

Data Mining Extensions (DMX)
Reference
SQL Server 2012 Books Online

Summary: Data Mining Extensions (DMX) is a language that you can use to create and
work with data mining models in Microsoft SQL Server Analysis Services. You can use
DMX to create the structure of new data mining models, to train these models, and to
browse, manage, and predict against them. DMX is composed of data definition
language (DDL) statements, data manipulation language (DML) statements, and
functions and operators.

Category: Reference
Applies to: SQL Server 2012
Source: SQL Server Books Online (link to source content)
E-book publication date: June 2012

http://msdn.microsoft.com/en-us/library/ms132058.aspx�

Copyright © 2012 by Microsoft Corporation
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents
Data Mining Extensions (DMX) Reference ... 6

Structure and Usage of DMX Prediction Queries ... 8

Understanding the Select Statement.. 10

General Prediction Functions ... 13

Data Mining Extensions (DMX) Syntax Elements ... 17
Identifiers ... 18
Data Types .. 20
Expressions ... 21
Operators .. 22

Arithmetic Operators .. 23
Comparison Operators ... 24
Logical Operators ... 26
Unary Operators ... 27

Functions ... 27
Comments ... 29
Reserved Keywords.. 30
Content Types.. 31
Distributions ... 31
Usage .. 32
Modeling Flags .. 33

Data Mining Extensions (DMX) Statement Reference .. 35
Data Mining Extensions (DMX) Data Definition Statements.. 36

CREATE MINING STRUCTURE .. 37
ALTER MINING STRUCTURE ... 42
CREATE MINING MODEL ... 47
DROP MINING STRUCTURE.. 51
DROP MINING MODEL .. 52
EXPORT... 52
IMPORT .. 53
SELECT INTO... 54

Data Mining Extensions (DMX) Data Manipulation Statements .. 56
DELETE .. 56
INSERT INTO .. 58
SELECT .. 61
SELECT DISTINCT FROM <model > .. 63
SELECT FROM <model>.CONTENT ... 67
SELECT FROM <model>.CASES .. 71

SELECT FROM <model>.SAMPLE_CASES .. 73
SELECT FROM <model>.DIMENSION_CONTENT .. 74
SELECT FROM <model> PREDICTION JOIN .. 76
SELECT FROM <model> .. 80
SELECT FROM <structure>.CASES ... 81
<source data query> .. 83
OPENQUERY ... 84
OPENROWSET ... 85
SHAPE ... 86
UPDATE .. 88

Data Mining Extensions (DMX) Function Reference ... 88
BottomCount ... 92
BottomPercent .. 94
BottomSum ... 97
Cluster ... 100
ClusterDistance ... 101
ClusterProbability ... 104
Exists .. 105
IsDescendant .. 106
IsInNode .. 107
IsTestCase .. 108
IsTrainingCase.. 109
Lag ... 110
Predict ... 110
PredictAdjustedProbability ... 112
PredictAssociation.. 114
PredictCaseLikelihood .. 115
PredictHistogram ... 116
PredictNodeId ... 118
PredictProbability ... 119
PredictSequence ... 121
PredictStdev ... 122
PredictSupport .. 123
PredictTimeSeries ... 124
PredictVariance ... 131
RangeMax ... 132
RangeMid .. 133
RangeMin .. 134
StructureColumn .. 135
TopCount ... 139
TopPercent .. 142
TopSum .. 145

Data Mining Extensions (DMX) Operator Reference .. 148
+ (Add) ... 151
- (Subtract) .. 151

* (Multiply) .. 152
/ (Divide) .. 153
< (Less Than) .. 154
> (Greater Than) ... 154
= (Equal To) .. 155
<> (Not Equal To) .. 156
<= (Less Than or Equal To)... 156
>= (Greater Than or Equal To) .. 157
AND ... 158
NOT ... 159
OR .. 159
+ (Positive) .. 160
- (Negative) ... 161
// (Comment) ... 162
-- (Comment) ... 162
/*...*/ (Comment) .. 163

Data Mining Extensions (DMX) Syntax Conventions .. 164

DMX Tutorials (Analysis Services - Data Mining) ... 165

 6

Data Mining Extensions (DMX) Reference
Data Mining Extensions (DMX) is a language that you can use to create and work with
data mining models in Microsoft SQL Server Analysis Services. You can use DMX to
create the structure of new data mining models, to train these models, and to browse,
manage, and predict against them. DMX is composed of data definition language (DDL)
statements, data manipulation language (DML) statements, and functions and operators.

Microsoft OLE DB for Data Mining Specification
The data mining features in Analysis Services are built to comply with the Microsoft
OLE DB for Data Mining specification.
The Microsoft OLE DB for Data Mining specification defines the following:
• A structure to hold the information that defines a data mining model.
• A language for creating and working with data mining models.
The specification defines the basis of data mining as the data mining model virtual
object. The data mining model object encapsulates all that is known about a particular
mining model. The data mining model object is structured like an SQL table, with
columns, data types, and meta information that describe the model. This structure lets
you use the DMX language, which is an extension of SQL, to create and work with
models.
For More Information: Understanding the Select Statement (DMX)

DMX Statements
You can use DMX statements to create, process, delete, copy, browse, and predict
against data mining models. There are two types of statements in DMX: data definition
statements and data manipulation statements. You can use each type of statement to
perform different kinds of tasks.
The following sections provide more information about working with DMX statements:
• Data Definition Statements
• Data Manipulation Statements
• Query Fundamentals

Data Definition Statements
Use data definition statements in DMX to create and define new mining structures and
models, to import and export mining models and mining structures, and to drop existing
models from a database. Data definition statements in DMX are part of the data
definition language (DDL).
You can perform the following tasks with the data definition statements in DMX:

http://msdn.microsoft.com/en-us/library/39748290-c32a-48e6-92a6-0c3a9223773a(SQL.110)�

 7

• Create a mining structure by using the CREATE MINING STRUCTURE statement, and
add a mining model to the mining structure by using the ALTER MINING STRUCTURE
statement.

• Create a mining model and associated mining structure simultaneously by using the
CREATE MINING MODEL statement to build an empty data mining model object.

• Export a mining model and associated mining structure to a file by using the EXPORT
statement. Import a mining model and associated mining structure from a file that is
created by the EXPORT statement by using the IMPORT statement.

• Copy the structure of an existing mining model into a new model, and train it with
the same data, by using the SELECT INTO statement.

• Completely remove a mining model from a database by using the DROP MINING
MODEL statement. Completely remove a mining structure and all its associated
mining models from the database by using the DROP MINING STRUCTURE
statement.

To learn more about the data mining tasks that you can perform by using DMX
statements, see DMX Statement Reference.
Back to DMX Statements

Data Manipulation Statements
Use data manipulation statements in DMX to work with existing mining models, to
browse the models and to create predictions against them. Data manipulation
statements in DMX are part of the data manipulation language (DML).
You can perform the following tasks with the data manipulation statements in DMX:
• Train a mining model by using the INSERT INTO statement. This does not insert the

actual source data into a data mining model object, but instead creates an
abstraction that describes the mining model that the algorithm creates. The source
query for an INSERT INTO statement is described in <source data query>.

• Extend the SELECT statement to browse the information that is calculated during
model training and stored in the data mining model, such as statistics of the source
data. Following are the clauses that you can include to extend the power of the
SELECT statement:
• SELECT DISTINCT FROM <model>
• SELECT FROM <model>.CONTENT
• SELECT FROM <model>.CASES
• SELECT FROM <model>.SAMPLE_CASES
• SELECT FROM <model>.DIMENSION_CONTENT

• Create predictions that are based on an existing mining model by using the
PREDICTION JOIN clause of the SELECT statement. The source query for a
PREDICTION JOIN statement is described in <source data query>.

 8

• Remove all the trained data from a model or a structure by using the DELETE
statement.

To learn more about the data mining tasks that you can perform by using DMX
statements, see DMX Statement Reference.
Back to DMX Statements

DMX Query Fundamentals
The SELECT statement is the basis for most DMX queries. Depending on the clauses that
you use with such statements, you can browse, copy, or predict against mining models.
The prediction query uses a form of SELECT to create predictions based on existing
mining models. Functions extend your ability to browse and query the mining models
beyond the intrinsic capabilities of the data mining model.
You can use DMX functions to obtain information that is discovered during the training
of your models, and to calculate new information. You can use these functions for many
purposes, including to return statistics that describe the underlying data or the accuracy
of a prediction, or to return an expanded explanation of a prediction.
For More Information: Understanding the Select Statement (DMX), Mapping Functions
to Query Types (DMX), Prediction Queries, DMX Function Reference
Back to DMX Statements

See Also
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
DMX Syntax Elements
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Structure and Usage of DMX Prediction
Queries
In Microsoft SQL Server Analysis Services, you can use the prediction query in Data
Mining Extensions (DMX) to predict unknown column values in a new dataset, based on
the results of a mining model.

 9

The type of query you use depends on what information you want to obtain from a
model. If you want to create simple predictions in real time, for example to know if a
potential customer on a Web site fits the persona of a bike buyer, you would use a
singleton query. If you want to create a batch of predictions from a set of cases that are
contained within a data source, you would use a regular prediction query.

Prediction Types
You can use DMX to create the following types of predictions:
Prediction join

Use to create predictions on input data based on the patterns that exist in the mining
model. This query statement must be followed by an ON clause that supplies the join
conditions between the mining model columns and the input columns.

Natural prediction join

Use to create predictions that are based on column names in the mining model that
exactly match the column names in the table on which you are performing the query.
This query statement does not require an ON clause, because the join condition is
automatically generated based on the matching names between the mining model
columns and the input columns.

Empty prediction join

Use to discover the most likely prediction, without having to supply input data. This
returns a prediction that is based only on the content of the mining model.

Singleton query

Use to create a prediction by feeding the data to the query. This statement is useful
because you can feed a single case to the query, to get a result back quickly. For
example, you can use the query to predict whether someone who is female, age 35, and
married would be likely to purchase a bicycle. This query does not require an external
data source.

Query Structure
To build a prediction query in DMX, you use a combination of the following elements:
• SELECT [FLATTENED]
• TOP
• FROM <model> PREDICTION JOIN
• ON
• WHERE
• ORDER BY
The SELECT element of a prediction query defines the columns and expressions that will
appear in the result set, and can include the following data:

 10

• Predict or PredictOnly columns from the mining model.
• Any column from the input data that is used to create the predictions.
• Functions that return a column of data.
The FROM <model> PREDICTION JOIN element defines the source data to be used to
create the prediction. For a singleton query, this is a series of values that are assigned to
columns. For an empty prediction join, this is left empty.
The ON element maps the columns that are defined in the mining model to columns in
an external dataset. You do not have to include this element if you are creating an empty
prediction join query or a natural prediction join.
You can use the WHERE clause to filter the results of a prediction query. You can use a
TOP or ORDER BY clause to select most likely predictions. For more information about
using these clauses, see Understanding the Select Statement (DMX).
For more information about the syntax of a prediction statement, see SELECT FROM
PREDICTION JOIN (DMX) and SELECT FROM <model> (DMX).

See Also
Data Mining Extensions (DMX) Reference
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
DMX Syntax Elements
Mapping Functions to Query Types (DMX)
Understanding the Select Statement (DMX)

Understanding the Select Statement
The SELECT statement is the basis for most queries that you create with Data Mining
Extensions (DMX) in Microsoft SQL Server Analysis Services. It can perform many
different kinds of tasks, such as browsing and predicting against data mining models.
Following are the tasks that you can complete by using the SELECT statement:
• Browse a data mining model. The schema rowset defines the structure of a model.
• Discover the possible values of a mining model column.
• Browse the cases that are assigned to nodes in a mining model, or browse

representations of those cases.
• Perform predictions against a variety of input sources.
• Copy mining models.

 11

Each of these tasks uses a different data domain. You define the data domain in the
FROM clause of the statement. For example, if you are browsing the data mining model
object, your data domain is the columns that are defined by the schema rowset.
Conversely, if you browse the cases of the model, your data domain is the actual column
names in the model, such as Gender, Bike Buyer, and so on. In the first case, you are
looking at the metadata that is stored in the schema rowset that defines the model; in
the second case, you are actually looking at values, or representations of the values, that
were used to train the mining model.
Anything that is included in the expression list or in the WHERE clause must come from
the data domain that is defined by the FROM clause.

SELECT Types
You use the clauses in the SELECT statement to define the type of task that you want to
perform. You can perform the following categories of tasks:
• Predicting
• Browsing
• Copying
• Drillthrough

Predicting
You can perform predictions based on a mining model by using the following query
types.

Query Type Traits

SELECT FROM [NATURAL] PREDICTION
JOIN

Returns a prediction that is created by
joining the columns in the mining model to
the columns of an internal data source. The
domain for this query type is the
predictable columns from the model and
the columns from the input data source.

SELECT FROM <model> Returns the most likely state of the
predictable column, based only on the
mining model. This query type is a shortcut
for creating a prediction with an empty
prediction join. The domain for this query
type is the predictable columns from the
model.

 12

You can include any one of the browsing or predicting SELECT statements within the
FROM and WHERE clauses of a prediction join SELECT statement. For more information
about imbedding a select statement, see SELECT FROM PREDICTION JOIN (DMX). For
more information about prediction query types and structure, see Prediction Queries
(DMX).
Back to Select Types

Browsing
You can browse the contents of a mining model by using the following query types.

Query Type Traits

SELECT DISTINCT FROM <model> Returns all the state values from the mining
model for the specified column. The
domain for this query type is the data
mining model.

SELECT FROM <model>.CONTENT Returns content that describes the mining
model. The domain for this query type is
the content schema rowset.

SELECT FROM
<model>.DIMENSION_CONTENT

Returns content that describes the mining
model. The domain for this query type is
the content schema rowset.

SELECT FROM <model>.PMML Returns the Predictive Model Markup
Language (PMML) representation of the
mining model, for algorithms that support
this functionality. The domain for this query
type is the PMML schema rowset.

Back to Select Types

Copying
You can copy a mining model and its associated mining structure into a new model,
which you name within the statement, by using the following query type.

Query Type Traits

SELECT INTO <new model> Creates a copy of the mining model. The
domain for this query type is the data
mining model.

 13

Back to Select Types

Drillthrough
You can browse the cases, or a representation of the cases, that were used to train the
model, by using the following query types.

Query Type Traits

SELECT FROM <model>.CASES or SELECT
FROM <model>.SAMPLE_CASES

Returns cases, or a representation of cases,
that were used to train the mining model.
The domain for this query type is the data
mining model.

Back to Select Types

See Also
Data Mining Extensions (DMX) Reference
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
DMX Syntax Elements
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)

General Prediction Functions
You can use the SELECT statement in Data Mining Extensions (DMX) to create different
types of queries. A query can be used to return information about the mining model
itself, to make new predictions, or alter the model by training it with new data. Analysis
Services provides a variety of specialized functions that control the type of information
that is returned in a query. By adding these functions to a DMX query, you can retrieve
additional statistics or columns of data. However, each query type and each model type
supports certain functions only.

 14

Common Functions
You can use functions to extend the results that a mining model returns. You can use the
following functions for any SELECT statement that returns a table expression:

BottomCount RangeMin

BottomPercent TopCount

Predict TopPercent

RangeMax TopSum

RangeMid

In addition, the following functions are supported for almost all model types:
• Exists (DMX)
• IsDescendent
• IsTestCase
• IsTrainingCase
• Predict
• RangeMax
• RangeMid
• RangeMin
• StructureColumn (DMX)
Individual algorithms may support additional functions. For a list of the functions that are
supported by each model type, see Querying Data Mining Models (Analysis Services -
Data Mining).

Functions Specific to SELECT Syntax
The following table lists the functions that you can use for each type of SELECT
statement.
For general information about functions in DMX, see Understanding the Select
Statement (DMX).

Query type Supported functions Remarks

SELECT DISTINCT FROM <model> RangeMin (DMX)
RangeMid (DMX)
RangeMax (DMX)

These functions can
be used to provide
maximum values,
minimum values, and

http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�
http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�

 15

Query type Supported functions Remarks

means for any
column that contains
numeric data type,
regardless of whether
the column is
continuous or has
been discretized.

SELECT FROM <model>.CONTENT
or
SELECT FROM
<model>.DIMENSION_CONTENT

IsDescendant (DMX) This function
retrieves child nodes
for the specified
node in the model,
and can be used, for
example, to iterate
through the nodes in
the mining model
content. The
arrangement of the
nodes in the mining
model content
depends on the
model type. For
information about
the structure for each
mining model type,
see Mining Model
Content (Analysis
Services - Data
Mining).
If you have saved the
mining model
content as a
dimension, you can
also use other
Multidimensional
Expressions (MDX)
functions that are
avaialble for querying
an attribute
hierarchy.

SELECT FROM <model>.CASES IsInNode (DMX) The Lag function is

http://msdn.microsoft.com/en-us/library/e7c039f6-3266-4d84-bfbd-f99b6858acf4(SQL.110)�
http://msdn.microsoft.com/en-us/library/e7c039f6-3266-4d84-bfbd-f99b6858acf4(SQL.110)�
http://msdn.microsoft.com/en-us/library/e7c039f6-3266-4d84-bfbd-f99b6858acf4(SQL.110)�
http://msdn.microsoft.com/en-us/library/e7c039f6-3266-4d84-bfbd-f99b6858acf4(SQL.110)�

 16

Query type Supported functions Remarks

ClientSettingsGeneralFlag
Class
IsTrainingCase (DMX)
IsTestCase (DMX)

supported only for
time series models.
The IsTestCase
function is supported
in models that are
based on a structure
that was created
using the holdout
option, to create a
testing data set. If the
model is not based
on a structure with
holdout test set, all
cases are considered
training cases.

SELECT FROM
<model>.SAMPLE_CASES

IsInNode (DMX) In this context, the
IsInNode function
returns a case that
belongs to a set of
idealized sample
cases.

SELECT FROM <model>.PMML Not applicable. Use XML
query functions instead.

PMML
representations are
supported only for
the following model
types:
Microsoft Decision
Trees
Microsoft Clustering

SELECT FROM <model>
PREDICTION JOIN

Prediction functions that are
specific to the algorithm
that you use to build the
model.

For a list of
prediction functions
for each model type,
see Querying Data
Mining Models
(Analysis Services -
Data Mining).

SELECT FROM <model> Prediction functions that are
specific to the algorithm
that you use to build the

For a list of
prediction functions
for each model type,

http://msdn.microsoft.com/en-us/library/8a0291a8-e8ef-42f6-a521-079410c5eeb1(SQL.110)�
http://msdn.microsoft.com/en-us/library/8a0291a8-e8ef-42f6-a521-079410c5eeb1(SQL.110)�
http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�
http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�
http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�
http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�
http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�

 17

Query type Supported functions Remarks

model. see Querying Data
Mining Models
(Analysis Services -
Data Mining).

See Also
Data Mining Extensions (DMX) Reference
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
DMX Syntax Elements
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Data Mining Extensions (DMX) Syntax
Elements
In Microsoft SQL Server Analysis Services, you can use various syntax elements to define
Data Mining Extensions (DMX) statements that you can use to build, manage, and work
with data mining models. The following sections describe these syntax elements.

In This Section
Understanding the Select Statement (DMX)

Name objects such as mining models, mining structures, and columns.

Data Types (DMX)
Define the type of data that a mining model column contains.

Expressions (DMX)
Units of syntax that Analysis Services can resolve to single, or scalar, values, objects, or
table values.

Operators (DMX)
Used with one or more simple DMX expressions to make more complex DMX
expressions.

http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�
http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�
http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�
http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�
http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�

 18

Functions (DMX)
An expression that takes zero or one or more input values and returns a scalar value or a
table.

Comments (DMX)
Text elements that you can insert into DMX statements or scripts to explain the purpose
of a statement. Analysis Services does not run comments.

Reserved Keywords (DMX)
Words that are reserved for DMX use that should not be used to name objects in a
database.

Content Types (DMX)
Define the content that a mining structure column contains.

Distributions (DMX)
Defines the distribution of data within a column.

Usage (DMX)
Define how a mining model uses the columns that it contains.

Modeling Flags (DMX)
Define additional hints that the algorithm can use to process a mining model.

See Also
Data Mining Extensions (DMX) Reference
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Identifiers
All objects in Microsoft SQL Server Analysis Services must have an identifier. An object's
name is its identifier. Servers, databases, and database objects such as data sources, data
source views, cubes, dimensions, mining models, and so on have identifiers.
There are two classes of identifiers in Data Mining Extensions (DMX):
• Regular identifiers
• Delimited identifiers

 19

An object identifier is created when you define the object. You then use the identifier to
reference the object. Identifiers must be 100 characters or less.

Regular Identifiers
Regular identifiers in DMX comply with the Analysis Services rules for the format of
identifiers. Regular identifiers in DMX do not require delimiters. Following is an example
of a DMX statement that uses a regular, non-delimited identifier:

SELECT * FROM Clustering.CONTENT

Rules for Regular Identifiers
Following are the rules for the format of regular identifiers:
1. The first character of a regular identifier must be one of the following:

• A letter as defined by the Unicode Standard 2.0. This includes Latin characters
from a through z and from A through Z, and letter characters from other
languages.

• An underscore (_).
2. Subsequent characters can be:

• Letters as defined in the Unicode Standard 2.0.
• Decimal numbers from either Basic Latin or other national scripts.
• An underscore (_).

3. The identifier must not be a DMX reserved word. Reserved words are case-insensitive
in DMX. For more information, see Understanding the Select Statement (DMX).

4. The identifier cannot contain embedded spaces or special characters.
You must delimit with brackets any identifiers that do not comply with these rules when
you use them in DMX statements.

Delimited Identifiers
Delimited identifiers are enclosed in brackets ([]). Following is an example of a DMX
statement with a delimited identifier that complies with those rules.

SELECT * FROM [Marketing_Clusters].CONTENT

An identifier that does not comply with the rules for the format of regular identifiers
must always be delimited. Following is an example of DMX statement with a delimited
identifier that contains a space:

SELECT * FROM [Targeted Mailing].CONTENT

Use delimited identifiers in the following situations:
• When you use reserved words for object names or parts of object names.

We recommend that you do not use reserved keywords as object names. Databases
that you upgrade from earlier versions of Analysis Services may contain identifiers
that include words that were not reserved in the earlier version of Analysis Services

 20

but that are reserved words forSQL Server 2005 Analysis Services. You can use a
delimited identifier to refer to such an object until you can change the object's name.

• When you use characters that are not listed as qualified identifiers.
In Analysis Services you can use any character in the current code page in a delimited
identifier; however, indiscriminate use of special characters in an object name may
make DMX statements difficult to read and maintain.

Rules for Delimited Identifiers
Following are the rules for the format of delimited identifiers:
1. Delimited identifiers can contain the same number of characters as regular identifiers

(from 1 through 100 characters, not including the delimiter characters).
2. The body of an identifier can contain any combination of characters that are used in

the current code page, including the delimiting characters themselves. If the body of
the identifier itself contains delimiting characters, special handling is required:
• If the body of the identifier contains a left bracket ([), no additional handling is

required.
• If the body of the identifier contains a right bracket (]), you must specify two right

brackets (]]) to represent it within the code page.

Delimiting Identifiers with Multiple Parts
When you use qualified object names, you may have to delimit more than one of the
identifiers that make up the object name. You must delimit each identifier individually.

See Also
Data Mining Extensions (DMX) Reference
Data Mining Extensions (DMX) Syntax Elements
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Data Types
When you use Data Mining Extensions (DMX) to define a new mining model in
Microsoft SQL Server Analysis Services, you must provide a data type for each column in
the model. The data type describes the data that the data mining algorithm will use
when it builds the model.

 21

Data types depend on the algorithm. Each algorithm determines which data types are
supported and how they are used. Microsoft algorithms support the following data
types:
• Text
• Long
• Boolean
• Double
• Date
For more information about the data types that Analysis Services supports,
see Understanding the Select Statement (DMX).

See Also
Data Mining Algorithms
Data Mining Extensions (DMX) Reference
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
DMX Syntax Elements
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Expressions
In Data Mining Extensions (DMX), an expression is a combination of identifiers, values,
and operators that Microsoft SQL Server Analysis Services can evaluate to obtain a result.
A DMX expression can be simple or complex. A simple expression can be one of the
following:
Constant

A constant is symbol that represents a single, specific value. A constant can be a string,
or a numeric or date value. You must use single quotation marks (') to delimit string and
date constants.

Scalar Function

A scalar function returns a single value.

Non-Scalar Function

A non-scalar function returns a table.

http://msdn.microsoft.com/en-us/library/4af5b7db-790b-459c-b2b4-00f0cf6b5ce4(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1fc83b-b98c-437e-bf53-4ff001b92d64(SQL.110)�

 22

Object Identifier

Object identifiers are considered to be simple expressions in DMX.

To build complex expressions, you can use operators to combine these expressions. For
more information about operators, see Understanding the Select Statement (DMX).

See Also
Data Mining Extensions (DMX) Reference
DMX Function Reference
DMX Statement Reference
DMX Syntax Conventions
DMX Syntax Elements
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Operators
You can use Data Mining Extensions (DMX) operators to perform arithmetic, comparison,
concatenation, and logical operations in a query in Microsoft SQL Server Analysis
Services.
Analysis Services uses operators to perform the following actions:
• Search for values or objects that meet a specific condition.
• Implement a decision between values or expressions.
DMX uses several categories of operators, described in the following sections. For
additional information about individual operators, see Understanding the Select
Statement (DMX).

Operator category Type of operation

Arithmetic Operators (DMX) Perform addition, subtraction,
multiplication, or division.

Comparison Operators (DMX) Compare one value against another value
or an expression.

Logical Operators (DMX) Test for the truth of a condition, such as
AND, OR, or NOT.

Unary Operators (DMX) Perform an operation on a single operand.

 23

You can use operators to combine smaller expressions in DMX into more complex
expressions. In complex expressions, the operators are evaluated in order based on the
Analysis Services definition of operator precedence. Operators that have higher
precedence are performed before operators that have lower precedence. For more
information about expressions, see Expressions (DMX).
When you combine simple expressions to form a complex expression, the data type of
the resulting expression is determined by combining the rules for the operators with the
rules for data type precedence. If the result is a character or a Unicode value, Analysis
Services determines the collation of the result by combining the rules for the operators
with the rules for collation precedence. There are also rules that determine the precision,
scale, and length of the result based on the precision, scale, and length of the simple
expressions.

See Also
Data Mining Extensions (DMX) Reference
DMX Function Reference
DMX Statement Reference
DMX Syntax Conventions
DMX Syntax Elements
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Arithmetic Operators
You can use arithmetic operators in Data Mining Extensions (DMX) for arithmetic
computations in Microsoft SQL Server Analysis Services, including addition, subtraction,
multiplication, and division.
The following table identifies the arithmetic operators that DMX supports.

Operator Description

Understanding the Select Statement (DMX) Adds two numbers together.

- (Subtract) (DMX) Subtracts one number from another
number.

* (Multiply) (DMX) Multiplies one number by another number.

/ (Divide) (DMX) Divides one number by another number.

 24

The following rules determine the order of precedence for arithmetic operators in a DMX
expression:
• When there is more than one arithmetic operator in an expression, multiplication and

division are calculated first, followed by subtraction and addition.
• When all the arithmetic operators in an expression have the same level of

precedence, the order of execution is left to right.
• Expressions that are within parentheses take precedence over all other operations.
See Also
Data Mining Extensions (DMX) Reference
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
DMX Syntax Elements
Expressions (DMX)
Mapping Functions to Query Types (DMX)
Operators (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Comparison Operators
You can use comparison operators with scalar data in any Data Mining Extensions (DMX)
expression in Microsoft SQL Server Analysis Services. Comparison operators evaluate to a
Boolean data type; they return TRUE or FALSE based on the outcome of the tested
condition.
The following table identifies the comparison operators that DMX supports.

Operator Description

Understanding the Select Statement (DMX) For arguments that evaluate to a non-null
value, returns TRUE if the value of the
argument on the left is less than the value
of the argument on the right; returns FALSE
otherwise. If either argument or both
arguments evaluate to a null value, the
operator returns a null value.

> (Greater Than) (DMX) For arguments that evaluate to a non-null
value, returns TRUE if the value of the

 25

Operator Description

argument on the left is greater than the
value of the argument on the right; returns
FALSE otherwise. If either argument or both
arguments evaluate to a null value, the
operator returns a null value.

= (Equal To) (DMX) For arguments that evaluate to a non-null
value, returns TRUE if the value of the
argument on the left is equal to the value
of the argument on the right; returns FALSE
otherwise. If either argument or both
arguments evaluate to a null value, the
operator returns a null value.

<> (Not Equal To) (DMX) For arguments that evaluate to a non-null
value, returns TRUE if the value of the
argument on the left is not equal to the
value of the argument on the right; returns
FALSE otherwise. If either argument or both
arguments evaluate to a null value, the
operator returns a null value.

<= (Less Than or Equal To) (DMX) For arguments that evaluate to a non-null
value, returns TRUE if the value of the
argument on the left is less than or equal
to the value of the argument on the right;
returns FALSE otherwise. If either argument
or both arguments evaluate to a null value,
the operator returns a null value.

>= (Greater Than or Equal To) (DMX) For arguments that evaluate to a non-null
value, returns TRUE if the value of the
argument on the left is greater than or
equal to the value of the argument on the
right; returns FALSE otherwise. If either
argument or both arguments evaluate to a
null value, the operator returns a null value.

You can also use comparison operators in DMX statements and functions to look for a
condition.
See Also
Data Mining Extensions (DMX) Reference

 26

DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
DMX Syntax Elements
Expressions (DMX)
Mapping Functions to Query Types (DMX)
Operators (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Logical Operators
You can use logical operators in Data Mining Extensions (DMX) expressions to evaluate
values and to return a Boolean value in Microsoft SQL Server Analysis Services.
The following table identifies the logical operators that DMX supports.

Operator Description

Understanding the Select Statement (DMX) Performs a logical conjunction on two
numeric expressions.

NOT (DMX) Performs a logical negation on a numeric
expression.

OR (DMX) Performs a logical disjunction on two
numeric expressions.

See Also
Data Mining Extensions (DMX) Reference
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
DMX Syntax Elements
Expressions (DMX)
Mapping Functions to Query Types (DMX)
Operators (DMX)
Prediction Queries (DMX)

 27

Understanding the Select Statement (DMX)

Unary Operators
Unary operators perform an operation on a single operand, such as returning the
negative or positive value of a numeric expression.
The following table identifies the unary operators that DMX supports.

Operator Description

Understanding the Select Statement (DMX) Returns the negative value of a numeric
expression.

+ (Positive) (MDX) Returns the positive value of a numeric
expression.

See Also
Data Mining Extensions (DMX) Reference
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
DMX Syntax Elements
Expressions (DMX)
Mapping Functions to Query Types (DMX)
Operators (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Functions
When you use Data Mining Extensions (DMX) to query objects in Microsoft SQL
Server Analysis Services, you can use functions to return more information than just the
values in the columns in the data mining model or input dataset. For example, you can
use DMX queries to return not only the prediction value of a column, but also the
probability that the prediction is correct. You can use not only DMX functions, but also
functions from Microsoft Visual Basic for Applications (VBA), Microsoft Excel, and stored
procedures.

DMX Functions

http://msdn.microsoft.com/en-us/library/7fbe83ed-aaa5-41f6-a17c-bfc2e1bffa77(SQL.110)�
http://msdn.microsoft.com/en-us/library/64da4fa2-07cc-4ba5-8be1-d4c7612defee(SQL.110)�

 28

You can use DMX functions to perform the following tasks:
• Return predictions.
• Return statistics about a prediction such as the probability and support.
• Filter your query results.
• Reorder a table expression.
Most DMX functions return a scalar value, such as the support for a prediction, but some
return a tabular result. For example, the PredictHistogram function returns a table that
contains the support and probability for each state of the specified predictable column.
The results are displayed as a new tabular column.
For More Information: Understanding the Select Statement (DMX), DMX Function
Reference

Visual Basic for Applications (VBA) and Excel Functions
In addition to DMX functions, you can also call a variety of VBA and Excel functions from
DMX statements. For example, you can use the lCase function to modify how the
Attribute_Name column in the TM_Decision_Tree model content is displayed. This is
shown in the following code sample.
SELECT lCase([Attribute_Name])

FROM [TM_Decision_Tree].CONTENT

If the same function exists in both VBA and Excel, you must prefix the function name in
your DMX statement with either VBA or Excel. For example, you would use VBA!Log or
Excel!Log. If the VBA or Excel function that you want to use also exists in DMX or
Multidimensional Expressions (MDX), or if the function contains a dollar sign character
($), you must use square brackets ([]) to escape the function. For example, the function
call would be [VBA!Format].

Stored Procedures
You can use common language runtime programming languages to create stored
procedures that extend the functionality of DMX. For example, a regression tree mining
model returns coefficients, such as , , and so on, that describe the regression equation,
but the model does not return the equation itself, such as . However, you can write a
stored procedure that uses the data mining model object to navigate the content
schema, and to return the regression equation as an output. Therefore, a DMX statement
can return a list of the regression equations as part of a query result.
For More Information: Assemblies (Analysis Services)

See Also
Data Mining Extensions (DMX) Reference
DMX Function Reference
DMX Operator Reference
DMX Statement Reference

http://msdn.microsoft.com/en-us/library/b2645d10-6d17-444e-9289-f111ec48bbfb(SQL.110)�

 29

DMX Syntax Conventions
DMX Syntax Elements
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Comments
Comments in Data Mining Extensions (DMX) are text strings in program code that
Microsoft SQL Server Analysis Services does not execute. Comments are also known as
remarks. You can use comments to document code or to temporarily disable parts of a
DMX statement or script when you are diagnosing the code.
Using comments to document your program code makes it easier to maintain the code
in the future. You can use comments to record details such as the name of the program,
the name of the developer who wrote the code, and the dates of major code changes.
You can also use comments to describe complex calculations or to a programming
method.
Following are basic guidelines for writing comments:
• You can use any alphanumeric characters or symbols within a comment. Analysis

Services ignores all characters that are within a comment.
• There is no maximum length for a comment within a statement or script. A comment

can be made up of one or more lines.
Analysis Services supports the following types of comment characters:
• // (double forward slashes). Use these comment characters to write a comment on

the same line as code that is to be executed, or to write a comment on a line by itself.
Analysis Services evaluates everything from the double forward slashes to the end of
the line as part of the comment. To create a multiple-line comment, use the double
forward slashes at the start of each line of comment. For more information about this
comment character, see Understanding the Select Statement (DMX).

• -- (double hyphens). Use these comment characters to write a comment on the
same line as code that is to be executed, or to write a comment on a line by itself.
Analysis Services evaluates everything from the double hyphens to the end of the
line as part of the comment. To create a multiple-line comment, use the double
hyphens at the start of each line of comment. For more information about this
comment character, see -- (Comment).

• /* ... */ (forward slash-asterisk character pairs). Use these comment characters to
write a comment on the same line as the code that is to be executed, to write a
comment on a line by itself, or even to write comments within executable code.
Analysis Services evaluates everything from the open comment pair (/*) to the close
comment pair (*/) as part of the comment. To create a multiple-line comment, start

 30

the comment with the open-comment character pair (/*), and end the comment with
the close-comment character pair (*/). No other comment characters should be
included on any lines of the comment. For more information about this comment
character, see /*...*/ (Comment).

See Also
Data Mining Extensions (DMX) Reference
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
DMX Syntax Elements
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Reserved Keywords
Microsoft SQL Server 2005 Analysis Services (SSAS) reserves certain keywords for its
exclusive use. These keywords cannot be used anywhere in Data Mining Extensions
(DMX) statements except in the positions that Analysis Services defines in the DMX
language reference. These restricted DMX keywords include the following members:
• All data definition statements listed in the topic, DMX Data Definition Statements.
• All data mining query functions listed in the topic, DMX Function Reference.
• All operators listed in the topic, DMX Operator Reference.
• Keywords that are defined in the Multidimensional Expressions (MDX) query

language and are included as part of a DMX statement.
• Keywords that are defined in the OLE DB for Data Mining specification and are

included as part of a DMX statement.
When you name objects in a database, we recommend that you use a naming
convention that avoids using reserved keywords.
If your database does contain names that match reserved keywords, you must use
delimited identifiers when you refer to those objects. For more information,
see Identifiers.

See Also
Data Mining Extensions (DMX) Reference
DMX Statement Reference
DMX Syntax Conventions

 31

DMX Syntax Elements
Understanding the Select Statement (DMX)

Content Types
Data mining algorithms require additional information beyond the data type to function
correctly, such as the content type. The content type helps the algorithm determine how
to work with the data in the column.
Each algorithm supports specific content types. For example, the Microsoft Naive Bayes
algorithm cannot use continuous columns. To use a continuous column in a Microsoft
Naive Bayes model, you must discretize the data in the column. Some algorithms require
certain content types in order to function correctly. For example, the Microsoft Time
Series algorithm requires a key time column to identify the time over which the data was
collected.
For a complete description of the content types that Analysis Services supports,
see Understanding the Select Statement (DMX).

See Also
Data Mining Algorithms
Data Mining Extensions (DMX) Reference
Data Mining Extensions (DMX) Syntax Elements
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Distributions
In Microsoft SQL Server Analysis Services, you can define the content of columns in a
mining structure, to affect how algorithms process the data in those columns when you
create mining models. For some algorithms, it is useful to define the distribution of any
continuous columns before you process the model, if the columns are known to contain
common distributions of values. If you do not define the distributions, the resulting
mining models may produce less accurate predictions than if the distributions were
defined, because the algorithms will have less information from which to interpret the
data.
Microsoft data mining algorithms support the following distribution types:

http://msdn.microsoft.com/en-us/library/2dacd968-70e8-4993-88b6-a6d36024a4e4(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1fc83b-b98c-437e-bf53-4ff001b92d64(SQL.110)�

 32

NORMAL

The values for the continuous column form a histogram with a normal Gaussian
distribution.

Log Normal

The values for the continuous column form a histogram, where the logarithm of the
values is normally distributed.

UNIFORM

The values for the continuous column form a flat curve, in which all values are equally
likely.

For more information about Microsoft data mining algorithms, see Understanding the
Select Statement (DMX). Third-party algorithm providers may support additional
distribution types. To determine which distribution types an algorithm supports, use the
SUPPORTED_DISTRIBUTION_FLAGS schema rowset.
For more information about distribution types, see Column Distributions.

See Also
Content Types
Data Mining Extensions (DMX) Reference
Data Mining Extensions (DMX) Syntax Elements
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Usage
When you use Data Mining Extensions (DMX) to define a new data mining model in
Microsoft SQL Server Analysis Services, you must specify how the data mining algorithm
that builds the model will use each column. You can specify a column as one of the
following types:
• Key
• Key Sequence
• Key Time
• Predict
• PredictOnly

http://msdn.microsoft.com/en-us/library/ed1fc83b-b98c-437e-bf53-4ff001b92d64(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1fc83b-b98c-437e-bf53-4ff001b92d64(SQL.110)�
http://msdn.microsoft.com/en-us/library/87e700de-32be-4bc8-b01d-ba4ee1ab48de(SQL.110)�
http://msdn.microsoft.com/en-us/library/2dacd968-70e8-4993-88b6-a6d36024a4e4(SQL.110)�

 33

Columns that are left unspecified in DMX are treated as input columns.
To process a model correctly, the algorithm must know which column is the key column
that uniquely identifies each row, which column is the target column for creating
predictions if you are creating a predictable model, and which columns to use as input
columns to create the relationships that predict the target column.
Columns that are specified as the Predict type are used as both input and output
columns. Columns that are specified as PredictOnly are only used as output columns.
Specific algorithms may treat Predict columns differently.
For more information about the column usage types that Analysis Services supports,
see Understanding the Select Statement (DMX).

See Also
Data Mining Algorithms
Data Mining Extensions (DMX) Reference
Data Mining Extensions (DMX) Syntax Elements
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

Modeling Flags
You can use modeling flags in Analysis Services to provide additional information to a
data mining algorithm about the data that is defined in a case table. The algorithm can
use this information to build a more accurate data mining model. You can define
modeling flags on both mining structure columns and mining model columns.
Analysis Services supports the following modeling flags:
NOT NULL

The values for the attribute column should never contain a null value. An error will result
if Analysis Services encounters a null value for this attribute column during the model
training process. This flag is defined on a mining structure column.

REGRESSOR

Indicates that the algorithm can use the specified column in the regression formula of
regression algorithms. This flag is supported by the Microsoft Linear Regression and
Microsoft Decision Trees algorithms, and is defined on a mining model column.

http://msdn.microsoft.com/en-us/library/fab47643-5bfd-424e-a0f7-69e665db6bab(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1fc83b-b98c-437e-bf53-4ff001b92d64(SQL.110)�

 34

MODEL_EXISTENCE_ONLY

The values for the attribute column are less important than the presence of the
attribute. This flag is defined on a mining model column.

Third-party algorithms may support additional modeling flags. To determine which
modeling flags an algorithm supports, use the SUPPORTED_MODELING_FLAGS schema
rowset. You can also query the mining services on the server to determine which
modeling flags are supported for a particular algorithm. For example, the following query
returns the modeling flags are supported for the Microsoft Linear Regression algorithm
on the current server:
SELECT SUPPORTED_MODELING_FLAGS

FROM $SYSTEM.DMSCHEMA_MINING_SERVICES

WHERE SERVICE_NAME = 'Microsoft_Linear_Regression'

Expected results:
NOT NULL,REGRESSOR

Specifying Modeling Flags on a Mining Model
For examples of the syntax that Analysis Services supports for specifying a flag on a
mining structure column, see CREATE MINING STRUCTURE (DMX).
For an example of the syntax for specifying a modeling flga on a mining model column,
see ALTER MINING STRUCTURE (DMX).
For more information about working with mining model columns, see Mining Model
Columns.

See Also
Data Mining Algorithms
Data Mining Extensions (DMX) Reference
Data Mining Extensions (DMX) Syntax Elements
DMX Function Reference
DMX Operator Reference
DMX Statement Reference
DMX Syntax Conventions
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

http://msdn.microsoft.com/en-us/library/fab47643-5bfd-424e-a0f7-69e665db6bab(SQL.110)�
http://msdn.microsoft.com/en-us/library/fab47643-5bfd-424e-a0f7-69e665db6bab(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1fc83b-b98c-437e-bf53-4ff001b92d64(SQL.110)�

 35

Data Mining Extensions (DMX) Statement
Reference
Working with data mining models in Microsoft SQL Server Analysis Services involves the
following primary tasks:
• Creating mining structures and mining models
• Processing mining structures and mining models
• Deleting or dropping mining structures or mining models
• Copying mining models
• Browsing mining models
• Predicting against mining models
You can use Data Mining Extensions (DMX) statements to perform each of these tasks
programmatically.
Creating mining structures and mining models

Use the Data Mining Extensions (DMX) Syntax Elements statement to add a
new mining structure to a database. You can then use the ALTER MINING
STRUCTURE statement to add mining models to the mining structure.

Use the CREATE MINING MODEL statement to build a new mining model and
associated mining structure.

Processing mining structures and mining models

Use the INSERT INTO statement to process a mining structure and mining model.

Deleting or dropping mining structures or mining models

Use the DELETE statement to remove all the trained data from a mining model or
mining structure. Use the DROP MINING STRUCTURE or DROP MINING
MODEL statements to completely remove a mining structure or mining model from a
database.

Copying mining models

Use the SELECT INTO statement to copy the structure of an existing mining model
into a new mining model and to train the new model with the same data.

Browsing mining models

Use the SELECT statement to browse the information that the data mining algorithm
calculates and stores in the data mining model during model training. Much like with
Transact-SQL, you can use several clauses with the SELECT statement, to extend its
power. These clauses include DISTINCT FROM <model>, FROM
<model>.CASES, FROM <model>.SAMPLE_CASES, FROM
<model>.CONTENT and FROM <model>.DIMENSION_CONTENT.

 36

Predicting against mining models

Use the PREDICTION JOIN clause of the SELECT statement to create predictions that
are based on an existing mining model.

You can also import and export models by using the IMPORT and EXPORT statements.
These tasks fall into two categories, data definition statements and data manipulation
statements, which are described in the following table.

Topic Description

DMX Data Definition Statements Part of the data definition language (DDL).
Used to define a new mining model
(including training) or to drop an existing
mining model from a database.

DMX Data Manipulation Statements Part of the data manipulation language
(DML). Used to work with existing mining
models, including browsing a model or
creating predictions.

See Also
Data Mining Extensions (DMX) Function Reference
Data Mining Extensions (DMX) Operator Reference
Data Mining Extensions (DMX) Syntax Conventions
Data Mining Extensions (DMX) Syntax Elements

Data Mining Extensions (DMX) Data Definition
Statements
The following table lists the statements that are part of the data mining data definition
language (DDL) in Data Mining Extensions (DMX).

Statement Description

Data Mining Extensions (DMX) Statement
Reference

Creates a new mining structure in the
database.

ALTER MINING STRUCTURE (DMX) Adds a mining model to an existing mining
structure.

CREATE MINING MODEL (DMX) Creates a new mining structure and mining

 37

Statement Description

model in the database.

DROP MINING MODEL (DMX) Deletes a mining model from the database.

DROP MINING STRUCTURE (DMX) Deletes a mining structure from the
database.

EXPORT (DMX) Exports a mining model or mining structure
and associated objects into a .abf file.

IMPORT (DMX) Imports a mining model or mining
structure and associated objects from a .abf
file.

SELECT INTO (DMX) Creates a copy of an existing mining
model.

See Also
DMX Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference

CREATE MINING STRUCTURE
Creates a new mining structure in a database and optionally defines training and testing
partitions. After you have created the mining structure, you can use the ALTER MINING
STRUCTURE (DMX) statement to add models to the mining structure.
Syntax

CREATE [SESSION] MINING STRUCTURE <structure>
(
 [(<column definition list>)]
)
[WITH HOLDOUT (<holdout-specifier> [OR <holdout-specifier>])]
[REPEATABLE(<holdout seed>)]
<holdout-specifier>::= <holdout-maxpercent> PERCENT | <holdout-maxcases> CASES
Arguments
structure

A unique name for the structure.

 38

column definition list

A comma-separated list of column definitions.

holdout-maxpercent

An integer between 1 and 100 that indicates the percentage of data to set aside for
testing.

holdout-maxcases

An integer that indicates the maximum number of cases to use for testing.

If the value specified for max cases is larger than the number of input cases, all input
cases are used for testing and a warning will be raised.

Note
If both percentage and maximum number of cases is specified, the smaller of the two limits is
used.

holdout seed

An integer used as the seed to start partitioning data.

If set to 0, the hash of the mining structure ID is used as the seed.

Note
You should specify a seed if you need to ensure that a partition can be reproduced.

Default: REPEATABLE(0)

Remarks
You define a mining structure by specifying a list of columns, optionally specifying
hierarchical relationships between the columns, and then optionally partitioning the
mining structure into training and testing data sets.
The optional SESSION keyword indicates that the structure is a temporary structure that
you can use only for the duration of the current session. When the session is terminated,
the structure, and any models based on the structure, will be deleted. To create
temporary mining structures and models, you must first set the database property,
AllowSessionMiningModels. For more information, see Data Mining Properties.
Column Definition List
You define a mining structure by including the following information for each column in
the column definition list:
• Name (mandatory)
• Data type (mandatory)
• Distribution
• List of modeling flags
• Content type (mandatory)

http://msdn.microsoft.com/en-us/library/9bc9abed-180a-4bd8-b2eb-89c62fa88110(SQL.110)�

 39

• Relationship to an attribute column (mandatory only if it applies), indicated by the
RELATED TO clause

Use the following syntax for the column definition list to define a single column:

<column name> <data type> [<Distribution>] [<Modeling Flags>]

<Content Type> [<column relationship>]

Use the following syntax for the column definition list to define a nested table column:

<column name> TABLE (<column definition list>)

For a list of the data types, content types, column distributions, and modeling flags that
you can use to define a structure column, see the following topics:
• Data Types (Data Mining)
• Content Types (Data Mining)
• Column Distributions
• Modeling Flags (Data Mining)
You can define multiple modeling flags values for a column. However, you can have only
one content type and one data type for a column.
Column Relationships
You can add a clause to any column definition statement to describe the relationship
between two columns. Analysis Services supports the use of the following <column
relationship> clause.
RELATED TO

Indicates a value hierarchy. The target of a RELATED TO column can be a key column in
a nested table, a discretely-valued column in the case row, or another column with a
RELATED TO clause, which indicates a deeper hierarchy.

Holdout Parameters
When you specify holdout parameters, you create a partition of the structure data. The
amount that you specify for holdout is reserved for testing, and the remaining data is
used for training. By default, if you create a mining structure by using SQL Server Data
Tools (SSDT), a holdout partition is created for you that contains 30 percent testing data
and 70 percent training data. For more information, see Partitioning Data into Training
and Testing Sets (Analysis Services - Data Mining).
If you create a mining structure by using Data Mining Extensions (DMX), you must
manually specify that a holdout partition be created.

The ALTER MINING STRUCTURE statement does not support holdout.
You can specify up to three holdout parameters. If you specify both a maximum number
of holdout cases and a holdout percentage, a percentage of cases are reserved until the
maximum cases limit is reached. You specify the percentage of holdout as an integer
followed by the PERCENT keyword, and specify the maximum number of cases as an

Note

http://msdn.microsoft.com/en-us/library/4af5b7db-790b-459c-b2b4-00f0cf6b5ce4(SQL.110)�
http://msdn.microsoft.com/en-us/library/2dacd968-70e8-4993-88b6-a6d36024a4e4(SQL.110)�
http://msdn.microsoft.com/en-us/library/87e700de-32be-4bc8-b01d-ba4ee1ab48de(SQL.110)�
http://msdn.microsoft.com/en-us/library/8826d5ce-9ba8-4490-981b-39690ace40a4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5798fa48-ef3c-4e97-a17c-38274970fccd(SQL.110)�
http://msdn.microsoft.com/en-us/library/5798fa48-ef3c-4e97-a17c-38274970fccd(SQL.110)�

 40

integer followed by the CASES keyword. You can combine the conditions in any order, as
shown in the following examples:

WITH HOLDOUT (20 PERCENT)

WITH HOLDOUT (2000 CASES)

WITH HOLDOUT (20 PERCENT OR 2000 CASES)

WITH HOLDOUT (2000 CASES OR 20 PERCENT)

The holdout seed controls the starting point of the process that randomly assigns cases
to either the training or testing data sets. By setting a holdout seed, you can ensure that
the partition can be repeated. If you do not specify a holdout seed, Analysis Services
uses the name of the mining structure to create a seed. If you rename the structure, the
seed value will change. The holdout seed parameter can be used with either or both of
the other holdout parameters.

Because the partition information is cached with the training data, to use holdout,
you must ensure that the CacheMode property of the mining structure is set to
KeepTrainingData. This is the default setting in Analysis Services for new mining
structures. Changing the CacheMode property to ClearTrainingCases on an
existing mining structure that contains a holdout partition will not affect any
mining models that have been processed. However, if
T:Microsoft.AnalysisServices.MiningStructureCacheMode is not set to
KeepTrainingData, holdout parameters will have no effect. This means that all
the source data will be used for training and no test set will be available. The
definition of the partition is cached with the structure; if you clear the cache of
training cases, you also clear the cache of test data, and the definition of the
holdout set.

Examples
The following examples demonstrate how to create a mining structure with holdout by
using DMX.
Example 1: Adding a Structure with No Training Set
The following example creates a new mining structure called New Mailing without
creating any associated mining models, and without using holdout. To learn how to add
a mining model to the structure, see ALTER MINING STRUCTURE (DMX).

CREATE MINING STRUCTURE [New Mailing]

(

 CustomerKey LONG KEY,

 Gender TEXT DISCRETE,

 [Number Cars Owned] LONG DISCRETE,

 [Bike Buyer] LONG DISCRETE

Note

 41

)

Example 2: Specifying Holdout Percentage and Seed
The following clause can be added after the column definition list to define a data set
that can be used for testing all mining models associated with the mining structure. The
statement will create a test set that is 25 percent of the total input cases, without a limit
on the maximum number of cases. 5000 is used as the seed for creating the partition.
When you specify a seed, the same cases will be chosen for the test set each time you
process the mining structure, so long as the underlying data does not change.

CREATE MINING STRUCTURE [New Mailing]

(

 CustomerKey LONG KEY,

 Gender TEXT DISCRETE,

 [Number Cars Owned] LONG DISCRETE,

 [Bike Buyer] LONG DISCRETE

)

WITH HOLDOUT(25 PERCENT) REPEATABLE(5000)

Example 3: Specifying Holdout Percentage and Max Cases
The following clause will create a test set that contains either 25 percent of the total
input cases, or 2000 cases, whichever is less. Because 0 is specified as the seed, the name
of the mining structure is used to create the seed that is used to begin sampling of the
input cases.

CREATE MINING STRUCTURE [New Mailing]

(

 CustomerKey LONG KEY,

 Gender TEXT DISCRETE,

 [Number Cars Owned] LONG DISCRETE,

 [Bike Buyer] LONG DISCRETE

)

WITH HOLDOUT(25 PERCENT OR 2000 CASES) REPEATABLE(0)

See Also
Data Mining Extensions (DMX) Data Definition Statements
Data Mining Extensions (DMX) Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference

 42

ALTER MINING STRUCTURE
Creates a new mining model that is based on an existing mining structure. When you
use the ALTER MINING STRUCTURE statement to create a new mining model, the
structure must already exist. In contrast, when you use the statement, CREATE MINING
MODEL (DMX), you create a model and automatically generate its underlying mining
structure at the same time.
Syntax

ALTER MINING STRUCTURE <structure>
ADD MINING MODEL <model>
(
 <column definition list>
 [(<nested column definition list>) [WITH FILTER (<nested filter criteria>)]]
)
USING <algorithm> [(<parameter list>)]
[WITH DRILLTHROUGH]
[,FILTER(<filter criteria>)]
Arguments
structure

The name of the mining structure to which the mining model will be added.

model

A unique name for the mining model.

column definition list

A comma-separated list of column definitions.

nested column definition list

A comma-separated list of columns from a nested table, if applicable.

nested filter criteria

A filter expression that is applied to the columns in a nested table.

algorithm

The name of a data mining algorithm, as defined by the provider.

Note
A list of the algorithms supported by the current provider can be retrieved by
using DMSCHEMA_MINING_SERVICES Rowset. To view the algorithms supported in the
current instance of Analysis Services, see Data Mining Properties.

http://msdn.microsoft.com/en-us/library/4a672f2f-d637-4def-a572-c18556f83d34(SQL.110)�
http://msdn.microsoft.com/en-us/library/9bc9abed-180a-4bd8-b2eb-89c62fa88110(SQL.110)�

 43

parameter list

Optional. A comma-separated list of provider-defined parameters for the algorithm.

filter criteria

A filter expression that is applied to the columns in the case table.

Remarks
If the mining structure contains composite keys, the mining model must include all the
key columns that are defined in the structure.
If the model does not require a predictable column, for example, models that are built by
using the Microsoft Clustering and Microsoft Sequence Clustering algorithms, you do
not have to include a column definition in the statement. All the attributes in the
resulting model will be treated as inputs.
In the WITH clause that applies to the case table, you can specify options for both
filtering and drillthrough:
• Add the FILTER keyword and a filter condition. The filter applies to the cases in the

mining model.
• Add the DRILLTHROUGH keyword to enable users of the mining model to drill

down from model results to the case data. In Data Mining Extensions (DMX),
drillthrough can be enabled only when you create the model.

To use both case filtering and drillthrough, you combine the keywords in a single WITH
clause by using the syntax shown in the following example:
WITH DRILLTHROUGH, FILTER(Gender = 'Male')
Column Definition List
You define the structure of a model by specifying a column definition list that includes
the following information for each column:
• Name (mandatory)
• Alias (optional)
• Modeling flags
• Prediction request, which indicates to the algorithm whether the column contains a

predictable value, indicated by the PREDICT or PREDICT_ONLY clause
Use the following syntax for the column definition list to define a single column:

<structure column name> [AS <model column name>] [<modeling flags>]

[<prediction>]

Column Name and Alias
The column name that you use in the column definition list must be the name of the
column as it is used in the mining structure. However, you can optionally define an alias
to represent the structure column in the mining model. You can also create multiple
column definitions for the same structure column, and assign a different alias and
prediction usage to each copy of the column. By default, the structure column name is

 44

used if you do not define an alias. For more information, see How to: Create an Alias for
a Model Column.
For nested table columns, you specify the name of the nested table, specify the data type
as TABLE, and then provide the list of nested columns to include in the model, enclosed
in parentheses.
You can define a filter expression that is applied to the nested table by affixing a filter
criteria expression after the nested table column definition.
Modeling Flags
Analysis Services supports the following modeling flags for use in mining model
columns:

The NOT_NULL modeling flag applies to the mining structure column. For more
information, see CREATE MINING STRUCTURE (DMX).

Term Definition

REGRESSOR Indicates that the algorithm can use the
specified column in the regression formula
of regression algorithms.

MODEL_EXISTENCE_ONLY Indicates that the values for the attribute
column are less important than the
presence of the attribute.

You can define multiple modeling flags for a column. For more information about how to
use modeling flags, see Modeling Flags (DMX).
Prediction Clause
The prediction clause describes how the prediction column is used. The following table
lists the possible clauses.

PREDICT This column can be predicted by the
model, and its values can be used as input
to predict the value of other predictable
columns.

PREDICT_ONLY This column can be predicted by the
model, but its values cannot be used in
input cases to predict the value of other
predictable columns.

Note

http://msdn.microsoft.com/en-us/library/c80ebe66-a8f8-4f24-9fe8-8288de9d13bc(SQL.110)�
http://msdn.microsoft.com/en-us/library/c80ebe66-a8f8-4f24-9fe8-8288de9d13bc(SQL.110)�

 45

Filter Criteria Expressions
You can define a filter that restricts the cases that are used in the mining model. The
filter can be applied to either the columns in the case table or the rows in the nested
table, or to both.
Filter criteria expressions are simplified DMX predicates, similar to a WHERE clause. Filter
expressions are restricted to formulas that use basic mathematical operators, scalars, and
column names. The exception is the EXISTS operator; it evaluates to true if at least one
row is returned for the subquery. Predicates can be combined by using the common
logical operators: AND, OR, and NOT.
For more information about filters used with mining models, see Creating Filters for
Mining Models (Analysis Services - Data Mining).

Columns in a filter must be mining structure columns. You cannot create a filter
on a model column or an aliased column.

For more information about DMX operators and syntax, see Data Mining Extensions
(DMX) Statement Reference.
Parameter Definition List
You can adjust the performance and functionality of a model by adding algorithm
parameters to the parameter list. The parameters that you can use depend on the
algorithm that you specify in the USING clause. For a list of parameters that are
associated with each algorithm, see Data Mining Algorithms.
The syntax of the parameter list is as follows:

[<parameter> = <value>, <parameter> = <value>,…]

Example 1: Add a Model to a Structure
The following example adds a Naive Bayes mining model to the New Mailing mining
structure and limits the maximum number of attribute states to 50.

ALTER MINING STRUCTURE [New Mailing]

ADD MINING MODEL [Naive Bayes]

(

 CustomerKey,

 Gender,

 [Number Cars Owned],

 [Bike Buyer] PREDICT

)

USING Microsoft_Naive_Bayes (MAXIMUM_STATES = 50)

Example 2: Add a Filtered Model to a Structure

Note

http://msdn.microsoft.com/en-us/library/0f29c19c-4be3-4bc7-ab60-f4130a10d59c(SQL.110)�
http://msdn.microsoft.com/en-us/library/0f29c19c-4be3-4bc7-ab60-f4130a10d59c(SQL.110)�
http://msdn.microsoft.com/en-us/library/fab47643-5bfd-424e-a0f7-69e665db6bab(SQL.110)�
http://msdn.microsoft.com/en-us/library/fab47643-5bfd-424e-a0f7-69e665db6bab(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1fc83b-b98c-437e-bf53-4ff001b92d64(SQL.110)�

 46

The following example adds a mining model, Naive Bayes Women, to the New Mailing
mining structure. The new model has the same basic structure as the mining model that
was added in example 1; however, this model restricts the cases from the mining
structure to female customers over the age of 50.

ALTER MINING STRUCTURE [New Mailing]

ADD MINING MODEL [Naive Bayes Women]

(

 CustomerKey,

 Gender,

 [Number Cars Owned],

 [Bike Buyer] PREDICT

)

USING Microsoft_Naive_Bayes

WITH FILTER([Gender] = 'F' AND [Age] >50)

Example 3: Add a Filtered Model to a Structure with a Nested Table
The following example adds a mining model to a modified version of the market basket
mining structure. The mining structure used in the example has been modified to add a
Region column, which contains attributes for customer region, and an Income Group
column, which categorizes customer income by using the values High, Moderate, or
Low.
The mining structure also includes a nested table that lists the items that the customer
has purchased.
Because the mining structure contains a nested table, you can define a filter on the case
table, the nested table, or both. This example combines a case filter and nested row filter
to restrict the cases to wealthy European customers who purchased one of the road tire
models.

ALTER MINING STRUCTURE [Market Basket with Region and Income]

ADD MINING MODEL [Decision Trees]

(

 CustomerKey,

 Region,

 [Income Group],

 [Product] PREDICT (Model)

WITH FILTER (EXISTS (SELECT * FROM [v Assoc Seq Line Items] WHERE

 [Model] = 'HL Road Tire' OR

 [Model] = 'LL Road Tire' OR

 47

 [Model] = 'ML Road Tire')

)

) WITH FILTER ([Income Group] = 'High' AND [Region] = 'Europe')

USING Microsoft_Decision Trees

See Also
Data Mining Extensions (DMX) Data Definition Statements
Data Mining Extensions (DMX) Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference

CREATE MINING MODEL
Creates both a new mining model and a mining structure in the database. You can create
a model either by defining the new model in the statement, or by using the Predictive
Model Markup Language (PMML). This second option is for advanced users only.
The mining structure is named by appending "_structure" to the model name, which
ensures that the structure name is unique from the model name.
To create a mining model for an existing mining structure, use the ALTER Mining
STRUCTURE statement.
Syntax

CREATE [SESSION] MINING MODEL <model>
(
 [(<column definition list>)]
)
USING <algorithm> [(<parameter list>)] [WITH DRILLTHROUGH]
CREATE MINING MODEL <model> FROM PMML <xml string>
Arguments
model

A unique name for the model.

column definition list

A comma-separated list of column definitions.

algorithm

The name of a data mining algorithm, as defined by the current provider.

Note
A list of the algorithms supported by the current provider can be retrieved by
using DMSCHEMA_MINING_SERVICES Rowset. To view the algorithms supported in the

http://msdn.microsoft.com/en-us/library/4a672f2f-d637-4def-a572-c18556f83d34(SQL.110)�

 48

current instance of Analysis Services, see Data Mining Properties.

parameter list

Optional. A comma-separated list of provider-defined parameters for the algorithm.

XML string

(For advanced use only.) An XML-encoded model (PMML). The string must be enclosed
in single quotation marks (').

The SESSION clause lets you create a mining model that is automatically removed from
the server when the connection closes or the session times out. SESSION mining models
are useful because they do not require the user to be a database administrator, and they
only use disk space for as long as the connection is open.
The WITH DRILLTHROUGH clause enables drill through on the new mining model.
Drillthrough can only be enabled when you create the model. For some model types,
drillthrough is required in order to browse the model in the custom viewer. Drillthrough
is not required for prediction or for browsing the model by using the Microsoft Generic
Content Tree Viewer.
The CREATE MINING MODEL statement creates a new mining model that is based on
the column definition list, the algorithm, and the algorithm parameter list.
Column Definition List
You define the structure of a model that uses the column definition list by including the
following information for each column:
• Name (mandatory)
• Data type (mandatory)
• Distribution
• List of modeling flags
• Content type (mandatory)
• Prediction request, which indicates to the algorithm to predict this column, indicated

by the PREDICT or PREDICT_ONLY clause
• Relationship to an attribute column (mandatory only if it applies), indicated by the

RELATED TO clause
Use the following syntax for the column definition list, to define a single column:
<column name> <data type> [<Distribution>] [<Modeling Flags>]

<Content Type> [<prediction>] [<column relationship>]

Use the following syntax for the column definition list, to define a nested table column:

<column name> TABLE [<prediction>] (<non-table column definition

list>)

Except for modeling flags, you can use no more than one clause from a particular group
to define a column. You can define multiple modeling flags for a column.

http://msdn.microsoft.com/en-us/library/9bc9abed-180a-4bd8-b2eb-89c62fa88110(SQL.110)�

 49

For a list of the data types, content types, column distributions, and modeling flags that
you can use to define a column, see the following topics:
• Data Types (Data Mining)
• Content Types (Data Mining)
• Column Distributions
• Modeling Flags (Data Mining)
You can add a clause to the statement to describe the relationship between two
columns. Analysis Services supports the use of the following <Column relationship>
clause.
RELATED TO

This form indicates a value hierarchy. The target of a RELATED TO column can be a key
column in a nested table, a discretely-valued column in the case row, or another column
with a RELATED TO clause, which indicates a deeper hierarchy.

Use a prediction clause to describe how the prediction column is used. The following
table describes the two possible clauses.

<prediction> clause Description

PREDICT This column can be predicted by the
model, and it can be supplied in input
cases to predict the value of other
predictable columns.

PREDICT_ONLY This column can be predicted by the
model, but its values cannot be used in
input cases to predict the value of other
predictable columns.

Parameter Definition List
You can use the parameter list to adjust the performance and functionality of a mining
model. The syntax of the parameter list is as follows:

[<parameter> = <value>, <parameter> = <value>,…]

For a list of the parameters that are associated with each algorithm, see Data Mining
Algorithms.
Remarks
If you want to create a model that has a built-in testing data set, you should use the
statement CREATE MINING STRUCTURE followed by ALTER MINING STRUCTURE.
However, not all model types support a holdout data set. For more information,
see CREATE MINING STRUCTURE (DMX).

http://msdn.microsoft.com/en-us/library/4af5b7db-790b-459c-b2b4-00f0cf6b5ce4(SQL.110)�
http://msdn.microsoft.com/en-us/library/2dacd968-70e8-4993-88b6-a6d36024a4e4(SQL.110)�
http://msdn.microsoft.com/en-us/library/87e700de-32be-4bc8-b01d-ba4ee1ab48de(SQL.110)�
http://msdn.microsoft.com/en-us/library/8826d5ce-9ba8-4490-981b-39690ace40a4(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1fc83b-b98c-437e-bf53-4ff001b92d64(SQL.110)�
http://msdn.microsoft.com/en-us/library/ed1fc83b-b98c-437e-bf53-4ff001b92d64(SQL.110)�

 50

For a walkthrough of how to create a mining model by using the CREATEMODEL
statement, see Time Series Prediction DMX Tutorial.
Naive Bayes Example
The following example uses the Microsoft Naive Bayes algorithm to create a new mining
model. The Bike Buyer column is defined as the predictable attribute.

CREATE MINING MODEL [NBSample]

(

 CustomerKey LONG KEY,

 Gender TEXT DISCRETE,

 [Number Cars Owned] LONG DISCRETE,

 [Bike Buyer] LONG DISCRETE PREDICT

)

USING Microsoft_Naive_Bayes

Association Model Example
The following example uses the Microsoft Association algorithm to create a new mining
model. The statement takes advantage of the ability to nest a table inside the model
definition by using a table column. The model is modified by using the
MINIMUM_PROBABILITY and MINIMUM_SUPPORT parameters.

CREATE MINING MODEL MyAssociationModel (

 OrderNumber TEXT KEY,

 [Products] TABLE PREDICT (

 [Model] TEXT KEY

)

)

USING Microsoft_Association_Rules (Minimum_Probability = 0.1,

MINIMUM_SUPPORT = 0.01)

Sequence Clustering Example
The following example uses the Microsoft Sequence Clustering algorithm to create a new
mining model. Two keys are used to define the model. The OrderNumber column is used
as the case key, and specifies individual orders. The LineNumber column is used as the
nested table key, and specifies the sequence in which items were added to an order.

CREATE MINING MODEL BuyingSequence (

 [Order Number] TEXT KEY,

 [Products] TABLE

 (

 [Line Number] LONG KEY SEQUENCE,

http://msdn.microsoft.com/en-us/library/38ea7c03-4754-4e71-896a-f68cc2c98ce2(SQL.110)�

 51

 [Model] TEXT DISCRETE PREDICT

)

)

USING Microsoft_Sequence_Clustering

Time Series Example
The following example uses the Microsoft Times Series algorithm to create a new mining
model by using the ARTxp algorithm. ReportingDate is the key column for the time
series and ModelRegion is the key column for the data series. In this example, it is
assumed that the periodicity of the data is every 12 months. Therefore, the
PERIODICITY_HINT parameter is set to 12.

You must specify the PERIODICITY_HINT parameter by using brace characters.
Moreover, because the value is a string, it must be enclosed in single quotation
marks: "{<numeric value>}".

CREATE MINING MODEL SalesForecast (

 ReportingDate DATE KEY TIME,

 ModelRegion TEXT KEY,

 Amount LONG CONTINUOUS PREDICT,

 Quantity LONG CONTINUOUS PREDICT

)

USING Microsoft_Time_Series (PERIODICITY_HINT = '{12}', FORECAST_METHOD

= 'ARTXP')

See Also
Data Mining Extensions (DMX) Data Definition Statements
Data Mining Extensions (DMX) Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference

DROP MINING STRUCTURE
Drops the specified mining structure from the database. All the mining models that are
associated with the structure are also dropped from the database.
Syntax

DROP MINING STRUCTURE <structure>
Arguments
structure

A structure identifier.

Note

 52

Examples
The following example drops the New Mailing mining structure from the database.

DROP MINING STRUCTURE [New Mailing]

See Also
Data Mining Extensions (DMX) Statement Reference
Data Mining Extensions (DMX) Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference

DROP MINING MODEL
Deletes a mining model from the database.
Syntax

DROP MINING MODEL <model >
Arguments
model

A model identifier.

Examples
The following sample code drops the mining model NBSample.

DROP MINING MODEL [NBSample]

See Also
Data Mining Extensions (DMX) Statement Reference
Data Mining Extensions (DMX) Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference

EXPORT
Extracts a mining model or mining structure object from the server to an Analysis
Services Backup File (.abf).
Syntax

EXPORT <object type> <object name>[, <object name>] [<object type>
<object name>[, <object name]] TO <filename> [WITH DEPENDENCIES]
Arguments
object type

Optional. The type of the object to export (either mining model or mining structure).

 53

object name

Optional. The name of the object to export.

filename

The name and location of the file to export as a string.

Remarks
If the statement specifies a mining model, the resultant file will also contain an
associated mining structure. If the statement specifies WITH DEPENDENCIES, all objects
required to process the object (for example, the data source and data source view) are
included in the .abf file.
You must be a database or server administrator to export or import objects from a
Microsoft SQL Server Analysis Services database.
Export Mining Structure Example
The following example exports the Targeted Mailing and Forecasting mining structures,
and the Association mining model to a specific file location. Because the Association
model is part of the Market Basket mining structure, the example also exports the
Market Basket structure. Any other mining models that may exist as part of the Market
Basket mining structure will not be exported because the Association model was
exported using MINING MODEL, not MINING STRUCTURE.

EXPORT MINING STRUCTURE [Targeted Mailing], [Forecasting] MINING MODEL

Association TO 'C:\TM_NEW.abf'

Export Mining Model Example
The following example exports the Association mining model to a specified file location.
Because the statement specifies WITH DEPENDENCIES, the data source and data source
view objects are also included in the .abf file.

EXPORT MINING MODEL [Association] TO 'C:\Association_NEW.abf' WITH

DEPENDENCIES

See Also
Data Mining Extensions (DMX) Statement Reference
Data Mining Extensions (DMX) Data Manipulation Statements
DMX Statement Reference
IMPORT (DMX)
Exporting and Importing Data Mining Projects (Analysis Services - Data Mining)

IMPORT
Loads a mining model or mining structure from an Analysis Services Backup File (.abf) file
onto the server.
Syntax

http://msdn.microsoft.com/en-us/library/10a83b13-2640-4ff5-80c8-a35e1d692908(SQL.110)�

 54

IMPORT FROM <filename>
Arguments
filename

A string containing the name and location of the file to import.

Remarks
If no objects are specified, the entire contents of the .dmb file will be loaded. If the .dmb
file includes a database that does not exist on the server, the database will be created.
You must be a database or server administrator to export or import objects.
Import from File Example
The following example imports the entire contents of the file containing the association
model and structure onto the current server.
IMPORT FROM 'C:\TEMP\Association_NEW.dmb'

See Also
Data Mining Extensions (DMX) Statement Reference
Data Mining Extensions (DMX) Data Manipulation Statements
DMX Statement Reference
EXPORT (DMX)
Exporting and Importing Data Mining Projects (Analysis Services - Data Mining)

SELECT INTO
Creates a new mining model that is built on the mining structure of an existing mining
model. The SELECT INTO statement creates the new mining model by copying schema
and other information that is not specific to the actual algorithm.
Syntax

SELECT INTO <new model>
USING <algorithm> [(<parameter list>)] [WITH DRILLTHROUGH[,]
[FILTER(<expression>)]]
FROM <existing model>
Arguments
new model

A unique name for the new model that is being created.

algorithm

The provider-defined name of a data mining algorithm.

http://msdn.microsoft.com/en-us/library/10a83b13-2640-4ff5-80c8-a35e1d692908(SQL.110)�

 55

parameter list

Optional. A comma-separated list of provider-defined parameters for the algorithm.

expression

An expression that evaluates to a valid filter condition on the training data. For more
information about expressions that can be used as filters, see Creating Filters for
Mining Models (Analysis Services - Data Mining).

existing model

The name of the existing model to be copied.

Remarks
If the existing model is trained, the new model is automatically processed when this
statement executes. Otherwise, the new model remains unprocessed.
The SELECT INTO statement works only if the structure of the existing model is
compatible with the algorithm of the new model. Therefore, this statement is most useful
for rapidly creating and testing models that are based on the same algorithm. If you
change the algorithm type, the new algorithm must support the data type of each
column that is in the existing model, or an error might occur when the model is
processed,
The WITH DRILLTHROUGH clause enables drillthrough on the new mining model.
Drillthrough can only be enabled when you create the model.
Example 1: Altering the Parameters of the Model
The following example creates a new mining model based on an existing mining model,
TM_Clustering, which you create in the Basic Data Mining Tutorial. In the new model,
the CLUSTER_COUNT parameter is modified so that a maximum of five clusters will exist
in the new model. In contrast, the existing model uses the default value, which is 10.

SELECT * INTO [New_Clustering]

USING [Microsoft_Clustering] (CLUSTER_COUNT = 5)

FROM [TM Clustering]

Example 2: Adding a Filter to the Model
The following example creates a new mining model based on an existing mining model,
and adds a filter on the model. The filter restricts the training data to only those
customers who live in a particular region.

SELECT * INTO [Clustering Europe Region]

USING [Microsoft_Clustering] WITH FILTER(Region='Europe')

FROM [TM Clustering]

Filters that are applied to the case table can be altered by using the SELECT INTO
statement as shown in this example; however, if the original model contains a

Note

http://msdn.microsoft.com/en-us/library/0f29c19c-4be3-4bc7-ab60-f4130a10d59c(SQL.110)�
http://msdn.microsoft.com/en-us/library/0f29c19c-4be3-4bc7-ab60-f4130a10d59c(SQL.110)�
http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�

 56

filter on a nested table, the nested table filter cannot be altered or removed by
using this syntax, but is copied unchanged from the original model. To create a
model with a different filter on a nested table, use the ALTER STRTUCTURE...ADD
MODEL syntax.

See Also
Data Mining Extensions (DMX) Statement Reference
Data Mining Extensions (DMX) Data Definition Statements
Data Mining Extensions (DMX) Statement Reference

Data Mining Extensions (DMX) Data Manipulation
Statements
The following table lists the statements that are part of the data mining data
manipulation language (DML) in Data Mining Extensions (DMX).

Topic Description

Data Mining Extensions (DMX) Statement
Reference

Clears the trained content from a mining
model.

INSERT INTO (DMX) Trains a mining model.

SELECT (DMX) Browses a mining model.

<source data query> Queries data sources for both INSERT
INTO and SELECT statements.

UPDATE (DMX) Changes the content in the mining model.

See Also
Data Mining Extensions (DMX) Data Definition Statements
Data Mining Extensions (DMX) Statement Reference

DELETE
Clears a mining model, a mining structure, or a mining structure and all its associated
mining models, depending on the Data Mining Extensions (DMX) clauses that you use.
Syntax

DELETE FROM [MINING MODEL] <model>[.CONTENT]
DELETE FROM [MINING STRUCTURE] <structure>[.CONTENT]|[.CASES]

 57

Arguments
model

A model identifier.

structure

A structure identifier.

Remarks
If you do not specify MINING MODEL or MINING STRUCTURE, Analysis Services
searches for the object type based on the name, and processes the correct object. If the
server contains a mining structure and a mining model that have the same name, an
error is returned.
The following table describes the result of using different forms of the syntax.

Statement Result

DELETE FROM MINING STRUCTURE
<structure>
or
DELETE FROM MINING STRUCTURE
<structure>.CONTENT

Performs ProcessClear on the mining
structure. All the content is cleared from
the mining structure and its associated
mining models.

DELETE FROM MINING STRUCTURE
<structure>.CASES

Performs ProcessClearStructureOnly on
the mining structure. All the content is
cleared from the mining structure, leaving
its associated mining models intact.
Drillthrough on the associated mining
models will fail after the mining structure
has been cleared.

DELETE FROM MINING MODEL <model>
or
DELETE FROM MINING MODEL
<model>.CONTENT

Performs ProcessClear on the mining
model but leaves the state values intact.
State values are the possible states of a
column. For example, state values for a
gender column would be male and female.

For more information about processing types, see Data Mining Extensions (DMX)
Statement Reference.
Examples
The following example removes all of the content from the NB_Sample model.

DELETE FROM NB_Sample.CONTENT

See Also

http://msdn.microsoft.com/en-us/library/5d898123-a635-402a-be86-8249d7304fa4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5d898123-a635-402a-be86-8249d7304fa4(SQL.110)�

 58

Data Mining Extensions (DMX) Data Definition Statements
Data Mining Extensions (DMX) Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference

INSERT INTO
Processes the specified data mining object. For more information about processing
mining models and mining structures, see Data Mining Extensions (DMX) Statement
Reference.
If a mining structure is specified, the statement processes the mining structure and all its
associated mining models. If a mining model is specified, the statement processes just
the mining model.
Syntax

INSERT INTO [MINING MODEL]|[MINING STRUCTURE] <model>|<structure> (<mapped
model columns>) <source data query>
INSERT INTO [MINING MODEL]|[MINING STRUCTURE]
<model>|<structure>.COLUMN_VALUES (<mapped model columns>) <source data
query>
Arguments
model

A model identifier.

structure

A structure identifier.

mapped model columns

A comma-separated list of column identifiers and nested identifiers.

source data query

The source query in the provider-defined format.

Remarks
If you do not specify MINING MODEL or MINING STRUCTURE, Analysis Services
searches for the object type based on the name, and processes the correct object. If the
server contains a mining structure and a mining model that have the same name, an
error is returned.
By using the second syntax form, INSERT INTO <object>.COLUMN_VALUES, you can
insert data directly into the model columns without training the model. This method
provides column data to the model in a concise, ordered manner that is useful when you
work with datasets that contain hierarchies or ordered columns.

http://msdn.microsoft.com/en-us/library/f7331261-6f1c-4986-b2c7-740f4b92ca44(SQL.110)�
http://msdn.microsoft.com/en-us/library/f7331261-6f1c-4986-b2c7-740f4b92ca44(SQL.110)�

 59

If you use INSERT INTO with a mining model or a mining structure, and leave off the
<mapped model columns> and <source data query> arguments, the statement behaves
like ProcessDefault, using bindings that already exist. If bindings do not exist, the
statement returns an error. For more information about ProcessDefault, see Processing
Options. The following example shows the syntax:

INSERT INTO [MINING MODEL] <model>

If you specify MINING MODEL and provide mapped columns and a source data query,
the model and associated structure is processed.
The following table provides a description of the result of different forms of the
statement, depending on the state of the objects.

Statement State of objects Result

INSERT INTO MINING
MODEL <model>

Mining structure is
processed.

Mining model is processed.

 Mining structure is
unprocessed.

Mining model and mining
structure are processed.

 Mining structure contains
additional mining models.

Process fails. You must
reprocess the structure, and
the associated mining
models.

INSERT INTO MINING
STRUCTURE <structure>

Mining structure is
processed or unprocessed.

Mining structure and
associated mining models
are processed.

INSERT INTO MINING
MODEL <model> that
contains a source query
or
INSERT INTO MINING
STRUCTURE <structure>
that contains a source query

Either the structure or the
model already contains
content.

Process fails. You must clear
the objects before you
perform this operation, by
using DELETE (DMX).

Mapped Model Columns
By using the <mapped model columns> element, you can map the columns from the
data source to the columns in your mining model. The <mapped model columns>
element has the following form:
<column identifier> | SKIP | <table identifier> (<column identifier> |

SKIP), ...

http://msdn.microsoft.com/en-us/library/2e858c74-ad3e-45f1-8745-efe2c0c3a7fa(SQL.110)�
http://msdn.microsoft.com/en-us/library/2e858c74-ad3e-45f1-8745-efe2c0c3a7fa(SQL.110)�

 60

By using SKIP, you can exclude certain columns that must exist in the source query, but
that do not exist in the mining model. SKIP is useful when you do not have control over
the columns that are included in the input rowset. If you are writing your own
OPENQUERY, the better practice is to omit the column from the SELECT column list
instead of using SKIP.
SKIP is also useful when a column from the input rowset is needed to perform a join, but
the column is not used by the mining structure. A typical example of this is a mining
structure and mining model that contain a nested table. The input rowset for this
structure will have a foreign key column that is used to create a hierarchical rowset using
the SHAPE clause, but the foreign key column is almost never used in the model.
The syntax for SKIP requires that you insert SKIP at the position of the individual column
in the input rowset that has no corresponding mining structure column. For example, in
the nested table example below, OrderNumber must be selected in the APPEND clause
so that it can be used in the RELATE clause to specify the join; however, you do not want
to insert the OrderNumber data into the nested table in the mining structure. Therefore,
the example uses the SKIP keyword instead of OrderNumber in the INSERT INTO
argument.
Source Data Query
The <source data query> element can include the following data source types:
• OPENQUERY
• OPENROWSET
• SHAPE
• Any Analysis Services query that returns a rowset
For more information about data source types, see <source data query>.
Basic Example
The following example uses OPENQUERY to train a Naive Bayes model based on the
targeted mailing data in the database.

INSERT INTO NBSample (CustomerKey, Gender, [Number Cars Owned],

 [Bike Buyer])

OPENQUERY([AdventureWorksDW2012],'Select CustomerKey, Gender,

[NumberCarsOwned], [BikeBuyer]

FROM [vTargetMail]')

Nested Table Example
The following example uses SHAPE to train an association mining model that contains a
nested table. Note that the fist line contains SKIP instead OrderNumber, which is
required in the SHAPE_APPEND statement but is not used in the mining model.

INSERT INTO MyAssociationModel

 ([OrderNumber],[Models] (SKIP, [Model])

 61

)

SHAPE {

 OPENQUERY([AdventureWorksDW2012],'SELECT OrderNumber

 FROM vAssocSeqOrders ORDER BY OrderNumber')

} APPEND (

 {OPENQUERY([AdventureWorksDW2012],'SELECT OrderNumber, model FROM

 dbo.vAssocSeqLineItems ORDER BY OrderNumber, Model')}

 RELATE OrderNumber to OrderNumber)

AS [Models]

See Also
Data Mining Extensions (DMX) Data Definition Statements
Data Mining Extensions (DMX) Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference

SELECT
The SELECT statement in Data Mining Extensions (DMX) is used for the following tasks in
data mining:
• Browsing the content of an existing mining model
• Creating predictions from an existing mining model
• Creating a copy of an existing mining model
• Browsing the mining structure
Although the full syntax of this statement is complex, the primary clauses used for
browsing a model and its underlying structure can be summarized as follows:

SELECT [FLATTENED] [TOP <n>] <select list>

FROM <model/structure>[.aspect]

[WHERE <condition expression>]

[ORDER BY <expression>[DESC|ASC]]

FLATTENED
Some data mining clients cannot accept result sets in hierarchical format from a data
mining provider. The client may lack the ability to handle a hierarchy, or it may have to
store the results in a single denormalized table. To convert the data from nested tables
to flattened tables, you must request that the query results be flattened.
To flatten the query results, use the SELECT syntax with the FLATTENED option, as
shown in the following example:
SELECT FLATTENED <select list> FROM ...

 62

TOP <n> and ORDER BY
You can order the results of a query by using an expression, and can then return a subset
of the results by using a combination of the ORDER BY and TOP clauses. This is useful in
a scenario such as targeted mailing where you only want to send results to the most
likely respondents. You could order the results of a target mailing prediction query by
the prediction probability, and then only return the top <n> results.
Select List
The <select list> can include scalar column references, prediction functions, and
expressions. The options that are available depend on the algorithm, and the following
contexts:
• Whether you are querying a mining structure or a mining model
• Whether you are querying content or cases
• Whether source data is a relational table or a cube
• If you are making predictions
In many cases, you can use aliases, or create simple expressions based on the items in
the select list. For example, the following example shows a simple expression on model
columns:

SELECT [CustomerID], [Last Name] + ', ' + [FirstName] AS FullName

FROM <model>.CASES

The following example creates an alias for a column that contains the results of a
prediction function:

SELECT Predict([Column1], 'Value') as Column1Prediction

FROM MyModel

JOIN <source data query>

WHERE
You can limit the cases that are returned by the query by using a WHERE clause. The
WHERE clause specifies that column references in the WHERE expression must have the
same semantics as column references in the <select list> of the SELECT statement, and
can only return a Boolean expression. The syntax for the WHERE clause is as follows

WHERE < condition expression >

The select list and WHERE clause of a SELECT statement must follow the following rules:
• The select list must contain an expression that does not return a Boolean result. You

can modify the expression, but the expression must return non-Boolean results.
• The WHERE clause must contain an expression that returns a Boolean result. You can

modify the clause, but it must return a Boolean result.
Predictions
There are two types of syntax that you can use for creating predictions:

 63

• SELECT FROM PREDICTION JOIN
• SELECT FROM <model>
The first type of prediction enables you create complex predictions either in real time or
as a batch.
The second prediction type creates an empty prediction join on a predictable column in
a mining model, and returns the most likely state of the column. The results of this query
are completely based on the content of the mining model.
You can insert a select statement into the source query of a SELECT FROM PREDICTION
JOIN statement by using the following syntax.
SELECT FROM PREDICTION JOIN (<SELECT statement>) AS t, WHERE <SELECT

statement>

For more information about creating prediction queries, see Prediction Queries.
Clause Syntax
Because of the complexity of browsing with the SELECT statement, detailed syntax
elements and arguments are described by clause. For more information about each
clause, click a topic in the following list:
SELECT DISTINCT FROM <model> (DMX)
SELECT FROM <model>.CONTENT (DMX)
SELECT FROM <model>.CASES (DMX)
SELECT FROM <model>.SAMPLE_CASES (DMX)
SELECT FROM <model>.DIMENSION_CONTENT (DMX)
SELECT FROM PREDICTION JOIN (DMX)
SELECT FROM <model> (DMX)
SELECT FROM <structure>.CASES
See Also
Data Mining Extensions (DMX) Data Definition Statements
Data Mining Extensions (DMX) Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference
DMX Data Manipulation Statements

SELECT DISTINCT FROM <model >
Returns all possible states for the selected column in the model. The values that are
returned vary depending on whether the specified column contains discrete values,
discretized numeric values, or continuous numeric values.
Syntax

SELECT [FLATTENED] DISTINCT [TOP <n>] <expression list> FROM <model>

 64

[WHERE <condition list>][ORDER BY <expression>]
Arguments
n

Optional. An integer specifying how many rows to return.

expression list

A comma-separated list of related column identifiers (derived from the model) or
expressions.

model

A model identifier.

condition list

A condition to restrict the values that are returned from the column list.

expression

Optional. An expression that returns a scalar value.

Remarks
The SELECT DISTINCT FROM statement only works with a single column or with a set of
related columns. This clause does not work with a set of unrelated columns.
The SELECT DISTINCT FROM statement allows you to directly reference a column inside
of a nested table. For example:

<model>.<table column reference>.<column reference>

The results of the SELECT DISTINCT FROM <model> statement vary, depending on the
column type. The following table describes the supported column types and the output
from the statement.

Column type Output

Discrete The unique values in the column.

Discretized The midpoint for each discretized bucket in
the column.

Continuous The midpoint for the values in the column.

Discrete Column Example
The following code sample is based on the [TM Decision Tree] model that you create
in the Basic Data Mining Tutorial. The query returns the unique values that exist in the
discrete column, Gender.

SELECT DISTINCT [Gender]

FROM [TM Decision Tree]

http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�

 65

Example results:

Gender

F

M

For columns that contain discrete values, the results always include the Missing state,
shown as a null value.
Continuous Column Example
The following code sample returns the midpoint, minimum age, and maximum age for all
of the values in the column.
SELECT DISTINCT [Age] AS [Midpoint Age],

 RangeMin([Age]) AS [Minimum Age],

 RangeMax([Age]) AS [Maximum Age]

FROM [TM Decision Tree]

Example results:

Midpoint Age Minimum Age Maximum Age

62 26 97

The query also returns a single row of null values, to represent missing values.
Discretized Column Example
The following code sample returns the midpoint, maximum, and minimum values for
each bucket that has been created by the algorithm for the column, [Yearly Income].
To reproduce the results for this example, you must create a new mining structure that is
the same as [Targeted Mailing]. In the wizard, change the content type of the Yearly
Income column from Continuous to Discretized.

You can also change the mining model created in the Basic Mining Tutorial to
discretize the mining structure column, [Yearly Income]. For information about
how to do this, see How to: Change the Discretization of a Column in a Mining
Model. However, when you change the discretization of the column, it will force

Note

http://msdn.microsoft.com/en-us/library/3c49862b-595d-4fa4-b890-e2e1bde1d74f(SQL.110)�
http://msdn.microsoft.com/en-us/library/3c49862b-595d-4fa4-b890-e2e1bde1d74f(SQL.110)�

 66

the mining structure to be reprocessed, which will change the results of other
models that you have built using that structure.

SELECT DISTINCT [Yearly Income] AS [Bucket Average],

 RangeMin([Yearly Income]) AS [Bucket Minimum],

 RangeMax([Yearly Income]) AS [Bucket Maximum]

FROM [TM Decision Tree]

Example results:

Bucket Average Bucket Minimum Bucket Maximum

24610.7 10000 39221.41

55115.73 39221.41 71010.05

84821.54 71010.05 98633.04

111633.9 98633.04 124634.7

147317.4 124634.7 170000

You can see that the values of the [Yearly Income] column have been discretized into five
buckets, plus an additional row of null values, to represent missing values.
The number of decimal places in the results depends on the client that you use for
querying. Here they have been rounded to two decimal places, both for simplicity and to
reflect the values that are displayed in SQL Server Data Tools (SSDT).
For example, if you browse the model by using the Decision Tree viewer and click a node
that contains customers grouped by income, the following node properties are displayed
in the Tooltip:
Age >=69 AND Yearly Income < 39221.41

The minimum value of the minimum bucket and the maximum value of the
maximum bucket are just the highest and lowest observed values. Any values that
fall outside this observed range are assumed to belong to the minimum and
maximum buckets.

See Also
Data Mining Extensions (DMX) Statement Reference
DMX Data Manipulation Statements
DMX Statement Reference

Note

 67

SELECT FROM <model>.CONTENT
Returns the mining model schema rowset for the specified data mining model.
Syntax

SELECT [FLATTENED] [TOP <n>] <expression list> FROM <model>.CONTENT
[WHERE <condition expression>]
[ORDER BY <expression> [DESC|ASC]]
Arguments
n

Optional. An integer that specifies how many rows to return.

expression list

A comma-separated list of columns derived from the Content schema rowset.

model

A model identifier.

condition expression

Optional. A condition to restrict the values that are returned from the column list.

expression

Optional. An expression that returns a scalar value.

Remarks
The SELECT FROM <model>.CONTENT statement returns content that is specific to
each algorithm. For example, you might want to use the descriptions of all the rules of an
association rules model in a custom application. You can use a SELECT FROM
<model>.CONTENT statement to return values in the NODE_RULE column of the
model.
The following table lists the columns that are included in the mining model content.

Algorithms might interpret the columns differently in order to correctly represent
the content. For a description of the mining model content for each algorithm,
and tips on how to interpret and query the mining model content for each model
type, see Mining Model Content (Analysis Services - Data Mining).

CONTENT rowset column Description

MODEL_CATALOG A catalog name. NULL if the provider does
not support catalogs.

Note

http://msdn.microsoft.com/en-us/library/e7c039f6-3266-4d84-bfbd-f99b6858acf4(SQL.110)�

 68

CONTENT rowset column Description

MODEL_SCHEMA An unqualified schema name. NULL if the
provider does not support schemas.

MODEL_NAME A model name. This column cannot contain
a NULL.

ATTRIBUTE_NAME The name of the attribute that corresponds
to the node.

NODE_NAME The name of the node.

NODE_UNIQUE_NAME The unique name of the node within the
model.

NODE_TYPE An integer that represents the type of the
node. .

NODE_GUID The node GUID. NULL if no GUID.

NODE_CAPTION A label or a caption that is associated with
the node. Used primarily for display
purposes. If a caption does not exist,
NODE_NAME is returned.

CHILDREN_CARDINALITY The number of children that the node has.

PARENT_UNIQUE_NAME The unique name of the node's parent.

NODE_DESCRIPTION A description of the node.

NODE_RULE An XML fragment that represents the rule
embedded in the node. The format of the
XML string is based on the PMML standard.

MARGINAL_RULE An XML fragment that describes the path
from the parent to the node.

NODE_PROBABILITY The probability of the path that ends in the
node.

MARGINAL_PROBABILITY The probability of reaching the node from
the parent node.

NODE_DISTRIBUTION A table that contains statistics that describe
the distribution of values in the node.

NODE_SUPPORT The number of cases in support of this
node.

 69

Examples
The following code returns the ID of the parent node for the decision trees model that
was added to the Targeted Mailing mining structure.

SELECT MODEL_NAME, NODE_NAME FROM [TM Decision Tree].CONTENT

WHERE NODE_TYPE = 1

Expected results:

MODEL_NAME NODE_NAME

TM_DecisionTree 0

The following query uses the IsDescendant function to return the immediate children of
the node that was returned in the previous query.

Because the value of the NODE_NAME is a string, you cannot use a sub-select
statement to return the NODE_ID as an argument to the IsDescendant function.

SELECT NODE_NAME, NODETYPE, NODE_CAPTION

FROM [TM Decision Tree].CONTENT

WHERE ISDESCENDANT('0')

Expected results:
Because the model is a decision trees model, the descendants of the model parent node
include a single marginal statistics node, a node that represents the predictable attribute,
and multiple nodes that contain input attributes and values. For more information,
see Mining Model Content for Decision Tree Models (Analysis Services - Data Mining).
Using the FLATTENED Keyword
The mining model content frequently contains interesting information about the model
in nested table columns. The FLATTENED keyword lets you retrieve data from a nested
table column without using a provider that supports hierarchical rowsets.
The following query returns a single node, the marginal statistics node (NODE_TYPE =
26) from a Naïve Bayes model. However, this node contains a nested table, in the
NODE_DISTRIBUTION column. As a result, the nested table column is flattened and a row
is returned for every row in the nested table. The value of the scalar column
MODEL_NAME is repeated for each row in the nested table.
Also, notice that if you specify only the name of the nested table column, a new column
is returned for each column in the nested table. By default, the name of the nested table
is prefixed to the name of each nested table column.

SELECT FLATTENED MODEL_NAME, NODE_DISTRIBUTION

Note

http://msdn.microsoft.com/en-us/library/ac358399-10f8-4238-be32-a914a2e49048(SQL.110)�

 70

FROM [TM_NaiveBayes].CONTENT

WHERE NODE_TYPE = 26

Example results:

MODE
L_NA
ME

NODE_DISTRIB
UTION.ATTRIB
UTE_NAME

NODE_DISTRIB
UTION.ATTRIB
UTE_VALUE

NODE_DIST
RIBUTION.S
UPPORT

NODE_DISTRI
BUTION.PRO
BABILITY

NODE_DIST
RIBUTION.V
ARIANCE

NODE_DISTR
IBUTION.VA
LUETYPE

TM_N
aiveB
ayes

Bike Buyer Missing 0 0 0 1

TM_N
aiveB
ayes

Bike Buyer 0 6556 0.50668521
5240745

0

TM_N
aiveB
ayes

Bike Buyer 1 6383 0.49331478
4759255

0

The following example demonstrates how to return only some of the columns from the
nested table by using a sub-select statement. You can simplify the display by aliasing the
table name of the nested table, as shown.
SELECT MODEL_NAME,

(SELECT ATTRIBUTE_NAME, ATTRIBUTE_VALUE, [SUPPORT] AS t

FROM NODE_DISTRIBUTION)

FROM TM_NaiveBayes.CONTENT

WHERE NODE_TYPE = 26

Example results:

MODEL_NAME t.ATTRIBUTE_NAME t.ATTRIBUTE_VALUE t.SUPPORT

TM_NaiveBayes Bike Buyer Missing 0

TM_NaiveBayes Bike Buyer 0 6556

TM_NaiveBayes Bike Buyer 1 6383

See Also
SELECT (DMX)

 71

DMX Data Manipulation Statements
DMX Statement Reference

SELECT FROM <model>.CASES
Supports drillthrough, and returns the cases that were used to train the model. You can
also return structure columns that are not included in the model, if drillthrough has been
enabled on the mining structure and on the mining model, and if you have the
appropriate permissions.
If drillthrough is not enabled on the mining model, this statement will fail.

In Data Mining Extensions (DMX) you can only enable drillthrough when you
create the model. You can add drillthrough to an existing model by using SQL
Server Data Tools (SSDT), but the model must be reprocessed before you can
view or query the cases.

For more information about how to enable drillthrough, see Data Mining Extensions
(DMX) Statement Reference, SELECT INTO (DMX), and ALTER MINING STRUCTURE
(DMX).
Syntax

SELECT [FLATTENED] [TOP <n>] <expression list> FROM <model>.CASES
[WHERE <condition expression>][ORDER BY <expression> [DESC|ASC]]
Arguments
n

Optional. An integer that specifies how many rows to return.

expression list

A comma-separated list of expressions. An expression can include column identifiers,
user-defined functions, UDFs, and VBA functions, and others.

To include a structure column that is not included in the mining model, use the function
StructureColumn('<structure column name>').

model

A model identifier.

condition expression

A condition to restrict the values that are returned from the column list.

expression

Optional. An expression that returns a scalar value.

Remarks

Note

 72

If drillthrough is enabled on both the mining model and the mining structure, users who
are member of a role that has drillthrough permission on the model and the structure
can access columns of the mining structure that are not included in the mining model.
Therefore, to protect sensitive data or personal information, you should construct your
data source view to mask personal information, and grant AllowDrillthrough permission
on a mining structure only when it is necessary.
The Lag function can be used with time series models to return or filter on the time lag
between each case and the initial time.
Using the IsInNode function in the WHERE clause returns only cases that are associated
with the node that is specified by the NODE_UNIQUE_NAME column of the schema
rowset.
Examples
The following examples are based on the mining structure Targeted Mailing, which is
based on the database and its associated mining models. For more information,
see Basic Data Mining Tutorial.
Example 1: Drillthrough to Model Cases and Structure Columns
The following example returns the columns for all the cases that were used to test the
Targeted Mailing model. If the mining structure on which the model is built does not
have a holdout test data set, this query would return 0 cases. You can use the expression
list to return only the columns that you need.

SELECT * FROM [TM Decision Tree].Cases

WHERE IsTestCase();

Example 2: Drillthrough to Training Cases in a Specific Node
The following example returns just those cases that were used to train Cluster 2. The
node for Cluster 2 has the value '002' for the NODE_UNIQUE_NAME column. The
example also returns one structure column, [Customer Key], that was not a part of the
mining model, and provides the alias CustomerID for the column. Note that the name of
the structure column is passed as a string value and therefore must be enclosed in
quotation marks, not brackets.
SELECT StructureColumn('Customer Key') AS CustomerID, *

FROM [TM_Clustering].Cases

WHERE IsTrainingCase()

AND IsInNode('002')

To return a structure column, drillthrough permissions must be enabled on both the
mining model and the mining structure.

Note

http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�

 73

Not all mining model types support drillthrough. For information about the
models that support drillthrough, see Using Drillthrough on Mining Models and
Mining Structures (Analysis Services - Data Mining).

See Also
SELECT (DMX)
Data Mining Extensions (DMX) Data Definition Statements
Data Mining Extensions (DMX) Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference

SELECT FROM <model>.SAMPLE_CASES
Returns sample cases that are representative of the cases that are used to train the data
mining model.
To use this statement, you must enable drillthrough when you create the mining model.
For more information about enabling drillthrough, see Data Mining Extensions (DMX)
Statement Reference, SELECT INTO (DMX), and ALTER MINING STRUCTURE (DMX).
Syntax

SELECT [FLATTENED] [TOP <n>] <expression list> FROM <model>.SAMPLE_CASES
[WHERE <condition list>] ORDER BY <expression> [DESC|ASC]]
Arguments
n

Optional. An integer that specifies how many rows to return.

expression list

A comma-separated list of related column identifiers.

model

A model identifier.

condition list

Optional. Conditions to restrict the values that are returned from the column list.

expression

Optional. An expression that returns a scalar value.

Remarks
Sample cases may be generated and may not actually exist in the training data. The
returned case is representative of the specified content node.
Although the Microsoft Sequence Clustering algorithm is the only Microsoft algorithm
that supports using SELECT FROM <model>.SAMPLE_CASES, third-party algorithms
may also support it.

http://msdn.microsoft.com/en-us/library/246c784b-1b0c-4f0b-96f7-3af265e67051(SQL.110)�
http://msdn.microsoft.com/en-us/library/246c784b-1b0c-4f0b-96f7-3af265e67051(SQL.110)�

 74

Examples
The following example returns sample cases that are used to train the Target Mail mining
model. Using the IsInNode function in the WHERE clause returns only cases that are
associated with the '000000003' node. The node string can be found in the
NODE_UNIQUE_NAME column of the schema rowset.

Select * from [Sequence Clustering].SAMPLE_Cases

WHERE IsInNode('000000003')

See Also
SELECT (DMX)
Data Mining Extensions (DMX) Data Definition Statements
Data Mining Extensions (DMX) Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference

SELECT FROM <model>.DIMENSION_CONTENT
A mining model can be used as a dimension in an OLAP cube, where each node in the
model is represented as a member of the dimension. The SELECT FROM
<model>.Dimension_CONTENT statement returns the content of the model that
pertains to its usage as a dimension.
Syntax

SELECT [FLATTENED] [TOP <n>] <expression list> FROM <model>.Dimension_CONTENT
[WHERE <condition expression>]
[ORDER BY <expression> [DESC|ASC]]
Arguments
n

Optional. An integer that specifies how many rows to return.

expression list

A comma-separated list of related column identifiers derived from the content schema
rowset.

model

A model identifier.

condition expression

Optional. A condition to restrict the values that are returned from the column list.

expression

Optional. An expression that returns a scalar value.

 75

Remarks
Algorithm providers define which content is returned, and how to organize it. For
example, the provider might limit the number of nodes that are described in the
dimension content.
The following table lists the columns that can be queried for the dimension content, and
the function that each column performs as a data mining dimension.

CONTENT rowset column Function in data mining dimension

ATTRIBUTE_NAME Member property.

NODE_NAME Member property.

NODE_UNIQUE_NAME Key attribute.

NODE_TYPE Member property.

NODE_CAPTION CaptionColumn for Key attribute.

CHILDREN_CARDINALITY Member property.

PARENT_UNIQUE_NAME RelatedAttribute for Key attribute
(ParentAttribute in parent-child hierarchy).

NODE_DESCRIPTION Member property.

NODE_RULE Member property.

MARGINAL_RULE Member property.

NODE_PROBABILITY Member property.

MARGINAL_PROBABILITY Member property.

NODE_SUPPORT Member property.

Examples
Description
The example selects all columns from the [TM Decision Tree] model content that
pertain to using the model as a dimension.
Code
SELECT *

FROM [TM Decision Tree].Dimension_Content

See Also
Data Mining Extensions (DMX) Statement Reference
Data Mining Extensions (DMX) Data Definition Statements

 76

DMX Data Manipulation Statements
DMX Statement Reference

SELECT FROM <model> PREDICTION JOIN
Uses a mining model to predict the states of columns in an external data source. The
PREDICTION JOIN statement matches each case from the source query to the model.
Syntax

SELECT [FLATTENED] [TOP <n>] <select expression list>
FROM <model> | <sub select> [NATURAL] PREDICTION JOIN
<source data query> [ON <join mapping list>]
[WHERE <condition expression>]
[ORDER BY <expression> [DESC|ASC]]
Arguments
n

Optional. An integer that specifies how many rows to return.

select expression list

A comma-separated list of column identifiers and expressions that are derived from the
mining model.

model

A model identifier.

sub select

An embedded select statement.

source data query

The source query.

join mapping list

Optional. A logical expression that compares columns from the model to columns from
the source query.

condition expression

Optional. A condition to restrict the values that are returned from the column list.

expression

Optional. An expression that returns a scalar value.

Remarks
The ON clause defines the mapping between the columns from the source query and the
columns from the mining model. This mapping is used to direct columns from the source

 77

query to columns in the mining model so that the columns can be used as inputs to
create the predictions. Columns in the <join mapping list> are related by using an equal
sign (=), as shown in the following example:
[MiningModel].ColumnA = [source data query].Column1 AND

[MiningModel].ColumnB = [source data query].Column2 AND

...

If you are binding a nested table in the ON clause, ensure that you bind the key column
with any non-key columns so that the algorithm can correctly identify which case the
record of the nested column belongs to.
The source query for the prediction join can either be a table or a singleton query.
You can specify prediction functions that do not return a table expression in the <select
expression list> and the <condition expression>.
NATURAL PREDICTION JOIN automatically maps together column names from the
source query that match column names in the model. If you use NATURAL
PREDICTION, you can omit the ON clause.
The WHERE condition can be applied only to predictable columns or related columns.
The ORDER by clause can accept only a single column as an argument; that is, you
cannot sort on more than one column.
Example 1: Singleton Query
The following example shows how to create a query to predict whether a specific person
will buy a bicycle in real time. In this query the data is not stored in a table or other data
source, but instead is entered directly into the query. The person in the query has the
following traits:
• 35 years old
• Owns a house
• Owns two cars
• Has two children living at home
Using the TM Decision Tree mining model and the known characteristics about the
subject, the query returns a Boolean value that describes whether the person bought the
bike and a set of tabular values, returned by the PredictHistogram (DMX) function, that
describe how the prediction was made.

SELECT

 [TM Decision Tree].[Bike Buyer],

 PredictHistogram([Bike Buyer])

FROM

 [TM Decision Tree]

NATURAL PREDICTION JOIN

 78

(SELECT 35 AS [Age],

 '5-10 Miles' AS [Commute Distance],

 '1' AS [House Owner Flag],

 2 AS [Number Cars Owned],

 2 AS [Total Children]) AS t

Example 2: Using OPENQUERY
The following example shows how to create a batch prediction query by using a list of
potential customers stored in an external dataset. Because the table is part of a data
source view that has been defined on an instance of Analysis Services, the query can use
OPENQUERY to retrieve the data. Because the names of the columns in the table are
different from those in the mining model, the ON clause must be used to map the
columns in the table to the columns in the model.
The query returns the first and last name of each person in the table, together with a
Boolean column that indicates whether each person is likely to buy a bike, where 0
means "probably will not buy a bike" and 1 means "probably will buy a bike". The last
column contains the probability for the predicted result.

SELECT

 t.[LastName],

 t.[FirstName],

 [TM Decision Tree].[Bike Buyer],

 PredictProbability([Bike Buyer])

From

 [TM Decision Tree]

PREDICTION JOIN

 OPENQUERY([Adventure Works DW Multidimensional 2012],

 'SELECT

 [LastName],

 [FirstName],

 [MaritalStatus],

 [Gender],

 [YearlyIncome],

 [TotalChildren],

 [NumberChildrenAtHome],

 [Education],

 [Occupation],

 79

 [HouseOwnerFlag],

 [NumberCarsOwned]

 FROM

 [dbo].[ProspectiveBuyer]

 ') AS t

ON

 [TM Decision Tree].[Marital Status] = t.[MaritalStatus] AND

 [TM Decision Tree].[Gender] = t.[Gender] AND

 [TM Decision Tree].[Yearly Income] = t.[YearlyIncome] AND

 [TM Decision Tree].[Total Children] = t.[TotalChildren] AND

 [TM Decision Tree].[Number Children At Home] =

t.[NumberChildrenAtHome] AND

 [TM Decision Tree].[Education] = t.[Education] AND

 [TM Decision Tree].[Occupation] = t.[Occupation] AND

 [TM Decision Tree].[House Owner Flag] = t.[HouseOwnerFlag] AND

 [TM Decision Tree].[Number Cars Owned] = t.[NumberCarsOwned]

To restrict the data set to only the customers who are predicted to buy a bike, and then
sort the list by customer name, you can add a WHERE clause and an ORDER BY clause to
the previous example:

WHERE [BIKE Buyer]

ORDER BY [LastName] ASC

Example 3: Predicting Associations
The following example shows how to create a prediction by using a model that is built
from the Microsoft Association algorithm. Predictions on an association model can be
used to recommend related products. For example, the following query returns the three
products that are most likely to be purchased together:
• Mountain Bottle Cage
• Mountain Tire Tube
• Mountain-200
The Predict (DMX) function is polymorphic and can be used with all model types. You
use the value3 as an argument to the function to limit the number of items that are
returned by the query. The SELECT list that follows the NATURAL PREDICTION JOIN
clause supplies the values to use as input for prediction.

SELECT FLATTENED

 PREDICT([Association].[v Assoc Seq Line Items], 3)

FROM

 80

 [Association]

NATURAL PREDICTION JOIN

(SELECT (SELECT 'Mountain Bottle Cage' AS [Model]

 UNION SELECT 'Mountain Tire Tube' AS [Model]

 UNION SELECT 'Mountain-200' AS [Model]) AS [v Assoc Seq Line Items])

AS t

Example results:

Expression.Model

HL Mountain Tire

Water Bottle

Fender Set - Mountain

Because the column that contains the predictable attribute, [v Assoc Seq Line
Items], is a table column, the query returns a single column that contains a nested table.
By default the nested table column is named Expression. If your provider does not
support hierarchical rowsets, you can use the FLATTENED keyword as shown in this
example to make the results easier to view.
See Also
Data Mining Extensions (DMX) Statement Reference
Data Mining Extensions (DMX) Data Definition Statements
DMX Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference

SELECT FROM <model>
Performs an empty prediction join, returning the most probable value or values for the
specified columns. Only the content from the mining model is used to create the
prediction.
Syntax

SELECT <expression list> [TOP <n>] FROM <model>
[WHERE <condition list>]
[ORDER BY <expression> [DESC|ASC]]
Arguments

 81

expression list

A comma-separated list of expressions, or of predict or predict only columns.

n

Optional. An integer that specifies how many rows to return.

model

A model identifier.

condition list

Optional. Conditions to restrict the values that are returned from the column list.

expression

Optional. An expression that returns a scalar value.

Remarks
The columns in the expression list must be defined as predict or predict only, or related
to a predictable column.
Naive Bayes Example
The following example performs an empty prediction join on the Bike Buyer column,
returning the most likely state in the TM Naive Bayes mining model.

SELECT ([Bike Buyer]) FROM [TM_Naive_Bayes]

Time Series Example
The following example performs a prediction on the Amount column in the Forecasting
model, returning the next four time steps. The Model Region column combines bike
models and regions into a single identifier. The query uses the Data Mining Extensions
(DMX) Statement Reference function to perform the prediction.

SELECT [Model Region], PredictTimeSeries(Amount, 4)

FROM Forecasting

See Also
SELECT (DMX)
Data Mining Extensions (DMX) Data Definition Statements
DMX Data Manipulation Statements
DMX Statement Reference

SELECT FROM <structure>.CASES
Returns the cases that were used to create the mining structure.
If drillthrough is not enabled on the structure, the statement will fail. Also, the statement
will fail if the user does not have drillthrough permissions on the mining structure.

 82

In Analysis Services, drillthrough on new mining structures is enabled by default. To
verify whether drillthrough is enabled for a particular structure, check whether the value
of the CacheMode property is set to KeepTrainingCases.
If the value of CacheMode is changed to ClearAfterProcessing, the structure cases are
cleared from the cache and you cannot use drillthrough.

You cannot enable or disable drillthrough on the mining structure by using Data
Mining Extensions (DMX).

Syntax

SELECT [TOP n] <expression list> FROM <structure>.CASES
[WHERE <condition expression>][ORDER BY <expression> [DESC|ASC]]
Arguments
n

Optional. An integer that specifies how many rows to return.

expression list

A comma-separated list of expressions.

An expression can include column identifiers, user-defined functions, and VBA functions.

structure

The name of the structure.

condition expression

A condition to restrict the values that are returned from the column list.

expression

Optional. An expression that returns a scalar value.

Remarks
If drillthrough is enabled on both the model and the structure, any member of a role that
has drillthrough permissions on the mining structure and the model can return structure
columns that were not included in the model, by using the following syntax:

SELECT StructureColumn('<column name>') FROM <model>.CASES

Therefore, to protect sensitive data or personal information, you should construct your
data source view to mask personal information, and grant AllowDrillthrough permission
on a mining structure or mining model only when necessary.
Examples
The following examples are based on the mining structure, Targeted Mailing, which is
based on the Adventure Works DW Multidimensional 2012 database, and the
associated mining models. For more information, see Basic Data Mining Tutorial.

Note

http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�

 83

Example 1: Drill through to Structure Cases
The following example returns a list of the 500 oldest customers in the mining structure,
Targeted Mailing. The query returns all the columns in the mining model, but restricts
the rows to those who purchased a bike, and orders them by age. You can also edit the
expression list to return only the columns that you need.

SELECT TOP 500 *

FROM [Targeted Mailing].Cases

WHERE [Bike Buyer] = 1

ORDER BY Age DESC;

Example 2: Drillthrough to Test or Training Cases Only
The following example returns a list of the structure cases for Targeted Mailing that are
reserved for testing. If the mining structure does not contain a holdout test set, by
default all cases are treated as training cases, and this query would return 0 cases.

SELECT [Customer Key], Gender, Age

FROM [Targeted Mailing].Cases

WHERE IsTestCase();

To return the training cases, substitute the function IsTrainingCase().
See Also
SELECT (DMX)
Data Mining Extensions (DMX) Data Definition Statements
Data Mining Extensions (DMX) Data Manipulation Statements
Data Mining Extensions (DMX) Statement Reference

<source data query>
To train a data mining model and create predictions from a mining model, you have to
access data that is external to the Microsoft SQL Server Analysis Services database. You
use the <source data query> clause in Data Mining Extensions (DMX) to define this
external data. The INSERT INTO (DMX), Nested Tables, and SELECT FROM NATURAL
PREDICTION JOIN statements all use <source data query>.
Query types
The three most common ways to specify source data are:
OPENQUERY

This statement queries data that is external to an instance of Analysis Services, by using
an existing data source.

While OPENQUERY is similar in function to OPENROWSET, OPENQUERY has the
following benefits:

• A DMX query is much easier to write with OPENQUERY. Instead of creating a new

 84

connection string every time that you write a query, you can take advantage of the
existing connection string in the data source. The data source object can also
control data access for individual users.

• The administrator has more control over how the data on the server is accessed. For
example, the administrator can manage which providers are loaded into the server
and which external data can be accessed.

OPENROWSET
This statement queries data that is external to an instance of Analysis Services, by using
an existing data source.

SHAPE
This statement queries multiple data sources to create a nested table. By using SHAPE,
you can combine data from multiple sources into a single hierarchical table. This lets
you take advantage of the ability of Analysis Services to nest tables by imbedding a
table within a table.

To specify the source data, you can also use the following options:
• Any valid DMX statement
• Any valid Multidimensional Expressions (MDX) statement
• A table that returns a stored procedure
• An XML for Analysis (XMLA) rowset
• A rowset parameter
See Also
DMX Data Manipulation Statements
DMX Statement Reference
Nested Tables

OPENQUERY
Replaces the source data query with a query to an existing data source. The INSERT,
SELECT FROM PREDICTION JOIN, and SELECT FROM NATURAL PREDICTION JOIN
statements support OPENQUERY.
Syntax

OPENQUERY(<named datasource>, <query syntax>)
Arguments
named datasource

A data source that exists on the Microsoft SQL Server Analysis Services database.

http://msdn.microsoft.com/en-us/library/cb192aa2-597e-4d4f-ac34-3556d037fed4(SQL.110)�

 85

query syntax

A query syntax that returns a rowset.

Remarks
OPENQUERY provides a more secure way to access external data by supporting data
source permissions. Because the connection string is stored in the data source,
administrators can use the properties of the data source to manage access to the data.
For more information about data sources, see Working with Data Sources.
For information about permission issues related to OPENQUERY, see Securing the Data
Sources Used by Analysis Services.
You can get a list of the data sources that are available on a server by querying the
MDSCHEMA_INPUT_DATASOURCES schema rowset. For more information about using
MDSCHEMA_INPUT_DATASOURCES, see Data Mining Extensions (DMX) Statement
Reference.
You can also return a list of data sources in the current Analysis Services database by
using the following DMX query:
SELECT * FROM $system.MDSCHEMA_INPUT_DATASOURCES
Examples
The following example uses the MyDS data source already defined in the Analysis
Services database to create a connection to the database and query the
vTargetMail view.

OPENQUERY (MyDS,'SELECT TOP 1000 * FROM vTargetMail')

See Also
<source data query>
DMX Data Manipulation Statements
DMX Statement Reference

OPENROWSET
Replaces the source data query with a query to an external provider. The INSERT, SELECT
FROM PREDICTION JOIN, and SELECT FROM NATURAL PREDICTION JOIN statements
support OPENROWSET.
Syntax

OPENROWSET(provider_name,provider_string,query_syntax)
Arguments
provider_name

An OLE DB provider name.

http://msdn.microsoft.com/en-us/library/c97e0f8d-7ddd-4941-8b51-e7832f30fbbe(SQL.110)�
http://msdn.microsoft.com/en-us/library/169e9a29-8141-4576-b262-8f703831c25f(SQL.110)�
http://msdn.microsoft.com/en-us/library/169e9a29-8141-4576-b262-8f703831c25f(SQL.110)�
http://msdn.microsoft.com/en-us/library/12482fd5-16e3-4171-9cb0-76d0d4f5308e(SQL.110)�
http://msdn.microsoft.com/en-us/library/12482fd5-16e3-4171-9cb0-76d0d4f5308e(SQL.110)�

 86

provider_string

The OLE DB connection string for the specified provider.

query_syntax

A query syntax that returns a rowset.

Remarks
The data mining provider will establish a connection to the data source object by using
provider_name and provider_string, and will execute the query specified in query_syntax
to retrieve the rowset from the source data.
Examples
The following example can be used within a PREDICTION JOIN statement to retrieve data
from the database by using a Transact-SQL SELECT statement.

OPENROWSET

(

'SQLOLEDB.1',

'Provider=SQLOLEDB.1;Integrated Security=SSPI;Persist Security

Info=False;Initial Catalog=AdventureWorksDW2012;Data Source=localhost',

'SELECT TOP 1000 * FROM vTargetMail'

)

See Also
Data Mining Extensions (DMX) Statement Reference
DMX Data Manipulation Statements
DMX Statement Reference

SHAPE
Combines queries from multiple data sources into a single hierarchical table (that is, a
table with nested tables), which becomes the case table for the mining model.
The complete syntax of the SHAPE command is documented in the Microsoft Data
Access Components (MDAC) Software Development Kit (SDK).
Syntax

SHAPE {<master query>}
APPEND ({ <child table query> }
 RELATE <master column> TO <child column>)
 AS <column table name>
[
 ({ <child table query> }

 87

 RELATE <master column> TO <child column>)
 AS < column table name>
...
]
Arguments
master query

The query returning the parent table.

child table query

The query returning the nested table.

master column

The column in the parent table to identify child rows from the result of a child table
query.

child column

The column in the child table to identify the parent row from the result of a master
query.

column table name

The newly appended column name in the parent table for the nested table.

Remarks
You must order the queries by the column that relates the parent table and child table.
Examples
You can use the following example within an Data Mining Extensions (DMX) Statement
Reference statement to train a model containing a nested table. The two tables within
the SHAPE statement are related through the OrderNumber column.

SHAPE {

 OPENQUERY([Adventure Works DW Multidimensional 2012],'SELECT

OrderNumber

 FROM vAssocSeqOrders ORDER BY OrderNumber')

} APPEND (

 {OPENQUERY([Adventure Works DW Multidimensional 2012],'SELECT

OrderNumber, model FROM

 dbo.vAssocSeqLineItems ORDER BY OrderNumber, Model')}

 RELATE OrderNumber to OrderNumber)

See Also
<source data query>
Data Mining Extensions (DMX) Data Definition Statements

 88

DMX Data Manipulation Statements
DMX Statement Reference

UPDATE
Changes the NODE_CAPTION column in the data mining model.
Syntax

UPDATE <model>.CONTENT
SET NODE_CAPTION='new caption'
[WHERE <condition expression>]
Arguments
model

A model identifier.

new caption

A string that contains the new name for the NODE_CAPTION column.

condition expression

Optional. A condition to restrict the values that are returned from the column list.

Examples
In the following example, the UPDATE statement changes the default name, Cluster 1,
for cluster 001 to the more descriptive name, Likely Customers.

UPDATE [TM Clustering].CONTENT

SET NODE_CAPTION= 'Likely Customers'

WHERE NODE_UNIQUE_NAME = '001'

See Also
Data Mining Extensions (DMX) Statement Reference
DMX Data Manipulation Statements
DMX Statement Reference

Data Mining Extensions (DMX) Function
Reference
Analysis Services supports several functions in the Data Mining Extensions (DMX)
language. Functions expand the results of a prediction query to include information that
further describes the prediction. Functions also provide more control over how the

 89

results of the prediction are returned. The following table provides links to resources to
help you understand how to use functions in DMX.

Function Description

Mapping Functions to Query Types (DMX) List functions that can be used with all
model types, and provides links to more
information about how to query specific
types of mining models.

Prediction Queries (DMX) Provides an overview of how to construct a
prediction query by using DMX.

Understanding the Select Statement (DMX) Returns a table that contains a specified
number of bottom-most rows, in increasing
order of rank based on a rank expression.

The following table lists the functions that DMX supports.

Function Description

BottomCount Returns a table that contains the last n-
item rows of the table expression, in
increasing order based on a rank
expression.

BottomPercent Returns a table that contains the smallest
number of bottom-most rows that meet a
specified percent expression, in increasing
order of rank based on a rank expression.

BottomSum Returns a table that contains the smallest
number of bottom-most rows that meet a
specified sum expression, in increasing
order of rank based on a rank expression.

Cluster Returns the cluster that is most likely to
contain the input case.

ClusterProbability Returns the probability that the input case
belongs to the cluster.

Exists Returns true if the result set returned by
the specified SELECT statement contains at
least one row.

 90

Function Description

IsDescendant Indicates whether the current node
descends from the specified node.

IsInNode Indicates whether the specified node
contains the case.

IsTestCase Indicates whether a case belongs to the set
of test cases.

IsTrainingCase Indicates whether a case belongs to the set
of training cases.

Lag Returns the time slice between the date of
the current case and the last date in the
data.

Predict Performs a prediction on a specified
column.

PredictAdjustedProbability Returns the adjusted probability of the
specified predictable column.

PredictAssociation Predicts associative membership in a
column.

PredictCaseLikelihood Returns the likelihood that an input case
will fit within the existing model. This
function can only be used with clustering
models.

PredictHistogram Returns a table that represents the
histogram for a specified column.

PredictNodeId Returns the NodeID for a selected case.

PredictProbability Returns the probability of the specified
column.

PredictSequence Predicts the next values in a sequence.

PredictStdev Retrieves the standard deviation value for a
specified column.

PredictSupport Returns the support value of the column.

PredictTimeSeries Predicts the future values for a time series.

PredictVariance Returns the variance value of the specified
column.

 91

Function Description

RangeMax Returns the upper value of the predicted
bucket that is discovered for a specified
discretized column.

RangeMid Returns the midpoint value of the
predicted bucket that is discovered for a
specified discretized column.

RangeMin Returns the lower value of the predicted
bucket that is discovered for a specified
discretized column.

StructureColumn Returns the value of the specified table
mining structure column.

TopCount Returns a table that contains a specified
number of topmost rows, in a decreasing
order of rank based on a rank expression.

TopPercent Returns a table that contains the smallest
number of topmost rows that meet a
specified percent expression, in a
decreasing order of rank based on a rank
expression.

TopSum Returns a table that contains the smallest
number of topmost rows that meet a
specified sum expression, in a decreasing
order of rank based on a rank expression.

See Also
Data Mining Extensions (DMX) Operator Reference
Data Mining Extensions (DMX) Statement Reference
Data Mining Extensions (DMX) Syntax Conventions
Data Mining Extensions (DMX) Syntax Elements
Mapping Functions to Query Types (DMX)
Prediction Queries (DMX)
Understanding the Select Statement (DMX)

 92

BottomCount
Returns the specified number of bottom-most rows, in increasing order of rank as
specified by an expression.

Syntax

BottomCount(<table expression>, <rank expression>, <count>)

Applies To
An expression that returns a table, such as a <table column reference>, or a function
that returns a table.

Return Type
<table expression>

Remarks
The value that is supplied by the <rank expression> argument determines the increasing
order of rank for the rows that are supplied in the <table expression> argument, and the
number of bottom-most rows that is specified in the <count> argument is returned.

Examples
The following example creates a prediction query against the Association model that you
build by using the Basic Data Mining Tutorial.
To understand how BottomCount works, it might be helpful to first execute a prediction
query that returns only the nested table.
SELECT Predict ([Association].[v Assoc Seq Line Items],

INCLUDE_STATISTICS, 10)

FROM

 [Association]

NATURAL PREDICTION JOIN

SELECT (SELECT 'Women''s Mountain Shorts' as [Model]) AS [v Assoc Seq

Line Items]) AS t

In this example, the value supplied as input contains a single quotation mark, and
therefore must be escaped by prefacing it with another single quotation mark. If
you are not sure of the syntax for inserting an escape character, you can use the
Prediction Query Builder to create the query. When you select the value from the
dropdown list, the required escape character is inserted for you. For more
information, see How to: Create a Singleton Query in the Data Mining Designer.

Example results:

Note

http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�
http://msdn.microsoft.com/en-us/library/6cdca8a0-cf16-46eb-a652-0bff820625ab(SQL.110)�

 93

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Sport-100 4334 0.291283016 0.252695851

Water Bottle 2866 0.192620472 0.175205052

Patch kit 2113 0.142012232 0.132389356

Mountain Tire
Tube

1992 0.133879965 0.125304948

Mountain-200 1755 0.117951475 0.111260823

Road Tire Tube 1588 0.106727603 0.101229538

Cycling Cap 1473 0.098998589 0.094256014

Fender Set -
Mountain

1415 0.095100477 0.090718432

Mountain Bottle
Cage

1367 0.091874454 0.087780332

Road Bottle Cage 1195 0.080314537 0.077173962

The BottomCount function takes the results of this query and returns the smallest-
valued rows that sum to the specified percentage.

SELECT

BottomCount

 (

 Predict ([Association].[v Assoc Seq Line

Items],INCLUDE_STATISTICS,10),

 $SUPPORT,

 3)

FROM

 [Association]

NATURAL PREDICTION JOIN

(SELECT (SELECT 'Women''s Mountain Shorts' as [Model]) AS [v Assoc Seq

Line Items]) AS t

The first argument to the BottomCount function is the name of a table column. In this
example, the nested table is returned by calling the Predict function and using the
INCLUDE_STATISTICS argument.

 94

The second argument to the BottomCount function is the column in the nested table
that you use to order the results. In this example, the INCLUDE_STATISTICS option
returns the columns $SUPPORT, $PROBABILTY, and $ADJUSTED PROBABILITY. This
example uses $SUPPORT because support values are not fractional and therefore are
easier to verify.
The third argument to the BottomCount function specifies the number of rows. To get
the three lowest-ranked rows, as ordered by $SUPPORT, you type 3.
Example results:

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Road Bottle Cage 1195 0.080314537 0.077173962

Mountain Bottle
Cage

1367 0.091874454 0.087780332

Fender Set -
Mountain

1415 0.095100477 0.090718432

Note This example is provided only to illustrate the use of BottomCount. Depending
on the size of your data set, this query might take a long time to run.

See Also
Functions (DMX)
Mapping Functions to Query Types (DMX)
BottomPercent (DMX)
BottomSum (DMX)
TopCount (DMX)

BottomPercent
Returns, in order of increasing rank, the bottom-most rows of a table whose cumulative
total is at least a specified percentage.

Syntax

BottomPercent(<table expression>, <rank expression>, <percent>)

Arguments
<Table expression>

The name of a nested table column or table-valued expression.

 95

<rank expression>

A column in the nested table, or expression that evaluates to a column.

<percent>

A double that indicates the total target percentage.

Result Type
A table.

Remarks
The BottomPercent function returns the bottom-most rows in increasing order of rank.
The rank is based on the evaluated value of the <rank expression> argument for each
row, such that the sum of the <rank expression> values is at least the given percentage
that is specified by the <percent> argument. BottomPercent returns the smallest
number of elements possible while still meeting the specified percent value.

Examples
The following example creates a prediction query against the Association model that you
built in the Basic Data Mining Tutorial.
To understand how BottomPercent works, it may be helpful to first execute a prediction
query that returns only the nested table.

SELECT Predict ([Association].[v Assoc Seq Line Items],

INCLUDE_STATISTICS, 10)

FROM

 [Association]

NATURAL PREDICTION JOIN

SELECT (SELECT 'Women''s Mountain Shorts' as [Model]) AS [v Assoc Seq

Line Items]) AS t

In this example, the value supplied as input contains a single quotation mark, and
therefore must be escaped by prefacing it with another single quotation mark. If
you are not sure of the syntax for inserting an escape character, you can use the
Prediction Query Builder to create the query. When you select the value from the
dropdown list, the required escape character is inserted for you. For more
information, see How to: Create a Singleton Query in the Data Mining Designer.

Example results:

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Sport-100 4334 0.291283016 0.252695851

Note

http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�
http://msdn.microsoft.com/en-us/library/6cdca8a0-cf16-46eb-a652-0bff820625ab(SQL.110)�

 96

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Water Bottle 2866 0.192620472 0.175205052

Patch kit 2113 0.142012232 0.132389356

Mountain Tire
Tube

1992 0.133879965 0.125304948

Mountain-200 1755 0.117951475 0.111260823

Road Tire Tube 1588 0.106727603 0.101229538

Cycling Cap 1473 0.098998589 0.094256014

Fender Set -
Mountain

1415 0.095100477 0.090718432

Mountain Bottle
Cage

1367 0.091874454 0.087780332

Road Bottle Cage 1195 0.080314537 0.077173962

The BottomPercent function takes the results of this query and returns the smallest-
valued rows that sum to the specified percentage.
SELECT

BottomPercent

 (

 Predict ([Association].[v Assoc Seq Line

Items],INCLUDE_STATISTICS,10),

 $SUPPORT,

 50)

FROM

 [Association]

NATURAL PREDICTION JOIN

(SELECT (SELECT 'Women''s Mountain Shorts' as [Model]) AS [v Assoc Seq

Line Items]) AS t

The first argument to the BottomPercent function is the name of a table column. In this
example, the nested table is returned by calling the Predict function and using the
INCLUDE_STATISTICS argument.
The second argument to the BottomPercent function is the column in the nested table
that you use to order the results. In this example, the INCLUDE_STATISTICS option
returns the columns $SUPPORT, $PROBABILTY, and $ADJUSTED PROBABILITY. This

 97

example uses $SUPPORT because support values are not fractional and therefore are
easier to verify.
The third argument to the BottomPercent function specifies the percentage, as a
double. To get the rows that represent the bottom 50 percent of the support, you type
50.
Example results:

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Road Bottle Cage 1195 0.080314537 0.077173962

Mountain Bottle
Cage

1367 0.091874454 0.087780332

Fender Set -
Mountain

1415 0.095100477 0.090718432

Cycling Cap 1473 0.098998589 0.094256014

Road Tire Tube 1588 0.106727603 0.101229538

Mountain-200 1755 0.117951475 0.111260823

Mountain Tire
Tube

1992 0.133879965 0.125304948

Note This example is provided only to illustrate the usage of BottomPercent.
Depending on the size of your data set, this query might take a long time to run.

The MDX functions for TOPPERCENT and BOTTOMPERCENT can generate
unexpected results when the values used to calculate the percentage include
negative numbers. This behavior does not affect the DMX functions. For more
information, see BOTTOMPERCENT.

See Also
Mapping Functions to Query Types (DMX)
Functions (DMX)

BottomSum
Returns, in order of increasing rank, the bottom-most rows of a table whose cumulative
total is at least a specified value.

Syntax

Warning

http://msdn.microsoft.com/en-us/library/c04866e6-e6dd-4ed1-ae79-c718c194930c(SQL.110)�

 98

BottomSum(<table expression>, <rank expression>, <sum>)

Applies To
An expression that returns a table, such as a <table column reference>, or a function
that returns a table.

Return Type
<table expression>

Remarks
The BottomSum function returns the bottom-most rows in increasing order of rank. The
rank is based on the evaluated value of the <rank expression> argument for each row,
such that the sum of the <rank expression> values is at least the given total that is
specified by the <sum> argument. BottomSum returns the smallest number of elements
possible while still meeting the specified sum value.

Examples
The following example creates a prediction query against the Association model that you
build by using the Basic Data Mining Tutorial.
To understand how BottomSum works, it might be helpful to first execute a prediction
query that returns only the nested table.

SELECT Predict ([Association].[v Assoc Seq Line Items],

INCLUDE_STATISTICS, 10)

FROM

 [Association]

NATURAL PREDICTION JOIN

SELECT (SELECT 'Women''s Mountain Shorts' as [Model]) AS [v Assoc Seq

Line Items]) AS t

In this example, the value supplied as input contains a single quotation mark, and
therefore must be escaped by prefacing it with another single quotation mark. If
you are not sure of the syntax for inserting an escape character, you can use the
Prediction Query Builder to create the query. When you select the value from the
dropdown list, the required escape character is inserted for you. For more
information, see How to: Create a Singleton Query in the Data Mining Designer.

Example results:

Note

http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�
http://msdn.microsoft.com/en-us/library/6cdca8a0-cf16-46eb-a652-0bff820625ab(SQL.110)�

 99

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Sport-100 4334 0.291283016 0.252695851

Water Bottle 2866 0.192620472 0.175205052

Patch kit 2113 0.142012232 0.132389356

Mountain Tire
Tube

1992 0.133879965 0.125304948

Mountain-200 1755 0.117951475 0.111260823

Road Tire Tube 1588 0.106727603 0.101229538

Cycling Cap 1473 0.098998589 0.094256014

Fender Set -
Mountain

1415 0.095100477 0.090718432

Mountain Bottle
Cage

1367 0.091874454 0.087780332

Road Bottle Cage 1195 0.080314537 0.077173962

The BottomSum function takes the results of this query and returns the rows with the
lowest values that sum to the specified count.

SELECT

BottomSum

 (

 Predict([Association].[v Assoc Seq Line

Items],INCLUDE_STATISTICS,10),

 $PROBABILITY,

 .1)

FROM

 [Association]

NATURAL PREDICTION JOIN

(SELECT (SELECT 'Women''s Mountain Shorts' as [Model]) AS [v Assoc Seq

Line Items]) AS t

The first argument to the BottomSum function is the name of a table column. In this
example, the nested table is returned by calling the Predict function and using the
INCLUDE_STATISTICS argument.
The second argument to the BottomSum function is the column in the nested table that
you use to order the results. In this example, the INCLUDE_STATISTICS option returns the

 100

columns $SUPPORT, $PROBABILTY, and $ADJUSTED PROBABILITY. This example uses
$PROBABILITY to return rows that sum to at least 50% probability.
The third argument to the BottomSum function specifies the target sum, as a double. To
get the rows for the lowest-count products that sum to 10 percent probability, you type
.1.
Example results:

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Road Bottle Cage 1195 0.08… 0.07…

Mountain Bottle
Cage

1367 0.09… 0.08…

Note This example is provided only to illustrate the usage of BottomSum. Depending
on the size of your data set, this query might take a long time to run.

See Also
Functions (DMX)
Mapping Functions to Query Types (DMX)
BottomPercent (DMX)

Cluster
Returns the cluster that is most likely to contain the input case.

Syntax

Cluster()

Applies To
This function can be used only if the underlying data mining model supports clustering.

Return Type
The Cluster function does not require parameters.
The Cluster function returns a scalar value of a cluster name. However, if you use this
function as an argument of another function, you must regard it as a <cluster column
reference>.

Remarks
Cluster can also be used as a <cluster column reference> for a PredictHistogram
function.

 101

Examples
The following example uses a singleton query with the PredictHistogram (DMX) and
Cluster functions to return the distance of the individual case from each cluster of the
TM Clustering mining model and the probability that the individual case will exist in each
cluster.

SELECT

 PredictHistogram(Cluster())

FROM

 [TM Clustering]

 NATURAL PREDICTION JOIN

(SELECT 28 AS [Age],

 '2-5 Miles' AS [Commute Distance],

 'Graduate Degree' AS [Education],

 0 AS [Number Cars Owned],

 0 AS [Number Children At Home]) AS t

See Also
Mapping Functions to Query Types (DMX)
Data Mining Extensions (DMX) Function Reference
Functions (DMX)
Mapping Functions to Query Types (DMX)

ClusterDistance
The ClusterDistance function returns the distance of the input case from the specified
cluster, or if no cluster is specified, the distance of the input case from the most likely
cluster.

Syntax

ClusterDistance([<ClusterID expression>])

Applies To
This function can be used only if the underlying data mining model supports clustering.
The function can be used with any kind of clustering model (EM, K-Means, etc.), but the
results differ depending on the algorithm.

Return Type
A scalar value.

 102

Remarks
The ClusterDistance function returns the distance between the input case and the
cluster that has the highest probability for that input case.
In case of K-Means clustering, since any case can belong to only one cluster, with a
membership weight of 1.0, the cluster distance is always 0. However, in K-Means, each
cluster is assumed to have a centroid. You can obtain the value of the centroid by
querying or browsing the NODE_DISTRIBUTION nested table in the mining model
content. For more information, see Mining Model Content for Clustering Models
(Analysis Services - Data Mining).
In the case of the default EM clustering method, all the points inside the cluster are
considered equally likely; therefore, by design there is no centroid for the cluster. The
value of ClusterDistance between a particular case and a particular cluster N is
calculated as follows:

Or:

Related Prediction Functions
Analysis Services provides the following additional functions for querying clustering
models:
• Use the Cluster (DMX) function to return the most likely cluster.
• Use the ClusterProbability (DMX) function to get the probability that a case belongs

to a particular cluster. This value serves as the inverse of the cluster distance.
• Use the PredictHistogram (DMX) function to return a histogram of the likelihood of

the input case existing in each of the model’s clusters.
• Use the PredictCaseLikelihood (DMX) function to return a measure from 0 to 1 that

indicates how likely an input case is to exist considering the model learned by the
algorithm.

Example1: Obtaining Cluster Distance to the Most Likely Cluster
The following example returns the distance from the specified case to the cluster that the
case most likely belongs to.

SELECT

 ClusterDistance()

FROM

 [TM Clustering]

NATURAL PREDICTION JOIN

(SELECT 28 AS [Age],

 '2-5 Miles' AS [Commute Distance],

http://msdn.microsoft.com/en-us/library/aed1b7d3-8f20-4eeb-b156-0229f942cefd(SQL.110)�
http://msdn.microsoft.com/en-us/library/aed1b7d3-8f20-4eeb-b156-0229f942cefd(SQL.110)�

 103

 'Graduate Degree' AS [Education],

 0 AS [Number Cars Owned],

 0 AS [Number Children At Home]) AS t

Example results:

Expression

0.0477390930705145

To find out which cluster this is, you can substitute Cluster for ClusterDistance in the
preceding sample.
Example results:

$CLUSTER

Cluster 6

Example2: Obtaining Distance to a Specified Cluster
The following syntax uses the mining model content schema rowset to return the list of
node IDs and node captions for the clusters in the mining model. You can then use the
node caption as the cluster identifier argument in the ClusterDistance function.

SELECT NODE_UNIQUE_NAME, NODE_CAPTION

FROM <model>.CONTENT

WHERE NODE_TYPE = 5

Example results:

NODE_UNIQUE_NAME NODE_CAPTION

001 Cluster 1

002 Cluster 2

The following syntax example returns the distance of the specified case from the cluster
labeled Cluster 2.

SELECT

 ClusterDistance('Cluster 2')

AS [Cluster 2 Distance]

 104

FROM [TM Clustering]

NATURAL PREDICTION JOIN

(SELECT 28 AS [Age],

 '2-5 Miles' AS [Commute Distance],

 'Graduate Degree' AS [Education],

 0 AS [Number Cars Owned],

 0 AS [Number Children At Home]) AS t

Example results:

Cluster 2 Distance

0.97008209236394

See Also
Cluster
Data Mining Extensions (DMX) Function Reference
Functions (DMX)
Mining Model Content for Clustering Models (Analysis Services - Data Mining)

ClusterProbability
Returns the probability that the input case belongs to the specified cluster.

Syntax

ClusterProbability([<Node_Caption>])

Applies To
This function can be used only if the underlying data mining model supports clustering.

Return Type
A scalar value.

Remarks
The following syntax uses the mining model content schema rowset to return the node
captions that exist in the mining model.

SELECT NODE_CAPTION FROM <model>.CONTENT

http://msdn.microsoft.com/en-us/library/aed1b7d3-8f20-4eeb-b156-0229f942cefd(SQL.110)�

 105

For more information about using this syntax, see Mapping Functions to Query Types
(DMX). For more information about the mining model content schema rowset,
see DMSCHEMA_MINING_MODEL_CONTENT Rowset.
If a <node caption> is not specified, the function returns the probability that the input
cases belong to the most likely cluster. Use the Cluster function to return the most likely
cluster.

Examples
The following example returns the probability that the specified case exists in the cluster
labeled Cluster 2.

SELECT

 ClusterProbability('Cluster 2')

From

 [TM Clustering]

NATURAL PREDICTION JOIN

(SELECT 28 AS [Age],

 '2-5 Miles' AS [Commute Distance],

 'Graduate Degree' AS [Education],

 0 AS [Number Cars Owned],

 0 AS [Number Children At Home]) AS t

See Also
Cluster
Data Mining Extensions (DMX) Function Reference
Functions (DMX)
Mapping Functions to Query Types (DMX)

Exists
Returns true if the specified sub-query returns at least one row.

Syntax

EXISTS(<subquery>)

Arguments
subquery

A SELECT statement of the form SELECT * FROM <column name> [WHERE <predicate
list>].

http://msdn.microsoft.com/en-us/library/1e85d9e7-3b74-42ac-b94e-f52f76d8a25d(SQL.110)�

 106

Result Type
Returns true if the result set returned by the subquery contains at least one row;
otherwise, returns false.

Remarks
You can use the NOT keyword before EXISTS: for example, WHERE NOT EXISTS
(<subquery>).
The list of columns that you add to the sub-query argument of EXISTS is irrelevant; the
function only checks for the existence of a row that meets the condition.

Examples
You can use EXISTS and NOT EXISTS to check for conditions in a nested table. This is
useful when creating a filter that controls the data used to train or test a data mining
model. For more information, see Creating Filters for Mining Models (Analysis Services -
Data Mining).
The following example is based on the [Association] mining structure and mining
model that you created in the Basic Data Mining Tutorial. The query returns only those
cases where the customer purchased at least one patch kit.

SELECT * FROM [Association].CASES

WHERE EXISTS

(

SELECT * FROM [v Assoc Seq Line Numbers]

WHERE [[Model] = 'Patch kit'

)

Another way to view the same data that is returned by this query is to open the model in
the Association viewer, right-click the itemset Patch kit = Existing, select the Drill
Through option, and then select Model Cases Only.

See Also
Functions (DMX)
Model Filter Syntax and Examples (Analysis Services - Data Mining)

IsDescendant
Indicates whether the current node descends from the specified node.

Syntax

IsDescendant(<NodeID>)

Return Type

http://msdn.microsoft.com/en-us/library/0f29c19c-4be3-4bc7-ab60-f4130a10d59c(SQL.110)�
http://msdn.microsoft.com/en-us/library/0f29c19c-4be3-4bc7-ab60-f4130a10d59c(SQL.110)�
http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�
http://msdn.microsoft.com/en-us/library/c729d9b3-8fda-405e-9497-52b2d7493eae(SQL.110)�

 107

A Boolean type.

Remarks
IsDescendant is only used in Mapping Functions to Query Types (DMX) and SELECT
FROM <model>.DIMENSION_CONTENT queries.

Examples
The following example returns all the cases that are descendents of the node that is
specified in the IsDescendant function.

SELECT * FROM [TM Decision Tree].CONTENT

WHERE IsDescendant('00000000100')

See Also
Data Mining Extensions (DMX) Function Reference
Functions (DMX)
Mapping Functions to Query Types (DMX)

IsInNode
Indicates whether the specified node contains the current case.

Syntax

IsInNode(<NodeID>)

Return Type
A Boolean type.

Remarks
IsInNode is only used in Mapping Functions to Query Types (DMX) and SELECT FROM
<model>.SAMPLE_CASES (DMX) queries.

Examples
The following example returns all the cases that were used to create the model that is
associated with the node that is specified in the IsInNode function.

Select * from [TM Decision Tree].Cases

WHERE IsInNode('0')

See Also
Data Mining Extensions (DMX) Function Reference
Functions (DMX)
Mapping Functions to Query Types (DMX)

 108

IsTestCase
Indicates whether a case is used as a test case for the specified data mining model or
mining structure.

Syntax

IsTestCase()

Result Type
Returns true if the case is a part of the test data set; otherwise false.

Remarks
If you use the Data Mining Wizard to create a mining structure and related mining
model, by default, 30 percent of the cases are set aside for use as a test data set. The
remaining cases are used for training the data mining model. The same test data set can
be used with all models that are based on that structure. However, if you use DMX to
create the mining model, by default, all data is used to train the model, and no test set is
created. To enable creation of a test data set, you must set the parameters of the WITH
HOLDOUT clause.
You can determine whether a test set has been created on a particular mining structure
by viewing the value of the
P:Microsoft.AnalysisServices.MiningStructure.HoldoutMaxCases and
P:Microsoft.AnalysisServices.MiningStructure.HoldoutMaxPercent properties.

Drillthrough must be enabled on the model if you want to use the
IsTrainingCase or IsTestCase functions to return details about the cases in a
particular model. For more information, see How to: Enable Drillthrough for a
Mining Model.

To return cases that are part of the training data set, use the function IsTrainingCase.

Examples
The following example uses the Targeted Mailing mining structure that is created in
the Basic Data Mining Tutorial. The query returns all the cases in the structure that are
used for testing.
SELECT *

FROM [Targeted Mailing].CASES

WHERE IsTestCase()

For more information about how to query cases used in data mining, see SELECT FROM
<model>.CASES (DMX) and SELECT FROM <structure>.CASES.

See Also

Note

http://msdn.microsoft.com/en-us/library/4fa44f60-ef9a-4b59-98c0-c0baf1195c8e(SQL.110)�
http://msdn.microsoft.com/en-us/library/4fa44f60-ef9a-4b59-98c0-c0baf1195c8e(SQL.110)�
http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�

 109

Functions (DMX)
Querying Data Mining Models (Analysis Services - Data Mining)
Partitioning Data into Training and Testing Sets (Analysis Services - Data Mining)

IsTrainingCase
Indicates whether a case is used as a training case for the specified data mining model or
mining structure.

Syntax

IsTrainingCase()

Result Type
Returns true if the case is a part of the training data set; otherwise false.

Remarks
If you use the Data Mining Wizard to create a mining structure and related mining
model, by default, 30 percent of the cases are set aside for use as a test data set. The
remaining cases in the data source that you specify are used to train the model.
However, if you use Data Mining Extensions (DMX) to create the mining model, by
default, all data is used to train the model, and no test set is created. To enable the
creation of a test data set, you must set the parameters of the WITH HOLDOUT clause.
You can determine whether the data in a particular data mining structure has been
partitioned into testing and training sets by viewing the value of the
P:Microsoft.AnalysisServices.MiningStructure.HoldoutMaxCases and
P:Microsoft.AnalysisServices.MiningStructure.HoldoutMaxPercent properties.

Drillthrough must be enabled on the model if you want to use the
IsTrainingCase or IsTestCase functions to return details about the cases in the
model. For more information, see How to: Enable Drillthrough for a Mining
Model.

To return cases that are part of the test data set, use the function IsTestCase.

Examples
The following example uses the clustering data mining model from the targeted mailing
scenario in the Basic Data Mining Tutorial. The query returns only those cases that were
used for training the mining model. Moreover, the training cases are restricted to
customers younger than 40.
SELECT *

FROM [TM Clustering].CASES

Note

http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�
http://msdn.microsoft.com/en-us/library/5798fa48-ef3c-4e97-a17c-38274970fccd(SQL.110)�
http://msdn.microsoft.com/en-us/library/4fa44f60-ef9a-4b59-98c0-c0baf1195c8e(SQL.110)�
http://msdn.microsoft.com/en-us/library/4fa44f60-ef9a-4b59-98c0-c0baf1195c8e(SQL.110)�
http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�

 110

WHERE IsTrainingCase()

AND [Age] <40

For other examples of how to query cases used in data mining, see SELECT FROM
<model>.CASES (DMX) and SELECT FROM <structure>.CASES.

See Also
Partitioning Data into Training and Testing Sets (Analysis Services - Data Mining)
Functions (DMX)
Querying Data Mining Models (Analysis Services - Data Mining)

Lag
Returns the time slice between the date of the current case and the last date of the
training set.

Syntax

Lag()

Return Type
A scalar value of the type integer.

Remarks
If the Lag function is used on a model where the KEY TIME column is located within a
nested table, the function must be located within the sub-select of the statement.

Examples
The following example returns cases that fall within the last 12 months of the data that
was used to train the model.

SELECT * FROM [Forecasting].CASES

WHERE Lag() < 12

See Also
Mapping Functions to Query Types (DMX)
Functions (DMX)
Mapping Functions to Query Types (DMX)

Predict
The Predict function returns a predicted value, or set of values, for a specified column.

Syntax

http://msdn.microsoft.com/en-us/library/5798fa48-ef3c-4e97-a17c-38274970fccd(SQL.110)�
http://msdn.microsoft.com/en-us/library/802806a6-69bb-4c3c-b9aa-d1a1ddfc7fc2(SQL.110)�

 111

Predict(<scalar column reference>, [option1], [option2], [option n],
[INCLUDE_NODE_ID], n)
Predict(<table column reference>, [option1], [option2], [option n],
[INCLUDE_NODE_ID], n)

Applies To
Either a scalar column reference or a table column reference.

Return Type
<scalar column reference>
or
<table column reference>
The return type depends on the type of column to which this function is applied.

INCLUSIVE, EXCLUSIVE, INPUT_ONLY, and INCLUDE_STATISTICS apply only for a
table column reference, and EXCLUDE_NULL and INCLUDE_NULL apply only for a
scalar column reference.

Remarks
Options include EXCLUDE_NULL (default), INCLUDE_NULL, INCLUSIVE, EXCLUSIVE
(default), INPUT_ONLY, and INCLUDE_STATISTICS.

 For time series models, the Predict function does not support
INCLUDE_STATISTICS.

The INCLUDE_NODE_ID parameter returns the $NODEID column in the result. NODE_ID
is the content node on which the prediction is executed for a particular case. This
parameter is optional when using Predict on table columns.
The n parameter applies to table columns. It sets the number of rows that are returned
based on the type of prediction. If the underlying column is sequence, it calls the
PredictSequence function. If the underlying column is time series, it calls the
PredictTimeSeries function. For associative types of prediction, it calls the
PredictAssociation function.
The Predict function supports polymorphism.
The following alternative abbreviated forms are frequently used:
• [Gender] is an alternative for Predict([Gender], EXCLUDE_NULL).
• [Products Purchases] is an alternative for Predict([Products Purchases],

EXCLUDE_NULL, EXCLUSIVE).

Note

Note

Note

 112

The return type of this function is itself regarded as a column reference. This
means that the Predict function can be used as an argument in other
functions that take a column reference as an argument (except for the
Predict function itself).

Passing INCLUDE_STATISTICS to a prediction on a table-valued column adds the
columns $Probability and $Support to the resulting table. These columns describe the
probability of existence for the associated nested table record.

Examples
The following example uses the Predict function to return the four products in the
Adventure Works database that are most likely to be sold together. Because the function
is predicting against an association rules mining model, it automatically uses the
PredictAssociation function as described earlier.

SELECT

 Predict([Association].[v Assoc Seq Line

Items],INCLUDE_STATISTICS,4)

FROM [Association]

Sample results:
This query returns a single row of data with one column, Expression, but that column
contains the following nested table.

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Sport-100 4334 0.291283016331743 0.252695851192499

Water Bottle 2866 0.192620471805901 0.175205052318795

Patch Kit 2113 0.142012232004839 0.132389356196586

Mountain Tire
Tube

1992 0.133879965051415 0.125304947722259

See Also
Mapping Functions to Query Types (DMX)
Functions (DMX)
Mapping Functions to Query Types (DMX)

PredictAdjustedProbability
Returns the adjusted probability of a specified state.

 113

Syntax

PredictAdjustedProbability(<scalar column reference>, [<predicted state>])

Applies To
A scalar column.

Return Type
A scalar value.

Remarks
If the predicted state is omitted, the state that has the highest predictable probability is
used, excluding the missing states bucket. To include the missing states bucket, set the
<predicted state> to INCLUDE_NULL.
To return the adjusted probability for the missing states, set the <predicted state> to
NULL.
The PredictAdjustedProbability function is a Microsoft SQL Server Analysis Services
extension to the Microsoft OLE DB for Data Mining specification.

Examples
The following example uses a natural prediction join to determine if an individual is likely
to be a bike buyer based on the TM Decision Tree mining model, and also determines
the adjusted probability for the prediction.

SELECT

 [Bike Buyer],

 PredictAdjustedProbability([Bike Buyer]) AS [Adjusted Probability]

From

 [TM Decision Tree]

NATURAL PREDICTION JOIN

(SELECT 28 AS [Age],

 '2-5 Miles' AS [Commute Distance],

 'Graduate Degree' AS [Education],

 0 AS [Number Cars Owned],

 0 AS [Number Children At Home]) AS t

See Also
Mapping Functions to Query Types (DMX)
Functions (DMX)
Mapping Functions to Query Types (DMX)

 114

PredictAssociation
Predicts associative membership.

This is different from creating a prediction on an association model.

Syntax

PredictAssociation(<table column reference>, option1, option2, n ...)

Applies To
Classification algorithms and clustering algorithms that contain predictable nested
tables. Classification algorithms include the Microsoft Decision Trees, Microsoft Naive
Bayes, and Microsoft Neural Network algorithms.

Return Type
<table expression>

Remarks
The options for the PredictAssociation function include EXCLUDE_NULL,
INCLUDE_NULL, INCLUSIVE, EXCLUSIVE (default), INPUT_ONLY, INCLUDE_STATISTICS,
and INCLUDE_NODE_ID.

INCLUSIVE, EXCLUSIVE, INPUT_ONLY, and INCLUDE_STATISTICS apply only for a
table column reference, and EXCLUDE_NULL and INCLUDE_NULL apply only for a
scalar column reference.

INCLUDE_STATISTICS only returns $Probability and $AdjustedProbability.
If the numeric parameter n is specified, the PredictAssociation function returns the top
most likely values based on the probability:

PredictAssociation(colref, [$AdjustedProbability], n)

If you include $AdjustedProbability, the statement returns the top n values based on
the $AdjustedProbability.

Examples
The following example uses the PredictAssociation function to return the four products
in the Adventure Works database that are most likely to be sold together.

SELECT

 PredictAssociation([Association].[v Assoc Seq Line Items],4)

From

 [Association]

Note

Note

 115

See Also
Mapping Functions to Query Types (DMX)
Functions (DMX)
Mapping Functions to Query Types (DMX)

PredictCaseLikelihood
This function returns the likelihood that an input case will fit in the existing model. Used
only with clustering models.

Syntax

PredictCaseLikelihood([NORMALIZED|NONNORMALIZED])

Arguments
NORMALIZED

Return value contains the probability of the case within the model divided by the
probability of the case without the model.

NONNORMALIZED

Return value contains the raw probability of the case, which is the product of the
probabilities of the case attributes.

Applies To
Models that are built by using the Microsoft Clustering and Microsoft Sequence
Clustering algorithms.

Return Type
Double-precision floating point number between 0 and 1. A number closer to 1 indicates
that the case has a higher probability of occurring in this model. A number closer to 0
indicates that the case is less likely to occur in this model.

Remarks
By default, the result of the PredictCaseLikelihood function is normalized. Normalized
values are typically more useful as the number of attributes in a case increase and the
differences between the raw probabilities of any two cases become much smaller.
The following equation is used to calculate the normalized values, given x and y:
• x = likelihood of the case based on the clustering model
• y = Marginal case likelihood, calculated as the log likelihood of the case based on

counting the training cases
•
Normalized

 116

Examples
The following example returns the likelihood that the specified case will occur within the
clustering model, which is based on the Adventure Works DW database.

SELECT

 PredictCaseLikelihood() AS Default_Likelihood,

 PredictCaseLikelihood(NORMALIZED) AS Normalized_Likelihood,

 PredictCaseLikelihood(NONNORMALIZED) AS Raw_Likelihood,

FROM

 [TM Clustering]

NATURAL PREDICTION JOIN

(SELECT 28 AS [Age],

 '2-5 Miles' AS [Commute Distance],

 'Graduate Degree' AS [Education],

 0 AS [Number Cars Owned],

 0 AS [Number Children At Home]) AS t

Expected results:

Default_Likelihood Normalized_Likelihood Raw_Likelihood

6.30672792729321E-08 6.30672792729321E-08 9.5824454056846E-48

The difference between these results demonstrates the effect of normalization. The raw
value for CaseLikelihood suggests that the probability of the case is about 20 percent;
however, when you normalize the results, it becomes apparent that the likelihood of the
case is very low.

See Also
Mapping Functions to Query Types (DMX)
Data Mining Extensions (DMX) Function Reference
Functions (DMX)
Mapping Functions to Query Types (DMX)

PredictHistogram
Returns a table that represents a histogram for the prediction of a given column.

Syntax

http://msdn.microsoft.com/en-us/library/ed1fc83b-b98c-437e-bf53-4ff001b92d64(SQL.110)�

 117

PredictHistogram(<scalar column reference> | <cluster column reference>)

Applies To
A scalar column reference or a cluster column reference. Can be used with all algorithm
types except the Microsoft Association algorithm.

Return Type
A table.

Remarks
A histogram generates statistics columns. The column structure of the returned
histogram depends on the type of column reference that is used with the
PredictHistogram function.

Scalar Columns
For a <scalar column reference>, the histogram that the PredictHistogram function
returns consists of the following columns:
• The value that is being predicted.
• $Support
• $Probability
• $ProbabilityVariance

Microsoft data mining algorithms do not support $ProbabilityVariance. This column
always contains 0 for Microsoft algorithms.

• $ProbabilityStdev
Microsoft data mining algorithms do not support $ProbabilityStdev. This column
always contains 0 for Microsoft algorithms.

• $AdjustedProbability
The $AdjustedProbability column is an Analysis Services extension to the Microsoft
OLE DB for Data Mining specification.

Cluster Columns
The histogram that the PredictHistogram function returns for a <cluster column
reference> consists of the following columns:
• $Cluster (represents the cluster name)
• $Distance
• $Probability

Examples
The following example returns the predicted state of the Bike Buyer column in a
singleton query. The query also returns the top two most likely states of the Bike Buyer

 118

attribute, based on the adjusted probability obtained by using the PredictHistogram
function.

SELECT

 [TM Decision Tree].[Bike Buyer],

 TopCount(PredictHistogram([Bike Buyer]),$AdjustedProbability,3)

From

 [TM Decision Tree]

NATURAL PREDICTION JOIN

(SELECT 28 AS [Age],

 '2-5 Miles' AS [Commute Distance],

 'Graduate Degree' AS [Education],

 0 AS [Number Cars Owned],

 0 AS [Number Children At Home]) AS t

See Also
Mapping Functions to Query Types (DMX)
ClusterProbability
PredictAdjustedProbability
PredictProbability
PredictStdev
PredictSupport
PredictVariance
Data Mining Algorithms
Data Mining Extensions (DMX) Function Reference
Functions (DMX)
Mapping Functions to Query Types (DMX)

PredictNodeId
Returns the Node_ID of the node to which the case is classified.

Syntax

PredictNodeId(<scalar column reference>)

Applies To
A scalar column.

http://msdn.microsoft.com/en-us/library/ed1fc83b-b98c-437e-bf53-4ff001b92d64(SQL.110)�

 119

Return Type
<scalar expression>

Examples
The following example returns whether the specified individual is likely to buy a bicycle,
and also returns the nodeID of the node that they are most likely to be part of.
SELECT

 [Bike Buyer],

 PredictNodeId([Bike Buyer])

From

 [TM Decision Tree]

NATURAL PREDICTION JOIN

(SELECT 28 AS [Age],

 '2-5 Miles' AS [Commute Distance],

 'Graduate Degree' AS [Education],

 0 AS [Number Cars Owned],

 0 AS [Number Children At Home]) AS t

You could then use the following statement to determine what is contained within the
node:

SELECT

 NODE_CAPTION

FROM

 [TM Decision Tree].CONTENT

WHERE NODE_UNIQUE_NAME= '00000000100'

See Also
Mapping Functions to Query Types (DMX)
Functions (DMX)
Mapping Functions to Query Types (DMX)

PredictProbability
Returns the probability for a specified state.

Syntax

PredictProbability(<scalar column reference>, [<predicted state>])

 120

Applies To
A scalar column.

Return Type
A scalar value.

Remarks
If the predicted state is omitted, the state that has the highest probability is used,
excluding the missing states bucket. To include the missing states bucket, set the
<predicted state> to INCLUDE_NULL. To return the probability for the missing states,
set the <predicted state> to NULL.

Some mining models do not provide probability values and therefore cannot use
this function. In addition, the probability values for any particular target value are
calculated differently or might have a different interpretation depending on the
model type that you are querying. For more information about how probability is
calculated for a particular model type, see the individual algorithm topic
in Mining Model Content (Analysis Services - Data Mining).

Examples
The following example uses a natural prediction join to determine whether an individual
is likely to be a bike buyer based on the TM Decision Tree mining model, and also
determines the probability for the prediction. In this example, there are two
PredictProbability functions, one for each possible value. If you omit this argument, the
function returns the probability for the most likely value.
SELECT

 [Bike Buyer],

 PredictProbability([Bike Buyer], 1) AS [Bike Buyer = Yes],

 PredictProbability([Bike Buyer], 0) AS [Bike Buyer = No]

FROM [TM Decision Tree]

NATURAL PREDICTION JOIN

(SELECT 28 AS [Age],

 '2-5 Miles' AS [Commute Distance],

 'Graduate Degree' AS [Education],

 0 AS [Number Cars Owned],

 0 AS [Number Children At Home]) AS t

Example results:

Note

http://msdn.microsoft.com/en-us/library/e7c039f6-3266-4d84-bfbd-f99b6858acf4(SQL.110)�

 121

Bike Buyer Bike Buyer = Yes Bike Buyer = No

1 0.867074195848097 0.132755556974282

See Also
Data Mining Functions Reference)
Functions (DMX)
Mapping Functions to Query Types (DMX)

PredictSequence
Predicts future sequence values for a specified set of sequence data.

Syntax

PredictSequence(<table column reference>)
PredictSequence(<table column reference, n>)
PredictSequence(<table column reference, n-start, n-end>)

Return Type
A <table expression>.

Remarks
If the n parameter is specified, it returns the following values:
• If n is greater than zero, the most likely sequence values in the next n steps.
• If both n-start and n-end are specified, the sequence values from n-start to n-end.

Examples
The following example returns a sequence of the five products that are most likely to be
purchased by a customer in the Adventure Works DW Multidimensional 2012
database based on the Sequence Clustering mining model.
SELECT

 PredictSequence([Sequence Clustering].[v Assoc Seq Line Items],5)

From

 [Sequence Clustering]

See Also
Mapping Functions to Query Types (DMX)
Functions (DMX)
Mapping Functions to Query Types (DMX)

 122

PredictStdev
Returns the predicted standard deviation for the specified column.

Syntax

PredictStdev(<scalar column reference>)

Applies To
A scalar column.

Return Type
A scalar value of the type that is specified by <scalar column reference>.

Remarks
If the column reference is discrete, PredictStdev returns 0 because the standard
deviation cannot be calculated from discrete values.

Examples
The following example uses a natural prediction join to determine whether an individual
is likely to be a bike buyer based on the TM Decision Tree mining model, and also
determines the standard deviation for the prediction.

SELECT

 [Bike Buyer],

 PredictStdev([Bike Buyer]) AS [Standard Deviation]

FROM

 [TM Decision Tree]

NATURAL PREDICTION JOIN

(SELECT 28 AS [Age],

 '2-5 Miles' AS [Commute Distance],

 'Graduate Degree' AS [Education],

 0 AS [Number Cars Owned],

 0 AS [Number Children At Home]) AS t

See Also
Mapping Functions to Query Types (DMX)
Functions (DMX)
Mapping Functions to Query Types (DMX)

 123

PredictSupport
Returns the support value for a specified state.

Syntax

PredictSupport(<scalar column reference>, [<predicted state>])

Applies To
A scalar column.

Return Type
A scalar value of the type that is specified by <scalar column reference>.

Remarks
If the predicted state is omitted, the state that has the highest predictable probability is
used, excluding the missing states bucket. To include the missing states bucket, set the
<predicted state> to INCLUDE_NULL.
To return the support for the missing states, set the <predicted state> to NULL.

The support values are calculated differently or might have a different
interpretation depending on the model type that you are querying. For more
information about how support is calculated for any particular model type, see
the individual algorithm type in Mining Model Content (Analysis Services - Data
Mining).

Examples
The following example uses a singleton query to predict whether an individual will be a
bike buyer, and also determines the support for the prediction based on the TM Decision
Tree mining model.

SELECT

 [Bike Buyer],

 PredictSupport([Bike Buyer]) AS [Support],

From

 [TM Decision Tree]

NATURAL PREDICTION JOIN

(SELECT 28 AS [Age],

 '2-5 Miles' AS [Commute Distance],

 'Graduate Degree' AS [Education],

 0 AS [Number Cars Owned],

Note

http://msdn.microsoft.com/en-us/library/e7c039f6-3266-4d84-bfbd-f99b6858acf4(SQL.110)�
http://msdn.microsoft.com/en-us/library/e7c039f6-3266-4d84-bfbd-f99b6858acf4(SQL.110)�

 124

 0 AS [Number Children At Home]) AS t

See Also
Mapping Functions to Query Types (DMX)
Functions (DMX)
Mapping Functions to Query Types (DMX)

PredictTimeSeries
Returns predicted future values for time series data. Time series data is continuous and
can be stored in a nested table or in a case table. The PredictTimeSeries function always
returns a nested table.

Syntax

PredictTimeSeries(<table column reference>)
PredictTimeSeries(<table column reference>, n)
PredictTimeSeries(<table column reference>, n-start, n-end)
PredictTimeSeries(<scalar column reference>)
PredictTimeSeries(<scalar column reference>, n)
PredictTimeSeries(<scalar column reference>, n-start, n-end)
PredictTimeSeries(<table column reference>, n, REPLACE_MODEL_CASES
| EXTEND_MODEL_CASES) PREDICTION JOIN <source query>
PredictTimeSeries(<table column reference>, n-start, n-end,
REPLACE_MODEL_CASES | EXTEND_MODEL_CASES) PREDICTION JOIN <source query>
PredictTimeSeries(<scalar column reference>, n, REPLACE_MODEL_CASES
| EXTEND_MODEL_CASES) PREDICTION JOIN <source query>
PredictTimeSeries(<scalar column reference>, n-start, n-end,
REPLACE_MODEL_CASES | EXTEND_MODEL_CASES

Arguments

) PREDICTION JOIN <source query>

<table column reference>, <scalar column referenc>

Specifies the name of the column to predict. The column can contain either scalar or
tabular data.

n

Specifies the number of next steps to predict. If a value is not specified for n, the default
is 1.

n cannot be 0. The function returns an error if you do not make at least one prediction.

 125

n-start, n-end

Specifies a range of time series steps.

n-start must be an integer and cannot be 0.

n-end must be an integer greater than n-start.

<source query>

Defines the external data that is used for making predictions.

REPLACE_MODEL_CASES | EXTEND_MODEL_CASES

Indicates how to handle new data.

REPLACE_MODEL_CASES specifies that the data points in the model should be replaced
with new data. However, predictions are based on the patterns in the existing mining
model.

EXTEND_MODEL_CASES specifies that the new data should be added to the original
training data set. Future predictions are made on the composite data set only after the
new data has been used up.

These arguments can be used only when new data is added by using a PREDICTION
JOIN statement. If you use a PREDICTION JOIN query and do not specify an argument,
the default is EXTEND_MODEL_CASES.

Return Type
A <table expression>.

Remarks
The Microsoft Time Series algorithm does not support historical prediction when you use
the PREDICTION JOIN statement to add new data.
In a PREDICTION JOIN, the prediction process always starts at the time step immediately
after the end of the original training series. This is true even if you add new data.
Therefore, the n parameter and n-start parameter values must be an integer greater than
0.

The length of the new data does not affect the starting point for prediction.
Therefore, if you want to add new data and also make new predictions, make
sure that you either set the prediction start point to a value greater than the
length of the new data, or extend the prediction end point by the length of the
new data.

Examples
The following examples show how to make predictions against an existing time series
model:
• The first example shows how to make a specified number of predictions based on the

current model.

Note

 126

• The second example shows how to use the REPLACE_MODEL_CASES parameter to
apply the patterns in the specified model to a new set of data.

• The third example shows how to use the EXTEND_MODEL_CASES parameter to
update a mining model with fresh data.

To learn more about working with time series models, see the data mining
tutorial, Lesson 2: Building a Forecasting Scenario (Intermediate Data Mining Tutorial)
and Time Series Prediction DMX Tutorial.

You might obtain different results from your model; the results of the examples
below are provided only to illustrate the result format.

Example 1: Predicting a Number of Time Slices
The following example uses the PredictTimeSeries function to return a prediction for
the next three time steps, and restricts results to the M200 series in the Europe and
Pacific regions. In this particular model, the predictable attribute is Quantity, so you must
use [Quantity] as the first argument to the PredictTimeSeries function.

SELECT FLATTENED

 [Forecasting].[Model Region],

 PredictTimeSeries([Forecasting].[Quantity],3)AS t

FROM

 [Forecasting]

WHERE [Model Region] = 'M200 Europe'

OR [Model Region] = 'M200 Pacific'

Expected results:

Model Region t.$TIME t.Quantity

M200 Europe 7/25/2008 12:00:00 AM 121

M200 Europe 8/25/2008 12:00:00 AM 142

M200 Europe 9/25/2008 12:00:00 AM 152

M200 Pacific 7/25/2008 12:00:00 AM 46

M200 Pacific 8/25/2008 12:00:00 AM 44

M200 Pacific 9/25/2008 12:00:00 AM 42

In this example, the FLATTENED keyword has been used to make the results easier to
read. If you do not use the FLATTENED keyword and instead return a hierarchical rowset,

Note

http://msdn.microsoft.com/en-us/library/9a988156-c900-4c22-97fa-f6b0c1aea9e2(SQL.110)�
http://msdn.microsoft.com/en-us/library/38ea7c03-4754-4e71-896a-f68cc2c98ce2(SQL.110)�

 127

this query returns two columns. The first column contains the value for [ModelRegion],
and the second column contains a nested table with two columns: $TIME, which shows
the time slices that are being predicted, and Quantity, which contains the predicted
values.

Example 2: Adding New Data and Using REPLACE_MODEL_CASES
Suppose you find that the data was incorrect for a particular region, and want to use the
patterns in the model, but to adjust the predictions to match the new data. Or, you
might find that another region has more reliable trends and you want to apply the most
reliable model to data from a different region.
In such scenarios, you can use the REPLACE_MODEL_CASES parameter and specify a new
set of data to use as historical data. That way, the projections will be based on the
patterns in the specified model, but will continue smoothly from the end of the new data
points. For a complete walkthrough of this scenario, see Adding an Aggregated
Forecasting Model (Intermediate Data Mining Tutorial).
The following PREDICTION JOIN query illustrates the syntax for replacing data and
making new predictions. For the replacement data, the example retrieves the value of the
Amount and Quantity columns and multiplies each by two:

SELECT [Forecasting].[Model Region],

 PredictTimeSeries([Forecasting].[Quantity], 3, REPLACE_MODEL_CASES)

FROM

 [Forecasting]

PREDICTION JOIN

 OPENQUERY([Adventure Works DW Multidimensional 2012],

 'SELECT [ModelRegion],

 ([Quantity] * 2) as Quantity,

 ([Amount] * 2) as Amount,

 [ReportingDate]

 FROM [dbo].vTimeSeries

 WHERE ModelRegion = N''M200 Pacific''

 ') AS t

ON

 [Forecasting].[Model Region] = t.[Model Region] AND

[Forecasting].[Reporting Date] = t.[ReportingDate] AND

[Forecasting].[Quantity] = t.[Quantity] AND

[Forecasting].[Amount] = t.[Amount]

The following table compares the results of prediction.

http://msdn.microsoft.com/en-us/library/b614ebdb-07ca-44af-a0ff-893364bd4b71(SQL.110)�
http://msdn.microsoft.com/en-us/library/b614ebdb-07ca-44af-a0ff-893364bd4b71(SQL.110)�

 128

Original predictions Updated predictions

M200
Pacific

7/25/2008
12:00:00 AM

46

M200
Pacific

8/25/2008
12:00:00 AM

44

M200
Pacific

9/25/2008
12:00:00 AM

42

M200
Pacific

7/25/2008
12:00:00 AM

91

M200
Pacific

8/25/2008
12:00:00 AM

89

M200
Pacific

9/25/2008
12:00:00 AM

84

Example 3: Adding New Data and Using EXTEND_MODEL_CASES
Example 3 illustrates the use of the EXTEND_MODEL_CASES option to provide new data,
which is added to the end of an existing data series. Rather than replacing the existing
data points, the new data is added onto the model.
In the following example, the new data is provided in the SELECT statement that follows
NATURAL PREDICTION JOIN. You can supply multiple rows of new input with this syntax,
but each new row of input must have a unique time stamp:

SELECT [Model Region],

 PredictTimeSeries([Forecasting].[Quantity], 5, EXTEND_MODEL_CASES)

FROM

 [Forecasting]

NATURAL PREDICTION JOIN

 (SELECT

 1 as [Reporting Date],

 10 as [Quantity],

 'M200 Europe' AS [Model Region]

 UNION SELECT

 2 as [Reporting Date],

 15 as [Quantity],

 'M200 Europe' AS [Model Region]

) AS T

 129

WHERE ([Model Region] = 'M200 Europe'

 OR [Model Region] = 'M200 Pacific')

Because the query uses the EXTEND_MODEL_CASES option, Analysis Services takes the
following actions for its predictions:
• Increases the total size of the training cases by adding the two new months of data

to the model.
• Starts the predictions at the end of the previous case data. Therefore, the first two

predictions represent the new actual sales data that you just added to the model.
• Returns new predictions for the remaining three time slices based on the newly

expanded model.
The following table lists the results of the Example 2 query. Notice that the first two
values returned for M200 Europe are exactly the same as the new values that you
provided. This behavior is by design; if you want to start predictions after the end of the
new data, you must specify a starting and ending time step. For an example of how to do
this, see Lesson 5: Extending the Time Series Model.
Also, notice that you did not supply new data for the Pacific region. Therefore, Analysis
Services returns new predictions for all five time slices.

Quantity EXTEND_MODEL_CASES

M200 Europe

$TIME Quantity

7/25/2008 0:00 10

8/25/2008 0:00 15

9/25/2008 0:00 72

10/25/2008 0:00 69

11/25/2008 0:00 68

M200 Pacific

$TIME Quantity

7/25/2008 0:00 46

8/25/2008 0:00 44

http://msdn.microsoft.com/en-us/library/7aad4946-c903-4e25-88b9-b087c20cb67d(SQL.110)�

 130

Quantity EXTEND_MODEL_CASES

9/25/2008 0:00 42

10/25/2008 0:00 42

11/25/2008 0:00 38

Example 4: Returning Statistics in a Time Series Prediction
The PredictTimeSeries function does not support INCLUDE_STATISTICS as a parameter.
However, the following query can be used to return the prediction statistics for a time
series query. This approach can also be used with models that have nested table
columns.
In this particular model, the predictable attribute is Quantity, so you must use
[Quantity] as the first argument to the PredictTimeSeries function. If your model uses
a different predictable attribute, you can substitute a different column name.
SELECT FLATTENED [Model Region],

(SELECT

 $Time,

 [Quantity] as [PREDICTION],

 PredictVariance([Quantity]) AS [VARIANCE],

 PredictStdev([Quantity]) AS [STDEV]

FROM

 PredictTimeSeries([Quantity], 3) AS t

) AS t

FROM Forecasting

WHERE [Model Region] = 'M200 Europe'

OR [Model Region] = 'M200 North America'

Sample results:

Model
Region

t.$TIME t.PREDICTION t.VARIANCE t.STDEV

M200 7/25/2008 121 11.6050581415597 3.40661975300439

 131

Model
Region

t.$TIME t.PREDICTION t.VARIANCE t.STDEV

Europe 12:00:00 AM

M200
Europe

8/25/2008
12:00:00 AM

142 10.678201866621 3.26775180615374

M200
Europe

9/25/2008
12:00:00 AM

152 9.86897842568614 3.14149302493037

M200
North
America

7/25/2008
12:00:00 AM

163 1.20434529288162 1.20434529288162

M200
North
America

8/25/2008
12:00:00 AM

178 1.65031343900634 1.65031343900634

M200
North
America

9/25/2008
12:00:00 AM

156 1.68969399185442 1.68969399185442

The FLATTENED keyword was used in this example to make the results easier to
present in a table; however, if your provider supports hierarchical rowsets you can
omit the FLATTENED keyword. If you omit the FLATTENED keyword, the query
returns two columns, the first column containing the value that identifies the
[Model Region] data series, and the second column containing the nested table
of statistics.

See Also
Data Mining Extensions (DMX) Function Reference
Querying a Time Series Model (Analysis Services - Data Mining)
Predict (DMX)

PredictVariance
Returns the variance of a specified column.

Syntax

PredictVariance(<scalar column reference>)

Applies To

Note

http://msdn.microsoft.com/en-us/library/9a1c527e-2997-493b-ad6a-aaa71260b018(SQL.110)�

 132

A scalar column.

Return Type
A scalar value of the type that is specified by <scalar column reference>.

Remarks
If the column reference is discrete, PredictVariance returns 0 because the variance
cannot be calculated from discrete values.

Examples
The following example uses a natural prediction join to determine if an individual is likely
to be a bike buyer based on the TM Decision Tree mining model, and also determines
the variance for the prediction.

SELECT

 [Bike Buyer],

 PredictVariance([Bike Buyer]) AS [Variance]

FROM

 [TM Decision Tree]

NATURAL PREDICTION JOIN

(SELECT 28 AS [Age],

 '2-5 Miles' AS [Commute Distance],

 'Graduate Degree' AS [Education],

 0 AS [Number Cars Owned],

 0 AS [Number Children At Home]) AS t

See Also
Mapping Functions to Query Types (DMX)
Functions (DMX)
Mapping Functions to Query Types (DMX)

RangeMax
Returns the upper end of the predicted bucket that is discovered for a discretized
column.

Syntax

RangeMax(<scalar column reference>)

Applies To

 133

Scalar columns.

Return Type
A scalar value.

Remarks
The RangeMax function can be used in RangeMin queries. When used with this type of
query, the scalar column reference can contain continuous or discrete columns that are
either predictable or input.
When used with PREDICTION JOIN, the RangeMin, RangeMid, and RangeMax
functions return the actual boundary values of the specified bucket. For example, if you
perform a prediction on a discretized column, the query returns the predicted bucket
number in the discretized column. The RangeMin, RangeMid, and RangeMax functions
describe the bucket that the prediction specifies. When the RangeMax function is used
with a PREDICTION JOIN statement, the scalar column reference can only contain
discrete, predictable columns.

Examples
The following example returns the minimum, maximum, and average values for the
Yearly Income continuous column in the Decision Tree mining model.

SELECT DISTINCT

 RangeMin([Yearly Income]) AS [Bucket Minimum],

 RangeMid([Yearly Income]) AS [Bucket Average],

 RangeMax([Yearly Income]) AS [Bucket Maximum]

FROM [TM Decision Tree]

See Also
Data Mining Extensions (DMX) Function Reference
Functions (DMX)
Mapping Functions to Query Types (DMX)
RangeMid (DMX)
RangeMin (DMX)

RangeMid
Returns the midpoint of the predicted bucket that is discovered for a discretized column.

Syntax

RangeMid(<scalar column reference>)

 134

Applies To
Discretized scalar columns.

Return Type
A scalar value.

Remarks
When used with RangeMin, the RangeMin, RangeMid, and RangeMax functions return
the actual boundary values of the specified bucket. For example, if you perform a
prediction on a discretized column, the query returns the predicted bucket number in
the discretized column. The RangeMin, RangeMid, and RangeMax functions describe
the bucket that the prediction specifies. When the RangeMid function is used with a
PREDICTION JOIN statement, the scalar column reference can only contain discrete,
predictable columns.

Examples
The following example returns the minimum, maximum, and average values for the
Yearly Income continuous column in a TM Decision Tree mining model.

SELECT DISTINCT

 RangeMin([Yearly Income]) AS [Bucket Minimum],

 RangeMid([Yearly Income]) AS [Bucket Average],

 RangeMax([Yearly Income]) AS [Bucket Maximum]

FROM [TM Decision Tree]

See Also
Data Mining Extensions (DMX) Function Reference
Functions (DMX)
Mapping Functions to Query Types (DMX)
RangeMax (DMX)
RangeMin (DMX)

RangeMin
Returns the lower end of the predicted bucket that is discovered for a discretized
column.

Syntax

RangeMin(<scalar column reference>)

Applies To

 135

Scalar columns.

Return Type
A scalar value.

Remarks
The RangeMin function can be used in RangeMid queries. When used with this type of
query, the scalar column reference can contain continuous or discrete columns that are
either predictable or input.
When used with PREDICTION JOIN, the RangeMin, RangeMid, and RangeMax
functions return the actual boundary values of the specified bucket. For example, if you
perform a prediction on a discretized column, the query returns the predicted bucket
number in the discretized column. The RangeMin, RangeMid, and RangeMax functions
describe the bucket that the prediction specifies. When the RangeMin function is used
with a PREDICTION JOIN statement, the scalar column reference can only contain
discrete, predictable columns.

Examples
The following example returns the minimum, maximum, and average values for the
Yearly Income continuous column in the Decision Tree mining model.

SELECT DISTINCT

 RangeMin([Yearly Income]) AS [Bucket Minimum],

 RangeMid([Yearly Income]) AS [Bucket Average],

 RangeMax([Yearly Income]) AS [Bucket Maximum]

FROM [TM Decision Tree]

See Also
Data Mining Extensions (DMX) Function Reference
Functions (DMX)
Mapping Functions to Query Types (DMX)
RangeMax (DMX)
RangeMid (DMX)

StructureColumn
Returns the value of the structure column corresponding to the specified case, or the
table value for a nested table in the specified case.

Syntax

StructureColumn('structure column name')

 136

Arguments
structure-column-name.

The name of a case or nested table mining structure column.

Result Type
The type that is returned depends on the type of the column that is referenced in the
<structure column name> parameter. For example, if the mining structure column that is
referenced contains a scalar value, the function returns a scalar value.
If the mining structure column that is referenced is a nested table, the function returns a
table value. The returned table value can be used in the FROM clause of a sub-SELECT
statement.

Remarks
This function is polymorphic and can be used anywhere in a statement that allows
expressions, including a SELECT expression list, a WHERE condition expression, and an
ORDER BY expression.
The name of the column in the mining structure is a string value and as such must be
enclosed in single quotation marks: for example, StructureColumn('column 1'). If
there are multiple columns that have the same name, the name is resolved in the context
of the enclosing SELECT statement.
The results that are returned from a query using the StructureColumn function are
affected by the presence of any filters on the model. That is to say, the model filter
controls the cases that are included in the mining model. Therefore, a query on the
structure column can return only those cases that were used in the mining model. See
the Examples section of this topic for a code sample that shows the effect of mining
model filters on both case tables and a nested table.
For more information about how to use this function in a DMX SELECT statement,
see SELECT FROM <model>.CASES (DMX) or SELECT FROM <structure>.CASES.

Error Messages
The following security error is raised if the user does not have drillthrough permission on
the parent mining structure:
The '%{user/}' user does not have permission to drill through to the parent mining
structure of the ‘%{model/}’ mining model.
The following error message is raised if an invalid structure column name is specified:
The ‘%{structure-column-name/}’ mining structure column was not found in the
‘%{structure/}’ parent mining structure in the current context (line %{line/}, column
%{column/}).

Examples

 137

We will use the following mining structure for these examples. Note that the mining
structure contains two nested table columns, Products and Hobbies. The nested table
in the Hobbies column has a single column that is used as the key for the nested table.
The nested table in the Products column is a complex nested table that has both a key
column and other columns used for input. The following examples illustrate how a data
mining structure can be designed to include many different columns, even though a
model may not use every column. Some of these columns may not be useful at the
model level for generalizing patterns, but may be very useful for drillthrough.

CREATE MINING STRUCTURE [MyStructure]

(

CustomerName TEXT KEY,

Occupation TEXT DISCRETE,

Age LONG CONTINUOUS,

MaritalStatus TEXT DISCRETE,

Income LONG CONTINUOUS,

Products TABLE

 (

 ProductNameTEXT KEY,

 Quantity LONG CONTINUOUS,

 OnSale BOOLEAN DISCRETE

)

 Hobbies TABLE

 (

 Hobby KEY

))

Next, create a mining model based on the structure you just created, using the following
example code:

ALTER MINING STRUCTURE [MyStructure] ADD MINING MODEL [MyModel] (

CustomerName,

Age,

MaritalStatus,

Income PREDICT,

Products

(

ProductName

 138

) WITH FILTER(NOT OnSale)

) USING Microsoft_Decision_Trees

WITH FILTER(EXISTS (Products))

Sample Query 1: Returning a Column from the Mining Structure
The following sample query returns the columns CustomerName and Age, which are
defined as being part of the mining model. However, the query also returns the column
Age, which is part of the structure but not part of the mining model.

SELECT CustomerName, Age, StructureColumn(‘Occupation’) FROM

MyModel.CASES

WHERE Age > 30

Note that the filtering of rows to restrict cases to customers over the age of 30 takes
place at the level of the model. Therefore, this expression would not return cases that are
included in the structure data but are not used by the model. Because the filter condition
used to create the model (EXISTS (Products)) restricts cases to only those customers
who purchased products, there might be cases in the structure that are not returned by
this query.

Sample Query 2: Applying a Filter to the Structure Column
The following sample query not only returns the model columns CustomerName and Age,
and the nested table Products, but also returns the value of the column Quantity in the
nested table, which is not part of the model.

SELECT CustomerName, Age,

(SELECT ProductName, StructureColumn(‘Quantity’) FROM Products) FROM

MA.CASES

WHERE StructureColumn(‘Occupation’) = ‘Architect’

Note that, in this example, a filter is applied to the structure column to restrict the cases
to customers whose occupation is ‘Architect’ (WHERE
StructureColumn(‘Occupation’) = ‘Architect’). Because the model filter
condition is always applied to the cases when the model is created, only cases that
contain at least one qualifying row in the Products table are included in the model
cases. Therefore, both the filter on the nested table Products and the filter on the case
(‘Occupation’)are applied.

Sample Query 3: Selecting Columns from a Nested Table
The following sample query returns the names of customers who were used as training
cases from the model. For each customer, the query also returns a nested table that
contains the purchase details. Although the model includes the ProductName column,
the model does not use the value of the ProductName column. The model only checks if
the product was purchased at regular (NOT OnSale) price. This query not only returns the

 139

product name, but also returns the quantity purchased, which is not included in the
model.

SELECT CustomerName,

(SELECT ProductName, StructureColumn('Quantity')FROM Products)

FROM MyModel.CASES

Note that you cannot return either the ProductName column or the Quantity column
unless drillthrough is enabled on the mining model.

Sample Query 4: Filtering on and Returning Nested Table Columns
Thee following sample query returns the case and nested table columns that are
included in the mining structure but not in the model. The model is already filtered on
the presence of OnSale products, but this query adds a filter on the mining structure
column, Quantity:

SELECT CustomerName, Age, StructureColumn('Occupation'),

(SELECT ProductName, StructureColumn('Quantity') FROM Products)

FROM MyModel.CASES

WHERE EXISTS (SELECT * FROM Products WHERE

StructureColumn('Quantity')>1)

See Also
Mapping Functions to Query Types (DMX)
Functions (DMX)
Mapping Functions to Query Types (DMX)

TopCount
Returns the specified number of top-most rows in decreasing order of rank as specified
by an expression.

Syntax

TopCount(<table expression>, <rank expression>, <count>)

Applies To
An expression that returns a table, such as a <table column reference>, or a function
that returns a table.

Return Type
<table expression>

Remarks

 140

The value that is supplied by the <rank expression> argument determines the
decreasing order of rank for the rows that are supplied in the <table expression>
argument, and the number of top-most rows that is specified in the <count> argument
is returned.
The TopCount function was originally introduced to enable associative predictions and
in general, produces the same results as a statement that includes SELECT TOP and
ORDER BY clauses. You will obtain better performance for associative predictions if you
use the Predict (DMX) function, which supports specification of a number of predictions
to return.
However, there are situations where you might still need to use TopCount. For example,
DMX does not support the TOP qualifier in a sub-select statement. The PredictHistogram
(DMX) function also does not support the addition of TOP.

Examples
The following examples are prediction queries against the Association model that you
build by using the Basic Data Mining Tutorial. The queries return the same results, but
the first example uses TopCount, and the second example uses the Predict function.
To understand how TopCount works, it may be helpful to first execute a prediction
query that returns only the nested table.

SELECT Predict ([Association].[v Assoc Seq Line Items],

INCLUDE_STATISTICS, 10)

FROM

 [Association]

NATURAL PREDICTION JOIN

SELECT (SELECT 'Women''s Mountain Shorts' as [Model]) AS [v Assoc Seq

Line Items]) AS t

In this example, the value supplied as input contains a single quotation mark, and
therefore must be escaped by prefacing it with another single quotation mark. If
you are not sure of the syntax for inserting an escape character, you can use the
Prediction Query Builder to create the query. When you select the value from the
dropdown list, the required escape character is inserted for you. For more
information, see How to: Create a Singleton Query in the Data Mining Designer.

Example results:

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Sport-100 4334 0.291283016 0.252695851

Water Bottle 2866 0.192620472 0.175205052

Note

http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�
http://msdn.microsoft.com/en-us/library/6cdca8a0-cf16-46eb-a652-0bff820625ab(SQL.110)�

 141

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Patch kit 2113 0.142012232 0.132389356

Mountain Tire
Tube

1992 0.133879965 0.125304948

Mountain-200 1755 0.117951475 0.111260823

Road Tire Tube 1588 0.106727603 0.101229538

Cycling Cap 1473 0.098998589 0.094256014

Fender Set -
Mountain

1415 0.095100477 0.090718432

Mountain Bottle
Cage

1367 0.091874454 0.087780332

Road Bottle Cage 1195 0.080314537 0.077173962

The TopCount function takes the results of this query and returns the specified number
of the smallest-valued rows.

SELECT

TopCount

 (

 Predict ([Association].[v Assoc Seq Line

Items],INCLUDE_STATISTICS,10),

 $SUPPORT,

 3)

FROM

 [Association]

NATURAL PREDICTION JOIN

(SELECT (SELECT 'Women''s Mountain Shorts' as [Model]) AS [v Assoc Seq

Line Items]) AS t

The first argument to the TopCount function is the name of a table column. In this
example, the nested table is returned by calling the Predict function and using the
INCLUDE_STATISTICS argument.
The second argument to the TopCount function is the column in the nested table that
you use to order the results. In this example, the INCLUDE_STATISTICS option returns the
columns $SUPPORT, $PROBABILTY, and $ADJUSTED PROBABILITY. This example uses
$SUPPORT to rank the results.

 142

The third argument to the TopCount function specifies the number of rows to return, as
an integer. To get the top three products, as ordered by $SUPPORT, you type 3.
Example results:

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Sport-100 4334 0.29… 0.25…

Water Bottle 2866 0.19… 0.17…

Patch kit 2113 0.14… 0.13…

However, this type of query might affect performance in a production setting. This is
because the query returns a set of all predictions from the algorithm, sorts these
predictions, and returns the top 3.
The following example provides an alternative statement that returns the same results
but executes significantly faster. This example replaces TopCount with the Predict
function, which accepts a number of predictions as an argument. This example also uses
the $SUPPORT keyword to directly retrieve the nested table column.

SELECT Predict ([Association].[v Assoc Seq Line Items],

INCLUDE_STATISTICS, 3, $SUPPORT)

The results contain the top 3 predictions sorted by the support value. You can replace
$SUPPORT with $PROBABILITY or $ADJUSTED_PROBABILITY to return predictions ranked
by probability or adjusted probability. For more information, see Predict (DMX).

See Also
Functions (DMX)
Mapping Functions to Query Types (DMX)
BottomCount (DMX)
TopPercent (DMX)
TopSum (DMX)

TopPercent
The TopPercent function returns, in order of decreasing rank, the top-most rows of a
table whose cumulative total is at least a specified percentage.

Syntax

TopPercent(<table expression>, <rank expression>, <percent>)

 143

Applies To
An expression that returns a table, such as a <table column reference>, or a function
that returns a table.

Return Type
<table expression>

Remarks
The TopPercent function returns the top-most rows in decreasing order of rank based
on the evaluated value of the <rank expression> argument for each row, such that the
sum of the <rank expression> values is at least the given percentage that is specified by
the <percent> argument. TopPercent returns the smallest number of elements possible
while still meeting the specified percent value.

Examples
The following example creates a prediction query against the Association model that you
build by using the Basic Data Mining Tutorial.
To understand how TopPercent works, it might be helpful to first execute a prediction
query that returns only the nested table.

SELECT Predict ([Association].[v Assoc Seq Line Items],

INCLUDE_STATISTICS, 10)

FROM

 [Association]

NATURAL PREDICTION JOIN

SELECT (SELECT 'Women''s Mountain Shorts' as [Model]) AS [v Assoc Seq

Line Items]) AS t

In this example, the value supplied as input contains a single quotation mark, and
therefore must be escaped by prefacing it with another single quotation mark. If
you are not sure of the syntax for inserting an escape character, you can use the
Prediction Query Builder to create the query. When you select the value from the
dropdown list, the required escape character is inserted for you. For more
information, see How to: Create a Singleton Query in the Data Mining Designer.

Example results:

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Sport-100 4334 0.291283016 0.252695851

Water Bottle 2866 0.192620472 0.175205052

Note

http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�
http://msdn.microsoft.com/en-us/library/6cdca8a0-cf16-46eb-a652-0bff820625ab(SQL.110)�

 144

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Patch kit 2113 0.142012232 0.132389356

Mountain Tire
Tube

1992 0.133879965 0.125304948

Mountain-200 1755 0.117951475 0.111260823

Road Tire Tube 1588 0.106727603 0.101229538

Cycling Cap 1473 0.098998589 0.094256014

Fender Set -
Mountain

1415 0.095100477 0.090718432

Mountain Bottle
Cage

1367 0.091874454 0.087780332

Road Bottle Cage 1195 0.080314537 0.077173962

The TopPercent function takes the results of this query and returns the rows with the
greatest values that sum to the specified percentage.

SELECT

TopPercent

 (

 Predict ([Association].[v Assoc Seq Line

Items],INCLUDE_STATISTICS,10),

 $SUPPORT,

 50)

FROM

 [Association]

NATURAL PREDICTION JOIN

(SELECT (SELECT 'Women''s Mountain Shorts' as [Model]) AS [v Assoc Seq

Line Items]) AS t

The first argument to the TopPercent function is the name of a table column. In this
example, the nested table is returned by calling the Predict function and using the
INCLUDE_STATISTICS argument.
The second argument to the TopPercent function is the column in the nested table that
you use to order the results. In this example, the INCLUDE_STATISTICS option returns the
columns $SUPPORT, $PROBABILTY, and $ADJUSTED PROBABILITY. This example uses
$SUPPORT because support values are not fractional and therefore are easier to verify.

 145

The third argument to the TopPercent function specifies the percentage, as a double. To
get the rows for the top products that sum to 50 percent of the total support, you type
50.
Example results:

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Sport-100 4334 0.29… 0.25…

Water Bottle 2866 0.19… 0.17…

Patch kit 2113 0.14… 0.13…

Mountain Tire
Tube

1992 0.133… 0.12…

Note This example is provided only to illustrate the usage of TopPercent. Depending
on the size of your data set, this query might take a long time to run.

The MDX functions for TOPPERCENT and BOTTOMPERCENT can generate
unexpected results when the values used to calculate the percentage include
negative numbers. This behavior does not affect the DMX functions. For more
information, see BOTTOMPERCENT.

See Also
Mapping Functions to Query Types (DMX)
Functions (DMX)
Mapping Functions to Query Types (DMX)

TopSum
Returns, in order of decreasing rank, the top-most rows of a table whose cumulative
total is at least a specified value.

Syntax

TopSum(<table expression>, <rank expression>, <sum>)

Applies To
An expression that returns a table, such as a <table column reference>, or a function
that returns a table.

Return Type

Warning

http://msdn.microsoft.com/en-us/library/c04866e6-e6dd-4ed1-ae79-c718c194930c(SQL.110)�

 146

<table expression>

Remarks
The TopSum function returns the top-most rows in decreasing order of rank based on
the evaluated value of the <rank expression> argument for each row, such that the sum
of the <rank expression> values is at least the given total that is specified by the <sum>
argument. TopSum returns the smallest number of elements possible while still meeting
the specified sum value.

Examples
The following example creates a prediction query against the Association model that you
build by using the Basic Data Mining Tutorial.
To understand how TopPercent works, it might be helpful to first execute a prediction
query that returns only the nested table.

SELECT Predict ([Association].[v Assoc Seq Line Items],

INCLUDE_STATISTICS, 10)

FROM

 [Association]

NATURAL PREDICTION JOIN

SELECT (SELECT 'Women''s Mountain Shorts' as [Model]) AS [v Assoc Seq

Line Items]) AS t

In this example, the value supplied as input contains a single quotation mark, and
therefore must be escaped by prefacing it with another single quotation mark. If
you are not sure of the syntax for inserting an escape character, you can use the
Prediction Query Builder to create the query. When you select the value from the
dropdown list, the required escape character is inserted for you. For more
information, see How to: Create a Singleton Query in the Data Mining Designer.

Example results:

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Sport-100 4334 0.291283016 0.252695851

Water Bottle 2866 0.192620472 0.175205052

Patch kit 2113 0.142012232 0.132389356

Mountain Tire
Tube

1992 0.133879965 0.125304948

Mountain-200 1755 0.117951475 0.111260823

Note

http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�
http://msdn.microsoft.com/en-us/library/6cdca8a0-cf16-46eb-a652-0bff820625ab(SQL.110)�

 147

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Road Tire Tube 1588 0.106727603 0.101229538

Cycling Cap 1473 0.098998589 0.094256014

Fender Set -
Mountain

1415 0.095100477 0.090718432

Mountain Bottle
Cage

1367 0.091874454 0.087780332

Road Bottle Cage 1195 0.080314537 0.077173962

The TopSum function takes the results of this query and returns the rows with the
greatest values that sum to the specified count.

SELECT

TopSum

 (

 Predict([Association].[v Assoc Seq Line

Items],INCLUDE_STATISTICS,10),

 $PROBABILITY,

 .5)

FROM

 [Association]

NATURAL PREDICTION JOIN

(SELECT (SELECT 'Women''s Mountain Shorts' as [Model]) AS [v Assoc Seq

Line Items]) AS t

The first argument to the TopSum function is the name of a table column. In this
example, the nested table is returned by calling the Predict function and using the
INCLUDE_STATISTICS argument.
The second argument to the TopSum function is the column in the nested table that you
use to order the results. In this example, the INCLUDE_STATISTICS option returns the
columns $SUPPORT, $PROBABILTY, and $ADJUSTED PROBABILITY. This example uses
$PROBABILITY to return rows that sum to at least 50% probability.
The third argument to the TopSum function specifies the target sum, as a double. To get
the rows for the top products that sum to 50 percent probability, you type .5.
Example results:

 148

Model $SUPPORT $PROBABILITY $ADJUSTEDPROBABILITY

Sport-100 4334 0.29… 0.25…

Water Bottle 2866 0.19… 0.17…

Patch kit 2113 0.14… 0.13…

Note This example is provided only to illustrate the usage of TopSum. Depending on
the size of your data set, this query might take a long time to run.

See Also
Functions (DMX)
Mapping Functions to Query Types (DMX)
TopPercent (DMX)

Data Mining Extensions (DMX) Operator
Reference
The Data Mining Extensions (DMX) language in Microsoft SQL Server Analysis Services
supports arithmetic, assignment, comparison, logical, and unary operators. The following
table lists the operators that DMX supports.

Operator Description

Operators (DMX) An arithmetic operator that adds two
numbers together.

- (Subtract) (DMX) An arithmetic operator that subtracts one
number from another number.

* (Multiply) (DMX) An arithmetic operator that multiplies one
number by another number.

/ (Divide) (DMX) An arithmetic operator that divides one
number by another number.

< (Less Than) (DMX) A comparison operator. For arguments that
evaluate to non-null values, returns TRUE if
the value of the argument on the left is less
than the value of the argument on the
right; returns FALSE otherwise. If either

 149

Operator Description

argument or both arguments evaluate to a
null value, the operator returns a null value.

> (Greater Than) (DMX) A comparison operator. For arguments that
evaluate to non-null values, returns TRUE if
the value of the argument on the left is
greater than the value of the argument on
the right; returns FALSE otherwise. If either
argument or both arguments evaluate to a
null value, the operator returns a null value.

= (Equal To) (DMX) A comparison operator. For arguments that
evaluate to non-null values, returns TRUE if
the value of the argument on the left is
equal to the value of the argument on the
right; returns FALSE otherwise. If either
argument or both arguments evaluate to a
null value, the operator returns a null value.

<> (Not Equal To) (DMX) A comparison operator. For arguments that
evaluate to non-null values, returns TRUE if
the value of the argument on the left is not
equal to the value of the argument on the
right; returns FALSE otherwise. If either
argument or both arguments evaluate to a
null value, the operator returns a null value.

<= (Less Than or Equal To) (DMX) A comparison operator. For arguments that
evaluate to non-null values, returns TRUE if
the value of the argument on the left is less
than or equal to the value of the argument
on the right; returns FALSE otherwise. If
either argument or both arguments
evaluate to a null value, the operator
returns a null value.

>= (Greater Than or Equal To) (DMX) A comparison operator. For arguments that
evaluate to non-null values, returns TRUE if
the value of the argument on the left is
greater than or equal to the value of the
argument on the right; returns FALSE
otherwise. If either argument or both
arguments evaluate to a null value, the
operator returns a null value.

 150

Operator Description

AND (DMX) A logical operator that performs a
conjunction on two numeric expressions.

NOT (DMX) A logical operator that performs a negation
on a numeric expression.

OR (DMX) A logical operator that performs a
disjunction on two numeric expressions.

+ (Positive) (DMX) A unary operator that returns the positive
value of a numeric expression.

- (Negative) (DMX) A unary operator that returns the negative
value of a numeric expression.

// (Comment) (DMX) Indicates a text string that Analysis Services
should not execute. You can nest
comments within a DMX statement, include
them at the end of a line of code, or insert
them on a separate line.

-- (Comment) (DMX) Indicates a text string that Analysis Services
should not execute. You can nest
comments within a DMX statement, include
them at the end of a line of code, or insert
them on a separate line.

/*...*/ (Comment) (DMX) Indicates a text string that Analysis Services
should not execute. You can nest
comments within a DMX statement, include
them at the end of a line of code, or insert
them on a separate line.

See Also
Data Mining Extensions (DMX) Function Reference
Data Mining Extensions (DMX) Reference
Data Mining Extensions (DMX) Statement Reference
Data Mining Extensions (DMX) Syntax Conventions
Data Mining Extensions (DMX) Syntax Elements
Operators (DMX)

 151

+ (Add)
Performs an arithmetic operation that adds two numbers together.

Syntax

Numeric_Expression + Numeric_Expression

Parameters

Parameter Description

Numeric_Expression A valid Data Mining Extensions
(DMX) expression that returns a
numeric value.

Return Value
A value that has the data type of the parameter that has the higher precedence.

Remarks
Both expressions must be of the same data type, or one expression must be able to be
implicitly converted to the data type of the other expression. If one expression evaluates
to a null value, the operator returns the result of the other expression.

See Also
Operators (DMX)
Data Mining Extensions (DMX) Operator Reference
Operators (DMX)

- (Subtract)
Performs an arithmetic operation that subtracts one number from another number.

Syntax

Numeric_Expression - Numeric_Expression

Parameters

Parameter Description

Numeric_Expression A valid Data Mining Extensions

 152

(DMX) expression that returns a
numeric value.

Return Value
A value that has the data type of the parameter that has the higher precedence.

Remarks
Both expressions must be of the same data type, or one expression must be able to be
implicitly converted to the data type of the other expression. If one expression evaluates
to a null value, the operator returns the result of the other expression.

See Also
Operators (DMX)
Data Mining Extensions (DMX) Operator Reference
Operators (DMX)

* (Multiply)
Performs an arithmetic operation that multiples one number by another number.

Syntax

Numeric_Expression * Numeric_Expression

Parameters

Parameter Description

Numeric_Expression A valid Data Mining Extensions
(DMX) expression that returns a
numeric value.

Return Value
A value that has the data type of the parameter that has the higher precedence.

Remarks
Both expressions must be of the same data type, or one expression must be able to be
implicitly converted to the data type of the other expression. If one expression evaluates
to a null value, the operator returns a null value.

See Also

 153

Operators (DMX)
Data Mining Extensions (DMX) Operator Reference
Operators (DMX)

/ (Divide)
Performs an arithmetic operation that divides one number by another number.

Syntax

Dividend / Divisor

Parameters

Parameter Description

Dividend A valid Data Mining Extensions
(DMX) expression that returns a
numeric value.

Divisor A valid DMX expression that
returns a numeric value.

Return Value
A value that has the data type of the parameter that has the higher precedence.

Remarks
The value that this operator returns represents the quotient of the first expression
divided by the second expression.
Both expressions must be of the same data type, or one expression must be able to be
implicitly converted to the data type of the other expression. If the divisor evaluates to a
null value, the operator raises an error. If both the divisor and the dividend evaluate to a
null value, the operator returns a null value.

See Also
Operators (DMX)
Data Mining Extensions (DMX) Operator Reference
Operators (DMX)
/ (Divide) (SSIS)
/ (Divide) (Transact-SQL)

http://msdn.microsoft.com/en-us/library/5bde9223-872d-443e-8a27-57735e1d8f3d(SQL.110)�
http://msdn.microsoft.com/en-us/library/1d69893b-e5c3-441d-8dd8-0e5eb872ecfc(SQL.110)�

 154

< (Less Than)
Performs a comparison operation that determines whether the value of one Data Mining
Extensions (DMX) expression is less than the value of another DMX expression.

Syntax

DMX_Expression < DMX_Expression

Parameters

Parameter Description

DMX_Expression A valid DMX expression.

Return Value
A Boolean value that contains TRUE if both parameters are non-null and the first
parameter has a value that is less than the value of the second parameter. The Boolean
value contains FALSE if both parameters are non-null and the first parameter has a value
that is equal to or greater than the value of the second parameter. The Boolean value
contains a null value if either parameter or both parameters evaluate to a null value.

See Also
Operators (DMX)
Data Mining Extensions (DMX) Operator Reference
Operators (DMX)

> (Greater Than)
Performs a comparison operation that determines whether the value of one Data Mining
Extensions (DMX) expression is greater than the value of another DMX expression.

Syntax

DMX_Expression > DMX_Expression

Parameters

Parameter Description

DMX_Expression A valid DMX expression.

 155

Return Value
A Boolean value that contains TRUE if both parameters are non-null and the first
parameter has a value that is greater than the value of the second parameter. The
Boolean value contains FALSE if both parameters are non-null and the first parameter
has a value that is equal to or less than the value of the second parameter. The Boolean
value contains a null value if either parameter or both parameters evaluate to a null
value.

See Also
Operators (DMX)
Data Mining Extensions (DMX) Operator Reference
Operators (DMX)

= (Equal To)
Performs a comparison operation that determines whether the value of one Data Mining
Extensions (DMX) expression is equal to the value of another DMX expression.

Syntax

DMX_Expression = DMX_Expression

Parameters

Parameter Description

DMX_Expression A valid DMX expression.

Return Value
A Boolean value that contains TRUE if both parameters are non-null and the value of the
first parameter is equal to the value of the second parameter. The Boolean value contains
FALSE if both parameters are non-null and the value of the first parameter is not equal to
the value of the second parameter. The Boolean value contains a null value if either
parameter or both parameters evaluate to a null value.

See Also
Operators (DMX)
Data Mining Extensions (DMX) Operator Reference
Operators (DMX)

 156

<> (Not Equal To)
Performs a comparison operation that determines whether the value of one Data Mining
Extensions (DMX) expression is not equal to the value of another DMX expression.

Syntax

DMX_Expression <> DMX_Expression

Parameters

Parameter Description

DMX_Expression A valid DMX expression.

Return Value
A Boolean value that contains TRUE if both parameters are non-null and the value of the
first parameter is not equal to the value of the second parameter. The Boolean value
contains FALSE if both parameters are non-null and the value of the first parameter is
equal to the value of the second parameter. The Boolean value contains a null value if
either parameter or both parameters evaluate to a null value.

See Also
Operators (DMX)
Data Mining Extensions (DMX) Operator Reference
Operators (DMX)

<= (Less Than or Equal To)
Performs a comparison operation that determines whether the value of one Data Mining
Extensions (DMX) expression is less than or equal to the value of another DMX
expression.

Syntax

DMX_Expression <= DMX_Expression

Parameters

Parameter Description

DMX_Expression A valid DMX expression.

 157

Return Value
A Boolean value that contains TRUE if both parameters are non-null and the value of the
first parameter is less than or equal to the value of the second parameter. The Boolean
value contains FALSE if both parameters are non-null and the value of the first parameter
is greater than the value of the second parameter. The Boolean value contains a null
value if either parameter or both parameters evaluate to a null value.

See Also
Operators (DMX)
Data Mining Extensions (DMX) Operator Reference
Operators (DMX)

>= (Greater Than or Equal To)
Performs a comparison operation that determines whether the value of one Data Mining
Extensions (DMX) expression is greater than or equal to the value of another DMX
expression.

Syntax

DMX_Expression >= DMX_Expression

Parameters

Parameter Description

DMX_Expression A valid DMX expression.

Return Value
A Boolean value that contains TRUE if both parameters are non-null and the value of the
first parameter is greater than or equal to the value of the second parameter. The
Boolean value contains FALSE if both parameters are non-null and the value of the first
parameter is less than the value of the second parameter. The Boolean value contains a
null value if either parameter or both parameters evaluate to a null value.

See Also
Operators (DMX)
Data Mining Extensions (DMX) Operator Reference
Operators (DMX)

 158

AND
Performs a logical conjunction on two numeric expressions.

Syntax

Expression1 AND Expression2

Parameters

Parameter Description

Expression1 A valid Data Mining Extensions
(DMX) expression that returns a
numeric value.

Expression2 A valid DMX expression that
returns a numeric value.

Return Value
A Boolean value that returns TRUE if both parameters evaluate to TRUE; otherwise FALSE.

Remarks
Both parameters are treated as Boolean values (0 as FALSE; otherwise TRUE) before the
operator performs the logical conjunction. The following table lists the values that are
returned based on the various combinations of parameter values.

If Expression1 is If Expression2 is Return value is

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

See Also
Operators (DMX)
Logical Operators (DMX)
Operators (DMX)

 159

NOT
A logical operator that performs a logical negation on a numeric expression.

Syntax

NOT Expression1

Parameters

Parameter Description

Expression1 A valid DMX expression that
returns a numeric value.

Return Value
A Boolean value that returns FALSE if the argument evaluates to TRUE; otherwise FALSE.

Remarks
The argument is treated as a Boolean value (0 as FALSE; otherwise TRUE) before the
operator performs the logical negation. If Expression1 is TRUE, the operator returns
FALSE. If Expression1 is FALSE, the operator returns TRUE. The following table illustrates
how the logical conjunction is performed.

If Expression1 is Return value is

TRUE FALSE

FALSE TRUE

See Also
Operators (DMX)
Logical Operators (DMX)
Operators (DMX)

OR
A logical operator that performs a logical disjunction on two numeric expressions.

Syntax

 160

Expression1 OR Expression2

Parameters

Parameter Description

Expression1 A valid Data Mining Extensions
(DMX) expression that returns a
numeric value.

Expression2 A valid DMX expression that
returns a numeric value.

Return Value
A Boolean value that returns TRUE if either argument or both arguments evaluate to
TRUE; otherwise FALSE.

Remarks
Both arguments are treated as Boolean values (0 as FALSE; otherwise TRUE) before the
operator performs the logical disjunction. If either argument or both arguments evaluate
to TRUE, the operator returns TRUE. If Expression1 evaluates to TRUE and Expression2
evaluates to FALSE, the operator returns TRUE.
The following table illustrates how the logical disjunction is performed.

If Expression1 is If Expression2 is Return value is

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

See Also
Operators (DMX)
Logical Operators (DMX)
Operators (DMX)

+ (Positive)
Performs a unary operation that returns the positive value of a numeric expression.

 161

Syntax

+ Numeric_Expression

Parameters

Parameter Description

Numeric_Expression A valid Data Mining Extensions
(DMX) expression that returns a
numeric value.

Return Value
A value that has the data type of the specified parameter.

See Also
Unary Operators (DMX)
Operators (DMX)
Unary Operators

- (Negative)
Performs a unary operation that returns the negative value of a numeric expression.

Syntax

- Numeric_Expression

Parameters

Parameter Description

Numeric_Expression A valid Data Mining Extensions
(DMX) expression that returns a
numeric value.

Return Value
A value that has the data type of the specified parameter.

See Also

 162

Unary Operators (DMX)
Operators (DMX)
Unary Operators

// (Comment)
Indicates a text string that Analysis Services should not execute. You can nest comments
within a Data Mining Extensions (DMX) statement, include them at the end of a line of
code, or insert them on a separate line.

Syntax

// Comment_Text

Parameters

Parameter Description

Comment_Text The string that contains the text of
the comment.

Remarks
Use // for single-line comments only. Comments that are inserted by using // are
delimited by the newline character.
There is no maximum length for comments.
For more information about how to use different kinds of comments in DMX,
see Comments (DMX).

See Also
Operators (DMX)
-- (Comment) (DMX)
DMX Operator Reference
Operators (DMX)

-- (Comment)
Indicates a text string that Analysis Services should not execute. You can nest comments
within a Data Mining Extensions (DMX) statement, include them at the end of a line of
code, or insert them on a separate line.

Syntax

 163

-- Comment_Text

Parameters

Parameter Description

Comment_Text The string that contains the text of
the comment.

Remarks
Use this operator for single-line or nested comments. Comments that are inserted by
using -- are delimited by the newline character.
There is no maximum length for comments.
For more information about how to use different kinds of comments in DMX,
see Comments (DMX).

See Also
Operators (DMX)
// (Comment) (DMX)
DMX Operator Reference
Operators (DMX)

/*...*/ (Comment)
Indicates a text string that Analysis Services should not execute. The server does not
evaluate the text between the comment characters /* and */. You can nest comments
within a Data Mining Extensions (DMX) statement, include them at the end of a line of
code, or insert them on a separate line.

Syntax

/* Comment_Text */

Parameters

Parameter Description

Comment_Text The string that contains the text of
the comment.

 164

Remarks
Multiple-line comments must be indicated by /* and */.
There is no maximum length for comments.
For more information about how to use different kinds of comments in DMX,
see Comments (DMX).

See Also
Operators (DMX)
-- (Comment) (DMX)
DMX Operator Reference
Operators (DMX)

Data Mining Extensions (DMX) Syntax
Conventions
The Data Mining Extensions (DMX) reference documentation in Microsoft SQL
Server Analysis Services uses the following conventions to describe the DMX language.

Convention Usage

bold DMX keywords and text that must be typed
exactly as shown.

italic User-supplied arguments of DMX syntax.

| (vertical bar) Used to separate syntax items within
brackets or braces. You can choose only
one of the items.

[] (brackets) Contain optional syntax items. Do not type
the brackets.

{ } (braces) Contain required syntax items. Do not type
the braces.

, ... Indicates that the item before the comma
can be repeated any number of times. The
items are separated by commas.

<label> ::= The name for a block of syntax. This
convention is used to group and label
sections of lengthy syntax or a unit of

 165

Convention Usage

syntax that can be used in more than one
location within a statement. Each location
in which the block of syntax can be used is
indicated with the label enclosed in
chevrons, such as <label>.

See Also
Data Mining Extensions (DMX) Reference

DMX Tutorials (Analysis Services - Data
Mining)
The following tutorials introduce you to the use of Data Mining Extensions (DMX)
statements with data mining structures and models.

In this Section
Bike Buyer DMX Tutorial
In this tutorial, you will learn how to create, train, and explore mining models by using
the DMX query language. You will then use these mining models to create predictions
about whether a customer is likely to purchase a specific product.
Market Basket DMX Tutorial
In this tutorial, you will learn how to create a mining model that predicts which products
tend to be purchased at the same time. This tutorial also demonstrates the use of nested
tables in data mining.

Reference
Data Mining Extensions (DMX) Syntax Elements
Data Mining Extensions (DMX) Data Definition Statements
Data Mining Extensions (DMX) Data Manipulation Statements
Understanding the Select Statement (DMX)

Related Sections
Analysis Services Data Access Interfaces (Analysis Services - Multidimensional Data)

http://msdn.microsoft.com/en-us/library/4b634cc1-86dc-42ec-9804-a19292fe8448(SQL.110)�
http://msdn.microsoft.com/en-us/library/6e262a1d-c89e-4033-8368-46cf25168ef5(SQL.110)�
http://msdn.microsoft.com/en-us/library/46388efb-3c78-47a2-b5c9-5a69ff394d03(SQL.110)�

 166

See Also
Prediction Queries (DMX)
Basic Data Mining Tutorial

http://msdn.microsoft.com/en-us/library/6602edb6-d160-43fb-83c8-9df5dddfeb9c(SQL.110)�

	Cover
	Contents
	Data Mining Extensions (DMX) Reference
	Structure and Usage of DMX Prediction Queries
	Understanding the Select Statement
	General Prediction Functions
	Data Mining Extensions (DMX) Syntax Elements
	Identifiers
	Data Types
	Expressions
	Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Unary Operators

	Functions
	Comments
	Reserved Keywords
	Content Types
	Distributions
	Usage
	Modeling Flags

	Data Mining Extensions (DMX) Statement Reference
	Data Mining Extensions (DMX) Data Definition Statements
	CREATE MINING STRUCTURE
	ALTER MINING STRUCTURE
	CREATE MINING MODEL
	DROP MINING STRUCTURE
	DROP MINING MODEL
	EXPORT
	IMPORT
	SELECT INTO

	Data Mining Extensions (DMX) Data Manipulation Statements
	DELETE
	INSERT INTO
	SELECT
	SELECT DISTINCT FROM <model>
	SELECT FROM <model>.CONTENT
	SELECT FROM <model>.CASES
	SELECT FROM <model>.SAMPLE_CASES
	SELECT FROM <model>.DIMENSION_CONTENT
	SELECT FROM <model> PREDICTION JOIN
	SELECT FROM <model>
	SELECT FROM <structure>.CASES
	<source data query>
	OPENQUERY
	OPENROWSET
	SHAPE
	UPDATE

	Data Mining Extensions (DMX) Function Reference
	BottomCount
	BottomPercent
	BottomSum
	Cluster
	ClusterDistance
	ClusterProbability
	Exists
	IsDescendant
	IsInNode
	IsTestCase
	IsTrainingCase
	Lag
	Predict
	PredictAdjustedProbability
	PredictAssociation
	PredictCaseLikelihood
	PredictHistogram
	PredictNodeId
	PredictProbability
	PredictSequence
	PredictStdev
	PredictSupport
	PredictTimeSeries
	PredictVariance
	RangeMax
	RangeMid
	RangeMin
	StructureColumn
	TopCount
	TopPercent
	TopSum

	Data Mining Extensions (DMX) Operator Reference
	+ (Add)
	- (Subtract)
	* (Multiply)
	/ (Divide)
	< (Less Than)
	> (Greater Than)
	= (Equal To)
	<> (Not Equal To)
	<= (Less Than or Equal To)
	>= (Greater Than or Equal To)
	AND
	NOT
	OR
	+ (Positive)
	- (Negative)
	// (Comment)
	-- (Comment)
	/*...*/ (Comment)

	Data Mining Extensions (DMX) Syntax Conventions
	DMX Tutorials (Analysis Services - Data Mining)

