
Charles Petzold

Windows®

Phone 7

Programming

special
excerpt 2 preVieW

cONteNt
Complete book

available
Fall 2010

PREVIEW CONTENT

This excerpt provides early content from a book currently in

development, and is still in draft, unedited format. See additional notice

below.

This document supports a preliminary release of a software product that may be changed substantially prior to

final commercial release. This document is provided for informational purposes only and Microsoft makes no

warranties, either express or implied, in this document. Information in this document, including URL and other

Internet Web site references, is subject to change without notice. The entire risk of the use or the results from

the use of this document remains with the user. Unless otherwise noted, the companies, organizations,

products, domain names, e-mail addresses, logos, people, places, and events depicted in examples herein are

fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,

person, place, or event is intended or should be inferred. Complying with all applicable copyright laws is the

responsibility of the user. Without limiting the rights under copyright, no part of this document may be

reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means

(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express

written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights

covering subject matter in this document. Except as expressly provided in any written license agreement from

Microsoft, the furnishing of this document does not give you any license to these patents, trademarks,

copyrights, or other intellectual property.

© 2010 Microsoft Corporation. All rights reserved.

Microsoft, Microsoft Press, Azure, Expression, Expression Blend, Internet Explorer, MS, Silverlight, Visual C#,

Visual Studio, Webdings, Windows, Windows Azure, Windows Live, Windows Mobile, Xbox, Xbox 360, XNA,

and Zune are trademarks of the Microsoft group of companies.

All other trademarks are property of their respective owners.

Introduction
This is the second ―draft preview‖ of a longer ebook that will be completed and published

later this year. That final edition will be brilliantly conceived, exquisitely structured, elegantly

written, delightfully witty, and refreshingly free of bugs, but this draft preview is none of that.

It is very obviously a work-in-progress.

The first ―draft preview‖ of this book was created in time for the Microsoft MIX conference in

March 2010. This one is issued in conjunction with VSLIve in Redmond on August 2–6.

Even with this book’s defects and limited scope, I hope it helps get you started in writing

great programs for Windows Phone 7. Visit www.charlespetzold.com/phone for information

about this book and later editions.

My Assumptions about You

I assume that you know the basic principles of .NET programming and you have a working

familiarity with the C# programming language. If not, you might benefit from reading my free

online book .NET Book Zero: What the C or C++ Programmer Needs to Know about C# and

the .NET Framework, available from my web site at www.charlespetzold.com/dotnet.

Using This Book

To use this book properly you’ll need to download and install the Windows Phone Developer

Tools, which includes Visual Studio 2010 Express for Windows Phone and an on-screen

Windows Phone Emulator to test your programs in the absence of an actual device. Get the

latest information at http://developer.windowsphone.com.

You can install Visual Studio 2010 Express for Windows Phone on top of Visual Studio 2010, in

effect enhancing Visual Studio 2010 for phone development. That’s the configuration I used.

When finalizing these eleven chapters, I’ve been working with the beta release of the

Windows Phone Developer Tools dated July 26. I have not yet been able to test my programs

on an actual Windows Phone 7 device.

Windows Phone 7 supports multi-touch, and working with multi-touch is an important part of

developing programs for the phone. When using the Windows Phone Emulator, mouse clicks

and mouse movement on the PC can mimic touch on the emulator. You can test out multi-

touch for real on the phone emulator if you have a multi-touch display running under

Windows 7.

http://www.charlespetzold.com/phone
http://www.charlespetzold.com/dotnet
http://developer.windowsphone.com/

The Essential People

This book owes its existence to Dave Edson — an old friend from the early 90’s era of

Microsoft Systems Journal— who had the brilliant idea that I would be the perfect person to

write a tutorial on Windows Phone 7. Dave arranged for me to attend a technical deep dive

on the phone at Microsoft in December 2009, and I was hooked. Todd Brix gave the thumbs

up on the book, and Anand Iyer coordinated the project with Microsoft Press.

At Microsoft Press, Ben Ryan launched the project and Devon Musgrave had the unenviable

job of trying to make my code and prose resemble an actual book. (We all go way back: You’ll

see Ben and Devon’s names on the bottom of the copyright page of Programming Windows,

fifth edition, published in 1998.)

Dave Edson also reviewed chapters and served as conduit to the Windows Phone team to

deal with my technical problems and questions. For the first draft preview, Aaron Stebner

provided essential guidance; Michael Klucher reviewed chapters, and Kirti Deshpande, Charlie

Kindel, Casey McGee, and Shawn Oster also had important things to tell me. Thanks to Bonnie

Lehenbauer for reviewing one of the chapters at the last minute.

For this second draft preview, I am indebted to Shawn Hargreaves for his XNA expertise, and

Yochay Kiriaty and Richard Bailey for the lowdown on tombstoning.

My wife Deirdre Sinnott has been a marvel of patience and tolerance over the past months as

she dealt with an author given to sudden mood swings, insane yelling at the computer screen,

and the conviction that the difficulty of writing a book relieves one of the responsibility of

performing basic household chores.

Alas, I can’t blame any of them for bugs or other problems with this book. Those are all mine.

Charles Petzold

Roscoe, NY

July 27, 2010

Part I

The Basics

Chapter 1

Hello, Windows Phone 7
Sometimes it becomes apparent that previous approaches to a problem haven’t quite worked

the way you anticipated. Perhaps you just need to clear away the smoky residue of the past,

take a deep breath, and try again with a new attitude and fresh ideas. In golf, it’s known as a

“mulligan”; in schoolyard sports, it’s called a “do-over”; and in the computer industry, we say

it’s a “reboot.”

A reboot is what Microsoft has initiated with its new approach to the mobile phone market.

With its clean look, striking fonts, and new organizational paradigms, Microsoft Windows

Phone 7 not only represents a break with the Windows Mobile past but also differentiates

itself from other smartphones currently in the market.

For programmers, Windows Phone 7 is also exciting, for it supports two popular and modern

programming platforms: Silverlight and XNA.

Silverlight—a spinoff of the client-based Windows Presentation Foundation (WPF)—has

already given Web programmers unprecedented power to develop sophisticated user

interfaces with a mix of traditional controls, high-quality text, vector graphics, media,

animation, and data binding that run on multiple platforms and browsers. Windows Phone 7

extends Silverlight to mobile devices.

XNA—the three letters stand for something like “XNA is Not an Acronym”—is Microsoft’s

game platform supporting both 2D sprite-based and 3D graphics with a traditional game-

loop architecture. Although XNA is mostly associated with writing games for the Xbox 360

console, developers can also use XNA to target the PC itself, as well as Microsoft’s classy audio

player, the Zune HD.

Either Silverlight or XNA would make good sense as the sole application platform for the

Windows Phone 7, but programmers have a choice. And this we call “an embarrassment of

riches.”

Targeting Windows Phone 7

All programs for Windows Phone 7 are written in .NET managed code. At the present time, C#

is the only supported programming language. The free downloadable Microsoft Visual Studio

2010 Express for Windows Phone includes XNA Game Studio 4.0 and an on-screen phone

emulator, and also integrates with Visual Studio 2010. You can develop visuals and animations

for Silverlight applications using Microsoft Expression Blend.

The Silverlight and XNA platforms for Windows Phone 7 share some libraries, and you can use

some XNA libraries in a Silverlight program and vice versa. But you can’t create a program

that mixes visuals from both platforms. Maybe that will be possible in the future, but not now.

Before you create a Visual Studio project, you must decide whether your million-dollar idea is

a Silverlight program or an XNA program.

Generally you’ll choose Silverlight for writing programs you might classify as applications or

utilities. These programs use the Extensible Application Markup Language (XAML) to define a

layout of user-interface controls and panels. Code-behind files can also perform some

initialization and logic, but are generally relegated to handling events from the controls.

Silverlight is great for bringing to the Windows Phone the style of Rich Internet Applications

(RIA), including media and the Web. Silverlight for Windows Phone is a version of Silverlight 3

excluding some features not appropriate for the phone, but compensating with some

enhancements.

XNA is primarily for writing high-performance games. For 2D games, you define sprites and

backgrounds based around bitmaps; for 3D games you define models in 3D space. The action

of the game, which includes moving graphical objects around the screen and polling for user

input, is synchronized by the built-in XNA game loop.

The differentiation between Silverlight-based applications and XNA-based games is

convenient but not restrictive. You can certainly use Silverlight for writing games and you can

even write traditional applications using XNA, although doing so might sometimes be

challenging. In this book I’ll try to show you some examples—games in Silverlight and utilities

in XNA—that push the envelope.

In particular, Silverlight might be ideal for games that are less graphically oriented, or use

vector graphics rather than bitmap graphics, or are paced by user-time rather than clock-

time. A Tetris-type program might work quite well in Silverlight. You’ll probably find XNA to

be a bit harder to stretch into Silverlight territory, however. Implementing a list box in XNA

might be considered “fun” by some programmers but a torture by many others.

The first several chapters in this book describe Silverlight and XNA together, and then the

book splits into different parts for the two platforms. I suspect that some developers will stick

with either Silverlight or XNA exclusively and won’t even bother learning the other

environment. I hope that’s not a common attitude. The good news is that Silverlight and XNA

are so dissimilar that you can probably bounce back and forth between them without

confusion!

Microsoft has been positioning Silverlight as the front end or “face” of the cloud, so cloud

services and Windows Azure form an important part of Windows Phone 7 development. The

Windows Phone is “cloud-ready.” Programs are location-aware, have access to maps and

other data through Bing and Windows Live, and can interface with social networking sites.

One of the available cloud services is Xbox Live, which allows XNA-based programs to

participate in online multiplayer games, and can also be accessed by Silverlight applications.

Programs you write for the Windows Phone 7 will be sold and deployed through the

Windows Phone Marketplace, which provides registration services and certifies that programs

meet minimum standards of reliability, efficiency, and good behavior.

I’ve characterized Windows Phone 7 as representing a severe break with the past. If you

compare it with past versions of Windows Mobile, that is certainly true. But the support of

Silverlight, XNA, and C# are not breaks with the past, but a balance of continuity and

innovation. As young as they are, Silverlight and XNA have already proven themselves as

powerful and popular platforms. Many skilled programmers are already working with either

one framework or the other—probably not so many with both just yet—and they have

expressed their enthusiasm with a wealth of online information and communities. C# has

become the favorite language of many programmers (myself included), and developers can

use C# to share libraries between their Silverlight and XNA programs as well as programs for

other .NET environments.

The Hardware Chassis

Developers with experience targeting Windows Mobile devices of the past will find significant

changes in Microsoft’s strategy for the Windows Phone 7. Microsoft has been extremely

proactive in defining the hardware specification, often referred to as a “chassis.”

Initial releases of Windows Phone 7 devices will have one consistent screen size. (A second

screen size is expected in the future.) Many other hardware features are guaranteed to exist

on each device.

The front of the phone consists of a multi-touch display and three hardware buttons generally

positioned in a row below the display. From left to right, these buttons are called Back, Start,

and Search:

 Back Programs can use this button for their own navigation needs, much like the Back

button on a Web browser. From the home page of a program, the button causes the

program to terminate.

 Start This button takes the user to the start screen of the phone; it is otherwise

inaccessible to programs running on the phone.

 Search The operating system uses this button to initiate a search feature.

The initial releases of Windows Phone 7 devices have a display size of 480 × 800 pixels. In the

future, screens of 320 × 480 pixels are also expected. There are no other screen options for

Windows Phone 7, so obviously these two screen sizes play a very important role in phone

development.

In theory, it’s usually considered best to write programs that adapt themselves to any screen

size, but that’s not always possible, particularly with game development. You will probably

find yourself specifically targeting these two screen sizes, even to the extent of having

conditional code paths and different XAML files for layout that is size-dependent.

I will generally refer to these two sizes as the “large” screen and the “small“ screen. The

greatest common denominator of the horizontal and vertical dimensions of both screens is

160, so you can visualize the two screens as multiples of 160-pixel squares:

I’m showing these screens in portrait mode because that’s usually the way smartphones are

designed. The screen of the original Zune is 240 × 320 pixels; the Zune HD is 272 × 480.

Of course, phones can be rotated to put the screen into landscape mode. Some programs

might require the phone to be held in a certain orientation; others might be more adaptable.

You have complete control over the extent to which you support orientation. By default,

Silverlight applications appear in portrait mode, but you’ll probably want to write your

Silverlight applications so they adjust themselves to orientation changes. New events are

available specifically for the purpose of detecting orientation change, and some orientation

shifts are handled automatically. In contrast, game programmers can usually impose a

particular orientation on the user. XNA programs use landscape mode by default, but it’s easy

to override that.

480

320
4
8
0

8
0
0

In portrait mode, the small screen is half of an old VGA screen (that is, 640 × 480). In

landscape mode, the large screen has a dimension sometimes called WVGA (“wide VGA”). In

landscape mode, the small screen has an aspect ratio of 3:2 or 1.5; the large screen has an

aspect ratio of 5:3 or 1.66…. Neither of these matches the aspect ratio of television, which for

standard definition is 4:3 or 1.33… and for high-definition is 16:9 or 1.77…. The Zune HD

screen has an aspect ratio of 16:9.

Like many recent phones and the Zune HD, the Windows Phone 7 displays will likely use

OLED (“organic light emitting diode”) technology, although this isn’t a hardware requirement.

OLEDs are different from flat displays of the past in that power consumption is proportional

to the light emitted from the display. For example, an OLED display consumes less than half

the power of an LCD display of the same size, but only when the screen is mostly black. For an

all-white screen, an OLED consumes more than three times the power of an LCD.

Because battery life is extremely important on mobile devices, this characteristic of OLED

displays implies an aesthetic of mostly black backgrounds with sparse graphics and light-

stroked fonts. Regardless, Windows Phone 7 users can choose between two major color

themes: light text on a dark background, or dark text on a light background.

Most user input to a Windows Phone 7 program will come through multi-touch. The screens

incorporate capacitance-touch technology, which means that they respond to a human

fingertip but not to a stylus or other forms of pressure. Windows Phone 7 screens are required

to respond to at least four simultaneous touch-points.

A hardware keyboard is optional. Keep in mind that phones can be designed in different ways,

so when the keyboard is in use, the screen might be in either portrait mode or landscape

mode. A Silverlight program that uses keyboard input must respond to orientation changes so

that the user can both view the screen and use the keyboard without wondering what idiot

designed the program sideways. An on-screen keyboard is also provided, known in Windows

circles as the Soft Input Panel or SIP.

Neither the hardware keyboard nor the on-screen keyboard is available to XNA programs.

Sensors and Services

A Windows Phone 7 device is required to contain several other hardware features—

sometimes called sensors—and provide some software services, perhaps through the

assistance of hardware. These are the ones that affect developers the most:

 Wi-Fi The phone has Wi-Fi for Internet access. Software on the phone includes a

version of Internet Explorer.

 Camera The phone has at least a 5-megapixel camera with flash. Programs can invoke

the camera program for their own input, or register themselves as a Photos Extra

Application and appear on a menu to obtain access to photographed images, perhaps for

some image processing.

 Accelerometer An accelerometer detects acceleration, which in physics is a change in

velocity. When the camera is still, the accelerometer responds to gravity. Programs can

obtain a three-dimensional vector that indicates how the camera is oriented with respect

to the earth. The accelerometer can also detect sharp movements of the phone.

 Location If the user so desires, the phone can use multiple strategies for determining

where it is geographically located. The phone supplements a hardware GPS device with

information from the Web or cell phone towers. If the phone is moving, course and speed

might also be available. An internal compass helps the device determine this information,

although the compass is not inaccessible to application programs.

 Vibration The phone can be vibrated through program control.

 FM Radio An FM Radio is available accessible through program control.

 Push Notifications Some Web services would normally require the phone to frequently

poll the service to obtain updated information. This can drain battery life. To help out, a

push notification service has been developed that will allow any required polling to occur

outside the phone and for the phone to receive notifications only when data has been

updated.

That’s quite a list, but there’s more: Although I haven’t been able to confirm this, a persistent

rumor indicates that a Windows Phone 7 device can also be used to make and receive

telephone calls.

File | New | Project

I’ll assume that you have Visual Studio 2010 Express for Windows Phone installed, either by

itself or supplementing a regular version of Visual Studio 2010. For convenience, I’m going to

refer to this development environment simply as “Visual Studio.”

The traditional “hello, world” program that displays just a little bit of text might seem silly to

nonprogrammers, but programmers have discovered that such a program serves at least two

useful purposes: First, the program provides a way to examine how easy (or ridiculously

complex) it is to display a simple text string. Second, it gives the programmer an opportunity

to experience the process of creating, compiling, and running a program without a lot of

distractions. When developing programs that run on a mobile device, this process is a little

more complex than customary because you’ll be creating and compiling programs on the PC

but you’ll be deploying and running them on an actual phone or at least an emulator.

This chapter presents programs for both Microsoft Silverlight and Microsoft XNA that display

the text “Hello, Windows Phone 7!”

Just to make these programs a little more interesting, I want to display the text in the center

of the display. The Silverlight program will use the background and foreground colors

selected by the user in the Themes section of the phone’s Settings screen. In the XNA

program, the text will be white on a dark background to use less power on OLED.

If you’re playing along, it’s time to bring up Visual Studio and from the File menu select New

and then Project.

A First Silverlight Phone Program

In the New Project dialog box, on the left under Installed Templates, choose Visual C# and

then Silverlight for Windows Phone. In the middle area, choose Windows Phone Application.

Select a location for the project, and enter the project name: SilverlightHelloPhone.

As the project is created you’ll see an image of a large-screen phone in portrait mode: 480 ×

800 pixels in size. This is the design view. Although you can interactively pull controls from a

toolbox to design the application, I’m going to focus instead on showing you how to write

your own code and markup.

Several files have been created for this SilverlightHelloPhone project and are listed under the

project name in the Solution Explorer over at the right. In the Properties folder are three files

that you can usually ignore when you’re just creating little sample Silverlight programs for the

phone. Only when you’re actually in the process of making a real application do these files

become important.

However, you might want to open the WMAppManifest.xml file. In the App tag near the top,

you’ll see the attribute:

Title="SilverlightHelloPhone"

That’s just the project name you selected. Insert some spaces to make it a little friendlier:

Title="Silverlight Hello Phone"

This is the name used by the phone and the phone emulator to display the program in the list

of installed applications presented to the user. If you’re really ambitious, you can also edit the

ApplicationIcon.png and Background.png files that the phone uses to visually symbolize the

program. The SplashScreenImage.jpg file is what the program displays as it’s initializing.

In the standard Visual Studio toolbar under the program’s menu, you’ll see a drop-down list

probably displaying “Windows Phone 7 Emulator.” The other choice is “Windows Phone 7

Device.” This is how you deploy your program to either the emulator or an actual phone

connected to your computer via USB.

Just to see that everything’s working OK, press F5 (or select Start Debugging from the Debug

menu). Your program will quickly build and in the status bar you’ll see the text “Connecting to

Windows Phone 7 Emulator…” The first time you use the emulator during a session, it might

take a little time to start up. If you leave the emulator running between edit/build/run cycles,

Visual Studio doesn’t need to establish this connection again.

Soon the phone emulator will appear on the desktop and you’ll see the opening screen,

followed soon by this little do-nothing Silverlight program as it is deployed and run on the

emulator. On the phone you’ll see pretty much the same image you saw in the design view.

The phone emulator has a little floating menu at the upper right that comes into view when

you move the mouse to that location. You can change orientation through this menu, or

change the emulator size. By default, the emulator is displayed at 50% actual size, about the

same size as the image on this page. When you display the emulator at 100%, it becomes

enormous, and you might wonder “How will I ever fit a phone this big into my pocket?”

The difference involves pixel density. Your computer screen probably has about 100 pixels per

inch. (By default, Windows assumes that screens are 96 DPI.) The screen on an actual Windows

Phone 7 device is about double that. When you display the emulator at 100%, you’re seeing

all the pixels of the phone’s screen, but at about twice their actual size.

You can terminate execution of this program and return to editing the program either though

Visual Studio (using Shift-F5 or by selecting Stop Debugging from the Debug menu) or by by

clicking the Back button on the emulator.

Don’t exit the emulator itself by clicking the X at the top of the floating menu! Keeping the

emulator running will make subsequent deployments go much faster.

While the emulator is still running, it retains all Silverlight programs deployed to it, but not

XNA programs. (Actually, the difference involves the genre of the program as indicated by the

Genre attribute in the App tag of the WMAppManifest.xml file.) If you click the arrow at the

upper-right of the Start screen, you’ll get a list that will include this program identified by the

text “Silverlight Hello Phone” and you can run the program again. The program will disappear

from this list when you exit the emulator.

Back in Visual Studio, take a look at the Solution Explorer for the project. You’ll see two pairs

of skeleton files: App.xaml and App.xaml.cs, and MainPage.xaml and MainPage.xaml.cs. The

App.xaml and MainPage.xaml files are Extensible Application Markup Language (XAML) files,

while App.xaml.cs and MainPage.xaml.cs are C# code files. This peculiar naming scheme is

meant to imply that the two C# code files are “code-behind” files associated with the two

XAML files. They provide code in support of the markup. This is a basic Silverlight concept.

I want to give you a little tour of these four files. If you look at the App.xaml.cs file, you’ll see a

namespace definition that is the same as the project name and a class named App that derives

from the Silverlight class Application. Here’s an excerpt showing the general structure:

Silverlight Project: SilverlightHelloPhone File: App.xaml.cs (excerpt)

namespace SilverlightHelloPhone

{

 public partial class App : Application

 {

 public App()

 {

 …

 InitializeComponent();

 …

 }

 …

 }

}

All Silverlight programs contain an App class that derives from Application; this class performs

application-wide initialization, startup, and shutdown chores. You’ll notice this class is defined

as a partial class, meaning that the project should probably include another C# file that

contains additional members of the App class. But where is it?

The project also contains an App.xaml file, which has an overall structure like this:

Silverlight Project: SilverlightHelloPhone File: App.xaml (excerpt)

<Application

 x:Class="SilverlightHelloPhone.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"

 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone">

 …

</Application>

You’ll recognize this file as XML, but more precisely it is a XAML file, which is an important

part of Silverlight programming. In particular, developers often use the App.xaml file for

storing resources that are used throughout the application. These resources might include

color schemes, gradient brushes, styles, and so forth.

The root element is Application, which is the Silverlight class that the App class derives from.

The root element contains four XML namespace declarations. Two are common in all

Silverlight applications; two are unique to the phone.

The first XML namespace declaration (“xmlns”) is the standard namespace for Silverlight, and

it helps the compiler locate and identify Silverlight classes such as Application itself. As with

most XML namespace declarations, this URI doesn’t actually point to anything; it’s just a URI

that Microsoft owns and which it has defined for this purpose.

The second XML namespace declaration is associated with XAML itself, and it allows the file to

reference some elements and attributes that are part of XAML rather than specifically

Silverlight. By convention, this namespace is associated with a prefix of “x” (meaning “XAML”).

Among the several attributes supported by XAML and referenced with this “x” prefix is Class,

which is often pronounced “x class.” In this particular XAML file x:Class is assigned the name

SilverlightHelloPhone.App. This means that a class named App in the .NET

SilverlightHelloPhone namespace derives from the Silverlight Application class, the root

element. It’s the same class definition you saw in the App.xaml.cs file but with very different

syntax.

The App.xaml.cs and App.xaml files really define two halves of the same App class. During

compilation, Visual Studio parses App.xaml and generates another code file named App.g.cs.

The “g” stands for “generated.” If you want to look at this file, you can find it in the

\obj\Debug subdirectory of the project. The App.g.cs file contains another partial definition of

the App class, and it contains a method named InitializeComponent that is called from the

constructor in the App.xaml.cs file.

You’re free to edit the App.xaml and App.xaml.cs files, but don’t mess around with App.g.cs.

That file is recreated when you build the project.

When a program is run, the App class creates an object of type PhoneApplicationFrame and

sets that object to its own RootVisual property. This frame is 480 pixels wide and 800 pixels

tall and occupies the entire display surface of the phone. The PhoneApplicationFrame object

then behaves somewhat like a web browser by navigating to an object called MainPage.

MainPage is the second major class in every Silverlight program and is defined in the second

pair of files, MainPage.xaml and MainPage.xaml.cs. In smaller Silverlight programs, it is in

these two files that you’ll be spending most of your time.

Aside from a long list of using directives, the MainPage.xaml.cs file is very simple:

Silverlight Project: SilverlightHelloPhone File: MainPage.xaml.cs (excerpt)

using System;

using System.Collections.Generic;

using System.Linq;

using System.Net;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;

using System.Windows.Shapes;

using Microsoft.Phone.Controls;

namespace SilverlightHelloPhone

{

 public partial class MainPage : PhoneApplicationPage

 {

 // Constructor

 public MainPage()

 {

 InitializeComponent();

 }

 }

}

The using directives for namespaces that begin with the words System.Windows are for the

Silverlight classes; sometimes you’ll need to supplement these with some other using

directives as well. The Microsoft.Windows.Controls namespace contains extensions to

Silverlight for the phone, including the PhoneApplicationPage class.

Again, we see another partial class definition. This one defines a class named MainPage that

derives from the Silverlight class PhoneApplicationPage. This is the class that defines the

visuals you’ll actually see on the screen when you run the SilverlightHelloPhone program.

The other half of this MainPage class is defined in the MainPage.xaml file. Here’s the nearly

complete file, reformatted a bit to fit the printed page, and excluding a section that’s

commented out at the end, but still a rather frightening chunk of markup:

Silverlight Project: SilverlightHelloPhone File: MainPage.xaml (almost complete)

<phone:PhoneApplicationPage

 x:Class="SilverlightHelloPhone.MainPage"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:phone="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone"

 xmlns:shell="clr-namespace:Microsoft.Phone.Shell;assembly=Microsoft.Phone"

 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"

 FontFamily="{StaticResource PhoneFontFamilyNormal}"

 FontSize="{StaticResource PhoneFontSizeNormal}"

 Foreground="{StaticResource PhoneForegroundBrush}"

 SupportedOrientations="Portrait" Orientation="Portrait"

 mc:Ignorable="d" d:DesignWidth="480" d:DesignHeight="768"

 shell:SystemTray.IsVisible="True">

 <!--LayoutRoot contains the root grid where all other page content is placed-->

 <Grid x:Name="LayoutRoot" Background="Transparent">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <!--TitlePanel contains the name of the application and page title-->

 <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="24,24,0,12">

 <TextBlock x:Name="ApplicationTitle" Text="SILVERLIGHT HELLO PHONE"

 Style="{StaticResource PhoneTextNormalStyle}"/>

 <TextBlock x:Name="PageTitle" Text="main page" Margin="-3,-8,0,0"

 Style="{StaticResource PhoneTextTitle1Style}"/>

 </StackPanel>

 <!--ContentPanel - place additional content here-->

 <Grid x:Name="ContentGrid" Grid.Row="1">

 </Grid>

 </Grid>

</phone:PhoneApplicationPage>

These first four XML namespace declarations are the same as in App.xaml. As in the App.xaml

file, an x:Class attribute also appears in the root element. Here it indicates that the MainPage

class in the SilverlightHelloPhone namespace derives from the Silverlight

PhoneApplicationPage class. This PhoneApplicationPage class requires its own XML namespace

declaration because it is not a part of standard Silverlight.

The “d” (for “designer”) and “mc” (for “markup compatibility”) namespace declarations are for

the benefit of XAML design programs, such as Expression Blend and the designer in Visual

Studio itself. The DesignerWidth and DesignerHeight attributes are ignored during

compilation.

The compilation of the program generates a file name MainPage.g.cs that contains another

partial class definition for MainPage (you can look at it in the \obj\Debug subdirectory) with

the InitializeComponent method called from the constructor in MainPage.xaml.cs.

In theory, the App.g.cs and MainPage.g.cs files generated during the build process are solely

for internal use by the compiler and can be ignored by the programmer. However, sometimes

when a buggy program raises an exception, one of these files comes popping up into view. It

might help your understanding of the problem to have seen these files before they

mysteriously appear in front of your face. However, don’t try to edit these files to fix the

problem! The real problem is probably somewhere in the corresponding XAML file.

In the root element of MainPage.xaml you’ll see settings for FontFamily, FontSize, and

Foreground that apply to the whole page. I’ll describe the StaticResource and this syntax in

Chapter 7.

The body of the MainPage.xaml file contains several nested elements named Grid, StackPanel,

and TextBlock in a parent-child hierarchy.

Notice the word I used: element. In Silverlight programming, this word has two related

meanings. It’s an XML term used to indicate items delimited by start tags and end tags. But

it’s also a word used in Silverlight to refer to visual objects, and in fact, the word element

shows up in the names of two actual Silverlight classes.

Many of the classes you use in Silverlight are part of this important class hierarchy:

Object

 DependencyObject (abstract)

 UIElement (abstract)

 FrameworkElement (abstract)

Besides UIElement, many other Silverlight classes derive from DependencyObject. But

UIElement has the distinction of being the class that has the power to appear as a visual

object on the screen and to receive user input. (In Silverlight, all visual objects can receive user

input.) Traditionally, this user input comes from the keyboard and mouse; on the phone, most

user input comes from touch.

The only class that derives from UIElement is FrameworkElement. The distinction between

these two classes is a historical artifact of the Windows Presentation Foundation. In WPF, it is

possible for developers to create their own unique frameworks by deriving from UIElement. In

Silverlight this is not possible, so the distinction is fairly meaningless.

One of the classes that derives from FrameworkElement is Control, a word more common in

graphical user-interface programming. Some objects commonly referred to as controls in

other programming environments are more correctly referred to as elements in Silverlight.

Control derivatives include buttons and sliders that I’ll discuss in Chapter 10.

Another class that derives from FrameworkElement is Panel, which is the parent class to the

Grid and StackPanel elements you see in MainPage.xaml. Panels are elements that can host

multiple children and arrange them in particular ways on the screen. I’ll discuss panels in more

depth in Chapter 9, and I’ll cover the phone-specific PanoramaPanel in connection with

navigation.

Another class that derives from FrameworkElement is TextBlock, the element you’ll use most

often in displaying blocks of text up to about a paragraph in length. The two TextBlock

elements in MainPage.xaml display the two chunks of title text in a new Silverlight program.

PhoneApplicationPage, Grid, StackPanel, and TextBlock are all Silverlight classes. In Markup

these become XML elements. Properties of these classes become XML attributes.

The nesting of elements in MainPage.xaml is said to define a visual tree. In a Silverlight

program for Windows Phone 7, the visual tree always begins with an object of type

PhoneApplicationFrame, which occupies the entire visual surface of the phone. A Silverlight

program for Windows Phone 7 always has one and only one instance of

PhoneApplicationFrame, referred to informally as the frame.

In contrast, a program can have multiple instances of PhoneApplicationPage, referred to

informally as a page. At any one time, the frame hosts one page, and lets you navigate to the

other pages. By default, the page does not occupy the full display surface of the frame

because it makes room for the system tray (also known as the status bar) at the top of the

phone.

Our simple application has only one page, appropriately called MainPage. This MainPage

contains a Grid, which contains a StackPanel with a couple TextBlock elements, and another

Grid, all in a hierarchical tree.

Our original goal was to create a Silverlight program that displays some text in the center of

the display, but given the presence of a couple titles, let’s amend that goal to displaying the

text in the center of the page apart from the titles. The area of the page for program content

is the Grid towards the bottom of the file preceded by the comment “ContentPanel - place

additional content here.” This Grid has a name of “ContentGrid” and I’m going to refer to it

informally as the “content grid.”

In the content grid, you can insert a new TextBlock:

Silverlight Project: SilverlightHelloPhone File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone 7!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Text, HorizontalAlignment, and VerticalAlignment are all properties of the TextBlock class. The

Text property is of type string. The HorizontalAlignment and VerticalAlignment properties are

of numeration types HorizontalAliignment and VerticalAlignment, respectively. When you

reference an enumeration type in XAML, you only need the member name.

While you’re editing MainPage.xaml you might also want to fix the other TextBlock elements

so that they aren’t so generic. Change

<TextBlock … Text="MY APPLICATION" … />

to

<TextBlock … Text="SILVERLIGHT HELLO PHONE" … />

and

<TextBlock … Text="page title" … />

to:

<TextBlock … Text="main page" … />

 It doesn’t make much sense to have a page title in a Silverlight application with only a single

page, and you can delete that second TextBlock if you’d like. The changes you make to this

XAML file will be reflected in the design view. You can now compile and run this program:

As simple as it is, this program demonstrates some essential concepts of Silverlight

programming, including dynamic layout. The XAML file defines a layout of elements in a

visual tree. These elements are capable of arranging themselves dynamically. The

HorizontalAlignment and VerticalAlignment properties can put an element in the center of

another element, or (as you might suppose) along one of the edges or in one of the corners.

TextBlock is one of a number of possible elements you can use in a Silverlight program; others

include bitmap images, movies, and familiar controls like buttons, sliders, and list boxes.

Color Themes

From the Start screen of the phone emulator, click or touch the right arrow at the upper right

and navigate to the Settings page. You’ll see that you can select a visual theme: Either Dark

(light text on a dark background, which you’ve been seeing) or Light (the opposite). Select the

Light theme, run SilverlightHelloPhone again, and express some satisfaction that the theme

colors are automatically applied:

It is possible to override these theme colors. If you’d like the text to be displayed in a different

color, you can try setting the Foreground attribute in the TextBlock tag, for example:

Foreground="Red"

You can put it anywhere in the tag as long as you leave spaces on either side. As you type this

attribute, you’ll see a list of colors pop up. Silverlight supports the 140 color names supported

by many browsers, as well as a bonus 141st color, Transparent.

In a real-world program, you’ll want to test out any custom colors with the available themes

so text doesn’t mysteriously disappear or becomes hard to read.

Points and Pixels

Another property of the TextBlock that you can easily change is FontSize:

FontSize="36"

But what exactly does this mean?

All dimensions in Silverlight are in units of pixels, and the FontSize is no exception. When you

specify 36, you get a font that from the top of its ascenders to the bottom of its descenders

measures approximately 36 pixels.

Traditionally, font sizes are expressed in units of points. In classical typography, a point is very

close to 1/72nd inch but in digital typography the point is often assumed to be exactly 1/72nd

inch. A font with a size of 72 points measures approximately an inch from the top of its

characters to the bottom. (I say “approximately” because the point size indicates a

typographic design height, and it’s really the creator of the font who determines exactly how

large the characters of a 72-point font should be.)

How do you convert between pixels and points? Obviously you can’t except for a particular

output device. On a 600 dots-per-inch (DPI) printer, for example, the 72-point font will be 600

pixels tall.

Desktop video displays in common use today usually have a resolution somewhere in the

region of 100 DPI. For example, consider a 21” monitor that displays 1600 pixels horizontally

and 1200 pixels vertically. That’s 2000 pixels diagonally, which divided by 21” is about 95 DPI.

By default, Microsoft Windows assumes that video displays have a resolution of 96 DPI. Under

that assumption, font sizes and pixels are related by the following formulas:

points = ¾ × pixels

pixels = 4/3 × points

This relationship applies only to common video displays, but people so much enjoy having

these conversion formulas, they show up in Windows Phone 7 programming as well.

So, when you set a FontSize property such as

FontSize="36"

you can also claim to be setting a 27-point font. But the resultant TextBlock will actually have

a height more like 48 pixels — about 33% higher than the FontSize would imply (which is 33%

more than the point size). This additional space (called leading) prevents successive lines of

text from jamming against each other.

The issue of font size becomes more complex when dealing with high-resolution screens

found on devices such as Windows Phone 7. The 480 × 800 pixel display has a diagonal of 933

pixels in about 4½” for a pixel density closer to 200 DPI — about double the resolution of

conventional video displays.

This doesn’t necessarily mean that all the font sizes used on a conventional screen need to be

doubled on the phone. The higher resolution of the phone — and the closer viewing distance

— allows smaller font sizes to be more readable.

When running in a Web browser, the default Silverlight FontSize is 11 pixels, corresponding to

a font size of 8.25 points, with is fine for a desktop video display but a little too small for the

phone. For that reason, Silverlight for Windows Phone defines a collection of common font

sizes that you can use. (I’ll describe how these work in Chapter 7.) The standard

MainPage.xaml file includes the following attribute in the root element:

FontSize="{StaticResource PhoneFontSizeNormal}"

This FontSize is inherited through the visual tree and applies to all TextBlock elements that

don’t set their own FontSize properties. It has a value of 20 pixels — almost double the default

Silverlight FontSize on the desktop. Using the standard formulas, this 20-pixel FontSize

corresponds to 15 points, but as actually displayed on the phone, it’s about half the size that a

15-point font would appear in printed text.

The actual height of the TextBlock displaying text with this font is about 33% more than the

FontSize, in this case about 27 pixels.

An XNA Program for the Phone

Next up on the agenda is an XNA program that displays a little greeting in the center of the

screen. While text is often prevalent in Silverlight applications, it usually doesn’t show up a

whole lot in graphical games. In games, text is usually relegated to describing how the game

works or displaying the score, so the very concept of a “hello, world” program doesn’t quite fit

in with the whole XNA programming paradigm.

In fact, XNA doesn’t even have any built-in fonts. You might think that an XNA program

running on the phone can make use of the same native fonts as Silverlight programs, but this

is not so. Silverlight uses vector-based TrueType fonts and XNA doesn’t know anything about

such exotic concepts. To XNA, everything is a bitmap, including fonts.

If you wish to use a particular font in your XNA program, that font must be embedded into

the executable as a collection of bitmaps for each character. XNA Game Studio (which is

integrated into Visual Studio) makes the actual process of font embedding very easy, but it

raises some thorny legal issues. You can’t legally distribute an XNA program unless you can

also legally distribute the embedded font, and with most of the fonts distributed with

Windows itself or Windows applications, this is not the case.

To help you out of this legal quandary, Microsoft licensed some fonts from Ascender

Corporation specifically for the purpose of allowing you to embed them in your XNA

programs. Here they are:

Kootenay Pericles

Lindsey Pericles Light

Miramonte Pescadero

Miramonte Bold Pescadero Bold

Notice that the Pericles font uses small capitals for lower-case letters, so it’s probably suitable

only for headings.

From the File menu of Visual Studio select New and Project. On the left of the dialog box,

select Visual C# and XNA Game Studio 4.0. In the middle, select Windows Phone Game (4.0).

Select a location and enter a project name of XnaHelloPhone.

Visual Studio creates two projects, one for the program and the other for the program’s

content. XNA programs usually contain lots of content, mostly bitmaps and 3D models, but

fonts as well. To add a font to this program, right-click the Content project (labeled

“XnaHelloPhoneContent (Content)” and from the pop-up menu choose Add and New Item.

Choose Sprite Font, leave the filename as SpriteFont1.spritefont, and click Add.

The word “sprite” is common in game programming and usually refers to a small bitmap that

can be moved very quickly, much like the sprites you might encounter in an enchanted forest.

In XNA, even fonts are sprites.

You’ll see SpriteFont1.spritefont show up in the file list of the Content directory, and you can

edit an extensively commented XML file describing the font.

XNA Project: XnaHelloPhone File: SpriteFont1.spritefont (complete w/o comments)

<XnaContent xmlns:Graphics="Microsoft.Xna.Framework.Content.Pipeline.Graphics">

 <Asset Type="Graphics:FontDescription">

 <FontName>Kootenay</FontName>

 <Size>14</Size>

 <Spacing>0</Spacing>

 <UseKerning>true</UseKerning>

 <Style>Regular</Style>

 <CharacterRegions>

 <CharacterRegion>

 <Start> </Start>

 <End>~</End>

 </CharacterRegion>

 </CharacterRegions>

 </Asset>

</XnaContent>

Within the FontName tags you’ll see Kootenay, but you can change that to one of the other

fonts I listed earlier. If you want Pericles Light, put the whole name in there, but if you want

Miramonte Bold or Pescadero Bold, use just Miramonte or Pescadero, and enter the word

Bold between the Style tags. You can use Bold for the other fonts as well, but for the other

fonts, bold will be synthesized, while for Miramonte or Pescadero, you’ll get the font actually

designed for bold.

The Size tags indicate the point size of the font. In XNA as in Silverlight, you deal almost

exclusively with pixel coordinates and dimensions, but the conversion between points and

pixels used within XNA is based on 96 DPI displays. The point size of 14 becomes a pixel size

of 18-2/3 within your XNA program. This is very close to the 15-point and 20-pixel “normal”

FontSize in Silverlight for Windows Phone.

The CharacterRegions section of the file indicates the ranges of hexadecimal Unicode

character encodings you need. The default setting from 0x32 through 0x126 includes all the

non-control characters of the ASCII character set.

The filename of SpriteFont1.spritefont is not very descriptive. I like to rename it to something

that describes the actual font; if you’re sticking with the default font settings, you can rename

it to Kootenay14.spritefont. If you look at the properties for this file—right-click the filename

and select Properties—you’ll see an Asset Name that is also the filename without the

extension: Kootenay14. This Asset Name is what you use to refer to the font in your program

to load the font. If you want to confuse yourself, you can change the Asset Name

independently of the filename.

In its initial state, the XNAHelloPhone project contains two C# code files: Program.cs and

Game1.cs. The first is very simple and turns out to be irrelevant for Windows Phone 7 games!

A preprocessor directive enables the Program class only if a symbol of WINDOWS or XBOX is

defined. When compiling Windows Phone programs, the symbol WINDOWS_PHONE is

defined instead.

For most small games, you’ll be spending all your time in the Game1.cs file. The Game1 class

derives from Game and in its pristine state it defines two fields: graphics and spriteBatch. To

those two fields I want to add three more:

XNA Project: XnaHelloPhone File: Game1.cs (excerpt showing fields)

namespace XnaHelloPhone

{

 public class Game1 : Microsoft.Xna.Framework.Game

 {

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 string text = "Hello, Windows Phone 7!";

 SpriteFont kootenay14;

 Vector2 textPosition;

 …

 }

}

These three new fields simply indicate the text that the program will display, the font it will

use to display it, and the position of the text on the screen. That position is specified in pixel

coordinates relative to the upper-left corner of the display. The Vector2 structure has two

fields named X and Y of type float. For performance purposes, all floating-point values in XNA

are single-precision. (Silverlight is all double-precision.) The Vector2 structure is often used for

two-dimensional points, sizes, and even vectors.

When the game is run on the phone, the Game1 class is instantiated and the Game1

constructor is executed. This standard code is provided for you:

XNA Project: XnaHelloPhone File: Game1.cs (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

 // Frame rate is 30 fps by default for Windows Phone.

 TargetElapsedTime = TimeSpan.FromTicks(333333);

}

The first statement initializes the graphics field. In the second statement, Content is a property

of Game of type ContentManager, and RootDirectory is a property of that class. Setting this

property to “Content” is consistent with the Content directory that is currently storing the 14-

point Kootenay font. The third statement sets a time for the program’s game loop, which

governs the pace at which the program updates the video display. The Windows Phone 7

screens are refreshed at 30 frames per second.

After Game1 is instantiated, a Run method is called on the Game1 instance, and the base

Game class initiates the process of starting up the game. One of the first steps is a call to the

Initialize method, which a Game derivative can override. XNA Game Studio generates a

skeleton method to which I won’t add anything:

XNA Project: XnaHelloPhone File: Game1.cs (excerpt)

protected override void Initialize()

{

 base.Initialize();

}

The Initialize method is not the place to load the font or other content. That comes a little

later when the base class calls the LoadContent method.

XNA Project: XnaHelloPhone File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 Vector2 textSize = kootenay14.MeasureString(text);

 Viewport viewport = this.GraphicsDevice.Viewport;

 textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

}

The first statement in this method is provided for you. You’ll see shortly how this spriteBatch

object is used to shoot sprites out to the display.

The other statements are ones I’ve added, and you’ll notice I tend to preface property names

like Content and GraphicsDevice with the keyword this to remind myself that they’re

properties and not a static class. As I’ve already mentioned, the Content property is of type

ContentManager. The generic Load method allows loading content into the program, in this

case content of type SpriteFont. The name in quotation marks is the Asset Name as indicated

in the content’s properties. This statement stores the result in the kootenay14 field of type

SpriteFont.

In XNA, sprites (including text strings) are usually displayed by specifying the pixel coordinates

relative to the upper-left corner or the sprite relative to the upper-left corner of the display.

To calculate these coordinates, it’s helpful to know both the screen size and the size of the

text when displayed with a particular font.

The SpriteFont class has a very handy method named MeasureString that returns a Vector2

object with the size of a particular text string in pixels. (For the 14-point Kootenay font, which

has an equivalent height of 18-2/3 pixels, the MeasureString call returns a height of 25 pixels.)

An XNA program generally uses the Viewport property of the GraphicsDevice class to obtain

the size of the screen. This is accessible through the GraphicsDevice property of Game and

provides Width and Height properties.

It is then straightforward to calculate textPosition—the point relative to the upper-left corner

of the viewport where the upper-left corner of the text string is to be displayed.

The initialization phase of the program has now concluded, and the real action begins. The

program enters the game loop. In synchronization with the 30 frame-per-second refresh rate

of the video display, two methods in your program are called: Update followed by Draw. Back

and forth: Update, Draw, Update, Draw, Update, Draw…. (It’s actually somewhat more

complicated than this if the Update method requires more than 1/30th of a second to

complete, but I’ll discuss these timing issues in more detail in a later chapter.)

In the Draw method you want to draw on the display. But that’s all you want to do. If you

need to perform some calculations in preparation for drawing, you should do those in the

Update method. The Update method prepares the program for the Draw method. Very often

an XNA program will be moving sprites around the display based on user input. For the

phone, this user input mostly involves fingers touching the screen. All handling of user input

should also occur during the Update method. You’ll see an example in Chapter 3.

You should write your Update and Draw methods so that they execute as quickly as possible.

That’s rather obvious, I guess, but here’s something very important that might not be so

obvious:

You should avoid code in Update and Draw that routinely allocates memory from the

program’s local heap. Eventually the .NET garbage collector will want to reclaim some of this

memory, and while the garbage collector is doing its job, your game might stutter a bit.

Throughout the chapters on XNA programming, you’ll see techniques to avoid allocating

memory from the heap.

Your Draw methods probably won’t contain any questionable code; it’s usually in the Update

method where trouble lurks. Avoid any new expressions involving classes. These always cause

memory allocation. Instantiating a structure is fine, however, because structure instances are

stored on the stack and not in the heap. (XNA uses structures rather than classes for many

types of objects you’ll often use in Update.) But heap allocations can also occur without

explicit new expressions. For example, concatenating two strings creates another string on the

heap. If you need to perform string manipulation in Update, you should use StringBuilder.

Conveniently, XNA provides methods to display text using StringBuilder objects.

In XnaHelloPhone, however, the Update method is trivial. The text displayed by the program is

anchored in one spot. All the necessary calculations have already been performed in the

LoadContent method. For that reason, the Update method will be left simply as XNA Game

Studio originally created it:

XNA Project: XnaHelloPhone File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 base.Update(gameTime);

}

The default code uses the static GamePad class to check if the Back button has been pressed

and uses that to exit the game.

Finally, there is the Draw method. The version created for you simply colors the background

with a light blue:

XNA Project: XnaHelloPhone File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.CornflowerBlue);

 base.Draw(gameTime);

}

The color known as cornflower blue has achieved iconic status in the XNA programming

community. When you’re developing an XNA program, the appearance of the cornflower

blue screen is very comforting because it means the program has at least gotten as far as

Draw. But if you want to conserve power on OLED displays, you want to go with darker

backgrounds. In my revised version, I’ve compromised by setting the background to a darker

blue. As in Silverlight, XNA supports the 140 colors that have come to be regarded as

standard. The text is colored white:

XNA Project: XnaHelloPhone File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, text, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

Sprites get out on the display by being bundled into a SpriteBatch object, which was created

during the call to LoadContent. Between calls to Begin and End there can be multiple calls to

DrawString to draw text and Draw to draw bitmaps. Those are the only options. This particular

DrawString call references the font, the text to display, the position of the upper-left corner of

the text relative to the upper-left corner of the screen, and the color. And here it is:

Oh, that’s interesting! By default, Silverlight programs come up in portrait mode, but XNA

programs come up in landscape mode. Let’s turn the emulator sideways:

Much better!

But this raises a question: Do Silverlight programs always run in portrait mode and XNA

programs always run in landscape mode?

Is program biology destiny?

Chapter 2

Getting Oriented
By default, Silverlight programs for Windows Phone 7 run in portrait mode, and XNA

programs run in landscape mode. This chapter discusses how to transcend those defaults and

explores other issues involving screen sizes, element sizes, and events.

Silverlight and Dynamic Layout

If you run the SilverlightHelloPhone program from the last chapter, and you turn the

emulator sideways, you’ll discover that the display doesn’t change to accommodate the new

orientation. That’s easy to fix. In the root PhoneApplicationPage tag, change the attribute

SupportedOrientations="Portrait"

to:

SupportedOrientations="PortraitOrLandscape"

SupportedOrientations is a property of PhoneApplicationPage. It’s set to a member of the

SupportedPageOrientation enumeration, either Portrait, Landscape, or PortraitOrLandscape.

Recompile. Now when you turn the emulator sideways, the contents of the page shift around

accordingly:

The SupportedOrientations property also allows you to restrict your program to Landscape if

you need to.

This response to orientation really shows off dynamic layout in Silverlight. Everything has

shifted position and some elements have changed size. Silverlight originated in WPF and the

desktop, so historically it was designed to react to changes in window sizes and aspect ratios.

This facility carries well into the phone.

Two of the most important properties in working with dynamic layout are

HorizontalAlignment and VerticalAlignment. In the last chapter, using these properties to

center text in a Silverlight program was certainly easier than performing calculations based on

screen size and text size that XNA required.

On the other hand, at this point you would probably find it straightforward to stack a bunch

of text strings in XNA, but it’s not so obvious how to do the same job in Silverlight.

Rest assured that there are ways to organize elements in Silverlight. A whole category of

elements called panels exist solely for that purpose. You can even position elements based on

pixel coordinates, if that’s your preference. But a full coverage of panels won’t come until

Chapter 10.

In the meantime, you can try putting multiple elements into the content grid. Normally a Grid

organizes its content into rows and columns, but this program puts nine TextBlock elements in

a single-cell Grid to demonstrate the use of HorizontalAlignment and VerticalAlignment in

nine different combinations:

Silverlight Project: SilverlightCornersAndEdges File: MainPage.xaml

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Top-Left"

 VerticalAlignment="Top"

 HorizontalAlignment="Left" />

 <TextBlock Text="Top-Center"

 VerticalAlignment="Top"

 HorizontalAlignment="Center" />

 <TextBlock Text="Top-Right"

 VerticalAlignment="Top"

 HorizontalAlignment="Right" />

 <TextBlock Text="Center-Left"

 VerticalAlignment="Center"

 HorizontalAlignment="Left" />

 <TextBlock Text="Center"

 VerticalAlignment="Center"

 HorizontalAlignment="Center" />

 <TextBlock Text="Center-Right"

 VerticalAlignment="Center"

 HorizontalAlignment="Right" />

 <TextBlock Text="Bottom-Left"

 VerticalAlignment="Bottom"

 HorizontalAlignment="Left" />

 <TextBlock Text="Bottom-Center"

 VerticalAlignment="Bottom"

 HorizontalAlignment="Center" />

 <TextBlock Text="Bottom-Right"

 VerticalAlignment="Bottom"

 HorizontalAlignment="Right" />

</Grid>

As with most of the Silverlight programs in the remainder of this book, I’ve set the

SupportedOrientations property of MainPage to PortraitOrLandscape. And here it is turned

sideways:

Although this screen appears to show all the combinations, the program does not actually

show the default settings of the HorizontalAlignment and VerticalAlignment properties. The

default settings are enumeration members named Stretch. If you try them out, you’ll see that

the TextBlock sits in the upper-left corner, just as with values of Top and Left. But what won’t

be so obvious is that the TextBlock occupies the entire interior of the Grid. The TextBlock has a

transparent background (and you can’t set an alternative) so it’s a little difficult to tell the

difference. But I’ll demonstrate the effect in the next chapter.

Obviously the HorizontalAlignment and VerticalAlignment properties are very important in the

layout system in Silverlight. So is Margin. Try adding a Margin setting to the first TextBlock in

this program:

 <TextBlock Text="Top-Left"

 VerticalAlignment="Top"

 HorizontalAlignment="Left"

 Margin="100" />

Now there’s a 100-pixel breathing room between the TextBlock and the left and top edges of

the client area. The Margin property is of type Thickness, a structure that has four properties

named Left, Top, Right, and Bottom. If you specify only one number in XAML, that’s used for

all four sides. You can also specify two numbers like this:

Margin="100 200"

The first applies to the left and right; the second to the top and bottom. With four numbers

Margin="100 200 50 300"

they're in the order left, top, right, and bottom. Watch out: If the margins are too large, the

text or parts of the text will disappear. Silverlight preserves the margins even at the expense of

truncating the element.

If you set both HorizontalAlignment and VerticalAlignment to Center, and set Margin to four

different numbers, you’ll notice that the text is no longer visually centered in the client area.

Silverlight bases the centering on the size of the element including the margins.

TextBlock also has a Padding property:

 <TextBlock Text="Top-Left"

 VerticalAlignment="Top"

 HorizontalAlignment="Left"

 Padding="100 200" />

Padding is also of type Thickness, and when used with the TextBlock, Padding is visually

indistinguishable from Margin. But they are definitely different: Margin is space on the

outside of the TextBlock; Padding is space inside the TextBlock not occupied by the text itself.

If you were using TextBlock for touch events (as I’ll demonstrate in the next chapter), it would

respond to touch in the Padding area but not the Margin area.

The Margin property is defined by FrameworkElement; in real-life Silverlight programming,

almost everything gets a non-zero Margin property to prevent the elements from being

jammed up against each other. The Padding property is rarer; it’s defined only by TextBlock,

Border, and Control.

It’s possible to use Margin to position multiple elements within a single-cell Grid. It’s not

common — and there are better ways to do the job — but it is possible. I’ll have an example

in Chapter 5.

What’s crucial to realize is what we’re not doing. We’re not explicitly setting the Width and

Height of the TextBlock like in some antique programming environment:

<TextBlock Text="Top-Left"

 VerticalAlignment="Top"

 HorizontalAlignment="Left"

 Width="100"

 Height="50" />

You’re second guessing the size of the TextBlock without knowing as much about the element

as the TextBlock itself. In some cases, setting Width and Height is appropriate, but not here.

The Width and Height properties are of type double, and the default values are those special

floating-point values called Not a Number or NaN. If you need to get the actual width and

height of an element as it’s rendered on the screen, access the properties named ActualWidth

and ActualHeight instead. (But watch out: These values will have non-zero values only when

the element has been rendered on the screen.)

Some useful events are also available for obtaining information involving element sizes. The

Loaded event is fired when visuals are first arranged on the screen; SizeChanged is supported

by elements to indicate when they’ve changed size; LayoutUpdated is useful when you want

notification that a layout cycle has occurred, such as occurs when orientation changes.

The SilverlightWhatSize project demonstrates the use of the SizeChanged method by

displaying the sizes of several elements in the standard page. It’s not often that you need

these precise sizes, but they might be of interest occasionally.

Although you can associate a particular event with an event handler right in XAML, of course

the actual event handler must be implemented in code. When you type an event name in

XAML (such as SizeChanged) Visual Studio will offer to create an event handler for you. That’s

what I did with the SizeChanged event for the content grid:

SilverlightProject: SilverlightWhatSize File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1" SizeChanged="ContentGrid_SizeChanged">

 <TextBlock Name="txtblk"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

I also assigned the TextBlock property Name to “txtblk.” The Name property plays a very

special role in Silverlight. If you compile the program at this point and look inside

MainPage.g.cs—the code file that the compiler generates based on the MainPage.xaml file—

you’ll see a bunch of fields in the MainPage class, among them being field named txtblk of

type TextBlock:

internal System.Windows.Controls.TextBlock txtblk;

You’ll also notice that this field is assigned from code in the InitializeComponent method:

this.txtblk = ((System.Windows.Controls.TextBlock)(this.FindName("txtblk")));

This means that anytime after the constructor in MainPage.xaml.cs calls InitializeComponent,

any code in the MainPage class can reference that TextBlock element in the XAML file using

the txtblk variable stored as a field in the class.

You’ll notice that several of the elements in the MainPage.xaml file are assigned names with

x:Name rather than Name. As used in XAML, these two attributes are basically equivalent.

Name only works with elements (that is, instances of classes that derive from

FrameworkElement because that’s where the Name property is defined) but x:Name works

with everything.

Assigning names to elements is one of two primary ways in which code and XAML interact.

The second way is for the element defined in XAML to fire an event that is handled in code.

Here’s the handler for the SizeChanged event of the content grid as Visual Studio creates it:

SilverlightProject: SilverlightWhatSize File: MainPage.xaml (excerpt)

private void ContentGrid_SizeChanged(object sender, SizeChangedEventArgs e)

{

}

I usually don’t like the way Visual Studio creates these handlers. Normally I remove the

keyword private, I rename the event handlers to start them with the word On, and I eliminate

underscores. This one I’d call OnContentGridSizeChanged. I also tend to change the event

arguments from e to args.

But for this program I’ll leave it as is. On entry to the method, the sender argument is the

element that fired the event, in this case the Grid named ContentGrid. The second argument

contains information specific to the event.

I added a body to this method that just sets the Text property of txtblk to a longish multi-line

string:

SilverlightProject: SilverlightWhatSize File: MainPage.xaml (excerpt)

private void ContentGrid_SizeChanged(object sender, SizeChangedEventArgs e)

{

 txtblk.Text = String.Format("ContentGrid size: {0}\n" +

 "TitlePanel size: {1}\n" +

 "LayoutRoot size: {2}\n" +

 "MainPage size: {3}\n" +

 "Frame size: {4}",

 e.NewSize,

 new Size(TitlePanel.ActualWidth,

TitlePanel.ActualHeight),

 new Size(LayoutRoot.ActualWidth,

LayoutRoot.ActualHeight),

 new Size(this.ActualWidth, this.ActualHeight),

 Application.Current.RootVisual.RenderSize);

}

The five items are of type Size, a structure with Width and Height properties. The size of the

ContentGrid itself is available from the NewSize property of the event arguments. For the next

three, I used the ActualWidth and ActualHeight properties.

Notice the last item. The static property Application.Current returns the Application object

associated with the current process. This is the App object created by the program. It has a

property named RootVisual that references the frame, but the property is defined to be of

type UIElement. The ActualWidth and ActualHeight properties are defined by

FrameworkElement, the class that derives from UIElement. Rather than casting, I chose to use a

property of type Size that UIElement defines.

The first SizeChanged event occurs when the page is created and laid out, that is, when the

content grid changes size from 0 to a finite value:

The 32-pixel difference between the MainPage size and the frame size accommodates the

system tray at the top. The topmost Grid named LayoutRoot is the same size as MainPage. The

vertical size of the TitlePanel (containing the two titles) and the vertical size of ContentGrid

don’t add up to the vertical size of LayoutRoot because of the 36-pixel vertical margin (24

pixels on the top and 12 pixels on the bottom) of the TitlePanel.

Subsequent SizeChanged events occur when something in the visual tree causes a size

change, or when the phone changes orientation:

Notice that the frame doesn’t change orientation. In the landscape view, the system tray takes

away 72 pixels of width from MainPage.

Orientation Events

In most of the Silverlight programs in this book, I’ll set SupportedOrientations to

PortraitOrLandscape, and try to write orientation-independent applications. For Silverlight

programs that get text input, it’s crucial for the program to be aligned with the hardware

keyboard (if one exists) and the location of that keyboard can’t be anticipated.

Obviously there is more to handling orientation changes than just setting the

SupportedOrientations property! In some cases, you might want to manipulate your layout

from code in the page class. If you need to perform any special handling, both

PhoneApplicationFrame and PhoneApplicationPage include OrientationChanged events.

PhoneApplicationPage supplements that event with a convenient and equivalent protected

overridable method called OnOrientationChanged.

The MainPage class in the SilverlightOrientationDisplay project shows how to override

OnOrientationChanged, but what it does with this information is merely to display the current

orientation. The content grid in this project contains a simple TextBlock:

SilverlightProject: SilverlightOrientationDisplay File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Name="txtblk"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Here’s the complete code-behind file. The constructor initializes the TextBlock text with the

current value of the Orientation property, which is a member of the PageOrientation

enumeration:

SilverlightProject: SilverlightOrientationDisplay File: MainPage.xaml.cs

using System.Windows.Controls;

using Microsoft.Phone.Controls;

namespace SilverlightOrientationDisplay

{

 public partial class MainPage : PhoneApplicationPage

 {

 public MainPage()

 {

 InitializeComponent();

 txtblk.Text = Orientation.ToString();

 }

 protected override void OnOrientationChanged(OrientationChangedEventArgs

args)

 {

 txtblk.Text = args.Orientation.ToString();

 base.OnOrientationChanged(args);

 }

 }

}

The OnOrientationChanged method obtains the new value from the event arguments.

XNA Orientation

By default, XNA for Windows Phone is set up for a landscape orientation, perhaps to be

compatible with other screens on which games are played. If you prefer designing your game

for a portrait display, it’s easy to do that. In the constructor of the Game1 class of

XnaHelloPhone, try inserting the following statements:

graphics.PreferredBackBufferWidth = 240;

graphics.PreferredBackBufferHeight = 320;

The back buffer is the surface area on which XNA constructs the graphics you display in the

Draw method. You can control both the size and the aspect ratio of this buffer. Because the

buffer width I’ve specified here is smaller than the buffer height, XNA assumes that I want a

portrait display:

Look at that! The back buffer I specified is not the same aspect ratio as the Windows Phone 7

display, so the drawing surface is letter-boxed! The text is larger because it’s the same pixel

size but now the display resolution has been reduced.

Although you may not be a big fan of the retro graininess of this particular display, you

should seriously consider specifying a smaller back buffer if your game doesn’t need the high

resolution provided by the phone. Performance will improve and battery consumption will

decrease. You can set the back buffer to anything from 240 × 240 up to 480 × 800 (for

portrait mode) or 800 × 480 (for landscape). XNA uses the aspect ratio to determine whether

you want portrait or landscape.

Setting a desired back buffer is also an excellent way to target a specific display dimension in

code but allow for devices of other sizes that may come in the future.

By default the back buffer is 800 × 480, but it’s actually not displayed at that size. It’s scaled

down a bit to accommodate the system tray. To get rid of the system tray (and possibly annoy

your users who like to always know what time it is) you can set

graphics.IsFullScreen = true;

in the Game1 constructor.

It’s also possible to have your XNA games respond to orientation changes, but they’ll

definitely have to be restructured a bit. The simplest type of restructuring to accommodate

orientation changes is demonstrated in the XnaOrientableHelloPhone project. The fields now

include a textSize variable:

XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 string text = "Hello, Windows Phone 7!";

 SpriteFont kootenay14;

 Vector2 textSize;

 Vector2 textPosition;

 …

}

The Game1 constructor includes a statement that sets the SupportedOrientations property of

the graphics field:

XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

 // Allow portrait mode as well

 graphics.SupportedOrientations = DisplayOrientation.Portrait |

 DisplayOrientation.LandscapeLeft |

 DisplayOrientation.LandscapeRight;

 // Frame rate is 30 fps by default for Windows Phone.

 TargetElapsedTime = TimeSpan.FromTicks(333333);

}

The statement looks simple, but there are repercussions. When the orientation changes, the

graphics device is effectively reset (which generates some events) and the back buffer

dimensions are swapped. You can subscribe to the OrientationChanged event of the

GameWindow class (accessible through the Window property) or you can check the

CurrentOrientation property of the GameWindow object.

I chose a little different approach. Here’s the new LoadContent method, which you’ll notice

obtains the text size and stores it as a field, but does not get the viewport.

XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 textSize = kootenay14.MeasureString(text);

}

Instead, the viewport is obtained during the Update method because the dimensions of the

viewport reflect the orientation of the display.

XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 Viewport viewport = this.GraphicsDevice.Viewport;

 textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

 base.Update(gameTime);

}

Whatever the orientation currently is, the Update method calculates a location for the text.

The Draw method is the same as several you’ve seen before.

XNA Project: XnaOrientableHelloPhone File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, text, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

Now the phone emulator can be turned between portrait and landscape, and the display will

switch as well.

If you need to obtain the size of the phone’s display independent of any back buffers or

orientation (but taking account of the system tray), that’s available from the ClientBounds

property of the GameWindow class, which you can access from the Window property of the

Game class:

Rectangle clientBounds = this.Window.ClientBounds;

Simple Clocks (Very Simple Clocks)

So far in this chapter I’ve described two Silverlight events — SizeChanged and

OrientationChanged — but used them in different ways. For SizeChanged, I associated the

event with the event handler in XAML, but for OrientationChanged, I overrode the equivalent

OnOrientationChanged method.

Of course, you can define events entirely in code as well. One handy event for Silverlight

programs is the timer, which periodically nudges the program and lets it do some work. A

timer is essential for a clock program, for example.

The content grid of the SilverlightSimpleClock project contains just a centered TextBlock:

Silverlight Project: SilverlightSimpleClock File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Name="txtblk"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Here’s the entire code-behind file. Notice the using directive for the

System.Windows.Threading namespace, which isn’t included by default. That’s the namespace

where DispatcherTimer resides:

Silverlight Project: SilverlightSimpleClock File: MainPage.xaml.cs

using System;

using System.Windows.Threading;

using Microsoft.Phone.Controls;

namespace SilverlightSimpleClock

{

 public partial class MainPage : PhoneApplicationPage

 {

 public MainPage()

 {

 InitializeComponent();

 DispatcherTimer tmr = new DispatcherTimer();

 tmr.Interval = TimeSpan.FromSeconds(1);

 tmr.Tick += OnTimerTick;

 tmr.Start();

 }

 void OnTimerTick(object sender, EventArgs args)

 {

 txtblk.Text = DateTime.Now.ToString();

 }

 }

}

The constructor initializes the DispatcherTimer, instructing it to call OnTimerTick once every

second. The event handler simply converts the current time to a string to set it to the

TextBlock.

Although DispatcherTimer is defined in the System.Windows.Threading namespace, the

OnTimerTick method is called in the same thread as the rest of the program. If that was not

the case, the program wouldn’t be able to access the TextBlock directly. (Silverlight elements

and related objects are not thread safe.) I’ll discuss the procedure for accessing Silverlight

elements from secondary threads in Chapter 5.

The clock is yet another Silverlight program in this chapter that changes the Text property of a

TextBlock dynamically during runtime. The new value shows up rather magically without any

additional work. This is a very different from older graphical environments like Windows API

programming or MFC programming, where a program draws “on demand,” that is, when an

area of a window becomes invalid and needs to be repainted, or when a program deliberately

invalidates an area to force painting.

A Silverlight program often doesn’t seem to draw at all! Deep inside of Silverlight is a visual

composition layer that operates in a retained graphics mode and organizes all the visual

elements into a composite whole. Elements such as TextBlock exist as actual entities inside this

composition layer. At some point, TextBlock is rendering itself — and re-rendering itself when

one of its properties such as Text changes — but what it renders is retained along with the

rendered output of all the other elements in the visual tree.

In contrast, an XNA program is actively drawing during every frame of the video display. This

is conceptually different from older Windows programming environments as well as

Silverlight. It is very powerful, but I’m sure you know quite well what must also come with

great power.

Sometimes an XNA program’s display is static; the program might not need to update the

display every frame. To conserve power, it is possible for the Update method to call the

SuppressDraw method defined by the Game class to inhibit a corresponding call to Draw. The

Update method will still be called 30 times per second because it needs to check for user

input, but if the code in Update calls SuppressDraw, Draw won’t be called during that cycle of

the game loop. If the code in Update doesn’t call SuppressDraw, Draw will be called.

An XNA clock program doesn’t need a timer because a timer is effectively built into the

normal game loop. However, the clock doesn’t display milliseconds so the display only needs

to be updated every second. For that reason it uses the SuppressDraw method to inhibit

superfluous Draw calls.

Here are the XnaSimpleClock fields:

XNA Project: XnaSimpleClock File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Viewport viewport;

 Vector2 textPosition;

 StringBuilder text = new StringBuilder();

 DateTime lastDateTime;

 …

}

Notice that instead of defining a field of type string named text, I’ve defined a StringBuilder

instead. If you’re creating new strings in your Update method for display during Draw (as this

program will do), you should use StringBuilder to avoid the heap allocations associated with

the normal string type. This program will only be creating a new string every second, so I

really didn’t need to use StringBuilder here, but it doesn’t hurt to get accustomed to it.

StringBuilder requires a using directive for the System.Text namespace.

Notice also the lastDateTime field. This will be used in the Update method to determine if the

displayed time needs to be updated.

The LoadContent method gets the font and the viewport of the display:

XNA Project: XnaSimpleClock File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 viewport = this.GraphicsDevice.Viewport;

}

The logic to compare two DateTime values to see if the time has changed is just a little tricky

because DateTime objects obtained during two consecutive Update calls will always be

different because they have will have different Millisecond fields. For this reason, a new

DateTime is calculated based on the current time obtained from DateTime.Now, but

subtracting the milliseconds:

XNA Project: XnaSimpleClock File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 // Get DateTime with no milliseconds

 DateTime dateTime = DateTime.Now;

 dateTime = dateTime - new TimeSpan(0, 0, 0, 0, dateTime.Millisecond);

 if (dateTime != lastDateTime)

 {

 text.Remove(0, text.Length);

 text.Append(dateTime);

 Vector2 textSize = kootenay14.MeasureString(text);

 textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

 lastDateTime = dateTime;

 }

 else

 {

 SuppressDraw();

 }

 base.Update(gameTime);

}

At that point it’s easy. If the time has changed, new values of text, textSize, and textPosition

are calculated. Because text is a StringBuilder rather than a string, the old contents are

removed and the new contents are appended. The MeasureString method of SpriteFont has

an overload for StringBuilder, so that call looks exactly the same.

If the time has not changed, SuppressDraw is called. The result: Draw is called only once per

second.

XNA Project: XnaSimpleClock File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, text, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

DrawString also has an overload for StringBuilder. And here’s the result:

SuppressDraw can be a little difficult to use — I’ve found it particularly tricky during the time

that the program is first starting up — but it’s one of the primary techniques used in XNA to

reduce the power requirements of the program.

Chapter 3

An Introduction to Touch
Even for experienced Silverlight and XNA programmers, Windows Phone 7 comes with a

feature that is likely to be new and unusual. The screen on the phone is sensitive to touch.

And not like old touch screens that basically mimic a mouse, or the tablet screens that

recognize handwriting.

The multi-touch screen on a Windows Phone 7 device can detect at least four simultaneous

fingers. It is the interaction of these fingers that makes multi-touch so challenging. For this

chapter, however, I have much a less ambitious goal. I want only to introduce the touch

interfaces in the context of sample programs that respond to simple taps.

The programs in this chapter look much like the “Hello, Windows Phone 7!” programs in the

first chapter, except that when you tap the text with your finger, it changes to a random color,

and when you tap outside the area of the text, it goes back to white (or whatever color the

text was when the program started up).

In a Silverlight program, touch input is obtained through events. In an XNA program, touch

input comes through a static class polled during the Update method. One of the primary

purposes of the XNA Update method is to check the state of touch input and make changes

that affect what goes out to the screen during the Draw method.

Low-Level Touch Handling in XNA

The multi-touch input device is referred to in XNA as a touch panel. You use methods in the

static TouchPanel class to obtain this input. Although you can obtain gestures, let’s begin with

the lower-level touch information.

It is possible (although not necessary) to obtain information about the multi-touch device

itself by calling the static TouchPanel.GetCapabilities method. The TouchPanelCapabilities

object returned from this method has two properties:

 IsConnected is true if the touch panel is available. For the phone, this will always be true.

 MaximumTouchCount returns the number of touch points, at least 4 for the phone.

For most purposes, you just need to use one of the other two static methods in TouchPanel.

To obtain low-level touch input, you’ll probably be calling this method during every call to

Update after program initialization:

TouchCollection touchLocations = TouchPanel.GetState();

The TouchCollection is a collection of zero or more TouchLocation objects. TouchLocation has

three properties:

 State is a member of the TouchLocationState enumeration: Pressed, Moved, Released.

 Position is a Vector2 indicating the finger position relative to the upper-left corner of the

display.

 Id is an integer identifying a particular finger from Pressed through Released.

If no fingers are touching the screen, the TouchCollection will be empty. When a finger first

touches the screen, TouchCollection contains a single TouchLocation object with State equal to

Pressed. On subsequent calls to TouchPanel.GetState, the TouchLocation object will have State

equal to Moved even if the finger has not physically moved. When the finger is lifted from the

screen, the State property of the TouchLocation object will equal Released. On subsequent

calls to TouchPanel.GetState, the TouchCollection will be empty.

One exception: If the finger is tapped and released on the screen very quickly—that is, within

a 1/30th of a second—it’s possible that the TouchLocation object with State equal to Pressed

will be followed with State equal to Released with no Moved states in between.

That’s just one finger touching the screen and lifting. In the general case, multiple fingers will

be touching, moving, and lifting from the screen independently of each other. You can track

particular fingers using the Id property. For any particular finger, that Id will be the same from

Pressed, through all the Move values, to Released.

Very often when dealing with low-level touch input, you’ll use a Dictionary object with keys

based on the Id property to retain information for a particular finger.

TouchLocation also has a very handy method called TryGetPreviousLocation, which you call

like this:

TouchLocation previousTouchLocation;

bool success = touchLocation.TryGetPreviousLocation(out previousTouchLocation);

Almost always, you will call this method when touchLocation.State is Moved because you can

then obtain the previous location and calculate a difference. If touchLocation.State equals

Pressed, then TryGetPreviousLocation will return false and previousTouchLocation.State will

equal the enumeration member TouchLocationState.Invalid. You’ll also get these results if you

use the method on a TouchLocation that itself was returned from TryGetPreviousLocation.

The program I’ve proposed changes the text color when the user taps the text string, so the

processing of TouchPanel.GetStates will be relatively simple. The program will examine only

TouchLocation objects with State values of Pressed.

This project is called XnaTouchHello. Like the other XNA projects you’ve seen so far, it needs a

font, which I’ve made a little larger so it provides a more substantial touch target. A few more

fields are required:

XNA Project: XnaTouchHello File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Random rand = new Random();

 string text = "Hello, Windows Phone 7!";

 SpriteFont kootenay36;

 Vector2 textSize;

 Vector2 textPosition;

 Color textColor = Color.White;

 …

}

The LoadContent method is similar to earlier versions except that textSize is saved as a field

because it needs to be accessed in later calculations:

XNA Project: XnaTouchHello File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 kootenay36 = this.Content.Load<SpriteFont>("Kootenay36");

 textSize = kootenay36.MeasureString(text);

 Viewport viewport = this.GraphicsDevice.Viewport;

 textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

}

As is typical with XNA programs, much of the “action” occurs in the Update method. The

method calls TouchPanel.GetStates and then loops through the collection of TouchLocation

objects to find only those with State equal to Pressed.

XNA Project: XnaTouchHello File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 TouchCollection touchLocations = TouchPanel.GetState();

 foreach (TouchLocation touchLocation in touchLocations)

 {

 if (touchLocation.State == TouchLocationState.Pressed)

 {

 Vector2 touchPosition = touchLocation.Position;

 if (touchPosition.X >= textPosition.X &&

 touchPosition.X < textPosition.X + textSize.X &&

 touchPosition.Y >= textPosition.Y &&

 touchPosition.Y < textPosition.Y + textSize.Y)

 {

 textColor = new Color((byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256));

 }

 else

 {

 textColor = Color.White;

 }

 }

 }

 base.Update(gameTime);

}

If the Position is inside the rectangle occupied by the text string, the textColor field is set to a

random RGB color value using one of the constructors of the Color structure. Otherwise,

textColor is set to Color.White.

The Draw method looks very similar to the versions you’ve seen before, except that the text

color is a variable:

XNA Project: XnaTouchHello File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 this.GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, text, textPosition, textColor);

 spriteBatch.End();

 base.Draw(gameTime);

}

One problem you might notice is that touch is not quite as deterministic as you might like.

Even when you touch the screen with a single finger, the finger might make contact with the

screen in more than one place. In some cases, the same foreach loop in Update might set

textColor more than once!

Handling multi-touch input is often challenging, and it’s one of the challenges this book will

courageously tackle.

The XNA Gesture Interface

The TouchPanel class also includes gesture recognition, which is demonstrated by the

XnaTapHello project. The fields of this project are the same as those in XnaTouchHello, but

the LoadContent method is a little different:

XNA Project: XnaTapHello File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 kootenay36 = this.Content.Load<SpriteFont>("Kootenay36");

 textSize = kootenay36.MeasureString(text);

 Viewport viewport = this.GraphicsDevice.Viewport;

 textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

 TouchPanel.EnabledGestures = GestureType.Tap;

}

Notice the final statement. GestureType is an enumeration with members Tap, DoubleTap,

Flick, Hold, Pinch, PinchComplete, FreeDrag, HorizontalDrag, VerticalDrag, and DragComplete,

defined as bit flags so you can combine the ones you want with the C# bitwise OR operator.

The Update method is very different.

XNA Project: XnaTapHello File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 while (TouchPanel.IsGestureAvailable)

 {

 GestureSample gestureSample = TouchPanel.ReadGesture();

 if (gestureSample.GestureType == GestureType.Tap)

 {

 Vector2 touchPosition = gestureSample.Position;

 if (touchPosition.X >= textPosition.X &&

 touchPosition.X < textPosition.X + textSize.X &&

 touchPosition.Y >= textPosition.Y &&

 touchPosition.Y < textPosition.Y + textSize.Y)

 {

 textColor = new Color((byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256));

 }

 else

 {

 textColor = Color.White;

 }

 }

 }

 base.Update(gameTime);

}

Although this program is interested in only one type of gesture, the code is rather

generalized. If a gesture is available, it is returned from the TouchPanel.ReadGesture method

as an object of type GestureSample. Besides the GestureType and Position used here, a Delta

property provides movement information in the form of a Vector2 object. For some gestures

(such as Pinch), the GestureSample also reports the status of a second touch point with

Position2 and Delta2 properties.

The Draw method is the same as the previous program, but you’ll find that the program

behaves a little differently from the first one: In the first program, the text changes color when

the finger touches the screen; in the second, the color change occurs when the finger lifts

from the screen. The gesture recognizer needs to wait until that time to determine what type

of gesture it is.

Low-Level Touch Events in Silverlight

Like XNA, Silverlight also supports two different programming interfaces for working with

multi-touch, which can be most easily categorized as low-level and high-level. The low-level

interface is based around the static Touch.FrameReported event, which is very similar to the

XNA TouchPanel except that it’s an event and it doesn’t include gestures.

The high-level interface consists of three events defined by the UIElement class:

ManipulationStarted, ManipulationDelta, and ManipulationCompleted. The Manipulation

events, as they’re collectively called, consolidate the interaction of multiple fingers into

movement and scaling factors.

Let me begin with the low-level touch interface in Silverlight by dissecting a class called

TouchPoint, an instance of which represents a particular finger touching the screen.

TouchPoint has four get-only properties:

 Action of type TouchAction, an enumeration with members Down, Move, and Up.

 Position of type Point, relative to the upper-left corner of a particular element. Let’s call

this element the reference element.

 Size of type Size. This is supposed to represent the touch area (and, hence, finger

pressure, more or less) but the Windows Phone 7 emulator doesn’t return useful values.

 TouchDevice of type TouchDevice.

The TouchDevice object has two get-only properties:

 Id of type int, used to distinguish between fingers. A particular finger is associated with a

unique Id for all events from Down through Up.

 DirectlyOver of type UIElement, the topmost element underneath the finger.

As you can see, the Silverlight TouchPoint and TouchDevice objects give you mostly the same

information as the XNA TouchLocation object, but the DirectlyOver property of TouchDevice is

often very useful for determining what element the user is touching.

To use the low-level touch interface, you install a handler for the static Touch.FrameReported

event:

Touch.FrameReported += OnTouchFrameReported;

The OnTouchFrameReported method looks like this:

void OnTouchFrameReported(object sender, TouchFrameEventArgs args)

{

 …

}

The event handler gets all touch events throughout your application. The

TouchFrameEventArgs object has a TimeStamp property of type int, plus three methods:

 GetTouchPoints(refElement) returns a TouchPointCollection

 GetPrimaryTouchPoint(refElement) returns one TouchPoint

 SuspendMousePromotionUntilTouchUp()

In the general case, you call GetTouchPoints, passing to it a reference element. The TouchPoint

objects in the returned collection have Position properties relative to that element. You can

pass null to GetTouchPoints to get Position properties relative to the upper-left corner of the

application.

The reference element and the DirectlyOver element have no relationship to each other. The

event always gets all touch activity for the entire program. Calling GetTouchPoints or

GetPrimaryTouchPoints with a particular element does not limit the events to only those

involving that element. All that it does is cause the Position property to be calculated relative

to that element. (For that reason, Position coordinates can easily be negative if the finger is to

the left of or above the reference element.) The DirectlyOver element indicates the element

under the finger.

A discussion of the second and third methods requires some background: The

Touch.FrameReported event originated on Silverlight for the desktop, where it is convenient

for the mouse logic of existing controls to automatically use touch. For this reason, touch

events are “promoted” to mouse events.

But this promotion only involves the “primary” touch point, which is the activity of the first

finger that touches the screen when no other fingers are touching the screen. If you don’t

want the activity of this finger to be promoted to mouse events, the event handler usually

begins like this:

void OnTouchFrameReported(object sender, TouchFrameEventArgs args)

{

 TouchPoint primaryTouchPoint = args.GetPrimaryTouchPoint(null);

 if (primaryTouchPoint != null && primaryTouchPoint.Action == TouchAction.Down)

 {

 args.SuspendMousePromotionUntilTouchUp();

 }

 …

}

The SuspendMousePromotionUntilTouchUp method can only be called when a finger first

touches the screen when no other fingers are touching the screen.

On Windows Phone 7, such logic presents something of a quandary. As written, it basically

wipes out all mouse promotion throughout the application. If your phone application

incorporates Silverlight controls that were originally written for mouse input but haven’t been

upgraded to touch, you’re basically disabling those controls.

Of course, you can also check the DirectlyOver property to suspend mouse promotion

selectively. But on the phone, no elements should be processing mouse input except for those

controls that don’t process touch input! So it might make more sense to never suspend mouse

promotion.

I’ll leave that matter for your consideration and your older mouse-handling controls.

Meanwhile, the program I want to write is only interested in the primary touch point when it

has a TouchAction of Down, so I can use that same logic.

The SilverlightTouchHello project has a TextBlock in the XAML file:

Silverlight Project: SilverlightTouchHello File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Name="txtblk"

 Text="Hello, Windows Phone 7!"

 Padding="0 22"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Notice the Padding value. I know that the font displayed here has a FontSize property of 20

pixels, which actually translates into a TextBlock that is about 27 pixels tall. I also know that it’s

recommended that touch targets not be smaller than 9 millimeters. If the resolution of the

phone display is 200 DPI, then 9 millimeters is 71 pixels. (The calculation is 9 millimeters

divided by 25.4 millimeters to the inch, times 200 pixels per inch.) The TextBlock is short by 44

pixels. So I set a Padding value that puts 22 more pixels on both the top and bottom (but not

the sides).

I used Padding rather than Margin because Padding is space inside the TextBlock. The

TextBlock actually becomes larger than the text size would imply. Margin is space outside the

TextBlock. It’s not part of the TextBlock itself and is excluded for purposes of hit-testing.

Here’s the complete code-behind file. The constructor of MainPage installs the

Touch.FrameReported event handler.

Silverlight Project: SilverlightTouchHello File: MainPage.xaml.cs

using System;

using System.Windows.Input;

using System.Windows.Media;

using Microsoft.Phone.Controls;

namespace SilverlightTouchHello

{

 public partial class MainPage : PhoneApplicationPage

 {

 Random rand = new Random();

 Brush originalBrush;

 public MainPage()

 {

 InitializeComponent();

 originalBrush = txtblk.Foreground;

 Touch.FrameReported += OnTouchFrameReported;

 }

 void OnTouchFrameReported(object sender, TouchFrameEventArgs args)

 {

 TouchPoint primaryTouchPoint = args.GetPrimaryTouchPoint(null);

 if (primaryTouchPoint != null && primaryTouchPoint.Action ==

TouchAction.Down)

 {

 if (primaryTouchPoint.TouchDevice.DirectlyOver == txtblk)

 {

 txtblk.Foreground = new SolidColorBrush(

 Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256)));

 }

 else

 {

 txtblk.Foreground = originalBrush;

 }

 }

 }

 }

}

The event handler is only interested in primary touch points with an Action of Down. If the

DirectlyOver property is the element named txtblk, a random color is created. Unlike the Color

structure in XNA, the Silverlight Color structure doesn’t have a constructor to set a color from

red, green, and blue values, but it does have a static FromArgb method that creates a Color

object based on alpha, red, green, and blue values, where alpha is opacity. Set the alpha

channel to 255 to get an opaque color. Although it’s not obvious at all in the XAML files, the

Foreground property is actually of type Brush, an abstract class from which SolidColorBrush

descends.

If DirectlyOver is not txtblk, then the program doesn’t change the color to white, because that

wouldn’t work if the user chose a color theme of black text on a white background. Instead, it

sets the Foreground property to the brush originally set on the TextBlock. This is obtained in

the constructor.

The Manipulation Events

The high-level touch interface involves three events: ManipulationStarted, , ManipulationDelta,

and ManipulationCompleted. These events don’t bother with reporting the activity of

individual fingers. Instead, they consolidate the activity of multiple fingers into translation and

scaling operations. The events also accumulate velocity information, so while they don’t

support inertia directly, they can be used to implement inertia.

The Manipulation events will receive more coverage in the chapters ahead. In this chapter I’m

going to stick with ManipulationStarted just to detect contact of a finger on the screen, and I

won’t bother with what the finger does after that.

While Touch.FrameReported delivered touch information for the entire application, the

Manipulation events are based on individual elements, so in SilverlightTapHello1, a

ManipulationStarted event handler is set on the TextBlock:

Silverlight Project: SilverlightTapHello1 File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone 7!"

 Padding="0 22"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 ManipulationStarted="OnTextBlockManipulationStarted" />

</Grid>

The MainPage.xaml.cs contains this event handler:

Silverlight Project: SilverlightTapHello1 File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 Random rand = new Random();

 public MainPage()

 {

 InitializeComponent();

 }

 void OnTextBlockManipulationStarted(object sender,

 ManipulationStartedEventArgs args)

 {

 TextBlock txtblk = sender as TextBlock;

 Color clr = Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256));

 txtblk.Foreground = new SolidColorBrush(clr);

 args.Complete();

 }

}

The event handler is able to get the element generating the message from the sender

argument. The TextBlock is also available from the args.OriginalSource property.

Notice the call to the Complete method of the event arguments at the end. This is not

required by effectively tells the system that further Manipulation events involving this finger

won’t be necessary.

This program is flawed: If you try it out, you’ll see that it works only partially. Touching the

TextBlock changes the text to a random color. But if you touch outside the TextBlock, the text

does not go back to white. Because this event was set on the TextBlock, the event handler is

called only when the user touches the TextBlock. No other Manipulation events are processed

by the program.

A program that functions correctly according to my original specification needs to get touch

events occurring anywhere on the page. A handler for the ManipulationStarted event needs to

be installed on MainPage rather than just on the TextBlock.

Although that’s certainly possible, there’s actually an easier way. The UIElement class defines

all the Manipulation events. But the Control class (from which MainPage derives) supplements

those events with protected virtual methods. You don’t need to install a handler for the

ManipulationStarted event on MainPage; instead you can override the OnManipulationStarted

virtual method.

This approach is implemented in the SilverlightTapHello2 project. The XAML file doesn’t refer

to any events but gives the TextBlock a name so that it can be referred to in code:

Silverlight Project: SilverlightTapHello2 File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Name="txtblk"

 Text="Hello, Windows Phone 7!"

 Padding="0 22"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

The MainPage class overrides the OnManipulationStarted method:

Silverlight Project: SilverlightTapHello2 File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 Random rand = new Random();

 Brush originalBrush;

 public MainPage()

 {

 InitializeComponent();

 originalBrush = txtblk.Foreground;

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

 if (args.OriginalSource == txtblk)

 {

 txtblk.Foreground = new SolidColorBrush(

 Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256)));

 }

 else

 {

 txtblk.Foreground = originalBrush;

 }

 args.Complete();

 base.OnManipulationStarted(args);

}

In the ManipulationStartedEventArgs a property named OriginalSource indicates where this

event began—in other words, the topmost element that the user tapped. If this equals the

txtblk object, the method creates a random color for the Foreground property. If not, then the

Foreground property is set to the original brush.

In this OnManiulationStarted method we’re handling events for MainPage, but that

OriginalSource property tells us the event actually originated lower in the visual tree. This is

part of the benefit of routed event handling.

Routed Events

In Microsoft Windows programming, keyboard and mouse input always go to particular

controls. Keyboard input always goes to the control with the input focus. Mouse input always

goes to the topmost enabled control under the mouse pointer, and stylus and touch input is

similar. But sometimes this is inconvenient. Sometimes the control underneath needs the

user-input more than the control on top.

To be a bit more flexible, Silverlight implements a system called routed event handling. Most

user input events—including the three Manipulation events—do indeed originate using the

same paradigm as Windows. The Manipulation events originate at the topmost enabled

element touched by the user. However, if that element is not interested in the event, the

event then goes to that element’s parent, and so forth up the visual tree ending at the

PhoneApplicationFrame element. Any element along the way can grab the input and do

something with it, and also inhibit further progress of the event up the tree.

This is why you can override the OnManipulationStarted method in MainPage and also get

manipulation events for the TextBlock. By default the TextBlock isn’t interested in those events.

The event argument for the ManipulationStarted event is ManipulationStartedEventArgs,

which derives from RoutedEventArgs. It is RoutedEventArgs that defines the OriginalSource

property that indicates the element on which the event began.

But this suggests another approach that combines the two techniques shown in

SilverlightTapHello1 and SilverlightTapHello2. Here’s the XAML file of SilverlightTapHello3:

Silverlight Project: SilverlightTapHello3 File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Name="txtblk"

 Text="Hello, Windows Phone 7!"

 Padding="0 22"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 ManipulationStarted="OnTextBlockManipulationStarted" />

</Grid>

The TextBlock has a Name as in the first program. A handler for the ManipulationStarted event

is set on the TextBlock as in the first program. Both the event handler and an override of

OnManipulationStarted appear in the code-behind file:

Silverlight Project: SilverlightTapHello3 File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 Random rand = new Random();

 Brush originalBrush;

 public MainPage()

 {

 InitializeComponent();

 originalBrush = txtblk.Foreground;

 }

 void OnTextBlockManipulationStarted(object sender,

 ManipulationStartedEventArgs args)

 {

 txtblk.Foreground = new SolidColorBrush(

 Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256)));

 args.Complete();

 args.Handled = true;

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

 txtblk.Foreground = originalBrush;

 args.Complete();

 base.OnManipulationStarted(args);

 }

}

The logic has been split between the two methods, making the whole thing rather more

elegant, I think. The OnTextBlockManipulationStarted method only gets events when the

TextBlock is touched. The OnManipulationStarted event gets all events for MainPage.

At first there might seem to be a bug here. After OnTextBlockManipulationStarted is called,

the event continues to travel up the visual tree and OnManipulationStarted sets the color back

to white. But that’s not what happens: The crucial statement that makes this work right is this

one at the end of the OnTextBlockManipulationStarted handler for the TextBlock:

args.Handled = true;

That statement says that the event has now been handled and it should not travel further up

the visual tree. Remove that statement and the TextBlock never changes from its initial color

— at least not long enough to see.

Some Odd Behavior?

Now try this. In many of the Silverlight programs I’ve shown so far, I’ve centered the TextBlock

within the content grid by setting the following two attributes:

HorizontalAlignment="Center"

VerticalAlignment="Center"

Delete them from SilverlightTapHello3, and recompile and run the program. The text appears

at the upper-left corner of the Grid. But now if you touch anywhere within the large area

below the TextBlock, the text will change to a random color, and only by touching the title

area above the text can you change it back to white.

By default the HorizontalAlignment and VerticalAlignment properties are set to enumeration

values called Stretch. The TextBlock is actually filling the Grid. You can’t see it, of course, but

the fingers don’t lie.

With other elements, as you’ll see, this stretching effect is much less subtle.

Chapter 4

Bitmaps, Also Known as Textures
Aside from text, one of the most common objects to appear in both Silverlight and XNA

applications is the bitmap, formally defined as a two-dimensional array of bits corresponding

to the pixels of a graphics display device.

In Silverlight, a bitmap is sometimes referred to as an image, but that’s mostly a remnant of

the Windows Presentation Foundation, where the word image refers to both bitmaps and

vector-based drawings. In WPF and Silverlight, the Image element displays bitmaps but is not

the bitmap itself.

In XNA, a bitmap has a data type of Texture2D and hence is often referred to as a texture, but

that term is mostly related to 3D programming where bitmaps are used to cover surfaces of

3D solids. In XNA 2D programming, bitmaps are often used as sprites.

Bitmaps are also used to symbolize the program on the phone. A new XNA project in Visual

Studio results in the creation of two bitmaps, and Silverlight adds a third.

The native Windows bitmap format has an extension of BMP but it’s become less popular in

recent years as compressed formats have become widespread. At this time, the three most

popular bitmap formats are probably:

 JPEG (Joint Photography Experts Group)

 PNG (Portable Network Graphics)

 GIF (Graphics Interchange File)

XNA supports all three (and more). Silverlight supports only JPEG and PNG. (And if you’re like

most Silverlight programmers, you’ll not always remember this simple fact and someday

wonder why your Silverlight program simply refuses to display a GIF or a BMP.)

The compression algorithms implemented by PNG and GIF do not result in the loss of any

data. The original bitmap can be reconstituted exactly. For that reason, these are often

referred to as “lossless” compression algorithms.

JPEG implements a “lossy” algorithm by discarding visual information that is less perceptible

by human observers. This type of compression works well for real-world images such as

photographs, but less suitable for bitmaps that derive from text or vector-based images, such

as architectural drawings or cartoons.

Both Silverlight and XNA allow manipulating bitmaps at the pixel level for generating bitmaps

— or altering existing bitmaps — interactively or algorithmically. That topic is relegated to

future chapters. This chapter will focus more on the techniques of obtaining bitmaps from

various sources, including the program itself, the Web, and the phone’s built-in camera.

XNA Texture Drawing

Because XNA 2D programming is almost entirely a process of moving sprites around the

screen, you might expect that loading and drawing bitmaps in an XNA program is fairly easy,

and you would be correct.

The first project is called XnaLocalBitmap, so named because this bitmap will be stored as part

of the program’s content. To add a new bitmap to the program’s content project, right-click

the XnaLocalBitmapContent project name, select Add and then New Item, and then Bitmap

File. You can create the bitmap right in Visual Studio.

Or, you can create the bitmap in an external program, as I did. Windows Paint is often

convenient, so for this exercise I created the following bitmap with a dimension of 320 pixels

wide and 160 pixels high:

This was saved under the name Hello.png.

To add this file as part of the program’s content, right-click the XnaLocalBitmapContent

project in Visual Studio, select Add and Existing Item, and then navigate to the file. Once the

file shows up, you can right-click it to display Properties, and you’ll see that it has an Asset

Name of “Hello.”

The goal is to display this bitmap centered on the screen. Define a field in the Game1.cs file to

store the Texture2D and another field for the position:

XNA Project: XnaLocalBitmap File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Texture2D helloTexture;

 Vector2 position;

 …

}

Both fields are set during the LoadContent method. Use the same generic method to load the

Texture2D as you use to load a SpriteFont. The Texture2D class has properties named Width

and Height that provide the dimensions of the bitmap in pixels. As with the programs that

centered text in the Chapter 1, the position field indicates the pixel location on the display

that corresponds to the upper-left corner of the bitmap:

XNA Project: XnaLocalBitmap File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 helloTexture = this.Content.Load<Texture2D>("Hello");

 Viewport viewport = this.GraphicsDevice.Viewport;

 position = new Vector2((viewport.Width - helloTexture.Width) / 2,

 (viewport.Height - helloTexture.Height) / 2);

}

The SpriteBatch class has seven Draw methods to render bitmaps. This one is certainly the

simplest:

XNA Project: XnaLocalBitmap File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.Draw(helloTexture, position, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

The final argument to Draw is a color that can be used to attenuate the existing colors in the

bitmap. Use Color.White if you want the bitmap’s colors to display without any alteration.

And here it is:

The Silverlight Image Element

The equivalent program in Silverlight is even simpler. Let’s create a project named

SilverlightLocalBitmap. First create a directory in the project to store the bitmap. This isn’t

strictly required but it makes for a tidier project. Programmers usually name this directory

Images or Media or Assets depending on the types of files that might be stored there. Right-

click the project name and choose Add and then New Folder. Let’s name it Images. Then

right-click the folder name and choose Add and Existing Item. Navigate to the Hello.png file.

(If you’ve created a different bitmap on your own, keep in mind that Silverlight supports only

JPEG and PNG files.)

From the Add button choose either Add or Add as Link. If you choose Add, a copy will be

made and the file will be physically copied into a subdirectory of the project. If you choose

Add as Link, only a file reference will be retained with the project but the file will still be

copied into the executable.

The final step: Right-click the bitmap filename and display Properties. Make sure the Build

Action is Resource.

In Silverlight, you use the Image element to display bitmaps just as you use the TextBlock

element to display text. Set the Source property to the folder and filename of the bitmap

within the project:

Silverlight Project: SilverlightLocalBitmap File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Image Source="Images/Hello.png" />

</Grid>

The display looks a little different than the XNA program, and it’s not just the titles. By default,

the Image element expands or contracts the bitmap as much as possible to fill its container

(the content grid) while retaining the correct aspect ratio. This is most noticeable if you set

the SupportedOrientations attribute of the PhoneApplicationPage start tag to

PortraitOrLandscape and turn the phone sideways:

If you want to display the bitmap in its native pixel size, you can set the Stretch property of

Image to None:

<Image Source="Images/Hello.png"

 Stretch="None" />

I’ll discuss more options in Chapter 7.

Images Via the Web

One feature that’s really nice about the Image element is that you can set the Source property

to a URL, such as in this Silverlight project:

Silverlight Project: SilverlightWebBitmap File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Image Source="http://www.charlespetzold.com/Media/HelloWP7.jpg" />

</Grid>

Here it is:

This is certainly easy enough, and pulling images off the Web rather than binding them into

the application certainly keeps the size of the executable down. But an application running on

Windows Phone 7 is not guaranteed to have an Internet connection, aside from the other

problems associated with downloading. The Image element has two events named

ImageOpened and ImageFailed that you can use to determine if the download was successful

or not.

For Windows Phone 7 programs that display a lot of bitmaps, you need to do some hard

thinking. You can embed the bitmaps into the executable and have their access guaranteed,

or you can save space and download them when necessary.

In XNA, downloading a bitmap from the Web is not quite as easy, but a .NET class named

WebClient makes the job relatively painless. It’s somewhat easier to use than the common

alternative (HttpWebRequest and HttpWebResponse) and is often the preferred choice for

downloading individual items.

You can use WebClient to download either strings (commonly XML files) or binary objects.

The actual transfer occurs asynchronously and then WebClient calls a method in your program

to indicate completion or failure. This method call is in your program’s thread, so you get the

benefit of an asynchronous data transfer without explicitly dealing with secondary threads.

To use WebClient in an XNA program, you’ll need to add a reference to the System.Net

library: In the Solution Explorer, under the project name, right click References and select Add

Reference. In the .NET table, select System.Net. (Silverlight programs get a reference to

System.Net automatically.)

The Game1.cs file of the XnaWebBitmap project also requires a using directive for the

System.Net namespace. The program defines the same fields as the earlier program:

XNA Project: XnaWebBitmap File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Texture2D helloTexture;

 Vector2 position;

 …

}

The LoadContent method creates an instance of WebClient, sets the callback method, and

then initiates the transfer:

XNA Project: XnaWebBitmap File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 WebClient webClient = new WebClient();

 webClient.OpenReadCompleted += OnWebClientOpenReadCompleted;

 webClient.OpenReadAsync(new

Uri("http://www.charlespetzold.com/Media/HelloWP7.jpg"));

}

The OnWebClientOpenReadCompleted method is called when the entire file has been

downloaded. You’ll want to check if the download hasn’t been cancelled and that no error has

been reported. If everything is OK, the Result property of the event arguments is of type

Stream. You can use that Stream with the static Texture2D.FromStream method to create a

Texture2D object:

XNA Project: XnaWebBitmap File: Game1.cs (excerpt)

void OnWebClientOpenReadCompleted(object sender, OpenReadCompletedEventArgs args)

{

 if (!args.Cancelled && args.Error == null)

 {

 helloTexture = Texture2D.FromStream(this.GraphicsDevice, args.Result);

 Viewport viewport = this.GraphicsDevice.Viewport;

 position = new Vector2((viewport.Width - helloTexture.Width) / 2,

 (viewport.Height - helloTexture.Height) / 2);

 }

}

The Texture2D.FromStream method supports JPEG, PNG, and GIF.

By default, the AllowReadStreamBuffering property of WebClient is true, which means that the

entire file will have been downloaded when the OpenReadCompleted event is raised. The

Stream object available in the Result property is actually a memory stream, except that it’s an

instance of a class internal to the .NET libraries rather than MemoryStream itself.

If you set AllowReadStreamBuffering to false, then the Result property will be a network

stream. The Texture2D class will not allow you to read from that stream on the main program

thread.

Normally the LoadContent method is called before the first call to the Update or Draw

method, but it is essential to remember that a gap of time will separate LoadContent from the

OnWebClientOpenReadCompleted method. During that time an asynchronous read is

occurring, but the Game1 class is proceeding as normal with calls to Update and Draw. For

that reason, you should only attempt to access the Texture2D object when you know that it’s

valid:

XNA Project: XnaWebBitmap File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 if (helloTexture != null)

 {

 spriteBatch.Begin();

 spriteBatch.Draw(helloTexture, position, Color.White);

 spriteBatch.End();

 }

 base.Draw(gameTime);

}

In a real program, you’d also want to provide some kind of notification to the user if the

bitmap could not be downloaded.

Image and ImageSource

Although you can certainly use WebClient in a Silverlight application, it’s not generally

necessary with bitmaps because the bitmap-related classes already implement asynchronous

downloading.

However, once you begin investigating the Image element, it may seem a little confusing. The

Image element is not the bitmap; the Image element merely displays the bitmap. In the uses

you’ve seen so far, the Source property of Image has been set to a file path or a URL:

<Image Source="Images/Hello.png" />

<Image Source="http://www.charlespetzold.com/Media/HelloWP7.jpg" />

You might have assumed that this Source property was of type string. Sorry, not even close!

You’re actually seeing XAML syntax that hides some extensive activity behind the scenes. The

Source property is really of type ImageSource, an abstract class from which derives

BitmapSource, another abstract class but one that defines a method named SetSource that

allows loading the bitmap from a Stream object.

From BitmapSource derives BitmapImage, which supports a constructor that accepts a Uri

object and also includes a UriSource property of type Uri. The SilverlightTapToDownload1

project mimics a program that needs to download a bitmap whose URL is known only at

runtime. The XAML contains an Image element with no bitmap to display:

Silverlight Project: SilverlightTapToDownload1 File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Image Name="img" />

</Grid>

BitmapImage requires a using directive for the System.Windows.Media.Imaging namespace.

When MainPage gets a tap, it creates a BitmapImage from the Uri object and sets that to the

Source property of the Image:

Silverlight Project: SilverlightTapToDownload1 File: MainPage.xaml.cs (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

 Uri uri = new Uri("http://www.charlespetzold.com/Media/HelloWP7.jpg");

 BitmapImage bmp = new BitmapImage(uri);

 img.Source = bmp;

 args.Complete();

 args.Handled = true;

 base.OnManipulationStarted(args);

}

Remember to tap the screen to initiate the download!

The BitmapImage class defines ImageOpened and ImageFailed events (which the Image

element also duplicates) and also includes a DownloadProgess event.

If you want to explicitly use WebClient in a Silverlight program, you can do that as well, as the

next project demonstrates. The SilverlightTapToDownload2.xaml file is the same as

SilverlightTapToDownload1.xaml. The code-behind file uses WebClient much like the earlier

XNA program:

Silverlight Project: SilverlightTapToDownload2 File: MainPage.xaml.cs (excerpt)

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

 WebClient webClient = new WebClient();

 webClient.OpenReadCompleted += OnWebClientOpenReadCompleted;

 webClient.OpenReadAsync(new

Uri("http://www.charlespetzold.com/Media/HelloWP7.jpg"));

 args.Complete();

 args.Handled = true;

 base.OnManipulationStarted(args);

}

void OnWebClientOpenReadCompleted(object sender, OpenReadCompletedEventArgs args)

{

 if (!args.Cancelled && args.Error == null)

 {

 BitmapImage bmp = new BitmapImage();

 bmp.SetSource(args.Result);

 img.Source = bmp;

 }

}

Notice the use of SetSource to create the bitmap from the Stream object.

Loading Local Bitmaps from Code

In a Silverlight program, you’ve seen that a bitmap added to the project as a resource is

bound into the executable. It’s so customary to reference that local bitmap directly from

XAML that very few experienced Silverlight programmers could tell you offhand how to do it

in code. The SilverlightTapToLoad project shows you how.

Like the other Silverlight programs in this chapter, the SilverlightTapToLoad project contains

an Image element in its content grid. The Hello.png bitmap is stored in the Images directory

and has a Build Action of Resource.

The MainPage.xaml.cs file requires a using directive for the System.Windows.Media.Imaging

namespace for the BitmapImage class. Another using directive for System.Windows.Resources

is required for the StreamResourceInfo class.

When the screen is tapped, the event handler accesses the resource using a static method

defined by the Application class:

Silverlight Project: SilverlightTapToLoad File: MainPage.xaml.cs

protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

{

 Uri uri = new Uri("/SilverlightTapToLoad;component/Images/Hello.png",

UriKind.Relative);

 StreamResourceInfo resourceInfo = Application.GetResourceStream(uri);

 BitmapImage bmp = new BitmapImage();

 bmp.SetSource(resourceInfo.Stream);

 img.Source = bmp;

 args.Complete();

 args.Handled = true;

 base.OnManipulationStarted(args);

}

Notice how complicated that URL is! It begins with the name of the program followed by a

semicolon, followed by the word “component” and then the folder and filename of the file. If

you change the Build Action of the Hello.png file to Content rather than Resource, you can

simplify the syntax considerably:

Uri uri = new Uri("Images/Hello.png", UriKind.Relative);

What’s the difference?

If you navigate to the Bin/Debug subdirectory of the Visual Studio project, you’ll see a

SilverlightTapToLoad.xap. That’s the executable. The filename extension XAP is pronounced

“zap” and the file is actually in ZIP format. (Yes, the XAP is a ZIP.) If you rename it the file to a

ZIP extension you can look inside. The bulk of the file will be SilverlightTapToLoad.dll, the

compiled program.

In both cases, the bitmap is obviously stored somewhere within the XAP file. The difference is

this:

 With a Build Action of Resource for the bitmap, it is stored inside the

SilverlightTapToLoad.dll file with the compiled program

 With a Build Action of Content, the bitmap is stored external to the

SilverlightTapToLoad.dll file but within the XAP file, and you when you rename the XAP

file to a ZIP file, you can see the Images directory and the file.

If you have a number of images in your program, and you don’t want to include them all in

the XAP file, but you’re nervous about downloading the images, why not do a little of both?

Include low resolution (or highly compressed) images in the XAP file, but download better

versions asynchronously while the application is running.

Capturing from the Camera

Besides embedding bitmaps in your application or accessing them from the web, Windows

Phone 7 also allows you to acquire images from the built-in camera.

Your application has no control over the camera itself. For reasons of security, you cannot

arbitrarily snap a picture, or “see” what’s coming through the camera lens. Your application

basically invokes a standard camera utility, the user points and shoots, and the picture is

returned back to your program.

The classes you use for this job are in the Microsoft.Phone.Tasks namespace, which contains a

number of classes referred to as choosers and launchers. Conceptually, these are rather similar,

except that choosers return data to your program but launchers do not.

The CameraCaptureTask is derived from the generic ChooserBase class which defines a

Completed event and a Show method. Your program attaches a handler for the Completed

event and calls Show. When the Completed event handler is called, the PhotoResult event

argument contains a Stream object to the photo. From there, you already know what to do.

(In much the same way, the PhotoChooserTask class allows the user to access the photo library

and return a selected photo to your program.)

Like the earlier programs in this chapter, the SilverlightTapToShoot program contains an

Image element in the content grid of its MainPage.xaml file. Here’s the entire code-behind

file:

Silverlight Project: SilverlightTapToShoot File: MainPage.xaml.cs

using System.Windows.Input;

using System.Windows.Media.Imaging;

using Microsoft.Phone.Controls;

using Microsoft.Phone.Tasks;

namespace SilverlightTapToShoot

{

 public partial class MainPage : PhoneApplicationPage

 {

 CameraCaptureTask camera;

 public MainPage()

 {

 InitializeComponent();

 camera = new CameraCaptureTask();

 camera.Completed += OnCameraCaptureTaskCompleted;

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs

args)

 {

 camera.Show();

 args.Complete();

 args.Handled = true;

 base.OnManipulationStarted(args);

 }

 void OnCameraCaptureTaskCompleted(object sender, PhotoResult args)

 {

 if (args.TaskResult == TaskResult.OK)

 {

 BitmapImage bmp = new BitmapImage();

 bmp.SetSource(args.ChosenPhoto);

 img.Source = bmp;

 }

 }

 }

}

Now listen up. This is important: When you run this program on the phone emulator from

Visual Studio, I want you to choose Start Without Debugging from the Debug menu. Do not

run this program under the debugger. (Don’t worry — I’ll tell you how to run it under the

debugger in a moment.)

The program will come up on the phone emulator like normal, but you’ll see that Visual

Studio has let go of it. The program is running on its own while Visual Studio has returned to

edit mode.

When you tap the emulator screen, the call to Show causes the camera task to start up. You

can “shoot” a photo by tapping a sporadically appearing icon in the upper-right corner of the

screen. The simulated “photo” just looks like a large white square with a small black square

inside one of the edges. Then you need to click the Accept button. The camera goes away.

The OnCameraCaptureTaskCompleted method then takes over. It creates a BitmapImage

object, sets the input stream from args.ChoosenPhoto, and then sets the BitmapImage object

to the Image element, displaying the photo on the screen.

The whole process seems fairly straightforward. Conceptually it seems as if the program is

spawning the camera process, and then resuming control when that camera process

terminates.

But that’s not it. There’s something else going on that is not so evident at first and which you

will probably find somewhat unnerving.

When the SilverlightTapToShoot program calls the Show method on the CameraCaptureTask

object, the SilverlightTapToShoot program is terminated. (Not immediately, though. The

OnManipulationStarted method is allowed to return back to the program, and a couple other

events are fired, but then the program is definitely terminated.)

The camera utility then runs. When the camera utility has done its job, the

SilverlightTapToShoot program is re-executed. It’s a new instance of the program. The

program starts up from the beginning, and then the OnCameraCaptureTaskCompleted

method is called.

Want to be convinced? Try inserting the statement

PageTitle.Text = "tapped!";

at the beginning of the OnManipulationStarted handler. When you tap the screen, the title

reading “main page” becomes “tapped!” right before the program gives way to the camera.

When the program returns, the title is back to “main page.” That only makes sense if the

SilverlightTapToShoot program that the camera returns to is a new instance.

Or try this: Here’s the statement that attaches the handler for the Completed event:

camera.Completed += OnCameraCaptureTaskCompleted;

Move that statement from the constructor of the program to the OnManipulationStarted

override (before the call to the Show method, of course). Normally that wouldn’t be a

problem. But because there’s a new instance of SilverlightTapToShoot starting up after the

camera utility finishes, the code to install the event handler doesn’t get executed, and there’s

no place to return the camera result.

One important lesson: When you make use of a chooser or launcher such as

CameraCaptureTask, you must create the chooser object and attach the Completed handler in

your page’s constructor.

Now let’s try running SilverlightTapToShoot from Visual Studio again but using the debugger.

From the Debug menu choose Start Debugging or press F5. The SilverlightTapToShoot

program comes up on the emulator.

Tap the screen to invoke the camera. You’ll notice that Visual Studio indicates that the

program has terminated and retreats back into edit mode.

Take a photo, and tap the Accept button. Here’s where something different happens. As a

new instance of SilverlightTapToShoot starts up, you’ll see a blank screen on the emulator.

Now, without wasting a lot of time—you have 10 seconds for this little maneuver—press F5 in

Visual Studio again. (Or, choose Start Debugging from the Debug menu.) Visual Studio

magically attaches its debugger to this new instance. SilverlightTapToShoot comes up on the

emulator displaying the beautiful photo you just took, and if necessary you can use Visual

Studio to debug any subsequent code.

This termination and re-execution of your program is a characteristic of Windows Phone 7

programming call tombstoning. When the program is terminated as the camera task begins,

sufficient information is retained by the phone operating system to start the program up

again when the camera finishes. However, not enough information is retained to restore the

program entirely to its pre-tombstone state (as you saw with setting the PageTitle text). That’s

your responsibility.

Running a launcher or chooser is one way tombstoning can occur. But it also occurs when the

user leaves your program by pressing the Start button on the phone. Eventually the user

could return to your program by pressing the Back button, and your program needs to be re-

executed from its tombstoned state. Tombstoning also takes place when a lack of activity on

the phone causes it to go into a lock state.

Tombstoning does not occur when your program is running and the user presses the Back

button. The Back button simply terminates the program normally.

When tombstoning occurs, obviously you’ll want to save some of the state of your program

so you can restore that state when the program starts up again, and obviously Windows

Phone 7 has facilities to help you out. That’s in Chapter 6.

Chapter 5

Sensors and Services
This chapter covers two of the facilities in Windows Phone 7 that provide information about

the outside world. With the user’s permission, the location service lets your application obtain

the phone’s location on the earth in the traditional geographic coordinates of longitude and

latitude, whereas the accelerometer tells your program which way is down.

The accelerometer and location service are related in that neither of them will work very well

in outer space.

Although the accelerometer and the location service are ostensibly rather easy, this chapter

also explores issues involved with working with secondary threads of execution, handling

asynchronous operations, and accessing web services.

Accelerometer

Windows Phones contain an accelerometer — a small hardware device that essentially

measures force, which elementary physics tells us is proportional to acceleration. When the

phone is held still, the accelerometer responds to the force of gravity, so the accelerometer

can tell your application the direction of the Earth relative to the phone.

 A simulation of a bubble level is an archetypal application that makes use of an

accelerometer, but the accelerometer can also provide a basis for interactive animations. For

example, you might pilot a messenger bike through the streets of Manhattan by tilting the

phone left or right to indicate steering.

The accelerometer also responds to sudden movements such as shakes or jerks, useful for

simulations of dice or some other type of randomizing activity. Coming up with creative uses

of the accelerometer is one of the many challenges of phone development.

It is convenient to represent the accelerometer output as a vector in three-dimensional space.

Vectors are commonly written in boldface, so the acceleration vector can be symbolized as (x,

y, z). XNA defines a three-dimensional vector type; Silverlight does not.

While a three-dimensional point (x, y, z) indicates a particular location in space, the vector (x,

y, z) encapsulates instead a direction and a magnitude. Obviously the point and the vector

are related: The direction of the vector (x, y, z) is the direction from the point (0, 0, 0) to the

point(x, y, z). But the vector (x, y, z) is definitely not the line from (0, 0, 0) to (x, y, z). It’s only

the direction of that line.

The magnitude of the vector (x, y, z) is calculable from the three-dimensional form of the

Pythagorean Theorem:

 √

For working with the accelerometer, you can imagine the phone as defining a three-

dimensional coordinate system. No matter how the phone is oriented, the positive Y axis

points from the bottom of the phone (with the buttons) to the top, the positive X axis points

from left to right,

This is a traditional three-dimensional coordinate system, the same coordinate system used in

XNA 3D programming. It’s termed a right-hand coordinate system. Point the index finger of

your right hand to increasing X, the middle finger to increase Y, and your thumb points to

increasing Z. Or, curve the fingers of your right hand from the positive X axis to the positive Y

axis. Your thumb again points to increasing Z.

This coordinate system remains fixed relative to the phone regardless how you hold the

phone, and regardless of the orientation of any programs running on the phone. In fact, as

you might expect, the accelerometer is the basis for performing orientation changes of

Windows Phone 7 applications.

When the phone is still, the accelerometer vector points towards the Earth. The magnitude is

1, meaning 1 g, which is the force of gravity on the earth's surface. When holding your phone

in the upright position, the acceleration vector is (0, –1, 0), that is, straight down.

Turn the phone 90° counter-clockwise (called landscape left) and the acceleration vector is (–

1, 0, 0), upside down it's (0, 1, 0), and another 90° counter-clockwise turn brings you to the

landscape right orientation and an accelerometer value of (1, 0, 0). Sit the phone down on

the desk with the display facing up, and the acceleration vector is (0, 0, –1). (That final value

is what the Windows Phone 7 emulator always reports.)

Of course, the acceleration vector will rarely be those exact values, and even the magnitude

won't be exact. For a still phone, the magnitude may vary by 10% with different orientations.

When you visit the Moon with your Windows Phone 7, you can expect acceleration vector

magnitudes in the region of 0.17 but limited cell phone reception.

I've been describing values of the acceleration vector when the device is still. The acceleration

vector can point in other directions (and the magnitude can become larger or smaller) when

the phone is accelerating, that is, gaining or losing velocity. For example, if you jerk the phone

to the left, the acceleration vector points to the right but only when the device is gaining

velocity. As the velocity stabilizes, the acceleration vector again registers only gravity. When

you decelerate this jerk to the left, the acceleration vector goes to the left briefly as the device

comes to a stop.

If the phone is in free fall, the magnitude of the accelerometer vector should theoretically go

down to zero.

To use the accelerometer, you’ll need a reference to the Microsoft.Devices.Sensors library, and

a using directive for the Microsoft.Devices.Sensors namespace. In WMAppManifest.xml, you

need

<Capability Name="ID_CAP_SENSORS" />

You create an instance of the Accelerometer class, set an event handler for the

ReadingChanging event, and call Start.

And then it gets a little tricky. Let’s take a look at a project named SilverlightAccelerometer.

project that simply displays the current reading in its content grid. A centered TextBlock is

defined in the XAML file:

Silverlight Project: SilverlightAccelerometer File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Name="txtblk"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

This is a program that will display the accelerometer vector throughout its lifetime, so it

creates the Accelerometer class in its constructor and calls Start:

Silverlight Project: SilverlightAccelerometer File: MainPage.xaml.cs (excerpt)

public MainPage()

{

 InitializeComponent();

 Accelerometer acc = new Accelerometer();

 acc.ReadingChanged += OnAccelerometerReadingChanged;

 try

 {

 acc.Start();

 }

 catch (Exception exc)

 {

 txtblk.Text = exc.Message;

 }

}

The documentation warns that calling Start might raise an exception, so the program protects

itself against that eventuality. The Accelerometer also supports Stop and Dispose methods, but

this program doesn’t make use of them. A State property is also available if you need to know

if the accelerometer is available and what it’s currently doing.

A ReadingChanged event is accompanied by the AccelerometerReadingEventArgs event

arguments. The object has properties named X, Y, and Z of type double and TimeStamp of

type DateTimeOffset. In the SilverlightAccelerometer program, the job of the event handler is

to format this information into a string and set it to the Text property of the TextBlock.

The catch here is that the event handler (in this case OnAccelerometerReadingChanged) is

called on a different thread of execution, and this means it must be handled in a special way.

A little background: All the user-interface elements and objects in a Silverlight application are

created and accessed in a main thread of execution often called the user interface thread or

the UI thread. These user-interface objects are not thread safe; they are not built to be

accessed simultaneously from multiple threads. For this reason, Silverlight will not allow you

to access a user-interface object from a non-UI thread.

This means that the OnAccelerometerReadingChanged method cannot directly access the

TextBlock element to set a new value to its Text property.

Fortunately, there’s a solution involving a class named Dispatcher defined in the

System.Windows.Threading namespace. Through the Dispatcher class, you can post jobs from

a non-UI thread on a queue where they are later executed by the UI thread. This process

sounds complex, but from the programmer’s perspective it’s fairly easy because these jobs

take the form of simple method calls.

An instance of this Dispatcher is readily available. The DependencyObject class defines a

property named Dispatcher of type Dispatcher, and many Silverlight classes derive from

DependencyObject. Instances of all of these classes can be accessed from non-UI threads

because they all have Dispatcher properties. You can use any Dispatcher object from any

DependencyObject derivative created in your UI thread. They are all the same.

The Dispatcher class defines a method named CheckAccess that returns true if you can access

a particular user interface object from the current thread. (The CheckAccess method is also

duplicated by DependencyObject itself.) If an object can’t be accessed from the current thread,

then Dispatcher provides two versions of a method named Invoke that you use to post the job

to the UI thread.

The SilverlightAccelerometer project implements a syntactically elaborate version of the code,

but then I’ll show you how to chop it down in size.

The verbose version requires a delegate and a method defined in accordance with that

delegate. The delegate (and method) should have no return value, but as many arguments as

you need to do the job, in this case setting a string to the Text property of a TextBlock:

Project: SilverlightAccelerometer File: MainPage.xaml.cs (excerpt)

delegate void SetTextBlockTextDelegate(TextBlock txtblk, string text);

void SetTextBlockText(TextBlock txtblk, string text)

{

 txtblk.Text = text;

}

The OnAccelerometerReadingChanged is responsible for calling SetTextBlockText. It first makes

use of CheckAccess to see if it can just call the SetTextBlockText method directly. If not, then

the handler calls the BeginInvoke method. The first argument is an instantiation of the

delegate with the SetTextBlockText method; this is followed by all the arguments that

SetTextBlockText requires:

Project: SilverlightAccelerometer File: MainPage.xaml.cs (excerpt)

void OnAccelerometerReadingChanged(object sender, AccelerometerReadingEventArgs

args)

{

 string str = String.Format("X = {0:F2}\n" +

 "Y = {1:F2}\n" +

 "Z = {2:F2}\n\n" +

 "Magnitude = {3:F2}\n\n" +

 "{4}",

 args.X, args.Y, args.Z,

 Math.Sqrt(args.X * args.X + args.Y * args.Y +

 args.Z * args.Z),

 args.Timestamp);

 if (txtblk.CheckAccess())

 {

 SetTextBlockText(txtblk, str);

 }

 else

 {

 txtblk.Dispatcher.BeginInvoke(new

SetTextBlockTextDelegate(SetTextBlockText),

 txtblk, str);

 }

}

This is not too bad, but the need for the code to jump across threads has necessitated an

additional method and a delegate. Is there a way to do the whole job right in the event

handler?

Yes! The BeginInvoke method has an overload that accepts an Action delegate, which defines

a method that has no return value and no arguments. You can create an anonymous method

right in the BeginInvoke call. The complete code following the creation of the string object

looks like this:

if (txtblk.CheckAccess())

{

 txtblk.Text = str;

}

else

{

 txtblk.Dispatcher.BeginInvoke(delegate()

 {

 txtblk.Text = str;

 });

}

The anonymous method begins with the keyword delegate and concludes with the curly

brace following the method body. The empty parentheses following the delegate keyword are

not required.

The anonymous method can also be defined using a lambda expression:

if (txtblk.CheckAccess())

{

 txtblk.Text = str;

}

else

{

 txtblk.Dispatcher.BeginInvoke(() =>

 {

 txtblk.Text = str;

 });

}

The duplicated code that sets str to the Text property of TextBlock looks a little ugly here (and

would be undesirable if it involved more than just one statement), but don’t really need to call

CheckAccess. You can just call BeginInvoke and nothing bad will happen even if you are

calling it from the UI thead.

The Windows Phone 7 emulator doesn’t contain any actual accelerometer, so it always reports

a value of (0, 0, –1), which indicates the phone is lying on a flat surface:

A Simple Bubble Level

One handy tool found in any workshop is a bubble level, also called a spirit level. A little

bubble always floats to the top of a liquid, so it visually indicates whether something is

parallel or orthogonal to the earth, or tilted in some way.

The XnaAccelerometer project includes a 48-by-48 pixel bitmap named Bubble.bmp that

consists of a red circle:

The magenta on the corners makes those areas of the bitmap transparent when XNA renders

it.

The fields in the Game1 class mostly involve variables necessary to position that bitmap on

the screen:

XNA Project: XnaAccelerometer File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 const float BUBBLE_RADIUS_MAX = 25;

 const float BUBBLE_RADIUS_MIN = 12;

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Vector2 screenCenter;

 float screenRadius; // less BUBBLE_RADIUS_MAX

 Texture2D bubbleTexture;

 Vector2 bubbleCenter;

 Vector2 bubblePosition;

 float bubbleScale;

 Vector3 accelerometerVector;

 object accelerometerVectorLock = new object();

 …

}

Towards the bottom you’ll see a field named acclerationVector of type Vector3. The

OnAccelerometerReadingChanged event handler will store a new value in that field, and the

Update method will utilize the value in calculating a position for a bitmap.

OnAccelerometerReadingChanged and Update run in separate threads. One is setting the field;

the other is accessing the field. This is no problem if the field is set or accessed in a single

machine code instruction. That would be the case if Vector3 were a class, which is a reference

type and basically referenced with something akin to a pointer. But Vector3 is a structure (a

value type) consisting of three properties of type float, each of which occupies four bytes, for

a total of 12 bytes or 96 bits. Setting or accessing this Vector3 field requires this many bits to

be transferred.

A Windows Phone 7 device contains at least a 32-bit ARM processor, and a brief glance at

the ARM instruction set does not reveal any machine code that would perform a 12-byte

memory transfer in one instruction. This means that the accelerometer thread storing a new

Vector3 value could be interrupted midway in the process by the Update method in the

program’s main thread when it retrieves that value. The resultant value might have X, Y, and Z

values mixed up from two readings.

While that could hardly be classified as a catastrophe in this program, let’s play it entirely safe

and use the C# lock statement to make sure the Vector3 value is stored and retrieved by the

two threads without interruption. That’s the purpose of the accelerometerVectorLock variable

among the fields.

I chose to create the Accelerometer object and set the event handler in the Initialize method:

XNA Project: XnaAccelerometer File: Game1.cs (excerpt)

protected override void Initialize()

{

 Accelerometer accelerometer = new Accelerometer();

 accelerometer.ReadingChanged += OnAccelerometerReadingChanged;

 try

 {

 accelerometer.Start();

 }

 catch

 {

 }

 base.Initialize();

}

void OnAccelerometerReadingChanged(object sender, AccelerometerReadingEventArgs

args)

{

 lock (accelerometerVectorLock)

 {

 accelerometerVector = new Vector3((float)args.X, (float)args.Y,

(float)args.Z);

 }

}

Notice that the event handler uses the lock statement to set the accelerometerVector field.

That prevents code in the Update method from accessing the field during this short duration.

The LoadContent method loads the bitmap used for the bubble and initializes several

variables used for positioning the bitmap:

XNA Project: XnaAccelerometer File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 Viewport viewport = this.GraphicsDevice.Viewport;

 screenCenter = new Vector2(viewport.Width / 2, viewport.Height / 2);

 screenRadius = Math.Min(screenCenter.X, screenCenter.Y) - BUBBLE_RADIUS_MAX;

 bubbleTexture = this.Content.Load<Texture2D>("Bubble");

 bubbleCenter = new Vector2(bubbleTexture.Width / 2, bubbleTexture.Height / 2);

}

When the X and Y properties of accelerometer are zero, the bubble is displayed in the center

of the screen. That’s the reason for both screenCenter and bubbleCenter. The screenRadius

value is the distance from the center when the magnitude of the X and Y components is 1.

The Update method safely access the accelerometerVector field and calculates bubblePosition

based on the X and Y components. It might seem like I’ve mixed up the X and Y components

in the calculation, but that’s because the default screen orientation is portrait in XNA, so it’s

opposite the coordinates of the acceleration vector.

XNA Project: XnaAccelerometer File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 Vector3 accVector;

 lock (accelerometerVectorLock)

 {

 accVector = accelerometerVector;

 }

 bubblePosition = new Vector2(screenCenter.X + screenRadius * accVector.Y,

 screenCenter.Y + screenRadius * accVector.X);

 float bubbleRadius = BUBBLE_RADIUS_MIN + (1 - accVector.Z) / 2 *

 (BUBBLE_RADIUS_MAX - BUBBLE_RADIUS_MIN);

 bubbleScale = bubbleRadius / (bubbleTexture.Width / 2);

 base.Update(gameTime);

}

In addition, a bubbleScale factor is calculated based on the Z component of the vector. The

idea is that the bubble is largest when the screen is facing up and smallest when the screen is

facing down, as if the screen is really one side of a rectangular pool of liquid that extends

below the phone, and the size of the bubble indicates how far it is from the surface.

The Draw override uses a long version of the Draw method of SpriteBatch.

XNA Project: XnaAccelerometer File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.Draw(bubbleTexture, bubblePosition, null, Color.White, 0,

 bubbleCenter, bubbleScale, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

Notice the bubbleScale argument, which scales the bitmap to a particular size. The center of

scaling is provided by the previous argument to the method, bubbleCenter. That point is also

aligned with the bubblePosition value relative to the screen.

The program doesn’t look like much, and is even more boring running on the emulator:

Geographic Location

With the user’s permission, a Windows Phone 7 program can obtain the geographic location

of the phone using a technique called Assisted-GPS or A-GPS.

The most accurate method of determining location is accessing signals from Global

Positioning System (GPS) satellites. However, GPS can be slow. It doesn’t work well in cities,

and doesn’t work at all indoors, and it’s considered expensive in terms of battery use. To work

more cheaply and quickly, an A-GPS system can attempt to determine location from cell-

phone towers or the network. These methods are faster and more reliable, but less accurate.

The core class involved in location detection is GeoCoordinateWatcher. You’ll need a reference

to the System.Device assembly and a using direction for the System.Device.Location

namespace. The WMAppManifest.xml file requires the tag:

<Capability Name="ID_CAP_LOCATION" />

The GeoCoordinateWatcher constructor optionally takes a member of the

GeoPositionAccuracy enumeration:

 Default

 High

After creating a GeoCoordinateWatcher object, you’ll want to install a handler for the

PositionChanged event and call Start. The PositionChanged event delivers a GeoCoordinate

object that has eight properties:

 Latitude, a double between –90 and 90 degrees

 Longitude, a double between –180 and 180 degrees

 Altitude of type double

 HorizontalAccuracy and VerticalAccuracy of type double

 Course, a double between 0 and 360 degrees

 Speed of type double

 IsUnknown, a Boolean that is true if the Latitude or Longitude is not a number

If the application does not have permission to get the location, then Latitude and Longitude

will be Double.NaN, and IsUnknown will be true.

In addition, GeoCoordinate has a GetDistanceTo method that calculates the distance between

two GeoCoordinate objects.

I’m going to focus on the first two properties, which together are referred to as geographic

coordinates to indicate a point on the surface of the Earth. Latitude is the angular distance

from the equator. In common usage, latitude is an angle between 0 and 90 degrees and

followed with either N or S meaning north or south. For example, the latitude of New York

City is approximately 40°N. In the GeoCoordinate object, latitudes north of the equator are

positive values and south of the equator are negative values, so that 90° is the North Pole and

–90° is the South Pole.

All locations with the same latitude define a line of latitude. Along a particular line of latitude,

longitude is the angular distance from the Prime Meridian, which passes through the Royal

Observatory at Greenwich England. In common use, longitudes are either east or west. New

York City is 74°W because it’s west of the Prime Meridian. In a GeoCoordinate object, positive

longitude values denote east and negative values are west. Longitude values of 180 and –180

meet up at the International Date Line.

Although the System.Device.Location namespace includes classes that use the geographic

coordinates to determine civic address (streets and cities), these are not implemented in the

initial release of Windows Phone 7.

The XnaLocation project simply displays numeric values.

XNA Project: XnaLocation File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 string text = "Obtaining location...";

 Viewport viewport;

 Vector2 textPosition;

 …

}

As with the accelerometer, I chose to create and initialize the GeoCoordinateWatcher in the

Initialize override. The event handler is called in the same thread, so nothing special needs to

be done to format the results in a string:

XNA Project: XnaLocation File: Game1.cs (excerpt)

protected override void Initialize()

{

 GeoCoordinateWatcher geoWatcher = new GeoCoordinateWatcher();

 geoWatcher.PositionChanged += OnGeoWatcherPositionChanged;

 geoWatcher.Start();

 base.Initialize();

}

void OnGeoWatcherPositionChanged(object sender,

 GeoPositionChangedEventArgs<GeoCoordinate> args)

{

 text = String.Format("Latitude: {0}\r\n" +

 "Longitude: {1}\r\n" +

 "Altitude: {2}\r\n\r\n" +

 "{3}",

 args.Position.Location.Latitude,

 args.Position.Location.Longitude,

 args.Position.Location.Altitude,

 args.Position.Timestamp);

}

The LoadContent method simply obtains the font and saves the Viewport for later text

positioning:

XNA Project: XnaLocation File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 viewport = this.GraphicsDevice.Viewport;

 System.Diagnostics.Debug.WriteLine(viewport);

}

The size of the displayed string could be different depending on different values. That’s why

the position of the string is calculated from its size and the Viewport values in the Update

method:

XNA Project: XnaLocation File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 Vector2 textSize = kootenay14.MeasureString(text);

 textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

 base.Update(gameTime);

}

The Draw method is trivial:

XNA Project: XnaLocation File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, text, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

Because the GeoCoordinateWatcher is left running for the duration of the program, it should

update the location as the phone is moved. With the emulator, however, the

GeoCoordinateWatcher always returns the coordinates of a spot in Princeton, New Jersey,

perhaps as a subtle reference to the college where Alan Turing earned his PhD.

Using a Map Service

Of course, most people curious about their location prefer to see a map rather than numeric

coordinates. The Silverlight demonstration of the location service displays a map that comes

to the program in the form of bitmaps.

In a real phone application, you’d probably be using Bing Maps or perhaps another online

mapping service. Unfortunately, making use of Bing Maps in a program involves opening a

developer account, and getting a maps key and a credential token. This is all free and

straightforward but it doesn’t work well for a program that will shared among all the readers

of a book.

For that reason, I’ll be using an alternative that doesn’t require keys or tokens. This alternative

is Microsoft Research Maps, which you can learn all about at msrmaps.com. The aerial images

are provided by the United States Geological Survey (USGS). Microsoft Research Maps makes

these images available through a web service called MSR Maps Service, but still sometimes

referred to by its old name of TerraService.

The downside is that the images are not quite state-of-the-art and the service doesn’t seem

entirely reliable.

MSR Maps Service is a SOAP (Simple Object Access Protocol) service with the transactions

described in a WSDL (Web Services Description Language) file. Behind the scenes, all the

transactions between your program and the web service are in the form of XML files.

However, to avoid programmer anguish, generally the WSDL file is used to generate a proxy,

which is a collection of classes and structures that allow your program to communicate with

the web service with method calls and events.

You can generate this proxy right in Visual Studio. Here’s how I did it: I first created an

Windows Phone 7 project in Visual Studio called SilverlightLocationMapper. In the Solution

Explorer, I right-clicked the project name and selected Add Service Reference. In the Address

field I entered the URL of the MSR Maps Service WSDL file:

http://MSRMaps.com/TerraService2.asmx.

(You might wonder if the URL should be http://msrmaps.com/TerraService2.asmx?WSDL

because that’s how WSDL files are often referenced. That address will actually seem to work at

first, but you’ll get files containing obsolete URLs.)

After you’ve entered the URL in the Address field, press Go. Visual Studio will access the site

and report back what it finds. There will be one service, called by the old name of

TerraService.

Next you’ll want to enter a name in the Namespace field to replace the generic

ServiceReference1. I used MsrMapsService and pressed OK.

You’ll then see MsrMapsService show up under the project in the Solution Explorer. If you

click the little Show All Files icon at the top of the Solution Explorer, you can view the

generated files. In particular, you’ll see Reference.cs, a big file (over 3000 lines) with a

namespace of XnaLocationMapper.MsrMapsService, which combines the original project

name and the name you selected for the web service.

This Reference.cs file contains all the classes and structures you need to access the web

service, and which are documented on the msrmaps.com web site. To access these classes in

your program, add a using direction:

using SilverlightLocationMapper.MsrMapsService;

You also need a using directive for System.Device.Location and a reference to the

System.Device assembly.

In the MainPage.xaml file, I left the SupportedOrientations property at its default setting of

Portrait, I removed the page title to free up more space, and I moved the title panel below the

content grid just in case there was a danger of something spilling out of the content grid and

obscuring the title. Moving the title panel below the content grid in the XAML file ensures

that it will be visually on top.

Here’s the content grid:

Silverlight Project: SilverlightLocationManager File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Name="statusText"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 TextWrapping="Wrap" />

 <Image Source="Images/usgslogoFooter.png"

 Stretch="None"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom" />

</Grid>

The TextBlock is used to display status and (possibly) errors; the Image displays a logo of the

United States Geological Survey.

The map bitmaps will be inserted between the TextBlock and Image so they obscure the

TextBlock but the Image remains on top.

The code-behind file has just two fields, one for the GeoCoordinateWatcher that supplies the

location information, and the other for the proxy class created when the web service was

added:

Silverlight Project: SilverlightLocationManager File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 GeoCoordinateWatcher geoWatcher = new GeoCoordinateWatcher();

 TerraServiceSoapClient proxy = new TerraServiceSoapClient();

 …

}

You use the proxy by calling its methods, which make network requests. All these methods are

asynchronous. For each method you call, you must also supply a handler for a completion

event that is fired when the information you requested has been transferred to your

application.

The completion event is accompanied by event arguments: a Cancelled property of type bool,

an Error property that is null if there is no error, and a Result property that depends on the

request.

I wanted the process to begin after the program was loaded and displayed, so I set a handler

for the Loaded event. That handler sets the handlers for the two completion events I’ll require

of the proxy, and also starts up the GeoCoordinateWatcher:

 Silverlight Project: SilverlightLocationManager File: MainPage.xaml.cs (excerpt)

public MainPage()

{

 InitializeComponent();

 Loaded += OnMainPageLoaded;

}

void OnMainPageLoaded(object sender, RoutedEventArgs args)

{

 // Set event handlers for TerraServiceSoapClient proxy

 proxy.GetAreaFromPtCompleted += OnProxyGetAreaFromPtCompleted;

 proxy.GetTileCompleted += OnProxyGetTileCompleted;

 // Start GeoCoordinateWatcher going

 statusText.Text = "Obtaining geographic location...";

 geoWatcher.PositionChanged += OnGeoWatcherPositionChanged;

 geoWatcher.Start();

}

When coordinates are obtained, the following OnGeoWatcherPositionChanged method is

called. This method begins by turning off the GeoCoordinateWatcher. The program is not

equipped to continuously update the display, so it can’t do anything with any additional

location information. It appends the longitude and latitude to the TextBlock called

ApplicationTitle displayed at the top of the screen.

Silverlight Project: SilverlightLocationManager File: MainPage.xaml.cs (excerpt)

void OnGeoWatcherPositionChanged(object sender,

 GeoPositionChangedEventArgs<GeoCoordinate> args)

{

 // Turn off GeoWatcher

 geoWatcher.PositionChanged -= OnGeoWatcherPositionChanged;

 geoWatcher.Stop();

 // Set coordinates to title text

 GeoCoordinate coord = args.Position.Location;

 ApplicationTitle.Text += ": " + String.Format("{0:F2}°{1} {2:F2}°{3}",

 Math.Abs(coord.Latitude),

 coord.Latitude > 0 ? 'N' : 'S',

 Math.Abs(coord.Longitude),

 coord.Longitude > 0 ? 'E' : 'W');

 // Query proxy for AreaBoundingBox

 LonLatPt center = new LonLatPt();

 center.Lon = args.Position.Location.Longitude;

 center.Lat = args.Position.Location.Latitude;

 statusText.Text = "Accessing Microsoft Research Maps Service...";

 proxy.GetAreaFromPtAsync(center, 1, Scale.Scale4m, (int)ContentGrid.ActualWidth,

(int)ContentGrid.ActualHeight);

}

The method concludes by making its first call to the proxy. The GetAreaFromPtAsync call

requires a longitude and latitude as a center point, but some other information as well. The

second argument is 1 to get an aerial view and 2 for a map (as you’ll see at the end of this

chapter). The third argument is the desired scale, a member of the Scale enumeration. The

member I’ve chosen means that each pixel of the returned bitmaps is equivalent to 4 meters.

Watch out: Some scaling factors—in particular, Scale2m, Scale8m, and Scale32m—result in

GIF files being returned. Remember, remember, remember that Silverlight doesn’t do GIF! For

the other scaling factors, JPEGS are returned.

The final arguments to GetAreaFromPtAsync are the width and height of the area you wish to

cover with the map.

All the bitmaps you get back from the MSR Maps Service are 200 pixels square. Almost

always, you’ll need multiple bitmaps to tile a complete area. For example, if the last two

arguments to GetAreaFromPtAsync are 400 and 600, you’ll need 6 bitmaps to tile the area.

Well, actually not: An area of 400 pixels by 600 pixels will require 12 bitmaps, 3 horizontally

and 4 vertically.

Here’s the catch: These bitmaps aren’t specially created when a program requests them. They

already exist on the server in all the various scales. The geographic coordinates where these

bitmaps begin and end are fixed. So if you want to cover a particular area of your display with

a tiled map, and you want the center of this area to be precisely the coordinate you specify,

the existing tiles aren’t going to fit exactly. You want sufficient tiles to cover your area, but the

tiles around the boundary are going to hang over the edges.

What you get back from the GetAreaFromPtAsync call (in the following

OnProxyGetAreaFromPtCompleted method) is an object of type AreaBoundingBox. This is a

rather complex structure that nonetheless has all the information required to request the

individual tiles you need and then assemble them together in a grid.

Silverlight Project: SilverlightLocationManager File: MainPage.xaml.cs (excerpt)

void OnProxyGetAreaFromPtCompleted(object sender, GetAreaFromPtCompletedEventArgs

args)

{

 if (args.Error != null)

 {

 statusText.Text = args.Error.Message;

 return;

 }

 statusText.Text = "Getting map tiles...";

 AreaBoundingBox box = args.Result;

 int xBeg = box.NorthWest.TileMeta.Id.X;

 int yBeg = box.NorthWest.TileMeta.Id.Y;

 int xEnd = box.NorthEast.TileMeta.Id.X;

 int yEnd = box.SouthWest.TileMeta.Id.Y;

 // Loop through the tiles

 for (int x = xBeg; x <= xEnd; x++)

 for (int y = yBeg; y >= yEnd; y--)

 {

 // Create Image object to display tile

 Image img = new Image();

 img.Stretch = Stretch.None;

 img.HorizontalAlignment = HorizontalAlignment.Left;

 img.VerticalAlignment = VerticalAlignment.Top;

 img.Margin = new Thickness((x - xBeg) * 200 -

box.NorthWest.Offset.XOffset,

 (yBeg - y) * 200 -

box.NorthWest.Offset.YOffset,

 0, 0);

 // Insert after TextBlock but before Image with logo

 ContentGrid.Children.Insert(1, img);

 // Define the tile ID

 TileId tileId = box.NorthWest.TileMeta.Id;

 tileId.X = x;

 tileId.Y = y;

 // Call proxy to get the tile (Notice that Image is user object)

 proxy.GetTileAsync(tileId, img);

 }

}

I won’t discuss the intricacies of AreaBoundingBox because it’s more or less documented on

the msrmaps.com web site, and I was greatly assisted by some similar logic on the site written

for Windows Forms (which I suppose dates it a bit).

Notice that the loop creates each Image object to display each title. Each of these Image

objects has the same Stretch, HorizontalAlignment, and VerticalAlignment properties, but a

different Margin. This Margin is how the individual tiles are positioned within the content

grid. The XOffset and YOffset values cause the tiles to hang off the top and left edges of the

content grid. The content grid doesn’t clip its contents, so these tiles possibly extend to the

top of the program’s page.

Notice also that each Image object is passed as a second argument to the proxy’s

GetTileAsync method. This is called the UserState argument. The proxy doesn’t do anything

with this argument except return it as the UserState property of the completion arguments, as

shown here:

Silverlight Project: SilverlightLocationManager File: MainPage.xaml.cs (excerpt)

void OnProxyGetTileCompleted(object sender, GetTileCompletedEventArgs args)

{

 if (args.Error != null)

 {

 return;

 }

 Image img = args.UserState as Image;

 BitmapImage bmp = new BitmapImage();

 bmp.SetSource(new MemoryStream(args.Result));

 img.Source = bmp;

}

That’s how the method links up the particular bitmap tile with the particular Image element

already in place in the content grid.

It is my experience that in most cases, the program doesn’t get all the tiles it requests. If

you’re very lucky, your display might look like this:

If you change the second argument of the proxy.GetAreaFromPtAsync call from a 1 to a 2, you

get back images of an actual map rather than an aerial view:

It has a certain retro charm—and I love the watercolor look—but I’m afraid that modern users

are accustomed to something just a little more 21st century.

Chapter 6

Issues in Application Architecture
Over the past few decades, it‟s been a common desire that our personal computers be able to

do more than one thing at a time. But when user interfaces are involved, multitasking is never

quite as seamless as we‟d like. The Terminate-and-Stay-Resident (TSR) programs of MS-DOS

and the cooperative multitasking of early Windows were only the first meager attempts in an

ongoing struggle. In theory, process switching is easy. But sharing resources—including the

screen and a handful of various input devices—is very hard.

While the average user might marvel at the ability of modern Windows to juggle many

different applications at once, we programmers still wrestle with the difficulties of

multitasking— carefully coding our UI threads to converse amicably with our non-UI threads,

always on the lookout for the hidden treachery of asynchronous operations.

Every new application programming interface we encounter makes a sort of awkward

accommodation with the ideals of multitasking, and as we become familiar with the API we

also become accustomed to this awkward accommodation, and eventually we might even

consider this awkward accommodation to be a proper solution to the problem.

On Windows Phone 7, that awkward accommodation is known as tombstoning.

Task Switching on the Phone

We want our phones to be much like our other computers. We want to have a lot of

applications available. We want to start up a particular application as soon as we conceive a

need for it. While that application is running, we want it to be as fast as possible and have

access to unlimited resources. But we want this application to coexist with other running

applications because we want to be able to jump among multiple applications running on the

machine.

Arbitrarily jumping among multiple running applications is impractical on the phone. It would

require some kind of display showing all the currently running applications, much like the

Windows taskbar. Either this taskbar would have to be constantly visible—taking valuable

screen space away from the active applications—or a special button or command would need

to be assigned to display the taskbar or task list.

Instead, Windows Phone 7 manages multiple active applications by implementing a stack. You

can think of the phone as an old-fashioned web browser with no tab feature and no Forward

button. But it does have a Back button and it also has a Start button, which brings you to Start

screen and allows you to launch a program.

Suppose you choose to launch a program called Analyze. You work a little with Analyze and

then decide you‟re finished. You press the Back button. The Analyze program is terminated

and you‟re back at the Start screen. That‟s the simple scenario.

Later you decide you need to run Analyze again. While you‟re using Analyze, you need to

check something on the Web. You press the Start button to get to the Start screen and select

Internet Explorer. While you‟re browsing, you remember you haven‟t played any games

recently. You press the Start button, select Backgammon and play a little of that. While

playing Backgammon, you wonder about the odds of a particular move, so you press the Start

button again and run Calc. Then you feel guilty about not doing any work, so you press the

Start button again and run Draft.

Draft is a Silverlight program with multiple pages. From the main page, you navigate to

several other pages.

Now start pressing the Back button. You go backwards through all the pages you visited in

the Draft program, then Draft is terminated as you go back to Calc. Calc still displays the

remnants of your work, and Calc is terminated as you go back to Backgammon, which shows

a game in progress, and Backgammon is terminated as you go back to Internet Explorer, and

again you go backwards through any Web pages you may have visited, and IE is terminated

as you go back to Analyze, and Analyze is terminated as you go back to the Start screen. The

stack is now empty.

This type of navigation is a good compromise for small devices, and it‟s consistent with users‟

experiences in web browsing. The stack is conceptually very simple: The Start button pushes

the current application on the stack so a new application can be run; the Back button

terminates the current application and pops the next one off the stack.

However, the limited resources of the phone convinced the Windows Phone 7 developers that

applications on the stack should consume as few resources as possible. For this reason, an

application put on the stack does not continue plugging away at work. It‟s not even put into a

suspended state of some sort. Something more severe than that happens. The process is

actually terminated. When this terminated program comes off the stack, it is then re-executed

from scratch.

This is tombstoning. The application is killed but then allowed to come back to life.

You‟ve probably seen enough movies to know that reanimating a corpse can be a very scary

proposition. Almost always the hideous thing that arises out of the filthy grave is not the clean

and manicured loved one who went in.

The trick here is to persuade the disinterred program to look and feel much the same as when

it was last alive and the user interacted with it. This process is a collaboration between you

and Windows Phone 7. The phone gives you the tools (a place to put some data); your job is

to use the tools to restore your program to a presentable state. Ideally the user should have

no idea that it‟s a completely new process.

For some applications, resurrection doesn‟t have to be 100% successful. We all have

experience with navigating among Web pages to know what‟s acceptable and what‟s not. For

example, suppose you visit a long Web page, and you scroll down a ways, then you navigate

to another page. When you go back to the original page, it‟s not too upsetting if it‟s lost your

place and you‟re back at the top of the page.

On the other hand, if you‟ve just spent 10 minutes filling out a large form, you definitely do

not want to see all your work gone after another page tells you that you‟ve made one tiny

error.

Let‟s nail down some terminology that‟s consistent with some events I‟ll discuss later:

When an application is run from the Start screen, it is said to be launched. When it is

terminated as a result of the Back button, it is closed. When the program is running and the

user presses the Start button, the program is said to be deactivated, even though it really is

quite dead. This is the tombstoned state. When a program comes out of tombstoning as the

user navigates back to it, it is said to be activated, even though it‟s really starting up from

scratch.

Page State

The SilverlightFlawedTombstoning project is a simple Silverlight program that responds to taps

on the screen by changing the background of ContentGrid to a random color, and displaying

the total number of taps in its page title. Everything of interest happens in the code-behind

file:

Silverlight Project: SilverlightFlawedTombstoning File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 Random rand = new Random();

 int numTaps = 0;

 public MainPage()

 {

 InitializeComponent();

 UpdatePageTitle(numTaps);

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

 ContentGrid.Background =

 new SolidColorBrush(Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256)));

 UpdatePageTitle(++numTaps);

 args.Complete();

 base.OnManipulationStarted(args);

 }

 void UpdatePageTitle(int numTaps)

 {

 PageTitle.Text = String.Format("{0} taps total", numTaps);

 }

}

The little UpdatePageTitle method is called from both the program‟s constructor (where it

always results in displaying a value of 0) and from the OnManipulationStarted override.

You probably didn‟t get enough practice using Visual Studio with tombstoned programs in

Chapter 4, so here‟s the routine: Build and deploy the program to the phone emulator by

pressing F5 (or selecting Start Debugging from the Debug menu). When the program comes

up, tap the screen several times to change the color and bump up the tap count. Now press

the Start button. You can see from Visual Studio that the program has terminated, but to the

phone it‟s actually been deactivated and tombstoned.

Now press the Back button to return to the program. You‟ll see a blank screen, and you have

10 seconds to press F5 in Visual Studio again to reconnect the debugger with the program.

However, when the program comes back into view, you‟ll see that the color and the number

of taps have been lost. All your hard work! Totally gone! This is not a good way for a program

to emerge from tombstoning. It is this state data that we want to preserve when the program

is flat-lined.

An excellent opportunity to save and reload state data for a page is through overrides of the

OnNavigatedTo and OnNavigatedFrom methods defined by the Page class from which

PhoneApplicationPage derives. These methods are called when a page is brought into view by

being loaded by the frame, and when the page is detached from the frame.

Using these methods is particularly appropriate if your Silverlight application will have

multiple pages that the user can navigate among. You‟ll find that a new instance of

PhoneApplicationPage is created every time a user navigates to a page, so you‟ll probably

want to save and reload page state data for normal navigation anyway. By overriding

OnNavigatedTo and OnNavigatedFrom you‟re effectively solving two problems with one

solution. When overriding these methods, you‟ll want a using directive for

System.Windows.Navigation because that‟s where the event arguments are defined.

Although Windows Phone 7 leaves much of the responsibility for restoring a tombstoned

application to the program itself, it will cause the correct page to be loaded on activation, so

it‟s possible that a page-oriented Silverlight program that saves and restores page state data

during OnNavigatedTo and OnNavigatedFrom will need no special processing for

tombstoning.

Windows Phone 7 provides a special way to save page state data during tombstoning. This is

the State property of PhoneApplicationService, a class defined in the Microsoft.Phone.Shell

namespace. This State property is of type IDictionary<string, object>. You store objects in this

dictionary using text keys. The phone operating system preserves this State property during

the time a program is deactivated and tombstoned, but gets rid of it when the program

closes and is terminated for real.

Do not create a PhoneApplicationService object. One is already created for your application

and is accessible through the static PhoneApplicationService.Current property.

Any object you store in this State dictionary must be serializable, that is, it must be possible to

convert the object into XML, and recreate the object from XML. It must have a public

parameterless constructor, and all its public properties must either be serializable or be of

types that have Parse methods to convert the strings back to objects.

It‟s not always obvious what objects are serializable and which ones are not. When I first wrote

the SilverlightBetterTombstoning project (shown below), I tried to store both the numTaps

value and the SolidColorBrush in the State dictionary. The program raised an exception that

said “Type „System.Windows.Media.Transform‟ cannot be serialized.” It took awhile to

remember that Brush has a property named Transform of type Transform, an abstract class. I

had to serialize the Color instead.

Here‟s the complete class:

Silverlight Project: SilverlightBetterTombstoning File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 Random rand = new Random();

 int numTaps = 0;

 PhoneApplicationService appService = PhoneApplicationService.Current;

 public MainPage()

 {

 InitializeComponent();

 UpdatePageTitle(numTaps);

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

 ContentGrid.Background =

 new SolidColorBrush(Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256)));

 UpdatePageTitle(++numTaps);

 args.Complete();

 base.OnManipulationStarted(args);

 }

 void UpdatePageTitle(int numTaps)

 {

 PageTitle.Text = String.Format("{0} taps total", numTaps);

 }

 protected override void OnNavigatedFrom(NavigationEventArgs args)

 {

 appService.State["numTaps"] = numTaps;

 if (ContentGrid.Background is SolidColorBrush)

 {

 appService.State["backgroundColor"] =

 (ContentGrid.Background as SolidColorBrush).Color;

 }

 base.OnNavigatedFrom(args);

 }

 protected override void OnNavigatedTo(NavigationEventArgs args)

 {

 // Load numTaps

 if (appService.State.ContainsKey("numTaps"))

 {

 numTaps = (int)appService.State["numTaps"];

 UpdatePageTitle(numTaps);

 }

 // Load background color

 object obj;

 if (appService.State.TryGetValue("backgroundColor", out obj))

 ContentGrid.Background = new SolidColorBrush((Color)obj);

 base.OnNavigatedTo(args);

 }

}

Notice the appService field set to PhoneApplicationService.Current. That‟s just for convenience

for accessing the State property. You can use the long PhoneApplicationService.Current.State

instead if you prefer.

Storing items in the State dictionary is easier than getting them out. The syntax:

appService.State["numTaps"] = numTaps;

replaces an existing item if the “numTaps” key exists, or adds a new item if the key does not

exist. Saving the background color is a little trickier: By default the Background property of

ContentGrid is null, so the code checks for a non-null value before attempting to save the

Color property.

To get items out of the dictionary, you can‟t use similar syntax. You‟ll raise an exception if the

key does not exist. (And these keys will not exist when the application is launched.) The

OnNavigatedTo method shows two different standard ways of accessing the items: The first

checks if the dictionary contains the key; the second uses TryGetValue, which returns true if

the key exists.

In a real program, you‟ll probably want to use string variables for the keys to avoid accidently

typing inconsistent values. (If your typing is impeccable, don‟t worry about the multiple

identical strings taking up storage: Strings are interned, and identical strings are consolidated

into one.) You‟ll probably also want to write some standard routines that perform these jobs.

Try running this program like you ran the earlier one: Press F5 to deploy it to the emulator

from Visual Studio. Tap the screen a few times. Press the Start button as if you‟re going to

start a new program. Visual Studio reports that the process has terminated. Now press the

Back button. When you see the blank screen, press F5 again in Visual Studio to reconnect the

debugger. The settings have been saved and the corpse looks as good as new!

As you experiment, you‟ll discover that the settings are saved when the application is

tombstoned (that is, when you navigate away from the application with the Start button and

then return) but not when a new instance starts up from the Start list. This is correct behavior.

The operating system discards the State dictionary when the program terminates for real.

This page state data is sometimes referred to as “transient” data. It‟s not data that affects

other instances of the application.

If you want some similar data shared among all instances of a program, you probably want to

implement what‟s often called application settings. You can do that as well.

Isolated Storage

Every program installed on Windows Phone 7 has access to its own area of permanent disk

storage referred to as isolated storage, which the program can access using classes in the

System.IO.IsolatedStorage namespace. Although whole files can be read and written to in

isolated storage, I‟m going to focus instead on a special use of isolated storage for storing

application settings. The IsolatedStorageSettings class exists specifically for this purpose.

For application settings, you should be thinking in terms of the whole application rather than

a particular page. Perhaps some of the application settings apply to multiple pages. Hence, a

good place to deal with these application settings is in the program‟s App class, which derives

from Application.

Not coincidently, it is the App. xaml file that creates a PhoneApplicationService object (the

same PhoneApplicationService object used for saving transient data) and assigns event

handlers for four events:

<shell:PhoneApplicationService Launching="Application_Launching"

 Closing="Application_Closing"

 Activated="Application_Activated"

 Deactivated="Application_Deactivated"/>

The Launching event is fired when the program is first executed from the Start screen. The

Deactivated event occurs when the program is tombstoned, and the Activated event occurs

when the program is resurrected from tombstoning. The Closing event occurs when the

program is really terminated, probably by the user pressing the Back button.

So, when a program starts up, it gets either a Launching event or an Activated event (but

never both), depending whether it‟s being started from the Start screen or coming out of a

tombstoned state. When a program ends, it gets either a Deactivated event or a Closing event,

depending whether it‟s being tombstoned or terminated for real.

A program should load application settings during the Launching event and save them in

response to the Closing event. That much is obvious. But a program should also save

application settings during the Deactivated event because the program really doesn‟t know if

it will ever be resurrected. And if it is resurrected, it should load application settings during

the Activated event because otherwise it won‟t know about those settings.

Conclusion: application settings should be loaded during the Launching and Activated events

and saved during the Deactivated and Closing events.

For the SilverlightIsolatedStorage program, I decided that the number of taps should continue

to be treated as transient data—part of the state of the page. But the background color

should be an application setting and shared among all instances.

In App.xaml.cs—a file that hasn‟t yet been altered for any of the programs in this book—I

defined the following public property:

Silverlight Project: SilverlightIsolatedStorage File: App.xaml.cs (excerpt)

public partial class App : Application

{

 // Application settings

 public Brush BackgroundBrush { set; get; }

 …

}

Conceivably this can be one of many application settings that are accessible throughout the

application.

App.xaml.cs already has empty event handlers for all the PhoneApplicationService events. Each

handler was given a body consisting of a single method call:

Silverlight Project: SilverlightIsolatedStorage File: App.xaml.cs (excerpt)

private void Application_Launching(object sender, LaunchingEventArgs e)

{

 LoadSettings();

}

private void Application_Activated(object sender, ActivatedEventArgs e)

{

 LoadSettings();

}

private void Application_Deactivated(object sender, DeactivatedEventArgs e)

{

 SaveSettings();

}

private void Application_Closing(object sender, ClosingEventArgs e)

{

 SaveSettings();

}

Here are the LoadSettings and SaveSettings methods. Both methods obtain an

IsolatedStorageSettings object. One loads (and the other saves) the Color property of the

BackgroundBrush property with code that is similar to what you saw before.

Silverlight Project: SilverlightIsolatedStorage File: App.xaml.cs (excerpt)

void LoadSettings()

{

 IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;

 Color clr;

 if (settings.TryGetValue<Color>("backgroundColor", out clr))

 BackgroundBrush = new SolidColorBrush(clr);

}

void SaveSettings()

{

 IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;

 if (BackgroundBrush is SolidColorBrush)

 {

 settings["backgroundColor"] = (BackgroundBrush as SolidColorBrush).Color;

 }

}

And finally, here‟s the new MainPage.xaml.cs file. This file—and any other class in the

program—can get access to the App object using the static Application.Current property and

casting it to an App. The constructor of MainPage obtains the BackgroundBrush property from

the App class, and the OnManipulationStarted method sets that BackgroundBrush property.

Silverlight Project: SilverlightIsolatedStorage File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 Random rand = new Random();

 int numTaps = 0;

 PhoneApplicationService appService = PhoneApplicationService.Current;

 public MainPage()

 {

 InitializeComponent();

 UpdatePageTitle(numTaps);

 // Access App class for isolated storage setting

 Brush brush = (Application.Current as App).BackgroundBrush;

 if (brush != null)

 ContentGrid.Background = brush;

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

 SolidColorBrush brush =

 new SolidColorBrush(Color.FromArgb(255, (byte)rand.Next(256),

 (byte)rand.Next(256),

 (byte)rand.Next(256)));

 ContentGrid.Background = brush;

 // Save to App class for isolated storage setting

 (Application.Current as App).BackgroundBrush = brush;

 UpdatePageTitle(++numTaps);

 args.Complete();

 base.OnManipulationStarted(args);

 }

 void UpdatePageTitle(int numTaps)

 {

 PageTitle.Text = String.Format("{0} taps total", numTaps);

 }

 protected override void OnNavigatedFrom(NavigationEventArgs args)

 {

 appService.State["numTaps"] = numTaps;

 base.OnNavigatedFrom(args);

 }

 protected override void OnNavigatedTo(NavigationEventArgs args)

 {

 // Load numTaps

 if (appService.State.ContainsKey("numTaps"))

 {

 numTaps = (int)appService.State["numTaps"];

 UpdatePageTitle(numTaps);

 }

 }

}

Because that background color has been upgraded from transient page data to an application

setting, references to it have been removed in the OnNavigatedFrom and OnNavigatedTo

overrides.

Obviously as programs get more complex, transient page data and application settings also

get more complex, but these techniques illustrate a good starting point.

Part II

Silverlight

Chapter 7

XAML Power and Limitations
As you’ve seen, a Silverlight program is generally a mix of code and XAML. Most often, you’ll

use XAML for defining the layout of the visuals of your application, and you’ll use code for

event handling, including all user-input events and all events generated by controls as a result

of processing user-input events.

Much of the object creation and initialization performed in XAML would traditionally be done

in the constructor of a page or window class. This might make XAML seem just a tiny part of

the application, but it turns out to be much more than that. As the name suggests, XAML is

totally compliant XML, so it’s instantly toolable—machine writable and machine readable as

well as human writable and human readable.

Although XAML is usually concerned with object creation and initialization, certain features of

Silverlight provide much more than object initialization would seem to imply. One of these

features is data binding, which involves connections between controls, or between controls

and underlying data, so that properties are automatically updated without the need for

explicit event handlers. Entire animations can also be defined in XAML.

Although XAML is sometimes referred to as a ―declarative language,‖ it is certainly not a

complete programming language. You can’t perform arithmetic in any generalized manner in

XAML, and you can’t dynamically create objects in XAML.

Experienced programmers encountering XAML for the first time are sometimes resistant to it.

I know I was. Everything that we value in a programming language such as C#—required

declarations, strong typing, array-bounds checking, tracing abilities for debugging—largely

goes away when everything is reduced to XML text strings. Over the years, however, I’ve

gotten very comfortable with XAML, and I find it very liberating in using XAML for the visuals

of the application. In particular I like how the parent-child relationship of controls on the

surface of a window is mimicked by the parent-child structure inherent in XML. I also like the

ability to experiment with XAML—even just in the Visual Studio designer.

Everything you need to do in Silverlight can be allocated among these three categories:

 Stuff you can do in either code or XAML

 Stuff you can do only in code (e.g., event handling and methods)

 Stuff you can do only in XAML (e.g., templates)

In both code and XAML you can instantiate classes and structures, and set the properties of

these objects. A class or structure instantiated in XAML must be defined as public (of course),

but it must also have a parameterless constructor. When XAML instantiates the class, it has no

way of passing anything to the constructor. In XAML you can associate a particular event with

an event handler, but the event handler itself must be implemented in code. You can’t make

method calls in XAML because, again, there’s no way to pass arguments to the method.

If you want, you can write almost all of your Silverlight application entirely in code. However,

page navigation is based around the existence of XAML files for classes that derive from

PhoneApplicationPage, and there also is a very important type of job that must be done in

XAML. This is the construction of templates. You use templates in two ways: First, to visually

display data using a collection of elements and controls, and secondly, to redefine the visual

appearance of a control while maintaining its functionality. You can write alternatives to

templates in code, but you can’t write the templates themselves.

After some experience with Silverlight programming, you might decide that you want to use a

design program such as Expression Blend to generate XAML for you. But I urge you—

speaking programmer to programmer—to learn how to write XAML by hand. At the very least

you need to know how to read the XAML that design programs generate for you.

One of the very nice features of XAML is that you can experiment with it in a very interactive

manner, and by experimenting with XAML you can learn a lot about Silverlight. Programming

tools are designed specifically for experimenting with XAML. These programs take advantage

of a static method named XamlReader.Load that can convert XAML text into an object at

runtime. Later in this book I’ll show you how to use that method and you’ll see an application

that lets you experiment with XAML right on the phone!

Until then, however, you can experiment with XAML in the Visual Studio designer. Generally

the designer responds promptly and accurately to changes you make in the XAML. Only when

things get a bit complex will you actually need to build and deploy the application to see

what it’s doing.

A TextBlock in Code

Before we get immersed in experimenting with XAML, however, I must issue another warning:

As you get accustomed to using XAML exclusively for certain common chores, it’s important

not to forget how to write C#!

You’ll recall the XAML version of the TextBlock in the Grid from Chapter 2:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone 7!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

Elements in XAML such as TextBlock are actually classes. Attributes of these elements (such as

Text, HorizontalAlignment, and VerticalAlignment) are properties of the class. Let’s see how

easy it is to write a TextBlock in code, and to also use code to insert the TextBlock into the

XAML Grid.

The TapForTextBlock project creates a new TextBlock in code every time you tap the screen.

The MainPage.xaml file contains a TextBlock centered with the content grid:

Silverlight Project: TapForTextBlock File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Name="txtblk"

 Text="Hello, Windows Phone 7!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

The code-behind file for MainPage creates an additional TextBlock whenever you tap the

screen. It uses the dimensions of the existing TextBlock to set a Margin property on the new

TextBlock elements to randomly position them within the content grid:

Silverlight Project: TapForTextBlock File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 Random rand = new Random();

 public MainPage()

 {

 InitializeComponent();

 }

 protected override void OnManipulationStarted(ManipulationStartedEventArgs args)

 {

 TextBlock newTextBlock = new TextBlock();

 newTextBlock.Text = "Hello, Windows Phone 7!";

 newTextBlock.HorizontalAlignment = HorizontalAlignment.Left;

 newTextBlock.VerticalAlignment = VerticalAlignment.Top;

 newTextBlock.Margin = new Thickness(

 (ContentGrid.ActualWidth - txtblk.ActualWidth) * rand.NextDouble(),

 (ContentGrid.ActualHeight - txtblk.ActualHeight) * rand.NextDouble(),

 0, 0);

 ContentGrid.Children.Add(newTextBlock);

 args.Complete();

 args.Handled = true;

 base.OnManipulationStarted(args);

 }

}

You don’t need to perform the steps precisely in this order: You can add the TextBlock to

ContentGrid first and then set the TextBlock properties.

But this is the type of thing you simply can’t do in XAML. XAML can’t respond to events, it

can’t create arbitrarily create new instances of elements, it can’t make calls to the Random

class, and it certainly can’t perform arbitrary calculations.

You can also take advantage of a feature introduced in C# 3.0 to instantiate a class and define

its properties in a block:

TextBlock newTextBlock = new TextBlock

{

 Text = "Hello, Windows Phone 7!",

 HorizontalAlignment = HorizontalAlignment.Left,

 VerticalAlignment = VerticalAlignment.Top,

 Margin = new Thickness(

 (ContentGrid.ActualWidth - txtblk.ActualWidth) * rand.NextDouble(),

 (ContentGrid.ActualHeight - txtblk.ActualHeight) * rand.NextDouble(),

 0, 0)

};

ContentGrid.Children.Add(newTextBlock);

That makes the code look a little more like the XAML (except for the calculations and method

calls to rand.NextDouble), but you can still see that XAML provides several shortcuts. The

HorizontalAlignment and VerticalAlignment properties must be set to members of the

HorizontalAlignment and VerticalAlignment enumerations, respectively. In XAML, you need

only specify the member name.

Just looking at the XAML, it is not so obvious that the Grid has a property named Children,

and that this property is a collection, and nesting the TextBlock inside the Grid effectively adds

the TextBlock to the Children collection. The process of adding the TextBlock to the Grid must

be more explicit in code.

Property Inheritance

To experiment with some XAML, it’s convenient to create a project specifically for that

purpose. Let’s call the project XamlExperiment, and put a TextBlock in the content grid:

Silverlight Project: XamlExperiment File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone 7!" />

</Grid>

The text shows up in the upper-left corner of the page’s client area. Let’s make the text italic.

You can do that by setting the FontStyle property in the TextBlock:

<TextBlock Text="Hello, Windows Phone 7!"

 FontStyle="Italic" />

Alternatively, you can put that FontStyle attribute in the PhoneApplicationPage tag:

<phone:PhoneApplicationPage … FontStyle="Italic" …

This FontStyle attribute can go anywhere in the PhoneApplicationPage tag. Notice that setting

the property in this tag affects all the TextBlock elements on the page. This is a feature known

as property inheritance. Certain properties—not many more than Foreground and the font-

related properties FontFamily, FontSize, FontStyle, FontWeight, and FontStretch—propagate

through the visual tree. This is how the TextBlock gets the FontFamily, FontSize, and

Foreground properties (and now the FontStyle property) set on the PhoneApplicationPage.

You can visualize property inheritance beginning at the PhoneApplicationPage object. The

FontStyle is set on that object and then it’s inherited by the outermost Grid, and then the

inner Grid objects, and finally by the TextBlock. This is a good theory. The problem with this

theory is that Grid doesn’t have a FontStyle property! If you try setting FontStyle in a Grid

element, Visual Studio will complain. Property inheritance is somewhat more sophisticated

than a simple handing off from parent to child, and it is one of the features of Silverlight that

is intimately connected with the role of dependency properties, which you’ll learn about in the

Infrastructure chapter.

While keeping the FontStyle property setting to Italic in the PhoneApplicationPage tag, add a

FontStyle setting to the TextBlock:

<TextBlock Text="Hello, Windows Phone 7!"

 FontStyle="Normal" />

Now the text in this particular TextBlock goes back to normal. Obviously the FontStyle setting

on the TextBlock—which is referred to as a local value or a local setting—has precedence over

property inheritance. A little reflection will convince you that this behavior is as it should be.

Both property inheritance and the local setting have precedence over the default value. We

can express this relationship in a simple chart:

 Local Settings have precedence over

 Property Inheritance, which has precedence over

 Default Values

This chart will grow in size as we examine all the ways in which properties can be set.

Property-Element Syntax

Let’s set the TextBlock attributes to these values:

<TextBlock Text="Hello, Windows Phone 7!"

 FontSize="36"

 Foreground="Red" />

Because this is XML, we can separate the TextBlock tag into a start tag and end tag with

nothing in between:

<TextBlock Text="Hello, Windows Phone 7!"

 FontSize="36"

 Foreground="Red">

</TextBlock>

But you can also do something that will appear quite strange initially. You can remove the

FontSize attribute from the start tag and set it like this:

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red">

 <TextBlock.FontSize>

 36

 </TextBlock.FontSize>

</TextBlock>

Now the TextBlock has a child element called TextBlock.FontSize, and within the

TextBlock.FontSize tags is the value.

This is called property-element syntax, and it’s an extremely important part of XAML. The

introduction of property-element syntax also allows nailing down some terminology that

unites .NET and XML. This single TextBlock element now contains three types of identifiers:

 TextBlock is an object element—a .NET object based on an XML element.

 Text and Foreground are property attributes—.NET properties set with XML attributes.

 FontSize is now a property element—a .NET property expressed as an XML element.

When I first saw the property-element syntax, I wondered if it was some kind of XML

extension. Of course it’s not. The period is a legal character for XML tags, so in terms of

nested XML tags, these are perfectly legitimate. That they happen to consist of a class name

and a property name is something known only to XAML parsers (machine and human alike).

One restriction, however: It is illegal for anything else to appear in a property-element tag:

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red">

 <!-- Not a legal property-element tag! -->

 <TextBlock.FontSize absolutely nothing else goes in here!>

 36

 </TextBlock.FontSize>

</TextBlock>

Also, you can’t have both a property attribute and a property element for the same property,

like this:

<TextBlock Text="Hello, Windows Phone 7!"

 FontSize="36"

 Foreground="Red">

 <TextBlock.FontSize>

 36

 </TextBlock.FontSize>

</TextBlock>

This is an error because the FontSize property is set twice.

If you look towards the top of MainPage.xaml, you’ll see another property element:

<Grid.RowDefinitions>

RowDefinitions is a property of Grid. In App.xaml, you’ll see two more:

<Application.Resources>

<Application.ApplicationLifetimeObjects>

Both Resources and ApplicationLIfeTimeObjects are properties of Application.

Colors and Brushes

Let’s return the TextBlock to its pristine condition:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone 7!" />

</Grid>

The text shows up as white (or black, depending on the theme your selected) because the

Foreground property is set on the root element in MainPage.xaml. You can override the user’s

preferences by setting Background for the Grid and Foreground for the TextBlock:

<Grid x:Name="ContentGrid" Background="Blue" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

The Grid has a Background property but no Foreground property. The TextBlock has a

Foreground property but no Background property. The Foreground property is inheritable

through the visual tree, and it may sometimes seem that the Background property is as well,

but it is not. The default value of Background is null, which makes the background

transparent. When the background is transparent, the parent background shows through, and

that makes it seem as if the property is inherited.

A Background property set to null is visually the same as a Background property set to

Transparent, but the two settings affect hit-testing differently, which affects how the element

responds to touch. A Grid with its Background set to the default value of null cannot detect

touch input! If you want a Grid to have no background color on its own but still respond to

touch, set Background to Transparent. You can also do the reverse: You can make an element

with a non-null background unresponsive to touch by setting the IsHitTestVisible property to

false.

Besides the standard colors, you can write the color as a string of red, green, and blue one-

byte hexadecimal values ranging from 00 to FF. For example:

Foreground="#FF0000"

That’s also red. You can alternatively specify four two-digit hexadecimal numbers where the

first one is an alpha value indicating transparency: The value 00 is completely transparent, FF

is opaque, and values in between are partially transparent. Try this value:

Foreground="#80FF0000"

The text will appear a somewhat faded magenta because the blue background shows

through.

If you preface the pound sign with the letters sc you can use values between 0 and 1 for the

red, blue, and green components:

Foreground="sc# 1 0 0"

You can also precede the three numbers with an alpha value between 0 and 1.

These two methods of specifying color numerically are not equivalent, as you can verify by

putting these two TextBlocks in the same Grid:

<Grid x:Name="ContentGrid" Background="Blue" Grid.Row="1">

 <TextBlock Text="RGB COLOR"

 HorizontalAlignment="Left"

 Foreground="#808080" />

 <TextBlock Text="scRGB COLOR"

 HorizontalAlignment="Right"

 Foreground="sc# 0.5 0.5 0.5" />

</Grid>

Both color specifications seem to suggest medium gray, except that the one on the right is

much lighter than the one on the left.

The colors you get with the hexadecimal specification are probably most familiar. The one-

byte values of red, green, and blue are directly proportional to the voltages sent to the pixels

of the video display. Although the light intensity of video displays is not linear with respect to

voltage, the human eye is not linear with respect to light intensity either. These two non-

linearities cancel each other out (approximately) so the text on the left appears somewhat

medium.

With the scRGB color space, you specify values between 0 and 1 that are proportional to light

intensity, so the non-linearity of the human eye makes the color seem off. If you really want a

medium gray in scRGB you need values much lower than 0.5, such as:

Foreground="sc# 0.2 0.2 0.2"

Let’s go back to one TextBlock in the Grid:

<Grid x:Name="ContentGrid" Background="Blue" Grid.Row="1">

 <TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

Just as I did earlier with the FontSize property, break out the Foreground property as a

property element:

<TextBlock Text="Hello, Windows Phone 7!">

 <TextBlock.Foreground>

 Red

 </TextBlock.Foreground>

</TextBlock>

When you specify a Foreground property in XAML, a SolidColorBrush is created for the

element behind the scenes. You can also explicitly create the SolidColorBrush in XAML:

<TextBlock Text="Hello, Windows Phone 7!">

 <TextBlock.Foreground>

 <SolidColorBrush Color="Red" />

 </TextBlock.Foreground>

</TextBlock>

You can also break out the Color property as a property element:

<TextBlock Text="Hello, Windows Phone 7!">

 <TextBlock.Foreground>

 <SolidColorBrush>

 <SolidColorBrush.Color>

 Red

 </SolidColorBrush.Color>

 </SolidColorBrush>

 </TextBlock.Foreground>

</TextBlock>

And you can go even further:

<TextBlock Text="Hello, Windows Phone 7!">

 <TextBlock.Foreground>

 <SolidColorBrush>

 <SolidColorBrush.Color>

 <Color>

 <Color.A>

 255

 </Color.A>

 <Color.R>

 #FF

 </Color.R>

 </Color>

 </SolidColorBrush.Color>

 </SolidColorBrush>

 </TextBlock.Foreground>

</TextBlock>

Notice that the A property of the Color structure needs to be explicitly set because the default

value is 0, which means transparent.

This excessive use of property elements might not make much sense for simple colors and

SolidColorBrush, but the technique becomes essential when you need to use XAML to set a

property with a value that can’t be expressed as a simple text string—for example, when you

want to use a gradient brush rather than a SolidColorBrush.

Let’s begin with a simple solid TextBlock but with the Background property of the Grid broken

out as a property element:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <SolidColorBrush Color="Blue" />

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

Remove that SolidColorBrush and replace it with a LinearGradientBrush:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush>

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

The LinearGradientBrush has a property of type GradientStops, so let’s add property element

tags for the GradientStops property:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush>

 <LinearGradientBrush.GradientStops>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

The GradientStops property is of type GradientStopCollection, so let’s add tags for that:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush>

 <LinearGradientBrush.GradientStops>

 <GradientStopCollection>

 </GradientStopCollection>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

Now let’s put a couple GradientStop objects in there. The GradientStop has properties named

Offset and Color:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush>

 <LinearGradientBrush.GradientStops>

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Blue" />

 <GradientStop Offset="1" Color="Green" />

 </GradientStopCollection>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

And with the help of property elements, that is how you create a gradient brush in markup. It

looks like this:

The Offset values range from 0 to 1 and they are relative to the element being colored with

the brush. You can use more than two:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush>

 <LinearGradientBrush.GradientStops>

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Blue" />

 <GradientStop Offset="0.5" Color="White" />

 <GradientStop Offset="1" Color="Green" />

 </GradientStopCollection>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

Conceptually the brush knows the size of the area that it’s coloring and adjusts itself

accordingly.

By default the gradient starts at the upper-left corner and goes to the lower-right corner, but

that’s only because of the default settings of the StartPoint and EndPoint properties of

LinearGradientBrush. As the names suggest, these are coordinate points relative to the upper-

left corner of the element being colored. For StartPoint the default value is the point (0, 0),

meaning the upper-left, and for EndPoint (1, 1), the lower-right. If you change them to (0, 0)

and (0, 1), for example, the gradient goes from top to bottom:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush StartPoint="0 0" EndPoint="0 1">

 <LinearGradientBrush.GradientStops>

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Blue" />

 <GradientStop Offset="0.5" Color="White" />

 <GradientStop Offset="1" Color="Green" />

 </GradientStopCollection>

 </LinearGradientBrush.GradientStops>

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="Hello, Windows Phone 7!"

 Foreground="Red" />

</Grid>

Each point is just two numbers separated by space or a comma. There are also properties that

determine what happens outside the range of the lowest and highest Offset values if they

don’t go from 0 to 1.

LinearGradientBrush derives from GradientBrush. Another class that derives from

GradientBrush is RadialGradientBrush. Here’s markup for a larger TextBlock with a

RadialGradientBrush set to its Foreground property:

<TextBlock Text="GRADIENT"

 FontFamily="Arial Black"

 FontSize="72"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock.Foreground>

 <RadialGradientBrush>

 <RadialGradientBrush.GradientStops>

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Transparent" />

 <GradientStop Offset="1" Color="Red" />

 </GradientStopCollection>

 </RadialGradientBrush.GradientStops>

 </RadialGradientBrush>

 </TextBlock.Foreground>

</TextBlock>

And here’s what the combination looks like:

Content and Content Properties

Everyone knows that XML can be a little ―wordy.‖ However, the markup I’ve shown you with

the gradient brushes is a little wordier than it needs to be. Let’s look at the

RadialGradientBrush I originally defined for the TextBlock:

<TextBlock.Foreground>

 <RadialGradientBrush>

 <RadialGradientBrush.GradientStops>

 <GradientStopCollection>

 <GradientStop Offset="0" Color="Transparent" />

 <GradientStop Offset="1" Color="Red" />

 </GradientStopCollection>

 </RadialGradientBrush.GradientStops>

 </RadialGradientBrush>

</TextBlock.Foreground>

First, if you have at least one item in a collection, you can eliminate the tags for the collection

itself. This means that the tags for the GradientStopCollection can be removed:

<TextBlock.Foreground>

 <RadialGradientBrush>

 <RadialGradientBrush.GradientStops>

 <GradientStop Offset="0" Color="Transparent" />

 <GradientStop Offset="1" Color="Red" />

 </RadialGradientBrush.GradientStops>

 </RadialGradientBrush>

</TextBlock.Foreground>

Moreover, many classes that you use in XAML have something called a ContentProperty

attribute. This word ―attribute‖ has different meanings in .NET and XML; here I’m talking

about the .NET attribute, which refers to some additional information that is associated with a

class or a member of that class. If you look at the documentation for the GradientBrush

class—the class from which both LinearGradientBrush and RadialGradientBrush derive—you’ll

see that the class was defined with an attribute of type ContentPropertyAttribute:

[ContentPropertyAttribute("GradientStops", true)]

public abstract class GradientBrush : Brush

This attribute indicates one property of the class that is assumed to be the content of that

class, and for which the property-element tags are not required. For GradientBrush (and its

descendents) that one property is GradientStops. This means that the

RadialGradientBrush.GradientStops tags can be removed from the markup:

<TextBlock.Foreground>

 <RadialGradientBrush>

 <GradientStop Offset="0" Color="Transparent" />

 <GradientStop Offset="1" Color="Red" />

 </RadialGradientBrush>

</TextBlock.Foreground>

Now it’s not quite as wordy but it’s still comprehensible. The two GradientStop objects are the

content of the RadialGradientBrush class.

Earlier in this chapter I created a TextBlock in code and added it to the Children collection of

the Grid. In XAML, we see no reference to this Children collection. That’s because the

ContentProperty attribute of Panel—the class from which Grid derives—defines the Children

property as the content of the Panel:

[ContentPropertyAttribute("Children", true)]

public abstract class Panel : FrameworkElement

If you want to get more explicit in your markup, you can include a property element for the

Children property:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Children>

 <TextBlock Text="Hello, Windows Phone 7!" />

 </Grid.Children>

</Grid>

Similarly, PhoneApplicationPage derives from UserControl, which also has a ContentProperty

attribute:

[ContentPropertyAttribute("Content", true)]

public class UserControl : Control

The ContentProperty attribute of UserControl is the Content property. (That sentence makes

more sense when you see it on the page rather than when you read it out load!)

Suppose you want to put two TextBlock elements in a Grid, and you want the Grid to have a

LinearGradientBrush for its Background. You can put the Background property element first

within the Grid tags followed by the two TextBlock elements:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="LightCyan" />

 <GradientStop Offset="1" Color="LightPink" />

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="TextBlock #1"

 HorizontalAlignment="Left" />

 <TextBlock Text="TextBlock #2"

 HorizontalAlignment="Right" />

</Grid>

It’s also legal to put the two TextBlock elements first and the Background property element

last:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="TextBlock #1"

 HorizontalAlignment="Left" />

 <TextBlock Text="TextBlock #2"

 HorizontalAlignment="Right" />

 <Grid.Background>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="LightCyan" />

 <GradientStop Offset="1" Color="LightPink" />

 </LinearGradientBrush>

 </Grid.Background>

</Grid>

But putting the Background property element between the two TextBlock elements simply

won’t work:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="TextBlock #1"

 HorizontalAlignment="Left" />

 <!-- Not a legal place for the property element! -->

 <Grid.Background>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="LightCyan" />

 <GradientStop Offset="1" Color="LightPink" />

 </LinearGradientBrush>

 </Grid.Background>

 <TextBlock Text="TextBlock #2"

 HorizontalAlignment="Right" />

</Grid>

The precise problem with this syntax is revealed when you put in the missing property

elements for the Children property of the Grid:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Children>

 <TextBlock Text="TextBlock #1"

 HorizontalAlignment="Left" />

 </Grid.Children>

 <!-- Not a legal place for the property element! -->

 <Grid.Background>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="LightCyan" />

 <GradientStop Offset="1" Color="LightPink" />

 </LinearGradientBrush>

 </Grid.Background>

 <Grid.Children>

 <TextBlock Text="TextBlock #2"

 HorizontalAlignment="Right" />

 </Grid.Children>

</Grid>

Now it’s obvious that the Children property is being set twice—and that’s clearly illegal.

The Resources Collection

In one sense, computer programming is all about the avoidance of repetition. (Or at least

repetition by us humans. We don’t mind if our machines engage in repetition. We just want it

to be efficient repetition.) XAML would seem to be a particularly treacherous area for

repetition because it’s just markup and not a real programming language, You can easily

imagine situations where a bunch of elements have the same HorizontalAlignment or

VerticalAlignment or Margin settings, and it would certainly be convenient if there were a way

to avoid a lot of repetitive markup. If you ever needed to change one of these properties,

changing it just once is much better than changing it scores or hundreds of times.

Fortunately XAML has been designed by programmers who (like the rest of us) prefer not to

type in the same stuff over and over again.

The most generalized solution to repetitive markup is the Silverlight style. But a prerequisite

to styles is a more generalized sharing mechanism. This is called the resource, and right away

we need to distinguish between the resources I’ll be showing you here, and the resources

encountered in Chapter 4 when embedding images into the application. Whenever there’s a

chance of confusion, I will refer to the resources in this chapter as XAML resources, even

though they can exist in code as well.

XAML resources are always instances of a particular .NET class or structure, either an existing

class or structure or a custom class. When a particular class is defined as a XAML resource,

only one instance is made, and that one instance is shared among everybody using that

resource.

The sharing of resources immediately disqualifies many classes from being defined as XAML

resources. For example, a single instance of TextBlock can’t be used more than once because

the TextBlock must have a unique parent and a unique location within that parent. And that

goes for any other element as well. Anything derived from UIElement is probably not going to

show up as a resource because it can’t be shared.

However, it is very common to share brushes, this is a typical way to give a particular

application a certain consistent and distinctive visual appearance. Animations are also

candidates for sharing. It’s also possible to share text strings and numbers. Think of these as

the XAML equivalents of string or numeric constants in a C# program. When you need to

change one of them, you can just change the single resource rather than hunting through the

XAML to change a bunch of individual occurrences.

To support the storage of resources, FrameworkElement defines a property named Resources

of type ResourceDictionary. On any element that derives from FrameworkElement, you can

define Resources as a property element. Usually this appears right under the start tag. Here’s a

Resources collection for a page class that derives from PhoneApplicationPage:

<phone:PhoneApplicationPage … >

 <phone:PhoneApplicationPage.Resources>

 …

 </phone:PhoneApplicationPage.Resources>

 …

</phone:PhoneApplicationPage>

The collection of resources within those Resources tags is sometimes called a resource section,

and anything in that particular PhoneApplicationPage can then use those resources.

The Application class also defines a Resources property, and the App.xaml file that Visual

Studio creates for you in a new Silverlight application already includes an empty resource

section:

<Application … >

 <Application.Resources>

 </Application.Resources>

 …

</Application>

The resources defined in the Resources collection on a FrameworkElement are available only

within that element and nested elements; the resources defined in the Application class are

available throughout the application.

Sharing Brushes

Let’s suppose your page contains several TextBlock elements, and you want to apply the same

LinearGradientBrush to the Foreground of each of them. This is an ideal use of a resource.

The first step is to define a LinearGradientBrush in a resource section of a XAML file. If you’re

defining the resource in a FrameworkElement-derivative, the resource must be defined before

is used, and it can only be used by the same element or a nested element.

<phone:PhoneApplicationPage.Resources>

 <LinearGradientBrush x:Key="brush">

 <GradientStop Offset="0" Color="Pink" />

 <GradientStop Offset="1" Color="SkyBlue" />

 </LinearGradientBrush>

</phone:PhoneApplicationPage.Resources>

Notice the x:Key attribute. Every resource must have a key name. There are only four

keywords that must be prefaced with ―x‖ and you’ve already seen three of them: Besides x:Key

they are x:Class, x:Name and x:Null.

Making use of that resource is possible with a couple kinds of syntax. The rather verbose way

is to break out the Foreground property of the TextBlock as a property element and set it to

an object of type StaticResource referencing the key name:

<TextBlock Text="Hello, Windows Phone 7!">

 <TextBlock.Foreground>

 <StaticResource ResourceKey="brush" />

 </TextBlock.Foreground>

</TextBlock>

There is, however, a shortcut syntax that makes use of what is called a XAML markup

extension. A markup extension is always delimited by curly braces. Here’s what the

StaticResource markup extension looks like:

<TextBlock Text="Hello, Windows Phone 7!"

 Foreground="{StaticResource brush}" />

Notice that within the markup extension the word ―brush‖ is not in quotation marks.

Quotation marks within a markup extension are always prohibited.

Suppose you want to share a Margin setting. The Margin is of type Thickness, and in XAML

you can specify it with 1, 2, or 4 numbers. Here’s a Thickness resource:

<Thickness x:Key="margin">

 12 96

</Thickness>

Suppose you want to share a FontSize property. That’s of type double, and you’re going to

need a little help. The Double structure, which is the basis for the double C# data type, is

defined in the System namespace, but the XML namespace declarations in a typical XAML file

only refer to Silverlight classes in Silverlight namespaces. What’s needed is an XML namespace

declaration for the System namespace in the root element of the page, and here it is:

xmlns:system="clr-namespace:System;assembly=mscorlib"

This is the standard syntax for associating an XML namespace with a .NET namespace. First,

come up with an XML namespace name that reminds you of the .NET namespace. The word

―system‖ is good for this one; some programmers use ―sys‖ or just ―s.‖ The hyphenated ―clr-

namespace‖ is followed by a colon and the .NET namespace name. If you’re interested in

referencing objects that are in the current assembly, you’re done. Otherwise you need a

semicolon followed by ―assembly=‖ and the assembly, in this case the standard mscorlib.lib

(―Microsoft Common Runtime Library‖).

Now you can have a resource of type double:

<system:Double x:Key="fontsize">

 48

</system:Double>

The ResourceSharing project defines all three of these resources and references them in two

TextBlock elements. Here’s the complete resource section:

Silverlight Project: ResourceSharing File: MainPage.xaml (excerpt)

<phone:PhoneApplicationPage.Resources>

 <LinearGradientBrush x:Key="brush">

 <GradientStop Offset="0" Color="Pink" />

 <GradientStop Offset="1" Color="SkyBlue" />

 </LinearGradientBrush>

 <Thickness x:Key="margin">

 12 96

 </Thickness>

 <system:Double x:Key="fontsize">

 48

 </system:Double>

</phone:PhoneApplicationPage.Resources>

The content grid contains the two TextBlock elements:

Silverlight Project: ResourceSharing File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Whadayasay?"

 Foreground="{StaticResource brush}"

 Margin="{StaticResource margin}"

 FontSize="{StaticResource fontsize}"

 HorizontalAlignment="Left"

 VerticalAlignment="Top" />

 <TextBlock Text="Fuhgedaboudit!"

 Foreground="{StaticResource brush}"

 Margin="{StaticResource margin}"

 FontSize="{StaticResource fontsize}"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom" />

</Grid>

The screen shot demonstrates that it works:

The Resources property is a dictionary, so within any resource section the key names must be

unique. However, you can re-use key names in different resource collections. For example, try

inserting the following markup right after the start tag of the content grid:

<Grid.Resources>

 <Thickness x:Key="margin">96</Thickness>

</Grid.Resources>

This resource will override the one defined on MainPage. Resources are searched going up

the visual tree for a matching key name, and then the Resources collection in the application

class is searched. For this reason, the Resources collection in App.xaml is an excellent place to

put resources that are used throughout the app.

If you put that little piece of markup in the Grid named ―LayoutRoot‖ it will also be accessible

to the TextBlock elements because this Grid is an ancestor. But if you put the markup in the

StackPanel entitled ―TitlePanel,‖ (and changing Grid to StackPanel in the process) it will be

ignored. Resources are searched going up the visual tree, and that’s another branch.

This little piece of markup will also be ignored if you put it in the content grid but after the

two TextBlock elements. Now it’s not accessible because it’s lexicographically after the

reference.

x:Key and x:Name

If you need to reference a XAML resource from code, you can simply index the Resources

property with the resource name. For example, in the MainPage.xaml.cs code-behind file, this

code will retrieve the resource named ―brush‖ stored in the Resources collection of MainPage:

this.Resources["brush"]

You would then probably cast that object to an appropriate type, in this case either Brush or

LinearGradientBrush. Because the Resources collection isn’t built until the XAML is processed,

you can’t access the resource before the InitializeComponent call in the constructor of the

code-behind file.

If you have resources defined in other Resource collections in the same XAML file, you can

retrieve those as well. For example, if you’ve defined a resource named ―margin‖ in the

Resources collection of the content grid, you can access that resource using:

ContentGrid.Resources["margin"]

If no resource with that name is found in the Resources collection of an element, then the

Resources collection of the App class is searched. If the resource is not found there, then the

indexer returns null.

Due to a legacy issue involving Silverlight 1.0, you can use x:Name rather than using x:Key to

identify a resource:

<phone:PhoneApplicationPage.Resources>

 <LinearGradientBrush x:Name="brush">

 …

</phone:PhoneApplicationPage.Resources>

There is one big advantage to this: The name is stored as a field in the generated code file so

you can reference the resource in the code-behind file just like any other field:

txtblk.Foreground = brush;

This is a much better syntax for sharing resources between XAML and code. However, if you

use x:Name for a resource, that name must be unique in the XAML file.

An Introduction to Styles

One very common item in a Resources collection is a Style, which is basically a collection of

property assignments for a particular element type. Besides a key, the Style also requires a

TargetType:

<Style x:Key="txtblkStyle"

 TargetType="TextBlock">

 …

</Style>

Between the start and end tags go one or more Setter definitions. Setter has two properties:

One is actually called Property and you set it to a property name. The other is Value. A few

examples:

<Style x:Key="txtblkStyle"

 TargetType="TextBlock">

 <Setter Property="HorizontalAlignment" Value="Center" />

 <Setter Property="VerticalAlignment" Value="Center" />

 <Setter Property="Margin" Value="12 96" />

 <Setter Property="FontSize" Value="48" />

</Style>

Suppose you also want to include a Setter for the Foreground property but it’s a

LinearGradientBrush. There are two ways to do it. If you have a previously defined resource

with a key of ―brush‖ (as in the ResourceSharing project) you can reference that:

<Setter Property="Foreground" Value="{StaticResource brush}" />

Or, you can use property-element syntax with the Value property to embed the brush right in

the Style definition. That’s how it’s done in the Resources collection of the StyleSharing

project:

Silverlight Project: StyleSharing File: MainPage.xaml (excerpt)

<phone:PhoneApplicationPage.Resources>

 <Style x:Key="txtblkStyle"

 TargetType="TextBlock">

 <Setter Property="HorizontalAlignment" Value="Center" />

 <Setter Property="VerticalAlignment" Value="Center" />

 <Setter Property="Margin" Value="12 96" />

 <Setter Property="FontSize" Value="48" />

 <Setter Property="Foreground">

 <Setter.Value>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="Pink" />

 <GradientStop Offset="1" Color="SkyBlue" />

 </LinearGradientBrush>

 </Setter.Value>

 </Setter>

 </Style>

</phone:PhoneApplicationPage.Resources>

To apply this style to an element of type TextBlock, set the Style property (which is defined by

FrameworkElement so every kind of element has it):

Silverlight Project: StyleSharing File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Whadayasay?"

 Style="{StaticResource txtblkStyle}"

 HorizontalAlignment="Left"

 VerticalAlignment="Top" />

 <TextBlock Text="Fuhgedaboudit!"

 Style="{StaticResource txtblkStyle}"

 HorizontalAlignment="Right"

 VerticalAlignment="Bottom" />

</Grid>

The display looks the same as the previous program, which teaches an important lesson.

Notice that values of HorizontalAlignment and VerticalAlignment are defined in the Style, yet

these are overridden by local settings in the two TextBlock elements. But the Foreground set in

the Style overrides the value normally inherited through the visual tree.

That means that the little chart I started earlier in this chapter can now be enhanced slightly.

 Local Settings have precedence over

 Style Settings, which have precedence over

 Property Inheritance, which has precedence over

 Default Values

Style Inheritance

Styles can enhance or modify other styles through the process of inheritance. Set the Style

property BasedOn to a previously defined Style. Here’s the Resources collection of the

StyleInheritance project:

Silverlight Project: StyleSharing File: MainPage.xaml (excerpt)

<phone:PhoneApplicationPage.Resources>

 <Style x:Key="txtblkStyle"

 TargetType="TextBlock">

 <Setter Property="HorizontalAlignment" Value="Center" />

 <Setter Property="VerticalAlignment" Value="Center" />

 <Setter Property="Margin" Value="12 96" />

 <Setter Property="FontSize" Value="48" />

 <Setter Property="Foreground">

 <Setter.Value>

 <LinearGradientBrush>

 <GradientStop Offset="0" Color="Pink" />

 <GradientStop Offset="1" Color="SkyBlue" />

 </LinearGradientBrush>

 </Setter.Value>

 </Setter>

 </Style>

 <Style x:Key="upperLeftStyle"

 TargetType="TextBlock"

 BasedOn="{StaticResource txtblkStyle}">

 <Setter Property="HorizontalAlignment" Value="Left" />

 <Setter Property="VerticalAlignment" Value="Top" />

 </Style>

 <Style x:Key="lowerRightStyle"

 TargetType="TextBlock"

 BasedOn="{StaticResource txtblkStyle}">

 <Setter Property="HorizontalAlignment" Value="Right" />

 <Setter Property="VerticalAlignment" Value="Bottom" />

 </Style>

</phone:PhoneApplicationPage.Resources>

The two new Style definitions at the end override the HorizontalAlignment and

VerticalAlignment properties set in the earlier style. This allows the two TextBlock elements to

reference these two different styles:

Silverlight Project: StyleSharing File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Whadayasay?"

 Style="{StaticResource upperLeftStyle}" />

 <TextBlock Text="Fuhgedaboudit!"

 Style="{StaticResource lowerRightStyle}" />

</Grid>

Implicit styles, which were introduced into Silverlight 4, are not supported in Silverlight for

Windows Phone.

Themes

Windows Phone 7 predefines many resources that you can use throughout your application

with the StaticResource markup extension. There are predefined colors, brushes, font names,

font sizes, margins, and text styles. Some of them show up in the root element of

MainPage.xaml to supply the defaults for the whole page:

FontFamily="{StaticResource PhoneFontFamilyNormal}"

FontSize="{StaticResource PhoneFontSizeNormal}"

Foreground="{StaticResource PhoneForegroundBrush}"

You can find all these predefined themes in the Themes section of the Windows Phone 7

documentation. You should try to use these resources particularly for foreground and

background brushes so you comply with the user’s wishes, and you don’t inadvertently cause

your text to become invisible. Some of the predefined font sizes may be different when the

small-screen phone is released, and these differences might help you port your large-screen

programs to the new device.

What happens if the user sets a different theme while your program is running? Well, the only

way this can happen is if your program is tombstoned at the time, and when your program is

reactivated, it starts up from scratch and hence references the new colors automatically.

The color theme that the user selects includes a foreground and background (either white on

a black background or black on a white background) but also an accent color: magenta,

purple, teal, lime, brown, pink, orange, blue (the default), red, or green. This color is available

as the PhoneAccentColor resource, and a brush based on this color is available as

PhoneAccentBrush.

Gradient Accents

You might want to use the user’s preferred accent color in your program, but as a gradient

brush. In other words, you want the same hue, but you want to get darker or lighter versions.

In code, this is fairly easy by manipulating the red, green, and blue components of the color.

It’s also fairly easy in XAML, as the GradientAccent project demonstrates:

Silverlight Project: GradientAccent File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Grid.Background>

 <LinearGradientBrush StartPoint="0 0" EndPoint="0 1">

 <GradientStop Offset="0" Color="White" />

 <GradientStop Offset="0.5" Color="{StaticResource PhoneAccentColor}" />

 <GradientStop Offset="1" Color="Black" />

 </LinearGradientBrush>

 </Grid.Background>

</Grid>

Here it is:

Chapter 8

Elements and Properties
Although TextBlock and Image are surely two of the most important elements supported by

Silverlight, there are a couple more elements you should see before the next chapter

introduces the Panel elements that provide the basis of Silverlight‘s dynamic layout system.

I‘ll also describe some important properties you can apply to all these elements, including

transforms.

Basic Shapes

The System.Windows.Shapes namespace includes elements used for the display of vector

graphics—the use of straight lines and curves for drawing and defining filled areas. Although

the subject of vector graphics awaits us in a later chapter, two of the classes in this

namespace—Ellipse and Rectangle—are a little different from the others in that you can use

them without specifying any coordinate points.

Go back to the XamlExperiment program from the Chapter 7 and insert this Ellipse element

into the content grid:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Ellipse Fill="Blue"

 Stroke="Red"

 StrokeThickness="50" />

</Grid>

You‘ll see a blue ellipse with a red outline fill the Grid:

Now try setting HorizontalAlignment and VerticalAlignment to Center. The Ellipse disappears.

What happened?

This Ellipse has no intrinsic minimum size. When allowed to, it will assume the size of its

container, but if it‘s forced to become small, it will become as small as possible, which is

nothing at all. This is one case where explicitly setting Width and Height properties is

appropriate.

Both the Fill property and the Stroke property of Ellipse are of type Brush, so you can set

either or both to gradient brushes. It is very common to make the Width and Height of an

Ellipse the same so it displays as a circle. The Fill can then be set to a RadialGradientBrush that

starts at White in the center and then goes to a gradient color at the perimeter. Normally the

gradient center is the point (0.5, 0.5) relative to the ball‘s dimension, but you can offset that

like so:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Ellipse Width="300"

 Height="300">

 <Ellipse.Fill>

 <RadialGradientBrush Center="0.4 0.4"

 GradientOrigin="0.4 0.4">

 <GradientStop Offset="0" Color="White" />

 <GradientStop Offset="1" Color="Red" />

 </RadialGradientBrush>

 </Ellipse.Fill>

 </Ellipse>

</Grid>

The offset white spot looks like reflection from a light source, suggesting a three dimensional

shape:

The Rectangle is similar to the Ellipse except that it has RadiusX and RadiusY properties for

rounding the corners.

Transforms

Until the advent of the Windows Presentation Foundation and Silverlight, transforms were

mostly the tools of the graphics mavens. Mathematically speaking, transforms apply a simple

formula to all the coordinates of a visual object and cause that object to be shifted to a

different location, or change size, or be rotated.

In Silverlight, you can apply transforms to any object that descends from UIElement, and that

includes text, bitmaps, movies, panels, and all controls. The property defined by UIElement

that makes transforms possible is RenderTransform, which you set to an object of type

Transform. Transform is an abstract class, but it is the parent class to seven non-abstract

classes:

 TranslateTransform to shift location

 ScaleTransform to increase or decrease size

 RotateTransform to rotate around a point

 SkewTransform to shift in one dimension based on another dimension

 MatrixTransform to express transforms with a standard matrix

 TransformGroup to combine multiple transforms

 CompositeTransform to specify a series of transforms in a fixed order

The whole subject of transforms can be quite complex, particularly when transforms are

combined, so I‘m really only going to show the basics here. Very often, transforms are used in

combination with animations. Animating a transform is the most efficient way that an

animation can be applied to a visual object.

Suppose you have a TextBlock and you want to make it twice as big. That‘s easy: Just double

the FontSize. Now suppose you want to make the text twice as wide but three times taller.

The FontSize won‘t help you there. You need to break out the RenderTransform property as a

property element and set a ScaleTransform to it:

<TextBlock … >

 <TextBlock.RenderTransform>

 <ScaleTransform ScaleX="2" ScaleY="3" />

 </TextBlock.RenderTransform>

</TextBlock>

Most commonly, you‘ll set the RenderTransform property of an object of type

TranslateTransform, ScaleTransform, or RotateTransform. If you know what you‘re doing, you

can combine multiple transforms in a TransformGroup. In two dimensions, transforms are

expressed as 3×3 matrices, and combining transforms is equivalent to matrix multiplication. It

is well known that matrix multiplication is not commutative, so the order that transforms are

multiplied makes a difference in the overall effect.

Although TransformGroup is normally an advanced option, I have nevertheless used

TransformGroup in a little project named TransformExperiment that allows you to play with

several kinds of transforms. It begins with all the properties set to their default values;

Silverlight Project: TransformExperiment File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="Transform Experiment"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock.RenderTransform>

 <TransformGroup>

 <ScaleTransform ScaleX="1" ScaleY="1"

 CenterX="0" CenterY="0" />

 <SkewTransform AngleX="0" AngleY="0"

 CenterX="0" CenterY="0" />

 <RotateTransform Angle="0"

 CenterX="0" CenterY="0" />

 <TranslateTransform X="0" Y="0" />

 </TransformGroup>

 </TextBlock.RenderTransform>

 </TextBlock>

</Grid>

You can experiment with this program right in Visual Studio. At first you‘ll want to try out

each type of transform independently of the others. Although it‘s at the bottom of the group,

try TranslateTransform first. By setting the X property you can shift the text right or (with

negative values) to the left. The Y property makes the text go down or up. Set Y equal to –400

or so and the text goes up into the title area!

TranslateTransform is useful for making drop shadows. and effects where the text seems

embossed or engraved. Simply put two TextBlock elements in the same location with the same

text, and all the same text properties, but different Foreground properties. Without any

transforms, the second TextBlock sits on top of the first TextBlock. On one or the other, apply a

small ScaleTransform and the result is magic. The EmbossedText project demonstrates this

technique. Here are two TextBlock elements in the same Grid:

Silverlight Project: EmbossedText File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="EMBOSS"

 Foreground="{StaticResource PhoneForegroundBrush}"

 FontSize="96"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 <TextBlock Text="EMBOSS"

 Foreground="{StaticResource PhoneBackgroundBrush}"

 FontSize="96"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock.RenderTransform>

 <TranslateTransform X="2" Y="2" />

 </TextBlock.RenderTransform>

 </TextBlock>

</Grid>

Notice I‘ve used theme colors for the two Foreground properties. With the default dark theme,

the TextBlock underneath is white, and the one on top is black like the background but shifted

a little to let the white one peak through a bit:

Generally this technique is applied to black text on a white background, but it looks pretty

good with this color scheme as well.

Back in the TransformExperiment project, set the TranslateTransform back to the default

values of 0, and experiment a bit with the ScaleX and ScaleY properties of the ScaleTransform.

The default values are both 1. Larger values make the text larger in the horizontal and vertical

directions; values smaller than 1 shrink the text. You can even use negative values to flip the

text around its horizontal or vertical axes.

All scaling is relative to the upper-left corner of the text. In other words, as the text gets larger

or smaller, the upper-left corner of the text remains in place. This might be a little hard to see

because the upper-left corner that remains in place is actually a little above the horizontal

stroke of the first ‗T‘ in the text string, in the area reserved for diacritics such as accent marks

and heavy-metal umlauts.

Suppose you want to scale the text relative to its center. That‘s the purpose of the CenterX and

CenterY properties of the ScaleTransform. You can estimate the size of the text (or obtain it in

code using the ActualWidth and ActualHeight properties of the TextBlock), divide the values

by 2 and set CenterX and CenterY to the results. For the text string in TransformExperiment,

try 96 and 13, respectively. Now the scaling is relative to the center.

But there‘s a much easier way: TextBlock itself has a RenderTansformOrigin property that it

inherits from UIElement. This property is a point in relative coordinates where (0, 0) is the

upper-left corner, (1, 1) is the lower-right corner, and (0.5, 0.5) is the center. Set CenterX and

CenterY in the ScaleTransform back to 0, and set RenderTransformOrigin in the TextBlock like

so:

RenderTransformOrigin="0.5 0.5"

Leave RenderTransformOrigin at this value when you set the ScaleX and ScaleY properties of

ScaleTransform back to the default values of 1, and play around with RotateTransform. As with

scaling, rotation is always relative to a point. You can use CenterX and CenterY to set that

point in absolute coordinates relative to the object being rotated, or you can use

RenderTransformOrigin to use relative coordinates. The Angle property is in degrees, and

positive angles rotate clockwise. Here‘s rotation of 45 degrees around the center.

The SkewTransform is hard to describe but easy to demonstrate. Here‘s the result when

AngleX is set to 30 degrees:

For increasing Y coordinates, X coordinates are shifted to the right. Use a negative angle to

simulate oblique (italic-like) text. Setting AngleY causes vertical shifting based on increasing X

coordinates. Here‘s AngleY set to 30 degrees:

All the transforms that derive from Transform are categorized as affine (―non infinite‖)

transforms. A rectangle will never be transformed into anything other than a parallelogram.

It‘s easy to convince yourself that the order of the transforms makes a difference. For example,

in TransformExperiment on the ScaleTransform set ScaleX and ScaleY to 4, and on the

TranslateTransform set X and Y to 100. The text is being scaled by a factor of 4 and then

translated 100 pixels. Now cut and paste the markup to move the TranslateTransform above

the ScaleTransform. Now the text is first translated by 100 pixels and then scaled, but the

scaling applies to the original translation factors as well, so the text is effectively translated by

400 pixels.

It is sometimes tempting to put a Transform in a Style, like so:

<Setter Property="RenderTransform">

 <Setter.Value>

 <TranslateTransform />

 </Setter.Value>

</Setter>

You can then manipulate that transform from code, perhaps. But watch out: resources are

shared. There will be only one instance of the TranslateTransform that is shared among all

elements that use the Style. Hence, changing the transform for one element will also affect

the others!

If you have a need to combine transforms in the original order that I had them in

TransformExperiment—the order scale, skew, rotate, translate—you can use

CompositeTransform to set them all in one convenient class.

Let‘s make a clock. It won‘t be a digital clock, but it won‘t be entirely an analog clock either.

That‘s why I call it HybridClock. The hour, minute, and second hands are actually TextBlock

objects that are rotated around the center of the content grid. Here‘s the XAML:

Silverlight Project: HybridClock File: MainPage.xaml (excerpt)

<Grid Name="ContentGrid" Grid.Row="1" SizeChanged="OnContentGridSizeChanged">

 <TextBlock Name="referenceText"

 Text="THE SECONDS ARE 99"

 Foreground="Transparent" />

 <TextBlock Name="hourHand">

 <TextBlock.RenderTransform>

 <CompositeTransform />

 </TextBlock.RenderTransform>

 </TextBlock>

 <TextBlock Name="minuteHand">

 <TextBlock.RenderTransform>

 <CompositeTransform />

 </TextBlock.RenderTransform>

 </TextBlock>

 <TextBlock Name="secondHand">

 <TextBlock.RenderTransform>

 <CompositeTransform />

 </TextBlock.RenderTransform>

 </TextBlock>

</Grid>

Notice the SizeChanged handler on the Grid. The code-behind file will use this to make

calculation adjustments based on the size of the Grid, which will depend on the orientation.

Of the four TextBlock elements in the same Grid, the first is transparent and used solely by the

code part of the program for measurement. The other three TextBlock elements are colored

through property inheritance, and have default CompositeTransform objects attached to their

RenderTransform properties. The code-behind file defines a few fields that will be used

throughout the program, and the constructor sets up a DispatcherTimer:

Silverlight Project: HybridClock File: MainPage.xaml.cs (excerpt)

public partial class MainPage : PhoneApplicationPage

{

 Point gridCenter;

 Size textSize;

 double scale;

 public MainPage()

 {

 InitializeComponent();

 DispatcherTimer tmr = new DispatcherTimer();

 tmr.Interval = TimeSpan.FromSeconds(1);

 tmr.Tick += OnTimerTick;

 tmr.Start();

 }

 void OnContentGridSizeChanged(object sender, SizeChangedEventArgs args)

 {

 gridCenter = new Point(args.NewSize.Width / 2,

 args.NewSize.Height / 2);

 textSize = new Size(referenceText.ActualWidth,

 referenceText.ActualHeight);

 scale = Math.Min(gridCenter.X, gridCenter.Y) / textSize.Width;

 UpdateClock();

 }

 void OnTimerTick(object sender, EventArgs e)

 {

 UpdateClock();

 }

 void UpdateClock()

 {

 DateTime dt = DateTime.Now;

 double angle = 6 * dt.Second;

 SetupHand(secondHand, "THE SECONDS ARE " + dt.Second, angle);

 angle = 6 * dt.Minute + angle / 60;

 SetupHand(minuteHand, "THE MINUTE IS " + dt.Minute, angle);

 angle = 30 * (dt.Hour % 12) + angle / 12;

 SetupHand(hourHand, "THE HOUR IS " + (((dt.Hour + 11) % 12) + 1), angle);

 }

 void SetupHand(TextBlock txtblk, string text, double angle)

 {

 txtblk.Text = text;

 CompositeTransform xform = txtblk.RenderTransform as CompositeTransform;

 xform.CenterX = textSize.Height / 2;

 xform.CenterY = textSize.Height / 2;

 xform.ScaleX = scale;

 xform.ScaleY = scale;

 xform.Rotation = angle - 90;

 xform.TranslateX = gridCenter.X - textSize.Height / 2;

 xform.TranslateY = gridCenter.Y - textSize.Height / 2;

 }

}

HybridClock uses the SizeChanged handler to determine the center of the ContentGrid, and

the size of the TextBlock named referenceText. (The latter item won‘t change for the duration

of the program.) From these two items the program can calculate a scaling factor that will

expand the referenceText so it is exactly as wide as half the smallest dimension of the Grid,

and the other TextBlock elements proportionally.

The timer callback obtains the current time and calculates the angles for the second, minute,

and hour hands relative to their high-noon positions. Each hand gets a call to SetupHand to

do all the remaining work.

The CompositeTransform must perform several chores. The translation part must move the

TextBlock elements so the beginning of the text is positioned in the center of the Grid. But I

don‘t want the upper-left corner of the text to be positioned in the center. I want a point that

is offset by that corner by half the height of the text. That explains the TranslateX and

TranslateY properties. Recall that in the CompositeTransform the translation is applied last;

that‘s why I put these properties at the bottom of the method, even though the order that

these properties are set is irrelevant.

Both ScaleX and ScaleY are set to the scaling factor calculated earlier. The angle parameter

passed to the method is relative to the high-noon position, but the TextBlock elements are

positioned at 3:00. That why the Rotation angle offsets the angle parameter by –90 degrees.

Both scaling and rotation are relative to CenterX and CenterY, which is a point at the left end

of the text, but offset from the upper-left corner by half the text height. Here‘s the clock in

action:

Windows Phone also supports the Projection transform introduced in Silverlight 3, but it‘s

almost entirely used in connection with animations, so I‘ll hold off on Projection until then.

Animating at the Speed of Video

The use of the DispatcherTimer for the HybridClock program makes sense because the

positions of the clock hands need to be updated only once per second. But switching to a

sweep second hand immediately raises the question: How often should the clock hands be

updated? Considering that the second hand only needs to move a few pixels per second,

setting the timer for 250 milliseconds would probably be fine, and 100 milliseconds would be

more than sufficient.

It‘s helpful to keep in mind that the video display of Windows Phone 7 devices is refreshed 30

times per second, or once every 33-1/3 milliseconds. Therefore, the use of a timer with a tick

rate shorter than 33-1/3 milliseconds makes no sense whatsoever for video animations.

Ideal for animations is a timer that is synchronous with the video refresh rate, and Silverlight

provides one in the very easy-to-use CompositionTarget.Rendering event. The event handler

looks something like this:

void OnCompositionTargetRendering(object sender, EventArgs args)

{

 TimeSpan renderingTime = (args as RenderingEventArgs).RenderingTime;

 ...

}

Although the event handler must be defined with an EventArgs argument, the argument is

actually a RenderingEventArgs object. If you cast the argument to a RenderingEventArgs, you

can get a TimeSpan object that indicates the elapsed time since the application began

running.

CompositionTarget is a static class with only one public member, which is the Rendering event.

Install the event handler like so:

CompositionTarget.Rendering += OnCompositionTargetRendering;

Unless you‘re coding a very animation-laden game, you probably don‘t want this event

handler installed for the duration of your program, so uninstall it when you‘re done:

CompositionTarget.Rendering -= OnCompositionTargetRendering;

The RotatingText project contains a TextBlock in the center of its content grid:

Project: RotatingText File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock Text="ROTATE!"

 FontSize="96"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 RenderTransformOrigin="0.5 0.5">

 <TextBlock.RenderTransform>

 <RotateTransform x:Name="rotate" />

 </TextBlock.RenderTransform>

 </TextBlock>

</Grid>

Notice the x:Name attribute on the RotateTransform. You can‘t use Name here because that‘s

defined by FrameworkElement. The code-behind file starts a CompositionTarget.Rendering

event going in its constructor:

Project: RotatingText File: MainPage.xaml.cs (except)

public partial class MainPage : PhoneApplicationPage

{

 TimeSpan startTime;

 public MainPage()

 {

 InitializeComponent();

 CompositionTarget.Rendering += OnCompositionTargetRendering;

 }

 void OnCompositionTargetRendering(object sender, EventArgs args)

 {

 TimeSpan renderingTime = (args as RenderingEventArgs).RenderingTime;

 if (startTime.Ticks == 0)

 {

 startTime = renderingTime;

 }

 else

 {

 TimeSpan elapsedTime = renderingTime - startTime;

 rotate.Angle = 180 * elapsedTime.TotalSeconds % 360;

 }

 }

}

The event handler uses the renderingTime to pace the animation so there‘s one revolution

every two seconds.

For simple repetitive animations like this, the use of Silverlight‘s built-in animation facility is

greatly preferred over CompositionTarget.Rendering.

Handling Manipulation Events

Transforms are also a good way to handle manipulation events. Here‘s a ball sitting in the

middle of the content grid:

Silverlight Project: DragAndScale File: Page.xaml

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Ellipse Width="200"

 Height="200"

 RenderTransformOrigin="0.5 0.5"

 ManipulationDelta="OnEllipseManipulationDelta">

 <Ellipse.Fill>

 <RadialGradientBrush Center="0.4 0.4"

 GradientOrigin="0.4 0.4">

 <GradientStop Offset="0" Color="White" />

 <GradientStop Offset="1" Color="{StaticResource PhoneAccentColor}"

/>

 </RadialGradientBrush>

 </Ellipse.Fill>

 <Ellipse.RenderTransform>

 <CompositeTransform />

 </Ellipse.RenderTransform>

 </Ellipse>

</Grid>

Notice the CompositeTransform. It has no name so the code will have to reference it throug

the Ellipse element. (This is a good strategy to use if you‘re handling more than one element

in a single event handler.)

The code-behind file just handles the ManipulationDelta event from the Ellipse:

void OnEllipseManipulationDelta(object sender, ManipulationDeltaEventArgs args)

{

 Ellipse ellipse = sender as Ellipse;

 CompositeTransform xform = ellipse.RenderTransform as CompositeTransform;

 if (args.DeltaManipulation.Scale.X > 0 || args.DeltaManipulation.Scale.Y > 0)

 {

 double maxScale = Math.Max(args.DeltaManipulation.Scale.X,

 args.DeltaManipulation.Scale.Y);

 xform.ScaleX *= maxScale;

 xform.ScaleY *= maxScale;

 }

 xform.TranslateX += args.DeltaManipulation.Translation.X;

 xform.TranslateY += args.DeltaManipulation.Translation.Y;

 args.Handled = true;

}

For handling anything other than taps, the ManipulationDelta event is crucial. This is the event

that consolidates one or more fingers on an element into translation and scaling information.

The ManipulationDeltaEventArgs has two properties named CumulativeManipulation and

DeltaManipulation, both of type ManipulationDelta, which has two properties named

Translation and Scale.

Using DeltaManipulation is often easier than CumulativeManipulation. If only one finger is

manipulating the element, then only the Translation factors are valid, and these can just be

added to the TranslateX and TranslateY properties of the CompositeTransform. If two fingers

are touching the screen, then the Scale values are non-zero, although they could be negative

and they‘re often unequal. To keep the circle a circle, I use the maximum and multiply by the

existing scaling factors of the transform. This enables ―pinch‖ and ―stretch‖ manipulations.

The XAML file sets the transform center to the center of the ellipse; in theory it should be

based on the position and movement of the two fingers, but this is a rather more difficult

thing to determine.

The Border Element

The TextBlock doesn‘t include any kind of border that you can draw around the text.

Fortunately Silverlight has a Border element that you can use to enclose a TextBlock or any

other type of element. The Border has a property named Child of type UIElement, which

means you can only put one element in a Border; however, the element you put in the Border

can be a panel, and you can then add multiple elements to that panel.

If you load the XamlExperiment program from the last chapter into Visual Studio, you can put

a TextBlock in a Border like so:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25">

 <Border.Child>

 <TextBlock Text="Hello, Windows Phone 7!" />

 </Border.Child>

 </Border>

</Grid>

The Child property is the ContentProperty attribute of Border so the Border.Child tags are not

required. Without setting any HorizontalAlignment and VerticalAlignment properties, the

Border element occupies the entire area of the Grid, and the TextBlock occupies the entire

area of the Border, even through the text itself sits at the upper-left corner. You can center the

TextBlock within the Border:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25">

 <TextBlock Text="Hello, Windows Phone 7!"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

 </Border>

</Grid>

Or, you can center the Border within the Grid:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25"

 HorizontalAlignment="Center"

 VerticalAlignment="Center">

 <TextBlock Text="Hello, Windows Phone 7!" />

 </Border>

</Grid>

At this point, the Border contracts in size to become only large enough to fit the TextBlock.

You can also set the HorizontalAlignment and VerticalAlignment properties of the TextBlock

but they would now have no effect. You can give the TextBlock a little breathing room inside

the border by either setting the Margin or Padding property of the TextBlock, or the Padding

property of the Border:

And now we have an attractive Border surrounding the TextBlock. The BorderThickness

property is of type Thickness, the same structure used for Margin or Padding, so you can

potentially have four different thicknesses for the four sides. The CornerRadius property is of

type CornerRadius, a structure that also lets you specify four different values for the four

corners. The Background and BorderBrush properties are of type Brush, so you can use

gradient brushes.

What happens if you set a RenderTransform on the TextBlock? Try this:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Padding="20">

 <TextBlock Text="Hello, Windows Phone 7!"

 RenderTransformOrigin="0.5 0.5">

 <TextBlock.RenderTransform>

 <RotateTransform Angle="45" />

 </TextBlock.RenderTransform>

 </TextBlock>

 </Border>

</Grid>

Here‘s what you get:

The RenderTransform property is called a render transform for a reason: It only affects

rendering. It does not affect how the element is perceived in the layout system. The Windows

Presentation Foundation has a second property named LayoutTransform that does affect

layout. If you were coding in WPF and set the LayoutTransform in this case, the Border would

expand to fit the rotated text, although it wouldn‘t be rotated itself. But Silverlight does not

yet have a LayoutTransform and, yes, it is sometimes sorely missed.

Your spirits might perk up, however, when you try moving the RenderTransform (and

RenderTransformOrigin) from the TextBlock to the Border, like this:

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Border Background="Navy"

 BorderBrush="Blue"

 BorderThickness="16"

 CornerRadius="25"

 HorizontalAlignment="Center"

 VerticalAlignment="Center"

 Padding="20"

 RenderTransformOrigin="0.5 0.5">

 <Border.RenderTransform>

 <RotateTransform Angle="45" />

 </Border.RenderTransform>

 <TextBlock Text="Hello, Windows Phone 7!" />

 </Border>

</Grid>

Transforms affect not only the element to which they are applied, but all child elements as

this screen shot makes clear:

This means that you can apply transforms to whole sections of the visual tree, and within that

transformed visual tree you can have additional compounding transforms.

TextBlock Properties and Inlines

Although I‘ve been talking about the TextBlock since the early pages of this book, it‘s time to

look at it in just a little bit more detail. The TextBlock element has five font-related properties:

FontFamily, FontSize, FontStretch, FontStyle, and FontWeight.

As you saw earlier, you can set FontStyle to either Normal or Italic. In theory, you can set

FontStretch to values such as Condensed and Expanded but I‘ve never seen these work in

Silverlight. Generally you‘ll set FontWeight to Normal or Bold, although there are other

options like Black, SemiBold, and Light.

 TextBlock also has a TextDecorations property. Although this property seems to be very

generalized, in Silverlight there is only one option:

TextDecorations="Underline"

The TextBlock property I‘ve used most, of course, is Text itself. The string you set to the Text

property can include embedded Unicode characters in the standard XML format, for example:

Text="π is approximately 3.14159"

If the Text property is set to a very long string, you might not be able to see all of it. You can

insert the codes for carriage return or line feed characters ( or
) or you can

set

TextWrapping="Wrap"

and TextAlignment to Left, Right, or Center (but not Justify). You can also set the text as a

content of the TextBlock element:

<TextBlock>

 This is some text.

</TextBlock>

However, you might be surprised to learn that the ContentProperty attribute of TextBlock is

not the Text property but another property named Inlines. This property is of type

InlineCollection—a collection of objects of type Inline, namely LineBreak and Run. These make

TextBlock much more versatile. The use of LineBreak is simple:

<TextBlock>

 This is some text<LineBreak />This is some more text.

</TextBlock>

Run is interesting because it too has FontFamily, FontSize, FontStretch, FontStyle, FontWeight,

Foreground, and TextDecorations properties, so you can make your text very fancy:

<TextBlock FontSize="36"

 TextWrapping="Wrap">

 This is

 some <Run FontWeight="Bold">bold</Run> text and

 some <Run FontStyle="Italic">italic</Run> text and

 some <Run Foreground="Red">red</Run> text and

 some <Run TextDecorations="Underline">underlined</Run> text

 and some <Run FontWeight="Bold"

 FontStyle="Italic"

 Foreground="Cyan"

 FontSize="72"

 TextDecorations="Underline">big</Run> text.

</TextBlock>

In the Visual Studio design view, you might see the text within the Run tags not properly

separated from the text outside the Run tags. This is an error. When you actually run the

program in the emulator, it looks fine:

These are vector-based TrueType fonts, and the actual vectors are scaled to the desired font

size before the font characters are rasterized, so regardless how big the characters get, they

still seem smooth.

Although you might think of a TextBlock as sufficient for a paragraph of text, it doesn‘t

provide all the features that a proper Paragraph class provides, such as first-line text indenting

or a hanging first line where the rest of the paragraph is indented. I don‘t know of a way to

accomplish the second feat, but the first one is actually fairly easy, as I‘ll demonstrate in the

next chapter.

The use of the Inlines property allows us to write a program that explores the FontFamily

property. In XAML you can set FontFamily to a string. (In code you need to create an instance

of the FontFamily class.) The default is called ―Portable User Interface‖. On the phone

emulator, this default font maps seems to map to Segoe WP—a Windows Phone variant of

the Segoe font that is a frequently found in Microsoft products and printed material,

including this very book.

The FontFamilies program lists all the FontFamily values that Visual Studio‘s Intellisense tells us

are valid:

Silverlight Project: FontFamilies File: MainPage.xaml

<Grid x:Name="ContentGrid" Grid.Row="1">

 <TextBlock FontSize="24">

 <Run FontFamily="Arial">Arial</Run><LineBreak />

 <Run FontFamily="Arial Black">Arial Black</Run><LineBreak />

 <Run FontFamily="Calibri">Calibri</Run><LineBreak />

 <Run FontFamily="Comic Sans MS">Comic Sans MS</Run><LineBreak />

 <Run FontFamily="Courier New">Courier New</Run><LineBreak />

 <Run FontFamily="Georgia">Georgia</Run><LineBreak />

 <Run FontFamily="Lucida Sans Unicode">Lucida Sans Unicode</Run><LineBreak />

 <Run FontFamily="Portable User Interface">Portable User

Interface</Run><LineBreak />

 <Run FontFamily="Segoe WP">Segoe WP</Run><LineBreak />

 <Run FontFamily="Segoe WP Black">Segoe WP Black</Run><LineBreak />

 <Run FontFamily="Segoe WP Bold">Segoe WP Bold</Run><LineBreak />

 <Run FontFamily="Segoe WP Light">Segoe WP Light</Run><LineBreak />

 <Run FontFamily="Segoe WP Semibold">Segoe WP Semibold</Run><LineBreak />

 <Run FontFamily="Segoe WP SemiLight">Segoe WP SemiLight</Run><LineBreak />

 <Run FontFamily="Tahoma">Tahoma</Run><LineBreak />

 <Run FontFamily="Times New Roman">Times New Roman</Run><LineBreak />

 <Run FontFamily="Trebuchet MS">Trebuchet MS</Run><LineBreak />

 <Run FontFamily="Verdana">Verdana</Run><LineBreak />

 <Run FontFamily="Webdings">Webdings</Run> (Webdings)

 </TextBlock>

</Grid>

Here‘s the result:

If you misspell a name that you assign to FontFamily, nothing bad will happen; you‘ll just get

the default.

The predefined resources include four keys that return objects of type FontFamily:

PhoneFontFamilyNormal, PhoneFontFamilyLight, PhoneFontFamilySemiLight, and

PhoneFontFamilySemiBold. These return the corresponding Segoe WP fonts.

More on Images

As you saw in Chapter 4, a Silverlight program can display bitmaps in the JPEG and PNG

formats with the Image element. Let‘s explore the Image element a little more.

The ImageExperiment project contains a folder named Images containing a file named

BuzzAldrinOnTheMoon.png, which is the famous photograph taken with a Hasselblad camera

by Neil Armstrong on July 21st, 1969. The photo is 288 pixels square.

The file is referenced in the MainPage.xaml file like this:

Silverlight Project: ImageExperiment File: MainPage.xaml (excerpt)

<Grid x:Name="ContentGrid" Grid.Row="1">

 <Image Source="Images/BuzzAldrinOnTheMoon.png" />

</Grid>

I‘ve also give the content grid a Background brush of the accent color just to make the photo

stand out a little better. Here‘s how it appears in landscape mode:

By default, the bitmap expands to the size of its container (the content grid in this case) while

maintaining the correct aspect ratio. Depending on the dimensions and aspect ratio of the

container, the image is centered either horizontally or vertically. You can move it to one side

or the other with the HorizontalAlignment and VerticalAlignment properties.

The stretching behavior is governed by a property defined by the Image element named

Stretch, which is set to a member of the Stretch enumeration. The default value is Uniform,

which you can set explicitly like this:

<Image Source="Images/BuzzAldrinOnTheMoon.png"

 Stretch="Uniform" />

The term ―uniform‖ here means equally in both directions so the image is not distorted.

You can also set Stretch to Fill to make the image fill its container by stretching unequally.

A compromise is UniformToFill:

Now the Image both fills the container and stretches uniformly to preserve the aspect ratio.

How can both goals be accomplished? Well, in general the only way that can happen is by

cropping the image. You can govern which edge gets cropped with the HorizontalAlignment

and VerticalAlignment properties. What setting you use really depends on the particular

image.

The fourth option is None for no stretching. Now the image is displayed in its native size of

288 pixels square:

If you want to display the image in a particular size at the correct aspect ratio, you can set

either an explicit Width or Height property. If you want to stretch non-uniformly to a

particular dimension, specify both Width and Height and set Stretch to Fill.

You can set transforms on the Image element with the same ease that you set them on

TextBlock elements:

<Image Source="Images/BuzzAldrinOnTheMoon.png"

 RenderTransformOrigin="0.5 0.5">

 <Image.RenderTransform>

 <RotateTransform Angle="30" />

 </Image.RenderTransform>

</Image>

Here it is:

Modes of Opacity

UIElement defines an Opacity property that you can set to a value between 0 and 1 to make

an element (and its children) more or less transparent. But a somewhat more interesting

property is OpacityMask, which can ―fade out‖ part of an element. You set the OpacityMask to

an object of type Brush; most often you‘ll use one of the two GradientBrush derivatives. The

actual color of the brush is ignored. Only the alpha channel is used to govern the opacity of

the element.

For example, you can apply a RadialGradientBrush to the OpacityMask property of an Image

element:

<Image Source="Images/BuzzAldrinOnTheMoon.png">

 <Image.OpacityMask>

 <RadialGradientBrush>

 <GradientStop Offset="0" Color="White" />

 <GradientStop Offset="0.8" Color="White" />

 <GradientStop Offset="1" Color="Transparent" />

 </RadialGradientBrush>

 </Image.OpacityMask>

</Image>

Notice that the RadialGradientBrush is opaque in the center, and continues to be opaque until

a radius of 0.8, at which point the gradient goes to fully transparent at the edge of the circle.

Here‘s the result, a very nice effect that looks much fancier than the few lines of XAML would

seem to imply:

Here‘s a popular technique that uses two identical elements but one of them gets both a

ScaleTransform to flip it upside down, and an OpacityMask to make it fade out:

<Image Source="Images/BuzzAldrinOnTheMoon.png"

 Stretch="None"

 VerticalAlignment="Top" />

<Image Source="Images/BuzzAldrinOnTheMoon.png"

 Stretch="None"

 VerticalAlignment="Top"

 RenderTransformOrigin="0.5 1">

 <Image.RenderTransform>

 <ScaleTransform ScaleY="-1" />

 </Image.RenderTransform>

 <Image.OpacityMask>

 <LinearGradientBrush StartPoint="0 0" EndPoint="0 1">

 <GradientStop Offset="0" Color="#00000000" />

 <GradientStop Offset="1" Color="#40000000" />

 </LinearGradientBrush>

 </Image.OpacityMask>

</Image>

The two Image elements are the same size and aligned at the top and center. Normally the

second one would be positioned on top of the other. But the second one has a

RenderTransform set to a ScaleTransform that flips the image around the horizontal axis. The

RenderTransformOrigin is set at (0.5, 1), which is the bottom of the element. This causes the

scaling to flip the image around its bottom edge. Then a LinearGradientBrush is applied to the

OpacityMask property to make the reflected image fade out:

Notice that the GradientStop values apply to the unreflected image, so that full transparency

(the #00000000 value) seems to be at the top of the picture and then is reflected to the

bottom of the composite display. It is often little touches like these that make a program‘s

visuals pop out just a little more and endear themselves to the user.

But indiscriminate use of OpacityMask—particularly in combination with complex

animations—is discouraged because it sometimes tends to cripple performance. The general

rule is: Only use it if the effect is really, really cool.

You can get a more subtle affect by changing the gradient offsets. These can actually be set

outside the range of 0 to 1, perhaps like this:

<LinearGradientBrush StartPoint="0 0" EndPoint="1 0">

 <GradientStop Offset="-1" Color="White" />

 <GradientStop Offset="0.5" Color="{StaticResource PhoneAccentColor}" />

 <GradientStop Offset="2" Color="Black" />

</LinearGradientBrush>

Now the gradient goes from White at an offset of –1 to the accent color at 0.5 to Black at 2.

But you’re only seeing the section of the gradient between 0 and 1, so the White and Black

extremes are not here:

It’s just another little suggestion that XAML can be more powerful than it might at first seem.

Part III

XNA

Chapter 20

Principles of Movement
Much of the core of an XNA program is dedicated to moving sprites around the screen.

Sometimes these sprites move under user control; at other times they move on their own

volition as if animated by some internal vital force. Instead of moving real sprites, you can use

instead move some text, and text is what I’ll be sticking with for this entire chapter. The

concepts and strategies involved in moving text around the screen are the same as those in

moving sprites.

A particular text string seems to move around the screen when it’s given a different position

in the DrawString method during subsequent calls of the Draw method in Game. In Chapter

2, you’ll recall, the textPosition variable was simply assigned a fixed value during the

LoadContent method. This code puts the text in the center of the screen:

Vector2 textSize = kootenay14.MeasureString(text);

Viewport viewport = this.GraphicsDevice.Viewport;

textPosition = new Vector2((viewport.Width - textSize.X) / 2,

 (viewport.Height - textSize.Y) / 2);

Most of the programs in this chapter recalculate textPosition during every call to Update so

the text is drawn in a different location during the Draw method. Usually nothing fancy will be

happening; the text will simply be moved from the top of the screen down to the bottom, and

then back up to the top, and down again. Lather, rinse, repeat.

I’m going to begin with a rather ―naïve‖ approach to moving text, and then refine it. If you’re

not accustomed to thinking in terms of vectors or parametric equations, my refinements will

at first seem to make the program more complex, but you’ll see that the program actually

becomes simpler and more flexible.

The Naïve Approach

For this first attempt at text movement, I want to try something simple. I’m just going to

move the text up and down vertically so the movement is entirely in one dimension. All we

have to worry about is increasing and decreasing the Y coordinate of textPosition.

If you want to play along, you can create a Visual Studio project named NaiveTextMovement

and add the 14-point Kootenay font to the Content directory. The fields in the Game1 class

are defined like so:

XNA Project: NaiveTextMovement File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 const float SPEED = 240f; // pixels per second

 const string TEXT = "Hello, Windows Phone 7!";

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Viewport viewport;

 Vector2 textSize;

 Vector2 textPosition;

 bool isGoingUp = false;

 …

 }

}

Nothing should be too startling here. I’ve defined both the SPEED and TEXT as constants. The

SPEED is set at 240 pixels per second. The Boolean isGoingUp indicates whether the text is

currently moving down the screen or up the screen.

The LoadContent method is very familiar from the program in Chapter 2 except that the

viewport is saved as a field:

XNA Project: NaiveTextMovement File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 viewport = this.GraphicsDevice.Viewport;

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 textSize = kootenay14.MeasureString(TEXT);

 textPosition = new Vector2(viewport.X + (viewport.Width - textSize.X) / 2, 0);

}

Notice that this textPosition centers the text horizontally but positions it on the top of the

screen. As is usual with most XNA programs, all the real calculational work occurs during the

Update method:

XNA Project: NaiveTextMovement File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 if (!isGoingUp)

 {

 textPosition.Y += SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds;

 if (textPosition.Y + textSize.Y > viewport.Height)

 {

 float excess = textPosition.Y + textSize.Y - viewport.Height;

 textPosition.Y -= 2 * excess;

 isGoingUp = true;

 }

 }

 else

 {

 textPosition.Y -= SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds;

 if (textPosition.Y < 0)

 {

 float excess = - textPosition.Y;

 textPosition.Y += 2 * excess;

 isGoingUp = false;

 }

 }

 base.Update(gameTime);

}

The GameTime argument to Update has two crucial properties of type TimeSpan:

TotalGameTime and ElapsedGameTime. This ―game time‖ might not exactly keep pace with

real time. There are some approximations involved so that animations are smoothly paced.

But it’s close. TotalGameTime reflects the length of time since the game was started;

ElapsedGameTime is the time since the previous Update call. In general, ElapsedGameTime will

always equal the same value—33-1/3 milliseconds reflecting the 30 Hz refresh rate of the

phone’s video display. I’ll discuss exceptions to this rule in a later chapter.

You can use either TotalGameTime or ElapsedGameTime to pace movement. In this example,

on the first call to Update, the textPosition has been calculated so the text is positioned on the

upper edge of the screen and isGoingUp is false. The code increments textPosition.Y based on

the product of SPEED (which is in units of pixels per second) and the total seconds that have

elapsed since the last Update call, which will actually be 1/30th second.

It could be that performing this calculation moves the text too far—for example, partially off

the bottom of the screen. This can be detected if the vertical text position plus the height of

the text is greater than the Bottom property of the client rectangle. In that case I calculate

something I call excess. This is the distance that the vertical text position has exceeded the

boundary of the display. I compensate with two times that—as if the text has bounced off the

bottom and is now excess pixels above the bottom of the screen. At that point, isGoingUp is

set to true.

The logic for moving up is (as I like to say) the same but completely opposite. The actual Draw

override is simple:

XNA Project: NaiveTextMovement File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

The big problem with this naïve approach is that it doesn’t incorporate any mathematical

tools that would allow us to do something a little more complex—for example, move the text

diagonally rather than just in one dimension.

What’s missing from the NaiveTextMovement program is any concept of direction that would

allow escaping from horizontal or vertical movement. What we need are vectors.

A Brief Review of Vectors

A vector is a mathematical entity that encapsulates both a direction and a magnitude. Very

often a vector is symbolized by a line with an arrow. These three vectors have the same

direction but different magnitudes:

These three vectors have the same magnitude but different directions:

These three vectors have the same magnitude and the same direction, and hence are

considered to be identical:

A vector has no location, so even if these three vectors seem to be in different locations and,

perhaps for that reason, somewhat distinct, they really aren’t in any location at all.

A point has no magnitude and no dimension. A point is just location. In two-dimensional

space, a point is represented by a number pair (x, y) to represent a horizontal distance and a

vertical distance from an origin (0, 0):

The figure shows increasing values of Y going down for consistency with the two-dimensional

coordinate system in XNA. (XNA 3D is different.)

A vector has magnitude and dimension but no location., but like the point a vector is

represented by the number pair (x, y) except that it’s usually written in boldface like (x, y) to

indicate a vector rather than a point.

How can it be that two-dimensional points and two-dimensional vectors are both represented

in the same way? Consider two points (x1, y1) and (x2, y2), and a line from the first point to

the second:

That line has the same length and is in the same direction as a line from the origin to (x2 – x1,

y2 – y1):

That magnitude and direction define the vector (x2 – x1, y2 – y1).

For that reason, XNA uses the same Vector2 structure to store two-dimensional coordinate

points and two-dimensional vectors. (There is also a Point structure in XNA but the X and Y

fields are integers.)

For the vector (x, y), the magnitude is the length of the line from the point (0, 0) to the point

(x, y). You can determine the length of the line and the vector using the Pythagorean

Theorem, which has the honor of being the most useful tool in computer graphics

programming:

 √

The Vector2 structure defines a Distance method that will perform this calculation for you.

Vector2 also includes a DistanceSquared method, which despite the longer name, is actually a

simpler calculation. It is very likely that the Vector2 structure implements DistanceSquared like

this:

public float DistanceSquare()

{

 return x * x + y * y;

}

The Distance method is then based on DistanceSquared:

public float Distance()

{

 return (float)Math.Sqrt(DistanceSquare());

}

If you only need to compare magnitudes between two vectors, use DistanceSquared because

it’s faster. In the context of working with Vector2 objects, the terms ―length‖ and ―distance‖

and ―magnitude‖ can be used interchangeably.

Because you can represent points, vectors, and sizes with the same Vector2 structure, the

structure provides plenty of flexibility for performing arithmetic calculations. It’s up to you to

perform these calculations with some degree of intelligence. For example, suppose point1 and

point2 are both objects of type Vector2 but you’re using them to represent points. It makes no

sense to add those two points together, although Vector2 will allow you to do so. But it makes

lot of sense to subtract one point from another to obtain a vector:

Vector2 vector = point2 – point1;

The operation just subtracts the X values and the Y values; the vector is in the direction from

point1 to point2 and its magnitude is the distance between those points. It is also common to

add a vector to a point:

Vector2 point = point1 + vector;

This operation obtains a point that is a certain distance and in a certain direction from

another point. You can multiply a vector by a single number. If vector is an object of type

Vector2, then

vector *= 5;

is equivalent to:

vector.X *= 5;

vector.Y *= 5;

The operation effectively increases the magnitude of the vector by a factor of 5. Similarly you

can divide a vector by a number. If you divide a vector by its length, then the resultant length

becomes 1. This is known as a normalized vector, and Vector2 has a Normalize method

specifically for that purpose. The statement:

vector.Normalize();

is equivalent to

vector /= vector.Distance();

A normalized vector represents just a direction without magnitude, but it can be multiplied by

a number to give it that length.

If vector has a certain length and direction, then –vector has the same length but the opposite

direction. I’ll make use of this in the next program coming up.

The direction of a vector (x, y) is the direction from the point (0, 0) to the point (x, y). You can

convert that direction to an angle with the second most useful tool in computer graphics

programming, the Math.Atan2 method:

float angle = (float)Math.Atan2(vector.Y, vector.X);

Notice that the Y component is specified first. The angle is in radians—remember that there

are 2π radians to 360 degrees—measured clockwise from the positive X axis.

If you have an angle in radians, you can obtain a normalized vector from it like so:

Vector2 vector = new Vector2((float)Math.Cos(angle), (float)Math.Sin(angle));

The Vector2 structure has four static properties. Vector2.Zero returns a Vector2 object with

both X and Y set to zero. That’s actually an invalid vector because it has no direction, but it’s

useful for representing a point at the origin. Vector2.UnitX is the vector (1, 0) and

Vector2.UnitY is the vector (0, 1). Vector2.One is the point (1, 1) or the vector (1, 1), which is

useful if you’re using the Vector2 for horizontal and vertical scaling factors (as I do later in this

chapter.)

Moving Sprites with Vectors

That little refresher course should provide enough knowledge to revamp the text-moving

program to use vectors. The Visual Studio project is called VectorTextMovement. Here are the

new fields:

XNA Project: VectorTextMovement File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 const float SPEED = 240f; // pixels per second

 const string TEXT = "Hello, Windows Phone 7!";

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Vector2 midPoint;

 Vector2 pathVector;

 Vector2 pathDirection;

 Vector2 textPosition;

 …

}

The text will be moved between two points (called position1 and position2 in the LoadContent

method), and the midPoint field will store the point midway between those two points. The

pathVector field is the vector from position1 to position2, and pathDirection is pathVector

normalized.

The LoadContent method calculates and initializes all these fields:

XNA Project: VectorTextMovement File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 Viewport viewport = this.GraphicsDevice.Viewport;

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 Vector2 textSize = kootenay14.MeasureString(TEXT);

 Vector2 position1 = new Vector2(viewport.Width - textSize.X, 0);

 Vector2 position2 = new Vector2(0, viewport.Height - textSize.Y);

 midPoint = Vector2.Lerp(position1, position2, 0.5f);

 pathVector = position2 - position1;

 pathDirection = pathVector;

 pathDirection.Normalize();

 textPosition = position1;

}

The starting point is position1, which puts the text in the upper-right corner. The position2

point is the lower-left corner. The calculation of midPoint makes use of the static Vector2.Lerp

method, which stands for Linear intERPolation. If the third argument is 0, Vector2.Lerp returns

its first argument; if the third argument is 1, Vector2.Lerp returns its second argument, and for

values in between, the method performs a linear interpolation. Lerp is probably overkill for

calculating a midpoint: All that’s really necessary is to average the two X values and the two Y

values.

Note that pathVector is the entire vector from position1 to position2 while pathDirection is the

same vector normalized. The method concludes by initializing textPosition to position1. The

use of these fields should become apparent in the Update method:

XNA Project: VectorTextMovement File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 float pixelChange = SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds;

 textPosition += pixelChange * pathDirection;

 if ((textPosition - midPoint).LengthSquared() > (0.5f *

pathVector).LengthSquared())

 {

 float excess = (textPosition - midPoint).Length() – (0.5f *

pathVector).Length();

 pathDirection = -pathDirection;

 textPosition += 2 * excess * pathDirection;

 }

 base.Update(gameTime);

}

The first time Update is called, textPosition equals position1 and pathDirection is a normalized

vector from position1 to position2. This is the crucial calculation:

textPosition += pixelChange * pathDirection;

Multiplying the normalized pathDirection by pixelChange results in a vector that is in the same

direction as pathDirection but with a length of pixelChange. The textPosition point is increased

by this amount.

After a few seconds of textPosition increases, textPosition will go beyond position2. That can

be detected when the length of the vector from midPoint to textPosition is greater than the

length of half the pathVector. The direction must be reversed: pathDirection is set to the

negative of itself, and textPosition is adjusted for the bounce.

Notice there’s no longer a need to determine if the text is moving up or down. The

calculation involving textPosition and midPoint works for both cases. Also notice that the if

statement performs a comparison based on LengthSquared but the calculation of excess

requires the actual Length method. Because the if clause is calculated for every Update call, it’s

good to try to keep the code efficient. The length of half the pathVector never changes, so I

could have been even more efficient by storing Length or LengthSquared (or both) as fields.

The Draw method is the same as before:

XNA Project: VectorTextMovement File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

Working with Parametric Equations

It is well known that when the math or physics professor says ―Now let’s introduce a new

variable to simplify this mess,‖ no one really believes that the discussion is heading towards a

simpler place. But it’s very often true, and it’s the whole rationale behind parametric

equations. Into a seemingly difficult system of formulas a new variable is introduced that is

often simply called t, as if to suggest time. The value of t usually ranges from 0 to 1 (although

that’s just a convention) and other variables are calculated based on t. Amazingly enough,

simplicity often results.

Let’s think about the problem of moving text around the screen in terms of a ―lap.‖ One lap

consists of the text moving from the upper-right corner (position1) to the lower-left corner

(position2) and back up to position1.

How long does that lap take? We can easily calculate the lap time based on the regular speed

in pixels-per-second and the length of the lap, which is twice the magnitude of the vector

called pathVector in the previous program, and which was calculated as position2 – position1.

Once we know the speed in laps per millisecond, it should be easy to calculate a tLap variable

ranging from 0 to 1, where 0 is the beginning of the lap and 1 is the end, at which point tLap

starts over again at 0. From tLap we can get pLap, which is a relative position on the lap

ranging from 0 (the top or position1) to 1 (the bottom or position2). From pLap, calculating

textPosition should also be easy. The following table shows the relationship between these

three variables:

tLap: 0 0.5 1

pLap: 0 1 0

textPosition: position1 position2 position1

Probably right away we can see that

textPosition = position1 + pLap * pathVector;

The only really tricky part is the calculation of pLap based on tLap.

The ParametricTextMovement project contains the following fields:

XNA Project: ParametricTextMovement File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 const float SPEED = 240f; // pixels per second

 const string TEXT = "Hello, Windows Phone 7!";

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Vector2 position1;

 Vector2 pathVector;

 Vector2 textPosition;

 float lapSpeed; // laps per second

 float tLap;

 …

}

The only new variables here are lapSpeed and tLap. As is now customary, most of the variables

are set during the LoadContent method:

XNA Project: ParametricTextMovement File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 Viewport viewport = this.GraphicsDevice.Viewport;

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 Vector2 textSize = kootenay14.MeasureString(TEXT);

 position1 = new Vector2(viewport.Width - textSize.X, 0);

 Vector2 position2 = new Vector2(0, viewport.Height - textSize.Y);

 pathVector = position2 - position1;

 lapSpeed = SPEED / (2 * pathVector.Length());

}

In the calculation of lapSpeed, the numerator is in units of pixels-per-second. The

denominator is the length of the entire lap, which is two times the length of pathVector;

therefore the denominator is in units of pixels-per-lap. Dividing pixels-per-second by pixels-

per-lap give you a speed in units of laps-per-second.

One of the big advantages of this parametric technique is the sheer elegance of the Update

method:

XNA Project: ParametricTextMovement File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 tLap += lapSpeed * (float)gameTime.ElapsedGameTime.TotalSeconds;

 tLap %= 1;

 float pLap = tLap < 0.5f ? 2 * tLap : 2 - 2 * tLap;

 textPosition = position1 + pLap * pathVector;

 base.Update(gameTime);

}

The tLap field is incremented by the lapSpeed times the elapsed time in seconds. The second

calculation removes any integer part, so if tLap is incremented to 1.1 (for example), it gets

bumped back down to 0.1.

I will agree the calculation of pLap from tLap—which is a transfer function of sorts—looks like

an indecipherable mess at first. But if you break it down, it’s not too bad: If tLap is less than

0.5, then pLap is twice tLap, so for tLap from 0 to 0.5, pLap goes from 0 to 1. If tLap is greater

than or equal to 0.5, tLap is doubled and subtracted from 2, so for tLap from 0.5 to 1, pLap

goes from 1 back down to 0.

The Draw method remains the same:

XNA Project: ParametricTextMovement File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

There are some equivalent ways of performing these calculations. Instead of saving

pathVector as a field you could save position2. Then during the Update method you would

calculate textPosition using the Vector2.Lerp method:

textPosition = Vector2.Lerp(position1, position2, pLap);

In Update, instead of calculating an increment to tLap, you can calculate tLap directly from the

TotalGameState of the GameTime argument and keep the variable local:

float tLap = (lapSpeed * (float)gameTime.TotalGameTime.TotalSeconds) % 1;

Fiddling with the Transfer Function

I want to change one statement in the ParametricTextMovement program and improve the

program enormously by making the movement of the text more natural and fluid. Can it be

done? Of course!

Earlier I showed you the following table:

tLap: 0 0.5 1

pLap: 0 1 0

textPosition: position1 position2 position1

In the ParametricTextMovement project I assumed that the transfer function from tLap to

pLap would be linear, like so:

float pLap = tLap < 0.5f ? 2 * tLap : 2 - 2 * tLap;

But it doesn’t have to be linear. The VariableTextMovement project is the same as

ParametricTextMovent except for the calculation of pLap, which is now:

float pLap = (1 - (float)Math.Cos(tLap * MathHelper.TwoPi)) / 2;

When tLap is 0, the cosine is 1 and pLap is 0. When tLap is 0.5, the argument to the cosine

function is π radians (180 degrees). The cosine is -1, it’s subtracted from 1 and the result is

divided by 2, so the result is 1. And so forth. But the difference is dramatic: The text now slows

down as it approaches the corners and then speeds up as it moves away.

You can also try a couple others. This one slows down only when it reaches the bottom:

float pLap = (float)Math.Sin(tLap * Math.PI);

At the top of the screen it’s at full velocity and seems to ricochet off the edge of the screen.

This one’s just the opposite and seems more like a bouncing ball slowed down by gravity at

the top:

float pLap = 1 - Math.Abs((float)Math.Cos(tLap * Math.PI));

So you see that it’s true: Using parametric equations not only simplified the code but made it

much more amenable to enhancements.

Scaling the Text

If you’ve glanced at the documentation of the SpriteBatch class, you’ve seen five other

versions of the DrawString method. Until now I’ve been using this one:

DrawString(spriteFont, text, position, color);

There are also these two:

DrawString(spriteFont, text, position, color, rotation, origin, uniformScale, effects,

layerDepth);

DrawString(spriteFont, text, position, color, rotation, origin, vectorScale, effects,

layerDepth);

The other three versions of DrawString are the same except the second argument is a

StringBuilder rather than a string. If you’re displaying text that frequently changes, you might

want to switch to StringBuilder to avoid lots of memory allocations from the local heap.

The additional arguments to these longer versions of DrawString are primarily for rotating,

scaling, and flipping the text. The exception is the last argument, which is a float value that

indicates how multiple sprites should be arranged from front (0) to back (1). I won’t be using

that argument in connection with DrawString.

The penultimate argument is a member of the SpriteEffects enumeration: The default is None.

The FlipHorizontally and FlipVertically members both create mirror images but don’t change

the location of the text:

The argument labeled origin is a point with a default value of (0, 0). This argument is used for

three related purposes:

 It is the point relative to the text string that is aligned with the position argument relative

to the screen.

 It is the center of rotation. The rotation argument is a clockwise angle in radians.

 It is the center of scaling. Scaling can be specified with either a single number, which

scales equally in the horizontal and vertical directions to maintain the correct aspect ratio,

or a Vector2, which allows unequal horizontal and vertical scaling. (Sometimes these two

modes of scaling are called isotropic—equal in all directions—and anisotropic.)

If you use one of the longer versions of DrawString and aren’t interested in scaling, do not set

that argument to zero! A sprite scaled to a zero dimension will not show up on the screen and

you’ll spend many hours trying to figure out what went wrong. (I speak from experience.) If

you don’t want any scaling, set the argument to 1 or the static property Vector2.One.

The very first XNA program in this book calculated textPosition based on the dimensions of

the screen and the dimensions of the text:

textPosition = new Vector2((viewport.Width - textSize.X) / 2, (viewport.Height - textSize.Y)

/ 2);

The textPosition is the point on the screen where the upper-left corner of the text is to be

aligned. With the longer versions of DrawString, some alternatives become possible. For

example:

textPosition = new Vector2(viewport.Width / 2, viewport.Height / 2);

origin = new Vector2(textSize.X / 2, textSize.Y / 2);

Now the textPosition is set to the center of the screen and the origin is set to the center of the

text. This DrawString call uses those two variables to put the text in the center of the screen:

spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White,

 0, origin, 1, SpriteEffects.None, 0);

The textPosition could be set to the lower-right corner of the screen, and origin could be set

to the lower-right corner of the text:

textPosition = new Vector2(viedwport.Width, viewport.Height);

origin = new Vector2(textSize.X, textSize.Y);

Now the text will be positioned in the lower-right corner of the screen.

Rotation and scaling are always relative to a point. This is most obvious with rotation, as

anyone who’s ever explored the technology of propeller beanies will attest. But scaling is also

relative to a point. As an object grows or shrinks in size, one point remains anchored; that’s

the point indicated by the origin argument to DrawString. (The point could actually be

outside the area of the text string.)

The ScaleTextToViewport project displays a text string in its center and expands it out to fill

the viewport. An earlier version of the program rotated the text to align it with the longest

dimension of the screen; this version assumes that the screen is in landscape mode. As with

the other programs, it includes a font. Here are the fields:

XNA Project: ScaleTextToViewport File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 const float SPEED = 0.5f; // laps per second

 const string TEXT = "Hello, Windows Phone 7!";

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Vector2 textPosition;

 Vector2 origin;

 Vector2 maxScale;

 Vector2 scale;

 float tLap;

 …

}

The ―lap‖ in this program is a complete cycle of scaling the text up and then back down to

normal. During this lap, the scale field will vary between Vector2.One and maxScale.

The LoadContent method sets the textPosition field to the center of the screen, the origin field

to the center of the text, and maxScale to the maximum scaling factor necessary to fill the

screen with the text. All alignment, rotation, and scaling are based on both the center of the

text and the center of the screen.

XNA Project: ScaleTextToViewport File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 Viewport viewport = this.GraphicsDevice.Viewport;

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 Vector2 textSize = kootenay14.MeasureString(TEXT);

 textPosition = new Vector2(viewport.Width / 2, viewport.Height / 2);

 origin = new Vector2(textSize.X / 2, textSize.Y / 2);

 maxScale = new Vector2(viewport.Width / textSize.X, viewport.Height /

textSize.Y);

}

As in the previous couple programs, tLap repetitively cycles from 0 through 1. During this

single lap, the pLap variable goes from 0 to 1 and back to 0, where 0 means unscaled and 1

means maximally scaled. The Vector2.Lerp method calculates scale based on pLap.

XNA Project: ScaleTextToViewport File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 tLap = (SPEED * (float)gameTime.TotalGameTime.TotalSeconds) % 1;

 float pLap = (1 - (float)Math.Cos(tLap * MathHelper.TwoPi)) / 2;

 scale = Vector2.Lerp(Vector2.One, maxScale, pLap);

 base.Update(gameTime);

}

The Draw method uses one of the long versions of DrawString with the textPosition, angle,

and origin calculated during LoadContent, and the scale calculated during Update:

XNA Project: ScaleTextToViewport File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White,

 angle, origin, scale, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

As you run this program, you’ll notice that the vertical scaling doesn’t make the top and

bottom of the text come anywhere close to the edges of the screen. The reason is that

MeasureString returns a vertical dimension based on the maximum text height for the font,

which includes space for descenders, possible diacritical marks, and a little breathing room as

well.

It should also be obvious that you’re dealing with a bitmap font here:

The display engine tries to smooth out the jaggies but it’s debatable whether the fuzziness is

an improvement. If you need to scale text and maintain smooth vector outlines, that’s a job

for Silverlight.

Two Text Rotation Programs

Let’s conclude this chapter with two programs that rotate text.

It would be fairly simple to write a program that just rotates text around its center, but let’s try

something just a little more challenging. Let’s gradually speed up the rotation and then stop it

when a finger touches the screen. After the finger is released, the rotation should start up

slowly again and then get faster. As the speed in revolutions per second approaches the

refresh rate of the video display (or some integral fraction thereof), the rotating text should

seem to slow down, stop, and reverse. That will be fun to see as well.

A little background about working with acceleration: One of the most common forms of

acceleration we experience in day-to-day life involves objects in free-fall. In a vacuum on the

surface of the Earth, the effect of gravity produces an acceleration of a constant 32 feet per

second per second, or, as it’s often called, 32 feet per second squared:

The seemingly odd units of ―feet per second per second‖ really means that every second, the

velocity increases by 32 feet per second. At any time t in seconds, the velocity is given by the

simple formula:

 ()

where a is 32 feet per second squared. When the acceleration units of feet per second

squared is multiplied by a time, the result has units of feet per second, which is a velocity. At 0

seconds, the velocity is 0. At 1 second the velocity is 32 feet per second. At 2 seconds the

velocity is 64 feet per second, and so forth.

The distance an object in free fall travels is given by the formula:

 ()

Rudimentary calculus makes this family of formulas comprehensible: The velocity is the

derivative of the distance, and the acceleration is the derivative of the velocity. In this formula,

the acceleration is multiplied by a time squared, so the units reduce to feet. At the end of one

second the velocity of an object in free fall is up to 32 feet per second but because the free-

fall started at a zero velocity, the object has only traveled a distance of 16 feet. By the end of

two seconds, it’s gone 64 feet.

In the TouchToStopRotation project, velocity is in units of revolutions per second and

acceleration in units of revolutions per second squared:

XNA Project: TouchToStopRevolution File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 const float ACCELERATION = 1; // revs per second squared

 const float MAXSPEED = 30; // revs per second

 const string TEXT = "Hello, Windows Phone 7!";

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Vector2 textPosition;

 Vector2 origin;

 Vector2 statusPosition;

 float speed;

 float angle;

 StringBuilder strBuilder = new StringBuilder();

 …

}

The MAXSPEED constant is set at 30 revolutions per second, which is the same as the frame

rate. As the spinning text reaches that speed, it should appear to stop. The ACCELERATION is

1 revolution per second squared, which means that the every second, the velocity increases by

1 revolution per second. At the end of the first second, the speed is 1 revolution per second.

At the end of the second second, the speed is 2 revolutions per second. Velocity gets to

MAXSPEED at the end of 30 seconds.

The fields include a speed variable and a StringBuilder, which I’ll use for displaying the current

velocity on the screen at statusPosition. The LoadContent method prepares most of these

fields:

XNA Project: TouchToStopRevolution File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 Viewport viewport = this.GraphicsDevice.Viewport;

 textPosition = new Vector2(viewport.Width / 2, viewport.Height / 2);

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 Vector2 textSize = kootenay14.MeasureString(TEXT);

 origin = new Vector2(textSize.X / 2, textSize.Y / 2);

 statusPosition = new Vector2(viewport.Width - textSize.X, viewport.Height -

textSize.Y);

}

The Update method increases speed based on the acceleration, and then increases angle

based on speed.

XNA Project: TouchToStopRevolution File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 if (TouchPanel.GetState().Count == 0)

 {

 speed += ACCELERATION * (float)gameTime.ElapsedGameTime.TotalSeconds;

 speed = Math.Min(MAXSPEED, speed);

 angle += MathHelper.TwoPi * speed *

(float)gameTime.ElapsedGameTime.TotalSeconds;

 angle %= MathHelper.TwoPi;

 }

 else

 {

 if (speed == 0)

 SuppressDraw();

 speed = 0;

 }

 strBuilder.Remove(0, strBuilder.Length);

 strBuilder.AppendFormat(" {0:F1} revolutions/second", speed);

 base.Update(gameTime);

}

If TouchPanel.GetState() returns a collection containing anything—that is, if anything is

touching the screen—then speed is set back to zero. Moreover, the next time Update is called

and something is still touching the screen, then SuppressDraw is called. So by touching the

screen you’re not only inhibiting the rotation of the text, but you’re saving power as well.

Also notice the use of StringBuilder to update the status field. The Draw method is similar to

those in previous programs but with two calls to DrawString:

XNA Project: TouchToStopRevolution File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, strBuilder, statusPosition, Color.White);

 spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White,

 angle, origin, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

For the final program in this chapter, I went back to a default origin of the upper-left corner

of the text. But I wanted that upper-left corner of the text string to crawl around the inside

perimeter of the display, and I also wanted the text to be fully visible at all times. The result is

that the text rotates 90 degrees as it makes it way past each corner. Here’s the text

maneuvering around the lower-right corner of the display:

The program is called TextCrawl, and the fields should look mostly familiar at this point:

XNA Project: TextCrawl File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 const float SPEED = 0.1f; // laps per second

 const string TEXT = "Hello, Windows Phone 7!";

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 SpriteFont kootenay14;

 Viewport viewport;

 Vector2 textSize;

 Vector2 textPosition;

 float tCorner; // height / perimeter

 float tLap;

 float angle;

 …

}

The tLap variable goes from 0 to 1 as the text makes its way counter-clockwise around the

perimeter. To help figure out what side it’s currently on, I also define tCorner. If tLap is less

than tCorner, the text is on the left edge of the display; if tLap is greater than tCorner but less

than 0.5, it’s on the bottom of the display, and so forth. The LoadContent method is nothing

special:

XNA Project: TextCrawl File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 viewport = this.GraphicsDevice.Viewport;

 tCorner = 0.5f * viewport.Height / (viewport.Width + viewport.Height);

 kootenay14 = this.Content.Load<SpriteFont>("Kootenay14");

 textSize = kootenay14.MeasureString(TEXT);

}

The Update method is the real monster, I’m afraid. The objective here is to calculate a

textPosition and angle for the eventual call to DrawString.

XNA Project: TextCrawl File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 tLap = (tLap + SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds) % 1;

 if (tLap < tCorner) // down left side of screen

 {

 textPosition.X = 0;

 textPosition.Y = (tLap / tCorner) * viewport.Height;

 angle = -MathHelper.PiOver2;

 if (textPosition.Y < textSize.X)

 angle += (float)Math.Acos(textPosition.Y / textSize.X);

 }

 else if (tLap < 0.5f) // across bottom of screen

 {

 textPosition.X = ((tLap - tCorner) / (0.5f - tCorner)) * viewport.Width;

 textPosition.Y = viewport.Height;

 angle = MathHelper.Pi;

 if (textPosition.X < textSize.X)

 angle += (float)Math.Acos(textPosition.X / textSize.X);

 }

 else if (tLap < 0.5f + tCorner) // up right side of screen

 {

 textPosition.X = viewport.Width;

 textPosition.Y = (1 - (tLap - 0.5f) / tCorner) * viewport.Height;

 angle = MathHelper.PiOver2;

 if (textPosition.Y + textSize.X > viewport.Height)

 angle += (float)Math.Acos((viewport.Height - textPosition.Y) /

textSize.X);

 }

 else // across top of screen

 {

 textPosition.X = (1 - (tLap - 0.5f - tCorner) / (0.5f - tCorner)) *

viewport.Width;

 textPosition.Y = 0;

 angle = 0;

 if (textPosition.X + textSize.X > viewport.Width)

 angle += (float)Math.Acos((viewport.Width - textPosition.X) /

textSize.X);

 }

 base.Update(gameTime);

}

As I was developing this code, I found it convenient to concentrate on getting the first three

statements in each if and else block working correctly. These statements simply move the

upper-left corner of the text string counter-clockwise around the inside perimeter of the

display. The initial calculation of angle ensures that the top of the text is flush against the

edge. Only when I got all that working was I ready to attack the code that alters angle for the

movement around the corners. A couple simple drawings convinced me that the inverse

cosine was the right tool for the job. After all that work in Update, the Draw method is trivial:

XNA Project: TextCrawl File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 spriteBatch.DrawString(kootenay14, TEXT, textPosition, Color.White,

 angle, Vector2.Zero, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

In the next chapter you’ll see how to make sprites travel along curves.

Chapter 21

Textures and Sprites
I promised that learning how to use XNA to move text around the screen would provide a leg

up in the art of moving regular bitmap sprites. This relationship becomes very obvious when

you begin examining the Draw methods supported by the SpriteBatch. The Draw methods

have almost the same arguments as DrawString but work with bitmaps rather than text. In this

chapter I’ll examine techniques in moving sprites, particularly along curves.

The Draw Variants

Both the Game class and the SpriteBatch class have methods named Draw. Despite the

identical names, the two methods are not genealogically related through a class hierarchy. In

your class derived from Game you override the Draw method so that you can call the Draw

method of SpriteBatch. This latter Draw method comes in seven different versions. The

simplest one is:

Draw(Texture2D texture, Vector2 position, Color color)

The first argument is a Texture2D, which is basically a bitmap. A Texture2D is potentially a

little more complex than an ordinary bitmap because it could have multiple ―mipmap‖ levels

that allow the image to be displayed at a variety of sizes, but for the most part, the Texture2D

objects that I’ll be discussing there are plain old bitmaps. Professional game developers often

use specialized tools to create these bitmaps, but I’m going to use Paint because it’s readily

available. After you create these bitmaps, you add them to the content of the XNA project,

and then load them into your program the same way you load a font.

The second argument to Draw indicates where the bitmap is to appear on the display. By

default, the position argument indicates the point on the display where the upper-left corner

of the texture is to appear.

The Color argument is used a little differently than with DrawString because the texture itself

can contain color information. The argument is referred to in the documentation as a ―color

channel modulation,‖ and it serves as a filter through which to view the bitmap.

Conceptually, every pixel in the bitmap has a one-byte red value, a one-byte green value, and

a one-byte blue value. When the bitmap is displayed by Draw, these red, green, and blue

colors values are effectively multiplied by the one-byte red, green, and blue values of the

Color argument to Draw, and the results are divided by 255 to bring them back in the range

of 0 to 255. That’s what’s used to color that pixel.

For example, suppose your texture has lots of color information and you wish all those colors

to be preserved on the display. Use a value of Color.White in the Draw method.

Now suppose you want to draw that same texture but darker. Perhaps the sun is setting in

your game world. Use some gray color value in the Draw method. The darker the gray, the

darker the texture will appear. If you use Color.Black, the texture will appear as a silhouette

with no color.

Suppose your texture is all white and you wish to display it as blue. Use Color.Blue in the Draw

method. You can display the same all-white texture in a variety of colors. (I’ll do precisely that

in the first sample program in this chapter.)

If your texture is yellow (a combination of red and green) and you use Color.Green in the

Draw method, it will be displayed as green. If you use Color.Red in the Draw method it will be

displayed as red. If you use Color.Blue in the Draw method, it will turn black. The argument to

Draw you can only attenuate or suppress color. You cannot get colors that aren’t in the

texture to begin with.

The second version of the Draw method is:

Draw(Texture2D texture, Rectangle destination, Color color)

Instead of a Vector2 to indicate the position of the texture, you use a Rectangle, which is the

combination of a point (the upper-left corner), a width, and a height. If the width and height

of the Rectangle don’t match the width and height of the texture, the texture will be scaled to

the size of the Rectangle.

If you only want to display a rectangular subset of the texture, you can use one of the two

slightly expanded versions of the Draw method:

Draw(Texture2D texture, Vector2 position, Rectangle? source, Color color)

Draw(Texture2D texture, Rectangle destination, Rectangle? source, Color color)

The third arguments are nullable Rectangle objects. If you set this argument to null, the result

is the same as using one of the first two versions of Draw.

The next two versions of Draw have five additional arguments that you’ll recognize from the

DrawString methods:

Draw(Texture2D texture, Vector2 position, Rectangle? source, Color color,

 float rotation, Vector2 origin, float scale, SpriteEffects effects, float depth)

Draw(Texture2D texture, Vector2 position, Rectangle? source, Color color,

 float rotation, Vector2 origin, Vector2 scale, SpriteEffects effects, float depth)

As with DrawString, the rotation angle is in radians, measured clockwise. The origin is a point

in the texture that is to be aligned with the position argument. You can scale uniformly with a

single float or differently in the horizontal and vertical directions with a Vector2. The

SpriteEffects enumeration lets you flip an image horizontally or vertically to get its mirror

image. The last argument allows overriding the defaults for layering multiple textures on the

screen.

Finally, there’s also a slightly shorter longer version where the second argument is a

destination rectangle:

spriteBatch.Draw(Texture2D texture, Rectangle destination, Rectangle? source, Color color,

 float rotation, Vector2 origin, SpriteEffects effects, float depth)

Notice there’s no separate scaling argument because scaling in this one is handled through

the destination argument.

Within the Draw method of your Game class, you use the SpriteBatch object like so:

spriteBatch.Begin();

spriteBatch.Draw …

spriteBatch.End();

Within the Begin and End calls, you can have any number of calls to Draw and DrawString.

The Draw calls can reference the same texture. You can also have multiple calls to Begin

followed by End with Draw and DrawString in between.

Another Hello Program?

If you’re tired of ―hello, world‖ programs by now, I’ve got some bad news. But this time I’ll

compose a very blocky rendition of the word ―HELLO‖ using two different bitmaps—a vertical

bar and a horizontal bar. The letter ―H‖ will be two vertical bars and one horizontal bar. The

―O‖ at the end will look like a rectangle.

And then, when you tap the screen, all 15 bars will fly apart in random directions and then

come back together. Sound like fun?

The first step in the FlyAwayHello project is to add content to the Content directory—not a

font this time but two bitmaps called HorzBar.png and VertBar.png. You can create these

right in Visual Studio or in Paint. By default, Paint creates an all-white bitmap for you. That’s

ideal! All I want you to do is change the size. Click the Paint Button menu (upper-left below

the title bar) and select Properties. Change the size to 45 pixels wide and 5 pixels high. (The

exact dimensions really don’t matter; the program is coded to be a little flexible.) It’s most

convenient to save the file right in the Content directory of the project under the name

HorzBar.png. Now change the size to 5 pixels wide and 75 pixels high. Save under the name

VertBar.png.

Although the bitmaps are now in the proper directory, the XNA project doesn’t know of their

existence. In Visual Studio, right click the Content directory and choose Add Existing Item. You

can select both PNG files and add them to the project.

I’m going to use a little class called SpriteInfo to keep track of the 15 textures required for

forming the text. If you’re creating the project from scratch, right-click the project name, and

select Add and then New Item (or select Add New Item from the main Project menu). From

the dialog box select Class and give it the name SpriteInfo.cs.

XNA Project: FlyAwayHello File: SpriteInfo.cs (complete)

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;

namespace FlyAwayHello

{

 public class SpriteInfo

 {

 public static float InterpolationFactor { set; get; }

 public Texture2D Texture2D { protected set; get; }

 public Vector2 BasePosition { protected set; get; }

 public Vector2 PositionOffset { set; get; }

 public float MaximumRotation { set; get; }

 public SpriteInfo(Texture2D texture2D, int x, int y)

 {

 Texture2D = texture2D;

 BasePosition = new Vector2(x, y);

 }

 public Vector2 Position

 {

 get

 {

 return BasePosition + InterpolationFactor * PositionOffset;

 }

 }

 public float Rotation

 {

 get

 {

 return InterpolationFactor * MaximumRotation;

 }

 }

 }

}

The required constructor stores a Texture2D along with positioning information. This is how

each sprite is initially positioned to spell out the word ―HELLO.‖ Later in the ―fly away‖

animation, the program sets the PositionOffset and MaximumRotation properties. The Position

and Rotation properties perform calculations based on the static InterpolationFactor, which

can range from 0 to 1.

Here are the fields of the Game1 class:

XNA Project: FlyAwayHello File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 static readonly TimeSpan ANIMATION_DURATION = TimeSpan.FromSeconds(5);

 const int CHAR_SPACING = 5;

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Viewport viewport;

 List<SpriteInfo> spriteInfos = new List<SpriteInfo>();

 Random rand = new Random();

 bool isAnimationGoing;

 TimeSpan animationStartTime;

 …

}

This program initiates an animation only when the user taps the screen, so I’m handling the

timing just a little differently than in earlier programs, as I’ll demonstrate in the Update

method.

The LoadContent method loads the two Texture2D objects using the same generic Load

method that previous programs used to load a SpriteFont. Enough information is now

available to create and initialize all SpriteInfo objects:

XNA Project: FlyAwayHello File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 viewport = this.GraphicsDevice.Viewport;

 Texture2D horzBar = Content.Load<Texture2D>("HorzBar");

 Texture2D vertBar = Content.Load<Texture2D>("VertBar");

 int x = (viewport.Width - 5 * horzBar.Width - 4 * CHAR_SPACING) / 2;

 int y = (viewport.Height - vertBar.Height) / 2;

 int xRight = horzBar.Width - vertBar.Width;

 int yMiddle = (vertBar.Height - horzBar.Height) / 2;

 int yBottom = vertBar.Height - horzBar.Height;

 // H

 spriteInfos.Add(new SpriteInfo(vertBar, x, y));

 spriteInfos.Add(new SpriteInfo(vertBar, x + xRight, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yMiddle));

 // E

 x += horzBar.Width + CHAR_SPACING;

 spriteInfos.Add(new SpriteInfo(vertBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yMiddle));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yBottom));

 // LL

 for (int i = 0; i < 2; i++)

 {

 x += horzBar.Width + CHAR_SPACING;

 spriteInfos.Add(new SpriteInfo(vertBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yBottom));

 }

 // O

 x += horzBar.Width + CHAR_SPACING;

 spriteInfos.Add(new SpriteInfo(vertBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y));

 spriteInfos.Add(new SpriteInfo(horzBar, x, y + yBottom));

 spriteInfos.Add(new SpriteInfo(vertBar, x + xRight, y));

}

The Update method is responsible for keeping the animation going. If the isAnimationGoing

field is false, it checks for a new finger pressed on the screen.

XNA Project: FlyAwayHello File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 if (isAnimationGoing)

 {

 TimeSpan animationTime = gameTime.TotalGameTime - animationStartTime;

 double fractionTime = (double)animationTime.Ticks /

ANIMATION_DURATION.Ticks;

 if (fractionTime >= 1)

 {

 isAnimationGoing = false;

 fractionTime = 1;

 }

 SpriteInfo.InterpolationFactor = (float)Math.Sin(Math.PI * fractionTime);

 }

 else

 {

 TouchCollection touchCollection = TouchPanel.GetState();

 bool atLeastOneTouchPointPressed = false;

 foreach (TouchLocation touchLocation in touchCollection)

 atLeastOneTouchPointPressed |=

 touchLocation.State == TouchLocationState.Pressed;

 if (atLeastOneTouchPointPressed)

 {

 foreach (SpriteInfo spriteInfo in spriteInfos)

 {

 float r1 = (float)rand.NextDouble() - 0.5f;

 float r2 = (float)rand.NextDouble() - 0.5f;

 float r3 = (float)rand.NextDouble();

 spriteInfo.PositionOffset = new Vector2(r1 * viewport.Width,

 r2 * viewport.Height);

 spriteInfo.MaximumRotation = 2 * (float)Math.PI * r3;

 }

 animationStartTime = gameTime.TotalGameTime;

 isAnimationGoing = true;

 }

 }

 base.Update(gameTime);

}

When the animation begins, the animationStartTime is set from the TotalGameTime property

of GameTime. During subsequent calls, Update compares that value with the new

TotalGameTime and calculates an interpolation factor. The InterpolationFactor property of

SpriteInfo is static so it need be set only once to affect all the SpriteInfo instances. The Draw

method loops through the SpriteInfo objects to access the Position and Rotation properties:

XNA Project: FlyAwayHello File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Navy);

 spriteBatch.Begin();

 foreach (SpriteInfo spriteInfo in spriteInfos)

 {

 spriteBatch.Draw(spriteInfo.Texture2D, spriteInfo.Position, null,

 Color.Lerp(Color.Blue, Color.Red, SpriteInfo.InterpolationFactor),

 spriteInfo.Rotation, Vector2.Zero, 1, SpriteEffects.None, 0);

 }

 spriteBatch.End();

 base.Draw(gameTime);

}

The Draw call also uses SpriteInfo.InterpolationFactor to interpolate between blue and red for

coloring the bars. Notice that the Color structure also has a Lerp method. The text is normally

blue but changes to red as the pieces fly apart.

That call to Draw could actually be part of SpriteInfo. SpriteInfo could define its own Draw

method with an argument of type SpriteBatch, and then pass its own Texture2D, Position, and

Rotation properties to the Draw method of the SpriteBatch. This configuration would allow

SpriteBatch to have fewer public properties.

Driving Around the Block

For the remainder of this chapter I want to focus on techniques to maneuver a sprite around

some kind of path. To make it more ―realistic,‖ I commissioned my wife Deirdre to make a

little racecar in Paint:

The car is 48 pixels tall and 29 pixels in width. Notice the magenta background: If you want

part of an image to be transparent in an XNA scene, you can use a bitmap format that

supports transparency, such as the 32-bit Windows BMP format. Each pixel in this format has

8-bit red, green, and blue components but also an 8-bit alpha channel for transparency. (I’ll

use this format in the next chapter.) The Paint program in Windows does not support bitmap

transparency, alas, so you can use magenta instead. In Paint, create magenta by setting the

red and blue values to 255 and green to 0.

In each of the projects in this chapter, this image is stored as the file car.png as part of the

project’s content. The first project is called CarOnRectangularCourse and demonstrates a

rather clunky approach to driving a car around the perimeter of the screen. Here are the

fields:

XNA Project: CarOnRectangularCourse File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 const float SPEED = 100; // pixels per millisecond

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Texture2D car;

 Vector2 carCenter;

 Vector2[] turnPoints = new Vector2[4];

 int sideIndex = 0;

 Vector2 position;

 float rotation;

 …

}

The turnPoints array stores the four points near the corners of the display where the car

makes a sharp turn. Calculating these points is one of the primary activities of the

LoadContent method, which also loads the Texture2D and initializes other fields:

XNA Project: CarOnRectangularCourse File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 car = this.Content.Load<Texture2D>("car");

 carCenter = new Vector2(car.Width / 2, car.Height / 2);

 float margin = car.Width;

 Viewport viewport = this.GraphicsDevice.Viewport;

 turnPoints[0] = new Vector2(margin, margin);

 turnPoints[1] = new Vector2(viewport.Width - margin, margin);

 turnPoints[2] = new Vector2(viewport.Width - margin, viewport.Height - margin);

 turnPoints[3] = new Vector2(margin, viewport.Height - margin);

 position = turnPoints[0];

 rotation = MathHelper.PiOver2;

}

I use the carCenter field as the origin argument to the Draw method, so that it is the point on

the car that aligns with a point on the course defined by the four members of the turnPoints

array. The margin value makes this course one car width from the edge of the display; hence

the car is really separated from the edge of the display by half its width.

I described this program as ―clunky‖ and the Update method proves it:

XNA Project: CarOnRectangularCourse File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 float pixels = SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds;

 switch (sideIndex)

 {

 case 0: // top

 position.X += pixels;

 if (position.X > turnPoints[1].X)

 {

 position.X = turnPoints[1].X;

 position.Y = turnPoints[1].Y + (position.X - turnPoints[1].X);

 rotation = MathHelper.Pi;

 sideIndex = 1;

 }

 break;

 case 1: // right

 position.Y += pixels;

 if (position.Y > turnPoints[2].Y)

 {

 position.Y = turnPoints[2].Y;

 position.X = turnPoints[2].X - (position.Y - turnPoints[2].Y);

 rotation = -MathHelper.PiOver2;

 sideIndex = 2;

 }

 break;

 case 2: // bottom

 position.X -= pixels;

 if (position.X < turnPoints[3].X)

 {

 position.X = turnPoints[3].X;

 position.Y = turnPoints[3].Y + (position.X - turnPoints[3].X);

 rotation = 0;

 sideIndex = 3;

 }

 break;

 case 3: // left

 position.Y -= pixels;

 if (position.Y < turnPoints[0].Y)

 {

 position.Y = turnPoints[0].Y;

 position.X = turnPoints[0].X - (position.Y - turnPoints[0].Y);

 rotation = MathHelper.PiOver2;

 sideIndex = 0;

 }

 break;

 }

 base.Update(gameTime);

}

This is the type of code that screams out ―There’s got to be a better way!‖ Elegant it is not,

and not very versatile either. But before I take a stab at a more flexible approach, here’s the

entirely predictable Draw method that incorporates the updated position and rotation values

calculated during Update:

XNA Project: CarOnRectangularCourse File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Blue);

 spriteBatch.Begin();

 spriteBatch.Draw(car, position, null, Color.White, rotation,

 carCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

Movement Along a Polyline

The code in the previous program will work for any rectangle whose corners are stored in the

turnPoints array, but it won’t work for any arbitrary collection of four points, or more than

four points. In computer graphics, a collection of points that describe a series of straight lines

is often called a polyline, and it would be nice to write some code that makes the car travel

around any arbitrary polyline.

The next project, called CarOnPolylineCourse, includes a class named PolylineInterpolator that

does precisely that. Let me show you the Game1 class first, and then I’ll describe the

PolylineInterpolator class that makes this possible. Here are the fields:

XNA Project: CarOnPolylineCourse File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 const float SPEED = 0.25f; // laps per millisecond

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Texture2D car;

 Vector2 carCenter;

 PolylineInterpolator polylineInterpolator = new PolylineInterpolator();

 Vector2 position;

 float rotation;

 …

}

You’ll notice a speed in terms of laps, and the instantiation of the mysterious

PolylineInterpolator class. The LoadContent method is very much like that in the previous

project except instead of adding points to an array called turnPoints, it adds them to a

Vertices property of the PolylineInterpolator class:

XNA Project: CarOnPolylineCourse File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 car = this.Content.Load<Texture2D>("Car");

 carCenter = new Vector2(car.Width / 2, car.Height / 2);

 float margin = car.Width;

 Viewport viewport = this.GraphicsDevice.Viewport;

 polylineInterpolator.Vertices.Add(

 new Vector2(car.Width, car.Width));

 polylineInterpolator.Vertices.Add(

 new Vector2(viewport.Width - car.Width, car.Width));

 polylineInterpolator.Vertices.Add(

 new Vector2(car.Width, viewport.Height - car.Width));

 polylineInterpolator.Vertices.Add(

 new Vector2(viewport.Width - car.Width, viewport.Height - car.Width));

 polylineInterpolator.Vertices.Add(

 new Vector2(car.Width, car.Width));

}

Also notice that the method adds the beginning point in again at the end, and that these

points don’t exactly describe the same course as the previous project. The previous project

caused the car to travel from the upper-left to the upper-right down to lower-right and

across to the lower-left and back up to upper-left. The order here goes from upper-left to

upper-right but then diagonally down to lower-left and across to lower-right before another

diagonal trip up to the beginning. This is precisely the kind of versatility the previous program

lacked.

As with the programs in the last chapter that used a parametric-equation approach, the

Update method is now so simple it makes you want to weep:

XNA Project: CarOnPolylineCourse File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 float t = (SPEED * (float)gameTime.TotalGameTime.TotalSeconds) % 1;

 float angle;

 position = polylineInterpolator.GetValue(t, false, out angle);

 rotation = angle + MathHelper.PiOver2;

 base.Update(gameTime);

}

As usual, t is calculated to range from 0 to 1, where 0 indicates the beginning of the course in

the upper-left corner of the screen, and t approaches 1 as it’s heading towards that initial

position again. This t is passed directly to GetValue method of PolylineInterpolator, which

returns a Vector2 value somewhere along the polyline.

As an extra bonus, the last argument of GetValue allows obtaining an angle value that is the

tangent of the polyline at that point. This angle is measured clockwise relative to the positive

X axis. For example, when the car is travelling from the upper-left corner to the upper-right,

angle is 0. When the car is travelling from the upper-right corner to the lower-left, the angle is

somewhere between π/2 and π, depending on the aspect ratio of the screen. The car in the

bitmap is facing up so it needs to be rotated an additional π/2 radians.

The Draw method is the same as before:

XNA Project: CarOnPolylineCourse File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Blue);

 spriteBatch.Begin();

 spriteBatch.Draw(car, position, null, Color.White, rotation,

 carCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

Here’s the car heading towards the lower-left corner:

For demonstration purposes, the PolylineInterpolator class sacrifices efficiency for simplicity.

Here’s the entire class:

XNA Project: CarOnPolylineCourse File: PolylineInterpolator.cs (complete)

using System;

using System.Collections.Generic;

using Microsoft.Xna.Framework;

namespace CarOnPolylineCourse

{

 public class PolylineInterpolator

 {

 public PolylineInterpolator()

 {

 Vertices = new List<Vector2>();

 }

 public List<Vector2> Vertices { protected set; get; }

 public float TotalLength()

 {

 float totalLength = 0;

 // Notice looping begins at index 1

 for (int i = 1; i < Vertices.Count; i++)

 {

 totalLength += (Vertices[i] - Vertices[i - 1]).Length();

 }

 return totalLength;

 }

 public Vector2 GetValue(float t, bool smooth, out float angle)

 {

 if (Vertices.Count == 0)

 {

 return GetValue(Vector2.Zero, Vector2.Zero, t, smooth, out angle);

 }

 else if (Vertices.Count == 1)

 {

 return GetValue(Vertices[0], Vertices[0], t, smooth, out angle);

 }

 if (Vertices.Count == 2)

 {

 return GetValue(Vertices[0], Vertices[1], t, smooth, out angle);

 }

 // Calculate total length

 float totalLength = TotalLength();

 float accumLength = 0;

 // Notice looping begins at index 1

 for (int i = 1; i < Vertices.Count; i++)

 {

 float prevLength = accumLength;

 accumLength += (Vertices[i] - Vertices[i - 1]).Length();

 if (t >= prevLength / totalLength && t <= accumLength / totalLength)

 {

 float tPrev = prevLength / totalLength;

 float tThis = accumLength / totalLength;

 float tNew = (t - tPrev) / (tThis - tPrev);

 return GetValue(Vertices[i - 1], Vertices[i], tNew, smooth, out

angle);

 }

 }

 return GetValue(Vector2.Zero, Vector2.Zero, t, smooth, out angle);

 }

 Vector2 GetValue(Vector2 vertex1, Vector2 vertex2, float t,

 bool smooth, out float angle)

 {

 angle = (float)Math.Atan2(vertex2.Y - vertex1.Y, vertex2.X - vertex1.X);

 return smooth ? Vector2.SmoothStep(vertex1, vertex2, t) :

 Vector2.Lerp(vertex1, vertex2, t);

 }

 }

}

The single Vertices property allows you to define a collection of Vector2 objects that define

the polyline. If you want the polyline to end up where it started, you need to explicitly

duplicate that point. All the work occurs during the GetValue method. At that time, the

method determines the total length of the polyline. It then loops through the vertices and

accumulates their lengths, finding the pair of vertices whose accumulated length straddles the

t value. These are passed to the private GetValue method to perform the linear interpolation

using Vector2.Lerp, and to calculate the tangent angle with the graphics programmer’s second

BFF, Math.Atan2.

But wait: There’s also a Boolean argument to GetValue that causes the method to use

Vector2.SmoothStep rather than Vector2.Lerp. You can try out this alternative by replacing this

call in the Update method of Game1:

position = polylineInterpolator.GetValue(t, false, out angle);

with this one:

position = polylineInterpolator.GetValue(t, true, out angle);

The ―smooth step‖ interpolation is based on a cubic, and causes the car to slow down as it

approaches one of the vertices, and speed up afterwards. It still makes an abrupt and

unrealistic turn but the speed change is quite nice.

What I don’t like about the PolylineInterpolator class is its inefficiency. GetValue needs to

make several calls to the Length method of Vector2, which of course involves a square-root

calculation. It would be nice for the class to retain the total length and the accumulated

length at each vertex so it could simply re-use that information on successive GetValue calls.

As written, the class can’t do that because it has no knowledge when Vector2 values are

added to or removed from the Vertices collection. One possibility is to make that collection

private, and to only allow a collection of points to be submitted in the class’s constructor.

Another approach is to replace the List with an ObservableCollection, which provides an event

notification when objects are added and removed.

The Elliptical Course

The most unrealistic behavior of the previous program involves the turns. Cars slow down to

turn around corners, but they actually travel along a curved path to change direction. To

really make the previous program realistic, the corners would have to be replaced by curves.

These curves could be approximated with polylines, but the increasing number of polylines

would then require PolylineInterpolator to be restructured for better performance.

Instead, I’m going to go off on a somewhat different tangent and drive the car around a

traditional oval course, or to express it more mathematically, an elliptical course.

Let’s look at some math. A circle centered on the point (0, 0) with a radius of R consists of all

points (x, y) where

An ellipse has two radii. If these are parallel to the horizontal and vertical axes, they are

sometimes called Rx and Ry, and the ellipse formula is:

(

)

 (

)

For our purposes, it is more convenient to represent the ellipse in the parametric form. In

these two equations, x and y are functions of the angle α, which ranges from 0 to 2π:

When the ellipse is centered around the point (Cx, Cy), the formulas become:

If we also want to introduce a variable t, where t goes from 0 to 1, the formulas are:

And these will be ideal for our purpose. As t goes from 0 to 1, the car goes around the lap

once. But how do we rotate the car so it appears to be travelling in a tangent to this ellipse?

For that job, the differential calculus comes to the rescue. First, take the derivatives of the

parametric equations:

In physical terms, these equations represent the instantaneous change in direction in the X

direction and Y direction, respectively. To turn that into a tangent angle, simply apply

Math.Atan2.

And now we’re ready to code. Here are the fields:

XNA Project: CarOnOvalCourse File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 const float SPEED = 0.25f; // laps per second

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Texture2D car;

 Vector2 carCenter;

 Point ellipseCenter;

 float ellipseRadiusX, ellipseRadiusY;

 Vector2 position;

 float rotation;

 …

}

The fields include the three items required for the parametric equations for the ellipse: the

center and the two radii. These are determined during the LoadContent method based on the

dimensions of the available area of the screen:

XNA Project: CarOnOvalCourse File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 car = this.Content.Load<Texture2D>("car");

 carCenter = new Vector2(car.Width / 2, car.Height / 2);

 Viewport viewport = this.GraphicsDevice.Viewport;

 ellipseCenter = viewport.Bounds.Center;

 ellipseRadiusX = viewport.Width / 2 - car.Width;

 ellipseRadiusY = viewport.Height / 2 - car.Width;

}

Notice that the Update method below calculates two angles. The first, called ellipseAngle, is

based on t and determines where on the ellipse the car is located. This is the angle passed to

the parametric equations for the ellipse, to obtain the position as a combination of x and y:

XNA Project: CarOnOvalCourse File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 float t = (SPEED * (float)gameTime.TotalGameTime.TotalSeconds) % 1;

 float ellipseAngle = MathHelper.TwoPi * t;

 float x = ellipseCenter.X + ellipseRadiusX * (float)Math.Cos(ellipseAngle);

 float y = ellipseCenter.Y + ellipseRadiusY * (float)Math.Sin(ellipseAngle);

 position = new Vector2(x, y);

 float dxdt = -ellipseRadiusX * (float)Math.Sin(ellipseAngle);

 float dydt = ellipseRadiusY * (float)Math.Cos(ellipseAngle);

 rotation = MathHelper.PiOver2 + (float)Math.Atan2(dydt, dxdt);

 base.Update(gameTime);

}

The second angle that Update calculates is called rotation. This is the angle that determines

the orientation of the car. The dxdt and dydt variables are the derivatives of the parametric

equations that I showed earlier. The Math.Atan2 method provides the rotation angle relative

to the positive X axis, and this must be rotated another 90 degrees for the original orientation

of the bitmap.

By this time, you can probably recite Draw by heart:

XNA Project: CarOnOvalCourse File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Blue);

 spriteBatch.Begin();

 spriteBatch.Draw(car, position, null, Color.White, rotation,

 carCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

A Generalized Curve Solution

For movement along curves that are not quite convenient to express in parametric equations,

XNA itself provides a generalized solution that involves the Curve and CurveKey classes

defined in the Microsoft.Xna.Framework namespace.

The Curve class contains a property named Keys of type CurveKeyCollection, a collection of

CurveKey objects. Each CurveKey object allows you to specify a number pair of the form

(Position, Value). Both the Position and Value properties are of type float. Then you pass a

position to the Curve method Evaluate, and it returns an interpolated value.

But it’s all rather confusing because—as the documentation indicates—the Position property

of CurveKey is almost always a time, and the Value property is very often a position, or more

accurately, one coordinate of a position. If you want to use Curve to interpolate between

points in two-dimensional space, you need two instances of Curve—one for the X coordinate

and the other for Y. These Curve instances are treated very much like parametric equations.

Suppose you want the car to go around a path that looks like an infinity sign, and let’s assume

that we’re going to approximate the infinity sign with two adjacent circles. (The technique I’m

going to show you will allow you to move those two circles apart at a later time if you’d like.)

Draw dots every 45 degrees on these two circles:

Chapter 22

Touch and Play
Often when learning a new programming environment, a collection of techniques are

acquired that don’t necessary add up to the skills required to create a complete program. This

chapter is intended to compensate for that problem by presenting two rather archetypal

programs for the phone called PhingerPaint and PhreeCell. The first is a simple drawing

program; the second is a version of the classic solitaire game.

Both programs use three powerful tools:

 The dynamic manipulation of Texture2D objects.

 The use of components in architecting a game.

 The processing of touch input.

In addition, the PhingerPaint game will demonstrate the use of a dynamic link library (DLL).

These programs — while certainly not of commercial quality — will at least give you a little

better sense of what a ―real program‖ looks like.

Dynamic Texture2D Objects

In the previous chapter you saw how to create bitmaps in programs like Paint and load them

into your game as Texture2D objects. It is also possible to create Texture2D objects directly in

your program and to dynamically manipulate the pixel bits. The first step is to use one of the

Texture2D constructors:

Texture2D texture = new Texture2D(this.GraphicsDevice, width, height);

The width and height arguments indicate the size of the Texture2D in pixels; this size cannot

be changed after the Texture2D is created. The total number of pixels in the bitmap is easily

calculated as width * height.

Each pixel in the bitmap is encoded with a particular color; how the bits of each pixel

correspond to a particular color is often referred to as the bitmap’s color format or, in XNA,

with a member of the SurfaceFormat enumeration. A Texture2D created with the simple

constructor shown above will have a Format property set to SurfaceFormat.Color, which

means that every pixel consists of 4 bytes (or 32 bits) of data, one byte each for the red,

green, and blue values (in this order), and another byte for the alpha channel, which is the

opacity of that pixel.

It is also possible (and very convenient) to treat each pixel as a 32-bit unsigned integer, which

in C# is a uint. In accordance with the ―little-endian‖ for of byte ordering, where the least

significant byte of a multibyte value comes first, the colors appear in the 8-digit hexadecimal

value of this uint like so:

AABBGGRR

If you have a Texture2D that you either loaded as content or created as shown above, and it

has a Format property of SurfaceFormat.Color, you can obtain all the pixel bits of the bitmap

by first creating an array of type uint:

uint[] pixels = new uint[width * height];

You then transfer all the pixels of the Texture2D into the array like so:

texture.GetData<uint>(pixels);

GetData is a generic method and you simply need to indicate the data type of the array.

Overloads of GetData allow you to get pixels corresponding to a rectangular subset of the

bitmap, or starting at an offset into the pixels array. You can also go the other way to transfer

the data in the pixels array back into the bitmap:

texture.SetData<uint>(pixels);

The pixels in the pixels array are arranged by row beginning with the topmost row. The pixels

in each row are arranged left by right. For a particular row y and column x in the bitmap, you

can index the pixels array using a single formula:

pixels[y * width + x]

One exceptionally convenient property of the Color structure is PackedValue. This converts a

Color object into a uint of the precise format required for this array, for example:

pixels[y * width + x] = Color.Fuchsia.PackedValue;

Let’s look at a simple example. Suppose you want a background to your game that consists of

a gradient from blue at the left to red at the right. The GradientBackground project

demonstrates this technique. Here are the fields:

XNA Project: GradientBackground File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Rectangle viewportBounds;

 Texture2D background;

 …

}

All the work is done in the Initialize method. The method creates a bitmap based on the

Viewport size (but using the Bounds property which has convenient integer dimensions), and

fills it with data. The interpolation for the gradient is accomplished by the Color.Lerp method

based on the x value:

XNA Project: GradientBackground File: Game1.cs (excerpt)

protected override void Initialize()

{

 viewportBounds = this.GraphicsDevice.Viewport.Bounds;

 background = new Texture2D(this.GraphicsDevice, viewportBounds.Width,

 viewportBounds.Height);

 uint[] pixels = new uint[background.Width * background.Height];

 for (int x = 0; x < background.Width; x++)

 {

 uint clr = Color.Lerp(Color.Blue, Color.Red,

 (float)x / background.Width).PackedValue;

 for (int y = 0; y < background.Height; y++)

 pixels[y * background.Width + x] = clr;

 }

 background.SetData<uint>(pixels);

 base.Initialize();

}

Don’t forget to call SetData after filling the pixels array with data! It’s pleasant to assume that

there’s some kind of behind-the-scenes binding between the Texture2D and the array, but

there’s really no such thing.

The Draw method simply draws the Texture2D like normal:

XNA Project: GradientBackground File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 spriteBatch.Begin();

 spriteBatch.Draw(background, viewportBounds, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

Here’s the gradient:

For this particular example, where the Texture2D is the same from top to bottom, it’s not

necessary to have quite so many rows. In fact, you can create the background object with just

one row:

background = new Texture2D(this.GraphicsDevice, viewportBounds.Width, 1);

Because the other code in Initialize was based on the background.Width and

background.Height properties, nothing else needs to be changed (although the loops could

certainly be simplified. In the Draw method, the bitmap is then stretched to fill the Rectangle:

spriteBatch.Draw(background, viewportBounds, Color.White);

The Geometry of PhingerPaint

The PhingerPaint program allows you to draw on the screen with your phingers (or rather,

fingers) to create masterpieces like this:

The squares at the bottom are instances of a ColorBlock class, which derives from

DrawableGameComponent. These allow you to select the paint color. A bitmap ―canvas‖

covers the rest of the Viewport. The program examines touch input, translates that into

―brushstrokes‖ of sorts, sets pixel bits corresponding to each stroke, updates the bitmap

canvas with SetData, and draws that canvas onto the display.

Perhaps the biggest challenge of this program is translating touch data into geometric objects

that can be drawn as individual pixels. As you’ll recall, touch input comes into an XNA

program in the form of TouchLocation objects where the State property is a member of the

TouchLocationState enumeration: Pressed, Moved, Released.

Interestingly enough, the PhingerPaint program doesn’t require tracking particular fingers

from touch down to touch up. It only needs look at Moved events. For each of these, the

Position property indicates the current position of the finger. Calling the

TryGetPreviousLocation method of TouchLocation provides access to another TouchLocation

object containing the previous position of the finger. For purposes of analysis and illustrations,

let’s call these two positions pt1 and pt2. The PhingerPaint program should respond by

drawing a line between these two points:

However, this geometric line has zero width. You really need to draw a thick line. In theory,

the thickness should correspond to the pressure that the finger is touching the screen, or the

area that the finger makes in contact with the screen. In XNA 3.1, this was available in the

Pressure property of TouchLocation — a float ranging in value from 0 to 1 — and it worked

on the Zune HD, but it’s been removed in XNA 4.0 and Windows Phone 7.

For this reason, the program should be enhanced so the user selection can select a desired

brush widths. This has not been done yet. But let’s assume the desired line thickness is 2R

pixels. (R stands for radius, and you’ll understand why I’m thinking of it in those terms shortly.)

You really want to draw a rectangle, where the pt1 and pt2 are extended on each side by R

pixels:

How are these corner points calculated? Well, it’s really rather easy using vectors. Let’s

calculate the vector from pt1 to pt2 and normalize it:

pt1a

pt1b

pt2a

pt2b

pt2

pt1

Vector2 vector = pt2 – pt1;

vector.Normalize();

This vector must be rotated in increments of 90 degrees, and that’s a snap. To rotate vector by

90 degrees clockwise, switch the X and Y coordinates while negating the Y coordinate:

Vector2 vect90 = new Vector2(-vector.Y, vector.X)

A vector rotated –90 degrees from vector is the negation of vect90.

If vector points from pt1 to pt2, then the vector from pt1 to pt1a (for example) is that vector

rotated –90 degrees with a length of R. Then add that vector to pt1 to get pt1a.

Vector2 pt1a = pt1 - R * vect90;

In a similar manner, you can also calculate pt1b, pt2a, and pt2b.

But you’ll find that the rectangle is not sufficient. As you move your finger across the display,

the program will be drawing multiple rectangles but they won’t connect correctly. They will

meet at angles, and slivers will appear between them. You really need to draw rounded caps

on these rectangles:

These are semi-circles of radius R centered on pt1 and pt2.

At this point, we have derived an overall outline of the shape to draw for two successive touch

points: A line from pt1a to pt2a, a semi-circle from pt2a to pt2b, another line from pt2b to

pt1b, and another semi-circle from pt1b to pt1a. The goal is to find all pixels (x, y) in the

interior of this outline.

When drawing vector outlines, parametric equations are ideal. When filling areas, it’s best to

go back to the standard equations that we learned in high school. You probably remember

the equations for a line in slope-intercept form:

where m is the slope of the line (―rise over run‖) and b is the value of y where the line

intercepts the X axis.

pt1a

pt1b

pt2a

pt2b

In computer graphics, however, traditionally areas are filled based on horizontal scan lines,

also known as raster lines. (The terms come from television displays.) The equations represent

x as a function of y:

For a line from pt1 to pt2,

For any y, there is a point on the line that connects pt1 and pt2 if y is between pt1.Y and pt2.Y.

The x value can then be calculated from the equations of the line.

Look at the previous diagram and imagine a horizontal scan line that crosses the two lines

from pt1a to pt2a, and from pt1b to pt2b. For any y, we can calculate xa on the line from pt1a

to pt2a, and xb on the line from pt1b to pt2b. For that scan line, the pixels that must be

colored are those between (xa, y) and (xb, y). This can be repeated for all y.

This process gets a little messier for the rounded caps but not much messier. A circle of radius

R centered on the origin consists of all points (x, y) that satisfy the equation:

For a circle centered on (xc, yc), the equation is:

Or for any y:

 √

If the expression in the square root is negative, then y is outside the circle entirely. Otherwise,

there are (in general) two values of x for each y. The only exception is when the square root is

zero, that is, when y is exactly R units from yc, which are the top and bottom points of the

circle.

We’re dealing with a semicircle so it’s a little more complex, but not much. Consider the semi-

circle at the top of the diagram. The center is pt1, and the semicircle goes from pt1b to pt1a.

The line from pt1 to pt1b forms an angle angle1 that can be calculated with Math.Atan2.

Similarly for the line from pt1 to pt1a there is an angle2. If the point (x, y) is on the circle as

calculated above, it too forms an angle from the center pt1. If that angle is between angle1

and angle2, then the point is on the semicircle. (This determination of ―between‖ gets just a

little messier because angles returned from Math.Atan2 wrap around from π to –π.

Now for any y we can examine both the two lines and the two semicircles and determine all

points (x, y) that are on these four figures. At most, there will be only two such points — one

where the scan line enters the interior and the other where it exits. For that scan line, all pixels

between those two points can be filled.

Let’s start writing code. In the PhingerPaint solution, I created a new project named

GeometryHelper of type Windows Game Library. This project creates a dynamic link library

that will help with some of the mathematics. Because I intend to frequently instantiate the

objects from GeometryHelper during the Update method, I made them all structures rather

than classes. The project begins with a little interface:

XNA Project: GeometryHelper File: IGeometrySegment.cs (complete)

using System.Collections.Generic;

namespace GeometryHelper

{

 public interface IGeometrySegment

 {

 void GetAllX(float y, IList<float> xCollection);

 }

}

All the structures will implement this interface. For any y value the method returns a collection

of x values. In actual practice, with the structures in this library, often this collection will be

returned empty. Sometimes it will contain one value, and sometimes two.

Here’s the LineSegment structure:

XNA Project: GeometryHelper File: LineSegment.cs (complete)

using System.Collections.Generic;

using Microsoft.Xna.Framework;

namespace GeometryHelper

{

 public struct LineSegment : IGeometrySegment

 {

 readonly float a, b; // as in x = ay + b

 public LineSegment(Vector2 point1, Vector2 point2) : this()

 {

 Point1 = point1;

 Point2 = point2;

 a = (Point2.X - Point1.X) / (Point2.Y - Point1.Y);

 b = Point1.X - a * Point1.Y;

 }

 public Vector2 Point1 { private set; get; }

 public Vector2 Point2 { private set; get; }

 public void GetAllX(float y, IList<float> xCollection)

 {

 if ((Point2.Y > Point1.Y && y >= Point1.Y && y < Point2.Y) ||

 (Point2.Y < Point1.Y && y <= Point1.Y && y > Point2.Y))

 {

 xCollection.Add(a * y + b);

 }

 }

 }

}

Notice that the if statement in GetAllX checks that y is between Point1.Y and Point2.Y; it allows

y values that equal Point1.Y but not those that equal Point1.Y. In other words, it defines the

line to be all points from Point1 (inclusive) up to but not including Point2. This caution about

what points are included and excluded comes into play when multiple lines and arcs are

connected; it helps avoid the possibility of having duplicate x values in the collection.

Also notice that no special consideration is given to horizontal lines, that is, lines where

Point1.Y equals Point2.Y and where a equals infinity. If that is the case, then the if statement in

the method is never satisfied. A scan line never crosses a horizontal boundary line.

The next structure is similar but for a generalized arc on the circumference of a circle:

XNA Project: GeometryHelper File: ArcSegment.cs (complete)

using System;

using System.Collections.Generic;

using Microsoft.Xna.Framework;

namespace GeometryHelper

{

 public struct ArcSegment : IGeometrySegment

 {

 readonly double angle1, angle2;

 public ArcSegment(Vector2 center, float radius, Vector2 point1, Vector2

point2) :

 this()

 {

 Center = center;

 Radius = radius;

 Point1 = point1;

 Point2 = point2;

 angle1 = Math.Atan2(point1.Y - center.Y, point1.X - center.X);

 angle2 = Math.Atan2(point2.Y - center.Y, point2.X - center.X);

 }

 public Vector2 Center { private set; get; }

 public float Radius { private set; get; }

 public Vector2 Point1 { private set; get; }

 public Vector2 Point2 { private set; get; }

 public void GetAllX(float y, IList<float> xCollection)

 {

 double sqrtArg = Radius * Radius - Math.Pow(y - Center.Y, 2);

 if (sqrtArg >= 0)

 {

 double sqrt = Math.Sqrt(sqrtArg);

 TryY(y, Center.X + sqrt, xCollection);

 TryY(y, Center.X - sqrt, xCollection);

 }

 }

 public void TryY(double y, double x, IList<float> xCollection)

 {

 double angle = Math.Atan2(y - Center.Y, x - Center.X);

 if ((angle1 < angle2 && (angle1 <= angle && angle < angle2)) ||

 (angle1 > angle2 && (angle1 <= angle || angle < angle2)))

 {

 xCollection.Add((float)x);

 }

 }

 }

}

The rather complex (but symmetrical) if clause in TryY accounts for the wrapping of angle

values from π to –π. Notice also that the comparison of angle with angle1 and angle2 allows

cases where angle equals angle1 but not when angle equals angle2. It’s allowing all angles

from angle1 (inclusive) up to but not including angle2.

For now, the final structure in the library is exactly the type of figure that PhingerPaint needs

to draw: a line with rounded caps:

XNA Project: GeometryHelper File: RoundCappedLines.cs (complete)

using System.Collections.Generic;

using Microsoft.Xna.Framework;

namespace GeometryHelper

{

 public class RoundCappedLine : IGeometrySegment

 {

 LineSegment lineSegment1;

 ArcSegment arcSegment1;

 LineSegment lineSegment2;

 ArcSegment arcSegment2;

 public RoundCappedLine(Vector2 point1, Vector2 point2, float radius)

 {

 Point1 = point1;

 Point2 = point2;

 Radius = radius;

 Vector2 vector = point2 - point1;

 Vector2 normVect = vector;

 normVect.Normalize();

 Vector2 pt1a = Point1 + radius * new Vector2(normVect.Y, -normVect.X);

 Vector2 pt2a = pt1a + vector;

 Vector2 pt1b = Point1 + radius * new Vector2(-normVect.Y, normVect.X);

 Vector2 pt2b = pt1b + vector;

 lineSegment1 = new LineSegment(pt1a, pt2a);

 arcSegment1 = new ArcSegment(point2, radius, pt2a, pt2b);

 lineSegment2 = new LineSegment(pt2b, pt1b);

 arcSegment2 = new ArcSegment(point1, radius, pt1b, pt1a);

 }

 public Vector2 Point1 { private set; get; }

 public Vector2 Point2 { private set; get; }

 public float Radius { private set; get; }

 public void GetAllX(float y, IList<float> xCollection)

 {

 arcSegment1.GetAllX(y, xCollection);

 lineSegment1.GetAllX(y, xCollection);

 arcSegment2.GetAllX(y, xCollection);

 lineSegment2.GetAllX(y, xCollection);

 }

 }

}

This structure includes two LineSegment objects and two ArcSegment objects and defines

them all based on the arguments to its own constructor. Implementing GetAllX is just a matter

of calling the same method on the four components. It is the responsibility of the code calling

GetAllX to ensure that the collection has previously been cleared. For RoundCappedLines, this

method will return a collection with either one x value — a case that can be ignored for filling

purposes — or two x values, in which case the pixels between those two x values can be filled.

The program itself is the PhingerPaint project that’s part of the same PhingerPaint solution

that also includes the GeometryHelper project. PhingerPaint must be given a reference to

GeometryHelper. (I right-clicked References under the PhingerPaint project, selected Add

Reference, clicked the Projects tab, and there it was.)

Game Components

To help you modularize your games, XNA supports a concept of game ―components.‖ These

can derive from the GameComponent class but very often they derive from

DrawableGameComponent so they can display something on the screen in addition to what

goes out in the Draw method of your Game class. To add a new component class to your

project, you can right-click the project name, select Add and then New Item, and then pick

GameComponent from the list. You’ll need to change the base class to

DrawableGameComponent if you want the component to participate in drawing.

For PhingerPaint, I wanted a collection of little colored boxes that would allow the user to

select a color to do some painting. Implementing these little boxes as

DrawableGameComponent objects allowed this feature to be added fairly easily. Like the

Game class, a DrawableGameComponent can override Initialize, LoadComponent, Update, and

Draw methods, and use them in a very similar way.

The ColorBlock class isn’t long. Here it is in its entirety:

XNA Project: PhingerPaint File: ColorBlock.cs (complete)

using System;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;

using Microsoft.Xna.Framework.Input.Touch;

namespace PhingerPaint

{

 public class ColorBlock : DrawableGameComponent

 {

 SpriteBatch spriteBatch;

 Texture2D block;

 public ColorBlock(Game game) : base(game)

 {

 }

 public Color Color { set; get; }

 public Rectangle Destination { set; get; }

 public bool IsSelected { set; get; }

 public override void Initialize()

 {

 base.Initialize();

 }

 protected override void LoadContent()

 {

 spriteBatch = new SpriteBatch(this.GraphicsDevice);

 block = new Texture2D(this.GraphicsDevice, 1, 1);

 block.SetData<uint>(new uint[] { Color.White.PackedValue });

 base.LoadContent();

 }

 public override void Update(GameTime gameTime)

 {

 base.Update(gameTime);

 }

 public override void Draw(GameTime gameTime)

 {

 Rectangle rect = Destination;

 spriteBatch.Begin();

 spriteBatch.Draw(block, rect, IsSelected ? Color.White :

Color.DarkGray);

 rect.Inflate(-4, -4);

 spriteBatch.Draw(block, rect, Color);

 spriteBatch.End();

 base.Draw(gameTime);

 }

 }

}

ColorBlock relies on three public properties — Color, Destination, and IsSelected — to govern

its appearance. Notice during the LoadContent method that it creates a Texture2D that is

exactly one pixel in size! This block object is drawn twice in the Draw method. First it’s drawn

to the entire dimensions of the Destination rectangle as either dark gray or white, depending

on the value of IsSelected. Then it’s contracted in size by four pixels on all sides and drawn

again based on Color.

PhingerPaint Concluded

The normal Game1 class defines several fields:

XNA Project: PhingerPaint File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Viewport viewport;

 List<ColorBlock> colorBlocks = new List<ColorBlock>();

 Color drawingColor = Color.Blue;

 Texture2D canvas;

 uint[] pixels;

 List<float> xCollection = new List<float>();

 bool ignoreTouchId;

 int touchIdToIgnore;

 …

}

The List stores the 12 ColorBlock components, and drawingColor is the currently selected

color. The main canvas is, of course, the Texture2D object called canvas and pixels are its

pixels. The xCollection object is repeatedly reused in calls to the RoundCappedLine class.

The constructor sets the screen for portrait mode:

XNA Project: PhingerPaint File: Game1.cs (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 Content.RootDirectory = "Content";

 // Frame rate is 30 fps by default for Windows Phone.

 TargetElapsedTime = TimeSpan.FromTicks(333333);

 // Set to portrait mode

 graphics.PreferredBackBufferWidth = 480;

 graphics.PreferredBackBufferHeight = 800;

}

The Initialize override has several jobs to perform. It is responsible for creating the 12

ColorBlock objects and adding them to the Components collection of the Game class. This

ensures that they get their own calls to LoadContent, Update, and Draw. The Initialize method

is also responsible for setting the size and location of these components, finally creating the

canvas object and pixels array for drawing.

protected override void Initialize()

{

 Color[] colors = { Color.Red, Color.Green, Color.Blue,

 Color.Cyan, Color.Magenta, Color.Yellow,

 Color.Black, new Color(0.2f, 0.2f, 0.2f),

 new Color(0.4f, 0.4f, 0.4f),

 new Color(0.6f, 0.6f, 0.6f),

 new Color(0.8f, 0.8f, 0.8f), Color.White };

 foreach (Color clr in colors)

 {

 ColorBlock colorBlock = new ColorBlock(this)

 {

 Color = clr,

 IsSelected = drawingColor == clr

 };

 colorBlocks.Add(colorBlock);

 this.Components.Add(colorBlock);

 }

 viewport = this.GraphicsDevice.Viewport;

 int colorBlockSize = viewport.Width / (colorBlocks.Count / 2) - 2;

 int xColorBlock = 2;

 int yColorBlock = viewport.Height - 2 * colorBlockSize - 2;

 foreach (ColorBlock colorBlock in colorBlocks)

 {

 colorBlock.Destination = new Rectangle(xColorBlock, yColorBlock,

 colorBlockSize, colorBlockSize);

 xColorBlock += colorBlockSize + 2;

 if (xColorBlock + colorBlockSize > viewport.Width)

 {

 xColorBlock = 2;

 yColorBlock += colorBlockSize + 2;

 }

 }

 int canvasHeight = viewport.Height - 2 * colorBlockSize - 2;

 canvas = new Texture2D(this.GraphicsDevice, viewport.Width, canvasHeight);

 pixels = new uint[canvas.Width * canvas.Height];

 canvas.GetData<uint>(pixels);

 for (int y = 0; y < canvas.Height; y++)

 for (int x = 0; x < canvas.Width; x++)

 {

 pixels[x + canvas.Width * y] = Color.Black.PackedValue;

 }

 canvas.SetData<uint>(pixels);

 base.Initialize();

}

The LoadContent method does nothing except its default job of creating the SpriteBatch

object. But Update needs to handle touch input, both on the ColorBlock objects and the

canvas:

XNA Project: PhingerPaint File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 TouchCollection touchLocations = TouchPanel.GetState();

 bool canvasNeedsUpdate = false;

 int yMin = 0, yMax = 0;

 foreach (TouchLocation touchLocation in touchLocations)

 {

 if (ignoreTouchId && touchLocation.Id == touchIdToIgnore)

 continue;

 // Check for tap on ColorBlock

 if (touchLocation.State == TouchLocationState.Pressed)

 {

 Vector2 position = touchLocation.Position;

 ColorBlock newSelectedColorBlock = null;

 foreach (ColorBlock colorBlock in colorBlocks)

 {

 Rectangle rect = colorBlock.Destination;

 if (position.X >= rect.Left && position.X < rect.Right &&

 position.Y >= rect.Top && position.Y < rect.Bottom)

 {

 drawingColor = colorBlock.Color;

 newSelectedColorBlock = colorBlock;

 }

 }

 if (newSelectedColorBlock != null)

 {

 foreach (ColorBlock colorBlock in colorBlocks)

 colorBlock.IsSelected = colorBlock == newSelectedColorBlock;

 ignoreTouchId = true;

 touchIdToIgnore = touchLocation.Id;

 }

 else

 {

 ignoreTouchId = false;

 }

 }

 // Check for drawing movement

 else if (touchLocation.State == TouchLocationState.Moved)

 {

 TouchLocation prevTouchLocation;

 touchLocation.TryGetPreviousLocation(out prevTouchLocation);

 Vector2 point1 = prevTouchLocation.Position;

 Vector2 point2 = touchLocation.Position;

 // Sure hope touchLocation.Pressure comes back!

 float radius = 12; // 48 * touchLocation.Pressure;

 RoundCappedLine line = new RoundCappedLine(point1, point2, radius);

 yMin = (int)(Math.Min(point1.Y, point2.Y) - radius);

 yMax = (int)(Math.Max(point1.Y, point2.Y) + radius);

 yMin = Math.Max(0, Math.Min(canvas.Height, yMin));

 yMax = Math.Max(0, Math.Min(canvas.Height, yMax));

 for (int y = yMin; y < yMax; y++)

 {

 xCollection.Clear();

 line.GetAllX(y, xCollection);

 if (xCollection.Count == 2)

 {

 int xMin = (int)(Math.Min(xCollection[0], xCollection[1]) +

0.5f);

 int xMax = (int)(Math.Max(xCollection[0], xCollection[1]) +

0.5f);

 xMin = Math.Max(0, Math.Min(canvas.Width, xMin));

 xMax = Math.Max(0, Math.Min(canvas.Width, xMax));

 for (int x = xMin; x < xMax; x++)

 {

 pixels[y * canvas.Width + x] = drawingColor.PackedValue;

 }

 canvasNeedsUpdate = true;

 }

 }

 }

 }

 if (canvasNeedsUpdate)

 canvas.SetData<uint>(pixels);

 base.Update(gameTime);

}

It’s always very satisfying when everything has prepared the Draw override for a very simple

job. The ColorBlock components draw themselves, so the Draw method here need only render

the canvas:

XNA Project: PhingerPaint File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 spriteBatch.Begin();

 spriteBatch.Draw(canvas, Vector2.Zero, Color.White);

 spriteBatch.End();

 base.Draw(gameTime);

}

PhreeCell and a Deck of Cards

I originally thought that my PhreeCell solitaire game would have no features beyond what

was strictly necessary to play the game. My wife — who has played FreeCell under Windows

and can usually win a deal — made it clear that PhreeCell would need two features that I

hadn’t planned on implementing: First and most importantly, there had to be some kind of

positive feedback from the program acknowledging that the player has won. I implemented

this as a DrawableGameComponent derivative called CongratulationsComponent.

The second essential feature was something I called ―auto move.‖ If a card can be legally

moved to the suit piles at the upper right of the board, and there was no reason to do

otherwise, then the card is automatically moved. Other than that, PhreeCell has no amenities.

There is no animated ―deal‖ at the beginning of play, you cannot simply ―click‖ to indicate a

destination spot, and there is no way to move multiple cards in one shot.

My coding for PhreeCell began not with an XNA program but with a Windows Presentation

Foundation program to generate a single 1040 × 448 bitmap containing all 52 playing cards,

each of which is 96 pixels wide and 112 pixels tall. This PlayingCardCreator program is

included among the source code for this book; it uses mostly TextBlock objects to adorn a

Canvas with numbers, letters, and suit symbols. It then passes the Canvas to a

RenderTargetBitmap and saves the result out to a file named cards.png. In the XNA PhreeCell

project, I added this file to the program’s content.

Within the PhreeCell project, each card is an object of type CardInfo:

XNA Project: PhreeCell File: CardInfo.cs

using System;

using Microsoft.Xna.Framework;

namespace PhreeCell

{

 class CardInfo

 {

 static string[] ranks = { "Ace", "Deuce", "Three", "Four",

 "Five", "Six", "Seven", "Eight",

 "Nine", "Ten", "Jack", "Queen", "King" };

 static string[] suits = { "Spades", "Clubs", "Hearts", "Diamonds" };

 public int Suit { protected set; get; }

 public int Rank { protected set; get; }

 public Vector2 AutoMoveOffset { set; get; }

 public TimeSpan AutoMoveTime { set; get; }

 public float AutoMoveInterpolation { set; get; }

 public CardInfo(int suit, int rank)

 {

 Suit = suit;

 Rank = rank;

 }

 // used for debugging purposes

 public override string ToString()

 {

 return ranks[Rank] + " of " + suits[Suit];

 }

 }

}

At first, this class simply had Rank and Value properties. I added the static string arrays and

ToString for display purposes while debugging, and I added the three AutoMove fields when I

implemented that feature. CardInfo itself has no information about where the card is actually

located during play. That’s retained elsewhere.

The Playing Field

Here’s the opening screen of the completed PhreeCell program:

I’ll assume you’re familiar with the rules. All 52 cards are dealt face up in 8 columns that I refer

to in the program as ―piles.‖ At the upper left are four spots for holding individual cards. I

refer to these four card spots as ―holds.‖ At the upper-right are four spots for stacking

ascending cards of the same suit; these are called ―finals.‖ The red dot in the middle is the

replay button.

For convenience, I split the Game1 class into two files. The first is the normal Game1.cs file;

the second is named Game1.Helpers.cs. The Helpers file has no instance fields—just const and

static readonly. The Game1.cs file has one static field and all the instance fields:

XNA Project: PhreeCell File: Game1.cs (excerpt showing fields)

public partial class Game1 : Microsoft.Xna.Framework.Game

{

 static readonly TimeSpan AutoMoveDuration = TimeSpan.FromSeconds(0.25);

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 CongratulationsComponent congratsComponent;

 Texture2D cards;

 Texture2D surface;

 Rectangle[] cardSpots = new Rectangle[16];

 public Matrix DisplayMatrix { set; get; }

 Matrix inverseMatrix;

 CardInfo[] deck = new CardInfo[52];

 List<CardInfo>[] piles = new List<CardInfo>[8];

 CardInfo[] holds = new CardInfo[4];

 List<CardInfo>[] finals = new List<CardInfo>[4];

 CardInfo touchedCard;

 Vector2 touchedCardPosition;

 object touchedCardOrigin;

 int touchedCardOriginIndex;

 int touchedCardTouchId;

 …

}

The program uses only two Texture2D objects: The cards object is the bitmap containing all

52 cards; individual cards are displaying by defining rectangular subsets of this bitmap. The

surface is the dark blue area you see in the screen shot that also includes the white rectangles

and the red button. The coordinates of those 16 white rectangles — there are eight more

under the top card in each pile — are stored in the cardSpots array.

The program was originally developed when portrait mode was the default. Because the

program really wants landscape mode, it treats the display as if it were landscape mode, and

then uses the DisplayMatrix to twist it sideways if necessary. The inverseMatrix is the inverse of

that matrix and is useful for processing touch input. Landscape mode is now the default, but

this logic has remained because it does some extra work that I’ll discuss later.

The next block of fields are the basic data structures used by the program. The deck array

contains all 52 CardInfo objects created early in the program and re-used until the program is

terminated. During play, copies of those cards are also in piles, holds, and finals. I originally

thought finals would be an array like holds because only the top card need be displayed, but I

discovered that the auto-move feature potentially required more cards to be visible.

The other fields are connected with touching and moving cards with the fingers. The

touchedCardPosition field is the current position of the moving card. The touchedCardOrigin

field stores the object where the moving card came from and is either the holds or piles array,

while touchedCardOriginIndex is the array index. These are used to return the card to its

original spot if the user tries to move the card illegally.

The Game1 constructor does its normal stuff and loads the CongratulationsComponent:

XNA Project: PhreeCell File: Game1.cs (excerpt)

public Game1()

{

 graphics = new GraphicsDeviceManager(this);

 graphics.IsFullScreen = true;

 Content.RootDirectory = "Content";

 // Frame rate is 30 fps by default for Windows Phone.

 TargetElapsedTime = TimeSpan.FromTicks(333333);

 congratsComponent = new CongratulationsComponent(this);

 congratsComponent.Enabled = false;

 this.Components.Add(congratsComponent);

}

The Initialize method creates the CardInfo objects for the decks array, and initializes the piles

and finals arrays with List objects.

XNA Project: PhreeCell File: Game1.cs (excerpt)

protected override void Initialize()

{

 // Initialize deck

 for (int suit = 0; suit < 4; suit++)

 for (int rank = 0; rank < 13; rank++)

 {

 CardInfo cardInfo = new CardInfo(suit, rank);

 deck[suit * 13 + rank] = cardInfo;

 }

 // Create the List objects for the 8 piles

 for (int pile = 0; pile < 8; pile++)

 piles[pile] = new List<CardInfo>();

 // Create the List objects for the 4 finals

 for (int final = 0; final < 4; final++)

 finals[final] = new List<CardInfo>();

 base.Initialize();

}

The LoadContent method loads the bitmap containing the card images, and also calls three

methods in the portion of the Game1 class implemented in Game1.Helpers.cs:

XNA Project: PhreeCell File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 // Load large bitmap containing cards

 cards = this.Content.Load<Texture2D>("cards");

 // Create the 16 rectangular areas for the cards and the bitmap surface

 CreateCardSpots(cardSpots);

 surface = CreateSurface(this.GraphicsDevice, cardSpots);

 // Start the game!

 Replay();

}

The Game1.Helpers.cs file begins with a bunch of constant fields that define all the pixel

dimensions of the playing field:

XNA Project: PhreeCell File: Game1.Helper.cs (excerpt showing fields)

public partial class Game1 : Microsoft.Xna.Framework.Game

{

 const int wCard = 80; // width of card

 const int hCard = 112; // height of card

 // Horizontal measurements

 const int wSurface = 800; // width of surface

 const int xGap = 16; // space between piles

 const int xMargin = 8; // margin on left and right

 // gap between "holds" and "finals"

 const int xMidGap = wSurface - (2 * xMargin + 8 * wCard + 6 * xGap);

 // additional margin on second row

 const int xIndent = (wSurface - (2 * xMargin + 8 * wCard + 7 * xGap)) / 2;

 // Vertical measurements

 const int yMargin = 8; // vertical margin on top row

 const int yGap = 16; // vertical margin between rows

 const int yOverlay = 28; // visible top of cards in piles

 const int hSurface = 2 * yMargin + yGap + 2 * hCard + 19 * yOverlay;

 // Replay button

 const int radiusReplay = xMidGap / 2 - 8;

 static readonly Vector2 centerReplay =

 new Vector2(wSurface / 2, xMargin + hCard / 2);

 …

}

Notice that wSurface — the width of the playing field — is defined to be 800 pixels because

that’s the width of the large phone display. However, the vertical dimension might need to be

greater than 480. It is possible for there to be 20 overlapping cards in the piles area. To

accommodate that possibility, hSurface is calculated as a maximum possible height based on

these 20 overlapping cards.

The CreateCardSpots method uses those constants to calculate 16 Rectangle objects indicating

where the cards are positioned on the playing fields. The top row has the holds and finals, and

the bottom row is for the piles:

XNA Project: PhreeCell File: Game1.Helper.cs (excerpt)

static void CreateCardSpots(Rectangle[] cardSpots)

{

 // Top row

 int x = xMargin;

 int y = yMargin;

 for (int i = 0; i < 8; i++)

 {

 cardSpots[i] = new Rectangle(x, y, wCard, hCard);

 x += wCard + (i == 3 ? xMidGap : xGap);

 }

 // Bottom row

 x = xMargin + xIndent;

 y += hCard + yGap;

 for (int i = 8; i < 16; i++)

 {

 cardSpots[i] = new Rectangle(x, y, wCard, hCard);

 x += wCard + xGap;

 }

}

The CreateSurface method creates the bitmap used for the playing field. The size of the

bitmap is based on hSurface (set as a constant 800) and wSurface, which is much more than

480. To draw the white rectangles and red replay button, it directly manipulates pixels and

sets those to the bitmap:

XNA Project: PhreeCell File: Game1.Helper.cs (excerpt)

static Texture2D CreateSurface(GraphicsDevice graphicsDevice, Rectangle[] cardSpots)

{

 uint backgroundColor = new Color(0, 0, 0x60).PackedValue;

 uint outlineColor = Color.White.PackedValue;

 uint replayColor = Color.Red.PackedValue;

 Texture2D surface = new Texture2D(graphicsDevice, wSurface, hSurface);

 uint[] pixels = new uint[wSurface * hSurface];

 for (int i = 0; i < pixels.Length; i++)

 {

 if ((new Vector2(i % wSurface, i / wSurface) – centerReplay).LengthSquared()

<

 radiusReplay * radiusReplay)

 pixels[i] = replayColor;

 else

 pixels[i] = backgroundColor;

 }

 foreach (Rectangle rect in cardSpots)

 {

 // tops of rectangles

 for (int x = 0; x < wCard; x++)

 {

 pixels[(rect.Top - 1) * wSurface + rect.Left + x] = outlineColor;

 pixels[rect.Bottom * wSurface + rect.Left + x] = outlineColor;

 }

 // sides of rectangles

 for (int y = 0; y < hCard; y++)

 {

 pixels[(rect.Top + y) * wSurface + rect.Left - 1] = outlineColor;

 pixels[(rect.Top + y) * wSurface + rect.Right] = outlineColor;

 }

 }

 surface.SetData<uint>(pixels);

 return surface;

}

The other static methods in the Game1 class are fairly self-explanatory.

XNA Project: PhreeCell File: Game1.Helper.cs (excerpt)

static void ShuffleDeck(CardInfo[] deck)

{

 Random rand = new Random();

 for (int card = 0; card < 52; card++)

 {

 int random = rand.Next(52);

 CardInfo swap = deck[card];

 deck[card] = deck[random];

 deck[random] = swap;

 }

}

static bool IsWithinRectangle(Vector2 point, Rectangle rect)

{

 return point.X >= rect.Left &&

 point.X <= rect.Right &&

 point.Y >= rect.Top &&

 point.Y <= rect.Bottom;

}

static Rectangle GetCardTextureSource(CardInfo cardInfo)

{

 return new Rectangle(wCard * cardInfo.Rank,

 hCard * cardInfo.Suit, wCard, hCard);

}

static CardInfo TopCard(List<CardInfo> cardInfos)

{

 if (cardInfos.Count > 0)

 return cardInfos[cardInfos.Count - 1];

 return null;

}

GetCardTextureSource is used in conjunction with the large cards bitmap. It simply returns a

Rectangle object corresponding to a particular card. TopCard actually returns the last item in a

List<CardInfo> collection, which is useful for obtaining the topmost card in one of the piles or

finals collections.

The LoadContent method in Card1.cs concluded by calling Replay. Here it is:

XNA Project: PhreeCell File: Game1.Helper.cs (excerpt)

void Replay()

{

 for (int i = 0; i < 4; i++)

 holds[i] = null;

 foreach (List<CardInfo> final in finals)

 final.Clear();

 foreach (List<CardInfo> pile in piles)

 pile.Clear();

 ShuffleDeck(deck);

 // Apportion cards to piles

 for (int card = 0; card < 52; card++)

 {

 piles[card % 8].Add(deck[card]);

 }

 CalculateDisplayMatrix();

}

The method clears out the holds array, and the finals and piles collections, randomizes the

deck of cards, and apportions them into the eight collections in piles. The method is

concluded with a call to CalculateDisplayMatrix. This is not the only time this method is called.

Any time a card is moved from, or added to, one of the piles collection, the display matrix is

re-calculated just in case.

This matrix serves several purposes. It was originally responsible for turning the playing field

sideways for landscape mode. That’s no longer an issue. The matrix also scales the playing

field if the program runs on a smaller display. And for a large landscape display, it still has a

important function, which is shortening the height if more space is required for viewing all the

cards in the piles area. The program doesn’t handle this issue very elegantly. It merely makes

the entire playing field a little shorter, including all the cards and even the replay button:

I’m not entirely happy with this solution, but here’s the CalculateDisplayMatrix method that

makes it all possible:

XNA Project: PhreeCell File: Game1.Helper.cs (excerpt)

void CalculateDisplayMatrix()

{

 Viewport viewport = this.GraphicsDevice.Viewport;

 int largeDimension = Math.Max(viewport.Width, viewport.Height);

 int smallDimension = Math.Min(viewport.Width, viewport.Height);

 // Initialize the matrix

 DisplayMatrix = Matrix.Identity;

 float scale = 1;

 // Find basic scaling based on the widest dimension

 if (largeDimension != wSurface)

 {

 scale = (float)largeDimension / wSurface;

 DisplayMatrix *= Matrix.CreateScale(scale);

 }

 // Figure out the total required height and scale vertically

 int maxCardsInPiles = 0;

 foreach (List<CardInfo> pile in piles)

 maxCardsInPiles = Math.Max(maxCardsInPiles, pile.Count);

 int requiredHeight = 2 * yMargin + yGap + 2 * hCard +

 yOverlay * (maxCardsInPiles - 1);

 if (scale * requiredHeight > smallDimension)

 DisplayMatrix *= Matrix.CreateScale(1, smallDimension /

 (scale * requiredHeight), 1);

 // Rotate if display is in portrait mode

 if (largeDimension != viewport.Width)

 {

 DisplayMatrix *= Matrix.CreateRotationZ(MathHelper.PiOver2);

 DisplayMatrix *= Matrix.CreateTranslation(smallDimension, 0, 0);

 }

 // Find the inverse matrix for hit-testing

 inverseMatrix = Matrix.Invert(DisplayMatrix);

}

DisplayMatrix is defined as a public property rather than a field because it is also accessed by

the CongratulationsComponent class. In a commercial program, I would definitely design a

second set of cards for the small display; these would certainly be more attractive than cards

that are scaled to 60% of their designed size.

Most crucially, the DisplayMatrix is used in the Begin call of SpriteBatch so it’s applied to

everything in one grand swoop. Although just a little bit out of my customary sequence, you

are now ready to look at the Draw method in the Game1 class.

XNA Project: PhreeCell File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 spriteBatch.Begin(SpriteSortMode.Immediate, null, null, null, null, null,

 DisplayMatrix);

 spriteBatch.Draw(surface, Vector2.Zero, Color.White);

 // Draw holds

 for (int hold = 0; hold < 4; hold++)

 {

 CardInfo cardInfo = holds[hold];

 if (cardInfo != null)

 {

 Rectangle source = GetCardTextureSource(cardInfo);

 Vector2 destination = new Vector2(cardSpots[hold].X, cardSpots[hold].Y);

 spriteBatch.Draw(cards, destination, source, Color.White);

 }

 }

 // Draw piles

 for (int pile = 0; pile < 8; pile++)

 {

 Rectangle cardSpot = cardSpots[pile + 8];

 for (int card = 0; card < piles[pile].Count; card++)

 {

 CardInfo cardInfo = piles[pile][card];

 Rectangle source = GetCardTextureSource(cardInfo);

 Vector2 destination = new Vector2(cardSpot.X, cardSpot.Y + card *

yOverlay);

 spriteBatch.Draw(cards, destination, source, Color.White);

 }

 }

 // Draw finals including all previous cards (for auto-move)

 for (int pass = 0; pass < 2; pass++)

 {

 for (int final = 0; final < 4; final++)

 {

 for (int card = 0; card < finals[final].Count; card++)

 {

 CardInfo cardInfo = finals[final][card];

 if (pass == 0 && cardInfo.AutoMoveInterpolation == 0 ||

 pass == 1 && cardInfo.AutoMoveInterpolation != 0)

 {

 Rectangle source = GetCardTextureSource(cardInfo);

 Vector2 destination =

 new Vector2(cardSpots[final + 4].X,

 cardSpots[final + 4].Y) +

 cardInfo.AutoMoveInterpolation *

cardInfo.AutoMoveOffset;

 spriteBatch.Draw(cards, destination, source, Color.White);

 }

 }

 }

 }

 // Draw touched card

 if (touchedCard != null)

 {

 Rectangle source = GetCardTextureSource(touchedCard);

 spriteBatch.Draw(cards, touchedCardPosition, source, Color.White);

 }

 spriteBatch.End();

 base.Draw(gameTime);

}

After calling Begin on the SpriteBatch object and displaying the surface bitmap for the playing

field, the method is ready for drawing cards. It begins with the easy one — the four possible

cards in the holds array. The little GetCardTextureSource method returns a Rectangle for the

position of the card within the cards bitmap, and the cardSpot array provides the point where

each card is to appear.

The next section is a little more complicated. When displaying the cards in the piles area, the

cardSpot location must be overset to accommodate the overlapping cards. The problematic

area is the finals, and it’s problematic because of the auto-move feature. As you’ll see, when a

card is eligible for auto-move, it is removed from its previous holds array or piles collection

and put into a finals collection. However, the location of the card must be animated from its

previous position to its new position. This is the purpose of the AutoMoveOffset and

AutoMoveInterpolation properties that are part of CardInfo.

However, the Draw method wants to display each of the four finals collections sequentially

from left to right, and then within each collection from the beginning (which is always an ace)

to the end, which is the topmost card. I discovered this didn’t always work, and an animated

card sometimes seemed briefly to slide under a card in one of the other finals stacks. That’s

why the loop to display the finals collections has two passes — one for the non-animated

cards and another for any animated auto-move cards. (Although the program only animates

one card at a time, an earlier version animated multiple cards.)

Draw finishes with the card that the user might be currently dragging with touch.

The Update method is concerned almost exclusively with implementing the animation for the

auto-move feature and processing touch, but methods that Update calls implicitly enforce all

the rules of the game.

XNA Project: PhreeCell File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 // Allows the game to exit

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 // Process auto-move card and perhaps initiate next auto-move

 bool checkForNextAutoMove = false;

 foreach (List<CardInfo> final in finals)

 foreach (CardInfo cardInfo in final)

 {

 if (cardInfo.AutoMoveTime > TimeSpan.Zero)

 {

 cardInfo.AutoMoveTime -= gameTime.ElapsedGameTime;

 if (cardInfo.AutoMoveTime <= TimeSpan.Zero)

 {

 cardInfo.AutoMoveTime = TimeSpan.Zero;

 checkForNextAutoMove = true;

 }

 cardInfo.AutoMoveInterpolation = (float)cardInfo.AutoMoveTime.Ticks

 /

AutoMoveDuration.Ticks;

 }

 }

 if (checkForNextAutoMove && !AnalyzeForAutoMove() && HasWon())

 {

 congratsComponent.Enabled = true;

 }

 TouchCollection touchLocations = TouchPanel.GetState();

 // Try to pick up a card

 if (touchedCard == null)

 {

 foreach (TouchLocation touchLocation in touchLocations)

 {

 // Finger pressed to screen

 if (touchLocation.State == TouchLocationState.Pressed)

 {

 Vector2 position = Vector2.Transform(touchLocation.Position,

inverseMatrix);

 // Replay pressed?

 if ((position - centerReplay).Length() < radiusReplay)

 {

 congratsComponent.Enabled = false;

 Replay();

 }

 // Now try to pick up a card

 else if (TryPickUpCard(position))

 {

 touchedCardTouchId = touchLocation.Id;

 }

 }

 }

 }

 else

 {

 foreach (TouchLocation touchLocation in touchLocations)

 {

 // If a card is being moved, only process IDs for that card

 if (touchLocation.Id == touchedCardTouchId)

 {

 if (touchLocation.State == TouchLocationState.Moved)

 {

 TouchLocation previousTouchLocation;

 touchLocation.TryGetPreviousLocation(out previousTouchLocation);

 Vector2 moveVector = touchLocation.Position -

previousTouchLocation.Position;

 Vector2 position = Vector2.Transform(touchedCardPosition,

 DisplayMatrix);

 position += moveVector;

 touchedCardPosition = Vector2.Transform(position,

inverseMatrix);

 }

 // The finger has been lifted from the screen: Try to set down the

card

 else

 {

 if (TryPutDownCard(touchedCard))

 {

 CalculateDisplayMatrix();

 // This will not happen!

 if (!AnalyzeForAutoMove() && HasWon())

 {

 congratsComponent.Enabled = true;

 }

 }

 touchedCard = null;

 }

 }

 }

 }

 base.Update(gameTime);

}

Following the animation for auto-move cards, the method checks if the user is trying to ―pick

up‖ a card by touching it. If a card is already being moved and being ―set down,‖ then other

methods must be called in the Game1.Helpers.cs file.

The logic to determine what cards (if any) should be auto-moved turned out to be one of the

lengthier parts of the program:

XNA Project: PhreeCell File: Game1.Helpers.cs (excerpt)

bool AnalyzeForAutoMove()

{

 for (int hold = 0; hold < 4; hold++)

 {

 CardInfo cardInfo = holds[hold];

 if (cardInfo != null && CheckForAutoMove(cardInfo))

 {

 holds[hold] = null;

 cardInfo.AutoMoveOffset += new Vector2(cardSpots[hold].X,

cardSpots[hold].Y);

 cardInfo.AutoMoveInterpolation = 1;

 cardInfo.AutoMoveTime = AutoMoveDuration;

 return true;

 }

 }

 for (int pile = 0; pile < 8; pile++)

 {

 CardInfo cardInfo = TopCard(piles[pile]);

 if (cardInfo != null && CheckForAutoMove(cardInfo))

 {

 piles[pile].Remove(cardInfo);

 cardInfo.AutoMoveOffset += new Vector2(cardSpots[pile + 8].X,

 cardSpots[pile + 8].Y + piles[pile].Count *

yOverlay);

 cardInfo.AutoMoveInterpolation = 1;

 cardInfo.AutoMoveTime = AutoMoveDuration;

 return true;

 }

 }

 return false;

}

bool CheckForAutoMove(CardInfo cardInfo)

{

 if (cardInfo.Rank == 0) // ie, ace

 {

 for (int final = 0; final < 4; final++)

 if (finals[final].Count == 0)

 {

 finals[final].Add(cardInfo);

 cardInfo.AutoMoveOffset = -new Vector2(cardSpots[final + 4].X,

 cardSpots[final + 4].Y);

 return true;

 }

 }

 else if (cardInfo.Rank == 1) // ie, deuce

 {

 for (int final = 0; final < 4; final++)

 {

 CardInfo topCardInfo = TopCard(finals[final]);

 if (topCardInfo != null &&

 topCardInfo.Suit == cardInfo.Suit &&

 topCardInfo.Rank == 0)

 {

 finals[final].Add(cardInfo);

 cardInfo.AutoMoveOffset = -new Vector2(cardSpots[final + 4].X,

 cardSpots[final + 4].Y);

 return true;

 }

 }

 }

 else

 {

 int slot = -1;

 int count = 0;

 for (int final = 0; final < 4; final++)

 {

 CardInfo topCardInfo = TopCard(finals[final]);

 if (topCardInfo != null)

 {

 if (topCardInfo.Suit == cardInfo.Suit &&

 topCardInfo.Rank == cardInfo.Rank - 1)

 {

 slot = final;

 }

 else if (topCardInfo.Suit < 2 != cardInfo.Suit < 2 &&

 topCardInfo.Rank >= cardInfo.Rank - 1)

 {

 count++;

 }

 }

 }

 if (slot >= 0 && count == 2)

 {

 cardInfo.AutoMoveOffset = -new Vector2(cardSpots[slot + 4].X,

 cardSpots[slot + 4].Y);

 finals[slot].Add(cardInfo);

 return true;

 }

 }

 return false;

}

The actual rules for picking up and setting down cards are almost as complex:

XNA Project: PhreeCell File: Game1.Helpers.cs (excerpt)

bool TryPickUpCard(Vector2 position)

{

 for (int hold = 0; hold < 4; hold++)

 {

 if (holds[hold] != null && IsWithinRectangle(position, cardSpots[hold]))

 {

 Point pt = cardSpots[hold].Location;

 touchedCard = holds[hold];

 touchedCardOrigin = holds;

 touchedCardOriginIndex = hold;

 touchedCardPosition = new Vector2(pt.X, pt.Y);

 holds[hold] = null;

 return true;

 }

 }

 for (int pile = 0; pile < 8; pile++)

 {

 if (piles[pile].Count > 0)

 {

 Rectangle pileSpot = cardSpots[pile + 8];

 pileSpot.Offset(0, yOverlay * (piles[pile].Count - 1));

 if (IsWithinRectangle(position, pileSpot))

 {

 Point pt = pileSpot.Location;

 int pileIndex = piles[pile].Count - 1;

 touchedCard = piles[pile][pileIndex];

 touchedCardOrigin = piles;

 touchedCardOriginIndex = pile;

 touchedCardPosition = new Vector2(pt.X, pt.Y);

 piles[pile].RemoveAt(pileIndex);

 return true;

 }

 }

 }

 return false;

}

bool TryPutDownCard(CardInfo touchedCard)

{

 Vector2 cardCenter = new Vector2(touchedCardPosition.X + wCard / 2,

 touchedCardPosition.Y + hCard / 2);

 for (int cardSpot = 0; cardSpot < 16; cardSpot++)

 {

 Rectangle rect = cardSpots[cardSpot];

 // Greatly expand the card-spot rectangle for the piles

 if (cardSpot >= 8)

 rect.Inflate(0, hSurface – rect.Bottom);

 if (IsWithinRectangle(cardCenter, rect))

 {

 // Check if the hold is empty

 if (cardSpot < 4)

 {

 int hold = cardSpot;

 if (holds[hold] == null)

 {

 holds[hold] = touchedCard;

 return true;

 }

 }

 else if (cardSpot < 8)

 {

 int final = cardSpot - 4;

 if (TopCard(finals[final]) == null)

 {

 if (touchedCard.Rank == 0) // ie, an ace

 {

 finals[final].Add(touchedCard);

 return true;

 }

 }

 else if (touchedCard.Suit == TopCard(finals[final]).Suit &&

 touchedCard.Rank == TopCard(finals[final]).Rank + 1)

 {

 finals[final].Add(touchedCard);

 return true;

 }

 }

 else

 {

 int pile = cardSpot - 8;

 if (piles[pile].Count == 0)

 {

 piles[pile].Add(touchedCard);

 return true;

 }

 else

 {

 CardInfo topCard = TopCard(piles[pile]);

 if (touchedCard.Suit < 2 != topCard.Suit < 2 &&

 touchedCard.Rank == topCard.Rank - 1)

 {

 piles[pile].Add(touchedCard);

 return true;

 }

 }

 }

 // The card was in a card-spot rectangle but wasn't a legal drop

 break;

 }

 }

 // Restore the card to its original place

 if (touchedCardOrigin is CardInfo[])

 {

 (touchedCardOrigin as CardInfo[])[touchedCardOriginIndex] = touchedCard;

 }

 else

 {

 ((touchedCardOrigin as

List<CardInfo>[])[touchedCardOriginIndex]).Add(touchedCard);

 }

 return false;

}

But all that work is justified by a return value of true from the following method:

XNA Project: PhreeCell File: Game1.Helpers.cs (excerpt)

bool HasWon()

{

 bool hasWon = true;

 foreach (List<CardInfo> cardInfos in finals)

 hasWon &= cardInfos.Count > 0 && TopCard(cardInfos).Rank == 12;

 return hasWon;

}

The Update method uses that to trigger the CongratulationsComponent, shown here in its

entirety:

XNA Project: PhreeCell File: CongratulationsComponent.cs

using System;

using Microsoft.Xna.Framework;

using Microsoft.Xna.Framework.Graphics;

namespace PhreeCell

{

 public class CongratulationsComponent : DrawableGameComponent

 {

 const float SCALE_SPEED = 0.5f; // half-size per second

 const float ROTATE_SPEED = 3 * MathHelper.TwoPi; // 3 revolutions per

second

 SpriteBatch spriteBatch;

 SpriteFont pericles108;

 string congratulationsText = "You Won!";

 float textScale;

 float textAngle;

 Vector2 textPosition;

 Vector2 textOrigin;

 public CongratulationsComponent(Game game) : base(game)

 {

 }

 protected override void LoadContent()

 {

 spriteBatch = new SpriteBatch(this.GraphicsDevice);

 pericles108 = this.Game.Content.Load<SpriteFont>("Pericles108");

 textOrigin = pericles108.MeasureString(congratulationsText) / 2;

 Viewport viewport = this.GraphicsDevice.Viewport;

 textPosition = new Vector2(Math.Max(viewport.Width, viewport.Height) /

2,

 Math.Min(viewport.Width, viewport.Height) /

2);

 base.LoadContent();

 }

 protected override void OnEnabledChanged(object sender, EventArgs args)

 {

 Visible = Enabled;

 if (Enabled)

 {

 textScale = 0;

 textAngle = 0;

 }

 }

 public override void Update(GameTime gameTime)

 {

 if (textScale < 1)

 {

 textScale +=

 SCALE_SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds;

 textAngle +=

 ROTATE_SPEED * (float)gameTime.ElapsedGameTime.TotalSeconds;

 }

 else if (textAngle != 0)

 {

 textScale = 1;

 textAngle = 0;

 }

 base.Update(gameTime);

 }

 public override void Draw(GameTime gameTime)

 {

 spriteBatch.Begin(SpriteSortMode.Immediate, null, null, null, null,

null,

 (this.Game as Game1).DisplayMatrix);

 spriteBatch.DrawString(pericles108, congratulationsText, textPosition,

 Color.White, textAngle, textOrigin, textScale,

 SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

 }

 }

}

If the radius of each circle is 1 unit, the entire figure is 4 units wide and 2 units tall. The X

coordinates of these dots (going from left to right) are the values 0, 0..293, 1, 0.707, 2, 2.293,

3, 3.707, and 4, and the Y coordinates (going from top to bottom) are the values 0, 0.293, 1,

1.707, and 2. The value 0.707 is simply the sine and cosine of 45 degrees, and 0.293 is one

minus that value.

Let’s begin at the point on the far left, and let’s travel clockwise around the first circle. At the

center of the figure, let’s switch to going counter-clockwise around the second circle (because

we really want an infinity sign) and finish with the same dot we started with. The X values are:

0, 0.293, 1, 1.707, 2, 2.293, 3, 3.707, 4, 3.707, 3, 2.293, 2, 1.707, 1, 0.293, 0

If we’re using values of t ranging from 0 to 1 to drive around the infinity sign, then the first

value corresponds to a t of 0, and the last (which is the same) to a t of 1. For each value, t is

incremented by 1/16 or 0.0625. The Y values are:

1, 0.293, 0, 0.293, 1, 1.707, 2, 1.707, 1, 0.293, 0, 0.293, 1, 1.707, 2, 1.707, 1

We are now ready for some coding. Here are the fields for the CarOnInfinityCourse project:

XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt showing fields)

public class Game1 : Microsoft.Xna.Framework.Game

{

 const float SPEED = 0.1f; // laps per second

 GraphicsDeviceManager graphics;

 SpriteBatch spriteBatch;

 Viewport viewport;

 Texture2D car;

 Vector2 carCenter;

 Curve xCurve = new Curve();

 Curve yCurve = new Curve();

 Vector2 position;

 float rotation;

 …

}

Notice the two Curve objects, one for X coordinates and the other for Y. Because the

initialization of these objects use precisely the coordinates I described above and don’t

require accessing any resources or program content, I decided to use the Initialize override for

this work.

XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt)

protected override void Initialize()

{

 float[] xValues = { 0, 0.293f, 1, 1.707f, 2, 2.293f, 3, 3.707f,

 4, 3.707f, 3, 2.293f, 2, 1.707f, 1, 0.293f };

 float[] yValues = { 1, 0.293f, 0, 0.293f, 1, 1.707f, 2, 1.707f,

 1, 0.293f, 0, 0.293f, 1, 1.707f, 2, 1.707f };

 for (int i = -1; i < 18; i++)

 {

 int index = (i + 16) % 16;

 float t = 0.0625f * i;

 xCurve.Keys.Add(new CurveKey(t, xValues[index]));

 yCurve.Keys.Add(new CurveKey(t, yValues[index]));

 }

 xCurve.ComputeTangents(CurveTangent.Smooth);

 yCurve.ComputeTangents(CurveTangent.Smooth);

 base.Initialize();

}

The xValues and yValues arrays only have 16 values; they don’t include the last point that

duplicates the first. Very oddly, the for loop goes from –1 through 17 but the modulo 16

operation ensures that the arrays are indexed from 0 through 15. The end result is that the

Keys collections of xCurve and yCurve get coordinates associated with t values of –0.0625, 0,

0.0625, 0.0125, …, 0.875, 0.9375, 1, and 1.0625, which are apparently two more points than is

necessary to make this thing work right.

These extra points are necessary for the ComputeTangents calls following the for loop. The

Curve class performs a type of interpolation called a cubic Hermite spline, also called a cspline.

Consider two points pt1 and pt2. The cspline interpolates between these two points based not

only on pt1 and pt2 but also on assumed tangents of the curve at pt1 and pt2. You can specify

these tangents to the Curve object yourself as part of the CurveKeys objects, or you can have

the Curve object calculate tangents for you based on adjoining points. That is the approach

I’ve taken by the two calls to ComputeTangents. With an argument of CurveTangent.Smooth,

the ComputeTangents method uses not only the two adjacent points, but the points on either

side. It’s really just a simple weighted average but it’s better than the alternatives.

The Curve and CurveKey classes have several other options, but the approach I’ve taken

seemed to offer the best results with the least amount of work.

The LoadContent method needs to load the care and get its center point:

XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt)

protected override void LoadContent()

{

 spriteBatch = new SpriteBatch(GraphicsDevice);

 viewport = this.GraphicsDevice.Viewport;

 car = this.Content.Load<Texture2D>("Car");

 carCenter = new Vector2(car.Width / 2, car.Height / 2);

}

Now it’s time for Update. The method calculates t based on TotalGameTime. The Curve class

defines a method named Evaluate that can accept this t value directly; this is how the

program obtains interpolated X and Y coordinates. However, all the data in the two Curve

objects are based on a maximum X coordinate of 4 and a Y coordinate of 2. For this reason,

Update calls a little method I’ve supplied named GetValue that scales the values based on the

size of the display and whether the display is in portrait or landscape mode.

XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt)

protected override void Update(GameTime gameTime)

{

 if (GamePad.GetState(PlayerIndex.One).Buttons.Back == ButtonState.Pressed)

 this.Exit();

 float t = (SPEED * (float)gameTime.TotalGameTime.TotalSeconds) % 1;

 float x = GetValue(t, true);

 float y = GetValue(t, false);

 position = new Vector2(x, y);

 rotation = MathHelper.PiOver2 + (float)

 Math.Atan2(GetValue(t + 0.001f, false) - GetValue(t - 0.001f, false),

 GetValue(t + 0.001f, true) - GetValue(t - 0.001f, true));

 base.Update(gameTime);

}

float GetValue(float t, bool isX)

{

 bool isLandscape = viewport.Width > viewport.Height;

 if (isX == isLandscape)

 return xCurve.Evaluate(t) * (viewport.Width - 2 * car.Width) / 4 + car.Width;

 return yCurve.Evaluate(t) * (viewport.Height - 2 * car.Width) / 2 + car.Width;

}

After calculating the position field, we have a little bit of a problem because the Curve class is

missing an essential method: the method that provides the tangent of the spline. Tangents

are required by the Curve class to calculate the spline, but after the spline is calculated, the

class doesn’t provide access to the tangents of the spline itself!

That’s the purpose of the other four calls to GetValue. Small values are added to and

subtracted from t to approximate the derivative and allow Math.Atan2 to calculate the

rotation angle.

Once again, Draw is trivial:

XNA Project: CarOnInfinityCourse File: Game1.cs (excerpt)

protected override void Draw(GameTime gameTime)

{

 GraphicsDevice.Clear(Color.Blue);

 spriteBatch.Begin();

 spriteBatch.Draw(car, position, null, Color.White, rotation,

 carCenter, 1, SpriteEffects.None, 0);

 spriteBatch.End();

 base.Draw(gameTime);

}

If you want the Curve class to calculate the tangents used for calculating the spline (as I did in

this program) it is essential to give the class sufficient points, not only beyond the range of

points you wish to interpolate between, but enough so that these calculated tangents are

more or less accurate. I originally tried defining the infinity course with points on the two

circles every 90 degrees, and it didn’t well work at all.

	Cover
	Copyright
	Introduction
	My Assumptions about You
	Using This Book
	The Essential People

	Part I: The Basics
	Chapter 1: Hello, Windows Phone 7
	Targeting Windows Phone 7
	The Hardware Chassis
	Sensors and Services
	File | New | Project
	A First Silverlight Phone Program
	Color Themes
	Points and Pixels
	An XNA Program for the Phone

	Chapter 2: Getting Oriented
	Silverlight and Dynamic Layout
	Orientation Events
	XNA Orientation
	Simple Clocks (Very Simple Clocks)

	Chapter 3: An Introduction to Touch
	Low-Level Touch Handling in XNA
	The XNA Gesture Interface
	Low-Level Touch Events in Silverlight
	The Manipulation Events
	Routed Events
	Some Odd Behavior?

	Chapter 4: Bitmaps, Also Known as Textures
	XNA Texture Drawing
	The Silverlight Image Element
	Images Via the Web
	Image and ImageSource
	Loading Local Bitmaps from Code
	Capturing from the Camera

	Chapter 5: Sensors and Services
	Accelerometer
	A Simple Bubble Level
	Geographic Location
	Using a Map Service

	Chapter 6: Issues in Application Architecture
	Task Switching on the Phone
	Page State
	Isolated Storage

	Part II: Silverlight
	Chapter 7: XAML Power and Limitations
	A TextBlock in Code
	Property Inheritance
	Property-Element Syntax
	Colors and Brushes
	Content and Content Properties
	The Resources Collection
	Sharing Brushes
	x:Key and x:Name
	An Introduction to Styles
	Style Inheritance
	Themes
	Gradient Accents

	Chapter 8: Elements and Properties
	Basic Shapes
	Transforms
	Animating at the Speed of Video
	Handling Manipulation Events
	The Border Element
	TextBlock Properties and Inlines
	More on Images
	Modes of Opacity

	Part III: XNA
	Chapter 20: Principles of Movement
	The Naïve Approach
	A Brief Review of Vectors
	Moving Sprites with Vectors
	Working with Parametric Equations
	Fiddling with the Transfer Function
	Scaling the Text
	Two Text Rotation Programs

	Chapter 21: Textures and Sprites
	The Draw Variants
	Another Hello Program?
	Driving Around the Block
	Movement Along a Polyline
	The Elliptical Course
	A Generalized Curve Solution

	Chapter 22: Touch and Play
	Dynamic Texture2D Objects
	The Geometry of PhingerPaint
	Game Components
	PhingerPaint Concluded
	PhreeCell and a Deck of Cards
	The Playing Field

