { get; set; }

 public string LastName { get; set; }

 public string FirstMidName { get; set; }

 public DateTime EnrollmentDate { get; set; }

 public string Secret { get; set; }

 public virtual ICollection<Enrollment> Enrollments { get;

set; }

http://www.asp.net/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
http://www.asp.net/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages

43

 }

Even if you don't have a Secret field on the web page, a hacker could use a tool

such as fiddler, or write some JavaScript, to post a Secret form value. Without

the Bind attribute limiting the fields that the model binder uses when it creates a

Student instance, the model binder would pick up that Secret form value and

use it to update the Student entity instance. Then whatever value the hacker

specified for the Secret form field would be updated in your database. The

following image shows the fiddler tool adding the Secret field (with the value

"OverPost") to the posted form values.

The value "OverPost" would then be successfully added to the Secret property of

the inserted row, although you never intended that the web page be able to update

that property.

It's a security best practice to use the Include parameter with the Bind attribute

to whitelist fields. It's also possible to use the Exclude parameter to blacklist

fields you want to exclude. The reason Include is more secure is that when you

add a new property to the entity, the new field is not automatically protected by an

Exclude list.

Another alternative approach, and one preferred by many, is to use only view

models with model binding. The view model contains only the properties you

want to bind. Once the MVC model binder has finished, you copy the view model

properties to the entity instance.

http://fiddler2.com/home
http://msdn.microsoft.com/en-us/library/system.web.mvc.bindattribute%28v=vs.108%29.aspx

44

Other than the Bind attribute, the try - catch block is the only change you've made to the

scaffolded code. If an exception that derives from DataException is caught while the

changes are being saved, a generic error message is displayed. DataException exceptions

are sometimes caused by something external to the application rather than a programming

error, so the user is advised to try again. Although not implemented in this sample, a

production quality application would log the exception. For more information, see the

Log for insight section in Monitoring and Telemetry (Building Real-World Cloud Apps

with Windows Azure).

The code in Views\Student\Create.cshtml is similar to what you saw in Details.cshtml,

except that EditorFor and ValidationMessageFor helpers are used for each field

instead of DisplayFor . Here is the relevant code:

<div class="form - group">

 @Html.LabelFor(model = > model.LastName, new { @class = "control -

label col - md- 2" })

 <div class="col - md- 10">

 @Html.EditorFor(model => model.LastName)

 @Html.ValidationMessageFor(model => model.LastName)

 </div>

</div>

Create.chstml also includes @Html.AntiFo rgeryToken() , which works with the

ValidateAntiForgeryToken attribute in the controller to help prevent cross-site request

forgery attacks.

No changes are required in Create.cshtml.

2. Run the page by selecting the Students tab and clicking Create New.

3. Enter names and an invalid date and click Create to see the error message.

http://msdn.microsoft.com/en-us/library/system.data.dataexception.aspx
http://msdn.microsoft.com/en-us/library/system.data.dataexception.aspx
http://www.asp.net/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/monitoring-and-telemetry#log
http://www.asp.net/aspnet/overview/developing-apps-with-windows-azure/building-real-world-cloud-apps-with-windows-azure/monitoring-and-telemetry#log
http://www.asp.net/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages
http://www.asp.net/mvc/overview/security/xsrfcsrf-prevention-in-aspnet-mvc-and-web-pages

45

This is server-side validation that you get by default; in a later tutorial you'll see how to

add attributes that will generate code for client-side validation also. The following

highlighted code shows the model validation check in the Create method.

if (ModelState.IsValid)

{

 db.Students.Add(student);

 db.SaveChanges();

 return RedirectToAction("Index");

}

4. Change the date to a valid value and click Create to see the new student appear in the

Index page.

46

Update the Edit HttpPost Page

In Controllers\StudentController.cs, the HttpGet Edit method (the one without the HttpPost

attribute) uses the Find method to retrieve the selected Student entity, as you saw in the

Details method. You don't need to change this method.

47

However, replace the HttpPost Edit action method with the following code to add a try - catch

block:

[H ttpPost]

[ValidateAntiForgeryToken]

public ActionResult Edit([Bind(Include = "ID, LastName, FirstMidName,

EnrollmentDate")]Student student)

{

 try

 {

 if (ModelState.IsValid)

 {

 db.Entry(student).State = EntityState.Modified;

 db.SaveChanges();

 return RedirectToAction("Index");

 }

 }

 catch (DataException /* dex */)

 {

 //Log the error (uncomment dex variable name and add a line here to

write a log.

 ModelState.AddModelError("", "Unable to save changes. Try again, and if

the problem persists see your system administrator.");

 }

 return View(student);

}

This code is similar to what you saw in the HttpPost Create method. However, instead of

adding the entity created by the model binder to the entity set, this code sets a flag on the entity

indicating it has been changed. When the SaveChanges method is called, the Modified flag

causes the Entity Framework to create SQL statements to update the database row. All columns

of the database row will be updated, including those that the user didn't change, and concurrency

conflicts are ignored.

Entity States and the Attach and SaveChanges Methods

The database context keeps track of whether entities in memory are in sync with their

corresponding rows in the database, and this information determines what happens when you call

the SaveChanges method. For example, when you pass a new entity to the Add method, that

entity's state is set to Added . Then when you call the SaveChanges method, the database context

issues a SQL INSERT command.

An entity may be in one of the following states:

¶ Added . The entity does not yet exist in the database. The SaveChanges method must issue

an INSERT statement.

¶ Unchanged . Nothing needs to be done with this entity by the SaveChanges method.

When you read an entity from the database, the entity starts out with this status.

¶ Modified . Some or all of the entity's property values have been modified. The

SaveChanges method must issue an UPDATE statement.

http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext.savechanges%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entitystate.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbset.add%28v=vs.103%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext.savechanges%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entitystate.aspx

48

¶ Deleted . The entity has been marked for deletion. The SaveChanges method must issue

a DELETE statement.

¶ Detached . The entity isn't being tracked by the database context.

In a desktop application, state changes are typically set automatically. In a desktop type of

application, you read an entity and make changes to some of its property values. This causes its

entity state to automatically be changed to Modified . Then when you call SaveChanges , the

Entity Framework generates a SQL UPDATE statement that updates only the actual properties that

you changed.

The disconnected nature of web apps doesn't allow for this continuous sequence. The DbContext

that reads an entity is disposed after a page is rendered. When the HttpPost Edit action method

is called, a new request is made and you have a new instance of the DbContext, so you have to

manually set the entity state to Modified. Then when you call SaveChanges , the Entity

Framework updates all columns of the database row, because the context has no way to know

which properties you changed.

If you want the SQL Update statement to update only the fields that the user actually changed,

you can save the original values in some way (such as hidden fields) so that they are available

when the HttpPost Edit method is called. Then you can create a Student entity using the

original values, call the Attach method with that original version of the entity, update the entity's

values to the new values, and then call SaveChanges. For more information, see Entity states

and SaveChanges and Local Data in the MSDN Data Developer Center.

The HTML and Razor code in Views\Student\Edit.cshtml is similar to what you saw in

Create.cshtml, and no changes are required.

Run the page by selecting the Students tab and then clicking an Edit hyperlink.

http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext%28v=VS.103%29.aspx
http://msdn.microsoft.com/en-us/data/jj592676
http://msdn.microsoft.com/en-us/data/jj592676
http://msdn.microsoft.com/en-us/data/jj592872

49

Change some of the data and click Save. You see the changed data in the Index page.

50

Updating the Delete Page

In Controllers\StudentController.cs, the template code for the HttpGet Delete method uses the

Find method to retrieve the selected Student entity, as you saw in the Details and Edit

methods. However, to implement a custom error message when the call to SaveChanges fails,

you'll add some functionality to this method and its corresponding view.

51

As you saw for update and create operations, delete operations require two action methods. The

method that is called in response to a GET request displays a view that gives the user a chance to

approve or cancel the delete operation. If the user approves it, a POST request is created. When

that happens, the HttpPost Delete method is called and then that method actually performs the

delete operation.

You'll add a try - catch block to the HttpPost Delete method to handle any errors that might

occur when the database is updated. If an error occurs, the HttpPost Delete method calls the

HttpGet Delete method, passing it a parameter that indicates that an error has occurred. The

HttpGet Delete method then redisplays the confirmation page along with the error message,

giving the user an opportunity to cancel or try again.

1. Replace the HttpGet Delete action method with the following code, which manages

error reporting:

public ActionResult Delete(int? id, bool? saveChangesError=false)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 if (saveChangesError.GetValueOrDefault())

 {

 ViewBag.ErrorMessage = "Delete failed. Try again, and if the

problem persists see your system administrator.";

 }

 Student student = db.Students.Find(id);

 if (student == null)

 {

 return HttpNotFound();

 }

 return View(student);

}

This code accepts an optional parameter that indicates whether the method was called

after a failure to save changes. This parameter is false when the HttpGet Delete

method is called without a previous failure. When it is called by the HttpPost Delete

method in response to a database update error, the parameter is true and an error

message is passed to the view.

2. Replace the Http Post Delete action method (named DeleteConfirmed) with the

following code, which performs the actual delete operation and catches any database

update errors.

[HttpPost]

[ValidateAntiForgeryToken]

public ActionResult Delete(int id)

{

 try

 {

 Student student = db.Students.Find(id);

http://msdn.microsoft.com/en-us/library/dd264739.aspx

52

 db.Students.Remove(student);

 db.SaveChanges();

 }

 catch (DataException/* dex */)

 {

 //Log the error (uncomment dex variable name and add a line

here to write a log.

 r eturn RedirectToAction("Delete", new { id = id,

saveChangesError = true });

 }

 return RedirectToAction("Index");

}

This code retrieves the selected entity, then calls the Remove method to set the entity's

status to Deleted . When SaveChanges is called, a SQL DELETE command is

generated. You have also changed the action method name from DeleteConfirmed to

Delete . The scaffolded code named the Http Post Delete method DeleteConfirmed to

give the HttpPost method a unique signature. (The CLR requires overloaded methods

to have different method parameters.) Now that the signatures are unique, you can stick

with the MVC convention and use the same name for the HttpPost and HttpGet delete

methods.

If improving performance in a high-volume application is a priority, you could avoid an

unnecessary SQL query to retrieve the row by replacing the lines of code that call the

Find and Remove methods with the following code:

Student studentToDelete = new Student() { ID = id };

db.Entry(studentToDelete).State = EntityState.Deleted;

This code instantiates a Student entity using only the primary key value and then sets the

entity state to Deleted . That's all that the Entity Framework needs in order to delete the

entity.

As noted, the HttpGet Delete method doesn't delete the data. Performing a delete

operation in response to a GET request (or for that matter, performing any edit operation,

create operation, or any other operation that changes data) creates a security risk. For

more information, see ASP.NET MVC Tip #46 ð Don't use Delete Links because they

create Security Holes on Stephen Walther's blog.

3. In Views\Student\Delete.cshtml, add an error message between the h2 heading and the h3

heading, as shown in the following example:

<h2>Delete</h2>

<p class="error">@ViewBa g.ErrorMessage</p>

<h3>Are you sure you want to delete this?</h3>

Run the page by selecting the Students tab and clicking a Delete hyperlink:

http://msdn.microsoft.com/en-us/library/system.data.entity.dbset.remove%28v=vs.103%29.aspx
http://stephenwalther.com/blog/archive/2009/01/21/asp.net-mvc-tip-46-ndash-donrsquot-use-delete-links-because.aspx
http://stephenwalther.com/blog/archive/2009/01/21/asp.net-mvc-tip-46-ndash-donrsquot-use-delete-links-because.aspx

53

4. Click Delete. The Index page is displayed without the deleted student. (You'll see an

example of the error handling code in action in the concurrency tutorial.)

Ensuring that Database Connections Are Not Left Open

To make sure that database connections are properly closed and the resources they hold freed up,

you have to dispose the context instance when you are done with it. That is why the scaffolded

54

code provides a Dispose method at the end of the StudentController class in

StudentController.cs, as shown in the following example:

protected override void Dispose(bool disposing)

{

 db.Dispose();

 base.Dispose(disposing);

}

The base Controller class already implements the IDisposable interface, so this code simply

adds an override to the Dispose(bool) method to explicitly dispose the context instance.

Handling Transactions

By default the Entity Framework implicitly implements transactions. In scenarios where you

make changes to multiple rows or tables and then call SaveChanges , the Entity Framework

automatically makes sure that either all of your changes succeed or all fail. If some changes are

done first and then an error happens, those changes are automatically rolled back. For scenarios

where you need more control -- for example, if you want to include operations done outside of

Entity Framework in a transaction -- see Working with Transactions on MSDN.

Summary

You now have a complete set of pages that perform simple CRUD operations for Student

entities. You used MVC helpers to generate UI elements for data fields. For more information

about MVC helpers, see Rendering a Form Using HTML Helpers (the page is for MVC 3 but is

still relevant for MVC 5).

In the next tutorial you'll expand the functionality of the Index page by adding sorting and

paging.

http://msdn.microsoft.com/en-us/library/system.idisposable.dispose%28v=vs.110%29.aspx
http://msdn.microsoft.com/en-US/data/dn456843
http://msdn.microsoft.com/en-us/library/dd410596%28v=VS.98%29.aspx

55

Sorting, Filtering, and Paging with the Entity

Framework in an ASP.NET MVC

Application

In the previous tutorial you implemented a set of web pages for basic CRUD operations for

Student entities. In this tutorial you'll add sorting, filtering, and paging functionality to the

Students Index page. You'll also create a page that does simple grouping.

The following illustration shows what the page will look like when you're done. The column

headings are links that the user can click to sort by that column. Clicking a column heading

repeatedly toggles between ascending and descending sort order.

56

Add Column Sort Links to the Students Index Page

To add sorting to the Student Index page, you'll change the Index method of the Student

controller and add code to the Student Index view.

Add Sorting Functionality to the Index Method

In Controllers\StudentController.cs, replace the Index method with the following code:

public ActionResult Index(string sortOrder)

{

57

 ViewBag.NameSortParm = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";

 ViewBag.DateSortParm = sortOrder == "Date" ? "date_desc" : "Date";

 var students = from s in db.Students

 select s;

 switch (sortOrder)

 {

 case "name_desc":

 students = students.OrderByDescending(s => s.LastName);

 break;

 case "Date":

 students = students.OrderBy(s => s.EnrollmentDate);

 break;

 case "date_desc":

 students = students.O rderByDescending(s => s.EnrollmentDate);

 break;

 default:

 students = students.OrderBy(s => s.LastName);

 break;

 }

 return View(students.ToList());

}

This code receives a sortOrder parameter from the query string in the URL. The query string

value is provided by ASP.NET MVC as a parameter to the action method. The parameter will be

a string that's either "Name" or "Date", optionally followed by an underscore and the string

"desc" to specify descending order. The default sort order is ascending.

The first time the Index page is requested, there's no query string. The students are displayed in

ascending order by LastName , which is the default as established by the fall-through case in the

switch statement. When the user clicks a column heading hyperlink, the appropriate sortOrder

value is provided in the query string.

The two ViewBag variables are used so that the view can configure the column heading

hyperlinks with the appropriate query string values:

ViewBag.NameSortParm = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";

ViewBag.DateSortParm = sortOrder == "Date" ? "date_desc" : "Date";

These are ternary statements. The first one specifies that if the sortOrder parameter is null or

empty, ViewBag.NameSortParm should be set to "name_desc"; otherwise, it should be set to an

empty string. These two statements enable the view to set the column heading hyperlinks as

follows:

Current sort order Last Name Hyperlink Date Hyperlink

Last Name ascending descending ascending

Last Name descending ascending ascending

Date ascending ascending descending

Date descending ascending ascending

58

The method uses LINQ to Entities to specify the column to sort by. The code creates an

IQueryable variable before the switch statement, modifies it in the switch statement, and calls

the ToList method after the switch statement. When you create and modify IQueryable

variables, no query is sent to the database. The query is not executed until you convert the

IQueryable object into a collection by calling a method such as ToList . Therefore, this code

results in a single query that is not executed until the return View statement.

As an alternative to writing different LINQ statements for each sort order, you can dynamically

create a LINQ statement. For information about dynamic LINQ, see Dynamic LINQ.

Add Column Heading Hyperlinks to the Student Index View

In Views\Student\Index.cshtml, replace the <tr> and <th> elements for the heading row with the

highlighted code:

<p>

 @Html.ActionLink("Create New", "Create")

</p>

<table>

 <tr>

 <th>

 @Html.ActionLink("Last Name", "Index", new { sortOrder =

ViewBag.NameSortParm })

 </th>

 <th>First Name

 </th>

 <th>

 @Html.A ctionLink("Enrollment Date", "Index", new { sortOrder =

ViewBag.DateSortParm })

 </th>

 <th></th>

 </tr>

@foreach (var item in Model) {

This code uses the information in the ViewBag properties to set up hyperlinks with the

appropriate query string values.

Run the page and click the Last Name and Enrollment Date column headings to verify that

sorting works.

http://msdn.microsoft.com/en-us/library/bb386964.aspx
http://msdn.microsoft.com/en-us/library/bb351562.aspx
http://go.microsoft.com/fwlink/?LinkID=323957

59

After you click the Last Name heading, students are displayed in descending last name order.

60

Add a Search Box to the Students Index Page

To add filtering to the Students Index page, you'll add a text box and a submit button to the view

and make corresponding changes in the Index method. The text box will let you enter a string to

search for in the first name and last name fields.

Add Filtering Functionality to the Index Method

61

In Controllers\StudentController.cs, replace the Index method with the following code (the

changes are highlighted):

public ViewResult Index(string sortOrder , string searchString)

{

 ViewBag.NameSortParm = String.IsNullOrEmpty(sortOrder) ? "name_desc" :

"";

 ViewBag.DateSortParm = sortOrder == "Date" ? "date_desc" : "Date";

 var students = from s in db.Students

 select s;

 if (!String.IsNullOrEmpty(searchString))

 {

 students = students.Where(s =>

s.LastName.ToUpper().Contains(searchString.ToUpper())

 ||

s.FirstMidName.ToUpper().Contains(searchString.ToUpper()));

 }

 switch (sortOrder)

 {

 case "name_desc":

 students = students.OrderByDescending(s => s.LastName);

 break;

 case "Date":

 students = students.OrderBy(s => s.EnrollmentDate);

 break;

 case "date_desc":

 students = students.OrderByDescending(s => s.EnrollmentDate);

 break;

 default:

 students = students.Order By(s => s.LastName);

 break;

 }

 return View(students.ToList());

}

You've added a searchString parameter to the Index method. You've also added to the LINQ

statement a where clausethat selects only students whose first name or last name contains the

search string. The search string value is received from a text box that you'll add to the Index

view. The statement that adds the where clause is executed only if there's a value to search for.

Note In many cases you can call the same method either on an Entity Framework entity set or as

an extension method on an in-memory collection. The results are normally the same but in some

cases may be different.

For example, the .NET Framework implementation of the Contains method returns all rows

when you pass an empty string to it, but the Entity Framework provider for SQL Server Compact

4.0 returns zero rows for empty strings. Therefore the code in the example (putting the Where

statement inside an if statement) makes sure that you get the same results for all versions of

SQL Server. Also, the .NET Framework implementation of the Contains method performs a

case-sensitive comparison by default, but Entity Framework SQL Server providers perform case-

insensitive comparisons by default. Therefore, calling the ToUpper method to make the test

http://msdn.microsoft.com/en-us/library/bb535040.aspx

62

explicitly case-insensitive ensures that results do not change when you change the code later to

use a repository, which will return an IEnumerable collection instead of an IQueryable object.

(When you call the Contains method on an IEnumerable collection, you get the .NET

Framework implementation; when you call it on an IQueryable object, you get the database

provider implementation.)

Null handling may also be different for different database providers or when you use an

IQueryable object compared to when you use an IEnumerable collection. For example, in some

scenarios a Where condition such as table.Column != 0 may not return columns that have

null as the value. For more information, see Incorrect handling of null variables in 'where'

clause.

Add a Search Box to the Student Index View

In Views\Student\Index.cshtml, add the highlighted code immediately before the opening table

tag in order to create a caption, a text box, and a Search button.

<p>

 @Html.ActionLink("Create New", "Create")

</p>

@using (Html.BeginForm())

{

 <p>

 Find by name: @Html.TextBox("SearchString")

 <input type="submit" value="Search" /></p>

}

<table>

 <tr>

Run the page, enter a search string, and click Search to verify that filtering is working.

http://data.uservoice.com/forums/72025-entity-framework-feature-suggestions/suggestions/1015361-incorrect-handling-of-null-variables-in-where-cl
http://data.uservoice.com/forums/72025-entity-framework-feature-suggestions/suggestions/1015361-incorrect-handling-of-null-variables-in-where-cl

63

Notice the URL doesn't contain the "an" search string, which means that if you bookmark this

page, you won't get the filtered list when you use the bookmark. You'll change the Search button

to use query strings for filter criteria later in the tutorial.

Add Paging to the Students Index Page

64

To add paging to the Students Index page, you'll start by installing the PagedList.Mvc NuGet

package. Then you'll make additional changes in the Index method and add paging links to the

Index view. PagedList.Mvc is one of many good paging and sorting packages for ASP.NET

MVC, and its use here is intended only as an example, not as a recommendation for it over other

options. The following illustration shows the paging links.

Install the PagedList.MVC NuGet Package

The NuGet PagedList.Mvc package automatically installs the PagedList package as a

dependency. The PagedList package installs a PagedList collection type and extension methods

for IQueryable and IEnumerable collections. The extension methods create a single page of

65

data in a PagedList collection out of your IQueryable or IEnumerable , and the PagedList

collection provides several properties and methods that facilitate paging. The PagedList.Mvc

package installs a paging helper that displays the paging buttons.

From the Tools menu, select Library Package Manager and then Package Manager Console.

In the Package Manager Console window, make sure ghe Package source is nuget.org and the

Default project is ContosoUniversity, and then enter the following command:

Ins tall - Package PagedList.Mvc

Add Paging Functionality to the Index Method

In Controllers\StudentController.cs, add a using statement for the PagedList namespace:

using PagedList;

Replace the Index method with the following code:

public ViewResult Index(string sortOrder , string currentFilter , string

searchString, int? page)

{

 ViewBag.CurrentSort = sortOrder;

 ViewBag.NameSortParm = String.IsNullOrEmpty(sortOrder) ? "name_desc" : "";

 ViewBag.DateSortParm = sortOrder == "Date" ? "date_desc" : "Date";

 if (searchString != null)

 {

