

Ink Serialized Format Specification

This specification is provided under the Microsoft Open Specification Promise. For further details on the

Microsoft Open Specification Promise, please refer to: http://www.microsoft.com/interop/osp/default.mspx.
Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property
rights covering subject matter in these materials. Except as expressly provided in the Microsoft Open

Specification Promise, the furnishing of these materials does not give you any license to these patents,
trademarks, copyrights, or other intellectual property.

The information contained in this document represents the point-in-time view of Microsoft Corporation on
the issues discussed as of the date of publication. Because Microsoft must respond to changing market
conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot

guarantee the accuracy of any information presented after the date of authoring.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail
addresses, logos, people, places and events depicted herein are fictitious, and no association with any

real company, organization, product, domain name, email address, logo, person, place or event is
intended or should be inferred.

©2007 Microsoft Corporation. All rights reserved.

Microsoft, Windows, Windows NT, Windows Server, and Windows Vista are either registered trademarks

or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective

owners.

Table of Contents

Table of Contents .. i

Introduction ... 1

Overview ... 2

General Description.. 2

SIMPLE EXAMPLE .. 5

COMMON STREAM ITEMS .. 6

The Version .. 6

Size of Stream... 6

Global Ink Properties ... 6

http://www.microsoft.com/interop/osp/default.mspx

Ink Serialized Format Specification Page 2 of 49

Local Properties... 16

COMPLEX EXAMPLE ... 19

ENCODING .. 20

Sizes of Tags and Numbers .. 20

Multi-byte Encoding of Signed Numbers ... 21

Tags for Predefined and Custom GUIDs ... 21

Compression ... 22

Backus-Naur Form (BNF) Specification ... 25

Appendix ... 35

PREDEFINED TAGS .. 35

MICROSOFT WORD EXAMPLE ... 37

cBits-cPads Lookup Table .. 39

Ink Serialized Format Specification Page 1 of 49

Introduction

This document describes the Windows Ink Services Platform‟s (WISP) Ink Serialized

Format (ISF). The intent of this document is:

 To describe how WISP Ink data is serialized into a stream. This document does

not intend to describe a file format. Applications will have their own file format and

will store serialized Ink (WISPINK) as a separate stream within their own files.

However a single WISPINK stream may be stored in a file for those applications

that do not have a file format or need to store ink in individual files. The file

extension in this case should be .WNK.

 To explain to a developer reading this specification how to write an interoperable

application that uses ISF.

 To enable someone to examine a stream and using this specification determine if

it is a valid ISF stream.

This document is organized into several sections. The “Overview” section discusses the

goals of the ISF and provides general background information. The “General Description”

section explains ISF and provides examples, discusses critical details such as the low

level encoding, and explains the common components found in an ISF stream. However,

as with any format specification, to fully describe the detailed semantics, interactions and

relationships between the components requires a Bacus-Naur Form (BNF) description.

This document provides a BNF specification of ISF for those who need very precise

details about the Ink format. The final section is an “Appendix” that lists other details

necessary to implement ISF.

Ink Serialized Format Specification Page 2 of 49

Overview

WISP is a set of COM services that an application can use to capture, manipulate, and

store INK. One of these services enables an application to read and write ink using the

WISP ISF.

In the simplest case, ink is simply a sequence of strokes, where each stroke is comprised

of a sequence of points, and the points are X, and Y coordinates. Many of the new

devices can provide information such as pressure, and angle, while new applications need

to be able to store custom information along with the ink data.

General Description

ISF has the following basic structure shown in the diagram below. Each ISF stream begins

with a number that identifies the version of ISF used when writing the file. Following the

ISF Version number is a number that indicates the size, in bytes, of all the Global Ink

Properties and all the Strokes. Next comes a list of all the properties, both custom and

predefined, that apply to the ink as a whole and last comes the list of strokes that make up

the ink.

ISF Version Number

Size of Stream

List of Global Ink Properties
(Custom & Predefined)

List of Strokes

Figure Error! Bookmark not defined.- ISF Basic Structure

Each of these items will be discussed in more detail later. However the key thing to note is

that predefined properties, custom properties, and even strokes are all of the same form,

with some minor exceptions. The basic form for these properties is what we call a

“Tagged” structure.

Ink Serialized Format Specification Page 3 of 49

A “Tagged” structure, as shown below, begins with an identifying “tag” followed by a “size

field” followed by data. The “tag” identifies the contents of the data while the “size field”

identifies the size of the data in bytes. The tag may be either a predefined tag or an

application-specific custom tag. Predefined tags are listed at the end in the appendix.

Tag Name

Size of Data

Data

Figure Error! Bookmark not defined. - Tagged Structure

Both the “List of Global Ink Properties” and “List of Strokes” are a sequence of these

tagged structures. A sequence with two tagged structures is show below:

Tag0

Size of Tag0 Data

Data for Tag0

Tag1

Size of Tag1 Data

Data for Tag1

Figure Error! Bookmark not defined. - Sequence of two tagged structures.

Furthermore the “Data” may, in turn, contain more tagged structures and so on. The

tagged structure can be a recursive hierarchical data structure. An expanded example is:

Tag0

Size of Tag0 Data

Potentially some Tag0 data

Tag00

Size of Tag00 data

Potentially some data for Tag00

Tag000

Size of Tag000 data
Data for Tag000

Potentially some data for Tag00

Tag001

Size of Tag001 data

Data for Tag001

Potentially some data for Tag00

Potentially some Tag0 data

Ink Serialized Format Specification Page 4 of 49

Figure Error! Bookmark not defined. - Hierarchical Tagged Structure

The “tag” describing the “data” determines whether the “data” contains tagged structures

or even how many tagged structures. For example, custom properties are considered

opaque to ISF since they are application-defined and thus only contain data. However, a

stroke may have one or more stroke properties, which are also represented as tagged

structures.

In ISF, the tags are “represented” by GUIDS. Using GUIDS guarantees that the tags will

always be unique for all vendors. However, since a GUID is 16 bytes in size, it is

impractical to use the GUID as the tag since it would make the ISF stream extremely

large. Instead, ISF uses an index value as the tag that actually maps into a GUID lookup

table.

ISF Version Number

Size of Stream

TAG_GUID_TABLE

Size of GUID_TABLE data

Tag0 GUID value for Tag0

Tag1 GUID value for Tag1

Tag0

Size of Tag0 data

Data for Tag0

Tag1

Size of Tag1 data

Data for Tag1

Figure Error! Bookmark not defined. - ISF with GUID table

This lookup table is then stored in the serialized stream as just another global ink property.

This means that the actual tags in the serialized stream can be a small integer index and

very little space is wasted on the GUID since it is stored only once in the stream.

The first 100 index values are reserved by ISF and are assigned predefined GUID values.

These GUID and index values are listed in the appendix under predefined tags. These

GUID values represent generally useful ink properties such as color, pressure, etc. Since

these properties are predefined, their corresponding GUIDS are not actually stored in the

lookup table. Instead an ISF implementation knows that when it sees one of these

predefined tags that it corresponds to a predefined GUID. Instead only custom application-

defined GUID values are stored in the lookup table in the ISF. In fact, there will never be a

GUID table in the stream unless the application actually needs custom properties.

ISF makes similar optimizations by taking resources that may apply to multiple strokes,

such as a drawing attribute, and only storing it once in the ink stream using a similar table

strategy. For example, a drawing attribute, which describes how a stroke is to be

rendered, is stored in a table. This table is then stored as a global ink property. This

means that only an index is stored with each stroke instead of the whole drawing attribute.

A similar approach is taken for other shared resources that may apply to multiple strokes.

Again these additional tables and properties will be described in detail later.

Ink Serialized Format Specification Page 5 of 49

SIMPLE EXAMPLE

Now let us illustrate these basic concepts by laying out a sample stream for a simple ink

object which contains only x and y data in each strokes. An ISF requirement was that

these simple streams be stored very efficiently. The ink stream below contains two strokes

with no additional properties:

0 WISP ISF 1.0 version number

cbInkObject Size of the stream in bytes from TAG_STROKE onward.

TAG_STROKE Tag for the stroke

cbStroke Size for stroke in bytes from cPoints onward

cPoints Count of points in this stroke

X data X coordinates (maybe compressed)

Y data Y coordinates (maybe compressed)

TAG_STROKE Tag for stroke object

cbStroke Size for stroke in bytes from cPoints onward

cPoints Count of Points in this stroke

X data X coordinates (maybe compressed)

Y data Y coordinates (maybe compressed)

Figure Error! Bookmark not defined. - ISF Simple Example

Both strokes in the above example are of the simplest form since they contain only the

count of points (cPoints), and the compressed x and y data for each stroke. This is defined
as the default stroke structure. That is, there are no additional packet properties (such as

pressure) associated with each point, nor any other per stroke information in any of the

strokes. A conforming ISF implementation would render this ink with the default drawing

attributes (black pen, width of one, ball tip, etc.)

The ordering of the values for cbStroke, cPoints, X and Y data are always stored in the

above order for a default stroke.

Note that the count of bytes used to store the compressed x data or compressed y data is

not stored in the ISF. This is because given cPoints, the decompression algorithm can just

read enough bytes from the stream until it decompresses cPoints number of coordinates.

The first byte of the X and Y data indicates the compression algorithm used, if any.

Ink Serialized Format Specification Page 6 of 49

COMMON STREAM ITEMS

Before we examine a more complex ISF stream, we must first introduce the common tags,

and concepts that are found in a more complex ISF stream. The following section

introduces the tags and concepts that are necessary to understand a more complex

example.

The Version

The very first item in an ISF stream is the ISF version number. For version 1.0, the value

will be zero.

Any conforming ISF 1.0 implementation will immediately stop processing a stream where

this version number is not zero, create an empty ink object and return an error to the

application.

Size of Stream

Immediately following the version number is the size field for the stream. The value of this

field indicates the total number of bytes following the size field.

A conforming implementation must be prepared to accept a size value equal to the largest

file size on Windows NT. Today this is a 64-bit number but may be larger in the future.

Obviously on some implementations, such as ISF on a Windows CE device, it would not

be reasonable to expect an application to be able to process a file of this size. The

implementation in that case would generate an appropriate error to the application.

A side benefit of having the size of the stream actually stored in the stream is that if an

application passes a random buffer to an ISF implementation, then the first two values in

the file will usually be zero. This means that an ISF implementation will generally

immediately stop processing an invalid stream.

Global Ink Properties

The section immediately following the size field contains the Global Ink Properties. For

simple streams, there may be no Global Ink Properties. However, if there are Global Ink

Properties, then they must appear before any Strokes and apply to the entire stream. This

section of the document describes the common global properties. These properties will

usually appear in the order they are presented below if they appear in the stream, with one

exception.

GUID Table

The GUID table, if it appears in the stream, must appear immediately after the size field.

The GUID table is identified with the tag TAG_GUID_TABLE. The size of this table is a

multiple of 16 bytes, where each entry is a custom GUID as used in the stream.

Ink Space Rectangle

The tag TAG_INK_SPACE_RECT identifies the Ink Space Rectangle, when present in

the stream. It does not have a size field since it has a fixed size of four signed numbers.

Ink Serialized Format Specification Page 7 of 49

These four numbers represent the left, top, right, and bottom of the ink space. The Ink

Space Rectangle defines the virtual coordinate space for the ink. An application uses this

rectangle to determine what area of the ink to either display or print. The Ink Space

Rectangle essentially defines a virtual sheet of paper that the ink is drawn on. This does

not mean that ink may not appear outside this area. However, the application will use this

rectangle when deciding how to display the ink in a Window or on the printer.

Drawing Attributes Table

The Drawing Attributes table was briefly mentioned in an earlier section. This table lists all

Drawing Attribute Blocks in the stream. Each Drawing Attribute Block defines information

used while rendering the ink. These blocks may apply to one or more strokes and are

placed in this table so that they are not repeated in each stroke.

The tag, TAG_DRAW_ATTRS_TABLE, identifies the Drawing Attributes table and is

immediately followed by the size of the table. The size of the table is equal to the sum of

the sizes of all Drawing Attribute Blocks.

A Drawing Attributes Table containing only one Drawing Attributes block is a special case.

The tag and size for the table is omitted and the entire table is replaced by a single

Drawing Attributes Block.

Drawing Attributes Block

Each Drawing Attributes Block starts with the tag, TAG_DRAW_ATTRS_BLOCK, and is

followed by the size of the block. The block contains a tagged list of drawing attributes.

Each entry in the list of drawing attributes is a pre-defined or custom tag. The diagram

below illustrates a drawing attributes block:

TAG_DRAW_ATTRS_BLOCK Tag omitted if in Drawing attributes table.

cbDrawAttrsBlock Size of this block

TAG_PEN_WIDTH Predefined Pen Width Tag.

Pen width value

TAG_COLORREF Predefined Colorref tag.

COLORREF value

TAG_CustomDrawingAttribute Tag indication a custom Draw attribute.

cbCustomDrawingAttribute Size of the custom drawing attribute data

Data Compressed data for the custom drawing attribute

Figure Error! Bookmark not defined. - Drawing Attribute Block

To save space in the ISF, the tag for the block is omitted when the block appears in a

Drawing Attributes Table. This is because the table can only contain blocks and the tag is

redundant. The next block starts immediately after the scope of the previous one.

Furthermore, all predefined drawing attributes, such as Pen Width or Color Ref, have no

size indicator since the data values are known ahead of time. However, a custom property

must have a size field since the size of the data is not known ahead of time. In addition, a

custom property‟s size field must be greater than zero. Note also that custom properties

are also assumed to be compressed. The first byte of the data must indicate the

compression type (see below). This byte is not included in the size that is stored in the

property‟s size field.

Ink Serialized Format Specification Page 8 of 49

Another space saving optimization is that drawing attributes that are set to the default

value are not stored in the Attributes block. In the above example, pen tip value is not

stored since it is assumed to be the default of PEN_TIP_BALL.

The custom drawing attributes are ignored by the WISP rendering routines. It is assumed

that they will be used by custom ink rendering routines implemented in the application.

Stroke Descriptor Table

The Stroke Descriptor Table lists Stroke Descriptor Blocks in the stream. These blocks

may apply to one or more strokes and are placed in this table so that they are not

repeated in each stroke.

The tag, TAG_STROKE_DESC_TABLE, identifies the Stroke Descriptor Table and is

immediately followed by the size of the table. The size of the table is equal to the sum of

the sizes of all Stroke Descriptor Blocks.

A Stroke Descriptor Table containing only one Stroke Descriptor Block is a special case.

The tag and size for the table is omitted and a single Stroke Descriptor Block replaces the

entire table.

Stroke Descriptor Block

As was illustrated in our simple example earlier, a stroke contains arrays of data where

each array element corresponds to a property of a point. Our simple example contained

only X and Y data since there was no stroke descriptor block in the stream. However, an

application may wish to store other properties, such as pressure. An application could

simply create a custom stroke property (described later) to store pressure. Unfortunately

no other application would know how to interpret this data and the tag and size of the

custom property would be stored in each stroke, thus wasting space in the ISF.

The purpose of the Stroke Descriptor Block is to solve this problem defining the data types

and their order in the stroke. ISF can then use an index to associate a stroke with a

particular Stroke Descriptor Block. This index is described later.

Typically all strokes in an ISF stream will use the same Stroke Descriptor Block, which is

why a Stroke Descriptor Table contains only one block as a special case. However, ISF

allows different strokes to contain different sets of data by placing the blocks in a table.

Each Stroke Descriptor Block starts with the tag, TAG_STROKE_DESC_BLOCK, and is

followed by the size of the block.

Ink Serialized Format Specification Page 9 of 49

The diagram below illustrates a Stroke Descriptor Block:

TAG_STROKE_DESC_BLOCK Tag omitted when block is in the Stroke

Descriptor Table

cbStrokeDescriptorBlock Size of the whole stroke descriptor block.

TAG_NO_X Optional, if this tag is present stroke contains no x

data

TAG_NO_Y Optional, if this tag is present stroke contains no y

data

Array of packet property tags Each entry defines a property tag

TAG_BUTTONS Button descriptions in the packet, if any

cButtons cButtons is the count of button states

Array of cButtons button tags Button GUID tags

TAG_STROKE_PROPERTY_LIST After this tag, the tags for global stroke properties

are listed until the end of Stroke Descriptor Block.

Array of tags for stroke properties Continues until run out of

cbStrokeDescriptorBlock

Figure Error! Bookmark not defined. - Stroke Descriptor Block

It is assumed that, by default, all strokes will contain X and Y coordinate data arrays and

that these will be the first data arrays stored in a stroke. If for some reason the application

does not wish to store X and Y coordinates, then it needs to create a Stroke Descriptor

Block containing the TAG_NO_X and TAG_NO_Y values as the first two entries.

Otherwise the first two arrays in a stroke are always assumed to correspond to the X and

Y coordinates.

Immediately after the optional TAG_NO_X, TAG_NO_Y is an array of packet property

tags. This array ends when TAG_BUTTONS, TAG_STROKE_PROPERTY_LIST or the

end of scope is encountered. Each packet property tag defines another array in the stroke.

Following the Packet Property Array is an optional Buttons Section that describes the

button bit-fields that make up the elements of the button array in the stroke. Not all input

devices report button states, so this section is optional. If present, the Buttons Section

starts with TAG_BUTTONS followed by the count of buttons (cButtons) and an array of

button GUID tags, one tag for each button. Note that these tags may be encoded

(described later) and the size of the button array may not be an exact multiple of the

number of buttons (cButtons).

If the end of the Stroke Descriptor Block scope has not been reached, then what follows is

a TAG_STROKE_PROPERTY_LIST followed by a listed of stroke property tags. These

tags do not describe arrays of values. Instead they are an optimization that allows a tag

that appears repeatedly in strokes to be omitted; only the size and the data need to be

specified for the listed property. A stroke may still have additional stroke properties that are

not listed in its Stroke Descriptor Block under TAG_STROKE_PROPERTY_LIST.
However, these additional properties have to be listed in the stroke after all the properties

listed in the block and they do must be tagged explicitly within the stroke.

Transform Table

Several problems occur when ink is transformed. The first problem is the assumptions

made when designing the compression schemes may no longer be valid. This may result

in data that would have been compressed well in its native form to bloat and compress

very poorly. The second problem is that it is very easy to perform operations on the ink

Ink Serialized Format Specification Page 10 of 49

that would cause precision to be lost. This may cause the recognition process to fail and

prevent the ink from being converted to text or might cause the ink to render incorrectly.

To solve this problem, ISF allows the ink to be stored in its original native format.

Whenever ink is transformed, only a transform matrix is affected rather than each point in

the ink. This preserves the precision of the original ink and also allows compression to

function optimally.

The Transform Table lists all transform Blocks in the stream. Each Transform Block

defines a unique transform that must be applied to the ink points before they are rendered

or used. These blocks may apply to one or more strokes and are placed in this table so

that they are not repeated in each stroke.

The tag, TAG_TRANSFORM_TABLE, identifies the Transform table and is immediately

followed by the size of the table. The size of the table is equal to the sum of the sizes of all

Transform Blocks.

A Transform Table containing only one Transform block is a special case. The tag and

size for the table is omitted and a single Transform Block replaces the entire table.

In the simplest case and the cases where scaling and transforms have been applied

outside of WISP (MSWord is an example) there will be no transform table since the

transforms have already been applied to all points. In these cases compression may

suffer.

Ink Serialized Format Specification Page 11 of 49

Transform Block

The Transform Block is different than the Stroke Descriptor Block and Drawing Attributes

block since there are several different transforms and thus several different tags.

The generic transform is defined by the TAG_TRANSFORM and is followed by 6 floats,

corresponding to the matrix values m11,m12,m21,m22, dx and dy.

The other transform tags are:

o TAG_TRANSFORM_ISOTROPIC_SCALE
M11 = M22 nonzero value; M12 = M21 = DX = DY = 0;

o TAG_TRANSFORM_ANISOTROPIC_SCALE
M11, M22 arbitrary non zero floats; M12 = M21 = DX = DY = 0;

o TAG_TRANSFORM_ROTATE
Storing MBE integer number, 0 – 36000 // 1/100 of degree units -

o TAG_TRANSFORM_TRANSLATE
M11=M22=M12=M21=0; DX, DY arbitrary

o TAG_TRANFROM_SCALE_AND_TRANSLATE
M11, M22, DX,DY arbitrary; M12=0,M21=0

Metric Table

The Metric Table lists Metric Blocks in the stream. These blocks may apply to one or more

strokes and are placed in this table so that they are not repeated in each stroke.

The tag, TAG_METRIC_TABLE, identifies the Metric Table and is immediately followed by

the size in bytes of the whole table, which consists of Metric Blocks. The size is then

followed by the Metric Blocks. When the Metric Blocks are stored in the Metric Table, the

tag TAG_METRIC_BLOCK that identifies them is omitted.

A Metric Table containing only one Metric Block is a special case. In this case the tag and

the size of the table is omitted and a single Metric Block replaces the entire table. In that

case the metric block needs to be tagged with its own tag, TAG_METRIC_BLOCK.

Metric Block

Our earlier example showed how an ISF stream may contain only strokes made up of

(X,Y) point data. The Stroke Descriptor then enabled the addition of more properties to a

stroke. The Metric Block further refines the definition of the properties defined in a stroke.

The individual array elements in a stroke, such as the X or Y values, are represented in

logical device coordinates. However there will be times where an application will need to

know the relationship between these logical values and some real physical characteristics.

For example is pressure in pounds, Pascal‟s or kilograms, or is an angle with a value of 10

in degrees or radians? Without further information an application must assume these

values are in the standard normalized form, as defined by the pen system.

The purpose of the Metric Block is to define the relationship between the logical units

stored in the stroke and physical characteristics. The most common ones being: Logical

Minimum value, Logical Maximum value, Resolution, and Units.

Typically all strokes in an ISF stream will use the same Metrics Block. An ISF stream may

even have several Stroke Descriptors, yet still only may have one Metric Block. However,

ISF allows different strokes to refer to different Metric Blocks in the Metric Table.

Ink Serialized Format Specification Page 12 of 49

The Metric Block itself is a table that consists of Metric Block Entries. Each Metric Block

Entry corresponds to a packet property for which the metrics needs to be defined and at

least one values is different from the default values. Therefore the Metric Block has the

following form:

TAG_METRIC_BLOCK Omitted if in table.

cbMetricBlockSize Total size in bytes of all entries

Entry[0] Data for the first Metric Block Entry

.... More entries

 Entry[cMetricBlockEntries - 1] Data for the last Metric Block Entry

The diagram below illustrates a single Metric Block Entry:

TAG_packet_property Tag of the packet property this entry is describing

cbSize The size of the remainder of the structure

Logical Min Value Signed multi-byte encoded.

Logical Max Value Signed multi-byte encoded.

Units Value Byte value. See Spec Shared Definitions for the

set of allowed values.

Resolution Value FLOAT value, not encoded

More Data Perhaps more data, depending on cbSize

Figure Error! Bookmark not defined. - Metric Block Entry

The Metric Block does not need to be defined for all the packet properties in any given

stroke since the application may not care about the metrics associated with all the

properties or the device may not provide metrics for all the properties. For example, it is

not useful specifying minimal and maximal values for GUID_PACKET_STATUS as this is

a flag field.

The Metric Block differs from the Stroke Descriptor since it may contain a TAG_X and a

TAG_Y. This is because X and Y values may have metrics that need to be stored.

The table below defines default Metric Blocks for predefined packet properties.

Packet Property Tag Min Max Unit Resolution

TAG_X 0 12699 CENTIMETERS 1000

TAG_Y 0 9649 CENTIMETERS 1000

TAG_Z -1023 1023 CENTIMETERS 1000

TAG_NORMAL_PRESSURE 0 1023 DEFAULT 1

TAG_TANGENT_PRESSURE 0 1023 DEFAULT 1

TAG_BUTTON_PRESSURE 0 1023 DEFAULT 1

TAG_X_TILT_ORIENTATION 0 3600 DEGREES 10

TAG_Y_TILT_ORIENTATION 0 3600 DEGREES 10

TAG_AZIMUTH_ORIENTATION 0 3600 DEGREES 10

TAG_ALTITUDE_ORIENTATION -900 900 DEGREES 10

TAG_TWIST_ORIENTATION 0 3600 DEGREES 10

TAG_PACKET_STATUS NA* NA NA NA

TAG_TIMER_TICK NA NA NA NA

TAG_SERIAL_NUMBER NA NA NA NA

TAG_PITCH_ROTATION; ND** ND ND ND

TAG_ROLL_ROTATION; ND ND ND ND

Ink Serialized Format Specification Page 13 of 49

TAG_YAW_ROTATION; ND ND ND ND

Figure – Table of default Packet Description values for predefined packet properties.

*NA: Means that metric values do not make sense or that they are irrelevant and do not

need to be stored in the serialized format.

**ND: Metric Values are important but WISP does not define defaults, the values need to

be queried from the tablet and stored in the serialized format.

If a Metric Block Entry for a given packet property is missing it is assumed that the metrics

values for that property are default values or if the default values are not defined, then

metric values are not important. Similarly, if a metric block for a given property is present,

but it only contains fields up to and including say max value, but not units and resolution,

then it is assumed that units and resolution are the same as in the corresponding default

block, but min and max may be different. For example, the values for TAG_X, TAG_Y in

the default table correspond to a WACOM Intuous tablet with approximate dimensions

12.70 cm x 9.65 cm. Another WACOM tablet with different dimensions is likely to have the

same min value of zero, units and resolution, but perhaps a different max values of x and

y. Therefore the Metric Block Entry for x for such a tablet may look something like this:

TAG_X Tag of the packet property this entry is describing

cbSize Only includes min and max values.

0 Min value of X, encoded in one byte

Max Value different from the default Signed multi-byte encoded.

Bit Assignment Table

Bit assignment table starts with the multi-byte encoded count of Bit Assignment Blocks. Bit

Assignment Blocks follow the count. If the count of BABs is zero, no Bit Assignment

Blocks follow, but the count still needs to be stored. However, in this case Index Map

Table has at least one Index Map Block.

Bit Assignment Block

Bit Assignment Block (BAB) is a monotonically increasing array of numbers in the range

[0,32] where the first number is always 0 and the last is 32. The first element 0 and the last

element 32 are not stored explicitly in the array. This array specifies the Huffman prefixes,

that is, how many bits are used to represent absolute delta-delta values in the compressed

array.

WISP defines a set of eight default BABs, which are hard coded in the compression

module. When additional BABs are needed, they are stored as bit-packed array. Given

that no member of this array is bigger than 32, 5 bits suffice to store each member. In

general, for a BAB that has cEntries, (cEntries * 5 + 7)/8 bytes are needed to store the

whole array in a bit-packed format. Graphically, this can be represented as follows:

Data Comment

 cEntries Count of entries in the BAB array, not counting 0 and 32. Fits in a

single byte.

 BAB array (cEntries * 5 + 7)/8 bytes of bit-packed data

Ink Serialized Format Specification Page 14 of 49

Index Map Table

Index Map Table starts with the count cIMB, count of Index Map Blocks, followed by that

many Index Map Blocks.

Index Map Block

Index Map Block describes the Index Mapping, the mapping that describes the ordering of

the absolute packet data delta-delta values in the order of monotonically decreasing

probabilities. When absolute delta-delta values are reordered in such a way, it turns out

that the distribution of delta-deltas conforms a standard zero-mean normal distribution to

within a very small statistical error. (Gaussian distribution centered at zero).

In practice, if the stroke data points in the ink object are collected directly off the collection

device, without performing any subsequent scaling of the x,y data, the Index Mapping is
trivial and reordering is not necessary. When x or y data has been scaled out by a factor s

before storing it in the ink object, the distribution of absolute delta-delta values will have
narrow but finite width spikes centered around n*s, where n is an integer. In this case

Index Mapping is needed to reorder delta-delta values in order of monotonically

decreasing probabilities.

Index Mapping is a variable length array of (delta-delta) packet data. We store the Index

Mapping in an Index Map Block in the following format:

Data Comment

 iBAB One byte to identifies the BAB to be used with this Index Map. If this number is less

than 8 (the number of default BABs available), then it indicates the index of the default

BAB. Otherwise, this number minus 8 is the index of the custom BAB defined in the
Bit Assignment Table.

 cCount MBE integer indicating number of elements in this Index Mapping

 Index

Map Array

MBE integer elements of this Index Mapping. Each element is an absolute delta-delta

value. The elements are stored in order of decreasing probabilities.

Ink Serialized Format Specification Page 15 of 49

Custom Global Ink Properties

Custom Global Ink properties are application-defined properties that apply to the entire ink

stream. It is up to the application to interpret what these custom properties mean. ISF

simply stores these properties one after the other. The following is an example of the

custom global ink property embedded in the stream:

….. Preceding data in the stream

TAG_FOO Tag indexing the Custom GUID in the GUID table

cbFoo Count of bytes for the compressed data for property Foo. The size does

not include algorithm byte.

Data for Foo Compressed data for Foo

….. More data in stream

Figure Error! Bookmark not defined. - Custom Global Ink Property

Ink Serialized Format Specification Page 16 of 49

Local Properties

Local properties come after the global ink properties. Local properties do not apply to the

entire ink stream. Strokes are an example of a local property. Other local properties, such

as a Drawing Attribute Index apply to all the strokes that appear after that point in the

stream until the next time that local property appears in the stream again. Just like Global

Ink Properties, local properties are also optional. A valid ISF stream could potentially

contain no local properties at all. However, such a stream would not be too useful.

Drawing Attribute Index

The Drawing attribute Index (TAG_DIDX) assigns a Drawing Attribute Block to a stroke.

TAG_DIDX is followed by an index value that specifies the entry in the Drawing Attributes

Table. All strokes in the stream from that point on use the specified Drawing Attribute

Block until the next TAG_DIDX is encountered in the stream.

As an additional optimization, if there is no TAG_DIDX in the stream somewhere before

the stroke, it is assumed that this stroke should use the 0
th
 Drawing Attribute Block in the

Drawing Attributes Table. And if there is no Drawing Attributes Table in the stream, then all

strokes should be drawn using the default set of drawing attributes.

Stroke Descriptor Index

The Stroke Descriptor Index (TAG_SIDX) assigns a Stroke Descriptor Block to a stroke.

TAG_SIDX is followed by an index value that specifies the entry in the Stroke Descriptor

Table. All strokes in the stream from that point on use the specified Stroke Descriptor

Block until the next TAG_SIDX is encountered in the stream.

As an additional optimization, if there is no TAG_SIDX in the stream somewhere before

the stroke, it is assumed that this stroke should use the 0
th
 Stroke Descriptor Block in the

Stroke Descriptor Table. And if there is no Stroke Descriptor Table in the stream, then all

strokes are assumed to contain X and Y coordinates only.

Transform Index

The Transform Index (TAG_TIDX) assigns a Transform Block to a stroke. TAG_TIDX is

followed by an index value that specifies the entry in the Transform Table. All strokes in

the stream from that point on use the specified Transform Block until the next TAG_TIDX

is encountered in the stream.

As an additional optimization, if there is no TAG_TIDX in the stream somewhere before

the stroke, it is assumed that this stroke should use the 0
th
 Transform Block in the

Transform Table. And if there is no Transform Table in the stream, then no transforms are

applied to any stroke.

Metric Index

The Metrics Index (TAG_MIDX) assigns a Metrics Block to a stroke. TAG_MIDX is

followed by an index value that specifies the entry in the Metrics Table. All strokes in the

stream from that point on use the specified Metrics Block until the next TAG_MIDX is

encountered in the stream.

Ink Serialized Format Specification Page 17 of 49

As an additional optimization, if there is no TAG_MIDX in the stream somewhere before

the stroke, it is assumed that this stroke should use the 0
th
 Metrics Block in the Metrics

Table. If there is only one Metrics Block then the table is omitted and the 0
th
 Metrics Block

is the only Metrics block in the stream.

Strokes

As described earlier in the simple example, Strokes are the most fundamental and

important property in ISF. Strokes contain the packet data that make up the individual

points in a stroke and potentially other per-stroke properties as well.

The diagram below illustrates a typical stroke.

TAG_STROKE Tag for the stroke

cbStroke Size for stroke in bytes (including cPoints and onward)

cPoints Count of points in this stroke

X data X coordinates (maybe compressed)

Y data Y coordinates (maybe compressed)

Buttons Array of button state bitmaps.

Figure Error! Bookmark not defined. - Simple Stroke Example

The stroke begins with a TAG_STROKE and is immediately followed by a size field that is

the count in bytes (cbStroke) of all the data starting from (and including) cPoints to the end

of the stroke. cPoints immediately follows cbStroke and defines how many points are

stored in the packet data of this stroke.

Packet Data

The packet data starts immediately after cPoints. The packet data consists of arrays of

values, where each array is in the same order as described in the stroke descriptor for the

stroke. If the stroke descriptor did not specify TAG_NO_X or TAG_NO_Y, then the first

two arrays are the X and Y coordinate arrays. It is possible to define a stroke descriptor

that contains no packet data at all and hence no points. In that case cPoints will be zero.

These packet data arrays are followed by an array of button state bitmaps. Each button

state for each point is stored as a single bit in this array. The button states are stored in a

bit-packed array. The number of buttons cButtons is read from the stroke descriptor. The

buttons array will require ((cPoints * cButtons+7)/8) bytes in the stream to store all the

state information for each button and for all points.

Note that buttons states in the non-serialized ink packets require ((cButtons + 31)/8) bytes

for each packet, i.e. DWORD rounding is used. However, when button states for the whole

stroke are serialized, storage-wise more efficient bit-packing is used, where the whole bit-

array is rounded up once to a byte boundary.

Stroke Properties

Following the packet data are Stroke properties, if any. Stroke properties that are listed by

the TAG_STROKE_PROPERTY_LIST appear immediately after the buttons array and

have their tags omitted since they are specified in the stroke descriptor.

If the end of the stroke scope has still not been reach then more stroke properties may be

specified listing them with their tags.

Ink Serialized Format Specification Page 18 of 49

Point Property List

The point property list is just a stroke property. A Point Property List starts with the

TAG_POINT_PROPERTY and the size of the whole Point Property List. A Point Property

List describes properties that are attached to specific points. The table below illustrates a

typical point property list.

TAG_POINT_PROPERTY Tag of the Point Property List

cbPointProperty Size of the whole Point Property List

tagFoo1 Property foo1

Index1 Index of the point within the stroke

cbFoo1 Size of data for property foo1

Data for Foo1 Data for foo1, compressed

tagFoo2 Property foo2

Index2 Index of the point within the stroke

cbFoo2 Size of data for property foo2

Data for Foo2 Data for foo2, compressed

Figure Error! Bookmark not defined. - Point Property Example

The Point Property List starts with the size of the whole list and is followed by the list of

tagged point properties. Each tag has an index that refers to a point in the stroke this tag

applies to, followed by the size of the data (without algorithm byte) and the data itself.

This above example list has two properties. The property Foo1 is “attached” to the point

identified by Index 1 while the property Foo2 is “attached” to the point identified by Index2.

Ink Serialized Format Specification Page 19 of 49

COMPLEX EXAMPLE

This section now illustrates a more complex ISF example using some of the tags and
concepts from the preceding section. The example below describes an ink object with
three strokes where one of the strokes contains pressure values and the others do not:

0 ISFVersion number, set to zero

cbInkObject Size of the whole object

TAG_STROKE_DESC_TABLE Tag for stroke descriptor table

cbStrdTable Size of stroke descriptor table containing two blocks

cbStrdBlock0 = 0 Size of the 0th block is 0 length, only x,y in these strokes.

cbStrdBlock1 != 0 Size of the 1st stroke descriptor block

TAG_NORMAL_PRESSURE Indicates pressure is the first thing after x,y

TAG_METRICS_BLOCK The only metrics block in the stream.

cbMetricsBlock0 Size of Metrics block.

TAG_NORMAL_PRESSURE Metrics for X and Y are not stored in this example.

cbMetricValues

TAG_MIN Minimal allowed value for pressure, eg -100

10 No value in the stream will be below 10

Max Pressure Maximal allowed value for pressure eg +100

90 No value in the stream will be above 90

Precision Precision of device. eg. 100 per unit.

1 Precision of device logical units are in increments of 1

Units Units for the precision. eg value indicating Tons.

2 Numeric value indicating units. If this number indicated that

the units where in kilograms then because precision is 1 then

each increment of logical units would be a kilo.

TAG_SIDX Tag for index into a stroke descriptor table

1 Value for the stroke descriptor index

TAG_STROKE Tag for the stroke

cbStroke Size for stroke and all its children

cPoints Count of points in this stroke

X data Compressed X coordinates

Y data Compressed Y coordinates

Pressure data Compressed normal pressure data

TAG_SIDX Tag for index into a stroke descriptor table

0 Value for the stroke descriptor index

TAG_STROKE Tag for stroke object

cbStroke Size for stroke and all its children

cPoints Count of Points in this stroke

X data Compressed X coordinates

Y data Compressed Y coordinates

TAG_STROKE Tag for stroke object

cbStroke Size for stroke and all its children

cPoints Count of Points in this stroke

X data Compressed X coordinates

Y data Compressed Y coordinates

Ink Serialized Format Specification Page 20 of 49

Figure Error! Bookmark not defined. - Complex ISF Example

At the beginning of the ISF stream, before any strokes, there is a Stroke Descriptor Table

with two Stroke Descriptor Block entries. The 0
th
 entry in the Stroke Descriptor Table has

size zero, i.e. it is empty. This signifies that the strokes which are described by this entry

contain only x and y vectors. The 1
st
 entry of the stroke descriptor table describes the

strokes that in addition to x and y arrays contain a pressure vector. Note that this entry

does not contain descriptors for x and y arrays, they are implicit, only pressure is

described with its minimal and maximal values.

Next comes the tag TAG_SIDX followed by the index value. The Stroke Descriptor Table

Index value refers to all the strokes in the ink object that follow in the stream, until the end

of the ink stream or until a next Stroke Descriptor Table Index is found in the stream.

In the example above Stroke Descriptor Table Index value of 1 applies to the 0
th
 stroke

and the Stroke Descriptor Table Index value of 0 applies to the 1
st
 and 2

nd
 strokes.

Therefore, the 0
th
 stroke contains pressure vector in addition to x and y vectors, the 1

st
 and

2
nd

 strokes only contain x and y vectors.

ENCODING

Another one of the ISF requirements was that it must be efficient to store. Tags are

indexes to GUIDs so that the GUID is not repeated unnecessarily. The previous section

mentioned that the X and Y data might be compressed. In fact, these are all compression

strategies. To achieve the goal of efficient storage, a number of encoding strategies and

compression methods are used.

Sizes of Tags and Numbers

At the most basic level, ISF is composed of numbers. Even tags are indexes, which are

just small integer numbers. In fact, most of the time these numbers are small enough that

they could be represented by a single byte if there was a way of determining when a byte

represented a single number and when it was just part of a bigger number. It is possible to

take advantage of this observation by encoding numbers using a multi-byte encoding

technique.

Multi-byte encoding makes it possible to represent small numbers in one byte, larger

numbers in two bytes and very large numbers in however many bytes are necessary.

This means that tags, which usually have a value less than 100, are stored as a single

byte and sizes, which may be small or large, are stored in the most efficient manner. In

effect, multi-byte encoding is a compression technique.

Multi-byte encoding works as follows:

o Numbers less than 128 are encoded in one byte.
o This leaves the most significant bit in the byte clear.
o Multi-byte encoding interprets the most significant bit being clear to mean this is

the last byte in a number.
o Numbers larger than 128 are broken up into 7 bit segments.
o These 7 bit segments are then each stored in a byte.
o And the most significant bit in each byte except the last is set.

Ink Serialized Format Specification Page 21 of 49

This means that

o Numbers less than 2^7 = 128 are encoded in a single byte.
o Numbers less than 2^14 = 16384 are encoded in two bytes.
o Numbers less than 2^21 = 2097152 are encoded in three bytes.
o Etc.

In general, bytes are processed until a byte with the most significant bit clear is

encountered.

For example, the first number encountered in ISF is the version number. For version 1.0

this value is “0” and can be encoded in a single byte. Next number is the size of the

stream following the size value, and for small ink objects as in the first example this will

also be encoded in a single byte. However, if the stream is long this value can grow as

large as necessary. For example a multi-byte encoded number of 10 bytes can represent

a 64-bit number.

This same process is applied to “tags”, and other values in the stream. In general since

“tags” are small integer indexes, they too will be one byte encoded in most cases.

Multi-byte Encoding of Signed Numbers

Multi-byte encoding as described above works well for positive integers however in some

cases it is necessary to store signed numbers. For example the coordinates of a point

may be positive or negative depending on where the application situates the origin.

To multi-byte encode a signed number, the absolute value of the signed number is

determined, the absolute value then is shifted left by 1 bit, and the sign of the original

number is stored in the least significant bit.

Using this technique, the signed numbers with absolute values:

o less than 2^6 = 64 are encoded in one byte,
o less than 2^13 = 8192 are encoded in 2 bytes
o etc.

Tags for Predefined and Custom GUIDs

Representing tags with indices into a GUID table is another technique used to make the

ISF efficient. As was already mentioned above, some of these GUIDS are predefined by

ISF while others are custom to the application. The first 100 entries in the table are

reserved by ISF and are not stored in the serialized stream.

Only custom GUIDs, which are represented by indices greater than 100, are stored in the

serialized format. The tag TAG_GUID_TABLE in the stream identifies the Custom GUID

look up table. The custom GUID table is part of the ink stream only if the ink object

contains at least one custom GUID.

As mentioned in the previous section, ISF uses multi-byte encoding for these tags. As long

as an application does not use more than 27 custom properties in any given ink object,

then the all tags will be encoded using only a single byte.

Ink Serialized Format Specification Page 22 of 49

Compression

ISF provides a number of compression algorithms to take advantage of specific properties

of certain types of data that appear in the stream. Generally, the ISF algorithms belong to

two classes, packet data compression and general property data compression.

Packet Data Compression

One class of algorithms is used for packet arrays, such as x, y, pressure etc.

The X and Y coordinates, which make up the bulk of the ink stream, have the interesting

property that one coordinate is usually located close to the previous coordinate. In fact the

difference (first derivative) between any two consecutive coordinates is usually a very

small number, and the difference between the differences (second derivative) is usually an

even smaller number. While this is not true of all strokes, it is true for most of the ink that is

stored with ISF. For example, a stroke that is a straight line has a constant first derivative

while the second derivative is zero. ISF uses this observation to store coordinates

compactly. The coordinates are pre-processed and the first and second derivatives are

determined. An array is then built where the first element is the first coordinate, the second

element is the difference between the first two coordinates, and the remaining elements

are the second derivative. ISF then uses an improved and finely tuned version of the

Huffman algorithm to compress this array. The Huffman algorithm uses a table that is

specifically tuned to work best when the data contains many small numbers. In our

straight-line example, most of the array will have the value zero. Even with more complex

data, the second derivative values will generally be zero or one. The compressed

representation of this array will be extremely compact for data of this form. ISF then stored

this array since the original data can be recalculated from this information. This method is

greatly improved yet similar to the method used by PenWindows.

Property Data Compression

The second class of compression algorithms is applied to custom ink property data, or

stroke property data or a custom drawing attribute. Basically, the data is an amorphous

array of bytes whose structure is unknown to ISF.

One of the algorithms that can be applied in this situation is the LZ compression algorithm.

This is the same algorithm and code that is used in other parts of the Windows operating

system. LZ should provide a reasonable amount of compression on arbitrary data

provided by the application.

For relatively short arrays, simple bit packing techniques may be faster and more efficient.

These algorithms are discussed in more detail below.

Unfortunately, there will be times when none of the compression algorithms will compress

the data. For example, if the application has pre-compressed a custom property before it

passes to WISP for serialization, then no compression algorithm will be likely to further

compress the data. In those cases, the data will be stored in its original form and marked

as uncompressed. Since the first byte of the data is the compression algorithm indicator,

the serialized data will actually be one byte larger than the original data.

It is critical that the ISF 1.0 compression algorithms work well on most ink data. This is

because it is impossible to add new compression algorithms to ISF without creating an

incompatibility. Adding or changing compression is one of the few reasons for

Ink Serialized Format Specification Page 23 of 49

incrementing the ISF version number since a 1.0 implementation would not be able to

read the stream compressed with a new algorithm. (If the compressed data was not critical

or was a custom application property then the 1.0 implementation could ignore that data

without serious loss of functionality.)

.

As already mentioned, any data that may be compressed begins with a one-byte

compression algorithm identifier. We are now about to discuss in more detail the

compression algorithms used by WISP and their one-byte identifiers.

Compression Algorithms for Property Data

Each compressed buffer is prefixed by one byte to identify the compression algorithm

used in the serialized data. Pictorially:

Algorithm (1 byte) (Compressed) Data Bytes

In the identifier byte we want to store the algorithm type and algorithm specific data if

applicable. Identifier bytes for property data algorithms used by WISP and the bit

assignment for each algorithm types are as follows:

Algorithm
Bit assignment

7 6 5 4 3 2 1 0

PROPERTY_BIT_PACK_BYTE 0 0 0 D D D D D

PROPERTY_BIT_PACK_WORD 0 0 1 D D D D D

PROPERTY_BIT_PACK_LONG 0 1 D D D D D D

LIMPEL_ZIV 1 0 1 0 X X X X

DEFAULT_COMPRESSION 1 1 0 0 X X X X

BEST_COMPRESSION 1 1 1 1 X X X X

D indicates data bits required by the algorithm.

X indicates don‟t care bits. Compression module does not even look at these bits.

More detailed explanation follows.

PROPERTY_BIT_PACK_BYTE

In this scheme, we do bit packing of 8 bit unsigned byte values. The last 5 bits contain the

index into the cBits-cPads Lookup Table (in the appendix) that determine two numbers

(cBits, cPads) that are needed to decompress the compressed array. The meaning of

these two numbers is as follows.

First we need to store how many bits are required to store the maximum absolute value

found in the non-compressed data array. We call this number cBits. In case of BYTE array

cBits can at most be 8 bits.

In order to decompress the data the decompression routine must know not only the total

size of the compressed data, but also the number of items in the original array. The

number of items in the original array can be easily inferred if we know the size of the
compressed array, the number of bits cBits needed to store one item, and the number of

Ink Serialized Format Specification Page 24 of 49

items cPads that could be stored in the unused bits of the last byte of the

compressed array.

For example, let us say we have an array of 3 items, each requiring cBits = 2 bits. Non-

compressed size is 3 bytes, where each byte contains 2 bits worth of information in the

least significant two bits. Compressed size is one byte, where 6 bits contain the

compressed information and 2 bits are unused remainder. One could use those two

unused bits to store cPads = 1 entry. So by saying that in the two unused remainder bits

one could store one entry, we are really saying that only 3 array entries are compressed in

this byte.

There are 24 possible different combinations of (cBits, cPads) pairs that apply for bit

packing of the BYTE array. There additional 8 entries in the cBits-cPads Lookup Table

apply to bit packing of the WORD array and 16 more entries apply to bit packing of LONG

array. Please refer to the appendix for more detail.

PROPERTY_BIT_PACK_WORD

In this scheme, we do bit packing of 16 bit unsigned values. The values (cBits, cPads) for

this case are obtained from first 32 entries of the cBits-cPads Lookup Table. The index

into this table is always smaller than 32 and therefore fits in 5 least significant bits of the

algorithm byte.

PROPERTY_BIT_PACK_LONG

In this scheme, we do bit packing of 32 bit signed values. The values (cBits, cPads) for

this case are obtained from all of 48 entries of the cBits-cPads Lookup Table. The index is

always smaller than 48 and therefore fits in 6 least significant bits of the algorithm byte.

LEMPEL_ZIV

We don‟t need to store any algorithm specific information.

DEFAULT_COMPRESSION

When default compression is requested for property data for a given ink object, the ISF

compression module will use one of the above 3 bit packing techniques that would

produce the smallest compressed data. Lempel Ziv is not used in the default compression

mode, as it is quite time consuming.

BEST_COMPRESSION

When best compression is requested for property data for a given ink object, the ISF

compression module will usemulti-table Huffman compression..

Compression Algorithms for Packet Data

Algorithm
Bit assignment

7 6 5 4 3 2 1 0

PACKET_BIT_PACK 0 0 D D D D D D

DEFAULT_COMPRESSION 1 0 D D D D D D

BEST_COMPRESSION 1 1 1 1 X X X X

Ink Serialized Format Specification Page 25 of 49

PACKET_BIT_PACK

In this scheme, we do bit packing of signed values. We need to store how many bits are

required to store the maximum absolute value found. This can at most be 32, thus we

need 5 bits to represent this value. The count of items in the compressed array is stored

once per stroke in the serialized format and is passed as an input to the decompression

routine. Therefore, this number is not necessary to store with each compressed packet

stream.

Note that storing 32 actually requires 6 bits, as its binary representation is 100000.

However, bit packing a LONG array using 32 bits per entry really means no compression.

Therefore we represent 32 by just storing 5 zeros in the data bits. That way, no

compression can be treated as special case of PACKET_BIT_PACK algorithm, where the

compression algorithm byte is set to zero.

Least significant 5 bits will indicate the number of bits required to store the maximum

value. If the 6
th
 bit is set, (n-2) delta-delta‟s are compressed, otherwise, the raw data is

compressed.

DEFAULT_COMPRESSION

For packet data, DEFAULT_COMPRESSION alwaysuses multi-table Huffman

compression. .

BEST_COMPRESSION

BEST_COMPRESSION may use the default Huffman, or PACKET_BIT_PACK,

depending on what works the best for each packet array.

Backus-Naur Form (BNF) Specification

The following table is a BNF representation of the WISP stream format. The idea behind

using BNF notation is that there are many items in the file that have positional

interdependencies and BNF is the best way to represent these relationships. File formats

are often represented using BNF notation. For example, a STROKE never contains

another STROKE. However if one simply represents the WISP stream format as just a set

of tagged structures these semantics are missing and could lead to one implementation

generating an invalid format that would not interoperate with another implementation.

For those not totally familiar with BNF, the notation is of the form:

<A> ::= NULL

 | “a” <A>

 | “a” NumericData <A>

The <A> is a “Logical”- non-terminal item, which must be further interpreted. The above

example should be read as:

o <A> can be NULL / nonexistent – this is different from a null string. If <A> is NULL

then there is no <A>

o or the literal “a” - terminal

Ink Serialized Format Specification Page 26 of 49

o or the literal “a”, followed by the terminal item „NumericData‟, followed by still more

<A>.

As can be seen these definitions are recursive and can be used when expressing list,

order and relationships between items. The following quick examples demonstrate the

above grammar:

o aaaa – is valid since <A> is “a” followed by more <A>

o a1a23a – is valid since <A> can be an “a” followed by a number, followed by

another “a”, followed by yet another number followed by “a”s

o aba – is not valid since “b” is not valid in the grammar

NOTE: The following grammar is only meant to provide specific details. It is important to

understand the entire document not just the BNF section.

Ink Serialized Format Specification Page 27 of 49

<WISP INK SERIALIZED

FORMAT>

::=

<VERSION>

size

<GLOBAL INK PROPERTIES>

<LOCAL INK PROPERTIES>

The first item in the stream is always the ISF version.

Followed by the size of the Global and Local Properties. The size is a 9

byte-encoded value. (64 bit size)

The rest of the ISF can be logically separated into two halves. A set of

global ink properties that refer to the entire ink object and local ink

properties containing stroke data and possibly other property data. The

Global Ink Properties must come before the body.

<VERSION> ::= “0” This specification applies only to the version 1.0 of ISF. Incrementing the

version number means that the stream format has been changed in an

incompatible fashion and all implementations that only understand this

version must not read the stream. Instead they should create and empty

INK object with the default settings and return an error.

<GLOBAL INK PROPERTIES> ::= <GUID TABLE>

<INK SPACE RECTANGLE>

<DRAWING ATTRIBUTES TABLE>
<STROKE DESCRIPTOR TABLE>

<TRANSFORM TABLE>

<METRICS TABLE>

<MORE GLOBAL PROPERTIES>

In the simplest case there are no <GLOBAL INK PROPERTIES> in the

stream.

The <GUID TABLE> must appear immediately after the stream size field
if it exists. If the stream contains no custom properties then there will be no

<GUID TABLE>. In that case all tags and GUID indexes will refer to one

of the predefined tags or GUIDS.

<MORE GLOBAL PROPERTIES> ::= NULL There may be no more custom properties.

 | GUID_IDX,

[size],

DATA

<MORE GLOBAL PROPERTIES>

Or the ink stream may contain custom global properties. The GUID_IDX

is an encoded index that refers to a GUID in the <GUID TABLE> that

identifies the custom property. The actually entry in the table is the value of

(GUID_IDX – 100). The index is then followed by the encoded size of the

data and finally the custom data itself. Note that [size] is omitted if

GUID_IDX points to a predefined GUID that has a known fixed size data

type.

<GUID TABLE> ::= NULL There could be no GUID table.

 | TAG_GUID_TABLE,

size

<GUID LIST>

If the stream contains custom properties then the stream will also contain a

<GUID TABLE>. This table will begin with a single byte with the value

TAG_GUID_TABLE followed by the encoded size in bytes of the <GUID

Ink Serialized Format Specification Page 28 of 49

LIST>. The size will be a multiple of 16 since all GUIDS are 128 bits in

length. The <GUID LIST> is not compressed.

<GUID LIST> ::= GUID The <GUID LIST> may contain only a single GUID or a number of

GUIDS.

 | GUID

<GUID LIST>

<INK SPACE RECTANGLE> := NULL There may be no INK Space Rectangle

 | L, T, R, B The <INK SPACE RECTANGLE> defines a rectangle that indicates to the

application the preferred area of the ink that should be displayed in the

drawing area on the screen or on the printer. The application may ignore

this value and display some other area, however if this value is present then

it should use this rectangle for determining the aspect ratio of the ink.

If no <INK SPACE RECTANGLE> is specified in the stream then the

aspect ratio of the ink is the same a standard VGA monitor and the
application must decide what portion of the ink to display.

The values are encoded. Note ink is not clipped to ink space, so it is

possible to draw outside the space. Also note there is no size field since a

rectangle is a known structure with a known size.

<DRAWING ATTRIBUTES

TABLE>

::= NULL There may be no Drawing Attributes.

 | TAG_DRAWING_ATTRIBUTE_BLOCK

<DRAWING ATTRIBUTE BLOCK>

If there is only one drawing attribute then only the block is stored.

 | TAG_DRAW_ATTRS_TABLE

Size

<DRAW ATTRIBUTE LIST>

The individual strokes in the ISF stream may refer to entries in the

<DRAWING ATTRIBUTES TABLE>. These entries define how to

actually draw the stroke. They define attributes such as color, width, etc.

See the WISP documentation for a complete list of drawing attributes.

The <DRAWING ATTRIBUTES TABLE> starts with the

TAG_DRAW_ATTRS_TABLE tag. It is then followed by the encoded

size field, in bytes, of the entire list of drawing attributes.

<DRAW ATTRIBUTE LIST> ::= <DRAWING ATTRIBUTE BLOCK> A <DRAW ATTRIBUTE LIST> must contain at least one entry.

 | <DRAWING ATTRIBUTE BLOCK>

<DRAW ATTRIBUTE LIST>

Ink Serialized Format Specification Page 29 of 49

<DRAWING ATTRIBUTE BLOCK> ::= size

<DRAWING PROPERTIES>

Encoded size of entire Draw Attribute.

<DRAWING PROPERTIES> ::= GUID_IDX [size] value GUID_IDX may point to a well-known or custom GUID. See

documentation for list of predefined drawing GUIDS. These may be tags

for properties such as color, width, etc or may be application specific

properties.

 | GUID_IDX [size] value

< DRAW PROPERTIES >

[size] is omitted for pre-defined tags that have a known fixed size data type.

<STROKE DESCRIPTOR TABLE> ::= NULL May be no table.

 TAG_STROKE_DESC_BLOCK

<STROKE DESCRIPTOR BLOCK>

If there is only one stroke descriptor then only the block is stored.

 | TAG_STROKE_DESC_TABLE

size

<STROKE DESCRIPTOR LIST>

The <STROKE DESCRIPTOR TABLE> is a list of

<STROKE DESCRIPTOR BLOCKS> that describe what data may appear

in a stroke. The <STROKE DESCRIPTOR TABLE> starts with the

TAG_STROKE_DESC_TABLE tag. It is then followed by the encoded

size field, in bytes, of the entire list of stroke descriptor blocks.

<STROKE DESCRIPTOR LIST> ::= <STROKE DESCRIPTOR BLOCK> The list must contain at least one block.

 | <STROKE DESCRIPTOR BLOCK>

<STROKE DESCRIPTOR LIST>

<STROKE DESCRIPTOR BLOCK> ::= size

<NO_X DESCRIPTOR>
<NO_Y DESCRIPTOR>

<PACKET DESCRIPTOR>

<BUTTON DESCRIPTOR>

<OTHER DESCRIPTORS>

A stroke descriptor block describes the data that appears immediately after

the TAG_STROKE in the stroke itself. The size field is the encoded size in
bytes of all the descriptors in the block. A size of “0” means the descriptor

block indicates the stroke has only X and Y data. Note: there is no tag for a

stroke descriptor block since the stroke descriptor table only contains stroke

descriptor blocks and the tag would be redundant.

<NO_X DESCRIPTOR> ::= NULL NULL means X data is present in the stroke

 | TAG_NO_X TAG_NO_X indicates there is no X data in the stroke.

<NO_Y DESCRIPTOR> ::= NULL NULL means Y data is present in the stroke

 | TAG_NO_Y TAG_NO_Y Indicates there is no Y data in the stroke.

Ink Serialized Format Specification Page 30 of 49

<PACKET DESCRIPTOR> ::= NULL TAG_NO_X, TAG_NO_Y followed by a NULL <PACKET

DESCRIPTOR> means the stroke contains no per point data, only per

stroke properties.

 | <TAG_LIST> Packet descriptor lists properties other than X and Y that appear in the per

point data of the stroke (such as Pressure, angle, etc.)

<BUTTON DESCRIPTOR> ::= NULL NULL if the stroke contains no button information.

 ::= TAG_BUTTONS,

ButtonCount

<TAG LIST>

If button information is present in the stroke data then the

TAG_BUTTONS is present, followed by the encoded size in bytes of the

list of button GUIDS. Each button in the list will correspond to a bit in the

data.

<TAG LIST> ::= GUID_IDX A GUID_IDX points to either a well known GUID or a custom GUID.

 | GUID_IDX

<TAG LIST>

<OTHER DESCRIPTORS> ::= NULL There may be no other descriptors in the block.

 | TAG_STROKE_PROPERTY_LIST

<TAG_LIST>

Or there may be a list of descriptors that describe properties about the

stroke. Note these indexes do not describe per point properties but rather

per stroke properties. This is provided as a mechanism so that the

application is not forced to repeat the GUID_IDX tag in each stroke for a

custom property.

<METRICS TABLE> ::= NULL May be no table.

 TAG_METRICS_BLOCK

<METRICS BLOCK>

If there is only one Metrics block then only the block is stored.

 | TAG_METRICS_TABLE

size
<METRICS BLOCK LIST>

<METRICS BLOCK LIST> ::= <METRICS BLOCK> The list must contain at least one block.

 | <METRICS BLOCK>
<METRICS BLOCK LIST>

<METRICS BLOCK> ::= Size Size is sum of all Metrics Property entries.

Ink Serialized Format Specification Page 31 of 49

<METRICS PROPERTY ENTRY>

<METRICS PROPERTY ENTRY> ::= GUID_IDX

Size

<TAG_VALUE_PAIR LIST>

GUID_IDX indicates to which packet property these metrics apply,

Size is the sum of all the Tag/Value pairs.

<TAG VALUE PAIR LIST> ::= GUID_IDX

value

A GUID_IDX points to either a well known GUID or a custom GUID.

Signed multi-byte encoded value for this GUID_IDX.

 | GUID_IDX

value

<TAG LIST>

<TRANSFORM TABLE> ::= NULL

| < TRANSFORM BLOCK> If there is only one Transform then only the block is stored.

 | TAG_TRANSFORM_TABLE

size

< TRANSFORM LIST>

The <TRANSFORM TABLE> starts with the

TAG_TRANSFORM_TABLE tag. It is then followed by the encoded size

field, in bytes, of the entire list of transforms.

< TRANSFORM LIST> ::= < TRANSFORM BLOCK> A < TRANSFORM LIST> must contain at least one entry.

 | < TRANSFORM BLOCK>

< TRANSFORM LIST>

< TRANSFORM BLOCK> ::= TAG_TRANSFORM

M11, M12, M21, M22, DX, DY

General transform.

 | TAG_TRANSFORM_ISOTROPIC_SCALE S M11 = M22 = S, M12 =0, M21=0, DX = DY = 0

 | TAG_TRANSFORM_ANISOTROPIC_SCLE

M11, M22

M11 != M22, M12=0, M21=0, DX = DY = 0

 | TAG_TRANSFORM_TRANSLATE

DX, DY

M11=M12=M21=M22=0

 | TAG_TRANSFORM_ROTATE

A

M11 = M22 = cos(A), M12 = - M21 = sin(A), DX = DY = 0

Ink Serialized Format Specification Page 32 of 49

 | TAG_TRANSFORM_SCALE_AND_TRANSLATE

M11, M22, DX, DY

M12 = M21 = 0

<BIT ASSIGNMENT TABLE> ::= cBAB Count of BAB blocks in the list, can be zero, in which case no BAB blocks

follow

 | <BAB LIST> List of BAB blocks

<BAB LIST> ::= <NULL>

 | <BAB BLOCK>

 | <BAB BLOCK>

<BAB LIST>

<BAB BLOCK> ::= cEntries

<bit packed array, 5 bits per entry>

(cEntries * 5 + 7)/8 bytes in the array, total

<INDEX_MAP_TABLE> ::= cIndexMaps

<IMB LIST>

Count of Index Map Blocks, may be zero

<IMB LIST> ::= NULL

 | <IMB>

<IMB LIST>

Index Map Block, potentially followed by more Index Map Blocks

<IMB> ::= cEntries

iBAB

<DELTA-DELTA LIST >

MBE encoded count of entries,

iBAB, index into BAB table, first 8 entries implicit, i.e. defined in the code,

followed by cEntries long list of MBE encoded numbers that represent

absolute delta-delta values for some packet property, listed in order of

descending probabilities of occurrence.

<DELTA-DELTA LIST> ::= <DELTA-DELTA>

MBE encoded number that represents an absolute delta-delta value that

occurs with highest probability, followed by those that occur with smaller

probability, if any.

 | <DELTA-DELTA>

<DELTA-DELTA LIST>

<LOCAL INK PROPERTIES> ::= NULL The simplest ISF stream may contain no strokes.

Ink Serialized Format Specification Page 33 of 49

 | <PROPERTY LIST>

<STROKE DESCRIPTOR INDEX>

<DRAWING ATTRIBUTE INDEX>

<TRANSFORM INDEX>

<METRICS INDEX>

<STROKE>

<LOCAL INK PROPERTIES>

Or may contain only <PROPERTY_LIST> or only <STROKES> or some

combination.

< PROPERTY_LIST> are properties that may appear in the <WISP

BODY> and out side of a <STROKE>. These are usually custom

properties are rarely found in a WISP stream.

<PROPERTY LIST> ::= NULL

 | GUID_IDX [size] value

< PROPERTY LIST>

GUID_IDX can point to a predefined or custom GUID.

[size] is omitted for some predefined GUIDs with known fixed size data

types. When size is present it does not include algorithm byte.

<STROKE DESCRIPTOR INDEX> ::= NULL If there is no stroke descriptor index, 0 value is assumed.

 | TAG_SIDX

value

Or an index into the stroke descriptor table, which specifies the descriptor

to use for the following STROKES. The index applies to all strokes that
follow until the next TAG_SIDX.

<METRICS INDEX> ::= NULL If there is no Metrics index, 0 value is assumed.

 | TAG_MIDX

value

Or an index into the Metrics table, which specifies the descriptor to use for

the following STROKES. The index applies to all strokes that follow until
the next TAG_MIDX.

<DRAWING ATTRIBUTE INDEX> ::= NULL If there is no drawing attribute index, 0 value is assumed.

 | TAG_DIDX
value

Or an index into the Drawing Attribute Table, which specifies the Drawing
Attribute Block to use for the following STROKES. The Drawing

Attribute Index applies to all strokes that follow until the next TAG_DIDX.

< TRANSFORM INDEX> ::= NULL If there is no TRANSFORM index, 0 value is assumed.

 | TAG_TIDX

Value

Or an index into the TRANSFORM Table, which specifies the

TRANSFORM Block to use for the following STROKES. The

TRANSFORM Index applies to all strokes that follow until the next

TAG_TIDX.

<STROKE> ::= TAG_STROKE

size

A stroke begins with the TAG_STROKE and is immediately followed by

the encoded size, encoded number of points cPoints, <POINT_DATA>

Ink Serialized Format Specification Page 34 of 49

cPoints

<POINT_DATA>

<STROKE PROPERTIES>

and <STROKE PROPERTIES>

cPoints is set to zero if there is no <POINT DATA>.

<POINT_DATA> ::= NULL <POINT_DATA> is defined by the stroke descriptor.

 Compression Algorithm ID,

[size],

Compressed. data

<POINT_DATA>

Each entry consists of a byte indicating the compression algorithm, an

optional byte-encoded size, which is only required for the compression

types that are currently NOT defined in compress.h, and the compressed

data itself. Each entry corresponds to an entry in the stroke descriptor.

<STROKE PROPERTIES> ::= NULL <STROKE PROPERTIES> are other properties associated with the stroke.

 | <POINT PROPERTY BLOCK>

<STROKE PROPERTIES>

Per point properties attach properties to a particular point in the stroke, such

as comments, etc.

 | GUID_IDX, [size], DATA

<STROKE PROPERTIES>

Or the stroke may contain custom stroke properties. The [size] field is

omitted for GUID_IDX values that correspond to predefined GUIDS with

known fixed length data types. When size is present it does not include

algorithm byte.

<POINT PROPERTY BLOCK> ::= TAG_POINT_PROPERTY,

size

<POINT PROPERTY LIST>

The point property lists properties that are attached to several given points

in the stroke. The encoded size field specifies the size of the whole

<POINT PROPERTY LIST>

<POINT PROPERTY LIST> ::= NULL

 | GUID_IDX,

point index,
size,

data

<POINT PROPERTY LIST>

Every entry contains GUID_IDX, point index of the point that this property

is attached to, size of the data not counting the algorithm byte, and the data
itself followed by more entries of this type.

Ink Serialized Format Specification Page 35 of 49

Appendix

PREDEFINED TAGS

The following is a list of predefined tags used in this document:

TAG_INK_SPACE_RECT

TAG_COMPRESSION_MODE

TAG_GUID_TABLE

TAG_DRAW_ATTRS_TABLE

TAG_DRAW_ATTRS_BLOCK

TAG_DIDX

TAG_STROKE_DESC_TABLE
TAG_STROKE_DESC_BLOCK

TAG_SIDX

TAG_BUTTONS

TAG_NO_X

TAG_NO_Y

TAG_STROKE

TAG_STROKE_PROPERTY_LIST

TAG_POINT_PROPERTY

TAG_TRANSFORM_TABLE

TAG_TRANSFORM

TAG_TIDX

TAG_METRICS_TABLE
TAG_METRICS_BLOCK

TAG_MIDX

TAG_METRICS_MINIMUM

TAG_METRICS_MAXIMUM

TAG_METRICS_PERCISION

TAG_METRICS_PERCISION_UNITS

TAG_METRICS_UNIT_DIVISOR

#define TAG_KNOWN_TAG_COUNT 50

In addition to these we define tags/indices for all of the predefined property GUIDs. All of these

tags/indices have values in the range [0,99] as discussed above. The first

TAG_KNOWN_TAG_COUNT indices are reserve for the above tags and few new ones that may

be needed in the future. The indices in range [TAG_KNOWN_TAG_COUNT, 99] are reserved for

predefined property GUIDs and the range >= 100 for the custom GUIDs.

This is the list of predefined packet property GUIDs is:

 GUID_X,
 GUID_Y,
 GUID_Z,
 GUID_PACKET_STATUS,
 GUID_TIMER_TICK, // 32 bit timer tick
 GUID_SERIAL_NUMBER,
 GUID_NORMAL_PRESSURE,
 GUID_TANGENT_PRESSURE,
 GUID_BUTTON_PRESSURE,

Ink Serialized Format Specification Page 36 of 49

 GUID_X_TILT_ORIENTATION,
 GUID_Y_TILT_ORIENTATION,
 GUID_AZIMUTH_ORIENTATION,
 GUID_ALTITUDE_ORIENTATION,
 GUID_TWIST_ORIENTATION,
 GUID_PITCH_ROTATION,
 GUID_ROLL_ROTATION,
 GUID_YAW_ROTATION,

This is a list of predefined drawing attribute GUIDs

 GUID_PEN_STYLE,
 GUID_COLORREF,
 GUID_PEN_WIDTH,
 GUID_PEN_HEIGHT,
 GUID_PEN_TIP,
 GUID_DRAWING_FLAGS,
 GUID_EDGE_SMOOTHING,

This is a list of GUIDs used by Microsoft Word

 GUID_CHAR_ALTERNATES,
 GUID_WORD_ALTERNATES,
 GUID_GUIDE_STRUCTURE,

GUID_INKMETRICS,

This is a list of global ink property GUIDs

 GUID_TIME_STAMP // stored as 64 bit value

Ink Serialized Format Specification Page 37 of 49

MICROSOFT WORD EXAMPLE

0 WISP Version number, set to zero

cbInkObject Size of the whole object and all its children

TAG_INK_SPACE_RECTANGLE Word used the rectangle Width X 64K

Left, Top, Right, Bottom Encoded Signed Values

TAG_DRAW_ATTRS_TABLE Tag for the drawing attributes table

cbDrawingAttributesTable Size of the drawing attributes table, the table

only one entry

cbDrawingAttributeBlock The size of the only drawing attribute block

TAG_PEN_WIDTH Tag for the pen width

3 Value for the pen width, 3 in this example

TAG_COLORREF Tag for the color

Encoded value for BLUE Encoded value for color, e.g. BLUE

TAG_ALTERNATE_LIST List of alternates for this word

cbAlternates Size of all the alternates

Data for alternates Compressed

TAG_INKMETRICS Tag for the INKMETRICS data structure

Data for ink metrics Byte encoded values, size is NOT needed

TAG_STROKE Tag for the stroke

cbStroke Size for stroke and all its children

cPoints Count of points in this stroke

X data Compressed X coordinates

Y data Compressed Y coordinates

TAG_STROKE Tag for stroke object

cbStroke Size for stroke and all its children

cPoints Count of Points in this stroke

X data Compressed X coordinates

Y data Compressed Y coordinates

MS Word breaks the ink into words and stores each word as a separate ISF. In the example above

the ink object has 2 strokes. The strokes only have x,y arrays but no additional packet properties

such as pressure. This is because the MS Word uses simple mouse input using the

GetMouseMoveEx API. This API only reports x,y coordinates, but it reports no additional packet

properties such as pressure. That is why the Stroke Descriptor Table is not needed.

GetMouseMoveEx returns high precision x,y coordinates in absolute mode, scaled to a 64K x 64K

rectangle. Word subsequently scales out X coordinates so as to match the aspect ratio of the

screen on which the ink is displayed. For example on a 1024 x 768 pixel screen, the coordinates

are scaled to the Ink Space Rectangle that is approximately 87K x 64K.

MS Word stores with each word the list of alternates that a recognizer returned for this ink object.

Alternate list is variable size depending on the recognizer used and the ink itself, therefore, the size

cbAlternates needs to be encoded in the stream, followed by the compressed list of alternate

words. The non-compressed list of alternate words is simply a list of Unicode strings that are

separated by zeros and zero terminated.

Ink Serialized Format Specification Page 38 of 49

Likewise, MS Word stores the INKMETRICS data structure in the ink stream. This is a known fixed

size data structure, so its size does not need to be encoded in the stream. Simply, the members of

the structure are listed, one after another as byte-encoded values.

The Alternate List and INKMETRICS are examples of global ink properties stored in the ink stream.

Finally, we need to discuss the Drawing Attributes Table. It only consists of a single Drawing

Attribute Block. This block applies to all the strokes; therefore it is not necessary to specify which

Drawing Attribute Block applies to which stroke. This Drawing Attribute Block has two properties

specified, the Pen Width of 3 and the Color blue. All other drawing attributes that are not mentioned

in the Drawing Attribute Block are assumed to take on the default values. For example, the Pen Tip

is assumed to be PEN_TIP_BALL.

Ink Serialized Format Specification Page 39 of 49

cBits-cPads Lookup Table

All possible cBits,cPads combinations are listed. First 24 entries apply to bit packing of BYTE array,

first 32 entries apply to bit packing of WORD array, and the whole table applies to bit packing of

LONG array. There are at most 7 unused bits in the last byte of the compressed array. Therefore,

given the cBits, the largest possible value for cPads is 7/ cBits.

Table

Index cBits cPads

0 8 0

1 1 0

2 1 1

3 1 2

4 1 3

5 1 4

6 1 5

7 1 6

8 1 7

9 2 0

10 2 1

11 2 2

12 2 3

13 3 0

14 3 1

15 3 2

16 4 0

17 4 1

18 5 0

19 5 1

20 6 0

21 6 1

22 7 0

23 7 1

24 8 0

25 9 0

26 10 0

27 11 0

28 12 0

29 13 0

30 14 0

31 15 0

32 16 0

33 17 0

34 18 0

35 19 0

36 20 0

37 21 0

38 22 0

39 23 0

40 24 0

41 25 0

42 26 0

43 27 0

44 28 0

45 29 0

46 30 0

47 31 0

Ink Serialized Format Specification Page 40 of 49

Appendix A: Tags

#define INDEX_GUID_X 0

#define INDEX_GUID_Y 1

#define INDEX_GUID_Z 2

#define INDEX_GUID_PACKET_STATUS 3

#define INDEX_GUID_TIMER_TICK 4

#define INDEX_GUID_SERIAL_NUMBER 5

#define INDEX_GUID_NORMAL_PRESSURE 6

#define INDEX_GUID_TANGENT_PRESSURE 7

#define INDEX_GUID_BUTTON_PRESSURE 8

#define INDEX_GUID_X_TILT_ORIENTATION 9

#define INDEX_GUID_Y_TILT_ORIENTATION 10

#define INDEX_GUID_AZIMUTH_ORIENTATION 11

#define INDEX_GUID_ALTITUDE_ORIENTATION 12

#define INDEX_GUID_TWIST_ORIENTATION 13

#define INDEX_GUID_PITCH_ROTATION 14

#define INDEX_GUID_ROLL_ROTATION 15

#define INDEX_GUID_YAW_ROTATION 16

#define INDEX_GUID_PEN_STYLE 17

#define INDEX_GUID_COLORREF 18

#define INDEX_GUID_PEN_WIDTH 19

#define INDEX_GUID_PEN_HEIGHT 20

#define INDEX_GUID_PEN_TIP 21

#define INDEX_GUID_DRAWING_FLAGS 22

#define INDEX_GUID_CURSORID 23

#define INDEX_GUID_WORD_ALTERNATES 24

#define INDEX_GUID_CHAR_ALTERNATES 25

#define INDEX_GUID_INKMETRICS 26

#define INDEX_GUID_GUIDE_STRUCTURE 27

#define INDEX_GUID_TIME_STAMP 28

#define INDEX_GUID_LANGUAGE 29

#define INDEX_GUID_TRANSPARENCY 30

#define INDEX_GUID_CURVE_FITTING_ERROR 31

#define INDEX_GUID_RECO_LATTICE 32

#define INDEX_GUID_CURSORDOWN 33

#define INDEX_GUID_SECONDARYTIPSWITCH 34

#define INDEX_GUID_BARRELDOWN 35

#define INDEX_GUID_TABLETPICK 36

#define INDEX_GUID_ROP 37

#define INDEX_GUID_MAX 37

 const BYTE TAG_INK_SPACE_RECT = 0;

 const BYTE TAG_GUID_TABLE = 1;

 const BYTE TAG_DRAW_ATTRS_TABLE = 2;

 const BYTE TAG_DRAW_ATTRS_BLOCK = 3;

 const BYTE TAG_STROKE_DESC_TABLE = 4;

 const BYTE TAG_STROKE_DESC_BLOCK = 5;

 const BYTE TAG_BUTTONS = 6;

 const BYTE TAG_NO_X = 7;

 const BYTE TAG_NO_Y = 8;

 const BYTE TAG_DIDX = 9;

 const BYTE TAG_STROKE = 10;

 const BYTE TAG_STROKE_PROPERTY_LIST = 11;

Ink Serialized Format Specification Page 41 of 49

 const BYTE TAG_POINT_PROPERTY = 12;

 const BYTE TAG_SIDX = 13;

 const BYTE TAG_COMPRESSION_HEADER = 14;

 const BYTE TAG_TRANSFORM_TABLE = 15;

 const BYTE TAG_TRANSFORM = 16;

 const BYTE TAG_TRANSFORM_ISOTROPIC_SCALE = 17;

 const BYTE TAG_TRANSFORM_ANISOTROPIC_SCALE = 18;

 const BYTE TAG_TRANSFORM_ROTATE = 19;

 const BYTE TAG_TRANSFORM_TRANSLATE = 20;

 const BYTE TAG_TRANSFORM_SCALE_AND_TRANSLATE = 21;

 const BYTE TAG_TRANSFORM_QUAD = 22;

 const BYTE TAG_TIDX = 23;

 const BYTE TAG_METRIC_TABLE = 24;

 const BYTE TAG_METRIC_BLOCK = 25;

 const BYTE TAG_MIDX = 26;

 const BYTE TAG_MANTISSA = 27;

 const BYTE TAG_PERSISTENT_FORMAT = 28;

 const BYTE TAG_HIMETRIC_SIZE = 29;

 const BYTE TAG_STROKE_IDS = 30;

#define MAX_KNOWN_TAG_COUNT 50

 const BYTE TAG_KNOWN_TAG_COUNT = MAX_KNOWN_TAG_COUNT;

 const ULONG KNOWN_GUID_BASE_INDEX = MAX_KNOWN_TAG_COUNT;

#define MAX_KNOWN_GUID_INDEX 100

 const ULONG KNOWN_GUID_INDEX_LIMIT = MAX_KNOWN_GUID_INDEX;

 const ULONG CUSTOM_GUID_BASE_INDEX = MAX_KNOWN_GUID_INDEX;

 const GUID FAR KNOWN_GUIDS[38] =

{

 { 0x598a6a8f, 0x52c0, 0x4ba0, { 0x93, 0xaf, 0xaf, 0x35, 0x74, 0x11, 0xa5,

0x61 } },

 { 0xb53f9f75, 0x04e0, 0x4498, { 0xa7, 0xee, 0xc3, 0x0d, 0xbb, 0x5a, 0x90,

0x11 } },

 { 0x735adb30, 0x0ebb, 0x4788, { 0xa0, 0xe4, 0x0f, 0x31, 0x64, 0x90, 0x05,

0x5d } },

 { 0x6e0e07bf, 0xafe7, 0x4cf7, { 0x87, 0xd1, 0xaf, 0x64, 0x46, 0x20, 0x84,

0x18 } },

 { 0x436510c5, 0xfed3, 0x45d1, { 0x8b, 0x76, 0x71, 0xd3, 0xea, 0x7a, 0x82,

0x9d } },

 { 0x78a81b56, 0x0935, 0x4493, { 0xba, 0xae, 0x00, 0x54, 0x1a, 0x8a, 0x16,

0xc4 } },

 { 0x7307502d, 0xf9f4, 0x4e18, { 0xb3, 0xf2, 0x2c, 0xe1, 0xb1, 0xa3, 0x61,

0x0c } },

 { 0x6da4488b, 0x5244, 0x41ec, { 0x90, 0x5b, 0x32, 0xd8, 0x9a, 0xb8, 0x08,

0x09 } },

Ink Serialized Format Specification Page 42 of 49

 { 0x8b7fefc4, 0x96aa, 0x4bfe, { 0xac, 0x26, 0x8a, 0x5f, 0x0b, 0xe0, 0x7b,

0xf5 } },

 { 0xa8d07b3a, 0x8bf0, 0x40b0, { 0x95, 0xa9, 0xb8, 0x0a, 0x6b, 0xb7, 0x87,

0xbf } },

 { 0x0e932389, 0x1d77, 0x43af, { 0xac, 0x00, 0x5b, 0x95, 0x0d, 0x6d, 0x4b,

0x2d } },

 { 0x029123b4, 0x8828, 0x410b, { 0xb2, 0x50, 0xa0, 0x53, 0x65, 0x95, 0xe5,

0xdc } },

 { 0x82dec5c7, 0xf6ba, 0x4906, { 0x89, 0x4f, 0x66, 0xd6, 0x8d, 0xfc, 0x45,

0x6c } },

 { 0x0d324960, 0x13b2, 0x41e4, { 0xac, 0xe6, 0x7a, 0xe9, 0xd4, 0x3d, 0x2d,

0x3b } },

 { 0x7f7e57b7, 0xbe37, 0x4be1, { 0xa3, 0x56, 0x7a, 0x84, 0x16, 0x0e, 0x18,

0x93 } },

 { 0x5d5d5e56, 0x6ba9, 0x4c5b, { 0x9f, 0xb0, 0x85, 0x1c, 0x91, 0x71, 0x4e,

0x56 } },

 { 0x6a849980, 0x7c3a, 0x45b7, { 0xaa, 0x82, 0x90, 0xa2, 0x62, 0x95, 0x0e,

0x89 } },

 { 0x33c1df83, 0xecdb, 0x44f0, { 0xb9, 0x23, 0xdb, 0xd1, 0xa5, 0xb2, 0x13,

0x6e } },

 { 0x5329cda5, 0xfa5b, 0x4ed2, { 0xbb, 0x32, 0x83, 0x46, 0x01, 0x72, 0x44,

0x28 } },

 { 0x002df9af, 0xdd8c, 0x4949, { 0xba, 0x46, 0xd6, 0x5e, 0x10, 0x7d, 0x1a,

0x8a } },

 { 0x9d32b7ca, 0x1213, 0x4f54, { 0xb7, 0xe4, 0xc9, 0x05, 0x0e, 0xe1, 0x7a,

0x38 } },

 { 0xe71caab9, 0x8059, 0x4c0d, { 0xa2, 0xdb, 0x7c, 0x79, 0x54, 0x47, 0x8d,

0x82 } },

 { 0x5c0b730a, 0xf394, 0x4961, { 0xa9, 0x33, 0x37, 0xc4, 0x34, 0xf4, 0xb7,

0xeb } },

 { 0x2812210f, 0x871e, 0x4d91, { 0x86, 0x07, 0x49, 0x32, 0x7d, 0xdf, 0x0a,

0x9f } },

 { 0x8359a0fa, 0x2f44, 0x4de6, { 0x92, 0x81, 0xce, 0x5a, 0x89, 0x9c, 0xf5,

0x8f } },

 { 0x4c4642dd, 0x479e, 0x4c66, { 0xb4, 0x40, 0x1f, 0xcd, 0x83, 0x95, 0x8f,

0x00 } },

 { 0xce2d9a8a, 0xe58e, 0x40ba, { 0x93, 0xfa, 0x18, 0x9b, 0xb3, 0x90, 0x00,

0xae } },

Ink Serialized Format Specification Page 43 of 49

 { 0xc3c7480f, 0x5839, 0x46ef, { 0xa5, 0x66, 0xd8, 0x48, 0x1c, 0x7a, 0xfe,

0xc1 } },

 { 0xea2278af, 0xc59d, 0x4ef4, { 0x98, 0x5b, 0xd4, 0xbe, 0x12, 0xdf, 0x22,

0x34 } },

 { 0xb8630dc9, 0xcc5c, 0x4c33, { 0x8d, 0xad, 0xb4, 0x7f, 0x62, 0x2b, 0x8c,

0x79 } },

 { 0x15e2f8e6, 0x6381, 0x4e8b, { 0xa9, 0x65, 0x01, 0x1f, 0x7d, 0x7f, 0xca,

0x38 } },

 { 0x7066fbe4, 0x473e, 0x4675, { 0x9c, 0x25, 0x00, 0x26, 0x82, 0x9b, 0x40,

0x1f } },

 { 0xbbc85b9a, 0xade6, 0x4093, { 0xb3, 0xbb, 0x64, 0x1f, 0xa1, 0xd3, 0x7a,

0x1a } },

 { 0x39143d3, 0x78cb, 0x449c, { 0xa8, 0xe7, 0x67, 0xd1, 0x88, 0x64, 0xc3,

0x32 } },

 { 0x67743782, 0xee5, 0x419a, { 0xa1, 0x2b, 0x27, 0x3a, 0x9e, 0xc0, 0x8f,

0x3d } },

 { 0xf0720328, 0x663b, 0x418f, { 0x85, 0xa6, 0x95, 0x31, 0xae, 0x3e, 0xcd,

0xfa } },

 { 0xa1718cdd, 0xdac, 0x4095, { 0xa1, 0x81, 0x7b, 0x59, 0xcb, 0x10, 0x6b,

0xfb } },

 { 0x810a74d2, 0x6ee2, 0x4e39, { 0x82, 0x5e, 0x6d, 0xef, 0x82, 0x6a,

0xff, 0xc5 } },

};

 const ULONG KNOWN_GUID_COUNT = sizeof(KNOWN_GUIDS) / sizeof(GUID);

 const GUID& GUID_X = KNOWN_GUIDS[INDEX_GUID_X

];

 const GUID& GUID_Y = KNOWN_GUIDS[INDEX_GUID_Y

];

 const GUID& GUID_Z = KNOWN_GUIDS[INDEX_GUID_Z

];

 const GUID& GUID_PACKET_STATUS =

KNOWN_GUIDS[INDEX_GUID_PACKET_STATUS];

 const GUID& GUID_TIMER_TICK = KNOWN_GUIDS[INDEX_GUID_TIMER_TICK

];

 const GUID& GUID_SERIAL_NUMBER =

KNOWN_GUIDS[INDEX_GUID_SERIAL_NUMBER];

 const GUID& GUID_NORMAL_PRESSURE =

KNOWN_GUIDS[INDEX_GUID_NORMAL_PRESSURE];

 const GUID& GUID_TANGENT_PRESSURE =

KNOWN_GUIDS[INDEX_GUID_TANGENT_PRESSURE];

 const GUID& GUID_BUTTON_PRESSURE =

KNOWN_GUIDS[INDEX_GUID_BUTTON_PRESSURE];

Ink Serialized Format Specification Page 44 of 49

 const GUID& GUID_X_TILT_ORIENTATION =

KNOWN_GUIDS[INDEX_GUID_X_TILT_ORIENTATION];

 const GUID& GUID_Y_TILT_ORIENTATION =

KNOWN_GUIDS[INDEX_GUID_Y_TILT_ORIENTATION];

 const GUID& GUID_AZIMUTH_ORIENTATION =

KNOWN_GUIDS[INDEX_GUID_AZIMUTH_ORIENTATION];

 const GUID& GUID_ALTITUDE_ORIENTATION =

KNOWN_GUIDS[INDEX_GUID_ALTITUDE_ORIENTATION];

 const GUID& GUID_TWIST_ORIENTATION =

KNOWN_GUIDS[INDEX_GUID_TWIST_ORIENTATION];

 const GUID& GUID_PITCH_ROTATION =

KNOWN_GUIDS[INDEX_GUID_PITCH_ROTATION];

 const GUID& GUID_ROLL_ROTATION =

KNOWN_GUIDS[INDEX_GUID_ROLL_ROTATION];

 const GUID& GUID_YAW_ROTATION =

KNOWN_GUIDS[INDEX_GUID_YAW_ROTATION];

 const GUID& GUID_PEN_STYLE = KNOWN_GUIDS[INDEX_GUID_PEN_STYLE

];

 const GUID& GUID_COLORREF = KNOWN_GUIDS[INDEX_GUID_COLORREF

];

 const GUID& GUID_PEN_WIDTH = KNOWN_GUIDS[INDEX_GUID_PEN_WIDTH

];

 const GUID& GUID_PEN_HEIGHT = KNOWN_GUIDS[INDEX_GUID_PEN_HEIGHT

];

 const GUID& GUID_PEN_TIP = KNOWN_GUIDS[INDEX_GUID_PEN_TIP

];

 const GUID& GUID_DRAWING_FLAGS =

KNOWN_GUIDS[INDEX_GUID_DRAWING_FLAGS];

 const GUID& GUID_CURSORID = KNOWN_GUIDS[INDEX_GUID_CURSORID

];

 const GUID& GUID_WORD_ALTERNATES =

KNOWN_GUIDS[INDEX_GUID_WORD_ALTERNATES];

 const GUID& GUID_CHAR_ALTERNATES =

KNOWN_GUIDS[INDEX_GUID_CHAR_ALTERNATES];

 const GUID& GUID_INKMETRICS = KNOWN_GUIDS[INDEX_GUID_INKMETRICS

];

 const GUID& GUID_GUIDE_STRUCTURE =

KNOWN_GUIDS[INDEX_GUID_GUIDE_STRUCTURE];

 const GUID& GUID_TIME_STAMP = KNOWN_GUIDS[INDEX_GUID_TIME_STAMP

];

 const GUID& GUID_LANGUAGE = KNOWN_GUIDS[INDEX_GUID_LANGUAGE

];

 const GUID& GUID_TRANSPARENCY =

KNOWN_GUIDS[INDEX_GUID_TRANSPARENCY];

 const GUID& GUID_CURVE_FITTING_ERROR =

KNOWN_GUIDS[INDEX_GUID_CURVE_FITTING_ERROR];

 const GUID& GUID_RECO_LATTICE =

KNOWN_GUIDS[INDEX_GUID_RECO_LATTICE];

 const GUID& GUID_CURSORDOWN = KNOWN_GUIDS[INDEX_GUID_CURSORDOWN

];

 const GUID& GUID_SECONDARYTIPSWITCH =

KNOWN_GUIDS[INDEX_GUID_SECONDARYTIPSWITCH];

 const GUID& GUID_BARRELDOWN = KNOWN_GUIDS[INDEX_GUID_BARRELDOWN

];

 const GUID& GUID_TABLETPICK = KNOWN_GUIDS[INDEX_GUID_TABLETPICK

];

Ink Serialized Format Specification Page 45 of 49

 const GUID& GUID_ROP =

KNOWN_GUIDS[INDEX_GUID_ROP];

#define GUID_X (*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_X

])))

#define GUID_Y (*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_Y

])))

#define GUID_Z (*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_Z

])))

#define GUID_PACKET_STATUS

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_PACKET_STATUS])))

#define GUID_TIMER_TICK

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_TIMER_TICK])))

#define GUID_SERIAL_NUMBER

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_SERIAL_NUMBER])))

#define GUID_NORMAL_PRESSURE

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_NORMAL_PRESSURE])))

#define GUID_TANGENT_PRESSURE

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_TANGENT_PRESSURE])))

#define GUID_BUTTON_PRESSURE

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_BUTTON_PRESSURE])))

#define GUID_X_TILT_ORIENTATION

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_X_TILT_ORIENTATION])))

#define GUID_Y_TILT_ORIENTATION

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_Y_TILT_ORIENTATION])))

#define GUID_AZIMUTH_ORIENTATION

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_AZIMUTH_ORIENTATION])))

#define GUID_ALTITUDE_ORIENTATION

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_ALTITUDE_ORIENTATION])))

#define GUID_TWIST_ORIENTATION

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_TWIST_ORIENTATION])))

#define GUID_PITCH_ROTATION

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_PITCH_ROTATION])))

#define GUID_ROLL_ROTATION

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_ROLL_ROTATION])))

#define GUID_YAW_ROTATION

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_YAW_ROTATION])))

#define GUID_PEN_STYLE

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_PEN_STYLE])))

#define GUID_COLORREF

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_COLORREF])))

#define GUID_PEN_WIDTH

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_PEN_WIDTH])))

#define GUID_PEN_HEIGHT

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_PEN_HEIGHT])))

#define GUID_PEN_TIP

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_PEN_TIP])))

#define GUID_DRAWING_FLAGS

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_DRAWING_FLAGS])))

#define GUID_CURSORID

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_CURSORID])))

#define GUID_WORD_ALTERNATES

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_WORD_ALTERNATES])))

#define GUID_CHAR_ALTERNATES

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_CHAR_ALTERNATES])))

#define GUID_INKMETRICS

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_INKMETRICS])))

Ink Serialized Format Specification Page 46 of 49

#define GUID_GUIDE_STRUCTURE

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_GUIDE_STRUCTURE])))

#define GUID_TIME_STAMP

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_TIME_STAMP])))

#define GUID_LANGUAGE

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_LANGUAGE])))

#define GUID_TRANSPARENCY

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_TRANSPARENCY])))

#define GUID_CURVE_FITTING_ERROR

(*((GUID*)&(KNOWN_GUIDS[INDEX_GUID_CURVE_FITTING_ERROR])))

#define GUID_RECO_LATTICE (*((GUID*)&(

KNOWN_GUIDS[INDEX_GUID_RECO_LATTICE])))

#define GUID_CURSORDOWN (*((GUID*)&(

KNOWN_GUIDS[INDEX_GUID_CURSORDOWN])))

#define GUID_SECONDARYTIPSWITCH (*((GUID*)&(

KNOWN_GUIDS[INDEX_GUID_SECONDARYTIPSWITCH])))

#define GUID_BARRELDOWN (*((GUID*)&(

KNOWN_GUIDS[INDEX_GUID_BARRELDOWN])))

#define GUID_TABLETPICK (*((GUID*)&(

KNOWN_GUIDS[INDEX_GUID_TABLETPICK])))

#define GUID_ROP (*((GUID*)&(

KNOWN_GUIDS[INDEX_GUID_ROP])))

DEFINE_GUID(GUID_LINENUMBER, 0xdbf29f2c, 0x5289, 0x4be8, 0xb3, 0xd8, 0x6e,

0xf6, 0x32, 0x46, 0x25, 0x3e);

DEFINE_GUID(GUID_BOXNUMBER, 0x2c243e3a, 0xf733, 0x4eb6, 0xb1, 0xf8, 0xb5,

0xdc, 0x5c, 0x2c, 0x4c, 0xda);

DEFINE_GUID(GUID_SEGMENTATION, 0xb3c0fe6c, 0xfb51, 0x4164, 0xba, 0x2f, 0x84,

0x4a, 0xf8, 0xf9, 0x83, 0xda);

// {CA6F40DC-5292-452a-91FB-2181C0BEC0DE}

DEFINE_GUID(GUID_HOTPOINT, 0xca6f40dc, 0x5292, 0x452a, 0x91, 0xfb, 0x21,

0x81, 0xc0, 0xbe, 0xc0, 0xde);

// {BF0EEC4E-4B7D-47a9-8CFA-234DD24BD22A}

DEFINE_GUID(GUID_MAX_STROKE_COUNT, 0xbf0eec4e, 0x4b7d, 0x47a9, 0x8c, 0xfa,

0x23, 0x4d, 0xd2, 0x4b, 0xd2, 0x2a);

// {7DFE11A7-FB5D-4958-8765-154ADF0D833F}

DEFINE_GUID(GUID_CONFIDENCELEVEL, 0x7dfe11a7, 0xfb5d, 0x4958, 0x87, 0x65,

0x15, 0x4a, 0xdf, 0xd, 0x83, 0x3f);

// {8CC24B27-30A9-4b96-9056-2D3A90DA0727}

DEFINE_GUID(GUID_LINEMETRICS, 0x8cc24b27, 0x30a9, 0x4b96, 0x90, 0x56, 0x2d,

0x3a, 0x90, 0xda, 0x7, 0x27);

DEFINE_GUID(GUID_INRANGE, 0xdc00b1af, 0x7321, 0x4ac1, 0x91, 0x88, 0xe3, 0x20,

0x18, 0xeb, 0xb2, 0x3b);

DEFINE_GUID(GUID_TOUCH, 0x65c98c60, 0xcd80, 0x447d, 0xb1, 0x29, 0x25, 0xf6,

0xe, 0x1d, 0x80, 0x5b);

DEFINE_GUID(GUID_UNTOUCH, 0x378c85bb, 0x7118, 0x491e, 0x85, 0x16, 0xa7, 0x48,

0x2d, 0xb, 0x68, 0x3a);

DEFINE_GUID(GUID_TAP, 0x9eaad4, 0xd133, 0x4ed2, 0xb1, 0x2c, 0x89, 0x1f, 0x8e,

0x82, 0x5e, 0x6a);

DEFINE_GUID(GUID_QUALITY, 0xb7fe8008, 0x2df6, 0x4e1b, 0x8c, 0x43, 0xf5, 0xf1,

0x6, 0x8, 0x93, 0x2d);

DEFINE_GUID(GUID_DATAVALID, 0xaacf46b5, 0xf107, 0x47b0, 0xb5, 0x77, 0xd9,

0x39, 0xc0, 0x53, 0xed, 0x41);

DEFINE_GUID(GUID_TRANSDUCERINDEX, 0xa412b445, 0x7818, 0x4c83, 0x84, 0x55,

0x49, 0x29, 0xc8, 0x70, 0x76, 0x3b);

Ink Serialized Format Specification Page 47 of 49

DEFINE_GUID(GUID_TABLETFUNCTIONKEYS, 0xff3b8afe, 0x5f06, 0x494d, 0xa4, 0xf8,

0xd3, 0xe2, 0x85, 0xf9, 0x76, 0x30);

DEFINE_GUID(GUID_PROGRAMCHANGEKEYS, 0x869c344a, 0x92a1, 0x4b6f, 0xb4, 0xbc,

0x3, 0x96, 0xc6, 0xa9, 0xf6, 0xaf);

DEFINE_GUID(GUID_BATTERYSTRENGTH, 0x4ca0a0dc, 0x3549, 0x43f5, 0xa0, 0x32,

0x99, 0xf4, 0xe3, 0x3d, 0xf4, 0x90);

DEFINE_GUID(GUID_INVERT, 0xc3aa28c8, 0x806b, 0x490c, 0xa8, 0x4a, 0xa7, 0x7a,

0xe7, 0x27, 0xc7, 0x18);

DEFINE_GUID(GUID_BUTTON4,0x844b06d, 0xaa2c, 0x4c66, 0x99, 0x76, 0x88, 0xdd,

0x2a, 0x59, 0xe4, 0xf0);

DEFINE_GUID(GUID_BUTTON5,0x944d1340, 0x2549, 0x4905, 0xbd, 0x54, 0x3e, 0xe3,

0x96, 0x3e, 0xe1, 0x57);

DEFINE_GUID(GUID_BUTTON6,0xff19bd41, 0xa463, 0x4eaa, 0xaf, 0x10, 0xb5, 0x6,

0x48, 0x79, 0xe5, 0x4b);

DEFINE_GUID(GUID_BUTTON7,0xdedaf13c, 0xb7dc, 0x423b, 0xb9, 0x7f, 0xa2, 0xbd,

0x68, 0xa2, 0xfd, 0x3d);

DEFINE_GUID(GUID_BUTTON8,0xa6f70e64, 0x3a67, 0x4552, 0xa0, 0xc4, 0x17, 0x38,

0x4e, 0x49, 0x5a, 0x55);

DEFINE_GUID(GUID_BUTTON9,0xbf55916c, 0xd6e6, 0x4fd3, 0x94, 0x62, 0x55, 0xd6,

0x9d, 0xb, 0xe7, 0x9c);

DEFINE_GUID(GUID_BUTTON10,0x95f1b222, 0x1159, 0x4f9a, 0xb6, 0xe4, 0x6e, 0xde,

0xdf, 0xc7, 0x56, 0x9b);

DEFINE_GUID(GUID_BUTTON11,0xf2dff7da, 0xf458, 0x4b61, 0xa2, 0x15, 0x62, 0xd0,

0x56, 0x48, 0x6, 0x53);

DEFINE_GUID(GUID_BUTTON12,0x6a860858, 0x9b68, 0x4da6, 0xb3, 0x2a, 0x55, 0xe9,

0xe9, 0x75, 0xbe, 0xeb);

DEFINE_GUID(GUID_BUTTON13,0x42ffb4d9, 0x7f95, 0x475e, 0x9c, 0x97, 0x82, 0xa0,

0x2b, 0xdc, 0x7e, 0xb6);

DEFINE_GUID(GUID_BUTTON14,0x215008c8, 0xf09d, 0x48d7, 0x95, 0x2e, 0xc, 0x11,

0x8d, 0x6, 0xe8, 0xca);

DEFINE_GUID(GUID_BUTTON15, 0xd1d1fa37, 0x1ee0, 0x4015, 0x9c, 0x33, 0x12,

0xcc, 0x42, 0x57, 0x60, 0x1);

DEFINE_GUID(GUID_PEN_TIMESTAMP1, 0x413a7d1a, 0xeede, 0x45ce, 0xa4, 0x32,

0x80, 0x88, 0xca, 0x9e, 0x8e, 0x4a);

DEFINE_GUID(GUID_PEN_TIMESTAMP2, 0x876c825, 0xcdc, 0x4395, 0xbf, 0x9b, 0x36,

0x7e, 0x69, 0x8a, 0x75, 0x56);

DEFINE_GUID(GUID_WIDTH, 0xbaabe94d, 0x2712, 0x48f5, 0xbe, 0x9d, 0x8f, 0x8b,

0x5e, 0xa0, 0x71, 0x1a);

DEFINE_GUID(GUID_HEIGHT, 0xe61858d2, 0xe447, 0x4218, 0x9d, 0x3f, 0x18, 0x86,

0x5c, 0x20, 0x3d, 0xf4);

DEFINE_GUID(GUID_FINGERCONTACTCONFIDENCE, 0xe706c804, 0x57f0, 0x4f00, 0x8a,

0x0c, 0x85, 0x3d, 0x57, 0x78, 0x9b, 0xe9);

DEFINE_GUID(GUID_TEMPID, 0x2585b91, 0x49b, 0x4750, 0x96, 0x15, 0xdf, 0x89,

0x48, 0xab, 0x3c, 0x9c);

