

Backup and Restore of SQL Server
Databases
SQL Server 2012 Books Online

Summary: This book describes the benefits of backing up SQL Server databases, basic
backup and restore terms, and introduces backup and restore strategies for SQL Server
and security considerations for SQL Server backup and restore.

Category: Reference
Applies to: SQL Server 2012
Source: SQL Server Books Online (link to source content)
E-book publication date: June 2012

http://msdn.microsoft.com/en-us/library/ms187048.aspx�

Copyright © 2012 by Microsoft Corporation
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Microsoft and the trademarks listed at
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, email address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents
Backup and Restore of SQL Server Databases ... 6

Recovery Models .. 13
View or Change the Recovery Model of a Database .. 16

Backup Overview .. 19

Restore and Recovery Overview ... 23
Plan and Perform Restore Sequences (Full Recovery Model) ... 30
Restart an Interrupted Restore Operation (Transact-SQL) ... 32

Backup Compression .. 33
Configure Backup Compression ... 35
Use Resource Governor to Limit CPU Usage by Backup Compression (Transact-SQL)................. 36

Full Database Backups .. 43
Create a Full Database Backup .. 46

Back Up Database (General Page) ... 54
Back Up Database (Options Page) ... 57
Select Backup Destination... 61

Partial Backups .. 63

Full File Backups.. 64
Back Up Files and Filegroups ... 67

Differential Backups .. 73
Create a Differential Database Backup .. 76
Restore a Differential Database Backup .. 81

Copy-Only Backups ... 86

Transaction Log Backups ... 87
Back Up a Transaction Log ... 89

Tail-Log Backups .. 93
Back Up the Transaction Log When the Database Is Damaged ... 96

Backup Devices ... 100
Define a Logical Backup Device for a Disk File ... 108
Define a Logical Backup Device for a Tape Drive .. 110

View the Contents of a Backup Tape or File .. 112
Specify a Disk or Tape As a Backup Destination .. 114

Device Contents .. 115
Backup Device (Media Contents Page) .. 117
Backup Device (General Page)... 119

Restore a Backup from a Device ... 121
Delete a Backup Device ... 123

Media Sets, Media Families, and Backup Sets ... 125
Set the Expiration Date on a Backup .. 134
View the Data and Log Files in a Backup Set ... 136

Mirrored Backup Media Sets ... 138
Back Up to a Mirrored Media Set (Transact-SQL) .. 140

Backup History and Header Information .. 141
View the Properties and Contents of a Logical Backup Device .. 148

Possible Media Errors During Backup and Restore ... 150
Enable or Disable Backup Checksums During Backup or Restore ... 152
Specify Whether a Backup or Restore Operation Continues or Stops After Encountering an

Error ... 155

Complete Database Restores (Simple Recovery Model) ... 157
Restore a Database Backup Under the Simple Recovery Model (Transact-SQL) 161
Restore a Database Backup (SQL Server Management Studio) ... 163

Backup Timeline .. 167
Restore Database (General Page)... 168
Restore Database (Options Page) .. 175
Restore Database (Files Page) ... 178
Continue with Restore .. 179
Select Backup Device .. 180

Restore a Database to a New Location .. 180

Complete Database Restores (Full Recovery Model) ... 187
Restore a Database to the Point of Failure Under the Full Recovery Model (Transact-SQL) 192

File Restores (Simple Recovery Model) .. 195
Restore Files and Filegroups over Existing Files ... 197
Restore Files to a New Location ... 201
Restore Files and Filegroups .. 206

File Restores (Full Recovery Model) .. 212

Apply Transaction Log Backups .. 216
Restore a Transaction Log Backup... 219
Restore a SQL Server Database to a Point in Time (Full Recovery Model) 227
Recovery of Related Databases That Contain Marked Transaction ... 232

Use Marked Transactions to Recover Related Databases Consistently (Full Recovery Model)
 ... 234

Restore a Database to a Marked Transaction (SQL Server Management Studio) 239
Recover to a Log Sequence Number .. 240

Online Restore ... 242

Deferred Transactions .. 245
Remove Defunct Filegroups ... 247

Example: Online Restore of a Read/Write File (Full Recovery Model).. 250
Example: Online Restore of a Read-Only File (Full Recovery Model) ... 251
Example: Online Restore of a Read-Only File (Simple Recovery Model) .. 252
Example: Offline Restore of Primary and One Other Filegroup (Full Recovery Model) 253

Restore Pages .. 254
Manage the suspect_pages Table .. 262

Piecemeal Restores .. 266
Example: Piecemeal Restore of Database (Full Recovery Model) .. 271
Example: Piecemeal Restore of Database (Simple Recovery Model) .. 272
Example: Piecemeal Restore of Only Some Filegroups (Full Recovery Model)............................... 274
Example: Piecemeal Restore of Only Some Filegroups (Simple Recovery Model) 275

Recover a Database Without Restoring Data (Transact-SQL) ... 277

Back Up and Restore of System Databases.. 279
Restore the master Database (Transact-SQL) .. 283

Backup and Restore: Interoperability and Coexistence ... 284

 6

Backup and Restore of SQL Server Databases
This topic describes the benefits of backing up SQL Server databases, basic backup and
restore terms, and introduces backup and restore strategies for SQL Server and security
considerations for SQL Server backup and restore.
The SQL Server backup and restore component provides an essential safeguard for
protecting critical data stored in your SQL Server databases. To minimize the risk of
catastrophic data loss, you need to back up your databases to preserve modifications to
your data on a regular basis. A well-planned backup and restore strategy helps protect
databases against data loss caused by a variety of failures. Test your strategy by
restoring a set of backups and then recovering your database to prepare you to respond
effectively to a disaster.
In this Topic:
• Benefits
• Components and Concepts
• Introduction to Backup and Restore Strategies
• Related Tasks

Benefits
• Backing up your SQL Server databases, running test restores procedures on your

backups, and storing copies of backups in a safe, off-site location protects you from
potentially catastrophic data loss.

This is the only way to reliably protect your SQL Server data.
With valid backups of a database, you can recover your data from many failures, such
as:
• Media failure.
• User errors, for example, dropping a table by mistake.
• Hardware failures, for example, a damaged disk drive or permanent loss of a

server.
• Natural disasters.

• Additionally, backups of a database are useful for routine administrative purposes,
such as copying a database from one server to another, setting up AlwaysOn
Availability Groups or database mirroring, and archiving.

Important

 7

Components and Concepts
back up [verb]

Copies the data or log records from a SQL Server database or its transaction log to a
backup device, such as a disk, to create a data backup or log backup.

backup [noun]

A copy of data that can be used to restore and recover the data after a failure. Backups
of a database can also be used to restore a copy the database to a new location.

backup device

A disk or tape device to which SQL Server backups are written and from which they can
be restored.

backup media

One or more tapes or disk files to which one or more backup have been written.

data backup

A backup of data in a complete database (a database backup), a partial database (a
partial backup), or a set of data files or filegroups (a file backup).

database backup

A backup of a database. Full database backups represent the whole database at the time
the backup finished. Differential database backups contain only changes made to the
database since its most recent full database backup.

differential backup

A data backup that is based on the latest full backup of a complete or partial database
or a set of data files or filegroups (the differential base) and that contains only the data
that has changed since that base.

full backup

A data backup that contains all the data in a specific database or set of filegroups or
files, and also enough log to allow for recovering that data.

log backup

A backup of transaction logs that includes all log records that were not backed up in a
previous log backup. (full recovery model)

recover

To return a database to a stable and consistent state.

recovery

A phase of database startup or of a restore with recovery that brings the database into a
transaction-consistent state.

 8

recovery model

A database property that controls transaction log maintenance on a database. Three
recovery models exist: simple, full, and bulk-logged. The recovery model of database
determines its backup and restore requirements.

restore

A multi-phase process that copies all the data and log pages from a specified SQL
Server backup to a specified database, and then rolls forward all the transactions that
are logged in the backup by applying logged changes to bring the data forward in time.

Introduction to Backup and Restore Strategies
Backing up and restoring data must be customized to a particular environment and must
work with the available resources. Therefore, a reliable use of backup and restore for
recovery requires a backup and restore strategy. A well-designed backup and restore
strategy maximizes data availability and minimizes data loss, while considering your
particular business requirements.

Place the database and backups on separate devices. Otherwise, if the device
containing the database fails, your backups will be unavailable. Placing the data
and backups on separate devices also enhances the I/O performance for both
writing backups and the production use of the database.

A backup and restore strategy contains a backup portion and a restore portion. The
backup part of the strategy defines the type and frequency of backups, the nature and
speed of the hardware that is required for them, how backups are to be tested, and
where and how backup media is to be stored (including security considerations). The
restore part of the strategy defines who is responsible for performing restores and how
restores should be performed to meet your goals for availability of the database and for
minimizing data loss. We recommend that you document your backup and restore
procedures and keep a copy of the documentation in your run book.
Designing an effective backup and restore strategy requires careful planning,
implementation, and testing. Testing is required. You do not have a backup strategy until
you have successfully restored backups in all the combinations that are included in your
restore strategy. You must consider a variety of factors. These include the following:
• The production goals of your organization for the databases, especially the

requirements for availability and protection of data from loss.
• The nature of each of your databases: its size, its usage patterns, the nature of its

content, the requirements for its data, and so on.
• Constraints on resources, such as: hardware, personnel, space for storing backup

media, the physical security of the stored media, and so on.

Important

 9

The SQL Server on-disk storage format is the same in the 64-bit and 32-bit
environments. Therefore, backup and restore work across 32-bit and 64-bit
environments. A backup created on a server instance running in one
environment can be restored on a server instance that runs in the other
environment.

Impact of the Recovery Model on Backup and Restore
Backup and restore operations occur within the context of a recovery model. A recovery
model is a database property that controls how the transaction log is managed. Also, the
recovery model of a database determines what types of backups and what restore
scenarios are supported for the database. Typically a database uses either the simple
recovery model or the full recovery model. The full recovery model can be supplemented
by switching to the bulk-logged recovery model before bulk operations. For an
introduction to these recovery models and how they affect transaction log management,
see Transaction Logs (SQL Server).
The best choice of recovery model for the database depends on your business
requirements. To avoid transaction log management and simplify backup and restore,
use the simple recovery model. To minimize work-loss exposure, at the cost of
administrative overhead, use the full recovery model. For information about the effect of
recovery models on backup and restore, see Backup Overview (SQL Server).

Design the Backup Strategy
After you have selected a recovery model that meets your business requirements for a
specific database, you have to plan and implement a corresponding backup strategy. The
optimal backup strategy depends on a variety of factors, of which the following are
especially significant:
• How many hours a day do applications have to access the database?

If there is a predictable off-peak period, we recommend that you schedule full
database backups for that period.

• How frequently are changes and updates likely to occur?
If changes are frequent, consider the following:
• Under the simple recovery model, consider scheduling differential backups

between full database backups. A differential backup captures only the changes
since the last full database backup.

• Under the full recovery model, you should schedule frequent log backups.
Scheduling differential backups between full backups can reduce restore time by
reducing the number of log backups you have to restore after restoring the data.

Note

http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�

 10

• Are changes likely to occur in only a small part of the database or in a large part of
the database?
For a large database in which changes are concentrated in a part of the files or
filegroups, partial backups and or file backups can be useful. For more information,
see Partial Backups and Full File Backups.

• How much disk space will a full database backup require?
For more information, see Estimating the Size of a Full Database Backup, later in this
section.

Estimate the Size of a Full Database Backup
Before you implement a backup and restore strategy, you should estimate how much
disk space a full database backup will use. The backup operation copies the data in the
database to the backup file. The backup contains only the actual data in the database
and not any unused space. Therefore, the backup is usually smaller than the database
itself. You can estimate the size of a full database backup by using the sp_spaceused
system stored procedure. For more information, see sp_spaceused (Transact-SQL).

Schedule Backups
Performing a backup operation has minimal effect on transactions that are running;
therefore, backup operations can be run during regular operations. You can perform a
SQL Server backup with minimal effect on production workloads.

For information about concurrency restrictions during backup, see Backup
Overview (SQL Server).

After you decide what types of backups you require and how frequently you have to
perform each type, we recommend that you schedule regular backups as part of a
database maintenance plan for the database. For information about maintenance plans
and how to create them for database backups and log backups, see Use the
Maintenance Plan Wizard.

Test Your Backups
You do not have a restore strategy until you have tested your backups. It is very
important to thoroughly test your backup strategy for each of your databases by
restoring a copy of the database onto a test system. You must test restoring every type
of backup that you intend to use.
We recommend that you maintain an operations manual for each database. This
operations manual should document the location of the backups, backup device names
(if any), and the amount of time that is required to restore the test backups.

Note

http://msdn.microsoft.com/en-us/library/c6253b48-29f5-4371-bfcd-3ef404060621(SQL.110)�
http://msdn.microsoft.com/en-us/library/db65c726-9892-480c-873b-3af29afcee44(SQL.110)�
http://msdn.microsoft.com/en-us/library/db65c726-9892-480c-873b-3af29afcee44(SQL.110)�

 11

Related Tasks

Scheduling Backup Jobs
• How to: Create a Maintenance Plan
• How to: Create a Job (SQL Server Management Studio)
• How to: Schedule a Job (SQL Server Management Studio)

Working with Backup Devices and Backup Media
• How to: Define a Logical Backup Device for a Disk File (SQL Server Management

Studio)
• How to: Define a Logical Backup Device for a Tape Drive (SQL Server Management

Studio)
• How to: Specify a Disk or Tape as a Backup Destination (SQL Server Management

Studio)
• How to: Delete a Backup Device (SQL Server Management Studio)
• How to: Set the Expiration Date on a Backup (SQL Server Management Studio)
• How to: View the Contents of a Backup Tape or File (SQL Server Management Studio)
• How to: View the Data and Log Files In a Backup Set (SQL Server Management

Studio)
• How to: View the Properties and Content of a Backup Device (SQL Server

Management Studio)
• How to: Restore a Backup From a Device (SQL Server Management Studio)

Creating Backups

For partial or copy-only backups, you must use the Transact-SQL BACKUP
statement with the PARTIAL or COPY_ONLY option, respectively.

Using SQL Server Management Studio
• How to: Back Up a Database (SQL Server Management Studio)
• How to: Back Up a Transaction Log (SQL Server Management Studio)
• How to: Back Up Database Files and Filegroups (SQL Server Management Studio)
• How to: Create a Differential Database Backup (SQL Server Management Studio)
Using Transact-SQL
• How to: Use Resource Governor to Limit CPU Usage by Backup Compression

(Transact-SQL)
• How to: Back Up the Transaction Log When the Database Is Damaged (Transact-SQL)
• How to: Enable or Disable the Backup CHECKSUM Option (Transact-SQL)

Note

http://msdn.microsoft.com/en-us/library/a945cb65-ba7a-42f4-bbd9-6ec675745523(SQL.110)�
http://msdn.microsoft.com/en-us/library/b35af2b6-6594-40d1-9861-4d5dd906048c(SQL.110)�
http://msdn.microsoft.com/en-us/library/f626390a-a3df-4970-b7a7-a0529e4a109c(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 12

• How to: Handle CHECKSUM Errors During Backup (Transact-SQL)

Restoring Data Backups
Using SQL Server Management Studio
• How to: Restore a Database Backup (SQL Server Management Studio)
• How to: Create a New Database From An Existing Database Backup (SQL Server

Management Studio)
• How to: Restore a Differential Backup (SQL Server Management Studio)
• How to: Restore Files and Filegroups (SQL Server Management Studio)
Using Transact-SQL
• How to: Restore a Database Backup Under the Simple Recovery Model (Transact-

SQL)
• How to: Restore a Database to the Point of Failure Under the Full Recovery Model

(Transact-SQL)
• How to: Restore Files and Filegroups over Existing Files (Transact-SQL)
• How to: Restore Files to a New Location (Transact-SQL)
• How to: Restore the master Database (Transact-SQL)

Restoring Transaction Logs (Full Recovery Model)
Using SQL Server Management Studio
• How to: Restore a Database to a Marked Transaction (SQL Server Management

Studio)
• How to: Restore a Transaction Log Backup (SQL Server Management Studio)
• Restore a Database to a Point In Time (SQL Server)
Using Transact-SQL
• Restore a Database to a Point In Time (SQL Server)

Additional Restore Tasks
Using Transact-SQL
• How to: Restart an Interrupted Restore Operation (Transact-SQL)
• How to: Recover a Database from a Backup Without Restoring Data (Transact-SQL)

 13

See Also
Backup Overview (SQL Server)
Restore and Recovery Overview (SQL Server)
BACKUP (Transact-SQL)
RESTORE (Transact-SQL)
Backing Up and Restoring an Analysis Services Database
Backing up and Restoring Full-Text Catalogs
Backing Up and Restoring Replicated Databases
Transaction Logs (SQL Server)
Recovery Models (SQL Server)
Media Sets, Media Families, and Backup Sets (SQL Server)

Recovery Models
SQL Server backup and restore operations occur within the context of the recovery
model of the database. Recovery models are designed to control transaction log
maintenance. A recovery model is a database property that controls how transactions are
logged, whether the transaction log requires (and allows) backing up, and what kinds of
restore operations are available. Three recovery models exist: simple, full, and bulk-
logged. Typically, a database uses the full recovery model or simple recovery model. A
database can be switched to another recovery model at any time.
In this Topic:
• Recovery Model Overview
• Related Tasks

Recovery Model Overview
The following table summarizes the three recovery models.

Recovery model Description Work loss exposure Recover to point in time?

Simple No log backups.
Automatically
reclaims log space to
keep space
requirements small,
essentially
eliminating the need
to manage the

Changes since the
most recent
backup are
unprotected. In the
event of a disaster,
those changes
must be redone.

Can recover only to the
end of a backup. For
more information,
see Complete Database
Restore (Simple Recovery
Model).

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/947eebd2-3622-479e-8aa6-57c11836e4ec(SQL.110)�
http://msdn.microsoft.com/en-us/library/6a4080d9-e43f-4b7b-a1da-bebf654c1194(SQL.110)�
http://msdn.microsoft.com/en-us/library/04588807-21e7-4bbe-9727-b72f692cffa7(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�

 14

Recovery model Description Work loss exposure Recover to point in time?

transaction log space.
For information
about database
backups under the
simple recovery
model, see Full
Database Backups
(SQL Server).

Full Requires log backups.
No work is lost due
to a lost or damaged
data file.
Can recover to an
arbitrary point in time
(for example, prior to
application or user
error). For
information about
database backups
under the full
recovery model,
see Full Database
Backups (SQL Server)
and Complete
Database Restores
(Full Recovery
Model).

Normally none.
If the tail of the log
is damaged,
changes since the
most recent log
backup must be
redone.

Can recover to a specific
point in time, assuming
that your backups are
complete up to that point
in time. For information
about using log backups
to restore to the point of
failure, see Restore a SQL
Server Database to a
Point in Time (Full
Recovery Model).

Note
If you have two or
more full-
recovery-model
databases that
must be logically
consistent, you
may have to
implement special
procedures to
make sure the
recoverability of
these databases.
For more
information,
see Recovery of
Related Databases
That Contain
Marked
Transaction.

 15

Recovery model Description Work loss exposure Recover to point in time?

Bulk logged Requires log backups.
An adjunct of the full
recovery model that
permits high-
performance bulk
copy operations.
Reduces log space
usage by using
minimal logging for
most bulk operations.
For information
about operations that
can be minimally
logged,
see Transaction Logs
(SQL Server).
For information
about database
backups under the
bulk-logged recovery
model, see Full
Database Backups
(SQL Server)
and Complete
Database Restores
(Full Recovery
Model).

If the log is
damaged or bulk-
logged operations
occurred since the
most recent log
backup, changes
since that last
backup must be
redone.
Otherwise, no work
is lost.

Can recover to the end of
any backup. Point-in-time
recovery is not
supported.

Related Tasks
• View or Change the Recovery Model of a Database (SQL Server)
• Troubleshoot a Full Transaction Log (Error 9002)

See Also
backupset (Transact-SQL)
sys.databases (Transact-SQL)
ALTER DATABASE SET Options (Transact-SQL)
Backing Up and Restoring Databases

http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�
http://msdn.microsoft.com/en-us/library/0f23aa84-475d-40df-bed3-c923f8c1b520(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/f76fbd84-df59-4404-806b-8ecb4497c9cc(SQL.110)�

 16

Transaction Logs
Automating Administrative Tasks (SQL Server Agent)
Restore and Recovery Overview (SQL Server)

View or Change the Recovery Model of a Database
This topic describes how to view or change the recovery model of a database in SQL
Server 2012 by using SQL Server Management Studio or Transact-SQL. A recovery model
is a database property that controls how transactions are logged, whether the
transaction log requires (and allows) backing up, and what kinds of restore operations
are available. Three recovery models exist: simple, full, and bulk-logged. Typically, a
database uses the full recovery model or simple recovery model. A database can be
switched to another recovery model at any time. The model database sets the default
recovery model of new databases.
In This Topic
• Before you begin:

Recommendations
Security

• To view or change the recovery model of a database, using:
SQL Server Management Studio
Transact-SQL

• Follow Up Recommendations: After You Change the Recovery Model
• Related Tasks

Before You Begin

Recommendations
• Before switching from the full recovery or bulk-logged recovery model, back up the

transaction log.
• Point-in-time recovery is not possible with bulk-logged model. Therefore, if you run

transactions under the bulk-logged recovery model that might require a transaction
log restore, these transactions could be exposed to data loss. To maximize data
recoverability in a disaster-recovery scenario, we recommend that you switch to the
bulk-logged recovery model only under the following conditions:
• Users are currently not allowed in the database.
• All modifications made during bulk processing are recoverable without

depending on taking a log backup; for example, by re-running the bulk
processes.

http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�
http://msdn.microsoft.com/en-us/library/541ee5ac-2c9f-4b74-b4f0-13b7bd5920b0(SQL.110)�

 17

If you satisfy these two conditions, you will not be exposed to any data loss while
restoring a transaction log that was backed up under the bulk-logged recovery
model..

If you switch to the full recovery model during a bulk operation, the logging of
the bulk operation changes from minimal logging to full logging, and vice versa.

Security

Permissions
Requires ALTER permission on the database.

Using SQL Server Management Studio

1. After connecting to the appropriate instance of the SQL Server Database Engine,
in Object Explorer, click the server name to expand the server tree.

2. Expand Databases, and, depending on the database, either select a user
database or expand System Databases and select a system database.

3. Right-click the database, and then click Properties, which opens the Database
Properties dialog box.

4. In the Select a page pane, click Options.
5. The current recovery model is displayed in the Recovery model list box.
6. Optionally, to change the recovery model select a different model list. The

choices are Full, Bulk-logged, or Simple.
7. Click .

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. Copy and paste the following example into the query window and click Execute.

This example shows how to query the sys.databases catalog view to learn the
recovery model of the model database.

SELECT name, recovery_model_desc

Note

To view or change the recovery model

To view the recovery model

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�

 18

 FROM sys.databases

 WHERE name = 'model' ;

GO

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. Copy and paste the following example into the query window and click Execute.

This example shows how to change the recovery model in the model database to
FULL by using the SET RECOVERY option of the ALTER DATABASE statement.

USE master ;

ALTER DATABASE model SET RECOVERY FULL ;

Follow Up Recommendations: After You Change the Recovery Model

• After switching between the full and bulk-logged recovery models

• After completing the bulk operations, immediately switch back to full recovery
mode.

• After switching from the bulk-logged recovery model back to the full recovery
model, back up the log.

Your backup strategy remains the same: continue performing periodic
database, log, and differential backups.

• After switching from the simple recovery model
• Immediately after switching to the full recovery model or bulk-logged recovery

model, take a full or differential database backup to start the log chain.

The switch to the full or bulk-logged recovery model takes effect only
after the first data backup.

• Schedule regular log backups, and update your restore plan accordingly.

If you do not back up the log frequently enough, the transaction log can
expand until it runs out of disk space.

• After switching to the simple recovery model

To change the recovery model

Note

Note

Important

http://msdn.microsoft.com/en-us/library/f76fbd84-df59-4404-806b-8ecb4497c9cc(SQL.110)�

 19

• Discontinue any scheduled jobs for backing up the transaction log.
• Ensure periodic database backups are scheduled. Backing up your database is

essential both to protect your data and to truncate the inactive portion of the
transaction log.

Related Tasks
• Create a Full Database Backup (SQL Server)
• Back Up a Transaction Log (SQL Server)
• Create a Job
• Disable or Enable a Job

Related Content
• Database Maintenance Plans (in SQL Server 2008 R2 Books Online)

See Also
Recovery Models (SQL Server)
The Transaction Log (SQL Server)
ALTER DATABASE (Transact-SQL)
sys.databases (Transact-SQL)
Database Recovery Models (SQL Server)

Backup Overview
This topic introduces the SQL Server backup component. Backing up your SQL Server
database is essential for protecting your data. This discussion covers backup types, and
backup restrictions. The topic also introduces SQL Server backup devices and backup
media.
In this Topic:
• Components and Concepts
• Backup Compression
• Restrictions on Backup Operations in SQL Server
• Backup Devices and Backup Media
• Related Tasks

http://msdn.microsoft.com/en-us/library/b35af2b6-6594-40d1-9861-4d5dd906048c(SQL.110)�
http://msdn.microsoft.com/en-us/library/5041261f-0c32-4d4a-8bee-59a6c16200dd(SQL.110)�
http://msdn.microsoft.com/en-us/library/ms187658.aspx�
http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�
http://msdn.microsoft.com/en-us/library/15f8affd-8f39-4021-b092-0379fc6983da(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�

 20

Components and Concepts
back up [verb]

Copies the data or log records from a SQL Server database or its transaction log to a
backup device, such as a disk, to create a data backup or log backup.

backup [noun]

A copy of SQL Server data that can be used to restore and recover the data after a
failure. A backup of SQL Server data is created at the level of a database or one or more
of its files or filegroups. Table-level backups cannot be created. In addition to data
backups, the full recovery model requires creating backups of the transaction log.

recovery model
A database property that controls transaction log maintenance on a database. Three
recovery models exist: simple, full, and bulk-logged. The recovery model of database
determines its backup and restore requirements.

restore
A multi-phase process that copies all the data and log pages from a specified SQL
Server backup to a specified database, and then rolls forward all the transactions that
are logged in the backup by applying logged changes to bring the data forward in time.

Types of Backups
copy-only backup

A special-use backup that is independent of the regular sequence of SQL Server
backups.

data backup

A backup of data in a complete database (a database backup), a partial database (a
partial backup), or a set of data files or filegroups (a file backup).

database backup
A backup of a database. Full database backups represent the whole database at the time
the backup finished. Differential database backups contain only changes made to the
database since its most recent full database backup.

differential backup
A data backup that is based on the latest full backup of a complete or partial database
or a set of data files or filegroups (the differential base) and that contains only the data
extents that have changed since the differential base.

A differential partial backup records only the data extents that have changed in the
filegroups since the previous partial backup, known as the base for the differential.

full backup

A data backup that contains all the data in a specific database or set of filegroups or

 21

files, and also enough log to allow for recovering that data.

log backup
A backup of transaction logs that includes all log records that were not backed up in a
previous log backup. (full recovery model)

file backup
A backup of one or more database files or filegroups.

partial backup
Contains data from only some of the filegroups in a database, including the data in the
primary filegroup, every read/write filegroup, and any optionally-specified read-only
files.

Backup Media Terms and Definitions
backup device

A disk or tape device to which SQL Server backups are written and from which they can
be restored.

backup media
One or more tapes or disk files to which one or more backup have been written.

backup set
The backup content that is added to a media set by a successful backup operation.

media family
Backups created on a single nonmirrored device or a set of mirrored devices in a media
set

media set
An ordered collection of backup media, tapes or disk files, to which one or more backup
operations have written using a fixed type and number of backup devices.

mirrored media set
Multiple copies (mirrors) of a media set.

Backup Compression
SQL Server 2008 Enterprise and later versions support compressing backups, and SQL
Server 2008 and later versions can restore a compressed backup. For more information,
see Backup Compression (SQL Server).

Restrictions on Backup Operations in SQL Server
In SQL Server 2005 and later versions, backup can occur while the database is online and
being used. However, the following restrictions exist.

 22

Offline Data Cannot Be Backed Up
Any backup operation that implicitly or explicitly references data that is offline fails.
Some typical examples include the following:
• You request a full database backup, but one filegroup of the database is offline.

Because all filegroups are implicitly included in a full database backup, this operation
fails.
To back up this database, you can use a file backup and specify only the filegroups
that are online.

• You request a partial backup, but a read/write filegroup is offline. Because all
read/write filegroups are required for a partial backup, the operation fails.

• You request a file backup of specific files, but one of the files is not online. The
operation fails. To back up the online files, you can omit the offline file from the file
list and repeat the operation.

Typically, a log backup succeeds even if one or more data files are unavailable. However,
if any file contains bulk-logged changes made under the bulk-logged recovery model, all
the files must be online for the backup to succeed.

Concurrency Restrictions During Backup
SQL Server uses an online backup process to allow for a database backup while the
database is still being used. During a backup, most operations are possible; for example,
INSERT, UPDATE, or DELETE statements are allowed during a backup operation. However,
if you try to start a backup operation while a database file is being created or deleted,
the backup operation waits until the create or delete operation is finished or the backup
times out.
Operations that cannot run during a database backup or transaction log backup include
the following:
• File-management operations such as the ALTER DATABASE statement with either the

ADD FILE or REMOVE FILE options.
• Shrink database or shrink file operations. This includes auto-shrink operations.
• If you try to create or delete a database file while a backup operation is in progress,

the create or delete operation fails.
If a backup operation overlaps with a file-management operation or shrink operation, a
conflict occurs. Regardless of which of the conflicting operation began first, the second
operation waits for the lock set by the first operation to time out. (The time-out period is
controlled by a session time-out setting.) If the lock is released during the time-out
period, the second operation continues. If the lock times out, the second operation fails.

Related Tasks
To work with backup devices and backup media

 23

• Define a Logical Backup Device for a Disk File (SQL Server)
• Define a Logical Backup Device for a Tape Drive (SQL Server)
• Specify a Disk or Tape as a Backup Destination (SQL Server)
• Delete a Backup Device (SQL Server)
• Set the Expiration Date on a Backup (SQL Server)
• View the Contents of a Backup Tape or File (SQL Server)
• View the Data and Log Files In a Backup Set (SQL Server)
• View the Properties and Content of a Backup Device (SQL Server)
• Restore a Backup From a Device (SQL Server)
To create a backup

For partial or copy-only backups, you must use the Transact-SQL BACKUP
statement with the PARTIAL or COPY_ONLY option, respectively.

• Back Up a Database (SQL Server
• Back Up a Transaction Log (SQL Server)
• Back Up Database Files and Filegroups (SQL Server)
• Create a Differential Database Backup (SQL Server)
• Back Up the Transaction Log When the Database Is Damaged (SQL Server)
• Enable or Disable the Backup CHECKSUM Option (SQL Server)
• Handle CHECKSUM Errors During Backup (SQL Server)
• Use Resource Governor to Limit CPU Usage by Backup Compression (Transact-SQL)

See Also
Back Up and Restore of Databases in SQL Server
Restore and Recovery Overview (SQL Server)
Maintenance Plans
Transaction Logs (SQL Server)
Database Recovery Models (SQL Server)

Restore and Recovery Overview
SQL Server restore and recovery supports restoring data from backups of a whole
database, a data file, or a data page, as follows:
• The database (a complete database restore)

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/5982ca65-74fe-44e3-aef9-00a65a0db169(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�

 24

The whole database is restored and recovered, and the database is offline for the
duration of the restore and recovery operations.

• The data file (a file restore)
A data file or a set of files is restored and recovered. During a file restore, the
filegroups that contain the files are automatically offline for the duration of the
restore. Any attempt to access an offline filegroup causes an error.

• The data page (a page restore)
Under the full recovery model or bulk-logged recovery model, you can restore
individual databases. Page restores can be performed on any database, regardless of
the number of filegroups.

SQL Server backup and restore work across all supported operating systems, whether
they are 64-bit or 32-bit systems. For information about the supported operating
systems, see Hardware and Software Requirements for Installing SQL Server. For
information about support for backups from earlier versions of SQL Server, see the
"Compatibility Support" section of RESTORE (Transact-SQL).
In this Topic:
• Overview of Restore Scenarios
• Recovery Models and Supported Restore Operations
• Restore Restrictions Under the Simple Recovery Model
• Restore Under the Bulk-Logged Recovery Model
• Related Tasks
• Related Content

Overview of Restore Scenarios
A restore scenario in SQL Server is the process of restoring data from one or more
backups and then recovering the database. The supported restore scenarios depend on
the recovery model of the database and the edition of SQL Server.
The following table introduces the possible restore scenarios that are supported for
different recovery models.

Restore scenario Under simple recovery model Under full/bulk-logged recovery
models

Complete database
restore

This is the basic restore
strategy. A complete
database restore might
involve simply restoring and
recovering a full database
backup. Alternatively, a
complete database restore

This is the basic restore
strategy. A complete
database restore involve
restoring a full database
backup and, optionally, a
differential backup (if any),
followed by restoring all

http://msdn.microsoft.com/en-us/library/09bcf20b-0a40-4131-907f-b61479d5e4d8(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 25

Restore scenario Under simple recovery model Under full/bulk-logged recovery
models

might involve restoring a full
database backup followed by
restoring and recovering a
differential backup.
For more information,
see Performing a Complete
Database Restore (Simple
Recovery Model).

subsequent log backups (in
sequence). The complete
database restore is finished
by recovering the last log
backup and also restoring it
(RESTORE WITH RECOVERY).
For more information,
see Performing a Complete
Database Restore (Full
Recovery Model)

File restore * Restore one or more
damaged read-only files,
without restoring the entire
database. File restore is
available only if the database
has at least one read-only
filegroup.

Restores one or more files,
without restoring the entire
database. File restore can be
performed while the
database is offline or, for
some editions of SQL Server
2005 and later versions,
while the database remains
online. During a file restore,
the filegroups that contain
the files that are being
restored are always offline.

Page restore Not applicable Restores one or more
damaged pages. Page
restore can be performed
while the database is offline
or, for some editions of SQL
Server 2005 and later
versions, while the database
remains online. During a
page restore, the pages that
are being restored are always
offline.
An unbroken chain of log
backups must be available,
up to the current log file, and
they must all be applied to
bring the page up to date
with the current log file.

 26

Restore scenario Under simple recovery model Under full/bulk-logged recovery
models

For more information,
see Performing Page
Restores.

Piecemeal restore * Restore and recover the
database in stages at the
filegroup level, starting with
the primary and all
read/write, secondary
filegroups.

Restore and recover the
database in stages at the
filegroup level, starting with
the primary filegroup.

* Online restore is supported only in SQL Server 2005 Enterprise Edition and later
versions.
Regardless of how data is restored, before a database can be recovered, the SQL Server
Database Engine guarantees that the whole database is logically consistent. For example,
if you restore a file, you cannot recover it and bring it online until it has been rolled far
enough forward to be consistent with the database.

Advantages of a File or Page Restore
Restoring and recovering files or pages, instead of the whole database, provides the
following advantages:
• Restoring less data reduces the time required to copy and recover it.
• On SQL Server 2005 Enterprise Edition and later versions, restoring files or pages

might allow other data in the database to remain online during the restore operation.

Recovery Models and Supported Restore Operations
The restore operations that are available for a database depend on its recovery model.
The following table summarizes whether and to what extent each of the recovery models
supports a given restore scenario.

Restore operation Full recovery model Bulk-logged recovery
model

Simple recovery model

Data recovery Complete recovery
(if the log is
available).

Some data-loss
exposure.

Any data since last
full or differential
backup is lost.

 27

Restore operation Full recovery model Bulk-logged recovery
model

Simple recovery model

Point-in-time
restore

Any time covered
by the log backups.

Disallowed if the log
backup contains any
bulk-logged changes.

Not supported.

File restore * Full support. Sometimes.** Available only for
read-only secondary
files.

Page restore * Full support. Sometimes.** None.

Piecemeal
(filegroup-level)
restore *

Full support. Sometimes.** Available only for
read-only secondary
files.

* Available only in the SQL Server 2005 Enterprise Edition and later versions.
** For the required conditions, see Restore Restrictions Under the Simple Recovery
Model, later in this topic.

Regardless of the recovery model of a database, a SQL Server backup cannot be
restored by a version of SQL Server that is older than the version that created the
backup. Thus, for example, a backup created on SQL Server 2012 cannot be
restored by SQL Server 2008.

Restore Scenarios Under the Simple Recovery Model
The simple recovery model imposes the following restrictions on restore operations:
• File restore and piecemeal restore are available only for read-only secondary

filegroups. For information about these restore scenarios, see Restoring File Backups
(Simple Recovery Model) and Performing Piecemeal Restores.

• Page restore is not allowed.
• Point-in-time restore is not allowed.
If any of these restrictions are inappropriate for your recovery needs, we recommend
that you consider using the full recovery model. For more information, see Backup
Overview (SQL Server).

Regardless of the recovery model of a database, a SQL Server backup cannot be
restored by a version of SQL Server that is older than the version that created the

Important

Important

 28

backup. Thus, for example, a backup created on SQL Server 2012 cannot be
restored by SQL Server 2008.

Restore Under the Bulk-Logged Recovery Model
This section discusses restore considerations that are unique to bulk-logged recovery
model, which is intended exclusively as a supplement to the full recovery model.

For an introduction to the bulk-logged recovery model, see Transaction Logs
(SQL Server).

Generally, the bulk-logged recovery model is similar to the full recovery model, and the
information described for the full recovery model also applies to both. However, point-
in-time recovery and online restore are affected by the bulk-logged recovery model.

Restrictions for Point-in-time Recovery
If a log backup taken under the bulk-logged recovery model contains bulk-logged
changes, point-in-time recovery is not allowed. Trying to perform point-in-time recovery
on a log backup that contains bulk changes will cause the restore operation to fail.

Restrictions for Online Restore
An online restore sequence works only if the following conditions are met:
• All required log backups must have been taken before the restore sequence starts.
• Bulk changes must be backed before starting the online restore sequence.
• If bulk changes exist in the database, all files must be either online or defunct. (This

means that it is no longer part of the database.)
If these conditions are not met, the online restore sequence fails.

We recommend switching to the full recovery model before starting an online
restore. For more information, see Database Recovery Models (SQL Server).

For information about how to perform an online restore, see Performing Online Restores.

Related Tasks

Restoring Data Backups
Using SQL Server Management Studio

Note

Note

http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�

 29

• How to: Restore a Database Backup (SQL Server Management Studio)
• How to: Create a New Database From An Existing Database Backup (SQL Server

Management Studio)
• How to: Restore a Differential Backup (SQL Server Management Studio)
• How to: Restore Files and Filegroups (SQL Server Management Studio)
Using Transact-SQL
• How to: Restore a Database Backup Under the Simple Recovery Model (Transact-

SQL)
• How to: Restore a Database to the Point of Failure Under the Full Recovery Model

(Transact-SQL)
• How to: Restore Files and Filegroups over Existing Files (Transact-SQL)
• How to: Restore Files to a New Location (Transact-SQL)
• How to: Restore the master Database (Transact-SQL)

Restoring Transaction Logs (Full Recovery Model)
Using SQL Server Management Studio
• How to: Restore a Database to a Marked Transaction (SQL Server Management

Studio)
• How to: Restore a Transaction Log Backup (SQL Server Management Studio)
• Restore a Database to a Point In Time (SQL Server)
Using Transact-SQL
• Plan and Perform Restore Sequences (Full Recovery Model)
• Restore a Database to a Point In Time (SQL Server)

Additional Restore Tasks
Using Transact-SQL
• How to: Restart an Interrupted Restore Operation (Transact-SQL)
• How to: Recover a Database from a Backup Without Restoring Data (Transact-SQL)

Related Content
None.

 30

See Also
Overview of Backup in SQL Server

Plan and Perform Restore Sequences (Full
Recovery Model)
This topic explains how to plan and perform a restore sequence for a SQL Server
databases that ordinarily uses the full recovery model. A restore sequence is a sequence
of one or more RESTORE statements. Typically, a restore sequences initializes the
contents of the database, files, and/or pages being restored (the data-copy phase), rolls
forward logged transactions (the redo phase), and rolls back uncommitted transactions
(the undo phase).
In simple cases, a restore sequence requires only a full database backup, a differential
database backup, and the subsequent log backups. In these cases, constructing a correct
restore sequence is easy. For example, to restore a whole database to the point of a
failure, start by backing up the active transaction log (the tail of the log). Then, restore
the most recent full database backup, the most recent differential backup (if any), and all
subsequent log backups in the order in which they were taken.
In more complex cases, constructing a correct restore sequence can be a complex
process. For example, a restore sequence might require multiple file backups or restoring
data to a specific point in time. In very complex cases, you might even have to traverse a
forked recovery path that spans one or more recovery forks.

A recovery path is the sequence of data and log backups that have brought a
database to a particular point in time (known as a recovery point). A recovery
path is a specific set of transformations that have evolved the database over time,
yet have maintained the consistency of the database. A recovery path describes a
range of LSNs from a start point (LSN,GUID) to an end point (LSN,GUID). The
range of LSNs in a recovery path can traverse one or more recovery branches
from start to end.

To Plan a Restore Sequence
Before you start a restore sequence, follow these steps:
1. Create a tail-log backup of the database, if you can. For more information, see Tail-

Log Backups.
2. Determine the target recovery point.

The target recovery point can be any point in time or mark within a transaction log
backup. For more information, see Restore a Database to a Point in Time or Ensuring
Recoverability of Related Databases (Using Marked Transactions).

Note

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 31

3. Determine the type of restore you want to perform. For more information,
see Overview of Restore and Recovery in SQL Server.

4. Identify which backups you require and make sure that the necessary media sets and
backup devices are available. For more information, see Backup Devices (SQL Server)
and Media Sets, Media Families, and Backup Sets (SQL Server).

To Perform a Restore Sequence
To perform a restore sequence, follow these steps:
1. To start the sequence, restore a one or more data backups, such as: a database

backup, a partial backup, one or more file backups.
2. Optionally, restore the latest differential backups that are based on these full

backups.
For each full backup that you plan to restore, determine whether it is the base for any
differential backups. If so, restore most recent differential backup, if you can. For
more information, see UseDifferential Backups.

3. Roll forward the database by restoring log backups in sequence, finishing with the
backup that contains the recovery point. Whether you have to apply all the log
backups depends on what log backup contains the target recovery point, as follows:
• If the recovery point is the point of a failure, you must restore every log backup

that was created since the last data (full or differential) backup you restored. For
more information, see Applying Transaction Log Backups.

• For a point-in-time restore, you might not require the most recent log backups.
For more information, see Restore a SQL Server Database to a Point in Time (Full
Recovery Model).

Restarting a Restore Sequence
If you encounter a problem with the outcome of a restore sequence, you can quit it and
restart the restore sequence over from the start. For example, if you accidentally restore
too many log backups and overshoot the intended recovery point, you must restart the
restore sequence up to log backup that contains the target recovery point.

See Also
Overview of Backup in SQL Server
Overview of Restore and Recovery in SQL Server
Complete Database Restores (Full Recovery Model)
Online Restore (SQL Server)
File Restores (Full Recovery Model)
Page Restores
Piecemeal Restores

 32

Restart an Interrupted Restore Operation
(Transact-SQL)
This topic explains how to restart an interrupted restore operation.

Procedures

1. Execute the interrupted RESTORE statement again, specifying:
• The same clauses used in the original RESTORE statement.
• The RESTART clause.

Example

Description
This example restarts an interrupted restore operation.

Code
-- Restore a full database backup of the AdventureWorks database.

RESTORE DATABASE AdventureWorks

 FROM DISK = 'C:\AdventureWorks.bck'

GO

-- The restore operation halted prematurely.

-- Repeat the original RESTORE statement specifying WITH RESTART.

RESTORE DATABASE AdventureWorks

 FROM DISK = 'C:\AdventureWorks.bck'

 WITH RESTART

GO

See Also
RESTORE (Transact-SQL)
Performing a Complete Database Restore (Simple Recovery Model)
RESTORE

To restart an interrupted restore operation

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 33

Backup Compression
This topic describes the compression of SQL Server backups, including restrictions,
performance trade-off of compressing backups, the configuration of backup
compression, and the compression ratio.

For information which editions of SQL Server 2012 support backup compression,
see Features Supported by the Editions of SQL Server 2012. Every edition of SQL
Server 2008 and later can restore a compressed backup.

In this Topic:
• Benefits
• Restrictions
• Performance Impact of Compressing Backups
• Calculate the Compression Ratio of a Compressed Backup
• Allocation of Space for the Backup File
• Related Tasks

Benefits
• Because a compressed backup is smaller than an uncompressed backup of the same

data, compressing a backup typically requires less device I/O and therefore usually
increases backup speed significantly.
For more information, see Performance Impact of Compressing Backups, later in this
topic.

Restrictions
The following restrictions apply to compressed backups:
• Compressed and uncompressed backups cannot co-exist in a media set.
• Previous versions of SQL Server cannot read compressed backups.
• NTbackups cannot share a tape with compressed SQL Server backups.

Performance Impact of Compressing Backups
By default, compression significantly increases CPU usage, and the additional CPU
consumed by the compression process might adversely impact concurrent operations.
Therefore, you might want to create low-priority compressed backups in a session whose
CPU usage is limited by Resource Governor. For more information, see How to: Use
Resource Governor to Limit CPU Usage by Backup Compression (Transact-SQL).

Note

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�

 34

To obtain a good picture of your backup I/O performance, you can isolate the backup
I/O to or from devices by evaluating the following sorts of performance counters:
• Windows I/O performance counters, such as the physical-disk counters
• The Device Throughput Bytes/sec counter of the SQLServer:Backup Device object
• The Backup/Restore Throughput/sec counter of the SQLServer:Databases object
For information about Windows counters, see Windows help. For information about how
to work with SQL Server counters, see Using SQL Server Objects.

Calculate the Compression Ratio of a Compressed Backup
To calculate the compression ratio of a backup, use the values for the backup in the
backup_size and compressed_backup_size columns of the backupset history table, as
follows:
backup_size:compressed_backup_size
For example, a 3:1 compression ratio indicates that you are saving about 66% on disk
space. To query on these columns, you can use the following Transact-SQL statement:

SELECT backup_size/compressed_backup_size FROM msdb..backupset;

The compression ratio of a compressed backup depends on the data that has been
compressed. A variety of factors can impact the compression ratio obtained. Major
factors include:
• The type of data.

Character data compresses more than other types of data.
• The consistency of the data among rows on a page.

Typically, if a page contains several rows in which a field contains the same value,
significant compression might occur for that value. In contrast, for a database that
contains random data or that contains only one large row per page, a compressed
backup would be almost as large as an uncompressed backup.

• Whether the data is encrypted.
Encrypted data compresses significantly less than equivalent unencrypted data. If
transparent data encryption is used to encrypt an entire database, compressing
backups might not reduce their size by much, if at all.

• Whether the database is compressed.
If the database is compressed, compressing backups might not reduce their size by
much, if at all.

http://msdn.microsoft.com/en-us/library/52e7febf-d5e0-4674-945b-aacc40a9ad6e(SQL.110)�
http://msdn.microsoft.com/en-us/library/a7f9e7d4-fff4-4c72-8b3e-3f18dffc8919(SQL.110)�
http://msdn.microsoft.com/en-us/library/bcd731b1-3c4e-4086-b58a-af7a3af904ad(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�

 35

Allocation of Space for the Backup File
For compressed backups, the size of the final backup file depends on how compressible
the data is, and this is unknown before the backup operation finishes. Therefore, by
default, when backing up a database using compression, the Database Engine uses a
pre-allocation algorithm for the backup file. This algorithm pre-allocates a predefined
percentage of the size of the database for the backup file. If more space is needed
during the backup operation, the Database Engine grows the file. If the final size is less
than the allocated space, at the end of the backup operation, the Database Engine
shrinks the file to the actual final size of the backup.
To allow the backup file to grow only as needed to reach its final size, use trace flag
3042. Trace flag 3042 causes the backup operation to bypass the default backup
compression pre-allocation algorithm. This trace flag is useful if you need to save on
space by allocating only the actual size required for the compressed backup. However,
using this trace flag might cause a slight performance penalty (a possible increase in the
duration of the backup operation).

Related Tasks
• Configure Backup Compression
• View or Configure the backup compression default Option (SQL Server Management

Studio)
• Use Resource Governor to Limit CPU Usage by Backup Compression (Transact-SQL)
• DBCC TRACEON (Transact-SQL)
• DBCC TRACEOFF (Transact-SQL)

See Also
Backup Overview (SQL Server)
Trace Flages (Transact-SQL)

Configure Backup Compression
At installation, backup compression is off by default. The default behavior for backup
compression is defined by the backup compression default Option server-level
configuration option. However, you can override the server-level default when creating a
single backup or scheduling a series of routine backups. To change the server-level
default, see View or Configure the backup compression default Server Configuration
Option.

Override the Backup Compression Default
You can change the backup compression behavior for an individual backup, backup job,
or log shipping configuration.
• Transact-SQL

http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/93085324-ebaa-4e38-aac8-5e57b4b0d36d(SQL.110)�
http://msdn.microsoft.com/en-us/library/1379afba-6480-454b-9c65-5e64cb4f3415(SQL.110)�
http://msdn.microsoft.com/en-us/library/b971b540-1ac2-435b-b191-24399eb88265(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�

 36

To override the server backup-compression default when creating a backup, use
either WITH NO_COMPRESSION or WITH COMPRESSION in you BACKUP statement.
For a log shipping configuration, you can control the backup compression behavior
of log backups by
using sp_add_log_shipping_primary_database sp_change_log_shipping_primary_data
base.

• SQL Server Management Studio
For information about how to view or configure the backup compression default
option for an instance of SQL Server, see View and Configure the backup
compression default Option (SQL Server Management Studio).
You can override the server backup-compression default when creating a backup by
specifying Compress backup or Do not compress backup in any of the following
dialog boxes:
• Back Up Database (Options Page)

When backing up a database, you can control backup compression for an
individual database, file, or log backup.

• Maintenance Plan Wizard
The Maintenance Plan Wizard enables you to control backup compression for
each set full or differential database backups or log backups that you schedule.

• Integration Services (SSIS) Back Up Database task
You can control the backup compression behavior when creating a package for
backing up a single database or multiple databases.

• Log Shipping Transaction Log Backup Settings
You can control the backup compression behavior of log backups.

See Also
Backup Compression (SQL Server)

Use Resource Governor to Limit CPU Usage by
Backup Compression (Transact-SQL)
By default, backing up using compression significantly increases CPU usage, and the
additional CPU consumed by the compression process can adversely impact concurrent
operations. Therefore, you might want to create a low-priority compressed backup in a
session whose CPU usage is limited by Resource Governor when CPU contention occurs.
This topic presents a scenario that classifies the sessions of a particular SQL Server user
by mapping them to a Resource Governor workload group that limits CPU usage in such
cases.

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/69531611-113f-46b5-81a6-7bf496d0353c(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c9dce6b-d2a3-4ca7-a832-8f59a5adb214(SQL.110)�
http://msdn.microsoft.com/en-us/library/8c9dce6b-d2a3-4ca7-a832-8f59a5adb214(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/db65c726-9892-480c-873b-3af29afcee44(SQL.110)�
http://msdn.microsoft.com/en-us/library/b8839d71-13b7-41f2-a434-cb95020e79d7(SQL.110)�
http://msdn.microsoft.com/en-us/library/9a6e6c16-7f71-412b-bba6-7bffac001277(SQL.110)�
http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�

 37

In a given Resource Governor scenario, session classification might be based on a
user name, an application name, or anything else that can differentiate a
connection. For more information, see Resource Governor Classifier Function
and Resource Governor Workload Group.

This topic contains the following set of scenarios, which are presented in sequence:
1. Setting Up a Login and User for Low-Priority Operations
2. Configuring Resource Governor to Limit CPU Usage
3. Verifying the Classification of the Current Session (Transact-SQL)
4. Compressing Backups Using a Session with Limited CPU

Setting Up a Login and User for Low-Priority Operations
The scenario in this topic requires a low-priority SQL Server login and user. The user
name will be used to classify sessions running in the login and route them to a Resource
Governor workload group that limits CPU usage.
The following procedure describes the steps for setting up a login and user for this
purpose, followed by a Transact-SQL example, "Example A: Setting Up a Login and User
(Transact-SQL)."

To set up a login and database user for classifying sessions
1. Create a SQL Server login for creating low-priority compressed backups.

To create a login
• How To: Create A SQL Server Login
• CREATE LOGIN (Transact-SQL)

2. Optionally, grant VIEW SERVER STATE to this login.
• GRANT System Object Permissions (Transact-SQL)
For more information, see GRANT Database Principal Permissions (Transact-SQL).

3. Create a SQL Server user for this login.
To create a user
• How To: Create a Database User
• CREATE USER (Transact-SQL)

4. To enable sessions of this login and user to back up a given database, add the user
to the db_backupoperator database role of that database. Do this for each database
that this user will back up. Optionally, add the user to other fixed database roles.
To add a user to a fixed database role
• sp_addrolemember (Transact-SQL)
For more information, see GRANT Database Principal Permissions (Transact-SQL).

Example A: Setting Up a Login and User (Transact-SQL)

Important

http://msdn.microsoft.com/en-us/library/64c25012-7068-476f-afa2-0b4f3adde9a4(SQL.110)�
http://msdn.microsoft.com/en-us/library/a84c3c3f-55b6-4a30-9c42-13f082d9281e(SQL.110)�
http://msdn.microsoft.com/en-us/library/fb163e47-1546-4682-abaa-8c9494e9ddc7(SQL.110)�
http://msdn.microsoft.com/en-us/library/eb737149-7c92-4552-946b-91085d8b1b01(SQL.110)�
http://msdn.microsoft.com/en-us/library/9d4e89f4-478f-419a-8b50-b096771e3880(SQL.110)�
http://msdn.microsoft.com/en-us/library/012588a2-cbe1-48f0-a731-b4a2b83203d5(SQL.110)�
http://msdn.microsoft.com/en-us/library/782798d3-9552-4514-9f58-e87be4b264e4(SQL.110)�
http://msdn.microsoft.com/en-us/library/01de7476-4b25-4d58-85b7-1118fe64aa80(SQL.110)�
http://msdn.microsoft.com/en-us/library/a583c087-bdb3-46d2-b9e5-3921b3e6d10b(SQL.110)�
http://msdn.microsoft.com/en-us/library/012588a2-cbe1-48f0-a731-b4a2b83203d5(SQL.110)�

 38

The following example is relevant only if you choose to create a new SQL Server login
and user for low-priority backups. Alternatively, you can use an existing login and user, if
an appropriate one exists.

The following example uses a sample login and user name,
domain_name\MAX_CPU. Replace these with the names of the SQL Server login
and user that you plan to use when creating your low-priority compressed
backups.

This example creates a login for the domain_name\MAX_CPU Windows account and then
grants VIEW SERVER STATE permission to the login. This permission enables you to verify
the Resource Governor classification of sessions of the login. The example then creates a
user for domain_name\MAX_CPU and adds it to the db_backupoperator fixed database
role for the AdventureWorks2012 sample database. This user name will be used by the
Resource Governor classifier function.

-- Create a SQL Server login for low-priority operations

USE master;

CREATE LOGIN [domain_name\MAX_CPU] FROM WINDOWS;

GRANT VIEW SERVER STATE TO [domain_name\MAX_CPU];

GO

-- Create a SQL Server user in AdventureWorks2012 for this login

USE AdventureWorks2012;

CREATE USER [domain_name\MAX_CPU] FOR LOGIN [domain_name\MAX_CPU];

EXEC sp_addrolemember 'db_backupoperator', 'domain_name\MAX_CPU';

GO

Configuring Resource Governor to Limit CPU Usage

Ensure that Resource Governor is enabled. For more information, see How to:
Enable or Disable Resource Governor.

In this Resource Governor scenario, configuration comprises the following basic steps:
1. Create and configure a Resource Governor resource pool that limits the maximum

average CPU bandwidth that will be given to requests in the resource pool when CPU
contention occurs.

2. Create and configure a Resource Governor workload group that uses this pool.

Important

Note

http://msdn.microsoft.com/en-us/library/4d17af53-cf11-4ce4-aab4-deda94a49836(SQL.110)�
http://msdn.microsoft.com/en-us/library/4d17af53-cf11-4ce4-aab4-deda94a49836(SQL.110)�

 39

3. Create a classifier function, which is a user-defined function (UDF) whose return
values are used by Resource Governor for classifying sessions so that they are routed
to the appropriate workload group.

4. Register the classifier function with Resource Governor.
5. Apply the changes to the Resource Governor in-memory configuration.

For information about Resource Governor resource pools, workload groups, and
classification, see Resource Governor.

The Transact-SQL statements for these steps are described in the procedure, "To
configure Resource Governor for limiting CPU usage," which is followed by a Transact-
SQL example of the procedure.
To configure Resource Governor (SQL Server Management Studio)
• How to: Configure Resource Governor Using a Template
• How to: Create a Resource Pool (SQL Server Management Studio)
• How to: Create a Workload Group (SQL Server Management Studio)

To configure Resource Governor for limiting CPU usage (Transact-SQL)
1. Issue a CREATE RESOURCE POOL statement to create a resource pool. The example

for this procedure uses the following syntax:
CREATE RESOURCE POOL pool_name WITH (MAX_CPU_PERCENT = value);
Value is an integer from 1 to 100 that indicates the percentage of maximum average
CPU bandwidth. The appropriate value depends on your environment. For the
purpose of illustration, the example in this topic uses 20% percent
(MAX_CPU_PERCENT = 20.)

2. Issue a CREATE WORKLOAD GROUP statement to create a workload group for low-
priority operations whose CPU usage you want to govern. The example for this
procedure uses the following syntax:
CREATE WORKLOAD GROUP group_name USING pool_name;

3. Issue a CREATE FUNCTION statement to create a classifier function that maps the
workload group created in the preceding step to the user of the low-priority login.
The example for this procedure uses the following syntax:
CREATE FUNCTION [schema_name.]function_name() RETURNS sysname
WITH SCHEMABINDING
AS
BEGIN
 DECLARE @workload_group_name AS sysname
 IF (SUSER_NAME() = 'user_of_low_priority_login')
 SET @workload_group_name = 'workload_group_name'

Note

http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�
http://msdn.microsoft.com/en-us/library/f342dec2-d1d6-483e-b44e-98eb7d168b5e(SQL.110)�
http://msdn.microsoft.com/en-us/library/44dd0567-a4c8-4c72-89ff-e76f6ddef344(SQL.110)�
http://msdn.microsoft.com/en-us/library/072868ec-ceff-4db6-941b-281af731a067(SQL.110)�
http://msdn.microsoft.com/en-us/library/82712505-c6f9-4a65-a469-f029b5a2d6cd(SQL.110)�
http://msdn.microsoft.com/en-us/library/d949e540-9517-4bca-8117-ad8358848baa(SQL.110)�
http://msdn.microsoft.com/en-us/library/864b393f-225f-4895-8c8d-4db59ea60032(SQL.110)�

 40

 RETURN @workload_group_name
END
For information about the components of this CREATE FUNCTION statement, see:
• DECLARE @local_variable (Transact-SQL)
• SUSER_SNAME (Transact-SQL)

SUSER_NAME is just one of several system functions that can be used in a
classifier function. For more information, see Create and Test a Classifier
User-Defined Function.

• SET @local_variable (Transact-SQL).
4. Issue an ALTER RESOURCE GOVERNOR statement to register the classifier function

with Resource Governor. The example for this procedure uses the following syntax:
ALTER RESOURCE GOVERNOR WITH (CLASSIFIER_FUNCTION =
schema_name.function_name);

5. Issue a second ALTER RESOURCE GOVERNOR statement to apply the changes to the
Resource Governor in-memory configuration, as follows:

ALTER RESOURCE GOVERNOR RECONFIGURE;

Example B: Configuring Resource Governor (Transact-SQL)
The following example performs the following steps within a single transaction:
1. Creates the pMAX_CPU_PERCENT_20 resource pool.
2. Creates the gMAX_CPU_PERCENT_20 workload group.
3. Creates the rgclassifier_MAX_CPU() classifier function, which uses the user name

created in the preceding example.
4. Registers the classifier function with Resource Governor.
After committing the transaction, the example applies the configuration changes
requested in the ALTER WORKLOAD GROUP or ALTER RESOURCE POOL statements.

The following example uses the user name of the sample SQL Server user created
in "Example A: Setting Up a Login and User (Transact-SQL),"
domain_name\MAX_CPU. Replace this with the name of the user of the login that
you plan to use for creating low-priority compressed backups.

-- Configure Resource Governor.

BEGIN TRAN

USE master;

-- Create a resource pool that sets the MAX_CPU_PERCENT to 20%.

CREATE RESOURCE POOL pMAX_CPU_PERCENT_20

Important

Important

http://msdn.microsoft.com/en-us/library/d1635ebb-f751-4de1-8bbc-cae161f90821(SQL.110)�
http://msdn.microsoft.com/en-us/library/11ec7d86-d429-4004-a436-da25df9f8761(SQL.110)�
http://msdn.microsoft.com/en-us/library/7866b3c9-385b-40c6-aca5-32d3337032be(SQL.110)�
http://msdn.microsoft.com/en-us/library/7866b3c9-385b-40c6-aca5-32d3337032be(SQL.110)�
http://msdn.microsoft.com/en-us/library/d410e06e-061b-4c25-9973-b2dc9b60bd85(SQL.110)�
http://msdn.microsoft.com/en-us/library/442c54bf-a0a6-4108-ad20-db910ffa6e3c(SQL.110)�

 41

 WITH

 (MAX_CPU_PERCENT = 20);

GO

-- Create a workload group to use this pool.

CREATE WORKLOAD GROUP gMAX_CPU_PERCENT_20

USING pMAX_CPU_PERCENT_20;

GO

-- Create a classification function.

-- Note that any request that does not get classified goes into

-- the 'Default' group.

CREATE FUNCTION dbo.rgclassifier_MAX_CPU() RETURNS sysname

WITH SCHEMABINDING

AS

BEGIN

 DECLARE @workload_group_name AS sysname

 IF (SUSER_NAME() = 'domain_name\MAX_CPU')

 SET @workload_group_name = 'gMAX_CPU_PERCENT_20'

 RETURN @workload_group_name

END;

GO

-- Register the classifier function with Resource Governor.

ALTER RESOURCE GOVERNOR WITH (CLASSIFIER_FUNCTION=

dbo.rgclassifier_MAX_CPU);

COMMIT TRAN;

GO

-- Start Resource Governor

ALTER RESOURCE GOVERNOR RECONFIGURE;

GO

Verifying the Classification of the Current Session (Transact-SQL)
Optionally, log in as the user that you specified in your classifier function, and verify the
session classification by issuing the following SELECT statement in Object Explorer:

http://msdn.microsoft.com/en-us/library/dc85caea-54d1-49af-b166-f3aa2f3a93d0(SQL.110)�

 42

USE master;

SELECT sess.session_id, sess.login_name, sess.group_id, grps.name

FROM sys.dm_exec_sessions AS sess

JOIN sys.dm_resource_governor_workload_groups AS grps

 ON sess.group_id = grps.group_id

WHERE session_id > 50;

GO

In the results pane, the name column should list one or more sessions for the workload-
group name that you specified in your classifier function.

For information about the dynamic management views called by this SELECT
statement, see sys.dm_exec_sessions (Transact-SQL)
and sys.dm_resource_governor_workload_groups (Transact-SQL).

Compressing Backups Using a Session with Limited CPU
To create a compressed backup in a session with a limited maximum CPU, log in as the
user specified in your classifier function. In your backup command, either specify WITH
COMPRESSION (Transact-SQL) or select Compress backup (SQL Server Management
Studio). To create a compressed database backup, see Create a Full Database Backup.

Example C: Creating a Compressed Backup (Transact-SQL)
The following BACKUP example creates a compressed full backup of the
AdventureWorks2012 database in a newly formatted backup file,
Z:\SQLServerBackups\AdvWorksData.bak.

--Run backup statement in the gBackup session.

BACKUP DATABASE AdventureWorks2012 TO

DISK='Z:\SQLServerBackups\AdvWorksData.bak'

WITH

 FORMAT,

 MEDIADESCRIPTION='AdventureWorks2012 Compressed Data Backups'

 DESCRIPTION='First database backup on AdventureWorks2012 Compressed

Data Backups media set'

 COMPRESSION;

GO

See Also

Note

http://msdn.microsoft.com/en-us/library/2b7e8e0c-eea0-431e-819f-8ccd12ec8cfa(SQL.110)�
http://msdn.microsoft.com/en-us/library/f63c4914-1272-43ef-b135-fe1aabd953e0(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 43

How to: Create and Test a Classifier User-Defined Function (Transact-SQL)
Resource Governor

Full Database Backups
A full database backup backs up the whole database. This includes part of the
transaction log so that the full database can be recovered after a full database backup is
restored. Full database backups represent the database at the time the backup finished.

As a database increases in size full database backups take more time to finish and
require more storage space. Therefore, for a large database, you might want to
supplement a full database backup with a series of differential database backups.
For more information, see Differential Backups (SQL Server).

TRUSTWORTHY is set to OFF on a database backup. For information about how
to set TRUSTWORTHY to ON, see ALTER DATABASE SET Options (Transact-SQL).

In This Topic:
• Database Backups Under the Simple Recovery Model
• Database Backups Under the Full Recovery Model
• Use a Full Database Backup to Restore the Database
• Related Tasks

Database Backups Under the Simple Recovery Model
Under the simple recovery model, after each backup, the database is exposed to
potential work loss if a disaster were to occur. The work-loss exposure increases with
each update until the next backup, when the work-loss exposure returns to zero and a
new cycle of work-loss exposure starts. Work-loss exposure increases over time between
backups. The following illustration shows the work-loss exposure for a backup strategy
that uses only full database backups.

Tip

noteDXDOC112778PADS Security Note

http://msdn.microsoft.com/en-us/library/7866b3c9-385b-40c6-aca5-32d3337032be(SQL.110)�
http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�
http://msdn.microsoft.com/en-us/library/f76fbd84-df59-4404-806b-8ecb4497c9cc(SQL.110)�

 44

Example (Transact-SQL)
The following example shows how to create a full database backup by using WITH
FORMAT to overwrite any existing backups and create a new media set.

-- Back up the AdventureWorks2012 database to new media set.

BACKUP DATABASE AdventureWorks2012

 TO DISK = 'Z:\SQLServerBackups\AdventureWorksSimpleRM.bak'

 WITH FORMAT;

GO

Database Backups Under the Full Recovery Model
For databases that use full and bulk-logged recovery, database backups are necessary
but not sufficient. Transaction log backups are also required. The following illustration
shows the least complex backup strategy that is possible under the full recovery model.

 45

For information about how to create log backups, see Create Transaction Log Backups
(SQL Server).

Example (Transact-SQL)
The following example shows how to create a full database backup by using WITH
FORMAT to overwrite any existing backups and create a new media set. Then, the
example backs up the transaction log. In a real-life situation, you would have to perform
a series of regular log backups. For this example, the sample database is set to use
the full recovery model.

USE master;

ALTER DATABASE AdventureWorks2012 SET RECOVERY FULL;

GO

-- Back up the AdventureWorks2012 database to new media set (backup set

1).

BACKUP DATABASE AdventureWorks2012

 TO DISK = 'Z:\SQLServerBackups\AdventureWorks2012FullRM.bak'

 WITH FORMAT;

GO

--Create a routine log backup (backup set 2).

BACKUP LOG AdventureWorks2012 TO DISK =

'Z:\SQLServerBackups\AdventureWorks2012FullRM.bak';

GO

 46

Use a Full Database Backup to Restore the Database
You can re-create a whole database in one step by restoring the database from a full
database backup to any location. Enough of the transaction log is included in the backup
to let you recover the database to the time when the backup finished. The restored
database matches the state of the original database when the database backup finished,
minus any uncommitted transactions. Under the full recovery model, you should then
restore all subsequent transaction log backups. When the database is recovered,
uncommitted transactions are rolled back.
For more information, see Complete Database Restore (Simple Recovery Model)
or Complete Database Restore (Full Recovery Model).

Related Tasks
To create a full database backup
• Create a Full Database Backup (SQL Server)
•

 M:Microsoft.SqlServer.Management.Smo.Backup.SqlBackup(Microsoft.SqlServer.M
anagement.Smo.Server) (SMO)

To schedule backup jobs
Use the Maintenance Plan Wizard

See Also
Back Up and Restore of SQL Server Databases
Backup Overview (SQL Server)
Backing Up and Restoring an Analysis Services Database

Create a Full Database Backup
This topic describes how to create a full database backup in SQL Server 2012 by using
SQL Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Limitations and Restrictions
Recommendations
Security

• To create a full database backup, using:
SQL Server Management Studio

http://msdn.microsoft.com/en-us/library/db65c726-9892-480c-873b-3af29afcee44(SQL.110)�
http://msdn.microsoft.com/en-us/library/947eebd2-3622-479e-8aa6-57c11836e4ec(SQL.110)�

 47

Transact-SQL
• Related Tasks

Before You Begin

Limitations and Restrictions

• The BACKUP statement is not allowed in an explicit or implicit transaction.
• Backups that are created by more recent version of SQL Server cannot be restored in

earlier versions of SQL Server.
• For more information, see Backup Overview (SQL Server).

Recommendations

• As a database increases in size full database backups take more time to finish and

require more storage space. Therefore, for a large database, you might want to
supplement a full database backup with a series of differential database backups. For
more information, see Differential Backups (SQL Server).

• You can estimate the size of a full database backup by using the sp_spaceused
system stored procedure.

• By default, every successful backup operation adds an entry in the SQL Server error
log and in the system event log. If back up the log very frequently, these success
messages accumulate quickly, resulting in huge error logs that can make finding
other messages difficult. In such cases you can suppress these log entries by using
trace flag 3226 if none of your scripts depend on those entries. For more information,
see Trace Flags (Transact-SQL).

Security

TRUSTWORTHY is set to OFF on a database backup. For information about how to set
TRUSTWORTHY to ON, see ALTER DATABASE SET Options (Transact-SQL).
Beginning with SQL Server 2012 the PASSWORD and MEDIAPASSWORD options are
discontinued for creating backups. You can still restore backups created with passwords.

Permissions

BACKUP DATABASE and BACKUP LOG permissions default to members of the sysadmin
fixed server role and the db_owner and db_backupoperator fixed database roles.
Ownership and permission problems on the backup device's physical file can interfere
with a backup operation. SQL Server must be able to read and write to the device; the
account under which the SQL Server service runs must have write permissions.

http://msdn.microsoft.com/en-us/library/c6253b48-29f5-4371-bfcd-3ef404060621(SQL.110)�
http://msdn.microsoft.com/en-us/library/b971b540-1ac2-435b-b191-24399eb88265(SQL.110)�
http://msdn.microsoft.com/en-us/library/f76fbd84-df59-4404-806b-8ecb4497c9cc(SQL.110)�

 48

However, sp_addumpdevice, which adds an entry for a backup device in the system
tables, does not check file access permissions. Such problems on the backup device's
physical file may not appear until the physical resource is accessed when the backup or
restore is attempted.

Using SQL Server Management Studio

When you specify a back up task by using SQL Server Management Studio, you
can generate the corresponding Transact-SQL BACKUP script by clicking the
Script button and selecting a script destination.

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Databases, and depending on the database, either select a user database
or expand System Databases and select a system database.

3. Right-click the database, point to Tasks, and then click Back Up. The Back Up
Database dialog box appears.

4. In the Database list box, verify the database name. You can optionally select a
different database from the list.

5. You can perform a database backup for any recovery model (FULL,
BULK_LOGGED, or SIMPLE).

6. In the Backup type list box, select Full.
Note that after creating a full database backup, you can create a differential
database backup; for more information, see SQL Server Management Studio
Tutorial.

7. Optionally, you can select Copy Only Backup to create a copy-only backup. A
copy-only backup is a SQL Server backup that is independent of the sequence of
conventional SQL Server backups. For more information, see Copy-Only Backups.

Note
When the Differential option is selected, you cannot create a copy-only
backup.

8. For Backup component, click Database.
9. Either accept the default backup set name suggested in the Name text box, or

enter a different name for the backup set.
10. Optionally, in the Description text box, enter a description of the backup set.
11. Specify when the backup set will expire and can be overwritten without explicitly

Note

To back up a database

http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 49

skipping verification of the expiration data:
• To have the backup set expire after a specific number of days, click After (the

default option), and enter the number of days after set creation that the set
will expire. This value can be from 0 to 99999 days; a value of 0 days means
that the backup set will never expire.
The default value is set in the Default backup media retention (in days)
option of the Server Properties dialog box (Database Settings Page). To
access this, right-click the server name in Object Explorer and select
properties; then select the Database Settings page.

• To have the backup set expire on a specific date, click On, and enter the date
on which the set will expire.
For more information about backup expiration dates, see BACKUP (Transact-
SQL).

12. Choose the type of backup destination by clicking Disk or Tape. To select the
paths of up to 64 disk or tape drives containing a single media set, click Add. The
selected paths are displayed in the Backup to list box.
To remove a backup destination, select it and click Remove. To view the contents
of a backup destination, select it and click Contents.

13. To view or select the advanced options, click Options in the Select a page pane.
14. Select an Overwrite Media option, by clicking one of the following:

• Back up to the existing media set
For this option, click either Append to the existing backup set or Overwrite
all existing backup sets. For more information, see Media Sets, Media
Families, and Backup Sets (SQL Server).
Optionally, select Check media set name and backup set expiration to
cause the backup operation to verify the date and time at which the media
set and backup set expire.
Optionally, enter a name in the Media set name text box. If no name is
specified, a media set with a blank name is created. If you specify a media set
name, the media (tape or disk) is checked to see whether the actual name
matches the name you enter here.

• Back up to a new media set, and erase all existing backup sets
For this option, enter a name in the New media set name text box, and,
optionally, describe the media set in the New media set description text
box.

15. In the Reliability section, optionally check:
• Verify backup when finished.
• Perform checksum before writing to media, and, optionally, Continue on

checksum error. For information on checksums, see Detecting and Coping

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 50

with Media Errors.
16. If you are backing up to a tape drive (as specified in the Destination section of

the General page), the Unload the tape after backup option is active. Clicking
this option activates the Rewind the tape before unloading option.

Note
The options in the Transaction log section are inactive unless you are
backing up a transaction log (as specified in the Backup type section of
the General page).

17. SQL Server 2008 Enterprise and later supports backup compression. By default,
whether a backup is compressed depends on the value of the backup-
compression default server configuration option. However, regardless of the
current server-level default, you can compress a backup by checking Compress
backup, and you can prevent compression by checking Do not compress
backup.
To view or change the current backup compression default
• How to: View and Configure the backup compression default Option (SQL

Server Management Studio)

Note
Alternatively, you can use the Maintenance Plan Wizard to create database
backups.

Using Transact-SQL

1. Execute the BACKUP DATABASE statement to create the full database backup,
specifying:
• The name of the database to back up.
• The backup device where the full database backup is written.
The basic Transact-SQL syntax for a full database backup is:
BACKUP DATABASE database
 TO backup_device [,...n]
 [WITH with_options [,...o]] ;

Option Description

database Is the database that is to be backed up.

backup_device [,...n] Specifies a list of from 1 to 64 backup

To create a full database backup

http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�

 51

devices to use for the backup operation.
You can specify a physical backup
device, or you can specify a
corresponding logical backup device, if
already defined. To specify a physical
backup device, use the DISK or TAPE
option:
{ DISK | TAPE } =
physical_backup_device_name
For more information, see Backup
Devices.

WITH with_options [,...o] Optionally, specifies one or more
additional options, o. For information
about some of the basic with options,
see step 2.

2. Optionally, specify one or more WITH options. A few basic WITH options are

described here. For information about all the WITH options, see BACKUP
(Transact-SQL).
• Basic backup set WITH options:
{ COMPRESSION | NO_COMPRESSION }

In SQL Server 2008 Enterprise and later only, specifies whether backup
compression is performed on this backup, overriding the server-level default.

DESCRIPTION = { 'text' | @text_variable }

Specifies the free-form text that describes the backup set. The string can have a
maximum of 255 characters.

NAME = { backup_set_name | @backup_set_name_var }

Specifies the name of the backup set. Names can have a maximum of 128
characters. If NAME is not specified, it is blank.

• Basic backup set WITH options:
By default, BACKUP appends the backup to an existing media set, preserving
existing backup sets. To explicitly specify this, use the NOINIT option. For
information about appending to existing backup sets, see Media Sets, Media
Families, and Backup Sets (SQL Server).
Alternatively, to format the backup media, use the FORMAT option:

FORMAT [, MEDIANAME= { media_name | @media_name_variable }] [,
MEDIADESCRIPTION = { text | @text_variable }]

Use the FORMAT clause when you are using media for the first time or you

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 52

want to overwrite all existing data. Optionally, assign the new media a media
name and description.

Important
Use extreme caution when you are using the FORMAT clause of the
BACKUP statement because this destroys any backups that were
previously stored on the backup media.

Examples (Transact-SQL)

A. Backing up to a disk device
The following example backs up the complete database to disk, by using FORMAT to
create a new media set.

USE AdventureWorks2012;

GO

BACKUP DATABASE AdventureWorks2012

TO DISK = 'Z:\SQLServerBackups\AdventureWorks2012.Bak'

 WITH FORMAT,

 MEDIANAME = 'Z_SQLServerBackups',

 NAME = 'Full Backup of AdventureWorks2012';

GO

B. Backing up to a tape device
The following example backs up the complete database to tape, appending the
backup to the previous backups.

USE AdventureWorks2012;

GO

BACKUP DATABASE AdventureWorks2012

 TO TAPE = '\\.\Tape0'

 WITH NOINIT,

 NAME = 'Full Backup of AdventureWorks2012';

GO

C. Backing up to a logical tape device
The following example creates a logical backup device for a tape drive. The example then
backs up the complete database to that device.

-- Create a logical backup device,

-- AdventureWorks2012_Bak_Tape, for tape device \\.\tape0.

 53

USE master;

GO

EXEC sp_addumpdevice 'tape', 'AdventureWorks2012_Bak_Tape',

'\\.\tape0';

USE AdventureWorks2012;

GO

BACKUP DATABASE AdventureWorks2012

 TO AdventureWorks2012_Bak_Tape

 WITH FORMAT,

 MEDIANAME = 'AdventureWorks2012_Bak_Tape',

 MEDIADESCRIPTION = '\\.\tape0',

 NAME = 'Full Backup of AdventureWorks2012';

GO

Related Tasks
• Back Up a Database (SQL Server)
• Create a Full Differential Backup (SQL Server)
• Restore a Database Backup (SQL Server Management Studio)
• Restore a Database Backup Under the Simple Recovery Model (Transact-SQL)
• Restore a Database to the Point of Failure Under the Full Recovery Model (Transact-

SQL)
• Restore a Database to a New Location (SQL Server)
• Start the Maintenance Plan Wizard

See Also
Backup Overview (SQL Server)
Transaction Log Backups
Media Sets, Media Families, and Backup Sets (SQL Server)
sp_addumpdevice
BACKUP
Back Up Database (General Page)
Back Up Database (Options Page)
Differential Backups (SQL Server)
Full Database Backups

http://msdn.microsoft.com/en-us/library/db65c726-9892-480c-873b-3af29afcee44(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 54

Back Up Database (General Page)
Use the General page of the Back Up Database dialog box to view or modify settings
for a database back up operation.
For more information about basic backup concepts, see Overview of the Recovery
Models.

When you specify a backup task by using SQL Server Management Studio, you
can generate the corresponding Transact-SQL BACKUP script by clicking the
Script button and then selecting a destination for the script.

To use SQL Server Management Studio to create a backup
• How to: Back Up a Database (SQL Server Management Studio)
• How to: Create a Differential Database Backup (SQL Server Management Studio)

You can define a database maintenance plan to create database backups. For
more information, see Database Maintenance Plans in SQL Server 2008 R2
Books Online.

To create a partial backup
• For a partial backup, you must use the Transact-SQL BACKUP statement with the

PARTIAL option.
Options
Source
The options of the Source panel identify the database and specify the backup type and
component for the back up operation.
Database

Select the database to back up.

Recovery model

View the recovery model (SIMPLE, FULL, or BULK_LOGGED) displayed for the selected
database.

Backup type

Select the type of backup you want to perform on the specified database.

Backup type Available for Restrictions

Full Databases, files, and
filegroups

On the master database,
only full backups are
possible.
Under the Simple Recovery

Note

Important

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/ms187658.aspx�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 55

Model, file and filegroup
backups are available only
for read-only filegroups.

Differential Databases, files, and
filegroups

Under the Simple Recovery
Model, file and filegroup
backups are available only
for read-only filegroups.

Transaction Log Transaction logs Transaction log backups
are not available for the
Simple Recovery Model.

Copy Only Backup

Select to create a copy-only backup. A copy-only backup is a SQL Server backup that is
independent of the sequence of conventional SQL Server backups. For more
information, see Copy-Only Backups.

Note
When the Differential option is selected, you cannot create a copy-only backup.

Backup component

Select the database component to be backed up. If Transaction Log is selected in the
Backup type list, this option is not activated.

Select one of the following option buttons:

Database Specifies that the entire database be
backed up.

Files and filegroups Specifies that the specified files and/or
filegroups be backed up.
Selecting this option, opens the Select
Files and Filegroups dialog box. After
you select the filegroups or files you want
to back up and click Ok, your selections
appear in the Filegroups and files box.

Backup set
The options of the Backup set panel allow for you to specify optional information about
the backup set created by the back up operation.
Name

Specify the backup set name. The system automatically suggests a default name based
on the database name and the backup type.

For information about backup sets, see Media Sets, Media Families, and Backup

 56

Sets

Description

.

Enter a description of the backup set.

Backup set will expire

Choose one of the following expiration options.

After Specify the number of days that must
elapse before this backup set expires and
can be overwritten. This value can be
from 0 to 99999 days; a value of 0 days
means that the backup set will never
expire.
The default value for backup expiration is
the value set in the Default backup
media retention (in days) option. To
access this, right-click the server name in
Object Explorer and select Properties;
then click the Database Settings page of
the Server Properties dialog box.

On Specify a specific date when the backup
set expires and can be overwritten.

Destination
The options of the Destination panel allow for you to specify the type of backup device
for the back up operation and find an existing logical or physical backup device.

For information about SQL Server backup devices, see Backup Devices.
Back up to

Select one of the following types of media to which to back up. The destinations you
select appear in the Back up to list.

Disk Backs up to disk. This may be a system file
or a disk-based logical backup device
created for the database. The currently
selected disks appear in the Back up to
list. You can select up to 64 disk devices
for your backup operation.

Tape Backs up to tape. This may be a local tape

Note

 57

drive or a tape-based logical backup
device created for the database. The
currently selected tapes appear in the
Back up to list. The maximum number is
64. If there are no tape devices attached
to the server, this option is deactivated.
The tapes you select are listed in the Back
up to list.

nNote
Support for tape backup devices
will be removed in a future version
of SQL Server. Avoid using this
feature in new development work,
and plan to modify applications
that currently use this feature.

Add

Adds a file or device to the Back up to list. You can back up to 64 devices
simultaneously on a local disk or remote disk. To specify a file on a remote disk, use the
fully qualified universal naming convention (UNC) name. For more information,
see Backup Devices.

Remove

Removes one or more currently selected devices from the Back up to list.

Contents

Displays the media contents for the selected device.

See Also
How to: Back Up a Transaction Log (SQL Server Management Studio)
How to: Back Up Database Files and Filegroups (SQL Server Management Studio)
How to: Define a Logical Backup Device for a Disk File (SQL Server Management Studio)
How to: Define a Logical Backup Device for a Tape Drive (SQL Server Management
Studio)
Overview of the Recovery Models

Back Up Database (Options Page)
Use the Options page of the Back Up Database dialog box to view or modify database
backup options.
To create a backup by using SQL Server Management Studio
• How to: Back Up a Database (SQL Server Management Studio)

 58

• How to: Create a Differential Database Backup (SQL Server Management Studio)

You can define a database maintenance plan to create database backups. For
more information, see Maintenance Plans and How to: Start the Database
Maintenance Plan Wizard.

When you specify a backup task by using SQL Server Management Studio, you
can generate the corresponding Transact-SQL BACKUP script by clicking the
Script button and then selecting a destination for the script.

Options
Overwrite media
The options of the Overwrite media panel control how the backup is written to the
media.

For information about media sets, see Media Sets, Media Families, and Backup
Sets.

Back up to the existing media set

Back up a database to an existing media set. Selecting this option button activates three
options.

Choose one of the following options:

Append to the existing backup set

Append the backup set to the existing media set, preserving any prior backups.

Overwrite all existing backup sets

Replace any prior backups on the existing media set with the current backup.

Check media set name and backup set expiration

Optionally, if backing up to an existing media set, require the backup operation to verify
the name and the expiration date of the backup sets.

Media set name

If Check media set name and backup set expiration is selected, optionally, specify the
name of the media set to be used for this backup operation.

Back up to a new media set, and erase all existing backup sets

Use a new media set, erasing the previous backup sets.

Clicking this option activates the following options:

New media set name

Optionally, enter a new name for the media set.

Important

Note

Note

http://msdn.microsoft.com/en-us/library/5982ca65-74fe-44e3-aef9-00a65a0db169(SQL.110)�
http://msdn.microsoft.com/en-us/library/db65c726-9892-480c-873b-3af29afcee44(SQL.110)�
http://msdn.microsoft.com/en-us/library/db65c726-9892-480c-873b-3af29afcee44(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 59

New media set description

Optionally, enter a meaningful description of the new media set. This description
should be specific enough to communicate the contents accurately.

Reliability
The options of the Transaction log panel control error management by the backup
operation.
Verify backup when finished

Verify that the backup set is complete and that all volumes are readable.

Perform checksum before writing to media

Verify the checksums before writing to the backup media. Selecting this option is
equivalent to specifying the CHECKSUM option in the BACKUP statement of Transact-
SQL. Selecting this option may increase the workload, and decrease the backup
throughput of the backup operation. For information about backup checksums,
see Detecting and Coping with Media Errors.

Continue on error

The backup operation is to continue even after encountering one or more errors.

Transaction log
The options of the Transaction log panel control the behavior of a transaction log
backup. These options are relevant only under the full recovery model or bulk-logged
recovery model. They are activated only if Transaction log has been selected in the
Backup type field on the General page of the Back Up Database dialog box.

For information about transaction log backups, see Transaction Log Backups (SQL
Server).

Truncate the transaction log

Back up the transaction log and truncate it to free log space. The database remains
online. This is the default option.

Back up the tail of the log, and leave the database in the restoring state

Back up the tail of the log and leave the database in a restoring state. This option
creates a tail-log backup, which backs up logs that have not yet been backed up (the
active log), typically, in preparation for restoring a database. The database will be
unavailable to users until it is completely restored.

Selecting this option is equivalent to specifying WITH NO_TRUNCATE, NORECOVERY in
a BACKUP statement (Transact-SQL). For more information, see Tail-Log Backups.

Tape drive

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 60

The options of the Tape drive panel control tape management during the backup
operation. These options are activated only if Tape has been selected in the Destination
panel on the General page of the Back Up Database dialog box.

For information about how to use tape devices, see Backup Devices.
Unload the tape after backup

After the backup is complete, unload the tape.

Rewind the tape before unloading

Before unloading the tape, release and rewind it. This is enabled only if Unload the
tape after backup is selected.

Compression
SQL Server 2008 Enterprise (or a later version) supports backup compression.
Set backup compression

In SQL Server 2008 Enterprise (or a later version), select one of the following backup
compression values:

Use the default server setting Click to use the server-level default.
This default is set by the backup
compression default server-
configuration option. For information
about how to view the current setting of
this option, see How to: View and
Configure the backup compression
default Option (SQL Server Management
Studio).

Compress backup Click to compress the backup, regardless
of the server-level default.

iImportant
By default, compression
significantly increases CPU usage,
and the additional CPU consumed
by the compression process might
adversely impact concurrent
operations. Therefore, you might
want to create low-priority
compressed backups in a session
whose CPU usage is limited
by Resource Governor. For more

Note

http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/2bc89b66-e801-45ba-b30d-8ed197052212(SQL.110)�

 61

information, see Use Resource
Governor to Limit CPU Usage by
Backup Compression (Transact-
SQL).

Do not compress backup Click to create an uncompressed backup,
regardless of the server-level default.

See Also
BACKUP (Transact-SQL)
How to: Back Up a Transaction Log (SQL Server Management Studio)
How to: Back Up Database Files and Filegroups (SQL Server Management Studio)
How to: Back Up the Transaction Log When the Database Is Damaged (Transact-SQL)

Select Backup Destination
Use the Select Backup Destination dialog box to select a device as your backup
destination. A backup destination can be either a disk or a logical backup device.
To use SQL Server Management Studio to back up a database
• Media Sets, Media Families, and Backup Sets
• How to: Create a Differential Database Backup (SQL Server Management Studio)
• How to: Back Up Database Files and Filegroups (SQL Server Management Studio)
• How to: Back Up a Transaction Log (SQL Server Management Studio)
Options
The options of this dialog box depend on whether you are selecting a destination on
disk or on tape.
Destination on disk

To specify a backup destination, choose one of the following options.

File name Choose this option to enter a local or remote file as
the backup destination in the text box.
• To specify a local file, click the browse button to

the right of the text box and navigate to a file on
the fixed drives of the computer running the
server, or enter the full path and file name directly;
for example, C:\Program Files\Microsoft SQL
Server\MSSQL\Backup\AdventureWorksBackup.
bak.

• To specify a remote file as your backup
destination, enter its fully qualified universal

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 62

naming convention (UNC) name. For more
information, see Backup Devices.

Important
Backing up data over a network can be
subject to network errors; therefore, we
recommend that you verify the backup
operation after it finishes. For more
information, see RESTORE VERIFYONLY
(Transact-SQL).

Backup device Choose this option to select a logical backup device.

Note
For information about how to create a disk
backup device, see How to: Create a Disk
Backup Device (SQL Server Management
Studio).

Destination on tape

Specify a backup destination on a tape drive physically connected to the computer
running the server (that is, the instance of the Database Engine). Choose one of the
following options.

Tape drive Choose this option to select a tape drive
as the backup destination from the list of
tape drives that are physically connected
to the computer that is running the server
instance.

nNote
Tape backup devices on remote
computers are not valid backup
destinations.

Backup device Choose this option to select an existing
logical backup device. These logical
backup devices correspond to tape drives
that are physically connected to the
computer that is running the server
instance.

Note
For information about how to

http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�
http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�

 63

create a tape backup device,
see How to: Create a Disk Backup
Device (SQL Server Management
Studio).

See Also
Backup Devices
Media Sets, Media Families, and Backup Sets

Partial Backups
All SQL Server recovery models support partial backups, so this topic is relevant for all
SQL Server databases. However, partial backups are designed for use under the simple
recovery model to improve flexibility for backing up very large databases that contain
one or more read-only filegroups.
Partial backups are useful whenever you want to exclude read-only filegroups. A partial
backup resembles a full database backup, but a partial backup does not contain all the
filegroups. Instead, for a read-write database, a partial backup contains the data in the
primary filegroup, every read-write filegroup, and, optionally, one or more read-only
files. A partial backup of a read-only database contains only the primary filegroup.

If a read-only database is changed to read/write after a partial backup, there
might be read/write secondary filegroups that are not in the partial backup. In
this case, if you try to take a differential partial backup, the backup fails. Before
you can take a differential partial backup of the database, you must take another
partial backup. The new partial backup contains every read/write secondary
filegroup and can serve as the base for differential partial backups.

File backups of read-only filegroups can be combined with partial backups. For
information about file backups, see Full File Backups.
A partial backup can serve as the differential base for differential partial backups. For
more information, see Using Differential Backups.

Related Tasks

Partial backups are not supported by SQL Server Management Studio or the
Maintenance Plan Wizard.

To create a partial backup
• BACKUP (Transact-SQL) (READ_WRITE_FILEGROUPS; FILEGROUP option, if needed)
To use a partial backup in a restore sequence

Note

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 64

• Example: Piecemeal Restore of Database (Simple Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Simple Recovery Model)

See Also
Backup Overview (SQL Server)
File Restores (Simple Recovery Model)
Piecemeal Restores

Full File Backups
This topic is relevant for SQL Server databases that contain multiple files or filegroups.
The files in a SQL Server database can be backed up and restored individually. Also, you
can specify a whole filegroup instead of specifying each constituent file individually. Note
that if any file in a filegroup is offline (for example, because the file is being restored), the
whole filegroup is offline and cannot be backed up.
File backups of read-only filegroups can be combined with partial backups. Partial
backups include all the read/write filegroups and, optionally, one or more read-only
filegroups. For more information, see Partial Backups.
A file backup can serve as the differential base for differential file backups. For more
information, see Differential Backups.

Full file backups are typically called file backups, except when they are being
explicitly compared with differential file backups.

In This Topic:
• Benefits of File Backups
• Disadvantages of File Backups
• Overview of File Backups
• Related Tasks

Benefits of File Backups
File backups offer the following advantages over database backups:
• Using file backups can increase the speed of recovery by letting you restore only

damaged files, without restoring the rest of the database.
For example, if a database consists of several files that are located on different disks
and one disk fails, only the file on the failed disk has to be restored. The damaged file
can be quickly restored, and recovery is faster than it would be for an entire
database.

Note

 65

• File backups increase flexibility in scheduling and media handling over full database
backups, which for very large databases can become unmanageable. The increased
flexibility of file or filegroup backups is also useful for large databases that contain
data that has varying update characteristics.

Disadvantages of File Backups
• The primary disadvantage of file backups compared to full database backups is the

additional administrative complexity. Maintaining and keeping track of a complete
set of these backups can be a time-consuming task that might outweigh the space
requirements of full database backups.

• A media failure can make a complete database unrecoverable if a damaged file lacks
a backup. You must therefore maintain a complete set of file backups, and, for the
full/bulk-logged recovery model, one or more log backups covering minimally the
interval between the first full file backup and last full file backup.

Overview of File Backups
A full file backup backs up all the data in one or more files or filegroups. By default, file
backups contain enough log records to roll forward the file to the end of the backup
operation.
Backing up a read-only file or filegroup is the same for every recovery model. Under the
full recovery model, a complete set of full file backups, together with enough log
backups to span all the file backups, is the equivalent of a full database backup.
Only one file backup operation can occur at a time. You can back up multiple files in one
operation, but this might extend the recovery time if you only have to restore a single
file. This is because to locate that file, the whole backup is read.

Individual files can be restored from a database backup; however, locating and
restoring a file takes longer from a database backup than from a file backup.

File Backups and the Simple Recovery Model
Under the simple recovery model, read/write files must all be backed up together. This
makes sure that the database can be restored to a consistent point in time. Instead of
individually specifying each read/write file or filegroup, use the
READ_WRITE_FILEGROUPS option. This option backs up all the read/write filegroups in
the database. A backup that is created by specifying READ_WRITE_FILEGROUPS is known
as a partial backup. For more information, see Partial Backups.

Note

 66

File Backups and the Full Recovery Model
Under the full recovery model, you must back up the transaction log, regardless of the
rest of your backup strategy. A complete set of full file backups, together with enough
log backups to span all the file backups from the start of the first file backup, is the
equivalent of a full database backup.
Restoring a database using just file and log backups can be complex. Therefore, if it is
possible, it is a best practice to perform a full database backup and start the log backups
before the first file backup. The following illustration shows a strategy in which a full
database backup is taken (at time t1) soon after the database is created (at time t0). This
first database backup enables transaction log backups to start. Transaction log backups
are scheduled to occur at set intervals. File backups occur at whatever interval best meets
the business requirements for the database. This illustration shows each of the four
filegroups being backed up one at a time. The order in which they are backed up (A, C, B,
A) reflects the business requirements of the database.

Under the full recovery model, you must roll forward the transaction log when
restoring a read/write file backup to make sure that the file is consistent with the
rest of the database. To avoid rolling forward a lot of transaction log backups,
consider using differential file backups. For more information, see Differential
Backups.

Note

 67

Related Tasks
To create a file or filegroup backup
• Back Up Database Files and Filegroups (SQL Server Management Studio)
•

 M:Microsoft.SqlServer.Management.Smo.Backup.SqlBackup(Microsoft.SqlServer.M
anagement.Smo.Server) (SMO)

File backups are not supported by the Maintenance Plan Wizard.

See Also
BACKUP (Transact-SQL)
Backup Overview (SQL Server)
Backup and Restore Considerations for Related Features
Differential Backups
Restoring File Backups (Simple Recovery Model)
Restoring File Backups (Full Recovery Model)
Performing Online Restores
Performing Piecemeal Restores

Back Up Files and Filegroups
This topic describes how to back up files and filegroups in SQL Server 2012 by using SQL
Server Management Studio or Transact-SQL. When the database size and performance
requirements make a full database backup impractical, you can create a file backup
instead. A file backup contains all the data in one or more files (or filegroups). For more
information about file backups, see RESTORE (Transact-SQL) and Differential Backups
(SQL Server).
In This Topic
• Before you begin:

Limitations and Restrictions
Recommendations
Security

• To back up files and filegroups, using:
SQL Server Management Studio
Transact-SQL

Before You Begin

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 68

Limitations and Restrictions

• The BACKUP statement is not allowed in an explicit or implicit transaction.
• Under the simple recovery model, read/write files must all be backed up together.

This helps make sure that the database can be restored to a consistent point in time.
Instead of individually specifying each read/write file or filegroup, use the
READ_WRITE_FILEGROUPS option. This option backs up all the read/write filegroups
in the database. A backup that is created by specifying READ_WRITE_FILEGROUPS is
known as a partial backup. For more information, see Partial Backups.

• For more information about limitations and restrictions, see Backup Overview (SQL
Server).

Recommendations

• By default, every successful backup operation adds an entry in the SQL Server error

log and in the system event log. If you back up the log very frequently, these success
messages accumulate quickly, resulting in huge error logs that can make finding
other messages difficult. In such cases you can suppress these log entries by using
trace flag 3226 if none of your scripts depend on those entries. For more information,
see Trace Flags (Transact-SQL).

Security

Permissions
BACKUP DATABASE and BACKUP LOG permissions default to members of the sysadmin
fixed server role and the db_owner and db_backupoperator fixed database roles.
Ownership and permission problems on the backup device's physical file can interfere
with a backup operation. SQL Server must be able to read and write to the device; the
account under which the SQL Server service runs must have write permissions.
However, sp_addumpdevice, which adds an entry for a backup device in the system
tables, does not check file access permissions. Such problems on the backup device's
physical file may not appear until the physical resource is accessed when the backup or
restore is attempted.

Using SQL Server Management Studio

1. After connecting to the appropriate instance of the SQL Server Database Engine,

To back up database files and filegroups

http://msdn.microsoft.com/en-us/library/b971b540-1ac2-435b-b191-24399eb88265(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�

 69

in Object Explorer, click the server name to expand the server tree.
2. Expand Databases, and, depending on the database, either select a user

database or expand System Databases and select a system database.
3. Right-click the database, point to Tasks, and then click Back Up. The Back Up

Database dialog box appears.
4. In the Database list, verify the database name. You can optionally select a

different database from the list.
5. In the Backup type list, select Full or Differential.
6. For the Backup component option, click File and Filegroups.
7. In the Select Files and Filegroups dialog box, select the files and filegroups you

want to back up. You can select one or more individual files or check the box for
a filegroup to automatically select all the files in that filegroup.

8. Either accept the default backup set name suggested in the Name text box, or
enter a different name for the backup set.

9. Optionally, in the Description text box, enter a description of the backup set.
10. Specify when the backup set will expire:

• To have the backup set expire after a specific number of days, click After (the
default option). Then, enter the number of days after set creation that the set
will expire. This value can be from 0 to 99999 days; a value of 0 days means
that the backup set will never expire.
The default value is set in the Default backup media retention (in days)
option of the Server Properties dialog box (Database Settings page). To
access this option, right-click the server name in Object Explorer and select
properties; then select the Database Settings page.

• To have the backup set expire on a specific date, click On, and enter the date
on which the set will expire.

11. Choose the type of backup destination by clicking Disk or Tape. To select the
paths of up to 64 disk or tape drives that contain a single media set, click Add.
The selected paths are displayed in the Backup to list.

Note
To remove a backup destination, select it and click Remove. To view the
contents of a backup destination, select it and click Contents.

12. To view or select the advanced options, click Options in the Select a page pane.
13. Select an Overwrite Media option, by clicking one of the following:

• Back up to the existing media set
For this option, click either Append to the existing backup set or Overwrite
all existing backup sets. For information about backing up to an existing
media set, see Media Sets, Media Families, and Backup Sets (SQL Server).

 70

Optionally, select Check media set name and backup set expiration to
cause the backup operation to verify the date and time at which the media
set and backup set expire.
Optionally, enter a name in the Media set name text box. If no name is
specified, a media set with a blank name is created. If you specify a media set
name, the media (tape or disk) is checked to see whether the actual name
matches the name that you enter here.
If you leave the media name blank and check the box to check it against the
media, success will equal the media name on the media also being blank.

• Back up to a new media set, and erase all existing backup sets
For this option, enter a name in the New media set name text box, and,
optionally, describe the media set in the New media set description text
box. For more information about creating a new media set, see Media Sets,
Media Families, and Backup Sets (SQL Server).

14. In the Reliability section, optionally check:
• Verify backup when finished.
• Perform checksum before writing to media, and, optionally, Continue on

checksum error. For more information about checksums, see Detecting and
Coping with Media Errors.

15. If you are backing up to a tape drive (as specified in the Destination section of
the General page), the Unload the tape after backup option is active. Clicking
this option enables the Rewind the tape before unloading option.

Note
The options in the Transaction log section are inactive unless you are
backing up a transaction log (as specified in the Backup type section of
the General page).

16. SQL Server 2008 Enterprise and later versions support backup compression. By
default, whether a backup is compressed depends on the value of the backup-
compression default server configuration option. However, regardless of the
current server-level default, you can compress a backup by checking Compress
backup, and you can prevent compression by checking Do not compress
backup.
To view the current backup compression default
• How to: View and Configure the backup compression default Option (SQL

Server Management Studio)

Using Transact-SQL

http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�

 71

1. To create a file or filegroup backup, use a BACKUP DATABASE <file_or_filegroup>
statement. Minimally, this statement must specify the following:
• The database name.
• A FILE or FILEGROUP clause for each file or filegroup, respectively.
• The backup device on which the full backup will be written.
The basic Transact-SQL syntax for a file backup is:
BACKUP DATABASE database
 { FILE = logical_file_name | FILEGROUP = logical_filegroup_name } [,...f]
 TO backup_device [,...n]
 [WITH with_options [,...o]] ;

Option Description

database Is the database from which the
transaction log, partial database, or
complete database is backed up.

FILE = logical_file_name Specifies the logical name of a file to
include in the file backup.

FILEGROUP = logical_filegroup_name Specifies the logical name of a
filegroup to include in the file backup.
Under the simple recovery model, a
filegroup backup is allowed only for a
read-only filegroup.

[,...f] Is a placeholder that indicates that
multiple files and filegroups may be
specified. The number of files or
filegroups is unlimited.

backup_device [,...n] Specifies a list of from 1 to 64 backup
devices to use for the backup
operation. You can specify a physical
backup device, or you can specify a
corresponding logical backup device, if
already defined. To specify a physical
backup device, use the DISK or TAPE
option:
{ DISK | TAPE } =

To back up files and filegroups

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 72

physical_backup_device_name
For more information, see Backup
Devices.

WITH with_options [,...o] Optionally, specifies one or more
additional options, such as
DIFFERENTIAL.

nNote
A differential file backup
requires a full file backup as
a base. For more
information, see Create a
Differential Database
Backup (SQL Server).

2. Under the full recovery model, you must also back up the transaction log. To use

a complete set of full file backups to restore a database, you must also have
enough log backups to span all the file backups, from the start of the first file
backup. For more information, see Back Up a Transaction Log.

Examples (Transact-SQL)
The following examples back up one or more files of the secondary filegroups of the
Sales database. This database uses the full recovery model and contains the following
secondary filegroups:
• A filegroup named SalesGroup1 that has the files SGrp1Fi1 and SGrp1Fi2.
• A filegroup named SalesGroup2 that has the files SGrp2Fi1 and SGrp2Fi2.

A. Creating a file backup of two files
The following example creates a differential file backup of only the SGrp1Fi2 file of the
SalesGroup1 and the SGrp2Fi2 file of the SalesGroup2 filegroup.

--Backup the files in the SalesGroup1 secondary filegroup.

BACKUP DATABASE Sales

 FILE = 'SGrp1Fi2',

 FILE = 'SGrp2Fi2'

 TO DISK = 'G:\SQL Server Backups\Sales\SalesGroup1.bck';

GO

B. Creating a full file backup of the secondary filegroups
The following example creates a full file backup of every file in both of the secondary
filegroups.

 73

--Back up the files in SalesGroup1.

BACKUP DATABASE Sales

 FILEGROUP = 'SalesGroup1',

 FILEGROUP = 'SalesGroup2'

 TO DISK = 'C:\MySQLServer\Backups\Sales\SalesFiles.bck';

GO

C. Creating a differential file backup of the secondary filegroups
The following example creates a differential file backup of every file in both of the
secondary filegroups.

--Back up the files in SalesGroup1.

BACKUP DATABASE Sales

 FILEGROUP = 'SalesGroup1',

 FILEGROUP = 'SalesGroup2'

 TO DISK = 'C:\MySQLServer\Backups\Sales\SalesFiles.bck'

 WITH

 DIFFERENTIAL;

GO

See Also
Backup Overview (SQL Server)
BACKUP
RESTORE (Transact-SQL)
Viewing Information About Backups
Back Up Database (General Page)
Back Up Database (Options Page)
Full File Backups
Differential Backups (SQL Server)
Restoring File Backups (Full Recovery Model)
Restoring File Backups (Simple Recovery Model)

Differential Backups
This backup and restore topic is relevant for all SQL Server databases.

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 74

A differential backup is based on the most recent, previous full data backup. A
differential backup captures only the data that has changed since that full backup. The
full backup upon which a differential backup is based is known as the base of the
differential. Full backups, except for copy-only backups, can serve as the base for a series
of differential backups, including database backups, partial backups, and file backups.
The base backup for a file differential backup can be contained within a full backup, a file
backup, or a partial backup.
In this Topic:
• Benefits
• Overview of Differential Backups
• Differential Backups of Read-Only Databases
• Related Tasks

Benefits
• Creating a differential backups can be very fast compared to creating a full backup. A

differential backup records only the data that has changed since the full backup upon
the differential backup is based. This facilitates taking frequent data backups, which
decrease the risk of data loss. However, before you restore a differential backup, you
must restore its base. Therefore restoring from a differential backup will necessarily
take more steps and time than restoring from a full backup because two backup files
are required.

• Differential database backups are especially useful if a subset of a database is
modified more frequently than the rest of the database. In these cases, differential
database backups enable you back up frequently without the overhead of full
database backups.

• Under the full recovery model, using differential backups can reduce the number of
log backups that you have to restore.

Overview of Differential Backups
A differential backup captures the state of any extents (collections of eight physically
contiguous pages) that have changed between when the differential base was created
and the when differential backup is created. This means that the size of a given
differential backup depends on the amount of data that has changed since the base.
Generally, the older a base is, the larger a new differential backup will be. In a series of
differential backups, a frequently updated extent is likely to contain different data in each
differential backup.
The following illustration shows how a differential backup works. The figure shows 24
data extents, 6 of which have changed. The differential backup contains only these 6 data
extents. The differential backup operation relies on a bitmap page that contains a bit for
every extent. For each extent updated since the base, the bit is set to 1 in the bitmap.

 75

The differential bitmap is not updated by a copy-only backup. Therefore, a copy-
only backup does not affect subsequent differential backups.

A differential backup that is taken fairly soon after its base is usually significantly smaller
than the differential base. This saves storage space and backup time. However, as a
database changes over time, the difference between the database and a specific
differential base increases. The longer the time between a differential backup and its
base, the larger the differential backup is likely to be. This means that the differential
backups can eventually approach the differential base in size. A large differential backup
loses the advantages of a faster and smaller backup.
As the differential backups increase in size, restoring a differential backup can
significantly increase the time that is required to restore a database. Therefore, we
recommend that you take a new full backup at set intervals to establish a new differential
base for the data. For example, you might take a weekly full backup of the whole
database (that is, a full database backup) followed by a regular series of differential
database backups during the week.
At restore time, before you restore a differential backup, you must restore its base. Then,
restore only the most recent differential backup to bring the database forward to the
time when that differential backup was created. Typically, you would restore the most
recent full backup followed by the most recent differential backup that is based on that
full backup.

Differential Backups of Read-Only Databases
For read-only databases, full backups used alone are easier to manage than when they
are used with differential backups. When a database is read-only, backup and other
operations cannot change the metadata that is contained in the file. Therefore, metadata
that is required by a differential backup, such as the log sequence number at which the

Note

 76

differential backup begins (the differential base LSN) is stored in the master database. If
the differential base is taken when the database is read-only, the differential bitmap
indicates more changes than have actually occurred since the base backup. The extra
data is read by backup, but is not written to the backup, because the
differential_base_lsn stored in the backupset system table is used to determine whether
the data has actually changed since the base.
When a read-only database is rebuilt, restored, or detached and attached, the
differential-base information is lost. This occurs because the master database is not
synchronized with the user database. The SQL Server Database Engine cannot detect or
prevent this problem. Any later differential backups are not based on the most recent full
backup and could provide unexpected results. To establish a new differential base, we
recommend that you create a full database backup.

Best Practices for Using Differential Backups with a Read-Only Database
After you create a full database backup of a read-only database, if you intend to create a
subsequent differential backup, back up the master database.
If the master database is lost, restore it before you restore any differential backup of a
user database.
If you detach and attach a read-only database for which you plan to later use differential
backups, as soon as it is practical, take a full database backup of both the read-only
database and of the master database.

Related Tasks
• Create A Differential Database Backup (SQL Server)
• Restore a Differential Database Backup (SQL Server)

See Also
Backup Overview
Full Database Backups
Complete Database Restores (Full Recovery Model)
Complete Database Restores (Simple Recovery Model)
Create Transaction Log Backups (SQL Server)

Create a Differential Database Backup
This topic describes how to create a differential database backup in SQL Server 2012 by
using SQL Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�

 77

Limitations and Restrictions
Prerequisites
Recommendations
Security

• To create a differential database backup, using:
SQL Server Management Studio
Transact-SQL

Before You Begin

Limitations and Restrictions

• The BACKUP statement is not allowed in an explicit or implicit transaction.

Prerequisites

• Creating a differential database backup requires that a previous full database backup

exist. If the selected database has never been backed up, run a full database backup
before creating any differential backups. For more information, see Differential
Database Backups.

Recommendations

• As the differential backups increase in size, restoring a differential backup can

significantly increase the time that is required to restore a database. Therefore, we
recommend that you take a new full backup at set intervals to establish a new
differential base for the data. For example, you might take a weekly full backup of the
whole database (that is, a full database backup) followed by a regular series of
differential database backups during the week.

Security

Permissions
BACKUP DATABASE and BACKUP LOG permissions default to members of the sysadmin
fixed server role and the db_owner and db_backupoperator fixed database roles.
Ownership and permission problems on the backup device's physical file can interfere
with a backup operation. SQL Server must be able to read and write to the device; the
account under which the SQL Server service runs must have write permissions.
However, sp_addumpdevice, which adds an entry for a backup device in the system
tables, does not check file access permissions. Such problems on the backup device's

http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�

 78

physical file may not appear until the physical resource is accessed when the backup or
restore is attempted.

Using SQL Server Management Studio

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Databases, and depending on the database, either select a user database
or expand System Databases and select a system database.

3. Right-click the database, point to Tasks, and then click Back Up. The Back Up
Database dialog box appears.

4. In the Database list box, verify the database name. You can optionally select a
different database from the list.
You can perform a differential backup for any recovery model (full, bulk-logged,
or simple).

5. In the Backup type list box, select Differential.

Important
When Differential is selected, verify that the Copy Only Backup check
box is cleared.

6. For Backup component, click Database.
7. Either accept the default backup set name suggested in the Name text box, or

enter a different name for the backup set.
8. Optionally, in the Description text box, enter a description of the backup set.
9. Specify when the backup set will expire:

• To have the backup set expire after a specific number of days, click After (the
default option), and enter the number of days after set creation that the set
will expire. This value can be from 0 to 99999 days; a value of 0 days means
that the backup set will never expire.
The default value is set in the Default backup media retention (in days)
option of the Server Properties dialog box (Database Settings page). To
access this, right-click the server name in Object Explorer and select
properties; then select the Database Settings page.

• To have the backup set expire on a specific date, click On, and enter the date
on which the set will expire.

10. Choose the type of backup destination by clicking Disk or Tape. To select the
path of up to 64 disk or tape drives containing a single media set, click Add. The

To create a differential database backup

 79

selected paths are displayed in the Backup to list box.
To remove a backup destination, select it and click Remove. To view the contents
of a backup destination, select it and click Contents.

11. To view or select the advanced options, click Options in the Select a page pane.
12. Select an Overwrite Media option, by clicking one of the following:

• Back up to the existing media set
For this option, click either Append to the existing backup set or Overwrite
all existing backup sets. Optionally, check the Check media set name and
backup set expiration check box and, optionally, enter a name in the Media
set name text box. If no name is specified, a media set with a blank name is
created. If you specify a media set name, the media (tape or disk) is checked
to see if the actual name matches the name you enter here.
If you leave the media name blank and check the box to check it against the
media, success will equal the media name on the media also being blank.

• Back up to a new media set, and erase all existing backup sets
For this option, enter a name in the New media set name text box, and,
optionally, describe the media set in the New media set description text
box.

13. In the Reliability section, optionally, check:
• Verify backup when finished.
• Perform checksum before writing to media, and, optionally, Continue on

checksum error. For information about checksums, see Detecting and
Coping with Media Errors.

14. If you are backing up to a tape drive (as specified in the Destination section of
the General page), the Unload the tape after backup option is active. Clicking
this option activates the Rewind the tape before unloading option.

Note
The options in the Transaction log section are inactive unless you are
backing up a transaction log (as specified in the Backup type section of
the General page).

15. SQL Server 2008 Enterprise and later supports backup compression. By default,
whether a backup is compressed depends on the value of the backup-
compression default server configuration option. However, regardless of the
current server-level default, you can compress a backup by checking Compress
backup, and you can prevent compression by checking Do not compress
backup.
To view the current backup compression default
• How to: View and Configure the backup compression default Option (SQL

Server Management Studio)

http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�

 80

Note
Alternatively, you can use the Maintenance Plan Wizard to create
differential database backups.

Using Transact-SQL

1. Execute the BACKUP DATABASE statement to create the differential database
backup, specifying:
• The name of the database to back up.
• The backup device where the full database backup is written.
• The DIFFERENTIAL clause, to specify that only the parts of the database that

have changed after the last full database backup was created are backed up.
The required syntax is:
BACKUP DATABASE database_name TO <backup_device> WITH DIFFERENTIAL

Example (Transact-SQL)
This example creates a full and a differential database backup for the MyAdvWorks
database.

-- Create a full database backup first.

BACKUP DATABASE MyAdvWorks

 TO MyAdvWorks_1

 WITH INIT;

GO

-- Time elapses.

-- Create a differential database backup, appending the backup

-- to the backup device containing the full database backup.

BACKUP DATABASE MyAdvWorks

 TO MyAdvWorks_1

 WITH DIFFERENTIAL;

GO

See Also
Differential Backups (SQL Server)
How to: Back Up a Database (SQL Server Management Studio)

To create a differential database backup

 81

How to: Back Up Database Files and Filegroups (SQL Server Management Studio)
How to: Restore a Full Differential Backup (SQL Server Management Studio)
How to: Restore a Transaction Log Backup (SQL Server Management Studio)
Maintenance Plans
Using File Backups

Restore a Differential Database Backup
This topic describes how to restore a differential database backup in SQL Server 2012 by
using SQL Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Limitations and Restrictions
Prerequisites
Security

• To restore a differential database backup, using:
SQL Server Management Studio
Transact-SQL

• Related Tasks

Before You Begin

Limitations and Restrictions

• RESTORE is not allowed in an explicit or implicit transaction.
• Backups that are created by more recent version of SQL Server cannot be restored in

earlier versions of SQL Server.
• In SQL Server 2012, you can restore a user database from a database backup that

was created by using SQL Server 2005 or a later version. However, backups of
master, model and msdb that were created by using SQL Server 2005 or SQL Server
2008 cannot be restored by SQL Server 2012.

Prerequisites

• Under the full or bulk-logged recovery model, before you can restore a database,

you must back up the active transaction log (known as the tail of the log). For more
information, see Back Up a Transaction Log.

Security

http://msdn.microsoft.com/en-us/library/5982ca65-74fe-44e3-aef9-00a65a0db169(SQL.110)�

 82

Permissions
If the database being restored does not exist, the user must have CREATE DATABASE
permissions to be able to execute RESTORE. If the database exists, RESTORE permissions
default to members of the sysadmin and dbcreator fixed server roles and the owner
(dbo) of the database (for the FROM DATABASE_SNAPSHOT option, the database always
exists).
RESTORE permissions are given to roles in which membership information is always
readily available to the server. Because fixed database role membership can be checked
only when the database is accessible and undamaged, which is not always the case when
RESTORE is executed, members of the db_owner fixed database role do not have
RESTORE permissions.

Using SQL Server Management Studio

1. After you connect to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Databases. Depending on the database, either select a user database or
expand System Databases, and then select a system database.

3. Right-click the database, point to Tasks, point to Restore, and then click
Database.

4. On the General page, use the Source section to specify the source and location
of the backup sets to restore. Select one of the following options:
• Database

Select the database to restore from the drop-down list. The list contains only
databases that have been backed up according to the msdb backup history.

Note
If the backup is taken from a different server, the destination server will
not have the backup history information for the specified database. In this
case, select Device to manually specify the file or device to restore.

• Device
Click the browse (...) button to open the Select backup devices dialog box.
In the Backup media type box, select one of the listed device types. To select
one or more devices for the Backup media box, click Add.
After you add the devices you want to the Backup media list box, click OK to
return to the General page.

To restore a differential database backup

 83

In the Source: Device: Database list box, select the name of the database
which should be restored.
Note This list is only available when Device is selected. Only databases that
have backups on the selected device will be available.

5. In the Destination section, the Database box is automatically populated with the
name of the database to be restored. To change the name of the database, enter
the new name in the Database box.

Note
To stop the restore at a specific point in time, click Timeline to access the
Backup Timeline dialog box. For help with stopping a database restore at
a specific point in time, see Restore a SQL Server Database to a Point in
Time (Full Recovery Model).

6. In the Backup sets to restore grid, select the backups through the differential
backup that you wish to restore.
For information about the columns in the Backup sets to restore grid, see SQL
Server Management Studio Tutorial.

7. On the Options page, in the Restore options panel, you can select any of the
following options, if appropriate for your situation:
• Overwrite the existing database (WITH REPLACE)
• Preserve the replication settings (WITH KEEP_REPLICATION)
• Prompt before restoring each backup
• Restrict access to the restored database (WITH RESTRICTED_USER)
For more information about these options, see Restore Database (Options Page).

8. Select an option for the Recovery state box. This box determines the state of the
database after the restore operation.
• RESTORE WITH RECOVERY is the default behavior which leaves the

database ready for use by rolling back the uncommitted transactions.
Additional transaction logs cannot be restored. Select this option if you are
restoring all of the necessary backups now.

• RESTORE WITH NORECOVERY which leaves the database non-operational,
and does not roll back the uncommitted transactions. Additional transaction
logs can be restored. The database cannot be used until it is recovered.

• RESTORE WITH STANDBY which leaves the database in read-only mode. It
undoes uncommitted transactions, but saves the undo actions in a standby
file so that recovery effects can be reverted.

For descriptions of the options, see Restore Database (Options Page).
9. Restore operations will fail if there are active connections to the database. Check

the Close existing connections option to ensure that all active connections

 84

between Management Studio and the database are closed.
10. Select Prompt before restoring each backup if you wish to be prompted

between each restore operation. This is not usually necessary unless the database
is large and you wish to monitor the status of the restore operation.

11. Optionally, use the Files page to restore the database to a new location. For help
with moving a database, see Restore a Database to a New Location (SQL Server
Management Studio).

12. Click .

Using Transact-SQL

1. Execute the RESTORE DATABASE statement, specifying the NORECOVERY clause,
to restore the full database backup that comes before the differential database
backup. For more information, see How to: Restore a Full Backup.

2. Execute the RESTORE DATABASE statement to restore the differential database
backup, specifying:
• The name of the database to which the differential database backup is

applied.
• The backup device where the differential database backup is restored from.
• The NORECOVERY clause if you have transaction log backups to apply after

the differential database backup is restored. Otherwise, specify the RECOVERY
clause.

3. With the full or bulk-logged recovery model, restoring a differential database
backup restores the database to the point at which the differential database
backup was completed. To recover to the point of failure, you must apply all
transaction log backups created after the last differential database backup was
created. For more information, see Apply Transaction Log Backups (SQL Server).

Examples (Transact-SQL)

A. Restoring a differential database backup
This example restores a database and differential database backup of the MyAdvWorks
database.

-- Assume the database is lost, and restore full database,

-- specifying the original full database backup and NORECOVERY,

-- which allows subsequent restore operations to proceed.

RESTORE DATABASE MyAdvWorks

To restore a differential database backup

 85

 FROM MyAdvWorks_1

 WITH NORECOVERY;

GO

-- Now restore the differential database backup, the second backup on

-- the MyAdvWorks_1 backup device.

RESTORE DATABASE MyAdvWorks

 FROM MyAdvWorks_1

 WITH FILE = 2,

 RECOVERY;

GO

B. Restoring a database, differential database, and transaction log backup
This example restores a database, differential database, and transaction log backup of
the MyAdvWorks database.

-- Assume the database is lost at this point. Now restore the full

-- database. Specify the original full database backup and NORECOVERY.

-- NORECOVERY allows subsequent restore operations to proceed.

RESTORE DATABASE MyAdvWorks

 FROM MyAdvWorks_1

 WITH NORECOVERY;

GO

-- Now restore the differential database backup, the second backup on

-- the MyAdvWorks_1 backup device.

RESTORE DATABASE MyAdvWorks

 FROM MyAdvWorks_1

 WITH FILE = 2,

 NORECOVERY;

GO

-- Now restore each transaction log backup created after

-- the differential database backup.

RESTORE LOG MyAdvWorks

 FROM MyAdvWorks_log1

 WITH NORECOVERY;

GO

 86

RESTORE LOG MyAdvWorks

 FROM MyAdvWorks_log2

 WITH RECOVERY;

GO

Related Tasks
• Create a Differential Database Backup (SQL Server)
• Restore a Transaction Log Backup (SQL Server)

See Also
Differential Backups (SQL Server)
RESTORE

Copy-Only Backups
A copy-only backup is a SQL Server backup that is independent of the sequence of
conventional SQL Server backups. Usually, taking a backup changes the database and
affects how later backups are restored. However, occasionally, it is useful to take a
backup for a special purpose without affecting the overall backup and restore
procedures for the database. copy-only backups serve this purpose. The transaction log
is never truncated after a copy-only backup.
The types of copy-only backups are as follows:
• Copy-only full backups (all recovery models)

A copy-only full backup cannot serve as a differential base or differential backup and
does not affect the differential base.

• Copy-only log backups (full recovery model and bulk-logged recovery model only)
A copy-only log backup preserves the existing log archive point and, therefore, does
not affect the sequencing of regular log backups. A copy-only log backup can
sometimes be useful for performing an online restore. For an example of this,
see Example: Online Restore of a Read-Write File (Full Recovery Model).

Typically, copy-only log backups are unnecessary. Instead, you can create a
regular log backup (using WITH NORECOVERY), and use that backup together
with all other previous log backups that are required for the restore sequence.

Restoring a copy-only full backup is the same as restoring any full backup.

Important

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 87

Related Tasks
To create a copy-only backup (Transact-SQL)
• How to: Back Up a Database (SQL Server Management Studio) (Copy Only Backup

option)
• How to: Back Up a Transaction Log (SQL Server Management Studio) (Copy Only

Backup option)
• BACKUP (Transact-SQL) (COPY_ONLY option)
To view copy-only backups
• backupset (Transact-SQL) (is_copy_only column)

See Also
BACKUP (Transact-SQL)
RESTORE (Transact-SQL)
Backup Overview (SQL Server)
Recovery Models
Copying Databases with Backup and Restore
Restore and Recovery Overview (SQL Server)

Transaction Log Backups
This topic is relevant only for SQL Server databases that are using the full or bulk-logged
recovery models. This topic discusses backing up the transaction log of a SQL Server
database.
Minimally, you must have created at least one full backup before you can create any log
backups. After that, the transaction log can be backed up at any time unless the log is
already being backed up. We recommend that you take log backups frequently, both to
minimize work loss exposure and to truncate the transaction log. Typically, a database
administrator creates a full database backup occasionally, such as weekly, and,
optionally, creates a series of differential database backup at a shorter interval, such as
daily. Independently of the database backups, the database administrator backs up the
transaction log at frequent intervals, such as every 10 minutes. For a given type of
backup, the optimal interval depends on factors such as the importance of the data, the
size of the database, and the workload of the server.
In this Topic:
• How a Sequence of Log Backups Works
• Recommendations

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/b93e9701-72a0-408e-958c-dc196872c040(SQL.110)�

 88

• Related Tasks
• Related Content

How a Sequence of Log Backups Works
The sequence of transaction log backups log chain is independent of data backups. For
example, assume the following sequence of events.

Time Event

8:00 A.M. Back up database.

Noon Back up transaction log.

4:00 P.M. Back up transaction log.

6:00 P.M. Back up database.

8:00 P.M. Back up transaction log.

The transaction log backup created at 8:00 P.M. contains transaction log records from
4:00 P.M. through 8:00 P.M., spanning the time when the full database backup was
created at 6:00 P.M. The sequence of transaction log backups is continuous from the
initial full database backup created at 8:00 A.M. to the last transaction log backup
created at 8:00 P.M. For information about how to apply these log backups, see the
example in Applying Transaction Log Backups.

Recommendations
• If a transaction log is damaged, work that is performed since the most recent valid

backup is lost. Therefore we strongly recommend that you put your log files on fault-
tolerant storage.

• If a database is damaged or you are about to restore the database, we recommend
that you create a tail-log backup to enable you to restore the database to the current
point in time.

• By default, every successful backup operation adds an entry in the SQL Server error
log and in the system event log. If back up the log very frequently, these success
messages accumulate quickly, resulting in huge error logs that can make finding
other messages difficult. In such cases you can suppress these log entries by using
trace flag 3226 if none of your scripts depend on those entries. For more information,
see Trace Flags (Transact-SQL).

http://msdn.microsoft.com/en-us/library/b971b540-1ac2-435b-b191-24399eb88265(SQL.110)�

 89

Related Tasks
To create a transaction log backup
• How to: Back Up a Transaction Log (SQL Server Management Studio)
•

 M:Microsoft.SqlServer.Management.Smo.Backup.SqlBackup(Microsoft.SqlServer.M
anagement.Smo.Server) (SMO)

To schedule backup jobs, see Use the Maintenance Plan Wizard.

Related Content
None.

See Also
Transaction Logs (SQL Server)
Back Up and Restore of SQL Server Databases
Tail-Log Backups (SQL Server)
Apply Transaction Log Backups (SQL Server)

Back Up a Transaction Log
This topic describes how to back up a transaction log in SQL Server 2012 by using SQL
Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Limitations and Restrictions
Recommendations
Security

• To back up a transaction log, using:
SQL Server Management Studio
Transact-SQL

Alternatively, you can use the Maintenance Plan Wizard to create backups.

Before You Begin

Limitations and Restrictions

Note

http://msdn.microsoft.com/en-us/library/db65c726-9892-480c-873b-3af29afcee44(SQL.110)�
http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�
http://msdn.microsoft.com/en-us/library/db65c726-9892-480c-873b-3af29afcee44(SQL.110)�

 90

• The BACKUP statement is not allowed in an explicit or implicit transaction.

Recommendations

• If a database uses either the full or bulk-logged recovery model, you must back up

the transaction log regularly enough to protect your data and to keep the transaction
log from filling. This truncates the log and supports restoring the database to a
specific point in time.

• By default, every successful backup operation adds an entry in the SQL Server error
log and in the system event log. If back up the log very frequently, these success
messages accumulate quickly, resulting in huge error logs that can make finding
other messages difficult. In such cases you can suppress these log entries by using
trace flag 3226 if none of your scripts depend on those entries. For more information,
see Trace Flags (Transact-SQL).

Security

Permissions
BACKUP DATABASE and BACKUP LOG permissions default to members of the sysadmin
fixed server role and the db_owner and db_backupoperator fixed database roles.
Ownership and permission problems on the backup device's physical file can interfere
with a backup operation. SQL Server must be able to read and write to the device; the
account under which the SQL Server service runs must have write permissions.
However, sp_addumpdevice, which adds an entry for a backup device in the system
tables, does not check file access permissions. Such problems on the backup device's
physical file may not appear until the physical resource is accessed when the backup or
restore is attempted.

Using SQL Server Management Studio

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Databases, and, depending on the database, either select a user
database or expand System Databases and select a system database.

3. Right-click the database, point to Tasks, and then click Back Up. The Back Up
Database dialog box appears.

4. In the Database list box, verify the database name. You can optionally select a

To back up a transaction log

http://msdn.microsoft.com/en-us/library/b971b540-1ac2-435b-b191-24399eb88265(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�

 91

different database from the list.
5. Verify that the recovery model is either FULL or BULK_LOGGED.
6. In the Backup type list box, select Transaction Log.
7. Optionally, you can select Copy Only Backup to create a copy-only backup. A

copy-only backup is a SQL Server backup that is independent of the sequence of
conventional SQL Server backups. For more information, see Copy-Only Backups.

Note
When the Differential option is selected, you cannot create a copy-only
backup.

8. Either accept the default backup set name suggested in the Name text box, or
enter a different name for the backup set.

9. Optionally, in the Description text box, enter a description of the backup set.
10. Specify when the backup set will expire:

• To have the backup set expire after a specific number of days, click After (the
default option), and enter the number of days after set creation that the set
will expire. This value can be from 0 to 99999 days; a value of 0 days means
that the backup set will never expire.
The default value is set in the Default backup media retention (in days)
option of the Server Properties dialog box (Database Settings page). To
access this dialog box, right-click the server name in Object Explorer and
select properties; then select the Database Settings page.

• To have the backup set expire on a specific date, click On, and enter the date
on which the set will expire.

11. Choose the type of backup destination by clicking Disk or Tape. To select the
paths of up to 64 disk or tape drives containing a single media set, click Add. The
selected paths are displayed in the Backup to list box.
To remove a backup destination, select it and click Remove. To view the contents
of a backup destination, select it and click Contents.

12. To view or select the advanced options, click Options in the Select a page pane.
13. Select an Overwrite Media option, by clicking one of the following:

• Back up to the existing media set
For this option, click either Append to the existing backup set or Overwrite
all existing backup sets. For more information, see Media Sets, Media
Families, and Backup Sets (SQL Server).
Optionally, select Check media set name and backup set expiration to
cause the backup operation to verify the date and time at which the media
set and backup set expire.
Optionally, enter a name in the Media set name text box. If no name is

 92

specified, a media set with a blank name is created. If you specify a media set
name, the media (tape or disk) is checked to see whether the actual name
matches the name you enter here.
If you leave the media name blank and check the box to check it against the
media, success will equal the media name on the media also being blank.

• Back up to a new media set, and erase all existing backup sets
For this option, enter a name in the New media set name text box, and,
optionally, describe the media set in the New media set description text
box. For more information, see Media Sets, Media Families, and Backup Sets
(SQL Server).

14. In the Reliability section, optionally, check:
• Verify backup when finished.
• Perform checksum before writing to media, and, optionally, Continue on

checksum error. For information on checksums, see Detecting and Coping
with Media Errors.

15. In the Transaction log section:
• For routine log backups, keep the default selection, Truncate the transaction

log by removing inactive entries.
• To back up the tail of the log (that is, the active log), check Back up the tail

of the log, and leave database in the restoring state.
A tail-log backup is taken after a failure to back up the tail of the log in order
to prevent work loss. Back up the active log (a tail-log backup) both after a
failure, before beginning to restore the database, or when failing over to a
secondary database. Selecting this option is equivalent to specifying the
NORECOVERY option in the BACKUP LOG statement of Transact-SQL. For
more information about tail-log backups, see Overview of Tail-Log Backups.

16. If you are backing up to a tape drive (as specified in the Destination section of
the General page), the Unload the tape after backup option is active. Clicking
this option activates the Rewind the tape before unloading option.

17. SQL Server 2008 Enterprise and later supports backup compression. By default,
whether a backup is compressed depends on the value of the backup-
compression default server configuration option. However, regardless of the
current server-level default, you can compress a backup by checking Compress
backup, and you can prevent compression by checking Do not compress
backup.
To view the current backup compression default
• View and Configure the backup compression default Option (SQL Server

Using Transact-SQL

http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�

 93

1. Execute the BACKUP LOG statement to back up the transaction log, specifying
the following:
• The name of the database to which the transaction log that you want to back

up belongs.
• The backup device where the transaction log backup is written.

Example (Transact-SQL)

This example uses the , which uses the simple recovery model. To permit log
backups, before taking a full database backup, the database was set to use the
full recovery model. For more information, see View or Change the Recovery
Model of a Database (SQL Server).

This example creates a transaction log backup for the database to the previously
created named backup device, MyAdvWorks_FullRM_log1.
BACKUP LOG AdventureWorks2012

 TO MyAdvWorks_FullRM_log1;

GO

Related Tasks
• Restore a Transaction Log Backup (SQL Server)
• Restore a SQL Server Database to a Point in Time (Full Recovery Model)
• Troubleshoot a Full Transaction Log (Error 9002)

See Also
BACKUP
Working with Transaction Log Backups
Maintenance Plans
Using File Backups

Tail-Log Backups
This topic is relevant only for backup and restore of SQL Server databases that are using
the full or bulk-logged recovery models.

To back up a transaction log

Important

http://msdn.microsoft.com/en-us/library/0f23aa84-475d-40df-bed3-c923f8c1b520(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/5982ca65-74fe-44e3-aef9-00a65a0db169(SQL.110)�

 94

A tail-log backup captures any log records that have not yet been backed up (the tail of
the log) to prevent work loss and to keep the log chain intact. Before you can recover a
SQL Server database to its latest point in time, you must back up the tail of its
transaction log. The tail-log backup will be the last backup of interest in the recovery
plan for the database.

Not all restore scenarios require a tail-log backup. You do not need a tail-log
backup if the recovery point is contained in an earlier log backup. Also, a tail-log
backup is unnecessary if you are moving or replacing (overwriting) a database
and do not need to restore it to a point of time after its most recent backup.

In this Topic:
• Scenarios That Require a Tail-Log Backup
• Tail-Log Backups That Have Incomplete Backup Metadata
• Related Tasks
• Related Content

Scenarios That Require a Tail-Log Backup
 We recommend that you take a tail-log backup in the following scenarios:
• If the database is online and you plan to perform a restore operation on the

database, begin by backing up the tail of the log. To avoid an error for an online
database, you must use the … WITH NORECOVERY option of the BACKUP Transact-
SQL statement.

• If a database is offline and fails to start and you need to restore the database, first
back up the tail of the log. Because no transactions can occur at this time, using the
WITH NORECOVERY is optional.

• If a database is damaged, try to take a tail-log backup by using the WITH
CONTINUE_AFTER_ERROR option of the BACKUP statement.
On a damaged database backing up the tail of the log can succeed only if the log
files are undamaged, the database is in a state that supports tail-log backups, and
the database does not contain any bulk-logged changes. If a tail-log backup cannot
be created, any transactions committed after the latest log backup are lost.

The following table summarizes the BACKUP NORECOVERY and
CONTINUE_AFTER_ERROR options.

BACKUP LOG option Comments

NORECOVERY Use NORECOVERY whenever you intend to
continue with a restore operation on the
database. NORECOVERY takes the

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 95

BACKUP LOG option Comments

database into the restoring state. This
guarantees that the database does not
change after the tail-log backup.
The log is truncated unless the
NO_TRUNCATE option or COPY_ONLY
option is also specified.

Important
We recommend that you avoid
using NO_TRUNCATE, except when
the database is damaged.

CONTINUE_AFTER_ERROR Use CONTINUE_AFTER_ERROR only if you
are backing up the tail of a damaged
database.

Note
When you use back up the tail of
the log on a damaged database,
some of the metadata ordinarily
captured in log backups might be
unavailable. For more information,
see Tail-Log Backups That Have
Incomplete Backup Metadata, later
in this topic.

Tail-Log Backups That Have Incomplete Backup Metadata
Tail log backups capture the tail of the log even if the database is offline, damaged, or
missing data files. This might cause incomplete metadata from the restore information
commands and msdb. However, only the metadata is incomplete; the captured log is
complete and usable.
If a tail-log backup has incomplete metadata, in the backupset table,
has_incomplete_metadata is set to 1. Also, in the output of RESTORE HEADERONLY,
HasIncompleteMetadata is set to 1.
If the metadata in a tail-log backup is incomplete, the backupfilegroup table will be
missing most of the information about filegroups at the time of the tail-log backup.
Most of the backupfilegroup table columns are NULL; the only meaningful columns are
as follows:
• backup_set_id

http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/d26e8fbe-f5c5-4e10-b2bd-0d8e16ea21f9(SQL.110)�

 96

• filegroup_id
• type
• type_desc
• is_readonly

Related Tasks
To create a tail-log backup, see Back Up the Tail of the Transaction Log (SQL Server
Management Studio).
To restore a transaction log backup, see Restore a Transaction Log Backup (SQL Server
Management Studio).

Related Content
None.

See Also
BACKUP (Transact-SQL)
RESTORE (Transact-SQL)
Back Up and Restore of SQL Server Databases
Copy-Only Backups
Create Transaction Log Backups (SQL Server)
Apply Transaction Log Backups

Back Up the Transaction Log When the Database Is
Damaged
This topic describes how to back up a transaction log when the database is damaged in
SQL Server 2012 by using SQL Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Limitations and Restrictions
Recommendations
Security

• To back up the transaction log when the database is damaged, using:
SQL Server Management Studio
Transact-SQL

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 97

Before You Begin

Limitations and Restrictions
• The BACKUP statement is not allowed in an explicit or implicit transaction.

Recommendations
• For a database that uses either the full or bulk-logged recovery model, you generally

need to back up the tail of the log before beginning to restore the database. You
also should back up the tail of the log of the primary database before failing over a
log shipping configuration. Restoring the tail-log backup as the final log backup
before recovering the database avoids work loss after a failure. For more information
about tail-log backups, see Overview of Tail-Log Backups.

Security

Permissions
BACKUP DATABASE and BACKUP LOG permissions default to members of the sysadmin
fixed server role and the db_owner and db_backupoperator fixed database roles.
Ownership and permission problems on the backup device's physical file can interfere
with a backup operation. SQL Server must be able to read and write to the device; the
account under which the SQL Server service runs must have write permissions.
However, sp_addumpdevice, which adds an entry for a backup device in the system
tables, does not check file access permissions. Such problems on the backup device's
physical file may not appear until the physical resource is accessed when the backup or
restore is attempted.

Using SQL Server Management Studio

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Databases, and, depending on the database, either select a user
database or expand System Databases and select a system database.

3. Right-click the database, point to Tasks, and then click Back Up. The Back Up
Database dialog box appears.

4. In the Database list box, verify the database name. You can optionally select a
different database from the list.

5. Verify that the recovery model is either FULL or BULK_LOGGED.

To back up the tail of the transaction log

http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�

 98

6. In the Backup type list box, select Transaction Log.
7. Leave Copy Only Backup deselected.
8. In the Backup set area, either accept the default backup set name suggested in

the Name text box, or enter a different name for the backup set.
9. In the Description text box, enter a description for the tail-log backup.
10. Specify when the backup set will expire:

• To have the backup set expire after a specific number of days, click After (the
default option), and enter the number of days after set creation that the set
will expire. This value can be from 0 to 99999 days; a value of 0 days means
that the backup set will never expire.
The default value is set in the Default backup media retention (in days)
option of the Server Properties dialog box (Database Settings page). To
access this dialog box, right-click the server name in Object Explorer and
select properties; then select the Database Settings page.

• To have the backup set expire on a specific date, click On, and enter the date
on which the set will expire.

11. Choose the type of backup destination by clicking Disk or Tape. To select the
paths of up to 64 disk or tape drives containing a single media set, click Add. The
selected paths are displayed in the Backup to list box.
To remove a backup destination, select it and click Remove. To view the contents
of a backup destination, select it and click Contents.

12. On the Options page, select an Overwrite Media option, by clicking one of the
following:
• Back up to the existing media set

For this option, click either Append to the existing backup set or Overwrite
all existing backup sets.
Optionally, select Check media set name and backup set expiration to
cause the backup operation to verify the date and time at which the media
set and backup set expire.
Optionally, enter a name in the Media set name text box. If no name is
specified, a media set with a blank name is created. If you specify a media set
name, the media (tape or disk) is checked to see whether the actual name
matches the name you enter here.
If you leave the media name blank and check the box to check it against the
media, success will equal the media name on the media also being blank.

• Back up to a new media set, and erase all existing backup sets
For this option, enter a name in the New media set name text box, and,
optionally, describe the media set in the New media set description text
box.

 99

For more information about media set options, see Media Sets, Media Families,
and Backup Sets (SQL Server).

13. In the Reliability section, optionally, check:
• Verify backup when finished.
• Perform checksum before writing to media.
• Continue on checksum error
For information on checksums, see Detecting and Coping with Media Errors.

14. In the Transaction log section, check Back up the tail of the log, and leave
database in the restoring state.
This is equivalent to specifying the following BACKUP statement:
BACKUP LOG <database_name> TO <backup_device> WITH NORECOVERY

Important
At restore time, the Restore Database dialog box displays the type of a
tail-log backup as Transaction Log (Copy Only).

15. If you are backing up to a tape drive (as specified in the Destination section of
the General page), the Unload the tape after backup option is active. Clicking
this option activates the Rewind the tape before unloading option.

16. SQL Server 2008 Enterprise and later supports backup compression. By default,
whether a backup is compressed depends on the value of the backup-
compression default server configuration option. However, regardless of the
current server-level default, you can compress a backup by checking Compress
backup, and you can prevent compression by checking Do not compress
backup.
To view the current backup compression default
• How to: View and Configure the backup compression default Option (SQL

Server Management Studio)

Using Transact-SQL

1. Execute the BACKUP LOG statement to back up the currently active transaction
log, specifying:
• The name of the database to which the transaction log to back up belongs.
• The backup device where the transaction log backup will be written.
• The NO_TRUNCATE clause.

This clause allows the active part of the transaction log to be backed up even
if the database is inaccessible, provided that the transaction log file is

To create a backup of the currently active transaction log

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�
http://msdn.microsoft.com/en-us/library/23029395-3e93-4c29-b7d6-e5a47a3526ff(SQL.110)�

 100

accessible and undamaged.

Example (Transact-SQL)

This example uses the , which uses the simple recovery model. To permit log
backups, before taking a full database backup, the database was set to use the
full recovery model. For more information, see View or Change the Recovery
Model of a Database (SQL Server).

This example backs up the currently active transaction log when a database is damaged
and inaccessible, if the transaction log is undamaged and accessible.

BACKUP LOG AdventureWorks2012

 TO MyAdvWorks_FullRM_log1

 WITH NO_TRUNCATE;

GO

See Also
How to: Restore a Transaction Log Backup (SQL Server Management Studio)
Restore a SQL Server Database to a Point in Time (Full Recovery Model)
Back Up Database (Options Page)
Back Up Database (General Page)
Apply Transaction Log Backups (SQL Server)
BACKUP (Transact-SQL)
Performing File Restores (Simple Recovery Model)
Performing File Restores (Full Recovery Model)

Backup Devices
During a backup operation on a SQL Server database, the backed up data (the backup) is
written to a physical backup device. This physical backup device is initialized when the
first backup in a media set is written to it. The backups on a set of one or more backup
devices compose a single media set.
In this Topic:
• Terms and Definitions
• Using Disk Backup Devices
• Using Tape Devices
• Using a Logical Backup Device

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 101

• Mirrored Backup Media Sets
• Archiving SQL Server Backups
• Related Tasks

Terms and Definitions
backup disk

A hard disk or other disk storage media that contains one or more backup files. A
backup file is a regular operating system file.

media set

An ordered collection of backup media, tapes or disk files, that uses a fixed type and
number of backup devices. For more information about media sets, see Media Sets,
Media Families, and Backup Sets.

physical backup device

Either a tape drive or a disk file that is provided by the operating system. A backup can
be written to from 1 to 64 backup devices. If a backup requires multiple backup devices,
the devices all must correspond to a single type of device (disk or tape).

Using Disk Backup Devices
In This Section:
• Specifying a Backup File by Using Its Physical Name (Transact-SQL)
• Specifying the Path of a Disk Backup File
• Backing Up to a File on a Network Share
If a disk file fills while a backup operation is appending a backup to the media set, the
backup operation fails. The maximum size of a backup file is determined by the free disk
space available on the disk device; therefore, the appropriate size for a backup disk
device depends on the size of your backups.
A disk backup device could be a simple disk device, such as an ATA drive. Alternatively,
you could use a hot-swappable disk drive that would let you transparently replace a full
disk on the drive with an empty disk. A backup disk can be a local disk on the server or a
remote disk that is a shared network resource. For information about how to use a
remote disk, see Backing Up to a File on a Network Share, later in this topic.
SQL Server management tools are very flexible at handling disk backup devices because
they automatically generate a time-stamped name on the disk file.

We recommend that a backup disk be a different disk than the database data and
log disks. This is necessary to make sure that you can access the backups if the
data or log disk fails.

Important

 102

Specifying a Backup File by Using Its Physical Name (Transact-SQL)
The basic BACKUP syntax for specifying a backup file by using its physical device name is:
BACKUP DATABASE database_name
 TO DISK = { 'physical_backup_device_name' | @physical_backup_device_name_var }
For example:

BACKUP DATABASE AdventureWorks2012

 TO DISK = 'Z:\SQLServerBackups\AdventureWorks2012.bak';

GO

To specify a physical disk device in a RESTORE statement, the basic syntax is:
RESTORE { DATABASE | LOG } database_name
 FROM DISK = { 'physical_backup_device_name' | @physical_backup_device_name_var }
For example,

RESTORE DATABASE AdventureWorks2012

 FROM DISK = 'Z:\SQLServerBackups\AdventureWorks2012.bak';

Specifying the Path of a Disk Backup File
When you are specifying a backup file, you should enter its full path and file name. If you
specify only the file name or a relative path when you are backing up to a file, the
backup file is put in the default backup directory. The default backup directory is
C:\Program Files\Microsoft SQL Server\MSSQL.n\MSSQL\Backup, where n is the number
of the server instance. Therefore, for the default server instance, the default backup
directory is: C:\Program Files\Microsoft SQL
Server\MSSQL11.MSSQLSERVER\MSSQL\Backup.
To avoid ambiguity, especially in scripts, we recommend that you explicitly specify the
path of the backup directory in every DISK clause. However, this is less important when
you are using Query Editor. In that case, if you are sure that the backup file resides in the
default backup directory, you can omit the path from a DISK clause. For example, the
following BACKUP statement backs up the database to the default backup directory.

BACKUP DATABASE AdventureWorks2012

 TO DISK = ’AdventureWorks2012.bak’;

GO

The default location is stored in the BackupDirectory registry key under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL
Server\MSSQL.n\MSSQLServer.

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 103

Backing Up to a File on a Network Share
For SQL Server to access a remote disk file, the SQL Server service account must have
access to the network share. This includes having the permissions needed for backup
operations to write to the network share and for restore operations to read from it. The
availability of network drives and permissions depends on the context is which SQL
Server service is running:
• To back up to a network drive when SQL Server is running in a domain user account,

the shared drive must be mapped as a network drive in the session where SQL Server
is running. If you start Sqlservr.exe from command line, SQL Server sees any network
drives you have mapped in your login session.

• When you run Sqlservr.exe as a service, SQL Server runs in a separate session that has
no relation to your login session. The session in which a service runs can have its own
mapped drives, although it usually does not.

• You can connect with the network service account by using the computer account
instead of a domain user. To enable backups from specific computers to a shared
drive, grant access to the computer accounts. As long as the Sqlservr.exe process that
is writing the backup has access, it is irrelevant whether the user sending the BACKUP
command has access.

Backing up data over a network can be subject to network errors; therefore,
we recommend that when you are using a remote disk you verify the backup
operation after it finishes. For more information, see RESTORE VERIFYONLY
(Transact-SQL).

Specifying a Universal Naming Convention (UNC) Name
To specify a network share in a backup or restore command, you should use the fully
qualified universal naming convention (UNC) name of the file for the backup device. A
UNC name has the form \\Systemname\ShareName\Path\FileName.
For example:

BACKUP DATABASE AdventureWorks2012

 TO DISK =

'\\BackupSystem\BackupDisk1\AW_backups\AdventureWorksData.Bak';

GO

Using Tape Devices

Important

Note

http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�
http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�

 104

Support for tape backup devices will be removed in a future version of SQL
Server. Avoid using this feature in new development work, and plan to modify
applications that currently use this feature.

In This Section:
• Specifying a Backup Tape by Using Its Physical Name (Transact-SQL)
• Tape-Specific BACKUP and RESTORE Options (Transact-SQL)
• Managing Open Tapes
Backing up SQL Server data to tape requires that the tape drive or drives be supported
by the Microsoft Windows operating system. Additionally, for the given tape drive, we
recommend that you use only tapes recommended by the drive manufacturer. For more
information about how to install a tape drive, see the documentation for the Windows
operating system.
When a tape drive is used, a backup operation may fill one tape and continue onto
another tape. Each tape contains a media header. The first media used is called the initial
tape. Each successive tape is known as a continuation tape and has a media sequence
number that is one higher than the previous tape. For example, a media set associated
with four tape devices contains at least four initial tapes (and, if the database does not
fit, four series of continuation tapes). When appending a backup set, you must mount
the last tape in the series. If the last tape is not mounted, the Database Engine scans
forward to the end of the mounted tape and then requires that you change the tape. At
that point, mount the last tape.
Tape backup devices are used like disk devices, with the following exceptions:
• The tape device must be connected physically to the computer that is running an

instance of SQL Server. Backing up to remote tape devices is not supported.
• If a tape backup device is filled during the backup operation, but more data still must

be written, SQL Server prompts for a new tape and continues the backup operation
after a new tape is loaded.

Specifying a Backup Tape by Using Its Physical Name (Transact-SQL)
The basic BACKUP syntax for specifying a backup tape using the physical device name of
the tape drive is:
BACKUP { DATABASE | LOG } database_name
 TO TAPE = { 'physical_backup_device_name' | @physical_backup_device_name_var }
For example:

BACKUP LOG AdventureWorks2012

 TO TAPE = '\\.\tape0';

GO

To specify a physical tape device in a RESTORE statement, the basic syntax is:
RESTORE { DATABASE | LOG } database_name

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 105

 FROM TAPE = { 'physical_backup_device_name' | @physical_backup_device_name_var }

Tape-Specific BACKUP and RESTORE Options (Transact-SQL)
To facilitate tape management, the BACKUP statement provides the following tape-
specific options:
• { NOUNLOAD | UNLOAD }

You can control whether a backup tape is unloaded automatically from the tape drive
after a backup or restore operation. UNLOAD/NOUNLOAD is a session setting that
persists for the life of the session or until it is reset by specifying the alternative.

• { REWIND

For more information about the BACKUP syntax and arguments, see

 | NOREWIND }
You can control whether SQL Server keeps the tape remains open after the backup or
restore operation or releases and rewinds the tape after it fills. The default behavior is
to rewind the tape (REWIND).

BACKUP
(Transact-SQL). For more information about the RESTORE syntax and arguments,
see RESTORE (Transact-SQL) and RESTORE Arguments (Transact-SQL),
respectively.

Managing Open Tapes
To view a list of open tape devices and the status of mount requests, query
the sys.dm_io_backup_tapes dynamic management view. This view shows all the open
tapes. These include in-use tapes that are temporarily idle while they wait for the next
BACKUP or RESTORE operation.
If a tape has been accidentally left open, the fastest way to release the tape is by using
the following command: RESTORE REWINDONLY FROM TAPE = backup_device_name.
For more information, see RESTORE REWINDONLY.

Using a Logical Backup Device
A logical backup device is an optional, user-defined name that points to a specific
physical backup device (a disk file or tape drive). A logical backup device lets you use
indirection when referencing the corresponding physical backup device.
Defining a logical backup device involves assigning a logical name to a physical device.
For example, a logical device, AdventureWorksBackups, could be defined to point to the
Z:\SQLServerBackups\AdventureWorks2012.bak file or the \\.\tape0 tape drive. Backup
and restore commands can then specify AdventureWorksBackups as the backup device,
instead of DISK = 'Z:\SQLServerBackups\AdventureWorks2012.bak' or TAPE = '\\.\tape0'.
The logical device name must be unique among all the logical backup devices on the
server instance. To view the existing logical device names, query the sys.backup_devices

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/2e27489e-cf69-4a89-9036-77723ac3de66(SQL.110)�
http://msdn.microsoft.com/en-us/library/7f825b40-2264-4608-9809-590d0f09d882(SQL.110)�
http://msdn.microsoft.com/en-us/library/457edaa4-aca1-4bd3-bf8d-734490b80fcd(SQL.110)�

 106

catalog view. This view displays the name of each logical backup device and describes
the type and physical file name or path of the corresponding physical backup device.
After a logical backup device is defined, in a BACKUP or RESTORE command, you can
specify the logical backup device instead of the physical name of the device. For
example, the following statement backs up the AdventureWorks2012 database to the
AdventureWorksBackups logical backup device.

BACKUP DATABASE AdventureWorks2012

 TO AdventureWorksBackups;

GO

In a given BACKUP or RESTORE statement, the logical backup device name and
the corresponding physical backup device name are interchangeable.

One advantage of using a logical backup device is that it is simpler to use than a long
path. Using a logical backup device can help if you plan to write a series of backups to
the same path or to a tape device. Logical backup devices are especially useful for
identifying tape backup devices.
A backup script can be written to use a particular logical backup device. This lets you
switch to a new physical backup devices without updating the script. Switching involves
the following process:
1. Dropping the original logical backup device.
2. Defining a new logical backup device that uses the original logical device name but

maps to a different physical backup device. Logical backup devices are especially
useful for identifying tape backup devices.

Mirrored Backup Media Sets
Mirroring of backup media sets reduces the effect of backup-device malfunctions. These
malfunctions are especially serious because backups are the last line of defense against
data loss. As the sizes of databases grow, the probability increases that a failure of a
backup device or media will make a backup nonrestorable. Mirroring backup media
increases the reliability of backups by providing redundancy for the physical backup
device. For more information, see Using Mirrored Backup Media Sets.

Mirrored backup media sets are supported only in SQL Server 2005 Enterprise
Edition and later versions.

Note

Note

 107

Archiving SQL Server Backups
We recommend that you use a file system backup utility to archive the disk backups and
that you store the archives off-site. Using disk has the advantage that you use the
network to write the archived backups onto an off-site disk. Using tape has the
advantage of letting you accumulate a series of archived backups until you are sure that
you no longer need them.
A common archiving approach is to write SQL Server backups onto a local backup disk,
archive them to tape, and then store the tapes off-site.

Related Tasks
To specify a disk device (SQL Server Management Studio)
• Specify a Disk or Tape as a Backup Destination (SQL Server Management Studio)
To specify a tape device (SQL Server Management Studio)
• Specify a Disk or Tape as a Backup Destination (SQL Server Management Studio)
To define a logical backup device
• sp_addumpDevice
• Define a Logical Backup Device for a Disk File (SQL Server Management Studio)
• Define a Logical Backup Device for a Tape Drive (SQL Server Management Studio)
• T:Microsoft.SqlServer.Management.Smo.BackupDevice (SMO)
To use a logical backup device
• Specify a Disk or Tape as a Backup Destination (SQL Server Management Studio)
• Restore a Backup From a Device (SQL Server Management Studio)
• BACKUP (Transact-SQL)
• RESTORE (Transact-SQL)
To View Information About Backup Devices
• View Information About Backups
• View the Properties and Contents of a Logical Backup Device (SQL Server

Management Studio)
• View the Contents of a Backup Tape or File (SQL Server Management Studio)
To delete a logical backup device
• sp_dropdevice
• Delete a Backup Device (SQL Server Management Studio)

See Also
SQL Server, Backup Device Object

http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/c8b07189-7c35-414b-acc1-45bd6e7e17c3(SQL.110)�
http://msdn.microsoft.com/en-us/library/52e7febf-d5e0-4674-945b-aacc40a9ad6e(SQL.110)�

 108

BACKUP (Transact-SQL)
Maintenance Plans
Media Sets, Media Families, and Backup Sets
RESTORE (Transact-SQL)
RESTORE LABELONLY (Transact-SQL)
sys.backup_devices (Transact-SQL)
sys.dm_io_backup_tapes
Mirrored Backup Media Sets

Define a Logical Backup Device for a Disk File
This topic describes how to define a logical backup device for a disk file in SQL Server
2012 by using SQL Server Management Studio or Transact-SQL. A logical device is a
user-defined name that points to a specific physical backup device (a disk file or tape
drive). The initialization of the physical device occurs later, when a backup is written to
the backup device.
In This Topic
• Before you begin:

Limitations and Restrictions
Recommendations
Security

• To define a logical backup device for a disk file, using:
SQL Server Management Studio
Transact-SQL

Before You Begin

Limitations and Restrictions

• The logical device name must be unique among all the logical backup devices on the

server instance. To view the existing logical device names, query
the sys.backup_devices catalog view.

Recommendations

• We recommend that a backup disk be a different disk than the database data and

log disks. This is necessary to make sure that you can access the backups if the data
or log disk fails.

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/5982ca65-74fe-44e3-aef9-00a65a0db169(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/7cf0641e-0d55-4ffb-9500-ecd6ede85ae5(SQL.110)�
http://msdn.microsoft.com/en-us/library/457edaa4-aca1-4bd3-bf8d-734490b80fcd(SQL.110)�
http://msdn.microsoft.com/en-us/library/2e27489e-cf69-4a89-9036-77723ac3de66(SQL.110)�
http://msdn.microsoft.com/en-us/library/457edaa4-aca1-4bd3-bf8d-734490b80fcd(SQL.110)�

 109

Security

Permissions
Requires membership in the diskadmin fixed server role.
Requires permission to write to the disk.

Using SQL Server Management Studio

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Server Objects, and right-click Backup Devices.
3. Click New Backup Device. The Backup Device dialog box opens.
4. Enter a device name.
5. For the destination, click File and specify the full path of the file.
6. To define the new device, click OK.
To back up to this new device, add it to the Back up to: field in the Back up
Database (General) dialog box. For more information, see How to: View the
Properties and Contents of a Logical Backup Device (SQL Server Management
Studio).

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. Copy and paste the following example into the query window and click Execute.

This example shows how to use sp_addumpdevice to define a logical backup
device for a disk file. The example adds the disk backup device named
mydiskdump, with the physical name c:\dump\dump1.bak.

USE AdventureWorks2012 ;

GO

EXEC sp_addumpdevice 'disk', 'mydiskdump', 'c:\dump\dump1.bak' ;

GO

To define a logical backup device for a disk file

To define a logical backup for a disk file

http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�

 110

See Also
BACKUP (Transact-SQL)
Backup Devices
sys.backup_devices (Transact-SQL)
sp_addumpdevice (Transact-SQL)
sp_dropdevice (Transact-SQL)
How to: Create a Tape Backup Device (SQL Server Management Studio)
How to: View the Properties and Content of a Backup Device (SQL Server Management
Studio)

Define a Logical Backup Device for a Tape Drive
This topic describes how to define a logical backup device for a tape drive in SQL Server
2012 by using SQL Server Management Studio or Transact-SQL. A logical device is a
user-defined name that points to a specific physical backup device (a disk file or tape
drive). The initialization of the physical device occurs later, when a backup is written to
the backup device.

Support for tape backup devices will be removed in a future version of SQL
Server. Avoid using this feature in new development work, and plan to modify
applications that currently use this feature.

In This Topic
• Before you begin:

Limitations and Restrictions
Security

• To define a logical backup device for a tape drive, using:
SQL Server Management Studio
Transact-SQL

Before You Begin

Limitations and Restrictions

• The tape drive or drives must be supported by the Microsoft Windows operating

system.
• The tape device must be connected physically to the computer that is running an

instance of SQL Server. Backing up to remote tape devices is not supported.

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/457edaa4-aca1-4bd3-bf8d-734490b80fcd(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�
http://msdn.microsoft.com/en-us/library/c8b07189-7c35-414b-acc1-45bd6e7e17c3(SQL.110)�

 111

Security

Permissions
Requires membership in the diskadmin fixed server role.
Requires permission to write to the disk.

Using SQL Server Management Studio

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Server Objects, and then right-click Backup Devices.
3. Click New Backup Device, which opens the Backup Device dialog box.
4. Enter a device name.
5. For the destination, click Tape and select a tape drive that is not already

associated with another backup device. If no such tape drives are available, the
Tape option is inactive.

6. To define the new device, click OK.
To back up to this new device, add it to the Back up to: field in the Back up
Database (General) dialog box. For more information, see SQL Server Management
Studio Tutorial.

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. Copy and paste the following example into the query window and click Execute.

This example shows how to use sp_addumpdevice to define a logical backup
device for a tape. The example adds the tape backup device named tapedump1,
with the physical name \\.\tape0.

USE AdventureWorks2012 ;

GO

EXEC sp_addumpdevice 'tape', 'tapedump1', '\\.\tape0' ;

GO

To define a logical backup device for a tape drive

To define a logical backup device for a tape drive

http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�

 112

See Also
BACKUP (Transact-SQL)
sys.backup_devices (Transact-SQL)
sp_addumpdevice (Transact-SQL)
sp_dropdevice (Transact-SQL)
Backup Devices
How to: Create a Disk Backup Device (SQL Server Management Studio)
How to: View the Properties and Content of a Backup Device (SQL Server Management
Studio)

View the Contents of a Backup Tape or File
This topic describes how to view the content of a backup tape or file in SQL Server 2012
by using SQL Server Management Studio or Transact-SQL.

Support for tape backup devices will be removed in a future version of SQL
Server. Avoid using this feature in new development work, and plan to modify
applications that currently use this feature.

In This Topic
• Before you begin:

Security
• To view the content of a backup tape or file, using:

SQL Server Management Studio
Transact-SQL

Before You Begin

Security
For information about security, see RESTORE HEADERONLY (Transact-SQL).
Permissions
In SQL Server 2008 and later versions, obtaining information about a backup set or
backup device requires CREATE DATABASE permission. For more information,
see GRANT Database Permissions (Transact-SQL).

Using SQL Server Management Studio

Note

To view the content of a backup tape or file

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/457edaa4-aca1-4bd3-bf8d-734490b80fcd(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�
http://msdn.microsoft.com/en-us/library/c8b07189-7c35-414b-acc1-45bd6e7e17c3(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/499e5ed6-945c-4791-ab45-68dec0b9c289(SQL.110)�

 113

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Databases, and, depending on the database, either select a user
database or expand System Databases and select a system database.

3. Right-click the database you want to backup, point to Tasks, and then click Back
Up. The Back Up Database dialog box appears.

4. In the Destination section of the General page, click either Disk or Tape. In the
Back up to list box, look for the disk file or tape you want.
If the disk file or tape is not displayed in the list-box, click Add. Select a file name
or tape drive. To add it to the Back up to list-box, click OK.

5. In the Back up to list-box, select the path of the disk or tape drive you want to
view, and click Contents. This opens the Device Contents dialog box.

6. The right-hand pane displays information about the media set and backup sets
on the selected tape or file.

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. Use the RESTORE HEADERONLY statement. This example returns information

about the file named AdventureWorks2012-FullBackup.bak.

USE AdventureWorks2012;

RESTORE HEADERONLY

FROM DISK = N'C:\AdventureWorks2012-FullBackup.bak' ;

GO

See Also
backupfilegroup (Transact-SQL)
backupfile (Transact-SQL)
backupset (Transact-SQL)
backupmediaset (Transact-SQL)
backupmediafamily (Transact-SQL)
Backup Devices
How to: Create a Disk Backup Device (SQL Server Management Studio)

To view the content of a backup tape or file

http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/d26e8fbe-f5c5-4e10-b2bd-0d8e16ea21f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/f1a7fc0a-f4b4-47eb-9138-eebf930dc9ac(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/d9c18a93-cab9-4db8-ae09-c6bd8145ab8f(SQL.110)�
http://msdn.microsoft.com/en-us/library/ee16de24-3d95-4b2e-a094-78df2514d18a(SQL.110)�

 114

How to: Create a Tape Backup Device (SQL Server Management Studio)

Specify a Disk or Tape As a Backup Destination
This topic describes how to specify a disk or tape as a backup destination in SQL Server
2012 by using SQL Server Management Studio or Transact-SQL.

Support for tape backup devices will be removed in a future version of SQL
Server. Avoid using this feature in new development work, and plan to modify
applications that currently use this feature.

In This Topic
• Before you begin:

Security
• To specify a disk or tape as a backup destination, using:

SQL Server Management Studio
Transact-SQL

Before You Begin

Security

Permissions
BACKUP DATABASE and BACKUP LOG permissions default to members of the sysadmin
fixed server role and the db_owner and db_backupoperator fixed database roles.
Ownership and permission problems on the backup device's physical file can interfere
with a backup operation. SQL Server must be able to read and write to the device; the
account under which the SQL Server service runs must have write permissions.
However, sp_addumpdevice, which adds an entry for a backup device in the system
tables, does not check file access permissions. Such problems on the backup device's
physical file may not appear until the physical resource is accessed when the backup or
restore is attempted.

Using SQL Server Management Studio

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

Note

To specify a disk or tape as a backup destination

http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�

 115

2. Expand Databases, and, depending on the database, either select a user
database or expand System Databases and select a system database.

3. Right-click the database, point to Tasks, and then click Back Up. The Back Up
Database dialog box appears.

4. In the Destination section of the General page, click Disk or Tape. To select the
paths of up to 64 disk or tape drives containing a single media set, click Add.
To remove a backup destination, select it and click Remove. To view the contents
of a backup destination, select it and click Contents.

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. In the BACKUP statement, specify the file or device and its physical name. This

example backs up the AdventureWorks2012 database to the disk file
Z:\SQLServerBackups\AdventureWorks2012.Bak.

USE AdventureWorks2012;

GO

BACKUP DATABASE AdventureWorks2012

TO DISK = 'Z:\SQLServerBackups\AdventureWorks2012.Bak'

GO

See Also
How to: Back Up a Transaction Log (SQL Server Management Studio)
How to: Back Up Database Files and Filegroups (SQL Server Management Studio)
How to: Create a Disk Backup Device (SQL Server Management Studio)
How to: Create a Full Differential Backup (SQL Server Management Studio)
How to: Create a Tape Backup Device (SQL Server Management Studio)

Device Contents
Use this dialog box to view the backup information. This information describes the
device, the media, the media set, and the backup set or sets.
To use SQL Server Management Studio to view the contents of a backup device
• View the Contents of a Backup Tape or File (SQL Server)

To specify a disk or tape as a backup destination

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 116

• View the Properties and Contents of a Logical Backup Device (SQL Server)
Options
Media

A disk or set of tapes on which backup information is stored.

Media sequence

Lists the media sequence number, the family sequence number, and the mirror
identifier, if any. The physical backup media are each tagged with a media sequence
number that indicates the order in which the media were used. The initial backup
medium is tagged with 1, the second (the first continuation tape) is tagged with 2, and
so forth. When the backup set is restored, the media sequence numbers ensure that the
operator that restores the backup mounts the correct media in the correct order.

Created on

Displays the media date.

Media Set

A media set is an ordered collection of backup media to which one or more backup
operations have written using a constant number of backup devices.

Name

Displays the name of the media set.

Description

Displays the description media set.

Media family count

Displays the media family count. Each media set is a collection of one or more media
families. All the output to a given single backup device (or group of mirrored backup
devices) forms a single media family. Each media set contains one media family per
separate device (or group of mirrored devices); for example, if a media set uses two
nonmirrored backup devices, the media set contains two media families.

Backup sets

Displays information about the backup set or sets contained on the media. A backup set
is the result of a successful backup operation whose content is distributed among the
media on the set of backup devices.

Header Values

Name The name of the backup set.

Type The type of backup performed: Full,
Differential or Transaction Log.

 117

Component The backed-up component: Database,
File, or <blank> (for transaction logs).

Server The name of the instance of the
Database Engine that performed the
backup operation.

Database The name of the database that was
backed up.

Position The position of the backup set in the
volume.

Date The date and time when the backup
operation finished, presented in the
regional setting of the client.

Size The size of the backup set in bytes.

User Name The name of the user who performed the
backup operation.

Expiration The date and time the backup set
expires.

See Also
Media Sets, Media Families, and Backup Sets (SQL Server)

Backup Device (Media Contents Page)
Use the Backup Device dialog box to view the backup information. This information
describes the device, the media, the media set, and the backup set or sets.
To use SQL Server Management Studio to view the contents of a backup device
• How to: View the Contents of a Backup Tape or File (SQL Server Management Studio)
• How to: View the Properties and Contents of a Logical Backup Device (SQL Server

Management Studio)
Options
View information about the individual media, media set, and backup sets.
Media

A disk or set of tapes on which backup information is stored.

Media sequence

Lists the media sequence number, the family sequence number, and the mirror
identifier, if any. The physical backup media are each tagged with a media sequence
number that indicates the order in which the media were used. The initial backup media

 118

is tagged with 1, the second (the first continuation tape) is tagged with 2, and so forth.
When the backup set is restored, the media sequence numbers ensure that the operator
restoring the backup mounts the correct media in the correct order.

Created on

Displays the creation date and time of the media set.

Media Set

A media set is an ordered collection of backup media to which one or more backup
operations have written by using a constant number of backup devices.

Name

Displays the name of the media set, if any.

Description

Displays the description of the media set, if any.

Media family count

Displays the number of families in the media set. Each media set is a collection of one or
more media families. All the output to a given single backup device (or group of
mirrored backup devices) forms a single media family. Each media set contains one
media family per separate device (or group of mirrored devices); for instance, if a media
set uses two non-mirrored backup devices, the media set contains two media families.

Backup sets

Displays information about the backup set or sets contained on the media. A backup set
is the result of a successful backup operation, whose content is distributed among the
media on the set of backup devices.

Header Values

Name The name of the backup set.

Type The type of backup performed: Full,
Differential or Transaction Log.

Component The backed-up component: Database,
File, or <blank> (for transaction logs).

Server The name of the instance of the
Database Engine that performed the
backup operation.

Database The name of the database that was
backed up.

Position The position of the backup set in the

 119

volume.

Date The date and time when the backup
operation finished, presented in the
regional setting of the client.

Size The size of the backup set in bytes.

User Name The name of the user who performed the
backup operation.

Expiration The date and time the backup set
expires.

Related Tasks
• Define a Logical Backup Device for a Disk File (SQL Server)
• Define a Logical Backup Device for a Tape Drive (SQL Server)
• Specify a Disk or Tape as a Backup Destination (SQL Server)
• Delete a Backup Device (SQL Server)
• Set the Expiration Date on a Backup (SQL Server)
• View the Contents of a Backup Tape or File (SQL Server)
• View the Data and Log Files In a Backup Set (SQL Server)
• View the Properties and Content of a Backup Device (SQL Server)
• Restore a Backup From a Device (SQL Server)

See Also
Backup Devices
Media Sets, Media Families, and Backup Sets (SQL Server)

Backup Device (General Page)
Use the General page to specify or view the general properties of a logical backup
device.
To use SQL Server Management Studio to view the contents of a backup device
• Working with Backup Media in SQL Server
• How to: View the Properties and Contents of a Logical Backup Device (SQL Server

Management Studio)
Options
Device name

View the name of an existing logical backup device or specify the name of a new logical

 120

backup device.

Tape

View or select the destination tape device in the Tape list. This option is available only if
a tape drive is attached to the computer that is running the instance of the
Microsoft SQL Server Database Engine.

Note
Tape backup devices on remote computers are not valid backup destinations.

File

View the destination file of an existing logical backup device, or specify a destination file
for a new logical backup device.

• For an existing logical backup device, the path of the backup file is displayed. The
File field is not editable, and the Browse button is unavailable.

• For a new logical backup device, you must supply the path of the backup file for
which you are defining the logical backup device. This file does not have to exist
yet.

To specify a local backup file, you can click the Browse button to the right of the
File text box. Then, in the Locate Database Files dialog box, you can navigate to
any location on any of the fixed drives on the computer running the server instance.
If the backup file does not exist yet, you must enter the filename you want to use in
the File name field of that dialog box.

Alternatively, you can edit the File field manually to override the default path, file
name, and extension. To specify a remote file as your backup destination, enter its
fully qualified universal naming convention (UNC) name. For more information,
see Backup Devices.

Important
Backing up data over a network can be subject to network errors; therefore, we recommend
that you verify the backup operation after it finishes. For more information, see
VERIFYONLY (Transact-SQL).

Remarks
The backups on a set of one or more backup devices compose a single media set. A
media set is an ordered collection of backup media, tapes or disk files, to which one or
more backup operations have written using a fixed type and number of backup devices.
For information about media sets, see Media Sets, Media Families, and Backup Sets.
The physical backup device corresponding to a logical backup device is initialized when
the first backup in the media set is written to the logical backup device. If the physical
backup device is a file that does not exist yet, it is created at that time.

http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�

 121

Related Tasks
• Define a Logical Backup Device for a Disk File (SQL Server)
• Define a Logical Backup Device for a Tape Drive (SQL Server)
• Specify a Disk or Tape as a Backup Destination (SQL Server)
• Delete a Backup Device (SQL Server)
• Set the Expiration Date on a Backup (SQL Server)
• View the Contents of a Backup Tape or File (SQL Server)
• View the Data and Log Files In a Backup Set (SQL Server)
• View the Properties and Content of a Backup Device (SQL Server)
• Restore a Backup From a Device (SQL Server)

See Also
Backup Devices
Media Sets, Media Families, and Backup Sets (SQL Server)

Restore a Backup from a Device
This topic describes how to restore a backup from a device in SQL Server 2012 by using
SQL Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Security
• To restore a backup from a device, using:

SQL Server Management Studio
Transact-SQL

Before You Begin

Security

Permissions
If the database being restored does not exist, the user must have CREATE DATABASE
permissions to be able to execute RESTORE. If the database exists, RESTORE permissions
default to members of the sysadmin and dbcreator fixed server roles and the owner
(dbo) of the database (for the FROM DATABASE_SNAPSHOT option, the database always
exists).

 122

RESTORE permissions are given to roles in which membership information is always
readily available to the server. Because fixed database role membership can be checked
only when the database is accessible and undamaged, which is not always the case when
RESTORE is executed, members of the db_owner fixed database role do not have
RESTORE permissions.

Using SQL Server Management Studio

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Databases, and, depending on the database, either select a user
database or expand System Databases and select a system database.

3. Right-click the database, point to Tasks, and then click Restore.
4. Click the type of restore operation you want (Database, Files and Filegroups, or

Transaction Log). This opens the corresponding restore dialog box.
5. On the General page, in the Restore source section, click From device.
6. Click the browse button for the From device text box, which opens the Specify

Backup dialog box.
7. In the Backup media text box, select Backup Device, and click the Add button

to open the Select Backup Device dialog box.
8. In the Backup device text box, select the device you want to use for the restore

operation.

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. In the RESTORE statement, specify a logical or physical backup device to use for

the backup operation. This example restores from a disk file that has the physical
name Z:\SQLServerBackups\AdventureWorks2012.bak.

RESTORE DATABASE AdventureWorks2012

 FROM DISK = 'Z:\SQLServerBackups\AdventureWorks2012.bak' ;

To restore a backup from a device

To restore a backup from a device

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 123

See Also
RESTORE FILELISTONLY (Transact-SQL)
RESTORE HEADERONLY (Transact-SQL)
RESTORE LABELONLY (Transact-SQL)
RESTORE VERIFYONLY (Transact-SQL)
How to: Restore a Database Backup (Transact-SQL)
How to: Restore a Database Backup (SQL Server Management Studio)
How to: Restore a Differential Database Backup (SQL Server Management Studio)
How to: Create a New Database From an Existing Database Backup (SQL Server
Management Studio)
How to: Back Up Database Files and Filegroups (SQL Server Management Studio)
How to: Back Up a Transaction Log (SQL Server Management Studio)
How to: Create a Full Differential Backup (SQL Server Management Studio)

Delete a Backup Device
This topic describes how to delete a backup device in SQL Server 2012 by using SQL
Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Security
• To delete a backup device, using:

SQL Server Management Studio
Transact-SQL

Before You Begin

Security

Permissions
Requires membership in the diskadmin fixed server role.

Using SQL Server Management Studio

To delete a backup device

http://msdn.microsoft.com/en-us/library/0b4b4d11-eb9d-4f3e-9629-6c79cec7a81a(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/7cf0641e-0d55-4ffb-9500-ecd6ede85ae5(SQL.110)�
http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�

 124

1. After connecting to the appropriate instance of the SQL Server Database Engine,
in Object Explorer, click the server name to expand the server tree.

2. Expand Server Objects, and then expand Backup Devices.
3. Right-click the device you want, and then click Delete.
4. In the Delete Object dialog box, verify that the correct device name appears in

the Object Name column.
5. Click OK.

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. Copy and paste the following example into the query. This example shows how to

use sp_dropdevice to delete a backup device. Execute the first example to create
the mybackupdisk backup device and the physical name
c:\backup\backup1.bak. Execute sp_dropdevice to delete the mybackupdisk
backup device. The delfile parameter deletes the physical name.

--Define a backup device and physical name.

USE AdventureWorks2012 ;

GO

EXEC sp_addumpdevice 'disk', 'mybackupdisk', 'c:\backup\backup1.bak' ;

GO

--Delete the backup device and the physical name.

USE AdventureWorks2012 ;

GO

EXEC sp_dropdevice ' mybackupdisk ', 'delfile' ;

GO

See Also
How to: View the Properties and Content of a Backup Device (SQL Server Management
Studio)
sys.backup_devices (Transact-SQL)
BACKUP (Transact-SQL)

To delete a backup device

http://msdn.microsoft.com/en-us/library/c8b07189-7c35-414b-acc1-45bd6e7e17c3(SQL.110)�
http://msdn.microsoft.com/en-us/library/457edaa4-aca1-4bd3-bf8d-734490b80fcd(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 125

Backup Devices (SQL Server)
sp_addumpdevice (Transact-SQL)

Media Sets, Media Families, and Backup Sets
This topic introduces the basic backup-media terminology of SQL Server backup and
restore and is intended for readers who are new to SQL Server. This topic describes the
format that SQL Server uses for backup media, the correspondence between backup
media and backup devices, the organization of backups on backup media, and several
considerations for media sets and media families. The topic also describes the steps
initializing or formatting backup media before you use it for the first time or replace an
old media set with a new media set, how to overwrite old backup sets in a media set, and
how to append new backup sets to a media set.
In this Topic:
• Terms and Definitions
• Overview of Media Sets, Media Families, and Backup Sets
• Using Media Sets and Families
• Related Tasks

Terms and Definitions
media set

An ordered collection of backup media, tapes or disk files, to which one or more backup
operations have written using a fixed type and number of backup devices.

media family

Backups created on a single nonmirrored device or a set of mirrored devices in a media
set

backup set

The backup content that is added to a media set by a successful backup operation.

Overview of Media Sets, Media Families, and Backup Sets
The backups on a set of one or more backup media compose a single media set. A
media set is an ordered collection of backup media, tapes or disk files, to which one or
more backup operations have written using a fixed type and number of backup devices.
A given media set uses either tape drives or disk drives, but not both. For example, the
backup devices associated with a media set might be three tape drives named
\\.\TAPE0, \\.\TAPE1, and \\.\TAPE2. That media set contains only tapes, starting
with a minimum of three tapes (one per drive). The type and number of backup devices

http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�

 126

are established when a media set is created, and they cannot be changed. However, if
necessary, between backup and restore operations a given device can be replaced with a
device of the same type.
A media set is created on the backup media during a backup operation by formatting
the backup media. For more information, see Creating a New Media Set, later in this
topic. After formatting, each file or tape contains a media header for the media set and is
ready to receive backup content. With the header in place, the backup operation
proceeds to back up the specified data to the backup media on all of the backup devices
specified for the operation.

Media sets can be mirrored to protect against a damaged media volume (a tape
or disk file). For more information, see Using Mirrored Backup Media Sets.

SQL Server 2008 Enterprise and later supports compressing backups. Compressed and
uncompressed backups cannot occur together in a media set. Any edition of SQL Server
2008 or later can read compressed backups. For more information, see Backup
Compression (SQL Server).

Media Families
Backups created on a single nonmirrored device or a set of mirrored devices in a media
set constitute a media family. The number of backup devices used for the media set
determines the number of media families in a media set. For example, if a media set uses
two nonmirrored backup devices, the media set contains two media families.

In a mirrored media set, each media family is mirrored. For example, if six backup
devices are used to format a media set, where two mirrors are used, there are
three media families, each containing two equivalent copies of backup data. For
more information about mirrored media sets, see Using Mirrored Backup Media
Sets.

Each tape or disk in a media family is assigned a media sequence number. The media
sequence number of a disk is always 1. In a tape media family, the sequence number of
the initial tape is 1, the sequence number of the second tape is 2, and so forth. For more
information, see Using Media Sets and Families.

The Media Header
Every volume of backup media (disk file or tape) contains a media header that is created
when by the first backup operation that uses the tape (or disk). That header remains
intact until the media is reformatted.

Note

Note

 127

The media header contains all of the information required to identify the media (disk file
or tape) and its place within the media family to which it belongs. This information
includes:
• The name of the media.

The media name is optionally, but we recommend consistently using media names
that clearly identify your media. A media name is assigned by whoever formats the
media.

• The unique identification number of the media set.
• The number of media families in the media set.
• The sequence number of the media family containing this media.
• The unique identification number for the media family.
• The sequence number of this media in the media family. For a disk file, this value is

always 1.
• Whether the media description contains an MTF media label or a media description.

All media that is used for a backup or restore operation use a standard
backup format called Microsoft Tape Format (MTF). MTF allows users to
specify a tape label that contains a MTF-specific description. SQL Server
preserves any MTF media label written by another application but does not
write MTF media labels.

• The Microsoft Tape Format media label or the media description (in free-form text).
• The name of the backup software that wrote the label.
• The unique vendor identification number of the software vendor that formatted the

media.
• The date and time the label was written.
• The number of mirrors in the set (1-4); 1 indicates an unmirrored device.
SQL Server 2012 can process media formatted by earlier versions of SQL Server.

Backup Sets
A successful backup operation adds a single backup set to the media set. The backup set
is described in terms of the media set to which the backup belongs. If the backup media
consists of only one media family, that family contains the entire backup set. If the
backup media consists of multiple media families, the backup set is distributed among
them. On each medium, the backup set contains a header that describes the backup set.
The following example shows a Transact-SQL statement that creates a media set called
MyAdvWorks_MediaSet_1 for the database using three tape drives as backup
devices:

BACKUP DATABASE AdventureWorks2012

Note

 128

TO TAPE = '\\.\tape0', TAPE = '\\.\tape1', TAPE = '\\.\tape2'

WITH

 FORMAT,

 MEDIANAME = 'MyAdvWorks_MediaSet_1'

If successful, this backup operation results in a new media set containing a new media
header and one backup set spread across three tapes. The following figure illustrates
these results:

Typically, after a media set is created, subsequent backup operations, one after another,
append their backup sets to the media set. All of the media used by a backup set make
up the media set, regardless of the number of media or backup devices involved. Backup
sets are sequentially numbered by their position in the media set, allowing you to specify
which backup set to restore.
Every backup operation to a media set must write to the same number and type of
backup devices. With multiple devices, as with the first backup set, the content of every
subsequent backup set is distributed among the backup media on all of the devices. To
continue the above example, a second backup operation (a differential backup) appends
information to the same media set:

BACKUP DATABASE AdventureWorks2012

TO TAPE = '\\.\tape0', TAPE = '\\.\tape1', TAPE = '\\.\tape2'

WITH

 NOINIT,

 MEDIANAME = 'AdventureWorksMediaSet1',

 DIFFERENTIAL

Note

 129

The NOINIT option is the default, but is included for clarity.
If the second backup operation succeeds, it writes a second backup set to the media set,
with the following distribution of backup content:

When you are restoring backups, you can use you the FILE option to specify which
backups you want to use. The following example shows the use of FILE =
backup_set_file_number clauses when restoring a full database backup of the
database followed by a differential database backup on the same media set. The media
set uses three backup tapes, which are on tape drives \\.\tape0, tape1, and tape2.

RESTORE DATABASE AdventureWorks2012 FROM TAPE = '\\.\tape0', TAPE =

'\\.\tape1', TAPE = '\\.\tape2'

 WITH

 MEDIANAME = 'AdventureWorksMediaSet1',

 FILE=1,

 NORECOVERY;

RESTORE DATABASE AdventureWorks2012 FROM TAPE = '\\.\tape0', TAPE =

'\\.\tape1', TAPE = '\\.\tape2'

 WITH

 MEDIANAME = 'AdventureWorksMediaSet1',

 FILE=2,

 RECOVERY;

GO

For information about the history tables that store information about media sets and
their media families and backup sets, see Viewing Information About Backups.

 130

The number of backup media in a media set depends on several factors:
• Number of backup devices
• Type of backup devices
• Number of backup sets

Using Media Sets and Families
This section discusses several considerations for using media sets and media families.
In This Section
• Creating a New Media Set
• Backing Up to an Existing Media Set
• Sequence Numbers
• Using Multiple Devices

Creating a New Media Set
To create a new media set, you must format the backup media (one or more tapes or
disk files). The formatting process changes the backup media as follows:
1. Deletes the old header (if any), effectively deleting the previous contents of the

backup media.
Formatting a tape device deletes all previous contents of the currently mounted tape.
Formatting a disk affects only the file that you specify for the backup operation

2. Writes a new media header on the backup media (tape or disk file) on each of the
backup devices.

Backing Up to an Existing Media Set
When you are backing up to an existing media set, you have the following two options:
• Append to the existing backup set.

To make the best possible use of the available space, new backup sets typically are
appended to existing media set. Appending to the backup preserves any prior
backups. For more information, see Appending to Existing Backup Sets, later in this
section.

Appending, which is the default behavior of the BACKUP, can be explicitly
specified by using the NOINIT option.

• Overwrite all existing backup sets with the current backup, leaving the current media
header in place.

Note

 131

SQL Server backup has safeguards to prevent you from accidentally overwriting
media. However, backup can automatically overwrite backup sets that have reached a
predefined expiration date.
For tape headers, leaving the header in place can make sense. For more information,
see Overwriting Backup Sets, later in this section.

Overwriting existing backup sets is specified by using the INIT option of the
BACKUP statement.

Appending to Existing Backup Sets
Backups performed at different times from the same or different databases can be stored
on the same media. By appending another backup set to existing media, the previous
contents of the media remain intact, and the new backup is written after the end of the
last backup on the media.
By default, SQL Server always appends new backups to media. Appending can occur only
at the end of the media. For example, if a media volume contains five backup sets, it is
not possible to skip the first three backup sets to overwrite the fourth backup set with a
new backup set.
If you use BACKUP WITH NOREWIND for a tape backup, the tape will be left open at the
end of the operation. This allows you to append further backups to the tape without
rewinding the tape and then scanning forward again to find the last backup set. You can
find the list of open tape drives in the sys.dm_io_backup_tapes dynamic management
view; for more information, see BACKUP (Transact-SQL).
Microsoft Windows backups and SQL Server backups can share the same media, but they
are not interoperable. SQL Server backup cannot back up Windows data.

SQL Server 2008 Enterprise and later supports compressing backups. Compressed
and uncompressed backups cannot occur together in a media set. Any edition of
SQL Server 2008 or later versions can read compressed backups. For more
information, see Backup Compression (SQL Server).

Overwriting Backup Sets
Overwriting of existing backup sets is specified by using the INIT option of the BACKUP
statement. This option overwrites all the backup sets on the media and preserve the
media header, if any. If no media header exists, one is created.
For tape headers, leaving the header in place can make sense. For disk backup media,
only the files used by the backup devices specified in the backup operation are
overwritten; other files on the disk are unaffected. When overwriting backups, any
existing media header is preserved, and the new backup is created as the first backup on

Note

Important

http://msdn.microsoft.com/en-us/library/2e27489e-cf69-4a89-9036-77723ac3de66(SQL.110)�

 132

the backup device. If there is no existing media header, a valid media header with an
associated media name and media description is written automatically. If the existing
media header is invalid, the backup operation terminates. If the media is empty, the new
media header is generated with the given MEDIANAME, MEDIAPASSWORD, and
MEDIADESCRIPTION, if any.

Beginning with SQL Server 2012, the MEDIAPASSWORD option is discontinued
for creating backups. However, you can still restore backups created with
passwords.

Backup media is not overwritten if either of the following conditions exists:
• The existing backups on the media have not expired. (If SKIP is specified, expiration is

not checked.)
The expiration date specifies the date that the backup expires and can be overwritten
by another backup. You can specify the expiration date when a backup is created. By
default, the expiration date is determined by the media retention option set with
sp_configure. For more information, see sp_configure (Transact-SQL).

• The media name, if provided, does not match the name on the backup media.
The media name is a descriptive name used for easy identification of the media.

If you are sure you want to overwrite the existing media (for example, if you know that
the backups on the tape are no longer needed), you can explicitly skip these checks.
If the backup media is password protected by Microsoft Windows, Microsoft SQL Server
does not write to the media. To overwrite media that is password protected, you must
reinitialize the media.

Sequence Numbers
The correct order is important for multiple media families within a media set or multiple
backup media within a media family. Therefore, backup assigns sequence numbers in the
following ways:
• Sequential media families within a media set

Within a media set, the media families are numbered sequentially according to their
position in the media set. The media-family number is recorded in the
family_sequence_number column of the backupmediafamily table.

• Physical media within a media family
A media sequence number indicates the order of the physical media within a media
family. The sequence number is 1 for the initial backup media. This is tagged with 1;
the second (the first continuation tape) is tagged with 2; and so on. When the backup
set is restored, the media sequence numbers make sure that the operator restoring
the backup mounts the correct media in the correct order.

noteDXDOC112778PADS Security Note

http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�

 133

Multiple Devices
When you use multiple tape drives or disk files, the following considerations apply:
• For backup:

The complete media set that is created by a backup operation must be used by all
subsequent backup operations. For example, if a media set was created by using two
tape backup devices, all subsequent backup operations that involve the same media
set must use two backup devices.

• For restore:
For any restore from disk backups and for any online restore, all the all media
families must be concurrently mounted. For an offline restore from tape backups, you
can process the media families from fewer backup devices. Each media family must
be processed completely before starting to process another media family. Media
families are always processed in parallel, unless they are being restored with a single
device.

Related Tasks
To create a new media set
• Back Up a Database (SQL Server Management Studio) (Back up to a new media set,

and erase all existing backup sets option)
• BACKUP (Transact-SQL) (FORMAT option)
• P:Microsoft.SqlServer.Management.Smo.Backup.FormatMedia
To append a new backup to existing media
• Back Up a Database (SQL Server Management Studio) (Append to the existing

backup set option)
• BACKUP (Transact-SQL) (NOINIT option)
• Backup.SqlBackup Method
To overwrite existing backup sets
• Back Up a Database (SQL Server Management Studio) (Overwrite all existing

backup sets option)
• BACKUP (Transact-SQL) (INIT option)
• Backup.Initialize Property
To set the expiration date
• Set the Expiration Date on a Backup (SQL Server Management Studio)
To view the media sequence and family sequence numbers
• View the Properties and Content of a Backup Device (SQL Server Management

Studio)
• backupmediafamily (Transact-SQL) (family_sequence_number column)
To view the backup sets on a particular backup device

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/ee16de24-3d95-4b2e-a094-78df2514d18a(SQL.110)�

 134

• View the Data and Log Files In a Backup Set (SQL Server Management Studio)
• View the Properties and Content of a Backup Device (SQL Server Management

Studio)
• RESTORE HEADERONLY (Transact-SQL)
To read the media header of the media on a backup device
• RESTORE LABELONLY (Transact-SQL)

See Also
Backing Up and Restoring Databases in SQL Server
Possible Media Errors During Backup and Restore (SQL Server)
Backup History and Header Information
Mirrored Backup Media Sets
BACKUP (Transact-SQL)
RESTORE (Transact-SQL)
RESTORE REWINDONLY (Transact-SQL)
sp_configure

Set the Expiration Date on a Backup
This topic describes how to set the expiration date on a backup in SQL Server 2012 by
using SQL Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Security
• To set the expiration date on a backup, using:

SQL Server Management Studio
Transact-SQL

Before You Begin

Security

Permissions
BACKUP DATABASE and BACKUP LOG permissions default to members of the sysadmin
fixed server role and the db_owner and db_backupoperator fixed database roles.

http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/7cf0641e-0d55-4ffb-9500-ecd6ede85ae5(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/7f825b40-2264-4608-9809-590d0f09d882(SQL.110)�
http://msdn.microsoft.com/en-us/library/d18b251d-b37a-4f5f-b50c-502d689594c8(SQL.110)�

 135

Ownership and permission problems on the backup device's physical file can interfere
with a backup operation. SQL Server must be able to read and write to the device; the
account under which the SQL Server service runs must have write permissions.
However, sp_addumpdevice, which adds an entry for a backup device in the system
tables, does not check file access permissions. Such problems on the backup device's
physical file may not appear until the physical resource is accessed when the backup or
restore is attempted.

Using SQL Server Management Studio

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Databases, and, depending on the database, either select a user
database or expand System Databases and select a system database.

3. Right-click the database, point to Tasks, and then click Back Up. The Back Up
Database dialog box appears.

4. On the General page, for Backup set will expire, specify an expiration date to
indicate when the backup set can be overwritten by another backup:
• To have the backup set expire after a specific number of days, click After (the

default option), and enter the number of days after set creation that the set
will expire. This value can be from 0 to 99999 days; a value of 0 days means
that the backup set will never expire.
The default value is set in the Default backup media retention (in days)
option of the Server Properties dialog box (Database Settings page). To
access this, right-click the server name in Object Explorer and select
properties; then select the Database Settings page.

• To have the backup set expire on a specific date, click On, and enter the date
on which the set will expire.

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. In the BACKUP statement, specify either the EXPIREDATE or RETAINDAYS option

to determine when the SQL Server Database Engine can overwrite the backup. If

To set the expiration date on a backup

To set the expiration date on a backup

http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 136

neither option is specified, the expiration date is determined by the media
retention server configuration setting. This example uses the EXPIREDATE option
to specify an expiration date of June 30, 2015 (6/30/2015).

USE AdventureWorks2012;

GO

BACKUP DATABASE AdventureWorks2012

 TO DISK = 'Z:\SQLServerBackups\AdventureWorks2012.Bak'

 WITH EXPIREDATE = '6/30/2015' ;

GO

See Also
How to: Back Up a Database (SQL Server Management Studio)
How to: Back Up Database Files and Filegroups (SQL Server Management Studio)
How to: Back Up a Transaction Log (SQL Server Management Studio)
How to: Create a Full Differential Backup (SQL Server Management Studio)

View the Data and Log Files in a Backup Set
This topic describes how to view the data and log files in a backup set in SQL Server
2012 by using SQL Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Security
• To view the data and log files in a backup set, using:

SQL Server Management Studio
Transact-SQL

Before You Begin

Security
For information about security, see RESTORE FILELISTONLY (Transact-SQL)

Permissions
In SQL Server 2008 and later versions, obtaining information about a backup set or
backup device requires CREATE DATABASE permission. For more information,
see GRANT Database Permissions (Transact-SQL).

http://msdn.microsoft.com/en-us/library/12e9fe6a-20a5-4c6e-9cc9-d500c003b70a(SQL.110)�
http://msdn.microsoft.com/en-us/library/12e9fe6a-20a5-4c6e-9cc9-d500c003b70a(SQL.110)�
http://msdn.microsoft.com/en-us/library/0b4b4d11-eb9d-4f3e-9629-6c79cec7a81a(SQL.110)�
http://msdn.microsoft.com/en-us/library/499e5ed6-945c-4791-ab45-68dec0b9c289(SQL.110)�

 137

Using SQL Server Management Studio

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Databases, and, depending on the database, either select a user
database or expand System Databases and select a system database.

3. Right-click the database, and then click Properties, which opens the Database
Properties dialog box.

4. In the Select a Page pane, click Files.
5. Look in the Database files grid for a list of the data and log files and their

properties.

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. Use the RESTORE FILELISTONLY statement. This example returns information

about the second backup set (FILE=2) on the AdventureWorksBackups backup
device.

USE AdventureWorks2012 ;

RESTORE FILELISTONLY FROM AdventureWorksBackups

 WITH FILE=2;

GO

See Also
backupfilegroup (Transact-SQL)
backupfile (Transact-SQL)
backupset (Transact-SQL)
backupmediaset (Transact-SQL)
backupmediafamily (Transact-SQL)
Backup Devices (SQL Server)

To view the data and log files in a backup set

To view the data and log files in a backup set

http://msdn.microsoft.com/en-us/library/0b4b4d11-eb9d-4f3e-9629-6c79cec7a81a(SQL.110)�
http://msdn.microsoft.com/en-us/library/d26e8fbe-f5c5-4e10-b2bd-0d8e16ea21f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/f1a7fc0a-f4b4-47eb-9138-eebf930dc9ac(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/d9c18a93-cab9-4db8-ae09-c6bd8145ab8f(SQL.110)�
http://msdn.microsoft.com/en-us/library/ee16de24-3d95-4b2e-a094-78df2514d18a(SQL.110)�

 138

Mirrored Backup Media Sets

Mirrored backup media sets are supported only in SQL Server 2005 Enterprise
Edition and later versions.

Mirroring a media set increases backup reliability by reducing the impact of backup-
device malfunctions. These malfunctions are very serious because backups are the last
line of defense against data loss. As databases grow, the probability increases that a
failure of a backup device or media will make a backup nonrestorable. Mirroring backup
media increases the reliability of backups by providing redundancy.

For information about media sets in general, see Media Sets, Media Families, and
Backup Sets.

In this Topic:
• Overview of Mirrored Media Sets
• Hardware Requirements for Backup Mirrors
• Related Tasks

Overview of Mirrored Media Sets
Media mirroring is a property of the media set. A mirrored media set consists of multiple
copies (mirrors) of the media set. A media set contains one or more media families, each
of which corresponds to a backup device. For example, if the TO clause of a BACKUP
DATABASE statement lists three devices, BACKUP spreads the data among three media
families, one per device. The number of media families and mirrors is defined when the
media set is created (by a BACKUP DATABASE statement that specifies WITH FORMAT).
A mirrored media set possesses from two to four mirrors. Each mirror contains all the
media families in the media set. The mirrors require the same number of devices, one per
media family. Each mirror requires a separate backup device for each media family. For
example, a mirrored media set that consists of four media families with three mirrors
requires twelve backup devices. All of these devices must be equivalent. For example,
tape drives that have the same model number from the same manufacturer.
The following illustration shows an example of a mirrored media set that consists of two
media families with two mirrors. Each media family contains three media volumes, which
are backed up one time per mirror.

Note

Note

 139

Corresponding volumes on the mirrors have identical contents. This makes them
interchangeable at restore time. For example, in the previous illustration, the third
volume of tape2 is interchangeable with the third volume of tape0.
The SQL Server Database Engine guarantees that the mirrored media have identical
contents by synchronizing writes to the devices. When any one of the mirrors fills, all the
mirrors are spanned at one time.

A mirrored media set cannot be implicitly broken (split) by removing a mirror. If
any tape or disk in a mirror is damaged or reformatted, the mirror is no longer
usable for additional backups. If at least one full mirror remains intact, the media
set can be read. If every mirror loses a given media family, the media set is
useless.

Backup and restore operations impose different requirements on whether all the mirrors
must be present. For a backup operation to write (that is, to create or extend) a mirrored
media set, all the mirrors must be present. In contrast, when you are restoring a backup
from a mirrored media set, you can specify only a single mirror for each media family.
You can restore from fewer devices than families, but each media family is processed
only one time. In the presence of errors, however, having the other mirrors enables some
restore problems to be resolved quickly. You can substitute a damaged media volume
with the corresponding volume from another mirror. This is because RESTORE and
RESTORE VERIFYONLY support substitution of damaged media with the corresponding
backup-media volume from another mirror.

Hardware Requirements for Backup Mirrors
Mirroring applies both to disk and tape (disks do not support continuation tapes). As in
earlier versions of SQL Server, all backup devices for a single backup or restore operation
must be of the same type, disk or tape.

Important

 140

Within these broader classes, you must use similar devices that have the same
properties. Insufficiently similar devices generate an error message (3212). To avoid the
risk of a device mismatch, use devices that are equivalent, such as, only drives with the
same model number from the same manufacturer.

Related Tasks
To back up to mirrored backup devices
• Back Up to a Mirrored Media Set (Transact-SQL)

See Also
Detecting and Coping with Media Errors
RESTORE VERIFYONLY (Transact-SQL)
Backup Devices (SQL Server)
Media Sets, Media Families, and Backup Sets (SQL Server)

Back Up to a Mirrored Media Set (Transact-SQL)
This topic describes how to use the Transact-SQL BACKUP statement to specify a
mirrored media set when backing up a SQL Server database. In your BACKUP statement,
specify the first mirror in the TO clause. Then, specify each mirror in its own MIRROR TO
clause. The TO and MIRROR TO clauses must specify the same number and type of
backup devices.

Example
The following example creates the mirrored media set illustrated in the previous
illustration and backs up the database to both mirrors.

BACKUP DATABASE AdventureWorks2012

TO TAPE = '\\.\tape0', TAPE = '\\.\tape1'

MIRROR TO TAPE = '\\.\tape2', TAPE = '\\.\tape3'

WITH

 FORMAT,

 MEDIANAME = 'AdventureWorks2012Set1';

GO

Related Tasks
To restore from a mirrored backup
• RESTORE (Transact-SQL)

http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 141

See Also
BACKUP (Transact-SQL)
Mirrored Backup Media Sets (SQL Server)

Backup History and Header Information
A complete history of all SQL Server backup and restore operations on a server instance
is stored in the msdb database. This topic introduces the backup and restore history
tables and also the Transact-SQL statements that are used to access backup history. The
topic also discusses when listing database and transaction log files is useful and when to
use media-header information compared to when to use backup-header information.

To manage the risk of losing recent changes to your backup and restore history,
back up msdb frequently. For information about which of the system databases
you must back up, see Backing Up and Restoring System Databases.

In This Topic:
• Backup and Restore History Tables
• Transact-SQL Statements for Accessing Backup History
• Database and Transaction Log Files
• Media-Header Information
• Backup-Header Information
• Comparison of Media-Header and Backup-Header Information
• Backup Verification
• Related Tasks

Backup and Restore History Tables
This section introduces the history tables that store backup and restore metadata in the
msdb system database.

History table Description

backupfile Contains one row for each data or log file
that is backed up.

backupfilegroup Contains a row for each filegroup in a
backup set.

backupmediafamily Contains one row for each media family. If
a media family resides in a mirrored media

Important

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/f1a7fc0a-f4b4-47eb-9138-eebf930dc9ac(SQL.110)�
http://msdn.microsoft.com/en-us/library/d26e8fbe-f5c5-4e10-b2bd-0d8e16ea21f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/ee16de24-3d95-4b2e-a094-78df2514d18a(SQL.110)�

 142

History table Description

set, the family has a separate row for each
mirror in the media set.

backupmediaset Contains one row for each backup media
set.

backupset Contains a row for each backup set.

restorefile Contains one row for each restored file.
This includes files restored indirectly by
filegroup name.

restorefilegroup Contains one row for each restored
filegroup.

restorehistory Contains one row for each restore
operation.

When a restore is performed, backup history tables and restore history tables are
modified.

Transact-SQL Statements for Accessing Backup History
The restore information statements correspond with information stored in certain
backup history tables.

In previous versions of SQL Server, any user could obtain information about
backup sets and backup devices by using the RESTORE FILELISTONLY, RESTORE
HEADERONLY, RESTORE LABELONLY, and RESTORE VERIFYONLY Transact-SQL
statements. Because they reveal information about the content of the backup
files, beginning in SQL Server 2008, these statements require CREATE DATABASE
permission. This requirement secures your backup files and protects your backup
information more fully than in previous versions. For information about this
permission, see GRANT Database Permissions (Transact-SQL).

Information statement Backup history table Description

RESTORE FILELISTONLY backupfile Returns a result set that has
a list of the database and
log files that are contained

Note

noteDXDOC112778PADS Security Note

http://msdn.microsoft.com/en-us/library/d9c18a93-cab9-4db8-ae09-c6bd8145ab8f(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/8e40145a-8559-4abe-8e2a-39b818928009(SQL.110)�
http://msdn.microsoft.com/en-us/library/3aa15c55-6b72-4f76-97d7-bd88391d105c(SQL.110)�
http://msdn.microsoft.com/en-us/library/9140ecc1-d912-4d76-ae70-e2a857da6d44(SQL.110)�
http://msdn.microsoft.com/en-us/library/499e5ed6-945c-4791-ab45-68dec0b9c289(SQL.110)�
http://msdn.microsoft.com/en-us/library/0b4b4d11-eb9d-4f3e-9629-6c79cec7a81a(SQL.110)�
http://msdn.microsoft.com/en-us/library/f1a7fc0a-f4b4-47eb-9138-eebf930dc9ac(SQL.110)�

 143

Information statement Backup history table Description

in the specified backup set.
For more information, see
"Listing Database and
Transaction Log Files," later
in this topic.

RESTORE HEADERONLY backupset Retrieves all the backup
header information for all
backup sets on a particular
backup device. The result
from executing RESTORE
HEADERONLY is a result
set.
For more information, see
"Viewing the Backup-
Header Information," later
in this topic.

RESTORE LABELONLY backupmediaset Returns a result set that
contains information about
the backup media on a
specified backup device.
For more information, see
"Viewing the Media-Header
Information," later in this
topic.

Column-Naming Conventions
For historical reasons, two different naming conventions exist. Old columns retain their
original names. However, columns in SQL Server 2005 or later versions follow the naming
conventions shown in the following table.

Context Description

Columns returned by information
commands

WordWordWord
Example: DifferentialBaseLSN

Columns in msdb and in the catalog views word_word_word
Example: differential_base_lsn

http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/7cf0641e-0d55-4ffb-9500-ecd6ede85ae5(SQL.110)�
http://msdn.microsoft.com/en-us/library/d9c18a93-cab9-4db8-ae09-c6bd8145ab8f(SQL.110)�

 144

Database and Transaction Log Files
Information that is displayed when the database and transaction log files are listed in a
backup includes the logical name, physical name, file type (database or log), filegroup
membership, file size (in bytes), the maximum allowed file size, and the predefined file
growth size (in bytes). This information is useful, in the following situations, to determine
the names of the files in a database backup before you restore the database backup:
• You have lost a disk drive that contains one or more of the files for a database.

You can list the files in the database backup to determine which files were affected,
and then restore those files onto a different drive when you restore the whole
database; or restore just those files and apply any transaction log backups created
since the database was backed up.

• You are restoring a database from one server onto another server, but the directory
structure and drive mapping does not exist on the server.
Listing the files in the backup let you determine which files are affected. For example,
the backup contains a file that it has to restore to drive E, but the destination server
does not have a drive E. The file must be relocated to another location, such as drive
Z, when the file is restored.

Media-Header Information
Viewing the media header displays information about the media itself, instead of about
the backups on the media. Media header information that is displayed includes the
media name, description, name of the software that created the media header, and the
date the media header was written.

Viewing the media header is quick.
For more information, see Comparison of Media-Header and Backup-Header
Information, later in this topic.

Backup-Header Information
Viewing the backup header displays information about all SQL Server and non-SQL
Server backup sets on the media. Information that is displayed includes the types of
backup devices that are used, the types of backup (for example, database, transaction,
file, or differential database), and backup start and stop date/time information. This
information is useful when you have to determine which backup set on the tape to
restore, or the backups that are contained on the media.

Note

 145

Viewing backup header information can take a long time for high-capacity tapes,
because the whole media must be scanned to display information about each
backup on the media.

For more information, see Comparison of Media-Header and Backup-Header
Information, later in this topic.

Which Backup Set to Restore
You can use information in the backup header to identify which backup set to restore.
The Database Engine numbers each backup set on the backup media. This lets you
identify the backup set you want to restore by using its position on the media. For
example, the following media contains three backup sets.

To restore a specific backup set, specify the position number of the backup set you want
to restore. For example, to restore the second backup set, specify 2 as the backup set to
restore.

Comparison of Media-Header and Backup-Header Information
The following illustration provides an example of the differences between viewing
backup-header and media-header information. Obtaining the media header requires
retrieving information from only the start of the tape. Obtaining the backup header
requires scanning the whole tape to look at the header of every backup set.

When you use media sets that have multiple media families, the media header
and backup set are written to all media families. Therefore, you only have to
provide a single media family for these reporting operations.

For information about how to view the media-header, see "Viewing the Media-Header
Information," earlier in this topic.
For information about how to view the backup header information for all backup sets on
a backup device, see "Viewing the Backup-Header Information," earlier in this topic.

Note

Note

 146

Backup Verification
Although not required, verifying a backup is a useful practice. Verifying a backup checks
that the backup is intact physically, to ensure that all the files in the backup are readable
and can be restored, and that you can restore your backup in the event you need to use
it. It is important to understand that verifying a backup does not verify the structure of
the data on the backup. However, if the backup was created using WITH CHECKSUMS,
verifying the backup using WITH CHECKSUMS can provide a good indication of the
reliability of the data on the backup.

Related Tasks

To delete old rows from backup and restore history tables
• sp_delete_backuphistory
To delete all rows for a specific database from backup and restore history tables
• sp_delete_database_backuphistory
To view the data and log files in a backup set
• RESTORE FILELISTONLY (Transact-SQL)
•

 M:Microsoft.SqlServer.Management.Smo.Restore.ReadFileList(Microsoft.SqlServer.
Management.Smo.Server) (SMO)

To view media header information
• RESTORE LABELONLY (Transact-SQL)
• How to: View the Properties and Contents of a Backup Device (SQL Server

Management Studio)
• How to: View the Contents of a Backup Tape or File (SQL Server Management Studio)
•

 M:Microsoft.SqlServer.Management.Smo.Restore.ReadMediaHeader(Microsoft.SqlS
erver.Management.Smo.Server) (SMO)

To view backup header information
• RESTORE HEADERONLY (Transact-SQL)
• How to: View the Contents of a Backup Tape or File (SQL Server Management Studio)
• How to: View the Properties and Contents of a Backup Device (SQL Server

Management Studio)
•

 M:Microsoft.SqlServer.Management.Smo.Restore.ReadBackupHeader(Microsoft.Sql
Server.Management.Smo.Server) (SMO)

http://msdn.microsoft.com/en-us/library/bdb56834-616e-47e4-b942-e895d2325e97(SQL.110)�
http://msdn.microsoft.com/en-us/library/4c237944-453d-49fb-8d0e-4596945ac147(SQL.110)�
http://msdn.microsoft.com/en-us/library/0b4b4d11-eb9d-4f3e-9629-6c79cec7a81a(SQL.110)�
http://msdn.microsoft.com/en-us/library/7cf0641e-0d55-4ffb-9500-ecd6ede85ae5(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�

 147

To delete old rows from backup and restore history tables
• sp_delete_backuphistory
To delete all rows for a specific database from backup and restore history tables
• sp_delete_database_backuphistory
To view media header information
• RESTORE LABELONLY (Transact-SQL)
• How to: View the Properties and Contents of a Backup Device (SQL Server

Management Studio)
• How to: View the Contents of a Backup Tape or File (SQL Server Management Studio)
•

 M:Microsoft.SqlServer.Management.Smo.Restore.ReadMediaHeader(Microsoft.SqlS
erver.Management.Smo.Server) (SMO)

To view backup header information
• RESTORE HEADERONLY (Transact-SQL)
• How to: View the Contents of a Backup Tape or File (SQL Server Management Studio)
• How to: View the Properties and Contents of a Backup Device (SQL Server

Management Studio)
•

 M:Microsoft.SqlServer.Management.Smo.Restore.ReadBackupHeader(Microsoft.Sql
Server.Management.Smo.Server) (SMO)

To view the files in a backup set
• How to: View the Data and Log Files In a Backup Set (SQL Server Management

Studio)
• RESTORE HEADERONLY (Transact-SQL)
To verify a backup
• RESTORE VERIFYONLY (Transact-SQL)
•

 M:Microsoft.SqlServer.Management.Smo.Restore.SqlVerify(Microsoft.SqlServer.Ma
nagement.Smo.Server) (SMO)

See Also
BACKUP (Transact-SQL)
Media Sets, Media Families, and Backup Sets (SQL Server)
Backup Devices (SQL Server)
Mirrored Backup Media Sets
Possible Media Errors During Backup and Restore (SQL Server)

http://msdn.microsoft.com/en-us/library/bdb56834-616e-47e4-b942-e895d2325e97(SQL.110)�
http://msdn.microsoft.com/en-us/library/4c237944-453d-49fb-8d0e-4596945ac147(SQL.110)�
http://msdn.microsoft.com/en-us/library/7cf0641e-0d55-4ffb-9500-ecd6ede85ae5(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 148

View the Properties and Contents of a Logical
Backup Device
This topic describes how to view the properties and contents of a logical backup device
in SQL Server 2012 by using SQL Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Security
• To view the properties and contents of a logical backup device, using:

SQL Server Management Studio
Transact-SQL

Before You Begin

Security
For information about security, see RESTORE LABELONLY (Transact-SQL).

Permissions
In SQL Server 2008 and later versions, obtaining information about a backup set or
backup device requires CREATE DATABASE permission. For more information,
see GRANT Database Permissions (Transact-SQL).

Using SQL Server Management Studio

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Server Objects, and expand Backup Devices.
3. Click the device and right-click Properties, which opens the Backup Device

dialog box.
4. The General page displays the device name and destination, which is either a

tape device or file path.
5. In the Select a Page pane, click Media Contents.
6. The right-hand pane displays in the following properties panels:

• Media
Media sequence information (the media sequence number, the family
sequence number, and the mirror identifier, if any) and the media creation

To view the properties and contents of a logical backup device

http://msdn.microsoft.com/en-us/library/7cf0641e-0d55-4ffb-9500-ecd6ede85ae5(SQL.110)�
http://msdn.microsoft.com/en-us/library/499e5ed6-945c-4791-ab45-68dec0b9c289(SQL.110)�

 149

date and time.
• Media set

Media set information: the media set name and description, if any, and the
number of families in the media set.

7. The Backup sets grid displays information about the contents of the media set.

Note
For more information, see Media Contents Page.

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. Use the RESTORE LABELONLY statement. This example returns information about

the AdvWrks2008R2Backup logical backup device.
USE AdventureWorks2012 ;

RESTORE LABELONLY

 FROM AdvWrks2008R2Backup ;

GO

See Also
backupfilegroup (Transact-SQL)
backupfile (Transact-SQL)
backupset (Transact-SQL)
backupmediaset (Transact-SQL)
backupmediafamily (Transact-SQL)
sp_addumpdevice (Transact-SQL)
Backup Devices (SQL Server)

To view the properties and contents of a logical backup device

http://msdn.microsoft.com/en-us/library/7cf0641e-0d55-4ffb-9500-ecd6ede85ae5(SQL.110)�
http://msdn.microsoft.com/en-us/library/d26e8fbe-f5c5-4e10-b2bd-0d8e16ea21f9(SQL.110)�
http://msdn.microsoft.com/en-us/library/f1a7fc0a-f4b4-47eb-9138-eebf930dc9ac(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/d9c18a93-cab9-4db8-ae09-c6bd8145ab8f(SQL.110)�
http://msdn.microsoft.com/en-us/library/ee16de24-3d95-4b2e-a094-78df2514d18a(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�

 150

Possible Media Errors During Backup and
Restore
SQL Server 2012 gives you the option of recovering a database despite detected errors.
An important new error-detection mechanism is the optional creation of a backup
checksum that can be created by a backup operation and validated by a restore
operation. You can control whether an operation checks for errors and whether the
operation stops or continues on encountering an error. If a backup contains a backup
checksum, RESTORE and RESTORE VERIFYONLY statements can check for errors.

Mirrored backups provide up to four copies (mirrors) of a media set, providing
alternative copies for recovering from errors caused by damaged media. For
more information, see Mirrored Backup Media Sets.

In this Topic:
• Backup Checksums
• Response to Page Checksum Errors During a Backup or Restore Operation
• Related Tasks

Backup Checksums
SQL Server supports three types of checksums: a checksum on pages, a checksum in log
blocks, and a backup checksum. When generating a backup checksum, BACKUP verifies
that the data read from the database is consistent with any checksum or torn-page
indication that is present in the database.
The BACKUP statement optionally computes a backup checksum on the backup stream;
if page-checksum or torn-page information is present on a given page, when backing up
the page, BACKUP also verifies the checksum and torn-page status and the page ID, of
the page. When creating a backup checksum, a backup operation does not add any
checksums to pages. Pages are backed up as they exist in the database, and the pages
are unmodified by backup.
Due to the overhead verifying and generating backup checksums, using backup
checksums poses a potential performance impact. Both the workload and the backup
throughput may be affected. Therefore, using backup checksums is optional. When
deciding to generate checksums during a backup, carefully monitor the CPU overhead
incurred as well as the impact on any concurrent workload on the system.
BACKUP never modifies the source page on disk nor the contents of a page.
When backup checksums are enabled, a backup operation performs the following steps:
1. Before writing a page to the backup media, the backup operation verifies the page-

level information (page checksum or torn page detection), if either exists. If neither

Note

 151

exists, backup cannot verify the page. Unverified the pages are included as is, and
their contents are added to the overall backup checksum.
If the backup operation encounters a page error during verification, the backup fails.

For more information about page checksums and torn page detection, see
the PAGE_VERIFY option of the ALTER DATABASE statement. For more
information, see ALTER DATABASE SET Options (Transact-SQL).

2. Regardless of whether page checksums are present, BACKUP generates a separate
backup checksum for the backup streams. Restore operations can optionally use the
backup checksum to validate that the backup is not corrupted. The backup checksum
is stored on the backup media, not on the database pages. The backup checksum
can optionally be used at restore time.

3. The backup set is flagged as containing backup checksums (in the
has_backup_checksums column of msdb..backupset). For more information,
see backupset (Transact-SQL).

During a restore operation, if backup checksums are present on the backup media, by
default, both the RESTORE and RESTORE VERIFYONLY statements verify the backup
checksums and page checksums. If there is no backup checksum, either restore
operation proceeds without any verification; this is because without a backup checksum,
restore cannot reliably verify page checksums.

Response to Page Checksum Errors During a Backup or Restore Operation
By default, after encountering a page checksum error, a BACKUP or RESTORE operation
fails and a RESTORE VERIFYONLY operation continues. However, you can control whether
a given operation fails on encountering an error or continues as best it can.
If a BACKUP operation continues after encountering errors, the operation performs the
following steps:
1. Flags the backup set on the backup media as containing errors and tracks the page

in the suspect_pages table in the msdb database. For more information,
see suspect_pages (Transact-SQL).

2. Logs the error in the SQL Server error log.
3. Marks the backup set as containing this type of error (in the is_damaged column of

msdb.backupset). For more information, see backupset (Transact-SQL).
4. Issues a message that the backup was successfully generated, but contains page

errors.

Note

http://msdn.microsoft.com/en-us/library/f76fbd84-df59-4404-806b-8ecb4497c9cc(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/119c8d62-eea8-44fb-bf72-de469c838c50(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�

 152

Related Tasks
To enable or disable backup checksums
• How to: Enable or Disable Backup Checksums (Transact-SQL)
To control the response to a error during a backup operation
• How to: Specify Whether BACKUP Continues or Stops upon Encountering an Error

(Transact-SQL)

See Also
ALTER DATABASE (Transact-SQL)
BACKUP (Transact-SQL)
backupset (Transact-SQL)
Using Mirrored Backup Media Sets
RESTORE (Transact-SQL)
RESTORE VERIFYONLY (Transact-SQL)

Enable or Disable Backup Checksums During
Backup or Restore
This topic describes how to enable or disable backup checksums when you are backing
up or restoring a database in SQL Server 2012 by using SQL Server Management Studio
or Transact-SQL.
In This Topic
• Before you begin:

Security
• To enable or disable backup checksums, using:

SQL Server Management Studio
Transact-SQL

Before You Begin

Security

Permissions
BACKUP

BACKUP DATABASE and BACKUP LOG permissions default to members of the sysadmin

http://msdn.microsoft.com/en-us/library/15f8affd-8f39-4021-b092-0379fc6983da(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�

 153

fixed server role and the db_owner and db_backupoperator fixed database roles.

Ownership and permission problems on the backup device's physical file can interfere
with a backup operation. SQL Server must be able to read and write to the device; the
account under which the SQL Server service runs must have write permissions.
However, sp_addumpdevice, which adds an entry for a backup device in the system
tables, does not check file access permissions. Such problems on the backup device's
physical file may not appear until the physical resource is accessed when the backup or
restore is attempted.

RESTORE

If the database being restored does not exist, the user must have CREATE DATABASE
permissions to be able to execute RESTORE. If the database exists, RESTORE permissions
default to members of the sysadmin and dbcreator fixed server roles and the owner
(dbo) of the database (for the FROM DATABASE_SNAPSHOT option, the database
always exists).

RESTORE permissions are given to roles in which membership information is always
readily available to the server. Because fixed database role membership can be checked
only when the database is accessible and undamaged, which is not always the case
when RESTORE is executed, members of the db_owner fixed database role do not have
RESTORE permissions.

Using SQL Server Management Studio

1. Follow the steps to create a database backup.
2. On the Options page, in the Reliability section, click Perform checksum before

writing to media.

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. To enable backup checksums in a BACKUP statement, specify the WITH

CHECKSUM option. To disable backup checksums, specify the WITH
NO_CHECKSUM option. This is the default behavior, except for a compressed
backup. The following example specifies that checksums be performed.

BACKUP DATABASE AdventureWorks2012

To enable or disable checksums during a backup operation

To enable or disable backup checksum for a backup operation

http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 154

 TO DISK = 'Z:\SQLServerBackups\AdvWorksData.bak'

 WITH CHECKSUM;

GO

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. To enable backup checksums in a RESTORE statement, specify the WITH

CHECKSUM option. This is the default behavior for a compressed backup. To
disable backup checksums, specify the WITH NO_CHECKSUM option. This is the
default behavior, except for a compressed backup. The following example
specifies that backup checksums be performed.

RESTORE DATABASE AdventureWorks2012

 FROM DISK = 'Z:\SQLServerBackups\AdvWorksData.bak'

 WITH CHECKSUM;

GO

If you explicitly request CHECKSUM for a restore operation and if the backup
contains backup checksums, backup checksums and page checksums are both
verified, as in the default case. However, if the backup set lacks backup
checksums, the restore operation fails with a message indicating that checksums
are not present.

See Also
RESTORE FILELISTONLY (Transact-SQL)
RESTORE HEADERONLY (Transact-SQL)
RESTORE LABELONLY (Transact-SQL)
RESTORE VERIFYONLY (Transact-SQL)
BACKUP (Transact-SQL)
backupset (Transact-SQL)
RESTORE Arguments (Transact-SQL)
Possible Media Errors During Backup and Restore (SQL Server)
Specify Whether BACKUP Continues or Stops upon Encountering an Error (Transact-SQL)

To enable or disable backup checksum for a restore operation

Warning

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/0b4b4d11-eb9d-4f3e-9629-6c79cec7a81a(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/7cf0641e-0d55-4ffb-9500-ecd6ede85ae5(SQL.110)�
http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�

 155

Specify Whether a Backup or Restore Operation
Continues or Stops After Encountering an Error
This topic describes how to specify whether a backup or restore operation continues or
stops after encountering an error in SQL Server 2012 by using SQL Server Management
Studio or Transact-SQL.
In This Topic
• Before you begin:

Security
• To specify whether a backup or restore operation continues after encountering

an error, using:
SQL Server Management Studio
Transact-SQL

Before You Begin

Security

Permissions
BACKUP

BACKUP DATABASE and BACKUP LOG permissions default to members of the sysadmin
fixed server role and the db_owner and db_backupoperator fixed database roles.

Ownership and permission problems on the backup device's physical file can interfere
with a backup operation. SQL Server must be able to read and write to the device; the
account under which the SQL Server service runs must have write permissions.
However, sp_addumpdevice, which adds an entry for a backup device in the system
tables, does not check file access permissions. Such problems on the backup device's
physical file may not appear until the physical resource is accessed when the backup or
restore is attempted.

RESTORE

If the database being restored does not exist, the user must have CREATE DATABASE
permissions to be able to execute RESTORE. If the database exists, RESTORE permissions
default to members of the sysadmin and dbcreator fixed server roles and the owner
(dbo) of the database (for the FROM DATABASE_SNAPSHOT option, the database
always exists).

RESTORE permissions are given to roles in which membership information is always
readily available to the server. Because fixed database role membership can be checked
only when the database is accessible and undamaged, which is not always the case

http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�

 156

when RESTORE is executed, members of the db_owner fixed database role do not have
RESTORE permissions.

Using SQL Server Management Studio

1. Follow the steps to create a database backup.
2. On the Options page, in the Reliability section, click Perform checksum before

writing to media and Continue on error.

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. In the BACKUP statement, specify the CONTINUE_AFTER ERROR option to

continue or the STOP_ON_ERROR option to stop. The default behavior is to stop
after encountering an error. This example instructs the backup operation to
continue despite encountering an error.

BACKUP DATABASE AdventureWorks2012

 TO DISK = 'Z:\SQLServerBackups\AdvWorksData.bak'

 WITH CHECKSUM, CONTINUE_AFTER_ERROR;

GO

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. In the RESTORE statement, specify the CONTINUE_AFTER ERROR option to

continue or the STOP_ON_ERROR option to stop. The default behavior is to stop
after encountering an error. This example instructs the restore operation to
continue despite encountering an error.

RESTORE DATABASE AdventureWorks2012

 FROM DISK = 'Z:\SQLServerBackups\AdvWorksData.bak'

 WITH CHECKSUM, CONTINUE_AFTER_ERROR;

To specify whether backup continues or stops after an error is encountered

To specify whether a backup operation continues or stops after encountering an
error

To specify whether a restore operation continues or stops after encountering an
error

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 157

GO

See Also
RESTORE FILELISTONLY (Transact-SQL)
RESTORE HEADERONLY (Transact-SQL)
RESTORE LABELONLY (Transact-SQL)
RESTORE VERIFYONLY (Transact-SQL)
BACKUP (Transact-SQL)
backupset (Transact-SQL)
RESTORE Arguments (Transact-SQL)
Detecting and Coping with Media Errors
How to: Enable or Disable Backup Checksums (Transact-SQL)

Complete Database Restores (Simple
Recovery Model)
In a complete database restore, the goal is to restore the whole database. The whole
database is offline for the duration of the restore. Before any part of the database can
come online, all data is recovered to a consistent point in which all parts of the database
are at the same point in time and no uncommitted transactions exist.
Under the simple recovery model, the database cannot be restored to a specific point in
time within a specific backup.

We recommend that you do not attach or restore databases from unknown or
untrusted sources. These databases could contain malicious code that might
execute unintended Transact-SQL code or cause errors by modifying the schema
or the physical database structure. Before you use a database from an unknown
or untrusted source, run DBCC CHECKDB on the database on a nonproduction
server and also examine the code, such as stored procedures or other user-
defined code, in the database.

In this Topic:
• Overview of Database Restore Under the Simple Recovery Model
• Related Tasks

noteDXDOC112778PADS Security Note

Note

http://msdn.microsoft.com/en-us/library/0b4b4d11-eb9d-4f3e-9629-6c79cec7a81a(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/7cf0641e-0d55-4ffb-9500-ecd6ede85ae5(SQL.110)�
http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/2c506167-0b69-49f7-9282-241e411910df(SQL.110)�

 158

For information about support for backups from earlier versions of SQL Server,
see the "Compatibility Support" section of RESTORE (Transact-SQL).

Overview of Database Restore Under the Simple Recovery Model
A full database restore under the simple recovery model involves one or two RESTORE
statements, depending on whether you want to restore a differential database backup. If
you are using only a full database backup, just restore the most recent backup, as shown
in the following illustration.

If you are also using a differential database backup, restore the most recent full database
backup without recovering the database, and then restore the most recent differential
database backup and recover the database. The following illustration shows this process.

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 159

If you plan to restore a database backup onto a different server instance,
see Copying Databases with Backup and Restore.

Basic Transact-SQL RESTORE Syntax
The basic Transact-SQL RESTORE syntax for restoring a full database backup is:
RESTORE DATABASE database_name FROM backup_device [WITH NORECOVERY]

Use WITH NORECOVERY if you plan to also restore a differential database
backup.

The basic RESTORE syntax for restoring a database backup is:
RESTORE DATABASE database_name FROM backup_device WITH RECOVERY

Example (Transact-SQL)
The following example first shows how to use the BACKUP statement to create a full
database backup and a differential database backup of the database. The example
then restores these backups in sequence. The database is restored to its state as of the
time that the differential database backup finished.
The example shows the critical options in a restore sequence for the complete database
restore scenario. A restore sequence consists of one or more restore operations that
move data through one or more of the phases of restore. Syntax and details that are not
relevant to this purpose are omitted. When you recover a database, we recommend
explicitly specifying the RECOVERY option for clarity, even though it is the default.

Note

Note

http://msdn.microsoft.com/en-us/library/b93e9701-72a0-408e-958c-dc196872c040(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 160

The example starts with an ALTER DATABASE statement that sets the recovery
model to SIMPLE.

USE master;

--Make sure the database is using the simple recovery model.

ALTER DATABASE AdventureWorks2012 SET RECOVERY SIMPLE;

GO

-- Back up the full AdventureWorks2012 database.

BACKUP DATABASE AdventureWorks2012

TO DISK = 'Z:\SQLServerBackups\AdventureWorks2012.bak'

 WITH FORMAT;

GO

--Create a differential database backup.

BACKUP DATABASE AdventureWorks2012

TO DISK = 'Z:\SQLServerBackups\AdventureWorks2012.bak'

 WITH DIFFERENTIAL;

GO

--Restore the full database backup (from backup set 1).

RESTORE DATABASE AdventureWorks2012

FROM DISK = 'Z:\SQLServerBackups\AdventureWorks2012.bak'

 WITH FILE=1, NORECOVERY;

--Restore the differential backup (from backup set 2).

RESTORE DATABASE AdventureWorks2012

FROM DISK = 'Z:\SQLServerBackups\AdventureWorks2012.bak'

 WITH FILE=2, RECOVERY;

GO

Related Tasks
To restore a full database backup
• Restore a Full Database Backup (Transact-SQL)
• Restore a Database Backup (SQL Server Management Studio)
• Create a New Database From An Existing Database Backup (SQL Server Management

Studio)

Note

http://msdn.microsoft.com/en-us/library/15f8affd-8f39-4021-b092-0379fc6983da(SQL.110)�

 161

To restore a differential database backup
• Restore a Full Differential Backup (SQL Server Management Studio)
To restore a backup by using SQL Server Management Objects (SMO)
•

 M:Microsoft.SqlServer.Management.Smo.Restore.SqlRestore(Microsoft.SqlServer.M
anagement.Smo.Server)

See Also
RESTORE (Transact-SQL)
BACKUP (Transact-SQL)
sp_addumpdevice (Transact-SQL)
Full Database Backups
Differential Backups (SQL Server)
Backup Overview (SQL Server)
Restore and Recovery Overview (SQL Server)

Restore a Database Backup Under the Simple
Recovery Model (Transact-SQL)
This topic explains how to restore a full database backup.

The system administrator restoring the full database backup must be the only
person currently using the database to be restored.

Prerequisites and Recommendations
• To restore a database that is encrypted, you must have access to the certificate or

asymmetric key that was used to encrypt the database. Without the certificate or
asymmetric key, the database cannot be restored. As a result, the certificate that is
used to encrypt the database encryption key must be retained as long as the backup
is needed. For more information, see SQL Server Certificates and Asymmetric Keys.

• For security purposes, we recommend that you do not attach or restore databases
from unknown or untrusted sources. Such databases could contain malicious code
that might execute unintended Transact-SQL code or cause errors by modifying the
schema or the physical database structure. Before you use a database from an
unknown or untrusted source, run DBCC CHECKDB on the database on a
nonproduction server and also examine the code, such as stored procedures or other
user-defined code, in the database.

Important

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�
http://msdn.microsoft.com/en-us/library/8519aa2f-f09c-4c1c-96b5-abc24811e60c(SQL.110)�
http://msdn.microsoft.com/en-us/library/2c506167-0b69-49f7-9282-241e411910df(SQL.110)�

 162

Database Compatibility Level After Upgrade
The compatibility levels of the tempdb, model, msdb and Resource databases are set
to 100 after upgrade. The master system database retains the compatibility level it had
before upgrade, unless that level was less than 90. If the compatibility level of master
was less than 90 before upgrade, it is set to 90 after upgrade.
If the compatibility level of a user database was 90 or 100 before upgrade, it remains the
same after upgrade. If the compatibility level was 80 or less before upgrade, in the
upgraded database, the compatibility level is set to 90, which is the lowest supported
compatibility level in SQL Server 2012.

New user databases will inherit the compatibility level of the model database.

Procedures

1. Execute the RESTORE DATABASE statement to restore the full database backup,
specifying:
• The name of the database to restore.
• The backup device from where the full database backup is restored.
• The NORECOVERY clause if you have a transaction log or differential database

backup to apply after restoring the full database backup.

Important
To restore a database that is encrypted, you must have access to the
certificate or asymmetric key that was used to encrypt the database.
Without the certificate or asymmetric key, the database cannot be
restored. As a result, the certificate that is used to encrypt the database
encryption key must be retained as long as the backup is needed. For
more information, see SQL Server Certificates and Asymmetric Keys.

2. Optionally, specify:
• The FILE clause to identify the backup set on the backup device to restore.

Note
• If you restore a SQL Server 2005 or SQL Server 2008 database to SQL Server

2012, the database is automatically upgraded. Typically, the database
becomes available immediately. However, if a SQL Server 2005 database has
full-text indexes, the upgrade process either imports, resets, or rebuilds them,
depending on the setting of the upgrade_option server property. If the
upgrade option is set to import (upgrade_option = 2) or rebuild
(upgrade_option = 0), the full-text indexes will be unavailable during the
upgrade. Depending the amount of data being indexed, importing can take

Note

To restore a full database backup

http://msdn.microsoft.com/en-us/library/8519aa2f-f09c-4c1c-96b5-abc24811e60c(SQL.110)�

 163

several hours, and rebuilding can take up to ten times longer. Note also that
when the upgrade option is set to import, the associated full-text indexes are
rebuilt if a full-text catalog is not available. To change the setting of the
upgrade_option server property, use sp_fulltext_service.

Example

Description
This example restores the full database backup from tape.

Code
USE master

GO

RESTORE DATABASE AdventureWorks2012

 FROM TAPE = '\\.\Tape0'

GO

See Also
Performing a Complete Database Restore (Full Recovery Model)
Performing a Complete Database Restore (Simple Recovery Model)
Full Database Backups
RESTORE
Viewing Information About Backups
Rebuilding System Databases

Restore a Database Backup (SQL Server
Management Studio)
This topic explains how to restore a full database backup.

Under the full or bulk-logged recovery model, before you can restore a database
in SQL Server Management Studio, you must back up the active transaction log
(known as the tail of the log). For more information, see SQL Server Management
Studio Tutorial. To restore a database that is encrypted, you must have access to
the certificate or asymmetric key that was used to encrypt the database. Without
the certificate or asymmetric key, the database cannot be restored. As a result,
the certificate that is used to encrypt the database encryption key must be
retained as long as the backup is needed. For more information, see SQL Server
Certificates and Asymmetric Keys.

Important

http://msdn.microsoft.com/en-us/library/17a91433-f9b6-4a40-88c4-8c704ec2de9f(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/af457ecd-523e-4809-9652-bdf2e81bd876(SQL.110)�
http://msdn.microsoft.com/en-us/library/8519aa2f-f09c-4c1c-96b5-abc24811e60c(SQL.110)�
http://msdn.microsoft.com/en-us/library/8519aa2f-f09c-4c1c-96b5-abc24811e60c(SQL.110)�

 164

Note that if you restore a SQL Server 2005 or SQL Server 2008 database to SQL Server
2012, the database is automatically upgraded. Typically, the database becomes available
immediately. However, if a SQL Server 2005 database has full-text indexes, the upgrade
process either imports, resets, or rebuilds them, depending on the setting of the Full-
Text Upgrade Option server property. If the upgrade option is set to Import or
Rebuild, the full-text indexes will be unavailable during the upgrade. Depending upon
the amount of data being indexed, importing can take several hours, and rebuilding can
take up to ten times longer. Note also that when the upgrade option is set to Import, if
a full-text catalog is not available, the associated full-text indexes are rebuilt. For
information about viewing or changing the setting of the Full-Text Upgrade Option
property, see Manage and Monitor Full-Text Search for a Server Instance.

Procedures

1. After you connect to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Databases. Depending on the database, either select a user database or
expand System Databases, and then select a system database.

3. Right-click the database, point to Tasks, point to Restore, and then click
Database, which opens the Restore Database dialog box.

4. On the General page, use the Source section to specify the source and location
of the backup sets to restore. Select one of the following options:
• Database

Select the database to restore from the drop-down list. The list contains only
databases that have been backed up according to the msdb backup history.

Note
If the backup is taken from a different server, the destination server will
not have the backup history information for the specified database. In this
case, select Device to manually specify the file or device to restore.

• Device
Click the browse (...) button to open the Select backup devices dialog box.
In the Backup media type box, select one of the listed device types. To select
one or more devices for the Backup media box, click Add.
After you add the devices you want to the Backup media list box, click OK to
return to the General page.
In the Source: Device: Database list box, select the name of the database
which should be restored.

To restore a full database backup

http://msdn.microsoft.com/en-us/library/2733ed78-6d33-4bf9-94da-60c3141b87c8(SQL.110)�

 165

Note
This list is only available when Device is selected. Only databases that
have backups on the selected device will be available.

Backup media

Select the medium for the restore operation: File, Tape, or Backup Device. The
Tape option appears only if a tape drive is mounted on the computer, and the
Backup Device option appears, only if at least one backup device exists.

Backup location

View, add, or remove media for the restore operation. The list can contain up to
64 files, tapes, or backup devices.

Add

Adds the location of a backup device to the Backup location list. Depending
on the type of media you select in the Backup media field, clicking Add opens
one of the following dialog boxes.

Media type Dialog box Description

File Locate Backup File In this dialog box, you
can select a local file
from the tree or specify a
remote file using its fully
qualified universal
naming convention
(UNC) name. For more
information, see Backup
Devices.

Device Select Backup Device In this dialog box, you
can select from a list of
the logical backup
devices defined on the
server instance.

Tape Select Backup Tape In this dialog box, you
can select from a list of
the tape drives that are
physically connected to
the computer running
the instance of SQL
Server.

 166

If the list is full, the Add button is unavailable.

Remove

Removes one or more selected files, tapes, or logical backup devices.

Contents

Displays the media contents of a selected file, tape, or logical backup device.

5. In the Destination section, the Database box is automatically populated with the
name of the database to be restored. To change the name of the database, enter
the new name in the Database box.

6. In the Restore to box, leave the default as To the last backup taken or click on
Timeline to access the Backup Timeline dialog box to manually select a point in
time to stop the recovery action. For more information on designating a specific
point in time, see Backup Timeline.

7. In the Backup sets to restore grid, select the backups to restore. This grid
displays the backups available for the specified location. By default, a recovery
plan is suggested. To override the suggested recovery plan, you can change the
selections in the grid. Backups that depend on the restoration of an earlier
backup are automatically deselected when the earlier backup is deselected. For
information about the columns in the Backup sets to restore grid, see Restore
Database (General Page).

8. Optionally, click Files in the Select a page pane to access the Files dialog box.
From here, you can restore the database to a new location by specifying a new
restore destination for each file in the Restore the database files as grid. For
more information about this grid, see Restore Database (Database Files Page).

9. To view or select the advanced options, on the Options page, in the Restore
options panel, you can select any of the following options, if appropriate for your
situation:
a. WITH options (not required):
• Overwrite the existing database (WITH REPLACE)
• Preserve the replication settings (WITH KEEP_REPLICATION)
• Restrict access to the restored database (WITH RESTRICTED_USER)
b. Select an option for the Recovery state box. This box determines the state of

the database after the restore operation.
• RESTORE WITH RECOVERY is the default behavior which leaves the

database ready for use by rolling back the uncommitted transactions.
Additional transaction logs cannot be restored. Select this option if you are
restoring all of the necessary backups now.

• RESTORE WITH NORECOVERY which leaves the database non-operational,
and does not roll back the uncommitted transactions. Additional transaction
logs can be restored. The database cannot be used until it is recovered.

 167

• RESTORE WITH STANDBY which leaves the database in read-only mode. It
undoes uncommitted transactions, but saves the undo actions in a standby
file so that recovery effects can be reverted.

c. Take tail-log backup before restore will be selected if it is necessary for the
point in time that you have selected. You do not need to modify this setting,
but you can choose to backup the tail of the log even if it is not required.

d. Restore operations may fail if there are active connections to the database.
Check the Close existing connections option to ensure that all active
connections between Management Studio and the database are closed. This
check box sets the database to single user mode before performing the
restore operations, and sets the database to multi-user mode when complete.

e. Select Prompt before restoring each backup if you wish to be prompted
between each restore operation. This is not usually necessary unless the
database is large and you wish to monitor the status of the restore operation.

For more information about these restore options, see Restore Database (Options
Page).

10. Click .

See Also
How to: Back Up a Transaction Log (SQL Server Management Studio)
How to: Back Up a Database (SQL Server Management Studio)
How to: Create a New Database From An Existing Full Backup (SQL Server Management
Studio)
How to: Restore a Transaction Log Backup (SQL Server Management Studio)
RESTORE (Transact-SQL)
Restore Database (Options Page)
Restore Database (General Page)

Backup Timeline
Use the Backup Timeline dialog box to locate and specify backups to restore a database
to a point-in-time. The Backup Timeline dialog box is accessed by clicking Timeline on
the Restore Database (General Page) pane. This dialog box allows you to view a
timeline of the restore operations performed on the database.
Restore to
Last backup taken is selected by default. SQL Server Management Studio will select the
appropriate backups to restore the database, and will restore the database to the point
of the last backup. Click A specific date and time to manually set the date and time
(selecting a specific point in time).

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 168

Specific date and time permits you stop the restore at a specific date and time that you
select. The timeline shows a representation of the backup operations performed in the
24 hours around the select date and time.
Date

Enter or select a date from the drop-down list.

Time

Enter or select a date to designate the specific point-in-time for the restore to stop.

Timeline Interval

Displays the options for the interval types viewable on the timeline.

Timeline and Legend
Use the scroll bar beneath the timeline to move the cursor forward and backward along
the timeline. Click on a backup to move the scroll bar to the end of that backup. Hover
the mouse over a marker to display a ScreenTip providing information about the
selected backup set. Backup information is shown on the timeline by the following
markers.
Larger triangle

Represents the full backups performed on the database, denoting the specific point in
time each full backup was performed.

Smaller triangle

Represents the differential backups performed on the database, denoting the specific
point in time that each differential backup was performed.

Green shaded areas

Represents the transaction log backup coverage.

Red line

Can only be positioned along the timeline where the restore is possible. Moving the red
line along the timeline adjusts the date and time displayed in the Date and Time boxes.

See Also
Restore Database (General Page)

Restore Database (General Page)
Use the General page to specify information about the target and source databases for a
database-restore operation.
To use SQL Server Management Studio to restore a database backup
• Working with Transaction Log Backups
• How to: Restore a Differential Database Backup (SQL Server Management Studio)

 169

When you specify a restore task by using SQL Server Management Studio, you
can generate the corresponding Transact-SQL RESTORE script by clicking Script
and then selecting a destination for the script.

Permissions
If the database being restored does not exist, the user must have CREATE DATABASE
permissions to be able to execute RESTORE. If the database exists, RESTORE permissions
default to members of the sysadmin and dbcreator fixed server roles and the owner
(dbo) of the database.
RESTORE permissions are given to roles in which membership information is always
readily available to the server. Because fixed database role membership can be checked
only when the database is accessible and undamaged, which is not always the case when
RESTORE is executed, members of the db_owner fixed database role do not have
RESTORE permissions.
Options
Source
The options of the Restore from panel identify the location of the backup sets for the
database and which backup sets you want to restore.

Term Definition

Database Select the database to restore from the
drop-down list. The list contains only
databases that have been backed up
according to the msdb backup history.

Device Select the logical or physical backup
devices (tapes or files) that contain the
backup or backups you want to restore.
This is required if the database backup was
taken on a different instance of SQL Server.
To select one or more logical or physical
backup devices, click the browse button
which opens the Select backup devices
dialog box. There, you can select up to 64
devices that belong to a single media set.
Tape devices must be physically connected
to the computer that is running the
instance of SQL Server. A backup file can
be on a local or remove disk device. For
more information, see Backup Devices.

Note

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 170

Term Definition

When you exit the Select backup devices
dialog box, the selected device will appear
as read-only values in the Device list.

Database Select the database name from which the
backups should be restored from the
dropdown list.

Note
This list is only available when
Device is selected. Only databases
that have backups on the selected
devices will be available.

Destination
The options of the Restore to panel identify the database and restore point.

Term Definition

Database Enter the database to restore in the list.
You can enter a new database or choose an
existing database from the drop-down list.
The list includes all databases on the server,
excluding the system databases master
and tempdb.

Note
To restore a password-protected
backup, you must use the RESTORE
statement.

Restore to The Restore to box will be set "To the last
backup taken" by default. You can also click
Timeline to show the Backup Timeline
dialog box, which displays the database
backup history in the form of a timeline.
Click Timeline to designate a specific
datetime to which you want to restore the
database. The database will then be
restored to the state it was in at this
specified point in time. See Backup

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 171

Term Definition

Timeline.

Restore Plan

Term Definition

Backup sets to restore Displays the backup sets available for the
specified location. Each backup set, the
result of a single backup operation, is
distributed across all of the devices in the
media set. By default, a recovery plan is
suggested to achieve the goal of the
restore operation that is based on the
selection of the required backup sets. SQL
Server Management Studio uses the
backup history in msdb to identify which
backups are required to restore a database,
and creates a restore plan. For example, for
a database restore, the restore plan selects
the most recent full database backup
followed by the most recent subsequent
differential database backup, if any. Under
the full recovery model, the restore plan
then selects all subsequent log backups.
To override the suggested recovery plan,
you can change the selections in the grid.
Any backups that depend on a deselected
backup are deselected automatically.

Header Values

Restore The selected check
boxes indicate the
backup sets to be
restored.

Name The name of the
backup set.

Component The backed-up
component:

 172

Term Definition

Database, File, or
<blank> (for
transaction logs).

Type The type of backup
performed: Full,
Differential, or
Transaction Log.

Server The name of the
Database Engine
instance that
performed the
backup operation.

Database The name of the
database involved
in the backup
operation.

Position The position of the
backup set in the
volume.

First LSN The log sequence
number of the first
transaction in the
backup set. Blank
for file backups.

Last LSN The log sequence
number of the last
transaction in the
backup set. Blank
for file backups.

Checkpoint LSN The log sequence
number (LSN) of
the most recent
checkpoint at the
time the backup
was created.

Full LSN The log sequence
number of the most

 173

Term Definition

recent full database
backup.

Start Date The date and time
when the backup
operation began,
presented in the
regional setting of
the client.

Finish Date The date and time
when the backup
operation finished,
presented in the
regional setting of
the client.

Size The size of the
backup set in bytes.

User Name The name of the
user who
performed the
backup operation.

Expiration The date and time
the backup set
expires.

The checkboxes are only enabled when the
Manual Selection box is checked. This
allows you to select which backup-sets are
to be restored.
When the Manual Selection box is
checked, the accuracy of the Restore Plan is
checked each time it is modified. If the
sequence of backups is incorrect, an error
message will appear.

Verify Backup Media Calls a RESTORE VERIFY_ONLY statement
on the selected backup-sets.

 174

Term Definition

Note
This is a long-running operation,
and its progress can be tracked and
cancelled by using the Progress
Monitor on the Dialog Framework.

This button allows you to check the
integrity of the selected backup files prior
to restoring them.
When checking the integrity of backup sets,
the progress status at the bottom left of
the dialog box will read "Verifying" rather
than "Executing."

Compatibility Support
In SQL Server 2012, you can restore a user database from a database backup that was
created by using SQL Server 2005 or a later version. However, backups of master, model
and msdb that were created by using SQL Server 2005 or SQL Server 2008 cannot be
restored by SQL Server 2012. Also, backups created in SQL Server 2012 cannot be
restored by any earlier version of SQL Server.

No SQL Server backup be restored to an earlier version of SQL Server than the
version on which the backup was created.

SQL Server 2012 uses a different default path than earlier versions. Therefore, to restore
a database that was created in the default location for SQL Server 2005 or SQL Server
2008 backups, you must use the MOVE option.
After you restore a SQL Server 2005 or SQL Server 2008 database to SQL Server 2012, the
database is automatically upgraded. Typically, the database becomes available
immediately. However, if a SQL Server 2005 database has full-text indexes, the upgrade
process either imports, resets, or rebuilds them, depending on the setting of the Full-
Text Upgrade Option server property. If the upgrade option is set to Import or
Rebuild, the full-text indexes will be unavailable during the upgrade. Depending upon
the amount of data being indexed, importing can take several hours, and rebuilding can
take up to ten times longer. Note also that when the upgrade option is set to Import, if
a full-text catalog is not available, the associated full-text indexes are rebuilt.
See Also
Backup Devices
How to: Restore a Backup from a Device (SQL Server Management Studio)

Note

 175

How to: Restore a Marked Transaction (SQL Server Management Studio)
How to: Restore a Transaction Log Backup (SQL Server Management Studio)
How to: View the Content of a Backup Tape or File (SQL Server Management Studio)
How to: View the Properties and Content of a Logical Backup Device (SQL Server
Management Studio)
Media Sets, Media Families, and Backup Sets
RESTORE Arguments (Transact-SQL)
Apply Transaction Log Backups

Restore Database (Options Page)
Use the Options page of the Restore Database dialog box to modify the behavior and
outcome of the restore operation.
To use SQL Server Management Studio to restore a database backup
• RESTORE (Transact-SQL)
• How to: Restore a Differential Database Backup (SQL Server Management Studio)

When you specify a restore task by using SQL Server Management Studio, you
can generate a corresponding Transact-SQL script containing the RESTORE
statements for this restore operation. To generate the script, click Script and then
select a destination for the script. For information about the RESTORE syntax,
see RESTORE (Transact-SQL).

Options
Restore options
To modify aspects of the behavior of the restore operation, use the options of the
Restore options panel.
Overwrite the existing database [WITH REPLACE]

The restore operation will overwrite the files of any database that is currently using the
database name that you are specifying in the Restore to field on the General page of
the Restore Database dialog box. The files of the existing database will be overwritten
even if you are restoring backups from a different database to the existing database
name. Selecting this option is equivalent to using the REPLACE option in a RESTORE
statement (Transact-SQL).

Caution
Use this option only after careful consideration. For more information, see RESTORE
Arguments (Transact-SQL).

Preserve the replication settings [WITH KEEP_REPLICATION]

Preserves the replication settings when restoring a published database to a server other

Note

http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�

 176

than the server where the database was created. This option is relevant only if the
database was replicated when the backup was created.

This option is available only with the Leave the database ready for use by rolling back
the uncommitted transactions option (described later in this table), which is
equivalent to restoring a backup with the RECOVERY option.

Selecting this option is equivalent to using the KEEP_REPLICATION option in
a RESTORE statement.

For more information, see Backing Up and Restoring Replicated Databases.

Restrict access to the restored database [WITH RESTRICTED_USER]

Makes the restored database available only to the members of db_owner, dbcreator, or
sysadmin.

Selecting this option is synonymous to using the RESTRICTED_USER option in a
RESTORE statement.

Recovery state
To determine the state of the database after the store operation, you must select one of
the options of the Recovery state panel.
RESTORE WITH RECOVERY

Recovers the database after restoring the final backup checked in the Backup sets to
restore grid on the General page. This is the default option and is equivalent to
specifying WITH RECOVERY in a RESTORE statement (Transact-SQL).

Note
Under the full recovery model or bulk-logged recovery model, choose this option only if you are
restoring all the log files now.

RESTORE WITH NORECOVERY

Leaves the database in the restoring state. This allows you to restore additional backups
in the current recovery path. To recover the database, you will have to perform a restore
operation by using the RESTORE WITH RECOVERY option (see the preceding option).

This option is equivalent to specifying WITH NORECOVERY in a RESTORE statement.

If you select this option, the Preserve replication settings option is unavailable.

RESTORE WITH STANDBY

Leaves the database in a standby state, in which the database is available for limited
read-only access. This option is equivalent to specifying WITH STANDBY in a RESTORE
statement.

Choosing this option requires that you specify a standby file in the Standby file text
box. The standby file allows the recovery effects to be undone.

Standby file

Specifies a standby file. You can browse for the standby file or enter its pathname

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/04588807-21e7-4bbe-9727-b72f692cffa7(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�

 177

directly in the text box.

Tail-Log backup
Allows you to designate that a tail-log backup be performed along with the database
restore.
Take tail-Log backup before restoring

Check this box to designate that a tail-log backup should be performed.

Note
• If the point-in-time you have selected in the Backup Timeline dialog box

requires a tail-log backup, this box will be selected and you will not be able to
edit it.

Backup file

Specifies a backup file for the tail of the log. You can browse for the backup file or
enter its name directly in the text box.

Server connections
Allows you to close existing database connections.
Close existing connections

Restore operations may fail if there are active connections to the database. Check the
Close existing connections option to ensure that all active connections between
Management Studio and the database are closed. This check box sets the database to
single user mode before performing the restore operations, and sets the database to
multi-user mode when complete.

Prompt
Prompt before restoring each backup

Specifies that after each backup is restored, the Continue with Restore dialog box will
be displayed to inquire whether you want to continue the restore sequence. This dialog
box displays the name of the next media set (if known) and the name and description of
the next backup set.

This option allows you to pause a restore sequence after restoring any of the backups.
This option is particularly useful when you must swap tapes for different media sets; for
example, when your server has only one tape device. When you are ready to proceed,
click OK.

You can interrupt a restore sequence by clicking No. This leaves the database is in the
restoring state. At your convenience, you can later continue the restore sequence by
resuming with the next backup described in the Continue with Restore dialog box. The
procedure restoring the next backup depends on whether it contains data or transaction
log, as follows:

• If the next backup is a full or differential backup, use the Restore Database task
again.

 178

• If the next backup is a file backup, use the Restore Files and Filegroups task. For
more information, see How to: Restore Files and Filegroups (SQL Server
Management Studio).

• If the next backup is a log backup, use the Restore Transaction Log task. For
information about resuming a restore sequence by restoring a transaction log,
see How to: Restore a Transaction Log Backup (SQL Server
Management Studio).

See Also
RESTORE (Transact-SQL)
Restore a Backup from a Device (SQL Server)
Restore a Transaction Log Backup (SQL Server)
Media Sets, Media Families, and Backup Sets
Apply Transaction Log Backups
Restore Database (General Page)

Restore Database (Files Page)
Use the Files page of the Restore Database dialog box to manage the specific files you
have chosen to restore within the database.
Options
Restore database files as
Use to assign and manage the new file path to the restored files.
Relocate all files to folder

Relocates restored files.

Option Description

Data file folder Enter or search for the data file folder
name that the restored data file or files
should be relocated to.

Log file folder Enter or search for the log file or files
folder that the restored log file should be
relocated to.

Logical File Name

Displays one row for each database file to be restored.

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 179

File Type

Displays the file type.

Original File Name

Displays the original file path for the restored file.

Restore As

Lists the file names that the restored files are to be saved as. Enter or search for the
appropriate file name.

See Also
Restore Database (General Page)
Restore Database (Options Page)
RESTORE Arguments (Transact-SQL)
How to: Restore a Differential Database Backup (SQL Server Management Studio)
RESTORE (Transact-SQL)

Continue with Restore
Use the Continue with Restore dialog box to indicate whether you want to restore the
next backup set. To delay the restore operation, for example, to swap tapes, wait until
you are ready to proceed before you click OK.
Clicking No terminates the restore sequence, leaving the database in the restoring state.
To continue with the restore later, use either the Restore Database or Restore
Transaction Log task, as appropriate.
Options
Media set

Displays the next media set name (if available).

Backup set

Displays the backup set name.

Backup set description

Displays the backup set description.

See Also
How to: Restore a Transaction Log Backup (SQL Server Management Studio)
How to: View the Properties and Contents of a Logical Backup Device (SQL Server
Management Studio)
How to: Restore a Database Backup (SQL Server Management Studio)
How to: Restore a Transaction Log Backup (SQL Server Management Studio)

http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 180

Select Backup Device
Use the Select Backup Device dialog box to select a logical backup device for the
restore operation.
A logical backup device is a user-defined logical device that corresponds to a physical
device, either a tape drive or a disk drive, that is provided by the operating system.

If a backup uses multiple backup devices, they all must correspond to a single
type of device.

To use SQL Server Management Studio to view the contents of a backup device
• Backup Devices
• How to: View the Properties and Contents of a Logical Backup Device (SQL Server

Management Studio)
Options
Backup device

In the list box, select the name of a logical backup device from which you want to
restore.

For information about how to view the contents of a backup device, see How to: View
the Properties and Content of a Backup Device (SQL Server
Management Studio).

Remarks
If you do not see a logical backup device that contains the backup you are seeking on
the list, the backup might have been written directly to one or more files or tape drives. If
this is the case, cancel the Select Backup Device dialog box; and in the Specify Backup
dialog box, select File or Tape in the Backup media list box.
See Also
Backup Devices

Restore a Database to a New Location
This topic describes how to restore a SQL Server database to a new location, and
optionally rename the database, in SQL Server 2012 by using SQL Server Management
Studio or Transact-SQL. You can move a database to a new directory path or create a
copy of a database on either the same server instance or a different server instance.
In This Topic
• Before you begin:

Limitations and Restrictions
Prerequisites
Recommendations

Note

 181

Security
• To restore a database to a new location, and optionally rename the database,

using:
SQL Server Management Studio
Transact-SQL

• Related Tasks

Before You Begin

Limitations and Restrictions
• The system administrator restoring a full database backup must be the only person

currently using the database to be restored.

Prerequisites
• Under the full or bulk-logged recovery model, before you can restore a database,

you must back up the active transaction log. For more information, see How to: Back
Up a Transaction Log (SQL Server Management Studio).

Recommendations

• To restore a database that is encrypted, you must have access to the certificate or

asymmetric key that was used to encrypt the database. Without the certificate or
asymmetric key, the database cannot be restored. As a result, the certificate that is
used to encrypt the database encryption key must be retained as long as the backup
is needed. For more information, see SQL Server Certificates and Asymmetric Keys.

• For information about additional considerations for moving a database, see Copying
Databases with Backup and Restore.

• If you restore a SQL Server 2005 or SQL Server 2008 database to SQL Server 2012,
the database is automatically upgraded. Typically, the database becomes available
immediately. However, if a SQL Server 2005 database has full-text indexes, the
upgrade process either imports, resets, or rebuilds them, depending on the setting of
the upgrade_option server property. If the upgrade option is set to import
(upgrade_option = 2) or rebuild (upgrade_option = 0), the full-text indexes will be
unavailable during the upgrade. Depending the amount of data being indexed,
importing can take several hours, and rebuilding can take up to ten times longer.
Note also that when the upgrade option is set to import, the associated full-text
indexes are rebuilt if a full-text catalog is not available. To change the setting of the
upgrade_option server property, use sp_fulltext_service.

Security

http://msdn.microsoft.com/en-us/library/8519aa2f-f09c-4c1c-96b5-abc24811e60c(SQL.110)�
http://msdn.microsoft.com/en-us/library/b93e9701-72a0-408e-958c-dc196872c040(SQL.110)�
http://msdn.microsoft.com/en-us/library/b93e9701-72a0-408e-958c-dc196872c040(SQL.110)�
http://msdn.microsoft.com/en-us/library/17a91433-f9b6-4a40-88c4-8c704ec2de9f(SQL.110)�

 182

For security purposes, we recommend that you do not attach or restore databases from
unknown or untrusted sources. Such databases could contain malicious code that might
execute unintended Transact-SQL code or cause errors by modifying the schema or the
physical database structure. Before you use a database from an unknown or untrusted
source, run DBCC CHECKDB on the database on a nonproduction server and also
examine the code, such as stored procedures or other user-defined code, in the
database.

Permissions
If the database being restored does not exist, the user must have CREATE DATABASE
permissions to be able to execute RESTORE. If the database exists, RESTORE permissions
default to members of the sysadmin and dbcreator fixed server roles and the owner
(dbo) of the database.
RESTORE permissions are given to roles in which membership information is always
readily available to the server. Because fixed database role membership can be checked
only when the database is accessible and undamaged, which is not always the case when
RESTORE is executed, members of the db_owner fixed database role do not have
RESTORE permissions.

Using SQL Server Management Studio

1. Connect to the appropriate instance of the SQL Server Database Engine, and then
in Object Explorer, click the server name to expand the server tree.

2. Right-click Databases, and then click Restore Database. The Restore Database
dialog box opens.

3. On the General page, use the Source section to specify the source and location
of the backup sets to restore. Select one of the following options:
• Database

Select the database to restore from the drop-down list. The list contains only
databases that have been backed up according to the msdb backup history.

Note
If the backup is taken from a different server, the destination server will
not have the backup history information for the specified database. In this
case, select Device to manually specify the file or device to restore.

a. Device
Click the browse (...) button to open the Select backup devices dialog box.
In the Backup media type box, select one of the listed device types. To select
one or more devices for the Backup media box, click Add.

To restore a database to a new location, and optionally rename the database

http://msdn.microsoft.com/en-us/library/2c506167-0b69-49f7-9282-241e411910df(SQL.110)�

 183

After you add the devices you want to the Backup media list box, click OK to
return to the General page.
In the Source: Device: Database list box, select the name of the database
which should be restored.
Note This list is only available when Device is selected. Only databases that
have backups on the selected device will be available.

4. In the Destination section, the Database box is automatically populated with the
name of the database to be restored. To change the name of the database, enter
the new name in the Database box.

5. In the Restore to box, leave the default as To the last backup taken or click on
Timeline to access the Backup Timeline dialog box to manually select a point in
time to stop the recovery action. See Backup Timeline for more information on
designating a specific point in time.

6. In the Backup sets to restore grid, select the backups to restore. This grid
displays the backups available for the specified location. By default, a recovery
plan is suggested. To override the suggested recovery plan, you can change the
selections in the grid. Backups that depend on the restoration of an earlier
backup are automatically deselected when the earlier backup is deselected.
For information about the columns in the Backup sets to restore grid,
see Restore Database (General Page).

7. To specify the new location of the database files, select the Files page, and then
click Relocate all files to folder. Provide a new location for the Data file folder
and Log file folder. For more information about this grid, see Restore Database
(Files Page).

8. On the Options page, adjust the options if you want. For more information about
these options, see Restore Database (Options Page).

Using Transact-SQL

1. Optionally, determine the logical and physical names of the files in the backup
set that contains the full database backup that you want to restore. This
statement returns a list of the database and log files contained in the backup set.
The basic syntax is as follows:
RESTORE FILELISTONLY FROM <backup_device> WITH FILE =
backup_set_file_number
Here, backup_set_file_number indicates the position of the backup in the media
set. You can obtain the position of a backup set by using the RESTORE
HEADERONLY statement. For more information, see "Specifying a Backup Set"

To restore a database to a new location, and optionally rename the database

http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�

 184

in RESTORE Arguments (Transact-SQL).
This statement also supports a number of WITH options. For more information,
see RESTORE FILELISTONLY (Transact-SQL).

2. Use the RESTORE DATABASE statement to restore the full database backup. By
default, data and log files are restored to their original locations. To relocate a
database, use the MOVE option to relocate each of the database files and to
avoid collisions with existing files.
The basic Transact-SQL syntax for restoring the database to a new location and a
new name is:
RESTORE DATABASE new_database_name
 FROM backup_device [,...n]
 [WITH
 {
 [RECOVERY | NORECOVERY]
 [,] [FILE ={ backup_set_file_number | @backup_set_file_number }]
 [,] MOVE 'logical_file_name_in_backup' TO 'operating_system_file_name' [,...n]
 }
;

Note
When preparing to relocate a database on a different disk, you should
verify that sufficient space is available and identify any potential collisions
with existing files. This involves using a RESTORE VERIFYONLY statement
that specifies the same MOVE parameters that you plan to use in your
RESTORE DATABASE statement.

The following table describes arguments of this RESTORE statement in terms of
restoring a database to a new location. For more information about these
arguments, see RESTORE (Transact-SQL).
new_database_name

The new name for the database.

Note
If you are restoring the database to a different server instance, you
can use the original database name instead of a new name.

backup_device [,...n]

Specifies a comma-separated list of from 1 to 64 backup devices from which
the database backup is to be restored. You can specify a physical backup
device, or you can specify a corresponding logical backup device, if defined. To
specify a physical backup device, use the DISK or TAPE option:

http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/0b4b4d11-eb9d-4f3e-9629-6c79cec7a81a(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 185

{ DISK | TAPE } = physical_backup_device_name
For more information, see Backup Devices.

{ RECOVERY | NORECOVERY }

If the database uses the full recovery model, you might need to apply
transaction log backups after you restore the database. In this case, specify the
NORECOVERY option.
Otherwise, use the RECOVERY option, which is the default.

FILE = { backup_set_file_number | @backup_set_file_number }

Identifies the backup set to be restored. For example, a backup_set_file_number
of 1 indicates the first backup set on the backup medium and a
backup_set_file_number of 2 indicates the second backup set. You can obtain
the backup_set_file_number of a backup set by using the RESTORE
HEADERONLY statement.
When this option is not specified, the default is to use the first backup set on
the backup device.
For more information, see "Specifying a Backup Set," in RESTORE Arguments
(Transact-SQL).

MOVE 'logical_file_name_in_backup' TO 'operating_system_file_name' [,...n]

Specifies that the data or log file specified by logical_file_name_in_backup is to
be restored to the location specified by operating_system_file_name. Specify a
MOVE statement for every logical file you want to restore from the backup set
to a new location.

Option Description

logical_file_name_in_backup Specifies the logical name of a data
or log file in the backup set. The
logical file name of a data or log file
in a backup set matches its logical
name in the database when the
backup set was created.

Note
To obtain a list of the
logical files from the
backup set,
use RESTORE
FILELISTONLY.

operating_system_file_name Specifies a new location for the file
specified by

http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/0b4b4d11-eb9d-4f3e-9629-6c79cec7a81a(SQL.110)�
http://msdn.microsoft.com/en-us/library/0b4b4d11-eb9d-4f3e-9629-6c79cec7a81a(SQL.110)�

 186

logical_file_name_in_backup. The
file will be restored to this location.
Optionally,
operating_system_file_name
specifies a new file name for the
restored file. This is necessary if you
are creating a copy of an existing
database on the same server
instance.

n Is a placeholder indicating that you
can specify additional MOVE
statements.

Example (Transact-SQL)
This example creates a new database named MyAdvWorks by restoring a backup of the
sample database, which includes two files: _Data and _Log. This database uses
the simple recovery model. The database already exists on the server instance, so
the files in the backup must be restored to a new location. The RESTORE FILELISTONLY
statement is used to determine the number and names of the files in the database being
restored. The database backup is the first backup set on the backup device.

The examples of backing up and restoring the transaction log, including point-in-
time restores, use the MyAdvWorks_FullRM database that is created from
just like the following MyAdvWorks example. However, the resulting
MyAdvWorks_FullRM database must be changed to use the full recovery model
by using the following Transact-SQL statement: ALTER DATABASE
<database_name> SET RECOVERY FULL.

USE master;

GO

-- First determine the number and names of the files in the backup.

-- AdventureWorks2012_Backup is the name of the backup device.

RESTORE FILELISTONLY

 FROM AdventureWorks2012_Backup;

-- Restore the files for MyAdvWorks.

RESTORE DATABASE MyAdvWorks

 FROM AdventureWorks2012_Backup

 WITH RECOVERY,

 MOVE 'AdventureWorks2012_Data' TO 'D:\MyData\MyAdvWorks_Data.mdf',

Note

 187

 MOVE 'AdventureWorks2012_Log' TO 'F:\MyLog\MyAdvWorks_Log.ldf';

GO

For an example of how to create a full database backup of the database, see Create
a Full Database Backup.

Related Tasks
• Create a Full Database Backup
• Restore a Database Backup
• Back Up a Transaction Log (SQL Server)
• Restore a Transaction Log Backup (SQL Server)

See Also
Manage Metadata When Making a Database Available on Another Server Instance
RESTORE
Considerations for Copying Databases with Backup and Restore

Complete Database Restores (Full Recovery
Model)
In a complete database restore, the goal is to restore the whole database. The whole
database is offline for the duration of the restore. Before any part of the database can
come online, all data is recovered to a consistent point in which all parts of the database
are at the same point in time and no uncommitted transactions exist.
Under the full recovery model, after you restore your data backup or backups, you must
restore all subsequent transaction log backups and then recover the database. You can
restore a database to a specific recovery point within one of these log backups. The
recovery point can be a specific date and time, a marked transaction, or a log sequence
number (LSN).
When restoring a database, particularly under the full recovery model or bulk-logged
recovery model, you should use a single restore sequence. A restore sequence consists of
one or more restore operations that move data through one or more of the phases of
restore.

noteDXDOC112778PADS Security Note

http://msdn.microsoft.com/en-us/library/5d98cf2a-9fc2-4610-be72-b422b8682681(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/b93e9701-72a0-408e-958c-dc196872c040(SQL.110)�

 188

We recommend that you do not attach or restore databases from unknown or
untrusted sources. These databases could contain malicious code that might
execute unintended Transact-SQL code or cause errors by modifying the schema
or the physical database structure. Before you use a database from an unknown
or untrusted source, run DBCC CHECKDB on the database on a nonproduction
server and also examine the code, such as stored procedures or other user-
defined code, in the database.

In this Topic:
• Restoring a Database to the Point of Failure
• Restoring a Database to a Point Within a Log Backup
• Related Tasks

For information about support for backups from earlier versions of SQL Server,
see the "Compatibility Support" section of RESTORE (Transact-SQL).

Restoring a Database to the Point of Failure
Typically, recovering a database to the point of failure involves the following basic steps:
1. Back up the active transaction log (known as the tail of the log). This creates a tail-log

backup. If the active transaction log is unavailable, all transactions in that part of the
log are lost.

Under the bulk-logged recovery model, backing up any log that contains
bulk-logged operations requires access to all data files in the database. If the
data files cannot be accessed, the transaction log cannot be backed up. In
that case, you have to manually redo all changes that were made since the
most recent log backup.

For more information, see Tail-Log Backups.
2. Restore the most recent full database backup without recovering the database

(RESTORE DATABASE database_name FROM backup_device WITH NORECOVERY).
3. If differential backups exist, restore the most recent one without recovering the

database (RESTORE DATABASE database_name FROM differential_backup_device
WITH NORECOVERY).
Restoring the most recent differential backup reduces the number of log backups
that must be restored.

4. Starting with the first transaction log backup that was created after the backup you
just restored, restore the logs in sequence with NORECOVERY.

5. Recover the database (RESTORE DATABASE database_name WITH RECOVERY).
Alternatively, this step can be combined with restoring the last log backup.

Note

Important

http://msdn.microsoft.com/en-us/library/2c506167-0b69-49f7-9282-241e411910df(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 189

The following illustration shows this restore sequence. After a failure occurs (1), a tail-log
backup is created (2). Next, the database is restored to the point of the failure. This
involves restoring a database backup, a subsequent differential backup, and every log
backup taken after the differential backup, including the tail-log backup.

When you restore a database backup onto a different server instance,
see Copying Databases with Backup and Restore.

Basic Transact-SQL RESTORE Syntax
The basic RESTORE Transact-SQL syntax for the restore sequence in the preceding
illustration is as follows:
1. RESTORE DATABASE database FROM full database backup WITH NORECOVERY;
2. RESTORE DATABASE database FROM full_differential_backup WITH NORECOVERY;
3. RESTORE LOG database FROM log_backup WITH NORECOVERY;

Repeat this restore-log step for each additional log backup.
4. RESTORE DATABASE database WITH RECOVERY;

Note

http://msdn.microsoft.com/en-us/library/b93e9701-72a0-408e-958c-dc196872c040(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 190

Example: Recovering to the Point of Failure (Transact-SQL)
The following Transact-SQL example shows the essential options in a restore sequence
that restores the database to the point of failure. The example creates a tail-log backup
of the database. Next, the example restores a full database backup and log backup and
then restores the tail-log backup. The example recovers the database in a separate, final
step.

This example uses a database backup and log backup that is created in the
"Using Database Backups Under the Full Recovery Model" section in Full
Database Backups. Before the database backup, the sample database was
set to use the full recovery model.

USE master;

--Create tail-log backup.

BACKUP LOG AdventureWorks2012

TO DISK = 'Z:\SQLServerBackups\AdventureWorksFullRM.bak'

 WITH NORECOVERY;

GO

--Restore the full database backup (from backup set 1).

RESTORE DATABASE AdventureWorks2012

 FROM DISK = 'Z:\SQLServerBackups\AdventureWorksFullRM.bak'

 WITH FILE=1,

 NORECOVERY;

--Restore the regular log backup (from backup set 2).

RESTORE LOG AdventureWorks2012

 FROM DISK = 'Z:\SQLServerBackups\AdventureWorksFullRM.bak'

 WITH FILE=2,

 NORECOVERY;

--Restore the tail-log backup (from backup set 3).

RESTORE LOG AdventureWorks2012

 FROM DISK = 'Z:\SQLServerBackups\AdventureWorksFullRM.bak'

 WITH FILE=3,

 NORECOVERY;

GO

Note

 191

--recover the database:

RESTORE DATABASE AdventureWorks2012 WITH RECOVERY;

GO

Restoring a Database to a Point Within a Log Backup
Under the full recovery model, a complete database restore can usually be recovered to
a point of time, a marked transaction, or an LSN within a log backup. However, under the
bulk-logged recovery model, if the log backup contains bulk-logged changes, point-in-
time recovery is not possible.

Sample Point-in-Time Restore Scenarios
The following example assumes a mission-critical database system for which a full
database backup is created daily at midnight, a differential database backup is created
on the hour, Monday through Saturday, and transaction log backups are created every
10 minutes throughout the day. To restore the database to the state is was in at 5:19
A.M. Wednesday, do the following:
1. Restore the full database backup that was created Tuesday at midnight.
2. Restore the differential database backup that was created at 5:00 A.M. on

Wednesday.
3. Apply the transaction log backup that was created at 5:10 A.M. on Wednesday.
4. Apply the transaction log backup that was created 5:20 A.M. on Wednesday,

specifying that the recovery process applies only to transactions that occurred before
5:19 A.M.

Alternatively, if the database needs to be restored to its state at 3:04 A.M. Thursday, but
the differential database backup that was created at 3:00 A.M. Thursday is unavailable,
do the following:
1. Restore the database backup that was created Wednesday at midnight.
2. Restore the differential database backup that was created at 2:00 A.M. on Thursday.
3. Apply all the transaction log backups created from 2:10 A.M. to 3:00 A.M. on

Thursday.
4. Apply the transaction log backup that was created at 3:10 A.M. on Thursday,

stopping the recovery process at 3:04 A.M.

For an example of a point-in-time restore, see Restore a SQL Server Database to
a Point in Time (Full Recovery Model).

Related Tasks
To restore a full database backup

Note

 192

• How to: Restore a Database Backup (SQL Server Management Studio)
• How to: Create a New Database From An Existing Database Backup (SQL Server

Management Studio)
To restore a differential database backup
• How to: Restore a Full Differential Backup (SQL Server Management Studio)
To restore a transaction log backup
• How to: Restore a Transaction Log Backup (SQL Server Management Studio)
To restore a backup by using SQL Server Management Objects (SMO)
•

 M:Microsoft.SqlServer.Management.Smo.Restore.SqlRestore(Microsoft.SqlServer.M
anagement.Smo.Server)

To restore a database to a point within a log backup
• Recovering to a Specific Point in Time
• Recovering to a Marked Transaction
• Recovering to a Log Sequence Number (LSN)

See Also
RESTORE (Transact-SQL)
BACKUP (Transact-SQL)
Apply Transaction Log Backups (SQL Server)
sp_addumpdevice (Transact-SQL)
Full Database Backups
Differential Backups (SQL Server)
Backup Overview (SQL Server)
Restore and Recovery Overview (SQL Server)

Restore a Database to the Point of Failure Under
the Full Recovery Model (Transact-SQL)
This topic explains how to restore to the point of failure. The topic is relevant only for
databases that are using the full or bulk-logged recovery models.

Procedures

1. Back up the tail of the log by running the following basic BACKUP statement:

To restore to the point of failure

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/c2d2ae49-0808-46d8-8444-db69a69d0ec3(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 193

BACKUP LOG <database_name> TO <backup_device>

 WITH NORECOVERY, NO_TRUNCATE;

2. Restore a full database backup by running the following basic RESTORE
DATABASE statement:

RESTORE DATABASE <database_name> FROM <backup_device>

 WITH NORECOVERY;

3. Optionally, restore a differential database backup by running the following basic
RESTORE DATABASE statement:

RESTORE DATABASE <database_name> FROM <backup_device>

 WITH NORECOVERY;

4. Apply each transaction log, including the tail-log backup you created in step 1, by
specifying WITH NORECOVERY in the RESTORE LOG statement:
RESTORE LOG <database_name> FROM <backup_device>

 WITH NORECOVERY;

5. Recover the database by running the following RESTORE DATABASE statement:

RESTORE DATABASE <database_name>

 WITH RECOVERY;

Example

Description
Before you can run the example, you must complete the following preparations:
1. The default recovery model of the database is the simple recovery model.

Because this recovery model does not support restoring to the point of a failure, set
to use the full recovery model by running the following ALTER DATABASE statement:

USE master;

GO

ALTER DATABASE AdventureWorks2012 SET RECOVERY FULL;

2. Create a full database back of the database by using the following BACKUP
statement:

BACKUP DATABASE AdventureWorks2012 TO DISK =

'C:\AdventureWorks2012_Data.bck';

3. Create a routine log backup:

BACKUP LOG AdventureWorks2012 TO DISK =

'C:\AdventureWorks2012_Log.bck';

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/15f8affd-8f39-4021-b092-0379fc6983da(SQL.110)�

 194

The following example restores the backups that are created previously, after creating a
tail-log backup of the database. (This step assumes that the log disk can be
accessed.)
First, the example creates a tail-log backup of the database that captures the active log
and leaves the database in the Restoring state. Then, the example restores the database
backup, applies the routine log backup created previously, and applies the tail-log
backup. Finally, the example recovers the database in a separate step.

The default behavior is to recover a database as part of the statement that
restores the final backup.

Code
/* Example of restoring a to the point of failure */

-- Step 1: Create a tail-log backup by using WITH NORECOVERY.

BACKUP LOG AdventureWorks2012

 TO DISK = 'C:\AdventureWorks2012_Log.bck'

 WITH NORECOVERY;

GO

-- Step 2: Restore the full database backup.

RESTORE DATABASE AdventureWorks2012

 FROM DISK = 'C:\AdventureWorks2012_Data.bck'

 WITH NORECOVERY;

GO

-- Step 3: Restore the first transaction log backup.

RESTORE LOG AdventureWorks2012

 FROM DISK = 'C:\AdventureWorks2012_Log.bck'

 WITH NORECOVERY;

GO

-- Step 4: Restore the tail-log backup.

RESTORE LOG AdventureWorks2012

 FROM DISK = 'C:\AdventureWorks2012_Log.bck'

 WITH NORECOVERY;

GO

-- Step 5: Recover the database.

RESTORE DATABASE AdventureWorks2012

Note

 195

 WITH RECOVERY;

GO

See Also
SQL Server Management Studio Tutorial
RESTORE (Transact-SQL)

File Restores (Simple Recovery Model)
This topic is relevant only for simple-model databases that contain at least one read-only
secondary filegroup.
In a file restore, the goal is to restore one or more damaged files without restoring the
whole database. Under the simple recovery model, file backups are supported only for
read-only files. The primary filegroup and read/write secondary filegroups are always
restored together, by restoring a database or partial backup.
The file-restore scenarios are as follows:
• Offline file restore

In an offline file restore, the database is offline while damaged files or filegroups are
restored. At the end of the restore sequence, the database comes online.
All editions of SQL Server 2012 support offline file restore.

• Online file restore
In an online file restore, if database is online at restore time, it remains online during
the file restore. However, each filegroup in which a file is being restored is offline
during the restore operation. After all the files in an offline filegroup are recovered,
the filegroup is automatically brought online.
For information about support for online page and file restore, see Features
Supported by the Editions of SQL Server 2012. For more information about online
restores, see Online Restores.

If you want the database to be offline for a file restore, take the database
offline before you start the restore sequence by executing the
following ALTER DATABASE statement: ALTER DATABASE database_name SET
OFFLINE.

In this Topic:
• Overview of File and Filegroup Restore Under the Simple Recovery Model
• Related Tasks

Tip

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/f76fbd84-df59-4404-806b-8ecb4497c9cc(SQL.110)�

 196

Overview of File and Filegroup Restore Under the Simple Recovery Model
A file restore scenario consists of a single restore sequence that copies, rolls forward, and
recovers the appropriate data as follows:
1. Restore each damaged file from its most recent file backup.
2. Restore the most recent differential file backup for each restored file and recover the

database.

Transact-SQL Steps for File Restore Sequence (Simple Recovery Model)
This section shows the essential Transact-SQL RESTORE options for a simple file-restore
sequence. Syntax and details that are not relevant to this purpose are omitted.
The restore sequence contains only two Transact-SQL statements. The first statement
restores a secondary file, file A, which is restored using WITH NORECOVERY. The second
operation restores two other files, B and C which are restored using WITH RECOVERY
from a different backup device:
1. RESTORE DATABASE database FILE = name_of_file_A

 FROM file_backup_of_file_A
 WITH NORECOVERY;

2. RESTORE DATABASE database FILE = name_of_file_B, name_of_file_C
 FROM file_backup_of_files_B_and_C
 WITH RECOVERY;

Examples
• Example: Online Restore of a Read-Only File (Simple Recovery Model)
• Example: Offline Restore of Primary and One Other Filegroup

Related Tasks
To restore files and filegroups
• Restore Files and Filegroups over Existing Files (Transact-SQL)
• Restore Files and Filegroups (SQL Server Management Studio)
• Restore Files and Filegroups (SQL Server Management Studio)
•

 M:Microsoft.SqlServer.Management.Smo.Restore.SqlRestore(Microsoft.SqlServer.M
anagement.Smo.Server) (SMO)

See Also
Backup and Restore Considerations for Related Features

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 197

Differential Backups (SQL Server)
Full File Backups
Backup Overview (SQL Server)
Restore and Recovery in SQL Server
RESTORE (Transact-SQL)
Complete Database Restores (Simple Recovery Model)
Performing Piecemeal Restores

Restore Files and Filegroups over Existing Files
This topic describes how to restore files and filegroups over existing files in SQL Server
2012 by using SQL Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Limitations and Restrictions
Security

• To restore files and filegroups over existing files, using:
SQL Server Management Studio
Transact-SQL

Before You Begin

Limitations and Restrictions

• The system administrator who is restoring the files and filegroups must be the only

person currently using the database to be restored.
• RESTORE is not allowed in an explicit or implicit transaction.
• Under the full or bulk-logged recovery model, before you can restore files, you must

back up the active transaction log (known as the tail of the log). For more
information, see How to: Back Up a Transaction Log (SQL Server Management
Studio).

• To restore a database that is encrypted, you must have access to the certificate or
asymmetric key that was used to encrypt the database. Without the certificate or
asymmetric key, the database cannot be restored. As a result, the certificate that is
used to encrypt the database encryption key must be retained as long as the backup
is needed. For more information, see SQL Server Certificates and Asymmetric Keys.

Security

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/8519aa2f-f09c-4c1c-96b5-abc24811e60c(SQL.110)�

 198

Permissions
If the database being restored does not exist, the user must have CREATE DATABASE
permissions to be able to execute RESTORE. If the database exists, RESTORE permissions
default to members of the sysadmin and dbcreator fixed server roles and the owner
(dbo) of the database (for the FROM DATABASE_SNAPSHOT option, the database always
exists).
RESTORE permissions are given to roles in which membership information is always
readily available to the server. Because fixed database role membership can be checked
only when the database is accessible and undamaged, which is not always the case when
RESTORE is executed, members of the db_owner fixed database role do not have
RESTORE permissions.

Using SQL Server Management Studio

1. In Object Explorer, connect to an instance of the SQL Server Database Engine,
expand that instance, and then expand Databases.

2. Right-click the database that you want, point to Tasks, point to Restore, and
then click Files and Filegroups.

3. On the General page, in the To database list box, enter the database to restore.
You can enter a new database or choose an existing database from the drop-
down list. The list includes all databases on the server, excluding the system
databases master and tempdb.

4. To specify the source and location of the backup sets to restore, click one of the
following options:
• From database

Enter a database name in the list box. This list contains only databases that
have been backed up according to the msdb backup history.

• From device
Click the browse button. In the Specify backup devices dialog box, select
one of the listed device types in the Backup media type list box. To select
one or more devices for the Backup media list box, click Add.
After you add the devices you want to the Backup media list box, click OK to
return to the General page.

5. In the Select the backup sets to restore grid, select the backups to restore. This
grid displays the backups available for the specified location. By default, a
recovery plan is suggested. To override the suggested recovery plan, you can
change the selections in the grid. Any backups that depend on a deselected
backup are deselected automatically.

To restore files and filegroups over existing files

 199

Column head Values

Restore The selected check boxes indicate the
backup sets to be restored.

Name The name of the backup set.

File Type Specifies the type of data in the
backup: Data, Log, or Filestream
Data. Data that is contained in tables
is in Data files. Transaction log data is
in Log files. Binary large object (BLOB)
data that is stored on the file system is
in Filestream Data files.

Type The type of backup performed: Full,
Differential, or Transaction Log.

Server The name of the Database-Engine
instance that performed the backup
operation.

File Logical Name The logical name of the file.

Database The name of the database involved in
the backup operation.

Start Date The date and time when the backup
operation began, presented in the
regional setting of the client.

Finish Date The date and time when the backup
operation finished, presented in the
regional setting of the client.

Size The size of the backup set in bytes.

User Name The name of the user who performed
the backup operation.

6. In the Select a page pane, click the Options page.
7. In the Restore options panel, select Overwrite the existing database (WITH

REPLACE). The restore operation overwrites any existing databases and their
related files, even if another database or file already exists with the same name.

8. Click .

 200

Using Transact-SQL

1. Execute the RESTORE DATABASE statement to restore the file and filegroup
backup, specifying:
• The name of the database to restore.
• The backup device from where the full database backup will be restored.
• The FILE clause for each file to restore.
• The FILEGROUP clause for each filegroup to restore.
• The REPLACE option to specify that each file can be restored over existing

files of the same name and location.

Caution
Use the REPLACE option cautiously. For more information, see .

• The NORECOVERY option. If the files have not been modified after the
backup was created, specify the RECOVERY clause.

2. If the files have been modified after the file backup was created, execute the
RESTORE LOG statement to apply the transaction log backup, specifying:
• The name of the database to which the transaction log will be applied.
• The backup device from where the transaction log backup will be restored.
• The NORECOVERY clause if you have another transaction log backup to apply

after the current one; otherwise, specify the RECOVERY clause.
The transaction log backups, if applied, must cover the time when the files
and filegroups were backed up.

Example (Transact-SQL)
The following example restores the files and filegroups for the MyNwind database, and
replaces any existing files of the same name. Two transaction logs will also be applied to
restore the database to the current time.

USE master;

GO

-- Restore the files and filesgroups for MyNwind.

RESTORE DATABASE MyNwind

 FILE = 'MyNwind_data_1',

 FILEGROUP = 'new_customers',

 FILE = 'MyNwind_data_2',

To restore files and filegroups over existing files

 201

 FILEGROUP = 'first_qtr_sales'

 FROM MyNwind_1

 WITH NORECOVERY,

 REPLACE;

GO

-- Apply the first transaction log backup.

RESTORE LOG MyNwind

 FROM MyNwind_log1

 WITH NORECOVERY;

GO

-- Apply the last transaction log backup.

RESTORE LOG MyNwind

 FROM MyNwind_log2

 WITH RECOVERY;

GO

See Also
How to: Restore a Database Backup (SQL Server Management Studio)
RESTORE
Restore Files and Filegroups
Considerations for Copying Databases with Backup and Restore

Restore Files to a New Location
This topic describes how to restore files to a new location in SQL Server 2012 by using
SQL Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Limitations and Restrictions
Security

• To restore files to a new location, using:
SQL Server Management Studio
Transact-SQL

Before You Begin

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/b93e9701-72a0-408e-958c-dc196872c040(SQL.110)�

 202

Limitations and Restrictions

• The system administrator restoring the files must be the only person currently using

the database to be restored.
• RESTORE is not allowed in an explicit or implicit transaction.
• Under the full or bulk-logged recovery model, before you can restore files, you must

back up the active transaction log (known as the tail of the log). For more
information, see How to: Back Up a Transaction Log (SQL Server Management
Studio).

• To restore a database that is encrypted, you must have access to the certificate or
asymmetric key that was used to encrypt the database. Without the certificate or
asymmetric key, the database cannot be restored. As a result, the certificate that is
used to encrypt the database encryption key must be retained as long as the backup
is needed. For more information, see SQL Server Certificates and Asymmetric Keys.

Security

Permissions
If the database being restored does not exist, the user must have CREATE DATABASE
permissions to be able to execute RESTORE. If the database exists, RESTORE permissions
default to members of the sysadmin and dbcreator fixed server roles and the owner
(dbo) of the database (for the FROM DATABASE_SNAPSHOT option, the database always
exists).
RESTORE permissions are given to roles in which membership information is always
readily available to the server. Because fixed database role membership can be checked
only when the database is accessible and undamaged, which is not always the case when
RESTORE is executed, members of the db_owner fixed database role do not have
RESTORE permissions.

Using SQL Server Management Studio

1. In Object Explorer, connect to an instance of the SQL Server Database Engine,
expand that instance, and then expand Databases.

2. Right-click the database that you want, point to Tasks, point to Restore, and
then click Files and Filegroups.

3. On the General page, in the To database list box, enter the database to restore.
You can enter a new database or choose an existing database from the drop-
down list. The list includes all databases on the server, excluding the system

To restore files to a new location

http://msdn.microsoft.com/en-us/library/8519aa2f-f09c-4c1c-96b5-abc24811e60c(SQL.110)�

 203

databases master and tempdb.
4. To specify the source and location of the backup sets to restore, click one of the

following options:
• From database

Enter a database name in the list box. This list contains only databases that
have been backed up according to the msdb backup history.

• From device
Click the browse button. In the Specify backup devices dialog box, select
one of the listed device types in the Backup media type list box. To select
one or more devices for the Backup media list box, click Add.
After you add the devices you want to the Backup media list box, click OK to
return to the General page.

5. In the Select the backup sets to restore grid, select the backups to restore. This
grid displays the backups available for the specified location. By default, a
recovery plan is suggested. To override the suggested recovery plan, you can
change the selections in the grid. Any backups that depend on a deselected
backup are deselected automatically.

Column head Values

Restore The selected check boxes indicate the
backup sets to be restored.

Name The name of the backup set.

File Type Specifies the type of data in the
backup: Data, Log, or Filestream
Data. Data that is contained in tables
is in Data files. Transaction log data is
in Log files. Binary large object (BLOB)
data that is stored on the file system is
in Filestream Data files.

Type The type of backup performed: Full,
Differential, or Transaction Log.

Server The name of the Database-Engine
instance that performed the backup
operation.

File Logical Name The logical name of the file.

Database The name of the database involved in
the backup operation.

 204

Start Date The date and time when the backup
operation began, presented in the
regional setting of the client.

Finish Date The date and time when the backup
operation finished, presented in the
regional setting of the client.

Size The size of the backup set in bytes.

User Name The name of the user who performed
the backup operation.

6. In the Select a page pane, click the Options page.
7. In the Restore database files as grid, specify a new location for the file or files

that you want to move.

Column head Values

Original File Name The full path of a source backup file.

File Type Specifies the type of data in the
backup: Data, Log, or Filestream
Data. Data that is contained in tables
is in Data files. Transaction log data is
in Log files. Binary large object (BLOB)
data that is stored on the file system is
in Filestream Data files.

Restore As The full path of the database file to be
restored. To specify a new restore file,
click the text box and edit the
suggested path and file name.
Changing the path or file name in the
Restore As column is equivalent to
using the MOVE option in a Transact-
SQL RESTORE statement.

8. Click .

Using Transact-SQL

 205

1. Optionally, execute the RESTORE FILELISTONLY statement to determine the
number and names of the files in the full database backup.

2. Execute the RESTORE DATABASE statement to restore the full database backup,
specifying:
• The name of the database to restore.
• The backup device from where the full database backup will be restored.
• The MOVE clause for each file to restore to a new location.
• The NORECOVERY clause.

3. If the files have been modified after the file backup was created, execute the
RESTORE LOG statement to apply the transaction log backup, specifying:
• The name of the database to which the transaction log will be applied.
• The backup device from where the transaction log backup will be restored.
• The NORECOVERY clause if you have another transaction log backup to apply

after the current one; otherwise, specify the RECOVERY clause.
The transaction log backups, if applied, must cover the time when the files
and filegroups were backed up.

Example (Transact-SQL)
This example restores two of the files for the MyNwind database that were originally
located on Drive C to new locations on Drive D. Two transaction logs will also be applied
to restore the database to the current time. The RESTORE FILELISTONLY statement is
used to determine the number and logical and physical names of the files in the
database being restored.

USE master;

GO

-- First determine the number and names of the files in the backup.

RESTORE FILELISTONLY

 FROM MyNwind_1;

-- Restore the files for MyNwind.

RESTORE DATABASE MyNwind

 FROM MyNwind_1

 WITH NORECOVERY,

 MOVE 'MyNwind_data_1' TO 'D:\MyData\MyNwind_data_1.mdf',

 MOVE 'MyNwind_data_2' TO 'D:\MyData\MyNwind_data_2.ndf';

GO

To restore files to a new location

 206

-- Apply the first transaction log backup.

RESTORE LOG MyNwind

 FROM MyNwind_log1

 WITH NORECOVERY;

GO

-- Apply the last transaction log backup.

RESTORE LOG MyNwind

 FROM MyNwind_log2

 WITH RECOVERY;

GO

See Also
How to: Restore a Database Backup (SQL Server Management Studio)
RESTORE
Considerations for Copying Databases with Backup and Restore
Restore Files and Filegroups

Restore Files and Filegroups
This topic describes how to restore files and filegroups in SQL Server 2012 by using SQL
Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Limitations and Restrictions
• Security
• To restore files and filegroups, using:

SQL Server Management Studio
Transact-SQL

Before You Begin

Limitations and Restrictions

• The system administrator restoring the files and filegroups must be the only person

currently using the database to be restored.
• RESTORE is not allowed in an explicit or implicit transaction.

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/b93e9701-72a0-408e-958c-dc196872c040(SQL.110)�

 207

• Under the simple recovery model, the file must belong to a read-only filegroup.
• Under the full or bulk-logged recovery model, before you can restore files, you must

back up the active transaction log (known as the tail of the log). For more
information, see How to: Back Up a Transaction Log (SQL Server Management
Studio).

• To restore a database that is encrypted, you must have access to the certificate or
asymmetric key that was used to encrypt the database. Without the certificate or
asymmetric key, the database cannot be restored. As a result, the certificate that is
used to encrypt the database encryption key must be retained as long as the backup
is needed. For more information, see SQL Server Certificates and Asymmetric Keys.

Security

Permissions
If the database being restored does not exist, the user must have CREATE DATABASE
permissions to be able to execute RESTORE. If the database exists, RESTORE permissions
default to members of the sysadmin and dbcreator fixed server roles and the owner
(dbo) of the database (for the FROM DATABASE_SNAPSHOT option, the database always
exists).
RESTORE permissions are given to roles in which membership information is always
readily available to the server. Because fixed database role membership can be checked
only when the database is accessible and undamaged, which is not always the case when
RESTORE is executed, members of the db_owner fixed database role do not have
RESTORE permissions.

Using SQL Server Management Studio

1. After you connect to the appropriate instance of the SQL Server Database Engine,
in Object Explorer, click the server name to expand the server tree.

2. Expand Databases. Depending on the database, either select a user database or
expand System Databases, and then select a system database.

3. Right-click the database, point to Tasks, and then click Restore.
4. Click Files and Filegroups, which opens the Restore Files and Filegroups dialog

box.
5. On the General page, in the To database list box, enter the database to restore.

You can enter a new database or choose an existing database from the drop-
down list. The list includes all databases on the server, excluding the system
databases master and tempdb.

To restore files and filegroups

http://msdn.microsoft.com/en-us/library/8519aa2f-f09c-4c1c-96b5-abc24811e60c(SQL.110)�

 208

6. To specify the source and location of the backup sets to restore, click one of the
following options:
• From database

Enter a database name in the list box. This list contains only databases that
have been backed up according to the msdb backup history.

• From device
Click the browse button. In the Specify backup devices dialog box, select
one of the listed device types in the Backup media type list box. To select
one or more devices for the Backup media list box, click Add.
After you add the devices you want to the Backup media list box, click OK to
return to the General page.

7. In the Select the backup sets to restore grid, select the backups to restore. This
grid displays the backups available for the specified location. By default, a
recovery plan is suggested. To override the suggested recovery plan, you can
change the selections in the grid. Any backups that depend on a deselected
backup are deselected automatically.

Column head Values

Restore The selected check boxes indicate the
backup sets to be restored.

Name The name of the backup set.

File Type Specifies the type of data in the
backup: Data, Log, or Filestream
Data. Data that is contained in tables
is in Data files. Transaction log data is
in Log files. Binary large object (BLOB)
data that is stored on the file system is
in Filestream Data files.

Type The type of backup performed: Full,
Differential, or Transaction Log.

Server The name of the Database-Engine
instance that performed the backup
operation.

File Logical Name The logical name of the file.

Database The name of the database involved in
the backup operation.

Start Date The date and time when the backup

 209

operation began, presented in the
regional setting of the client.

Finish Date The date and time when the backup
operation finished, presented in the
regional setting of the client.

Size The size of the backup set in bytes.

User Name The name of the user who performed
the backup operation.

8. To view or select the advanced options, click Options in the Select a page pane.
9. In the Restore options panel, you can choose any of the following options, if

appropriate for your situation.
Restore as filegroup

Indicates that an entire filegroup is being restored.

Overwrite the existing database

Specifies that the restore operation should overwrite any existing databases
and their related files, even if another database or file already exists with the
same name.
Selecting this option is equivalent to using the REPLACE option in a Transact-
SQL RESTORE statement.

Prompt before restoring each backup

Asks you for confirmation before restoring each backup set.
This option is particularly useful where you must swap tapes for different media
sets, such as when the server has one tape device.

Restrict access to the restored database

Makes the restored database available only to the members of db_owner,
dbcreator, or sysadmin.
Selecting this option is synonymous to using the RESTRICTED_USER option in a
Transact-SQL RESTORE statement.

10. Optionally, you can restore the database to a new location by specifying a new
restore destination for each file in the Restore database files as grid.

Column head Values

Original File Name The full path of a source backup file.

File Type Specifies the type of data in the

 210

backup: Data, Log, or Filestream
Data. Data that is contained in tables
is in Data files. Transaction log data is
in Log files. Binary large object (BLOB)
data that is stored on the file system is
in Filestream Data files.

Restore As The full path of the database file to be
restored. To specify a new restore file,
click the text box and edit the
suggested path and file name.
Changing the path or file name in the
Restore As column is equivalent to
using the MOVE option in a Transact-
SQL RESTORE statement.

11. The Recovery state panel determines the state of the database after the restore

operation.
Leave the database ready for use by rolling back the uncommitted
transactions. Additional transaction logs cannot be restored. (RESTORE
WITH RECOVERY)

Recovers the database. This is the default behavior. Choose this option only if
you are restoring all of the necessary backups now. This option is equivalent to
specifying WITH RECOVERY in a Transact-SQL RESTORE statement.

Leave the database non-operational, and don't roll back the uncommitted
transactions. Additional transaction logs can be restored. (RESTORE WITH
NORECOVERY)

Leaves the database in the restoring state. To recover the database, you will
need to perform another restore using the preceding RESTORE WITH
RECOVERY option (see above). This option is equivalent to specifying WITH
NORECOVERY in a Transact-SQL RESTORE statement.
If you select this option, the Preserve replication settings option is
unavailable.

Leave the database in read-only mode. Roll back the uncommitted
transactions, but save the rollback operation in a file so the recovery effects
can be undone. (RESTORE WITH STANDBY)

Leaves the database in a standby state. This option is equivalent to specifying
WITH STANDBY in a Transact-SQL RESTORE statement.
Choosing this option requires that you specify a standby file.

Rollback undo file

Specify a standby file name in the Rollback undo file text box. This option is

 211

required if you leave the database in read-only mode (RESTORE WITH
STANDBY).

Using Transact-SQL

1. Execute the RESTORE DATABASE statement to restore the file and filegroup
backup, specifying:
• The name of the database to restore.
• The backup device from where the full database backup will be restored.
• The FILE clause for each file to restore.
• The FILEGROUP clause for each filegroup to restore.
• The NORECOVERY clause. If the files have not been modified after the backup

was created, specify the RECOVERY clause.
2. If the files have been modified after the file backup was created, execute the

RESTORE LOG statement to apply the transaction log backup, specifying:
• The name of the database to which the transaction log will be applied.
• The backup device from where the transaction log backup will be restored.
• The NORECOVERY clause if you have another transaction log backup to apply

after the current one; otherwise, specify the RECOVERY clause.
The transaction log backups, if applied, must cover the time when the files
and filegroups were backed up until the end of log (unless ALL database files
are restored).

Example (Transact-SQL)
This example restores the files and filegroups for the MyDatabase database. To restore
the database to the current time, two transaction logs are applied.

USE master;

GO

-- Restore the files and filesgroups for MyDatabase.

RESTORE DATABASE MyDatabase

 FILE = 'MyDatabase_data_1',

 FILEGROUP = 'new_customers',

 FILE = 'MyDatabase_data_2',

 FILEGROUP = 'first_qtr_sales'

 FROM MyDatabase_1

To restore files and filegroups

 212

 WITH NORECOVERY;

GO

-- Apply the first transaction log backup.

RESTORE LOG MyDatabase

 FROM MyDatabase_log1

 WITH NORECOVERY;

GO

-- Apply the last transaction log backup.

RESTORE LOG MyDatabase

 FROM MyDatabase_log2

 WITH RECOVERY;

GO

See Also
How to: Restore a Database Backup (SQL Server Management Studio)
How to: Back Up Database Files and Filegroups (SQL Server Management Studio)
How to: Back Up a Database (SQL Server Management Studio)
How to: Back Up a Transaction Log (SQL Server Management Studio)
How to: Restore a Transaction Log Backup (SQL Server Management Studio)
RESTORE (Transact-SQL)

File Restores (Full Recovery Model)
This topic is relevant only for databases that contain multiple files or filegroups under
the full or bulk-load recovery model.
In a file restore, the goal is to restore one or more damaged files without restoring the
whole database. A file restore scenario consists of a single restore sequence that copies,
rolls forward, and recovers the appropriate data
If the filegroup that is being restored is read/write, an unbroken chain of log backups
must be applied after the last data or differential backup is restored. This brings the
filegroup forward to the log records in the current active log records in the log file. The
recovery point is typically near the end of log, but not necessarily.
If the filegroup that is being restored is read-only, usually applying log backups is
unnecessary and is skipped. If the backup was taken after the file became read-only, that
is the last backup to restore. Roll forward stops at the target point.

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 213

The file-restore scenarios are as follows:
• Offline file restore

In an offline file restore, the database is offline while damaged files or filegroups are
restored. At the end of the restore sequence, the database comes online.
All editions of SQL Server 2012 support offline file restore.

• Online file restore
In an online file restore, if database is online at restore time, it remains online during
the file restore. However, each filegroup in which a file is being restored is offline
during the restore operation. After all the files in an offline filegroup are recovered,
the filegroup is automatically brought online.
For information about support for online page and file restore, see Features
Supported by the Editions of SQL Server 2012. For more information about online
restores, see Online Restores.

If you want the database to be offline for a file restore, take the database
offline before you start the restore sequence by executing the
following ALTER DATABASE statement: ALTER DATABASE database_name SET
OFFLINE.

In this Topic:
• Restoring Damaged Files from File Backups
• Related Tasks

Restoring Damaged Files from File Backups
1. Before restoring one or more damaged files, attempt to create a tail-log backup.

If the log has been damaged, a tail-log backup cannot be created, and you must
restore the whole database.
For information about how to back up a transaction log, see Creating Transaction
Log Backups.

For an offline file restore, you must always take a tail-log backup before the
file restore. For an online file restore, you must always take the log backup
after the file restore. This log backup is necessary to allow for the file to be
recovered to a state consistent with the rest of the database.

2. Restore each damaged file from the most recent file backup of that file.
3. Restore the most recent differential file backup, if any, for each restored file.
4. Restore transaction log backups in sequence, starting with the backup that covers the

oldest of the restored files and ending with the tail-log backup created in step 1.

Tip

Important

http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/5da61ff5-12b9-48e6-b3c8-0dacca1751c4(SQL.110)�
http://msdn.microsoft.com/en-us/library/f76fbd84-df59-4404-806b-8ecb4497c9cc(SQL.110)�

 214

You must restore the transaction log backups that were created after the file backups
to bring the database to a consistent state. The transaction log backups can be rolled
forward quickly, because only the changes that apply to the restored files are applied.
Restoring individual files can be better than restoring the whole database, because
undamaged files are not copied and then rolled forward. However, the whole chain
of log backups still has to be read.

5. Recover the database.

File backups can be used to restore the database to an earlier point in time. To
do this, you must restore a complete set of file backups, and then restore
transaction log backups in sequence to reach a target point that is after the end
of the most recent restored file backup. For more information about point-in-
time recovery, see Restore a SQL Server Database to a Point in Time (Full
Recovery Model).

Transact-SQL Restore Sequence for an Offline File Restore (Full Recovery
Model)
A file restore scenario consists of a single restore sequence that copies, rolls forward, and
recovers the appropriate data.
This section shows the essential RESTORE options for a file-restore sequence. Syntax and
details that are not relevant to this purpose are omitted.
The following sample restore sequence shows an offline restore of two secondary files, A
and B, using WITH NORECOVERY. Next, two log backups are applied with NORECOVERY,
followed with the tail-log backup, and this is restored using WITH RECOVERY.

The following sample restore sequence starts by taking the file offline and then
creates a tail-log backup.

--Take the file offline.

ALTER DATABASE database_name MODIFY FILE SET OFFLINE;

-- Back up the currently active transaction log.

BACKUP LOG database_name

 TO <tail_log_backup>

 WITH NORECOVERY;

GO

-- Restore the files.

RESTORE DATABASE database_name FILE=name

 FROM <file_backup_of_file_A>

Note

Note

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 215

 WITH NORECOVERY;

RESTORE DATABASE database_name FILE=<name>

 FROM <file_backup_of_file_B>

 WITH NORECOVERY;

-- Restore the log backups.

RESTORE LOG database_name FROM <log_backup>

 WITH NORECOVERY;

RESTORE LOG database_name FROM <log_backup>

 WITH NORECOVERY;

RESTORE LOG database_name FROM <tail_log_backup>

 WITH RECOVERY;

Examples
• Example: Online Restore of a Read-Write File
• Example: Online Restore of a Read-Only File (Full Recovery Model)
• Example: Offline Restore of Primary and One Other Filegroup

Related Tasks
To restore files and filegroups
• Restore Files to a New Location (Transact-SQL)
• Restore Files and Filegroups (SQL Server Management Studio)
•

 M:Microsoft.SqlServer.Management.Smo.Restore.SqlRestore(Microsoft.SqlServer.M
anagement.Smo.Server) (SMO)

See Also
Backup and Restore Considerations for Related Features
Differential Backups (SQL Server)
Full File Backups
Backup Overview (SQL Server)
Restore and Recovery in SQL Server
RESTORE (Transact-SQL)
Complete Database Restores (Simple Recovery Model)
Performing Piecemeal Restores

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 216

Apply Transaction Log Backups
The topic is relevant only for the full recovery model or bulk-logged recovery model.
This topic describes applying transaction log backups as part of restoring a SQL
Server database.
In this Topic:
• Requirements for Restoring Transaction Log Backups
• Recovery and Transaction Logs
• Using Log Backups to Restore to the Point of Failure
• Related Tasks

Requirements for Restoring Transaction Log Backups
To apply a transaction log backup, the following requirements must be met:
• Enough Log Backups for a Restore Sequence : You must have enough log records

backed up to complete a restore sequence. The necessary log backups, including the
tail-log backup where required, must be available before the start of the restore
sequence.

• Correct restore order: The immediately previous full database backup or
differential database backup must be restored first. Then, all transaction logs that are
created after that full or differential database backup must be restored in
chronological order. If a transaction log backup in this log chain is lost or damaged,
you can restore only transaction logs before the missing transaction log.

• Database not yet recovered: The database cannot be recovered until after the final
transaction log has been applied. If you recover the database after restoring one of
the intermediate transaction log backups, that before the end of the log chain, you
cannot restore the database past that point without restarting the complete restore
sequence, starting with the full database backup.

A best practice is to restore all the log backups (RESTORE LOG
database_name WITH NORECOVERY). Then, after restoring the last log
backup, recover the database in a separate operation (RESTORE DATABASE
database_name WITH RECOVERY).

Recovery and Transaction Logs
When you finish the restore operation and recover the database, recovery rolls back all
incomplete transactions. This is known as the undo phase. Rolling back is required to
restore the integrity of the database. After rollback, the database goes online, and no
more transaction log backups can be applied to the database.

Tip

 217

For example, a series of transaction log backups contain a long-running transaction. The
start of the transaction is recorded in the first transaction log backup, but the end of the
transaction is recorded in the second transaction log backup. There is no record of a
commit or rollback operation in the first transaction log backup. If a recovery operation
runs when the first transaction log backup is applied, the long-running transaction is
treated as incomplete, and data modifications recorded in the first transaction log
backup for the transaction are rolled back. SQL Server does not allow for the second
transaction log backup to be applied after this point.

In some circumstances, you can explicitly add a file during log restore.

Using Log Backups to Restore to the Point of Failure
Assume the following sequence of events.

Time Event

8:00 A.M. Back up database to create a full database
backup.

Noon Back up transaction log.

4:00 P.M. Back up transaction log.

6:00 P.M. Back up database to create a full database
backup.

8:00 P.M. Back up transaction log.

9:45 P.M. Failure occurs.

For an explanation of this example sequence of backups, see Creating
Transaction Log Backups.

To restore the database to its state at 9:45 P.M. (the point of failure), either of the
following alternative procedures can be used:
Alternative 1: Restore the database by using the most recent full database backup
1. Create a tail-log backup of the currently active transaction log as of the point of

failure.
2. Do not restore the 8:00 A.M. full database backup. Instead, restore the more recent

6:00 P.M. full database backup, and then apply the 8:00 P.M. log backup and the tail-
log backup.

Note

Note

 218

Alternative 2: Restore the database by using an earlier full database backup

This alternative process is useful if a problem prevents you from using the 6:00
P.M. full database backup. This process takes longer than restoring from the 6:00
P.M. full database backup.

1. Create a tail-log backup of the currently active transaction log as of the point of
failure.

2. Restore the 8:00 A.M. full database backup, and then restore all four transaction log
backups in sequence. This rolls forward all completed transactions up to 9:45 P.M.
This alternative points out the redundant security offered by maintaining a chain of
transaction log backups across a series of full database backups.

In some cases, you can also use transaction logs to restore a database to a
specific point in time. For more information, Restore a SQL Server Database to a
Point in Time (Full Recovery Model).

Related Tasks
To apply a transaction log backup
• Restore a Transaction Log Backup (SQL Server)
To restore to your recovery point
• Restore to the Point of Failure (Transact-SQL)
• Restore a SQL Server Database to a Point in Time (Full Recovery Model)
•

 M:Microsoft.SqlServer.Management.Smo.Restore.SqlRestore(Microsoft.SqlServer.M
anagement.Smo.Server) (SMO)

• Recovering to a Marked Transaction
• Recovering to a Log Sequence Number (LSN)
To recover a database after restoring backups using WITH NORECOVERY
• Recover a Database Without Restoring Data (Transact-SQL)

See Also
The Transaction Log (SQL Server)

Note

Note

http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�

 219

Restore a Transaction Log Backup
This topic describes how to restore a transaction log backup in SQL Server 2012 by using
SQL Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Prerequisites
Security

• To restore a transaction log backup, using:
SQL Server Management Studio
Transact-SQL

• Related Tasks

Before You Begin

Prerequisites

• Backups must be restored in the order in which they were created. Before you can

restore a particular transaction log backup, you must first restore the following
previous backups without rolling back uncommitted transactions, that is WITH
NORECOVERY:
• The full database backup and the last differential backup, if any, taken before the

particular transaction log backup. Before the most recent full or differential
database backup was created, the database must have been using the full
recovery model or bulk-logged recovery model.

• All transaction log backups taken after the full database backup or the differential
backup (if you restore one) and before the particular transaction log backup. Log
backups must be applied in the sequence in which they were created, without
any gaps in the log chain.
For more information about transaction log backups, see Transaction Log
Backups (SQL Server) and Apply Transaction Log Backups.

Security

Permissions
RESTORE permissions are given to roles in which membership information is always
readily available to the server. Because fixed database role membership can be checked
only when the database is accessible and undamaged, which is not always the case when

 220

RESTORE is executed, members of the db_owner fixed database role do not have
RESTORE permissions.

Using SQL Server Management Studio

The normal process of a restore is to select the log backups in the Restore
Database dialog box along with the data and differential backups.

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Databases, and, depending on the database, either select a user
database or expand System Databases and select a system database.

3. Right-click the database, point to Tasks, point to Restore, and then click
Transaction Log, which opens the Restore Transaction Log dialog box.

Note
If Transaction Log is grayed out, you may need to restore a full or
differential backup first. Use the Database backup dialog box.

4. On the General page, in the Database list box, select the name of a database.
Only databases in the restoring state are listed.

5. To specify the source and location of the backup sets to restore, click one of the
following options:
• From previous backups of database

Select the database to restore from the drop-down list. The list contains only
databases that have been backed up according to the msdb backup history.

• From file or tape
Click the browse (...) button to open the Select backup devices dialog box.
In the Backup media type box, select one of the listed device types. To select
one or more devices for the Backup media box, click Add.
After you add the devices you want to the Backup media list box, click OK to
return to the General page.

6. In the Select the transaction log backups to restore grid, select the backups to
restore. This grid lists the transaction log backups available for the selected
database. A log backup is available only if its First LSN greater than the Last LSN
of the database. Log backups are listed in the order of the log sequence numbers
(LSN) they contain, and they must be restored in this order.
The following table lists the column headers of the grid and describes their

Warning

To restore a transaction log backup

 221

values.

Header Value

Restore Selected check boxes indicate the
backup sets to be restored.

Name Name of the backup set.

Component Backed-up component: Database,
File, or <blank> (for transaction logs).

Database Name of the database involved in the
backup operation.

Start Date Date and time when the backup
operation began, presented in the
regional setting of the client.

Finish Date Date and time when the backup
operation finished, presented in the
regional setting of the client.

First LSN Log sequence number of the first
transaction in the backup set. Blank for
file backups.

Last LSN Log sequence number of the last
transaction in the backup set. Blank for
file backups.

Checkpoint LSN Log sequence number of the most
recent checkpoint at the time the
backup was created.

Full LSN Log sequence number of the most
recent full database backup.

Server Name of the Database Engine instance
that performed the backup operation.

User Name Name of the user who performed the
backup operation.

Size Size of the backup set in bytes.

Position Position of the backup set in the
volume.

Expiration Date and time the backup set expires.

 222

7. Select one of the following:

• Point in time
Either retain the default (Most recent possible) or select a specific date and
time by clicking the browse button, which opens the Point in Time Restore
dialog box.

• Marked transaction
Restore the database to a previously marked transaction. Selecting this option
launches the Select Marked Transaction dialog box, which displays a grid
listing the marked transactions available in the selected transaction log
backups.
By default, the restore is up to, but excluding, the marked transaction. To
restore the marked transaction also, select Include marked transaction.
The following table lists the column headers of the grid and describes their
values.

Header Value

<blank> Displays a checkbox for selecting the
mark.

Transaction Mark Name of the marked transaction
specified by the user when the
transaction was committed.

Date Date and time of the transaction
when it was committed. Transaction
date and time are displayed as
recorded in the msdb gmarkhistory
table, not in the client computer's
date and time.

Description Description of marked transaction
specified by the user when the
transaction was committed (if any).

LSN Log sequence number of the marked
transaction.

Database Name of the database where the
marked transaction was committed.

User Name Name of the database user who
committed the marked transaction.

 223

8. To view or select the advanced options, click Options in the Select a page pane.
9. In the Restore options section, the choices are:

• Preserve the replication settings (WITH KEEP_REPLICATION)
Preserves the replication settings when restoring a published database to a
server other than the server where the database was created.
This option is available only with the Leave the database ready for use by
rolling back the uncommitted transactions... option (described later),
which is equivalent to restoring a backup with the RECOVERY option.
Checking this option is equivalent to using the KEEP_REPLICATION option in
a Transact-SQL RESTORE statement.

• Prompt before restoring each backup
Before restoring each backup set (after the first), this option brings up the
Continue with Restore dialog box, which asks you to indicate whether you
want to continue the restore sequence. This dialog displays the name of the
next media set (if available), the backup set name, and backup set description.
This option is particularly useful when you must swap tapes for different
media sets. For example, you can use it when the server has only one tape
device. Wait until you are ready to proceed before clicking OK.
Clicking No leaves the database in the restoring state. At your convenience,
you can continue the restore sequence after the last restore that completed. If
the next backup is a data or differential backup, use the Restore Database
task again. If the next backup is a log backup, use the Restore Transaction
Log task.

• Restrict access to the restored database (WITH RESTRICTED_USER)
Makes the restored database available only to the members of db_owner,
dbcreator, or sysadmin.
Checking this option is synonymous to using the RESTRICTED_USER option
in a Transact-SQL RESTORE statement.

10. For the Recovery state options, specify the state of the database after the
restore operation.
• Leave the database ready for use by rolling back uncommitted

transactions. Additional transaction logs cannot be restored. (RESTORE
WITH RECOVERY)
Recovers the database. This option is equivalent to the RECOVERY option in
a Transact-SQL RESTORE statement.
Choose this option only if you have no log files you want to restore.

• Leave the database non-operational, and do not roll back uncommitted
transactions. Additional transaction logs can be restored. (RESTORE

 224

WITH NORECOVERY)
Leaves the database unrecovered, in the RESTORING state. This option is
equivalent to using the NORECOVERY option in a Transact-SQL RESTORE
statement.
When you choose this option, the Preserve replication settings option is
unavailable.

Important
For a mirror or secondary database, always select this option.

• Leave the database in read-only mode. Undo uncommitted transactions,
but save the undo actions in a file so that recovery effects can be
reversed. (RESTORE WITH STANDBY)
Leaves the database in a standby state. This option is equivalent to using the
STANDBY option in a Transact-SQL RESTORE statement.
Choosing this option requires that you specify a standby file.

11. Optionally, specify a standby file name in the Standby file text box. This option is
required if you leave the database in read-only mode. You can browse for the
standby file or type its pathname in the text box.

Using Transact-SQL

We recommend that you always explicitly specify either WITH NORECOVERY or
WITH RECOVERY in every RESTORE statement to eliminate ambiguity. This is
particularly important when writing scripts.

1. Execute the RESTORE LOG statement to apply the transaction log backup,
specifying:
• The name of the database to which the transaction log will be applied.
• The backup device where the transaction log backup will be restored from.
• The NORECOVERY clause.
The basic syntax for this statement is as follows:
RESTORE LOG database_name FROM <backup_device> WITH NORECOVERY.
Where database_name is the name of database and <backup_device> is the
name of the device that contains the log backup being restored.

2. Repeat step 1 for each transaction log backup you have to apply.
3. After restoring the last backup in your restore sequence, to recover the database

use one of the following statements:

Important

To restore a transaction log backup

 225

Recover the database as part of the last RESTORE LOG statement:

RESTORE LOG <database_name> FROM <backup_device> WITH

RECOVERY;

GO

Wait to recover the database by using a separate RESTORE DATABASE statement:

RESTORE LOG <database_name> FROM <backup_device> WITH

NORECOVERY;

RESTORE DATABASE <database_name> WITH RECOVERY;

GO

Waiting to recover the database gives you the opportunity to verify that you
have restored all of the necessary log backups. This approach is often
advisable when you are performing a point-in-time restore.

Important
If you are creating a mirror database, omit the recovery step. A mirror
database must remain in the RESTORING state.

Examples (Transact-SQL)
By default, the database uses the simple recovery model. The following examples
require modifying the database to use the full recovery model, as follows:

ALTER DATABASE AdventureWorks2012 SET RECOVERY FULL;

A. Applying a single transaction log backup
The following example starts by restoring the database by using a full database
backup that resides on a backup device named AdventureWorks2012_1. The example
then applies the first transaction log backup that resides on a backup device named
AdventureWorks2012_log. Finally, the example recovers the database.

RESTORE DATABASE AdventureWorks2012

 FROM AdventureWorks2012_1

 WITH NORECOVERY;

GO

RESTORE LOG AdventureWorks2012

 FROM AdventureWorks2012_log

 WITH FILE = 1,

 WITH NORECOVERY;

GO

RESTORE DATABASE AdventureWorks2012

 226

 WITH RECOVERY;

GO

B. Applying multiple transaction log backups
The following example starts by restoring the database by using a full database
backup that resides on a backup device named AdventureWorks2012_1. The example
then applies, one by one, the first three transaction log backups that reside on a backup
device named AdventureWorks2012_log. Finally, the example recovers the database.

RESTORE DATABASE AdventureWorks2012

 FROM AdventureWorks2012_1

 WITH NORECOVERY;

GO

RESTORE LOG AdventureWorks2012

 FROM AdventureWorks2012_log

 WITH FILE = 1,

 NORECOVERY;

GO

RESTORE LOG AdventureWorks2012

 FROM AdventureWorks2012_log

 WITH FILE = 2,

 WITH NORECOVERY;

GO

RESTORE LOG AdventureWorks2012

 FROM AdventureWorks2012_log

 WITH FILE = 3,

 WITH NORECOVERY;

GO

RESTORE DATABASE AdventureWorks2012

 WITH RECOVERY;

GO

Related Tasks
• Back Up a Transaction Log (SQL Server)
• Restore a Full Backup (SQL Server Management Studio)
• Restore to the Point of Failure (Transact-SQL)

 227

• Restore to a Point in Time (Transact-SQL)
• Restore a Database to a Marked Transaction (SQL Server Management Studio)

See Also
RESTORE
Apply Transaction Log Backups (SQL Server)

Restore a SQL Server Database to a Point in Time
(Full Recovery Model)
This topic describes how to restore a database to a point in time in SQL Server 2012 by
using SQL Server Management Studio or Transact-SQL. This topic is relevant only for SQL
Server databases that use the full or bulk-logged recovery models.

Under the bulk-logged recovery model, if a log backup contains bulk-logged
changes, point-in-time recovery is not possible to a point within that backup. The
database must be recovered to the end of the transaction log backup.

• Before you begin:
Recommendations
Security

• To restore a SQL Server database to a point in time, using:
SQL Server Management Studio
Transact-SQL

Before You Begin

Recommendations
• Use STANDBY to find unknown point in time.
• Specify the point in time early in a restore sequence

Security

Permissions
If the database being restored does not exist, the user must have CREATE DATABASE
permissions to be able to execute RESTORE. If the database exists, RESTORE permissions
default to members of the sysadmin and dbcreator fixed server roles and the owner
(dbo) of the database (for the FROM DATABASE_SNAPSHOT option, the database always
exists).

Important

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 228

RESTORE permissions are given to roles in which membership information is always
readily available to the server. Because fixed database role membership can be checked
only when the database is accessible and undamaged, which is not always the case when
RESTORE is executed, members of the db_owner fixed database role do not have
RESTORE permissions.

Using SQL Server Management Studio
To restore a database to a point in time
1. In Object Explorer, connect to the appropriate instance of the SQL Server Database

Engine, and expand the server tree.
2. Expand Databases. Depending on the database, either select a user database or

expand System Databases, and then select a system database.
3. Right-click the database, point to Tasks, point to Restore, and then click Database.
4. On the General page, use the Source section to specify the source and location of

the backup sets to restore. Select one of the following options:
• Database

Select the database to restore from the drop-down list. The list contains only
databases that have been backed up according to the msdb backup history.

If the backup is taken from a different server, the destination server will not
have the backup history information for the specified database. In this case,
select Device to manually specify the file or device to restore.

• Device
Click the browse (...) button to open the Select backup devices dialog box. In
the Backup media type box, select one of the listed device types. To select one
or more devices for the Backup media box, click Add.
After you add the devices you want to the Backup media list box, click OK to
return to the General page.
In the Source: Device: Database list box, select the name of the database which
should be restored.
Note This list is only available when Device is selected. Only databases that
have backups on the selected device will be available.

5. In the Destination section, the Database box is automatically populated with the
name of the database to be restored. To change the name of the database, enter the
new name in the Database box.

6. Click Timeline to access the Backup Timeline dialog box.
7. In the Restore to section, click Specific date and time.

Note

 229

8. Use either the Date and Time boxes or the slider bar to specify a specific date and
time to where the restore should stop. Click .

Use the Timeline Interval box to change the amount of time displayed on
the timeline.

9. After you have specified a specific point in time, only the backups that are required
to restore to that point in time are selected in the Restore column of the Backupsets
to restore grid. These selected backups make up the recommended restore plan for
your point-in-time restore. You should use only the selected backups for your point-
in-time restore operation.
For information about the columns in the Backup sets to restore grid, see SQL
Server Management Studio Tutorial.

10. On the Options page, in the Restore options panel, you can select any of the
following options, if appropriate for your situation:
• Overwrite the existing database (WITH REPLACE)
• Preserve the replication settings (WITH KEEP_REPLICATION)
• Restrict access to the restored database (WITH RESTRICTED_USER)
For more information about these options, see Restore Database (Options Page).

11. Select an option for the Recovery state box. This box determines the state of the
database after the restore operation.
• RESTORE WITH RECOVERY is the default behavior which leaves the database

ready for use by rolling back the uncommitted transactions. Additional
transaction logs cannot be restored. Select this option if you are restoring all of
the necessary backups now.

• RESTORE WITH NORECOVERY which leaves the database non-operational, and
does not roll back the uncommitted transactions. Additional transaction logs can
be restored. The database cannot be used until it is recovered.

• RESTORE WITH STANDBY which leaves the database in read-only mode. It
undoes uncommitted transactions, but saves the undo actions in a standby file so
that recovery effects can be reverted.

For descriptions of the options, see Restore Database (Options Page).
12. Take tail-log backup before restore will be selected if it is necessary for the point

in time that you have selected. You do not need to modify this setting, but you can
choose to backup the tail of the log even if it is not required.

13. Restore operations may fail if there are active connections to the database. Check the
Close existing connections option to ensure that all active connections between
Management Studio and the database are closed. This check box sets the database
to single user mode before performing the restore operations, and sets the database
to multi-user mode when complete.

Note

 230

14. Select Prompt before restoring each backup if you wish to be prompted between
each restore operation. This is not usually necessary unless the database is large and
you wish to monitor the status of the restore operation.

Using Transact-SQL
Before you begin
A specified time is always restored from a log backup. In every RESTORE LOG statement
of the restore sequence, you must specify your target time or transaction in an identical
STOPAT clause. As a prerequisite to a point-in-time restore, you must first restore a full
database backup whose end point is earlier than your target restore time. That full
database backup can be older than the most recent full database backup as long as you
then restore every subsequent log backup, up to and including the log backup that
contains your target point in time.
To help you identify which database backup to restore, you can optionally specify your
WITH STOPAT clause in your RESTORE DATABASE statement to raise an error if a data
backup is too recent for the specified target time. The complete data backup is always
restored, even if it contains the target time.
Basic Transact-SQL syntax
RESTORE LOG database_name FROM <backup_device> WITH STOPAT = time,
RECOVERY…
The recovery point is the latest transaction commit that occurred at or before the
datetime value that is specified by time.
To restore only the modifications that were made before a specific point in time, specify
WITH STOPAT = time for each backup you restore. This makes sure that you do not go
past the target time.
To restore a database to a point in time

For an example of this procedure, see Example (Transact-SQL), later in this
section.

1. Connect to server instance on which you want to restore the database.
2. Execute the RESTORE DATABASE statement using the NORECOVERY option.

If a partial restore sequence excludes any FILESTREAM filegroup, point-in-
time restore is not supported. You can force the restore sequence to
continue. However the FILESTREAM filegroups that are omitted from your
RESTORE statement can never be restored. To force a point-in-time restore,
specify the CONTINUE_AFTER_ERROR option together with the STOPAT,
STOPATMARK, or STOPBEFOREMARK option, which you must also specify in

Note

Note

http://msdn.microsoft.com/en-us/library/9a5a8166-bcbe-4680-916c-26276253eafa(SQL.110)�

 231

your subsequent RESTORE LOG statements. If you specify
CONTINUE_AFTER_ERROR, the partial restore sequence succeeds and the
FILESTREAM filegroup becomes unrecoverable.

3. Restore the last differential database backup, if any, without recovering the database
(RESTORE DATABASE database_name FROM backup_device WITH NORECOVERY).

4. Apply each transaction log backup in the same sequence in which they were created,
specifying the time at which you intend to stop restoring log (RESTORE DATABASE
database_name FROM <backup_device> WITH STOPAT= time, RECOVERY).

The RECOVERY and STOPAT options. If the transaction log backup does not
contain the requested time (for example, if the time specified is beyond the
end of the time covered by the transaction log), a warning is generated and
the database remains unrecovered.

Example (Transact-SQL)
The following example restores a database to its state as of 12:00 AM on April 15,
2020 and shows a restore operation that involves multiple log backups. On the backup
device, AdventureWorksBackups, the full database backup to be restored is the third
backup set on the device (FILE = 3), the first log backup is the fourth backup set (FILE
= 4), and the second log backup is the fifth backup set (FILE = 5).

The database uses the simple recovery model. To permit log backups,
before taking a full database backup, the database was set to use the full
recovery model, using ALTER DATABASE AdventureWorks SET RECOVERY FULL.

RESTORE DATABASE AdventureWorks

 FROM AdventureWorksBackups

 WITH FILE=3, NORECOVERY;

RESTORE LOG AdventureWorks

 FROM AdventureWorksBackups

 WITH FILE=4, NORECOVERY, STOPAT = 'Apr 15, 2020 12:00 AM';

RESTORE LOG AdventureWorks

 FROM AdventureWorksBackups

 WITH FILE=5, NORECOVERY, STOPAT = 'Apr 15, 2020 12:00 AM';

RESTORE DATABASE AdventureWorks WITH RECOVERY;

GO

Note

Important

 232

Related Tasks
• Restore a Database Backup (SQL Server Management Studio)
• Back Up a Transaction Log (SQL Server Management Studio)
• How to: Restore to the Point of Failure Under the Full Recovery Model (Transact-SQL)
• Restore a Database to a Marked Transaction (SQL Server)
• Recover to a Log Sequence Number (SQL Server)
• P:Microsoft.SqlServer.Management.Smo.Restore.ToPointInTime (SMO)

See Also
backupset (Transact-SQL)
RESTORE (Transact-SQL)
RESTORE HEADERONLY (Transact-SQL)

Recovery of Related Databases That Contain
Marked Transaction
This topic is relevant only for databases that contain marked transactions and that use
the full or bulk-logged recovery models.
For information about the requirements for restoring to a specific recovery point,
see Restore a SQL Server Database to a Point in Time (Full Recovery Model).
SQL Server supports inserting named marks into the transaction log to allow recovery to
that specific mark. Log marks are transaction specific and are inserted only if their
associated transaction commits. As a result, marks can be tied to specific work, and you
can recover to a point that includes or excludes this work.
Before you insert named marks into the transaction log, consider the following:
• Because transaction marks consume log space, use them only for transactions that

play a significant role in the database recovery strategy.
• After a marked transaction commits, a row is inserted in the logmarkhistory table in

msdb.
• If a marked transaction spans multiple databases on the same database server or on

different servers, the marks must be recorded in the logs of all the affected
databases. For more information, see Backup and Recovery of Related Databases.

Note

http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/5c1becc5-f34e-4869-bf69-dfafab684540(SQL.110)�

 233

For information about how to mark transactions, see Ensuring Recoverability of
Related Databases (Using Marked Transactions).

Transact-SQL Syntax for Inserting Named Marks into a Transaction Log
To insert marks into the transaction logs, use the BEGIN TRANSACTION statement and
the WITH MARK [description] clause. The mark is named the same as the transaction. The
optional description is a textual description of the mark, not the mark name. For example,
the name of both the transaction and the mark that is created in the following BEGIN
TRANSACTION statement is Tx1:

BEGIN TRANSACTION Tx1 WITH MARK 'not the mark name, just a description'

The transaction log records the mark name (transaction name), description, database,
user, datetime information, and the log sequence number (LSN). The datetime
information is used with the mark name to uniquely identify the mark.
For information about how to insert a mark into a transaction that spans multiple
databases, see Ensuring Recoverability of Related Databases.

Transact-SQL Syntax for Recovering to a Mark
When you target a marked transaction by using a RESTORE LOG statement, you can use
one the following clauses to stop at or immediately before the mark:
• Use the WITH STOPATMARK = '<mark_name>' clause to specify that the marked

transaction is the recovery point.
STOPATMARK rolls forward to the mark and includes the marked transaction in the
roll forward.

• Use the WITH STOPBEFOREMARK = '<mark_name>' clause to specify that the log
record that is immediately before the mark is the recovery point.
STOPBEFOREMARK rolls forward to the mark and excludes marked the transaction
from the roll forward.

The STOPATMARK and STOPBEFOREMARK options both support an optional AFTER
datetime clause. When datetime is used, mark names do not have to be unique.
If AFTER datetime is omitted, roll forward stops at the first mark that has the specified
name. If AFTER datetime is specified, roll forward stops at the first mark that has the
specified name, exactly at or after datetime.

As in all point-in-time restore operations, recovering to a mark is disallowed
when the database is undergoing operations that are bulk-logged.

To restore to a marked transaction
How to: Restore a Marked Transaction (SQL Server Management Studio)
RESTORE (Transact-SQL)

Preparing the Log Backups

Note

http://msdn.microsoft.com/en-us/library/c6258df4-11f1-416a-816b-54f98c11145e(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 234

For this example, an appropriate backup strategy for these related databases would be
the following:
1. Use the full recovery model for both databases.
2. Create a full backup of each database.

The databases can be backed up sequentially or simultaneously.
3. Before backing up the transaction log, mark a transaction that executes in all

databases. For information about how to create the marked transactions,
see Ensuring Recoverability of Related Databases (Using Marked Transactions).

4. Back up the transaction log on each database.

Recovering the Database to a Marked Transaction
To restore the backup
1. Create tail-log backups of the undamaged databases, if possible.
2. Restore the most recent full database backup of each database.
3. Identify the most recent marked transaction that is available in all of the transaction

log backups. This information is stored in the logmarkhistory table in the msdb
database on each server.

4. Identify the log backups for all related databases that contain this mark.
5. Restore each log backup, stopping at the marked transaction.
6. Recover each database.

See Also
BEGIN TRANSACTION (Transact-SQL)
RESTORE (Transact-SQL)
Applying Transaction Log Backups
Ensuring Recoverability of Related Databases (Using Marked Transactions)
Restore and Recovery Overview (SQL Server)
Restore a SQL Server Database to a Point in Time (Full Recovery Model)
Plan and Perform Restore Sequences (Full Recovery Model)

Use Marked Transactions to Recover Related Databases
Consistently (Full Recovery Model)
This topic is relevant only for SQL Server databases that are using the full or bulk-logged
recovery models.
When you make related updates to two or more databases, related databases, you can
use transaction marks to recover them to a logically consistent point. However, this
recovery loses any transaction that is committed after the mark that was used as the

http://msdn.microsoft.com/en-us/library/c6258df4-11f1-416a-816b-54f98c11145e(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 235

recovery point. Marking transactions is suitable only when you are testing related
databases or when you are willing to lose recently committed transactions.
Routinely marking related transactions in every related database establishes a series of
common recovery points in the databases. The transaction marks are recorded in the
transaction log and included in log backups. In the event of a disaster, you can restore
each of the databases to the same transaction mark to recover them to a consistent
point.

Log backups on the different databases can be created independently of each
other and do not have to be simultaneous.

Recovering related databases in the following scenarios requires that you have already
marked transactions in every related database:
• One or more transaction logs are destroyed. You have to restore the set of databases

to a consistent state at the time of your last log backup.
• You have to restore the entire set of databases to a mutually consistent state at some

earlier point in time.

You can recover related databases only to a marked transaction, not to a specific
point in time.

For information about how to create marking transactions, see "Creating the Marked
Transactions," later in this topic.
Typical Scenario for Using Marked Transactions
A typical scenario for using marked transactions includes the following steps:
1. Create a full or differential database backup of each of the related databases.
2. Mark a transaction block in all the databases.
3. Back up the transaction log for all the databases.
4. Restore database backups WITH NORECOVERY.
5. Restore logs WITH STOPATMARK.
Considerations for Using Marked Transactions
Before inserting named marks into the transaction log, consider the following:
• Because transaction marks consume log space, use them only for transactions that

play a significant role in the database recovery strategy.
• After a marked transaction commits, a row is inserted in the logmarkhistory table in

msdb.
• If a marked transaction spans multiple databases on the same database server or on

different servers, the marks must be recorded in the logs of all the affected
databases.

Creating the Marked Transactions

Note

Important

http://msdn.microsoft.com/en-us/library/5c1becc5-f34e-4869-bf69-dfafab684540(SQL.110)�

 236

To create a marked transaction, use the BEGIN TRANSACTION statement and the WITH
MARK [description] clause. The optional description is a textual description of the mark. A
mark name for the transaction is required. A mark name can be reused. The transaction
log records the mark name, description, database, user, datetime information, and the
log sequence number (LSN). The datetime information is used along with the mark name
to uniquely identify the mark.
To create marked transactions in a set of databases:
1. Name the transaction in the BEGIN TRAN statement and use the WITH MARK clause

You can nest the statement BEGIN TRAN new_mark_name WITH MARK within an
existing transaction. The value of new_mark_name is the mark name for the
transaction, even if the transaction possesses a transaction name.

If you issue a second nested BEGIN TRAN...WITH MARK, that statement is
skipped but causes a warning message.

2. Run an update against all of the databases in the set.
The mark for a specific transaction is inserted into transaction logs only on the server
instance where the BEGIN TRAN...WITH MARK statement is executed. The transaction
mark is placed in the transaction log of every database updated by the marked
transaction on that server instance. If the databases reside on different server
instances, identical marks must be created on each of the server instances.

Examples
The following example restores the transaction log to the mark in the marked transaction
named ListPriceUpdate.

USE AdventureWorks

GO

BEGIN TRANSACTION ListPriceUpdate

 WITH MARK 'UPDATE Product list prices';

GO

UPDATE Production.Product

 SET ListPrice = ListPrice * 1.10

 WHERE ProductNumber LIKE 'BK-%';

GO

COMMIT TRANSACTION ListPriceUpdate;

GO

Note

http://msdn.microsoft.com/en-us/library/c6258df4-11f1-416a-816b-54f98c11145e(SQL.110)�

 237

-- Time passes. Regular database

-- and log backups are taken.

-- An error occurs in the database.

USE master

GO

RESTORE DATABASE AdventureWorks

FROM AdventureWorksBackups

WITH FILE = 3, NORECOVERY;

GO

RESTORE LOG AdventureWorks

 FROM AdventureWorksBackups

 WITH FILE = 4,

 RECOVERY,

 STOPATMARK = 'ListPriceUpdate';

Forcing a Mark to Spread to Other Servers
A transaction mark name is not automatically distributed to another server as the
transaction spreads there. To force the mark to spread to the other servers, a stored
procedure must be written that contains a BEGIN TRAN name WITH MARK statement.
That stored procedure must then be executed on the remote server under the scope of
the transaction in the originating server.
For example, consider a partitioned database that exists on multiple instances of SQL
Server. On each instance is a database named coyote. First, in every database, create a
stored procedure, for example, sp_SetMark.
CREATE PROCEDURE sp_SetMark

@name nvarchar (128)

AS

BEGIN TRANSACTION @name WITH MARK

UPDATE coyote.dbo.Marks SET one = 1

COMMIT TRANSACTION;

GO

Next, create stored procedure sp_MarkAll containing a transaction that places a mark in
every database. sp_MarkAll can be run from any of the instances.

CREATE PROCEDURE sp_MarkAll

 238

@name nvarchar (128)

AS

BEGIN TRANSACTION

EXEC instance0.coyote.dbo.sp_SetMark @name

EXEC instance1.coyote.dbo.sp_SetMark @name

EXEC instance2.coyote.dbo.sp_SetMark @name

COMMIT TRANSACTION;

GO

Two-Phase Commit
Committing a distributed transaction occurs in two phases: prepare and commit. When a
marked transaction is committed, the commit log record for each database in the
marked transaction is placed in the log at a point where there are no in-doubt
transactions in any of the logs. At this point, it is guaranteed that there are no
transactions that appear as committed in one log, but not committed in another log.
The following steps accomplish this during the commit of a marked transaction:
1. Prepare phase of a marking transaction stalls all new prepares and commits.
2. Only commits of already prepared transactions are allowed to continue.
3. Marking transaction then waits for all prepared transactions to drain (with time-out).
4. Marked transaction is prepared and committed.
5. The stall of new prepares and commits is removed.
The stalls generated by marked transactions that span multiple databases can reduce the
transaction processing performance of the server.
We recommend that you do not run concurrent marked transactions. It is rare but
possible for the commit of a distributed marked transaction to deadlock with other
distributed marked transactions that are committing at the same time. When this
happens, the marking transaction is chosen as the deadlock victim and is rolled back.
When this error occurs, the application can retry the marked transaction. When multiple
marked transactions try to commit concurrently, there is a higher probability of deadlock.
Recovering to a Marked Transaction
For information about how to recover a database that contains marked transactions to or
just before a particular mark, see Recovering to a Marked Transaction.
See Also
BEGIN DISTRIBUTED TRANSACTION (Transact-SQL)
Back Up and Restore of System Databases (SQL Server)
BEGIN TRANSACTION (Transact-SQL)
Applying Transaction Log Backups
Full Database Backups

http://msdn.microsoft.com/en-us/library/c3bc2716-39d3-4061-8c6a-8734899231ac(SQL.110)�
http://msdn.microsoft.com/en-us/library/c6258df4-11f1-416a-816b-54f98c11145e(SQL.110)�

 239

RESTORE (Transact-SQL)
Recovering to a Marked Transaction

Restore a Database to a Marked Transaction (SQL Server
Management Studio)
When a database is in the restoring state, you can use the Restore Transaction Log
dialog box to restore the database to a marked transaction in the available log backups.

For more information, see Using Marked Transactions (Full Recovery Model)
and Recovering to a Marked Transaction.

Procedures

1. After connecting to the appropriate instance of the Microsoft SQL Server
Database Engine, in Object Explorer, click the server name to expand the server
tree.

2. Expand Databases, and, depending on the database, either select a user
database or expand System Databases and select a system database.

3. Right-click the database, point to Tasks, and then click Restore.
4. Click Transaction Log, which opens the Restore Transaction Log dialog box.
5. On the General page, in the Restore To section, select Marked transaction,

which opens the Select Marked Transaction dialog box. This dialog box displays
a grid listing the marked transactions available in the selected transaction log
backups.
By default, the restore is up to, but excluding, the marked transaction. To restore
the marked transaction also, select Include marked transaction.
The following table lists the column headers of the grid and describes their
values.

Header Value

<blank> Displays a checkbox for selecting the
mark.

Transaction Mark Name of the marked transaction
specified by the user when the
transaction was committed.

Date Date and time of the transaction when

Note

To restore a marked transaction

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 240

it was committed. Transaction date and
time are displayed as recorded in the
msdb gmarkhistory table, not in the
client computer's date and time.

Description Description of marked transaction
specified by the user when the
transaction was committed (if any).

LSN Log sequence number of the marked
transaction.

Database Name of the database where the
marked transaction was committed.

User Name Name of the database user who
committed the marked transaction.

See Also
SQL Server Management Studio Tutorial
How to: Restore a Transaction Log Backup (SQL Server Management Studio)

Recover to a Log Sequence Number
This topic is relevant only for databases that are using the full or bulk-logged recovery
models.
You can use a log sequence number (LSN) to define the recovery point for a restore
operation. However, this is a specialized feature that is intended for tools vendors and is
unlikely to be generally useful.

Overview of Log Sequence Numbers
LSNs are used internally during a RESTORE sequence to track the point in time to which
data has been restored. When a backup is restored, the data is restored to the LSN
corresponding to the point in time at which the backup was taken. Differential and log
backups advance the restored database to a later time, which corresponds to a higher
LSN.
Every record in the transaction log is uniquely identified by a log sequence number
(LSN). LSNs are ordered such that if LSN2 is greater than LSN1, the change described by
the log record referred to by LSN2 occurred after the change described by the log record
LSN.
The LSN of a log record at which a significant event occurred can be useful for
constructing correct restore sequences. Because LSNs are ordered, they can be
compared for equality and inequality (that is, <, >, =, <=, >=). Such comparisons are
useful when constructing restore sequences.

 241

LSNs are values of data type numeric(25,0). Arithmetic operations (for example,
addition or subtraction) are not meaningful and must not be used with LSNs.

Viewing LSNs Used by Backup and Restore
The LSN of a log record at which a given backup and restore event occurred is viewable
using one or more of the following:
• backupset
• backupfile
• sys.database_files; sys.master_files
• RESTORE HEADERONLY
• RESTORE FILELISTONLY

LSNs also appear in some message texts.

Transact-SQL Syntax for Restoring to an LSN
By using a RESTORE statement, you can stop at or immediately before the LSN, as
follows:
• Use the WITH STOPATMARK = 'lsn:<lsn_number>' clause, where lsn:<lsnNumber> is

a string that specifies that the log record that contains the specified LSN is the
recovery point.
STOPATMARK roll forwards to the LSN and includes that log record in the roll
forward.

• Use the WITH STOPBEFOREMARK = 'lsn:<lsn_number>' clause, where
lsn:<lsnNumber> is a string that specifies that the log record immediately before the
log record that contains the specified LSN number is the recovery point.
STOPBEFOREMARK rolls forward to the LSN and excludes that log record from the
roll forward.

Typically, a specific transaction is selected to be included or excluded. Although not
required, in practice, the specified log record is a transaction-commit record.

Examples
The following example assumes that the AdventureWorks database has been changed
to use the full recovery model.

RESTORE LOG AdventureWorks FROM DISK = 'c:\adventureworks_log.bak'

WITH STOPATMARK = 'lsn:15000000040000037'

GO

Note

Note

http://msdn.microsoft.com/en-us/library/6ff79bbf-4acf-4f75-926f-38637ca8a943(SQL.110)�
http://msdn.microsoft.com/en-us/library/f1a7fc0a-f4b4-47eb-9138-eebf930dc9ac(SQL.110)�
http://msdn.microsoft.com/en-us/library/0f5b0aac-c17d-4e99-b8f7-d04efc9edf44(SQL.110)�
http://msdn.microsoft.com/en-us/library/803b22f2-0016-436b-a561-ce6f023d6b6a(SQL.110)�
http://msdn.microsoft.com/en-us/library/4b88e98c-49c4-4388-ab0e-476cc956977c(SQL.110)�
http://msdn.microsoft.com/en-us/library/0b4b4d11-eb9d-4f3e-9629-6c79cec7a81a(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 242

Related Tasks
• Restore a Database Backup (SQL Server Management Studio)
• Back Up a Transaction Log (SQL Server Management Studio)
• Restore a Transaction Log Backup (SQL Server)
• Restore to the Point of Failure Under the Full Recovery Model (Transact-SQL)
• Restore a Database to a Marked Transaction (SQL Server)
• Restore a SQL Server Database to a Point in Time (Full Recovery Model)

See Also
Applying Transaction Log Backups
Transaction Logs (SQL Server)
RESTORE (Transact-SQL)

Online Restore
Online restore is supported only on SQL Server 2005 Enterprise Edition and later
versions. In this edition, a file, page, or piecemeal restore is online by default. This topic is
relevant for databases that contain multiple files or filegroups (and, under the simple
recovery model, only for read-only filegroups).
Restoring data while the database is online is called an online restore. A database is
considered to be online whenever the primary filegroup is online, even if one or more of
its secondary filegroups are offline. Under any recovery model, you can restore a file that
is offline while the database is online. Under the full recovery model, you can also restore
pages while the database is online.

Online restore occurs automatically on SQL Server 2005 Enterprise Edition and
later versions and requires no user action. If you do not want to use online
restore, you can take a database offline before you start a restore. For more
information, see Taking a Database or File Offline, later in this topic.

During an online file restore, any file being restored and its filegroup are offline. If any of
these files is online when an online restore starts, the first restore statement takes the
filegroup of the file offline. In contrast, during an online page restore, only the page is
offline.
Every online restore scenario involves the following basic steps:
1. Restore the data.
2. Restore the log by using WITH RECOVERY for the last log restore. This brings the

restored data online.

Note

http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 243

Occasionally, an uncommitted transaction cannot be rolled back because the data that is
required by rollback is offline during startup. In this case, the transaction is deferred. For
more information, see Deferred Transactions.

If the database is currently using the bulk-logged recovery model, we
recommend that you switch to the full recovery model before you start an online
restore. For more information, see View or Change the Recovery Model of a
Database (SQL Server).

If the backups were taken with multiple devices that were attached to the server,
the same number of devices must be available during an online restore.

Log Backups for Online Restore
In an online restore, the recovery point is the point when the data being restored was
taken offline or made read-only for the last time. The transaction log backups leading up
to and including this recovery point must all be available. Generally, a log backup is
required after that point to cover the recovery point for the file. The only exception is
during an online restore of read-only data from a data backup that was taken after the
data became read-only. In this case, you do not have to have a log backup.
Generally, you may take transaction log backups while the database is online, even after
the start of the restore sequence. The timing of the last log backup depends on the
properties of the file being restored:
• For an online read-only file, you can take the last log backup that is required for

recovery before or during the first restore sequence. A read-only filegroup may not
require log backups if a data or differential backup was taken after the filegroup
became read-only.

The preceding information also applies to every offline file.
• A special case exists for a read/write file that was online when the first restore

statement was issued and that was then automatically taken offline by that restore
statement. In this case, you must take a log backup during the first restore sequence
(the sequence of one or more RESTORE statements that restore, roll forward, and
recover data). Generally, this log backup must occur after you restore all the full
backups and before you recover the data. However, if there are multiple file backups
for a specific filegroup, the minimal point of log backup is the time after the
filegroup is offline. This post-data-restore log backup captures the point at which the
file was taken offline. The post-data-restore log backup is necessary because the SQL
Server Database Engine cannot use online log for an online restore.

Note

Important

Note

Note

 244

Alternatively, you can manually take the file offline before the restore
sequence. For more information, see "Taking a Database or File Offline" later
in this topic.

Taking a Database or File Offline
If you do not want to use online restore, you can take the database offline before you
start the restore sequence by using one of the following methods:
• Under any recovery model, you can take the database offline by using the

following ALTER DATABASE statement:
ALTER DATABASE database_name SET OFFLINE

• Alternatively, under the full recovery model, you can force a file or page restore to be
offline, by using the following BACKUP LOG statement put the database in to the
restoring state:
BACKUP LOG database_name WITH NORECOVERY.

As long as a database remains offline, all restores are offline restores.

Examples

The syntax for an online restore sequence is the same as for an offline restore
sequence.

• Example: Piecemeal Restore of Database (Simple Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Simple Recovery Model)
• Example: Online Restore of a Read-Only File (Simple Recovery Model)
• Example: Piecemeal Restore of Database (Full Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Full Recovery Model)
• Example: Online Restore of a Read-Write File (Full Recovery Model)
• Example: Online Restore of a Read-Only File (Full Recovery Model)

Related Tasks
• Restore Files and Filegroups (SQL Server)
• Restore Pages (SQL Server)
• Manage the suspect_pages Table (SQL Server)
• Recover a Database Without Restoring Data (Transact-SQL)
• Remove Defunct Filegroups (SQL Server)

Note

http://msdn.microsoft.com/en-us/library/15f8affd-8f39-4021-b092-0379fc6983da(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�

 245

See Also
Restoring File Backups (Full Recovery Model)
Restoring File Backups (Simple Recovery Model)
Performing Page Restores
Performing Piecemeal Restores
Restore and Recovery Overview (SQL Server)

Deferred Transactions
In SQL Server 2005 Enterprise Edition and later versions, a corrupted transaction can
become deferred if data required by rollback (undo) is offline during database startup. A
deferred transaction is a transaction that is uncommitted when the roll forward phase
finishes and that has encountered an error that prevents it from being rolled back.
Because the transaction cannot be rolled back, it is deferred.

Corrupted transactions are deferred only in SQL Server 2005 Enterprise Edition
and later versions. In other editions of SQL Server, a corrupted transaction causes
startup to fail.

Generally, a deferred transaction occurs because, while the database was being rolled
forward, an I/O error prevented reading a page that was required by the transaction.
However, an error at the file level can also cause deferred transactions. A deferred
transaction can also occur when a partial restore sequence stops at a point at which
transaction rollback is necessary and a transaction requires data that is offline.
User transactions that are rolling back and hit an I/O error cause the whole database to
go offline. When the database is brought back online, the redo reacquires all the locks it
had and tries to roll back all the uncommitted transactions. All data modified by a
transaction remains appropriately locked until the transaction can roll back. Transactions
that cannot be rolled back will give up their locks when the corruption is fixed and the
database restarted or, after an online restore, when the deferred transactions are
resolved while the database remains online. Until that point, a deferred transaction can
hold locks that prevent certain operations on the database as a whole. For example, if a
deferred transaction contains a CREATE TABLE instruction, no user can create a table
until the deferred transaction has been resolved.
Deferred transaction can also occur because a piecemeal restore recovers a database to
a point at which one or more active transactions are affecting a filegroup that has not yet
been restored and is offline. Because the transactions cannot be rolled back, they
become deferred.

Note

 246

The following table lists the actions that cause a database to perform recovery and the
outcome if an I/O problem occurs.

Action Resolution (if I/O problems occur or required
data is offline)

Server start Deferred transaction

Restore Deferred transaction

Attach Attach fails

Autorestart Deferred transaction

Create database or database snapshot Creation fails

Redo on database mirroring Deferred transaction

Filegroup is offline Deferred transaction

Moving a Transaction Out of the DEFERRED State

Deferred transactions keep the transaction log active. A virtual log file that
contains any deferred transactions cannot be truncated until those transactions
are moved out of the deferred state. For more information about log truncation,
see Transaction Log (SQL Server).

To move the transaction out of the deferred state, the database must start cleanly
without any I/O errors. If deferred transactions exist, you must fix the source of the I/O
errors. The available solutions, listed in the order in which they are typically tried, are as
follows:
• Restart the database. If the problem was transient, the database should start without

deferred transactions.
• If the transactions were deferred because a filegroup was offline, bring the filegroup

back online.
To bring an offline filegroup back online, use the following Transact-SQL statement:

RESTORE DATABASE database_name FILEGROUP=<filegroup_name>

• Restore the database. After an online restore, any deferred transactions are resolved.
Under the full or bulk-logged recovery model, if the deferred transactions were
caused by only a few corrupted pages, an online page restore might resolve the
errors (where supported).

• If you are no longer require a filegroup whose offline status is causing deferred
transactions, make the offline filegroup defunct. Transactions that were deferred

Important

http://msdn.microsoft.com/en-us/library/d7be5ac5-4c8e-4d0a-b114-939eb97dac4d(SQL.110)�

 247

because the filegroup was offline are moved out of the deferred state after the
filegroup becomes defunct.

A defunct filegroup can never be recovered.
For more information, see Defunct Filegroups.

• If transactions were deferred because of a bad page and if a good backup of the
database does not exist, use the following process to repair the database:
• First put the database into emergency mode by executing the following Transact-

SQL statement:

ALTER DATABASE <database_name> SET EMERGENCY

For information about emergency mode, see Database States.
• Then, repair the database by using the DBCC REPAIR_ALLOW_DATA_LOSS option

in one of the following DBCC statements: DBCC CHECKDB, DBCC CHECKALLOC,
or DBCC CHECKTABLE.
When DBCC encounters the bad page, DBCC deallocates it and repairs any
related errors. This approach enables the database to be brought back online in a
physically consistent state. However, additional data might also be lost; therefore,
this approach should be used as a last resort.

See Also
Restore and Recovery Overview (SQL Server)
Defunct Filegroups
Restoring File Backups (Full Recovery Model)
Restoring File Backups (Simple Recovery Model)
Performing Page Restores
Performing Piecemeal Restores
ALTER DATABASE (Transact-SQL)
RESTORE (Transact-SQL)

Remove Defunct Filegroups
This topic describes how to remove defunct filegroups in SQL Server 2012 by using SQL
Server Management Studio or Transact-SQL.
In This Topic
• Before you begin:

Limitations and Restrictions
• Recommendations

Security

Important

http://msdn.microsoft.com/en-us/library/b7f1f111-ca73-4a89-b567-a98d64d6ecb3(SQL.110)�
http://msdn.microsoft.com/en-us/library/2c506167-0b69-49f7-9282-241e411910df(SQL.110)�
http://msdn.microsoft.com/en-us/library/bc1218eb-ffff-44ce-8122-6e4fa7d68a79(SQL.110)�
http://msdn.microsoft.com/en-us/library/0d6cb620-eb58-4745-8587-4133a1b16994(SQL.110)�
http://msdn.microsoft.com/en-us/library/15f8affd-8f39-4021-b092-0379fc6983da(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 248

• To remove defunct filegroups, using:
SQL Server Management Studio
Transact-SQL

Before You Begin

Limitations and Restrictions

• This topic is relevant for SQL Server databases that contain multiple files or

filegroups; and, under the simple model, only for read-only filegroups.
• All files in a filegroup become defunct when an offline filegroup is removed.
Recommendations

• If an unrestored filegroup will never have to be restored, you can make the filegroup

defunct by removing it from the database. The defunct filegroup can never be
restored to this database, but its metadata remains. After the filegroup is defunct, the
database can be restarted, and recovery will make the database consistent across the
restored filegroups.

For example, making a filegroup defunct is an option for resolving deferred
transactions that were caused by an offline filegroup that you no longer want in the
database. Transactions that were deferred because the filegroup was offline are
moved out of the deferred state after the filegroup becomes defunct. For more
information, see Deferred Transactions.

Security

Permissions
Requires ALTER permission on the database.

Using SQL Server Management Studio

1. In Object Explorer, connect to an instance of the SQL Server Database Engine
and then expand that instance.

2. Expand Databases, right-click the database from which to delete the file, and
then click Properties.

3. Select the Files page.
4. In the Database files grid, select the files to delete, click Remove, and then click

To remove defunct filegroups

 249

OK.
5. Select the Filegroups page.
6. In the Rows grid, select the filegroup to delete, click Remove, and then click OK.

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. Copy and paste the following example into the query window and click Execute.

(Note: This example assumes that the files and filegroup already exist. To create
these objects, see example B in the ALTER DATABASE File and Filegroup Options
topic.) The first example removes the test1dat3 and test1dat4 files from the
defunct filegroup by using the ALTER DATABASE statement with the REMOVE
FILE clause. The second example removes the defunct filegroup Test1FG1by
using the REMOVE FILEGROUP clause.

USE master;

GO

ALTER DATABASE AdventureWorks2012

REMOVE FILE test1dat3 ;

ALTER DATABASE AdventureWorks2012

REMOVE FILE test1dat4 ;

GO

USE master;

GO

ALTER DATABASE AdventureWorks2012

REMOVE FILEGROUP Test1FG1 ;

GO

See Also
ALTER DATABASE File and Filegroup Options (Transact-SQL)
Deferred Transactions
Restoring File Backups (Full Recovery Model)

To remove defunct filegroups

http://msdn.microsoft.com/en-us/library/1f635762-f7aa-4241-9b7a-b51b22292b07(SQL.110)�
http://msdn.microsoft.com/en-us/library/1f635762-f7aa-4241-9b7a-b51b22292b07(SQL.110)�

 250

Restoring File Backups (Simple Recovery Model)
Performing Online Restores
Performing Page Restores
Performing Piecemeal Restores

Example: Online Restore of a Read/Write File (Full
Recovery Model)
This topic is relevant for SQL Server databases under the full recovery model that contain
multiple files or filegroups.
In this example, a database named adb, which uses the full recovery model, contains
three filegroups. Filegroup A is read/write, and filegroup B and filegroup C are read-only.
Initially, all of the filegroups are online.
File a1 in filegroup A appears to be damaged, and the database administrator decides to
restore it while the database remains online.

Under the simple recovery model, online restore of read/write data is not
allowed.

Restore Sequences

The syntax for an online restore sequence is the same as for an offline restore
sequence.

1. Online restore of file a1.

RESTORE DATABASE adb FILE='a1' FROM backup

WITH NORECOVERY;

At this point, file a1 is in the RESTORING state, and filegroup A is offline.
2. After restoring the file, the database administrator takes a new log backup to make

sure that the point at which the file went offline is captured.

BACKUP LOG adb TO log_backup3;

3. Online restore of log backups.
The administrator restores all the log backups taken since the restored file backup,
ending with the latest log backup (log_backup3, taken in step 2). After the last backup
is restored, the database is recovered.

RESTORE LOG adb FROM log_backup1 WITH NORECOVERY;

RESTORE LOG adb FROM log_backup2 WITH NORECOVERY;

RESTORE LOG adb FROM log_backup3 WITH NORECOVERY;

Note

Note

 251

RESTORE LOG adb WITH RECOVERY;

File a1 is now online.

Additional Examples
• Example: Piecemeal Restore of Database (Simple Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Simple Recovery Model)
• Example: Online Restore of a Read-Only File (Simple Recovery Model)
• Example: Piecemeal Restore of Database (Full Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Full Recovery Model)
• Example: Online Restore of a Read-Only File (Full Recovery Model)

See Also
Online Restore (SQL Server)
Performing Piecemeal Restores
BACKUP (Transact-SQL)
Overview of Restore and Recovery in SQL Server
Applying Transaction Log Backups
RESTORE (Transact-SQL)

Example: Online Restore of a Read-Only File (Full
Recovery Model)
This topic is relevant for SQL Server databases under the full recovery model that contain
multiple files or filegroups.
In this example, a database named adb, which uses the full recovery model, contains
three filegroups. Filegroup A is read/write, and filegroup B and filegroup C are read-only.
Initially, all of the filegroups are online.
A read-only file, b1, in filegroup B of database adb has to be restored. A backup was
taken since the file became read-only; therefore, log backups are not required. Filegroup
B is offline for the duration of the restore, but the remainder of the database remains
online.

Restore Sequence

The syntax for an online restore sequence is the same as for an offline restore
sequence.

To restore the file, the database administrator uses the following restore sequence:

RESTORE DATABASE adb FILE='b1' FROM filegroup_B_backup

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 252

WITH RECOVERY

Filegroup B is now online.

Additional Examples
• Example: Piecemeal Restore of Database (Simple Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Simple Recovery Model)
• Example: Online Restore of a Read-Only File (Simple Recovery Model)
• Example: Piecemeal Restore of Database (Full Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Full Recovery Model)
• Example: Online Restore of a Read-Write File (Full Recovery Model)

See Also
Online Restore (SQL Server)
Overview of Restore and Recovery in SQL Server
Restoring File Backups (Full Recovery Model)
RESTORE (Transact-SQL)

Example: Online Restore of a Read-Only File
(Simple Recovery Model)
This topic is relevant for SQL Server databases under the simple recovery model that
contain a read-only filegroup. Under the simple recovery model, a read-only file can be
restored online if a file backup exists that was taken since the file became read-only for
the last time.
In this example, a database named adb contains three filegroups. Filegroup A is
read/write, and filegroups B and C are read-only. Initially, all of the filegroups are online.
A read-only file in filegroup B, b1, has to be restored. The database administrator can
restore it by using a backup that was taken after the file became read-only. For the
duration of the restore, filegroup B will be offline, but the remainder of the database will
remain online.

Restore Sequence

The syntax for an online restore sequence is the same as for an offline restore
sequence.

To restore the file, the database administrator uses the following restore sequence:

RESTORE DATABASE adb FILE='b1' FROM filegroup_B_backup

WITH RECOVERY

The file is now online.

Note

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 253

Additional Examples
• Example: Piecemeal Restore of Database (Simple Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Simple Recovery Model)
• Example: Piecemeal Restore of Database (Full Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Full Recovery Model)
• Example: Online Restore of a Read-Write File (Full Recovery Model)
• Example: Online Restore of a Read-Only File (Full Recovery Model)

See Also
Online Restore (SQL Server)
Performing Piecemeal Restores
Restoring File Backups (Simple Recovery Model)
Overview of Restore and Recovery in SQL Server
RESTORE (Transact-SQL)

Example: Offline Restore of Primary and One
Other Filegroup (Full Recovery Model)
This topic is relevant only for databases under the full recovery model that contain
multiple filegroups.
In this example, a database named adb contains three filegroups. Filegroups A and C are
read/write, and filegroup B is read-only. The primary filegroup and filegroup B are
damaged, but filegroups A and C are intact. Before the disaster, all the filegroups were
online.
The database administrator decides to restore and recover the primary filegroup and
filegroup B. The database is using the full recovery model; therefore, before the restore
starts, a tail-log backup must be taken of the database. When the database comes on
line, Filegroups A and C are automatically brought online.

The offline restore sequence has fewer steps than an online restore of a read-only
file. For an example, see RESTORE (Transact-SQL). However, the whole database is
offline for the duration of the sequence.

Tail-Log Backup
Before restoring the database, the database administrator must back up the tail of the
log. Because the database is damaged, creating the tail-log backup requires using the
NO_TRUNCATE option:

BACKUP LOG adb TO tailLogBackup

Note

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 254

 WITH NORECOVERY, NO_TRUNCATE

The tail-log backup is the last backup that is applied in the following restore sequences.

Restore Sequence
To restore the primary filegroup and filegroup B, the database administrator uses a
restore sequence without the PARTIAL option, as follows:
RESTORE DATABASE adb FILEGROUP='Primary' FROM backup1

WITH NORECOVERY

RESTORE DATABASE adb FILEGROUP='B' FROM backup2

WITH NORECOVERY

RESTORE LOG adb FROM backup3 WITH NORECOVERY

RESTORE LOG adb FROM backup4 WITH NORECOVERY

RESTORE LOG adb FROM backup5 WITH NORECOVERY

RESTORE LOG adb FROM tailLogBackup WITH RECOVERY

The files that are not restored are automatically brought online. All the filegroups are
now online.

See Also
Performing Online Restores
Performing Piecemeal Restores
Restoring File Backups (Full Recovery Model)
Applying Transaction Log Backups
RESTORE (Transact-SQL)

Restore Pages
This topic describes how to restore pages in SQL Server 2012 by using SQL Server
Management Studio or Transact-SQL. The goal of a page restore is to restore one or
more damaged pages without restoring the whole database. Typically, pages that are
candidates for restore have been marked as "suspect" because of an error that is
encountered when accessing the page. Suspect pages are identified in the suspect_pages
table in the msdb database.
In This Topic
• Before you begin:

When is a Page Restore Useful?
Limitations and Restrictions
Recommendations

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/119c8d62-eea8-44fb-bf72-de469c838c50(SQL.110)�

 255

Security
• To restore pages, using:

SQL Server Management Studio
Transact-SQL

Before You Begin

When is a Page Restore Useful?
A page restore is intended for repairing isolated damaged pages. Restoring and
recovering a few individual pages might be faster than a file restore, reducing the
amount of data that is offline during a restore operation. However, if you have to restore
more than a few pages in a file, it is generally more efficient to restore the whole file. For
example, if lots of pages on a device indicate a pending device failure, consider restoring
the file, possibly to another location, and repairing the device.
Furthermore, not all page errors require a restore. A problem can occur in cached data,
such as a secondary index, that can be resolved by recalculating the data. For example, if
the database administrator drops a secondary index and rebuilds it, the corrupted data,
although fixed, is not indicated as such in the suspect_pages table.

Limitations and Restrictions

• Page restore applies to SQL Server databases that are using the full or bulk-logged

recovery models. Page restore is supported only for read/write filegroups.
• Only database pages can be restored. Page restore cannot be used to restore the

following:
• Transaction log
• Allocation pages: Global Allocation Map (GAM) pages, Shared Global Allocation

Map (SGAM) pages, and Page Free Space (PFS) pages.
• Page 0 of all data files (the file boot page)
• Page 1:9 (the database boot page)
• Full-text catalog

• Only database pages can be restored. Page restore cannot be used to restore the
following:
• Transaction log
• Allocation pages: Global Allocation Map (GAM) pages, Shared Global Allocation

Map (SGAM) pages, and Page Free Space (PFS) pages.
• Page 0 of all data files (the file boot page)
• Page 1:9 (the database boot page)

http://msdn.microsoft.com/en-us/library/119c8d62-eea8-44fb-bf72-de469c838c50(SQL.110)�

 256

• Full-text catalog
• For a database that uses the bulk-logged recovery model, page restore has the

following additional conditions:
• Backing up while filegroup or page data is offline is problematic for bulk-logged

data, because the offline data is not recorded in the log. Any offline page can
prevent backing up the log. In this cases, consider using DBCC REPAIR, because
this might cause less data loss than restoring to the most recent backup.

• If a log backup of a bulk-logged database encounters a bad page, it fails unless
WITH CONTINUE_AFTER_ERROR is specified.

• Page restore generally does not work with bulk-logged recovery.
A best practice for performing page restore is to set the database to the full
recovery model, and try a log backup. If the log backup works, you can continue
with the page restore. If the log backup fails, you either have to lose work since
the previous log backup or you have to try running DBCC must be run with the
REPAIR_ALLOW_DATA_LOSS option.

Recommendations

• Page restore scenarios:

Offline page restore

All editions of SQL Server 2005 and later versions support restoring pages when
the database is offline. In an offline page restore, the database is offline while
damaged pages are restored. At the end of the restore sequence, the database
comes online.

Online page restore

SQL Server 2005 Enterprise Edition and later versions support online page restores,
though they use offline restore if the database is currently offline. In most cases, a
damaged page can be restored while the database remains online, including the
filegroup to which a page is being restored. When the primary filegroup is online,
even if one or more of its secondary filegroups are offline, page restores are usually
performed online. Occasionally, however, a damaged page can require an offline
restore. For example, damage to certain critical pages might prevent the database
from starting.

Warning
If damaged pages are storing critical database metadata, required updates
to metadata might fail during an online page restore attempt. In this case,
you can perform an offline page restore, but first you must create a tail log
backup (by backing up the transaction log using RESTORE WITH

 257

NORECOVERY).

• Page restore takes advantage of the improved page-level error reporting (including
page checksums) and tracking that was introduced in SQL Server 2005. Pages that
are detected as corrupted by check-summing or a torn write, damaged pages, can be
restored by a page restore operation. Only explicitly specified pages are restored.
Each specified page is replaced by the copy of that page from the specified data
backup.

When you restore the subsequent log backups, they are applied only to database
files that contain at least one page that is being recovered. An unbroken chain of log
backups must be applied to the last full or differential restore to bring the filegroup
that contains the page forward to the current log file. As in a file restore, the roll
forward set is advanced with a single log redo pass. For a page restore to succeed,
the restored pages must be recovered to a state consistent with the database.

Security

Permissions
If the database being restored does not exist, the user must have CREATE DATABASE
permissions to be able to execute RESTORE. If the database exists, RESTORE permissions
default to members of the sysadmin and dbcreator fixed server roles and the owner
(dbo) of the database (for the FROM DATABASE_SNAPSHOT option, the database always
exists).
RESTORE permissions are given to roles in which membership information is always
readily available to the server. Because fixed database role membership can be checked
only when the database is accessible and undamaged, which is not always the case when
RESTORE is executed, members of the db_owner fixed database role do not have
RESTORE permissions.

Using SQL Server Management Studio
Starting in SQL Server 2012, SQL Server Management Studio supports page restores.

1. Connect to the appropriate instance of the SQL Server Database Engine, in Object
Explorer, click the server name to expand the server tree.

2. Expand Databases. Depending on the database, either select a user database or
expand System Databases, and then select a system database.

3. Right-click the database, point to Tasks, point to Restore, and then click Page,

To restore pages

 258

which opens the Restore Page dialog box.
Restore

This section performs the same function as that of Restore to on the Restore
Database (General Page).

Database

Specifies the database to restore. You can enter a new database or select
an existing database from the drop-down list. The list includes all
databases on the server, except the system databases master and
tempdb.

Warning
To restore a password-protected backup, you must use
the RESTORE statement.

Tail-Log backup

Enter or select a file name in Backup device where there tail-log backup will be
stored for the database.

Backup Sets

This section displays the backup sets involved in the restoration.

Header Values

Name The name of the backup set.

Component The backed-up component:
Database, File, or <blank> (for
transaction logs).

Type The type of backup performed: Full,
Differential, or Transaction Log.

Server The name of the Database Engine
instance that performed the backup
operation.

Database The name of the database involved
in the backup operation.

Position The position of the backup set in
the volume.

First LSN The log sequence number (LSN) of
the first transaction in the backup
set. Blank for file backups.

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 259

Last LSN The log sequence number (LSN) of
the last transaction in the backup
set. Blank for file backups.

Checkpoint LSN The log sequence number (LSN) of
the most recent checkpoint at the
time the backup was created.

Full LSN The log sequence number (LSN) of
the most recent full database
backup.

Start Date The date and time when the backup
operation began, presented in the
regional setting of the client.

Finish Date The date and time when the backup
operation finished, presented in the
regional setting of the client.

Size The size of the backup set in bytes.

User Name The name of the user who
performed the backup operation.

Expiration The date and time the backup set
expires.

Click Verify to check the integrity of the backup files needed to perform the
page restore operation.

4. To identify corrupted pages, with the correct database selected in the Database
box, click Check Database Pages. This is a long running operation.

wWarning
To restore specific pages that are not corrupted, click Add and enter the
File ID and Page ID of the pages to be restored.

5. The pages grid is used to identify the pages to be restored. Initially, this grid is
populated from the suspect_pages system table. To add or remove pages from
the grid, click Add or Remove. For more information, see Understanding and
Managing the suspect_pages Table.

6. The Backup sets grid lists the backup sets in the default restore plan. Optionally,
click Verify to verify that the backups are readable and that the backup sets are
complete, without restoring them. For more information, see RESTORE
VERIFYONLY (Transact-SQL).
Pages

http://msdn.microsoft.com/en-us/library/119c8d62-eea8-44fb-bf72-de469c838c50(SQL.110)�
http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�
http://msdn.microsoft.com/en-us/library/cba3b6a0-b48e-4c94-812b-5b3cbb408bd6(SQL.110)�

 260

7. To restore the pages listed in the pages grid, click OK.

Using Transact-SQL
To specify a page in a RESTORE DATABASE statement, you need the file ID of the file
containing the page and the page ID of the page. The required syntax is as follows:
RESTORE DATABASE <database_name>
 PAGE = '<file: page> [,... n] ' [,... n]
 FROM <backup_device> [,... n]
WITH NORECOVERY
For more information about the parameters of the PAGE option, see RESTORE
Arguments (Transact-SQL). For more information about the RESTORE DATABASE syntax,
see RESTORE (Transact-SQL).

1. Obtain the page IDs of the damaged pages to be restored. A checksum or torn
write error returns page ID, providing the information required for specifying the
pages. To look up page ID of a damaged page, use any of the following sources.

Source of page ID Topic

msdb..suspect_pages Understanding and Managing the
suspect_pages Table

Error log Viewing the SQL Server Error Log

Event traces Monitor and Respond to Events

DBCC DBCC (Transact-SQL)

WMI provider WMI Provider for Server Events
Concepts

2. Start a page restore with a full database, file, or filegroup backup that contains

the page. In the RESTORE DATABASE statement, use the PAGE clause to list the
page IDs of all of the pages to be restored.

3. Apply the most recent differentials .
4. Apply the subsequent log backups.
5. Create a new log backup of the database that includes the final LSN of the

restored pages, that is, the point at which the last restored page is taken offline.

To restore pages

http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/4bfe5734-3003-4165-afd4-b1131ea26e2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/55f468ba-146c-4ab3-95cd-d35d051afd12(SQL.110)�
http://msdn.microsoft.com/en-us/library/f7fbe155-5b68-4777-bc71-a47637471f32(SQL.110)�
http://msdn.microsoft.com/en-us/library/c6da8c04-5b6b-459a-9f76-110c92ca8b29(SQL.110)�
http://msdn.microsoft.com/en-us/library/80767fe0-32ac-406a-81a0-8212cd6ce7e4(SQL.110)�
http://msdn.microsoft.com/en-us/library/80767fe0-32ac-406a-81a0-8212cd6ce7e4(SQL.110)�

 261

The final LSN, which is set as part of the first restore in the sequence, is the redo
target LSN. Online roll forward of the file containing the page is able to stop at
the redo target LSN. To learn the current redo target LSN of a file, see the
redo_target_lsn column of sys.master_files. For more information,
see sys.master_files (Transact-SQL).

6. Restore the new log backup. After this new log backup is applied, the page
restore is completed and the pages are now usable.

nNote
This sequence is analogous to a file restore sequence. In fact, page restore
and file restores can both be performed as part of the same sequence.

Example (Transact-SQL)
The following example restores four damaged pages of file B with NORECOVERY. Next,
two log backups are applied with NORECOVERY, followed with the tail-log backup, which
is restored with RECOVERY. This example performs an online restore. In the example, the
file ID of file B is 1, and the page IDs of the damaged pages are 57, 202, 916, and 1016.

RESTORE DATABASE <database> PAGE='1:57, 1:202, 1:916, 1:1016'

 FROM <file_backup_of_file_B>

 WITH NORECOVERY;

RESTORE LOG <database> FROM <log_backup>

 WITH NORECOVERY;

RESTORE LOG <database> FROM <log_backup>

 WITH NORECOVERY;

BACKUP LOG <database> TO <new_log_backup>;

RESTORE LOG <database> FROM <new_log_backup> WITH RECOVERY;

GO

See Also
RESTORE (Transact-SQL)
Applying Transaction Log Backups
The suspect_pages
Back Up and Restore of SQL Server Databases

http://msdn.microsoft.com/en-us/library/803b22f2-0016-436b-a561-ce6f023d6b6a(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 262

Manage the suspect_pages Table
This topic describes how to manage the suspect_pages table in SQL Server 2012 by
using SQL Server Management Studio or Transact-SQL. The suspect_pages table is used
for maintaining information about suspect pages, and is relevant in helping to decide
whether a restore is necessary. The suspect_pages table resides in the msdb database
and was introduced in SQL Server 2005.
A page is considered "suspect" when the SQL Server Database Engine encounters one of
the following errors when it tries to read a data page:
• An 823 error that was caused by a cyclic redundancy check (CRC) issued by the

operating system, such as a disk error (certain hardware errors)
• An 824 error, such as a torn page (any logical error)
The page ID of every suspect page is recorded in the suspect_pages table. The Database
Engine records any suspect pages encountered during regular processing, such as the
following:
• A query has to read a page.
• During a DBCC CHECKDB operation.
• During a backup operation.
The suspect_pages table is also updated as necessary during a restore operation, a
DBCC repair operation, or a drop database operation.
In This Topic
• Before you begin:

Recommendations
Security

• To manage the suspect_pages table, using:
SQL Server Management Studio
Transact-SQL

Before You Begin

Recommendations

• Errors Recorded in suspect_pages Table

The suspect_pages table contains one row per page that failed with an 824 error, up
to a limit of 1,000 rows. The following table shows errors logged in the event_type
column of the suspect_pages table.

http://msdn.microsoft.com/en-us/library/119c8d62-eea8-44fb-bf72-de469c838c50(SQL.110)�
http://msdn.microsoft.com/en-us/library/5032cb2d-65a0-40dd-b569-4dcecdd58ceb(SQL.110)�
http://msdn.microsoft.com/en-us/library/0d9fce3c-3772-46ce-a7a3-4f4988dc6cae(SQL.110)�
http://msdn.microsoft.com/en-us/library/2aa22246-2712-4fdb-9744-36e7e6f3175e(SQL.110)�

 263

Error description event_type value

823 error caused by an operating system
CRC error or 824 error other than a bad
checksum or a torn page (for example, a
bad page ID)

1

Bad checksum 2

Torn page 3

Restored (The page was restored after it
was marked bad)

4

Repaired (DBCC repaired the page) 5

Deallocated by DBCC 7

The suspect_pages table also records transient errors. Sources of transient errors
include an I/O error (for example, a cable was disconnected) or a page that
temporarily fails a repeated checksum test.

• How the Database Engine Updates the suspect_pages Table
The Database Engine takes the following actions on the suspect_pages table:
• If the table is not full, it is updated for every 824 error, to indicate that an error

has occurred, and the error counter is incremented. If a page has an error after it
is fixed by being repaired, restored, or deallocated, its number_of_errors count is
incremented and its last_update column is updated

• After a listed page is fixed by a restore or a repair operation, the operation
updates the suspect_pages row to indicate that the page is repaired (event_type
= 5) or restored (event_type = 4).

• If a DBCC check is run, the check marks any error-free pages as repaired
(event_type = 5) or deallocated (event_type = 7).

• Automatic Updates to the suspect_pages Table

A database mirroring partner or AlwaysOn availability replica updates the
suspect_pages table after an attempt to read a page from a data file fails for one of
the following reasons.
• An 823 error that is caused by an operating system CRC error.
• An 824 error (logical corruption such as a torn page).
The following actions also automatically update rows in the suspect_pages table.

 264

• DBCC CHECKDB REPAIR_ALLOW_DATA_LOSS updates the suspect_pages table
to indicate each page that it has deallocated or repaired.

• A full, file, or page RESTORE marks the page entries as restored.
The following actions automatically delete rows from the suspect_pages table.
• ALTER DATABASE REMOVE FILE
• DROP DATABASE

• Maintenance Role of the Database Administrator
Database administrators are responsible for managing the table, primarily by
deleting old rows. The suspect_pages table is limited in size, and if it fills, new errors
are not logged. To prevent this table from filling up, the database administrator or
system administrator must manually clear out old entries from this table by deleting
rows. Therefore, we recommend that you periodically delete or archive rows that
have an event_type of restored or repaired, or rows that have an old last_update
value.
To monitor the activity on the suspect_pages table, you can use the Database
Suspect Data Page Event Class. Rows are sometimes added to the suspect_pages
table because of transient errors. If many rows are being added to the table,
however, a problem probably exists with the I/O subsystem. If you notice a sudden
increase in the number of rows being added to the table, we recommend that you
investigate possible problems in your I/O subsystem.
A database administrator can also insert or update records. For example, updating a
row might useful when the database administrator knows that a particular suspect
page is actually intact, but wants to preserve the record for a while.

Security

Permissions
Anyone with access to msdb can read the data in the suspect_pages table. Anyone with
UPDATE permission on the suspect_pages table can update its records. Members the
db_owner fixed database role on msdb or the sysadmin fixed server role can insert,
update, and delete records.

Using SQL Server Management Studio

1. In Object Explorer, connect to an instance of the SQL Server Database Engine,
expand that instance, and then expand Databases.

2. Expand System Databases, expand msdb, expand Tables, and then expand

To manage the suspect_pages table

http://msdn.microsoft.com/en-us/library/098e1443-a8a0-425c-9311-0a479b1370ed(SQL.110)�
http://msdn.microsoft.com/en-us/library/098e1443-a8a0-425c-9311-0a479b1370ed(SQL.110)�

 265

System Tables.
3. Expand dbo.suspect_pages and right-click Edit Top 200 Rows.
4. In the query window, edit, update, or delete the rows that you want.

Using Transact-SQL

1. Connect to the Database Engine.
2. From the Standard bar, click New Query.
3. Copy and paste the following examples into the query window and click Execute.

This example deletes some of the rows from the suspect_pages table.

-- Delete restored, repaired, or deallocated pages.

DELETE FROM msdb..suspect_pages

 WHERE (event_type = 4 OR event_type = 5 OR event_type = 7);

GO

This example returns the bad pages in the suspect_pages table.

-- Select nonspecific 824, bad checksum, and torn page errors.

SELECT * FROM msdb..suspect_pages

 WHERE (event_type = 1 OR event_type = 2 OR event_type = 3);

GO

See Also
DROP DATABASE (Transact-SQL)
RESTORE (Transact-SQL)
BACKUP (Transact-SQL)
DBCC (Transact-SQL)
Performing Page Restores
suspect_pages (Transact-SQL)
MSSQLSERVER_823
MSSQLSERVER_824

To manage the suspect_pages table

http://msdn.microsoft.com/en-us/library/477396a9-92dc-43c9-9b97-42c8728ede8e(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/c6da8c04-5b6b-459a-9f76-110c92ca8b29(SQL.110)�
http://msdn.microsoft.com/en-us/library/119c8d62-eea8-44fb-bf72-de469c838c50(SQL.110)�
http://msdn.microsoft.com/en-us/library/0d9fce3c-3772-46ce-a7a3-4f4988dc6cae(SQL.110)�
http://msdn.microsoft.com/en-us/library/2aa22246-2712-4fdb-9744-36e7e6f3175e(SQL.110)�

 266

Piecemeal Restores
This topic is relevant only for databases in SQL Server 2005 Enterprise Edition and later
versions that contain multiple files or filegroups; and, under the simple model, only for
read-only filegroups.
Piecemeal restore, which was introduced in SQL Server 2005, allows databases that
contain multiple filegroups to be restored and recovered in stages. Piecemeal restore
involves a series of restore sequences, starting with the primary filegroup and, in some
cases, one or more secondary filegroups. Piecemeal restore maintains checks to ensure
that the database will be consistent in the end. After the restore sequence is completed,
recovered files, if they are valid and consistent with the database, can be brought online
directly.
Piecemeal restore works with all recovery models, but is more flexible for the full and
bulk-logged models than for the simple model.
Every piecemeal restore starts with an initial restore sequence called the partial-restore
sequence. Minimally, the partial-restore sequence restores and recovers the primary
filegroup and, under the simple recovery model, all read/write filegroups. During the
piecemeal-restore sequence, the whole database must go offline. Thereafter, the
database is online and restored filegroups are available. However, any unrestored
filegroups remain offline and are not accessible. Any offline filegroups, however, can be
restored and brought online later by a file restore.
Regardless of the recovery model that is used by the database, the partial-restore
sequence starts with a RESTORE DATABASE statement that restores a full backup and
specifies the PARTIAL option. The PARTIAL option always starts a new piecemeal restore;
therefore, you must specify PARTIAL only one time in the initial statement of the partial-
restore sequence. When the partial restore sequence finishes and the database is
brought online, the state of the remaining files becomes "recovery pending" because
their recovery has been postponed.
Subsequently, a piecemeal restore typically includes one or more restore sequences,
which are called filegroup-restore sequences. You can wait to perform a specific filegroup-
restore sequence for as long as you want. Each filegroup-restore sequence restores and
recovers one or more offline filegroups to a point consistent with the database. The
timing and number of filegroup-restore sequences depends on your recovery goal, the
number of offline filegroups you want to restore, and on how many of them you restore
per filegroup-restore sequence.
The exact requirements for performing a piecemeal restore depend on the recovery
model of the database. For more information, see "Piecemeal Restore Under the Simple
Recovery Model" and "Piecemeal Restore Under the Full Recovery Model," later in this
topic.

 267

Piecemeal Restore Scenarios
All editions of SQL Server support offline piecemeal restores. In SQL Server 2005
Enterprise Edition and later versions, a piecemeal restore can be either online or offline.
The implications of offline and online piecemeal restores are as follows:
• Offline piecemeal restore scenario

In an offline piecemeal restore, the database is online after the partial-restore
sequence. Filegroups that have not yet been restored remain offline, but they can be
restored as you need them after taking the database offline.

• Online piecemeal restore scenario
In an online piecemeal restore, after the partial-restore sequence, the database is
online, and the primary filegroup and any recovered secondary filegroups are
available. Filegroups that have not yet been restored remain offline, but they can be
restored as needed while the database remains online.
Online piecemeal restores can involve deferred transactions. When only a subset of
filegroups has been restored, transactions in the database that depend on online
filegroups might become deferred. This is typical, because the whole database must
be consistent. For more information, see Deferred Transactions.

Restrictions
If a partial restore sequence excludes any FILESTREAM filegroup, point-in-time restore is
not supported. You can force the restore sequence to continue. However the
FILESTREAM filegroups that are omitted from your RESTORE statement can never be
restored. To force a point-in-time restore, specify the CONTINUE_AFTER_ERROR option
together with the STOPAT, STOPATMARK, or STOPBEFOREMARK option, which you must
also specify in your subsequent RESTORE LOG statements. If you specify
CONTINUE_AFTER_ERROR, the partial restore sequence succeeds and the FILESTREAM
filegroup becomes unrecoverable.

Piecemeal Restore Under the Simple Recovery Model
Under the simple recovery model, the piecemeal restore sequence must start with a full
database or partial backup. Then, if the restored backup is a differential base, restore the
latest differential backup next.
During the first partial restore sequence, if you restore only a subset of read/write
filegroups, any unrestored filegroups become defunct when you recover the partially
restored database. Omitting a read/write filegroup from the partial-restore sequence is
appropriate only in the following cases:
• You intend for the unrestored filegroups to become defunct.
• The restore sequence will arrive at a recovery point at which each unrestored

filegroup has become read-only, dropped, or defunct (during a previous restore in
the partial-restore sequence).

http://msdn.microsoft.com/en-us/library/9a5a8166-bcbe-4680-916c-26276253eafa(SQL.110)�

 268

• The full backup was taken while the database was using the simple recovery model,
but the recovery point is at a time when the database is using the full recovery
model. For more information, see "Performing a Piecemeal Restore of a Database
Whose Recovery Model Has Been Switched from Simple to Full," later in this topic.

Requirements for Piecemeal Restore Under the Simple Recovery Model
Under the simple recovery model, the initial stage restores and recovers the primary
filegroup and all read/write secondary filegroups. After the initial stage is completed,
recovered files, if they are valid and consistent with the database, can be brought online
directly.
Thereafter, read-only filegroups can be restored in one or more additional stages.
Piecemeal restore is available for a read-only secondary filegroup only if the following
are true:
• Was read-only when backed up.
• Has remained read-only (keeping it logically consistent with the primary filegroup).
To perform a piecemeal restore, the following guidelines must be followed:
• A complete set of backups for the piecemeal restore of a simple recovery model

database must contain the following:
• A partial or full database backup that contains the primary filegroup and all

filegroups that were read/write at the time of the backup.
• A backup of each read-only file.

• For the backup of a read-only file to be consistent with the primary filegroup, the
secondary filegroup must have been read-only from when it was backed up until the
backup that contains the primary filegroup was completed. You can use differential
file backups, if they were taken after the filegroup became read-only.

Piecemeal Restore Stages (Simple Recovery Model)
The piecemeal restore scenario involves the following stages:
• Initial stage (restore and recover the primary filegroup and all read/write filegroups)

The initial stage performs a partial restore. The partial restore sequence restores the
primary filegroup, all read/write secondary filegroups, and (optionally) some of the
read-only filegroups. During the initial stage, the whole database must go offline.
After the initial stage, the database is online, and restored filegroups are available.
However, any read-only filegroups that have not yet been restored, remain offline.
The first RESTORE statement in the initial stage must do the following:
• Use a partial or full database backup that contains the primary filegroup and all

filegroups that were read/write at the time of the backup. It is common to start a
partial restore sequence by restoring a partial backup.

• Specify the PARTIAL option, which indicates the start of a piecemeal restore.

 269

In SQL Server 2005 and later versions, the PARTIAL option performs safety
checks that ensure that the resulting database is suited for use as a
production database.

• Specify the READ_WRITE_FILEGROUPS option if the backup is a full database
backup.

• While the database is online, you can use one or more online file restores to restore
and recover offline read-only files that were read-only at the time of backup. The
timing of the online file restores depends on when you want to have the data online.
Whether you must restore data to a file depends on the following:
• Valid read-only files that are consistent with the database can be brought online

directly by recovering them without restoring any data.
• Files that are damaged or inconsistent with the database must be restored before

they are recovered.

Examples
• Example: Piecemeal Restore of Database (Simple Recovery Model)
• Example: Piecemeal Restore of Primary and One Other Filegroup (Simple Recovery

Model)

Piecemeal Restore Under the Full Recovery Model
Under the full recovery model or bulk-logged recovery model, piecemeal restore is
available for any database that contains multiple filegroups and you can restore a
database to any point in time. The restore sequences of a piecemeal restore behave as
follows:
• Partial-restore sequence

The partial restore sequence restores the primary filegroup and, optionally, some of
the secondary filegroups.
The first RESTORE DATABASE statement must do the following:
• Specify the PARTIAL option. This indicates the start of a piecemeal restore.
• Use any full database backup that contains the primary filegroup. The common

practice is to start a partial restore sequence by restoring a partial backup.
• To restore to a specific point in time, you must specify the time in the partial

restore sequence. Every successive step of the restore sequence must specify the
same point in time.

• Filegroup-restore sequences bring additional filegroups online to a point consistent
with the database.
In SQL Server 2005 Enterprise Edition and later versions, any offline secondary
filegroup can be restored and recovered while the database remains online. If a

Note

 270

specific read-only file is undamaged and consistent with the database, the file does
not have to be restored. For more information, see Recovering a Database Without
Restoring Data.

Applying Log Backups
If a read-only filegroup has been read-only since before the file backup was created,
applying log backups to the filegroup is unnecessary and is skipped by file restore. If the
filegroup is read/write, an unbroken chain of log backups must be applied to the last full
or differential restore to bring the filegroup forward to the current log file.

Examples
• Example: Piecemeal Restore of Database (Full Recovery Model)
• Example: Piecemeal Restore of Primary and One Other Filegroup (Full Recovery

Model)

Performing a Piecemeal Restore of a Database Whose Recovery Model Has
Been Switched from Simple to Full
You can perform a piecemeal restore of a database that has been switched from the
simple recovery model to the full recovery model since the full partial or database
backup. For example, consider a database for which you take the following steps:
1. Create a partial backup (backup_1) of a simple-model database.
2. After some time, change the recovery model to full.
3. Create a differential backup.
4. Start taking log backups.
Thereafter, the following sequence is valid:
1. A partial restore that omits some secondary filegroups.
2. A differential restore followed by any other needed restores.
3. Later, a file restore of a read/write secondary filegroup WITH NORECOVERY from the

backup_1 partial backup
4. The differential backup followed by any other backups that were restored in the

original piecemeal restore sequence to restore the data up to the original recovery
point.

See Also
Applying Transaction Log Backups
RESTORE (Transact-SQL)
Restoring a Database to a Point in Time
Restore and Recovery Overview
Plan and Perform Restore Sequences (Full Recovery Model)

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 271

Example: Piecemeal Restore of Database (Full
Recovery Model)
A piecemeal restore sequence restores and recovers a database in stages at the filegroup
level, beginning with the primary and all read-write, secondary filegroups.
In this example, database adb is restored to a new computer after a disaster. The
database is using the full recovery model; therefore, before the restore starts, a tail-log
backup must be taken of the database. Before the disaster, all the filegroups are online.
Filegroup B is read-only. All of the secondary filegroups must be restored, but they are
restored in order of importance: A (highest), C, and lastly B. In this example, there are four
log backups, including the tail-log backup.

Tail-Log Backup
Before restoring the database, the database administrator must back up the tail of the
log. Because the database is damaged, creating the tail-log backup requires using the
NO_TRUNCATE option:

BACKUP LOG adb TO tailLogBackup WITH NORECOVERY, NO_TRUNCATE

The tail-log backup is the last backup that is applied in the following restore sequences.

Restore Sequences

The syntax for an online restore sequence is the same as for an offline restore
sequence.

1. Partial restore of the primary and secondary filegroup A.

RESTORE DATABASE adb FILEGROUP='Primary' FROM backup1

 WITH PARTIAL, NORECOVERY

RESTORE DATABASE adb FILEGROUP='A' FROM backup2

 WITH NORECOVERY

RESTORE LOG adb FROM backup3 WITH NORECOVERY

RESTORE LOG adb FROM backup4 WITH NORECOVERY

RESTORE LOG adb FROM backup5 WITH NORECOVERY

RESTORE LOG adb FROM tailLogBackup WITH RECOVERY

2. Online restore of filegroup C.
At this point, the primary filegroup and secondary filegroup A are online. All the files
in filegroups B and C are recovery pending, and the filegroups are offline.
Messages from the last RESTORE LOG statement in step 1 indicate that rollback of
transactions that involve filegroup C was deferred, because this filegroup is not

Note

 272

available. Regular operations can continue, but locks are held by these transactions
and log truncation will not occur until the rollback can complete.
In the second restore sequence, the database administrator restores filegroup C:

RESTORE DATABASE adb FILEGROUP='C' FROM backup2a WITH NORECOVERY

RESTORE LOG adb FROM backup3 WITH NORECOVERY

RESTORE LOG adb FROM backup4 WITH NORECOVERY

RESTORE LOG adb FROM backup5 WITH NORECOVERY

RESTORE LOG adb FROM tailLogBackup WITH RECOVERY

At this point the primary and filegroups A and C are online. Files in filegroup B remain
recovery pending, with the filegroup offline. Deferred transactions have been
resolved, and log truncation occurs.

3. Online restore of filegroup B.
In the third restore sequence, the database administrator restores filegroup B. The
backup of filegroup B was taken after the filegroup became read-only; therefore, it
does not have to be rolled forward during recovery.

RESTORE DATABASE adb FILEGROUP='B' FROM backup2b WITH RECOVERY

All filegroups are now online.

Additional Examples
• Example: Piecemeal Restore of Database (Simple Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Simple Recovery Model)
• Example: Online Restore of a Read-Only File (Simple Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Full Recovery Model)
• Example: Online Restore of a Read-Write File (Full Recovery Model)
• Example: Online Restore of a Read-Only File (Full Recovery Model)

See Also
Performing Piecemeal Restores
Online Restore (SQL Server)
Applying Transaction Log Backups
RESTORE (Transact-SQL)
Performing Piecemeal Restores

Example: Piecemeal Restore of Database (Simple
Recovery Model)
A piecemeal restore sequence restores and recovers a database in stages at the filegroup
level, starting with the primary and all read/write, secondary filegroups.

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 273

In this example, database adb is restored to a new computer after a disaster. The
database is using the simple recovery model. Before the disaster, all the filegroups are
online. Filegroups A and C are read/write, and filegroup B is read-only. Filegroup B
became read-only before the most recent partial backup, which contains the primary
filegroup and the read/write secondary filegroups, A and C. After filegroup B became
read-only, a separate file backup of filegroup B was taken.

Restore Sequences
1. Partial restore of the primary and filegroups A and C.

RESTORE DATABASE adb FILEGROUP='A',FILEGROUP='C'

 FROM partial_backup

 WITH PARTIAL, RECOVERY;

At this point, the primary and filegroups A and C are online. All files in filegroup B are
recovery pending, and the filegroup is offline.

2. Online restore of filegroup B.

RESTORE DATABASE adb FILEGROUP='B' FROM backup

 WITH RECOVERY;

All filegroups are now online.

Additional Examples
• Example: Piecemeal Restore of Only Some Filegroups (Simple Recovery Model)
• Example: Online Restore of a Read-Only File (Simple Recovery Model)
• Example: Piecemeal Restore of Database (Full Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Full Recovery Model)
• Example: Online Restore of a Read-Write File (Full Recovery Model)
• Example: Online Restore of a Read-Only File (Full Recovery Model)

See Also
Online Restore (SQL Server)
Performing Piecemeal Restores
RESTORE (Transact-SQL)
Performing Piecemeal Restores

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 274

Example: Piecemeal Restore of Only Some
Filegroups (Full Recovery Model)
This topic is relevant for SQL Server databases under the full recovery model that contain
multiple files or filegroups.
A piecemeal restore sequence restores and recovers a database in stages at the filegroup
level, starting with the primary and all read/write, secondary filegroups.
In this example, a database named adb, which uses the full recovery model, contains
three filegroups. Filegroup A is read/write, and filegroup B and filegroup C are read-only.
Initially, all of the filegroups are online.
The primary and filegroup B of database adb appear to be damaged. The primary
filegroup is fairly small and can be restored quickly. The database administrator decides
to restore them by using a piecemeal restore sequence. First, the primary filegroup and
the subsequent transaction logs are restored the database is recovered.
The intact filegroups A and C contain critical data. Therefore, they will be recovered next
to bring them online as quickly as possible. Finally, the damaged secondary filegroup, B,
is restored and recovered.

Restore Sequences:

The syntax for an online restore sequence is the same as for an offline restore
sequence.

1. Create a tail log backup of database adb. This step is essential to make the intact
filegroups A and C current with the recovery point of the database.

BACKUP LOG adb TO tailLogBackup WITH NORECOVERY

2. Partial restore of the primary filegroup.

RESTORE DATABASE adb FILEGROUP='Primary' FROM backup

WITH PARTIAL, NORECOVERY

RESTORE LOG adb FROM backup1 WITH NORECOVERY

RESTORE LOG adb FROM backup2 WITH NORECOVERY

RESTORE LOG adb FROM backup3 WITH NORECOVERY

RESTORE LOG adb FROM tailLogBackup WITH RECOVERY

At this point the primary is online. Files in filegroups A, B, and C are recovery pending,
and the filegroups are offline.

3. Online restore of filegroups A and C.
Because their data is undamaged, these filegroups do not have to be restored from a
backup, but they do have to be recovered to bring them online.

Note

 275

The database administrator recovers A and C immediately.

RESTORE DATABASE adb FILEGROUP='A', FILEGROUP='C' WITH RECOVERY

At this point the primary and filegroups A and C are online. Files in filegroup B remain
recovery pending, with the filegroup offline.

4. Online restore of filegroup B.
Files in filegroup B are restored any time thereafter.

The backup of filegroup B was taken after the filegroup became read-only;
therefore, these files do not have to be rolled forward.

RESTORE DATABASE adb FILEGROUP='B' FROM backup WITH RECOVERY

All filegroups are now online.

Additional Examples
• Example: Piecemeal Restore of Database (Simple Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Simple Recovery Model)
• Example: Online Restore of a Read-Only File (Simple Recovery Model)
• Example: Piecemeal Restore of Database (Full Recovery Model)
• Example: Online Restore of a Read-Write File (Full Recovery Model)
• Example: Online Restore of a Read-Only File (Full Recovery Model)

See Also
Performing Piecemeal Restores
Online Restore (SQL Server)
Applying Transaction Log Backups
RESTORE (Transact-SQL)
Performing Piecemeal Restores

Example: Piecemeal Restore of Only Some
Filegroups (Simple Recovery Model)
This topic is relevant for SQL Server databases under the simple recovery model that
contain a read-only filegroup.
A piecemeal restore sequence restores and recovers a database in stages at the filegroup
level, beginning with the primary and all read/write, secondary filegroups.
In this example, a database named adb, which uses the simple recovery model, contains
three filegroups. Filegroup A is read/write, and filegroup B and filegroup C are read-only.
Initially, all of the filegroups are online.

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 276

The primary and filegroup B of database adb appear to be damaged; therefore, the
database administrator decides to restore them by using a piecemeal restore sequence.
Under the simple recovery model, all read/write filegroups must be restored from the
same partial backup. Although filegroup A is intact, it must be restored with the primary
filegroup to make sure that they are consistent (the database will be restored to the
point in time defined by the end of the last partial backup). Filegroup C is intact, but it
must be recovered to bring it online. Filegroup B, although damaged, contains less
critical data than Filegroup C; therefore, B will be restored last.

Restore Sequences

The syntax for an online restore sequence is the same as for an offline restore
sequence.

1. Partial restore of the primary and filegroup A from a partial backup.
RESTORE DATABASE adb READ_WRITE_FILEGROUPS FROM partial_backup

WITH PARTIAL, RECOVERY

At this point the primary filegroup and filegroup A are online. Files in filegroups B
and C are recovery pending, and the filegroups are offline.

2. Online recovery of filegroup C.
Filegroup C is consistent because the partial backup that was restored above was
taken after filegroup C became read-only, although the database was taken back in
time by the restore. The database administrator recovers the filegroup C, without
restoring it, to bring it online.

RESTORE DATABASE adb FILEGROUP='C' WITH RECOVERY

At this point the primary and filegroups A and C are online. Files in filegroup B
remain recovery pending, with the filegroup offline.

3. Online restore of filegroup B.
Files in filegroup B must be restored. The database administrator restores the backup
of filegroup B taken after filegroup B became read-only and before the partial
backup.

RESTORE DATABASE adb FILEGROUP='B' FROM backup

WITH RECOVERY

All filegroups are now online.

Additional Examples
• Example: Piecemeal Restore of Database (Simple Recovery Model)
• Example: Online Restore of a Read-Only File (Simple Recovery Model)
• Example: Piecemeal Restore of Database (Full Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Full Recovery Model)

Note

 277

• Example: Online Restore of a Read-Write File (Full Recovery Model)
• Example: Online Restore of a Read-Only File (Full Recovery Model)

See Also
Online Restore (SQL Server)
BACKUP (Transact-SQL)
RESTORE (Transact-SQL)
Performing Piecemeal Restores

Recover a Database Without Restoring Data
(Transact-SQL)
Usually, all of the data in a SQL Server database is restored before the database is
recovered. However, a restore operation can recover a database without actually
restoring a backup; for example, when recovering a read-only file that is consistent with
the database. This is referred to as a recovery-only restore. When offline data is already
consistent with the database and needs only to be made available, a recovery-only
restore operation completes the recovery of the database and bring the data online.
A recovery-only restore can occur for a whole database or for one or more a files or
filegroups.

Recovery-Only Database Restore
A recovery-only database restore can be useful in the following situations:
• You did not recover the database when restoring the last backup in a restore

sequence, and you now want to recover the database to bring it online.
• The database is in standby mode, and you want to make the database updatable

without applying another log backup.
The RESTORE syntax for a recovery-only database restore is as follows:
RESTORE DATABASE database_name WITH RECOVERY

The FROM = <backup_device> clause is not used for recovery-only restores
because no backup is necessary.

Example
The following example recovers the sample database in a restore operation without
restoring data.

-- Restore database using WITH RECOVERY.

RESTORE DATABASE AdventureWorks2012

Note

http://msdn.microsoft.com/en-us/library/89a4658a-62f1-4289-8982-f072229720a1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 278

 WITH RECOVERY

Recovery-Only File Restore
A recovery-only file restore can be useful in the following situation:
A database is restored piecemeal. After restore of the primary filegroup is complete, one
or more of the unrestored files are consistent with the new database state, perhaps
because it has been read-only for some time. These files only have to be recovered; data
copying is unnecessary.
A recovery-only restore operation brings the data in the offline filegroup online; no data-
copy, redo, or undo phase occurs. For information about the phases of restore,
see Restore and Recovery Overview (SQL Server).
The RESTORE syntax for a recovery-only file restore is:
RESTORE DATABASE database_name { FILE = logical_file_name | FILEGROUP =
logical_filegroup_name } [,...n] WITH RECOVERY
Example
The following example illustrates a recovery-only file restore of the files in a secondary
filegroup, SalesGroup2, in the Sales database. The primary filegroup has already been
restored as the initial step of a piecemeal restore, and SalesGroup2 is consistent with
the restored primary filegroup. Recovering this filegroup and bringing it online requires
only a single statement.
RESTORE DATABASE Sales FILEGROUP=SalesGroup2 WITH RECOVERY;

Examples of Completing a Piecemeal Restore Scenario with a Recovery-Only
Restore
Simple recovery model
• Example: Piecemeal Restore of Database (Simple Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Simple Recovery Model)
Full recovery model
• Example: Piecemeal Restore of Database (Full Recovery Model)
• Example: Piecemeal Restore of Only Some Filegroups (Full Recovery Model)
•

 M:Microsoft.SqlServer.Management.Smo.Restore.SqlRestore(Microsoft.SqlServer.M
anagement.Smo.Server)

See Also
Online Restore (SQL Server)

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�

 279

Performing Piecemeal Restores
Performing File Restores (Simple Recovery Model)
Performing File Restores (Full Recovery Model)
RESTORE (Transact-SQL)

Back Up and Restore of System Databases
SQL Server maintains a set of system-level databases, system databases, which are
essential for the operation of a server instance. Several of the system databases must be
backed up after every significant update. The system databases that you must always
back up include msdb, master, and model. If any database uses replication on the server
instance, there is a distribution system database that you must also back up. Backups of
these system databases let you restore and recover the SQL Server system in the event of
system failure, such as the loss of a hard disk.
The following table summarizes all of the system databases.

System
database

Description Are
backups
required?

Recovery
model

Comments

master The database
that records
all of the
system level
information
for a SQL
Server
system.

Yes Simple Back up master as often as
necessary to protect the data
sufficiently for your business
needs. We recommend a regular
backup schedule, which you can
supplement with an additional
backup after a substantial
update.

model The template
for all
databases
that are
created on
the instance
of SQL
Server.

Yes User
configurable1

Back up model only when
necessary for your business
needs; for example, immediately
after customizing its database
options.
Best practice: We recommend
that you create only full database
backups of model, as required.
Because model is small and
rarely changes, backing up the
log is unnecessary.

http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/660e909f-61eb-406b-bbce-8864dd629ba0(SQL.110)�
http://msdn.microsoft.com/en-us/library/4e4f739b-fd27-4dce-8be6-3d808040d8d7(SQL.110)�

 280

System
database

Description Are
backups
required?

Recovery
model

Comments

msdb The database
used by SQL
Server Agent
for
scheduling
alerts and
jobs, and for
recording
operators.
msdb also
contains
history tables
such as the
backup and
restore
history
tables.

Yes Simple
(default)

Back up msdb whenever it is
updated.

Resource
(RDB)

A read-only
database
that contains
copies of all
system
objects that
ship with SQL
Server
2005 or later
versions.

No — The Resource database resides
in the mssqlsystemresource.mdf
file, which contains only code.
Therefore, SQL Server cannot
back up the Resource database.

Note
You can perform a file-
based or a disk-based
backup on the
mssqlsystemresource.mdf
file by treating the file as
if it were a binary (.exe)
file, instead of a database
file. But you cannot use
SQL Server restore on the
backups. Restoring a
backup copy of
mssqlsystemresource.mdf
can only be done
manually, and you must
be careful not to

http://msdn.microsoft.com/en-us/library/5032cb2d-65a0-40dd-b569-4dcecdd58ceb(SQL.110)�
http://msdn.microsoft.com/en-us/library/d592b2b4-bc36-4eb9-9385-8fe4dff0dced(SQL.110)�

 281

System
database

Description Are
backups
required?

Recovery
model

Comments

overwrite the current
Resource database with
an out-of-date or
potentially insecure
version.

tempdb A workspace
for holding
temporary or
intermediate
result sets.
This
database is
re-created
every time an
instance of
SQL Server is
started.
When the
server
instance is
shut down,
any data in
tempdb is
deleted
permanently.

No Simple You cannot back up the tempdb
system database.

Distribution A database
that exists
only if the
server is
configured as
a replication
Distributor.
This
database
stores
metadata
and history
data for all

Yes Simple For information about when to
back up the distribution
database, see Backing Up and
Restoring Replicated Databases.

http://msdn.microsoft.com/en-us/library/ce4053fb-e37a-4851-b711-8e504059a780(SQL.110)�
http://msdn.microsoft.com/en-us/library/94d52169-384e-4885-84eb-2304e967d9f7(SQL.110)�
http://msdn.microsoft.com/en-us/library/04588807-21e7-4bbe-9727-b72f692cffa7(SQL.110)�
http://msdn.microsoft.com/en-us/library/04588807-21e7-4bbe-9727-b72f692cffa7(SQL.110)�

 282

System
database

Description Are
backups
required?

Recovery
model

Comments

types of
replication,
and
transactions
for
transactional
replication.

1 To learn the current recovery model of the model, see How to: View or Change the
Recovery Model of a Database (SQL Server Management Studio) or sys.databases
(Transact-SQL).

Limitations on Restoring System Databases
• System databases can be restored only from backups that are created on the version

of SQL Server that the server instance is currently running. For example, to restore a
system database on a server instance that is running on SQL Server 2005 SP1, you
must use a database backup that was created after the server instance was upgraded
to SQL Server 2005 SP1.

• To restore any database, the instance of SQL Server must be running. Startup of an
instance of SQL Server requires that the master database is accessible and at least
partly usable. If master becomes unusable, you can return the database to a usable
state in either of the following ways:
• Restore master from a current database backup.

If you can start the server instance, you should be able to restore master from a
full database backup.

• Rebuild master completely.
If severe damage to master prevents you from starting SQL Server, you must
rebuild master. For more information, see Rebuilding System Databases.

Rebuilding master rebuilds all of the system databases.

Related Tasks
• Create a Full Database Backup
• Complete Database Restores (Simple Recovery Model)
• Restore the master Database (Transact-SQL)

Important

http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/46c288c1-3410-4d68-a027-3bbf33239289(SQL.110)�
http://msdn.microsoft.com/en-us/library/af457ecd-523e-4809-9652-bdf2e81bd876(SQL.110)�

 283

• View or Change the Recovery Model of a Database (SQL Server)
• Move System Databases

See Also
Distribution Database
master Database
msdb Database
model Database
Resource Database
tempdb Database

Restore the master Database (Transact-SQL)
This topic explains how to restore the master database from a full database backup.

Procedures

1. Start the server instance in single-user mode.
For information about how to specify the single-user startup parameter (-m),
see SQL Server Management Studio Tutorial.

2. To restore a full database backup of master, use the following RESTORE
DATABASE Transact-SQL statement:
RESTORE DATABASE master FROM <backup_device> WITH REPLACE
The REPLACE option instructs SQL Server to restore the specified database even
when a database of the same name already exists. The existing database, if any, is
deleted. In single-user mode, we recommend that you enter the RESTORE
DATABASE statement in the sqlcmd utility. For more information, see Using the
sqlcmd Utility.

Important
After master is restored, the instance of SQL Server shuts down and
terminates the sqlcmd process. Before you restart the server instance,
remove the single-user startup parameter. For more information, see How
to: Configure Server Startup Options (SQL Server Configuration Manager).

3. Restart the server instance and continue other recovery steps such as restoring
other databases, attaching databases, and correcting user mismatches.

Example

Description

To restore the master database

http://msdn.microsoft.com/en-us/library/72bb62ee-9602-4f71-be51-c466c1670878(SQL.110)�
http://msdn.microsoft.com/en-us/library/5b42a083-7a11-41d8-9e3f-320c7c907237(SQL.110)�
http://msdn.microsoft.com/en-us/library/660e909f-61eb-406b-bbce-8864dd629ba0(SQL.110)�
http://msdn.microsoft.com/en-us/library/5032cb2d-65a0-40dd-b569-4dcecdd58ceb(SQL.110)�
http://msdn.microsoft.com/en-us/library/4e4f739b-fd27-4dce-8be6-3d808040d8d7(SQL.110)�
http://msdn.microsoft.com/en-us/library/d592b2b4-bc36-4eb9-9385-8fe4dff0dced(SQL.110)�
http://msdn.microsoft.com/en-us/library/ce4053fb-e37a-4851-b711-8e504059a780(SQL.110)�
http://msdn.microsoft.com/en-us/library/7a94643c-6460-4baf-bb31-0cb99eaf970d(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/e1728707-5215-4c04-8320-e36f161b834a(SQL.110)�
http://msdn.microsoft.com/en-us/library/3ec89119-7314-43ef-9e91-12e72bb63d62(SQL.110)�
http://msdn.microsoft.com/en-us/library/3ec89119-7314-43ef-9e91-12e72bb63d62(SQL.110)�
http://msdn.microsoft.com/en-us/library/7a94643c-6460-4baf-bb31-0cb99eaf970d(SQL.110)�
http://msdn.microsoft.com/en-us/library/7a94643c-6460-4baf-bb31-0cb99eaf970d(SQL.110)�

 284

The following example restores the master database on the default server instance. The
example assumes that the server instance is already running in single-user mode. The
example starts sqlcmd and executes a RESTORE DATABASE statement that restores a full
database backup of master from a disk device: Z:\SQLServerBackups\master.bak.

For a named instance, the sqlcmd command must specify the -
S<ComputerName>\<InstanceName> option.

Code
C:\> sqlcmd

1> RESTORE DATABASE master FROM DISK = 'Z:\SQLServerBackups\master.bak'

WITH REPLACE;

2> GO

See Also
Performing a Complete Database Restore (Simple Recovery Model)
Performing a Complete Database Restore (Full Recovery Model)
Troubleshooting Orphaned Users
Detaching and Attaching Databases
Rebuilding System Databases
Using the SQL Server Service Startup Options
SQL Server Configuration Manager
Back Up and Restore of System Databases
RESTORE
Starting SQL Server in Single-User Mode

Backup and Restore: Interoperability and
Coexistence
This topic describes backup-and-restore considerations for several features in SQL Server
2012. These features include: file restore and database startup, online restore and
disabled indexes, database mirroring, and piecemeal restore and full-text indexes.
In this Topic:
• File Restore and Database Startup
• Online Restore and Disabled Indexes
• Database Mirroring and Backup and Restore

Note

http://msdn.microsoft.com/en-us/library/11eefa97-a31f-4359-ba5b-e92328224133(SQL.110)�
http://msdn.microsoft.com/en-us/library/d0de0639-bc54-464e-98b1-6af22a27eb86(SQL.110)�
http://msdn.microsoft.com/en-us/library/af457ecd-523e-4809-9652-bdf2e81bd876(SQL.110)�
http://msdn.microsoft.com/en-us/library/d373298b-f6cf-458a-849d-7083ecb54ef5(SQL.110)�
http://msdn.microsoft.com/en-us/library/e6beaea4-164c-4078-95ae-b9e28b0aefe8(SQL.110)�
http://msdn.microsoft.com/en-us/library/877ecd57-3f2e-4237-890a-08f16e944ef1(SQL.110)�
http://msdn.microsoft.com/en-us/library/72eb4fc1-7af4-4ec6-9e02-11a69e02748e(SQL.110)�

 285

• Piecemeal Restore and Full-Text Indexes
• File Backup and Restore and Compression
• Related Tasks

File Restore and Database Startup
This section is relevant only for SQL Server databases that have multiple filegroups.

When a database is started, only filegroups whose files were online when the
database was closed are recovered and brought online.

If a problem is encountered during database startup, recovery fails, and the database is
marked as SUSPECT. If the problem can be isolated to a file or files, the database
administrator can take the files offline and try to restart the database. To take a file
offline, you can use the following ALTER DATABASE statement:
ALTER DATABASE database_name MODIFY FILE (NAME = 'filename', OFFLINE)
If startup succeeds, any filegroup that contains an offline file remains offline.

Online Restore and Disabled Indexes
This section is relevant only for databases that have multiple filegroups and, for the
simple recovery model, at least one read-only filegroup.
In these cases, when a database is online, the index can be created, dropped, enabled or
disabled only if all filegroups holding any part of the index are online.
For information about restoring offline filegroups, see Online Restore.

Database Mirroring and Backup and Restore
This section is relevant only for full-model databases that have multiple filegroups.

The database mirroring feature will be removed in a future version of Microsoft
SQL Server. Avoid using this feature in new development work, and plan to
modify applications that currently use this feature. Use AlwaysOn Availability
Groups instead.

Database mirroring is a solution for increasing database availability. Mirroring is
implemented on a per-database basis and works only with databases that use the full
recovery model. For more information, see Securing Data and Log Files.

Note

Note

Note

http://msdn.microsoft.com/en-us/library/15f8affd-8f39-4021-b092-0379fc6983da(SQL.110)�
http://msdn.microsoft.com/en-us/library/a7f95ddc-5154-4ed5-8117-c9fcf2221f13(SQL.110)�

 286

To distribute copies of a subset of the filegroups in a database, use replication:
replicate only those objects in the filegroups you want to copy to other servers.
For more information about replication, see Replication.

Creating the Mirror Database
The mirror database is created by restoring, WITH NORECOVERY, backups of the
principal database on the mirror server. The restore must keep the same database name.
For more information, see Prepare a Mirror Database for Mirroring (SQL Server).
You can create the mirror database by using use a piecemeal restore sequence, where
supported. However, you cannot start mirroring until you have restored all the filegroups
and, typically, restored log backups to get the mirror database close enough in time with
the principal database. For more information, see Performing Piecemeal Restores.

Restrictions on Backup and Restore During Mirroring
While a database mirroring session is active, the following restrictions apply:
• Backup and restore of the mirror database are not allowed.
• Backup of the principal database is allowed, but BACKUP LOG WITH NORECOVERY is

not allowed.
• Restoring the principal database is not allowed.

Piecemeal Restore and Full-Text Indexes
This section is relevant only for databases that contain multiple filegroups and, for the
simple-model databases, only for read-only filegroups.
Full-text indexes are stored in database filegroups and can be affected by a piecemeal
restore. If the full-text index resides in the same filegroup as any of the associated table
data, piecemeal restore works as expected.

To view the filegroup ID of the filegroup that contains a full-text index, select the
data_space_id column of sys.fulltext_indexes.

Full-Text Indexes and Tables in Separate Filegroups
If a full-text index resides in a separate filegroup from all of the associated table data, the
behavior of piecemeal restore depends on which of the filegroups is restored and
brought online first:
• If the filegroup that contains the full-text index is restored and brought online before

the filegroups that contain the associated table data, full-text search works as
expected as soon as the full-text index is online.

• If the filegroup that contains the table data is restored and brought online before the
filegroup that contains the full-text index, full-text behavior might be affected. This is

Note

http://msdn.microsoft.com/en-us/library/3a5f4592-3c61-4b4d-9ceb-39716aeeba41(SQL.110)�
http://msdn.microsoft.com/en-us/library/8676f9d8-c451-419b-b934-786997d46c2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/7fc10fdc-370f-4927-bba0-b76108a7508e(SQL.110)�

 287

because Transact-SQL statements that trigger a population, rebuild the catalog, or
reorganize the catalog fail until the index is brought online. These statements include
CREATE FULLTEXT INDEX, ALTER FULLTEXT INDEX, DROP FULLTEXT INDEX, and
ALTER FULLTEXT CATALOG.
In this case, the following factors are significant:
• If the full-text index has change tracking, user DML will fail until the index

filegroup is brought online. Delete operation will also fail until the index filegroup
is online.

• Regardless of change tracking, full-text queries fail because the index is not
available. If a full-text query is tried when the filegroup that contains the full-text
index is offline, an error is returned.

• Status functions (such as FULLTEXTCATALOGPROPERTY) succeed only when they
do not have to access full-text index. For example, access to any online full-text
metadata would succeed, but uniquekeycount, itemcount would fail.

After the full-text index filegroup is restored and brought online, the index data and
table data are consistent.

As soon as both the base table filegroup and the full-text index filegroup are online, any
paused full-text population is resumed.

File Backup and Restore and Compression
SQL Server supports NTFS file system data compression of read-only filegroups and
read-only databases.
Restoring files in a read-only filegroup is supported on compressed NTFS files. Backup
and restore of these filegroups works essentially as it would for any read-only filegroup,
with the following exceptions:
• Restoring a read-write file (including the primary or log files of a read-write

database) to a compressed volume fails and displays an error.
• Restoring a read-only database to a compressed volume is allowed.

Log files of read/write databases should never be placed on compressed file
systems.

Related Tasks
• Prepare a Mirror Database for Mirroring (SQL Server)
• Back Up and Restore Full-Text Catalogs and Indexes

Note

http://msdn.microsoft.com/en-us/library/8676f9d8-c451-419b-b934-786997d46c2b(SQL.110)�
http://msdn.microsoft.com/en-us/library/6a4080d9-e43f-4b7b-a1da-bebf654c1194(SQL.110)�

 288

See Also
Back Up and Restore of SQL Server Databases
Backing Up and Restoring Replicated Databases
Backup on Secondary Replicas (AlwaysOn Availability Groups)

http://msdn.microsoft.com/en-us/library/04588807-21e7-4bbe-9727-b72f692cffa7(SQL.110)�
http://msdn.microsoft.com/en-us/library/82afe51b-71d1-4d5b-b20a-b57afc002405(SQL.110)�

	Cover
	Contents
	Backup and Restore of SQL Server Databases
	Recovery Models
	View or Change the Recovery Model of a Database

	Backup Overview
	Restore and Recovery Overview
	Plan and Perform Restore Sequences (Full Recovery Model)
	Restart an Interrupted Restore Operation (Transact-SQL)

	Backup Compression
	Configure Backup Compression
	Use Resource Governor to Limit CPU Usage by Backup Compression (Transact-SQL)

	Full Database Backups
	Create a Full Database Backup
	Back Up Database (General Page)
	Back Up Database (Options Page)
	Select Backup Destination

	Partial Backups
	Full File Backups
	Back Up Files and Filegroups

	Differential Backups
	Create a Differential Database Backup
	Restore a Differential Database Backup

	Copy-Only Backups
	Transaction Log Backups
	Back Up a Transaction Log

	Tail-Log Backups
	Back Up the Transaction Log When the Database Is Damaged

	Backup Devices
	Define a Logical Backup Device for a Disk File
	Define a Logical Backup Device for a Tape Drive
	View the Contents of a Backup Tape or File

	Specify a Disk or Tape As a Backup Destination
	Device Contents
	Backup Device (Media Contents Page)
	Backup Device (General Page)
	Restore a Backup from a Device
	Delete a Backup Device

	Media Sets, Media Families, and Backup Sets
	Set the Expiration Date on a Backup
	View the Data and Log Files in a Backup Set

	Mirrored Backup Media Sets
	Back Up to a Mirrored Media Set (Transact-SQL)

	Backup History and Header Information
	View the Properties and Contents of a Logical Backup Device

	Possible Media Errors During Backup and Restore
	Enable or Disable Backup Checksums During Backup or Restore
	Specify Whether a Backup or Restore Operation Continues or Stops After Encountering an Error

	Complete Database Restores (Simple Recovery Model)
	Restore a Database Backup Under the Simple Recovery Model (Transact-SQL)
	Restore a Database Backup (SQL Server Management Studio)
	Backup Timeline
	Restore Database (General Page)
	Restore Database (Options Page)
	Restore Database (Files Page)
	Continue with Restore
	Select Backup Device

	Restore a Database to a New Location

	Complete Database Restores (Full Recovery Model)
	Restore a Database to the Point of Failure Under the Full Recovery Model (Transact-SQL)

	File Restores (Simple Recovery Model)
	Restore Files and Filegroups over Existing Files
	Restore Files to a New Location
	Restore Files and Filegroups

	File Restores (Full Recovery Model)
	Apply Transaction Log Backups
	Restore a Transaction Log Backup
	Restore a SQL Server Database to a Point in Time (Full Recovery Model)
	Recovery of Related Databases That Contain Marked Transaction
	Use Marked Transactions to Recover Related Databases Consistently (Full Recovery Model)
	Restore a Database to a Marked Transaction (SQL Server Management Studio)

	Recover to a Log Sequence Number

	Online Restore
	Deferred Transactions
	Remove Defunct Filegroups

	Example: Online Restore of a Read/Write File (Full Recovery Model)
	Example: Online Restore of a Read-Only File (Full Recovery Model)
	Example: Online Restore of a Read-Only File (Simple Recovery Model)
	Example: Offline Restore of Primary and One Other Filegroup (Full Recovery Model)

	Restore Pages
	Manage the suspect_pages Table

	Piecemeal Restores
	Example: Piecemeal Restore of Database (Full Recovery Model)
	Example: Piecemeal Restore of Database (Simple Recovery Model)
	Example: Piecemeal Restore of Only Some Filegroups (Full Recovery Model)
	Example: Piecemeal Restore of Only Some Filegroups (Simple Recovery Model)

	Recover a Database Without Restoring Data (Transact-SQL)
	Back Up and Restore of System Databases
	Restore the master Database (Transact-SQL)

	Backup and Restore: Interoperability and Coexistence

